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ABSTRACT 

 

 

COMPUTER SIMULATION OF GRAIN BOUNDARY GROOVING BY 

ANISOTROPIC SURFACE DRIFT DIFFUSION DUE TO CAPILLARY, 

ELECTROMIGRATION AND ELASTOSTATIC FORCES 

 

 

AKYILDIZ, Öncü 

Doctor of Philosophy, Department of Metallurgical and Materials Engineering 

Supervisor : Prof. Dr. Tarık Ö. OĞURTANI 

Co-Supervisor : Prof. Dr. M. Kadri AYDINOL 

  

May 2010, 242 pages 

 

 

The aim of this study is to develop a theoretical basis and to perform computational 

experiments for understanding the grain boundary (GB) grooving in polycrystalline 

thin film metallic conductors (interconnects) by anisotropic surface diffusion due to 

capillary, electromigration and elastostatic forces.  

 

To this end, irreversible thermo–kinetics of surfaces and interfaces with triple 

junction singularities is elaborated, and the resulting well-posed moving boundary 

value problem is solved using the front–tracking method. To simulate the strain 

conditions of the interconnects during service, the problem is addressed within the 

framework of isotropic linear elasticity in two dimensions (plane strain condition). 

In the formulation of stress induced surface diffusion, not only the contribution due  



v 
 

to elastic strain energy density (ESED) but also that of the elastic dipole tensor 

interactions (EDTI) between the stress field and the mobile atomic species 

(monovacancies) is considered. In computation of the elastostatic and electrostatic 

fields the indirect boundary element method (IBEM) with constant and straight 

boundary elements is utilized. The resulted non–linear partial differential equation 

is solved numerically by Euler’s method of finite differences. 

 

The dynamic computer simulation experiments identify well known GB groove 

shapes and shed light on their growing kinetics. They also allow generating some 

scenarios under several conditions regarding to the applied force fields and/or 

physicochemical parameters.  

 

The destruction of groove symmetry, termination of the groove penetration with 

isotropic surface diffusivity, ridge/slit formations with anisotropic diffusivity and 

the role played by the wetting parameter are all identified for electromigration 

conditions. The kinetics of accelerated groove deepening with an applied tensile 

stress is examined in connection with GB cavity growth models in the literature and 

a diffusive micro-crack formation is reported at the groove tip for high stresses. On 

the other hand, the use of EDTI provided a means to dynamically simulate GB 

ridges under compressive stress fields with surface diffusion. An incubation time 

for hillock growth and a crossover depth over which GB migration becomes 

energetically favorable is defined and discussed in this context.  

 

Keywords: Thin films, grain boundaries, grooving, surface diffusion, 

electromigration, film stress, cavity growth, crack, hillock.  
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ÖZ 

 

 

KAPİLER, ELEKTROGÖÇ VE ELASTOSTATİK KUVVETLER ETKİSİNDE 

YÖN BAĞIMLI YÜZEY SÜRÜKLENME DİFÜZYONU İLE TANE SINIRI 

OLUKLAŞMASININ BİLGİSAYAR BENZETİMİ 

 

AKYILDIZ, Öncü 

Doktora, Metalürji ve Malzeme Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Tarık Ö. OĞURTANI 

Ortak Tez Yöneticisi : Prof. Dr. M. Kadri AYDINOL 

  

Mayıs 2010, 242 sayfa 

 

 

Bu çalışmanın amacı, çok kristalli ince film metalik iletkenlerde (ara–bağlantılar) 

kapiler, elektrogöç ve elastostatik kuvvetler etkisinde yön bağımlı yüzey difüzyonu 

ile gerçekleşen tane sınırı oluklaşmasını kuramsal yönden ele almak ve meydana 

gelen olayların anlaşılması için bilgisayar benzetim deneyleri gerçekleştirmektir. 

 

Bu amaçla, üçlü kavşak tekillikleri içeren yüzey ve arayüzeylerin dönüşümsüz 

termo–kinetiği özenle işlenmiş, ortaya çıkan iyi halli hareketli sınır değer problemi 

ön takip yöntemi ile çözülmüştür. Ara–bağlantıların çalışma esnasında maruz 

kaldıkları gerinme şartlarının benzetimi problemi iki boyutlu eşyönlü lineer 

elastisite kuramı kapsamında ele alınmıştır (düzlemsel gerinim). Gerilme destekli 

difüzyon probleminde ise elastik gerilme enerjisi yoğunluğunun (EGEY) yanı sıra, 

hareket halindeki kusurlar (mono–boşluklar) ile gerilme alanı arasındaki elastik 
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çift–kutuplu tensörel etkileşimler (EÇTE) de hesaba katılmıştır. Elastostatik ve 

elektrostatik alanlar, sabit ve doğrusal elemanların kullanıldığı, dolaylı sınır eleman 

yöntemi kullanılarak hesap edilmiştir. Elde edilen doğrusal olmayan kısmi 

diferansiyel denklem Euler’in sonlu farklar yöntemi kullanılarak çözülmüştür. 

 

Dinamik bilgisayar benzetim deneyleri ile deneysel olarak gözlemlenen belli başlı 

oluk şekilleri elde edilmiş, bunların büyüme kinetikleri incelenmiştir. Uygulanan 

kuvvet alanları ve/veya fizikokimyasal etkenlere bağlı birtakım senaryolar da bu 

sayede incelenebilmiştir. 

 

Elektrogöç şartlarına maruz bırakılan filmlerde oluk simetrisinin bozulması, 

eşyönlü yüzey difüzivitesi ile oluk derinliği için bir üst sınırın oluşması, yön 

bağımlı yüzey difüzivitesi ile sırt/kesik oluşumları ve tüm bu oluşumlarda ıslanma 

etkeninin oynadığı rol incelenmiştir. Uygulanan çekme gerilmesi ile hızlanan 

oluklaşma kinetiği, literatürde yer alan tane sınırı oyuk büyümesi modelleri ile 

karsılaştırmalı olarak incelenmiş, yüksek gerilmelerde tane sınırında difüzif mikro–

çatlak oluştuğu görülmüştür. Diğer taraftan, gerilme destekli difüzyonun 

tanımlanmasında EÇTE’nin kullanılmış olması, baskı gerilmesi altında tane 

sınırlarında sırt oluşumunun yüzey difüzyonu ile açıklanabilmesine ve dinamik 

bilgisayar benzetimlerinin yapılabilmesine imkân vermiştir. Bu bağlamda, tepecik 

büyümesi için kuluçka zamanı ve tane sınırı göçünün enerjik olarak elverişli hale 

geldiği bir geçiş derinliği tanımlanmış ve tartışılmıştır.        

 

Anahtar Sözcükler: İnce filmler, tane sınırı, oluklaşma, yüzey difüzyonu, 

elektrogöç, film gerilmesi, oyuk büyümesi, çatlak, tepecik.    
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CHAPTER 1 
 
 
 
 

LITERATURE SURVEY 
 
 
 
 
 
 

1.1. Introduction 
 

Polycrystalline materials are composed of tiny perfect crystalline regions (grains) in 

between internal interfaces called grain boundaries. Grain boundaries and the 

external free surfaces (which separate the material from the environment) determine 

the morphology of the material at a major extent.  

 

A material may change its morphology through interface motion if a driving force 

exists. An important special case, which is the focus of this dissertation, is the grain 

boundary grooving. Wherever a grain boundary intersects a free surface and 

whenever the topographic variation associated with the atomic motion is favored by 

total free energy dissipation, the surface grooves. Grooving can occur via several 

mass transport mechanisms, such as surface diffusion, bulk diffusion, and 

evaporation and condensation. Surface diffusion dominates for temperatures far 

below the melting temperature, and for grooves less than 10 micron in size (Mullins 

& Shewmon, 1959). If the surface evolution is driven solely by the total excess free 

energies associated with the interfaces the resulting force for motion is 
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conventionally called a capillary force, and the new formation is termed as a 

thermal groove. In addition to a capillary force, a force for interface motion is 

produced whenever motion of the interface allows an applied force to perform 

work: such a force is an applied force (Balluffi et al., 2005). 

 

This dissertation focuses on grain boundary grooving by anisotropic surface 

diffusion. Applied electrostatic and elastostatic fields are allowed to perform work 

on the surfaces of crystals separated by a stationary grain boundary which grooves 

in the direction normal to the initial flat surface. An irreversible thermo–kinetics 

formalism which results well posed moving boundary value problem describing the 

dynamics of curved surfaces and interfaces under external force fields is employed. 

Then coupled problems of two dimensional linear elasticity and electrostatic 

potential distribution for each surface configuration are solved by indirect boundary 

element method. The resulted nonlinear partial differential equation (PDE) for 

surface drift diffusion is solved numerically by Euler’s method of finite differences.  

 

The phenomenon constitutes a problematic basis for silicon based devices. An 

integrated circuit (IC) contains various interconnected semiconductor components, 

such as transistors, resistors, capacitors and diodes. Thin films of copper or 

aluminum/copper alloys (part of the metallization on a device) make electrical 

contact between these devices on a chip and commonly called as interconnects. 

These lines are exposed to current densities increasing from 106 A/m2 to 1010 A/m2, 

operate at temperatures about one third of their melting point (Tm=933 K for Al) 

and subjected to stresses about 200-800 MPa during production and service 
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(Ohring, 1971; Jones & Basehore, 1987; Greenebaum et al., 1991; Korhonen et al., 

1991). Under these extreme conditions grain boundary grooves may lead to two 

well known failure mechanism during their evolutionary adventure: 1) film 

agglomeration (a groove penetrates and finally reaches the substrate); 2) short 

circuiting (abnormal growth of hillocks on the groove shoulders). Therefore a 

fundamental understanding of the thermodynamics and evolution kinetics of 

interconnects is the key to the fabrication and reliable operation of the 

microelectronic devices.  

 

The literature on morphological evolution of anisotropic surfaces and interfaces 

mainly rely on classical thermodynamics. The idea is to minimize the free energy of 

the system by suitable mechanism of mass transport. Considering systems at 

equilibrium a driving force is determined from the total free energy variation, and a 

linear kinetic law is used to relate the driving force to the flux. Using this flux, 

surface shape is updated according to mass conservation. In this chapter a detailed 

review of these models are given; and the shortcomings due to the assumption of 

equilibrium is highlighted. 

 

On the other hand the theoretical backbone of this dissertation is the irreversible 

thermo–kinetics theory of interfaces covering triple junction singularities developed 

by Ogurtani (2000). In chapter 2, following the fundamental postulate irreversible 

thermodynamics, conjugate forces and fluxes that derive the shape evolutions 

through continuity will be derived.  
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1.2. Kinetics of morphological changes by surface diffusion 

 

It is useful to outline the surface diffusion driven motion of an arbitrary surface 

before proceeding further into the detailed literature review. The atomic flux (vector 

field; the bar signs over symbols are to denote vector quantities) on such a solid 

surface given in figure 1.2.1 may be defined at a per length basis by:  

 

  
# of atoms

length time
J 


 
( m−1 s−1)

 
(1.2.1) 

 

 

 

 

Figure 1.2.1: An arbitrary surface in the x-y plane. t̂  is the unit tangent and n̂  is 

the unit normal vector, the subscripts σ, b, v on the fluxes denote the surface, bulk, 

and void phases respectively. When evaporation condensation mechanism is active, 

bJ


 and vJ


 entering (leaving) the surface element should also be considered. At a 

given time any point on the surface may be represented by position vector r(x,y)


. 
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When a surface element gains atoms, it moves with a velocity nv  (scalar field) in 

the direction normal to the surface. Defining   as the volume per atom in the solid 

the ratio nv


 gives the atoms gained per unit area per unit time. This quantity is 

related to the flux divergence through conservation of mass: 

 

0     (the continuity equation)nv
J 





 
( m−2 s−1)  (1.2.2a) 

 

nv J  


 
(m s−1) (1.2.2b) 

 

Once the diffusion flux is obtained surface can be evolved using the velocity 

calculated by this equation. The atomic flux on the surface can be related to the 

driving force for diffusion through atomic mobility M by using a linear kinetic law 

(Sun & Suo, 1997): 

 

J MF 
 

  ( m−1 s−1) (1.2.3) 

 

This connection is a typical consequence of linear irreversible thermodynamics as 

shown in the next chapter and as underlined by Sun and Suo (1997) is incidentally 

adopted by Herring (1951) and Mullins (1957).  

 

The literature of diffusion controlled surface morphological changes is fulfilled by 

the following concept: the driving force in Eq. (1.2.3) may be interpreted as a 
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gradient energy which is everywhere continuous even at the singularities; otherwise 

the flux might go to infinity. The assumed surface diffusion potential is a scalar 

field that reflects a change in energy that results from the motion of species; 

therefore, it includes energy-storage mechanisms and any constraints on motion 

(Ballufi et al., 2005). Therefore all efforts start with a definition of the term surface 

chemical potential, σ  whose gradients drive the overall processes. On the other 

hand if one follows the irreversible thermodynamics formalism, the conjugate 

forces and fluxes given in Eq. (1.2.3) may be obtained from the Helmholtz or power 

dissipation function. Helmholtz function for an isothermal system is the internal 

entropy production multiplied by the temperature; the topic will be discussed into 

detail in chapter 2. However by definition, the diffusion fluxes of individual 

chemical species in entropy production term can’t transfer into an operationally 

definable reference system, such as a solid lattice even for isotropic solids under the 

mechanical equilibrium condition (de Groot, 1951; Haase, 1969). This argument 

strictly makes use of the chemical potentials thermodynamically meaningless. The 

present thesis follows the irreversible formalism developed originally by Ogurtani 

(2000) for interfaces having singularities in contrast to which may be called Herring 

formalism that is going to be detailed in this chapter.  

 

Following Herring school, the driving force in Eq. (1.2.3) is a vector on the 

interface that is derived from gradient of a scalar field which has units of energy per 

atom. If atoms diffuse from an interfacial element with high potential to another 

with low potential, then the driving force is the negative gradient of the surface 

diffusion potential σ : 
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F  


   (N −1)
 

(1.2.4) 

 

Substituting Eqs. (1.2.4→3→2) and assuming a position independent atomic 

mobility one can relate the normal velocity of the free surface to the Laplacian of 

the surface diffusion potential: 

 

2
σnv M       (m s−1) (1.2.5) 

 

Another common representation of Eq. (1.2.5) may be obtained by the following 

form of the Nernst – Einstein equation which ties the mobility and surface self 

diffusivity, D : 

 

h D
M

kT
 


 (1.2.6) 

 

Here hσ is the thickness of the surface layer, k is the Boltzmann constant and T is the 

absolute temperature.  Substitution Eq. (1.2.6→5) yields: 

 

2
σn

D h
v

kT
     (m s−1)  (1.2.7) 
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1.3. Energetics of morphological changes by surface diffusion 

 

If there is no exchange of energy between the solid and its surroundings then the 

change in free energy for a given change in shape represents the driving force for 

that shape change (Eq. 1.2.4). So, the next step is to obtain a proper definition for 

the total free energy that could be used in connection with Eq. (1.2.7). The very first 

study in this field came from Herring in 1951 which strictly rely on the equilibrium 

thermodynamics and the Gibbs description of interfaces and surfaces (Gibbs, 1948; 

Defay et al., 1966). He extends the classical Gibbs-Thomson equation for an 

orientation dependent surface tension γs, as in a crystal. 

 

1.3.1. Herring’s equation of curvature dependent chemical potential  

 

The Gibbs-Thomson equation reflects typical consequence of the dependence of 

equilibrium vapor pressure of a liquid drop on its radius of curvature; i.e. it relates 

the curvature of a surface to the chemical potential of the surface atoms when 

surface tension γs, is independent of orientation. Herrings theory, in a similar way, 

assumes that the free energy of the system is the surface energy summed over all 

surfaces and grain boundaries, and the amount of free energy decrease is associated 

with per unit volume of matter moving per unit distance on the surface and as a 

result describes a driving force at every point on the solid surface.  
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Figure 1.3.1.1: The curve h(x) between x=A and B represents a portion of the cross 

section of a surface between bulk and void phases. h΄(x) is the surface perturbed by 

an infinitesimal amount δh(x).  

 

Mullins (1963) gives a derivation of Herring’s equation using calculus of variations 

in two dimensions by considering a monocomponent system, under no applied 

pressure. In such a system surface tension γs, is equal to the specific surface free 

energy, fσ. Then the value of the surface free energy, F associated with the curve in 

figure 1.3.1.1 from A to B, per unit depth, is given by:  

 

   2
σ 1s s

B B B

x x x

A A A

F d h h dx G h dx        (1.3.1.1) 

 

Here xh  represents differentiation with respect to x; simply it is the slope of the 

curve at any point and used as an argument for γ, since it determines the orientation 

of the surface element. Then if an infinitesimal rearrangement of material forms the 

new surface: h΄(x)=h(x)+δh(x). The corresponding variation in Fσ is obtained by 

calculus of variations as: 
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 

σ

B B B

x
x x xA A A

d hdG dG d dG
F h dx dx hdx

dh dh dx dx dh


  

 
     

 
    (1.3.1.2) 

 

Here for simplicity δh(A)= δh(B)=0 and  
B

A

h x dx =0. Assuming the chemical 

potential σ σ 0      to be uniquely determined at all elements of the surface apart 

from the constant 0 ,  F  must also be given by the following expression: 

 

 σ σ 0 σ

1 1B B

A A

F hdx hdx       
    (1.3.1.3) 

 

Here, 0  is defined as the chemical potential at standard state which can arbitrarily 

be assigned to the value zero in the reservoir, Ω is the atomic volume and δhdx/Ω 

gives the number of atoms added to the interval dx. Subtracting Eq. (1.3.1.2→3): 

 

σ0
B

xA

d dG
hdx

dx dh

 
          
  (1.3.1.4) 

 

Since δh is arbitrary:  

 

  2
σ 1s x x

x x

d dG d d
h h

dx dh dx dh
 

   
       

   
 (1.3.1.5) 
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Using following equalities in performing differentiations: 

 

arctan( )xh  ,          
2

1

1
s s

x x

d d

dh h d

 





,            xx
x

d d
h

dx dh
   

 

Eq. (1.3.1.5) yields: 

 

 
2 2

σ 32 2
2 21

s xx s
s s

x

d h d

d dh

    
 

   
        

   
 (1.3.1.6) 

 

Here,  
3

2 21xx xh h


    is the curvature at a point on the surface and taken to be 

positive when the surface is concave towards the bulk. For isotropic γ, as in liquids, 

Eq. (1.3.1.6) directly reduces to Gibbs-Thomson equation. Substituting Eq. (1.3.1.6) 

into (1.2.7), one may specify a governing differential equation for capillarity 

induced evolution of surfaces and interfaces.  

 

1.3.2. Chemical potential for stressed solid surfaces  

 

In the development of the chemical potential for stress assisted morphological 

changes the following underlying assumptions, which are well summarized by 

Freund (1998) are considered: a) the time required for a perturbed system to reach 

mechanical equilibrium is typically very small compared to times characteristic of 

mass rearrangement mechanisms so the mechanical fields are assumed to be in 

equilibrium at all times b) no externally applied traction acts on the evolving part of 
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the interface c) all mass rearrangement is coherent; a well defined stress free 

reference state always exists d) the thermodynamic system is considered as an 

isochoric isothermal system and there is no exchange of energy between the system 

and its surroundings.  

 

Asaro & Tiller (1972) made a first serious attempt to develop an equilibrium 

thermodynamic model of interfacial morphological evolutions by adding the elastic 

strain energy density directly to the chemical potential defined on a surface. They 

have discovered that a flat surface of a solid under an elastic strain is unstable and 

can undulate by surface diffusion; the instability may cause the surface to nucleate 

cracks (stress corrosion cracking). In later studies Grinfel'D (1986) and Srolovitz 

(1989) have performed the very same linear stability analysis to show that there is a 

critical wave length of given perturbation over which a given surface is unstable 

against undulations. For honoring the authors this phenomenon is usually named as 

ATGS instability.  

 

The adopted chemical potential by these authors account for strain energy density w 

given to an isotropic surface layer with the infinitesimal addition of matter, to make 

it fit coherently: 

 

 σ 0 sw       (1.3.2.1a) 

 

Here, 0  is defined as the chemical potential at standard state which is also defined 

by Herring as flat surface under zero pressure. In this equation the sign convention 
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for curvature is due to Herring and taken to be positive when the surface is concave 

towards the bulk (crest on surface)  as in Eq. (1.3.1.6), yet the selection is arbitrary 

and many authors accept vice versa; a positive curvature for a convex void (trough 

on surface): 

 

 σ 0 sw       (1.3.2.1b) 

 

Both equations are equivalent as long as sign convention is defined properly; the 

present works adopts the final convention in deriving related equations in the next 

chapter likewise Rice and Chuang (1981), Suo et al. (1994), Gungor et al. (1998) 

and in their many publications.  

 

In an earlier work, Herring (1950) gives the chemical potential along a flat grain 

boundary gb due to a tensile stress acting normal to it as:  

 

gb 0     (1.3.2.2a) 

 

This is justified as follows; the traction felt by the grain boundary is displaced with 

the addition of an atom as the grain expands by volume Ω; the displacement 

contributes to work and reduces the potential energy of the system by a 

corresponding amount. Later Rice and Chuang (1981) modify Eq. (1.3.2.2) by 

adding strain energy density term: 
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gb 0 ( )w       (1.3.2.2b) 

 

This addition however makes little sense since the stresses are generally much less 

than the elastic modulus (σ2/Eσ) and can be neglected when accompanies a stress 

term. This simple fact was anticipated by Srolovitz (1989) and even by the authors 

themselves.  

 

More complete models that account anisotropy and the coupling between surface 

tension and normal surface stress has been developed in studies by Grilhe (1993), 

and Wu (1996) and Freund (1998). Nevertheless Eqs. (1.3.2.1, 2) are the most 

commonly accepted chemical potentials and basis of the results reported on 

diffusive evolutions of stressed solid films or islands. Using the linear kinetic law 

given in Eq. (1.2.3); Eqs. (1.3.2.1a, 2a)→(1.2.4)→(1.2.3) substitution gives the 

surface and grain boundary flux of diffusing atoms on a stressed solid: 

 

2
2

σ

1
J

2 h s

Dh

kT E
    
 

     
   

( m−1 s−1) (1.3.2.3a) 

 

gbJ h

Dh

kT
  

 
( m−1 s−1) (1.3.2.3b) 

 

Here linear elasticity and plain strain conditions are assumed, h  is the tangential 

stress component along the surface and/or interface layer (hoop stress),    is the 

Poisson’s ratio, and E is the elastic modulus. 
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1.3.3. Defining a thermodynamic system: Isobaric and isochoric systems 

 

The role played by the elastic strain energy density and energy momentum tensor 

on the instability of surface and interface undulations and the growth of epitaxial 

thin films on substrates with or without the presence of external forces has recently 

been investigated by Ogurtani (2010). The author states that the role played by the 

elastic strain energy density in isolated systems that are bounded by the fixed rigid 

walls and/or the traction free surfaces in the absence of the external body forces 

(isochoric; internally strained) might be positive (like the case given in Eqs. 1.3.2.1) 

and the elastic strain energy density becomes a main source for the instability and 

surface roughness. It follows that, in the presence of applied force fields (isobaric 

systems), its role changes and it becomes a source for stability similar to the 

capillary forces for both tensile and compressive stresses. However, there exists 

confusion in the literature due to ill defined thermodynamic systems and due to 

referring to Herring’s work (1950) for both cases in which the interface 

displacement process has been treated as an isothermal reversible process by 

minimizing the total Helmholtz free energy function. As shown by Ogurtani and 

Oren (2005) this results in an apparent sign conflict between isobaric and isochoric 

systems.  

 

1.3.4. Theory of electromigration  

 

Electromigration (EM) is the transport of material in a conductor under the 

influence of an applied electrical potential gradient. It is generally considered to be 
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the result of momentum transfer from the electrons to the ions which make up the 

lattice of the interconnect material (Arzt & Nix, 1991). 

 

When electrons are conducted through a metal, they interact with imperfections in 

the lattice and scatter. Scattering occurs whenever an atom is out of place for any 

reason. Thermal energy produces scattering by causing atoms to vibrate. This is the 

source of resistance of metals; the higher the temperature, the more out of place the 

atom is, the greater the scattering and the greater the resistivity. An applied 

electrical potential gradient can induce diffusion (electromigration) in metals due to 

a cross effect between the diffusing species and the flux of conduction electrons that 

will be present (Ballufi et al., 2005). For EM one needs a lot of electrons, and also 

one needs electron scattering. EM does not occur in semiconductors, but may in 

some semiconductor materials if they are so heavily doped that they exhibit metallic 

conduction. 

 

The force acting on diffusing atoms in a conductor originates from the sum of two 

contributions: 1) the direct electrostatic force tending to drive ions toward the 

cathode, and 2) the ‘friction force’ caused by the momentum exchange between 

ions and scattered electrons (electromigration) tending to drive ions ionic motion in 

the opposite direction. The latter, i.e. the electron wind force usually dominates so 

that atomic drift is towards the anode. Accordingly, to describe the EM process an 

electrostatic analogue may be used. The driving force for electromigration 

expressed in this way is: 
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* *F Z eE Z e j 
  

 
 (1.3.4.1) 

 

Here, *Z  is the effective valance or effective charge, e  is the unit electrostatic 

charge, E  is the electrostatic field,   is the resistivity and j  is the current density. 

The value of *Z  has been expressed by Huntington & Grone (1961) by using a semi 

classical ballistic model as: 
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
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 (1.3.4.2) 

 

Here N  is the density of conducting electrons, d  is the specific defect resistivity, 

dN  the defect density,   is the metal resistivity, and *m  is the effective mass of 

the electrons near the Fermi surface taking part in the momentum exchange. The 

effective charge *Z  characterizes the momentum transfer and can be inferred from 

experimental data. 

 

Above consideration gives the generally excepted description of electromigration 

physics in failure modeling of IC conductors and successful in explaining many 

observed features, yet the existence of direct force is has been a highly controversial 

issue (Hoekstra et al., 2002) and is of an academic interest. In an alternative 

derivation of the driving force for electromigration, Lodder (1991) discussed the 

role of electron – phonon interactions to hinder the electrons in screening the force 

on the bare ion. He claims that the electron – phonon interactions could dominate 
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for dilute interstitial alloys at the elevated temperatures where electromigration 

experiments are commonly done. The reader is referred to Hoekstra et al. (2002) for 

a nice discussion on the essence of electron – phonon interactions. 

 

In general, one can separate electromigration-driven diffusion into three: surface 

electromigration, bulk electromigration and grain boundary electromigration. The 

schematic picture of these diffusion paths can be seen in figure 1.3.4.1. 

 

 

 

 

Figure 1.3.4.1: The diffusion paths of electromigration (Oren, 2003). 

 

The surface diffusion is the fastest one and in generally grain boundary diffusion is 

more rapid than interfacial or bulk diffusion. According to Lloyd (1997), the 

activation energies, Ea, for the pathways are in general, 

 

 3
3

2
surface grain boundary bulk

a a aE E E   (1.3.4.3) 
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Using the linear kinetic law given in Eq. (1.2.3); Eq. (1.3.4.1)→(1.2.3) substitution 

in connection with Eq. (1.3.1.6) gives the surface flux of atoms due to electron wind 

force and capillary force: 

 

 *
s

Dh
J eZ E

kT


     


 
 ( m−1 s−1)  (1.3.4.4a) 

 

Here the sign convention for curvature is due to Herring and taken to be positive 

when the surface is concave towards the bulk as is used in Eq. (1.3.1.6) and 

E  


 is the electric field vector, where   is the electrostatic potential. 

Similarly the grain boundary flux of atoms due to electron wind force along a flat 

grain boundary ( 0  ) is: 

 

 *
gb

Dh
J eZ E

kT
 



 

 
( m−1 s−1) (1.3.4.4b) 

 

1.4. Mullins’ theory of thermal grooving 

 

Thermal grooving at grain boundaries is a process of capillary – driven evolution of 

surface topography in the region where a grain boundary emerges to intersect a free 

surface of a polycrystalline material. Mullins (1957) derived a general PDE for the 

rate of change of the profile of a surface for profile changes occurring by surface 

diffusion mechanism under the following assumptions: 
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(1) The system is closed and contains a metal poly-crystal in quasi-equilibrium 

with its vapor. 

(2) Interface properties are independent of crystallographic orientation. 

(3) All matter transport occurs by surface self diffusion. 

(4) Macroscopic concepts such as surface free energy and curvature are valid. 

(5) There is negligible flow of matter out of the grain boundary; instead, the role 

of the boundary is to maintain the correct equilibrium angle. 

(6) Absolute value of the profile slope is everywhere small compared to unity; 

the small slope assumption (SSA). 

 

Under these assumptions he follows the very same procedure described above (Eq. 

1.3.1.6→1.2.7) and obtains following equation:  

 

2
2Ω

 s
n

D v
v

kT
  

 
(m s−1) (1.4.1) 

 

Here, Mullins adopted 
Ω

h
v  as the number of per unit area, instead of using h  

itself. Owing to isotropy he collects all physical constants into one (B=DσγsΩ
2v/kT) 

and rewrites Eq. (1.4.1) explicitly in terms of h(x,t): 

 

   
31/22 2 21 1x xx x

h
B h h h

t x x

               
 (1.4.2) 
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This nonlinear PDE is in fourth order in space and hard to solve analytically. 

Mullins linearized this equation referring to the assumption (6) given above: slope 

of the surface is everywhere small compared to unity ( 1xh  ; corresponds to a 

dihedral angle close to 180˚): 

 

xxxx

h
Bh

t


 


 (1.4.3) 

 

He considers a symmetrically disposed stationary grain boundary at x=0 that is 

perpendicular to the free surface as in figure 1.4.1. Then he formulates the 

following initial and boundary conditions: 

 

 ,0 0h x   (1.4.4a) 

 0, tan 1xh t m    (1.4.4b) 

   0, 0, 0  gb xxxJ t h t   (1.4.4c) 

   , , 0xh t h t     (1.4.4d) 

 

Eq. (1.4.4a) is an initial condition for the problem and assumes an initially flat 

surface. Eqs. (1.4.4b, c) are the boundary conditions for the triple junction; the first 

one fixes the dihedral angle (φ=π-2θ) at the groove root through mechanical 

equilibrium (sinθ=γgb/2γs=λ; where λ may be called as the wetting parameter) and 

the second sets the flux of atoms out of the boundary to zero. And 1.4.4d assures 

that flat surface remote from the triple junction at all time.  
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Figure 1.4.1: Sketch of the curve h(x,t); the surface profile function. d is the groove 

depth measured from the maxima and w is the separation between the two maxima, 

namely the groove width. γgb and γs are the grain boundary and surface tensions 

respectively. φ=π-2θ is the equilibrium dihedral angle, force balance requires        

2γs sinθ =γgb at the groove root.  

 

Mullins obtains an analytic solution of Eq. (1.4.3) subjected initial and boundary 

conditions defined in Eqs. (1.4.4) as:  

 

     1/4
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 (1.4.5b) 

 

Here,   is the gamma function. It is inferred from Eq. (1.4.5) that the groove shape 

is dependent upon the material constant m=tanθ; but is independent of time and the 

physical parameters comprising B. Mullins (1957) stated that the groove instantly 
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attains a constant shape whose linear dimensions grow in proportional to t1/4, and 

deduce two technically important equations:  

 

d=0.973m(Bt)1/4 (1.4.6a) 

 

w=4.6(Bt)1/4 (1.4.6b) 

 

The first kinetic equation stands for the steady shape grooves’ depth, d and second 

for its width, w (see Fig. 1.4.1). These two equations give possibility to determine 

surface diffusion constants experimentally as we will see later in this chapter.  

 

After Mullins’ publication in 1957 considerable amount of work had been dedicated 

by several investigators to obtain a solution that accounts finite slopes at the groove 

root; some of them will be cited here. Robertson (1971) transforms the nonlinear 

PDE to an ordinary differential equation of Z(u) by inserting Eq. (1.4.5a) to Eq. 

(1.4.2) and numerically integrates it to obtain solutions for finite slopes ranging 

from 0 to 4. He found groove depths lower than estimated by Eq. (1.4.6a) for finite 

slopes. Zhang & Schneibel (1995) use method of lines approach to solve Eq. 

(1.4.2); Khenner et al. (2001) categorize the problem as a two dimensional initial 

boundary value problem of type Hamilton-Jacobi and proposed a numerical solution 

by using a level set method. Both articles address and discuss several numerical 

methods to solve the nonlinear PDE. The conclusion shared is that the groove 

profile stays self similar; the width and height of the groove grow with time t as t1/4 

as predicted by Mullins’ small slope solution.  
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Several cases regarding to geometry had also been studied in the literature. Mullins 

theory assumes an isolated groove and it can be inferred from his solution that every 

film subjected to a long enough annealing time will rupture. Hackney & Ojard 

(1988) consider an array of equally spaced parallel grain boundaries with the same 

symmetric contact angle (Fig. 1.4.2a) under SSA. They employ following boundary 

conditions: 

 

   , , tan 1x xh R t h R t m      (1.4.7a) 

   , , 0  gb xxxJ R t h R t   (1.4.7b) 

 0, 0xh t   (1.4.7c) 

 

The third one is the symmetry condition at the center of the grain, whilst the others 

are self explanatory for a groove root placed to a distance R. They gave an analytic 

solution for Eq. (1.4.3) that accounts finite grain size 2R. Later Zhang and 

Schneibel (1995) and Khenner et al. (2001) studied the very same system by solving 

Eq. (1.4.2) numerically. Both authors observe termination of grooving at long times 

after formation of identical circular arcs that connect adjacent grain boundaries; a 

result anticipated long time ago by Srolovitz and Safran (1986) merely from 

energetic calculations. They show that a groove may go to a finite depth even after 

an infinite time to anneal and estimate the conditions under which film rupture 

happens (groove divides the bicrystal into two pieces; and therefore give rise to 
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island formation on a substrate) as a function of film aspect ratio (2R/w0; see Fig. 

1.4.2) and dihedral angle.  

 

Huang et al. (2001) consider a different set of boundary conditions for the end 

points that are free to move in lateral direction to account finite plate like grains that 

have semicircular ends (constituting a closed loop, Fig. 1.4.2b). Through large 

number of finite element analyses they have deduced an empirical formula that 

relates minimum dihedral angle (below which no splitting occurs) to the film aspect 

ratio.  

 

 

 

 

Figure 1.4.2: Schematic representation of a) continuous array of grains, b) plate 

like grains that have semicircular ends. Symmetry prevails due to assumed isotropic 

surface properties and solution for the solid lines is enough for interpretation.   

