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ABSTRACT

ESTIMATION AND HYPOTHESIS TESTING
IN STOCHASTIC REGRESSION

SAZAK, Hakan Savas
Ph. D., Department of Statistics
Supervisor : Prof. Dr. Moti Lal TIKU
Co-Supervisor : Asst. Prof. Dr. Qamarul ISLAM

December 2003, 201 pages

Regression analysis is very popular among researchers in various fields
but almost all the researchers use the classical methods which assume that X is
nonstochastic and the error is normally distributed. However, in real life
problems, X 1is generally stochastic and error can be nonnormal. Maximum
likelihood (ML) estimation technique which is known to have optimal features, is
very problematic in situations when the distribution of X (marginal part) or error

(conditional part) is nonnormal.

Modified maximum likelihood (MML) technique which is asymptotically
giving the estimators equivalent to the ML estimators, gives us the opportunity to
conduct the estimation and the hypothesis testing procedures under nonnormal
marginal and conditional distributions. In this study we show that MML
estimators are highly efficient and robust. Moreover, the test statistics based on

the MML estimators are much more powerful and robust compared to the test

il



statistics based on least squares (LS) estimators which are mostly used in
literature. Theoretically, MML estimators are asymptotically minimum variance
bound (MVB) estimators but simulation results show that they are highly efficient
even for small sample sizes. In this thesis, Weibull and Generalized Logistic
distributions are used for illustration and the results given are based on these

distributions.

As a future study, MML technique can be utilized for other types of
distributions and the procedures based on bivariate data can be extended to

multivariate data.

Key Words: Maximum likelihood (ML), modified maximum likelihood (MML),
least squares (LS), stochastic regression, nonnormal error
distribution, nonnormal marginal distribution, minimum variance

bound (MVB), robustness, Weibull, Generalized Logistic.
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STOKASTIK REGRESYONDA TAHMIN VE HiPOTEZ TESTi

SAZAK, Hakan Savas
Doktora, Istatistik Boliimii
Tez Yoneticisi : Prof. Dr. Moti Lal TIKU
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Qamarul ISLAM

Aralik 2003, 201 sayfa

Regresyon analizi cesitli alanlardaki arastirmacilar arasinda ¢ok popiilerdir
fakat hemen hemen tiim arastirmacilar, X ’in stokastik olmadigini ve hata
dagilimmin normal oldugunu varsayan klasik metotlar kullanirlar. Bununla
beraber gercek hayat problemlerinde X , genellikle stokastik degildir ve hatanin
dagilimi1 da normal olmayabilir. En uygun yontem olarak bilinen en ¢ok olabilirlik
(ML) tahmin etme yontemi, X ’in (marjinal kisim) veya hatanin (kosullu kisim)

dagiliminin normal olmadig1 durumlarda ¢cok problemli bir yontemdir.

Uyarlanmis en cok olabilirlik (MML) tahmin etme teknigi ki asimptotik
olarak trettigi tahmin ediciler ML tahmin etme yOnteminin tahmin edicilerine
esittir, bize normal olmayan marjinal ve kosullu durumlar altinda tahmin etme ve
hipotez testi yapma imkani verir. Bu caligmada MML tahmin edicilerinin saglam
ve yiiksek etkinlige sahip olduklarin1 gosterdik. Dahasi, MML tahmin edicilerine

dayal1 test istatistikleri de literatiirde cokca kullanilan en kii¢iik kareler (LS)
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yontemi ile bulunan tahmin edicilere dayal test istatistiklerinden ¢ok daha giiclii
ve saglamdir. Teorik olarak MML tahmin edicileri asimptotik olarak en kiigiik
varyans smirini bulan (MVB) tahmin edicilerine esittirler fakat simulasyon
sonuclart gosteriyor ki kiiciik 6rneklem hacimlerinde bile ¢ok etkindirler. Bu
tezde normal olmayan dagilimlara ornek olarak Weibull ve Genellestirilmis

Lojistik dagilimi kullanilmis ve sonuglar bu dagilimlara gore verilmistir.

Gelecekteki c¢alismalarda MML teknigi daha degisik dagilimlar icin
kullanilabilir ve bu tezde ikili veri seti i¢in verilen sonuglar ¢ok degiskenli veri

setleri icin genellenebilir.

Anahtar Kelimeler: En cok olabilirlik (ML), uyarlanmis en ¢ok olabilirlik
(MML), en kiiciik kareler (LS), stokastik regresyon,
normal olmayan hata dagilimi, normal olmayan marjinal
dagilim, en kiiciik varyans smirt (MVB), saglamlik,
Weibull dagilimi, Genellestirilmis Lojistik dagilima.
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CHAPTER 1

INTRODUCTION
and

HISTORICAL PERSPECTIVE

Summary: In a simple linear model, the design variable X has traditionally been
taken to be nonstochastic and the random error ¢ assumed to be normally
distributed. It has been recognized, however, that in numerous applications X
might be stochastic and e might not be normal. This gives rise to three research
areas: (a) X is nonstochastic and e is nonnormal, (b) X is stochastic and e is
normal, and (c) X is stochastic and e is nonnormal. In this chapter, we briefly
review the work done so far in the areas (a) and (b). There is no previous work in

the area (c).
1.1 Linear Model Under Normality
Consider a simple linear regression model

v, =6,+60x +e, 1<i<n, (1.1.1)

where x,’s are nonstochastic design values (assumed to be measurable without
error) and e,’s are identically and independently distributed (iid) random errors.

The parameter 6, is called the intercept and 6, is called the slope or the

regression coefficient. The parameter 6, is of particular importance since d_y =0,
X

1



and represents the rate of change in y as x changes by one unit. Usually, x,’s
(1<i<n) are chosen to be equidistant and such an arrangement is called

symmetric design. In fact, a symmetric design has certain theoretical and

computational advantages which will be pointed out later.

A problem of major importance is to estimate the parameters 8, and 6,
and test the null hypothesis H,:6, =0. Clearly, H, implies that the design
variable (also called input) has no effect on the response y. Assume in the first
place, as the tradition has it, that e;,’s (1<i<n) are iid normal N (0,0%) . Since
the method of maximum likelihood has all the desirable optimal properties under

some general regularity conditions, we employ this method to estimate 8,, 6, and

o . The likelihood function is

(3ol

The maximum likelihood (ML) estimators are the solutions of the equations

1 n
7o >y —00—91xl.)2}. (1.1.2)
i=1

olnL 1
e~ 57 200 —6x) =0 (1.1.3)
0 i=1
aa“;L =§Z<yi —6,-6,x)x, =0 and (1.1.4)
1 i=1
dlnL n 1<
ey :—;+?Z(yi—00—6’1xi)2=0. (1.1.5)
i=1

The solutions are the ML estimators:

6,=y-6x,6,=>(x,~%)y,/>.(x,~%’, and (1.1.6)
i=1 i=1



i=1

3={an{(y,- -9 -6,(x, —7c>}2 /(n—2)} . (1.1.7)

The divisor n-2 in (1.1.7) makes &> unbiased, i.e., E(6*)=0".

Lemma 1.1: The estimator él is the minimum variance bound (MVB) estimator

of 6, with variance o’/ Z(xl. —X)” and is normally distributed. This follows
i=1

from a re-organization of dIlnL/d8@,. In view of (1.1.3), we have (Kendall and

Stuart, 1979, p.24)

) (x, - %)?
oy 2D
ag = =l = 6,-6,) (1.1.8)
1

which implies that él is the MVB estimator of ,. The normality follows from the

fact that él is a linear function of iid normal variates y,, y,,...,y,, .

Fisher Information: The Fisher information matrix /(6,,6,,0), consists of the
elements —E(°InL/96;), —E@*InL/96}),—E@’InL/d6,06,), etc., and is

given by

1 x 0
16,,6,,0)=—|% Umd x> 0. (1.1.9)
o i=1
0 0 2

A

The asymptotic variance-covariance matrix of the estimators 6,, 6, and & is

given by 1", In particular,



V(él)=0'2/2(xi—)_c)2 and V(6) =0’ /2n. (1.1.10)

i=1

It may be noted, however, that the expression for the variance V(él) given

in (1.1.10) is exact for all sample sizes n (Lemma 1.1). We also have the Cochran

identity

2 n

S -9 260+3 {0, -9-6,0,-D} . 0= (x, - D)y, .
i=1 i=1

i=1

or (n—1s>=6,0+(n-2)s> (1.1.11)
with expected values
(n-1)o> =0’ +(n-2)0> (if 6, =0); (1.1.12)

(1.1.12) is, in fact, true even if 8, # 0 but then the expected values of the SS on
the left and the first SS on the right also have a noncentrality parameter. Under the

normality assumption, the distribution of (n—2)s’ /0" is chi-square with (n—2)

degrees of freedom, and él and s are independently distributed. Note that
6,0=6">(x,-X). (1.1.13)
i=1

Remark: It is well known that if x,’s are equidistant (without loss of generality
between —1 and 1) then Z(xi -Xx)’ :le.z is maximized, that is, V(él) is
i=1 i=1

minimized. Such an arrangement is called an optimal design.



Hypothesis Testing: As said earlier, testing the null hypothesis H, : 6, =0 is of

paramount importance. To test H,, against H, : 6, >0, we define the statistic

t= /Zn:(xi—)_c)z(él/se). (1.1.14)

Large values of ¢ lead to the rejection of H,. This test is , in fact,

uniformly most powerful (UMP). The null distribution of ¢ is Student’s t with
n—2 degrees of freedom. The nonnull distribution of # is noncentral t with n —2

degrees of freedom and noncentrality parameter A,
A= (x,—%)7(6,/0). (1.1.15)
i=1
To test H, against H, : 6, # 0, we use the statistic

F=Y(x,-%6,/s) =6,0/s]. (1.1.16)

i=1

The null distribution of F is central-F with (1,n—2) degrees of freedom.
The nonnull distribution of F is noncentral-F with (1,n—2) degrees of freedom

and noncentrality parameter A’. For details about noncentral distributions, one

may refer to Tiku (1985).

Incidentally, the following properties of the likelihood equations (1.1.3)-
(1.1.5) may be noted:

(i) E(Q"InL/06;)=0 and E(d"InL/06,)=0 for r 23,

(ii) EQQ"" InL/96.90°)=0 and EQ"" InL/36/dc°) =0

5



forall r>1 and s >1

and  (iii) E@*InL/dc*)=-2n/c?, E@’InL/dc’)=10n/0">,etc; (1.1.17)

(1)-(iii) are called Bartlett (1953) conditions and together with the Cochran

identity (1.1.11), imply that é() and él are independently distributed of s, and él

is normal and s’ is a multiple of chi-square. We will use such structural

relationships from time to time in determining the distributions of statistics like
those in (1.1.14) and (1.1.16). We now briefly review the research area (a)

mentioned above.
1.2 Nonnormal Error Distribution

Consider the situation where X in the linear model (1.1.1) continues to be
nonstochastic but the random error e is nonnormal. We consider location-scale

distributions of the type (1/0)f((y—p)/o), i.e, the distribution of
z=(y—p)/o is free of 4 and o. Under nonnormality, using the maximum

likelihood methodology is in general problematic, e.g, the likelihood equations
have no explicit solutions and solving them by iteration can be problematic for
reasons of (i) multiple roots, (ii) nonconvergence of iterations, or (iii)
convergence to wrong values; see, for example, Barnett (1966), Lee et al. (1980)
and Vaughan (1992). In fact, Puthenpura and Sinha (1986) showed that if the
sample contains outliers, iterations with likelihood equations might not converge
at all. To alleviate these difficulties , we use the method of modified likelihood
due to Tiku (1967; 1968 ; 1980) and Tiku and Suresh (1992). This method
linearizes the intractable terms in the likelihood equations and its features are
discussed in the literature, e.g., Vaughan and Tiku (2000). Suffice it to say here
that this method yields estimators which are explicit functions of sample
observations and are, therefore, easy to compute. The estimators are called
modified maximum likelihood (MML) estimators and are asymptotically fully
efficient , i.e., they are asymptotically minimum variance bound estimators. For
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small samples, they have no or negligible bias and are highly efficient; see, for

example, Senoglu and Tiku (2001, 2002) and Vaughan (2002).

Islam et al. (2001) and Tiku et al. (2001) develop modified likelihood
methodology for treating statistically the situations where X is nonstochastic and e
is nonnormal. They consider, for illustration, the following families of
distributions: Weibull, Generalized Logistic, Student’s t, and short-tailed

distributions recently introduced by Tiku and Vaughan (1999), namely,

2" _,2 2
Ae } PP /207) e (150).

1
e)oc —ql+——
A O'{ 2r o’ N27
For illustration, we present their results for Student’s t family which
represents long-tailed symmetric distributions with kurtosis 4, /u; >3. The

distributions in this family are also used to model samples which contain outliers

(Tiku et al., 2001).
1.3 Student t Family

Suppose that e has the distribution ( p known)

2

1 P
f(e)oc;{1+keo_2} , —0< e< oo (1.3.1)

k=2p—-3 and p>2. It may be noted that E(e)=0 and V(e)=0", and the
distribution of ¢t =./(V/k)(e/o) is a Student’s t distribution with v=2p—1

degrees of freedom. Given a random sample y,,y,,...,y, from (1.3.1), the

n

likelihood function is



1 n o, e-z -p
Loc(—j {1+k12} . (13.2)
o) i o

Writing
z=e/o=(y,-6,-6,x)/c and g(z)=z/(1+1/Kk)2*), (1.3.3)
the likelihood equations are

AL _2p

E =0 1.3.4
96, ko‘g 8(z) ( )
olnL 2p

:_E X, )=0 and 1.3.5
891 ko ‘5 i8(z) ( )
dlnL n o 2p

-y 2‘ 9(z)=0. 1.3.6
o0 o ko‘s 28(z) ( )

As explained in Tiku and Suresh (1992), and Vaughan (1992), solving

such equations is problematic. In particular, they have multiple roots.

1.4 Modified Likelihood

To formulate the modified likelihood equations, we write (for a given 6,)

wiy =y — 60X and zy =(w—6,)/0, 1<i<n; (1.4.1)

(¥[> %)) may be called concomitants of z; and is that pair (y,,x;) which
determines z(;). Since complete sums are invariant to ordering, the likelihood

equations (1.3.4)-(1.3.6) can be written as



dlnL 2p
ol 2PN i) =0 1.4.2
26, ko_;g( ", (1.4.2)
dlnL 2p

==Y x0(z4)=0 and 1.4.3
20, ka; 18(2()) (1.4.3)
olnL n 2p

=—— 4+ == Z0 74)=0. 1.4.4
toled o ka; 8(z0) ( )

Note that 8, and o (> 0) have no role to play in determining the ordered variates

4

Linearization: Since the function g(z) is linear (almost) in a small interval
a<z<b,and z is located in the vicinity of 7 = E(z(l.)), (1<i<n), we have

the first two terms of a Taylor series expansion

d
8z )= gt )+[Z(,-) —’(i)]{d—zg(Z)}

=)

=a,+ Bz, 1<i<n. (1.4.5)
Thus,
21k} 1-(1/k)e}
C(iZL(l)2 and i:(—)(l)z,ISiSn. (1.4.6)
i+ aron} i+ aro )

The values of 1) (1<i<n) are given in Tiku and Kumra (1981) for p =2(.5)10

and n<20. For n>10, the approximate values of 7, obtained from the

equations

=—'  a<i<n), (1.4.7)
+1



are used. Realize that ¢ =,/(v/k)z has Student’s t distribution with v=2p—1
degrees of freedom. An IMSL subroutine is available to compute 7, from (1.4.7).
The use of the approximate values of 7 for all n>10 does not affect the

efficiency of the resulting estimators adversely (Tiku and Suresh, 1992; Tiku et

al., 2001).

Modified likelihood equations are obtained by incorporating (1.4.5) in (1.4.2)-
(1.4.4):

alnL alnL
N 1.4.8

00, ~ 08, Z{ Bay}=0 (148
dlnL dlnL 2py

- _2PN v B2 Y20 and 1.4.9
26, = 06, ka;x[’]{a’ Biaiy}=0 an (149
dlnL dInL n 2p
do _ do :_;JFEZ: ol + Bz }=0. (1.4.10)

The equations (1.4.8)-(1.4.10) are asymptotically equivalent to the
likelihood equations (1.4.2)-(1.4.4); see Vaughan and Tiku (2000) for a rigorous

mathematical proof.
1.5 The MML Estimators

The solutions of the equations (1.4.8)-(1.4.10) are the following MML estimators:

A

6,=y,-6x), 6, =K+L6,and (1.5.1)

6= {B+ (B + 4nC)}/21/{n(n— 2)} (1.5.2)

10



where

m=" B, yy=Um By Xy=AIm). Bxy.
i=1 i=1 i=1
K= ;ﬁ,- (X = XD Vi / Z:, ACTIEE AR
L= Zai (x[i] _)_C[A]) Zﬂz (x[i] _)_6[4])2 ’
i=1 i=1
2p & _ —
B = 7204 {y[,-] =y K- x[,])}’ and
i=1
2p & _ _
C= TZﬂi{m ~ 3y~ Ky —%pf
i=1

2 n B n ~
= TP{ZﬂI (y[i] - y[])z — KZ,Bi (X[,-] - x[i])y[,-]}. (1.5.3)
=1 i=1

Note that B/4/(nC) = 0for large n and, consequently, 6° = C/(n—2).

Since for symmetric distributions 7, .,y = =, it immediately follows that
DY, =0 and B, =B, 1<i<n. (1.5.4)
i=1

Computations: The MML estimators are computed in two iterations. In the first

place, they are computed from the order statistics wg of w, =y, —élxi

(1<i<n), 51 = Z(xi -X)y, Z(xl. —X)° being the least squares (LS) estimator
i=1 i=l

of 6,. In the second iteration, the estimate 51 is replaced by él and the

computations repeated. Tiku et al. (2001) and Islam et al. (2001) show that no

more than two iterations are needed for the estimates to stabilize sufficiency

enough.
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Comment: It is clear from (1.5.2)-(1.5.3) that & is real and positive if S, >0 for
all i=12,...,n. Now, f, is an increasing sequence until the middle value and then
decreases again in a symmetric fashion. Thus, if £, >0 then all S, coefficients

are nonnegative. For small p and large n, however, S, (and possibly few other
coefficients) can be negative (Tiku and Suresh, 1992; Vaughan, 1992).
Consequently, 6 can cease to be real. In such situations, we recast the linear

approximation (1.4.5). This can be done since g(z(;) is bounded and so are ¢,

and B, (1<i<n).Now (Tiku et al., 2001)

gz = + Bz, 1<i<n, (1.5.5)
where
@ =0 and B =1{+a/0}. (1.5.6)
Asymptotically,
o+ Py =a; + Bz, since zp—1;=0. (1.5.7)

Remark: Since S, is negative only for small p and large n, the linear functional

(1.5.5) is not used that often.

Asymptotic Variances-Covariances: Since the MML estimators (1.5.1)-(1.5.2)

are asymptotically equivalent to the ML estimators, their asymptotic variance-

covariance matrix is given by 17'(6,,6,,0), where I is the Fisher information

matrix consisting of the elements — E (82 InL/06? ), -E (82 In /96,06, ), etc.

12



The Fisher information matrix is

1 X
n_ plp-1/2) |_ 2
1(6,.6,,0)=— 1/ ,. 0 >2). (1.5.8
6060 = 3| - ¢ n);x (p22). (15.8)
) 0 2(p-3/2)
p

This gives, in particular, the following MVB:

2 _ =2 n
mvB@,) = 2P =3/2) {1+x—2}, =LY (-5,
i=1

n  p(p-1/2) N ny
2 _ 2

My, =2 LDP 3D 1y yvpey =2 PHD (1.5.9)
n  p(p-1/2) s 2n (p—1/2)

Tiku et al. (2001) simulated the means and variances of éo, él and & for
p=2,3,4and5 and n=20,50and100. They showed that these estimators have

negligible bias and their variances are very close to the minimum variance bounds

above. In other words, the MML estimators are highly efficient as expected.

Remark: It may be noted that V(él) is inversely proportional to Z(xi -X)*, as
i=1

in the situation when the error e is normally distributed. Therefore, a design which
is optimal for normal is also optimal for Student’s t family, at any rate for large n.
This is a very useful result since there is no necessity of re-inventing optimal

designs.

Least Squares: No distributional assumptions as such are made in deriving the

LS estimators. The only requirement is the existence of the mean and the variance

of e. The estimators of 8, and &, are obtained by minimizing

13



Zeiz =z(yi_6()_61xi)2 (1.5.10)
i=1 il

which gives

5 = 5;? 6? =Z(x -X)y, /Z(x -X)%,

_ /(n 2)= .—y—él(xi—)_c)}z/(n—%. (1.5.11)

The LS estimators are used very widely. For the family (1.3.1) and other
families, however, Tiku et al. (2001) and Islam et al. (2001) showed that the

MML estimators are enormously more efficient than the LS estimators.

Another important issue is that of robustness. An estimator is said to be
robust if it is fully efficient (or nearly so) for an assumed model but maintains
high efficiency for plausible alternatives (Tiku et al., 1986, Preface). The MML
estimators are known to be remarkably robust (Tiku, 1980; Tiku et al., 2001;
Islam et al.,, 2001; Akkaya and Tiku, 2001). We will address the issue of

robustness in later chapters.
1.6. Hypothesis Testing for Symmetric Family

To test H,:6, =0, we have the following result regarding the distribution of the

MML estimator él given in (1.5.1).

Lemma 1.2: Conditionally (o known) the asymptotic distribution of

él (0) = K + Lo is normal with mean 6, and variance ¢~ Z B (xp —)_CH)Z . This
i=1

follows from a re-organization of (1.4.9). In the light of (1.4.8), it can be

expressed in the form
14



. iﬁi(x[i] _)_C[])2
BEI;;L _ =l 0-2 {(K_,'_LO-)_gl} (161)
1

Also

p(p—1/2) &2
(p+D(p-3/2) *

R _
lim—> 8, (xyy = ¥)" = (1.6.2)
i=1

To test H, : 6, =0 against H, : 6, >0, we use the statistic (p 2 2)

T:\/{ np(p—1/2) Sf}(iij. (163)
(p+(p-3/2) [ 6

The null distribution of 7' is asymptotically normal N(0,1). This follows

from (1.6.1) and the fact that & converges to o as n becomes large. For small
n, the null distribution of 7T is referred to Student’s t with n—2 degrees of

freedom.

The statistic based on the LS estimators is

G=+ns>)(8,15), (1.6.4)

~

6, and &, are given in (1.5.11). The null distribution of G is asymptotically

normal N(0,1). This follows from the fact that & converges to ¢ and 51 is
asymptotically normal by Central Limit Theorem. The asymptotic nonnull
distributions of 7 and G are also normal with noncentrality parameters A and

A, , respectively:

15



N =np(p=172))( p+1)( p=3/2)152](6, 7 0) and A, = (1s)(6, / o) .(1.6.5)
The ratio of the two noncentrality parameters is
NN, =p(p-1/2)/(p+1)(p-3/2) (1.6.6)

which is greater than 1 for all p<eo. For p=c, A*/A} =1 which was to be

expected since the distribution (1.3.1) reduces to normal, and the estimators
(1.5.1)-(1.5.2) reduce to the LS estimators. The T test is, therefore,

asymptotically more powerful than the classical ¢ test for all p <o . For p=oo,

T reducesto t.

Tiku et al. (2001) investigate the power properties and robustness of the T
and G tests. Realize that the latter is very commonly used in practice. They show
that the T test is robust and more powerful than the G test. They have in fact a
very interesting result, namely, if the sample contains outliers or the sample is
contaminated, the 7 test has not only smaller Type I error but has generally
higher power. For illustration, we reproduce their results in Table 1.1. The

assumed model is (1.3.1) with p=3, i.e. f(3,0), but the sample comes from

(o =1 without loss of generality)

(a) the outlier model: (n—1) observations from f(3,1) and 1 ( we do not

know which) comes from f(3,8);

(b) contamination model: 0.90 f(3,1) + 0.1N(0,8%) .

Their simulated values of the Type I error and power are given in Table

1.1 and are based on [1 00,000/ n] (integer value) Monte Carlo runs.
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Table 1.1 Values of the power of the T and G tests; n = 30.

Model (a) Model (b)

0, T G T G
0.0 0.045 0.080 0.025 0.044
0.4 0.31 0.34 0.28 0.30
0.8 0.69 0.64 0.66 0.58
1.2 0.88 0.80 0.86 0.77
1.6 0.95 0.89 0.97 0.89
2.0 0.97 0.93 0.99 0.95

Not only has the G test lower power but it has also substantially higher
Type I error than the presumed level 0.050 for model (a). The G test, therefore,

has neither criterion robustness nor efficiency robustness.

1.7 Stochastic Design Variable

In numerous applications the design variable X in the model (1.1.1) is also
stochastic. This is indeed the research area (b) mentioned earlier. Consider, for
example, the following well-known data given in Table 1.2 where X represents
100 times the white blood counts and Y represents the survival times (in weeks) of

patients who died of acute myelogenous leukemia (Gross and Clark, 1975).

Table 1.2 Gross and Clark data.

i 1 2 3 4 5 6 7 8
X;: 23 7.5 43 26 60 105 100 170
Yi: 65 156 100 134 16 108 121 4

i 9 10 11 12 13 14 15 16
X;: 54 70 94 320 350 1000 1000 520
Y;: 39 143 56 26 22 1 1 5

Source: Gross and Clark (1975)
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Clearly, X and Y are both random variables. In fact, Vaughan and Tiku
(2000) showed that it is reasonable to regard X as a Weibull random variable and
the conditional distribution of Y given X = x as normal. To initiate a proper
analysis of the Gross and Clark data given in Table 1.2, we proceed step by step

as follows.

Marginal and Conditional both normal: In the first place assume that in the
model (1.1.1), X is normal N(u,,0;) and Y given X = x is normal N(u,,,05,),
where  u,, =pu,+p(o,/o)(x—u)=6,+6,x and o), =0,(1-p%);
6,=u,—0,u, and 6, = p(o,/0,). Realize that the distribution of e is, in fact,
the conditional distribution of ¥ given X = x other than the mean E(e) =0. The
parameter p is the correlation coefficient between X and Y. Let (x;,y,),

1<i<n,be arandom sample of size n. The likelihood function is

0-2.1

e i=1 e i=1

1 ! = (=)’ /207 1 ! _Z{Yi—ﬂz—ﬁ(az/0'1)(xi—ﬂ1)}2/20'22,1
L <

0,

=LL (1.7.1)

x ylx

which is essentially of the form
[TeGon(y, 1x) (1.7.2)
i=1

as it should be.

The ML estimators are solutions of the following equations:

i=

olnL 1 o, | o
=— <x,-—u1>2+%(—2j2{yi—ﬂz—p—2<x,-—m)}zo (1.7.3)
a:ul 0-1 1 O-2A1 0-1 i=1 0-1
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alnL n 1 & 2
=) (X, —
do, o, o, ;( i)

- ,02 (QJZ(M _:u1){yi —H, _p%('xi —lul)}:()

O-l 0-2.1 O-l 1

dlnL 1 & 0,
=—F Yi—H _p_(xi_:u)}:o
a:uz 2% IZ—I:{ ’ O 1

n

2
dlnL n 1 o,
a0-2 0-2 0-20-22.1 ;{yl ﬂz p O-l (XI ﬂl )}

~ o
+ ,02 Z(xi_ﬂl){yi_ﬂz_p?z(xi_ﬂl)}zo and

1¥2.1 i=l 1

2
oL np p { o, }
= - yi— MU —p—(x,-_ﬂ)
dop  (1-p°) 031(1—/)2); © o l

1 (0, & o
+—2(?2JZ(X,- _ﬂ1){}’i —H, _p?z(xi _:ul)}:o'

2.1 1/ i=l 1

Also [01 = pﬁ}
o

1

L 1 &
26, :G_;;(x,-—ﬂl){(y,-—ﬂz)—91<x,-—ﬂ1>}=0

which gives

n

91 =Z(xi —,ul)(y,- _,uz) Z('xi _/11)2 .

i=1 i=1

1.7.4)

(1.7.5)

(1.7.6)

1.7.7)

(1.7.8)

(1.7.9)

The solutions of the equations above are the well-known ML estimators of 4,

i,, o}, o5, p and 6, respectively:
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F=WUmYx, =Yy, 5= -5 -1,

n

=Y oD, p=Y —?c)y,»/\/{yx,- -~ —y)z},and

i=1

6, =Zn:(xi—)_c)yi i(xi—)_c)z. (1.7.10)

Of course, s; and s; are bias-corrected estimators. The bias-corrected ML

n ~ 2
estimator of 0, is 55, =5, =s,(1-p%) = {yi -y=0,(x, —)_c)} /(n—2).
i=1

Remark: It is very important to realize that the ML estimators of x,, &, and 6,

obtained from L (with g and o] replaced by X and s, respectively) are

ylx
exactly the same as those obtained from the entire likelihood function L. This has

unfortunately created the impression that using the conditional likelihood function

L, (with g and o] replaced by X and s7, respectively) will suffice and the

marginal likelihood L_ has no role to play in the estimation of x,, o, and 6,.

This i1s not true if X has a nonnormal distribution. This is illustrated in the

following section.
1.8 Nonnormal Marginal Distribution

Suppose that the marginal distribution of X is the extreme-value distribution

(Vaughan and Tiku, 2000)

g(x):Lexp{—(x__/h}—exp(_x_ﬂlﬂ’ o< x < oo, (1.8.1)
o, 0, 0,
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This distribution is important not only on its own but also for the fact that

if U has the Weibull distribution

-5l o (5] poeree

(1.8.2)

then X =InU has the extreme-value distribution (1.8.1) with g, =In/f and

o, =1/a. Since o determines the failure rate of U , the parameter o, in (1.8.1)

takes on an added importance.

Suppose that the distribution of e is normal as in the previous section.

Given a random sample (x;,y,), the likelihood function is

-n -n C —Z; 1 -
Leo;"0,"(1-p’) /zexp[—z(zi—e '>—ﬁ26fj

=1 20,(1-p7°) "3

where z;, =(x, —p,)/0, and e, =y, — i, —p(ﬁj(xi -M) (1<i<n).
O-l

The likelihood equations for estimating 4, o,, i,, 0, and p are

olnL n P C
= LS expz) P 3 e =0
aﬂl O-l O-l g laz(l_pz);
dlnL n
=——-—)> 7z exp(—z)+— z,; =0
80‘1 o, 1; Zl 0-10-2(1 p )Z
olnL 1 i ~0
ou, 0'2(1 pH=
olnL _ n 1 Z l Zze =0 and

do, o, o,(1-pH%5 0'2(1 pPHE

21
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n

dinL _ np P Ze'

Zz, e, =0. (1.8.8)

dp (1-p) o;(1-p°) % aza
. o,
Writing 6, = p| — |, we also have
O-l
InL _ Zzl e, =0. (1.8.9)

96, 02<1 p)

Due to the intractable nature of the first two equations, (1.8.4)-(1.8.8) have
no explicit solutions. Solving them by iteration is indeed problematic as is, in

general, true with likelihood equations ( Tiku et. al., 1986).

1.9 Modified Likelihood Equations

Since the ML estimators are intractable, we derive the MML estimators. We
reiterate that under some very general regularity conditions, the MML estimators
have the following properties (Tiku and Suresh, 1992; Vaughan 1992; Vaughan
and Tiku, 2000):

(a) asymptotically, the MML estimators are fully efficient, i.e., they are
unbiased and their variances are equal to the MVB (minimum variance
bounds);

(b) for small samples, the MML estimators are almost fully efficient, that
is, they have no or negligible bias and their variances are only marginally
bigger than the MVB;

(c) the MML estimators are explicit functions of sample observations and

are, therefore, easy to compute.
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To derive the MML estimators in the present situation, let

X(l) < X(z) <..< X(”) (191)

be the order statistics of the random sample x,,x,,...,x,. Let y;; be the y,
observation which corresponds to x; y; may be called concomitant of x;). The

sample observations are now denoted by (x(l.), y[i]) ,1<i<n.Write

(o .
0 = (x(i) - M)/ o, and e = Y — M _p(;zj(x(i) —4) (1<i<n). (1.9.2)
1
The fact that complete sums are invariant to ordering implies that

Ze[i] =0 and Z Zpe =0 (1.9.3)
i=1 i=1

from (1.8.6) and (1.8.9). Thus, the equations (1.8.4)-(1.8.8) reduce to

=———)> exp(-z;) =0
w o 0_1; pP(=2())
dlnL n 1
1 1 1 i=
olnL 1 i B
o, oii-pH g
alnL——i Ze[l =0 and

dlnL np
= =0. 1.94
p  (1-p) oil- p)2Z d (199
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Solving these equations is problematic because of the function exp(-z,) .

Linearization: To linearize exp(-z), we need the values of 7 :E(z(i)),

1<i<n.They are given by (Lieblien, 1953; White, 1969)
oy =c+ {”J ) {” j( pys EE D) (1.9.5)
i)\ J i+j

where c:jln(u)exp(—u)du50.57722 is the Euler constant. For n2>10,
0

however, 7, obtained from the following equation are used (David, 1981),

1)

fg(z)dz - g(z)=exp(-z—e™) (1.9.6)
S n+

which gives

y=—In[-In(i/(n+1)], 1<i<n. (1.9.7)

Now we have the linear functional, obtained from the first two terms of a Taylor

series expansion,
e za, - Bz, 1<i<n, (1.9.8)

where

=" =e¢ and o, =e (1+t,). (1.9.9)
i 2 (l)
Z:t(-)

24



It may be noted that f, is positive for all i =1,2,...,n.

The modified likelihood equations are obtained by incorporating (1.9.8) in the

first two equations in (1.9.4). Their solutions are the following MML estimators:

2 =K +Dé, (1.9.10)

. (B+\/Bz+4nC)

o, = (1.9.11)
2n

N S P

a, = y—p(A—zJ(x—ﬂl) (1.9.12)
O-l
s2 a2 1/2

6, :(sf, +—X;(G—;—1ﬂ (1.9.13)

. Sx Sx

and

. Z(x,-_,al)(yi_laz)
p="ig =" -
. z(xi_lal)z

i=1

(1.9.14)

Here, nx = le. , ny = Zyl. , (n—l)sf = Z(xl. -X)%, (n—l)si = Z(yl. -7,
i=1 i=1 i=1 i=1
(n=1)s,, =Y (x, = ¥)(y, — ¥), and
i=1
1 n 1 n n
K==> px,.D=—> (1-a), m=)p,
m iz m iz i=1

B=Y (-a)(x;—K) and C=) B, (x—K)* =D fxly-mK*.  (1.9.15)
i=1 i=1 i=1

Note how different the estimators of x,, o, and &, are than those based on the

conditional likelihood L, (with &, and 67 replaced by X and s’, respectively).
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Inevitably, the estimators 6'22 and P> have to have the property that 6'22 >0 and

D’ <1. We now establish these results as follows.

Remark: The estimator & is always positive. This follows from the fact that

s szsi so that si—(si/si)Zsi—si =0.

2
Xy

Remark: The estimator P> is bounded above by 1. This follows from the fact

that

P = (1.9.16)

and 0 < sfy < sfsf, ; see also Tiku and Kambo (1992).

Lemma 1.5: The asymptotic distribution of 4, is conditionally (for known o)

normal with mean g, and variance o} /m.
For known o,, 4, = f1,(0,)= K+ Do, and

olnL .
n =£2{#1(0'1)—ﬂ1}- (1.9.17)
oy, o,

The result follows from the fact that dln L' /9, is asymptotically equivalent to
dInL/du, and E(@ InL /du)=0 for all r>3. It also follows from (1.9.17)

that /I, is the MVB estimator (asymptotically).

26



Lemma 1.6: Asymptotically, the estimator &, is conditionally (for known )

the MVB estimator of o,.

For known y,, 6, =6,(4,) is given by

. ~ (BO+,/B§+4nCO) (19.18)

G, (u)= »

where
B, = Z(l_ai)(x(i) —p;) and C, = Zﬂi(x(i) — )"
=1 i=1

Further,

d0, o, 2n

olnL n | By++/Bs +4nC, B, —+/B; +4nC,

= -0, -0, | (1.9.19)
The only admissible solution of (1.9.19) is 0, = 6, (4,) and the result follows; see
Kendall and Stuart (1979).

