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ABSTRACT 
 

PHOTOLUMINESCENCE PROPERTIES OF Si NANOCRYSTALS 
EMBEDDED IN SiO2 MATRIX 

 

  

Seyhan, Ayşe 

PhD, Department of Physics 

Supervisor: Prof. Dr. Raşit Turan 

 

 

March 2010, 101 pages 

 

 

This thesis examines the luminescence properties of nanoscale silicon (Si) by 

using spectroscopic techniques. Since the development of new optical devices 

requires understanding light emission mechanism optical spectroscopy has 

become more important tool in the analysis of these structures. In this thesis, Si 

nanocrystals embedded in SiO2 matrix will be studied.  

Photoluminescence (PL) and Time-resolved photoluminescence spectroscopy 

(TRPL) have been used to detect the light emission in UV-Vis-NIR range. 

Experiments have been performed in the temperature range 10-300 K. PL is 

sensitive to impurities and defects that affect materials quality and device 

performance. In this context, the role of defects in limiting the luminescence of Si 

nanocrystals and the removal of these defects by hydrogen passivation has been 

investigated.  
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TRPL was employed to determine the time evolution of photoluminescence as 

function of temperature. The decay time of the PL spectra was determined by a 

stretched exponential function and perfectly fitted to an expression based on three 

excitonic levels. Carrier lifetimes associated with these three levels were 

determined and compared with literature. 

Additionally, temporal variation of PL from free-standing Si nanoparticles is 

studied under a strong laser illumination. The observed bleaching behavior (time 

dependent emission intensity), which is reversible, have discussed in terms of 

exciton trapping at the interface between nanocrystal and the surrounding oxide 

layer. 

The results of this thesis will provide new insight on the understanding of light 

emission mechanism of Si nanocrytals.  

 

 

Keywords: Silicon, Nanocrystals, Photoluminescence, Time-resolved 

Photoluminescence, Free-standing Si.  
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ÖZ 

 

 

SiO2 MATRİKS İÇERİSİNE GÖMÜLMÜŞ Si NANOKRİSTALLERİN 
FOTOLUMİNESANS ÖZELLİKLERİ 

 

 

Seyhan, Ayşe 

Doktora, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Raşit Turan 

       

 

 

Mart 2010, 110 sayfa 

 
 

Bu tez, nano boyutta silikonların optik özelliklerini inceler. Yeni optiksel 

aygıtların gelişmesi,  ışık çıkma mekanizmaların anlaşılmasını gerektirdigi için 

optiksel spektroskopi bu yapıların analizinde bir araç olarak daha çok önem 

kazanmıştır.  Bu tezde SiO2 matris içine gömülen Si nanokristaller çalışılmıştır.  

Analiz tekniği olarak fotolüminesans ve zaman çözümlü fotoluminesans 

spektroskopisi UV-Vıs-NIR bölgelerini araştırmakta kullanılmıştır. Ölçümler 10-

300 K sıcaklık aralığında yapılmıştır. Fotolüminesans, aygıtların performansını ve 

kalitesini etkileyen kusurlara duyarlıdır. Bu bağlamda, silicon nanokristallerin 

luminesansını sınırlayan kusurların rolü ve bu kusurların hidrojen pasivasyonu 

araştırılmıştır. 
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Zaman çözümlü fotolüminesans spektroskopisi fotolüminesansın zaman 

değişimini sıcaklıklığın fonksiyonu olarak belirlemede kullanılmıştır. PL 

spektrumlarının sönüm süresinin sıcaklığa bağlılığı, üç eksiton seviyesi üzerine 

kurulu ifadeye mükemmel şekilde uymuştur. Bu üç seviye ile ilişkilendirilen 

taşıyıcı ömrü belirlenmiş ve literature ile karşılaştırılmıştır. 

Ek olarak, güçlü lazer aydınlatması altında serbest duran silikon nanoparçacıkların 

zaman bağımlı fotoluminesans varyasyonu çalısılmıştır. Geridönüşür olan 

gözlemlenen ağarma davranışı (zaman bağımlı emisyon yoğunluğu) nanocrystal 

ve çevresindeki oksit tabakası arasındaki arayüzde eksiton yakalanması olarak 

tartışılmıştır. 

Bu tezin sonuçları ışık çıkma mekanizmalarının anlaşılması ve onların 

optoelektronik aletler için potansiyel kullanımlarına yeni bir görüş sağlayacaktır.  

 

 

Anahtar Kelimeler: Silicon nanokristal, Fotolüminesans, Zaman-çözümlü 

fotolüminesans, serbest duran nanokristaller. 
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CHAPTER 1 

 

 

INTRODUCTION 

 
 

1.1. Motivation  

 

Silicon (Si) is one of the most known and used materials in microelectronic [1] 

and solar cells [2] industries. It has excellent electronic properties but very poor 

light emitting capabilities because of its indirect bandgap nature [1, 2]. The idea of 

turning silicon into an efficient light emitting material has fascinated lots of 

scientist since the discovery of visible room temperature light emission from 

porous silicon two decades ago [3]. During these last years, the use of nanometric 

sized Si particles embedded in oxide matrices has emerged as the most promising 

way to obtain high emitting efficiency from silicon [4, 5]. In those structures, the 

quantum confinement and the carrier localization [6, 7] contribute together to the 

improvement of the optical properties of the material while the presence of the 

oxide matrix ensures the long time optical stability suited for the application in 

commercial devices. At the same time, the matrix and production technique 

influences the recombination mechanism in silicon nanocrystals and this 

complicates the understanding of their physics. Figure 1.1 shows the 

photoluminescence spectra of Si nanocrystals formed by ion implantation 

fabricated in our laboratories [8]. This example shows that the PL peak shifts to 

lower energy values with increasing implantation dose. This is clear evidence for 

the quantum size effect occurred in the nanocrystals as an increase in the energy 

levels with decreasing the size of the quantum dot. The aim of the thesis 
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thesis is the experimental investigation on the luminescence properties of silicon 

nanocrystals and search for the physical explanation of the observed light emitting 

phenomena. 

 

 
Figure 1.1. Photoluminescence spectroscopy of sample implanted with different dose 28Si 

into SiO2  substrate. Sample labels (Si ion dose) are A (1.5 × 1017 cm−2), B (1 × 1017 

cm−2), C (5 × 1016 cm−2), and D (2 × 1016 cm−2) [8] 

 

1.2. Si Nanocrystals as a new light emitting structure for Si-based technology 

Silicon, as one of most abundant element on earth having good mechanical and 

electronic properties, has become the major material of the semiconductor and 

photovoltaic industry and seemingly will remain dominant in the foreseen future. 

Si is a semiconductor whose electrical conductivity can be controlled over a wide 

range, its oxidized state (SiO2) is one of the best stable electrical insulator and its 

chemical and mechanical properties make silicon the ideal material for advanced 

materials and device applications. For all these reasons, silicon became the most 

important player in electronic integrated circuits, solar cells, communication 

devices, being the basic building structure of most electronic devices, from 

transistors and diodes to microprocessors, and more [1]. Because Si is not an 
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optically active element, and thus a poor light emitter, it is not a good choice for 

photonic applications. The reason is the indirect bandgap characteristics of silicon, 

meaning that the energy's minima of the conduction and the valence bands do not 

fall at the same wavevector value. The situation is illustrated in Figure 1.2 where 

the energy-band diagram of silicon is shown and compared to Gallium Arsenide 

(GaAs), which is a direct bandgap semiconductor. 

 

Figure 1.2. Schematic energy-band diagram of Si and GaAs. The top of the valence band 

of Si lies at k = 0 and the minimum of the conduction band is at approximately 0.85X 

along the (001) direction. Thus, direct photon emission is not allowed for silicon. A 

phonon is needed for the recombination process which might generate an emission [9].  
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For steady state, electrons occupy the lowest energy states of the conduction band 

while holes occupy the upper states of the valence band. Electrons drop down to 

empty states of holes in the valence band, giving their energy in the form of a 

photon when the recombination happens radiatively the energy of the photon is 

given by ћ߱ ൌ  ௖ܧ െ  ௩ܧ ൌ  ௚, where Eg is the bandgap energy of theܧ

semiconductor and ћ߱ is the photon energy. Energy and momentum should be 

conserved during the process. In direct bandgap semiconductors like GaAs, the 

radiative recombination can take place easily as both the electrons and the holes 

have the same momentum at the center of the Brillouin zone (Γ-point in figure 

1.2). In Si, the momentum mismatch between electrons and holes does not allow 

direct radiative recombination unless with the help of a phonon which is involved 

in the recombination process. This requirement reduces the probability of 

radiative emission significantly. Therefore, silicon is a poor light emitter that 

cannot be used for optoelectronic applications. This property of silicon is 

considered to be a disadvantage in the optical community. On the other hand, for 

direct bandgap semiconductors, the radiative recombination is a fast process 

which is in the order of few nanoseconds. Silicon has a slow radiative lifetime (of 

the order of few milliseconds in pure silicon [1]) which allows the minority 

carriers to diffuse over large distances (few hundreds of micrometers) and this 

property of Si is very favorable for electronic applications.  