 

Ogurtani and Akyildiz (2005) utilize three different; reflecting, interactive (Fig. 

1.4.2a) and free moving (Fig. 1.4.2b) boundary conditions and perform thermal 

grooving simulations on tilted and normal grain boundaries. Yet, their way of 

treating the triple junction singularity was completely different from those cited 
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here and based on a mathematical model which flows only from fundamental 

postulates of irreversible thermodynamics (see chapter 2). They showed existence 

of a transient regime and incorporated this regime into their penetration depth 

formula by stating that the rate of this transient evolution process obeys the first 

order reaction kinetics. They stated that this regime is totally ignored by researchers 

employing Mullins’ boundary condition at groove root (constant slope). 

 

1.5. Anisotropic diffusivity 

 

The surface diffusivity is known to vary with the crystalline orientation. For an 

anisotropic surface, equation of motion for thermal grooving, Eq. 1.4.2 should be 

modified as follows:  

 

   
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  (1.5.1) 

 

Here ( , )D    and ( , )s    are orientation dependent surface diffusivity and 

surface stiffness       respectively. Appropriate analytic functions may be 

incorporated to reflect the orientation dependence in a specific crystal and specific 

mechanism.  

 

Figure 1.5.1 shows equivalent surface directions for hopping motion of adatoms on 

the (110), (100) and (111) surfaces of an fcc crystal, which reflects 2, 4, 6 fold 
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symmetries respectively. Then the anisotropic diffusivity of surface atoms may be 

incorporated into a numerical procedure by adapting the following relationship,   

 

  0 2( , ) 1 cosD D m           (1.5.2) 

 

 

 

 

 

Figure 1.5.1: In a) ball model for next neighbor hopping on the (110), (100) and 

(111) surfaces of a face centered cubic crystal. Arrows mark the possible jumps 

from an adsorbate at the origin (figure adapted from Barth, 2000), b) analytic 

function (Eq. 1.5.2) used to represent the orientation dependence: 0 1D  , A=1, 

0  ˚ (solid red curves) and 30  ˚ (dashed blue curves) respectively for 

m=1→(110), m=2→(100)  and m=3→(111) planes.    

 

In Eq. (1.5.2), 0
D  is the minimum value of the surface diffusion constant at a 

specific surface orientation,   is the complementary dihedral angle. , m, and   
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are dimensionless parameters that determine the strength of the anisotropy, the grain 

symmetry through the number of crystallographic directions that corresponds to fast 

diffusion paths, and the misorientation of the symmetry direction with respect to a 

specified direction say that of the applied electric field E , respectively. mN 2  

corresponds to the rotational degree of symmetry or fold-number. 

 

1.6. Thermal grooving with surface energy anisotropy  

 

Maybe the most serious simplification made in the Mullins model is the assumption 

of the full isotropy of the surface energy. Obviously, this assumption justifies the 

use of the continuum approach, with the macroscopic curvature as the only driving 

force for surface diffusion. However, the importance of the surface free energy 

anisotropy in determining the dihedral angle of the groove and the groove shape 

was recognized soon after Mullins’ work. Grain boundary grooves can develop 

facets due to anisotropic surface energy. The presence of facets on surfaces of 

grooves poses intricate modeling issues since Mullins’ theory is inapplicable to deal 

with the anisotropic surfaces. 

 

The value of surface energy per unit area of a given crystallographic surface 

orientation is determined by the fine scale structure of that surface. For a high 

symmetry orientation in a crystal the surface is atomically flat. For other 

orientations close to this surface, the structure usually consists of flat terraces with 

well-defined local surface energies, separated by atomic scale ledges or steps as 

illustrated schematically in figure 1.6.1. The steps alter the macroscopic surface 
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energy by an amount corresponding to their energy of formation in the 

configuration relevant to the structure. Below a characteristic roughening transition 

temperature TR, “a nominally flat surface of a crystal that is misoriented by a small 

angle from a high symmetry direction consists of a train of straight parallel steps” 

(Shenoy & Freund, 2002). At finite temperature, such “vicinal” surfaces can be 

stable and can appear on rounded edges on the equilibrium crystal shape. 

 

 

 

 

Figure 1.6.1: Structure of an fcc (3 2 16)  surface vicinal to the fcc (001) surface. 

Figure illustrates zero-temperature steps and kinks that occur on high index (or 

‘vicinal’) surfaces (Jeong & Williams, 1999). 

 

With increasing temperature, the rounded regions grow at the expense of facets and 

at TR (usually below the melting temperature) the surface becomes smoothly 

rounded as illustrated schematically in figure 1.6.2. Below TR, “in the Wulff 

construction of the surface specific Gibbs free energy, the cusp in the γ-plot or the 

non-analytic term in the surface tension exists as a result of the finite free energy 

cost per unit length in the formation of a step”. Therefore “the disappearance of 
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facets is connected to disappearance of cusps in the γ-plot, and implies that the step 

free energy vanishes and free proliferation of steps is expected for T > TR” (Jeong 

& Williams, 1999).  

 

 

 

 

Figure 1.6.2: Schematic illustration of equilibrium crystal shapes at finite 

temperatures, T for a simple cubic model with the nearest neighbor interaction. 

Equilibrium crystal shapes a) at T < TR: stable (001) facets and b) at T > TR: 

continuously rounded, have no facet. The regions marked by arrows in a) and b), 

are vicinal to the low index (001) surface. The difference in mesoscopic structures 

below and above the roughening temperature is given in c) and d) (Jeong & 

Williams, 1999). 
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Mykura (1961) stated that, in the case of a coherent twin boundary, the surface 

anisotropy may even cause the formation of a ridge instead of a groove. Bonzel and 

Mullins (1996) considered the evolution of a pre-perturbed surface topography of 

the vicinal surface, which is essentially anisotropic. It was found that in the small 

slope approximation, the flux of the surface atoms is again proportional to the 

gradient of the surface curvature defined in the proper frame of reference, but   

should be substituted by a complex expression which depends on the energy of an 

isolated step, the energy of interaction between steps and the direction of 

perturbation.  

 

The grain boundary grooving at the singular surfaces were extensively studied by 

Rabkin et al. (2000), Klinger and Rabkin (2001), Rabkin and Klinger (2001) by 

explicitly introducing faceted and rough regions, each with different isotropic 

surface energies. Zhang et al. (2002) derive models describing groove growth while 

the dihedral angle changes. Inevitably the change in the dihedral angle is assumed 

to be caused by the change in the surface energy. They express the dihedral angle as 

a function of time, and after a series of simulations they conclude that changes in 

the dihedral angle affect the growth exponent for the groove depth much more than 

the groove width. Growth exponents for depth values as high as 0.4 are possible in 

this model, whereas Mullins’ model predicts an exponent of 0.25 for both the width 

and depth of the groove. Later, Zhang et al. (2004) study the effect of anisotropic 

surface free energy on thermal grain boundary grooving using modeling, simulation 

and experiments on tungsten. Based on Herring’s model they show that, for 

tungsten, when the anisotropy is mild, the groove profiles are self-similar in the 
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evolution but are often not are in proportion to those developed under isotropic 

material properties. The grooving kinetics again obeys power law with the exponent 

0.25. When the anisotropy is critical surface faceting occurs. And, when it is severe 

the facets coarsen in the evolution. They exhibit the groove profiles in evolution 

under different degrees of anisotropy. 

 

Wong and coworkers (Xin & Wong, 2001, 2003, 2004; Min & Wong, 2006a, 

2006b; Du & Wong, 2006) study orientation dependent surface stiffness instead of 

the surface free energy explicitly in their treatments. They regularize the surface 

stiffness by replacing the Dirac delta function by sharply peaked functions while 

former use an analytic form for the surface free energy which then leads to an 

analytic surface stiffness and find that faceted grooves still grow with time t with an 

exponent of 0.25. They stated that, anisotropic groove can be smooth if the groove 

surface does not cross a facet orientation, moreover the groove has the same shape 

as the corresponding isotropic groove, but the growth rate is reduced by a factor that 

depends on the degree of anisotropy. Recently, Ogurtani (2007) has reached exactly 

the same conclusion for the four fold symmetry by applying special analysis on the 

surface Gibbs free energy function adapted from Ramasubramaniam and Shenoy 

(2005). The analytic theory developed in conjunction with the extensive computer 

simulation experiments irrecoverably proved that the smooth grain boundary groove 

profiles can be represented by the modified Mullins’ function (1957) with great 

precision for the symmetrically disposed bicrystal, where the Mullins’ rate 

parameter B  is modified by an anisotropy constant   as  1B B   , and the 
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isotropic complementary dihedral angle in the slope parameter is replaced by its 

counterpart in anisotropic case.  

 

Ramasubramaniam and Shenoy (2005) made a very serious and successful attempt 

to obtain a weak solution of the evolution kinetics of faceted grain boundary 

grooves. They produced proper connections for the TJ displacement velocity that 

resulted realistic groove root profiles for the symmetrically disposed grain boundary 

and intersecting surface configurations that are initially flat and infinite in extent. 

Inspiring from this article, Ogurtani (2007) made a unique and transparent treatment 

of the grain boundary triple junction singularity by the weak solution of the 

extremum problem imposed by the mathematically more sound Dirichlet boundary 

conditions to reveal the fine topographic details of the groove root-profiles caused 

by the non-analyticity of the surface stiffness. In a previous work, Ogurtani (2006a) 

elaborates Hermite orthonormal functions manifold by showing that at the 

asymptotic limit the discrete monolayer representation of the interfaces and surfaces 

in more realistic Verschaffelt (1936) and Guggenheim (1959) model may be 

converged smoothly into the Gibbs abstract model by keeping the intensive 

variables (specific surface densities) of the interfaces and surfaces invariant and 

taking the layer thicknesses equal to zero at the limit and extensive variables 

(contents) infinite. That asymptotic approach, at the expense of the fine features of 

the grain boundary groove root profiles (rough and faceted regions), was successful 

not only in eliminating the discontinuity in the particle flux density at the grain 

boundary triple junction (which results Dirac delta function singularity in the 

gradient) but also produced most wanted continuity in the derivative of the particle 
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flux density as speculated by Ramasubramaniam and Shenoy (2005) to surmount 

the analytical difficulties. Ogurtani et al. (2008) extend this approach to simulate 

tilted grain boundary grooves in thin metallic films showing four and six fold 

anisotropy. Later Ogurtani (2009a) studied the very same problem by employing the 

modified cycloid-curtate function (MCC) as a basis (generator) for the Dirac delta 

distribution function on the Wulff construction. This new representation gives more 

flexibility on the shape of the surface profiles even its temperature dependence by 

considering not only the intensity but also the topography of the surface Gibbs free 

energy anisotropy. The utilization of the MCC function also furnished a way for the 

smooth passage from the soft to sharp faceting morphology by fine tuning the Wulff 

roughness parameter (anisotropy constant) while keeping topography index 

invariant. 

 

1.7. Experimentally observed thermal grooves  

 

Since its introduction in 1957, Mullins’ theory is used extensively in determination 

of the surface diffusion coefficients (Ds). Once the active mass transport mechanism 

is confirmed (for evaporation condensation, surface and volume diffusion groove 

growth obeys t1/2,  t1/4 and t1/3 time laws respectively), the ratio of the groove depth 

(or width) measurements taken at different times yield the B parameter of Eq. 

(1.4.2). As stated before, B is a collection of physical constants: B=DsγsΩ
2ν/kT; 

providing surface energy γs is known, constant temperature experimentation gives 

the surface diffusivity. Grain boundary grooves are also monitored to measure the 

dihedral angles and therefore to obtain ratio of surface to grain boundary energies.  
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Classically, measurements were carried out by electron microscopy or by optical 

profilometry techniques such as vertical scanning interferometry, phase shifting 

interferometry, etc. After their invention in the early 1980s, scanning probe 

microscopies (SPMs) open up new possibilities for studying the surface topography 

of thermal GB grooves. These instruments combine the possibility to scan relatively 

large surface areas with atomic resolution in the vertical direction (atomic force 

microscopy, AFM) and in the case of scanning tunneling microscopy (STM) lateral 

atomic resolution can be achieved. This makes SPMs ideally suited for the 

quantitative characterization of surface topography.  

 

Mulins and Shewmon (1959) studied grooving kinetics of tilt boundaries in copper 

by interferometric analysis to show the advantages of the theory in determining Ds. 

They showed that the dominant process is surface diffusion, and found Ds values in 

agreement with the ones determined by tracer diffusion studies. A good agreement 

was also found by Sharma and Spitz (1981) for thermal grooves on thin films of 

silver from a transmission electron microscopy (TEM) study. Tsoga and 

Nikolopoulos (1994) studied grain boundary grooving on polished surfaces of 

polycrystalline alumina after annealing, in air, under vacuum, and in argon 

atmospheres in the temperature range 1273 to 1736 K. The groove angles, measured 

by optical interferometry, showed no significant change with experimental 

conditions. It was determined that surface diffusion was the dominant mechanism 

for the mass transport and the calculated Ds values in agreement with the literature. 

Tritscher and Broadbridge (1995) gave a review of experiments (for diverse 
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materials) where surface diffusion was found to be the dominant mass transfer 

mechanism.  

 

In recent years, several researchers performed AFM studies of thermal grooving. 

Schöllhammer et al. (1999) found excellent agreement between measured and 

predicted groove shapes for symmetrical tilt grain boundaries in copper. Shin et al. 

(1998) and Lee and Case (1999) analyze surfaces of 99.9% alumina samples and 

report highly asymmetric GB grooves. Rabkin et al. (2000) attributed the 

asymmetry they found for GB grooves in NiAl surfaces to the presence of a vicinal 

surface on one side of a groove and modified Mullins’ (1957) linearized equation 

for thermal GB grooving to take the negligible mass transport on the vicinal surface 

into account. Qualitative agreement between experimentally observed and 

calculated groove profiles was found. Rabkin et al. (2006) studied the morphologies 

of GB grooves formed after annealing of molybdenum bicrystals at the temperature 

close to the melting point with the aid of scanning force microscopy (SFM). Three 

typical groove morphologies were observed: (i) Mullins-like, albeit asymmetrical 

grooves with the sharp root; (ii) grooves with the blunted root, and (iii) grooves 

with the blunted root with the secondary sub-groove with the sharp root in the 

region of a primary groove. Sachenko et al. (2000, 2002, 2004) and Zhang et al. 

(2002, 2004) studied GB grooving on the surfaces of polycrystalline tungsten 

sheets. They found that unfaceted grooves were in qualitative agreement with the 

predictions of Mullins’ theory of grooving by surface diffusion mass transport. 

They also observed asymmetric grooves between faceted and unfaceted grains 

showing unusual growth kinetics. Citing these works on tungsten and that of Munoz 
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et al. (2003) on alumina, Ogurtani et al. (2008) designed special computer 

simulations and produced surface morphologies at the stationary state which are in 

excellent agreement with groove profiles measured by AFM and calculated Ds 

values which are in agreement with the literature.  

 

1.8. Steady state grain boundary diffusion coupled to thermal grooving 

 

If the grain boundaries, which intersect the free surface, do not transport matter as 

imposed by Mullins’ assumption (5) the corresponding profile evolves via surface 

diffusion under well-known conditions of scale as completely discussed above. In 

this approach the only role of the triple junction present in the system is to maintain 

the equilibrium angle. However, the presence of grain boundary fluxes may change 

the surface morphology drastically. The problem is studied by considering two 

coupled processes, namely the surface diffusion taking place on the interface 

between the bulk and the void phases, and the grain boundary diffusion due to a 

constant atomic flux along the boundary. Triple junction, a geometric singularity, 

appears to be the place where these two processes are coupled. The boundary 

conditions at the triple junction are assumed to be the continuity of the chemical 

potential (Eq. 1.8.1a), the continuity of mass flux (Eq. 1.8.1b), and the equilibrium 

capillarity configuration (Eq. 1.8.1c) for geometry; assuming the groove root is at 

x=0 as in figure 1.4.1:  

 

   0, 0,b t t   (1.8.1a) 

   σ0, 0,bJ t J t  (1.8.1b) 
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 0, tanxh t   (1.8.1c) 

 

In Eq. (1.8.1b) summation extends over the two surface branches. These boundary 

conditions strictly rely on the validity of Herring’s relationship between chemical 

potential and the curvature is mutually incompatible for the triple junction (see 

chapter 2). At the triple junction there is no way of defining single curvature 

because of the large discontinuity due to the finite dihedral angle. Therefore 

Herring’s relationship, which is valid for only smoothly varying surfaces, is not 

suitable for the triple junctions. Furthermore, the continuity of chemical potential 

implicitly assumes that there is no local equilibrium, which violates the possibility 

of internal entropy production. However the triple junction motion is completely 

natural (irreversible) process. Nevertheless these boundary conditions are employed 

by the following authors cited below. 

 

Regarding to its physical origin several researchers use the chemical potentials and 

fluxes for grain boundaries given in section 1.3 in investigating effects of steady 

state grain boundary fluxes, yet the mathematical treatment is similar. Klinger et al. 

(1995) bear in mind this similarity and examine the case under isotropic conditions 

for the intersection of a periodic array of grain boundaries with an external surface 

for arbitrary grain boundary fluxes. According to their analysis two modes of 

surface evolution can occur: 1) for moderate magnitudes of Jgb the entire surface 

advances or recedes as material is supplied or removed by the intersecting grain 

boundaries, 2) for sufficiently large magnitudes of Jgb, the grain boundary roots 

break away from the remaining surface to form rapidly growing ridges or slits. The 
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transition from the first to the second mode occurs at limiting values of Jgb which 

depend on geometry and material parameters. 

 

They also state that the use of small slope assumption hinders the transition between 

these two modes; that a global steady state is always possible from the solution of 

linearized equation. Under this assumption Rosenberg and Ohring (1971) and Genin 

et al. (1993) treated the isolated groove development with constant grain boundary 

flux respectively due to EM forces and normal stress gradients acting on the 

boundary. This was done by superimposing a solution corresponding to the steady 

state grain boundary diffusion to that of Mullins’ thermal grooving. The latter case 

is repeated for a periodic array of grain boundaries (with a similar configuration 

given in Fig. 1.4.1a) by Thouless (1993) and more recently by Anderson et al. 

(2005). For isolated grooves, time law for groove width is found as t1/4 whereas 

groove depth is found to be proportional with t1/4 in early stages but replaced 

eventually by t3/4. A tensile stress induced grain boundary flux cause the groove to 

deepen more rapidly than it does without stress; whereas for compressive stresses it 

results in a retardation of groove formation. In the case of periodic array of grains 

the initial dependence of the width on time is again identical to that of the Mullins 

solution for a surface-diffusion controlled process, i.e. t1/4. With the time at which 

features of the profile interact with those from neighboring boundaries groove width 

attains a constant value. Groove depth on the other hand, initially accepts t3/4, and in 

later stages becomes linear in t.  
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Mode 2 type behavior is extensively studied in the literature because of its 

resemblance to another popular problem of mechanical metallurgy, namely the 

diffusive creep cavity growth.  

 

1.8.1. Grain boundary diffusive creep cavity/crack or void growth 

 

It is well known that high temperature intergranular fracture of polycrystalline 

solids invariably occurs by nucleation, diffusive growth and coalescence of grain 

boundary voids or cavities (Hirth & Nix, 1985). The process sometimes termed as 

creep cavity growth owing to its low temperature counterpart (creep rupture) where 

a cavity growth is accepted to occur by plastic deformation. Experimental findings 

indicate that a concentrated void population generally forms on grain boundaries 

oriented in a direction perpendicular to the applied tensile loads (Garofalo, 1965). It 

had been proposed that the growth results from atomic transport of material away 

from the cavity by surface self diffusion due to capillarity and though the adjoining 

grain boundary due to fluxes driven by gradients in the normal tractions and 

controlled by grain boundary self diffusion. Therefore when the thermal groove root 

break away from the remaining surface due to a sufficiently large grain boundary 

flux and form a rapidly growing slit (depicted above as mode 2), the problem 

becomes identical to the one described as diffusive creep cavity growth (see figure 

1.8.1.1).  
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Figure 1.8.1.1: Grain boundary cavity/slit growth by diffusion across the cavity 

surface and through the grain boundaries due to a stress gradient, a) array of grain 

boundary cavities, b) an isolated triple junction cavity.  

 

The first model of cavity growth by diffusion was proposed by Hull and Rimmer 

(1959), based on the assumption that surface diffusion is faster than grain boundary 

diffusion. In this case, any differences in curvature on the void surface that develop 

during growth are eliminated quickly by surface diffusion, so that the void has a 

rounded, equilibrium shape during growth. It was found that the void growth rate 

increases linearly with increasing applied stress, assuming that the grains on both 

sides of the boundary are rigid. A correction to the model was made by Weertman 

(1973), who considered the appropriate boundary condition to be one of zero 

vacancy flux on the grain boundary at the midpoint between the voids. Raj and 

Ashby (1975) considered a network of lenticular cavities and obtained a similar 

conclusion. Raj (1978) examined Cu bicrystals and found the rupture time inversely 

proportional to stress, consistent with the Hull-Rimmer unconstrained diffusional 

cavity growth model presented here.  
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However Yamazaki (1968) and Dobes (1973) work on ellipsoids indicated that the 

effect of limited surface diffusion is to elongate the cavity surfaces in the direction 

normal to the applied stress. Such cavities were observed experimentally in tungsten 

by Stiegler et al. (1967) and in α-iron by Wingrove and Taplin (1969). Chuang and 

Rice (1973) analyzed crack-like cavity located on a planar grain boundary and 

moving with a uniform velocity. This time, it was found that the cavity growth rate 

is proportional to the surface diffusivity and to the third power of the applied stress 

for θ→0. Later Pharr and Nix (1979) and Martinez and Nix (1982) using finite 

difference schemes to solve the diffusion equation showed that, under action of both 

surface and grain boundary diffusion, noses develop at the tip of an equilibrium 

shaped cavity in the early stages of growth and that, once formed, these noses 

behave like Chuang – Rice steady state crack. Similarly Chuang et al. (1979) 

showed under sufficiently high stresses, a void on a grain boundary will form a 

crack-like slit and propagate rapidly along the grain boundary. Igic and Mawby 

(1999) model failure of aluminium interconnect line under similar conditions by 

starting with a thermal groove as an initial condition. They employ different ratios 

of grain boundary/surface diffusivities each greater than one (surface control; i.e. 

Chuang – Rice model given above). Huang et al. (2000) used steady state traction 

distribution obtained by Martinez and Nix (1982) on the grain boundary in 

simulating growth of grain boundary voids under external tension by a robust finite 

element method. They confirm formation of a long crack-like configuration by 

faster movement of atoms near the void tip than those at the void top (elongation of 

the void in the direction of the grain boundary) when surface diffusion is the rate 

controlling mechanism. They also state that the rupture time, at which the 
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neighboring voids link, decreases with increasing diffusivity ratio of the grain 

boundary and surface and applied external stress for a given initial void spacing. 

 

Needless to say all these studies employ Mullins’ boundary conditions for the triple 

junction. Finally it should be noted here that in all of the cited works in this 

subsection the elastic effects in grains were neglected, i.e. grains are assumed to be 

rigid. Attempts to model the combined effects of elastic deformation and diffusion 

on crack growth had been made by Vitek (1978), Speight et al. (1978), Chuang 

(1982). A good review of different aspects of diffusive creep cavitations in metals 

may be found in works of Delph (2002) and Kassner and Hayes (2003). 

 

1.8.2. Electromigration induced grain boundary slits or cracks 

 

Klinger et al. (1996) studied a slit propagating with a constant velocity in an infinite 

isotropic conductor with an electric field E  applied parallel to the slit by 

considering EM along both the grain boundary and the slit surface. They specified 

certain conditions depending upon material constants under which steady state 

solutions exist and found that for those width and velocity of the slits scale as 1/2E 


and 3/2E . The steady state growth of grain boundary cracks in interconnects with 

electric field is considered for an inclined grain boundary by Liu et al. (2001) and 

Wang et al. (2002). They found exactly the same behavior for the width and 

velocity and note that the life-time of interconnect under these conditions is then 

proportional to 3/2E 
 . In these studies, a steady state shape evolution with an 

equilibrium angle at the crack apex is proposed and it is argued that the crack apex 
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is not a source of entropy production, which is, in contrary, the most delicate part of 

the irreversible thermo kinetics theory of the processes associated with the 

evolution dynamics of closed curved interfaces having singularities.  

 

The most difficult cases to treat arise from the breakdown of the steady-state GB 

diffusion assumption, as during the transient period or because the applied stress 

changes appreciably during relaxation (Genin et al., 1993). One must then solve an 

elastic and/or electrostatic boundary value problem at each time step, using as input 

the displacements arising from the GB flux divergence in order to obtain the new 

electrostatic potentials and/or stress and flux. 

 

1.9. Surface diffusion under external force fields and non-steady state grain 

boundary fluxes 

 

The generalized problem of surface diffusion on a crystalline surface, whether it 

contains grain boundaries or not, requires solution of elastic and/or electrostatic 

boundary value problems and postponed till mid 90’s due to its computational 

complexity. The very first study comes from Yang and Srolovitz (1993) on ATGS 

instability and formation of surface crack. Using the continuum elastic theory they 

derive a set of equations for the stress state within a uniaxially stressed semi infinite 

solid bounded by a surface of arbitrary shape. A boundary integral method was used 

to solve these equations and the strain energy density field, which was used to 

describe the chemical potential, was obtained. The resultant evolution equation was  



45 
 

solved using a Galerkin finite element method (FEM).  They demonstrate formation 

of deep crack like groove from an initially sinusoidal surface.  Chiu and Gao (1993) 

were able to solve for the stress field analytically when the surface of the solid is of 

cycloid type. They showed that a cusped cycloid surface is energetically favorable 

when the surface wavelength exceeds a critical value and is stable once it develops. 

Kassner and Misbah (1994) numerically analyzed the nonlinear evolution of a 

uniaxially stressed solid. If the film is thin, its surface approaches the film–substrate 

interface before the formation of cusps, then different stress fields and the different 

surface energies of the film and the substrate affect the surface morphology and the 

film–substrate interface will be prevented from being exposed when the wetting 

criterion is satisfied. Stranski–Krastanow wetting islands will form in this case. The 

steady states of island shapes were studied by Spencer and Tersoff, (1996, 1997), 

Kukta and Freund (1997) and Spencer (1999) and his co-workers (Rudin & 

Spencer, 1999; Shanahan & Spencer, 1999), and many other researchers. Gao and 

Nix (1999) gave a review on the theoretical and experimental studies of the surface 

morphological instability in heteroepitaxial films. The nonlinear evolution of the 

surface of thin films and the formation of islands were studied by Chiu and Gao 

(1995), Zhang and Bower (1999a, 1999b) and by Xiang and E (2002). At later stage 

of the nonlinear evolution of the surface, dislocations will be created for further 

relaxation near the cusp tips where the stress concentrates.  

 

Gao et al. (1999) developed a model of coupling surface diffusion and a constrained 

grain-boundary diffusion accounting for the transient behavior of grain-boundary 

diffusion and the nonsliding condition at the film-substrate interface. Authors state, 
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previous works of Thouless (1993, 1995), Vinci et al. (1995) and Genin (1995a, 

1995b) assume that the film is allowed to slide freely on the substrate with the 

requirement of the diffusional flux in the grain boundary is taken to be linear 

function of position along the boundary which in turn leads to a constant flux 

divergence over the boundary and a uniform rate of separation of the adjoining 

crystals. They highlight that most metal films of technological interest is bonded to 

their substrates so that sliding at the film/substrate interface may be severely 

inhibited. To model such an effect the grain-boundary diffusion is taken to be 

equivalent to moving an array of climb-edge dislocations into the boundary, i.e. the 

diffusion wedge was modeled as a continuous array of climb-edge dislocations. 

They used Eshelby’s (1979) solution to elasticity problem of edge dislocations near 

a free surface as a Green’s function for diffusion wedge problem. An exact 

mathematical formulation was presented and the solution that explicitly considers 

the transient behavior of the grain boundary diffusion was calculated using 

numerical methods. Later Zhang and Gao (2002) extend the theory further by 

coupling with grain boundary grooving by surface diffusion under the assumption 

of small slope. Buehler et al. (2005) discuss several aspects of the model in 

connection with atomistic computer simulations and recent experimental findings. 

Klinger and Rabkin (2007) used the stress distribution along the GB obtained by 

Gao et al. (1999) to model chemical interdiffusion along the GB in a semi-infinite 

bicrystal subjected to external stress normal to the boundary plane. They found a 

diffusion wedge formed at the grain boundary that exhibits a time independent 

shape, with all its linear dimensions growing with annealing time t, according to the 

t1/3 law. Another model that is used to model the stress distribution along the GB is 
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the linear spring model proposed by Chason et al. (2002) and Guduru et al. (2003). 

The latter authors compared the model with the dislocation model by Gao et. al. 

(1999) and found that the two models are in good agreement despite the simplicity 

of the spring model. Huang et al. (2005) used a similar model to predict the 

transient behavior of isothermal stress relaxation in copper thin films.  

 

Suo and Wang (1994) performed analytical as well as numerical studies on the 

morphological evolution (bifurcation) of cylindrical voids in an infinite crystal 

under biaxial stresses by using some ad hoc concepts borrowed from bulk 

nonequilibrium thermodynamics (Nicolis & Prigogine, 1989) and supplemented by 

a variational formulation of the extremum problem. Xia et al. (1997) introduced a 

two dimensional FEM for computing the motion and evolution of voids by surface 

diffusion in an elastic, electrically conductive solid. They presented various case 

studies including the evolution of a void towards a circular shape due to diffusion 

driven by surface energy, the migration and evolution of a void in a conducting strip 

due to electromigration induced surface diffusion, and the evolution of a void in an 

elastic solid due to strain energy driven surface diffusion. Zhang et al. (1998) 

performed three dimensional finite element modeling to study the motion and 

evolution of cylindrical voids under electromigration and strain induced surface 

diffusion in a hypothetical interconnect line. The spatial finite element formulation 

was further exploited by Zhang and Bower (1999a, 1999b) to study the conditions 

for formation of islands in a thin film of semiconductor material. Fridline and 

Bower (1999) applied a FEM model to predict the evolution of the void after an 

electric field was applied to the strip. The model was extented further (Fridline & 



48 
 

Bower, 2002) to account several kinetic processes involved in interconnect failures, 

including surface diffusion, interface and grain boundary diffusion, and sliding on 

grain boundaries and at the interface between line and elastic passivation.  

 

Mahadevan et al. (1999) and Mahadevan and Bradley (1999) studied edge 

instability in single crystal metal lines, applying a numerical phase field technique. 

The authors defined the critical value of the applied current when the edge 

perturbation grows to become a slit shaped void that spans the wire and leads to 

electrical failure, reducing the circuit lifetime to an unacceptable level. Nathan et al. 

(2000) and Averbuch et al. (2001) and Khenner et al. (2001) applied the level set 

approach to study the EM drift and transient electromigration grooving in metallic 

interconnects. The phase field principle, with an order parameter characterizing the 

damaged state of the interconnect was further used by Bhate et al. (2000, 2002) for 

simulating EM and stress induced void evolution. The evolution of the order 

parameter was governed by a fourth order parabolic PDE, related to the Cahn–

Hilliard equation (Cahn & Hilliard, 1958). They solved the PDE by an implicit 

finite element scheme together with the accompanying mechanical (elastic) and 

electrical problems.  

 

Gray et al. (1998, 1999) develop and use an approximate Green’s function method 

to solve the Laplace equation for the electric potential by the boundary element 

method (BEM), in order to model the void dynamics under electromigration 

conditions in metallic thin film interconnects. Gungor and Maroudas (1998, 1999a, 

1999b) computed the distribution of electric field on the void surface by BEM, with 
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the use of the Galerkin scheme and linear constant trial functions. They simulated 

the formation of various morphological features: void faceting, formation of wedge-

shaped voids, propagation of slit-like and soliton-like features, and opencircuit 

failures. Gungor and Maroudas (1999a) also performed theoretical analysis and 

numerical simulations of the effects of residual stress on the failure mechanisms of 

passivated metallic thin films and observed that two modes of failure occur 

concurrently during void morphological evolution; 1) EM-induced formation of 

faceted slits, and 2) stress-induced formation of fine-scale crack-like features on the 

void surface. The most interesting finding in their studies is the apparent retardation 

effect of the applied anisotropic stress system on the void drift motion under the EM 

forces when there is a very strong anisotropy constant (1000) in the surface 

diffusivity combined with a high electron wind intensity (1010 A/m2). They also 

employed a relatively large and asymmetric remote biaxial stress ( 300-400 MPa) 

system having 50% reduction in intensity along the transverse axis compared to the 

longitudinal axis of the interconnect line. In later studies, Fridline & Bower (1999), 

Schimschak and Krug (2000), Gungor and Maroudas (2001) put more emphasis on 

the crucial role of surface diffusion anisotropy. A boundary element approach was 

applied by Averbuch et al. (2003a, 2003b) for numerical studies of the 

electromigration in thin film metallizations with a polycrystalline structure, with the 

external electric field parallel to the grain boundary. Later Nathan et al. (2004) use 

the same approach to simulate the evolution of a surface intersected by 

transgranular and intergranular edge voids under isotropic surface diffusion and 

electric field effects under both mass-conserving and non-mass-conserving 

boundary conditions. A similarity was found in the surface topology of 
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transgranular voids between their non-mass-conserving model and Schimschak and 

Krug’s (2000) mass-conserving model. The electric field was found to slow the 

development of an intergranular groove along a positively tilted grain boundary, 

and to cause thinning or thickening of grains under non-mass-conserving 

conditions. 

 

Ogurtani’s irreversible thermodynamic treatment (Ogurtani, 2000, 2006b; Ogurtani 

& Oren, 2005) of morphological evolution of curved void surface layers with or 

without triple junction singularities at the presence of capillary, electromigration 

and the strain field interactions for multi-components systems results a well-posed 

moving free-boundary value problem which is applied to the transgranular 

(Ogurtani & Oren, 2001; Oren & Ogurtani, 2001) and the intergranular (Oren & 

Ogurtani, 2002; Ogurtani & Oren, 2004, 2005) void dynamics very successfully. 

The intergranular dynamics involving void and grain boundary mutual interactions 

was examined carefully and the very complicated asymmetric disposition of the 

adjacent grains (duplex texture) is fully accounted for by the internal entropy 

production (IEP) due to the transversal virtual displacement of the triple junction. 