Corollary: Since for large n, B, is very small as compared to ./(nC,),

B,/,[nC, is negligibly small. Thus,

dlnL = So_s2. (1.9.20)
Jo, o,
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Therefore, 67 (4,) = C,/n is asymptotically the MVB of o, and C,/o} is for

large n distributed as chi-square with n degrees of freedom; see Kendall and

Stuart (1979).

Remark: For small n (<15), 4, and &, have some bias. The bias corrected

estimators are given by

(B+\/B2 +4nC)

2m

:al: _i{Zﬂit(z’)jOA_l with 6-1: (1.9.21)

Lemma 1.7: For known g, and 4, , él (u,,M,) is the MVB estimator of 8, and

is normally distributed with mean 6, and variance o (1— p?) Z(xi —u)’.
i=1

This follows from the fact that

* n (Xl _lu )2
dlnL JdInL Z_l LN

= == o, (u,, -0, ). 1.9.22
ael ael O_zz(l_pz) (l(ll'll Il'lZ) l) ( )

1.10 Asymptotic Covariance Matrix

The asymptotic covariance matrix of the estimators f&,,6,, i,, 6, and p is
given by [ _1(/11,0'1,,&2,0'2, p), where [ is the Fisher information matrix
consisting of the elements — E(@>InL/du}), —E@*InL/do}), etc. Writing

K=(r>+6¢>+6-12c)/ 7% =1.10866 (c=0.57722 being the Euler constant),

the elements of this matrix are (Vaughan and Tiku, 2000):

—E@’InL/ou})=xol/n, —E@*InL/dud0,) =6(1-c)ol /nx*,

and so on.

28



Testing the null hypothesis H, : p =0 is of primary importance. That can

be done as follows.

Since the MML estimators are asymptotically equivalent to the ML
estimators, the likelihood function L is maximized (asymptotically) by the MML
estimators (Vaughan and Tiku, 2000). Thus, the likelihood ratio is

(asymptotically)
i max(L|H,)
max(L|H,)
) nl2 (n 1)S2 ( 1)
0, A2 \n/2 Py A n—
=|—= 1- expl ————(1— - 1.10.1

s
where p, =
5.8

X7y

is the usual Pearson sample correlation coefficient. Since s’

and &, both converge to o, and P, and P both converge to p as n tends to
infinity, the exponent is essentially zero for large n, so that the likelihood ratio is

a monotonic function of p*. Thus, to test H, against H,: p<0 (or p>0), the

test based on p will be uniformly most powerful (asymptotically). Vaughan and

Tiku (2000), therefore, propose the statistic

w = p/J6/(nz?) (1.10.2)

6/ (nf[z) is the asymptotic variance of p under H, obtained from

w0100}, (1.10.3)
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The null distribution of W is referred to normal N(0,1). Large values of W lead
to the rejection of H, against H,: p >0 and small values of W lead to the

rejection of H, against H, : p<0.

For the Gross-Clark data (see Table 1.2) reported in Section 1.7,

p=-0.7121 and W =-3.654. (1.10.4)

The computed value of W being less than —3.09, the null hypothesis H|, is
rejected even at 0.1% level, let alone the 1% and 5% significance levels used so
often. The conclusion is, therefore, that a higher white blood count tends to
shorten the survival time of a patient. This is in conformity with the medical
opinion.

A

Remark: The estimate p=-0.7121 above is estimating the correlation
coefficient between In of white blood count and the survival time of a patient. To
estimate the correlation coefficient between white blood count and survival time,
however, we need to take the distribution of X as Weibull and the conditional
distribution of Y given X = x as normal. That is the model proposed originally by
Vaughan and Tiku (2000) but they did not give the mathematical analyses. We

consider this situation in Chapter 2, and develop the required mathematics.

Another interesting situation is that X has Student’s t distribution and the
conditional distribution of Y given X = x is normal. Tiku and Kambo (1992)
mention that this model has genetic applications. We now briefly review the

estimation of parameters under this model.

1.11 Student t Marginal and Normal Conditional

Let the marginal distribution of X be
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2

g(X)KL{HM} —co< x< oo (1.11.1)
o, ko,

k=2p-3 and p=2.1Itis easy to show that E(X) =, and V(X) = 0'12, and the
distribution of ¢t =./(v/k)z, z=(x—u,)/o,, has a Student’s t distribution with

v =2p—1 degrees of freedom.

Here, the likelihood function is

" _ 2) 7P n/2 —is,? 203 (1-p%)
L«[Lj {1+(x" ‘jl)} { 1 2} e / . (1112)
o, i=1 kO'l o, (1—,0 )

E =y, — M, — p[ﬁJ(xi —M,). The likelihood equations work in terms of the

1

intractable functions
g(z)=z,/(l+1/k)zZ2), 1<i<n. (1.11.3)

Consequently, the likelihood equations have no explicit solutions. In fact, they
have multiple roots. Solving them by iteration and locating the ML estimates is

very problematic (Tiku and Kambo, 1992). To obtain the MML estimators, we

first express the likelihood equations in terms of z() = {x(i) -1, }/ o, (I1<i<n).

Writing 7, = E(z(i)) (1<i<n), modified likelihood equations are obtained by

replacing g(z(,-)) by

glz)=a, + Bz 1<i<n. (1.11.4)
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The coefficients ¢, and S, are determined by the first two terms of a Taylor

series expansion of g(z(,-)) around 7, . In fact,

(21Kt and 1=/ kg

Qb W 1.11.5
i+ aroR) o F o

The values of 7, are available in Tiku and Kumra (1985) and Vaughan (1992b);
fin) =—t; (1<i<n). The modified likelihood equations have explicit

solutions, giving the following MML estimators:

n

Q= {Zﬁix(i)}/m (m= anﬁi) , 6, = {B ++/(B* +4nC) }/21/{,1(” -}, (1.11.6)

i=1

PO (- A D,
ﬂ2=y—p(%J(x—ﬂ1), (1.11.7)
O-l
s2 ) 1/2 s R
62=[s3+—*;(0—‘2— D and ,3:_)32; (1.11.8)
: Sx S)C SxO'
B=Qplk)Y ax, and C=Q2plk)Y B (xy—i)*. (1.11.9)
i=1

i=1

Notice the remarkable property of the MML estimators, namely, in spite of the
fact that the extreme-value distribution (1.8.1) is very different from the long-
tailed symmetric distribution (1.11.1), the formulae (1.9.10)-(1.9.14) and (1.11.6)-

(1.11.8) are exactly similar to one another.

Comment: The estimator &, is real and positive if B, is positive. For small p

and large n, however, B, (and possibly few other coefficients) can be negative
(Tiku and Suresh, 1992; Vaughan, 1992) as said earlier. In such situations, we

replace @, and 3, by @, and f3,, respectively:
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@ =0 and B =1/{i+asid}. (1.11.10)

This does not alter the asymptotic properties of the estimators.
1.12 Asymptotic Variances and Covariances
The asymptotic variance-covariance matrix V of the MML estimators (1.11.6)-

(1.11.8) are obtained by inverting the Fisher information matrix. Because of the

symmetry of (1.11.1), V assumes an interesting form:

V. 0
1% =[ ' } (1.12.1)
0 V2 5%5

where

2

P 2pA=pH)m p

2 2
y=klos k o n 00,00 (1.12.2)
2p p dgm
0-20-1 0-12

and, similarly, V,. Realize that V|, is different from the variance-covariance

matrix of the sample means x and y, namely,

1 Yy
o} o0, |00l
V, =Cov(x,y) = ,02 11 2 ITZ (1.12.3)
0,0, o
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Since (Tiku and Suresh, 1992)

lim ™ = =12 (1.12.4)
n—e p p+1
V, =V, is always a positive semi-definite matrix, even asymptotically; V, =V, =0
only if p=co in which case (1.11.1) reduces to normal N(y,,c;). It is,

therefore, very important to pay attention to nonnormality of the marginal

distribution.

Tiku and Kambo (1992) develop a Hotelling type T statistic for testing

H, :[zl}[g) (1.12.5)

the mean vector

Their statistic is

sz::a,vflla’ 2=, ). (1.12.6)

They show that sz is more powerful than the bivariate normal-theory Hotelling

T* statistic which they denote by 7.>.

Tiku and Kambo (1992) give the likelihood ratio statistic, similar to

(1.10.1), for testing H,: p=0. They also extend the methodology to censored

samples. Censored samples occur due to experimental constraints.

34



CHAPTER 2

NORMAL CONDITIONAL AND NONNORMAL MARGINAL
DISTRIBUTIONS

Summary: We first consider the situation when X has a three parameter Weibull
distribution and the conditional distribution of Y given X = x is normal. Then we
develop estimation and hypothesis testing procedure for the case when the

marginal distribution is Generalized Logistic and the conditional is normal.
2.1 Marginal Weibull and Conditional Normal

In this section we consider the situation when the marginal distribution of X is
three parameter Weibull and the conditional distribution of Y given X =x is
normal. We first estimate the parameters and then develop the hypothesis testing

procedures based on the MML estimators.
2.1.1 Estimation of Parameters

Suppose that the marginal distribution of X is the Weibull distribution with

density

g(x)=£[x_—ﬂlJ exp[—[x_—/‘l} J 2.1.1.1)
O-l O-l O-l

and the conditional distribution of Y given X = x is the normal distribution with

density
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where f, <x<oo,

h(y|x)=

1

\/go-z(l_pz

1
CXP[ 20_22(1_102){)) ILIZ

)1/2 X

—oo( y (oo, IUI,IUZE%, 0,,0,)0,

2
—pﬁ(x—ﬂl)} } 2.1.1.2)
O-l

—-1{p(l, p>0.

Given a random sample (x;,y,) (1<i<n), the likelihood function is

Le<o;"o,"(1-p )‘"’ZHZ” 1exp[

n

pe

n

! - Zefj (2.1.1.3)

=5 262(1- p?)

i=l

where z, =(x, —u,)/ o, and ¢, =yl.—,u2—p[2](xi—,ul), 1<i<n; p*<1.
Gl

The likelihood equations for estimating 4,, 0,, U, ,

o0, and p are

aalf,f=‘(p(:):zﬁl+£éz"pl‘ﬁg‘” ~0 (2.1.1.4)
aal%lL:_Gil (pll)zl ﬁl > 7,z - GGZ(I p )Zze =0 (2.1.1.5)
a;;ZL 62(11/))2 o 2.1.1.6)
aalgf o a(llp)ie‘ (- p)zze=0and e
ael)r/l)L=<1f//))2)_a§(lfp2)2i" o,(1- p)Zz”— e
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%,

Writing 6, = p{ j, we also have the additional equation

1

dlnL o, : .
26, ocl(l-pH4g”

e.=0. (2.1.1.9)

Due to the intractable nature of the first two equations, (2.1.1.4)-(2.1.1.8) have no
explicit solutions. Solving them by iteration is indeed problematic as is, in
general, true with likelihood equations (Tiku et. al., 1986; Tiku and Akkaya,
2003).

To derive the MML estimators for this situation, let

be the order statistics of the random sample x,x,,...,x,. Let y,; be the y,;
observation which corresponds to x;,); y;; may be called concomitant of x;,. The

sample observations are now denoted by (x(,.), y[,.]) ,1<i<n.Write

(o) .
Z(z) = (X(i) —,UI)/GI and E[i] = y[l] —/,[2 _p[ﬁj(x(l) _ﬂl) , IS i<n. (2.1111)

1

The fact that complete sums are invariant to ordering implies that

Ze[i] =0 and Zz(i)e[i] =0 (2.1.1.12)
i=1 i=1

from (2.1.1.6) and (2.1.1.9). Thus, the equations (2.1.1.4)-(2.1.1.8) reduce to
(p>D
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alnL:_(P—l) N 2! PN ,?)71:()
ou, o, m O, =

dinL -1 _ _
- =D >z + 2D 2zl =0

Jdo, o, O, ‘O Too T

dlnL 1 N

oo =0

H, o, (I-p") 5

alan_i_i_%Zeé] =0 and

do, o, o,(1-p°)5

dlnL _ np P ZEEFO- (2.1.1.13)

& (1-p%) _0'22(1—,02)2 i=1

Solving these equations is problematic because of the functions Z(_,; and z{)y " To

alleviate this difficulty, we linearize these functions by using the first two terms of

Taylor series expansions around E(z(;)) = f(; as follows:

_ dz
20 =10+ @ 1)
6=
=ai0_ﬂioz(i)’ 1<i<n. (2.1.1.14)
where a, = 2t(_i)1 and S, = t(,?

And
dz!
2 =t (7 — ¢, U]
o =ty Tz m)( i
(i)=1()
—a,+ Bz, 1<is<n. (2.1.1.15)
where o, =Q2-pu(y and B =(p-Duy*.
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Remark: We assume that p >1 which is true in most engineering and biomedical

applications, since p >1 represents increasing failure rate r(¢t) = f(r)/ (1-F®).

Substituting (2.1.1.14) and (2.1.1.15) in (2.1.1.13), we obtain the following

modified likelihood equations:

dlnL oJlnL (p-D<
=0T pO'l ;(aio_ﬁioz(i))-l_ﬁv

o, oy

dlnL _dInL _n
do,  do, o,

'i‘£ y Z(i)(ai +ﬁiz(i))=0 and

1 i=1

- M i 2(3j) (aiO - ﬂiOZ
0-1 i=1

dlnL _ olnL B

(i))

0.

dlnL _alnL* _0 olnL olnL _0
du, 9w, 9o, 9o,  9Ip

ap

(2.1.1.16)

(2.1.1.17)

(2.1.1.18)

The MML estimators are the solutions of the equations (2.1.1.16)-(2.1.1.18):

A A
/’ll:ﬂn__o-l
m
. _—B+vB>+4nC
1
2n
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(2.1.1.19)

(2.1.1.20)

(2.1.1.21)

(2.1.1.22)

(2.1.1.23)



Additionally,

n

. Z(xi _ﬂl)(yi _1[22)
6, == . (2.1.1.24)

Z (x; — 4, )’
=

As usual,

n n

nx=)» x,, n§:Zyi , (n—=1)s’ :Z(xi -%)%,
i=1

i=1 i=1

n

(n-1s> =3 (3,= 57, (1=Ds,, =3 (x, ~H)(y, - 7), and
i=1

i=1

R 1 n <
“, =;25,»xm, 6, =(p-DpBy+ph. m=3 5,
=l =

A =(p-Da,—pa,, A=) A,

i=1

B= ;Ai(x(i) —-4,) and C = Zlai(x(i) -4,) = Zafxé’ —mjl’. (2.1.1.25)

Lemma 1: The estimator &, is always positive. This follows from the fact that
52 < sfsi so that sf - (s)fy /s2)= sf, - sf =0. Since sfyé'lz/sf is always positive,

xy —

the result follows.

Lemma 2: The estimator p° always assumes values between 0 and 1. This

follows from the fact that

P = 1
[1 + (sjsf/sfyé'f )(1 - si/sfsf

)J and 0 < si < sfsf.
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2.1.2 Conditional and Marginal Likelihood Functions

We now separate out the likelihood function into two parts as conditional and

marginal density functions and consider a reparametrization in the conditional

part. If we let w, =y, —0,x,, it,, = i, —0,4, and o;, =0, (1— p*), we have

L 1 ¢
Ly, o0, exr{— —> (W, —ﬂz,l)zJ . (2.1.2.1)
20,, 'S

It is important to realize that e, is distributed as normal N(0,07,) and w,

is distributed as normal N (i, ,,03,).

Realize that e, =(w, —p,,)=y, =, —6,(x, —p,), 1<i<n. Since

L=LL

x ylx

InL=nlnp-nlno, +(p-DY Inz, - z/
i=1 i=1

n 1 n
—ZIn2zx—-nlno,, ———) e>. 2.1.2.2
2 2.1 20_221 IZZI: i ( )

Here, the first part represents the loglikelihood of the marginal distribution and

the second part represents the log likelihood of the conditional distribution.

The likelihood equations for estimating 4,, o,, i,,, 0,, and 6, are

InL -1 < <
dlnL _ (p )ZZZ‘+£ZZ5’_1=0 (2.1.2.3)
alul 0.1 i=1 0.1 i=1
dinL n (p-D< 4, P X -1

o Jy . L S A ZiZi + — Zizip :0 (2124)
90, o, o, ; o, 21
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OlnL =L2ei - (2.1.2.5)

InL 1

InL__ n 1 S0 and (2.1.2.6)
d0,, 0,1 O3 =l

1 L n

dln =LY e, =0. (2.1.2.7)
agl 2.1 =l

Since (2.1.2.3)-(2.1.2.7) have no explicit solutions, we again derive MML

estimators. We first order x,’s in the increasing order

X(l) < X(z) <..< X(”) (2128)

Let y[) be the y; observation which corresponds to x,,. The sample observations

are now denoted by (x(,.), y[,.]) , 1<i<n.Wenow define

2 = (X = )/ 0y, Wy = ¥y —6,x,) and

€ = Vi — U, —91 (X(l-) —,UI), 1<i<n. (2.1.2.9)

Realize that ordering of z( is invariant to 4, and o, (>0). That is why z

corresponds to x;y (1<i<n).

Since complete sums are invariant to ordering, we have

dinL (P-D<5 4| P <o
=— zp+—) zf) =0
a/ul 0, ; g 61;: g

n

dinL n (p-1 4, P X o
=——- 2o T— D, 202l =0
aGl O-l Gl ; 00 61; 00

dlnL 1 &
o — ¢ =0
My Oy i
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InL 1 &
oln :—n+ 3Ze§]=0 and

d0,, 0,1 O, =
dlnL o, &
ael 0.221 pn ( ) [ ]

Replacing z(_,; by &, - Bz, and z(’j)’l by a,+ f,z, gives the modified
likelihood equations below (the coefficients ¢,,, 5,,, &, and [, are the same as

in (2.1.1.14) and (2.1.1.15) ):

dlnL - dlnL =_(P—1)i(aio _ﬁioz(i))+£ (al. +,Bl.z(,-))=0 (2.1.2.11)

o, o, O, ‘A o, ‘S
olnL olnL n (p=-1
= S W0 — B0z
ao-l ao-1 o, o, ;Z(z)( i0 ﬁzOZ(z))
+£Zz(i)(ai +,BiZ(,-))=0 and (2.1.2.12)
1 i=1
dlnL dlnL 0 dlnL dInL 0 dlnL dlnL 0o 2.12.13)
a:um aluzl ' 80'2‘1 8021 ’ ael ael

The MML estimators are the solutions of the equations (2.1.2.11)-(2.1.2.13):

H=i, ——0, (2.1.2.14)
m

. —B+VB'+4

g = —BHVB +dnC (2.1.2.15)

2n

R R

o Izzw[,-] =y—-6,x (2.1.2.16)
i=1

A 1 1 ~ ) 1 n B R B ,
o = 1 D 1= Y= 6 (x — and (2.1.2.17
2.1 (-2 ;(W[z] ) 1-2) ;(Y[,] y—6,(x; — X)) ( )
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n

R Z('xi - 1)y, — i)
6, =" ; (2.1.2.18)

i (xi - l[zl )2
i=1

a,, A, m, B, C and related terms are given in (2.1.1.25). It is interesting to

note that él in (2.1.2.18) reduces to s, /sf.

Remark: The MML estimators (2.1.1.19)-(2.1.1.23) are very different than those

based on bivariate normality. However, the conditional estimators /,,, &,, and

A

0, are the same as the LSE. This is due to the fact that ¢,;’s in the linear model

v, =, +0,x, +e, (1<i<n),areassumed to be iid normal N(0,07°).

2.1.3 Properties of the MML Estimators

Lemma 2.1: The asymptotic distribution of £, is conditionally (for known o)

normal with mean 4, and variance o; /m.

The result follows for the fact that for known o,, &, = f1,(0,) = K + Do, and

dlnL’ N
S AT (2.1.3.1)
oy, o,

Lemma 2.2: Asymptotically, the estimator &, is conditionally (for known g,)

the MVB estimator of o,.
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For known u,, 6, =6,(4,) is given by

(— B, ++/B; +4nC0) 2.132)

2n

OA.1 (lu1) =
where
B, = ZA,.(x(i) —#) and C; = zai(x(i) -1’ (2.1.3.3)
i=l i=1

Further,

2n

olnL n (—BO+WIB§+4nC0 O.}(_BO_JBOZ-FA"’QCO
~o, _

all. (2.1.3.4)

The only admissible solution of (2.1.3.4) is 0, = 6,(4,) and the result follows as

before.

Corollary: Since for large n, B, is very small as compared to ,/(nC),

*

B, / \nC, is negligibly small. Consequently, GALER

assumes the form

(2.1.3.5)
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dlnL E‘i%[(\/g_a‘J(_\/g_leJ’ (2.1.3.6)
a0, o; n n

InL’ C
aar; s%(j}—af} (2.1.3.7)
1 1
dlnL _9dInL doy} do;}
Since BI;' :aan2 ao-l and ao-l =20,, 67(u,)=C,/n is asymptotically
1 O-l O-l O-l

20,
the MVB of o) with variance —X, C,/o; is for large n distributed as chi-
n

square with n degrees of freedom; see Kendall and Stuart (1969).

Bias Correction: For small n (<15), 4, and &, have some bias. The bias

corrected estimators are given by (see Appendix B for details)

n 2
Q=0 —i{Z@t(ﬂj@l with &, = 4B anc . (2.1.3.8)
m\ o 2./n(n—1)

Lemma 2.3: For known g, and 4,, él (4, 1,) is the MVB estimator of &, and

is normally distributed with mean 6, and variance 0'22 (1- pz) Z(xi -4, ).
i=1

This follows from the fact that

N N2
olnL _ olnL z(xi )

= 4=l 0 (u,,1,)-6, ). 2.1.3.9
TR Gj(l_pz)(lwluz) ) (2.13.9)
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2.1.4 Asymptotic Covariance Matrix

The asymptotic covariance matrix of the estimators f,,6,, [,, 6, and p is

given by I7'(4,,0,,1,,0,,p), where I is the Fisher information matrix. The

Fisher information matrix is given by (i, j =1,2,3,4,5)

d’InL
I:[I”]:{_E[a ; J:l,’[l:,ul,TZ:O'l,132[12,2'4:62,2'5:,0. (2.1.4.1)
7,07,

n

1-p%

If welet I = A , the elements of the matrix A are

A, :%[(p—1)2(1—p2)r(1—2/p)+p2],

1

A, = %[pz(l—pz)l—‘(2—l/p)+ pzl“(1+1/p)],

2

Ay=—P A, =—L Ta+1/p). A, =—LTU+1/p),
0,0, 0,0, |
1

Ay, =—[p* (1= p")+ p’T(1+21 p)), Ay =——L—T(+1/ p),
O-l 10-2

2
A, =—Lra+2/p), A, =—0_ﬁr(1+2/p), A, :%,

10-2 1 2

A, =L ra+1/p), A, =L rasup,
(o} (o3

2 2
1 2 2 P
A, :?[Z(I—p )+ pTA+2/p), Ay, =L [-2+T0+2/ p)]
2 2
and
20°
= +T(1+2/p). 2.1.4.2
55 (1—,02) ( p) ( )
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Here, the asymptotic covariance matrix of the estimators f,,6,, i,, 6, and p is

givenby E=1"(u,,0,,1t,,0,,p) . See Appendix D for details.

Hypothesis Testing: Our major interest is in testing the null hypothesis
H,:p=0. Since the MML estimators are asymptotically equivalent to the ML

estimators, the likelihood function L is maximized (asymptotically) by the MML

estimators. Thus, the likelihood ratio statistic is (asymptotically)

i max(L|H,)
max(L|H,)
2 n/2 ( 1) 2 ( 1)
9, A2\n/2 n—us, A n-—
=|— 1- exp| ————— (- - 2.1.4.3
where p, = is the usual Pearson sample correlation coefficient. For the

xy
same reasons as before, the likelihood ratio is a monotonic function of /32 . Thus,
to test H, against H,: p<0 (or p>0), the test based on p is uniformly most

powerful (asymptotically). We propose the statistic

ffe3pri)
_ f)\/nHH %j - Fz(l +%ﬂ : (2.1.4.4)

is the asymptotic variance of p under H,, obtained

W=p

1

]

from
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{1’1 (,ul,O'l,,uz,O'z,p)}p:O . (2.1.4.5)

The null distribution of W is referred to normal N(0,1). Small values of W lead

to rejection of H against H, : p <0.

Also, testing the mean vector

A 0
() sreo

is of enormous practical interest. Since [, and j, are asymptotically equivalent

to the ML estimators, the distribution of the random vector \/;(,[11, ,[12) is

bivariate normal with zero mean vector and (estimated) covariance matrix
N o 5
Q-= n{ ! ‘3} (2.1.4.7)

where, 6,,, 6,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =Z; =1 l;l (u,,0,,1,,0,,p). Since in these

elements 6, and &, converge to o, and ©,, respectively, the asymptotic null

distribution of
a2 A A YA /'All
T =nla,n,)Q (j (2.1.4.8)
M,

is chi-square with 2 df. We reject H, at the 5% significance level if the value of

T2 is greater than ;(éos(Z). The nonnull distribution (asymptotic) of T is

noncentral chi-square with 2 df and noncentrality parameter
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A =nly,, ﬂz)Ql{z IJ. (2.1.4.9)
2

(n—2)

T* is approximately central-F with

For small 7, the null distribution of
2(n—1)

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A*.

In Section 2.1.2 we expressed the likelihood function as the product of the
marginal and the conditional likelihood functions and used a reparametrization.

We now define the Fisher information matrix, I(x,,0,,4,,,0,,,8,) for
estimating 4,,0,, U,,, 0,, and @, instead of u,,0,, i,, o, and p.If we let

I =n A, the elements of the matrix A are

_12 2
A, =Qm—2/p) LA, =%F(2—1/p),A13 =0, A, =0, A, =0,

O-l 1

14
Apy =775, 4;=0,4,=0,4,,=0, Ay =—-, A, =0,
O, 051

Ay =—2LT(1+1/p). A, =Ui,

2
2.1 2.1

2
Ay =0 and Ay =—2LT(1+2/p). (2.1.4.10)

2.1

Here the asymptotic covariance matrix of the estimators 4,,6,, i,,, 6,, and él
is given by £=1"(u,,0,,14,,,0,,,6,). See Appendix D for the details of the

derivation of the Fisher information matrix.
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Hypothesis Testing: Now, we want to test the mean vector

H, Oj
H,: =[] 2.14.11)
: (ﬂz.lj (0

Since A, and jfi,, are asymptotically equivalent to the ML estimators, the

distribution of the random vector ~/n (4,,41,,) is bivariate normal with zero mean

vector and (estimated) covariance matrix

. 6, O
Q=n{ v } (2.1.4.12)
0 65

where &,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =&; =1 "(u,,0,,14,,,0,,,6,) . The covariance
between £, and f,, is zero since they are orthogonal components, so there is no

need to estimate it. Since in these elements &, and &,, converge to o, and o, ,,

respectively, the asymptotic null distribution of

2.1

i2 :n(ﬂl,ﬂz_l)ﬁ*(;l J (2.1.4.13)

is chi-square with 2 df. Since the inverse of the estimated covariance matrix is

simply

A -1
{"“ O_I} , (2.14.14)
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our test statistics 7* is equal to

A

T12 = ﬂ12/611 +ﬂ212/633 . (2.1.4.15)

We reject H, at the 5% significance level if the value of T is greater than

Zeo-(2). The nonnull distribution (asymptotic) of T2 is noncentral chi-square
0.05 ymp 1 q

with 2 df and noncentrality parameter

o M
Y :”(ﬂpﬂzl)n l[ : J

2.1

=lu12/o-11 +:u2412/633- (2.1.4.16)

(n—2)
2(n-1)

For small n, the null distribution of TAI2 is approximately central-F with

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A”.

2.2 Marginal Generalized Logistic and Conditional Normal

We again take the conditional distribution as normal but the marginal distribution
as Generalized Logistic. We derive the estimators and the hypothesis testing
procedure for this situation.

2.2.1 Estimation of Parameters

Generalized Logistic distribution is flexible in nature. It is negatively skewed if
the shape parameter b is less than 1 and positively skewed if b is greater than 1.

It is symmetric if » is equal to 1 in which case it is the well known logistic
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distribution. Generalized Logistic distribution is also preferred since its range is

between minus infinity and plus infinity.

Suppose that the marginal distribution of X is the Generalized Logistic

distribution with density

2.2.1.1)

and the conditional distribution of Y given X = x is the normal distribution with

density

1
h(y|x)= TR X
2

2
R N PN
exp[ 20_5(1_102){)2 M, ,00_1 (x ,ul)}} (2.2.1.2)

where —co < x<oo, —oo(y(oo, y,, U, €R, 0,,0,)0, =1{p(1,5>0.

Given a random sample (x;,y,) (1<i<n), the likelihood function is

1 - 1 ;
Lo "o (l—p?)™? ' axpl — o N2 2213
10y (1=p%) n p( zzl 2022(1—/)2)2 lJ( :

H(1+ el )b“ i=1 i=1
i=1

where z, = (x, —4,)/ 0, and ¢, :yi—ﬂz—p(ﬁj(xi—,ul), 1<i<n; p*<I1.
(o}

1
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The loglikelihood function is

lIlLZI’llIlb—l/llIlO'1 —izi —(b+1)iln(l+e—z[)
i=l i=1

n n 1 <
—=In(27)—nlno, ——In(1- p*>)—————— > e’ 2214
5 In27) ;=5 n=p") 2622(1_/)2);, (2.2.1.4)

The likelihood equations expressed in terms of x; and the corresponding

concomitants yj (1<i<n) are

dinL _n  (b+D) e

aﬂl O.l 61 P (1 + efz(i)

dlnL n 1 (b+1) e
e T e T X, szl =
1 1 1=l 1=l te

dlnL 1
= 2 Ze[t‘]zo

o, o,(-p)5
dlnL n 1 \
=-—+— > ;=0 and
do, o, o,(-p)3
dinL _ np P Yet =0, (2.2.1.5)

p (1-p) cil-p)5

o .
where 24 = (X(l-) —,Ul)/O'l and €[i] = y[l] — U, —p(?zJ(x(,) —,Ul), 1<i<n.

1

%,

1

Writing 6, = p( J we also have

dlnL o, 2
= E e =0. 2.2.1.6
agl 0_22 (1 _ p2) P Zl i ( )
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Solving these equations is problematic because of the function
20

8(zp) =m. We linearize this function by using the first two terms of a

Taylor series expansion around E(z(;)) =17, as follows.

dg(z)
i) = &)+ (g — )| ————
g( (,)) 8( (,)) ( () (,))( pa .

=a,~ Bz, 1<i<n. (2.2.1.7)

Realize that S, are positive for all i =1.2,...,n.

Substituting (2.2.1.7) in (2.2.1.5), we obtain the following modified likelihood

equations:

olnL dlnL n b+ (
=202 2N o - Bz )=0 (2.2.1.8)
ou, o, 0, 0 ; .

dlnL oJlnL no 1 b+
do, 90, o, 0 o o, ;Z(’)( ~Bizy)=0 and ¢ .
olnL dlnL _o OnL_ olnL _o OInL _ olnL
ou,  ou, " 9o, 90, op 00

0. (2.2.1.10)

l

The MML estimators are the solutions of the equations (2.2.1.8)-(2.2.1.10):

2, =K+Dé, (2.2.1.11)
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6 = B+~B*+4nC

2.2.1.12
! 2n ( )
- _ (&) .
i, = y—p[;zj(x—ﬂl) (2.2.1.13)
1
s2 6_2 1/2

G, = sj+s—*; S—;—l and (2.2.1.14)
. 5,0
p=-291 (2.2.1.15)

5. 0,

Additionally,

n

. Z('xi =)y, —4,)
6, == (2.2.1.16)

i (x; = 1[11 )2
i=1

Here, nx=)"x,, ny =2 y,, (n=Ds; =2 (x, =%, (n=Ds; =2 (5, -9,
i=1 i=1 i=1 i=1
(n=1s,, =Y (x,—X)(y,—y) and
i=1
1 11
K=— Xy, D=— —a, |,
m;ﬂ’ ) m;(b+l j
m=zﬁi )
i=1
1

B= (b+1)Zn:(x(l.) - K)(m—aij, C= (b+1)Zn:ﬁi (x) -K)?. (2.2.1.17)

2.2.2 Conditional and Marginal Likelihood Functions

By separating the likelihood function as before, we obtain
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dinL _ n 13 _(b+l)z": e’ _0
do, o, 6,57 o, G (1+e7)
InL 1 &
dln _ _Zei 0
Oy, 0,13
InL I &
dln =" 5 Zeiz:O and
ao—Zl Oy Oy
dlnL o0,
= Zi i< O
TR
The modified likelihood equations are
alnL:alnL =i_(b+1) (ai_ ,Z(i))=0

o, Iy, 0, O, =

dlnL _dlnL  n liz b+1)
= - O

do,  d0, o, 0,5 o, S
dlnL dlnL _0 alnL_alnL*_O alnL_alnL*_O
Ol Ol , d0,, d0,, ’ 26, 00, ‘

(2.2.2.1)

(2.2.2.2)

(2.2.2.3)

(2.2.2.4)

(2.2.2.5)

(2.2.2.6)

(2.2.2.7)

(2.2.2.8)

The MML estimators are the solutions of the equations (2.2.2.6)-(2.2.2.8)

i, =K+ D6,

6 = B++B?+4nC

2n
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(2.2.2.11)

(2.2.2.12)



N Z(x,' _,a1)(yi _1&2) s
b= _lo, (2.2.2.13)
Z(xi _/:21)2 !

i=1

K, D, m, B, C and related terms are given in (2.2.1.17).

2.2.3 Properties of the MML Estimators

Lemma 2.4: The asymptotic distribution of £, is conditionally (for known o))

o

mb+1)

normal with mean g, and variance
For known o,, &, = 4,(0,)= K + Do, . Since

dlnL’ b+,
:m 2 ){!Il

3 (c)—u}, (2.2.3.1)
u, o,

the result follows.

Lemma 2.5: Asymptotically, the estimator &, is conditionally (for known g, ) the

MVB estimator of 0,.

For known g,, 6, =6,(4,) is given by

(Bo Ty B; +4nC, ) (2.2.3.2)

2n

61(#1) =
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where

B, —(b+1)2(x ((b—ll)—aj and C, = (b+1)z B (xy—H)* (2.23.3)

Further,

2n 2n

dnL (B +BZ +4nC, }(BO—JBOMMCO } 023
-0, -0, |. 2.3.

The only admissible solution of (2.2.3.4) is 0, = 6,(4,) and the result follows as

before.

Bias Correction: For small n (<15), A, and &, have some bias. The bias

corrected estimators are given by (see Appendix B for details)

lp 4 V5" ranc}

2. /n(n—1)

i = K—ﬁ(z ,Bit(i)j with &, = (2.23.5)
m\ iz
Lemma 2.6: For known g, and 4,, él (u,,1,) is the MVB estimator of &, and

is normally distributed with mean 6, and variance 0'22 (1- pz) Z(xi -4, ).
i=1

This follows from the fact that

C Y-
dlnL JdInL Zl N

= === g , -0 ). 2.2.3.6
R TR 6, ut,.11,)-6,) (223.6)
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2.2.4 Asymptotic Covariance Matrix

The asymptotic covariance matrix of the estimators f,,6,, [i,, 6, and p is

given by I7'(4,,0,,1,,0,,p), where I is the Fisher information matrix. The

Fisher information matrix is given by (i, j =1,2,3,4,5)

d’InL
1:[11,1,]:{_1{8 ; J:l,’[l:,ul,’[z:dl,2'3:,[12,2'4:(72,2'5:,0. (2.2.4.1)
7,07,

n

If welet I = >
1-p7)

A , the elements of the matrix A are

1 [ba-p") .
A, =—|—L 24 p?,
Yool b+2) p}

1 [b(-p*)
A = =~ F 7
ool (b+2) (

b+ -p(2))+ p%w(b)—w(l))]

2

A, =——L ,AM:—G”G (w(b)—w(l)),Als=—£(w<b)—w(1>),

1¥2 1

Caf b g , R
Ay = 2[“<b+2>{ b+ +¥' @+ b+ -y@) ]

1 o W)+ @) + () - w ) )} :

Ay =- 0” (Wb —w (1), Ay, =—

&)+ M+ w®) -pm)).
10-2 O'lO'2

, , 1
Ay ==Ll B+ O+ ) -p)). 4, -

Ay =SB -pO), Ay =—(Wb) -wD),

i
0-2

SHAS
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1

Au=—s ka- o+ 0 )+ )+ ) -y )],
2

As =L 24l )+ 0+ (o) -y))] an

2p° , ,
A =1 —ppz) +Hy @ +y O+ o) -y ). (2.242)

Here, the asymptotic covariance matrix of the estimators f,,6,, i,, 6, and p is
given by X=1"(y,,0,,1,,0,,p). See Appendix D for details about the
derivation of Fisher Information matrix and Appendix A for details about ¥ (psi)

functions.