 

When the size of Si crystal is reduced the optical and electrical properties changes 

substantially. New functionalities that might be very useful in various applications 

may emerge. Generally, nanostructures are thought as a material whose dimension 

can be shrunk down [10, 11] to the nanometer length scales in one or more 

dimensions. Nanostructures are classified upon their dimensionality, for instance, 

two-dimensional (2D) quantum wells, one dimensional (1D) nanowires and zero-

dimensional (0D) nanocrystals. The most important consequence of the 

dimensional shrinkage to nanoscale is the new quantum phenomena induced in the 

crystal due to the size effect. A key effect induced by the size effect is the 
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modification of the energy levels and the density of states of the charge carriers. 

Quantum confinement (QC) of charge carriers or excitons occurs when the sizes 

of the volume is comparable to the De Broglie wavelength. The momentum 

conservation law relaxes with the decreasing size of the object. For silicon 

nanostructures case, for example a silicon nanocrystal of radius – R, we can use 

the Heisenberg uncertainty principle to predict the wavevector relaxation: 

Δk~1/R. While the wavevector conservation law increases with the decreasing 

size of the nanostructure, one can estimate the radiative recombination rate to 

substantially increase when the wavevector mismatch, illustrated in figure 1, 

becomes comparable to Δk, causing to raise the question: can we produce the 

active photonic elements [12, 13] from silicon nanostructures? 

 

Figure 1.3. “Room temperature PL of a freshly etched layer as a result of partial 

chemical dissolution in 40% aqueous HF for the times indicated.” (From ref [14]) 
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The idea of generating active photonic element from Si nanocrystals became a 

reality in 1990 when Canham [14] reported on efficient red light emission from 

porous silicon exposing UV light source. Figure 1.3 shows a typical spectrum of 

the photoluminescence (PL) of porous Si which is a nanometric random network 

of pores. Canham suggested that quantum size effects might be responsible for the 

efficient PL. There are two evidences which seem to support this conclusion. The 

first one is the presence of small crystalline silicon nanostructures, in the PS 

medium [3]. The substantially blue-shift of the maximum PL energy is the second 

indication of quantum confinement in small nanostructures [10]. After this 

pioneering study, many groups have focused to verify the quantum confinement 

model with a variety of experimental and theoretical studies. Most of these studies 

provided support to quantum confinement model [15], while a remarkable number 

of works have reported results of the PL that cannot be explained by the quantum 

confinement picture only [16]. To understand of this puzzle, researchers have tried 

to propose alternative models such as those including surface phenomena that can 

generate the observed PL spectra [7, 17]. In these approaches, radiative transitions 

are attributed to the surface of the nanostructures either due to surface bonds, 

surface defects, imperfections or even surface molecular species [18]. 

 

Figure 1.4. The surface-to-volume (STV) ratio for a 2D slab, 1D cylinder and 0D sphere 

where R is the thickness of the slab, radius of the cylinder and radius of the sphere 

respectively. In all three cases, d represents the thickness of the surface. 
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Obviously surface phenomena are expected to play a significant role in 

nanostructures. To clarify this effect, let us consider the surface to volume ratio 

for nanostructures which have different geometrical form such as spheres (0D), 

cylinders (1D) and slabs (2D) as pictured in figure 1.4. In order to define a volume 

of nanostructure surface, one can estimate the surface thickness of nanostructure, 

d. For silicon, one may take d ~ 1 nm to estimate of the surface's thickness. 

Therefore, for a 0D nanocrystal one can find, surface to volume ratio = 3(d/R), 

where R is the radius of the sphere. For R=6 nm and R=12 nm nanocrystals one 

may get, surface to volume ratio ~0.5, meaning that 50% of the silicon atoms 

belong to the surface,  and  ~0.25, meaning that 25% of the silicon atoms sit on 

the surface of the nanocrystal, respectively. One can then conclude that surface 

phenomena become more significant with the decreasing size of the 

nanostructures and this should be taken into the account to explain the electronic 

and optical properties of the nanostructures. It is clear that, porous Si is not the 

ideal structure to study the quantum confinement and surface related phenomena 

because of its randomly network pores and related uncertainties. In addition, PS is 

not chemically and mechanically stable and shows aging effects [17]. For these 

reasons, the QC and the surface chemistry models could not be tested with PS. 

Over the last decade, researchers have concentrated on Si nanostructures to 

fabricate with different techniques and better capabilities to control their size, 

shape and the host matrix [19]. With improvements in the production techniques 

and knowledge accumulated through many studies, it is now possible to 

investigate the evolution of optical and electrical properties of silicon 

nanostructures versus size and dimensionality. According to recent experimental 

results [20-23], a refined comprehensive model can be developed by taking into 

account both quantum size effect and surface phenomena to explain the whole 

optical properties of Si nanostructures M. Dovrat et al. [21] have made 

contribution to luminescence phenomena of Si nanocrystals. They proposed that 

the environment of the nanocrystals and the macroscopic properties of the 

medium effect the lifetime of the lower triplet state and the dispersion exponent. 
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“The exclusion of non-radiative channel” [21] in the crystals is assigned the origin 

of the efficient photoluminescence. 

Recently, S. Godefroo et. al. were performed Electron Spin resonance (ESR) and 

magneto-PL experiments [23] to determine the origin of the PL from Si 

nanocrystals embedded in SiO2.  ESR analysis shows that numerous defects which 

are non-radiative recombination centers placed between the Si nanocrystals and 

the surrounding SiO2 are exist. None of these defects measured by ESR is PL 

active. Nevertheless, this demonstrates that the observed PL is not from QC effect 

and defects. So as to determine the origin of the luminescence, PL measurements 

were taken in the pulsed magnetic field up to 50 T. In the high magnetic fields 

free exciton of nanocrystals are expected to show blue shift, whereas localized 

excitons are not expected to show a blue shift. The authors have observed very 

small shift and conclude clearly the PL stem from highly localized defect states. 

After the passivation of defects in the sample with hydrogen, ESR and PL 

measurements were repeated. ESR shows that the defects have been removed; 

therefore PL signal has increased which shows that the origin of the PL is QC 

effect after the passivation. Using the UV light source (Ar+ laser), the defects can 

be reintroduced. The UV illumination has reversed the effect of the passivation 

and the PL is defect-related origin. As a result, the authors show that the origin of 

PL can be classified by using high magnetic field as either from QC or defects and 

the controllability of the origin of the PL with the help of hydrogen passivation 

and UV irradiation. 

 

1.3. Thesis Structure 

The purpose of this thesis is to investigate luminescence properties of Si 

nanocrystals in different environment and to understand the basic physical 

mechanisms behind light emission from Si nanocrystals. This thesis is organized in 

7 chapters. Experimental techniques used in this work are briefly explained in 

Chapter 2. The photoluminescence spectroscopy of Si nanocrystals is discussed 

depending on annealing temperature, implantation dose and H2 passivation in Chapter 
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3. Chapter 4 investigates the light emission from Si nanocrystals in the temperature 

range from 10 K to 300 K considering temperature, implantation dose. Decay time 

dynamics of Si nanocrystals is studied in Chapter 5 by using excitonic model. 

Photoluminescence properties of free standing Si nanocrystals in powder form, 

produced by laser pyrolysis technique, are investigated in Chapter 6.  Chapter 7 

summarizes the conclusion of this thesis and discusses possible directions for future 

work.  
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CHAPTER 2 

 

EXPERIMENTAL 

 

2.1. Sample Preparation Methodology 

2.1.2. Ion Implantation 

Silicon nanocrystals can be produced by a variety of techniques including ion 

implantation [24-28], sputtering [29, 39], laser pyrolysis [31, 32], chemical vapor 

deposition [33, 34] and reactive evaporation of silicon-rich oxides [35, 36]. 