Furthermore, the effects of void growth processes (evaporation and condensation) 

on the morphological evolution of transgranular voids, which caused eventual 

catastrophic failure of the interconnect line, was considered. Their treatment 

(Ogurtani & Oren, 2005) involves a governing equation obtained rigorously from 

the irreversible thermodynamic theory, instead of assuming the self-similar 

enlargement (which keeps the void shape invariant during growth) of a void with a 

constant rate of growth, as employed by Kraft et al. (1995). The theory   
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is then applied to the problem of GB grooving and cathode voiding under the 

capillary and EM forces by Ogurtani and Akyildiz (2005, 2006). It was shown that 

the nonequilibrium treatment of the triple junctions having asymmetry is extremely 

important in the electromigration dominating regime in order to predict the 

dynamical behavior of the system, where the basic assumptions made on the triple 

junctions by the equilibrium or ad hoc theories are completely violated. Authors 

found GB grooving can be completely arrested by the applied current density above 

a well defined threshold level, just opposite to the assumption of Mullins (1957) and 

his followers. More recently Bower and Shankar (2007) use a simplified version of 

Ogurtani’s nonequilibrium treatment of the triple junctions in their comprehensive 

FEM model which includes the effects grain boundary sliding, grain boundary 

diffusion, grain boundary migration and surface diffusion, as well as elastic 

deformation and electric current flow within the grains themselves. Ogurtani and 

Celik (2006) and Ogurtani et al. (2007) performed extensive computer simulations 

on finite size single crystal films which have Gaussian shaped edge voids/hillocks 

on their sidewalls. These simulation experiments have proved that even in the 

presence of strong diffusional anisotropy, the solitary waves (kinks or solitons and 

even a train of sawtooth waves) can be generated in the EM-dominating regime, if 

one of the principal axes of the diffusivity dyadic has a special and irreducible 

orientation with respect to the applied electric field intensity vector. These surface 

topologies may even result in the EM-induced internal voids, which eventually 

cause the fatal breakdown in the electrical connection by either hitting the opposite 

sidewall (breaching) or accumulating at the cathode edge and resulting detrimental 

voiding at the contact area. Later, kinetics of cathode edge shrinkage and 
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displacement (drift) coupled strongly with the GB grooving were investigated by 

Ogurtani and Akyildiz (2008a). It was found that cathode drift velocity and the 

cathode failure time show the existence of two distinct phases, depending upon the 

normalized electron wind intensity parameter; the capillary and the EM dominating 

regimes having current exponents equal to 0 and 1, respectively. Analysis of various 

experimental data on the cathode drift velocity results a consistent value for the 

surface drift-diffusion coefficient for copper interconnects exposed to some 

contaminations during the processing and testing stages. The complete cathode 

failure time (CCFT) due to the cathode area shrinkage by voiding was also 

formulated and used to predict very accurate CCFT for metallic lines with bamboo-

like, near-bamboo, and even with polycrystalline structures by proper calculation of 

the cathode-edge path length parameter, in terms of the actual line width, the 

thickness and the grain size.  

 

A recent computer simulation study was performed by Tan et al. (2006) using FEM 

(ANSYSTM). Simulation experiments were specially designed to investigate the 

effects of temperature and stress gradients on the accelerated EM test for Cu narrow 

interconnects. They used a similar program in their previous studies on the current 

crowding effects on Cu dual damascene via bottom failure for ULSI applications 

Tan et al. (2005). The mathematical treatment and the implementation for the 

atomic flux divergences due to electron-wind force, stress-induced migration and 

thermally induced migration (Soret effect) have been adopted from the Dalleau et 

al. (2001). Tan et al. (2005) in one of their studies were interested to simulate the 

growth behavior of a preexistent void on top of the interconnect line, where they 
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modified the void simulation algorithm proposed by Dalleau et al. (2001) to include 

the surface drift diffusion into the scenario. In that study, they employed directly the 

software available in ANSYSTM to calculate the thermal-electrical and thermal-

mechanical coupled-field analyses, which resulted in proper evaluation of the 

various fluxes, and flux divergences to be used in the void surface displacement 

velocity calculations. The proper treatment of the thermal stress gradient (TSG) 

induced by an inhomogeneous temperature field is a rather complicated problem in 

the mathematical theory of thermoelasticity. It is a close analog of the back-stress 

(Blech effect) induced by EM in metallic interconnects in ULSI, which is treated 

very thoroughly by Sukharev et al. (2007), in connection with EM induced 

degradation in dual-inlaid copper interconnects, using a commercial FEM tool 

COMSOL MULTIPHYSICSTM. Recently Ogurtani and Akyildiz (2008b, 2008c, 

2008d) presented a rigorous formulation of the problem using nonequilibrium 

mesoscopic thermodynamics. In order to calculate the temperature gradients (and in 

turn thermal stresses) they develop a methodology in which the void center of mass 

(centroid) taken as a reference frame for the dynamic localization of the interior 

points. This unique approach enables the internal nodes to be also mobile and self-

adapting, i.e. they are tracking the temporal topography of the mobile intragranular 

void surface contour. Then the scalar fields are calculated along the surfaces of the 

sidewalls (including the intragranular void) using a combination of particular and 

complementary functions (analogous to the theory of ordinary differential 

equations) similar to the Treffz method. The particular solutions were evaluated on 

the temporal positions of the specimen and void surfaces without paying any 

attention to the physical BCs (i.e., Neumann and/or Dirichlet BC). The 
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complimentary solution uses the fundamental solutions (Greens functions; i.e., 

point, dipole, and quadruple etc.) of the Laplace equation to handle the problem at 

the prescribed BCs for the temporal position of the void surface layer, plus the 

sidewall surfaces and the cathode/anode edges (in the case of finite geometry). For 

the complementary part an implementation of the indirect boundary element method 

(IBEM) was preferred (rather than the more sophisticated direct method that is 

developed and used successfully by Gray et al. (1998, 1999) and Gungor et al. 

(1998) in connection with the Galerkin boundary integral technique). The computer 

simulation experiments they performed clearly indicate the vital importance of the 

TSG as an agent compared to the uniform thermal stress bias fields on the formation 

of microcracks during the dynamical evolution of intragranular voids with and 

without the existence of the heat flux crowding regime under the steady-state heat 

flow. A more revealing physical outcome of these experiments is the predominant 

role of the elastic dipole tensor interaction (EDTI) associated with the mobile lattice 

defects compared to the elastic strain energy density (ESED) contribution to the 

generalized driving force for the surface drift diffusion, in materials exposed to the 

inhomogeneous thermal-stress fields. This negative situation does not show much 

improvement on behalf of the ESED, which has been considered in the literature as 

an indispensable agent in the formulation of the surface drift diffusion taking place 

in a uniform applied stress fields in tensorial character including the thermal 

biasing. One has one or two orders of magnitude differences in the intensities 

associated with EDTI and ESED in the temperature ranges mostly encountered in 

practice. Ogurtani and Akyildiz (2008b) paid a special attention to the role played 

by the properly formulated growth term on the morphological evolution kinetics of 
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pre-existing voids; which seems to be an indispensable factor for the true 

understanding of the failure mechanisms of flip-chip solder joints. It seems that it is 

also the primary term in their governing equation, which causes the speedy lateral 

extension or spreading of the damage region, along the contact area of the flip-chip 

solder joint by consuming EM induced supersaturated athermal vacancies in the 

presence of the combined effects of the heat and current crowding, which are 

enhanced drastically by the proximity of the void to the hot zone.  

 

Ogurtani (2006c) developed a first-order unified linear instability analysis (LISA) 

of the governing equation for the evolution of surfaces and interfaces under 

capillary, EM, and elastostatic forces. That analysis showed conclusively that under 

certain favorable orientations of the anisotropic single-crystal with respect to 

direction of the electric current, one can establish stability (healing effects) by the 

application of the electrostatic field on those samples, which are subjected to the 

compressive stress systems that are primary source for the instability and the crack 

formations. Otherwise one may have extreme instabilities induced by the 

electromigration forces on the surface morphology rather than healing effects. This 

current induced stabilization of stressed solid surfaces (healing phenomenon) had 

been first reported very recently by Tomar et al. (2008a, 2008b) who also produced 

very interesting linear instability analysis, in conjunction with the dynamical 

simulation studies, which reveals improved surface morphological stability over a 

range of misorientation angles between the electric field and easy direction of 

surface drift diffusion. More recently Ogurtani (2009b) discuss the phenomena in 

detail, and underline the predominant role of the EDTI associated  
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with the mobile lattice defects compared to the ESED contribution to the 

generalized driving force for the surface drift diffusion, in those materials exposed 

to the surface tractions and body forces. In fact, this healing effect of EM on the 

grain boundary grooving first noticed by Averbuch et al. (2003b) as slowing down 

in the displacement kinetics in their rather early terminated numerical experiments. 

Later an extensive computer study undertaken by Ogurtani and Akyildiz (2004, 

2005) in metallic thin film interconnect lines for the long run times, exclusively 

prove that this is a genuine effect, and it completely hinders the groove depth 

displacement in the electromigration dominating regime even though one deals with 

the isotropic surface diffusivity.  
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CHAPTER 2 
 
 
 
 

IRREVERSIBLE THERMOKINETIC THEORY OF 

SURFACES AND INTERFACES WITH TRIPLE 

JUNCTION SINGULARITIES 

 
 
 
 
 

2.1. Introduction 
 

As entirely discussed, all those theoretical studies related to the interfaces and 

surfaces which were reported and cited in chapter 1, are strictly rely on the classical 

thermodynamics in macroscopic description of physicochemical processes with 

some obscure modifications in the concept and usage of chemical potentials, and 

the free energies especially in the presence of externally imposed force fields 

(electrical, magnetic, etc.) without considering their original mathematical 

definitions given by Gibbs (1948). All these methods are based on reversible 

processes and true equilibrium states. 

 

Relying only on the fundamental postulates of linear irreversible thermodynamics, 

as advocated by Prigogine (1961) for the bulk phases, and utilizing the Verschaffelt 

(1936) and Guggenheim’s (1959) monolayer interface/surface model Ogurtani  

(2000) has obtained an analytical theory for network of interfaces that are 
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interconnected by triple junctions and embedded in bulk phases. Later, parts of the 

theory were published by Ogurtani and Oren (2005) and Ogurtani (2006b). 

 

Here in this chapter we present the necessary and essential parts of the theory 

mainly by following the work of Ogurtani and Oren (2005). The linear 

thermodynamics of irreversible processes is introduced for surfaces as well as for 

bulk phases using the conventional macro-formulation for homogeneous and 

isotropic close systems. Then, the singular point associated with a triple junction is 

first treated by using micro-discrete (straight) interfacial elements and then a 

continuum representation is obtained by taking legitimate limits. The generalized 

forces and conjugate fluxes associated with the triple junction motion are obtained 

in terms of the asymmetric dihedral angles and the specific Gibbs free energies of 

the void surface layer and the grain boundary which are in turn used to obtain the 

longitudinal and transverse velocities of the triple junction. Ordinary points on 

surfaces and/or interfaces are also handled within this context as a special or 

degenerate case of singular point treatment. 
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2.2. Internal entropy production for discrete microelements 

 

The term microscopic region refers to any small two or three-dimensional region 

containing a number of molecules sufficiently large not only for microscopic 

fluctuations to be negligible but also all of the intensive properties are homogeneous 

in space. The composite system, considered here, has at least two physico-

chemically distinct domains separated by thin layers of interphases, which are not 

only mutually interacting by the exchange of matter and energy but also completely 

open to the surroundings through the moving or immobile boundaries. For the 

present specific case of triple junction, the system is an open composite system, 

which is composed of two bulk phases, namely the interconnect material and the 

embedded void, and two surface phases, namely the interfacial layer between the 

void and the bulk region and the grain boundary separating two different grains of 

the interconnect. 

 

In this theory, the interface is accepted as an autonomous, finite but a thin layer 

across which the physical properties and/or the structures vary continuously from 

those of the interior of one phase to those of the interior of the other in accordance 

with the general view points of Guggenheim (1959), van der Waals and Bakker 

(1928). Since the interfacial layer is a material system with well-defined volume 

and material content, its thermodynamic properties do not require any special 

definition. One may speak of its temperature, entropy, free energy, and composition 

and so on just as for homogeneous bulk phases. The only functions that call for  

special comment are the pressure and the interfacial (surface) tension denoted by P 
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and  respectively. The certain shortcomings of the monolayer model in equilibrium 

and non-equilibrium cases are fully discussed by Defay and Prigogine (1966) while 

they were trying to formulate the thermodynamics of the multi-layer model of 

surfaces. 

 

In the absence of long range forces, the total reversible work done on a flat surface 

phase (denoted by the subscript σ) with micro-extent, indicated in terms of  space-

scaling operator, by variations of its volume d V , and area d A  (keeping its 

material content unaltered, but stretching) is given as: 

 

w Pd V d A         (2.2.1) 

 

Here P  is the mean isotropic pressure in the layer, and  is the surface tension 

whose value and the location of the surface in which it acts can be uniquely 

determined by the knowledge of the transverse component of the stress tensor 

(Laplace, 1806; Buff, 1955; Ono & Kondo, 1960). Its value may be given as: 

 

 
0

h

Qdz


    (2.2.2) 

 

where, Q  is the deviatoric part of the stress tensor and h is the thickness of the 

surface layer and also the integration is performed along the surface normal. The 

above given expression for the reversible work becomes bPd V   for a 
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homogeneous bulk phase (denoted by the subscript b) in the formulation of the first 

law of thermodynamics. The local anisotropic properties of the medium are now 

automatically embedded in the intensive variables, which are characterized by 

second order tensors or dyadics.  

 

The differential form of the Helmholtz free energy in equilibrium thermodynamics 

has the same validity for irreversible changes, then for an open surface phase of a 

micro-extent embedded in an isotropic media it may be written as, 

 

i i j j

i j

d F S dT P d V d A d n A d                         (2.2.3) 

 

where, S , i
 , in  denote the entropy, the chemical potential and the number 

of thi  chemical species in the micro-element, respectively. jd   and jA are the 

extent and  the affinity of the homogeneous thj  chemical reaction taking place in 

the phase under consideration, the latter is related to the chemical potentials and the 

stoichiometric numbers as defined by Th. De Donder and Rysselberghe (1936). 

 

In above relationship, it is assumed that, in a single phase only the homogeneous 

chemical reactions take place and the phase transitions occurring at the mobile 

boundaries are not considered in the last term. The Helmholtz free energy change 

due to the passage of the substance i  from the phase to the surroundings is 

accounted by the fourth term in above expression (frozen chemical reactions). 

Therefore, in the case of a close system, one should subtract only the term given by 
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 
i

ii nd  , which is closely related to the direct exchange of matter with the 

surroundings. 

 

Similarly, the Helmholtz free energy change for a bulk phase of a micro-system 

may be written as, 

 

j ji i
b b b b b b b b b

i j

d F S dT P d V d n A d             (2.2.4) 

 

The entropy of any system whether it is close or open can change in two distinct 

ways, namely by the flow of entropy due to the external interactions, exd S , and by 

the internal entropy production (IEP) due to the changes inside the system, ind S . 

Then, the total entropy change can be interpreted as: in exd S d S d S     . The 

entropy increase ind S  due to changes taking place inside the system is positive for 

all natural or irreversible changes, is zero for all reversible changes and is never 

negative.  

 

Generalization of the first law of thermodynamics for any infinitesimal change 

associated with an open system, in which not only the energy but also the matter 

exchange takes place between the system and its surroundings, results: 

 

 d U w d F T S w               (2.2.5) 
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where   is the energy received by the system, in terms of heat and matter 

transfer processes from the surroundings, Ud  is internal energy change, and w  

is the reversible work done on the system by external agents, and this work is equal 

to VPd  or  AdVPd    depending upon whether one deals with the bulk 

phase or the surface phase, respectively.  

 

For a global composite system having discontinuous phases, the total IEP due to the 

irreversible processes should include the entropy contributions due to transport of 

heat and chemical species among various phases of the system. Considering the 

additive property of the entropy changes, and using the splitting procedure as 

applied by Prigogine (1961), from Eqs. (2.2.3), (2.2.4) and (2.2.5) one may obtain: 

 

, ,

1 j ji i
in k k k k k

k k ki k k j k

A dd S d n

t T t T t T t

 
   

  
       (2.2.6) 

 

The expression given by Eq. (2.2.6) considers the existence of the various 

homogeneous chemical reactions occurring in different phases of a global system. 

Double summations with respect to k and i or j indicate summation over various 

phases (bulk or surface), and over different chemical species or reactions taking 

place simultaneously in the same phase, respectively. k  is the amount of 

energy transported to the individual phase from the other phases present in the 

global system due to heat or mass transfer, which also employed by Prigogine 

(1961) in the treatment of lump and close composite systems. The first term in Eq. 

(2.2.6) represents an additional contribution to the IEP in the composite system due 
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to internal entropy flow associated with the transfer of chemical species from one 

sub domain to another sub domain. The second term in Eq. (2.2.6) drops out for 

those sub domains having identical temperatures.  

 

For a thermodynamic system composed of interacting open sub systems, IEP is not 

an additive property unless the whole system is in the state of complete physico-

chemical equilibrium. Therefore, in order to calculate global IEP for the whole 

system, the rate of entropy flow (REF) should also be formulated. One may write 

the REF from the surrounding to an open composite system as, 

 

,

1i i
ex k k s k s

k ki k k

d S d n

t T t T t

 
  

   
     (2.2.7) 

 

where the subscript sk  indicates that the matter and energy exchange takes place 

between the phases of the system, k , and the surrounding, s . Here, /k s t   

and ,/i i
k s k sd n t J   are, the rate flow of energy and the flux of chemical species 

i to the domain k of the composite open micro-system from its surrounding denoted 

by s through the heat and matter exchange processes respectively. 
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2.3. Internal entropy productions associated with the virtual displacements 

of the triple junction and the ordinary points 

 

Concerning the kinetic behavior of the triple junction, it is assumed that the whole 

system is in thermal equilibrium and no in situ chemical reaction is taking place 

other than the phase transformation occurring between the void interfacial layer and 

the grain boundary region. The sampling domain, which is illustrated in figure 

2.3.1, is a very small composite and discrete open micro system, localized into a 

point of singularity situated in the immediate neighborhood of the junction. This 

selected composite micro-system is also connected to the neighboring micro-

discrete elements by nodes where the exchange or the flow of matter only 

contributes to the REF but nothing to do with the IEP. 

 

 

 

 

Figure 2.3.1: Triple junction (TJ) longitudinal displacement along the grain 

boundary. a) TJ macrostructure, line BB' represents the grain boundary and ABC 
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and ADC are the initial and displaced position of the void interfacial layer, 

respectively. Δη is the longitudinal virtual displacement of the triple junction along 

the grain boundary. b) TJ microstructure, hσ and hg are the thicknesses of the 

interfacial and grain boundary layers, respectively. Figure adapted from Oren 

(2003).  

 

The individual IEP due to small but finite virtual advancement of a triple junction 

along the grain boundary can be separately and independently calculated for the 

symmetric left and right hand side sub-domains of the sampling region, due to the 

lateral constrain on the grain boundary motion. Then, internal entropy variation for 

the left hand side sub-system, when the triple junction moves along the grain 

boundary with a distance  , can be calculated by using following geometric 

relationships deduced from figure 2.3.1 by assuming:     (see also figure 

2.3.2): 

 

cos      , sinH       (2.3.1a) 

 

1
sin

2b
b

n        


 , 
1

sin
2v

v

n       


  (2.3.1b) 

 

cos
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
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
,  
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g
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
  (2.3.1c) 
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In Eqs. (2.3.1), ,   ,   and  g b v     are the mean atomic specific volumes, 

respectively, associated with void surface layer, grain boundary, bulk and void 

phases.   denote segment length of the void surface layer just next to the triple 

junction left hand side. h  and gh  are the thickness of the surface layer and the 

grain boundary region and assumed to be invariant. vn   and bn   are the number 

of atoms gained in the reaction zones associated with the void/interfacial layer, and 

the bulk/interfacial layer, respectively, while the transformation processes are 

taking place there during the virtual displacement of the interfacial layer. gn   is 

the total number of atoms misplaced by the half of the grain boundary during triple 

junction motion. Similarly, n   is identically equal to the net atomic gain by the 

interfacial layer denoted by   due to enlargement (extension without stretching) of 

that layer during the displacement operation.  and  are variational and micro-

discretization operators, respectively. Exactly similar expressions may be obtained 

for the other side of the triple junction, which is denoted by negative sign 

superscript. The specific mean atomic densities associated with the void surface 

layer and grain boundary can be defined as: /h      and /g g gh   , 

respectively. 
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Figure 2.3.2: Upper left portion of figure 2.3.1. Rotated in clockwise direction and 

rescaled to show the geometric connections for     where the angle ˆBDA  

→ θ+. The right hand side is treated in the same way. 

 

In the case of multi-component system, the variations in the number of atomic 

species could be obtained simply by multiplying the total atomic number variations 

with respective atomic fractions denoted by i
jx . Then, the number of chemical 

species involved in the left hand side phases due to the virtual displacement may be 

given as: 

 

sin
2

i
i i b
b b b

b

x
n x n       

    


   (2.3.2a) 
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2

i
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v

x
n x n           


   (2.3.2b) 
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i

i i x h
n x n  
  


         


  (2.3.2c) 
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Then, the rate of internal entropy production due to triple junction virtual 

displacement may be written using Eqs. (2.2.6, and 2.3.1-2). In the case of left hand 

side substitution gives following formula: 
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
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
   (2.3.3)  

 

In above relationship, the superscript +, on the atomic fractions and the chemical 

potentials indicate explicitly that those quantities may depend upon the orientation 

of the local surface normal. For the multi-component surface phases, 

i ig    , and i i
g g gg    are equal to the specific Gibbs free energy 

densities associated with the void surface layer, and the grain boundary, 

respectively. Here, i ix     , and i i
g g gx    are defined as the specific surface 

concentration of chemical species in surface layer, and the grain boundary, 

respectively. 

 

The terms appearing in the first group on the right side of Eq. (2.3.3) such as, 

/i i
b b b bg x  

 and /i i
v v v vg x  

 are the volumetric Gibbs free energy 

densities associated with the bulk and void phases which have their own 

instantaneous compositions just next to the hypothetical geometric boundaries of 

the interfacial layer (reaction fronts or zones). Furthermore, these quantities are 

related to the specific Gibbs free energy densities by the relationship: .g h g   
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Dividing both side of Eq. (2.3.3) by t , and taking following limits: 0,t   

0,  one may immediately obtain the following differential equations 

representing IEP associated with the virtual displacement of the left and right sides 

of the triple junction singularity, 
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In these expressions the symbol , emphasize that those IEP terms are line sources 

in three dimensional space.  

 

Then, the entropy production for the combined system (composed of right and left 

sides) may be obtained as:  
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which yields IEP due to longitudinal displacement of the triple junction along the 

grain boundary. Applying the consecutive limiting procedures, as described 

previously, gives: 

 

 ˆ 1
cos cos 0

g
gin

g

ddS
g g g

dt T dt



 


        
   

(J K−1 m−1 s−1)   (2.3.6) 

 

In Eq. (2.3.5) ( )vb v bg g g   
 corresponds to the volumetric Gibbs free energy 

density of transformation (GFEDoT) (negative of the affinity of an interfacial 

reaction such as for condensation or adsorption: 0vbg  ; and for evaporation or 

desorption: vbg )  associated with the transformation of the bulk phase into the 

realistic void phase which contains chemical species even though they are present 

in a trace amount. In the case of thermostatic equilibrium between a void phase and 

an adjacent bulk phase, GFEDoT equals to zero if the reaction front is flat. 

Similarly, the specific Gibbs free energy of transformation between the parent and 

void phases may be given by vb vbg g h  . 

 

The IEP density associated with the virtual displacement of an ordinary point along 

the normal direction of void surface can be also deduced from Eq. (2.3.5). This can 

be done first by deleting the grain boundary terms, and recognizing that the 

displacement motion of the curved interface takes place along the local surface 

normal vector. Since the right and the left hand segments around the selected 

ordinary point can be chosen arbitrarily, we may take them equal in length that 

automatically results identical take off angles between the surface normal and the 
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right and the left segments. Now if one applies the limiting procedure such as; 

0  and 0t  , then the following rigorous continuum relationship may be 

obtained, by recalling that curvature gives a measure of the rate of change of 

direction of the tangent with respect to arc length (see figure 2.3.3):  

 

0

cos

/ 2
lim


 


 

 (m−1)  (2.3.7) 

 

 

 

 

Figure 2.3.3: The curvature relationship given in equation (2.3.7) may be justified 

by a) considering the circle that pass from three points: 1   , where  is the local 

radius of curvature. Alternatively, b) shows the unit tangent  t̂  and normal  n̂  

vectors at the mid-segments, so as given in c) magnitude of the difference vector 

ˆ ˆt t   is the base of the isosceles triangle formed by the unit vectors and therefore 

equal to 2sin(π/2-θ). Then, curvature may be obtained as: 
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Similarly 
0

lim
 

 results / 2  . Hence, using above described limiting quantities 

in Eq. (2.3.5), one may deduce the following expression for the internal entropy 

production density (the entropy source term) associated with ordinary points:  

 

 in
ˆ 1

0vb
dS d

g g
dt T dt

   
  (J K−1 m−2 s−1)   (2.3.8) 

 

There is a certain freedom exists in the choice of fluxes and forces, because the 

entropy production can be split in several ways into fluxes and forces as clearly 

demonstrated by De Groot (1951). Since it has been assumed on the onset that there 

is a thermal equilibrium in the system, we may rather use a direct and more 

plausible approach for the triple junction singularity, namely the concept of power 

dissipation in the close sense of classical mechanics, and sometimes it is called 

Helmholtz dissipation function (Haase, 1969). This concept is also advocated and 

extensively used by Ogurtani and Seeger (1983) in the general formulation of 

internal friction and dislocation damping phenomenon associated with atomic 

hopping motions in discrete body centered cubic lattice that is exposed to the 

interaction fields which are inhomogeneous in space and fluctuating in time. The 

power dissipation function for an isothermal system is simply given by IEP 

multiplied by the temperature, and for the present case it is identically equal to the 

product of the driving force and the velocity: 

 

ˆ
0indS d

T F
dt dt

 
 


  (J m−1 s−1) (2.3.9)  
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Comparing Eq. (2.3.9) with Eq. (2.3.4), one can immediately deduce the 

generalized force for the right and left sides as; 

 

cos
2
gg

F g    
  
 



 
 (N m−1) (2.3.10a)  

 

cos
2
gg

F g    
  
 


 
 

 (N m−1)  (2.3.10b)  

 

These generalized forces are associated with the net material flow, during the triple 

junction longitudinal displacement along the grain boundary, without making any 

distinction between intrinsic fluxes related to the individual chemical species. They 

are also given in per length basis consistent with the IEP formulation which was 

carried out for a sample of unit length in thickness, and the void surface was 

assumed to be an arbitrary cylindrical in shape. In the phenomenological 

relationship between velocity and force, one may prefer to use the force acting on a 

single atomic particle. Therefore above expressions for generalized forces should be 

multiplied by an atomic length, ad , which may be taken as equal to the interatomic 

distance along the sample thickness. Accordingly, the connection between the triple 

junction velocity and the atomic generalized force may be written by introducing 

the phenomenological mobility coefficient /long kT ,  
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


  
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   
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g
dt kT 
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


  
  

 
 (m s−1)  (2.3.11b) 

 

where, the same mobilities for both sides are employed. One can now immediately 

formulate the atomic fluxes coming from the triple junction towards the both sides 

of the void surface layer. These are simply given by the number of atoms present in 

a volume swept by the triple junction motion along the grain boundary per unit 

time, and plus the incoming grain boundary atomic flux ˆ
gJ  ( m−1 s−1) associated 

with the long-range drift-diffusion. Since, the velocity of the triple junction is 

proportional with the net flux accumulated or depleted at the junction, one can write 

the following expressions; 
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Combining these expressions with Eqs. (2.3.11) for the triple junction velocities, 

one gets immediately the following generalized conjugate fluxes: 

 

  ˆcos / 2
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g g
d

J g J
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J g J
kT      

   


 
( m−1 s−1) (2.3.13b) 

 

where the right and left sub-domains are considered separately by splitting the grain 

boundary diffusion flux equally. At this stage one can immediately write down the 

expression for the velocity of the triple junction either directly from Eq. (2.3.6), or 

applying the law of conservation of species to the displacement motion of triple 

junction, and utilizing Eqs. (2.3.13) for the out-going fluxes from the transformation 

front: 
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In Eqs. (2.3.13),   and   may be called as the wetting parameters and are given 

by the following expressions: / 2gg g   and / 2gg g  . The specific 

Gibbs free energy of the void surface layer may depend on the orientation of the 

local surface normal due to the anisotropic behavior of the surface tension  and/or 

the specific Helmholtz free energy itself in crystalline solids (Defay & Prigogine, 

1966). 

 

The phenomenological mobility coefficient denoted by long , which may also be 

called as the reaction rate constant associated with the phase transformation. The 

transformation takes place continuously and reciprocally between two surface 

phases: 1) the interfacial void surface layer and 2) the grain boundary region just at 

the triple junction and may be denoted symbolically as: gb . This 

phenomenological mobility does not make any distinction between individual 

chemical species and their rate of transfer over the activation energy barrier. Its 

temperature dependence may be given according to activated complex rate theory 

of chemical reactions (Yeremin, 1979) as follows: 

 

*
,exp glong GkT

h kT
            

 (2.3.15) 

 

In above expression *
,gG  is the Gibbs free energy of activation for the 

transformation of surface phase into the grain boundary phase or vice versa. Eq. 

(2.3.14) clearly shows that in the case of thermostatic equilibrium at the triple 
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junction, the displacement velocity becomes identically equal to zero regardless the 

magnitude of the grain boundary flux. Thermostatic equilibrium establishes when 

the dihedral angles have reached those values, which make generalized forces given 

in Eqs. (2.3.10) identically equal to zero, under the assumed constrain on the triple 

junction, namely no lateral motion is possible. Similarly in above equation, the 

fluxes associated with the void surface diffusion, they may go through certain 

modifications in the case of anisotropic behavior of the void surface layer. For 

isotropic specific Gibbs free energies, g g g  
   , Eq. (2.3.14) takes the 

following form by utilizing the dimensionless wetting parameter  , which is given 

by /(2 )gg g  .  

 

 2 cos cos
2

long
long a
g

d g
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 (m s−1) (2.3.16) 

 

One can easily show, using the technique developed in this section that IEP 

associated with the transverse virtual displacement of the triple junction, i.e. the 

motion perpendicular to the grain boundary, may be given by the following rigorous 

relationship; 
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Taking successive limits as 0t   and 0  , the IEP for the transverse 

motion of the triple junction along the designated positive direction becomes; 

 

 ˆ 1
sin sin 0

trans trans
indS d

g g
dt T dt 

         (J K−1 m−1 s−1)    (2.3.18) 

 

Recalling the assumption of thermal equilibrium, the projection of the dissipative 

force acting along the direction perpendicular to the grain boundary may be 

deduced from Eq. (2.3.18) as: 

 

sin sintransF g g        (N m−1) (2.3.19) 

 

This relationship together with Eq. (2.3.14) clearly shows that the triple junction 

(without constraint) can be in complete physico-chemical equilibrium configuration 

if and only if the specific interfacial Gibbs free energies associated with the grain 

boundary and both sides of the void surface layer satisfy the following vectorial 

summation rule: 0gg g g 
   

  
. The Young formula (Young, 1805) is a similar 

vectorial relationship between the surface tensions  associated with the intersecting 

interfaces in order that mechanical equilibrium exists at the triple junction. 

 

These findings related to the transverse virtual motion of the triple junction is 

important if the grain boundary migration occurs as a result of some thermally 

activated processes. In such a situation, the transverse component of the triple 

junction velocity can be obtained from Eq. (2.3.19): 
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 sin sin
trans
gtrans

g av d g g
kT      

    (m s−1) (2.3.20) 

 

where ad  is the atomic distance and /trans
g kT  is the triple junction transverse 

mobility; a phenomenological coefficient depends on the temperature of the system 

through an activation energy barrier. 

 

In the case of lateral constraint on the grain boundary motion, the generalized lateral 

force now generates a particle flow at and through the triple junction along the void 

interfacial layer to establish thermostatic equilibrium configuration there by 

adjusting orientations of the neighboring left and right micro-elements. The 

conjugate particle flux (transverse flow) associated with this force is: 

 

   ˆ sin sin
trans
gtrans

g aJ Sign d g g
kT       

     ( m−1 s−1) (2.3.21) 

 

In above expression the angle  denotes the amount of rotation of the 

microelements adjoint to the triple junction in the anti-clockwise direction, and Sign 

is the usual sign function. A close inspection of above flux expression reveals that it 

tries to eliminate any deviation from the thermostatic equilibrium at the triple 

junction through the dihedral angle readjustment by transferring mass from one side 

to another.  
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2.4. Global internal entropy production associated with the virtual 

displacement of an interface interacting with grain boundaries 

 

The global IEP (GIEP) associated with the arbitrary virtual displacement, dtd / , 

of an interfacial loop of a finite thickness separating a second phase particle v 

(realistic void) from the bulk multi-component matrix. In deriving the GIEP, the 

rate of local entropy density change along the curved interphase boundary must be 

integrated in order to obtain the desired relationship between generalized forces and 

conjugate fluxes. The rate of local entropy density change is the only extensive, 

integrable quantity. Therefore, not only the local internal entropy production 

(source term) given by Eq. (2.3.8), but also the external entropy flow term needs to 

be evaluated for the virtual displacement of an interface. For isothermal processes 

the linear combination of these two terms is given by 

 

   
ˆ 1 ˆ ˆ ( )vb b v
S d

g g g J g J J
t T dt    
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  


 (2.4.1) 

 

where the last term represents the REF, which can be immediately obtained from 

Eq. (2.2.7). ˆ
vJ  and ˆ

bJ  are the total atomic drift diffusion fluxes at the reaction 

fronts separating the void and the interfacial layer and the bulk and the interfacial 

layer, in orientations perpendicular to and normal to the interfacial layer 

respectively.  
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The first group of terms in Eq. (2.4.1) represents the IEP. The second group of 

terms similarly represents, respectively, the divergence of the surface entropy flow 

and the possible contribution due to lateral flow of entropy due to exchange of 

chemical species between bulk phase and interface and/or void phase and the 

interface (evaporation and condensation). The interfacial layer including the void 

side is a completely open system (realistic void), and the displacement process is 

assumed isothermal. In order to calculate the global rate of entropy change along 

the whole curved interfacial layer, let us first take the line integral of Eq. (2.4.1) 

along the entire closed curved interface. Any possible singularity such as a triple 

junction that may be situated at a point denoted by the open interval  ,   when 

0  is excluded: 
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




 (2.4.2) 

 

In the absence of the particle source or sink terms, the atomic flux divergence is 

proportional to amount of mass accumulated or depleted on a interface location, 

which causes the interface to move in a local normal direction. However, here we 

are considering more general situation namely, the additional entropy source terms 

associated with the normal components of the atomic flows coming from the bulk 

phase, and the void region due to condensation or evaporation processes which may 

be summarized by ˆ ˆ ˆ .vb v bJ J J  Hence the following rigorous expression applies 
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for the conservation of atomic species during the virtual displacement of curved 

interphases having neither variation due to stretching nor in thickness: 

 

  ˆ ˆ ˆ( )
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i i

J Jd
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 (2.4.3) 

 

bc , vc  and c  are the atomic volumetric concentrations associated with the bulk, 

void and surface phases, respectively. Assuming that a realistic void is a polyatomic 

dilute gas in which 0,vc   and 0h  the following result is obtained:  
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n J
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  (2.4.4) 

 

where, 1
b bc   is adapted from the literature (Guggenheim, 1959; Ogurtani & 

Oren, 2001; Wang & Suo, 1996). n̂  and r


 are the surface normal and the position 

vectors, respectively.  