Hypothesis Testing: Our major interest is testing the null hypothesis H,: p =0.

The likelihood ratio statistic obtained exactly along the same lines as before is

/izmax(LlHO)
max(L|H,)
0"-2 n/2 (n—l)sz ( 1)
=22 A=-p)"Pexp| (- piy - 2243

which gives the statistic

N 1
W = -
p/ \/n(w’<b> +y'(1)
= pnly’ (D) +y' (1)) ; (2.2.4.4)

1
n(y’'(b) +y'(1))

is the asymptotic variance of p under H,,, obtained from
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{1“ (ﬂl,al,yz,az,p)}pzo : (2.2.4.5)

The null distribution of W is referred to normal N(0,1). Small values of W lead

to rejection of H, against H, : p <0.

It is of great practical interest to test the null hypothesis

A 0
W[40 s2e

Since A, and j1, are asymptotically equivalent to the ML estimators, the

distribution of the random vector v/n (,[tl, ,[12) is bivariate normal with zero mean

vector and (estimated) covariance matrix
N o 5
Q-= n{ ! 13} (2.2.4.7)

where, 6,,, 6,, and 6,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =Z; =1 l;l (u,,0,,1,,0,,p). Since in these

elements 6, and &, converge to o, and ©,, respectively, the asymptotic null

distribution of
a2 A A YA-L /'All
T =n(a,,0,)Q ( j (2.2.4.8)
M,

is chi-square with 2 df. We reject H, at the 5% significance level if the value of

T is greater than (2) The nonnull distribution (asymptotic) of T is

noncentral chi-square with 2 df and noncentrality parameter
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A =nly,, ,uz)Q“(z ‘j. (2.2.4.9)
2

(n—2)

For small n, the null distribution of T* is approximately central-F with

2(n—1)
(2,n—2) degrees of freedom and the nonnull distribution is approximately
noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A*.

In Section 2.2.2 we expressed the likelihood as the product of the marginal and

conditional likelihood functions and made a reparametrization.

Now we define the Fisher information matrix, I(4,,0,,/,,,0,,,6,),

consisting of y,,0,, i,,, 0,, and @, instead of u,,0,, i,, 0, and p.If we let

I =n A, the elements of the matrix A are

b b

T2, A2 T T o AL b+1)-w(2)),
o’ (b+2) 0'12(b+2)(')”( +D-y ()

1=

A;=0, A,=0, A;=0,

1
A, =—|1+—— b+1)+ 2)+ b+1 2
. 05{ i 2{w< )+ (2) + )w())}}
1
A23:0’A24:0’A25=0’A33=_2’A34:O’
0-241

o 2
Ay ==~ ) ~pD), Ay =—, A =0 and
2.1

2.1

2

(/b +y/ ) + (k) -y, (2.2.4.10)

2.1

Ass ==

Here the asymptotic covariance matrix of the estimators 4,,6,, 4,,, 6,, and 01

is givenby £=1"(u,,0,,1,,,0,,,0,) . See Appendix D for details.
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Hypothesis Testing: Now, we want to test the mean vector

H, :(ﬂl j:m. (2.2.4.11)
My, 0

Since A, and jfi,, are asymptotically equivalent to the ML estimators, the

distribution of the random vector ~/n (,al, ,[tm) is bivariate normal with zero mean

vector and (estimated) covariance matrix

. 6, 0
Q=n{ v } (2.2.4.12)
0 65

where &,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =&; =1 "(u,,0,,14,,,0,,,6,) . The covariance
between £, and f1,, is zero since they are orthogonal components, so there is no

need to estimate it. Since in these elements &, and &,, converge to o, and o, ,,

respectively, the asymptotic null distribution of

2.1

A ~ o vAl A
le :”(:Ulnuz.l)n I[A : J
= lalz/é-ll +ﬂ2‘12/5'33 (2.2.4.13)

is chi-square with 2 df. We reject H at the 5% significance level if the value of

T? is greater than ., (2). The nonnull distribution (asymptotic) of T2 is

noncentral chi-square with 2 df and noncentrality parameter
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X = n(ﬂpﬂm)n_l( # J

Moy
:;U12/O-11 +:U2412/O-33- (2.2.4.14)
(n-2)

flz is approximately central-F with

For small 7, the null distribution of o
.

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A°.
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CHAPTER 3

NONNORMAL CONDITIONAL AND NORMAL MARGINAL
DISTRIBUTIONS

Summary: In this chapter we develop estimation and hypothesis testing
procedure for the situation when the marginal distribution is normal (stochastic)
and the conditional distribution is nonnormal. We will, for illustration, take the
conditional distribution as Generalized Logistic. The methodology, however,

applies to any other location-scale distribution.

3.1 Estimation of Parameters

Suppose that the marginal distribution of X is normal with density

1 1
8 =— exp[— o (x—ul)zJ, (3.1.1)

and the conditional distribution of Y given X = x is Generalized Logistic given as

(o2
y—i, —p—2(x—p)
(o2

1

exp| —
o= p*)
b
h = 3.1.2
(ylx) 0_2(1_p2)1/2 o, b+l ( )
Y=ty =p2x-p)
O-l
1+exp| —

0-2\/(1_,02)
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where —co < x <oo, —oo(y(oo, u, i, €R, 0,,0,)0, -1 p(1,b>0.

Given a random sample (x,,y,) (1<i<n), the marginal and conditional

likelihood functions are

1 _ﬁ > (Xi_ﬂl)z
Ly=—e " and (3.1.3)
(7))
S B ol (NN T
Y\X:x:O_;(l_pz)n/z il C (314)

[P)
Yimty=p—(x;— 1)
1

n

1+e_ o,y (1-p%)

]
—

i

If we write z,=(x,-u)l0o, €=y, =0x 1, M,=L-0u,
o;,=0.(1-p*) and 6, = p& , the loglikelihood functions based on the
O-l

marginal and the conditional distributions are, respectively,

In Ly :—gln(Zﬂ)—nlnal—%ZZf, —o0 <z <o (.1.5)
i=1

and

InL,, =nlnb-nlno,, —LZei

2.1 =1

—(b+1)21n{1+e_““], o< e< oo, (3.1.6)
i=1
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The loglikelihood function is

InL=-"1n27)-nlho, —lsz
2 23

n

+alnb—nlng,, ———Ye, —(b+1)Zln[l+e_””J
(o}

2.1 i=l i=1

where —c0o < 7 <00, —0<e<oo, y i, €R, 0,,0,,)0,b>0.

The likelihood equations for estimating 4&,, 0, i,,, 0,, and @, are

olnL 1
= — Z; :O
a/ul O, =l
alnL:_l_i_i 2220
J0, o, 0,g
dnL n (b+1)i e o
= —_ :0

ol,, Oy, 0,1 = [1 ;1}
+e *

n 1 n 0,
alnL:_ n__ 1 zei_(b+ )zei e =0 and

dlnL o0, ¢ b+1)o, & e
I—E Z; — E Z; =0.
ael 0, =l 0, = [1+ ae}
e 2.1
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(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)



The ML estimators of x, and o, found from (3.1.8)-(3.1.9) are

(3.1.13)

Because of the intractable function e—, the equations (3.1.10)-(3.1.12)

(1+e_"“}

can not be solved. Hence, we use the modified likelihood methodology to solve

them.

To find the MML estimators, we define w, =y, —6,x,. We order w, (1<i<n),

in ascending order of magnitude. Let

be the ordered variates (for a given 6,). Then, e = w) — i, has the same
order with w, since f,, is a constant. We also define a, =¢,/0,, and write

ag = e lo,, = (w(i) -, o,,. Also, Wi = Vi —ﬁlx[l.], (x[i],y[i]) and

—a

=G —m4)/o. It we write g(a)= , the likelihood equations

(I+e™)
expressed in terms of ag. € and Z(; are
dlnL n b+ &
- ! )28(%)):0 (3.1.15)

all’l24l 0-241 0241 i=1

1 L 1 n +1 n
InL_ n 1S, BDS, (0 =0 and (3.1.16)
do,, 05, 2.1 =l 0, =l
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olnL o, n (b n 1)0‘1 R
o, &N, &R0 3.1.17
96, 0,1 12:1: il o,, ; [,]g( (1)) ( )

In order to derive the MML estimators, we linearize the function g(a(,) by using

the first two terms of a Taylor expansion around E(a,)) =7, as follows:

dg(ag)

g(a(i)) = g(t(i)) + (a(i) - f(i))(Tj
4 )=l )

e"(i) e"(i)
:(—)Jf(% L A"
I+e'® (1+e—fm)

=a’l—ﬂ1a(1), 1Sl£l’l. (3.1.18)

~1) ~10)

where a, 2(6—)2(1+’(i)+€_t(i)) and /3, :m'

I+

Substituting (3.1.18) in (3.1.15)-(3.1.17), we obtain the following modified

maximum likelihood equations:

olnL _ n _(b+1)2(ai_ ,-a(,»))=0 (3.1.19)
Oy, Oy O, T
dlmL n 1 & (b+1) &

-4 e — epl. - Bay)=0 and (3.1.20)
ao-Zl 0-241 0221; () 0221 ; () ()
dnL o0, & (b+Doi s
o SN N (- Bagy)=0. (3.1.21)
a91 0-2.1 i=1 [] 2.1 lZ=1: [] ()
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The MML estimators are the solutions of the equations (3.1.19)-(3.1.21):

A L

) =5y - 6% - —6,, (3.1.22)
m
_ [ 2
6, = BANB HdnC (3.1.23)
2. /n(n—=2)
6, =K-D6,, . (3.1.24)

Here, B=(b+ 1)i AZ{Y[I] - y[] - K(X[l] - )_c[] )}
i=1
C=0b+ 1){2 B (y[i] = J-k DB (x[i] =X )Y[i]}
i=1 i=1
K=>p5 (x[,-] — X[ )y[,-] > B (x[i] = X[] i
i=1 i=1
D=>A, (x[,-] - 3_6[4]) > B (x[i] = X[] i
i=1 i=1
_ 1 n _ 1 n
X = Z;ﬁzx[i] Y= Z;ﬂim and

1 n n
A=a,——— A=A, ,m=Y 5. (3.1.25)
(b+1) ; 21

%

If we write z, =(x, —,)/ 0, and e,.=y,.—,uz—p[ j(xi—,ul), 1<i<n, the
o

1

loglikelihood function is

InL=-21n27)-nlho, —1242
2 23

n 1 4
+nlnb—nlno, —=Inl- p*) - ————=>¢,
2 0'2\/(1—,02) i=l
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e

—(b+DY Inf1+e V) || —so<z<o0, —eo<e< oo,

i=1

The likelihood equations for estimating (,, 0,, i4,, 0, and p are

ML_1 & mp (brbp e
a _O' = i= -
w0, S s i-ph) o Ja-pH T =

L n (bt & e

a - a2 Y P _
t,  o,Ja-p*) o, Ja-pH) T Ly o1

=0

dlnL _i P Z”:
Jdo, w/(1 %) 11 021/(1—,02) =
b+1)p Z ¢ ol0-5"

T2 (1 p _0'2\/ (eli—ﬂz)

(b+1) Z e -0 and

0-2 "(1 p _02\/:—7/-’2)

(3.1.26)

(3.1.27)

(3.1.28)

(3.1.29)

(3.1.30)



olnL np P : 1 N
dp (1-p°) o,1-p*)" Z‘ Ja=p?) Z‘
b+1) & PR

1+e 0, (1-p%)

i =0.
o.(1- 2N3/2 P i B "
,(=p%) 1 . o
o
Also, writing 6, = p—=,
1
alnL _ O-l n (b+1)o-l n e sz

i i =0.
26, aﬂ/(l—pz);Z crﬂ/(l—pz),Z_l:Z

1+ eia2 (0=

From (3.1.29) and (3.1.32),

n e Uzv(ll—ﬂz)
n-(b+)Y) ———=0
i=1

— e[

14+e V07D

and

n n e_o'z\) (61[—/72)
>z =+ z;——=0.
i=1

e
- i
i=1

l+e 0,y (1-p)
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(3.1.32)

(3.1.33)



Using (3.1.33), the likelihood equations reduce to

€

(1-p*)

dnL _  n (b+]) & e ”
) 2y 4 4
op, 0'2\/(1—/0 ) 02\/(1_/9 ) i 14 oV

dlnL __n 1 ane
Jdo, 0, o, 1-p*) = l
__+D T ox(t-0%) 0 and
2 | 2\ e g -
0-2 (1_,0 ) i= 1+€ oy (1=p?)

dinL _ np P <
P U-ph oo py B

(b + l)p n e 0'2\)(1_,02)
2N\3/2 ei e
o, (1 -p ) i=1 - L
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(3.1.34)

(3.1.35)

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)



€

e_on/u—pz)
Because of the function, g(ei)z—a, (3.1.36)-(3.1.38) can not be

1+e o3\ (1-p*)

solved and solving them by iteration is problematic.

To find the MML estimators, we again define w, =y, —6,x, and order w,

(1<i<n), in ascending order of magnitude. Let

€(i)

be the ordered variates. Since a,=———>——
(i)
0,{1-p%)

, the problematic function

¢

e oN1=PY)
gle;) = ———— can be expressed in terms of a;, which is equal to
1+e_"“/“‘p2)
g(ai):e—l_. When we order the values of w,’s, we have
(I+e™)
€. (W(i) - (;uz _glﬂl )
a(i) = = . NOW, W(I) = y[l] —61)6[[»] where (X[i], y[l])
o,\(1-p?) o,\(1-p?)
—aG)
are the concomitants of wg and also g(a(l.))ze—_a”. The likelihood

(I+e ™)

equations which are the same as (3.1.36)-(3.1.38) are

dlnL n b+1) &
_ _ g(a,)=0 (3.1.41)
W o,41-p*) @J(l—pz); .

dnL  n e (b+D) 3
= e ) N e(a,)=0 and  (3.1.42)
do, o, ‘722\/(1—,02);() aﬁ/(l—pz);” .
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dlnL np P d b+hp &
— - ey t————> eng(ay)=0. (3.1.43
Ip (1-p?) 0'2(1—p2)3/2 ; (i) 0_2(1_p2)3/2 12:1: 08(ag) ( )

We again expand g(a) around its expected value by using a Taylor expansion

as in (3.1.18). Substituting  g(a;)) = @, — ,[)’l.a(,.) in the equations (3.1.41)-(3.1.43)

gives the following modified maximum likelihood equations:

olnL n b+1)
_ _ @ - Ba)=0 (3.1.44)
O, 0'2\/(1—,02) sz(l_pz); !

dlnL  n 1

— e,
Jdo, 0, 622\1(1—,02);()

b+ -
———F——2.¢»(@ — fa;)=0 and (3.1.45)
dinL _ np P n
op - (l—pz) 0'2(1—,02)3/2 ;e(z‘)
b+1 u
) D e (@~ Bay)=0. (3.1.46)

o,(1-p*)"* 5

We find the MML estimators by solving (3.1.44)-(3.1.46) and the functional

o
relations p=6,—~ and o,, = 0,,/(1- p*) as
c

A A

=Yy =6y~ ) = — 0 (3.1.47)

A A2 N2 A2

0, =40,,+6;6; and (3.1.48)

p=6,°r. (3.1.49)
0-2
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Related terms are given in (3.1.25). Realizing that 4, =X and 6, =s_, we have

~ _ A _ A L

=Yy =60~ =03, (3.1.50)

6, =46, +é1255 and (3.1.51)

A A S

p=6—. (3.1.52)
O

2

Computations: The computation of the estimators is carried out in two iterations.

In the first iteration, w, =y, —6,x, (1<i<n) is calculated by replacing 8, by the

LSE 6, =Y (x,-%)y, /Y. (x,~%)>. The MMLE §, is then calculated from
i=1

i=1

(3.1.23)-(3.1.24). In the second iteration, we obtain wy’s by ordering

w, =y, —élxi (I<i<n) and the estimators are calculated by using these w,)’s

and the concomitants (xp), ;1) -
3.2 Properties of the MML Estimators

Lemma 3.1: For known 4, and 4u,, él(,ul, M,) is asymptotically the MVB

estimator of 6, and is asymptotically normally distributed with mean 6, and

2
variance - %21 . This follows from the fact that
b+ 1)2 B, (X(,-) — K, )?
i=1
* (b+1)ZIBi (x(i) _:ul)2
i=1

dInL _dlnL _

0 (u,,11,)—6 3.2.1
S0 =38 - 6,0, .)-6,) (32.1)
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and the difference (1/ n){(a InL/086,)- (8 InL’/d6, )} converges to zero as n tends

to infinity.

Lemma 3.2: For x4, and g, unknown, él is asymptotically the MVB estimator of
6, and is asymptotically normally distributed with mean 6, and variance

2
0-2.1

(b+ 1)2 B (xpy —Xp)°

. This follows from the fact that

. (b+1 S B (x— 1)
dinL _dlnL _( );ﬁ,(x(,) )
96, 96, ol

6 -6 (3.2.2)

and 4, and f1, converge to g, and u,, respectively, as n tends to infinity.
3.3 Asymptotic Covariance Matrix

The asymptotic covariance matrix of the estimators 4&,, &,, i,, 6, and p is

given by [ - (Y,,0,,1,,0,,p), where I is the Fisher information matrix. The

Fisher information matrix is given by (i, j =1,2,3,4,5)

0’ InL
I:[IU]:{_E(E} p) J}’q:ﬂl’fzzaw73::“2’74:02’75::0'
Ti Tj

If we let I =n A, the elements of the matrix A are

2
An:% I+ ’ £ A =04, =~ b £ 2y’
o, b+2)d-p7) b+2)o0,0-p7)
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___ b Iy

A =—
Y b+ g0, 1-p?

(Wb +1)-p(2),

-t P (yb+D-p2)
B (b+2) 0,1~ p*)P? ’
1 b ,02 b p2
A, =—12 1 A.=0,A,=—
2 0'12(+(b+2)(1—,02)} 23 > Aoy (b+2)0'10'2(1—p2),
___ b P _ b 1
B+ o,(0-p)" " b+ 0i1-pY)]
b (pb+)-y(2) b P
= =- b+1)—w(2
i (b+2) 0-22 1_p2 > 035 (b+2) 0.2(1_p2)3/2 (W( +) l//( )),

A= 1e—l [ 2 e+ @+ pe+)-p))
Yoo e+l a-pY) ’

- P > {1+
o,(=-pH)[ ©®+2)

F1+ oD+ @+ o+ -p)) )} and

o’ b 1
A =
55 <1—p2)2+<b+2>{<1—p2>

2

) _ppz)z e+ +y @+ po+n-y) )j : (3.3.1)
Here, the asymptotic covariance matrix of the estimators f,,6,, f,, 6, and p is

givenby £=1"(y,,0,,1,,0,,p). See Appendix D for details.

Hypothesis Testing: Our major interest is testing the null hypothesis H,: p =0.

Since the MML estimators are asymptotically equivalent to the ML estimators, the
likelihood function L is maximized (asymptotically) by the MML estimators.

Thus, the likelihood ratio statistic is (asymptotically)
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i_max(LlHo)
max(L|H,)
1 < N
1 _6'720.21: (yi=t)
e =
N o b+l
O-;() n _y;j/lzo *
l+e o
i=1
- - (3.3.2)
—6_712()'[ —h,=6, (x; =)
1 e M

N A2\n/2 A b+l
&ra-pH""? b i)\

H 1+e %2

i=1

Here, f,, and 6,, are the MML estimators of 4, and o, under H,: p=0.
Under H,:p =0, since the conditional likelihood function (the marginal part

cancels with the denominator) becomes a univariate Generalized Logistic
likelihood function for Y, they are found exactly in the same way as in Section

2.1 but here y,’s take the place of x,’s. Since f,, and f, both converge to k,,

A

6,, and 6, both converge to o,, &,, converges to 0,,, 6, converges to 6,, and
[, converges to 4, as n tends to infinity, the likelihood ratio is a monotonic
function of p°. Thus, to test H,, against H, : p <0 (or p >0), the test based on

£ will be uniformly most powerful (asymptotically). We propose the statistic

A~/ |1 (b+2

weil), )
N

=p "oeD) (3.3.3)

is the asymptotic variance of p under H,,, obtained from

1(b+2)

n
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w0 m,.0,.0} ., - (3.3.4)

The null distribution of W is referred to normal N(0,1). Small values of W lead

to rejection of H, against H, : p <0.

Also we want to test the mean vector

A 0
W[40 o

Since A, and jI, are asymptotically equivalent to the ML estimators, the

distribution of the random vector v/n (,[tl, ,[12) is bivariate normal with zero mean

vector and (estimated) covariance matrix
N o 5
Q= n{ ! ‘3} (3.3.7)

where, 6,,, 6,, and &, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =Z; =1 l.;l (u,,0,,1,,0,,p). Since in these

elements 6, and 6, converge to o, and o,, respectively, the asymptotic null

distribution of
a2 A A YA-] lal
T =n(a,,0,)Q {ﬂj (3.3.8)
2

is chi-square with 2 df. We reject H, at the 5% significance level if the value of

T is greater than (2) The nonnull distribution (asymptotic) of T is

noncentral chi-square with 2 df and noncentrality parameter
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A =n(ﬂ1,y2)nl(zlj. (3.3.9)
2

(n—2)

T* is approximately central-F with

For small 7, the null distribution of
2(n—1)

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A°.

Now, we define the Fisher information matrix I(x,,0,,1,,,0,,,8,) for
estimating 4,,0,, M,,, 0,, and 6,. If we write I =n A, the elements of the

matrix A are

! 2
A11:—2,A12=0, AISZO’A14:O7 AlS:O’A22:_27
o, p
b 1 b (wb+D)-w?2)
A23:0’A24:O’A25=0’A33:—_2,A34: v 2 v s
(b+2) o3, (b+2) 0,5,
1 b { , 2}
Ay =0, Ay =—|1+—— WO +D+y' Q)+ Wb+ D -p(2)
2.1 b+2)
and
b o}
Ay =0, Ay =———. 3.3.10
" ST (b+2) 02, (3.3.10)

As usual, the asymptotic covariance matrix of the estimators &,,6,, 4,,, 6,, and

él is given by £=1"(u,,0,,/4,,,0,,,6,) . See Appendix D for details.

Hypothesis Testing: We are interested in the null hypothesis (y,,u,)=(0,0)

which is the same as

82



HM(MJ:[?. (3.3.11)
My 0

Since A, and f,, are asymptotically equivalent to the ML estimators, the

distribution of the random vector ~/n (4,,41,,) is bivariate normal with zero mean

vector and (estimated) covariance matrix

A 5.0
(2:;{611 } (3.3.12)

0 &5

where &,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =&; =1 "(i,,0,,1,,,0,,,6,) . The covariance
between £, and f,, is zero since they are orthogonal components, so there is no

need to estimate it. Since in these elements &, and &,, converge to o, and o, ,,

respectively, the asymptotic null distribution of

. o vadl A
T12 :”(/ll’ﬂzl)n I(A : J
My

:1[212/6-11 +IL}22412/633 (3.3.13)
is chi-square with 2 df. We reject H, at the 5% significance level if the value of

T? is greater than 2, (2). The nonnull distribution (asymptotic) of T is

noncentral chi-square with 2 df and noncentrality parameter

o M
X :”(:up:uzl)n 1( l j
Moy

::ulz/o-ll +:U2412/633- (3.3.14)
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(n-2)

TAI2 is approximately central-F with
2(n—1)

For small n, the null distribution of

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A°.
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CHAPTER 4

NONNORMAL CONDITIONAL AND MARGINAL DISTRIBUTIONS

Summary: Finally, we develop estimation and hypothesis testing procedures for
the most difficult situation when both the marginal as well as the conditional
distributions are nonnormal. For illustration, we take both of them as Generalized
Logistic with shape parameter b, for the marginal and b, for the conditional
distribution. The results extend to any other location-scale non-normal

distribution.

4.1 Estimation of Parameters

Suppose that the marginal distribution of X is Generalized Logistic with density

o
g(x)=— 4.1.1)

and the conditional distribution of Y given X = x is again Generalized Logistic

with density
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O
y—,uz—p—z(x—,ul)
exp| — !
o, a-p?)
b
h(y|x)= 2 " 4.1.2)
0_2(1_p2)1/2 0_2 by+1
y—/,lz—pf(x—,ul)
1+exp| — i
o,\(1-p%)

where —co < x<oo, —oo(y(oo, y, U, €R, 0,,0,)0, =1 p(1, b,,b, >0.

Given a random sample (x,,y,) (1<i<n), the marginal and conditional

likelihood functions are

3 [(X,-—,u])j
bn e (4]
L, = and (4.1.3)
oo G-\
I n | iz
1+e[ “ j
i=1
— ”[}“—ﬂ P22 (5~ )]
p" e oy (-pH) T P e
_ 2
YIX=x _O_n(l_ 2)n/2 - by+l * (4.1.4)
2 p Yi—H _P;z(x[ —H )
1

fl 1+€_ o,y (1-p%)

If we write z,=(x,-4)/ 0o, €=y, =0x M, M =L-0,

o, =0,(1-p*) and 6, = pﬁ , the loglikelihoods based on the marginal and
O-l

the conditional distributions are

InL, =nlnb, —nlno, —Zn:zi - (b, +1)anln(l+e_z" ), —o< z< 00, (4.1.5)
i=1

i=1
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and

l n
lnLY\xzx =nlnb, —nlno,, __Zei
P =

—(b2+1)21n{1+e_"“], —co<e<oo,

i=1

The full loglikelihood function is

lnL:nlnbl —nln()'l —izi _(bl +1)iln(1+e—m)

i=1 i=1

+nlnb, —nlno,, —Lzei — (b, +1)zln(1+e_az,lj

0, i P

where —0o <7< o0, —0<e<oo, U, i, €R, 0,,0,,)0, b,b, >0.

The likelihood equations for estimating 4,, 0, i,,, 0,, and @, are

dlnL _n (h+hE& e o
a/ul o, o, i=1 (1+efz")

alnL n 1 & (bl +1) n el
’ ZZI 0, 12:1: “ (1 +e )

a O-l O-l O-l i=1

¢

alnL_ n _(b2+1) n e %

=0
o,, 0, O, ‘= [ —Gi J
l1+e °»

(4.1.6)

4.1.7)

(4.1.8)

4.1.9)

(4.1.10)

4.1.11)



and

dlnL o0, < (b, +1)o, & e %
=—1N 7z, — Z; =0. 4.1.12)
0, oy =T o, [ J
1+e “*
Because of the functions ¢ and L , the equations (4.1.8)-(4.1.12)

I+e™™ -~
l+e ™

and (4.1.14)-(4.1.15), respectively, are almost impossible to solve. Hence, we use
the MML method to solve the equations (4.1.8)-(4.1.9) and (4.1.10)-(4.1.12). To

find the MML estimators, we define w, = y, —6,x,. We order the values x, and

w, (fora given 6,), 1<i<n, in ascending order of magnitude as
X(l) < X(z) <..< X(n) (4113)

Then ey = w(;) — 4, has the same order with w,) since u,, is a constant and
2 = (x) = #4,)/0, has the same order with x, since 4, is a constant and o, is
positive. We also define a, =¢,/0,, so that a;, =e;,/0,, =Wy —H,,)]0,,.
Now w) =y = 61xp75 (X yp) and zp = (x;) — 4,)/ 0, are the concomitants of
w(;,)- Since complete sums are invariant to ordering, the likelihood equations can

be written as

AL _n _ (b+D)& e

=0 (4.1.15)
aﬂl O-l Gl P (1+e 4([))
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1 (b, +1) Z": e v

n 1
=4+ 26— Z(; — =0 (4116)
dJo, O, O, o 0 O, .= " (1"‘6 &(,))

= _ —— =0 4.1.17)

Oy, 0, Oy = (1+e (’))

2 b, +1) & —0
L__n Ly, Gt € ) (4.1.18)
do,, Oy Oy = Oy =l (1+€ ('))

z b, +o, & —0

alnL=iZ li - . Do, ZZ[,-] ° —=0. (4.1.19)
6, 0,3 O, = (1+e "))
If we write g,(z)= ¢ — and g,(a)= , the likelihood equations

(1+e™) (I+e™)

expressed in terms of the ordered variates are

dnL _n (b +1)
u, o Zgl(z

(4.1.20)

. 1
ok __n L, G )Zz 2.(z) (4.1.21)

1 n
alnL: n (b+1 2, =0 (4.1.22)

aIUZI 0-241 GZAI i=1

n +1 n
dinl __n 1§, (bHUS, o ay)=0and (4.1.23)
90, 054 21 =l 21 il
dlnL o0, (b, +1)o, &
= Ay FOS e (a)=0. (4.1.24)
06, 0,5 i Oy =l s

To derive the MML estimators, we linearize the functions g,(z(;)) and g,(a())
by using the first two terms of Taylor series expansions around E(z() =1, and

E(ay) = t,, respectively, as follows
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81(z)) = 8, (t) + (2 _tl(i))( B

dgl(z(,-))j
2(i)=h(i)

e"l(z‘) e"l(z‘)
= ——t @y L) T
1+ e tl(i) ( ) 1( ) (1 + e_tl(i] )2

=a,; - f,zp, 1<i<n, (4.1.25)

—h(i) e"l(z‘)

ﬁ+eﬂ“f

e

where ¢, :( 5 (1+t1(l.) +e_t1‘”) and S, =

1+eﬂ“)

and
dgz(a(,-))
8, (ap) = 8, (ty;) +(ag, —%Q{T
ag)=ty()
—I(i) —Ia(i)
e e
= +(ag =ty — 77—
1+ e—tz(i) ( ) 2( ) { (1 + e_IZ(i) )2 J
=a, — ﬁzl.a(i), 1<i<n. (4.1.26)
—t(i) (i)
where @, = ¢ — (1""2(,-) +e_'2"')) and S, :%.
(1+e 2")) (1+e 2<”)

Substituting (4.1.25) and (4.1.26) in (4.1.20)-(4.1.24), we obtain the following

modified maximum likelihood equations:

olnL n (b +1)
ol o, o, i:l( u = b W) ( :
olnL noo1 (b, +1) &

= Z'_—EZ' o, —B.724)=0 4.1.28
do, 0, O " 0, = 0@ = Fisz) ( :

90



olnL’ n (b +1) &
= (a,, — B,a 0 (4.1.29)
o,, 0, zz g i

dlnL  n o b+
e (a,;, — Bra7) =0 and (4.1.30)
ao—Z.l 0-241 0-221 ; 0-21 ; " ’ 0

dinL _ o iz _(b2+1)0'1i

| 2@y — Ba) =0. (4.1.31)
06, 0, =l 4 O, m W 2

The equations have explicit solutions which are the following MML estimators:

2, =K, +D,6, (4.1.32)
. B, +B}+4nC,
1= (4.1.33)
2n
A A,
My =y =0x) ——6,, (4.1.34)
m,
— B, ++/B; +4nC
6, =2 N T g (4.1.35)
2n
6,=K,—-D,6,, . (4.1.36)

Here,

1
(b+D§}x (@ )—%J

C, =0+ l)z b (x(i) -
i=1

:_Zﬁlz (i) ,» D, :_Z((b +1) 1ij’m1:;ﬂli

lll 111

= (b, +1)Y A, {y[i] -y— K, (‘x[i] — X[ )}
i=1

C, = (b, +1){Z B (y[i] - y[.] )2 - K2Zﬁ2i ('x[i] - )_6[4]))’[1']}
i=1 i=1
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K,=Y B, (x[i] — X[ )Y[i]/z B (x[i] — X )2
i=1 i=1
D=Y A, (x[,-] - )_6[4]) > B (x[,-] — X y
i=l1 i=1

_ 1 n _ 1 n
X[ :m_ZﬂZix[i] V1 Zm—Zﬂziy[i] and

2 i=1 2 i=l

1 n n
A =a, — ,A=D)> A, m, = . 4.1.37
i 2i (b2+1) ZZ::‘ i 2 ;1821 ( )

All the estimators are very different than those based on a bivariate normal
distribution. It is, therefore, very important to recognize the true underlying

distribution.

In order to develop the estimation procedure for the parameters u,, o,

M,, 0, and p directly, we consider the loglikelihood function

InL=nlnb, —nlnc, -z (b, + DY Infl+¢7)

i=1 i=1

n ) 1 ~
+nlnb, —nlno, ——In(l-p°) ——F——— E e,
2 o \/(l—pz) i=l
2

€i

~(b, +DY In| 14+e =V, (4.1.38)

i=1

The likelihood equations for estimating 4,, o,, #,, 0, and p are

dnL _n (b+DhEH e’
ou, o, o, S (1+e’z")
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€i

o (b +Dp o el
2 2y 4 —
oW1-p*)  oi-pH)F {He m]

=0

Z;i —
90, 0, Oy 0, = (1+e )

ML__n 1, _GBiiDs e~

ey ol

_%Z Z ¢
oa-p)E " oi-p?) [ q&uﬂ}

¢

dlnL n (B, +) I egzm
ou, 02\/(1—,02) 0'2\/(1_:02) =l [l_’_eaz\/:?J

alnL__i+; ;
do, 0, o34(1-p%) 62\/(1 p*)
(b, +)p _sz

_ z |
o J1-p?) [ mj

€

(b, +1) e -0 and
0-2\/(1 p [ amj
dlnL  np P ”
p  (-p) o,0- p)” Ja—p?
O S

Z.
2y = S
Ja-p) 3 {He%mJ

(4.1.39)

(4.1.40)

(4.1.41)

(4.1.42)



1 n o)
. )210%/2 Zei ¢ =0. (4.1.43)
o,(1-p7)"" T e
l+e oo\ (1-p%)

Also, writing 6, = ,02 5
1

dnL o, Z _ (bytho, & e

= Z; Z; =0. (4.1.44)
20, o,\(1-p*) = Gzal(l—pz); X —~

From (4.1.41) and (4.1.44),

n e_o'z\/(ll—l’z)
n—b,+)y ————<=0
i=1

€

l+e o3 (1-p%)

and

n n 6_0'2\/(1‘—172)
Dz—b,+))Y z;;———=0. (4.1.45)
i=1 i=1 - .