Among these fabrication techniques ion implantation is a well known doping 

technique in VLSI processing.  

In the ion implantation procedure, ions are extracted from a plasma and 

accelerated by an electric field to the sample. The ions impact with sufficient 

energy (with the energy range from keV to MeV) to travel some distance into the 

sample before they come to rest. The total dose of implanted ions is controlled by 

monitoring the integrated current as the ion beam is rastered over the sample. An 

implanted layer can be created with good uniformity by the this way. Ion 

implanation also provides control over the excess Si depth distribution by the 

choice of accelaration energy. The nature of the ion stopping process result in a 

Gaussion Si distribution, which results in a broad size distrubition of nanocrystals. 

So the mean nanocrystal size is depth dependent with smaller nanocrystals formed 

at the concentration tails. Nevertheless this synthesis method provides a simple 

and flexible approach to nanocrystal synthesis and it is well suited to experimental 

investigation of nanocrystals and their properties. Implantation causes structural 

defects in SiO2, which can quench the nanocrystal luminescence or exhibit 

luminescence themselves. In order to get more stable luminescent from Si 



 
 

11 

nanostructures high temperature annealing should be employed above 1000 oC 

[37]. 

As metionted above some samples investigated in this thesis were synthesized  by 

ion implantation. Ion implantation experiments carried out with Varian DF4 ion 

implanter that allow the ion energy from 5 to 200 keV. A schematic diagram of 

ion implanter is shown in figure 2.1. In general, the ion implantation system 

consists of three units; source, beam line and end station. For pumping all these 

regions the diffusion and mechanical pumps are used. High vacuum is needed for 

ion implantation which should be around 1x10-7 Torr. 

 

  
 

Figure 2.1. Simplified schematic diagram and photograph  of ion implantation system 

[38] 

 

2.1.2. Magnetron Sputtering Deposition Technique 

The momentum transfer of ions to the target material is the basis of magnetron 

sputtering deposition technique. When atoms of the sputtering gas, commonly 

argon, hits to the surface of the target, momentum transfer occurs by generating 

free atoms to be deposited on the substrate [39]. “Accelerated, away from the 

negatively charged electrode (cathode), “free electrons” approach the outer shell 

electrons of neutral gas atoms in their path. This process leaves the gas atom 
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electrically unbalanced since it will be more positively charged protons than 

negatively charged electrons. Therefore it is no longer a neutral gas atom but a 

positively charged "ion" (e.g. Ar +). After that the positively charged ions are 

accelerated into the negatively charged electrode (a.k.a. "cathode") striking the 

surface, "blasting" loose electrode material and more free electrons by energy 

transfer. The formation of ions and the continuation of the plasma are kept by 

additional free electrons. These free electrons go back into the outer shells of the 

ions by changing them neutral gas atoms. When these electrons return to a ground 

state, the resultant neutral gas atom gain energy and release that same energy in 

the form of a photon (due to the laws of conservation of energy).  The releasing of 

these photons is the reason why the plasma appears to be glowing. Sputtering 

deposition occurs after the medium get high vacuumed (1x10-6 Torr)” [40]. The 

gas pressure is set low to increase the rate during deposition. There are many 

other factors that affect the sputtering process. More knowledge about the 

sputtering can be found A. S. Alagöz Ms thesis in Ref [41]. 

There are several sputtering methods; the most general ones are DC and RF 

sputtering techniques. While DC sputtering is very effective for the conducting 

targets, RF sputtering can be used to avoid the charging if non-conducting targets 

are needed to be sputtered.  In this thesis Nano D100 the sputtering set up was 

used produced by VAKSIS Ltd. The system has 3 circular independently 

controlled magnetrons. One of them is connected to 600 W 13.56 MHz RF 

supply, other two are 500 W and 1 kW DC supplies. High purity argon gas was 

used as the sputtering gas. Gas flow and chamber pressure of the gas is controlled 

electronically from a control panel.  
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Figure 2.2 Photograph of Nano-D100 sputtering system. 

 

2.1.3. Preparation of Free Standing Nanocrystals by Laser Pyrolysis 

Technique 

The samples used in this work were prepared by laser pyrolysis technique at 

ENEA, Italy, by Prof. Dr. E. Borsella’s group [42].  

Production of wide variety of pure, crystalline, nearly mono-disperse and 

disagglomerated nanopowders is very difficult. Lots of variables influence 

nanoparticle properties, and among these are size, shape, crystal structure, and 

surface chemistry. In this respect laser pyrolysis technique is highly versatile 

method for the production of nanopowders of including materials such as Si, SiC 

Laser pyrolysis technique is described and reviewed in detail in references [43-

46]. “In this production technique, particle nucleation and growth occurs as a 

result of collisions between radicals produced by laser induced dissociation of 

gas-phase precursors, i.e. SiH4 [42]”. To heat the gas molecules a laser (usually 

CO2 laser) is used as an optical heat sources. The advantages of this heating 

technique are free from contamination, good and uniform process control and 

absence of hot surfaces. Nanopowders (i.e. Si) are synthesized with respect to the 
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gas-phase reactions by using NH4 and C2H4. Because of SiH4 has strong 

absorption near 10.6 µm, it is chosen as a synthesizer. Therefore, the CO2 laser 

absorption measurements are directly available for NH4 and C2H4. “The produced 

nanopowders consist of aggregates of nearly monodispersed primary particles. 

These aggregates can be either soft or hard agglomerates. Both the particle size 

and the degree of agglomeration are determined by the residence time of the 

particles in the laser irradiation region, which can be adjusted by changing the 

synthesis parameters. However, it is not possible to obtain PL from raw pyrolytic 

powders, since the interaction of surface termination and crystalline core 

dimension [42]”. To overcome this problem lots of studies have been performed 

[47, 48]. In 1999, Huisken et al. reported significant PL response upon oxidation 

and etching their product with HF [49]. Thermal oxidation, acid etching and wet-

chemical oxidation reaction treatments is also used to get a strong 

photoluminescence from pyrolytic powders [50-53]. “In order to produce 

luminescent and disaggregated small nanoparticles, the role of the reaction 

sensitizer and of the quenching collection system on the synthesis of very small 

nanoparticles has been studied by E. Borsella group [42]”. 

 

Experimental setup is shown in figure 2.3. High power continuous wave (cw) CO2 

laser (10.6 µm) was used as a heat source. As shown in figure, a cw CO2 laser is 

focused to the reaction chamber by two coaxial nozzles with help of a ZnSe lens. 

SiH4 is chosen as a reactant gas because SiH4 has strong absorption near 10.6 µm, 

SiH4 absorption is strong function of pressure and strongly depend on laser 

intensity. “The SiH4 reactant gas enters though the inner tube. For Si 155, a 

collector was introduced in the chamber and mounted on the upper part of the 

chimney at h=1 mm distance from the laser beam. The gas mixture together with 

the particles passes through the hole and then it is suddenly expanded to lower the 

temperature. In order to produce homogeneous suspensions, the as-prepared 

powders were first dispersed in methanol at a typical concentration of 1 g/L using 

a low-power ultrasonic bath treatment for 60 min. A second ultrasonic treatment 
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using a high-power ultrasonic probe (BRANSON sonicator equipped with 3 mm 

micro-tip probe) was applied for 30 min to induce disaggregation. In scheme 1A, 

free-standing Si nanocrystals obtained from laser pyrolysis technique is shown 

schematically [42]”. 

 

 
Figure 2.3. Schematic of the laser pyrolysis reactor [42]. 