 

Substituting Eq. (2.4.4) into the integrated entropy expression Eq. (2.4.2) gives: 
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  (2.4.5) 
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The first and the third group of terms on the right side of above relationship can be 

integrated by parts. Subsequently the rate of global entropy is split into the global 

IEP and the REF by carefully inspecting the individual contributions of each term 

(Ogurtani & Oren, 2001). The global IEP term is identified as: 

 

   

   
0

ˆ
vb vb vb

IEP

vb vb

d J g g d g g Jd
S im

dt T
g g J g g J

 

  
 


    

 

 

 

 


 

              
            

 
  


 

 (2.4.6) 

 

Similarly, we can collect those terms in Eq. (2.4.6), which are clearly related to the 

rate of entropy flow or in another word the external entropy contribution associated 

with the void surface phase excluding the triple junction as a singularity. Hence, 

one may write: 
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In these expressions  denotes volumetric densities and ^ denotes the bulk flux 

intensities ( m−2 s−1). Here, i

i

J J  denotes the sumover surface atomic drift-

diffusion (convective) fluxes ( m−1 s−1) in the interfacial layer. Similarly, 

ˆ ˆ i
b b

i

J J and ˆ ˆ i
v v

i

J J are the total atomic drift-diffusion flux densities 

(convective) normal to the interface, and they are coming from the adjacent bulk 

and void phases, respectively. In this formulation, the total convective fluxes as 
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well as the drift-diffusion fluxes associated with the individual chemical species are 

referred to the laboratory reference frame. Because, the whole interconnect material 

shows constant drift in the direction of the electron wind under the action of the 

externally applied electromigration forces having free boundary conditions at the 

cathode and the anode edges. Hence, neither the barycentric velocity complications 

of Prigogine (1961) entropy source term nor ‘the simple isotropic elastic solid 

crystal’ reference system (Haase, 1969) enters into the problem. However, in the 

total atomic drift-flux calculations, relevant summation operations do not include 

vacancies. Instead the rigorous identities ˆ ˆV
b bJ J   and VJ J    are valid. The 

superscript, V , denotes the vacancy drift-diffusion flux density in the relevant phase 

assuming that it has a crystalline structure. Without crystal structure such 

connection has no meaning. 

 

In the absence of any possible singularity, the last two terms in Eqs. (2.4.6) and 

(2.4.7) vanish. It follows from the integrated internal entropy production, given by 

Eq. (2.4.6), 

 

 1
vb extF g g t F

T  
            




  (2.4.8a) 

  

 1
vb vb extF g g n F

T 
          


 (valid for ordinary points)  (2.4.8b) 

 



86 
 

F  and vbF  denote longitudinal and transverse generalized forces that are acting on 

the interfacial layer respectively. t


 and n


 denote unit tangent and normal vectors at 

the void surface, respectively. The last contribution in Eq. (2.4.8b) becomes 

identically zero since the normal component of the force field intensities (i.e. 

normal component of the electric field intensity and/or the traction) are all vanish at 

the void surface. The conjugate fluxes associated with the above forces are 

identified by using the conventional approach of linear irreversible thermodynamics 

for isothermal processes in the presence of conservative external force fields. The 

surface flux is, 

 

 vb extJ g g t F
kT


  
        




  (surface flux) (2.4.9) 

 

and the net lateral flux density responsible for the growth process is, 

  

 vb
vb vbJ g g

kT  


  
 

  (incoming net flux density) (2.4.10) 

 

Cross-coupling terms between the generalized forces and fluxes has been neglected. 

/ k  and /vb k  are generalized phenomenological mobilities associated with 

the respective conjugated forces and fluxes, and k  is Boltzmann’s constant.  
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For multi-component systems, where we are interested only in the net atomic 

(mass) transport regardless to the contributions of individual chemical species, the 

first generalized-mobility given above may not be easily connected to any 

combination of the intrinsic surface diffusivities of individual chemical species in 

the interfacial layer or in the bulk phase. However, for one component system 

having minor amount of doping elements or impurities, the situation is rather simple 

where one can easily identify the existence of the following relationship between 

generalized mobility and the surface self-diffusivity of host matter denoted by D
 , 

 

ˆ D h D

kT kT kT
   

 



    



 
, (2.4.11) 

 

ˆ
  may be called surface atomic mobility, and it has the dimension given by (J−1 

s−1). The generalized mobility vb  (m
2  s−1) associated with the incoming bulk 

diffusion flux is related to the transformation rate of chemical species from bulk 

phase to the interfacial layer or vice versa over the activation energy barrier denoted 

by *
vbG . Hence, it can be defined according to the transition rate theory of 

chemical kinetics advocated by Yeremin (1979), as:  

 

*

exp vb
vb

GkT

h kT

             

(2.4.13) 
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Here, h  is the Planck’s constant. The mobility given in Eq. (2.4.13) may also be 

used in the following normalized form:  

 

ˆ vb
vb kT


    (m2  J−1  s−1) (2.3.20) 
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CHAPTER 3 
 
 
 
 

MATHEMATICAL MODEL AND NUMERICAL 

PROCEDURES 

 
 
 
 
 

3.1. Equations of motion for the ordinary and the triple points  
 

The general form of conservation law in physics is employed to obtain the normal 

displacement velocity of an ordinary point, ordv  on a surface;  

 

ˆˆ
ord

vb
v r

n J J
t







     

 


  (3.1.1) 

 

Eq. (3.1.1) simply states that the rate of change of the position of a particle in a 

direction of normal to the surface is due to the sources (sinks) of that particle ( ˆ
vbJ ; 

 m−2 s−1) and due to the divergence of the flux of that particle ( J ;  m−1 s−1). 

Here, as can be understood from the context, n̂  and r
  are the surface normal and 

the position vectors, respectively (see figure 1.2.1).   is defined as the mean 

atomic volume of chemical species at the surface. 
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The conservation law given above is not very meaningful as long as we do not 

provide expressions for the source and flux. The notations ˆ
vbJ  and J are due to 

chapter 2, in which relevant equations were derived by a rigorous linear irreversible 

treatment of surfaces and interfaces with triple junction singularities. The normal 

displacement velocity for the ordinary points can be obtained by substituting the 

surface flux, given by Eq. (2.4.9), and the incoming net lateral flux density, given 

by Eq. (2.4.10), to Eq. (3.1.1): 

 

   
2

ord
vb Ext vb vbv g g t F g g

kT


                   

 
 

 (3.1.2) 

 

Here   represents the curvilinear coordinate along the surface (arc length). Eq. 

(3.1.2) is the most general form of the equation of motion for ordinary points. 

Considering only the diffusion of chemical species (ignoring the growth term) and 

by using the Nernst-Einstein relation between the atomic mobility and the surface 

self-diffusivity of host matter, given by Eq. (2.4.11), we obtain the following 

evolution equation or the equation of motion for an ordinary point on the surface in 

its simplest form used in the current work: 

 

 
1

( , ) :
2

ord
ext

h
v D g t F

kT
 

                   


 

 (m s−1) (3.1.3) 

 

where, the angular dependent post factor ( , )D    denotes that the surface drift-

diffusion is anisotropic. Here, ,  and    are the stress and strain tensors; the double 
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bar signs under the symbols is to designate tensorial quantities and double dot 

defines double scalar product of the two tensors. In Eq. (3.1.3) only the stress 

dependent parts of the specific Gibbs free energy density of bulk phase evaluated 

adjacent to the interfacial layer (the reaction zone) has been incorporated (Ogurtani 

& Oren, 2005).  

 

On the other hand, the triple junction velocity in the direction along the grain 

boundary was readily given in chapter 2 by Eq. (2.3.16): 

 

 2 cos cos
2

long
long a
g

d g
v

kT
        
   (m s−1) (3.1.4) 

 

Finally, the following boundary conditions for the triple junction in terms of the 

right and the left side fluxes can be deduced from Eqs. (2.3.13) and (2.3.21): 

 

 

 

ˆ ˆcos / 2
2

        sin sin

long
a

o g g

trans
g a

g

d
J g J J

kT

d
g

kT

 



 

 

 

 


    


 



 
( m−1 s−1)  (3.1.5) 

 

where ˆ
gJ  and Ĵ  denote the normalized atomic fluxes associated with grain 

boundary flow, and the drift-diffusion due to external force fields.  

 

In the formulation of the stress induced driving force for the atomic migration, there 

is a wide spread confusion, as detailed in chapter 1, whether to use elastic strain 
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energy density function or the strain field interaction potential as suggested by 

Kröner (1958) and extensively used by Ogurtani and Seeger (1984). Similarly, the 

basic concept of chemical potential is highly distorted, and the historical warnings 

of Gibbs and later by Guggenheim against the splitting of i  into parts have been 

completely ignored or forgotten. Below, an irreversible thermodynamic formulation 

of external driving forces on the flow of matter is presented using the lattice as a 

reference frame, which is more suitable here rather than the center of mass as 

employed by Prigogine in his monumental work (Prigogine, 1961) for the treatment 

of continuum media without structure.  

 

The external conservative generalized forces (per particle) associated with the 

electromigration and the strain field interactions for chemical species ‘i’ in a phase 

denoted by   subscript may be presented by the following relationships, 

respectively (Ogurtani & Oren, 2001):  

 

i
i eZ

F
T   



 
(N −1)  (3.1.6a) 

 

( : )i i
sF

T


  
 



 
(N −1)  (3.1.6b) 

 

Here,  is the electrostatic potential. Similarly, the generalized external total force 

density (per unit volume) associated with these electromigration and the strain 

energy interactions and acting on particles may have the following form for a multi-
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component system assuming that i
s  is homogeneous function of space, 0i

s  , 

whether it is a bulk phase or an interfacial layer: 

 

1 1
:i i i i

ext s
i i

F x eZ x
T T  



                  
 



 
(N m−3)  (3.1.7) 

 

where, ix  denote the atomic fractions. According to the Onsager theory, the total 

conjugate flux intensity becomes: 

 

:i i i i
ext s

i i

M
J x eZ x

kT
 

   


  
    

               
 



 
( m−2 s−1)  (3.1.8) 

 

which is valid for any three or two dimensional phases with lattice structures. Here 

  is the mean atomic volume of species in alpha phase and M  is the 

phenomenological mobility associated with the net flow of particles (where /M k  

is the cross coupling coefficient). In above expressions, 0iZ   and i
s  are effective 

electromigration charge and the elastic dipole tensor of the individual chemical 

species denoted by 'i' in a given phase, which may be bulk phase or an interphase. 

Eqn. (3.1.8) indicates that the multi-component systems exposed to electrostatic as 

well as elastostatic stress fields can easily be treated by utilizing average values of 

the effective charge and the elastic dipole tensor, which may be denoted by Z and 

s . One can easily conjecture that this means elastic dipole tensor is identically 

equal (with a sign inversion) to the elastic dipole tensor of vacancies responsible for 
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the hopping motion of individual chemical species. In case of self-interstitial 

diffusion, the situation becomes more complicated. 

 

Using Eq. (3.1.8), the differential expression related to the ordinary points can be 

put into the following format: 

 

*
1

: :
2

ord
s

h
v D g q

kT
 

 


    
                 

(m s−1) (3.1.9) 

 

Here, the second term in the innermost parenthesis is the elastic strain energy 

density (ESED) contribution, and the third term designates the elastic dipole tensor 

interactions (EDTI) which measure the intensity of the elastic interaction between 

the elastic strain field tensor, ,s  associated with the mobile chemical species (i.e., 

adatom or the mobile atom mono-vacancy pair) at the surface layer and the surface 

(hoop) stress system generated by applied surface tractions and/or body forces on 

the bulk medium. The last term in Eq. (3.1.9) is due to electromigration (EM) forces 

where *q e Z  called the surface effective charge. 

 

In stress calculations we assume plain strain condition for a thin film which is 

characterized by an invariant loading along z-direction. Then the displacement field 

takes the form: u(x, y), v(x, y), w = 0. From the strain displacement relations, we 

find that only the three in-plane strains are nonzero: εxx(x,y), εyy(x,y), εxy(x,y),  and 

three out-of-plane strains vanish: εzz = εxz = εyz = 0. Further we assume that the shear 

components are also equal to zero: εxy(x,y)= 0.
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The state of stress and strain is then: 

 

0 0 0 0

0 0           0 0

0 0 0 0 0

xx xx

yy yy

zz

 
   



  
  

    
  

     

(3.1.10) 

 

From the generalized Hook’s law: 

 

 1
     0

( )

zz zz xx yy

zz xx yy

E
   

   

   

  
 

(3.1.11)

 

 

Substituting Eq. (3.1.11) in (3.1.10), the trace of the Cartesian stress tensor is 

obtained as follows:  

 

( ) (1 )( )xx yyTr        (3.1.12) 

 

The hoop stress in local coordinates is defined by ˆ ˆ. .h t t  , where t̂ is the unit 

surface tangent vector. Then, in plane strain condition, for traction free surface 

above equation is represented by: 

 

( ) (1 ) hTr      (3.1.13) 
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Here ν is the Poisons’ ratio, E is the elastic modulus and subscript h stands for the 

hoop. Similarly, the stress – strain connection takes the following form: 

 

 
 2

2

1
    

1
( )

1

1

xx xx yy zz

xx xx yy xx yy

xx xx yy

E

E

E

   

     

   


  

    

      

 (3.1.14) 

 

And, for traction free surface in local coordinates: 

 

21
h hE

 


 
 (3.1.15) 

 

On the other hand, in the case of isotropic mobile defects which have vanishing 

deviatoric part, the elastic strain field tensor associated with the mobile chemical 

species at the surface layer can be put into following form using the hydrostatic 

part: 

 

   ˆ1 / 3s sTr I   (3.1.16) 

 

where Î  is the idempotent tensor.  

 

Then, by performing the double scalar products in Eq. (3.1.9) yields the evolution 

equation for ordinary points in real time and space as:  
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2
2

*
( )(1 )1

(1 )
2 3

ord s
h h

h Tr
v D g q

kT E
 

 


    
                   

(3.1.17) 

 

Eqs. (3.1.4, 5) and (3.1.17) are the necessary equations to govern the profile 

evolution of surfaces with triple junction singularities which are exposed to 

capillary, electromigration and elastostatic forces on a physical domain, whose 

specification is left to section 3.3.  

 

3.2. Normalization and scaling 

 

The evolution equations given by Eqs. (3.1.4, 5) and (3.1.17) will be normalized 

and scaled in the following manner. First of all we will look to a similarity criterion 

for the two systems given in figure 3.2.1. 

 

                                                   
      0  

 

 

 

Figure 3.2.1: Schematic representation of the two systems subjected to dimensional 

analysis.  

 

In this section the subscripts, σ, which was used to denote that a property is 

associated with the interfacial or surface layer, is dropped out in order to ease the 

1 
2 
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presentation. With the very same purpose the symbol δ is used to denote the 

interface thickness, and symbol λ for elastic strain field tensor instead of using hσ 

and s . In looking at Eq. (3.1.17) we require similarity in: 

 

Geometry: 0LC       (3.2.1a) 

Time: 0tt C t  (3.2.1b) 

Displacement normal to the surface: 0uu C u      (3.2.1c) 

Curvature: 0C   (3.2.1d) 

Surface Gibbs free energy: 0gg C g    (3.2.1e) 

Surface effective charge: *
* 0* qq C q        (3.2.1f) 

Electrostatic potential: 0C     (3.2.1g) 

Stress: 0C   (3.2.1h) 

Elastic strain field tensor: 0C 

 

(3.2.1i) 

Elastic modulus: 0EE C E  (3.2.1j) 

Surface diffusivity: 0DD C D

    

 (3.2.1k) 

Interface thickness: 0C 

    

 (3.2.1l) 

Mean atomic volumes of chemical species at the surface: 0C       (3.2.1m) 

 

Here C’s are the similarity constants. Writing Eq.

 

(3.1.17) for 1 of figure 3.2.1 for 

the case of isotropic diffusivity yields: 
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22
2 *

2

( ) (1 )(1 )
( )

2 3
oo o o o

o o o o o o o o
o oo

Tru D
g q

t kT E

     
  

    
   

(3.2.2) 

 

Similarly, for 2 of figure 3.2.1: 

 

22
2 *

2

( ) (1 )(1 )
( )

2 3

Tru D
g q

t kT E

     
  

    
   

(3.2.3) 

 

Substituting Eqs (3.2.1) to (3.2.3) yields: 

 

*

2 22
2

2 2

*

(1 )1
(

2

( ) (1 )
              )

3

u o D o o o
g o o o o

t o EL o

o
o o o oq

C u C C D C C
C C C g

C t kT C EC

Tr
C C C C C q

 


  

  

 
 






  
  

 


  


 

(3.2.4) 

 

Now, comparing Eqs (3.2.2) and (3.2.4) reads: 

 

*

2

2 2 2

2

1 1 1

1
     

u D D D
g

t EL L L

D
q

L

C C C C C C C C C
C C C C C C

C kT kT C kTC C C

C C
C C

kT C

   
  





   

  
(3.2.5) 

 

Then, following identities may be written: 

 

2

1,
E g

C

C C C



             1,

g

C C

C C
 


  *            1q

g

C C

C C C



   (3.2.6) 
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Substituting Eqs (3.2.1) into (3.2.6) and using the basic relations for curvature

0 0( 1/ )    and electrostatic potential 0 0( )E   yields: 

 

2 22 2 (1 )(1 )1 1

2 2
o o

o oEg E g

   
  



 
(3.2.7a) 

 

( ) (1 )( ) (1 )1 1

3 3
o o o

o

trtr

g g

     
  



 
(3.2.7b) 

 

* 2* 2
o o

o o

q Eq E

g g
  

 


 
(3.2.7c) 

 

These dimensionless parameters may be called as the elastic strain energy density 

parameter (Σ; ESED), the elastic dipole tensor interaction parameter (Ξ; EDTI) and 

the electronwind intensity parameter (χ; EWI) and all describe the relative strengths 

of applied forces with respect to the capillarity.  

 

Now, knowing that similarity requires Eqs. (3.2.7) we can rewrite Eq. (3.1.17) as: 

 

2 2
2

22

2 *
2

(1 )

2

( ) (1 )

3

o o
oo o

o o oo o

o o
o oo

o oo oo

u D
D E gD

g t kT tr q
E

g g E

   

   
 



 
 

  
                 

 


 
    
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 
4 2

2
2

o

o

kT u
D

gD t
   


 

    
  


  

(3.2.8) 

 

From this context one may specify a time scale, τo, as: 

 

4

o
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(3.2.9) 

 

Then, the evolution equation for ordinary points in normalized and scaled time and 

space (NSTS) is:  

 

 2ordu
v D

t                   
(3.2.10) 

 

In which, following normalizations have been used: 

 

/ o   , / ou u  , o    ,   / oD D D ,  (3.2.11a) 

ott / , / o   , /  E o        (3.2.11b) 

 

Here σo is the nominal uniaxial stress applied at the edges of the specimen.  

 

Eqs. (3.1.4, 5) could also be transformed into NSTS in a similar way. In doing so, 

ˆ long  and ˆ trans which correspond to the longitudinal and transverse triple 
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junction mobilities, can be normalized with respect to the mobility of the surface 

diffusion denoted by ̂ : 
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where,  
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  (3.2.13) 

 

Then, equations governing the triple junction motion in NSTS are given as follows:

  

 2
2 cos cos

2

g along long
g

g

d
v

h
        

 
  (3.2.14) 
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cos sin sin
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            

 
 (3.2.15) 
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3.3. Physical model; the boundary conditions in normalized and scaled time 

and space 

 

On a silicon chip interconnects are made of several levels of Al or Cu lines. Silicon 

dioxide fills the space in between to provide insulation. The whole structure is a 

metal network embedded in an oxide matrix. The tungsten studs serves as vias to 

link interconnect lines between different levels. TiAl3, TiN coatings shunt the 

electric current where voids deplete the metallic Al or Cu (Z. Suo, 1998). 

 

 

 

 

Figure 3.3.1: Isometric view of a thin metallic bi-crystal thin film with a vertical 

grain boundary separating it into two grains and in contact with electrode pads.  

 

In the present case, we model a thin interconnect film with a with a vertical grain 

boundary separating it into two grains as sketched in figure 3.3.1. It is assumed that 

the sample sandwiched with a top and bottom high resistance (TiAl3, TiN etc) 
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coatings, which together with the substrate constitute diffusion barrier layers. It is 

also assumed that the film bonds weakly to these coatings, and only the sidewalls 

and the edges of the interconnect lines are subjected to the surface drift-diffusion, 

which are exposed to environment (air) whose conductivity is neglected in this 

study. 

 

Such a film is assumed to be exposed to an electric field applied far away from its 

edges and subject to a stress system resembling to residual stress state after its 

thermal processing and during operational conditions.  

 

 

 

 

Figure 3.3.2: The schematic representation of the problem. Sidewalls (blue circles) 

are subject to Neumann, and the edges (domain boundaries that are perpendicular to 

the x-axis; red dots) subject to the Drichlet boundary conditions in considering both 

elasto and electrostatics problems.  
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The physical model discussed in this section is two-dimensional. In most 

applications, such an assumption is physically valid since the thickness of 

metallization lines are usually small ( 2000 – 5000 Å) compared with the line 

width. The only reason to make such an approximation is to simplify the 

mathematical analysis and also to reduce the computation time.  

 

In considering Eq. (3.2.10) note that both electrostatic potential and stress fields 

(scalar) should be calculated. These are handled in discretized space by solving the 

electro-elastostatic problem at each time step by using the indirect boundary 

element method (IBEM). As an initial condition, a flat surface and a freshly formed 

grain boundary, which cuts the crystal straight into two segments (bi-crystal) is 

selected as in figure 3.3.2. Therefore, the initial configuration of the system, which 

may be exposed to the uniform external electro-elastostatic fields, is far from the 

thermostatic equilibrium state that is mostly assumed as granted by investigators in 

the literature. 

 

In the computation of the electrostatic potential at the free surface layer, which is 

exposed to air, we will set the electromigration boundary conditions such that the 

normal component of the electric field intensity vector is identically equal to zero. 

At the cathode and anode pads, we will assume that an adaptive external potential 

difference is applied in order to maintain a constant current flow during the 

evolution period, regardless the variation of the electrode contact areas there. In this 

problem, one is seeking the solution of the Laplace equation in a two dimensional 

domain that is given by the following equation: 
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2 0   (3.3.1a) 

 

with the following Neumann boundary conditions at the sidewalls of figure 3.3.2: 

 

ˆ 0n    (3.3.1b) 

 

Finally with the Drichlet boundary conditions at the vertical ends of the film, where 

the electrodes are attached, 

 

o    (3.3.1c) 

 

Eqs. (3.3.1) describe a distribution of voltage inside a homogenous medium of 

constant resistance. Here the scalar function   is the electrostatic potential at the 

boundaries. 

 

For an isotropic linear elastic material at rest in its strained condition in the absence 

of body forces, we have the following system of equations,  

 

0    (Force equilibrium equations) (3.3.2a) 

 

ˆ 2I Tr        (Stress – strain connections, i.e. Hooke’s law) (3.3.2b) 
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 1

2
u u       (Strain – displacement relations) (3.3.2c) 

 

Here once again the double bars under any symbol indicates dyadic (the second-

order tensor or matrix), and single bars indicates vector quantity.   is the elastic 

(pure) strain field given in terms of displacement vectors u , which should satisfy 

the compatibility conditions presented by (Weatherburn, 1954; Fung, 1965): 

 

0     (Compatibility requirements) (3.3.2d) 

 

This equation gives six identical relationships between the components of strain in 

3D space. For the plain strain case the six compatibility equations may be reduced 

with a reasonable accuracy to a single equation (Mase, 1970): 

 

, , ,2xx yy yy xx xy xy      (Compatibility requirement for plane strain) (3.3.2e) 

 

If we substitute Eqs. (3.3.2b, c) into the stress equilibrium equation represented by 

Eq. (3.3.2a), we obtained the following generalized Navier’s equation in the dyadic 

format, where   and   are the Lame’s elastic constants for isotropic materials:  

 

2( ) 0u u         (Navier’s equation) (3.3.3a) 
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Here, one may recall the following useful identities: 2 ,  ,Tr u u u    

2u u   , and ˆ ˆI I     , where Î  is idempotent tensor, and the explicit 

definition of  , the delta vector operator in the Cartesian coordinate system may be 

given by: k̂
k

i
x


 


, using the Einstein summation rule. 

 

Eq. (3.3.3a) subject to Drichlet type boundary conditions with prescribed (fixed) 

displacements at the vertical ends of the film: 

 

0u     (3.3.3b) 

 

And the sidewall surfaces are assumed to be traction free, i.e. subject to Neumann 

boundary conditions:   

 

ˆ 0T n       (3.3.3c) 

 

Once the solutions to both Eqs. (3.3.2) and (3.3.3) are obtained by the use of the 

indirect boundary element method (IBEM) at each time step, film profile is updated 

by surface diffusion using Eqs. (3.2.4, 5) and (3.2.10). For a disconnected 

interfacial layer (finite or infinite) such as one or two-grain sector of interconnect, 

the additional boundary conditions should be set at the end points of the metallic 

line for the surface diffusion problem, where the direct contact with electrodes 

through an interface does exist or not.  
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Depending upon the experimental conditions in the laboratory testing and the 

interaction of the test piece with its immediate surroundings one can identify tree 

types of boundary conditions excluding the periodic boundary condition which we 

have employed in the current study; the reflecting, interactive-barrier and the free 

moving boundary conditions (Ogurtani & Akyildiz, 2005).  

 

The reflecting boundary condition is also known as insulating BC, does not allow 

any material flow or leakage due to drift-diffusion caused by chemical, capillary 

and electromigration forces at the anode and/or cathode edges.  

 

The interactive-barrier BC on the other hand should be taken into account where the 

capillary reaction (wetting) is taking place at the contact layer between electrode 

and the interconnect material. This boundary condition is very similar to the grain 

boundary surface interaction problem (one-sided GB) with one modification, 

namely the interfacial layer between electrode pad and the edge of the interconnect 

line stays rigid and impermeable to drift-diffusion flux. However, the contact area 

will diminish or increase due time. This boundary condition is especially very 

suitable for the anode side of the interconnect structures, which results a hillock 

formation at that edge with proper topology, rather than the ordinary up-hill mass 

accumulation resulted from the application of the reflection BC. It can be also used 

for the cathode edge, up to the point where the detachment of the interconnect from 

the electrode pad occurs, which normally indicates catastrophic cathode failure.  
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Finally, the free-moving BC assumes that there is no direct contact with electrode 

pads at the cathode and/or anode edges. All these boundary conditions were 

employed in our previous studies (Akyildiz, 2004; Ogurtani & Akyildiz, 2005, 

2008a) and the computer code given in Appendix B is capable of employing them. 

 

3.4. Numerical procedures 

 

We consider an interconnect system composed of two grains and naturally having 

two triple junctions associated with a grain boundary as illustrated in figure 3.3.2. 

The interconnect system is considered to be groove free at the beginning and 

appeared as a collection of nodes as a result of discretization, forming 

predetermined segment lengths.  

 

Although the model is two dimensional; however, node positions are stored in 3x1 

matrices in order to make use of vector algebra. Once node, node centroid positions 

and segment lengths are introduced, turning angles (or angle between two 

successive segments), local boundary normal vectors and the node curvatures (in 

connection with the fundamental definition of radius of curvature), are calculated by 

using discrete geometric relationships.  

 

As stated before in the evaluation of the electrostatic potential as well as the hoop 

stress along the perturbed sidewalls of the thin metallic film the indirect boundary 

element method (IBEM) that employs the straight constant line elements have been 

utilized (Beer & Watson, 1992; Brebbia & Dominguez, 1992; Beer et al., 2008). 
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Comparing with finite element method (FEM), IBEM requires less number of 

nodes, less computing time, and storage but offers higher accuracy and efficiency in 

analysis, especially in analysis of thin structures (Beer & Watson, 1992). For the 

solution of the resulted system of linear equations LU factorization with partial 

pivoting has been employed (Mathews, 1992).   

 

 

 

 

Figure 3.4.1: Orientation dependence of the normalized surface diffusivities with, 

A=1, 0  ˚ (solid red curves) and 30  ˚ (dashed blue curves) respectively for 

m=1→(110), m=2→(100)  and m=3→(111) planes.    

 

The anisotropic diffusivity of surface atoms is incorporated into the numerical 

procedure by adapting the following relationship, 

 

 2''( , ; ) 1 cos
o

D
D m m

D




         


  (3.4.1) 
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where 0
D  is the minimum surface diffusivity corresponding to a specific surface 

orientation,   is the angle formed by the local tangent to the surface and the 

direction of the applied electric field.  , m, and   are dimensionless parameters 

that determine the strength of the anisotropy, the grain symmetry through the 

number of crystallographic directions that corresponds to fast diffusion paths (half-

fold number), and the misorientation of the symmetry direction with respect to the 

direction of the applied electric field E , respectively.  

 

The explicit Adams-Bashford formula of second order (Gear, 1971) is used to 

perform the time integration of the evolution equations with a time step determined 

from the maximum surface velocity such that the displacement increment is kept 

constant for all time step increments. This so-called adapted time step auto-control 

mechanism combined with the self-recovery effect associated with the capillary 

term guarantees the long time numerical stability and the accuracy of the explicit 

algorithm even after performing several hundred to several millions steps. 

 

Accuracy and efficiency of the numerical methods require a strict control of number 

and position of system nodes. For an accurate and efficient study a remeshing 

technique that guarantees keeping the distance between two successive nodes, i.e. 

the segment lengths below a critical value in order to keep the accuracy in an 

acceptable level, and inhibits formation of useless nodes causing loss of efficiency 

should be employed. A shape preserving parametric cubic spline interpolation 

which keeps concavity of the data is employed to reset the node positions after each 

calculation step, so that a constant segment size is forced.  
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All these methods are implemented in the FORTRAN code named ‘GROOVE’ 

whose flowchart is given the next section. The code itself is also given in Appendix. 
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3.5. Flowchart of the computer code ‘GROOVE’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1: Program flowchart. 
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CHAPTER 4 
 
 
 
 

RESULTS AND DISCUSSIONS 
 
 
 
 
 
 

4.1. Introduction 
 

Here the results of the computer simulation experiments will be given in a concise 

way. At first we seek answers to the questions: what kind of groove morphology 

will form by electromigration, stress and capillarity assisted surface drift diffusion? 

and how this morphology is affected by a change in applied force intensity? To 

answer the first question we will compare the general features of the profiles 

obtained with the ones for a thermal groove, in which only the capillary forces are 

in action. So, before proceeding furthers the thermal grooving problem or the 

classical Mullins’ problem (Mullins, 1957) is reexamined in section 4.2. Then, in 

following sections, we will investigate effects of applied force fields and surface 

diffusion anisotropy on the evolution of bi-crystal thin films under specified 

conditions in a non-dimensional space. Finally reverting back to real time and space 

by renormalizations enables us to analyze and compare the computer simulation 

experiments with the laboratory experiments published in the literature. 
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The dimensional analysis of the governing equations presented in chapter 3 

provides a parameter space to be explored to understand the effects of applied force 

fields on the evolution of bi-crystal thin films. Results of the computer simulations 

performed in this parameter space will only be presented for the upper half of the 

modeled thin film owing to the symmetry of figure 3.3.2 about x-axis. Accordingly 

the convention used to describe the groove morphology in these experiments is 

given in figure 4.1.1. 

 

 

 

 

Figure 4.1.1: Sketch of a grain boundary groove, which evolves on the upper triple 

junction of figure 3.3.2, illustrating its width, depth, maxima and dihedral angle. 

Here W and L denote the half film width and length, respectively. The grain 

boundary extends along the origin.  
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It might be beneficial to get some idea on the magnitude of the tentative time 

constant, τo=kTℓo
4/ΩσDσhσg

o
σ, introduced previously in section 3.2 which will be 

encountered in the next sections while applying the computer simulation results on 

the available experimental data in the literature. The following tentative atomistic 

structural constants for copper might be considered, Ωσ=1.18×10−29 m3 (mean 

atomic volume), hσ=2.56×10−10 m (interface thickness). Similarly, the surface 

diffusivity and the surface specific Gibbs free energy may be taken as equal to 

Dσ=5.85×10−5exp(−0.95eV/kT) m2/s and go
σ= γ =1.725 J/m2, respectively, for the 

uncontaminated free surfaces (Ogurtani & Oren, 2004). Then one finds 

τo=5.85×[102 – 106] s depending upon the selected scale length ℓo=[0.1 – 1.0] μm   

in above given range at T=573 K, that is standard device accelerated test 

temperature (Tu, 2003). At the room temperature, T=300 K, one obtains about eight 

orders of magnitudes higher values for the time constant such as τo=1.22×[1010 – 

1014] s.  

 

4.2. Thermal grooving revisited: the effect of physicochemical parameters 

 

Figure 4.2.1 shows the evolutionary kinetics of a thermal groove having triple 

junction (TJ) mobilities equal to ML=MT=0.25, and a wetting parameter of λ=0.5. 

The initial configurations of the reported systems are always a flat surface having a 

freshly formed grain boundary cutting the crystal into two pieces. Accordingly; the 

groove tip displacement is measured with respect to the original surface and the 

positive direction is chosen towards the bulk. 
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Figure 4.2.1: Isotropic thermal grooving for λ=0.5, ML=MT=0.25: a) and b) shows 

the GB profile; c) kinetic data for groove depth, maxima and width; d) TJ velocity 

and the dihedral angles. The linear correlation factors (R2) for depth, width, maxima 

and velocity up to 5 decimals are 1.0, 0.99999, 0.99996 and 0.99974 respectively. 