1+e 0'2V(1—P2)

Thus, the likelihood equations reduce to

Inl_n (b et (4.1.46)
aﬂl O-l 0-1 i=1 (1+€ l)
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n

dlnL n 1 b, +1) < e’
= 4+ Z; — Z; . =0 4147)
dJo, o, O zZ—I: o, zzzll (1+ e ) (

€

AL n (it & e o (4.1.48)
Moo -ph) oa-ph E( s
dlnL n 1 z
=——t———— e
90, o, ij/(l—pz);
n _UzV(li—Pz)
- 2(b2+1)2 Ye,————=0 and (4.1.49)
oNd=p) = e
dlnL np P L
= — e.
dp (A-p*) az(l—pz)”,-zz:‘ ’
n _Uz\/(li—/’z)
(b, +Dp Y, =0. (4.1.50)
o (1-p)? 5T s
: = 14e V0P
-z _O'z\l(li_p2)
Because of the intractable functions (1 ¢ — ) and — , the equations
+e @ 4

1+e_0'2\/(1—/72)

(4.1.46)-(4.1.47) and (4.1.48)-(4.1.50), respectively, can not be solved. Hence, we
use MML method to solve the equations (4.1.46)-(4.1.47) and (4.1.48)-(4.1.50).

o
To find the MML estimators, we define w, =y, — p—=x,. We order the values
1

x; and w; (for a given 6,), 1 <i<n, in ascending order of magnitude as
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X(l) < X(z) <..< X(n) (4151)

o . o
Thus, e = w() — (4, — p—= ;) has the same order as w, since (4, — p—= ;)
(g o,

1

is a constant and z;) = (x() —4,)/0, has the same order as x;, since 4, is a

constant and o, is positive. We also write a; =¢, / (0'2W ) Thus, we have
= e(i)/@-2 Vl_p2 ):(W(i) _(:uz _pz_-zﬂl)}/érz Vl_p2 ) Now,
1

o,
Wiy = Y1 — P—=Xp1» (s yp) and zpy = (x;— 4,)/ 0, are the concomitants of
O-l

w(,- Since complete sums are invariant to ordering, the likelihood equations can

be written as

AnL n (h+hE e

_n_ —_.=0 (4.1.53)
a:u1 0, o, ‘= (1+e Zm)
n _Z(i)
dlmL_ n 1 » _& +l)z (4.1.54)
ao'l (o] O, o '1+€ ’
n ai)
dlnL _ n (b, +]) e =0 (4.1.55)
Wy o fu-ph ofa-pH) Flre™)
alnL ; (b +1) e—a(i)
n — =0 (4.1.56)
do, o, aw/(l P’ o3 1-p?) (1+€ ")
and
olnL  np B P N

3/2 e()

p  (A-p>) o,0-p*)
(by+hp & e

+ 2T Ne, ——=0. (4.1.57)
0_2(1_/)2)3/2 - (®) ‘1+e a(,-)j
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et —-a
(+e™) and g,(a) = (+e™)

the modified likelihood equations are

If we write g,(z) =

dolnL’ _n_ b+
o, o 0,

z(ali - IBliZ(i)) =0
i=1

olnL  n 1 (b, +1)
= 2T

a0, o, 0,7 o,
olnL _ n () i(%. — Bra) =0
M,  o,\A-p>) opnJa-pHra T T
olnL _ n 1 Z":e
Jdo, 0, o, (1-p*) = g
(b, +1) 2
———F———= ¢(@, — Bra,)=0 and
= /—(l_pz); (% = Priagy
olnL _ np 0 3
ap (1-p*) o0,0-p*)"7 G "
(b, +D)p <
W;em(% - Buag)) =0.

Zz(i)(ali - ﬂliz(i)) =0
i1

and linearize them as before,

(4.1.58)

(4.1.59)

(4.1.60)

(4.1.61)

(4.1.62)

O
To solve (4.1.58)-(4.1.62), we use the functional relations p=6,— and

0,, =0,4(-p?), and obtain the following MMLE:

/All =K, +D16-1

. B, ++B}+4nC,
o, =

! 2n

N oA A T2
ﬂzzy[‘]_el(x[,]_ﬂl)_m_o-2 (1—,02)

2

6,=+65,+676] and
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(4.1.63)

(4.1.64)

(4.1.65)

(4.1.66)



>
Il
>

(4.1.67)

NQ) |_Q>

Since the estimators (4.1.63)-(4.1.67) can be obtained from (4.1.32)-(4.1.36), by
simple substitution, it follows that, like the ML estimators, the MML estimators
have the invariance property even in this complex situation. This is a very

interesting result indeed.

Computations: The computations are carried out exactly along the same lines as

those in Section 3.1. See specifically page 77.

4.2 Properties of the MML Estimators

Lemma 4.1: For known g, and u,, él (u,,M,) is asymptotically the MVB
estimator of 6, and is asymptotically normally distributed with mean 6, and
o,

(b, + l)i B ('x(i) —H, )?
i1

variance

. This follows from the representation

. 1 y (xon — 1)
alan dlnL _ (b, + );ﬁzz(x(z) M)

| 0 (u,,1,)-6 ). 42.1
06, 08, o2 (1(”1”2) 1) “2.1

Lemma 4.2: For x4, and #, unknown, él is asymptotically the MVB estimator of
0, and is asymptotically normally distributed with mean 6, and variance
o3

(bz + 1)2 :Bzi (x(i) - )_C[‘])2
i=1

. This follows from the fact that £, and [, converge to

M, and u,, respectively, as n tends to infinity and
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206, 96, ol

6.-4). (4.2.2)

Bias Correction: For small n (<15), f,, 6, and &,, have some bias. The bias

corrected estimators are given by (see Appendix B for details)

A n 2
:al = Kl _%(zﬁlitl(i)j with 6‘1 = {Bl +m}
1\ i=l

2. /n(n—1)

— B, ++/B2 +4nC,

2n(n-2)

and &,, = (4.2.3)

4.3 Asymptotic Covariance Matrix

The asymptotic covariance matrix of the estimators f&,,6,, i,, 6, and p is

given by I7'(4,,0,,1,,0,,p), where I is the Fisher information matrix. The

Fisher information matrix is given by (i, j =1,2,3,4,5)

0°InL
Iz[lij]:{_E(aTiaTjJ:l, TL=0,7T,=0,T,=l,,T,=0,, T;=p.

If welet I =n A, the elements of the matrix A are

A :L bl + bZ p2
Yool (b +2) (b, +2)(1-pY) ]

1 b b p’
A = — —1 1— 2 2 - 1
0= 5| G gy PO DY@ o s e~y D),

___b p
(b, +2) 0,0,(1- p*)
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b, e ,
A, =- 5 b)-y())+————(w(b, +D-w(2))|,
(b, +2)| 6,0,(1-p )(l/f( )—yp() dlazﬁ(w( )=y ))}

_ b, P 3 _p—2 B
A15 = (b2 +2) _0-1 (l_pz) (W(bl) l//(l)) o, (1_p2)3/2 (l//(bz +1) W(Z)):| ,

1 bo[, . )
Ay, _G—I{H e o vy @+ o +n-yp@))

b P
(b, +2) (1- p*)

)+ v O + () —w )y }} ,

b, 0
A =— b _ 1
23 (b2 +2) O-lo-z(l_pZ)(W( 1) W( )),

___b P Ly —p))’
e = (b2+2>[alaz<1—p2){w )y O+ )y 0T )

() -y ) b, + ) - wm)} :
0,0,\1-p

___ b P ' ' - 2
A, = (bz+2)Ll(l_p2){yx<b1>+w<1>+(w<bl> ) }

2

B % (l//(b1 )~ W(l)) (l//(bz +1)- I//(Z))} ,
o,(1-p%)

__ b 1
(b, +2) G2 (1= p)’

33

b, p) .
A34 = 2 2 bl - 1 4+ b2+1 _ 2 ,
(b2+2)!o-2(1_p)(l//( )~y (D) ey (b, + D) -y ))}

b, P |
Ay =— 7372 b2+1 -w(2 -— bl —w)|.
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1 b 0 ) , 2
A, =—11 2 1 _ .
44 2{ +(b2+2)((1—,02)+{l//(b1)+y/( )+(l//(bl) w( )) }

@) -p®) Wk, +D-p(2)

2

1-p
o, + 14w (2)+ (b, +1)-w(2))) H ,

A45:_i{ pz"’ b, (_ 4
o, (1_,0) (b2+2) (1_,0

o @)+ ) + () -wn)}

2

0

+m(w<bl>—z//a>)(w<bz +1)-p(2)

= ) ) e Dy )
-p

P
(-p

S W0, +D+p @)+ (b, +) -y @)Y }H
and

2

__ P N b, ( 1
1-p** b, +2)\ 1-p?)

o)+ O+ ) vl

55

‘%(W(bl)— D)W, +1) -y (2))
(1-p%)

2

P

+(l—p2)2

Wb, + D+ @+ Wb, + D) -y @) }J . 43.1)

The asymptotic covariance matrix of the estimators f&,,6,, i,, 6, and p is

givenby E=1"(u,,0,,1,,0,,p). See Appendix D for details.

Hypothesis Testing: Our major interest is testing the null hypothesis H,: p =0.

Since the MML estimators are asymptotically equivalent to the ML estimators, the
likelihood function L is maximized (asymptotically) by the MML estimators.

Thus, the likelihood ratio is (asymptotically)
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max(L|H)
max(L|H,)

A=

n

_éz (yi=lty)

1 e 0201

N o b+l
O-;() n _YizH
1+e %
i=1

= — . (4.3.2)
_fz (yi—it _él (x;=f))
1 Or1%0
OA-; (1_ IbZ)n/Z n _)’i_ﬂz_él(xi_ﬁl) b
I+e 721
i=1 {

It can be shown that for large n, A is a monotonic function of p’. Thus, to test

H,:p>0, we propose the statistic

1 (b, +2) 1
W = _
g / \/n b, W®)+y' D)

R b,
= "G+ () ; 433
p\/n(bﬁz)(w(l) w'(1) (4.3.3)
10, +2) : ! , is the asymptotic variance of p under H,, obtained
no b, Ye)+y')
from

i (ul,al,uz,az,p)}pzo. (4.3.4)

The null distribution of W is referred to normal N(0,1). Large values of W lead

to rejection of H, against H, : p > 0.
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Testing the null hypothesis

H,: [”‘ j = (Oj (4.3.5)
) \0

is also of great practical importance.

Since A, and jI, are asymptotically equivalent to the ML estimators, the

distribution of the random vector \/n (,[tl, ,[12) is bivariate normal with zero mean

vector and (estimated) covariance matrix
N o 5
Q:n{A” A”} (4.3.6)
o

where, 6,,, 6,, and &, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =Z; =1 l.;l (u,,0,,1,,0,,p). Since in these

elements 6, and 6, converge to o, and o,, respectively, the asymptotic null

distribution of
a2 A A YA-] lal
T =n(a,,0,)Q {ﬂj (4.3.7)
2

is chi-square with 2 df. We reject H, at the 5% significance level if the value of

T is greater than 1305(2). The nonnull distribution (asymptotic) of T is

noncentral chi-square with 2 df and noncentrality parameter

o zn(ﬂl,ﬂz)ﬁ_l(zl} (4.3.8)

2
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(n—-2)

For small n, the null distribution of 2= 1) T* is approximately central-F with
17—

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A”.

Now, we define the Fisher information matrix I(x,,0,,1,,,0,,,8,) for

estimating 4,,0,, i,,, 0,, and 6,. If welet I =n A, the elements of the matrix

A are
_bh 1, b i r)-y@)
Y420l (b +2) o}
lz‘aﬁz) (w, +;')12_W(2))’ A =0.A,=0,A. =0,
Ay :o-if(H(bb WO @ e -y F }J
Ay =~ (b"iz) O () -p), A o,A25=—0,A33=$0%,
= (bzbi > (’”(bz +;§:W(2)), Ay = ﬁ (Wb —p),
A44=0122A1(1 (bb WO D@, -y }j
. ﬁ (W) -w M) Wb, +)-w2)
and
=5 biz) ‘7 { b))+ D)+ () -y ) | (4.3.9)

Here, the asymptotic covariance matrix of the estimators f,,6,, i,,, 6,, and 6,

is given by £ =1"(u,,0,,1,,,0,,,60,) . See Appendix D for details.
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Hypothesis Testing: We also consider the null hypothesis

H, Oj
H,: = . 4.3.10
’ (ﬂz.lj (0 ( :

Since A, and jfi,, are asymptotically equivalent to the ML estimators, the

distribution of the random vector ~/n (4,,41,,) is bivariate normal with zero mean

vector and (estimated) covariance matrix

. 6, 0
Q=n{ v } (4.3.11)
0 6,

where &,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =&; =1 "(u,,0,,14,,,0,,,6,) . The covariance
between £, and f,, is zero since they are orthogonal components, so there is no

need to estimate it. Since in these elements &, and &,, converge to o, and o, ,,

respectively, the asymptotic null distribution of

. PN i
le :”(:Ulnuz.l)n I[A : J
21

A

::ulz/é-u +ﬂ2.12/6-33 4.3.12)

is chi-square with 2 df. We reject H, at the 5% significance level if the value of

le is greater than . (2) The nonnull distribution (asymptotic) of le is

noncentral chi-square with 2 df and noncentrality parameter
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o H
7 =l 0,,)0 ( j

My,
::ulz/o-ll + iy, 0. (4.3.13)
(n-2)

flz is approximately central-F with

For small 7, the null distribution of
n—

(2,n—2) degrees of freedom and the nonnull distribution is approximately

noncentral-F with (2,n—2) degrees of freedom and noncentrality parameter A°.
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CHAPTER §

SIMULATION RESULTS AND ILLUSTRATIVE EXAMPLES

Summary: We give the simulated means and variances of the MML and the LS
estimators. We show that the MMLE are enormously more efficient and robust
than the LSE. We also show that the test statistics based on the MMLE are more
powerful and robust than the corresponding test statistics based on the LSE. For
conciseness, we only reproduce the results for the situation when the marginal and
the conditional distributions both are Generalized Logistic with shape parameters

b, and b,, respectively. The simulated values are in perfect agreement with the

theoretical results given in earlier chapters.

5.1 Efficiency of the Estimators

To compare the efficiencies of the MMLE and the LSE, we first note that the
former are self bias-correcting. If the mean of the random error is not zero, the

LSE needs a bias correction. If the variance of the random error is not equal to

o;, , the LSE &,, needs a bias correction. The same applies to the LSE

calculated from the marginal sample (see Appendix C for details). We give the
simulated relative efficiencies of the LSE, namely, 100 times the ratio of the
variance (or mean square error) of the MMLE to that of the corresponding values
of the LSE. We give the results only for p =0.5. The results are similar for other

p values, other than the estimators of p . We consider numerous values of b, and

b, and sample sizes n=15,30,60 and100. The results are based on 10,000
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Monte Carlo runs. Without loss of generality, y,, o, , 4, and o, are taken to be

0, 1, 0 and 1, respectively. The other parameters take values from the relations
o

6, =p—=, 1, =i, -6, and 0, =0,,/(1—p*). From these relations, 4, ,
O-l

o,, and 6, take the values 0, 0.866 and 0.5, respectively. The computer program

to do the simulations is written in Visual Fortran and given in Appendix E.

The simulated values are given in Table 5.1-5.14. The values of the mean,
n*bias®> and n*variance of the MML and LS estimators are given. Also given
are the relative efficiencies of the LSE, namely, 100* var(7)/var(7¥) and
100 * mse(%)/mse(7) . The latter is more relevant if at least one of the estimators 7
or 7 have substantial bias since mse(%)=var(%)+bias>. In Table 5.1, the
simulated values are given for b, =0.5, b, =0.5 and p=0.5 and n=15, 30, 60

and 100. This is a situation when the conditional and the marginal distributions
are both negatively skewed. Here, all the estimators are almost unbiased,
therefore, the relative efficiencies based on the variances of the estimators are
relevant. It is seen that for all sample sizes, n =15, 30, 60 and 100, and for all
parameters, the MML estimators are more efficient than the LS estimators. This is
an expected result since the MMLE have the Fisher efficiency, at any rate for
large n. There is another result of interest, namely, the efficiency of the MMLE
increases with n. This is also an expected result since the MMLE are
asymptotically the MVB estimators. It is seen that the efficiencies of the LSE of
p and 6, which are very important in the context of regression analysis, are only
about 80%. Moreover, their efficiency steadily decrease as n increases. In Table
5.2, we consider b, =0.5 and b, =1 which is a situation when the marginal
distribution is skew but the conditional distribution is symmetric. The value of p
is taken to be 0.5 in the simulations. It is seen that some LSE have substantial bias
even for n=100. The LSE p of p is highly biased and always overestimates p .
The relative efficiency of g (as compared to the MMLE p) is very low - can be
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as low as 19% primarily because of the large bias in p. Also, fZ, and &, have
some bias for all sample sizes. Moreover, as n gets large, the bias in /I, increases
although the bias in &, decreases. On the other hand, the MML estimators have

no substantial bias and they are self bias-correcting. For large n, in fact, they

have hardly any bias.

Table 5.1 Simulated values for b, =0.5, b, =0.5 and p=0.5.

n=15 H O, Hy 0, Ha 05 6, p
MML mean: 0.046 1.025 -0.029 1.049 -0.052 0.881 0.503 0.485
n*bias?2: 0.031 0.010 0.013 0.037 0.041 0.003 0.000 0.003
n*variance: 5.356 0.833 6.861 0.743 5.689 0.663 0.859 0.628
n*mse: 5.387 0.843 6.874 0.779 5.730 0.666 0.859 0.632
LS  mean: ~0.056 0.971 -0.127 0.970 -0.058 0.834 0.497  0.489
n*bias2: 0.047 0.013 0.243 0.013 0.051 0.015 0.000 0.002
n*variance: 5.548 0.971 7.125 0.797 6.231 0.735 1.023 0.750
n*mse: 5.595 0.984 7.368 0.811 6.282 0.750 1.023 0.751
effvar: 96.5 85.8 96.3 93.1 91.3 90.2 84.0 83.8
effmse: 96.3 85.7 93.3 96.1 91.2 88.9 84.0 84.1
n=30 H, o, H, 0, Hyy 01 6, p
MML mean: 0.036 1.010 0.010 1.025 -0.007 0.875 0.504 0.493
n*bias2: 0.038 0.003 0.003 0.019 0.001 0.003 0.001 0.001
n*variance: 5.066 0.796 6.374 0.677 5.197 0.606 0.688 0.556
n*mse: 5.104 0.799 6.377 0.696 5.199 0.609 0.688 0.558
LS mean: -0.019 0.982 -0.042 0.986 -0.011 0.852 0.501 0.496
n*bias?2: 0.011 0.010 0.054 0.006 0.004 0.006 0.000 0.000
n*variance: 5.460 1.014 6.935 0.829 5.847 0.780 0.836 0.690
n*mse: 5.471 1.024 6.989 0.834 5.851 0.786 0.836 0.690
effvar: 92.8 78.5 91.9 81.7 88.9 77.7 82.3 80.7
effmse: 93.3 78.0 91.2 83.4 88.9 77.5 82.3 80.8
n=60 H, o, M, 0, Hyy 05, 6, p
MML mean: 0.021 1.007 0.003 1.011 -0.007 0.869 0.501 0.498
n*bias2: 0.025 0.003 0.001 0.007 0.003 0.000 0.000 0.000
n*variance: 5.118 0.786 6.254 0.652 5.062 0.600 0.629 0.563
n*mse: 5.143 0.789 6.255 0.659 5.065 0.600 0.629 0.563
LS mean: -0.007 0.993 -0.024 0.992 -0.010 0.856 0.501 0.500
n*bias2: 0.003 0.003 0.033 0.004 0.005 0.006 0.000 0.000
n*variance: 5.572 1.057 6.945 0.842 5.758 0.796 0.803 0.732
n*mse: 5.575 1.060 6.978 0.845 5.763 0.801 0.803 0.732
effvar: 91.9 74.4 90.1 77.5 87.9 75.4 78.3 76.9
effmse: 92.3 74.4 89.6 78.0 87.9 74.9 78.3 77.0
n=100 H (4 Hy 0, Ha (208 o, p
MML mean: 0.013 1.003 0.000 1.006 -0.006 0.868 0.500 0.498
n*bias2: 0.017 0.001 0.000 0.004 0.004 0.000 0.000 0.000
n*variance: 5.050 0.751 6.330 0.634 4.993 0.584 0.620 0.566
n*mse: 5.067 0.752 6.330 0.638 4.997 0.585 0.620 0.566
LS mean: -0.004 0.993 -0.016 0.995 -0.008 0.861 0.499 0.498
n*bias?2: 0.002 0.004 0.025 0.003 0.006 0.003 0.000 0.000
n*variance: 5.550 1.041 7.153 0.855 5.719 0.802 0.797 0.744
n*mse: 5.551 1.045 7.178 0.858 5.725 0.805 0.797 0.744
effvar: 91.0 72.1 88.5 74.2 87.3 72.8 77.8 76.1
effmse: 91.3 71.9 88.2 74.4 87.3 72.6 77.8 76.1
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In Table 5.1, the shape parameters b, and b, are both equal to 0.5. In
Table 5.2-5.5, we have given results for numerous other combinations of b, and
b,. The same comments apply as for the values in Table 5.1. We conclude,

therefore, that the MMLE are enormously more efficient than the LSE.

Table 5.2 Simulated values for b, =0.5, b, =1 and p=0.5.

n=15 M, o, H, 0, Hyy 05, 6, p
MML mean: 0.058 1.021 0.029 1.041 0.001 0.882 0.501 0.491
n*bias2: 0.051 0.007 0.013 0.025 0.000 0.004 0.000 0.001
n*variance: 5.154 0.865 4.413 0.640 3.269 0.629 0.494 0.452
n*mse: 5.205 0.872 4.426 0.665 3.269 0.633 0.494 0.454
LS mean: -0.044 0.967 0.090 0.920 0.002 0.840 0.502 0.614
n*bias2: 0.029 0.017 0.122 0.095 0.000 0.010 0.000 0.196
n*variance: 5.371 0.978 4.618 0.540 3.495 0.604 0.516 0.548
n*mse: 5.400 0.994 4.740 0.636 3.495 0.614 0.516 0.744
effvar: 96.0 88.5 95.6 118.4 93.5 104.2 95.9 82.6
effmse: 96.4 87.7 93.4 104.5 93.5 103.0 95.9 60.9
n=30 Hy 0, Hy 0, Ha (208 6, p
MML mean: 0.030 1.009 0.017 1.022 0.002 0.878 0.501 0.494
n*bias2: 0.028 0.002 0.008 0.015 0.000 0.004 0.000 0.001
n*variance: 5.174 0.806 4.372 0.591 3.116 0.581 0.417 0.424
n*mse: 5.201 0.808 4.381 0.606 3.116 0.585 0.417 0.425
LS mean: -0.023 0.979 0.113 0.935 0.001 0.857 0.500 0.620
n*bias2: 0.016 0.013 0.382 0.127 0.000 0.003 0.000 0.429
n*variance: 5.558 1.001 4.660 0.548 3.354 0.606 0.444 0.513
n*mse: 5.574 1.014 5.041 0.675 3.354 0.609 0.444 0.942
effvar: 93.1 80.5 93.8 107.8 92.9 95.8 94.0 82.7
effmse: 93.3 79.7 86.9 89.8 92.9 96.1 94.0 45.1
n=60 Hy O, Hy 0, Ha 051 o, p
MML mean: 0.012 1.006 0.009 1.010 0.003 0.870 0.501 0.499
n*bias2: 0.008 0.002 0.004 0.006 0.001 0.001 0.000 0.000
n*variance: 5.202 0.794 4.237 0.547 2.978 0.536 0.373 0.412
n*mse: 5.210 0.796 4.241 0.552 2.979 0.536 0.373 0.412
LS mean: -0.015 0.992 0.124 0.939 0.002 0.859 0.501 0.628
n*bias2: 0.014 0.004 0.916 0.222 0.000 0.003 0.000 0.987
n*variance: 5.666 1.059 4.608 0.540 3.221 0.592 0.404 0.503
n*mse: 5.680 1.063 5.524 0.762 3.222 0.595 0.404 1.490
effvar: 91.8 75.0 91.9 101.2 92.4 90.5 92.2 81.9
effmse: 91.7 74.8 76.8 72.5 92.5 90.2 92.2 27.7
n=100 H o, Hy 0, Hy, 0,1 6, P
MML  mean: 0.008 1.002 0.005 1.005 0.001 0.868 0.500  0.499
n*bias2: 0.007 0.001 0.002 0.003 0.000 0.001 0.000 0.000
n*variance: 4.966 0.771 4.203 0.544 2.954 0.532 0.372 0.411
n*mse: 4.973 0.771 4.206 0.547 2.954 0.532 0.372 0.411
LS mean: -0.009 0.994 0.128 0.941 0.000 0.862 0.500 0.629
n*bias2: 0.009 0.004 1.629 0.345 0.000 0.002 0.000 1.669
n*variance: 5.429 1.041 4.591 0.544 3.240 0.595 0.401 0.501
n*mse: 5.438 1.045 6.220 0.889 3.240 0.596 0.401 2.170
effvar: 91.5 74.0 91.6 100.0 91.2 89.4 92.6 82.0
effmse: 91.5 73.8 67.6 61.5 91.2 89.3 92.6 19.0
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Table 5.3 Simulated values for b, =1, b, =0.5 and p=0.5.

n=15
MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=30

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=60

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=100

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:
effmse:

M
.008
.001
.079
.080

.009
.001
.344
.346

92.1
92.1

wWwo o wWwoo

H
.000
.000
.015
.015

.000
.000
.298
.298

91.4
91.4

WwWwoo Wwo o

My
.004
.001
.996
.997

.004
.001
.299
.300

90.8
90.8

ww oo NMNDO O

M,

.000
.000
. 983
.983

.000
.000
.264
.264

91.4
91.4

wwoo MDN OO

O-l
.024
.009
.763
772

.975
.010
.743
.753

102.7
102.5

OO OO OO OoHr

O-l
.012
.005
.735
.740

.987
.005
. 770
.776

95.4
95.4

OO OO OO0+

.006
.003
.709
L7111

.993
.003
774
L7777

91.5
91.6

OO OO OOOoOrF

o-l
.004
.002
.702
.704

.997
.001
.780
.781

90.0
90.1

OO OO OO o

oo O O O

U OO O O

U0 OoO O O O

oo O b O O

H,
.045
.031
.871
.902

.027
.011
.121
.132

95.1
95.5

Hy
.022
.014
.788
.802

.010
.003
.143
.146

93.1
93.3

H,
.008
.004
.804
.808

.031
.056
.199
.255

92.4
91.5

H,
.006
.004
.577
.581

.035
.122
.018
.140

91.2
89.1

0-2
.064
.062
.927
.989

. 960
.024
.883
.908

104.9
109.0

OO OO OO0OOoH

0—2
.032
.030
.852
.882

.966
.036
.903
.939

%94.3
93.9

OO OO OO0+

.016
.015
.795
.810

.969
.059
.911
.970

87.3
83.5

OO OO OOOoH

0-2
.009
.009
.775
.784

.969
.094
.921
.015

84.1
77.2

HOOO OOOoO-Hr

111

| | | | | | |
= s O O b b O O = O O b O O = O O B O O

= OO WwWwo o

Mo

.049
.035
.405
.440

.046
.031
.648
.680

94.8
94.9

Hay

.021
.014
.153
.167

.021
.014
.516
.530

92.0
92.0

Ho

.010
.006
.035
.041

.011
.007
.374
.381

92.3
92.2

My,

.006
.004
.870
.874

.007
.005
.246
.251

91.1
91.1

0y,

.882
.004
.659
.663

.837
.013
.727
.741

90.6
89.5

O OO O OO0 o

0-2.1

.875
.003
.617
.620

.851
.007
.761
.768

81.0
80.6

OO OO OO0 o

0-2.1
.870
.001
.605
.606

.858
.004
.815
.819

74.3
74.0

OO OO O0OOo o

0-2.1

.868
.000
.587
.587

.861
.003
.820
.823

71.6
71.4

OO OO OO oo

6,
.500
.000
673
673

.500
.000
.993
.993

83.9
83.9

PR OO HEF OO

.498
.000
.417
.417

.499
.000
.742
.742

81.4
81.4

PP OO P OO

.501
.000
.289
.289

.502
.000
.617
.617

79.7
79.7

PR OO P oo

.501
.000
.206
.206

.502
.000
.560
.561

77.3
77.3

PP OO P oo

OO O HBE oo
w
~
w

.492
.004
.935
.939

.380
.866
.855
.722

109.3
54.6

PO OO OO0OOoOo

.496
.002
.876
.878

.379
.453
.837
.290

104.6
38.3

NORFPr O OO OO



Table 5.4 Simulated values for b, =1, b, =1 and p =0.5.

n=15
MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=30

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=60

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=100

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:
effmse:

wWwWwo o wWwoo

WwWwoOo Wwo o

wwoo MDN OO

wWwWwoo wWwWwo o

M
.006
.001
.032
.033

.005
.000
.260
.260

93.0
93.0

H
.001
.000
.062
.062

.000
.000
.315
.315

92.4
92.4

My
.000
.000
.068
.068

.001
.000
.353
.353

91.5
91.5

M,
.003
.001
.991
.991

.003
.001
.304
.305

90.5
90.5

OO OO OO0+ OO OO OO OoHr
O el
oo ~
~ [62)

OO OO OOOoOrF
el
e}
o

90.3

.005
.002
.710
.712

.997
.001
.807
.808

88.0
88.1

OO OO OO o

H,
.002
.000
.140
.140

.001
.000
.360
.360

93.5
93.5

wWwWwo o wWwoo

Hy

.005
.001
. 985
. 986

.005
.001
.224
.225

92.6
92.6

|
ww oo NN O O

H,
.002
.000
.012
.012

.002
.000
.275
.276

92.0
92.0

|
WwWwoo wWwo o

H,
.002
.000
.051
.051

.002
.000
.308
.308

92.2
92.2

wWwWwoo wWwoo

0-2
.051
.039
.754
.793

.975
.009
.691
.700

109.1
113.3

OO OO OO0OOoH

.025
.018
.651
.669

.988
.004
. 657
.662

99.1
101.2

OO OO OO0+

.014
.012
.642
.654

.996
.001
.690
.691

93.0
94.6

OO OO OOOoH

.005
.003
.617
.620

.995
.003
.673
.676

91.6
91.6

OO OO OO o
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NN OO NN OO

MDD O O DM O O

NMDNO O MM OO

NN O O MDD OO

Mo

.001
.000
.530
.530

.001
.000
.704
.704

93.6
93.6

Hay

.004
.000
.330
.330

.004
.001
.519
.519

92.5
92.5

Ho

.001
.000
.274
.274

.002
.000
.479
.479

91.7
91.7

My,

.000
.000
.306
.306

.000
.000
.482
.482

92.9
92.9

OO OO OO0 o O OO O OO0 o
o
S
o~

OO OO O0OOo o
[ee]
[}
[\S]

92.2

.517

.860
.003
.573
.577

90.2
89.7

OO OO OO oo

6,
1499
.000
950
950

.498
.000
.984
.984

96.6
96.6

O OO O OO0 o

.500
.000
.792
.792

.500
.000
.842
.842

94.1
94.1

OO OO OO0 o

.499
.000
.762
.762

.499
.000
.829
.829

92.0
92.0

OO OO OO0OOo o

.499
.000
.714
.714

.499
.000
.780
.780

91.5
91.5

OO OO OO oo

o

.478
.007
.680
.688

.488
.002
.720
.722

94.5
95.2

OO0 O OO0 o

.490
.003
.627
.630

.495
.001
.674
.675

93.1
93.4

OO OO OO0 o

.494
.003
.625
.627

.496
.001
.683
.684

91.4
91.7

OO OO OO0 o

.498
.001
.592
.592

.499
.000
.657
.657

90.1
90.2

OO OO OO oo



Table 5.5 Simulated values for b, =4, b, =4 and p=0.5.

n=15
MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=30

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=60

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=100

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:
effmse:

MNO O MM O O

MDD OO MDD OO

MDD O O NMDNDO O

NN O O MDD OO

M
.029
.012
.438
.450

.051
.039
.728
.766

89.4
88.6

H
.024
.017
.267
.283

.027
.022
.630
.652

86.2
86.1

My
.018
.019
.342
.361

.010
.006
.849
.855

82.2
82.7

M
.009
.008
.264
.272

.010
.010
.755
.765

82.2
82.2

O-l
.004
.000
.685
.685

.973
.011
.850
.861

80.6
79.6

OO OO OO OoHr

O-l
.003
.000
.662
.662

.984
.007
.868
.876

76.2
75.6

OO OO OO0+

O-l
.003
.000
.628
.629

.994
.002
.888
.891

70.7
70.6

OO OO OOOoOrF

o-l
.001
.000
.646
.646

.995
.002
.911
.914

70.9
70.8

OO OO OO o

H,

.033
.016
. 925
. 942

.129
.250
.319
.568

92.6
88.7

oo o s O o

Hy
.001
.000
.581
.581

.059
.105
L2777
.381

86.8
85.1

OO o b O O

H,
.000
.000
.462
.462

.031
.058
.398
.456

82.7
81.8

U0 OoO O O O

H,
.003
.001
.381
.382

.023
.052
.397
.450

81.2
80.4

oo O b O O

0-2
.032
.016
.648
.664

.978
.007
.736
. 744

88.1
89.3

OO OO OO0OOoH

0—2
.017
.009
.601
.610

.988
.005
.743
.748

80.9
81.6

OO OO OO0+

.009
.005
.568
.573

.995
.002
.760
.761

74.8
75.2

OO OO OOOoH

0-2
.004
.002
.577
.578

.995
.002
.786
.789

73.3
73.3

OO OO OO o

Mo

.047
.033
.591
.623

.048
.034
.361
.395

85.6
85.7

oo o s OO

Hay

.013
.005
.078
.083

.018
.010
.942
.952

82.5
82.5

=S OO b b O O

Ho

.009
.005
.879
.884

.013
.010
.810
.819

80.6
80.6

= s OO0 Wwo o

/Uz.l

.007
.005
.817
.822

.010
.010
.801
.811

79.5
79.4

= OO WwWwo o

0-2.1
.866
.000
.554
.554

.842
.009
.667
.676

83.0
82.0

OO OoO O O0OoOo

0-2.1
.865
.000
.516
.516

.850
.007
.665
.672

77.5
76.7

OO OO OO0 o

0-2.1
.867
.000
.490
.490

.861
.002
.683
.684

71.8
71.6

OO OO O0OOo o

0-2.1

.866
.000
.502
.502

.862
.002
.708
.710

70.9
70.7

OO OO OO oo

6,
.508
.001
.864
865

.500
.000
.036
.036

83.4
83.5

PP OO OOOOoO

.510
.003
.710
.713

.506
.001
.876
.8717

81.1
81.3

OO OO OO0 o

.503
.000
.633
.633

.500
.000
.800
.800

79.1
79.2

OO OO OO0OOo o

.501
.000
.625
.625

.499
.000
.787
.787

79.5
79.4

OO OO OO oo

o

.486
.003
.608
.611

.489
.002
.735
.737

82.8
82.9

OO0 O OO0OoOo

.498
.000
.548
.548

.499
.000
.685
.685

80.0
80.1

OO OO OO0 Oo

.498
.000
.513
.513

.497
.000
.675
.675

76.1
76.0

OO OO OO0 o

.498
.000
.526
.526

.497
.001
.689
.690

76.3
76.3

OO OO OO oo

Robustness: Another important issue is that of robustness. An estimator is called

robust if it is fully efficient (or nearly so) for an assumed model but maintains

high efficiency for plausible alternatives. To verify the robustness of the MMLE

and the LSE, we consider the situation most favourable to the LSE, namely,

b,=1 and b, =1 (i.e., marginal and the conditional distributions are both

logistic). As alternatives, we consider the following:
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1) outlier model: (n—r)GL(4,,0,) and rGL(4,,40,), r=[0.5+0.1n]
2) mixture model: 0.9GL(y,,0,)+0.1GL(u,.40,)

3) contamination model: 0.9GL(u,,0,)+0.1U(u, —o,/2,14, +0,/2).

In the first model, (n—r) observations ( X ’s) come from GL(y,,0,) and
r (we do not know which) come from GL(x,,40,) . In the second model, with 0.1
probability X ’s come from a Generalized Logistic distribution with mean #, and
variance 1657 . In the third model, with 0.1 probability X ’s come from a uniform
distribution with support 4, —o,/2 to u, +0,/2. Without loss of generality, g,

is taken to be zero and o, is taken to be 1.

For illustration, we give the simulated means, biases, variances and the

relative efficiencies of LSE for p =0.2,0.5,0.9 and n =15,30,60 and 100.