 

“Typical oxidation was performed for sample Si104A by using hydrogen peroxide 

in alkaline ambient. The oxidation processes is as follows: Row powders were 

first dispersed in CH3OH at c = 2 g/L with the help of ultrasonic bath, then 

deionized H2O (CH3OH:H2O = 1:1) and finally H2O2 and NH4OH (molar ratio 

Si:H2O2:NH4OH = 5:1:1) were added. The suspension was warmed at 60 oC for1 

h, which is useful to activate the reaction, and then oxidation continued at room 

temperature for 5 days. The dry powders were obtained by centrifugation or 

evaporation of solvent and then washed several times with CH3OH [42]”. 
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2.2. Sample Details 

 

2.2.1. Thermal Annealing  

In this work thermal annealing was used to precipitate the excess Si in to 

nanocrystals, and to remove defects caused by ion implantation and sputtering. An 

appropriate combination time and temperature is needed. Thermal annealing was 

carried out in a conventional horizontal single zone quartz tube furnace under 

flowing N2 and 5% H2 in N2. Different annealing temperatures were used to get 

different sized Si nanocrystals in the SiO2 matrix. After implantation samples 

annealed at 1100, 1050, 1000 and 900 o C for 1 hour in either N2 or 5% H2 in N2. 

 

2.2.2. Samples 

In this thesis samples were produced by three different production techniques; ion 

implantation, magnetron sputtering and laser pyrolsis.  And subsequent annealing 

procedures were performed for various temperatures. Samples used in this thesis 

were produced by Assoc. Prof. Dr. Uğur Serincan, Mustafa Kulakçı, Arif Sinan 

Alagöz and Prof. Dr. E. Borsella groups [42] at ENEA in Italy. Physical 

conditions of the samples used in this thesis are given in the below tables.   
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Table 2.1. Ion Implantation conditions of samples. 

 

 
Table 2.2. Sputtering parameter of samples. 

 
 

Table 2.3. Laser Pyrolysis properties of samples. 

 

 

 

 

 

 

Production Tech. 

Ion Energy 
(keV) 

Ion Dose(cm‐2) 
Annealing 
Tempt.(oC) 

Annealing 
Time (h) 

100  1x1016  1050  2 
100  2x1016 1050  2 
100  5x1016  1050  2 
100  1x1017  800  2 

Ion Implantation 

100  1x1017  900  2 
100  1x1017  1050  2 
100  1x1017  1050  5 
100  1.5x1017  1050  2 
100  2x1017 1050  2 

after N2  annealing  
Post 

annealingconditions 
with H2 

100  1x1017  300  1 
100  1x1017  400  1 
100  1x1017  500  1 
100  1x1017  600  1 
100  1x1017  1000  1 

Production 
Tech. 

Si Target 
Power (Watt) 

SiO2 Target 
Power (Watt) 

Annealing 
Tempt.(oC) 

Annealing 
Time (h) 

Sputtered  70  350  1100  3 

Production 
Tech. 

Sample name 
Chemical 
Oxidation 

Laser Pyrolysis 
As prepared  no 
Oxidized  yes 
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2.3. Sample Characterization 

 

2.3.1. Photoluminescence Spectroscopy 

Optical spectroscopy has become a useful and popular characterization tool since 

the invention of the laser and detection techniques. Thus, the optical spectroscopy 

has flourished and improved with the help of monochromatic, powerful, tunable, 

pulsed or continuous wave lasers and detection systems. Another factor which 

makes optical spectroscopy as a unique characterization tool is rapid evolution of 

results.   

Emission processes can be classified according to the source of excitation. 

Electroluminescence is an emission process by using an electric current. Electron 

beam excitation results in cathodeluminescence. Excitation by a thermal process 

is called thermoluminescence. Light emission during a chemical reaction is called 

Chemiluminescence.  If the luminescence continues after switched off the light 

source, this luminescence is called Phosphorescence. PL is a light emission 

process which result in optical excitation and it is used for the characterization of 

dynamical systems in materials. PL is a spectroscopic method based on measuring 

the energy of emitted photons. The optical emission properties and efficiencies, 

composition and impurity content of materials can be obtained by using 

photoluminescence spectroscopy. In order to investigate properties of the 

materials, the energy distribution is analyzed. PL spectroscopy for material 

characterization is preferred by scientists due to easy availability and simplicity of 

the system, with no destruction for samples and no need of sample preparation 

before experiment, etc. In order to describe the preference of PL, some 

fundamental knowledge of semiconductors will be reviewed such as 

semiconductor band structure, free-carrier properties, recombination processes, 

etc. The bandgap and the momentum difference of semiconductors is the crucial 

quantities for identifying materials. When the momentum difference is nonzero 

the semiconductor is called an indirect-gap semiconductor and if the momentum 
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difference is zero, it is termed direct semiconductor. The typical dispersion 

relations for direct-gap and indirect-gap semiconductors is depicted in figure 2.4. 

The band gap characteristic of materials, the relative intensity and temporal 

response of light emission play important role to examine the recombination 

dynamics of semiconductors [54]. 

 

Figure 2.4 Typical band structures of direct- and indirect-gap semiconductors [55]. 

Electron and holes are the free carriers in semiconductors. Electrons and holes 

generally are defined by their origin (free or defect related), density, mass, etc. At 

low temperature the many-particle states may be formed in addition to the single-

particle states. An excitons, biexcitons, excitonic molecules, electron-hole 

plasmas and liquids are the some kind of many particle states. Excitons are the 

coulomb correlated electron-hole pair. Biexcitons and excitonic molecules consist 

of two or more excitons bond by van der Waals binding. High density phase of 

Coulomb correlated electron and hole is defined by electron-hole plasma. The 

electron-hole liquid occurs only at low temperature and it is a condensed state.  If 
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these many particles recombine by emitting photon, this is called radiative 

recombination. The recombination is termed non-radiative recombination while 

the recombination occurs through phonon participation [54]. There are many 

possible recombination mechanisms; a few of them are illustrated in figure 2.5.  

 

Figure 2.5.  Band diagram illustrating; radiative recombination, deep level, exiton, auger 

process (non-radiative recombination). 

If an electron falls from conduction band into the valence band,  this process is 

called band to band recombination. For this emission electron should have 

energies equal to or greater than the bandgap. For the free-to-bound transitions 

case, free electrons and holes may become bound by Coulomb interaction. There 

are two kind of free-to-bound transitions: donor-to-valence band and conduction 

band-to-acceptor. If the free carrier involve to the radiative recombination 

bounding to an impurity, this emission is called Donor-acceptor pair 

recombination. This recombination processes occurs at energies less than the 

bandgap. This recombination occurs below the bandgap. In Auger recombination, 

the emitted energy is given non-radiatively to another particle such as electron. 

The spectral sign of the recombination mechanisms mentioned so far are useful in 
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SR400 photon counter and a SR430 Multichannel Scaler- Stanford Research 

Systems. 

2.3.3. Raman spectroscopy 

Raman scattering spectra were taken on a confocal micro-Raman (HR800, Jobin 

Yvon), attached with Olympus microanalysis system and a charge-coupled device 

(CCD) camera providing a resolution of ~1 cm-1. The spectra were carried out in 

backscattering geometry with the 632.8 nm line of He-Ne laser at room 

temperature. 

2.3.4. Transmission Electron Microscopy (TEM) 

The structural and compositional characterization by transmission electron 

microscopy (TEM, JEOL 2100 F) has been performed with a field-emission gun 

(FEG) microscope operating at 200 kV equipped with an EDAX energy-

dispersive X-ray spectrometer (EDS) and a Gatan STEM controller for 

performing scanning transmission microscopy (STEM). The probe size is under 

0.5 nm. Concerning the TEM specimen preparation, the Si-np are dispersed in 

toluene, grinded in agate mortar and then treated in an ultrasonic bath for a few 

minutes in order to reduce the dimensions of the powder aggregates. Then, some 

drops of the solution containing the nanopowders are deposited onto the holey 

carbon film supported by a metal grid (lacey carbon film on 300 mesh copper 

grid, by TAAB): after evaporation of the solvent, the samples on the grids are 

analyzed in the TEM. 
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CHAPTER 3 

 

 

PHOTOLUMINESCENCE SPECTROSCOPY OF Si 

NANOCRYSTALS in SiO2 

 

 
3.1. Introduction 

Today’s microelectronic industry is based on Si [14]. Si is widely available, 

highly purified, and has excellent thermal and mechanical properties. Moreover 

the natural oxide of silicon (SiO2) is a good insulator. However concerns about 

continuing success of microelectronics industry related to fundamental and 

processing aspects have been raised in recent years [5, 56]. An important example 

is related to the limitation of the operating speed of microelectronic device. A 

possible solution of this problem is the use of optical interconnection. This is main 

driven forces behind Si optoelectronics [19].  However, Si has poor light emitting 

capabilities because of its indirect bandgap nature [57]. The discovery of visible 

room temperature light emission from porous silicon has fascinated scientist to 

obtain high emitting efficiency from silicon nanocrystals. During last two decades 

the origin of light emitting center have been studied from many groups and  a 

consensus has been reached that highly localized defects at the interface and the 

quantum confinement of excitons both play important roles, but it is difficult to 

experimentally distinguish the mechanisms in the radiative emission [58-59]. This 

chapter presents results of the experimental investigation of the influence of 

production techniques, annealing temperature, implantation dose, and H2 

passivation on the optical properties of silicon nanocrystals. 