Final time for failure is equal to tn=27.5 in normalized scale. 

 

The curvature plot given in the lower portion of the figure 4.2.1b in fact has a 

discontinuity at the groove root (X=0). However this discontinuity constitutes no 
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problem in computations hence the longitudinal and transverse motions of the TJs 

are defined by boundary conditions deduced from the irreversible thermodynamic 

theory of surfaces and interfaces (Ogurtani, 2000). The figure simply reflects 

interpolation of the curvature at that point not to disturb the overall plot. δarea value 

reported in figure 4.2.1b is the total fractional change in the area (material content) 

of the specimen due to numerical rounding errors. Otherwise, it should be equal to 

zero due to the mass conserving boundary conditions imposed on the system. 

 

Analysis of the normalized penetration depth versus time data given in figure 4.2.1c 

shows that the system reaches a stationary regime roughly around t=0.01, and stays 

there till the end of the experiment with a time exponent n=0.25. This regime 

defines a time independent groove shape having linear dimensions changing with 

t1/4 which agrees the analytic solution for surface diffusion dominant mass transport 

(Mullins, 1957). The previous stage of the groove trajectory shall be called as 

transient; this regime is completely ignored in many experimental studies due it 

covers a short ride in time, and also in many theoretical studies due to improper 

boundary conditions based on reversible thermodynamics at the groove root. 

Mullins (1957) gives the equation for depth of the groove which reaches stationary 

regime as: h=0.78m(Bt)1/4; in this notation h is the depth measured from the initial 

flat surface, m is the slope of the tangent line passing through the groove root 

m=tan(θ); here θ is the complementary dihedral angle (θ=π/2−φ) which 

approximates to ratio γgb/2γs (what we call the wetting paremeter, WP, and 

designate by λ) for small values (small slope approximation; θ=asin(γgb/2γs)≈ 

γgb/2γs). γgb and γs stands for the grain boundary and specific surface free energies 
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respectively. The parameter B is a collection of physicochemical and kinetic 

constants. This parameter is embedded to our time scale, which is described in 

detail in section 3.2. So in order to compare our equation with Mullins’ we have to 

divide our cofactor with the tangent of the wetting parameter λ=0.5, but we never 

have to worry about the parameter B. The result is h=0.42t0.25=0.77tan(λ)t0.25; 

which is close to the equation given by Mullins. Mullins denote the groove width 

with s (separation between the two maxima) and gives its equation as: s=4.6(Bt)0.25, 

this is close to w=4.46t0.25 which we have obtained. The time law for the two 

maxima in figure 4.2.1c is hmax=0.18tan(λ)t.0.24 and for the TJ velocity in (d) is 

v=0.09t−0.75 which can simply be regarded as the time derivative of the groove 

depth. Mullins gives the equation for the depth of the groove measured from the 

maximum of the surface to the groove root as: d=0.973m(Bt)1/4 . Needless to say the 

cofactor in this equation corresponds to the sum of the cofactors of our equations h 

and hmax; 0.77+0.18=0.95. The time independent ratio of the groove width and 

depth was given by Mullins as s/d=4.73/m compared to our 4.69/tan(λ). The linear 

correlation factors (R2) for depth, width, maxima and velocity up to 5 decimals are 

1.0, 0.99999, 0.99996 and 0.99974 respectively. These values demonstrate the 

extreme long range stability in the experiment.  

 

Mullins’ theoretical coefficients approximated further as the wetting parameter gets 

smaller (which is consistent with Mullins’s small slope approximation), yet the 

results presented in above analysis of figure 4.2.1 demonstrate complete accordance 

of the front tracking method with the analytical Mullins’ solution for this relatively 

large value of the wetting parameter (λ=0.5→m=0.577). The time exponents and 
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cofactors obtained in this study are definitely realistic for finite slopes (no small 

slope assumption) and for finite GB TJ mobilities.  

 

Table 4.2.1: Selected values of grain boundary energy γgb and crystal vapor surface 

energy γs for various materials in ergs/cm2, and corresponding wetting parameters λ 

and slopes m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material γgb γs λ= γgb/2γs m  

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES: 

 

a: Hirth and Lothe, 1968 

b: Liu et al., 2001 

c: Murr, 1975 

d: Smith et al., 1991 

e: Mullins, 1957 

f:  Chen et al., 2007 

g: Ogurtani, 2009a 

h: Gao, 1991 

i:  Bihn et al., 1976 

Ag 

790a 1140a 0.346 0.349 

375b 1100b 0.191 0.195

375c 1136c 0.165 0.167 

Al 
625a 1140d   

324b 980b 0.165 0.167

Au 
364a 1485a 0.123 0.124 

378b,c 1400b,c 0.135 0.136

Cu 

646a 1725a 0.187 0.190 
 1670a  0.160e

625b 1780b 0.176 0.178

625c 1736c 0.18 0.183

654f 1752f 0.187 0.190 

Fe 780a 1950a 0.200 0.204 

Ni 
690a 1725a 0.200 0.204 

565 2280g, h 0.124 0.125g

W 

 2900a   

1400 2800h, i 0.25 0.26i

1080c 2634c 0.205 0.209 
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For most of the metals in vacuum or inert atmospheres λ is on the order of 0.125 – 

0.25 (Shewmon, 1966) which yield slopes less than 0.3 (see Table 4.2.1). Thus 

Mullins’ small slope solution yielded satisfactory results. However for some surface 

active environments such as liquid metals or active gases λ can even be close to 

unity (Robertson, 1971). 

 

 

 

 

Figure 4.2.2: a) The relation between depth cofactor (d/t1/4) and the slope; b) finite 

slope (=tan(asin(λ)) =λ/√(1െλ2)) and the small slope approximation (=tan(λ)) as a 

function of wetting parameter. 

 

Numerical solutions of the nonlinear fourth order differential equation describing 

the phenomena for finite slopes are also obtained by Robertson (1971), and Zhang 

and Schneibel (1995). Both authors stated that as m grows larger, the depth of the 

groove profile (d=αt1/4) becomes lower than that assumed by Mullins’ solution. 

Relevant figures from those are digitized and given in figure 4.2.2a together with 
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the values obtained from the present study. Robertson (1971) remarked the 

dependence of the slope m to the ratio of the grain boundary and surface energies 

(γgb/γs=2λ). In figure 4.2.2b Robertson’s figure 6 is redrawn to show the deviation 

from the small slope approximation. In citing Robertson’s work Zhang and 

Schneibel (1995) said that his results for the groove depth in the case of small 

dihedral angles, or large slopes, smaller than theirs and thus deviate further from 

Mullins’ result for the linearized surface diffusion equation. We may say the very 

same thing for Zhang and Schneibel’s work (1995) compared to ours by looking at 

figure 4.2.2a for small slopes. But both studies are in good agreement in general. In 

figure 4.2.2 the wetting parameter used in the experiment given in figure 4.2.1 

(λ=0.5) and the corresponding slope is shown by red markers to indicate the level of 

agreement. 

 

Figure 4.2.3 shows systems response at different values of the wetting parameter. 

Following Robertson (1971), to enable comparison with Mullins (1957), groove 

profiles are normalized with respect to mt0.25 in y-axis and t0.25 in x-axis in figure 

4.2.3a. On this plot each curve has a unit slope at X/t0.25=0, and it compares steady 

groove shapes for each λ whose dimensions grow in proportion with t0.25. In figure 

4.2.3b normalization is done with respect to unit depth and unit half width (W/2), 

where Y0 is the value of Y at X=0. The curves labeled as m→0 are the curves 

calculated by Mullins (1957) using small slope approximation. These two figures 

show, for the stationary grooves, that hmax decreases with increasing λ (or m) and the 

profiles become relatively steeper at the groove root and bends away more sharply 

with increasing λ (Robertson, 1971).  In figure 4.2.3c we see that the transition time 
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to stationary region (final linear region in the log-log plot) is approximately the 

same for all experiments. Lowering the wetting parameter prolongs the observation 

time of steady grooves hence the equilibrium dihedral angle is established at lower 

groove depths. The 0.973tan(λ)t0.25 lines shown in the figure reflects the fact that 

changing λ does not affect the time exponent, which is a function of mass transport 

mechanism. Experimentally calculated connections may be extracted from figure 

4.2.2a by using d=αt1/4. The equilibrium dihedral angles in figure 4.2.3d can simply 

be calculated by taking arccosine of λ according to our convention.  

 

Ogurtani and Akyildiz (2005) show the existence of a transient regime and 

incorporate this regime into their penetration depth formula by stating that the rate 

of this evolution process in the transient regime obeys the first order reaction 

kinetics. This regime is totally ignored by researchers employing Mullins’ boundary 

condition at groove root (constant slope). On the other hand Zhang et al. (2002) in 

their grooving experiments with tungsten at 1350 ºC observed grain boundary 

grooves with dihedral angles decrease continuously. They have found a time 

exponent of 0.44 for the depth of these grooves. They have assumed that the change 

of the dihedral angle is stemming from a change in surface free energy during 

experimentation due to changes in the surface composition by segregation or 

adsorption. They explain the phenomena at this basis by noting that they are not 

aware of an article addressing changing dihedral angles in the model. 
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Figure 4.2.3: Thermal grooving for different wetting parameters. Simulated profiles 

are normalized with respect to a) mt0.25 and t0.25; b) unit depth and unit half width 

(w/2). The m→0 curves are plotted using Mullins’ profile function. Kinetic data for 

c) the groove depth and d) the dihedral angles.  

 

Zhang et al. (2002) report the values of average dihedral angles (2φ) for tungsten as 

163.3, 157.4, 153.6, 150.1º successively at 16, 32, 64, and 128 hours. They have 

extracted this data from the 3D atomic force microscopy (AFM) images at each 

annealing time; one of those images (at 128 h) is given in figure 4.2.4. This φ data 

is plotted in figure 4.2.5a together with the results of the computer simulation 
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experiment performed for λ=0.28 and ML=MT=0.25. In the simulation experiment 

φ=81º is observed at t=10−4; this determines the scaling factor used in plot 4.2.5a:     

10−4/16=2.5x10−5. 

 

 

 

 

Figure 4.2.4: 3D AFM image if a groove developed on the surface of tungsten upon 

128 h of annealing in vacuum at 1350 ºC taken from Zhang et al. (2002). 

 

By looking at figure 4.2.5 it could be suggested that the changing dihedral angle 

phenomena reported by Zhang et al. (2002) is due to observation of non-steady 

grooves. In this time interval an attempt to determine a kinetic equation by 

regression analysis yields a time exponent of 0.46; close to the reported value 0.44. 

Sachenko et al. (2000) state that the vapor pressure of tungsten at 1350 ºC is 

2×10−16 Pa and due to this evaporation condensation mechanism is not likely to 

operate. They also calculate the characteristic length above which the volume 

diffusion dominates surface diffusion in the order of 8 m, and after stating the 

groove widths measured in the experiments are in the order of 1 μm, they conclude 
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that the dominant mass transport mechanism should be the surface diffusion. 

However the time exponents observed by Zhang et al. (2002) for the same 

experimental setup are physically meaningless at this basis and figure 4.2.5b clearly 

demonstrates the appearance of usual kinetic law for surface diffusion dominated 

mass transport on later times.   

 

 

 

 

Figure 4.2.5: Thermal grooving for λ=0.28 and ML=MT=0.25: a) kinetic data for 

the dihedral angles resulting from present simulation and reported by Zhang et al. 

(2002) b) kinetic data for the groove depth and the lines obtained from linear 

regression in the transient and stationary states; the first kinetic equation in the 

transient regime is d=0.97t0.46=3.38tan(λ)t0.46=3.33λ/√(1െλ2)t0.46 and the second 

one in the stationary regime is d=0.283t0.25 =0.984tan(λ)t0.25 =0.97λ/√(1െλ2)t0.25. 
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Figure 4.2.6 outlines the kinetic data for GB grooves having different longitudinal 

and transverse GB triple junction mobilities, but the same wetting parameter λ=0.8. 

It shows that the time spent at the transient regime is increasing by lowering the 

mobilities, and for low mobilities the equilibrium dihedral angle is hardly reached; 

one have to wait for extremely long computation times.  

 

 

 

 

Figure 4.2.6: Thermal grooving by different TJ mobilities, ML=MT=M. Kinetic 

data for a) the groove depth and b) the dihedral angles. 

 

The assumption of instantaneous formation of the equilibrium angle at the groove 

root highly depends on the TJ mobility. Since flux is proportional to mobility, an 

increase in mobility increases the evolution rate and hence decreases the time to 

observe stationary state grooves and vice versa. 
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Unlike the groove depth, no transient regime is observed for the groove width 

whose time evolution is given in figure 4.2.1c. Robertson (1971) observes a slight 

decrease in groove width cofactor with increasing slope which does not depart more 

than 5% from the value 4.6 at m→0. We did not observe a change greater than this 

amount. However precise calculation of the width has a practical importance. Since 

its introduction in 1957, Mullins’ theory is used extensively in determination of the 

surface diffusion coefficients (Ds). Once the active mass transport mechanism is 

confirmed (e.g. if surface diffusion, by assuring groove grows in proportion with 

t0.25), the ratio of the groove depth (or width) measurements taken at different times 

yield the B parameter. As stated before, B is a collection of physical constants: 

B=DsγsΩ
2ν/kT; providing surface energy γs is known, constant temperature 

experimentation gives the surface diffusivity. Here Ω is the atomic volume, ν is the 

surface concentration of diffusing atoms, k is the Boltzmann’s constant and T is the 

absolute temperature. It is experimentally difficult to obtain reproducible 

measurements for the groove depth (scanning the vertical direction) either by 

interferometry (due to ‘tails’ on the fringe pattern at the groove root; Gjostein, 

1963) or by scanning probe microscopy (SPMs) techniques (due to non zero tip 

diameter; see e.g. Sachenko et al., 2002 for a detailed discussion). Because of these 

inconveniences most of the Ds calculations involve measurements of groove width. 

Then a value of 5% uncertainty may lead to Ds within an accuracy of about 20% 

(Robertson, 1971).  
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4.3. Thermal grooving with anisotropic surface diffusivity 

 

In figure 4.3.1 several grain boundary groove profiles are given for different fold 

symmetries and tilt angles. A slight modification of the groove width and maxima is 

observed to take place. These modifications may be introduced to Mullins’ solution 

by the use of two additional parameters (width and height adjustment factors) as it 

has been suggested by Ogurtani (2007) to govern the anisotropy due to surface free 

energy. It has also been observed that formation of secondary oscillations is a strong 

function of anisotropy.    

 

 

 

 

Figure 4.3.1: Thermal grooving with anisotropic surface diffusivities with A=10: a) 

2 fold symmetry with 45, 90, 135, and 180º tilt angle, b) 4 fold symmetry with 22.5, 

45, 67.5 and 90º tilt angle, c) 6 fold symmetry with 15, 30, 45, and 60º tilt angle. 
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Experiments were performed for the following physicochemical parameters: 

ML=MT=0.25, λ=0.5. 

 

In figure 4.3.2 the failure times due to film agglomeration are plotted as a function 

of the tilt angle for different fold symmetries. The isotropic failure time, t=27.5, is 

also given in the same figure. The longest lifetime is achieved in the case of 

isotropic surface diffusivity. Lifetime decreases as the degree of folding increases 

because of the introduction of the fast diffusion paths. For two fold symmetry 

(which corresponds to {110} planes in an fcc crystal) the longest lifetime is at 90º 

orientation. For four fold it is at 45º, and for six fold at 30º. The other orientations 

may be grouped as fatal which resulted very short lifetimes.  

 

 

 

 

Figure 4.3.2: Failure times due to film agglomeration for different tilt angles and 

fold symmetries.  
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4.4. Isotropic grain boundary grooving under the effect of electromigration 

 

In figure 4.4.1, the surface topographical evolution of electromigration (EM) groove 

for a normal grain boundary under the action of the capillary and electromigration 

forces is presented. The electric field vector is directed towards to positive x 

direction (normal to the GB; see figure 3.3.1, 2) which leads to an electron wind in 

the opposite direction. A nonsymmetrical groove is expected to develop as a result 

of the bias in mass transport due to the applied current. 

 

The windward side of the GB (cathodic grain) shows an extra mass accumulation 

compared to the leeward side (anodic grain). Figure 4.4.1b draws attention to two 

snapshots having same depths at considerably different times. It looks like the 

groove root is trapped at a certain depth and after then the windward side hillock 

starts to buckle from its top while the dihedral angle is preserved at the root. This 

intricate behavior can also be tracked from figure 4.4.1c, in which kinetic data for 

groove depth, maxima and width is given. All of these parameters remain almost 

unchanged except the groove width which accepts a steeper slope during the 

windward side hillock’s travel to cathode. In figure 4.4.1d deviation of the left and 

right angles from the quasi-equilibrium value by rotating towards the windward side 

is shown. The angular difference is kept constant and the triple junction velocity 

decreases asymptotically during the travel time.  
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Figure 4.4.1: Isotropic electromigration grooving for λ=0.5, ML=MT=0.25 and 

χ=1.0: a) and b) shows the GB profile; c) kinetic data for groove depth, maxima and 

width; d) TJ velocity and the dihedral angles. 

 

The deceleration of the grooving kinetics by an applied electric field was also 

observed by Averbuch et al. (2003b) and Nathan et al. (2004) in their numerical 

experiments with the mass conserving boundary conditions on the specimen edges. 

These boundary conditions let changing anode and cathode areas and simulate a 

constant voltage (CV) difference between the electrode pads. Yet they have 
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employed Mullins’ boundary condition stemming from the energetic considerations 

at the groove root (fixed dihedral angle) and unable to reveal the non equilibrium 

state of the triple junction kinetics given in figure 4.4.1d. Ogurtani and Akyildiz 

(2005) studied very same problem on a finite sample where they have couple the 

grooving problem with cathode edge voiding and drifting by utilizing reflecting 

(mass conserving) and/or free moving boundary conditions on the specimen edges. 

They have reported groove tip arrestment above threshold electron wind intensity 

(EWI) level on their constant current (CC) set up and state that the TJ displacement 

velocity slows down drastically while the system is proceeding towards the 

asymptotic value of the groove depth which is found to be a monotonically 

decreasing function of EWI parameter. Here, these observations will be extended by 

isolating the grooving problem from that of cathode related phenomena.  

 

In figure 4.4.2 effect of increasing EWI can be tracked. Figure 4.4.2b shows that 

increased EWI takes the groove stop time earlier and lowers the limiting depth. The 

leeward side hillock (hmaxL) is depressed further, the disintegration of the two 

hillocks is exaggerated (increased width) and a secondary maximum grows out at 

the windward side so that a wavy look appears. Looks like the traveling surface 

wave (hillock) on the windward side with slightly growing in amplitude is the only 

change taking place and a new type of quasi-equilibrium is established at rest of the 

system.  
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Here one may question the validity of employing relatively large wetting parameter 

(λ = 0.5) to that of common metals (e.g. λAl ≈ 0.16) but still commenting on these. 

The main reason of this selection is to reduce the dihedral angles, which allows us 

to have rather sharp groove profile formation to ease visualization of the process. 

Similarly, the large WP shortens the life time of the transient regime, and therefore 

reduces the time for the establishment of the stationary non-equilibrium state, where 

one observes formation of the equilibrium dihedral angles at the groove tip. 

Actually, we have studied grain boundary grooving kinetics in a rather large span of 

wetting parameters: λ = [0.16, …, 0.8] and always tried to be careful to keep the 

level of correspondence at each time. 

 

Riege and coworkers (Riege et al., 1995, 1996; Prybyla et al., 1998) performed in 

situ TEM observations of 4000 A˚ thick, 250 μm long Al(0.5wt%Cu) interconnects 

(both unpassivated and passivated, where the passivation consisted of SiO2 

deposited at 350˚C to a thickness of 1000 A˚) with line widths ranging from 0.2, 

0.3, 0.5, 0.8, and 1.0 μm exposed to a current density of 2x106A/cm2 at 

temperatures 200 - 370˚C. The samples were prepared directly on a thin SiO2/SiN 

bilayer deposited on a standard Si(100) wafer. They observe formation of voids 

along the sidewalls, their growth, migration, pinning, film failure and healing with 

respect to the detailed local microstructure. One of the most commonly observed 

process, named as ‘inch-warming’ by the authors, was described as follows: a 

triangular-shaped void nucleated at the sidewalls, migrated quickly and intersected 

a grain boundary (or readily formed there), stagnate for long times (see figure 

4.4.3a) and transforms into a long narrow void (see figure 4.4.3b).   
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Figure 4.4.2: Isotropic electromigration groove with χ=3.0: a) and b) shows the GB 

profile; c) kinetic data for groove depth, maxima and width; d) TJ velocity and the 

dihedral angles. 

 

The tendency of a grain boundary to trap voids was also observed by Ogurtani and 

Oren (2005). When the profile evolution given in figure 4.4.2b is compared with the 

TEM snapshots given in figure 4.4.3 one may say, once a migrating surface void is 

trapped by the grain boundary it may evolve like a grain boundary groove during 
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the time of stagnation. This may explain the elongation of the windward side (right 

hand side) of the void during it reside at the triple junction.  

 

 

 

 

Figure 4.4.3: TEM micrographs showing the ‘inch worming’ process in a 0.5 μm 

wide Al film exposed to a current density of 2x106A/cm2 at 350˚C. Figures 

reproduced from Riege et al., 1995 (given as Fig. 3), 1996 (given as Fig. 2); Prybyla 

et al., 1998 (given as Fig. 1). The dotted lines indicate grain boundaries. 

 

The application of the renormalization procedure using the reported value of film 

thickness (0.4 μm) and the material properties for aluminum (mean atomic volume: 

Ω=1.66x10−29 m3, specific surface Gibbs free energy: γ=1.08 Jm−2, surface effective 

charge: z*=4, electrical resistance: ρ=2.7x10−8 ohm·m), the value of electron wind 

intensity parameter used in the experiment presented in figure 4.4.2, χ=3.0, 

corresponds to a current density of 1.94x106A/cm2. This matches the experimental 

conditions of Riege et al (1995, 1996).  
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The limiting depths and amounts of rotations from the quasi-equilibrium values 

(towards the windward side) are collected from several experiments for different 

combinations of EWIs and wetting parameters (WP) are plotted in figure 4.4.5.  

 

 

 

 

Figure 4.4.4: Dependence of a) the limiting depth and b) rotation angle to electron 

wind intensity for different wetting parameters. The equations obtained by linear 

regression (solid lines) are plotted on the experimental data (triangles).  

 

From a large number of simulation experiment results we obtain expressions for 

limiting depth (hs) and the degree of rotation ( R ) as a function of EWI and WP in 

normalized time and space: 

 

  1.14 0.25, 1.12sh       (4.4.1) 

 

   0.58 0.68 0.58 0.68, 3.14 tan 3.14R m        (4.4.2) 
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Since the depths given in our experiments are normalized to unity, Eq. 4.4.1 can be 

used to calculate the threshold value for EWI (by setting hs=1.0) above which 

complete agglomeration of the film could be observed: 

 

4.561.574thrs   (4.4.3) 

 

In other words there is a well defined regime in which applied current has no 

freezing (healing) effect on groove penetration. This can be called as capillary 

dominant regime as was done by Ogurtani and Akyildiz (2005) who found that the 

total elapsed time for splitting the bicrystal into two pieces in this regime is a 

monotonic function of EWI. Above the threshold level (electromigration regime) 

one will observe groove tip arrestment and the upper limit for penetration depth can 

be calculated by Eq. 4.4.1. Using the value of the WP given by Mullins (1957) for 

copper, λ=0.16, the calculated value for χthrs is 3.695×10−4. This corresponds to 

23.75 A/m2 for a copper film having a thickness of 0.1 μm. In this calculation the 

specific surface Gibbs free energy, the surface effective charge, electrical resistance 

and mean atomic volume for copper are taken as: γs=1.78 J/m2, z*=12, ρ=1.7×10−8 

ohm·m, Ω=0.0118×10−27 m3, respectively. Typical electromigration tests on thin 

films of the same order of thickness usually employ an applied electric in the order 

of 104 - 1010 A/m2 (Lloyd et al., 1999). Comparing the two, it is unlikely to observe 

agglomeration failure at the grain boundaries during electromigration testing of 

copper. However for a hypothetic material having a WP of λ=0.95 but all other 

physical properties same with copper the χthrs is calculated as 1.245 → 8×104 A/m2 
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which is in range of EM testing. This strong λ dependence should be kept in mind 

while testing with unconventional materials or testing in surface active 

environments. Eq. 4.4.2 also predicts a finite amount rotation of the dihedral angle 

towards the windward side even in the capillary dominant regime, which maybe  

calculated as 1.708×10−3 and 6.742º respectively for of λ=0.16 and 0.95. 

 

4.5. Electromigration grooving with anisotropic surface diffusivity 

 

Surface diffusion anisotropy is determined by the variation of surface diffusivity 

with surface orientation and also depends on the grain orientation for each grain of 

the polycrystalline metallic thin film. In Eq. (3.4.1), the anisotropy of surface 

diffusion is quantified through the dimensionless parameters, which are fully 

discussed in section 3.4. 

 

Grain orientation is expressed by the crystallographic direction normal to the 

surface of the film and the misorientation of the crystallographic symmetry axis in 

the grain with respect to the applied electric field (termed as tilt or misorientation 

angle). The parameter m in Eq. 3.4.1) is an integer that characterizes thin film 

surface plane which is cut into two by a perpendicular grain boundary. In fcc 

metals, such as aluminum or copper, these symmetry axis correspond to <110> 

crystallographic directions. Each of the {110} planes contain only one <110> axis, 

therefore these planes have m=1. In the same way, for {100} planes m=2, and for 

{111} planes m=3. The term ‘n-fold’ symmetry is used to denote the number of the 
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fast diffusion paths on a crystallographic plane. Since each crystallographic axis 

corresponds to two opposite directions, n=2m.  

 

Two experimental setups were studied; firstly by setting up a moderate value for the 

wetting parameter (λ=0.5; ML=MT=0.25) to generate simulations in the limit of the 

small slope approximation and secondly by setting up a high value for the wetting 

parameter (λ=0.8; ML=MT=1.0) in order to examine nearly complete wetting case. 

A systematic study will be presented here for each set up and each symmetry plane 

and selected tilt angles, where the anisotropy constant is taken to be invariant 

(A=10). 

 

We have obtained a rich variety of film morphologies in regard to several grain 

orientations, therefore it is useful to summarize the computer simulation results 

before proceeding furthers (see Tables 4.5). In following subsections we will 

present these in detail. In following tables we have highlighted the orientations in 

which we observe a change in grain boundary morphology from ridge to slit (or 

vice versa) by a change in wetting parameter in comparing two setups.  

 

Table 4.5.1: Summary of the observed film morphologies for {110} planes with 45, 

90, 135, 180º tilts.  IN=Instable, ST=Stable, R=Ridge, S=Slit. 

 
m=1 Lee side GB Wind side 

              λ λ=0.5 λ=0.8 λ=0.5 λ=0.8 λ=0.5 λ=0.8 
45 IN IN R S ST ST 
90 ST ST R R IN IN 

135 ST ST S S IN IN 
180 ST ST S S ST ST 
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Table 4.5.2: Summary of the observed film morphologies for {100} planes with 

22.5, 45, 67.5, 90º tilts.  IN=Instable, ST=Stable, R=Ridge, S=Slit. 

 
m=2 Lee side GB Wind side 

               λ λ=0.5 λ=0.8 λ=0.5 λ=0.8 λ=0.5 λ=0.8 
22.5 IN IN S S ST ST 
45 ST ST R S IN ST 

67.5 ST ST R R IN IN 
90 ST ST S S ST ST 

 

Table 4.5.3: Summary of the observed film morphologies for {111} planes with 15, 

30, 45, 60º tilts.  IN=Instable, ST=Stable, R=Ridge, S=Slit. 

 
m=3 Lee side GB Wind side 

               λ λ=0.5 λ=0.8 λ=0.5 λ=0.8 λ=0.5 λ=0.8 
15 IN IN S R ST IN 
30 ST ST S S ST ST 
45 ST ST R S IN IN 
60 ST ST S S ST IN 

 

 

4.5.1. Two fold crystal symmetry, m = 1: 

 

i. Moderate wetting, λ=0.5 

 

A morphology which is called ‘grain boundary ridge growth’ in the literature is 

observed to form on {110} planes for the tilt angles  =45º and  =90º. Figure 

4.5.1.1 shows, mass pile up at the grain boundaries starts after a definite time of 

groove deepening. After the inversion of the groove tip trajectory, the windward 

side hillock grows at a faster rate than the leeward side, while a penetrating void 

formed adjacent to the leeside for  =45º case (figure 4.5.1.1ab).  
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Figure 4.5.1.1: Electromigration grooves with χ=0.5, on a surface having an 

anisotropic diffusivity characterized by A=10, m=1,  =45º (first column: a to c) 

and  =90º (second column: d to f). a) and d) shows the GB groove profiles; b) and 

e) kinetic data for groove depth, maxima and width; c) and f) TJ velocity and the 

dihedral angles. Ridge formation starts with turning over of groove tip trajectory 

after a certain time, both hillocks on each side of the grain boundary exhibit linear 
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growth while the separation between the two maxima (groove width) decreases 

linearly for the case  =45º, but continues to increase in the case of  =90º.  

 

For  =90º similar phenomena observed, but this time for lee and wind sides. 

Figures 4.5.1.1cf demonstrate that, these evolutions are towards the quasi-

equilibrium dihedral angle dictated by the WP. An increase in electron wind 

intensity lowers the tip turning depth and time in both cases. Both the extreme 

hillock growth and deep penetration of the secondary oscillations on the lee or 

windward sides are problematic.  

 

In figures 4.5.1.2 and 4.5.1.3 slits form near the wind side of the grain boundary 

with an increase in electron wind intensity.  
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Figure 4.5.1.2: Electromigration groove with χ=0.5 (except part c) and χ=5.0 (c), 

on a surface having an anisotropic diffusivity characterized by A=10, m=1,  =135º. 

a) and b) shows the GB groove profile; d) kinetic data for groove depth, maxima 

and width; d) TJ velocity and the dihedral angles for χ=0.5. c) shows the effect of 

increased electron wind intensity, χ=5.0: a narrow slit, licking up the wind side of 

the grain boundary evolves and accelerates open circuit failure.  
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Figure 4.5.1.3: Electromigration groove with χ=0.5 (except parts c, and d), χ=1.0 

(c), and χ=5.0 (d), on a surface having an anisotropic diffusivity characterized by 

A=10, m=1,  =180º. a) and b) shows the GB groove profile; e) kinetic data for 

groove depth, maxima and width; f) TJ velocity and the dihedral angles for χ=0.5. 

c) and d) shows the effect of increased electron wind intensity, respectively for 
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χ=1.0, and χ=5.0: lateral extension of the blunted region and formation of a channel 

like groove. 

 

With the increased EWI, groove root is no longer the minima in these experiments. 

Groove tips initially get blunted during the slit formation and then the advancing slit 

accelerates open circuit failure in each case. After slit formation triple junction 

velocities reported in figures 4.5.1.2e and 4.5.1.3f increase asymptotically, which 

may be an indication of a drag force exerted by advancing slits on the junctions. 

Unlike the  =135º case, for  =180º further increase in EWI leads lateral extension 

(in x-direction) of the blunted region and leads to a channel like formation. On the 

other hand the secondary oscillation on the wind side when  =135º, is not observed 

for  =180º.  

 

ii. Nearly complete wetting, λ=0.8 

 

In this set (λ=0.8; ML=MT=1.0) for  =45º, unlike figure 4.5.1.1ac, no indication of 

ridge formation is observed. Instead groove tip penetrates deeply, with a rate 

proportional to the applied EWI. For  =90º however, a grain boundary ridge with 

similar characteristics defined in figure 4.5.1.1df, grows out.  

 

λ=0.8 counterpart of the  =135º experiment presented in figure 4.5.1.2 can be 

found in figure 4.5.1.4. The response to an increase in EWI is again formation of 

slit like intrusion. However, now the groove remains sharp but the secondary 

oscillations in the wind side continuously grow out and the nearest oscillation leads 
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to open circuit failure. Further increase in EWI multiplies the number of oscillatory 

waves on the wind side which is an indication of extreme instability in this 

orientation. 

 

 

 

 

Figure 4.5.1.4: Electromigration groove with χ=1.0 (except part c) and χ=5.0 (c), 

on a surface having an anisotropic diffusivity characterized by A=10, m=1,  =135º. 

a) and b) shows the GB groove profile; d) kinetic data for groove depth, maxima 
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and width; d) TJ velocity and the dihedral angles for χ=1.0. c) shows the profile 

evolution for increased electron wind intensity, χ=5.0: instability in the wind side, 

secondary oscillations continuously grow out. 

 

For  =180º case, we observe similar formation presented in figure 4.5.1.3, with a 

smaller lateral extension of the blunted region and therefore forming a narrower 

channel. 

 

4.5.2. Four fold crystal symmetry, m = 2: 

 

i. Moderate wetting, λ=0.5 

 

Morphological evolution on {100} planes for the tilt angle  =22.5º, results strong 

instability with a slight increase in EWI (χ=0.5 → 1.0) by producing regenerative 

oscillatory waves on the lee side of the triple junction. This instability is associated 

with a slit licking up the wind side of grain boundary which demonstrates itself with 

an increase in triple junction velocity. Slit formation is favored by increased EWI. 

The very same behavior is observed also in the high mobility regime.  

 

In the case of 45º degrees misorientation, a grain boundary ridge with a similar 

configuration presented in figure 4.5.1.1df (m=1,  =90º) is observed to form. The 

ridge growth rate is proportional to the applied EWI. 
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Figure 4.5.2.1: Electromigration groove with χ=1.0, on a surface having an 

anisotropic diffusivity characterized by A=10, m=2,  =90º. a) and b) shows the GB 

profile; c) kinetic data for groove depth, maxima and width; d) TJ velocity and the 

dihedral angles. Early slit formation at the wind side of the groove root which drags 

the triple junction and leads open circuitry. 

 

For 67.5º degrees misorientation, the instability is observed in the windward side 

(which was observed in the leeward side of  =22.5º oriented specimen). In this 
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respect the  =67.5º is like the mirror symmetry of  =22.5º. However this time, an 

increase in EWI favors ridge formation with a bigger hillock on oscillating side 

(windward side). Again, the very same behavior is observed in the high mobility 

regime.  