It is important to mention here that the efficiencies based on the mse are
not valid for the estimators of ¢, and p since the variance of X is not as before
for the outlier, mixture or contamination models. Consequently, the true values of
o, and p are shifted. Therefore, the mean square errors which are calculated by
using the true values of the estimators are not valid anymore. The efficiencies
based on the variances of the estimators, however, can still give an idea about the
merits of the estimators. For the outlier model, the MML estimators are highly
efficient as compared to the LSE. This is due to the fact that in the calculation of
the MMLE, the extreme observations automatically receive small weights. Thus,
the influence of these observations is depleted giving the MMLE the intrinsic

robustness property they possess.
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Table 5.6 Simulated values for the outlier model for b, =1, b, =1 and p =0.2.

n=15 M, o, M, 0, Hyy 0y, 6, p
MML mean: -0.003 1.578 -0.007 1.085 -0.004 1.002 0.200 0.284
n*bias2: 0.000 5.008 0.001 0.109 0.000 0.007 0.000 0.107
n*variance: 5.311 4.297 3.156 0.841 3.142 0.802 0.577 0.877
n*mse: 5.311 9.305 3.157 0.950 3.142 0.810 0.577 0.984
LS mean: -0.006 1.618 -0.007 1.015 -0.003 0.955 0.200 0.308
n*bias2: 0.001 5.722 0.001 0.003 0.000 0.009 0.000 0.175
n*variance: 9.677 6.122 3.507 0.797 3.357 0.771 0.595 1.023
n*mse: 9.678 11.844 3.508 0.801 3.358 0.780 0.595 1.198
effvar: 54.9 70.2 90.0 105.4 93.6 104.1 97.0 85.7
effmse: 54.9 78.6 90.0 118.6 93.6 103.8 97.0 82.1
n=30 H O, Hy 0, Ha 051 o, p
MML mean: 0.002 1.395 -0.001 1.043 -0.002 0.989 0.199 0.264
n*bias?2: 0.000 4.676 0.000 0.054 0.000 0.002 0.000 0.124
n*variance: 4.352 2.984 3.021 0.755 2.916 0.737 0.528 0.829
n*mse: 4.352 7.660 3.021 0.809 2.916 0.739 0.528 0.953
LS mean: 0.006 1.511 -0.002 1.015 -0.004 0.965 0.199 0.292
n*bias?2: 0.001 7.833 0.000 0.006 0.000 0.007 0.000 0.253
n*variance: 8.175 6.208 3.397 0.803 3.159 0.762 0.558 1.050
n*mse: 8.176 14.042 3.397 0.810 3.159 0.769 0.558 1.303
effvar: 53.2 48.1 88.9 94.0 92.3 96.6 94 .6 79.0
effmse: 53.2 54.5 88.9 100.0 92.3 96.1 94 .6 73.2
n=60 H, o, H, 0, Hyy 051 6, p
MML mean: -0.001 1.362 0.000 1.028 0.000 0.984 0.200 0.265
n*bias2: 0.000 7.859 0.000 0.046 0.000 0.001 0.000 0.250
n*variance: 4.214 2.537 3.106 0.709 2.979 0.703 0.450 0.762
n*mse: 4.214 10.396 3.106 0.755 2.979 0.704 0.450 1.012
LS mean: -0.003 1.541 -0.001 1.022 0.001 0.972 0.200 0.299
n*bias2: 0.000 17.575 0.000 0.028 0.000 0.004 0.000 0.592
n*variance: 8.157 6.906 3.486 0.810 3.220 0.772 0.483 1.071
n*mse: 8.157 24.481 3.486 0.838 3.220 0.776 0.483 1.663
effvar: 51.7 36.7 89.1 87.5 92.5 91.1 93.3 71.1
effmse: 51.7 42.5 89.1 90.1 92.5 90.8 93.3 60.8
n=100 4 o, Hy 0, My, 05, 6, P
MML  mean: -0.003 1.348 0.001 1.023 0.002  0.983 0.200  0.263
n*bias2: 0.001 12.139  0.000 0.052 0.000 0.001 0.000 0.396
n*variance: 4.051 2.358 3.072 0.707 2.934  0.697 0.413  0.705
n*mse : 4.052 14.498  3.072 0.759 2.934  0.698 0.413  1.101
LS mean: -0.007 1.559 0.000 1.026 0.002 0.976 0.200 0.302
n*bias?2: 0.005 31.214 0.000 0.066 0.000 0.001 0.000 1.040
n*variance: 8.137 7.546 3.514 0.831 3.216 0.780 0.442 1.043
n*mse: 8.142 38.760 3.514 0.896 3.217 0.781 0.442 2.083
effvar: 49.8 31.3 87.4 85.1 91.2 89.4 93.5 67.6
effmse: 49.8 37.4 87.4 84.7 91.2 89.4 93.5 52.9

It is also seen from Tables 5.6-5.14 that as the correlation between X and
Y gets larger in magnitude, the efficiency of the MMLE increases, particularly

for estimating #, and o,. The reason for the LSE to have low efficiency for
large values of p 1is that the LS estimators of 4, and o, use only the

y —observations but they do not use the x—observations. When the correlation
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coefficient p is large, X contains considerable information about the parameters
of Y. Tables 5.6-5.8 show the simulated values of the estimators for three

different values of p for the outlier model. It can be seen that the MML

estimators are superior in terms of efficiency.

Table 5.7 Simulated values for the outlier model for b, =1, b, =1 and p =0.5.

n=15 Hy O, Hy 0, Ha (208 o, p
MML mean: 0.003 1.563 =-0.006 1.215 -0.006 0.884 0.500 0.624
n*bias2: 0.000 4.753 0.001 0.691 0.001 0.005 0.000 0.232
n*variance: 5.522 4.267 3.785 1.191 2.511 0.634 0.433 0.536
n*mse: 5.522 9.021 3.786 1.881 2.511 0.639 0.433 0.768
LS mean: 0.002 1.601 -0.006 1.179 -0.006 0.843 0.500 0.652
n*bias?2: 0.000 5.421 0.001 0.481 0.001 0.008 0.000 0.347
n*variance: 9.881 6.073 5.011 1.496 2.666 0.609 0.449 0.579
n*mse: 9.881 11.494 5.012 1.977 2.667 0.617 0.449 0.926
effvar: 55.9 70.3 75.5 79.6 94.2 104.1 96.5 92.6
effmse: 55.9 78.5 75.5 95.2 94.2 103.5 96.5 83.0
n=30 H, o, H, 0, Hyy 051 6, p
MML mean: -0.005 1.396 -0.003 1.135 =0.001 0.873 0.501 0.608
n*bias2: 0.001 4.701 0.000 0.547 0.000 0.002 0.000 0.352
n*variance: 4.383 2.961 3.381 0.904 2.378 0.569 0.407 0.539
n*mse: 4.384 7.662 3.382 1.451 2.378 0.571 0.407 0.891
LS mean: -0.010 1.516 -0.006 1.152 -0.001 0.853 0.501 0.644
n*bias2: 0.003 7.982 0.001 0.696 0.000 0.005 0.000 0.626
n*variance: 8.400 6.116 4.497 1.416 2.548 0.594 0.427 0.646
n*mse: 8.403 14.0098 4.498 2.112 2.548 0.600 0.427 1.272
effvar: 52.2 48.4 75.2 63.9 93.3 95.7 95.3 83.4
effmse: 52.2 54.3 75.2 68.7 93.3 95.1 95.4 70.1
n=60 H, o, H, 0, Hyy 05, 6, p
MML mean: -0.001 1.364 0.000 1.114 0.001 0.871 0.501 0.610
n*bias?2: 0.000 7.930 0.000 0.780 0.000 0.001 0.000 0.725
n*variance: 4.188 2.620 3.227 0.810 2.223 0.552 0.342 0.491
n*mse: 4.188 10.550 3.227 1.589 2.223 0.554 0.343 1.216
LS mean: 0.002 1.544 0.002 1.163 0.001 0.860 0.502 0.657
n*bias?2: 0.000 17.784 0.000 1.603 0.000 0.002 0.000 1.484
n*variance: 8.206 7.093 4.392 1.508 2.433 0.600 0.363 0.652
n*mse: 8.207 24.877 4.392 3.111 2.434 0.602 0.363 2.137
effvar: 51.0 36.9 73.5 53.7 91.4 92.0 94.3 75.3
effmse: 51.0 42.4 73.5 51.1 91.4 91.9 94.3 56.9
n=100 4 o, Hy 0, My, 05, 6, P
MML  mean: 0.002 1.347 0.000 1.104 -0.001  0.869 0.500  0.609
n*bias2: 0.000 12.064 0.000 1.086 0.000 0.001 0.000 1.182
n*variance:  4.099 2.387 3.312 0.762 2.257  0.543 0.320  0.475
n*mse : 4.099 14.451 3.312 1.847 2.257 0.544 0.320  1.657
LS mean: 0.004 1.557 0.001 1.167 -0.001 0.863 0.501 0.663
n*bias2: 0.002 31.076 0.000 2.787 0.000 0.001 0.000 2.642
n*variance: 8.223 7.579 4.570 1.551 2.488 0.599 0.346 0.676
n*mse: 8.225 38.655 4.570 4.339 2.489 0.599 0.346 3.318
effvar: 49.8 31.5 72.5 49.1 90.7 90.7 92.5 70.4
effmse: 49.8 37.4 72.5 42.6 90.7 90.7 92.5 49.9
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Table 5.8 Simulated values for the outlier model b, =1, b, =1 and p=0.9.

n=15
MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=30

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=60

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=100

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:
effmse:
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For the mixture model, we have results similar to those for the outlier

model. This is evident from the values given in Tables 5.9-5.11. What is true in

general is that the MML estimators become more efficient than the LS estimators

as n becomes large. In fact, this is a very striking result since it is generally

perceived that the LS estimators are highly efficient for large » .
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Table 5.9 Simulated values for the mixture model for b, =1, b, =1 and p=0.2.

n=15
MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=30

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=60

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:

effmse:
n=100

MML mean:
n*bias2:

n*variance:

n*mse:

LS mean:
n*bias2:

n*variance:

n*mse:

effvar:
effmse:
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Table 5.10 Simulated values for the mixture model for b, =1, b, =1 and

p=05.
n=15 H, o, H, 0, Hyy 051 6, p
MML mean: 0.005 1.424 0.002 1.176 0.000 0.883 0.501 0.585
n*bias2: 0.000 2.695 0.000 0.465 0.000 0.004 0.000 0.108
n*variance: 4.913 4.663 3.607 1.235 2.535 0.626 0.629 0.677
n*mse: 4.914 7.358 3.607 1.700 2.535 0.630 0.629 0.785
LS mean: 0.007 1.435 0.003 1.129 0.001 0.842 0.501 0.607
n*bias2: 0.001 2.839 0.000 0.248 0.000 0.009 0.000 0.173
n*variance: 8.218 6.224 4.576 1.491 2.682 0.607 0.651 0.737
n*mse: 8.218 9.063 4.576 1.740 2.682 0.616 0.651 0.910
effvar: 59.8 74.9 78.8 82.8 94.5 103.2 96.6 91.9
effmse: 59.8 81.2 78.8 97.7 94.5 102.4 96.6 86.3
n=30 M, o, My 0, Hyy 0y, 6, p
MML mean: -0.004 1.397 -0.001 1.139 0.000 0.875 0.501 0.604
n*bias?2: 0.000 4.733 0.000 0.581 0.000 0.003 0.000 0.324
n*variance: 4.406 4.203 3.470 1.050 2.388 0.585 0.439 0.613
n*mse: 4.406 8.935 3.470 1.631 2.388 0.588 0.439 0.937
LS mean: -0.005 1.507 -0.003 1.153 -0.001 0.855 0.501 0.636
n*bias?2: 0.001 7.702 0.000 0.704 0.000 0.004 0.000 0.558
n*variance: 8.129 7.805 4.597 1.629 2.564 0.610 0.462 0.730
n*mse: 8.130 15.508 4.598 2.333 2.564 0.614 0.462 1.288
effvar: 54.2 53.8 75.5 64.4 93.1 95.8 95.0 84.0
effmse: 54.2 57.6 75.5 69.9 93.1 95.6 95.0 72.7
n=60 H O, Hy 0, Ha (208 o, p
MML mean: 0.004 1.365 0.002 1.116 0.001 0.872 0.500 0.607
n*bias2: 0.001 7.998 0.000 0.801 0.000 0.002 0.000 0.683
n*variance: 4.223 3.698 3.306 0.920 2.280 0.556 0.361 0.578
n*mse: 4.224 11.696 3.307 1.721 2.280 0.558 0.361 1.260
LS mean: 0.005 1.539 0.004 1.163 0.001 0.862 0.500 0.651
n*bias2: 0.002 17.432 0.001 1.598 0.000 0.001 0.000 1.375
n*variance: 8.135 8.730 4.479 1.716 2.490 0.607 0.382 0.753
n*mse: 8.137 26.162 4.480 3.314 2.490 0.608 0.382 2.128
effvar: 51.9 42 .4 73.8 53.6 91.6 91.6 94.6 76.8
effmse: 51.9 44.7 73.8 51.9 91.6 91.8 94 .6 59.2
n=100 H, o, H, 0, Hyy 05, 6, p
MML mean: 0.003 1.346 0.001 1.103 =-0.001 0.868 0.499 0.607
n*bias?2: 0.001 11.956 0.000 1.052 0.000 0.000 0.000 1.140
n*variance: 4.109 3.383 3.251 0.875 2.231 0.532 0.332 0.558
n*mse: 4.110 15.339 3.251 1.927 2.231 0.532 0.332 1.698
LS mean: 0.005 1.550 0.002 1.163 0.000 0.862 0.499 0.659
n*bias2: 0.003 30.218 0.000 2.673 0.000 0.002 0.000 2.515
n*variance: 8.057 9.204 4.452 1.771 2.458 0.594 0.355 0.787
n*mse: 8.060 39.422 4.452 4.444 2.458 0.596 0.355 3.302
effvar: 51.0 36.8 73.0 49.4 90.8 89.5 93.5 70.9
effmse: 51.0 38.9 73.0 43.4 90.8 89.3 93.5 51.4
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Table 5.11 Simulated values for the mixture model for b, =1, b, =1 and

p=09.
n=15 H, o, H, 0, Hyy 051 6, p
MML mean: 0.004 1.433 0.004 1.376 0.000 0.445 0.899 0.923
n*bias2: 0.000 2.812 0.000 2.119 0.000 0.001 0.000 0.008
n*variance: 5.103 4.675 4.785 3.591 0.661 0.157 0.148 0.059
n*mse: 5.104 7.487 4.785 5.710 0.661 0.158 0.148 0.067
LS mean: 0.005 1.447 0.004 1.378 0.000 0.424 0.899 0.930
n*bias2: 0.000 3.004 0.000 2.139 0.000 0.002 0.000 0.013
n*variance: 8.415 6.289 7.520 4.870 0.702 0.151 0.155 0.057
n*mse: 8.415 9.293 7.520 7.009 0.702 0.154 0.155 0.070
effvar: 60.6 74.3 63.6 73.7 94.2 103.4 95.7 103.1
effmse: 60.6 80.6 63.6 81.5 94.2 102.7 95.7 94.9
n=30 M, o, My 0, Hyy 0y, 6, p
MML mean: -0.011 1.389 -0.010 1.332 0.000 0.440 0.900 0.932
n*bias?2: 0.004 4.541 0.003 3.308 0.000 0.001 0.000 0.032
n*variance: 4.519 3.930 4.180 3.009 0.607 0.141 0.111 0.044
n*mse: 4.523 8.470 4.183 6.317 0.607 0.142 0.111 0.076
LS mean: -0.014 1.492 -0.014 1.416 -0.001 0.430 0.900 0.940
n*bias?2: 0.006 7.267 0.005 5.195 0.000 0.001 0.000 0.049
n*variance: 8.294 7.189 7.248 5.521 0.655 0.148 0.117 0.047
n*mse: 8.300 14.455 7.254 10.716 0.655 0.149 0.117 0.096
effvar: 54.5 54.7 57.7 54.5 92.6 95.4 94.7 94 .4
effmse: 54.5 58.6 57.7 59.0 92.6 95.0 94 .7 79.0
n=60 Hy 0, Hy 0, Ha (208 o, p
MML mean: -0.001 1.361 -0.002 1.304 -0.001 0.439 0.900 0.936
n*bias2: 0.000 7.821 0.000 5.549 0.000 0.000 0.000 0.078
n*variance: 4.280 3.724 4.031 2.856 0.585 0.140 0.093 0.038
n*mse: 4.280 11.545 4.031 8.405 0.585 0.140 0.093 0.116
LS mean: -0.001 1.532 -0.002 1.449 -0.001 0.433 0.900 0.947
n*bias2: 0.000 17.001 0.000 12.107 0.000 0.000 0.000 0.133
n*variance: 8.227 8.875 7.268 6.826 0.639 0.153 0.098 0.042
n*mse: 8.227 25.876 7.269 18.933 0.639 0.153 0.098 0.175
effvar: 52.0 42.0 55.5 41.8 91.5 91.3 94.6 89.5
effmse: 52.0 44.6 55.5 44 .4 91.5 91.4 94 .6 66.3
n=100 4 o, Hy 0, My, 05, 6, P
MML  mean: ~0.001 1.352 0.000 1.295 0.000 0.437 0.900  0.938
n*bias?2: 0.000 12.415 0.000 8.706 0.000 0.000 0.000 0.145
n*variance: 4.179 3.467 3.997 2.640 0.599 0.132 0.083 0.033
n*mse: 4.179 15.882 3.997 11.346 0.599 0.133 0.083 0.178
LS mean: 0.000 1.558 0.001 1.470 0.001 0.434 0.900 0.951
n*bias2: 0.000 31.120 0.000 22.078 0.000 0.000 0.000 0.262
n*variance: 8.343 9.226 7.381 7.061 0.655 0.145 0.090 0.036
n*mse: 8.343 40.346 7.381 29.139 0.656 0.146 0.090 0.298
effvar: 50.1 37.6 54.2 37.4 91.3 91.1 92.8 91.2
effmse: 50.1 39.4 54.2 38.9 91.3 91.0 92.8 59.7
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Table 5.12 Simulated values for the contamination model for b, =1, b, =1 and

p=02.
n=15 H, o, H, 0, Hyy 051 6, p
MML mean: -0.006 0.960 -0.001 1.059 -0.002 1.006 0.201 0.179
n*bias2: 0.000 0.024 0.000 0.051 0.000 0.010 0.000 0.007
n*variance: 2.575 0.788 3.013 0.863 3.170 0.842 1.387 0.910
n*mse: 2.576 0.813 3.013 0.915 3.170 0.852 1.388 0.917
LS mean: -0.006 0.923 -0.001 0.978 -=0.002 0.959 0.201 0.186
n*bias2: 0.001 0.090 0.000 0.007 0.000 0.007 0.000 0.003
n*variance: 2.949 0.776 3.184 0.784 3.366 0.812 1.456 1.009
n*mse: 2.949 0.866 3.184 0.792 3.366 0.819 1.456 1.012
effvar: 87.3 101.5 94.7 110.0 94.2 103.6 95.3 90.2
effmse: 87.3 93.8 94.7 115.5 94.2 104.0 95.3 90.6
n=30 M, o, H, 0, Hyy 0y, 6, p
MML mean: 0.001 0.947 0.003 1.024 0.003 0.989 0.202 0.186
n*bias?2: 0.000 0.084 0.000 0.017 0.000 0.003 0.000 0.006
n*variance: 2.573 0.757 3.080 0.734 3.092 0.718 1.152 0.894
n*mse: 2.573 0.841 3.081 0.751 3.092 0.721 1.152 0.901
LS mean: 0.001 0.936 0.002 0.984 0.002 0.965 0.202 0.191
n*bias?2: 0.000 0.122 0.000 0.007 0.000 0.006 0.000 0.003
n*variance: 3.059 0.800 3.301 0.745 3.306 0.748 1.224 0.983
n*mse: 3.059 0.922 3.301 0.753 3.306 0.754 1.224 0.986
effvar: 84.1 94.6 93.3 98.4 93.5 96.1 94.2 91.0
effmse: 84.1 91.2 93.3 99.7 93.5 95.6 94.2 91.3
n=60 My o, Hy 0, Ha, 03, 6, P
MML  mean: ~0.001 0.939 0.001 1.008 0.001  0.983 0.201 0.186
n*bias2: 0.000 0.220 0.000 0.004 0.000 0.001 0.000  0.012
n*variance:  2.504 0.709 2.950 0.719 2.919  0.705 1.042  0.846
n*mse : 2.505 0.929 2.950 0.723 2.920  0.706 1.042  0.858
LS mean: -0.002 0.943 0.001 0.990 0.002 0.971 0.201 0.191
n*bias2: 0.000 0.195 0.000 0.006 0.000 0.004 0.000 0.005
n*variance: 2.969 0.789 3.223 0.784 3.184 0.777 1.116 0.940
n*mse: 2.969 0.984 3.223 0.791 3.184 0.781 1.116 0.945
effvar: 84.3 89.9 91.5 91.7 91.7 90.7 93.3 90.0
effmse: 84.3 94 .4 91.5 91.5 91.7 90.3 93.3 90.7
n=100 H, o, H, 0, Hyy 05, 6, p
MML mean: 0.000 0.937 -0.003 1.006 -0.004 0.983 0.201 0.187
n*bias?2: 0.000 0.403 0.001 0.003 0.001 0.001 0.000 0.017
n*variance: 2.514 0.739 2.997 0.707 2.923 0.692 1.018 0.850
n*mse: 2.514 1.142 2.998 0.710 2.924 0.694 1.018 0.867
LS  mean: -0.001 0.946 -0.004 0.995 -0.004 0.976 0.201 0.191
n*bias2: 0.000 0.291 0.001 0.003 0.001 0.001 0.000 0.008
n*variance: 3.047 0.831 3.317 0.776 3.222 0.765 1.104 0.951
n*mse: 3.047 1.122 3.319 0.779 3.223 0.767 1.105 0.959
effvar: 82.5 89.0 90.4 91.1 90.7 90.5 92.2 89.4
effmse: 82.5 101.8 90.3 91.2 90.7 90.5 92.2 90.4

The contamination model represents mild deviation from the assumed
model. Even here, the MMLE are more efficient than the LSE particularly for
large n (say, n>15).
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Table 5.13 Simulated values for the contamination model for b, =1, b, =1 and

p=05.
n=15 H, o, H, 0, Hyy 051 6, p
MML mean: -0.004 0.958 0.004 1.036 0.006 0.884 0.500 0.454
n*bias2: 0.000 0.026 0.000 0.019 0.001 0.005 0.000 0.032
n*variance: 2.590 0.788 3.042 0.711 2.592 0.611 1.096 0.704
n*mse: 2.590 0.814 3.042 0.731 2.592 0.616 1.096 0.736
LS mean: -0.003 0.921 0.006 0.963 0.007 0.841 0.500 0.467
n*bias2: 0.000 0.094 0.000 0.020 0.001 0.009 0.000 0.016
n*variance: 2.943 0.767 3.265 0.656 2.749 0.587 1.141 0.753
n*mse: 2.944 0.861 3.265 0.676 2.749 0.596 1.141 0.769
effvar: 88.0 102.7 93.2 108.5 94.3 104.2 96.1 93.4
effmse: 88.0 94.5 93.2 108.1 94.3 103.4 96.1 95.6
n=30 M, o, My 0, Hyy 0y, 6, p
MML mean: 0.004 0.945 0.003 1.010 0.000 0.877 0.501 0.463
n*bias?2: 0.000 0.092 0.000 0.003 0.000 0.004 0.000 0.041
n*variance: 2.494 0.763 2.916 0.647 2.379 0.568 0.913 0.649
n*mse: 2.494 0.854 2.916 0.650 2.379 0.572 0.913 0.689
LS mean: 0.003 0.934 0.002 0.977 0.001 0.857 0.501 0.473
n*bias?2: 0.000 0.130 0.000 0.015 0.000 0.003 0.000 0.022
n*variance: 2.945 0.806 3.200 0.659 2.566 0.593 0.967 0.707
n*mse: 2.945 0.936 3.200 0.675 2.566 0.596 0.967 0.729
effvar: 84.7 94.6 91.1 98.1 92.7 95.8 94 .4 91.8
effmse: 84.7 91.3 91.1 96.3 92.7 96.0 94 .4 94.6
n=60 My o, Hy 0, Ha, 03, 6, P
MML  mean: 0.001 0.939 0.001 0.996 0.001 0.872 0.498  0.468
n*bias2: 0.000 0.220 0.000 0.001 0.000 0.002 0.000  0.063
n*variance: 2.511 0.718 2.964 0.628 2.356  0.551 0.820  0.644
n*mse : 2.511 0.938 2.964 0.629 2.356  0.553 0.821  0.707
LS mean: 0.002 0.943 0.001 0.982 0.001 0.861 0.498 0.476
n*bias2: 0.000 0.197 0.000 0.019 0.000 0.001 0.000 0.034
n*variance: 2.998 0.797 3.319 0.675 2.576 0.595 0.887 0.713
n*mse: 2.998 0.994 3.319 0.694 2.576 0.596 0.887 0.747
effvar: 83.7 90.1 89.3 93.1 91.5 92.7 92.5 90.3
effmse: 83.7 94 .4 89.3 90.7 91.5 92.8 92.5 94.6
n=100 H, o, H, 0, Hyy 05, 6, p
MML mean: 0.000 0.935 =-0.001 0.991 -0.001 0.869 0.499 0.470
n*bias?2: 0.000 0.422 0.000 0.009 0.000 0.001 0.000 0.090
n*variance: 2.498 0.724 2.877 0.623 2.265 0.547 0.815 0.630
n*mse: 2.498 1.147 2.877 0.632 2.265 0.548 0.815 0.721
LS mean: -0.001 0.944 0.000 0.984 0.000 0.863 0.499 0.478
n*bias2: 0.000 0.310 0.000 0.026 0.000 0.001 0.000 0.049
n*variance: 2.986 0.817 3.219 0.692 2.476 0.609 0.882 0.697
n*mse: 2.986 1.128 3.219 0.718 2.476 0.610 0.882 0.745
effvar: 83.7 88.6 89.4 90.1 91.5 89.8 92.3 90.5
effmse: 83.7 101.7 89.4 88.0 91.5 89.9 92.3 96.7
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Table 5.14 Simulated values for the contamination model for b, =1, b, =1 and

p=009.
n=15 H, o, H, 0, Hyy 051 6, p
MML mean: 0.000 0.961 0.000 0.982 0.000 0.445 0.898 0.869
n*bias2: 0.000 0.023 0.000 0.005 0.000 0.001 0.000 0.014
n*variance: 2.530 0.803 2.666 0.708 0.642 0.156 0.274 0.106
n*mse: 2.530 0.826 2.666 0.712 0.642 0.157 0.274 0.121
LS mean: -0.001 0.923 -0.001 0.935 0.000 0.424 0.898 0.877
n*bias2: 0.000 0.089 0.000 0.064 0.000 0.002 0.000 0.008
n*variance: 2.910 0.778 3.021 0.693 0.681 0.151 0.287 0.103
n*mse: 2.910 0.866 3.021 0.757 0.681 0.153 0.287 0.111
effvar: 87.0 103.3 88.2 102.1 94.3 103.6 95.6 103.1
effmse: 87.0 95.3 88.2 94.1 94.3 102.9 95.6 108.7
n=30 M, o, M, 0, Hyy 0y, 6, p
MML mean: 0.000 0.945 0.001 0.964 0.000 0.441 0.901 0.879
n*bias?2: 0.000 0.090 0.000 0.040 0.000 0.001 0.000 0.014
n*variance: 2.545 0.739 2.683 0.648 0.605 0.143 0.235 0.079
n*mse: 2.545 0.829 2.683 0.688 0.605 0.143 0.235 0.093
LS mean: -0.001 0.934 0.000 0.946 0.001 0.430 0.900 0.884
n*bias?2: 0.000 0.130 0.000 0.086 0.000 0.001 0.000 0.008
n*variance: 2.990 0.786 3.109 0.687 0.654 0.149 0.248 0.080
n*mse: 2.990 0.917 3.109 0.773 0.654 0.149 0.248 0.088
effvar: 85.1 93.9 86.3 94 .4 92.5 96.0 94.7 99.0
effmse: 85.1 90.4 86.3 88.9 92.5 95.9 94 .7 105.6
n=60 H 0, Hy 0, Ha (208 o, p
MML mean: 0.001 0.939 0.002 0.955 0.001 0.438 0.901 0.883
n*bias2: 0.000 0.225 0.000 0.121 0.000 0.000 0.000 0.017
n*variance: 2.527 0.725 2.582 0.629 0.579 0.137 0.210 0.070
n*mse: 2.527 0.950 2.582 0.750 0.579 0.138 0.210 0.086
LS mean: 0.000 0.942 0.001 0.954 0.001 0.433 0.901 0.888
n*bias2: 0.000 0.200 0.000 0.129 0.000 0.001 0.000 0.009
n*variance: 3.018 0.793 3.042 0.689 0.636 0.150 0.223 0.071
n*mse: 3.018 0.993 3.042 0.818 0.636 0.150 0.223 0.080
effvar: 83.7 91.4 84.9 91.2 91.0 91.8 94.3 98.5
effmse: 83.7 95.6 84.9 91.6 91.0 91.7 94.3 108.1
n=100 4 o, Hy 0, My, 05, 6, P
MML  mean: 0.002 0.936 0.002 0.950 0.000  0.437 0.899  0.885
n*bias?2: 0.000 0.413 0.000 0.251 0.000 0.000 0.000 0.023
n*variance: 2.530 0.704 2.630 0.623 0.579 0.134 0.202 0.067
n*mse: 2.531 1.116 2.630 0.874 0.579 0.134 0.202 0.090
LS mean: 0.002 0.946 0.002 0.956 0.000 0.434 0.900 0.889
n*bias2: 0.001 0.294 0.000 0.196 0.000 0.000 0.000 0.012
n*variance: 3.029 0.791 3.085 0.706 0.632 0.149 0.218 0.071
n*mse: 3.030 1.084 3.085 0.902 0.632 0.150 0.218 0.084
effvar: 83.5 89.0 85.3 88.4 91.7 89.6 92.5 94.6
effmse: 83.5 103.0 85.3 97.0 91.7 89.5 92.5 108.1

5.2 Simulated Powers of the Hotelling T?

As we stated earlier, we give results only for the situation when the marginal and

the conditional distribution are Generalized Logistic with shape parameters b, and
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b, , respectively. In Chapter 4, we defined statistics to test assumed values of the

location parameters (4, i,) . To test

A 0
W[ -

in the present situation, we propose the statistic

T2 =n(ﬁ1,ﬂ2)ﬁ—l{zlj. (5.2.2)
2

Here, Q is the (estimated) covariance matrix

R 6, O
Q =n{ M A”} (5.2.3)
0-1% 0-33

where, 6,,, 6,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, = Zii =1; ! (U,,0,,1,,0,,p). The statistic using
the LS estimators is calculated just by putting the LS estimators instead of the
MML estimators in the test statistic. Unfortunately, the estimated covariance
matrix Q of the LS estimators \/;(/jl, H,) is not known under nonnormal
distributions. Thus, we use the simulated covariance matrix. Denote the statistic

(5.2.2) by 77 and the corresponding statistic based on the LSE by T?.

Alternatively, to test H, above we propose the statistic

. A vAad A
le :”(:Ulnuz.l)n I[A : J

2.1

:1[112/5'11 +ﬂ2.12/6'33 . (5.2.4)
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Here, ﬁ is the (estimated) covariance matrix
- 6-11 0
Q=n (5.2.5)

where 6,, and &,, are the estimated elements of the asymptotic covariance
matrix X, more specifically, o, =Z; =1 "(&,,0,,1,,,0,,,68,). The statistic
based on LS estimators is calculated simply by replacing the MMLE in (5.2.4) by
the LSE and, 6,, and 6,, by &), and &,,. For the same reason as before we use

the simulated variances for &, and G,,. Denote the statistic (5.2.4) by fle and

the corresponding statistic based on the LSE by ﬁz. Testing (4,,4,)=(0,0) is

equivalent to testing that (&,,4,,) =(0,0).

Since the covariance matrix does not converge to its expected value fast

enough, we will give the simulation results based on the simulated variances and

covariances of the estimators. For example, instead of using Q in (5.2.2) we use

simulated variance of #, and f, and simulated covariance of /I, and f, .

We give the graph plots of the power of 7% and T?, and T? and flz for
testing (4, 4,) =(0,0). We give the plots for p =0.5. The relative powers are
essentially the same for other values of p. We include numerous values of b, and

b, and n=15,30,60 and 100. The results are based on 10,000 Monte Carlo runs.

First, we give the plots for flz and flz .
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Figure 5.1 Power graphs of fle and T, for b, =05, b, =05, p=0.5 and
n=15, 30,60 and 100.

It is seen that fle (based on the MMLE) has higher power than flz (based

on the LSE) for all sample sizes. The type I error for both of them is almost 0.05,

the presumed value.

Figure 5.2 shows the graph plots of power for b, =0.5 and b, =1. It is

seen that flz has higher power than 7’:12 and the differences increase with

increasing n.

Figure 5.3 shows the graph plots of power for b, =1, b, =0.5. Although
the differences between the power values is not very large but again f"lz is ahead

offlz.
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Figure 5.2 Power graphs of vaZ and
n=15,30,60 and 100.

T2 for b,=05, b,=1,p=0.5 and
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Figure 5.3 Power graphs of vaZ and
n=15,30,60 and 100.

T2 for b =1, b,=0.5,p=0.5 and
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Figure 5.4 Power graphs of flz and

n=15,30,60 and 100.

T2 for b =1, b,=1,p=0.5 and

In Figure 5.4 we consider the situation when both the marginal and the

conditional distributions are symmetric. Like the previous case, the differences

between the power of the 7> and T}? tests are not substantial. Nonetheless, 7,* is

ahead of the flz test.

Finally, we consider the situation when b, =4 and b, =4. The graph

plots of the power are given in Figure 5.5. For n <30, there are very little

differences between the power values. For n > 30, however the differences are

more pronounced and 7, test is more powerful.
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Figure 5.5 Power graphs of flz and
n=15,30,60 and 100.

T2 for by=4, b,=4,p=05 and

We now consider the 72 and T2 tests. We simulate the values of their

power for testing (4, ,) =(0,0). The graph plots of their power, simulated for

p=0.5 and n=15,30,60 and 100, are given in Figure 5.6 for b, =0.5, b, =0.5,

Figure 5.7 for b, =0.5, b, =1, Figure 5.8 for b, =1, b, =0.5, Figure 5.9 for

b, =1, b, =1 and Figure 5.10 for b, =4, b, =4. The comparison between the

power values is essentially the same as for the 7% and T? tests. In the case given

in Figure 5.8, T? shows higher power values for all sample sizes. Moreover, as

sample size increases, the difference gets bigger in favor of T,
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Figure 5.6 Power graphs of T? and T2 for b, =05, b,=05,p=0.5 and

n=15,30,60 and 100.
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Figure 5.7 Power graphs of 7% and
n=15,30,60 and 100.

T? for b,=05, b,=1,p=0.5 and
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Figure 5.8 Power graphs of T? and

n=15,30,60 and 100.
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Figure 5.9 Power graphs of 7% and T for b =1, b,=1,p=0.5 and
n=15,30,60 and 100.
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Figure 5.10 Power graphs of 7% and T® for b=4, b,=4,p=05 and
n=15,30,60 and 100.

Robustness: A test is said to be robust if its Type I error is, for plausible

alternatives, never substantially higher than a presumed value and it maintains

high power. Consider the situation when the model is the one with b, =1 and

b, =1. The alternatives we consider are the outlier, mixture and contamination

models given on page 115. The graph plots of the powers of ]A"lz , flz , 7% and T
tests under three alternatives considered above are given in Figure 5.11-5.16. It

can be seen that vaZ and T tests are robust. This is due to the fact that flz and

T? tests use efficient and robust estimators of the unknown parameters.

132



Power curve for n=30 b1=1 b2=1

1
0.9 —
0.8 1 /
0.7 /
0.6 / —MML
0.5 / — LS
0.4 /
0.3
0.2 //
01 {—=~#

0 . . . mean1i

0 0.5 1 1.5 2

Figure 5.11 Power graphs of 7> and 7, for b, =1, b, =1,p=0.5 and n=30
for the outlier model.
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Figure 5.12 Power graphs of 7% and T® for b =1, b,=1,p=05 and n=30
for the outlier model.
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Power curve for n=30 b1=1 b2=1
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Figure 5.13 Power graphs of 7> and 7, for b, =1, b, =1,p=0.5 and n=30
for the mixture model.
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Figure 5.14 Power graphs of 7% and T® for b =1, b,=1,p=0.5 and n=30
for the mixture model.
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Power curve for n=30 b1=1 b2=1
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Figure 5.15 Power graphs of 7> and T, for b, =1, b, =1,p=0.5 and n=30
for the contamination model.
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Figure 5.16 Power graphs of 7% and T® for b =1, b,=1,p=0.5 and n=30
for the contamination model.