It is worth nothing that the oxide matrix can have a fundamental influence on the 

development process of embedded nanocrystals. 
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 In fact, the growth of Si-nc in an insulating matrix is always obtained by the 

separation of a Si rich material into Si and oxide phases. This process is typically 

driven by the energy supplied by a high temperature annealing treatment that turns 

the meta-stable Si rich phase into a stabilized material. The characteristics of the 

resulting composite depend on the thermodynamic properties of the initial 

material, the supplying energy (annealing temperature) and the annealing time; the 

first two being the most important. In fact, recent studies [22, 60-65] have 

demonstrated that the Si aggregation process is extremely rapid (few seconds) at 

temperatures higher than 1000 °C. This indicates that the annealing time does not 

limit the Si-nc development process and that long time (hours) treatments are 

necessary only for the improvement of the optical quality of the matrix (non-

radiative defects passivation). The values of the annealing temperature needed to 

develop well passivated, crystalline particles of the desired size can be different 

for different samples because of the difference in the composition of the starting 

material.  

In this chapter, an overview of the origin of photoluminescence from Si 

nanocrystals is represented taking into account different influence parameters. 

Clearly, one can say that it is difficult to determine the origin of PL from Si 

nanocrystals. It can be either localized defects at the Si/SiO2 interface, quantum 

confinement of excitons or both of them. A worldwide research effort has been 

devoted to the understanding of the origin of the PL from Si nanocrystals. 

 

3.1. PL, Influence of using different production techniques. 

In this section, the photoluminescence properties of Si nanocrystals prepared by 

different fabrication techniques are presented. In Chapter 2, the main features of 

standard magnetron sputtering, ion implantation and laser pyrolysis techniques are 

presented. Firstly, the PL property of Si nanocrystals (nc) obtained by Si 

implantation in SiO2 is analyzed. Secondly, the differences between the emissions 

from the nanocrystals deposited by different sputtering processes are thoroughly 

studied. And finally, the results for Si-nc formed using laser pyrolysis are 

presented. The photoluminescence measurements were performed with the 532 
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nm line of an NdYAG laser with an intensity of ~ 0.7 W/cm
2
. Emitted light was 

collected by a monochromator and a CCD camera; the data presented are 

corrected for the spectral response of the measuring setup. The room temperature 

PL measurements are reported in figures 3.1 and 3.2 for the ion implanted and 

sputtered samples. The former was implanted with a dose of 1x1017 cm-2 and 

annealed at 1050 °C for 2 h, and the latter one was sputtered with 70 Watt and 

annealed at 1100 oC for 3 h. 
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Figure 3.1. Photoluminescence spectra of ion implanted sample with a dose of 1x1017 

cm-2.  
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Figure 3.2. Photoluminescence spectra of magnetron sputtered sample.  
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PL spectra of free standing Si nanocrystals are shown in figure 3.3 for both as 

prepared and oxidized powders at 300 K. One can see the dramatic blue shift after 

chemical oxidation processes. This is evidence of smaller Si nanocrystalline 

structure in the oxidized sample. 
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Figure 3.3. Photoluminescence spectra of as prepared and oxidized powder at 300 

K. 
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Figure 3.4 Luminescence spectra of samples produced by three different methods. 

 

The PL spectra for various production techniques are shown in figure 3.4 for 

comparison. All peaks are broad in the range from 650 to 950 nm. It can be noted 

that photoluminescence emission is practically unchanged between implanted and 

sputtered samples. Although they have different shapes and characteristics the 

energy of the PL from different samples are practically similar. As shown in 

figure 3.4, even if the PL emission intensity from sputtered samples is seen 

relatively weak compared to other production techniques, it is not true to say 

something about PL intensity. Since the large variation in silicon nanocrystal size, 

the luminescence emission exhibits broad characteristics for Si nanocrystals 

produced by laser pyrolysis techniques, which also generated the maximum PL 

emission. PL peak position is located at higher wavelengths for laser pyrolysised 

sample indicating the presence of bigger mean size Si-nc.  
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3.3 Effects of annealing temperature on PL from Si nanocrystals      

Amorphous SiO2 with excess Si were produced by ion implantation of Si in 

thermal SiO2. The annealing process was performed at different temperatures in 

N2 atmosphere. This process was performed in order to study the influence of 

annealing temperature and time on the optical properties of Si nanocrystals. The 

detailed sample characteristics are reported in table 3.1.  

 

Table 3.1: Details of the implantation process. Samples were implanted with 1x1017 cm-2 

Si doses and annealed at 800, 900, 1050 oC.  

 

Sample 
Implantation dose 

(cm-2) 

Annealing 

Temperature (oC) 

U1 1.5x1017 800, 2 h 

U2 1.5x1017 900, 2 h 

U3 1.5x1017 1050, 2 h 

U4 1.5x1017 1050, 5 h 

 

 

PL spectra for samples U1, U2, U3 and U4 are displayed in figure 3.5. This graph 

also published in references [66]. The role of the heavily damaged dielectric matrix, 

typically induced by high dose implantation processes, is clearly evidenced in this 

figure. In fact, it can be observed a marked difference in emitted intensity between 

samples annealed for 5h and sample annealed for 2h at 1050 °C. It is clear that with 

the increase of the annealing time a better passivation of nanocrystals surface is 

reached [67] with the consequent reduction of non-radiative decay channels.  
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Figure 3.5 PLspectra of a sample which is implanted with Si with a dose of 1.5x1017 cm-2 

and annealed at various annealing temperatures for 2 h under N2 atmosphere.  

 

In the spectra shown in figure 3.5, we see a shoulder peaked at about 500 nm and 

700 nm. It could be attributed to the recombination of carriers trapped on the pair 

of oxygen interstitial vacancy or to the electron–hole recombination on a Si 

cluster of 5 atoms acting as nanocrystals precursors. These kinds of defects are 

easily produced during the Si implantation process.  

 

3.4 Effect of dose on PL from Si nanocrystals      

Si nanocrystals were synthesized by ion implantation at energy of 100 keV with 

the range of fluencies: 1x1016, 2x1016, 5x1016, 1x1017, and 2x1017 cm-2 at room 

temperature. The as-implanted samples were annealed at 1050 oC in high purity 

N2 for 2 h.  
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Figure 3.6. PL spectra of SiO2 film implanted different doses as indicated in the figure.  

 

Figure 3.6 shows the PL spectra after annealing of samples. The PL intensity is 

the highest for the dose of 1x1017 cm-2. The PL intensity decreases for higher 

fluences. This is because at higher fluence the nanocrystals density and size 

increase. Therefore interparticle spaces decreases giving rise to exciton migration 

between nanocrystals. Also, the probability of larger nanocrystals containing 

defects increases while oscillator strength decreases for larger Si nanocrystals. All 

of these effects are detrimental to radiative recombination. The first listed effect is 

important because the probability for energy transfer between nanocrystals 

becomes more probable. 

 

Figure 3.7 shows the peak intensity position of Si nanocrystals as a function of 

fluence. Since the emission wavelength corresponds to size of nanocrystals, the 

red shift corresponds to an increase in the mean size optically active Si 

nanocrystals. It is clear that larger nanocrystals have a large surface area and thus 

more likely to contain defects. 
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Figure 3.7. The peak intensity position as a function of fluence. 

  

3.5 The effect of H2 passivation on PL from Si nanocrystals     

Si nanocrystals were synthesized by ion implantation at energy of 100 keV with 

the dose of 1x1017 cm-2 at room temperature. The as-implanted samples, placed in 

a quartz boat, were annealed at 1100 oC in high purity N2 for 2 h in a conventional 

quarts-tube furnace.  H2 passivation was performed in high purity H2 forming gas 

(%5 H2 in N2) at various temperatures for 1 h. 