 

In figure 4.5.2.1, early slit formation at the wind side of the groove root under a 

modest EWI (χ=1.0), and triple junction dragging at a misorientation  =90º is 

presented. Here the slit tip advances faster than the groove root just as the case 

given in figure 4.5.1.2c (m=1,  =135º) under χ=5.0, while the there is a little 

change in the right and left side maximas. Once the slit forms at t=0.133, it 

advances extremely fast and failure takes place at t=0.141.  

 

ii. Nearly complete wetting, λ=0.8 

 

In section i) the morphology observed at 45º misorientation, is referred to figure 

4.5.1.1df (m=1,  =90º), which was defined as a typical grain boundary ridge 

growth. It is interesting to observe a faceted slit extending along the grain boundary 

in the case of increased WP, whose growth rate is proportional to the applied EWI. 

As can be seen from figure 4.5.2.2bc, an order of magnitude increase in EWI (χ=1.0 

→ 10.0), leads to a decrease in failure time with same amount (tf=0.1 → 0.009).  
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Figure 4.5.2.2: Electromigration groove with χ=10.0 (except part b) and χ=1.0 (b), 

on a surface having an anisotropic diffusivity characterized by A=10, m=2,  =45º. 

a) and c) shows the GB groove profile; d) kinetic data for groove depth, maxima 

and width; d) TJ velocity and the dihedral angles for χ=10.0. b) shows the profile 

evolution for at a modest EWI, χ=1.0.  
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4.5.3. Six fold crystal symmetry, m = 3: 

 

i. Moderate wetting, λ=0.5 

 

The  =15º case of six fold symmetric bicrystal follows a somewhat similar profile 

evolution with  =22.5º case of four fold symmetry; namely a strong instability at 

the lee side even with the modest values of EWI (χ=1.0) which is associated with a 

slit licking up the wind side of the grain boundary.  

 

Morphological evolution on {111} planes for the tilt angle  =45º, ended up with a 

grain boundary ridge formation, showing instability (regenerative oscillatory 

waves) at the wind side (can be viewed as mirror symmetry of figure 4.4.1.1; m=1, 

 =45º). 

 

In figure 4.5.3.1 formation of faceted grain boundary voids of opposite facet 

orientations for  =30º and  =60º tilt angles are presented. A sharp triangular 

hillock forms on the leeside of  =30º, and on the opposite side of  =60º.  

 

ii. Nearly complete wetting, λ=0.8 

 

In this case the slit formation reported in i) section for  =15º is replaced by a ridge 

formation; where the reported ridge formation for  =45º is replaced by a slit 
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formation. However, the strong instabilities reported in both experiments observed 

to take place as they were.  

 

 

 

 

Figure 4.5.3.1:  Electromigration grooves with χ=1.0, on a surface having an 

anisotropic diffusivity characterized by A=10, m=3,  =30º (first column: a to c) 
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and  =60º (second column: d to f). a) and d) shows the GB groove profiles; b) and 

e) kinetic data for groove depth, maxima and width; c) and f) TJ velocity and the 

dihedral angles. Formation of faceted grain boundary voids of opposite facet 

orientations. 

 

On the other hand, the experiments with  =30º and  =60º tilt angles resulted in 

very similar morphologies to the ones reported in figure 4.5.3.1 with narrower 

faceted grain boundary voids and sharper triangular hillocks. 

 

4.6. Effect of an elastostatic field on grooving 

 

The effect of an applied stress field is studied by altering the elastic dipole tensor 

interaction (EDTI) parameter in a wide range [Ξ = ±0.1, … , ±10]. 

 

Table 4.6.1: Physicochemical properties of Al, Cu, Sn, and Pb, Smithells (1967). 

 

 Al Cu Sn Pb 

Elastic Moduli (GPa) 70.6 129.8 49.9 16.1 

Poisson’ Ratio 0.345 0.343 0.35 0.44 

Surface tension (Nm-1) 0.915 1.780 0.685 0.480 

Electrical Resistivity (m) 2.7x10−8 1.7x10−8 16.8x10−8 27x10−8 

Thermal Expansion (K-1) 2.43x10−5 1.72x10−5 2.38x10−5 3.0x10−5 

|tr( s )| 0.69 0.3 0.6 0.6 

o
sD (m 2s-1) 3x10−6 5.84x10−5 4.9x10−4 - 

hσ (m) 2.86x10−10 2.56x10−10 5x10−10 - 
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The elastic strain energy density (ESED) contribution on the other hand is ignored 

with the reasoning that it makes little sense since the applied stresses are much less 

than the elastic modulus (σ2/Eσ) and can be neglected when accompanies a stress 

term. Using the values tabulated in Table 4.6.1; for a copper film with a scaling 

length of ℓo=0.1μm this interval corresponds to [±13.25 – ±1325] MPa (for 

aluminum: [±2.96 – ±296] MPa).  

 

4.6.1. Grain boundary grooving under tensile stresses: 

 

In figure 4.6.1.1 the kinetics of grain boundary grooving under a tensile stress field 

characterized by Ξ=0.1 is given. As can be seen from figure 4.6.1.1b the final time 

for film agglomeration eventually reduces to tf=1.1 compared to tf=27.5 that of 

thermal grooving; the applied tensile stress causes the groove to deepen more 

rapidly and enhances film breakup compared to that produced by capillarity alone. 

This can also be tracked from the kinetic data given in figure 4.6.1.1c: the 

penetration depth deviates from the t0.25 time law (given by the dashed black lines) 

at around t≈0.1 and a simultaneous depression of the ridges (maximas) on both 

sides take place. During this process no observable deviation from the attained 

quasi equilibrium dihedral angle (figure 4.6.1.1f) takes place, yet close inspection in 

zoomed scale show symptoms of positive deviation. In figure 4.6.1.1e the kinetics 

of the groove width and the value of the hoop stress at the triple junction are given 

in detail. There observed two linear regimes in width vs. time plot again separated 

roughly at around t≈0.1 which also seems to be the onset of the asymptotic increase 

in triple junction stress.  
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Figure 4.6.1.1: Isotropic grain boundary grooving for λ=0.5, ML=MT=0.25 and 

Ξ=0.1 which corresponds to 13.25 MPa (≈10−4E; where E is the elastic modulus) 

for copper thin film with a length scale ℓo=0.1μm. a) 3D representation of the 
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groove evolution, b) successive 2D profiles; curvature and hoop stress distributions 

corresponding to tf=1.1 (black profile), c) kinetic data for groove depth, maxima, TJ 

velocity, d) comparison of the stress free and groove under tension profiles given by 

Genin et al. (1993) with the simulated profile at t=1.0; curvature and hoop stress 

distributions at t=1.0, e) kinetic data for groove width and TJ stress, f) energy 

changes and the kinetic data for the dihedral angle in semi-log scale.  

 

Genin et al. (1993) extended Mullins’ small slope solution by considering stress 

induced GB diffusion using the Herring relation (Herring, 1950, 1951) between 

chemical potential of atoms in the GB and stress applied normal it. They assume 

that the GB diffusional flux is a linear function of position along the boundary 

which in turn leads to a constant flux divergence over the boundary. Then they tried 

to analyze the effect of stress by superimposing a solution corresponding to the 

steady state grain boundary diffusion (without a groove) to Mullin’s solution of 

thermal grooving. In figure 5 of their paper, they compare stress free groove with 

the one under tension with an arbitrary grain boundary flux of j=0.5 at the triple 

junction at a time t=1.0. With these values the superposed solution of thermal 

grooving has a magnitude twice to that of steady state grain boundary diffusion 

solution at the TJ.  

 

In figure 4.6.1.1d above mentioned profile (Genin et al. 1993; Fig. 5 of p. 3545) is 

reproduced for λ=0.5 and given in connection with simulated profiles at t≈1.0. 

There exists a qualitative agreement between the two profiles as can be seen from 

this figure. The key point in this agreement should be the observation of quasi 
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constant dihedral angle reported in figure 4.6.1.1f; Genin et al. (1993) utilize 

Mullins’ constant dihedral angle boundary condition at the triple junction. We will 

show even for a slight increase in the assumed stress level, the nonlinear dynamical 

evolution of the triple junction will not permit a constant dihedral angle to form. On 

the other hand, the proposed solution by Genin et al. (1993) is limited only to some 

certain cases which entail some strict assumptions; therefore in their analysis 

authors define a crossover time (tc; over which the two superposed terms make 

contributions of equal magnitude at the TJ) and show validity of these assumptions 

below this time. We found no means to match the simulated profiles and solution of 

Genin et al. (1993) after the simulation time of figure 4.6.1.1d. Even the solution 

proposed by Genin et al. (1993) holds for long times, a difference in profiles should 

be expected at longer times due to their consideration of infinitely long grain 

boundary compared to our bamboo like model (TJ stress given in figure 4.6.1.1e 

shows an asymptotic increase as the film thickness goes to zero) and also due to the 

stress induced surface diffusion considered in our work. Furthermore the level of 

stress assumed by Genin et al. (and in the experiment presented in figure 4.6.1.1) is 

on the order of 10 MPa; yet, the thin films of technological importance are known 

to be exposed to thermal stresses up to 1 GPa (Bower and Shankar, 2007), the 

assumptions of the analysis presented by Genin et al. at these stress levels will 

instantaneously be broke down per se. 

 

The energy changes given in figure 4.6.1.1f may be computed by recognition of an 

isobaric system; a composite system enclosed by external flexible and diathermal 

boundaries that allow not only to establish the thermal equilibrium in the system, 
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but also permit to have a direct contact with the external constant body, and the 

surface traction forces, that means the work done on the system is non-vanishing, 

0W  (Ogurtani, 2009b). Then for a discrete free surface contour line, letting n to 

designate the total number of nodes, one may write down the rate of total strain 

energy change at a given time step i during the evolution as: 

 

22 1

0

(1 )

2

n
ij

i i ij
j

P v
E n

 




     (4.6.1.1) 

 

Here, 2/ (1 )E   is the plain strain elastic modulus, i  is the total temporal length 

of the surface at a given time step i, and with j standing for the nodes of discrete 

surface, ij  and ijv  are the calculated normalized hoop stresses and velocities at 

each node. The summation is performed over the free surface contour line exposed 

to the surface drift diffusion. Then, the change in total elastic strain energy W

during the evolution process (composed of m time steps) may be calculated as a 

function of discrete normalized time it  by simple integration (i.e., summation) 

procedure applied to above expression: 
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Eq. (4.6.1.2) is used to compute the change in total elastic strain energy given in 

figure 4.6.1.1f. On the other hand, the film surface free energy (capillary) change 

including the grain boundary may be computed by the following equation: 

 

( 2 )o
i i iF g h     (4.6.1.3) 

 

Here, ih  is the temporal depth measured from the initial flat surface, 
2

o
gb

o

g

g
   is 

the wetting parameter, where ,  o o
gbg g  are the specific surface and grain boundary 

Gibbs free energies respectively. Then the global Gibbs free energy variation is 

deducible from these formulas,  

 

i i iG F W     (4.6.1.4) 

 

Figure 4.6.1.1f clearly shows that the strain energy release of the film compared to 

its surface free energy is extremely small at this level of stress. Then the global 

Gibbs free energy change closely follows the change in surface free energy.  

 

In figure 4.6.1.2 the effect of an increase in stress level on the profile evolution can 

be followed. It is evident that the groove tip kinetics is accelerated (penetration 

depth) and the evolution of the groove maximas on both sides are suppressed 

further with increasing EDTI. 
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Figure 4.6.1.2: Isotropic grain boundary grooving for Ξ=1.0 and Ξ=5.0 which 

correspond to 132.5 and 662.7 MPa for copper thin film with a length scale 

ℓo=0.1μm. Final time to failure falls tn=0.13 for Ξ=1.0 and to tn=0.039 for Ξ=5.0 in 

normalized scale. 

 

Close inspection of Ξ=1.0 profile in figure 4.6.1.2a shows the lateral extension 

tendency of the groove tip vicinity at later times. This observation is supported by 

the evolution of the dihedral angle; it makes minima (slightly above the equilibrium 

value) through the way relaxing its quasi equilibrium value and then start to 

increase. The process becomes more apparent in figure 4.6.1.2b (Ξ=5.0) and leaves 

a sharp crack like feature at the tip of the grain boundary, which also indicates itself 

on the curvature plot. Further increase in EDTI results in the following scenario 

given figure 4.6.1.3. It is now possible to trace the formation of a diffusive micro 

crack at the groove root. With this formation random fluctuations, in the triple 

junction velocity and the dihedral angles vs. time plots, start to dominate. The 

curvature plots presented in figure 4.6.1.3bd keep a track of the crack nucleation.  
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Figure 4.6.1.3: Isotropic grain boundary grooving for λ=0.5, ML=MT=0.25 and 

Ξ=8.0 which corresponds to 1.06 GPa for a copper thin film with a length scale 

ℓo=0.1μm. a) 3D representation of the groove evolution, b) formation and 
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propagation of wedge like groove; curvature and hoop stress distributions 

corresponding to t=0.030 (black profile), c) kinetic data for groove depth, maxima, 

TJ velocity and the dihedral angle, d) diffusive micro crack formation at the groove 

root at t=0.032 (red profile), e) kinetic data for groove width and TJ stress, f) energy 

changes in semi-log scale.  

 

 

 

 

Figure 4.6.1.4: a) Groove depth vs. time plot for various EDTI parameters, b) the 

same plot in zoomed scale; power law and linear regions are highlighted. Note that 

for Ξ=10.0 failure takes place before reaching %95 of film thickness by micro crack 

formation. 

 

The groove penetration depth versus time plots presented in c) parts of figures 

4.6.1.1-3 seem to have a power law region which is a function of EDTI followed 

after a transient region which is not affected by a change in EDTI. Unlike the 

thermal groove counterpart, power law region in this case breaks down after a 
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certain time and another regime takes place. We have analyze this behavior in an 

experimentation set which includes 16 experiments of different EDTI values: 

Ξ=[0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]. In 

figure 4.6.1.4 five of these are given in order to have a clear presentation:  Ξ=[0.1, 

0.3, 1.0, 3.0, 10.0].   

 

 

 

 

Figure 4.6.1.5: The power law region is expressed as h(t)=a×tb; in part a) the 

dependence of coefficient ‘a’, and in b) that of time exponent ‘b’ to EDTI is given. 

The region where the power law breaks down is modeled by a linear function 

h(t)=m×t+c; in part c) dependence of the slope ‘m’, and in d) that of intercept ‘c’ to 

EDTI is given. The resulting functions are labeled as hI(Ξ,t) and hII(Ξ,t), where 

superscripts denote the power law and linear regions respectively.  
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It is found that the power law breakdown region can be modeled by using a linear 

function. The analyses of both regions are presented in figure 4.6.1.5, which results 

in the following analytic equations: 

 

 
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0.2

0.36 0.45

0.85 0.45

1.2 ;     1.0
,

1.2 ;     2.0
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h t
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
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                (power law) (4.6.1.5) 

 

and, 
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           (linear) (4.6.1.6a) 

 

where,    

 

  6.9 1.330.067 0.1 0.12I e e        (4.6.1.6b) 

 

The result of the regression analysis is presented in figure 4.6.1.6 to show the 

goodness of fitting, the linear correlation factors (R2) found during the analysis were 

over 0.98 in each case.  
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Figure 4.6.1.6: Experimentally obtained groove depth data for Ξ=0.2 and 5.0 is 

presented (open circles) together with the equations 4.6.1.5 and 4.6.1.6 (solid lines).  

 

Although we presented the upper half of the film profiles due to symmetry and for 

clarity, as described in detail in previous chapter, the model considers a bamboo 

line in which a grain boundary ends up on the two sidewalls; as the film evolves the 

upper and lower triple junctions approach each other (or recedes as in the case of 

ridge growth). Therefore (essentially), the shape of the groove depth vs. time curves 

resulting from the model presented here is similar to studies of growth of array of 

grain boundary cavities rather than those of isolated ones. Pharr and Nix (1979) 

studied grain boundary cavity growth controlled by surface diffusion. They consider 

array of cavities of known geometry and model the change in the tip stress as the 

cavity grows in the expense of the grain boundary area by using a function of the 

form σtip=σapp/(1−rn) where r represents the time dependent crack length and n=1, 2 

respectively for two and three dimensional cavities. In figure 4.6.1.7 this functional 
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forms are compared with our experimentally measured triple junction stresses at 

each time step.  The authors observe, when compared with the isolated cavity, this 

increase in stress, due to decreased grain boundary length, results in an increase in 

the tip curvature (in fact curvature at a crack tip is ill defined, but the authors model 

a round, blunted tip rather than a sharp discontinuity and strictly follow Herring) 

and in turn leads to a crack becoming sharper as it grows. They state that this 

phenomenon may give an explanation of the observed macroscopic cracking in 

metals under creep conditions which imply that a process for crack tip sharpening 

must operate to counterbalance the blunting effects due to creep deformation. Here 

we go one step further by introducing surface diffusion mediated micro crack 

formation at the groove root. 

 

 

 

Figure 4.6.1.7: In a) the functions used to model the increase in tip stress due to 

cavity interactions by Pharr and Nix (1979) and the measured tip stresses for 

different values of EDTI in the present work is compared; and in b) the time 

evolution of the tip stresses in the present study is given. 
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The Hull – Rimmer model of cavity growth assumes that surface diffusion is much 

faster than the grain boundary diffusion; accordingly the cavity growth rate 

predicted by this model is linearly proportional to remote or applied normal stress 

(σo) to the boundary (Hull & Rimmer, 1959): 

 

2
gb gb gb oD hdh

dt kTha


  (Hull – Rimmer) (4.6.1.7) 

 

In Eq. (4.6.1.7) Dgb, hgb, Ωgb are the grain boundary diffusivity, interfacial thickness, 

and the mean atomic volume, respectively. In this model an array of equally spaced 

circular cavities with cavity spacing of ‘a’ and radius of ‘h’ were considered. Later 

suggested improved relationships between the cavity growth rate and stress, 

including modifications to the diffusion lengths (the entire grain boundary is a 

vacancy source), stress redistribution (the integration of the stress over the entire 

boundary should equal the applied stress), cavity geometry (cavities are not 

perfectly spherical) and the ‘‘jacking’’ effect, where atoms deposited on the 

boundary cause displacement of the grains (Raj & Ashby, 1975; Speight & Beere, 

1975; Riedel, 1987) are all in a similar form (Kassner & Hayes, 2003) to that of Eq. 

(4.6.1.7). 

 

 On the other hand, differentiating Eq. (4.6.1.6) with respect to normalized time one 

may obtain the following equation: 
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 (4.6.1.8) 

 

Reverting back to real time and space above equation yields: 
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Noting Eqs. (3.2.13) and assuming hgb=hσ, Ωgb=Ωσ, Eq. (4.6.1.9) is in accord with 

the Hull – Rimmer growth rate equation at moderate stress levels, yet it predicts a 

nonlinear dependence on applied stress above a threshold value which is inversely 

proportional to the scaling length, say the film thickness. For a 1 μm thick film this 

stress threshold (6γCu/ |tr( Cu
s )|(1+ν)ℓo) is calculated as 26.5 MPa with the given 

material constants for copper.   

  

On the other extreme the Chuang – Rice model of cavity growth assumes that grain 

boundary diffusion is much faster than the surface diffusion. This time, it was found 

that the cavity growth rate is proportional to the third power of the applied stress, 

σo
3, for low stresses and for high stresses the rate varies as σo

3/2 (Kassner & Hayes, 

2003).  
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

  (Chuang – Rice)  (4.6.1.10) 

 

Aforementioned analysis of Pharr and Nix (1979) predicts somewhat shorter rupture 

times than those observed experimentally for grain boundary cavities in silver by 

Goods and Nix (1978a, 1978b), which are consistent with the ones predicted by 

Chuang and Rice (1973) model after a modification to account cavity interactions 

by the use of above given functional form of σtip for the three dimensional case 

(n=2) rather than two dimensions (n=1). Igic and Mawby (1999) models failure of 

aluminum bamboo line of a similar configuration used in the present work. They 

start with a thermal groove as an initial condition and then activate stress induced 

grain boundary diffusion and employ different ratios of grain boundary/surface 

diffusivities each greater than one (surface control; i.e. Chuang – Rice model). 

Their analysis predicts a rupture time inversely proportional to the 3/2 power of the 

applied stress (this result obtained by digitizing their Fig. 4 and by excluding the 

first two data point, then one obtains tf α 1/σ1.66 with a correlation coefficient 

R2=0.976).  

 

Corresponding relationships between the rupture time and applied stress may be 

obtained by integrating Eqs. (4.6.1.7, 10) between the critical radius (below which 

sintering occurs) and half cavity spacing. Similarly Eq. (4.6.1.8) may be integrated 

for normalized groove depth between [0, 1] to obtain the rupture times. On the other 

hand the rupture time data can be collected directly from the simulation 

experiments; this presents a corrected result hence we have identified different 
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regions in penetration depth vs. time plots other then the linear region. Yet, both 

methods produce consistent results as presented in figure 4.6.1.8. 

 

 

 

 

Figure 4.6.1.8: Failure time as a function of EDTI for λ=0.5, ML=MT=0.25.  

 

It should be mentioned here that, because of phenomena reported previously in 

figures (4.6.1.2, 3) for high stress levels, not all the failure takes place when groove 

penetration reaches to the %95 of the film thickness (i.e. film agglomeration) but 

also assumed to happen when a sharp crack tip nucleates and random fluctuations 

start to dominate the system. At this level we assume that sudden rupture takes 

place by infinitely fast crack propagation. From figure 4.6.1.8 following equations 

are obtained by linear regression analysis: 
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 (4.6.1.11) 

 

Reverting back to real time and space above equation yields: 
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In order to investigate effect of wetting on the rupture times we have performed 

extensive simulation experiments for a set of wetting parameters, λ=[0.16, 0.3, 0.5, 

0.8, 0.97]. Result of this analysis is presented in figure 4.6.1.9, accordingly stress 

dependence of the rupture time takes the form of σ[–1.2, …, –0.7] for low stresses and 

σ[–0.75, …, –0.4] for high stresses as wetting parameter differs in [0.01, …, 1.0] range.  

 

 

 

 

Figure 4.6.1.9: Dependence of the rupture time stress exponent on the wetting 

parameter.  
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4.6.2. Grain boundary grooving under compressive stresses: 

 

Successive profiles given in figure 4.6.2.1ab show that the evolution under a 

compressive stress field (Ξ=−0.1) tend to form a ridge at the grain boundary. The 

groove depth ‘h’ (depth measured from the initial flat surface towards the bulk) 

follows a transient followed by a t1/4 trajectory to a certain depth which may be 

called as the crossover depth (hc) and then turns back by leaving a smooth peak in 

depth ‘d’ versus time plot, crosses its initial position at h=0 and continues upwards 

to take negative values. This is presented in figure 4.6.2.1e on a semi log scale. 

Another characteristic length; the depth measured from the maxima to the root; 

depth ‘d’ is given in figure 4.6.2.1c in log-log scale together with the position of the 

maxima (d=h+hmax). This plot clearly shows that the distance from the groove root 

to the maxima is kept constant during the ridge growth in which no observable 

deviation from the attained quasi equilibrium dihedral angle (figure 4.6.2.1f) takes 

place, and the triple junction velocity (figure 4.6.2.1c) stays constant without 

showing gross temporal variations. All these indicate that the ridge translates in a 

local steady state at a constant velocity. In figure 4.6.2.1e the kinetics of the groove 

width and the value of the hoop stress at the triple junction are given. The 

compressive hoop stress value reported in this plot increase in magnitude as the 

groove deepens to hc and then decreases as the grain boundary length increases with 

the ridge formation.  
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Figure 4.6.2.1: Isotropic grain boundary grooving for λ=0.5, ML=MT=0.25 and 

Ξ=−0.1. a) 3D representation of the groove evolution, b) successive 2D profiles; 
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curvature and hoop stress distributions corresponding to t=3.11 (black profile), c) 

kinetic data for groove depth (‘d’), maxima and TJ velocity, d) comparison of the 

stress free and groove under tension profiles given by Genin et al. (1993) at t=1.0; 

curvature and hoop stress distributions at t=1.0, e) kinetic data for groove depth 

(‘h’), width and TJ stress, f) energy changes and the kinetic data for the dihedral 

angle in semi-log scale.  

 

We have presented the solution proposed by Genin et al. (1993) in figure 4.6.2.1b 

by reproducing it (using their equations 23-27) for an arbitrary constant grain 

boundary flux of j=0.4, and for λ=0.5, B=1.0, and t=1.0. There exists a qualitative 

agreement with the simulated profile as can be seen from this figure, again we 

believe that the key point in this agreement should be the observation of quasi 

constant dihedral angle reported in figure 4.6.1.1f and the satisfaction of the steady 

state assumption (locally) during the natural evolution of the groove at his 

moderately low stress value; Genin et al. (1993) utilize Mullins’ constant dihedral 

angle boundary condition at the triple junction.  

 

The energy change plots given in figure 4.6.2.1f indicate that the strain energy 

decreases as the surface roughness increases, but the change in global Gibbs free 

energy strictly follows the change in the surface energy (due surface area increase) 

which makes a minima in negative scale and then monotonically increases to 

assume positive values. This plot clearly shows that the process is energetically 

unfavorable, i.e. kinetically driven effects dominate during the process.  
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Figure 4.6.2.2: Experimentally observed hillocks in a thin aluminum film by 

Ericson et al. (1991). a) over view showing typical hillock appearances, b) 

schematic top view of a hillock centered over the grain boundary triple junction, 

and examples of cross-sectional views, c) and d) TEM cross-sections of different 

hillocks (compiled from figures 2, 5, 7, 9 of Ericson et al., 1991). 

 

One of the most commonly observed surface reconstruction phenomena in thin 

films is the formation of hillocks. In situ observations of thin films show that 

hillocks generally form in the vicinity of grain boundary triple junctions and it is 

believed that they are form under the influence of residual and/or thermo-

mechanical compressive stresses induced during deposition and/or thermal cycling, 

respectively (Philofsky et al., 1973; Chang et al., 1989; Ericson et al., 1991; Genin, 

1995a, 1995b, 1996; Kim et al., 2001). However, it is not easy to observe hillocks 

atop grain boundaries through cross-sectional micrographs; the limitation of planar 

cuts (cross-sectional views) through three dimensional structures is discussed by 

Ericson et al. (1991) (see figure 4.6.2.2). 
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Figure 4.6.2.3: Isotropic grain boundary grooving for λ=0.5, ML=MT=0.25 and 

Ξ=−1.0. a) successive 2D profiles; curvature and hoop stress distributions 

corresponding to t=0.39 (black profile), b) kinetic data for groove depth (‘d’), 

maxima and TJ velocity, c) kinetic data for groove width, depth (‘h’) and TJ stress, 

d) energy changes and the kinetic data for the dihedral angle in semi-log scale.  

 

Furthermore as argued by Genin (1995b) and as presented by figure 4.6.2.1f the 

assumption of grain boundaries are immobile is severe in this case hence ridge 
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growth is energetically unfavorable and places the grain boundary in a metastable 

condition which forces it to migrate. Genin (1995a, 1996) suggests a model for 

hillock formation relying on the solution for compressive stress induced ridges 

provided earlier by Genin et al. (1993) together with grain boundary migration 

(grain growth). Later, carefully prepared experimental set up by Kim et al. (2001) 

show the interplay between compressive stress induced ridge formation and grain 

growth (i.e. grain boundary migration) in hillock formation without question.  

 

In this respect the present model resembles to an earlier work of Genin (1995b) and 

able to describe the initial stages of hillock formation where the grain boundary 

motion is hindered. Another limitation of the study of Genin et al. (1993), except 

from those discussed in section 4.5.2.1, and Genin (1995a, 1995b) was the absence 

of long range diffusion into hillock from surroundings film area (Kim et al., 2001) 

as presented in figure 4.6.2.1b. Kim et al. (2001) indicate the essence of long range 

diffusion citing Chaudhari’s hillock model (1974) in which an analysis of lattice 

diffusion (Nabarro – Herring creep) is presented. Presland et al. (1972) on the other 

hand provide evidences for surface diffusion controlled mechanism during hillock 

growth in thin silver films. The authors directly adopt results of the Hull – Rimmer 

theory by noting the analogy of the problem with that of grain boundary void 

growth after making suitable arrangements. Therefore, they gave a hillock growth 

rate that is linearly proportional with the stress. However, to our present knowledge, 

there exists no gross scale simulation study in the literature that reflects the 

dominant effect of long range surface drift diffusion. Here, in figures 4.6.2.3, 4 we 
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have presented the effect of an increase in stress (EDTI) in growth kinetics of a 

grain boundary groove by surface diffusion under a compressive stress field.  

 

 

 

 

Figure 4.6.2.4: Isotropic grain boundary grooving for λ=0.5, ML=MT=0.25 and 

Ξ=−3.0. a) successive 2D profiles; curvature and hoop stress distributions 

corresponding to t=0.062 (black profile), b) kinetic data for groove depth (‘d’), 

maxima and TJ velocity, c) kinetic data for groove width, depth (‘h’) and TJ stress, 

d) energy changes and the kinetic data for the dihedral angle in semi-log scale.  
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In each case distance ‘d’ reaches a constant value which is inversely proportional to 

the applied stress and similarly the value of the crossover depth decreases as stress 

increases. The amplitude of the secondary oscillations on both sides of the groove 

root rapidly increases with the applied stress during this kinetically driven evolution 

so that one may speak of extremely high surface instability above certain values.  

 

 

 

 

Figure 4.6.2.5: Evolution of the normalized groove tip stress as a function of 

normalized time for different levels of applied stress in log-log scale. 

 

Figure 4.6.2.5 illustrates the evolution of the normalized groove tip stress as a 

function of normalized time in log-log scale. The compressive tip stress increases in 

magnitude as the groove deepens initially, and decreases once the grain boundary 
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area start to increase due to ridge growth. The rate of this inversion is proportional 

with the amount of applied stress.  

 

The kinetic data for groove depth ‘h’, groove maxima, and groove depth ‘d’ (which 

is obtained by summing the previous two) for different levels of applied stress is 

presented in figure 4.6.2.6. An analysis of crossover depths and times collected 

from this figure may provide an incubation time for hillock formation or may give 

an estimate of the time and depth where grain boundary migration may start to 

occur if it is possible, as in the case of Genin’s (1995a) model.    

 

 

 

 

Figure 4.6.2.6: The kinetic data for a) groove depth ‘h’, b) groove maxima ‘hmax’, 

and c) groove depth ‘d’ (which is obtained by summing the previous two) for 

different levels of applied stress; Ξ=−[0.1, 0.3, 1.0, 2.0, 3.0]. 
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Such an analysis is presented in figure 4.6.2.7 and following equations are obtained 

by linear regression: 

 

0.32
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Figure 4.6.2.7: Analysis of the crossover depth ‘hc’ and corresponding time data.  

 

Reverting back to real time and space above equations yield: 

 

 

0.32
20.002

( ) 1

o
o

c

s o

g
h

tr


  

 
 
  


 (4.6.2.3) 

 



184 
 

   
 

   
 

1.6
1.5 0.375

0.8
4 0.25

30.035
;                        4.6.2.4a

( ) 1 ( ) 1

60.014
;                        4.6.2.4b

( ) 1 ( ) 1

o o
o

o

s o s o

c
o o

o
o

s o s o

g gkT

D h tr tr
t

g gkT

D h tr tr

 

  

 

  


    


    



  
  
    
 
  
    













  

 

Here, the crucial role of the use of EDTI as driving force for surface diffusion in 

explaining certain phenomenon in those materials exposed to the surface tractions 

and body forces (dead loading) is once again shown for case of grain boundary 

grooving under compressive stresses. The drawback of the use of strain energy as 

the driving force for surface stability problems was also anticipated by Aziz et al. 

(1991) and in several cases by Ogurtani and coworkers (Ogurtani & Oren, 2001, 

2005; Ogurtani & Akyildiz, 2008b, 2008c, 2008d; Ogurtani, 2009b). The strain 

energy driven instability is predicted to occur for stresses of either sign, however for 

a kinetically driven instability if the interface is unstable for a given stress state, 

then it is necessarily stable for the opposite stress state (Barvosa-Carter, 1998). 

Lahiri (1970) study hillocks on a Pb film and observe that they grow under a 

compressive stress and shrink in height with a sign reversal (under tension). 

Similarly Barvosa-Carter et al. (1998) found that the corrugated Si (001) interface is 

stable under tension and roughens under compression. The elastic dipole tensor 

interaction (EDTI) energy may be given by, :EDTI su    , as suggested by 

Kröner (1958) and is extensively used by Ogurtani & Seeger (1984). The concept 

was effectively used by Sukharev et al. (2007) for simulating the back-stresses 

(Blech effect) induced by electromigration, and by Ogurtani and Akyildiz (2008b, 
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2008c, 2008d) for simulating intragranular void evolution and by Ogurtani (2009b) 

for simulating surface stability of single crystal metallic thin films. 
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CHAPTER 5 
 
 
 
 

CONCLUSIONS 
 
 
 
 
 
 

The dynamic computer simulation experiments presented in chapter 4 identify well 

known, experimentally observed grain boundary groove shapes and shed light on 

their growing kinetics. They also allow generating some scenarios under several 

conditions regarding to the applied force fields and/or physicochemical parameters 

which are used to explain some related phenomena like grain boundary cavity/crack 

growth and hillock formation on film surfaces.  

 

Simulations on thermal grooving for finite slopes, in which the only driving force is 

the capillarity, result in a time independent groove shape having linear dimensions 

growing with t1/4, which agrees with the analytic (small slope) solution obtained by 

Mullins (1957). This stationary state is attained after a transient, which was found to 

obey the first order reaction kinetics (Ogurtani & Akyildiz, 2005). The transient 

regime appears to be important in interpreting experimental findings, especially 

with low triple junction mobilities where stationary states are hardly reached. This 

is demonstrated by introducing an analysis of experimental thermal grooving data 

reported for tungsten in the literature (Zhang et al., 2002), which strictly connects 

the observed ‘changing dihedral angle’ phenomena to the transient grooving 
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behavior. The phenomenon was previously connected tacitly by Zhang et al. (2002) 

to the changes take place in the surface energy due to changes in surface 

composition (segregation, adsorption) during experimentation. When anisotropic 

surface diffusivity is considered, groove penetration rate found to increase as the 

degree of folding increases, yet the overall morphology is not affected much. It has 

also been observed that formation of secondary oscillations is a strong function of 

anisotropy.  