5.3 Testing the Correlation Coefficient

As stated in Chapter 4, in order to test H,: p =0 against H, : p <0 (or p>0),

the proposed statistic is

/|1 (b, +2) 1
W = _
p/ \/n b, W®)+y'®)
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P b2 1 '
= p\/n D) (') +y' (1) (5.3.1)

Here,

16+ 1 (532)
nob, o)y M)

is the asymptotic variance of p under H,,, obtained from
1.0 1,.0,.0} - (5.3.3)

s
The LSE of p is the Pearson sample correlation coefficient, p =—". The

5.5,

statistic based on the Pearson sample correlation coefficient is found by dividing

P by the square root of the variance of p under H,. Since we do not know the
variance of p under nonnormal distributions, we use the simulated variance of p
under H,. Denote the test statistic (5.3.1) by W and the corresponding test
statistic based on the LSE by W, . In Section 5.1, we gave the efficiencies of the
LS estimator p relative to the MML estimator 0. In this section we give the
simulated power graphs of W and W, for values of b, and b,, and for
n=15,30,60 and 100 . Since the variance of p does not converge fast enough to
the asymptotic value, we use the simulated variance of p under the null

hypothesis H,: p=0.

First, we give the simulated power graphs of W and W, for b, =0.5 and

b, =0.5 for several sample sizes (Figure 5.17). For all sample sizes, W is more
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powerful than W . As n gets large, the differences become larger in favor of W

due to the asymptotic optimality of the MML estimator 0.

In Figure 5.18, the simulated power graphs of W and W, for b, =0.5

and b, =1, are given. The difference between the power values is not

considerable but again there is a difference in favor of W and it becomes large as

the sample size n increases.
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Figure 5.17 Power graphs of W and W, for b, =0.5, b, =0.5 and n=15,30,60
and 100.

In Figure 5.19, we give the simulated powers of W and W, for b, =1

and b, =0.5. As expected, the W test has higher power for all 7.

In Figure 5.20, the power values of the W and W, tests for b, =1 and

b, =1 are given. The W test is more powerful and and the differences between

the values increase with sample size 7.
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Finally, for b, =4 and b, =4, the simulated powers of the W and W,

tests are given in Figure 5.21. Now, the W test is considerably more powerful

than the W, test. The differences increase with n.
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Figure 5.18 Power graphs of W and W, for b, =0.5, b, =1 and n=15,30,60
and 100.
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Figure 5.19 Power graphs of W and W, for b, =1, b, =0.5 and n=15,30,60
and 100.
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Figure 5.20 Power graphs of W and W,

100.

for b, =1, b, =1 and n=15,30,60 and
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Figure 5.21 Power graphs of W and W, for b, =4, b, =4 and n=15,30,60 and

100.
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5.4 Proximity of ML and MML Estimators

We know that the MMLE are asymptotically equivalent to the MLE, of course

under the regularity conditions. The latter satisfy the likelihood equations of the
type dlnL/d7=0. Since 9>InL/d7> <0, the solution of dInL/d7z =0 in fact
maximizes L (or In L). We now show that the MMLE maximizes L (almost) even
for small n. That establishes the numerical proximity of the ML and the

corresponding MML estimators.

We generated N =10,000 random samples from the bivariate distribution
consisting of Generalized Logistic marginal with shape parameter b, and

Generalized Logistic conditional with shape parameter b,. We simulate the means

and variances of the random variables l alnL_alnL
n\ dr, a7,

j (i=1,8). Here,
Ty=H, T, =0, Ty=[f,, T,=0,,, Ts=M,, T4=0,, 7, =6, and 7, =p.
The values are given in Table 5.15-5.16 for numerous values of b, and b, and

p =0.5. The values for other p -values are exactly similar. It is concluded that

the MMLE are numerically close to the corresponding MLE. This is indeed a very
positive result. As such, there is no necessity of chasing the elusive ML

estimators.
This result shows that the MML estimators are almost equivalent to ML

estimators even for small sample sizes. Additionally, MML estimators are robust

to data anomalies.
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Table 5.15 Simulated means and variances of l dInL
n T

for (by,b2)=(0.5,0.5), (0.5,1) and (1,0.5), and p =0.5.

(evaluated at the MMLE)

b;=0.5 b,=0.5 b;=0.5 b,=1 b;=1 b,=0.5
mean variance mean variance mean variance
U, -0.0158 0.0001 -0.0151 0.0001 -0.0007 0.0001
o, -0.0724 0.0008 -0.0735 0.0007 -0.0874 0.0010
U, 0.0013 0.0000 0.0000 0.0001 0.0013 0.0000
n=15 c,, -0.1476 0.0019 -0.1613 0.0022 -0.1471 0.0012
U, 0.0013 0.0000 0.0000 0.0001 0.0013 0.0000
o, -0.1236 0.0012 -0.1347 0.0012 -0.1213 0.0012
é, -0.0022 0.0004 0.0003 0.0003 -0.0001 0.0002
P 0.0974 0.0064 0.1053 0.0055 0.1050 0.0107
U, -0.0082 0.0000 -0.0081 0.0000 0.0000 0.0000
o, -0.0364 0.0002 -0.0365 0.0002 -0.0448 0.0002
U, 0.0001 0.0000 -0.0001 0.0000 0.0001 0.0000
n=30 c,, -0.0722 0.0003 -0.0800 0.0004 -0.0721 0.0003
U, 0.0001 0.0000 -0.0001 0.0000 0.0001 0.0000
o, -0.0615 0.0002 -0.0681 0.0002 -0.0611 0.0002
0, -0.0003 0.0001 0.0001 0.0001 0.0000 0.0000
P 0.0448 0.0006 0.0491 0.0006 0.0460 0.0009
U, -0.0042 0.0000 -0.0042 0.0000 0.0001 0.0000
o, -0.0181 0.0000 -0.0180 0.0000 -0.0222 0.0000
U, -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000
n=60 o, -0.0357 0.0001 -0.0397 0.0001 -0.0355 0.0001
U, -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000
o, -0.0306 0.0000 -0.0342 0.0000 -0.0304 0.0000
0, 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
P 0.0215 0.0000 0.0235 0.0001 0.0215 0.0001
U, -0.0025 0.0000 -0.0026 0.0000 0.0000 0.0000
o, -0.0106 0.0000 -0.0107 0.0000 -0.0131 0.0000
U, -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000
n=100 c,, -0.0211 0.0000 -0.0235 0.0000 -0.0211 0.0000
U, -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000
o, -0.0181 0.0000 -0.0203 0.0000 -0.0181 0.0000
0, 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
P 0.0126 0.0000 0.0138 0.0000 0.0125 0.0000
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Table 5.16 Simulated means and variances of l dInL
n T

for (by,b2)=(1,1) and (4,4), and p =0.5.

(evaluated at the MMLE)

b;=1 b,=1 bi;=4 b,=4
mean variance mean variance
U, 0.0002 0.0001 0.0446 0.0002
o, -0.0880 0.0010 -0.0216 0.0006
U, -0.0001 0.0001 -0.0125 0.0001
o -0.1610 0.0021 -0.1680 0.0022
n=15 21
U, -0.0001 0.0001 -0.0125 0.0001
o, -0.1340 0.0013 -0.1514 0.0018
01 0.0001 0.0001 -0.0229 0.0003
P 0.1081 0.0073 0.0888 0.0068
U, 0.0000 0.0000 0.0258 0.0000
o, -0.0448 0.0002 -0.0081 0.0001
U, 0.0000 0.0000 -0.0059 0.0000
o -0.0803 0.0004 -0.0827 0.0003
n=30 2.1
U, 0.0000 0.0000 -0.0059 0.0000
o, -0.0683 0.0003 -0.0758 0.0003
01 0.0000 0.0000 -0.0109 0.0001
P 0.0500 0.0008 0.0402 0.0006
U, 0.0000 0.0000 0.0146 0.0000
o, -0.0222 0.0000 -0.0029 0.0000
U, 0.0000 0.0000 -0.0026 0.0000
o -0.0396 0.0001 -0.0413 0.0001
n=60 21
U, 0.0000 0.0000 -0.0026 0.0000
o, -0.0341 0.0000 -0.0378 0.0001
01 0.0000 0.0000 -0.0049 0.0000
P 0.0237 0.0001 0.0199 0.0001
U, 0.0000 0.0000 0.0095 0.0000
o, -0.0131 0.0000 -0.0012 0.0000
U, 0.0000 0.0000 -0.0014 0.0000
el -0.0235 0.0000 -0.0247 0.0000
n=100 21
U, 0.0000 0.0000 -0.0014 0.0000
o, -0.0203 0.0000 -0.0226 0.0000
01 0.0000 0.0000 -0.0026 0.0000
P 0.0138 0.0000 0.0119 0.0000
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5.5 Ilustrative Examples

5.5.1 A Real Life Example

We give the first example using real life data given in Table 5.17 where U
represents 100 times the white blood counts and Y represents the survival times
(in weeks) of patients who died of acute myelogenous leukemia (Gross and Clark,

1975).

Table 5.17 Gross and Clark data.

i 1 2 3 4 5 6 7 8
U;: 23 7.5 43 26 60 105 100 170
Y;: 65 156 100 134 16 108 121 4

i 9 10 11 12 13 14 15 16
U;: 54 70 94 320 350 1000 1000 520
Y;: 39 143 56 26 22 1 1 5

Source: Gross and Clark (1975)

Vaughan and Tiku (2000) showed that it is reasonable to regard U as a
Weibull random variable with p =0.8. This can be verified by the Q-Q plot of U
in Figure 5.22. Since the natural logarithm of a Weibull random variable has an
extreme value distribution, if we let X =InU , it follows that X has an extreme
value distribution. This can also be verified by the Q-Q plot of X in Figure 5.23.
Vaughan and Tiku (2000) also showed that it is pertinent to regard the conditional

distribution of Y given X = x as normal (see Figure 5.24).
We find the MML estimators by taking the marginal distribution (X) as

extreme value and the conditional distribution (Y given X = x) as normal. The

MML and the LS estimates are given in Table 5.18.
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Table 5.18 The MML and LS estimates for the Gross and Clark data.

M, o, M, o, P H 0, 6,
MML 3.9868 | 1.3617 | 83.7533 | 55.7215 | -0.7389 | 204.2984 | 38.8660 | -30.2358
LS 4.0749 | 1.0759 | 82.9921 | 48.1972 | -0.7433 | 204.2984 | 38.8660 | -30.2358

Realize that since the conditional distribution is normal, the MML and the LS

estimates of 4,,, 0,, and 6, which are the parameters belonging to the

conditional part are exactly the same.
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Figure 5.22 Q-Q plot of White Cell Blood Count (U).
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Figure 5.23 Q-Q plot of natural logarithm of White Cell Blood Count (X).
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Now we derive the test statistics to test the mean vectors and the

correlation coefficient. Since the sample size is not large enough to use the

asymptotic covariance matrix, we give the results based on the simulated

variances and covariances. The simulated variances and covariances of the MML

and the LS estimators are given in Table 5.19.
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Figure 5.24 Q-Q plot of the standardized residuals.

Table 5.19 Simulated variances and covariances of the MML and the LS
estimators for p =-0.74, and simulated variance of p under H,: p =0 for the

sample size of n=16.

var(f,) | var(d,) | cov(d,,fL,) | var(d,,) | var(p under H,: p =0)
MML | 0.0714 | 0.0740 -0.0525 0.0366 0.0508
LS 0.0743 | 0.0749 -0.0549 0.0366 0.0659

To test the mean vector H, : (4, 1,)=(0,0), the statistic based on the MML

estimators is
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(5.5.1.1)




Here, Q is the (estimated) covariance matrix

~ 6-11 6-13
Q=n " "I (5.5.1.2)
O Oy

We use the simulated variance of 2, and £, instead of 6,, and &,,, respectively.

In the same way, the simulated covariance between £, and /I, is used instead of

6,;. The corresponding LS statistic is

T2 =n(ﬁ1,ﬁ2)ﬁl{fllj. (5.5.1.3)
M,
Here, Q is the (estimated) covariance matrix
~ 6, O
Q-= n{ M ,33}. (5.5.1.4)
0-13 0-33

In a similar manner, we replace the elements of o) by the simulated ones from
Table 5.19.

Then,

T = ”(/All’ﬂz)ﬁl{zlj

2

00714 —0.0525]]"( 3.9868
— 16(3.9868,83.7533)| 16
~0.0525 0.0740|| (83.7533

0.0714 —0.0525]"'( 3.9868
= (3.9868,83.7533)
—0.0525 0.0740| |83.7533
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20.7727 28.2509 |\ 83.7533
=212,507.18. (5.5.1.5)

29.2797 20.7727 | 3.9868
= (3.9868,83.7533)[ }( J

The corresponding LS statistic is
Tl ﬁz)ﬁ“(’fl]
Hy

=16(4.0749,82.9921)| 16
-0.0549  0.0749 82.9921

0.0743 —0.0549ﬂ‘1( 4.0749j

0.0743 —0.0549]"'( 4.0749
=(4.0749,82.9921)

-0.0549  0.0749| (82.9921

29.3603 21.5205| 4.0749
21.5205 29.1251 | 82.9921

=215,648.25. (5.5.1.6)

= (4.0749,82.9921){

We either compare them with . .(2)=5.99 by using their asymptotic

(n=2) 22 (1=2) =

distribution or calculate T? and compare them with
2(n—1) 2(n—1)

F,,(2,n—2). Since both of them are greater than . (2)=5.99, the null

hypothesis is rejected by both of the statistics. To compare them with F,

Mfz =(14/30)212,507.18 =99,170.02 (5.5.1.7)

2(n-1)

and

;’(1;21))?2 =(14/30) 215,648.25 =100,635.85. (5.5.1.8)
n—

We again reject the null hypothesis by both methods since F(2,14) =3.74.
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Alternatively, to test H ,

. PN /i
le :”(:Ulnuz.l)n I[A : J

2.1
= ,[‘12/611 +laz12/633
= (3.9868)2 /0.0714 + (204.2984)2 /0.0366 =1,140,600.65. (5.5.1.9)

The corresponding LS statistic is

o o el
le :”(:Ulnuz.l)n 1[~1 J
My
:/712/5-11"'/72‘12/5-33

= (4.0749)* /0.0743 + (204.2984)* /0.0366 = 1,140,601.52. (5.5.1.10)

The null hypothesis is rejected since both of them are greater than g (2) =5.99.

Also,

2(’(’ - 21)) 72 = (14/30)1,140,600.65 = 532,280.30 (5.5.1.11)
n —

and

;’Z - 21)) T2 = (14/30)1,140,601.52 = 532,280.71. (5.5.1.12)
-

We again reject the null hypothesis by both methods since F (2,14) =3.74.

Totest H,: p =0 against H, : p <0, the proposed statistic is

148



p . |n
W:—:pﬂ'\/:. (5.5.1.13)
w/6/in71'2 ) 6
Here,
6/(n7?) (5.5.1.14)

is the asymptotic variance of p under H,. Because of small sample size, we use

the simulated variance of p under H, instead of the asymptotic variance. Then

the proposed statistic becomes

W = 5/+/0.0508 . (5.5.1.15)

The corresponding statistic based on the LS estimator is

W, = p/~0.0659 . (5.5.1.16)
Then,
W =—0.7389/4/0.0508 = —3.278 (5.5.1.17)
and
W, =—0.7433/0.0659 = —2.895. (5.5.1.18)

We reject the null hypothesis for both methods since z,,,; =—1.645.

5.5.2 Examples Using Simulated Data

In this section we give examples using simulated data for various sample sizes.

We simulate data for the situation when the marginal and the conditional
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distributions both are Generalized Logistic with shape parameters b, =0.5 and
b, =1, respectively. The other parameters are taken as ¢, =0, o, =1, u, =0,
o,=1, u,, =0, 0,,=0.866, p=05 and 6 =0.5. Firstly, we give an

illustration for n=20. Since the sample size is not large enough to use the
asymptotic covariance matrix, we use only the simulated variances and
covariances. The simulated data for n =20 are given in Table 5.20. The MML
and LS estimates are given in Table 5.21 using the results given in Chapter 4. The

simulated variances and covariances are given in Table 5.22.

Table 5.20 Simulated data for n =20.

i Xi Y; i Xi Yi
1 0.6111 0.7854| 11  -1.3532 -3.4839
2 -1.6487 -53303| 12 -2.5452 -1.6069
3 0.8257 2.6373| 13  -3.4990 -2.9060
4 1.4621 1.0638| 14 0.9557 0.1458
5 -0.7485 -1.0418| 15 -0.5475 1.3740
6 -0.4574 25459| 16 -3.4978 -2.6781
7 -0.7913 -1.8961| 17 -0.6870 -1.1195
8 -5.2085 -2.6557| 18 -0.8852 -0.3033
9 -0.3644 0.7956| 19 -0.9960 0.8554
10 -2.2536 -1.4654| 20 0.3194 -1.1990

Table 5.21 The MML and LS estimates for n = 20.

M, o, M, o, P H 0, 6,

MML | [0.0799 | 0.6663 | 0.0176 | 1.0419 | 0.4737 | 0.0769 | 0.9176 | 0.7407

LS | -0.1603 | 0.6529 | 0.0771 | 0.9659 | 0.6357 | 0.0655 | 0.9077 | 0.7880

Table 5.22 Simulated variances and covariances of the MML and the LS
estimators for p=0.5, and simulated variance of p under H,: p=0 for the
sample size of n=20.

var(@,) | var(i,) | cov(,f,) | var(i,,) | var(p under H: p =0)

MML | 0.2641 | 0.2193 0.1335 0.1563 0.0272

LS 0.2779 | 0.2311 0.1405 0.1668 0.0530
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It is interesting to note that the variances of the MMLE are smaller than those of

the LSE as for other data sets presented here.

To test the mean vector H : (y,,1,) =(0,0),

; Ny
T :”(,Ulnuz)ﬂ I(Al]

2

= (—0.0799,0.0176){

0.2641 0.1335]'(—0.0799
0.1335 0.2193 0.0176

=(-0.0799,0.0176)
—3.3296  6.5869 0.0176

5.4695 — 3.3296}{— 0.0799}

=0.0463. (5.5.2.1)

The corresponding LS statistic is

0.2779 0.1405] '(-0.1603
=(-0.1603,0.0771)

0.1405 0.2311 0.0771

5.1953 - 3.1585}(— 0.1603)

=(-0.1603,0.0771)
-3.1585 6.2474 0.0771

=0.2487. (5.5.2.2)

To compare them with F,

(n=2) T2 = (18/38)0.0463 =0.0219 (5.5.2.3)
2(n-1)
and

Mfz =(18/38)0.2487=0.1178. (5.5.2.4)
2(n-1)
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Alternatively, to test H ,

A

T12 = la12/6-11 +:a2412/633

=(=0.0799)* /0.2641+(0.0769)* /0.1563 = 0.0620..

The corresponding LS statistic is

T12 = ﬁ12/0-11 +ﬁziz/&n

=(=0.1603)*/0.2779 + (0.0655)* /0.1668 = 0.1182 .

To compare them with F,

(1=2) 72 _ (18/38)0.0620 = 0.0294
2(n—1)

and

(=2) 72 (18/38)0.1182 = 0.0560.
2(n—1)

(5.5.2.5)

(5.5.2.6)

(5.5.2.7)

(5.5.2.8)

To test H,: p=0 against H,: p >0 by using the simulated variances,

our statistic based on the MML estimator is

W = p/~0.0272 .

The corresponding statistic based on the LS estimator is

W, = p/~0.0530 .
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Then,

W =0.4737/4/0.0272 = 2.872

and

W, =0.6357/~/0.0530 =2.761.

(5.5.2.11)

(5.5.2.12)

Now we give an example for a sample size n =30 which is fairly large.

The simulated data are given in Table 5.23. The MML and LS estimates and the

simulated variances and covariances are given in Table 5.24 and Table 5.25,

respectively.

Table 5.23 Simulated data for n =30.

i Xi Y; i Xi Y
1 0.6669 1.1393 | 16 0.2683 2.8408
2 -15802 -0.6026 | 17 -6.2760 -1.5212
3 -15593 -0.3870 | 18 -3.0977 -1.3426
4 0.0538 0.6795 | 19 -1.6503 -0.6978
5 -3.1483 -5.7769 | 20 -2.0622 -1.6132
6 -0.0067 -1.3394 | 21 -1.3645 0.8223
7 -15705 -1.1441 | 22 -6.9407 -2.3434
8 -29500 0.7003 | 23 -0.8378 -2.6615
9 -29839 0.4107 | 24 -2.2439 -1.3998
10 -2.6043 -3.8578 | 25 -4.6253 -3.8861
11 -15338 -2.7978 | 26  0.4540 1.0792
12 -0.5314 22537 | 27 0.2349 1.8984
13 0.6660 -2.1259 | 28  0.4964 -1.6335
14 -2.4359 -1.7708 | 29 -4.7850 0.4714
15 09837 1.5028 | 30 0.5023 -1.4676

Table 5.24 The MML and LS estimates for n =30.

M, o, o, P My, 0, 6,
MML | [0.3924 | 0.8393 | -0.2767 | 1.1165 | 0.2789 | -0.1311 | 1.0722 | 0.3711
LS | .0.5641 | 0.8065 | -0.2343 | 1.0001 | 0.4218 | -0.1439 | 1.0015 | 0.4014
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Table 5.25 Simulated variances and covariances of the MML and the LS
estimators for p=0.5, and simulated variance of p under H,:p =0 for the

sample size of n =30.

var(4,) | var(f,) | cov(f,,[,) | var(i,,) | var(p under H,: p =0)

MML | 0.1769 | 0.1441 0.0886 0.1019 0.0169
LS 0.1885 | 0.1564 0.0956 0.1110 0.0343

To test the mean vector H  : (1,,1,) =(0,0),

T = ”(/All’ﬂz)ﬁ_l{zlj

2

0.1769 0.0886] '(—0.3924
0.0886 0.1441| \-0.2767

8.1693 —5.0223 |(—-0.3924
-5.0223 10.0276 |\ -0.2767

= (—0.3924,—0.2767){

= (—0.3924,—0.2767){

=0.9349. (5.5.2.13)

The corresponding LS statistic is

0.1885 0.0956]'(—0.5641
0.0956 0.1564| (—0.2343

7.6885 —4.6996 | —0.5641
—-4.6996 9.2665 |\ —0.2343

=1.7130. (5.5.2.14)

=(-0.564 1,—0.2343){

= (—0.5641,—0.2343){
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To compare them with F',

(n=2) 4

=(28/58)0.9349 =0.4513
2(n— 1)
and

(n-2)

— 2 T? =(28/58)1.7130 = 0.8269 .
2(n-1)

Alternatively, to test H ,

A

= /[112/6-11 +:a2412/633

=(-0.3924)*/0.1769 + (-0.1311)* /0.1019 =1.0391.

The corresponding LS statistic is

T = ﬁ12/0-11 +:L72412/&33
= (—0.5641)2 /0.1885+ (—0.1439)2 /0.1110=1.8747 .

To compare them with F,

(n=2) == 72 =(28/58)1.0391=0.5016
2(n-1)

and

(n 2) =(28/58)1.8747 =0.9050.
2(n— )

(5.5.2.15)

(5.5.2.16)

(5.5.2.17)

(5.5.2.18)

(5.5.2.19)

(5.5.2.20)

For the sample size n =30, we can also calculate the statistics based on

MML estimators by using the asymptotic covariance matrix (estimated by using

the MML estimates). We first calculate the components of the estimated Fisher

information matrices [ (u,,0,,/,,0,,p) and I (u,,0,,/,,,0,,,6,) by using the
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results given in Chapter 4. These matrices for the simulated data with the sample

size of n =30 are given in Table 5.26 and Table 5.27, respectively.

Table 5.26 The estimated Fisher information matrix, I (U,,0,,1,,0,,p).

H o, H, 0, p
) 9.7157  -4.9510 -3.2280 1.2483 4.9963
o, -4.9510  67.4998 44750  -7.6551 -30.6399
M, -3.2280 4.4750 8.6990 -3.3639 -13.4642
o, 1.2483  -7.6551  -3.3639 40.1676  11.4105
1Y 49963 -30.6399 -13.4642 11.4105 96.1134

Table 5.27 The estimated Fisher information matrix, 1( M, 0 Uy, ,0,,,0,).

H o, Hyy 011 6,
H 8.5179 -3.2904 0.0000 0.0000 0.0000
0, -3.2904  57.3162 0.0000 0.0000 0.0000
My 0.0000 0.0000 8.6990 0.0000 -10.1212
011 0.0000 0.0000 0.0000  37.3168 0.0000
6, 0.0000 0.0000 -10.1212 0.0000  52.0934

The estimated asymptotic covariance matrices are I (u,,0,,1,,0,,p) and

IA'l(ﬂl,Gl,,uZI,O'z‘l,ﬁl) which are given in Table 5.28 and Table 5.29,

respectively.

Table 5.28 The estimated asymptotic covariance matrix, /' Y, o, U,,0,,p).

H, o, M, o, P
M, 0.1201 0.0069 0.0446 0.0007 0.0021
0, 0.0069 0.0178 0.0026 0.0018 0.0055
Hy 0.0446 0.0026 0.1651 0.0070 0.0208
0, 0.0007 0.0018 0.0070 0.0263  -0.0016
4 0.0021 0.0055 0.0208  -0.0016 0.0151
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Table 5.29 The estimated asymptotic covariance matrix, /' w0, l,,,0,,,6,).

M o, My, 0, 6,
H 0.1201 0.0069 0.0000 0.0000 0.0000
0, 0.0069 0.0178 0.0000 0.0000 0.0000
Hyy 0.0000 0.0000 0.1485 0.0000 0.0289
011 0.0000 0.0000 0.0000 0.0268 0.0000
6, 0.0000 0.0000 0.0289 0.0000 0.0248

To test the mean vector H : (1, 4,)=(0,0) by using the asymptotic covariance

matrix, we take the components &,,, 65, and &,; from the estimated asymptotic

covariance matrix [~ ( M,,0,,U1,,0,,p) where they correspond to the asymptotic

variance of 4, [, and the asymptotic covariance of (4,,4,), respectively (see

Table 5.28). Then,

MU,

o ﬂ)rn aHuj
1 ’ OA.IS 6-33 1[22

0.1201 0.0446}_1 (— 0.3924J

=(-0.3924,-0.2767)
0.0446 0.1651| \-0.2767

9.2548 —2.5001|—0.3924
= (-0.3924,-0.2767)

-2.5001 6.7323 | -0.2767
=1.3976. (5.5.2.21)

To compare with F',

=2 f2 _ (98/58)1.3976 = 0.6747 (5.5.2.22)
2(n-1)
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Alternatively, to test H,, we use the following statistic by using the
asymptotic covariance matrix with parameters ,, o,, i,,, 0,,, 6,. We take the
components &, and &, and from ['(4,,0,,4,,,0,,,6,) where they

correspond to the asymptotic variances of 4, and f,,, respectively (see Table

5.29). Then,

A

T12 = /[112/6-11 +:a2412/633
= (—0.3924)2 /0.1201+ (-0.131 l)2 /0.1485=1.3978. (5.5.2.23)

To compare with F,

(n=2) T =(28/58)1.3978 = 0.6748.. (5.5.2.24)
2(n-1)

In fact the values of 77 and T? are exactly the same since the random
sample is generated under H ,:(u,,4,)=(0,0) and the invariance properties of

the MML estimators hold. However, they take slightly different values 1.3976 and

1.3978, respectively. This is due to the rounding error.

From Table 5.25, the simulated variances of p and p under H,: p=0

are 0.0169 and 0.0343, respectively. Thus, to test H,: p =0 against H, : p >0

by using the simulated variances, our statistic based on the MML estimator is
W = p/~0.0169 . (5.5.2.25)
The corresponding statistic based on the LS estimator is

W, = p/~0.0343 . (5.5.2.26)
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Thus,

W= 0.2789/\/0.0169 =2.145 (5.5.2.27)
and
W, = 0.4218/\/0.0343 =2.278. (5.5.2.28)

To test H,: p=0 against H,: p>0 by using the asymptotic variance, our

statistic based on the MML estimator is

1 (b, +2) 1
W = _
p/ \/n b, W®)+y'®)

— A b2 ' !
—p\/n b+ (W' ) +y' Q). (5.5.2.29)

Here,

1(,+2) 1
n b, Wo)+y'®)

(5.5.2.30)

is the asymptotic variance of p under H,. For our case when b, =0.5, b, =1

and n =30, the asymptotic variance of p under H, is

16, +2) ! _ 1 a+2 ! =0.0152. (5.52.31)
n b, Wo)+y'®) 30 1 @'05+y'®)

Then,

W =0.2789/0.0152=12.262. (5.5.2.32)
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Note how close the asymptotic variance (0.0152) and the simulated variance

(0.0169) are. This is because of the fact that the asymptotic variance of p under
H , does not depend on a parameter other than the shape parameter b, . Thus, it is
not affected by the sample observations. Here, the shape parameter b, is accepted
to be known, but if it is not known, a plausible value for b, can be selected by
examining the Q-Q plots of the residuals for various values of b,. In a

neighborhood of the true value of b,, it does not create any problem because of

the robustness features of the MMLE.

We finally give an example for the sample size n =50 which is
reasonably large. The simulated data are given in Table 5.30. The MML and LS
estimates and the simulated variances and covariances are given in Table 5.31 and

Table 5.32, respectively.

Table 5.30 Simulated data for n =50.

Xi Yi i Xi Y

0.6835 2.2477 | 26 -4.2547 -2.5344
-0.0916 1.1876 | 27 -1.0503 -0.7988
-2.3285 -2.0603 | 28 -5.0743 -5.5956
-3.3540 -1.9623 | 29 -3.8151 -0.8886
-2.8114 -0.7293 | 30  0.8401 -0.2699
-1.5234 -2.0661 | 31 -0.4681 -0.2539
-4.4988 -2.3772 | 32 -1.9460 -2.7240

0.3929 -0.4555 | 33 3.5027 0.6134

1.3894 0.8483 | 34 -1.1407 -2.2441
10 -2.6403 -0.3914 | 35 -3.1005 -1.8102
11 -7.7905 -5.8337 | 36 -0.0829 0.4360
12 0.3042 0.1504 | 37 -1.1216 -1.3454
13 -0.4516 -2.0239 | 38 -6.4154 -3.1029
14 -2.0072 -0.5461 | 39 -2.3739 -2.0689
15 -1.5964 1.0274 | 40 -1.8839 -1.1435
16  1.3988 0.7220 | 41 2.9904 -0.2193
17 -19833 -2.4168 | 42 1.1398 0.6691
18 -1.3818 0.3607 | 43 -1.9728 -1.6492
19 29700 3.4914 | 44 -0.7201 -2.4401
20 0.4868 0.9639 | 45 -1.9394 -0.7457
21 2.0186 0.9996 | 46 -4.4113 -2.7447
22 12531 0.5313 | 47 -0.1953 -0.8101
23 2.0595 25948 | 48 -9.4126 -5.0426
24 -54119 -2.3795 | 49 1.3961 -2.5010
25 -2.0811 04135 | 50 -2.0768 0.7598

OCONOOOPWN 2=
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Table 5.31 The MML and LS estimates for n =50.

M, o, M, o, P H 0, 6,

MML | 0.1136 | 1.1092 | -0.0682 | 0.9215 | 0.6520 | -0.1297 | 0.6987 | 0.5416

LS 0.0466 | 1.0519 | -0.0270 | 0.8331 | 0.7759 | -0.1467 | 0.6721 | 0.5500

Table 5.32 Simulated variances and covariances of the MML and the LS
estimators for p=0.5, and simulated variance of p under H,: p =0 for the
sample size of n=50.

var(4,) | var(f,) | cov(f,,[,) | var(i,,) | var(p under H,: p =0)

MML | 0.1059 | 0.0867 0.0529 0.0611 0.0098

LS 0.1141 | 0.0941 0.0572 0.0664 0.0202

To test the mean vector H  : (1,,1,) =(0,0),

T = ”(/All’ﬂz)ﬁ_l{zlj

2

0.1059 0.0529]"'( 0.1136
=(0.1136,-0.0682)

0.0529 0.0867 | | —0.0682

13.5827 —-8.2875| 0.1136
=(0.1136,-0.0682)

—8.2875 16.5906 |\ —0.0682
=0.3809. (5.5.2.33)

The corresponding LS statistic is

2

= (0.0466,-0.0270)
0.0572 0.0941| \-0.0270

0.1141 0.0572]1( 0.0466)
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12.6055 —7.6625| 0.0466
= (0.0466,-0.0270)

—7.6625 15.2847 | -0.0270
=0.0578.

To compare them with F',

1=2) 72 _ (48/98)0.3809 = 0.1865
2n—1)

and

(n-2) =
2n—1)

=(18/38)0.0578 = 0.0283.

Alternatively, to test H ,

T12 = lalz/é-n +:a2412/633

=(0.1136)*/0.1059 + (—0.1297)* /0.0611 = 0.3972 .

The corresponding LS statistic is

T12 = ﬁ12/0-11 +ﬁziz/&n
= (0.0466)2 /0.1141+ (-0. 1467)2 /0.0664 =0.3431.

To compare them with F',

(2=2) 2 _ (48/98)0.3972 = 0.1945
2n-1)

and

(=2) 7> _ (48/98)0.3431=0.1681.
2(n—1)
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For the sample size n =50, we can also calculate the statistics based on
MML estimators by using the asymptotic covariance matrix (estimated by using

the MML estimates). We first calculate the components of the estimated Fisher
information matrices f(ﬂl,al,,ttz,az,p) and f(ﬂl,al,/tz'l,crz‘l,el) by using the

results given in Chapter 4. These matrices for the simulated data with the sample

size n =50 are given in Table 5.33 and Table 5.34.

Table 5.33 The estimated Fisher information matrix, / (W,,0,,1,,0,,p).

A o, My o, P
M, 18.1432 -17.0241 -18.4916 16.7132 23.6216
0, -17.0241 139.8374 25.6347 -102.4946 -144.8602
My -18.4916 25.6347 34.141 -30.8577 -43.6126
0, 16.7132  -102.4946 -30.8577  207.5803 86.3867
P 23.6216  -144.8602 -43.6126 86.3867  338.3961

Table 5.34 The estimated Fisher information matrix, /( M0, 1,,,0,,,0).

Y2 o, Hyy 051 6,
H 8.1278 -3.1397 0.0000 0.0000 0.0000
0, -3.1397 54.6910 0.0000 0.0000 0.0000
Hyy 0.0000 0.0000 34.1410 0.0000 -52.4985
011 0.0000 0.0000 0.0000  146.4581 0.0000
6, 0.0000 0.0000 -52.4985 0.0000  357.1101

The estimated asymptotic covariance matrices are I (u,,o0,,1,,0,,p) and

I (U,,0,,,,,0,,,6,) which are given in Table 35 and Table 36, respectively.

To test the mean vector H : (1, 1,)=(0,0) by using the asymptotic covariance

matrix, we take the components &,,, 65, and &, from I~ (u,,0,,1,,0,,p)
where they correspond to the asymptotic variance of £, [, and the asymptotic

covariance of (4,4, ), respectively (see Table 5.35). Then,
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(A 0, Oj;
—(ﬂluu2|: 0_33} ( ]

0.1258 00682} ( 0.1136J

=(0.1136,-0.0682)
0.0682 0.0748 | | —0.0682

15.7189 —-14.3319 | 0.1136
=(0.1136,-0.0682)

-14.3319  26.4363 |\ —0.0682
=0.5479. (5.5.2.41)

To compare with F,

(n=2) 2

= (48/98) 0.5479 = 0.2684 . (5.5.2.42)
2n— )

Table 5.35 The estimated asymptotic covariance matrix, I (u,,0,,1,,0,,p).