Photoluminescence and Time-resolved PL measurements were performed using 

frequency-doubled YAG laser (532 nm). The repetition rate was 50 Hz. The 

emitted PL was dispersed by HR460 Jobin Yvon monochromator and detected by 

a cooled InGaAs photomultiplier tube. PL transients were stored and averaged by 

SR400 photon counter and a SR430 Multichannel Scaler- Stanford Research 

Systems. 
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Figure 3.8. The effect of H2 passivation on the photoluminescence of the Si nanocrystals. 

 

Figure 3.8 shows the effect of H2 passivation on the photoluminescence of the Si 

nanocrystals. Samples were produced by ion implantation and annealed at 1100 
oC for 2 h with N2 and post annealed under H2 for 1 h, respectively. The increase 

in the PL intensity is due to the passivation of non-radiative defects at the 

nanocrystals/oxide interface. The shaded region represents the approximate 

detection window used time-resolved photoluminescence experiments. The choice 

of this window is arbitrary, as the trend of increasing intensity with improved 

passivation was found to be comparable across the whole PL spectrum. 
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Figure 3.9 Typical normalized decay time measurements of the PL signal around 775 nm 

for the sample implanted with 1x 1017cm-1 and subsequent and post annealing with H2 for 

1 h was performed. The red solid lines are the stretched exponential fit. Data was taken 

at room temperature.  

 

Figure 3.9 shows the plot of time-resolved PL experiments at 775 nm for the 

sample post annealed with H2 for 1 h. The curve is clearly not well fitted by 

simple exponential. As expected it is well characterized by stretched exponential 

function.   

The complete model of this process is unclear as the source of the PL mechanisms 

from Si nanocrystals is still under debate. The results of TRPL experiments of Si 

nanocrystals are extensively discussed in chapter 5. 
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3.6. Conclusion 

In summary, the data reported in this chapter provides an overview of the 

differences that can be observed in the optical properties of Si-nc fabricated with 

different techniques and processed in different ways. Ion implantation and 

sputtering are two well known techniques used in electronic and optoelectronic 

devices. They are shown to be a suitable process for the fabrication of silicon 

nanocrystals in oxide matrices. The laser pyrolysis technique is a new approach 

for the fabrication of free standing nanocrystals. A comparison of these three 

techniques has revealed that characteristic emission band of Si nanocrystals can be 

obtained by different approaches. However, some features of the emission spectra 

are different for different preparation techniques. We show also in this chapter 

that peak position of the PL band can be tuned by changing the amount of 

deposited Si into the SiO2 matrix. This is a direct demonstration of quantum size 

effect. The effect of annealing temperature and the passivation are also studied 

and the results are discussed in terms of possible light emission center in Si 

nanocrystals. 
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CHAPTER 4 

 

 

TEMPERATURE DEPENDENT 

PHOTOLUMINESCENCE OF Si NANOCRYSTALS 

 

 
4.1. Introduction 

 

The temperature dependence of PL has been studied for porous Si [58, 69] and Si 

[57, 70-74] nanoparticles in order to understand the basic physical mechanisms 

generating light emission from these systems. However, the interpretation of the 

results is usually not straightforward. An adequate explanation for these 

observations, various models has been suggested. Kanemitsu et al. [57] proposed 

a three-region model and Brongersma et al. [74] applied a model premised on the 

energy splitting of singlet and triplet excitonic states by exchange interaction. The 

splitting model of luminescent states was first proposed by Calcott et al. [69] for 

porous Si, which give us a useful expression for the temperature dependent 

radiative decay rates. According to this model, the luminescent excitonic states are 

split to a singlet state and a triplet state with a splitting energy ∆E due to the 

exchange interaction. At very low temperatures, almost all of the excitons are 

trapped in the lower triplet state (resulting in a smaller triplet decay rate, longer 

lifetime). With temperature some of them are excited to the upper singlet state 

which is dominant at high temperature (resulting in a larger singlet decay rate, 

shorter lifetime). Recently, M. Righini et al. [75] have demonstrated that the 

different thermal activation energy behavior between crystal and amorphous nano-

silicon is based on their different nano-structure and recombination mechanisms.  



37 
 

Author suggested that the amorphous nano-silicon shows similar PL behavior 

with those obtained in crystal nano-silicon attributed to quantum confinement 

effect that the nano-structure size decreases, the band gap increases, 

photoluminescence shows blue-shift and PL intensity increases as temperature 

increases. For amorphous silicon nano-structure, other mechanisms should be 

considered, particularly, regarding band tails of defect and disorder arisen from 

localized states extending into band gap. The exchange splitting arised from QC 

can be disregard for the amorphous silicon nano-structure.  Because of the 

radiative recombination occurs by tunneling between deepest energy states in 

conduction band and valence band states without a Stokes shift in amorphous 

nano-silicon, the photo-generated carriers can move to a large volume of 

amorphous silicon. Therefore, the thermal activating energy is nothing than the 

potential barrier. The photo-excited carriers tunnel to the lowest tail state. M. 

Righini et al. suggested that Franck–Condon shift of deep tail state is responsible 

of this potential barrier. Since the Franck–Condon shift only depends on the local 

atomic relaxation, it is not affected by the quantum [75]. 

In this chapter, two kinds of PL experiments have been performed. In continuous 

wave (cw) PL experiments the system approaches a steady state where all 

relaxation and transient phenomena have already disappeared and a steady state 

PL spectrum is measured as a function of temperature. Time-resolved PL 

experiments have been studied dynamical aspects of the nanocrystals. The 

investigated dynamics depends on the temperature. Samples are prepared by ion 

implantation in a SiO2 layer followed by thermal annealing with H2 passivation 

treatment. The results of both experiments have been discussed by considering 

two-level splitting model proposed by Calcott et al. [69]. However, we observed 

that at high temperatures two level model do not work properly. Clearly this 

phenomenon needs a new contribution to explain the PL from Si nanocrystals. 

Instead two-level model, our data well fitted with three level model proposed by 

M. Dovrat [76] et al. will be discussed in detail at chapter 5.   

Briefly, photoluminescence intensity shows a temperature dependence which has 

been observed in all samples: the PL intensity rises with increasing temperature 
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up to ~120 K, and then weakly reduces up to room temperature. This 

characteristic behavior which has been reported by many research laboratories 

indicates that the population of radiative states is built up by thermally activated 

process. As described above, this increase in the population of radiative states is 

related to either splitting of energy states in the nanocrystals or diffusion of charge 

carriers to the sites where radiative states are available.   

 

4.2. Experiment 

4.2.1. Preparation of Silicon (Si) Nanocrystals in SiO2  

Thermally grown 250 nm thick SiO2 films on (100) Si wafers were 

implanted with 28Si ions at an energy of 100 keV with the dose of 2x1016, 5x1016, 

1x1017 and 1.5x1017 ions/cm2. Samples implanted with Si were annealed at 1100 
oC for 2h and 1000 oCfor 1h under N2 and H2 atmosphere, respectively. Samples 

were mounted in a closed-cycle helium cryostat to perform measurements in the 

temperature range of 10-300 K. The structural analysis of these samples has been 

performed by TEM and Raman analysis with which the presence of Si 

nanocrystals has been identified. 

 
4.2.2 Photoluminescence and Time Resolved Measurements 
 
PL spectroscopy was used to characterize the samples optically. The luminescence 

spectra were measured using a monochromator and a 256x1024 charge-coupled 

device (CCD) detector. Samples were mounted in air and or placed in a closed-

cycle cryostat for temperature control between 10 K and 300 K. Samples were 

excited at an angle of ~45° from the normal, using the 532 nm Nd-YAG lasers at 

power %10 out of 3 Watt. A 532 nm band-pass filter in front of the 

monochromator entrance slit was used to cut off diffracted laser illumination. The 

spectra of reference sample were taken under the same excitation power and used 

for an identical alignment. All spectra were corrected for the efficiency of the 

CCD and grating.  

TRPL was used to extract PL decay lifetimes. TRPL measurements were 

performed using YAG laser (532 nm with a repetition rate of 50 Hz at optical 



39 
 

laboratory of The Department of Physics, Chemistry and Biology (IFM) 

Linköping University, Sweden. The emitted PL was dispersed by HR460 Jobin 

Yvon monochromator and detected by a cooled InGaAs photomultiplier tube. PL 

transients were stored and averaged by SR400 photon counter and a SR430 

Multichannel Scaler- Stanford Research Systems. 