 

An applied electric field generates a bias in mass transport and destroys the groove 

symmetry; in the case of isotropy, the windward side of the grain boundary 

(cathodic grain) shows an extra mass accumulation compared to the leeward side 

(anodic grain). It does not modify the t1/4 time law for triple junction penetration but 

puts an abrupt limit for the penetration depth (healing effect).  After the termination 

of the groove penetration, the windward side hillock observed to buckle and move 

towards the cathode by leaving an elongated, narrower grooved area (void region) 

which is in accord with in situ TEM observations made by Riege and coworkers 

(Riege et al., 1995, 1996; Prybyla et al., 1998). The analysis suggests an inverse 

relationship between the terminal groove depth and the electronwind intensity 

(EWI) which is an indication of current crowding effect. Through a large number of 

simulations, not only the terminal groove depth but also the amount of rotation at 

the groove root to the windward side to assume a new quasi-equilibrium dihedral 

angle is determined as a function of EWI and wetting parameter. These connections 

could be useful in making quantitative comparisons with laboratory experiments. A 

threshold value for the EWI, below which no freezing effect is observed and 
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agglomeration failure takes place, is obtained as a function of wetting parameter. 

The estimated threshold current densities are much below the testing/operating 

conditions of conventional interconnects. This explains why we do not observe 

asymmetric-thermal-groove-like regions in postmortem evaluations of split/failed 

interconnects. Rather, postmortem examinations of failed interconnects, as well as 

in situ observations using scanning and tunneling electron microscopy, shows that 

open circuit failures often occur with the formation of crack-like slits oriented along 

grain boundaries that are perpendicular to the interconnect line (Fridline & Bower, 

2002). The present study identifies the effect of the anisotropy in surface diffusion 

coefficient extensively by considering 96 different combinations surface textures, 

electron wind intensities, and wetting parameters. In certain textures, fatal slits 

extending along the grain boundaries are observed and their response to changes in 

electron wind intensity is reported. These simulations provide a map in selecting the 

most proper microtexture with respect to the applied current flow to reduce adverse 

effects of the diffusion anisotropy and to improve interconnect reliability. On the 

other extreme for the anisotropic surface diffusion, ridge formations at the triple 

junctions are observed and their response to changes in electron wind intensity is 

examined. It is also shown that the wetting parameter is highly effective on these 

morphology determinations.  

 

The effect of an applied stress field is studied by altering the elastic dipole tensor 

interaction parameter in a wide range [Ξ = ±0.1, … , ±10] which correspond to 

[±13.25 – ±1325] MPa for copper and [±2.96 – ±296] MPa for aluminum with  

scaling length of ℓo=0.1μm. The results of the simulations was first compared with 
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that of Genin et al. (1993) who analyzed the effect of stress on grooving by 

superimposing a solution corresponding to the steady state grain boundary diffusion 

(without a groove) to Mullin’s solution of thermal grooving. Accordingly, the 

applied tensile stress causes the groove to deepen more rapidly and enhances film 

breakup compared to that produced by capillarity alone as observed by Genin et al. 

(1993). Furthermore, the kinetics of accelerated groove deepening with an applied 

tensile stress is examined in connection with grain boundary cavity growth models 

in the literature. Triple junction displacement kinetics, after the transient, shows two 

distinct sequential regimes in log – log plot: a) power law and b) linear regimes. In 

the first regime, kinetics of penetration depth is described with a stress dependent 

time exponent of the form 0.45Ξ0.2 (with ℓo=1μm → 0.16σ0.2 (aluminum) → 

0.04σ0.2 (copper)). This power law regime eventually breaks down at a time, which 

is inversely proportional to the amount of applied stress, and replaced by a regime 

that is described by a linear kinetic law. This final regime assumes a Hull – Rimmer 

type growth (growth rate proportional with σ) at low stresses, but shows a nonlinear 

stress dependence for high stress values (growth rate proportional with σ1/2). Stress 

level at the triple junction increases as the grain boundary is consumed during 

groove penetration (cavity growth). This increase in tip stress is monitored and a 

diffusive micro-crack formation is reported at the groove tip for high stresses which 

may constitute a physical basis for the observed microscopic cracking in thin films. 

Analysis of the failure times for λ=0.5, in accordance with above growth rates, 

gives stress exponents of –1 and –1/2 respectively at low and high stresses. These 

exponents approach respectively to –1.2 and –3/4 as the wetting parameter gets 

smaller.  
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The elastic strain energy density derived surface evolutions have no means to make 

a distinction between tensile and compressive stresses as the energy is quadratically 

proportional to stress. On the other hand, the use of elastic dipole tensor interactions 

between the stress field and the mobile atomic species (monovacancies) as a driving 

force for surface diffusion in the present model provided direct means to observe 

effects of compressive stress fields on the evolution of bicrystal film. Accordingly, 

application of compressive stress slows down the groove penetration and favors 

development of grain boundary ridge profiles that are in accord with results 

obtained by Genin et al. (1993). The present theory has great potential to describe 

the growth kinetics of experimentally observed hillocks in thin films, yet as the 

grain boundary area increases during ridge growth the process through an immobile 

boundary (normal to the initial film surface) is energetically unfavorable and a more 

complete model should account for the grain boundary migration (grain growth). 

Therefore, incorporation of grain boundary migration (triple junction transverse 

motion) put forth as a future objective, but an incubation time for hillock growth 

and a crossover depth, over which grain boundary migration becomes energetically 

favorable, are defined and discussed within the limits of the present model. For 

λ=0.5, crossover depth is found to be proportional with σ –0.3. It is also found that 

stress dependence of the incubation time for hillock growth distinguishes between 

high and low stresses, and is proportional to σ –1.6 and σ –0.8 respectively.  

 

The followings are the future recommendations: 
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In the present model we ignore the direct transfer of chemical species between bulk 

and void phases through the interface layer (growth) and consider only the drift-

diffusion of chemical species along the surface of the film. The growth term in Eq. 

(3.1.2) could also be taken into account as an active mass transport mechanism 

which may identify the grooving kinetics under evaporation (i.e. corrosive 

atmospheres, 0vbg 
) or condensation.  

 

As discussed in this thesis, specific surface Gibbs free energy enters into the 

formulation, which is in general not constant, but rather a function of space (i.e. 

orientation dependent surface stiffness) and time due to any possible compositional 

variations at the reaction front during the evolution phenomenon. Therefore, the 

exact solution of the problem involves the complete numerical solution of the time 

dependent diffusion equation with drift (convective) term by utilizing proper 

boundary and initial conditions.  

 

As a final point, the combined effects of electromigration and stress migration 

should also be considered in detail.  
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! variable declations
module global_variables

 implicit none
 ! IMSL* Fortran Numerical Library Version 6.0.0
  'link_fnl_static.h'include
 
  vectype
         x,y,zreal(8)
     end type
    
     arrtype
         x(2,2)real(8)
     end type
    
     arr1type
         x(3,2)real(8)
          end type
     
         :: pi  = 3.141592653589793d0real(8)
         :: mdiv,mc,MODE,mmL,mmR,gb1,gb2,BC,nloop,t,H,nu,nr,nd,nl,integer

nt,mint,gnew,cont,ipiv(10000),info,nt_1,nt_2,NDATA
         :: AAL,AAR,BBL,BBR,phiL,phiR,tet,alfa,JTu,Vu,JLu,JRu,JTd,real(8)

Vd,JLd,JRd,Jgu,Jgd,lamda,rmax,rmin,lamda_A,lamda_C,sl,sw,ro,betta,MG
,MT,MGB,MTA,MTC,delta,omega,deltat,eptime,timet,dmean,vmax,chi,C0,C1
,C2,C3,C4,e_s,nu_s,r_s,sigx,xi,siglam,ta,ta_o,td

     (vec)  :: RT(10000),DR(10000),LLN(10000),ANTI(3),NC(10000),RCtype
(10000),RM(10000),DDR(10000),DS(10000),TETA(10000),KAPPA(10000),K
(10000),P(10000),DTETA(10000),zeta(10000),DD(10000),SS(10000),V
(10000),V1(10000),QSS(3),EF_1(10000),EF_2(10000),EF_TC(10000),EF_TN
(10000),TN(10000),UB(10000),US(10000),strain(10000),ux(10000),uy
(10000),hoopstress(10000) 

    
     (vec), (:),      :: RC_MU,RC_FS,TR_FStype dimension allocatable
    , (:,:),       :: TT,UU,FT,UT,GT,CSCOEFX,real(8) dimension allocatable

CSCOEFY  
    , (:),         :: CC,TR,XDATA,YDATA,SDATA,real(8) dimension allocatable

BREAK   
    
end module

! operator overloadings for several operations
module vector_operator

     global_variablesuse
    implicit none
    ! overload operator * for cross product
     (*)interface operator
          crossmodule procedure

LIST OF COMPUTER CODE
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    ! overload operator * for cross product
     (*)interface operator
          crossmodule procedure
    end interface
    !
    ! overload operator * for double vector multiplication
     (*)interface operator
          double_vector_multiplicationmodule procedure
    end interface
    !
    ! overload operator * for double arr multiplication
     (*)interface operator
          double_arr_multiplicationmodule procedure
    end interface
    !
    ! overload operator * for double arr1 multiplication
     (*)interface operator
          double_arr1_multiplicationmodule procedure
    end interface
    !    
    ! overload operator * for integer vector multiplication
     (*)interface operator
          integer_vector_multiplicationmodule procedure
    end interface
    !
    ! overload operator / for vector double division
     (/)interface operator
          double_vector_divisionmodule procedure
    end interface
    !
    ! overload operator / for vector integer division
     (/)interface operator
          integer_vector_divisionmodule procedure
    end interface
    !
    ! overload operator + for vector vector summation
     (+)interface operator
          summationmodule procedure
    end interface
    !  
    ! overload operator + for arr arr summation
     (+)interface operator
          summation_arrmodule procedure
    end interface
    !
    ! overload operator + for arr1 arr1 summation
     (+)interface operator
          summation_arr1module procedure
    end interface
    !     
    ! overload operator - for vector vector subtraction
     (-)interface operator
          subtractionmodule procedure
    end interface
    ! 
    ! overload operator = for vec assign vec
     (=)interface assignment
          vec_eql_vecmodule procedure
    end interface
    !  
    ! overload operator = for arr assign arr
     (=)interface assignment
          arr_eql_arrmodule procedure
    end interface
    !
    ! overload operator = for arr1 assign arr1
     (=)interface assignment
          arr1_eql_arr1module procedure
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    end interface
    !    
    contains
      
     (vec)  cross(a,b)type function
         global_variablesuse
        implicit none
         (vec), (IN) :: a,b    type INTENT
        cross%x = a%y*b%z-a%z*b%y
        cross%y = -a%x*b%z+a%z*b%x
        cross%z = a%x*b%y-a%y*b%x
     crossend function
    !     
     (vec)  summation(a,b)type function
         global_variablesuse
        implicit none
         (vec), (IN) :: a,b    type INTENT
        summation%x = a%x+b%x
        summation%y = a%y+b%y
        summation%z = a%z+b%z
     summationend function
    !     
     (arr)  summation_arr(a,b)type function
         global_variablesuse
        implicit none
         (arr), (IN) :: a,b    type INTENT
        summation_arr%x(1,1) = a%x(1,1)+b%x(1,1)
        summation_arr%x(1,2) = a%x(1,2)+b%x(1,2)
        summation_arr%x(2,1) = a%x(2,1)+b%x(2,1)
        summation_arr%x(2,2) = a%x(2,2)+b%x(2,2)
     summation_arrend function
    ! 
     (arr1)  summation_arr1(a,b)type function
         global_variablesuse
        implicit none
         (arr1), (IN) :: a,b    type INTENT
        summation_arr1%x(1,1) = a%x(1,1)+b%x(1,1)
        summation_arr1%x(1,2) = a%x(1,2)+b%x(1,2)
        summation_arr1%x(2,1) = a%x(2,1)+b%x(2,1)
        summation_arr1%x(2,2) = a%x(2,2)+b%x(2,2)
        summation_arr1%x(3,1) = a%x(3,1)+b%x(3,1)
        summation_arr1%x(3,2) = a%x(3,2)+b%x(3,2)        
     summation_arr1     end function
    ! 
     (vec)  subtraction(a,b)type function
         global_variablesuse
        implicit none
         (vec), (IN) :: a,b    type INTENT
        subtraction%x = a%x-b%x
        subtraction%y = a%y-b%y
        subtraction%z = a%z-b%z
     subtractionend function
    !     
     (vec)  double_vector_multiplication(a,b)type function
         global_variablesuse
        implicit none
        , (IN) :: a real(8) INTENT
         (vec), (IN) :: b    type INTENT
        double_vector_multiplication%x = a*b%x
        double_vector_multiplication%y = a*b%y
        double_vector_multiplication%z = a*b%z
     double_vector_multiplicationend function
    !     
     (arr)  double_arr_multiplication(a,b)type function
         global_variablesuse
        implicit none
        , (IN) :: a real(8) INTENT
         (arr), (IN) :: b    type INTENT
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        double_arr_multiplication%x(1,1) = a*b%x(1,1)
        double_arr_multiplication%x(1,2) = a*b%x(1,2)
        double_arr_multiplication%x(2,1) = a*b%x(2,1)
        double_arr_multiplication%x(2,2) = a*b%x(2,2)
     double_arr_multiplicationend function
    !     
     (arr1)  double_arr1_multiplication(a,b)type function
         global_variablesuse
        implicit none
        , (IN) :: a real(8) INTENT
         (arr1), (IN) :: b    type INTENT
        double_arr1_multiplication%x(1,1) = a*b%x(1,1)
        double_arr1_multiplication%x(1,2) = a*b%x(1,2)
        double_arr1_multiplication%x(2,1) = a*b%x(2,1)
        double_arr1_multiplication%x(2,2) = a*b%x(2,2)
        double_arr1_multiplication%x(3,1) = a*b%x(3,1)
        double_arr1_multiplication%x(3,2) = a*b%x(3,2)        
     double_arr1_multiplicationend function
    !     
     (vec)  integer_vector_multiplication(a,b)type function
         global_variablesuse
        implicit none
        , (IN) :: a integer INTENT
         (vec), (IN) :: b    type INTENT
        integer_vector_multiplication%x = a*b%x
        integer_vector_multiplication%y = a*b%y
        integer_vector_multiplication%z = a*b%z
     integer_vector_multiplicationend function
    !     
     (vec)  double_vector_division(a,b)type function
         global_variablesuse
        implicit none
         (vec), (IN) :: a type INTENT
        , (IN) :: b    real(8) INTENT
        double_vector_division%x = a%x/b
        double_vector_division%y = a%y/b
        double_vector_division%z = a%z/b
     double_vector_divisionend function
    !     
     (vec)  integer_vector_division(a,b)type function
         global_variablesuse
        implicit none
         (vec), (IN) :: a type INTENT
        , (IN) :: b    integer INTENT
        integer_vector_division%x = a%x/b
        integer_vector_division%y = a%y/b
        integer_vector_division%z = a%z/b
     integer_vector_divisionend function
    !     
     arr_eql_arr(a,b)subroutine
         global_variablesuse
        implicit none
         (arr), (OUT) :: a type INTENT
         (arr), (IN) :: b    type INTENT
        a%x(1,1) = b%x(1,1)
        a%x(1,2) = b%x(1,2)
        a%x(2,1) = b%x(2,1)
        a%x(2,2) = b%x(2,2)
    end subroutine
    !     
     arr1_eql_arr1(a,b)subroutine
         global_variablesuse
        implicit none
         (arr1), (OUT) :: a type INTENT
         (arr1), (IN) :: b    type INTENT
        a%x(1,1) = b%x(1,1)
        a%x(1,2) = b%x(1,2)
        a%x(2,1) = b%x(2,1)
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        a%x(2,2) = b%x(2,2)
        a%x(3,1) = b%x(3,1)
        a%x(3,2) = b%x(3,2)        
         end subroutine
    !             
     vec_eql_vec(a,b)subroutine
         global_variablesuse
        implicit none
         (vec), (OUT) :: a type INTENT
         (vec), (IN) :: b    type INTENT
        a%x = b%x
        a%y = b%y
        a%z = b%z
    end subroutine
    
end module vector_operator

! this function calculates the magnitude of a vector
double precision function  absvec(a)

     global_variablesuse
    implicit none
    
     (vec)  :: atype
    
    absvec = dsqrt(a%x*a%x+a%y*a%y+a%z*a%z)
    
end 

! this function calculates dot product of two vectors 
double precision function  dot(a,b)

     global_variablesuse
    implicit none
    
     (vec)  :: a,b type

    dot = a%x*b%x+a%y*b%y+a%z*b%z
    
end function dot

! this routine assigns an anticlockwise rotation matrix
subroutine ccrot(w) 

     global_variablesuse
       implicit none
     :: w  real(8)

    ANTI(1)%x = dcos(w)
    ANTI(1)%y = dsin(w)
    ANTI(1)%z = 0.0d0
    ANTI(2)%x = -dsin(w)
    ANTI(2)%y = dcos(w)
    ANTI(2)%z = 0.0d0
    ANTI(3)%x = 0.0d0
    ANTI(3)%y = 0.0d0
    ANTI(3)%z = 1.0d0
    
end subroutine ccrot

! this routine reads program inputs
subroutine input 

     global_variablesuse
    implicit none
    
    (12) :: dummycharacter
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    (1,file='input.txt')  open
        ! betta: film aspect ratio     
        (1,'(a62,f24.16)') dummy,betta read
        ! sw: film half width 
        (1,'(a62,f24.16)') dummy,sw   read
        ! mdiv: number of divisions on sidewalls  
        (1,'(a62,i15)') dummy,mdiv  read
        ! mc: number of divisions on perpendicular walls      
        (1,'(a62,i15)') dummy,mc   read
        ! AAL: diffusivity anisotropy intensity of the left side grain
        (1,'(a62,f24.16)') dummy,AAL read
        ! AAR: diffusivity anisotropy intensity of the right side grain
        (1,'(a62,f24.16)') dummy,AAR  read
        ! BBL: surface energy anisotropy intensity of the left grain
        (1,'(a62,f24.16)') dummy,BBL read
        ! BBR: surface energy anisotropy intensity of the right grain
        (1,'(a62,f24.16)') dummy,BBR   read
        ! mmL: half fold number of the left side grain 
        (1,'(a62,i15)') dummy,mmL      read
        ! mmR: half fold number of the right side grain 
        (1,'(a62,i15)') dummy,mmR      read
        ! phiL: tilt angle of the left side grain 
        (1,'(a62,f24.16)') dummy,phiL   read
        ! phiR: tilt angle of the right side grain
        (1,'(a62,f24.16)') dummy,phiR   read
        ! lamda: wetting parameter
        (1,'(a62,f24.16)') dummy,lamda  read
        ! gb1: node number of the upper grain boundary
        (1,'(a62,i15)') dummy,gb1   read
        ! gb2: node number of the lower grain boundary    
        (1,'(a62,i15)') dummy,gb2 read
        ! BC: selection of boundary condition for diffusion problem
        (1,'(a62,i15)') dummy,BCread
        (1,'(a62)') dummy   ! BC = 0 :: Anode = IBC, Cathode = FBCread
        (1,'(a62)') dummy   ! BC = 1 :: Anode = RBC, Cathode = FBCread
        (1,'(a62)') dummy   ! BC = 2 :: Anode = IBC, Cathode = IBCread
        (1,'(a62)') dummy   ! BC = 3 :: Anode = RBC, Cathode = RBCread
        ! MG: grain boundary longitudinal mobility 
        (1,'(a62,f24.16)') dummy,MG     read
        ! MT: grain boundary transverse mobility
        (1,'(a62,f24.16)') dummy,MT     read
        ! MGB: grain boundary drift mobility
        (1,'(a62,f24.16)') dummy,MGBread
        ! delta: grain boundary thickness    
        (1,'(a62,f24.16)') dummy,delta read
        ! omega: mean atomic volume 
        (1,'(a62,f24.16)') dummy,omega read
        ! deltat: initial time interval 
        (1,'(a62,f24.16)') dummy,deltat read
        ! nloop: final loop number 
        (1,'(a62,i15)') dummy,nloop    read
        ! eptime: time step corrector
        (1,'(a62,f24.16)') dummy,eptime read
        ! mint: integration segment number (must be odd)
        (1,'(a62,i15)') dummy,mint read
        ! e_s: elastic modulus     
        (1,'(a62,f24.16)') dummy,e_sread
        ! nu_s: Poisson's ratio    
        (1,'(a62,f24.16)') dummy,nu_s read
        ! r_s: ratio of the stress components (sigxx/sigyy)  
        (1,'(a62,f24.16)') dummy,r_s    read
        ! sigx: remote stress
        (1,'(a62,f24.16)') dummy,sigxread
        ! chi: electronwind intensity   
        (1,'(a62,f24.16)') dummy,chiread
        ! xi: elastic dipole tensor interaction intensity
        (1,'(a62,f24.16)') dummy,xi     read
        ! siglam: elastic strain energy intensity
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        (1,'(a62,f24.16)') dummy,siglam read
        ! lamda_A: wetting parameter of leftmost_grain-anode junction
        (1,'(a62,f24.16)') dummy,lamda_A read
        ! lamda_C: wetting parameter of rightmost_grain-cathode junction
        (1,'(a62,f24.16)') dummy,lamda_C read
        ! MTA: longitudinal mobility leftmost_grain-anode junction
        (1,'(a62,f24.16)') dummy,MTA    read
        ! MTC: longitudinal mobility rightmost_grain-cathode junction
        (1,'(a62,f24.16)') dummy,MTC     read
        ! MODE: selection of the surface Gibbs free energy function 
        (1,'(a62,i15)') dummy,MODE      read
        (1,'(a62,f24.16)') dummy,alfa   read
        ! MODE = 1 :: OGURTANI's GFE func (Ogurtani, 2006a) 
        ! MODE = 2 :: SHENOY's GFE func (Ramasubramaniam & Shenoy, 2005)
        ! MODE = 3 :: CURTATE GFE func (Ogurtani, 2009a)
        (1,'(a62,i15)') dummy,contread

        nloop = 2**nloop
        ! ro: scaling factor
        ro = 0.5d0/dsqrt((betta*sw)**2+sw**2)
        ! sl: half film length
        sl = betta*ro*sw
        ! sw: half film width
        sw = ro*sw
        ! C0-4: elastic coefficients for plane strain
        C0 = 0.25d0*(1.0d0+nu_s)/(pi*e_s*(1.0d0-nu_s))
     C1 = 3.0d0-4.0d0*nu_s
     C2 = 0.25d0/(pi*(1.0d0-nu_s))
     C3 = 1.0d0-2.0d0*nu_s
     C4 = 2.0d0   
     ! gb1,2: grain boundary node positions
        gb1 = gb1+1
        gb2 = gb2+2*mdiv+2*mc+1
        ! dmean: mean segment length
        dmean = sl/mdiv
        ! phiL,R: tilt angles
        phiL = phiL*pi/180
        phiR = phiR*pi/180            
     (1)close
    
end subroutine

! this routine prints program outputs
subroutine output(counter)

     global_variablesuse
    implicit none
    
     :: i, counter integer
     *13   :: filenamecharacter
             :: aci_1_L,aci_1_R,aci_2_R,aci_2_Lreal(8)
    ,  :: dotdouble precision external
    !      
    (1,file='name.txt')    open
      (counter.LT.10) if then
         (1,'(a3,i1,a3,a4)') '000',counter,'csl','.txt'write
      (counter.LT.100) else if then
         (1,'(a2,i2,a3,a4)') '00',counter,'csl','.txt'write
      (counter.LT.1000) else if then
         (1,'(a1,i3,a3,a4)') '0',counter,'csl','.txt'           write
     else
         (1,'(i4,a3,a4)') counter,'csl','.txt'   write
        end if
    (1)close
    !     
    (2,file='name.txt')open
        (2,'(a11)') filenameread
    (2)close
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    !     
    *,'Printing output: ',filenameprint
    ! compute the instantaneous dihedral angles
    aci_1_L = dacos(dot(DR(gb1-1),ta)/DS(gb1-1))
    aci_1_R = dacos(dot(DR(gb1),td)/DS(gb1))
    aci_2_R = dacos(dot(DR(gb2-1),td)/DS(gb2-1))
    aci_2_L = dacos(dot(DR(gb2),ta)/DS(gb2))            
    !
    (3,file=filename)open
        (3,'(20(f30.16),5(i12),(f30.16),4(i10),5(f30.16))') RT(1)%xwrite

,RT(1)%y,V(1),TETA(1),KAPPA(1),DTETA(1),DD(1),SS(1),0.0d0,0.0d0,
EF_TN(1),CC(1),zeta(1),0.0d0,ux(1),uy(1),0.0d0,hoopstress(1),0.0d0,
timet+eptime*dmean/vmax,H,t,nt,gb1,gb2,timet,nu,nr,nd,nl,aci_1_L,
aci_1_R,aci_2_R,aci_2_L

         i = 2, ntdo
            (3,'(20(f30.16))') RT(i)%x,RT(i)%y,V(i),TETA(i),KAPPAwrite

(i),DTETA(i),DD(i),SS(i),0.0d0,0.0d0,EF_TN(i),CC(i),zeta(i),0.0d0,ux
(i),uy(i),0.0d0,hoopstress(i)

        end do
    (3)  close
                      
end subroutine

! this routine generates initial 2D mesh, position vectors are stored as
 3D vectors: r(x,y,0) 

subroutine generate

     global_variablesuse
     vector_operatoruse
    implicit none
       
     ::  iinteger
     (vec)  :: ta_dtype
    ,   :: absvecdouble precision external
    
    nu = 2*mdiv+1
    nr = 2*mc-1
    nd = 2*mdiv+1
    nl = 2*mc-1
    nt = nu+nr+nd+nl
    ! upper part of the strip
     i = 1, 2*mdiv+1do
        RT(i)%x = (i-mdiv-1)*sl/mdiv
        RT(i)%y = sw
        RT(i)%z = 0.0d0
    end do
    ! right edge (cathode) of the strip 
     i = 2*mdiv+2,2*mdiv+2*mcdo
        RT(i)%x = sl
        RT(i)%y = -(i-2*mdiv-mc-1)*sw/mc
        RT(i)%z = 0.0d0
    end do
    ! lower part of the strip
     i = 2*mdiv+2*mc+1,4*mdiv+2*mcdo
        RT(i)%x = -(i-3*mdiv-2*mc-1)*sl/mdiv
        RT(i)%y = -sw
        RT(i)%z = 0.0d0
    end do
    ! left edge (anode) side of the strip
     i = 4*mdiv+2*mc+1, ntdo
        RT(i)%x = -sl
        RT(i)%y = (i-4*mdiv-3*mc-1)*sw/mc
        RT(i)%z = 0.0d0
         end do
    
    ta_o%x = 0.0d0
    ta_o%y = -1.0d0
    ta_o%z = 0.0d0   
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    ta_d = RT(gb2)-RT(gb1)
    ta = ta_d/absvec(ta_d) 
    td = (-1.0d0)*ta 
    
end subroutine

! this routine calculates difference vectors between successive position
 vectors and their magnitudes

subroutine DELR_F

     global_variablesuse
     vector_operatoruse
    implicit none
    
     :: i    integer
    ,  :: absvecdouble precision external

     i = 1, nt-1do
        DR(i) = RT(i+1)-RT(i)   
        DS(i) = absvec(DR(i))
       end do
    
    DR(nt) = RT(1)-RT(nt)
    DS(nt) = absvec(DR(nt))
    
end subroutine

subroutine DELREM(ni,nf)

     global_variablesuse
     vector_operatoruse
    implicit none

     :: i,ni,nfinteger
    ,  :: absvec double precision external
         
     i = ni, nf-1do
        DDR(i) = RT(i+1)-RT(i)   
    end do
    
end subroutine

! this routine calculates the angle between two successive 3D vectors in
 given set of vectors

subroutine PSIR_F

     global_variablesuse
     vector_operatoruse
    implicit none
    
         :: iinteger
     (vec)  :: kk    type
    ,   :: dotdouble precision external
    
    kk%x = 0.0d0
    kk%y = 0.0d0
    kk%z = 1.0d0
       
    TETA(1) = dasin(dot(DR(nt)*DR(1),kk)/(DS(nt)*DS(1)))
    
     (dot(DR(nt),DR(1)).le.0.0d0)  if then
        TETA(1) = pi - TETA(1)
    end if
    
     (TETA(1)>pi) if then
        TETA(1) = TETA(1) - 2.0d0*pi
    end if
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    TETA(1) = -TETA(1)
    
     i = 2, nt    do
        TETA(i) = dasin(dot(DR(i-1)*DR(i),kk)/(DS(i-1)*DS(i)))   
         (dot(DR(i-1),DR(i)).le.0.0d0) if then
            TETA(i) = pi - TETA(i)
        end if
         (TETA(i)>pi) if then
            TETA(i) = TETA(i) - 2.0d0*pi
        end if
        TETA(i) = -TETA(i)
      end do
      
end subroutine

! this routine calculates curvatures and local line normal vectors
subroutine KAPPA_F

     global_variablesuse
     vector_operatoruse
    implicit none
    
         :: iinteger
         :: alpha,beta,denomreal(8)
    ,   :: absvecdouble precision external
      
    alpha = datan(dsin(TETA(1))/(DS(nt)/DS(1)+dcos(TETA(1))))
    KAPPA(1) = -2.0d0*dsin(alpha)/DS(1)
    beta = -0.5d0*pi+alpha
     ccrot(beta)call
     dgemv('N',3,3,1.0d0,ANTI,3,DR(1),1,0.0d0,LLN(1),1)call
    denom = absvec(LLN(1))    
    LLN(1) = LLN(1)/denom

     i = 2, ntdo
        alpha = datan(dsin(TETA(i))/(DS(i-1)/DS(i)+dcos(TETA(i))))
        KAPPA(i) = -2.0d0*dsin(alpha)/DS(i)
        beta = -0.5d0*pi+alpha
         ccrot(beta)    call
         dgemv('N',3,3,1.0d0,ANTI,3,DR(i),1,0.0d0,LLN(i),1)call
        denom = absvec(LLN(i))
        LLN(i) = LLN(i)/denom
     end do
       
end subroutine

! auxiliary functions for surface energy anisotropy
double precision function  gama(c,mmm,ww,xx)

  global_variablesuse
 implicit none

  :: xx,c,ww,g_0double precision
              :: mmminteger
 g_0 = 1.0d0
  (MODE.eq.1)       if then
 ! Ogurtani's smooth GFE function (Ogurtani, 2006a) 
     gama = 1.0d0+c*(dsin(mmm*(xx-ww))**2)
  (MODE.eq.2)  else if then
 ! Shenoy's GFE function having singularities (Ramasubramaniam & 

Shenoy, 2005)
     gama = g_0*(1.0d0-c+c*((dabs(dsin(mmm*0.5d0*(xx-ww)))+dabs(dcos

(mmm*0.5d0*(xx-ww))))))
        else
    ! Curtate (Ogurtani, 2009a)
        gama = 1.0d0+c*dcos(ww)
 end if
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end function

double precision function  dgama (c,mmm,ww,xx)

  global_variablesuse
 implicit none

  :: xx,c,ww,g_0double precision
              :: mmminteger
 g_0 = 1.0d0
  (MODE.eq.1)      if then
 ! Derivative of Ogurtani's smooth GFE function
     dgama = mmm*c*dsin(2.0d0*mmm*(xx-ww))
  (MODE.eq.2)    else if then
 ! Derivative of Shenoy's GFE function having sharp Dirac delta 

function singularities
     dgama = g_0*mmm*0.5d0*c*dsin(mmm*0.5d0*(xx-ww))*dcos(mmm*0.5d0*

(xx-ww))*(1.0d0/dabs(dsin(mmm*0.5d0*(xx-ww)))-1.0d0/dabs(dcos(mmm*0.
5d0*(xx-ww))))

  else
 ! Curtate
     dgama = -c*2.0d0*mmm*dsin(ww)/(1.0d0+xx*dcos(ww))
 end if
 
end function 

double precision function  SSf (c,mmm,ww,xx)

  global_variablesuse
 implicit none

  :: xx,c,wwdouble precision
              :: mmminteger

  (MODE.eq.1)      if then
 ! Ogurtani's smooth surface stiffness function
     SSf = (1.0d0+c*0.5d0)*(1.0d0+((-1.0d0)**mmm)*c*(1.0d0-4.0d0*mmm*

*2)*dcos(2.0d0*mmm*(xx+ww))/(c+2.0d0))
  (MODE.eq.2)   else if then
 ! Shenoy's surface stiffness function
     SSf = 1.0d0-c+c*(1.0d0-0.25d0*mmm**2)*(dabs(dsin(0.5d0*mmm*(xx-

ww)))+dabs(dcos(0.5d0*mmm*(xx-ww))))
  else
 ! Curtate
     SSf = 1.0d0+c*(dcos(ww)-((2.0d0*mmm)**2)*(xx+dcos(ww))/(1.0d0+xx

*dcos(ww))**3)
 end if
 
end function 

double precision function  zr (xx)

  global_variablesuse
 implicit none

  :: xxdouble precision

    zr = xx+alfa*dsin(xx)-2.0d0*mmR*(tet-phiR)-pi
    
end function 

double precision function  zl (xx)

  global_variablesuse
 implicit none

  :: xxdouble precision
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    zl = xx+alfa*dsin(xx)-2.0d0*mmL*(tet-phiL)-pi
    
end function 

double precision function  rolling (z,znot)

  global_variablesuse
 implicit none
 
 interface
          z(x)double precision function
            , (in) :: xdouble precision intent
         zend function
      end interface

  :: arrabs,znotdouble precision
 
 arrabs = 1.0E-6 
  dzreal (z, arrabs, arrabs, 1.d-8, .01, 1, 100000, znot, znot, call

info) 
 rolling = znot
 
end function 
! end. auxiliary functions for surface energy anisotropy

! this routine calculates triple junction fluxes and velocity plus the 
anisotropy coefficients