H o, Hy 0, P
Hy 0.1258 0.0072 0.0682 0.0026 0.0024
0, 0.0072 0.0187 0.0039 0.0066 0.0063

M, 0.0682 0.0039 0.0748 0.0054 0.0052

0, 0.0026 0.0066 0.0054 0.0081 0.0013
P 0.0024 0.0063 0.0052 0.0013 0.0058

Table 5.36 The estimated asymptotic covariance matrix, /' (u,,0,,1,,,0,,,6,).

H o, My, 0y, 6,
H 0.1258 0.0072 0.0000 0.0000 0.0000
0, 0.0072 0.0187 0.0000 0.0000 0.0000
My 0.0000 0.0000 0.0378 0.0000 0.0056
011 0.0000 0.0000 0.0000 0.0068 0.0000
6, 0.0000 0.0000 0.0056 0.0000 0.0036
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Alternatively, to test H,, we use the following statistic by using the
estimated asymptotic covariance matrix with parameters u,, o,, i,,, 0,,, 6,.
We take the components &,, and 6., and from I (4,,0,,4,,.0,,,6,) where

they correspond to the asymptotic variances of £, and f,,, respectively (see

Table 5.36). Then,

A

T12 = /[112/6-11 +:a2412/633
=(0.1 136)2 /0.1258 + (—O0. 1297)2 /0.0378 =0.5476. (5.5.2.43)

To compare with F,

1=2) 2 _ (28/58)0.5476 = 0.2682. (5.5.2.44)
2(n-1)

From Table 5.32, the simulated variances of p and p under H,: p =0
are 0.0098 and 0.0202, respectively. Thus, to test H,: p =0 against H, : p >0

by using the simulated variances, our statistic based on the MML estimator is

W = 5/+0.0098 . (5.5.2.45)

The corresponding statistic based on the LS estimator is

W, = p/~0.0202 . (5.5.2.46)
Then,
W =0.6520/+/0.0098 =6.586 (5.5.2.47)
and
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W, =0.7759/+/0.0202 = 5.459 . (5.5.2.48)

To test H,: p=0 against H, : p>0 by using the asymptotic variance, our

statistic based on the MML estimator is

L/ [1(b,+2) 1
W = _
p/ \/n b, Wo)+y' D)

— A b2 ' !

= p\/n 6.+ (W' ) +y' Q). (5.5.2.49)
Since
16,+2) ! _ 1 d+2 ! =0.0091 (5.5.2.50)

n b, Wo)+y'®) 50 1 (¥ ©05+y'®)

W= 0.6520/V0.009 =6.835. (5.5.2.51)

Since the sample size is reasonably large, the asymptotic variance of P
(0.0091) is closer to the simulated variance of p (0.0098) as compared to the

results given in the earlier example with sample size n =30.
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CHAPTER 6

CONCLUSION AND DISCUSSION

In a linear regression model, the design variable X is usually assumed to be
nonstochastic and the distribution of the error of measurement e is assumed to be
normal. In practice, however, X may be stochastic and e might not be normally

distributed. In this thesis, we considered the following four possibilities:

(a) X isnormaland e=Y — u, — p(0,/0,)(x—4,) is normal
(b) X is non-normal and e is normal
(¢) X isnormal and e is non-normal

and the most difficult and important situation when

(d) X and e are both non-normal.

There is no previous work in the areas (c) and (d).

The joint distribution of X and Y involve five parameters which are not
functionally related to one another. The five paremeters are the location parameter
M, and scale parameter o, of X , the location parameter 4, and scale parameter
o, of Y, and the correlation coefficient p between X and Y. Another
parameter of interest is the regression coefficient 6, = p(o,/0,) which, of
course, is functionally related. Consequently, its estimator can be obtained from

those of o,, 0, and p.
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In situation (a), the maximum likelihood estimators are the sample means
and standard deviations and the sample correlation coefficient. The maximum
likelihood estimators are intractable in situations (b)-(d). Thus, we have obtained
the modified maximum likelihood estimators. They are explicit functions of
sample observations and, therefore, easy to compute. We have shown that they
have all the optimal properties of the maximum likelihood estimators. We have
also shown that they are robust and enormously more efficient than the commonly
used least squares estimators. Finally, we have given a real life application and

some examples using simulated data.

In Chapter 1, we review the literature on the estimation and hypothesis
testing of the parameters in a linear regression model when the design variable X
is nonstochastic and the response variable Y has a location-scale distribution,
normal or nonnormal. In this chapter, we also review the work of Vaughan and
Tiku (2000) which covers the situation when X is stochastic and the conditional
distribution is normal. In Chapter 2, we deal with the situation when X is
stochastic. For illustration, we assume that the distribution of X is Weibull which
is one of the most important distributions from applications point of view. The
conditional distribution of Y given X =x 1is taken to be normal. As a second
situation, we assume that the distribution of X is Generalized Logistic. In
Chapter 3, we consider the situation when the marginal distribution of X is
normal and the conditional distribution of Y givenX =x is nonnormal. In
Chapter 4, we deal with the most difficult situation when the distribution of X
and the conditional distribution of Y are both nonnormal. In all the situations

above, we derive the MML estimators of the five parameters 4, and o,, #, and
0,, and the correlation coefficient p. Another parameter of interest is the

regression coefficient 6, = p(o,/0,). We have also obtained its MMLE. We

have shown that the MMLE have the following properties:
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(i) They are explicit functions of sample observations and, therefore, easy
to compute.

(i1) They are asymptotically fully efficient.

(iii) They are highly efficient for small sample sizes since their variances

are only marginally bigger than the minimum variance bounds.
(iv) They have the very desirable invariance property, i.e., if 6 is the

MMLE of @, then T(é) is the MMLE of a one-to-one function 7(€) .

We develop T statistics for testing the null hypothesis H,:z=0. We

show that these statistics are more powerful than the normal theory statistics. We
also study the robustness of the procedures to outliers, mixtures and
contaminations. Also, we develop a procedure for testing the null hypothesis

H,:p=0 and again show that it is more powerful than the classical test statistic

based on the Pearson sample correlation coefficient. Finally, we give one real life

example and three computer generated examples.

For a comprehensive study of the MML estimators and their optimality
properties (and numerous applications), see Tiku and Akkaya (2004). Akkaya and
Tiku (2004) introduce a model for generating inliers and extend the methodology
of modified likelihood to analyze univariate samples containing inliers. We did
not have an opportunity of discussing this work in this thesis since the work has

not yet appeared in print.

169



REFERENCES

Abramowitz, M., and Stegun, [.A. (1965) Handbook of Mathematical Functions,
New York, Dover.

Akkaya, A.D. and Tiku, M.L. (2001) Estimating parameters in autoregressive
models in non-normal situations; asymmetric innovations, Commun. Stat.-Theory

Meth. 30, 517-536.

Akkaya, A.D. and Tiku, M.L. (2004) Robust estimation and hypothesis testing

under short-tailedness and inliers, TEST (to appear).

Barnett, V.D. (1966) Evaluation of the maximum likelihood estimator when the

likelihood equation has multiple roots, Biometrika 53, 151-165.

Bartlett, M.S. (1953) Approximate confidence intervals, Biometrika 40, 12-19.

David, H.A. (1981) Order Statistics, 2™ ed. New York, Wiley.

Gross, A.J. and Clark, V.A. (1975) Survival Distributions, John Wiley, New
York.

Hoeffding, W. (1953) On the distribution of the expected values of the order
statistics, Ann. Math. Stat. 24, 93-100.

170



Islam M.Q., Tiku M.L. and Yildirim, F. (2001) Nonnormal Regression I.Skew
Distributions, Commun. Stat.-Theory Meth. 30(6), 993-1020.

Kendall, M.G. and Stuart, A. (1979) The Advanced Theory of Statistics, Vol.l,
Charles Griffin: London.

Lee, K.R., Kapadia C.H. and Dwight B.B. (1980) On estimating the scale
parameter of the Rayleigh distribution from doubly censored samples, Statist.

Hefte. 21, 14-29.

Lieblien, J. (1953) On the exact evaluation of the variances and covariances of
order statistics in samples from the extreme distribution, Ann. Math. Stat. 24, 282-

287.
Puthenpura, S. and Sinha, N.K. (1986) Modified maximum likelihood method for
the robust estimation of system parameters from very noisy data. Automatica 22,

231-235.

Senoglu and Tiku (2001) Analysis of variance in experimental design with

nonnormal error distributions, Commun. Statist.-Theor. Meth. 30(7), 1335-1352.

Senoglu and Tiku (2002) Linear contrasts in experimental design with non-

identical error distributions, Biometrical Journal 44, 3, 359-374.

Tiku, M.L. (1967) Estimating the mean and standard deviation from a censored

normal sample, Biometrika 54, 155-165.

Tiku, M.L. (1968) Estimating the parameters of normal and logistic distributions

from censored samples, Austral. J. Statist. 10, 64-74.

171



Tiku, M.L. (1980) Robustness of MML estimators based on censored samples and
robust test statistics, J. Stat. Plann. Inf. 4, 123-143.

Tiku, M.L. (1985) Noncentral chi-square and F distribution, Encyclopedia of
Statistical Sciences, Vol. 6, 276-284, John Wiley&Sons, inc. (Eds., Johnson and
Kotz).

Tiku, M.L. and Akkaya, A.D. (2004) Robust Estimation and Hypothesis Testing
(to be published).

Tiku, M.L. and Kambo, N.S. (1992) Estimation and hypothesis testing for a new
family of bivariate nonnormal distributions, Commun. Stat.-Theory Meth. 21,

1683-1705.

Tiku, M.L. and Kumra, S. (1981) Expected values and variances and covariances
of order statistics for a family of symmetric distributions (Student’s t), Selected
Tables in Mathematical Statistics, Vol. 8. Providence, R.I., Amer. Math. Soc.
1985, 141-270.

Tiku, M.L. and Singh, M. (1982) Robust statistics for testing mean vectors of
multivariate distributions, Commun. Statist.-Theor. Meth. 11(9), 985-1001.

Tiku, M.L. and Suresh, R.P. (1992) A new method of estimation for location and
scale parameters, J. Stat. Plann. Inf. 30, 281-292.

Tiku, M.L. and Vaughan, D.C. (1999) A new family of short-tailed symmetric

distributions, Technical Report, McMaster University, Canada.

Tiku, M.L., Islam, M.Q. and Selcuk, A.S. (2001) Non-normal regression: Part II,
symmetric distributions, Commun. Stat.-Theory Meth. 30(6), 1021-1045.

172



Tiku, M.L., Tan, W.Y. and Balakrishnan, N. (1986) Robust Inference, Marcel
Dekker, New York.

Vaughan, D.C. (1992) On the Tiku-Suresh method of estimation, Commun. Stat.-
Theory Meth. 21(2), 451-469.

Vaughan, D.C. (2002) The generalized secant hyperbolic distributions and its
properties, Commun. Stat.-Theory Meth. 31, 219-238.

Vaughan, D.C. and Tiku, M.L. (2000) Estimation and hypothesis testing for a
non-normal bivariate distribution with applications, J. Mathematical and

Computer Modelling 32, 53-67.

White, J.S. (1969) The moments of the log-Weibull order statistics,
Technometrics 11, 373-386.

173



APPENDIX A

Psi Functions

Psi (Digamma) function is defined as

¥(z) =d[InT(2)]/dz=T"(2)/T(z) (A.1)
where I'(z) = th_le_’dt.
0

Values of (z) and its derivative y’(z) (Trigamma Function) are given in
Abramowitz and Stegun (1965) for 1< z<2. To find the values of w(z) and

w'(z) for z > 2, the following recurrence relations can be used,

P+ =p()+ and (A2)
Z

viz+1) = W'(z)—zlz. (A.3)

To find the value of any polygamma function, the following recurrence relation

can be used,

y "+ )=y () + (=D nlz " (A.4)

The values of the psi functions and its derivative for some selected values of b

are given in Table A.1 for easy accessibility.
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Table A.1 The values of psi functions for selected values of b .

b b+l v'(b) y'(b+1) yb) | wb+])
0.2 12 | 262674 | 12674 | -5.2891 | -0.2890
0.5 15 49348 | 0.9348 | -1.9635 | 0.0365

1 2 1.6449 | 0.6449 | 05772 | 0.4228

2 3 0.6449 | 0.3949 0.4228 | 0.9228

3 4 0.3949 | 0.2838 0.9228 | 1.2561

4 5 0.2838 | 0.2213 1.2561 | 1.5061

6 7 0.1813 | 0.1535 1.7061 | 1.8728

8 9 0.1331 | 0.1175 2.0156 | 2.1406
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APPENDIX B

Bias Correction in the MML Estimators

As a general result, we will give the bias corrections in the estimators £Z,, 6, and
6,, for the situation when the marginal and the conditional distributions are
Generalized Logistic with shape parameters b, and b,, respectively. This can be

extended to any other distribution. The estimator of o, is

A:&+JE+MQ B.1)

1 .

2n

Since g, is not known and is estimated, we adjust for one degree of freedom.

Thus, the bias corrected estimator of o, is

s @+$¥:Ea} (B.2)

- 2 /n(n—1)

1

The estimator of g is

& =K, +D6, (B.3)

where K, z—iﬁl,—x(i) , D :ii( 1 _0‘11} and m, :iﬁli'
i=1

1
m1 i=1 m1 i=1 (bl +1)
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To obtain the bias corrected estimator of #,,

E(/Ah )= E(Kl +D10A-1*)

- miiﬁliE(x(i))+ DIE(G;)

1 i=l1

1 n
= _Z:Bu (ﬂl + O-ltl(i)) + Dlo-l

m1 i=1
o, !
=4, +_Zﬂitl(z’) +D,0,

1 i=1

since E(X)=u,+o0,t, and E (0'1* ): o, . Thus, the bias corrected estimator of

is
K= 1__1(Zﬂ1it1(i)j' (B.4)
m1 i=1

The estimator of o0, is

. —B,+B]+4nC,

621 -
: 2n

(B.5)

Since ,, and @, are not known and are estimated (note that w, =y, —6,x, and
M, ,, 0,, and @, are the parameters in the conditional part), the scale parameter in

the conditional distribution is adjusted for two degrees of freedom. Thus, the bias

corrected estimator of o, is

. —B,+yB; +4nC,
2 2\ n(n—-2) ' (B.6)
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APPENDIX C

Bias Correction in the Least Square Estimators

LS estimators of location and scale estimate the mean and the variance of
the distribution but since we want to estimate the parameters, they need to be
adjusted for the bias. As a general case we give the bias corrections for the
location and scale estimators of least squares for the case when the marginal and

the conditional distribution are both Generalized Logistic with the shape
parameters, b, and b,, respectively. It can easily be extended to any location-

scale distribution.

For the marginal distribution, the LS estimators, x and s,f , are estimating
the mean E(X) and the variance V(X), respectively. Since
E(X)=u,+0,wb,)—-w(d)) and V(X) =0, (b)+y'(1), the bias corrected

LS estimators of x4, and o, are, respectively,

B =%=8,Wb)—y() 4nq 6 = 5. /W B+ 1) (C.1)

In symmetric distributions, there is no need to adjust for the estimators of the
location parameters since the mean of the distribution directly gives the location

parameter.

In the same way, for the conditional distribution, the LS estimators

w =§—(sxy/sf))_c and s’ :Z(wi -w)* /(n—2) are estimating E(w) and
i=1
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Vw), respectively (Note that w, =y, —6x,). Since

Ew)=,,+0,, (Wb, -y1) and V(w)=03, @ '(b,)+y(1)), the bias

corrected LS estimators of 4, and o,, are, respectively,

by, =w=306,,(yb,)-y1) and 5,, = Sw/\/ (W,(bz )+ ',V,(l)) . (C.2)

. o o
Also since y =, — p—= 1, + p—=x+e (note that e, =w, — i, ),
1 1

o o)
EY)=u,—p—2pu+p—=EX)+E(e)
o, o

1

= u, —p%ﬂl +p%(ﬂl +6,(W(b) —w()+ 0,/ (1— p) W (by) - w(D)

= 11, + po,(W(b) —y(D) + 0,1 - p*) (w(b,) — (1) and

2
V(Y)=p* %V(X)-FV(e)

1

)

2
= p* 2o W ) +y )+ 03 (1= p* )W (b,) + 3 (1)

Q

1

=2 (P W)+ )+ (1= pP )W (by) + ¥ (1)),

the bias corrected LS estimators of £, and o, are, respectively,

fly == P&, (p(b) Y1)+ 6,4 (1= P (W (b)) —pD) (C.3)
and
&, =5, /N[> 0/ @)+ )+ (- 51w (b)) + /D). )
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APPENDIX D

The derivation of the Elements of the Fisher Information Matrix

As a general example we give the derivation of one element of the Fisher

information matrix for the situation when the marginal and the conditional

distribution is Generalized Logistic with shape parameter b, and b, , respectively.
We will derive the element [112] in the Fisher information matrix

I(u,,o,1,,0,,p). Since

0°InL
[Il.j]: -E 1 ST =0, T, =0, T,=l,, T, =0,,Ts=p, (D.1)
d7,07;
0°InL
I,|=-E . D.2
r.)=-ef 50 2

The loglikelihood equation is

InL=nlnb, —nlnc, - z (b, + DY Infl+¢7)

i=1 i=1

n 1 n
+nlnb, —nlng, —=n(l- p*) - ———¢,
2 0,\(1-p*) T
—(b,+DY In| 1+e NP | o< z<o0, —oo< e <00, (D.3)

i=1
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To evaluate [/ . . firstly we take the partial derivative of In L w.r.t M, and then

w.I.t 0):

dlnL _n (b +1)
o, o Z(Hez")

¢

~ I’lp s (b2+1)p n e Uzm
0-1\/(1_,02) 0-1\/(1_’02) o [1+ U’N/ST\J
e ™

, which can be written as

oL _n (b +1)
o, o Z“(1+ez")

np by +Dp & e

0',/(1 o) 0'\/(1 07) ,Z;He““

D.4)

since a, = el./(o'zw/(l—p2 )

’InL (b +1)Z e (b, +1)Z”: e N np

aﬂlaal 01 pr (1+e ) ol o K (1+e‘“’ )2 o \A-p?)
b, +Dp & e _ (b, +1),02 i e

_0'121/(1—,02) ;(He‘”’) ol (1-p*)3 ; (l4ee )

(aﬂlaﬁlj ol o} Z} (1+e_z") Z( (1+ez,-)J
_ np b, +p ( o j
o fi-p) oiJa-ph S \l+e™)

(b, +)p* & e
+—2—L NE ,——
af(l—p%g (Z’ (1+e_a")2]
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n (b +1) e’ (b, +1) e’
= — E E
o} o} Z:I: ((1+e‘z")j Z ( (1+e )}

_ np + b, +Dp < (e'” j
o Ji—pH o Ja-pH T \l+e™)

2 n —a;
+—(IZ2 +_1),02 ZE(zi)E(—e — } (D.6)

o (1-p~ )T

since the marginal and the conditional parts are independent.

_E(a lnLJzi o, +1)Z(b1

udo, ) o} o} +1)

MUESIE b,

2

0'1 o (b, +1D(b, +1)

(Wb, +D)-w(2)

np b, +Dp & 1
- +

o2 1-p*) ol Ja-p*) T O +D)
LB +)p’ 3

b
b)-y)———. D.7
- 2 WO YOG D

Finally,

0’InL 1 b,
‘E(aﬂlaqj‘”{ {—(b 2)( w(b, +1)-y(2))

b, p’
b)—wD)}|. D.8
+(b2+2)(1_p2)(w< )=y >)H (D.8)

We use the result of some special integrals and functions to find the

elements of the Fisher information matrix. We now give them in detail. If X has
a Generalized Logistic distribution with location parameter g, scale parameter

o, and shape parameter b, and we let z =(x—u,)/0, ,
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E(z,)=y(b)-y() and E(z})=y/'(b)+¥' 1)+ (wb) - yO) (D.9)

and
i Jz L g ¢ |- n
(1+e*2,-) (b, +1’ (1+€—z,. )2 (b, + )b, )’
- |
Z@je J— ;w() w(2)),
aN i+e ] (b, +1)(b +2)(’”(b1+1)‘9”(2>) and
f° (1+e J (o, +1)(b +2){‘”(bl“)“/’(2>+(vf(bl+1)—w(2)) }. .10)

Similar rules apply to a; but with replacing b, with b,. Also the following

recurrence formula is used in finding some elements of the Fisher information

matrix:
y2)=y1)+1 (D.11)

which is a particular case of

Wzt =p(2) 4 . (D.12)
Z
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APPENDIX E

Visual Fortran Program for the Case of Marginal and Conditional

Generalized Logistic with Shape Parameters by and b,

c *** Written by Hakan Savas Sazak, 2003, Ankara ***

use numerical_libraries

real y(100),x(100),xc(100),yc(100),e(100),tetal,tetal
real xo(100),w(100),wo(100),wols(100),wls (100)

real z(100),a(100),ul(100),u2(100)

real uext (100),uextcont (100)

real meanl (10000),mean2 (10000),sigmal (10000),sigma2 (10000)
real rho(10000),betl1(10000)

real ml,m2,kl,bel,cl

real meanlls (10000),mean21s(10000),sigmalls (10000)

real sigma2ls(10000),rhols (10000),betlls (10000)

real sigma2glls (10000)

real mean2gl (10000),sigma2gl (10000),mean2glls (10000)
real t1(100),t2(100),bettl(100),alphal (100),d2(100)
real bett2(100),alpha2(100)

real meanl0O,mean20,mean2gl0

real asvarmeanl (10000),asvarsigmal (10000)

real asvarmeanl2 (10000),asvarsigmal2 (10000)

real asvarmeanl2ls(10000),asvarsigmal2ls(10000)

real asvarmean2 (10000),asvarsigma2 (10000)

real asvarmean2gl (10000),asvarsigma2gl (10000)

real asvarrho(10000),asvarrho0(10000),ascovmeanlmean2 (10000)
real asvarmeanlls (10000),asvarsigmalls (10000)

real asvarbetl (10000), ascovmeanlmean2gl (10000)

real psid_b,psid_bplusl,psid_1,psid_2

real dlnLdmeanlovern(10000),dlnLdsigmalovern (10000)
real dlnLdmean2glovern (10000),dlnLdsigma2glovern(10000)
real dlnLdmean2overn(10000),dlnLdsigma2overn (10000)
real dlnLdrhoovern(10000),dlnLdbetlovern(10000)

c *** Specifying the Fisher information matrices and their inverses ***

parameter (LI=5,LIINV=5,KI=5)
real MI(LI,LI),MIINV(LIINV,LIINV)

parameter (LI2=5,LI2INV=5,KI2=5)
real MI2(LI2,LI2),MI2INV(LI2INV,LI2INV)
c *** Specifying the location of the output file ***
open (unit=1, file="c:\savas\programlar\congenmarggen\out.txt")
print *, 'enter sample size'
read *, n
¢ *** Specifying the number of turns in the simulation ***
nn=10000
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c *** Specifying the parameter values ***

bl=0.5
b2=1.0
prho=0.5

pmeanl=0.0
pmean2=0.0
psigmal=1.0
psigma2=1.0

pbetl=prho* (psigma2/psigmal)
pbetO=pmean2-prho* (psigma2/psigmal) *pmeanl
pmean2gl=pmean2-pbetl*pmeanl
psigma2gl=psigma2*sqgrt (1-prho**2)

c *** Means of the null hypothesis ***

meanl0=0.0
mean20=0.0
mean2gl0=0.0

c *** Specifying the values of the Trigamma functions ***

psid_1=1.6449
psid_2=0.6449

if(bl.eqg.0.1) then
psid_bl=101.4316
psid_blplusl=1.4333
else if(bl.eq.0.2) then
psid_bl=26.2674
psid_blplusl=1.2672
else if(bl.eq.0.5) then
psid_bl=4.9348
psid_blplusl=0.9348
else if(bl.eq.1.0) then
psid_bl=1.6449
psid_blplusl=0.6449
else if(bl.eq.2.0) then
psid_bl=0.6449
psid_blplusl=0.3949
else if(bl.eq.3.0) then
psid_b1=0.3949
psid_blplusl=0.2838
else if (bl.eq.4.0) then
psid_b1=0.2838
psid_blplusl=0.2213
else if(bl.eq.6.0) then
psid_b1=0.1813
psid_blplusl=0.1535
else if(bl.eq.8.0) then
psid_b1=0.1331
psid_blplusl=0.1175
endif

if(b2.eq.0.1) then
psid_b2=101.4316
psid_b2plusl=1.4333
else if (b2.eq.0.2) then
psid_b2=26.2674
psid_b2plusl=1.2672
else if(b2.eq.0.5) then
psid_b2=4.9348
psid_b2plusl=0.9348
else if (b2.eq.1.0) then
psid_b2=1.6449
psid_b2plusl=0.6449
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else if (b2.eq.2.0) then
psid_b2=0.6449
psid_b2plusl=0.3949
else if (b2.eq.3.0) then
psid_b2=0.3949
psid_b2plusl=0.2838
else if (b2.eq.4.0) then
psid_b2=0.2838
psid_b2plusl=0.2213
else if(b2.eq.6.0) then
psid_b2=0.1813
psid_b2plusl=0.1535
else if (b2.eq.8.0) then
psid_b2=0.1331
psid_b2plusl=0.1175
endif

c *** The expected values and variances of zi and ai ***

expzi=psi (bl)-psi(1.0)
varzi=psid_bl+psid_1

expai=psi (b2)-psi(1.0)
varai=psid_b2+psid_1

c *** The tabulated values ***
finv=£fin(0.95,2.0,1.0* (n-2))
xki2inv=chiin (0.95,2.0)
xkilinv=chiin (0.95,1.0)
xkininv=chiin(0.95,1.0%*n)
xz095=anorin (0.95)

¢ *** Simulating nn=10,000 random samples ***

do 300 k=1,nn

c *** Producing random marginal and conditional parts ***

call rnun(n,ul)
call rnun (n,u2)
do 10 i=1,n

a(i)=-alog(u2(i)**(-1.0/(1.0%*b2))-1.0)
z (i)=-alog(ul (i) **(-1.0/(1.0*bl))-1.0)
10 continue

c *** Creating 10% outlier for x ***

c r=int (0.1*n+0.5)
c do 15 i=1,r

c z(1)=4.0%z (1)
cl5 continue

c *** Creating mixture model for x ***

c call rnun(n,uext)

c do 15 i=1,n

c if (uext (i) .GT.0.9) then
c z(1)=4.0%z (1)

c endif

cl5 continue
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¢ *** Creating contamination model for x ***

call rnun (n,uext)
call rnun (n,uextcont)
do 15 i=1,n
if (uext (i) .GT.0.9) then
z (i)=uextcont (1) -0.5
endif

15 continue

Qa0 aaaoaaaqa

c *** Generating random x and y pairs ***

do 20 i=1,n

e (i)=psigma2gl*a (i)

x (1) =pmeanl+psigmal*z (i)

y (1) =pmean2gl+pbetl*x (i) +e (1)
20 continue

c *** Ordering x's ***

do 30 i=1,n
xo (1)=x (1)
30 continue

do 50 i=1,n

do 40 j=i+l,n
if(xo(1).GT.x0(j)) then
dummy=xo (i)

x0 (1) =x0(3)

x0 (J) =dummy

endif
40 continue
50 continue

¢ *** Calculating the MML and the LS estimators ***

ml=0.0
m2=0.0
k1=0.0
blt=0.0
xmeanx=0.0
xmeany=0.0

do 60 i=1,n

xi=(1.0%1)/(1.0*n+1)

tl(i)=-alog(xi** (-1.0/(1.0*bl))-1.0)

bettl (i)=exp(-t1(i))/ ((1.0+exp(-tl(i)))**2.0)
alphal (i) =((l+exp (-t1l(i))+tl(i)) *exp(-tl(i)))/
&((1.0+exp(-tl(i)))**2.0)

ml=ml+bettl (1)

1.0*b2))-1.0)

t2(i)=—alog (xi** (=1.0/(
))/ ((1.0+exp(-t2(i)))**2.0)
-t2 (1

*2

bett2 (i)=exp(-t2 (1
alpha2 (i)=((l+exp (
& ((1.0+exp(-t2 (1))
m2=m2+bett2 (1)

)
t ))+t2 (1)) *exp (-t2(1)))/
*%2.0)

)

kl=kl+bettl (i) *xo (i)

d2 (i)=alpha2(i)-1.0/(b2+1.0)

blt=blt+bettl (i)*tl (1)

xmeanx=xmeanx+x (i)

xmeany=xmeany+y (i)
60 continue

xmeanx=xmeanx/ (1.0%*n)

xmeany=xmeany/ (1.0%*n)
k1=k1l/ml
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sx2=0.0
sy2=0.0
sxy=0.0

bel=0.0
cl=0.0

sx2=0.0
sy2=0.0
sxy=0.0

do 70 i=1,n

bel=bel+ (bl+1.0)*(1/(b1+1.0)-alphal(i))*(xo(i)-kl)
cl=cl+ (b1+1.0)*bettl (i) * ((xo(i)-k1l)**2)
sx2=s5x2+ (x (1) —xmeanx) **2

sy2=sy2+ (y (i) -xmeany) **2

sXy=sxy+ (x (1) -xmeanx) * (y (1) —xmeany)
70 continue

sx2=sx2/(1.0*n-1)
sy2=sy2/(1.0*n-1)
sxy=sxy/ (1.0*n-1)

betlls (k)=sxy/sx2

betl (k)=sxy/sx2

rhols (k)=sxy/sqrt (sx2*sy2)

sigma2ls (k)=sqrt (sy2/ ((rhols (k) **2)* (psid_bl+psid_1)+
& (1-rhols (k) **2) * (psid_b2+psid_1)))

mean2ls (k) =xmeany-sigma2ls (k) *

& (psi(b2)-psi(1.0)) *sgrt (1-rhols (k) **2)

&—-sigma2ls (k) * (psi(bl)-psi(1.0))*rhols (k)

sigmal (k)= (bel+sqgrt (bel*bel+4.0*n*cl))/ (2.0*sqrt (1.0*n* (n-1)))
meanl (k)=kl-blt*sigmal (k) /ml

sigmalls (k)=sqgrt (sx2/ (psid_bl+psid_1))

meanlls (k) =xmeanx-sigmalls (k) * (psi (bl)-psi(1.0))
c *** The iteration # 'ite' ***

do 150 ite=1,2

do 80 i=1,n

w(il)=y(i)-betl (k)*x (i)
80 continue

c *** Ordering w's and finding the concomitants x and y ***

do 82 i=1,n

xc (1)=x (1)
yc(i)=y (1)
82 continue

do 87 i=1,n

do 84 j=i+l,n

if(wo(i) .GT.wo(j)) then
dummy=wo (i)

wo (i)=wo (J)

wo (J) =dummy

dummy=xc (1)
xc (i)=xc(3j)
xc (J) =dummy
dummy=yc (i)
yc(i)=yc(J)
yc (3) =dummy

endif
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84
87

120

170

continue
continue

b2y=0.0
b2x=0.0
delt=0.0

do 115 i=1,n
b2y=b2y+bett2 (i) *yc (1)
b2x=b2x+bett2 (i) *xc (i)
delt=delt+d2 (i)
continue

ycmean=b2y/m2
xcmean=b2x/m2

rk2num=0.0
den=0.0
rd2num=0.0
bety2=0.0

do 120 i=1,n
rk2num=rk2num+bett2 (i) * (xc (1) —xcmean) *yc (i)
den=den+bett2 (i) * ((xc (i) —xcmean) **2)
rd2num=rd2num+d2 (i) * (xc (i) —xcmean)
bety2=bety2+bett2 (i) * ((yc (i) -ycmean) **2)
continue

rk2=rk2num/den
rd2=rd2num/den

be2=0.0
do 130 i=1,n
be2=be2+d2 (1) * (yc (i) ~ycmean-rk2* (xc (i) -xcmean))

continue

be2=(b2+1.0) *be2
c2=(b2+1.0) * (bety2-rk2*rk2num)

sigma2gl (k)= (-be2+sqrt (be2**2+4.0*n*c2))/(2.0*sqrt (1.0*n* (n-2)))

betl (k)=rk2-rd2*sigma2gl (k)
continue

xmeanwls=0.0

do 170 i=1,n
wls(i)=y (i) -betlls (k)*x (1)
xmeanwls=xmeanwls+wls (i)
continue
xmeanwls=xmeanwls/ (1.0%n)
sw21s=0.0

do 180 i=1,n
sw2ls=sw2ls+ (wls (i) -xmeanwls) **2
continue

sw2ls=sw2ls/(1.0* (n-2.0)
sigma2glls (k)=sqrt (sw2ls/varai)

mean2glls (k)=xmeanwls-sigma2glls (k) *expai
mean2gl (k) =ycmean-betl (k) *xcmean-delt*sigma2gl (k) /m2

mean?2 (k) =ycmean-betl (k) * (xcmean-meanl (k) ) -delt*sigma2gl (k) /m2

sigma?2 (k) =sqgrt (sigma2gl (k) **2+ (betl (k) *sigmal (k) ) **2)
rho (k) =betl (k) *sigmal (k) /sigma2 (k)
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¢ *** Calculating the derivatives of the 1n likelihood functions at MMLE ***

totz=0.0
totln_lpluse_z=0.0
tota=0.0
totln_lpluse_a=0.0

totgz=0.0
totzxgz=0.0
totga=0.0
totzxga=0.0
totaxga=0.0

do 200 n

i=1,
zhead (i) =(xc (i) -meanl (k))/sigmal (k)
ahead (i)=(yc(i)-(rho(k)*sigma2 (k) /sigmal (k)) *xc (i)
-mean2 (k) + (rho (k) *sigma2 (k) /sigmal (k) ) *meanl (k) ) /
(sigma?2 (k) *sgrt (1.0-rho (k) **2)) totz=totz+zhead (i)

totln_lpluse_z=totln_lpluse_z+alog(l.0+exp (-zhead(i)))
tota=tota+ahead (i)
totln_lpluse_a=totln_lpluse_a+alog(l.0+exp (-ahead(i)))

totgz=totgz+exp (-zhead (i))/ (1.0+exp (-

totzxgz=totzxgz+zhead (i) *exp (-zhead (1

totga=totga+exp (-ahead(i))/ (1.0+exp (-ahead(i)))

totzxga=totzxga+zhead (i) *exp (-ahead(i))/ (1.0+exp (-ahead(i)))

totaxga=totaxga+ahead (i) *exp (-ahead (1)) /(1.0+exp (-ahead(i)))
200 continue

zhead (i)))
))/ (1.0+exp(-zhead(i)))

dlnLdmeanlovern(k)=(1.0/(1.0*n))*(1.0*n/sigmal (k) -
(b1+1.0) *totgz/sigmal (k) -1.0*n*rho (k) /

(sigmal (k) *sqgrt (1.0-rho (k) **2)) +

(b2+1.0) *rho (k) *totga/ (sigmal (k) *sqrt (1.0-rho (k) **2)))

dlnLdsigmalovern(k)=(1.0/(1.0*n))* (-1.0*n/sigmal (k) +
&totz/sigmal (k) - (bl+1.0) *totzxgz/sigmal (k) -

&rho (k) *totz/ (sigmal (k) *sgrt (1.0-rho (k) **2)) +

& (b2+1.0) *rho (k) *totzxga/ (sigmal (k) *sqgrt (1.0-rho (k) **2)))
dlnLdmean2glovern (k)=(1.0/(1.0*n))*(1.0*n/sigma2gl (k) -

& (b2+1.0) *totga/sigma2gl (k))

dlnLdsigma2glovern(k)=(1.0/(1.0*n))*(-1.0*n/sigma2gl (k) +
&tota/sigma2gl (k) - (b2+1.0) *totaxga/sigma2gl (k))

dlnLdbetlovern (k)=(1.0/(1.0*n))* (sigmal (k) *totz/sigma2gl (k) -
& (b2+1.0) *sigmal (k) *totzxga/sigma2gl (k) )

dlnLdmean2overn(k)=(1.0/(1.0*n))*(1.0*n/ (sigma2 (k) *
&sgrt (1.0-rho (k) **2)) - (b2+1.0) *totga/
& (sigma?2 (k) *sqrt (1.0-rho (k) **2)))

dlnLdsigma2overn(k)=(1.0/(1.0*n))*(-1.0*n/sigma2 (k) +

&rho (k) *totz/ (sigma2 (k) *sqrt (1.0-rho (k) **2)) +
&tota/sigma2 (k) - (b2+1.0) *rho (k) *totzxga/