 

4.3. Results and Discussions 

Figure 4.1 shows the PL spectra of the Si nanocrystals measured in the 

temperature range of 30- 300 K. A broad PL spectrum was observed in the near-

infrared region. With decreasing the temperature from 300 to 30 K, the intensity 

of the PL spectra increased slightly, peaked at about ~120 K and then decreased 

rapidly. At low temperatures, carriers photoexcited inside the nanocrystal populate 

radiative recombination centers through thermally activated processes. As a result 

the PL intensity increases with temperature until the population of radiative 

centers reaches saturation, this behavior is shown in Fig 4.1. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. PL spectra taken from 30 to 300 K of ion beam synthesized Si nanocrystals 
with a broad size distribution. Samples annealed at 1100 oC with nitrogen atmosphere 
and subsequent annealing performed at 1000 oC with H2.  
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Figure 4.2. Peaks P1 and P2 depicted by focusing view of photoluminescence spectra.  
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Figure 4.3. Temperature dependence of the deconvoluted PL peaks position for samples 

with the doses of 1x107 cm-2.  
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Figure 4.4. Temperature dependence of the PL intensity for samples with Si implantation 

doses of 1x1017 cm-2 (dimond), and 2x1017 cm-2, (triangles) respectively. Solid lines are 

the best fits of data using Eq. 1. In the inset the activation energies obtained from the 

fitting procedure are shown.  

 

 As shown in figure 4.3, all of these findings are consistent with previous 

experiments in which Brongersma et al. [74]. The authors attribute the 

temperature dependence of PL to a model in which the excitonic state is split into 

a lower-energy triplet state and an upper singlet state, where radiation from the 

triplet state is forbidden by parity, though this rule is relaxed by spin-orbit 

coupling. The tempereture dependence of photoluminescence intensity is given 

by: 

 

, Eq (1) 

 

 

where Δ is the activation energy implied into radiative process and ΔNR that for 

non-radiative recombination. We obtain the activation energies Δ for each sample. 
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Δ decreases for samples with Nc of larger sizes. In the Calcott model, by 

decreasing the Nc size the quantum confinement increases and, so does the energy 

splitting. The trend of Δ, seen in figure 4.4, is a strong indication for PL more 

likely originates from QC rather than from the defects located at Si/SiO2 interface. 

Similar results were found for various implantation doses by M.Righini et al. [75]. 

In order to confirm this observation, we have studied the recombination dynamics 

within the QC model. Following the model developed by Calcott [2], the radiative 

decay time τ is determined by the thermal equilibrium between radiative lifetimes 

of triplet ( τL) , singlet ( τU) states and energy separation (Δ) as described by the 

equation: 
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Figure 4.5. PL lifetime versus inverse temperature of Si nanocrystals and fitting curve 

with respect to two levels model for sample implanted with a dose of 1x1017cm-2. Data 

was taken at 750 nm. 
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At low temperatures, only the lower triplet state of the exciton is populated and 

PL decay is dominated by the long lifetime which was determined to be ߬௅ ൌ

490.3 µs for the sample implanted with the dose of 1x1017 cm-2 shown in figure 

4.5. At high temperatures the upper singlet state becomes populated and PL decay 

has a short lifetime, ߬௎ ൌ 9.299 µs.  We also determine the splitting energy 

between these levels as ∆ൌ 11.9 meV.  At low temperatures, only the triplet state 

is populated and radiative decay rate is small. At intermediate temperatures, there 

is enough thermal energy to surmount the splitting energy, ∆ ~ 12 meV, and the 

radiative decay from the excited singlet state is high. At high temperatures, the 

lifetime decreases and therefore so does the quantum yields. 

 
4.4. Conclusion 
 
In conclusion, the temperature dependence of photoluminescence intensity was 

studied. The analysis of temperature dependence of both PL intensity and lifetime 

provides evidences for the presence of activation energy in the emission process. 

This energy decreases by increasing Nc size, in accordance with prediction of 

quantum confinement models. In conclusion, our experimental results point out 

that in the range of Nc dimension studied, the radiative recombination seems to 

rise from excitons confined inside Nc rather than from states at the Nc surface.  

Moreover, the detail studies on decay dynamics of Si nanocrystals will be 

discussed in Chapter 5.   
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CHAPTER 5 

 

 

TIME-RESOLVED PHOTOLUMINESCENCE of Si 

NANOCRYSTALS 

 

 
5.1. Introduction 

 

The PL decay process from Si nanostructures has been intensively investigated 

over the recent years, both from porous silicon [14] and from Si nc’s embedded in 

SiO2 [5, 15, 19, 77] matrices. Extensive investigations have been carried out in 

order to understand the origin of luminescence from Si with a dimension of a few 

nanometers. The PL properties of emission bands are commonly explained by the 

widening of the energy gap due to quantum confinement in Si. Since the size of Si 

decreases beyond the free-exciton Bohr radius the quantum confinement effect 

would significantly change the optical behavior of the system, causing the excita-

tions in the visible range [78]. As an important prior condition for optoelectronic 

application of Si nanocrystals, one needs to understand the recombination me-

chanisms. However, the complicated nature of SiO2/Si structure does not allow us 

to identify the basic transition mechanisms generating the light emission from 

them [23]. The recombination dynamics in Si nanocrystals can be explained by 

using the excitonic fine structure which is the subjects of intense research activi-

ties aiming to understand how they influence the photoluminescence properties of 

Si nanocrystals. Ignoring the symmetry of excitons, most of the experiments re-

ported so far [74, 79] have tried to understand the origin of photoluminescence of 

Si Nc’s by using the exchange splitting model known as Two Level Model pro-

posed by Calcott et al. [69].  
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According to this model, the lower level corresponds to a triplet state (S=1) and 

the upper one is a singlet state (S=0).  Due to the exchange interaction, the dege-

neracy between these states is lifted locating triplet state at a lower position with 

respect to the singlet state by a splitting energy Δ. However, some recent studies 

have suggested that involvement of another exciton level should be taken into the 

account for a complete description of the system. The fine structure of excitons 

and its role in optical transitions is needs to be studied to gain a deeper under-

standing of the light emitting mechanism in Si nanocrystals.  

In this chapter, we report the temperature dependent TRPL and PL spectroscopy 

of Si nc and discuss the role of the confined excitonic states in Si nc referring to 

the three level model recently proposed by M.Dovrat et al. [76]. We show that 

three excitonic levels participate in light generation process in Si nanocrystals 

embedded in SiO2 matrix. 

 

5.2. Experiment 

100 keV 28Si ion were implanted into thermally grown 100 nm thick SiO2 on an n-

type Si substrate with a dose of 1x1017 cm -2. Samples were annealed under nitro-

gen ( N2) atmosphere at 1050 oC for 2 h to induce nanocrystals formation and 

named as I9. TRPL was used to extract PL decay lifetimes. TRPL measurements 

were performed using YAG laser (532 nm). The repetition rate was 50 Hz. The 

emitted PL was dispersed by HR460 Jobin Yvon monochromator and detected by 

a cooled InGaAs photomultiplier tube. PL transients were stored and averaged by 

SR400 photon counter and a SR430 Multichannel Scaler- Stanford Research Sys-

tems. 

 

5.3. Excitonic Model for Si Nanocrystals  

Figure 5.1 show typical PL spectra obtained from Si nanocrystals with a mean 

diameter of d≈3-5nm with a deviation of 1.1 nm which were observed with the 

transmission electron microscope in ref [80]. PL peaks have generally a Gaussian 
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shape centered at 775 nm at 300 K and shifts to lower wavelengths with decreas-

ing temperature.  
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Figure 5.1. PL spectra of Si nanocrystals obtained from sample I9 at different 

temperatures but only a few represented in the figure. 