! DD stores the anisotropic diffusivities, 
! SS stores the anisotropic surface stiffness
subroutine ANISOTROPY_F

     global_variablesuse
     vector_operatoruse
    implicit none
    
         :: iinteger
     (vec)  :: kk,eitype
         :: gamL(2),gamR(2),TETL,TETR real(8)
    ,   :: dot,gama,dgama,SSf,rolling,zr,zldouble precision external

    kk%x = 0.0d0
    kk%y = 0.0d0
    kk%z = 1.0d0

    ei%x = 1.0d0
    ei%y = 0.0d0
    ei%z = 0.0d0
    
     i = 1, ntdo
        DTETA(i) = dasin(dot(ei*DR(i),kk)/(DS(i)))      
         (DR(i)%x.le.0.0d0) if then
            DTETA(i) = pi - DTETA(i)
                end if
         (DTETA(i)>pi) if then
            DTETA(i) = DTETA(i) - 2.0d0*pi
        end if
         ((i.lt.gb1).or.((i.gt.gb2))) if then
             (MODE.eq.3) if then
                tet = DTETA(i)
                zeta(i) = rolling (zl,zeta(i))
                SS(i) = SSf(BBL,mmL,zeta(i),alfa)
            else
                SS(i) = SSf(BBL,mmL,phiL,DTETA(i))
            end if
            DD(i) = 1.0d0+AAL*dcos(mmL*(DTETA(i)-phiL))**2
        else
             (MODE.eq.3) if then
                tet = DTETA(i)
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                zeta(i) = rolling (zr,zeta(i))
                SS(i) = SSf(BBR,mmR,zeta(i),alfa)
            else
                SS(i) = SSf(BBR,mmR,phiR,DTETA(i))
            end if
            DD(i) = 1.0d0+AAR*dcos(mmR*(DTETA(i)-phiR))**2
        end if
    end do

    TETL = DTETA(gb1-1)
    TETR = DTETA(gb1)
    
    gamL(1) = gama(BBL,mmL,phiL,TETL)
    gamL(2) = dgama(BBL,mmL,phiL,TETL)
    gamR(1) = gama(BBR,mmR,phiR,TETR)
    gamR(2) = dgama(BBR,mmR,phiR,TETR)   
               
 Vu  = 2.0d0*lamda-gamR(1)*dsin(TETR)+gamL(1)*dsin(TETL)-gamR(2)*dcos

(TETR)+gamL(2)*dcos(TETL)  
 JTu = gamR(1)*dcos(TETR)-gamL(1)*dcos(TETL)-gamR(2)*dsin(TETR)+gamL

(2)*dsin(TETL)  
 JLu = lamda+gamL(1)*dsin(TETL)+gamL(2)*dcos(TETL) 
 JRu = lamda-gamR(1)*dsin(TETR)-gamR(2)*dcos(TETR) 
 
    TETL = DTETA(gb2)
    TETR = DTETA(gb2-1) 
    
    gamL(1) = gama(BBL,mmL,phiL,DTETA(gb2))
    gamL(2) = dgama(BBL,mmL,phiL,DTETA(gb2))    
    gamR(1) = gama(BBR,mmR,phiR,DTETA(gb2-1))
    gamR(2) = dgama(BBR,mmR,phiR,DTETA(gb2-1))  

 Vd  = 2.0d0*lamda-gamR(1)*dsin(DTETA(gb2-1))+gamL(1)*dsin(DTETA
(gb2))-gamR(2)*dcos(DTETA(gb2-1))+gamL(2)*dcos(DTETA(gb2))  

 JTd = -gamL(1)*dcos(DTETA(gb2))+gamR(1)*dcos(DTETA(gb2-1))-gamR(2)*
dsin(DTETA(gb2-1))+gamL(2)*dsin(DTETA(gb2))

 JRd = lamda-gamR(1)*dsin(DTETA(gb2-1))-gamR(2)*dcos(DTETA(gb2-1)) 
 

 JLd = lamda+gamL(1)*dsin(DTETA(gb2))+gamL(2)*dcos(DTETA(gb2)) 
  
end subroutine ANISOTROPY_F

! this routine calculates the centroid position vectors and normal unit 
vectors at the centroids

subroutine CENTROID_F

     global_variablesuse
     vector_operatoruse
    implicit none
    
         :: iinteger
     (vec)  :: kktype
    
    ,   :: absvec,dot  double precision external
      
    kk%x = 0.0d0
    kk%y = 0.0d0
    kk%z = -1.0d0
            
     i = 1, nt-1do
        NC(i) = kk*DR(i)/DS(i)
        RC(i) = 0.5d0*(RT(i)+RT(i+1))
    end do
    
    NC(nt) = kk*DR(nt)/DS(nt)
    RC(nt) = 0.5d0*(RT(nt)+RT(1))  
                 
end subroutine CENTROID_F
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! this routine calculates the normal component of the electric field 

intensity vector at the centroid positions on the sidewalls (Neumann
 BC) and the electrostatic potential at the cathode and anode edges 
(Dirichlet  BC) boundary due to uniformly distributed charge using 
IBEM

subroutine MU_F

     global_variablesuse
     vector_operatoruse

    implicit none
    
     :: i,j,kkinteger
     (vec)  :: RCIJtype
         :: totreal(8)
    ,  :: absvec,dotdouble precision external
    !  
     i = 1, nu-1do
        CC(i) = -NC(i)%x
         j = 1, ntdo
             (i.eq.j) if then
                TT(i,j) = 0.5d0
            else
                 kk = 1,mint+1do
                    RC_MU(kk) = RT(j)-RC(i)+((kk-1)*DR(j))/mint
                end do
                RCIJ%x = 0.0d0
                RCIJ%y = 0.0d0
                RCIJ%z = 0.0d0
                 kk = 2, mintdo
                    RCIJ = RCIJ+RC_MU(kk)/dot(RC_MU(kk),RC_MU(kk))
                end do
                RCIJ = RCIJ+0.5d0*((RC_MU(1)/dot(RC_MU(1),RC_MU(1))+

RC_MU(mint+1)/dot(RC_MU(mint+1),RC_MU(mint+1))))
                TT(i,j) = -0.5d0*DS(j)/(pi*mint)*dot(NC(i),RCIJ)
                        end if
             (j.eq.nt) if then
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(1)-RC(i))))
                UU(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
             else
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(j+1)-RC(i))))
                UU(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
            end if
        end do
    end do
    
     i = nu, nu+nrdo
        CC(i) = 0.0d0
         j = 1, ntdo
             (j.eq.nt) if then
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(1)-RC(i))))
                TT(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
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                UU(i,j) = TT(i,j)
             else
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(j+1)-RC(i))))
                TT(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
                UU(i,j) = TT(i,j)
            end if
        end do
    end do
    
     i = nu+nr+1, nu+nr+nd-1do
        CC(i) = -NC(i)%x
         j = 1, ntdo
             (i.eq.j) if then
                TT(i,j) = 0.5d0
            else
                 kk = 1,mint+1do
                    RC_MU(kk) = RT(j)-RC(i)+((kk-1)*DR(j))/mint
                end do
                RCIJ%x = 0.0d0
                RCIJ%y = 0.0d0
                RCIJ%z = 0.0d0
                 kk = 2, mintdo
                    RCIJ = RCIJ+RC_MU(kk)/dot(RC_MU(kk),RC_MU(kk))
                end do
                RCIJ = RCIJ+0.5d0*((RC_MU(1)/dot(RC_MU(1),RC_MU(1))+

RC_MU(mint+1)/dot(RC_MU(mint+1),RC_MU(mint+1))))
                TT(i,j) = -0.5d0*DS(j)/(pi*mint)*dot(NC(i),RCIJ)
            end if
             (j.eq.nt) if then
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(1)-RC(i))))
                UU(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
             else
                tot = 0.0d0
                 kk = 1, mint-1do
                    tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                end do
                tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog(absvec

(RT(j+1)-RC(i))))
                UU(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
            end if
        end do
    end do
    
     i = nu+nr+nd, ntdo
        CC(i) = 0.0d0
         j = 1, ntdo
              (j.eq.nt) if then
                 tot = 0.0d0
                  kk = 1, mint-1do
                     tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                 end do
                 tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog

(absvec(RT(1)-RC(i))))
                 TT(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
                 UU(i,j) = TT(i,j)
              else
                 tot = 0.0d0
                  kk = 1, mint-1do
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                     tot = tot + dlog(absvec(RT(j)+kk*DR(j)/mint-RC(i)))
                 end do
                 tot = tot + 0.5d0*(dlog(absvec(RT(j)-RC(i)))+dlog

(absvec(RT(j+1)-RC(i))))
                 TT(i,j) = -0.5d0*dabs(DS(j))/(pi*mint)*tot
                 UU(i,j) = TT(i,j)
            end if
        end do
    end do
    
!   compute the solution matrix of Ax=b, using LAPACK libraries on Intel

 MKL 8.0     
!   dgetrf computes the LU factorization of a general m-by-n matrix.
     dgetrf(nt, nt, TT, nt, ipiv, info)    call
!   dgetrs solves a system of linear equations with an LU-factored 

square matrix
     dgetrs('N', nt, 1, TT, nt, ipiv, CC, nt, info)call
!   above statement sets CC = CC*TT**-1; now CC corresponds to 

electrostatic charge density at the centroids of the segments
   
     i = 1, ntdo
        ! EF_1: potential due to applied electric field at the segment 

midpoints
        EF_1(i) = -RC(i)%x
        ! EF_2: potential due to uniformly distributed charge along the 

segments
        EF_2(i) = 0.0d0
         j = 1, ntdo
            EF_2(i) = EF_2(i)+UU(i,j)*CC(j)
        end do
        ! total electrostatic potential at the upper and lower sidewalls

 plus at the cathode and anode edges (segment midpoints)
        EF_TC(i) = EF_1(i) + EF_2(i)
    end do
    
    ! extrapolation from centroids to nodes 
     i = 1, ntdo
         (i.eq.1) if then
            EF_TN(1) = (EF_TC(nt)*DS(i)+EF_TC(i)*DS(nt))/(DS(i)+DS(nt))
         else
            EF_TN(i) = (EF_TC(i-1)*DS(i)+EF_TC(i)*DS(i-1))/(DS(i)+DS(i-

1))
        end if
       end do
    
end subroutine

! this routine calculates the displacement matrix due to a unit force 
which is r apart from the point of interest

type function (arr)  US_S(r)

     global_variablesuse
     vector_operatoruse
    implicit none
    
     (vec)  :: r,i,jtype
     (arr)  :: tsstype
    ,  :: absvec, dotdouble precision external
    
    i%x = 1.0d0
    i%y = 0.0d0
    i%z = 0.0d0
    
    j%x = 0.0d0
    j%y = 1.0d0
    j%z = 0.0d0
    
    tss%x(1,1) = -(3.0d0-4.0d0*nu_s)*dlog(absvec(r))+dot(r,i)**2/dot(r,
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r)
    tss%x(1,2) = dot(r,i)*dot(r,j)/dot(r,r)
    tss%x(2,1) = tss%x(1,2)
    tss%x(2,2) = -(3.0d0-4.d0*nu_s)*dlog(absvec(r))+dot(r,j)**2/dot(r,r)
    
    US_S = C0*tss 
           
end function

! this routine calculates the traction function associated with a unit 
force situated at P and acting at point Q (r=QP vector), n is the 
unit outward normal at Q 

type function (arr)  TS_S(r,n)

     global_variablesuse
     vector_operatoruse
    implicit none
    
     (vec)  :: n,r,i,jtype
     (arr)  :: tss,tsktype
         :: ii,jjinteger
    ,  :: dotdouble precision external
    
    i%x = 1.0d0
    i%y = 0.0d0
    i%z = 0.0d0
    
    j%x = 0.0d0
    j%y = 1.0d0
    j%z = 0.0d0
    
    tsk%x(1,1) = ((1.0d0-2.0d0*nu_s)+2.0d0*dot(r,i)**2/dot(r,r))*dot(r,

n)/dot(r,r)
    tsk%x(1,2) = 2.0d0*dot(r,i)*dot(r,j)*dot(r,n)/(dot(r,r)**2)
    tsk%x(2,1) = tsk%x(1,2)
    tsk%x(2,2) = ((1.0d0-2.0d0*nu_s)+2.0d0*dot(r,j)**2/dot(r,r))*dot(r,

n)/dot(r,r)
    
    tss%x(1,1) = 0.0d0
    tss%x(1,2) = (1.0d0-2.0d0*nu_s)*(dot(r,j)*dot(n,i)-dot(r,i)*dot(n,

j))/dot(r,r)
    tss%x(2,1) = -tss%x(1,2)
    tss%x(2,2) = 0.0d0
    
     ii = 1,2do
         jj = 1,2do
            TS_S%x(jj,ii) = C2*(tsk%x(ii,jj)+tss%x(ii,jj))
        end do
        end do
    
end function

! this routine calculates the stress connection matrix (3by2) at a point
 Q for unit load situated at the point P for a given connection 
vector r (r=QP)

type function (arr1)  SS_S(r)

     global_variablesuse
     vector_operatoruse
    implicit none
    
     (vec)      :: r,i,jtype
     (arr1)     :: ssstype
             :: rxx, ryy, magreal(8)
    ,  :: absvec, dotdouble precision external
    
    mag = absvec(r)
    rxx = r%x/mag
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    ryy = r%y/mag

    SS_S%x(1,1) = C2*(C3*rxx+2.0d0*rxx**3)/mag
    SS_S%x(1,2) = C2*(-C3*ryy+2.0d0*ryy*rxx**2)/mag
    SS_S%x(2,1) = C2*(-C3*rxx+2.0d0*rxx*ryy**2)/mag
    SS_S%x(2,2) = C2*(C3*ryy+2.0d0*ryy**3)/mag
    SS_S%x(3,1) = C2*(C3*ryy+2.0d0*ryy*rxx**2)/mag
    SS_S%x(3,2) = C2*(C3*rxx+2.0d0*rxx*ryy**2)/mag  
    
end function                 
       
! this routine computes stress grand matrix using IBEM      
subroutine FS_S

     global_variablesuse
     vector_operatoruse
    implicit none

     :: i,j,kk       integer
     (arr)  :: tss,ttss,ttsk,uuss,uusktype
     (arr),  :: TS_S,US_S   type external
     (arr1)  :: ssss,sssktype
     (arr1),  :: SS_Stype external
    ,     :: dotreal(8) external
    
    tss%x(1,1) = 0.5d0
    tss%x(1,2) = 0.0d0
    tss%x(2,1) = 0.0d0
    tss%x(2,2) = 0.5d0    

     i = 1, nt  do
        ! TR keeps elastostatic boundary conditions
      (i.le.nu-1) if then
         TR(i*2-1) = 0.0d0
         TR(i*2) = r_s*sigx    
      (i.le.nu+nr) else if then
         TR(i*2-1) = sigx
         TR(i*2) = 0.0d0     
      (i.le.nu+nr+nd-1) else if then
         TR(i*2-1) = 0.0d0  
         TR(i*2) = -1.0d0*r_s*sigx
      (i.le.nt) else if then
         TR(i*2-1) = -1.0d0*sigx
         TR(i*2) = 0.0d0
     end if
     !    
         j = 1, ntdo
             (i.eq.j) if then
                ! FT is the traction connection grand matrix which 

connects any two centroids for traction versus point force 
interrelation

                FT(2*i-1,2*j-1) = tss%x(1,1)
              FT(2*i-1,2*j) = tss%x(1,2)
              FT(2*i,2*j-1) = tss%x(2,1)
              FT(2*i,2*j) = tss%x(2,2)
              ! GT is the stress connection grand matrix 
              GT(3*i-2,2*j-1) = 0.0d0
                GT(3*i-1,2*j-1) = 0.0d0
                GT(3*i,2*j-1) = 0.0d0
                GT(3*i-2,2*j) = 0.0d0
                GT(3*i-1,2*j) = 0.0d0
                GT(3*i,2*j) = 0.0d0              
                else
                 kk = 1,mint+1do
                    RC_FS(kk) = RT(j)-RC(i)+((kk-1)*DR(j))/mint
                     end do
                ttss = 0.5d0*(TS_S(RC_FS(1),(-1.0d0)*NC(i))+TS_S(RC_FS

(mint+1),(-1.0d0)*NC(i)))

231



                ssss = 0.5d0*(SS_S(RC_FS(1))+SS_S(RC_FS(mint+1)))    
                 kk = 2, mintdo
                    ttsk = TS_S(RC_FS(kk),(-1.0d0)*NC(i))
                    ttss = ttss+ttsk
                    sssk = SS_S(RC_FS(kk))
                    ssss = ssss+sssk
                     end do
                FT(2*i-1,2*j-1) = (DS(j)/mint)*ttss%x(1,1)
              FT(2*i-1,2*j) = (DS(j)/mint)*ttss%x(1,2)
              FT(2*i,2*j-1) = (DS(j)/mint)*ttss%x(2,1)
              FT(2*i,2*j) = (DS(j)/mint)*ttss%x(2,2) 
                GT(3*i-2,2*j-1) = (DS(j)/mint)*ssss%x(1,1)
                GT(3*i-1,2*j-1) = (DS(j)/mint)*ssss%x(2,1)
                GT(3*i,2*j-1) = (DS(j)/mint)*ssss%x(3,1)
                GT(3*i-2,2*j) = (DS(j)/mint)*ssss%x(1,2)
                GT(3*i-1,2*j) = (DS(j)/mint)*ssss%x(2,2)
                GT(3*i,2*j) = (DS(j)/mint)*ssss%x(3,2)               

               
                             end if
        end do
       end do
        
!   compute the solution matrix of Ax=b, using LAPACK libraries on Intel

 MKL 8.0     
!   dgetrf computes the LU factorization of a general m-by-n matrix.
     dgetrf(2*nt, 2*nt, FT, 2*nt, ipiv, info)call
!   dgetrs solves a system of linear equations with an LU-factored 

square matrix
     dgetrs('N', 2*nt, 1, FT, 2*nt, ipiv, TR, 2*nt, info)call
!   above statement sets TR = TR*FT**-1; now TR corresponds to force 

intensities situated at the centroids of the segments
!   dgemv performs matrix-vector product; US = GT*TR is the stress grand

 matrix
     dgemv('N', 3*nt, 2*nt, 1.0d0, GT, 3*nt, TR, 1, 0.0d0, US, 1 )call
              
end subroutine             
   
! this routine computes stress components at the nodes
subroutine STRESS_S

     global_variablesuse
     vector_operatoruse
    implicit none
    
         :: iinteger
     (vec)  :: ubvec(10000)type
         :: uxy(10000),hoop_TN(10000)real(8)
    ,     :: dot real(8) external
    
  i = 1, ntdo
     ux(i) = US(3*i-2)
     uy(i) = US(3*i-1)
     uxy(i) = US(3*i)           
     ubvec(i)%x = ux(i)*DR(i)%x + uxy(i)*DR(i)%y
     ubvec(i)%y = uxy(i)*DR(i)%x + uy(i)*DR(i)%y
     ubvec(i)%z = 0.0d0   
     hoopstress(i) = dot(ubvec(i),DR(i))/(DS(i)**2)      
 end do
    ! extrapolation from centroids to nodes
     i = 2, ntdo
        hoop_TN(i) = (hoopstress(i-1)*DS(i)+hoopstress(i)*DS(i-1))/(DS

(i)+DS(i-1))
      end do
    hoop_TN(1) = (hoopstress(nt)*DS(1)+hoopstress(1)*DS(nt))/(DS(1)+DS

(nt))
     i = 1, ntdo
        hoopstress(i) = hoop_TN(i)
       end do
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end subroutine     

!
subroutine CALC_F(nn)
     global_variablesuse
     vector_operatoruse
    implicit none
      
         :: i,nninteger
    
    ,   :: absvec,dot   double precision external

    P = chi*EF_TN/ro + siglam*SE/ro**2 + xi*hoopstress/ro
     
    K = KAPPA*ro*SS+P
    
     i = 1, ntdo
        RT(i) = RT(i)/ro
        DR(i) = DR(i)/ro
        DS(i) = DS(i)/ro
    end do
    
    ! compute node velocities
     i = 1, nndo
         (i.eq.1) if then
             ((BC.eq.0).or.(BC.eq.2)) if then
                V(i) = 0.5d0*MTA/omega*(lamda_A-dot(DR(i),(-1.0d0)*ta_o)

/DS(i))
             else
                V(i) = DD(i)*2.0d0*(K(i+1)-K(i))/(DS(i)**2)
            end if
         (i.eq.2) else if then
             ((BC.eq.0).or.(BC.eq.2)) if then
                V(i) = -0.5d0*MTA*delta/omega*(lamda_A-dot(DR(i-1),(-1.

0d0)*ta_o)/DS(i-1)) + DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(P(i)-P(i-
1))/DS(i-1)

                V(i) = V(i)/(DS(i-1)+0.5d0*DS(i))
             else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))
            end if
         (i.eq.nu-1) else if then
             (BC.eq.2) if then
                V(i) = -0.5d0*MTC*delta/omega*(lamda_C-dot(DR(i),ta_o)/

DS(i)) - DD(i-1)*(K(i)-K(i-1))/DS(i-1) + DD(i)*(P(i+1)-P(i))/DS(i)
                V(i) = V(i)/(DS(i)+0.5d0*DS(i-1))                       

                                 
            else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))                
             end if
         (i.eq.nu) else if then
             (BC.eq.3) if then
                V(i) = DD(i-1)*2.0d0*(K(i-1)-K(i))/(DS(i-1)**2)
            (BC.eq.2) else if then
                V(i) = 0.5d0*MTC/omega*(lamda_C-dot(DR(i-1),ta_o)/DS(i-

1)) 
            else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))
            end if
         (i.eq.nu+nr+1) else if then
             (BC.eq.3) if then
                V(i) = DD(i)*2.0d0*(K(i+1)-K(i))/(DS(i)**2)
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            (BC.eq.2) else if then
                V(i) = 0.5d0*MTC/omega*(lamda_C-dot(DR(i),ta_o)/DS(i))
            else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))
             end if
         (i.eq.nu+nr+2) else if then
             (BC.eq.2) if then
                V(i) = -0.5d0*MTC*delta/omega*(lamda_C-dot(DR(i-1),ta_o)

/DS(i-1)) + DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(P(i)-P(i-1))/DS(i-
1)

                V(i) = V(i)/(DS(i-1)+0.5d0*DS(i))                       
                       

            else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))                
                end if
         (i.eq.nn-1) else if then
             ((BC.eq.0).or.(BC.eq.2)) if then
                V(i) = -0.5d0*MTA*delta/omega*(lamda_A-dot(DR(i),(-1.

0d0)*ta_o)/DS(i)) - DD(i-1)*(K(i)-K(i-1))/DS(i-1) + DD(i)*(P(i+1)-P
(i))/DS(i)

                V(i) = V(i)/(DS(i)+0.5d0*DS(i-1))
             else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))
            end if
         (i.eq.nn) else if then
             ((BC.eq.0).or.(BC.eq.2)) if then
                V(i) = 0.5d0*MTA/omega*(lamda_A-dot(DR(i-1),(-1.0d0)*

ta_o)/DS(i-1))
            else
                V(i) = DD(i-1)*2.0d0*(K(i-1)-K(i))/(DS(i-1)**2)
                            end if
         ((i.gt.nu).and.(i.lt.nu+nr+1)) else if then
             ((BC.eq.2).or.(BC.eq.3)) if then
                V(i) = 0.0d0
            else
                V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))

/DS(i-1)
                V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1)) 
                                       end if
         (i.eq.(gb1+1)) else if then
            V(i) = -0.5d0*MG*delta/omega*JRu + DD(i)*(K(i+1)-K(i))/DS(i)

 - DD(i-1)*(P(i)-P(i-1))/DS(i-1)-0.5d0*Jgu
            V(i) = V(i) - MT*delta/omega*JTu
            V(i) = V(i)/(DS(i-1)+0.5d0*DS(i))
         (i.eq.(gb1)) else if then
            V(i) = 0.5d0*MG/omega*Vu
         (i.eq.(gb1-1)) else if then
            V(i) = -0.5d0*MG*delta/omega*JLu - DD(i-1)*(K(i)-K(i-1))/DS

(i-1) + DD(i)*(P(i+1)-P(i))/DS(i)-0.5d0*Jgu
            V(i) = V(i) + MT*delta/omega*JTu
            V(i) = V(i)/(DS(i)+0.5d0*DS(i-1))  
         (i.eq.(gb2+1)) else if then
            V(i) = -0.5d0*MG*delta/omega*JLd + DD(i)*(K(i+1)-K(i))/DS(i)

 - DD(i-1)*(P(i)-P(i-1))/DS(i-1)-0.5d0*Jgd
            V(i) = V(i) - MT*delta/omega*JTd
            V(i) = V(i)/(DS(i-1)+0.5d0*DS(i))
         (i.eq.(gb2)) else if then
            V(i) = 0.5d0*MG/omega*Vd   
         (i.eq.(gb2-1)) else if then
            V(i) = -0.5d0*MG*delta/omega*JRd - DD(i-1)*(K(i)-K(i-1))/DS

(i-1) + DD(i)*(P(i+1)-P(i))/DS(i)-0.5d0*Jgd
            V(i) = V(i) + MT*delta/omega*JTd
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            V(i) = V(i)/(DS(i)+0.5d0*DS(i-1)) 
        else
            V(i) = DD(i)*(K(i+1)-K(i))/DS(i) - DD(i-1)*(K(i)-K(i-1))/DS

(i-1)
            V(i) = 2.0d0*V(i)/(DS(i)+DS(i-1))
        end if
    end do
    
    ! determine the maximum node velocity     
    vmax = dabs(V(1))
     i = 1, nn      do
   (dabs(V(i)).ge.vmax) if then
   vmax = dabs(V(i))
  end if
 end do
 
 ! compute new node positions
     i = 1, nn      do
      (i.eq.1) if then
      RT(i) = RT(i) + deltat*V(i)*ta_o
   (i.eq.nu) else if then
       ((BC.eq.2).or.(BC.eq.3)) if then
          RT(i) = RT(i) + deltat*V(i)*ta_o
      else
          RT(i) = RT(i) + deltat*V(i)*LLN(i)
      end if
   (i.eq.nu+nr+1) else if then
       ((BC.eq.2).or.(BC.eq.3)) if then
          RT(i) = RT(i) - deltat*V(i)*ta_o
      else
          RT(i) = RT(i) + deltat*V(i)*LLN(i)
      end if
         (i.eq.nn) else if then
      RT(i) = RT(i) - deltat*V(i)*ta_o      
         (i.eq.gb1)   else if then
      RT(i) = RT(i) + deltat*V(i)*ta      
         (i.eq.gb2)   else if then
      RT(i) = RT(i) + deltat*V(i)*td 
          else
      RT(i) = RT(i) + deltat*V(i)*LLN(i)                  
     end if
    end do
    !
end subroutine 

! this routine performs mesh refinement
subroutine MR_F

     global_variablesuse
     vector_operatoruse
     implicit none
    
    :: iinteger
    ,   :: DCSVAL   !, absvecdouble precision external
    
    ! compute cubic spline interpolant
     DELR_F     ! recall delr to compute sdata for new r set call
    ! left side          
    SDATA(1) = 0.0d0
     i = gb1-1, 1, -1do
        XDATA(gb1-i+1) = RT(i)%x  
        YDATA(gb1-i+1) = RT(i)%y
        SDATA(gb1-i+1) = SDATA(gb1-i) + DS(i)
      end do
    SDATA(1) = 0.0d0    
    XDATA(1) = RT(gb1)%x  
    YDATA(1) = RT(gb1)%y
    ! routine DCSINT computes cubic spline interpolant 
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     DCSINT (NDATA, SDATA, XDATA, BREAK, CSCOEFX)CALL
     DCSINT (NDATA, SDATA, YDATA, BREAK, CSCOEFY)CALL
    ! RT(1) remains fixed here, but [RT(2)-RT(1)] grows
     i = 2, NDATAdo
    ! routine CSVAL evaluates a cubic spline at a given point
        RT(gb1-i+2)%x = DCSVAL(dmean*(i-2),NDATA-1,BREAK,CSCOEFX)
        RT(gb1-i+2)%y = DCSVAL(dmean*(i-2),NDATA-1,BREAK,CSCOEFY)  
        end do
    !       
    ! right side
    SDATA(1) = 0.0d0
     i = gb1, nu-1do
        XDATA(i-gb1+1) = RT(i)%x  
        YDATA(i-gb1+1) = RT(i)%y
        SDATA(i-gb1+2) = SDATA(i-gb1+1) + DS(i)
          end do
    XDATA(nu-gb1+1) = RT(nu)%x  
    YDATA(nu-gb1+1) = RT(nu)%y 
    ! routine DCSINT computes cubic spline interpolant
     DCSINT (NDATA, SDATA, XDATA, BREAK, CSCOEFX)CALL
     DCSINT (NDATA, SDATA, YDATA, BREAK, CSCOEFY)CALL
     i = gb1, nu-1do
    ! routine CSVAL evaluates a cubic spline at a given point
        RT(i)%x = DCSVAL(dmean*(i-gb1),NDATA-1,BREAK,CSCOEFX)
        RT(i)%y = DCSVAL(dmean*(i-gb1),NDATA-1,BREAK,CSCOEFY)  
            end do
         
end  

! capillarity driven surface diffusion
subroutine CP

     global_variablesuse
    implicit none
 
    hoopstress = 0.0d0
    EF_TN = 0.0d0
    CC = 0.0d0
    
      ((t.le.nloop+1).and.((100.0d0-100.0d0/sw*RT(gb1)%y).lt.95.do while

0d0).and.((100.0d0+100.0d0/sw*RT(gb2)%y).lt.95.0d0))
         DELR_F call
         PSIR_Fcall
         KAPPA_Fcall
         ANISOTROPY_F call
         CALC_F(nt-nl) call
         MR_Fcall
         (t.eq.2**H) if then
       output(H)      call
      H = H+1     
    end if
  deltat = eptime*dmean/vmax
  timet = timet+deltat
  t = t+1
     end do
             
end subroutine

! electromigration and capillarity driven surface diffusion
subroutine EM

     global_variablesuse
     vector_operatoruse
    implicit none
    
     :: iinteger
    
    hoopstress = 0.0d0
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    ux = 0.0d0
    uy = 0.0d0 
     
      ((t.le.nloop+1).and.((100.0d0-100.0d0/sw*RT(gb1)%y).lt.95.do while

0d0).and.((100.0d0+100.0d0/sw*RT(gb2)%y).lt.95.0d0))
         DELR_F call
         PSIR_Fcall
         KAPPA_Fcall
         ANISOTROPY_Fcall
         CENTROID_Fcall
         MU_F      call
         CALC_F(nt-nl)call
         MR_F        call
         (t.eq.2**H)      if then
       output(H)  call
      H = H+1     
  end if
  deltat = eptime*dmean/vmax
  timet = timet+deltat
  t = t+1 
        end do
         
end subroutine

! stress and capillarity driven surface diffusion
subroutine ES

     global_variablesuse
     vector_operatoruse
    implicit none
    
     :: iinteger

    EF_TN = 0.0d0
    CC = 0.0d0
    
      ((t.le.nloop+1).and.((100.0d0-100.0d0/sw*RT(gb1)%y).lt.95.do while

0d0).and.((100.0d0+100.0d0/sw*RT(gb2)%y).lt.95.0d0))
         DELR_F call
         PSIR_Fcall
         KAPPA_Fcall
         ANISOTROPY_Fcall
         CENTROID_Fcall
         FS_Scall
         STRESS_S                          call
         CALC_F(nt-nl)call
         MR_F       call
         (t.eq.2**H) if then
             output(H)call
            H = H+1 
                   end if
  deltat = eptime*dmean/vmax
  timet = timet+deltat
  t = t+1
      end do
          
end subroutine

! electromigration, stress and capillarity driven surface diffusion
subroutine EMS
     global_variablesuse
     vector_operatoruse
    implicit none
     
     :: iinteger
      
      ((t.le.nloop+1).and.((100.0d0-100.0d0/sw*RT(gb1)%y).lt.95.do while

0d0).and.((100.0d0+100.0d0/sw*RT(gb2)%y).lt.95.0d0))
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         DELR_F call
         PSIR_Fcall
         KAPPA_Fcall
         ANISOTROPY_Fcall
         CENTROID_Fcall
         MU_Fcall
         FS_Scall
         STRESS_S        call
         CALC_F(nt-nl)call
         MR_F   call
         (t.eq.2**H)    if then
             output(H)call
            H = H+1 
              end if
  deltat = eptime*dmean/vmax
  timet = timet+deltat
  t = t+1
       end do
        
end subroutine

! GROOVE
program GROOVE_v_1.8

     dfportuse
     vector_operator  use
     global_variables use
    implicit none
 
     :: iinteger
     :: start,finish,dummy,itimet,elapsed_timereal(8)
    ,   :: absvecdouble precision external
 
    elapsed_time = TIMEF( )
    
     inputcall

     (cont.eq.0) if then
    ! initialize
         generatecall
        H = 0    
        t = 0
        timet = 0.0d0
        Jgu = 0.0d0
        Jgd = 0.0d0 
    else
    ! continue from the latest oputput
        (5,file='cont.txt')          open
            (5,'(20(f30.16),5(i12),(f30.16),4(i10))') RT(1)%x,RT(1)%read

y,V(1),dummy,dummy,dummy,dummy,dummy,dummy,dummy,dummy,dummy,zeta(1)
,dummy,dummy,dummy,dummy,dummy,dummy,timet,H,t,nt,gb1,gb2,itimet,nu,
nr,nd,nl

            RT(1)%z = 0.0d0
             i = 2, ntdo
                (5,'(13(f30.16))') RT(i)%x,RT(i)%y,V(i),dummy,dummy,read

dummy,dummy,dummy,dummy,dummy,dummy,dummy,zeta(i)
                RT(i)%z = 0.0d0
            end do
        (5)    close

        (*,*)write
        *, 'Experiment continues from H=', Hprint
        (*,*)write
        
        deltat = timet - itimet
        H = H+1
        t = t+1
        Jgu = 0.0d0
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        Jgd = 0.0d0  
        ta_o%x = 0.0d0
        ta_o%y = -1.0d0
        ta_o%z = 0.0d0
        ta = (RT(gb2)-RT(gb1))/absvec((RT(gb2)-RT(gb1)))
        td = (-1.0d0)*ta         
    end if
    !
    (RC_MU(mint+1),RC_FS(mint+1))allocate
    (FT(2*nt,2*nt),UT(2*nt,2*nt),TT(nt,nt),UU(nt,nt),CC(nt),TR_FSallocate

(nt),TR(2*nt),GT(3*nt,2*nt))
    ! 
    NDATA = gb1 
    (XDATA(NDATA),YDATA(NDATA),SDATA(NDATA),BREAK(NDATA),CSCOEFXallocate

(4,NDATA),CSCOEFY(4,NDATA))  
    !    
     (chi.eq.0.0d0) if then
         ((xi.eq.0.0d0).and.(siglam.eq.0.0d0)) if then
             CPcall
        else
             EScall
        end if
    else
         ((xi.eq.0.0d0).and.(siglam.eq.0.0d0)) if then
             EMcall
                else
             EMScall
         end if
           end if
    !
    elapsed_time = TIMEF( )
    !    
 (*,*)write
  '("Total Computation Time = ",f16.5," seconds.")',elapsed_timeprint
  *read
 
end program  GROOVE_v_1.8      
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