& (sigma2 (k) *sqrt (1.0-rho (k) **2))—(b2+1.0) *totaxga/sigma2 (k))

&dlnLdrhoovern (k)=(1.0/(1.0*n))* (1.0*n*rho(k)/(1.0-rho (k) **2)+
&totz/sqrt (1.0-rho(k)**2)-rho (k) *tota/ (1.0-rho (k) **2) -

& (b2+1.0) *totzxga/sqrt (1.0-rho (k) **2) +

& (b2+1.0) *rho (k) *totaxga/ (1.0-rho (k) **2))

300 continue
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¢ *** Simulating the means, variances, biassquares and mean square errors of the
c MML and LS estimators and the efficiency of the LS estimators as compared to
c the MML estimators in means of variances and mean square erros ***

¢ *** Also simulating the means and variances of derivatives of the lnlikelihood
c functions at MMLE ***

emeanl=0.0
emean2=0.0
esigmal=0.0
esigma2=0.0
erho=0.0
ebet1=0.0
emean2gl=0.0
esigma2gl=0.0

emeanlls=0.0
emean21s=0.0
esigmalls=0.0
esigma2ls=0.0
erhols=0.0
ebetl1ls=0.0
emean2glls=0.0
esigma2glls=0.0

edlnLdmeanlovern=0.0
edlnLdsigmalovern=0.0
edlnLdmean2glovern=0.0
edlnLdsigma2glovern=0.0
edlnLdmean2overn=0.0
edlnLdsigma2overn=0.0
edlnLdrhoovern=0.0
edlnLdbetlovern=0.0

do 350 i=1,nn
emeanl=emeanl+meanl (1)
emean2=emean2+mean? (1)
esigmal=esigmal+sigmal (1)
esigmal2=esigma2+sigma2 (i)
erho=erho+rho (i)
ebetl=ebetl+betl (1)
emean2gl=emean2gl+mean2gl (1)
esigma2gl=esigma2gl+sigma2gl (i)

edlnLdmeanlovern=edlnLdmeanlovern+dlnLdmeanlovern (i)
edlnlLdsigmalovern=edlnlLdsigmalovern+dlnLdsigmalovern (i)
edlnLdmean2glovern=edlnLdmean2glovern+dlnLdmean2glovern (i)
edlnLdsigma2glovern=edlnlLdsigma2glovern+dlnLdsigma2glovern (i)
edlnLdmean2overn=edlnLdmean2overnt+dlnLdmean2overn (i)
edlnlLdsigmaz2overn=edlnLdsigma2overn+dlnLdsigma2overn (i)
edlnLdrhoovern=edlnLdrhoovern+dlnLdrhoovern (i)
edlnLdbetlovern=edlnLdbetlovern+dlnLdbetlovern (i)

350 continue

emeanl=emeanl/ (1.0*nn)
emean2=emean2/ (1.0*nn)
esigmal=esigmal/ (1.0*nn)
esigma2=esigma2/ (1.0*nn)
erho=erho/ (1.0*nn)
ebetl=ebetl/ (1.0*nn)
emean2gl=emean2gl/ (1.0*nn)
esigma2gl=esigma2gl/ (1*nn)

emeanlls=emeanlls/ (1.0*nn)
emean2ls=emean2ls/ (1.0*nn)
esigmalls=esigmalls/ (1.0*nn)
esigma2ls=esigma2ls/ (1.0*nn)
erhols=erhols/ (1.0*nn)
ebetlls=ebetlls/ (1.0*nn)
emean2glls=emean2glls/ (1.0*nn)
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esigma2glls=esigma2glls/ (1*nn)

edlnLdmeanlovern=edlnLdmeanlovern/ (1.0*nn)
edlnLdsigmalovern=edlnLdsigmalovern/ (1.0*nn)
edlnLdmean2glovern=edlnLdmean2glovern/ (1.0*nn)
edlnlLdsigma2glovern=edlnLdsigma2glovern/ (1.0*nn)
edlnLdmean2overn=edlnLdmean2overn/ (1.0*nn)
edlnLdsigma2overn=edlnLdsigma2overn/ (1.0*nn)
edlnLdrhoovern=edlnLdrhoovern/ (1.0*nn)
edlnLdbetlovern=edlnLdbetlovern/ (1.0*nn)

vmeanl=0.0
vmean2=0.0
vsigmal=0.0
vsigma2=0.0
vrho=0.0

vbet1=0.0
vmean2gl=0.0
vsigma2gl=0.0
covmeanlmean2gl=0.0
covmeanlmean2=0.0

vdlnLdmeanlovern=0.0
vdlnLdsigmalovern=0.0
vdlnLdmean2glovern=0.0
vdlnLdsigma2glovern=0.0
vdlnLdmean2overn=0.0
vdlnLdsigma2overn=0.0
vdlnLdrhoovern=0.0
vdlnLdbetlovern=0.0

do 380 i=1,nn
vmeanl=vmeanl+ (meanl (i) -emeanl) **2
vmean2=vmean2+ (mean2 (i) —emean?2) **2
vsigmal=vsigmal+ (sigmal (i) —esigmal) **2
vsigma2=vsigma2+ (sigma2 (i) —esigma2) **2
vrho=vrho+ (rho (i) —erho) **2
vbetl=vbetl+ (betl (i)-ebetl) **2
vmean2gl=vmean2gl+ (mean2gl (i) ~emean2gl) **2
vsigma2gl=vsigma2gl+ (sigma2gl (i) -esigma2gl) **2
covmeanlmean2gl=covmeanlmean2gl+

& (meanl (i) —emeanl) * (mean2gl (i) ~emean2gl)
covmeanlmean2=covmeanlmean2+ (meanl (i) —emeanl) * (mean2 (i) —emean?2)

vdlnLdmeanlovern=vdlnLdmeanlovern+
& (dlnLdmeanlovern (i) —edlnLdmeanlovern) **2
vdlnLdsigmalovern=vdlnLdsigmalovern+
& (dlnLdsigmalovern (i) —edlnLdsigmalovern) **2
vdlnLdmean2glovern=vdlnLdmean2glovern+
& (dlnLdmean2glovern (i) —edlnLdmean2glovern) **2
vdlnLdsigma2glovern=vdlnLdsigma2glovern+
& (dlnLdsigma2glovern (i) —edlnlLdsigma2glovern) **2
vdlnLdmean2overn=vdlnLdmean2overn+
& (dlnLdmean2overn (i) —edlnLdmean2overn) **2
vdlnLdsigmaZ2overn=vdlnLdsigmaZ2overn+
& (dlnLdsigma2overn (i) —edlnLdsigma2overn) **2
vdlnLdrhoovern=vdlnLdrhoovern+
& (dlnLdrhoovern (i) —edlnLdrhoovern) **2
vdlnLdbetlovern=vdlnLdbetlovern+
& (dlnLdbetlovern (i) —edlnLdbetlovern) **2

380 continue

vmeanl=vmeanl/ (1.0*nn)
vmean2=vmean2/ (1.0*nn)
vsigmal=vsigmal/ (1.0*nn)
vsigma2=vsigma2/ (1.0*nn)
vrho=vrho/ (1.0*nn)
vbetl=vbetl/ (1.0*nn)
vmean2gl=vmean2gl/ (1.0*nn)
vsigma2gl=vsigma2gl/ (1.0*nn)
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covmeanlmean2gl=covmeanlmean2gl/ (1.0*nn)
covmeanlmean2=covmeanlmean2/ (1.0*nn)

vdlnLdmeanlovern=vdlnLdmeanlovern/ (1.0*nn)
vdlnLdsigmalovern=vdlnLdsigmalovern/ (1.0*nn)
vdlnLdmean2glovern=vdlnLdmean2glovern/ (1.0*nn)
vdlnLdsigma2glovern=vdlnLdsigma2glovern/ (1.0*nn)
vdlnLdmean2overn=vdlnLdmean2overn/ (1.0*nn)
vdlnLdsigma2overn=vdlnLdsigma2overn/ (1.0*nn)
vdlnLdrhoovern=vdlnLdrhoovern/ (1.0*nn)
vdlnLdbetlovern=vdlnLdbetlovern/ (1.0*nn)

vmeanln=vmeanl*1.0*n
vmean2n=vmean2*1.0*n
vsigmaln=vsigmal*1.0*n
vsigma2n=vsigma2*1.0*n
vrhon=vrho*1.0*n

vbetln=vbetl*1.0*n
vmean2gln=vmean2gl*1.0%*n
vsigma2gln=vsigma2gl*1.0*n
covmeanlmean2gln=covmeanlmean2gl*1.0*n
covmeanlmean2n=covmeanlmean2*1.0*n

vmeanllsn=vmeanlls*1.0*n
vmean2lsn=vmean2ls*1.0*n
vsigmallsn=vsigmalls*1.0*n
vsigma2lsn=vsigma2ls*1.0*n
vrholsn=vrhols*1.0*n
vbetllsn=vbetlls*1.0*n
vmean2gllsn=vmean2glls*1.0*n
vsigma2gllsn=vsigma2glls*1.0*n
covmeanlmean2gllsn=covmeanlmean2glls*1.0*n
covmeanlmean2lsn=covmeanlmean2ls*1.0*n

bias2meanl=(emeanl-pmeanl) **2
bias2mean2= (emean2-pmean2) **2
bias2sigmal=(esigmal-psigmal) **2
bias2sigma2=(esigma2-psigma2) **2
bias2rho=(erho-prho) **2
bias2betl=(ebetl-pbetl) **2
bias2mean2gl=(emean2gl-pmean2gl) **2
bias2sigma2gl=(esigma2gl-psigma2gl) **2

bias2meanlls=(emeanlls-pmeanl) **2
bias2mean2ls=(emean2ls-pmean2) **2
bias2sigmalls=(esigmalls-psigmal) **2
bias2sigma2ls=(esigma2ls-psigma2) **2
bias2rhols=(erhols-prho) **2
bias2betlls=(ebetlls-pbetl) **2
bias2mean2glls=(emean2glls-pmean2gl) **2
bias2sigma2glls=(esigma2glls-psigma2gl) **2

bias2meanln=bias2meanl*1.0*n
bias2mean2n=bias2mean2*1.0*n
bias2sigmaln=bias2sigmal*1.0*n
bias2sigma2n=bias2sigma2*1.0*n
bias2rhon=bias2rho*1.0*n
bias2betln=bias2betl*1.0*n
bias2mean2gln=bias2mean2gl*1.0*n
bias2sigma2gln=bias2sigma2gl*1.0*n

bias2meanllsn=bias2meanlls*1.0*n
bias2mean2lsn=pbias2mean2ls*1.0*n
bias2sigmallsn=bias2sigmalls*1.0*n
bias2sigma2lsn=bias2sigma2ls*1.0*n
bias2rholsn=bias2rhols*1.0*n
bias2betllsn=bias2betlls*1.0*n
bias2mean2gllsn=bias2mean2glls*1.0*n
bias2sigma2gllsn=bias2sigma2glls*1.0*n
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490

xmsemeanl=vmeanl+bias2meanl
xmsemean2=vmean2+bias2mean?2
xmsesigmal=vsigmal+bias2sigmal
xmsesigmaZ2=vsigma2+bias2sigma?2
xmserho=vrho+bias2rho
xmsebetl=vbetl+bias2betl
xmsemean2gl=vmean2gl+bias2mean2gl
xmsesigma2gl=vsigma2gl+bias2sigma2gl

xmsemeanlls=vmeanlls+bias2meanlls
xmsemean2ls=vmean2ls+bias2mean2ls
xmsesigmalls=vsigmalls+bias2sigmalls
xmsesigma2ls=vsigma2ls+bias2sigma2ls
xmserhols=vrholstbias2rhols
xmsebetlls=vbetllstbias2betlls
xmsemean2glls=vmean2glls+bias2mean2glls
xmsesigma2glls=vsigma2glls+bias2sigma2glls

xmsemeanln=vmeanln+bias2meanln
xmsemean2n=vmean2n+tbias2mean2n
xmsesigmaln=vsigmaln+bias2sigmaln
xmsesigma2n=vsigma2n+bias2sigma2n
xmserhon=vrhont+bias2rhon
xmsebetln=vbetlntbias2betln
xmsemean2gln=vmean2gln+bias2mean2gln
xmsesigma2gln=vsigma2gln+bias2sigma2gln

xmsemeanllsn=vmeanllsnt+bias2meanllsn
xmsemean2lsn=vmean2lsnt+bias2mean2lsn
xmsesigmallsn=vsigmallsntbias2sigmallsn
xmsesigma2lsn=vsigma2lsn+bias2sigma2lsn
xmserholsn=vrholsn+bias2rholsn
xmsebetllsn=vbetllsnt+bias2betllsn
xmsemean2gllsn=vmean2gllsn+bias2mean2gllsn
xmsesigma2gllsn=vsigma2gllsn+bias2sigma2gllsn

effvmeanl=100.0*vmeanln/vmeanllsn
effvsigmal=100.0*vsigmaln/vsigmallsn
effvmean2=100.0*vmean2n/vmean2lsn
effvsigma2=100.0*vsigma2n/vsigma2lsn
effvrho=100.0*vrhon/vrholsn
effvmean2gl=100.0*vmean2gln/vmean2gllsn
effvsigma2gl=100.0*vsigma2gln/vsigma2gllsn
effvbetl1=100.0*vbetln/vbetllsn

effmsemeanl=100.0*xmsemeanln/xmsemeanllsn
effmsesigmal=100.0*xmsesigmaln/xmsesigmallsn
effmsemean2=100.0*xmsemean2n/xmsemean2lsn
effmsesigma2=100.0*xmsesigma2n/xmsesigma2lsn
effmserho=100.0*xmserhon/xmserholsn
effmsemean2gl=100.0*xmsemean2gln/xmsemean2gllsn
effmsesigma2gl=100.0*xmsesigma2gln/xmsesigma2gllsn
effmsebet1=100.0*xmsebetln/xmsebetllsn

Output of the simulated means, variances, biassquares and mean square errors
of the MMLE and LSE, and the efficiency of the LSE as compared to the MMLE
in means of variances and mean square errors ***

format (a2,i3, 9x,a5,1x,a6,3x,a5,1x,a6,2x,a7,1x,a8,2x,a6,4x,a3)
write(1,450) 'n=',n, 'meanl', 'sigmal', 'mean2', 'sigma2'
&, 'mean2.1', 'sigma2.1', 'thetal', 'rho'

format (a5, 7x,£7.3,£7.3,1x,£f7.3,£f7.3,£f8.3,f8.3,f10.3,£8.3)
write(1,490) 'mean:', emeanl,esigmal,emean2,esigma?2
&,emean2gl,esigma2gl, ebetl, erho

format (a8, 4%x,£f7.3,£7.3,1%x,£f7.3,£f7.3,£f8.3,f8.3,f10.3,£8.3)
write(1,500) 'n*bias2:',bias2meanln,bias2sigmaln,bias2mean2n,
&bias2sigma2n,bias2mean2gln,bias2sigma2gln,bias2betln,bias2rhon
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550 format (all,1x,£7.3,£7.3,1x,£7.3,£7.3,£8.3,£8.3,£10.3, £8.3)
write(1l,550) 'n*variance:', vmeanln,vsigmaln,vmean2n,vsigma2n,
&vmean2gln,vsigma2gln, vbetln, vrhon

555 format (a6, 6x,£7.3,£7.3,1%x,£7.3,£7.3,£8.3,£8.3,£10.3,£8.3,/)
write(1l,555) 'n*mse:',xmsemeanln,xmsesigmaln,xmsemean2n,
&xmsesigma2n, xmsemean2gln, xmsesigma2gln, xmsebetln, xmserhon

560 format (a7, 5x,£7.3,£7.3,1%x,£7.3,£7.3,£8.3,£8.3,£10.3,£8.3)
write(1l,560) 'meanls:',emeanlls,esigmalls,emean2ls
&,esigma2ls, emean2glls,esigma2glls,ebetlls,erhols

570 format (al0O,2x,£7.3,£f7.3,%,£7.3,£7.3,£8.3,£8.3,£10.3,£8.3)
write(1,570) 'n*bias2ls:',bias2meanllsn,bias2sigmallsn,
&bias2mean2lsn,bias2sigma2lsn,bias2mean2gllsn
&,bias2sigma2gllsn,bias2betllsn,bias2rholsn

580 format (al3,f6.3,£7.3,%,£7.3,£7.3,£8.3,£8.3,£10.3,£8.3)
write(1,580) 'n*variancels:',vmeanllsn,vsigmallsn,vmean2lsn
&,vsigma2lsn,vmean2gllsn,vsigma2gllsn,vbetllsn,vrholsn

585 format (a8,4x,£7.3,£7.3,%x,£7.3,£7.3,£8.3,£8.3,f10.3,£8.3,/
write(1,585) 'n*msels:',xmsemeanllsn, xmsesigmallsn, xmsemean2lsn,
&xmsesigma2lsn, xmsemean2gllsn
&, xmsesigma2gllsn, xmsebetllsn, xmserholsn

588 format (a6,8x,f5.1,2x,f5.1,3x%x,f5.1,2%,£f5.1,3x
&, £5.1,3%,£f5.1,5x%,£5.1,3x,£5.1)
write(1,588) 'effvar', effvmeanl,effvsigmal,effvmean2,effvsigma2,
s&effvmean2gl,effvsigma2gl,effvbetl,effvrho

589 format (a6,8x,f5.1,2x,f5.1,3x%x,f5.1,2%,£f5.1,3x
&, £5.1,3x,£5.1,5%,£5.1,3x%,£5.1,3/)
write(1,589) 'effmse', effmsemeanl,effmsesigmal,
seffmsemean2, effmsesigmaz,
seffmsemean2gl,effmsesigma2gl, effmsebetl, effmserho

c *** Calculating the little simulated covariance matrix for the hotelling T2
c to test meanl=meanl0 and mean2=mean2(0 ***

detom2=vmeanl*vmean2-covmeanlmean2**2
detom2ls=vmeanlls*vmean2ls-covmeanlmean2ls**2

simom21l=vmean2/detom2
simom212=-covmeanlmean2/detom2
simom222=vmeanl/detom2

simom2lsll=vmean2ls/detom2ls
simom21lsl2=-covmeanlmean2ls/detom2ls
simom21ls22=vmeanlls/detom2ls

c *** Simulating the powers of the test statistics for nn=10,000 ***

xpowerast2=0.0
xpoweras2t2=0.0
xpowerasw=0.0
xpowersimw=0.0
xpowersimwls=0.0
simpowert2=0.0
simpowert21s=0.0
simpowert22=0.0
simpowert221s=0.0

do 600 k=1,nn
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c *** The estimated Fisher information matrix of meanl, sigmal, mean2gl, sigma2gl
c and thetal ***

I(1,1)=1.0*n*((bl/ (b14+2.0))*(1.0/ (sigmal (k)**2)))
I(1,2)=1.0*n*((bl/(b1+2.0))* (psi(bl+1.0)-psi(2.0)
&/(51gmal(k)**2))
I(1,3)=0.0
I(1,4)=0.0
I(1,5)=0.0
I(2,1)=1.0*n*((bl/ (b14+2.0))* (psi(bl+1.0)-psi(2.0)
&/(51gma1( ) **2))
I(2,2)=1.0*n*((1.0/(sigmal(k)**2))*(1.0+(b1l/(b1l+2.0))*
(p51d_b1plusl+p51d 2+ (psi(b1+1.0)-psi(2.0))**2)))
1(2,3)=0.0
(2,4)=0.0
I(2,5)=0.0
I(3,1)=0.0
I(3,2)=0.0
I1(3,3)=1.0*n*(b2/ (b2+2. O))/(sigmaZgl(k)**Z)
MI( 4)=1.0*n* (b2/ (b2+2.0)
(p51(b2+1 0)-psi(2. O))/(51gma2gl(k)**2)
I(3,5)=1.0*n* (b2/ (b2+2.0)
&51gmal(k) (psi(bl) pSL(l.O))/(sigma2gl(k)**2)
I(4,1)=0.
M (4,2)=0.
MI (4,3) l.O*n*(bZ/(b2+2.0))*
&(psi(b2+1.0)fpsi(2.0))/(SigmaZgl(k)**2)
I(4,4)=1.0*n*(1.0/(sigma2gl (k)**2))*(1.0+ (b2/ (b2+2.0))*

(p51d b2plusl+psid_2+ (psi (b2+1.0)-psi(2.0))**2)

I(4,5)=1.0*n*(b2/(b2+2.0))* (sigmal (k) / (sigma2gl (k) **2))*
(p51(b1) -psi(1.0)) *(psi (b2+1.0)-psi(2.0)
MI(5,1)=0.0
1(5,2)=0.0
I(5,3)=1.0*n*(b2/ (b2+2.0))*
&s1gma1(k)*(p51(b1)fpsi(1.0))/(sigmaZgl(k)**2)

I(5,4)=1.0*n*(b2/(b2+2.0))* (sigmal (k)/ (sigma2gl (k) **2))*
& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0)

I(5,5)=1.0*n*(b2/(b2+2.0))* ((sigmal (k) /sigma2gl (k))**2)*
& (psid_bl+psid_1+ (psi (bl)-psi(1.0))**2)

c *** The estimated Fisher information matrix of meanl, sigmal, mean2, sigma2
c and rho ***

MIZ(1,1):1.0*n*(1/(Sigmal(k)**Z))*

((b1/ (b1+2.0) )+ (b2/ (b2+2.0)) * ((rho (k) **2) / (1-rho (k) **2)))
MI2(1,2)=1.0*n*(1/(sigmal (k) **2))*
& ((b1l/(b1+42.0))* (psi(bl+1.0)-psi(2.0))
&+ (b2/ (b2+2.0)) * ((rho (k) **2) * (psi (bl) —psi (1.0))/ (1-rho (k) **2)))
MI2(1,3)=-1.0*n*(b2/(b2+2.0))*
& (rho (k) / (sigmal (k) *sigma2 (k) * (1-rho (k) **2)))
MI2(1,4)=-1.0*n*(b2/(b2+2.0))*
& ((rho (k) **2) * (psi(bl) -psi(1.0))/
& (sigmal (k) *sigma2 (k) * (1-rho (k) **2) ) +
& (rho (k) * (psi (b2+1.0) -psi(2.0)))/
& (sigmal (k) *sigma2 (k) *sgrt (1-rho (k) **2)))
MI2(1,5)=-1.0*n*(b2/ (b2+2.0))*
& (rho (k) * (psi (bl)-psi(1.0))/
& (sigmal (k) * (1-rho (k )**2))
& ((rho (k) **2) * (psi (b2+1.0) -psi(2.0)))/
& (sigmal (k) * ((1-rho (k) **2) **1.5)))
MIZ(2,1):1.0*n*(1/(Slgmal(k)**Z))

((b1/ (b1+2.0))* (psi(b1l+1.0)-psi(2.0))
&+ (b2/ (b2+2.0)) * ((rho (k) **2) * (psi (bl) —-psi(1.0))/ (1-rho (k) **2)))

MI2(2,2)=1.0*n*(1/ (sigmal (k) **2))*

&(1.0+ (b1/ (b1+2.0)) * (psid_blplusl+psid_2+ (psi(bl+1.0)-psi(2.0))**2)
&+ (b2/ (b2+2.0)) * ((rho (k) **2) / (1-rho (k) **2))

& (psid_bl+psid_1+ (psi(bl)-psi(1.0))**2))
MI2(2,3)=-1.0*n* (b2/(b2+2.0)) * (psi(bl)-psi(1.0))*

& (rho (k) / (sigmal (k) *sigma2 (k) * (1-rho (k) **2)))
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MI2(2,4)=-1.0*n* (b2/ (b2+2.0))*

& ((psid_bl+psid_1+(psi(bl)-psi(1.0))**2)
& (rho (k) **2) / (sigmal (k) *sigma?2 (k) * (1-rho
& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0
& (sigmal (k) *sigma?2 (k) *sqgrt (1-rho (k) **2)
MI2(2,5)=-1.0*n* (b2/ (b2+2.0))*

& ((psid_bl+psid_1+ (psi(bl)-psi(l.0))**2)*

&rho (k) / (sigmal (k) * (1-rho (k) **2) ) —

& (psi(bl)-psi(1.0))*(psi (b2+1.0)-psi(2.0))* (rho(k)**2)/
& (sigmal (k) * ((1l-rho (k) **2)**1.5)))
MI2(3,1)=-1.0*n*(b2/(b2+2.0))*

*

(k) **2))
)) *rho (k) /
)

& (rho (k) / (sigmal (k) *sigma?2 (k) * (1-rho (k) **2)))
MI2(3,2)=-1.0*n* (b2/ (b2+2.0)) * (psi(bl)-psi(1.0))*
(rho( )/ (sigmal (k) *sigma2 (k) * (1-rho (k) **2)))
MIZ( 3)=1.0*n* (b2/ (b2+2.0)) *
(1. 0/ (51gma2(k)**2) (l-rho (k) **2)))
MIZ( 4)=1.0*n* (b2/ (b2+2.0)) *
&(rho(k)

(psi(bl)fpsi(l.O))/((sigma2(k)**2)*(lfrho(k)**2))+
& (psi(b2+1.0)-psi(2.0))/ ((sigma2 (k) **2) *sqrt (1-rho (k) **2)))
MI2(3,5)=-1.0*n*(b2/ (b2+2.0))*

& ((psi(b2+1.0)-psi(2.0))*

&rho (k) / (sigma2 (k) * ((1-rho (k) **2)**1.5))—

& (psi(bl)-psi(l. O))/(sigma2(k)*(lfrho(k)**Z)))
MI2(4,1)=-1.0*n*(b2/ (b2+2. O)

& ((rho (k) **2) * (psi (bl) -psi (1.0))/

& (sigmal (k) *sigma2 (k) * (1- rho( ) **2) )+

& (rho (k) * (psi (b2+1.0)-psi(2.0)))/
&(sigmal(k)*sigmaZ(k)*sqrt(l rho(k)**Z)))

MI2(4,2)=-1.0*n* (b2/ (b2+2.0)

& ((psid_bl+psid_1+ (psi(bl)-psi(1.0))**2)
& (rho (k) **2) / (sigmal (k) *sigma2 (k) * (1-rho
& (psi(bl)-psi(1.0)) *(psi (b2+1.0)-psi(2.0
& (sigmal (k) *sigma2 (k) *sqgrt (1-rho (k) **2)
MI2(4,3)=1.0*n* (b2/ (b242.0))*

& (rho (k) * (psi(bl)-psi(1.0))/ ((sigma2 (k) **2)* (1-rho (k) **2))+
& (psi(b2+1.0)-psi(2.0))/ ((sigma2 (k) **2) *sqrt (1-rho (k) **2)))
MI2(4,4)=1.0*n*(1.0/(sigma2 (k)**2))*

&(1.0+ (b2/ (b2+2.0)) * ((psid_bl+psid_1+ (psi(bl)-psi(1.0))**2)*
& (rho (k) **2) / (1-rho (k) **2) +

&2.0*rho (k) * (psi(bl)-psi(1.0))* (psi(b2+1.0)-psi(2.0))/

&sqgrt (1-rho (k) **2) +

&psid_b2plusl+psid_2+ (psi(b2+1.0)-psi(2.0))**2))
MI2(4,5)=-1.0*n*(1.0/sigma2 (k))*

& (rho (k) / (1-rho (k) **2) + (b2/ (b2+2.0) ) * (

&(-1.0)* (psid_bl+psid_1+ (psi(bl)-psi(1l.0))**2)*

&rho (k) / (1-rho (k) **2) +

& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0))*

& (rho(k)**2) / ((l-rho (k) **2)**1.5) -

& (psi(bl)-psi(1.0)) * (psi(b2+1.0)-psi(2.0))/

&sqgrt (1-rho (k) **2) +

& (psid_b2plusl+psid_2+ (psi (b2+1.0)-psi(2.0)) **2) *rho (k) /

& (1-rho (k) **2)))

MI2(5,1)=-1.0*n*(b2/ (b2+2.0))*

& (rho (k) * (psi (bl) -psi (1 )/

& (sigmal (k) * (1-rho (k )**2)
& ((rho (k) **2) * (psi (b2+1.0) -psi(2.0)))/

& (sigmal (k) * ((1l-rho (k) **2)**1.5)))
MI2(5,2)=-1.0*n* (b2/ (b2+2.0))*

& ((psid_bl+psid_1+ (psi(bl)-psi(1.0))**2)*

&rho (k) / (sigmal (k) * (1-rho (k) **2) ) —

& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0))*(rho(k)**2)/
& (sigmal (k) * ((1-rho (k) **2)**1.5)))

MI2(5,3)=-1.0*n*(b2/ (b2+2.0))*

& ((psi(b2+1.0)-psi(2.0))*

&rho (k) / (sigma2 (k) * ((1-rho (k) **2)**1.5)) -

& (psi(bl)-psi(1.0))/(sigma2 (k) * (l-rho(k)**2)))

*
(k)

))*rh (k) /
)

0)
)=
)
)
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MI2(5,4)=-1.0*n*(1.0/sigma2 (k))*

4)
(rho(k)/(l*rho(k)**2)+(b2/(b2+2.0))*(
&(=1.0) * (psid_bl+psid_1+ (psi(bl)-psi(1.0))**2)*
&rho (k) / (1-rho (k) **2) +
& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0))*
& (rho (k)
(b

(
**2)/((1 rho (k) **2) **1.5) -
& (psi(bl)-psi(1.0))*(psi(b2+1.0)-psi(2.0))/
&sqgrt (1- rho(k)**2)
& (psid_b2plusl+psid_2+ (psi (b2+1.0)-psi(2.0)) **2) *rho (k) /
& (1-rho (k) **2)))
MI2(5,5)=1.0*n* ((rho(k)**2)/((l-rho(k)**2)**2)+
& (b2/(b2+2.0)) * ((psid_bl+psid_1+ (psi(bl)-psi(1.0))**2)
&/ (1-rho (k) **2)-2.0*rho (k) *
& (psi(bl)-psi(1.0))* (psi(b2+1.0)-psi(2.0))/
& ((l-rho (k) **2)**1.5)+
& ((rho (k) **2)/ ((1-rho (k) **2) **2))*
& (psid_b2plusl+psid_2+ (psi (b2+1.0)-psi(2.0))**2)))

c *** Just taking the inverse of the estimated Fisher information matrices ***

call LINRG (KI,MI,LI,MIINV,LIINV)
call LINRG (KI2,MI2,LI2,MI2INV,LI2INV)

c *** Taking the elements from the inverse of the Fisher Information matrices
c which are the estimated asymptotic covariance matrices ***

asvarmeanl (k)=MIINV (1,1
asvarsigmal (k)=MIINV (2, 2)
asvarmean2gl (k)=MIINV (3, 3)
asvarsigma2gl (k) =MIINV (4,4)
asvarbetl (k) =MIINV (5, 5)
ascovmeanlmean2gl (k)=MIINV (1, 3)

asvarmeanl?2 (k)=MI2INV(1,1)
asvarsigmal2 (k)=MI2INV (2, 2)
asvarmean? (k)=MI2INV (3, 3)
asvarsigma2 (k) =MI2INV (4, 4)
asvarrho (k) =MI2INV (5, 5)
ascovmeanlmean?2 (k) =MI2INV (1, 3)

c *** Calculating the little estimated asymptotic covariance matrix for
c the hotelling T2 to test meanl=meanl0 and mean2=mean20 ***

asbnvmeanl2=asvarmeanl2 (k) * (1.0%*n)
asbnvmean2=asvarmean?2 (k) * (1.0*n)
asbncovmeanlmean2=ascovmeanlmean2 (k) * (1.0*n)

detasom2=asbnvmeanl2*asbnvmean2-asbncovmeanlmean2**2

asom2ll=asbnvmean2/detasom2
asom212=-asbncovmeanlmean2/detasom2
asom222=asbnvmeanl2/detasom2

*** The followings are the test statistics based on asymptotic variances ***
*** ast2 is for meanl=meanl0,mean2gl=mean2gl(Q ***

*** as2t2 is for meanl=meanl(0,mean2=mean20 ***

**% asw is for rho=0 ***

Q0 aa

*** The followings are the test statistics based on simulated variances ***
*** simt2 is for meanl=meanlO,mean2gl=mean2gl0 ***

***% gim2t2 is for meanl=meanl(,mean2=mean20 ***

*** simw is for rho=0 ***

aaQaaQ
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c *** Calculating the test statistics ***

ast2=((meanl (k) -meanl0) **2) /asvarmeanl (k) +
& ((mean2gl (k) -mean2gl0) **2) /asvarmean2gl (k)

ast2f=ast2*((1.0*n-2.0)/(2.0*%(1.0*n-1.0)))

as2t2=1.0*n* (((meanl (k) -meanl0)**2) *asom211l+
& ((mean2 (k) -mean20) **2) *asom222+
&2.0* (meanl (k) -meanl0) * (mean2 (k) -mean20) *asom212)

as2t2f=as2t2*((1.0*n-2.0)/(2.0*(1.0*n-1.0)))

if (prho.eq.0.0)then
vrho_underHO=vrho
vrhols_underHO=vrhols
endif

simw=rho (k) /sqrt (vrho_underHO0)
simwls=rhols (k) /sqrt (vrhols_underHO0)

asw=rho (k) *sqrt (1.0*n* (psid_bl+psid_1)* (b2/ (b2+2.0)))
aswls=rhols (k) *sqgrt (1.0*n* (psid_bl+psid_1)* (b2/ (b2+2.0)))

simt2=( (meanl (k) -meanl0) **2) /vmeanl+
& ( (mean2gl (k) —-mean2gl0) **2) /vmean2gl

simt2f=simt2* ((1.0*n-2.0)/(2.0*(1.0*n-1.0)))

simt21ls=((meanlls (k) -meanl0)**2) /vmeanlls+
& ((mean2glls (k) -mean2gl0) **2) /vmean2glls

simt2lsf=simt21s* ((1.0*n-2.0)/(2.0*(1.0*n-1.0)))

simt22=( (meanl (k) -meanlQ) **2) *simom211+
& ((mean?2 (k) -mean20) **2) *simom222+
&2 .0* (meanl (k) -meanl0) * (mean2 (k) -mean20) *simom212

simt22f=simt22* ((1.0*n-2.0)/(2.0*(1.0*n-1.0)))

simt221s=((meanlls (k) -meanlQ) **2)*simom21lsll+

& ((mean2ls (k) -mean20) **2) *simom21s22+

&2.0* (meanlls (k) -meanl0) * (mean2ls (k) -mean20) *simom21s12
simt221sf=simt221s*((1.0*n-2.0)/(2.0*(1.0*n-1.0)))

c *** Calculating the simulated powers by comparing with the tabulated values ***

if (ast2.GT.xki2inv) then
xpowerast2=xpowerast2+1.0
endif

if(as2t2.GT.xki2inv) then
xpoweras2t2=xpoweras2t2+1.0
endif

if (asw.GT.xz095) then
xpowerasw=xpowerasw+1.0
endif

if (simw.GT.xz095) then
xpowersimw=xpowersimw+1.0
endif

if (simwls.GT.xz095) then

xpowersimwls=xpowersimwls+1.0
endif
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1f (simt2.GT.xki2inv) then
simpowert2=simpowert2+1.0
endif

1if (simt21s.GT.xki2inv) then
simpowert2ls=simpowert2ls+1.0
endif
1f (simt22.GT.xki2inv) then
simpowert22=simpowert22+1.0
endif
1f (simt221s.GT.xki2inv) then
simpowert22ls=simpowert221s+1.0
endif

600 continue
xpowerast2=xpowerast2/ (1.0*nn)
xpoweras2t2=xpoweras2t2/ (1.0*nn)

xpowerasw=xpowerasw/ (1.0*nn)

xpowersimw=xpowersimw/ (1.0*nn)
xpowersimwls=xpowersimwls/ (1.0*nn)

simpowert2=simpowert2/ (1.0*nn)
simpowert2ls=simpowert2ls/ (1.0*nn)

simpowert22=simpowert22/ (1.0*nn)
simpowert22ls=simpowert221s/(1.0%*nn)

c *** The End ***

end
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