 

The time decay of the PL signal at 750 nm for the sample I9 is shown in figure 

5.2. The PL decay curve is commonly fitted to the stretched exponential function 

ሻݐሺܫ ൌ ݐ൫െሺ݌ݔ݁ ଴ܫ ߬⁄ ሻఉ൯  where ߬ is the PL lifetime and β (0≤ β≤ 1) is the disper-

sion exponent. The origin of the stretched exponential decay for the luminescent 

emission of Si-nc is really controversial. It is an empirical equation suited for the 

fitting of experimental data ranging from the dielectric relaxation of glasses and 

polymeric materials [81] to the structural relaxation of disordered systems like 

glasses or amorphous materials at a fixed temperature [82]. 
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Figure 5. 2. TRPL decays (not normalized to the initial PL intensity) at 300 K for sample 

I9. The solid line represents the fit of the experimental data to the equation of 

from, ܫሺݐሻ ൌ ݐ൫െሺ݌ݔ݁ ଴ܫ ߬⁄ ሻఉ൯  where ߬ is the PL lifetime and β (0≤ β≤ 1) is the disper-

sion exponent. 
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Figure 5.3. PL decay curves at various low temperatures. 
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The dependence of the PL decay time on temperature is shown in figure 5.3. The 

temperature decreases while the PL decay time increases and approaching fairly 

slow PL lifetimes of about a few hundred microseconds at low temperatures. Fig-

ure 5.4 shows the temperature dependence of the PL lifetime extracted from the 

time decay of the PL spectra for various wavelengths. It is seen that the lifetime 

values increases from ~10-40 μs at room temperature to ~300 μs at 25 K for this 

sample. Furthermore, the variation rate in the life time is high at high temperature 

and gradually decreases with decreasing temperature. Similar lifetime behaviors 

were recorded for other samples as well. 
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Figure 5.4. Arrhenius plot of the PL lifetime obtained from sample I9 for different wave-

lengths. 

 

To analyze the temperature dependence of PL decay curve shown in figure 5.4, 

we can identify two temperature regimes. In the low temperature regime, the PL 

lifetime is essentially independent of the temperature, while at high temperature 

region, the PL lifetime becomes shorter with the increasing temperature. This cha-

racteristic can be described by the exchange splitting model proposed by Calcott 
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For silicon nc’s the splitting energy is fairly small, of the order of ~ a few hundred 

μeV (e.g. 150 μeV), however, since the exchange interaction is proportional to the 

overlap between the electron and the hole states, it can significantly be enhanced 

by confining the exciton into small nanostructures. This situation explains very 

well the behavior of the PL lifetime. According to this model, the exciton level 

splits into two levels with a singlet state at the upper and triplet one at lower posi-

tion. One can extract the lifetimes associated with these states by fitting the fol-

lowing expression to the experimental data: 

1
߬ ൌ

݃
߬௅
൅ ݁ି

∆
௞்

߬௎

݃ ൅ ݁ି
∆
௞்

 

 

where 1/߬௅   is the rate of radiative transition from the lower triplet state, 1/߬௎ is 

the rate of radiative transition from the upper singlet state, g=gL/gU=3 is the lev-

el’s degeneracy ratio.  At low temperatures, only the lower triplet state of the exci-

ton is populated and PL decay is dominated by the long lifetime which was de-

termined to be ߬௅ ൌ -for the sample I9 shown in figure 5.4. At high tem ݏߤ 490.3

peratures the upper singlet state becomes populated and PL decay has a short life-

time, ߬௎ ൌ  We also determine the splitting energy between these level  .ݏߤ 9.299

as ∆ൌ 11.9 ܸ݉݁.  
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Figure 5.6. PL lifetime versus inverse temperature of Si nanocrystals and fitting curve 

with respect to two level model for sample I9 at 750 nm. 

 

However, we see from figure 5.6 that the two- level model does not properly fit 

the experimental data, particularly at high temperatures. This discrepancy can be 

removed by using a model with three level involvements in the light emission 

process [76].  The PL decay times corresponding to three energy levels ߬ଵ,  ߬ଶ,  

߬ଷ, are then determined by using the following expression:    

    

1
߬ ൌ

ଵ݃
߬ଵ
൅  ݃ଶ
߬ଶ
݁ି

∆మభ
௞் ൅  ݃ଷ

߬ଷ
݁ି

∆యభ
௞்

ଵ݃ ൅ ݃ଶ݁
ି∆మభ௞் ൅ ݃ଷ݁

ି∆యభ௞்
  

 

where Δ ij is the splitting energy between  i th and j th levels, τ j and g j are the life-

time and corresponding degeneracy of the j th level, and T is the temperature.  
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Figure 5.7. PL lifetime versus inverse temperature of Si nanocrystals and fitting curve 

with respect to three level model. 

 

As shown in Figure 5.7, an excellent fit has been obtained by three level expres-

sions.  PL decay times and splitting energies obtained from this fit are: ߬ଵ ൌ

165.1 µs, ߬ଶ ൌ 4.134 µs, ߬ଷ ൌ 0.202 μs, ∆ଶଵൌ 10.37 meV,  ∆ଷଵൌ 83.81 meV. 

Note that the degeneracy factors (g1: g2: g3) = (9:3:3) are used in this fitting pro-

cedure.   

Exitonic transitions in Si nanocrystals have been studied by several research 

groups [83-85]. In these studies excitonic states are shown to posses the several 

symmetries derived from the symmetries of the bulk silicon carriers (eg. the con-

duction band electrons and valance band holes). These particles have t2 symmetry 

of the bulk silicon Td point group. Reboredo et al. [86] showed that the electron–

hole Coulomb interactions are very important in determining the symmetry of 

excitons for silicon atom. There are some possible symmetry of the excitons as a 
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result of the symmetry of conduction band electrons and valance band holes. For 

instance, if both the valance band maximum and conduction band minimum have 

t2 symmetry, one can get t2xt2= T1+T2+A1+E excitons. The coulomb interactions 

are able to shift and split the 36-fold degeneracy of the exciton energies into four 

degenerate levels denoted E, A1, T1, and T2 with degeneracy 8, 4, 12, and 12, re-

spectively. Following these considerations [86], M. Dovrat et al. [76] explained 

the hierarchy of the excitonic splitting and lifetimes. There are three lowest exited 

states, namely 3T1, 3A1, and 3E which are all spin triplet. Total degeneracy of the 

states is 18. Owing to the fact that there is no T2 symmetry, any optical transition 

from these states is not only optically forbidden but also spin forbidden since they 

are all spin triplet. Such a state is the source of so-called dark excition in the spec-

trum.  There are semidark and semibright excitonic states which are optically al-

lowed but spin forbidden (3T2 with 9 times degenerate) or optically forbidden but 

spin allowed (1T1 with 3 times degenerate), respectively. The remaining 3 times 

degenerate state (1T2) is called bright since it's both optically and spin allowed. It's 

also noted that due to weaker spin-orbit interaction in silicon the spin selection 

rules is violated less than the orbital selection rules whose violation depends on 

structural imperfection such as surface and interface defects. Applying this model 

the following values were reported for the associated life times: ߬ଵ ൌ 2 െ

4 ms, ߬ଶ ൌ 40 െ 60 µs, and  ߬ଷ ൌ 5 െ 15 μs [11]. These values are well above 

our results, ߬ଵ ൌ 165.1 µs, ߬ଶ ൌ 4.134 µs, ߬ଷ ൌ 0.202 μs. However, the characte-

ristic of the decay time in both cases agrees with each other in a way that ߬1 is the 

slowest, ߬2 is midlevel, and ߬3 is the fastest lifetime. Therefore, we can conclude 

that the hierarchies of the exciton levels are the same in both measurements. With 

these results, the exciton splittings obtained from t2xt2 multiplets are schematical-

ly shown in figure 5.8.  
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optical gap shifts to the higher energies as the nanocrystal size decreases as ex-

pected from quantum size effect. From the behavior of PL decay time as a 

function of temperature and wavelength, we have concluded that the light 

generation in nanocrystals occurs via involvement of three excitonic levels as 

suggested by a recently proposed model. The life times of the carriers residing in 

these levels have been determined by a curve fitting procedure, and found to be 

shorter than the previously reported values. The difference in the life time values 

can be attributed to the structural differences.  
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CHAPTER 6 

 

LIGHT EMISSION FROM FREE-STANDING Si 

NANOCRYSTALS 

 

6.1. Historical Perspective 

Silicon nanostructures in the forms of porous silicon [1], silicon nc in the oxides 

matrix [97], and freestanding crystalline Si nanoparticles [45] have been 

investigated intensively because of their unique electrical, optical and chemical 

characteristics. In addition their potential as light sources [98, 99], Si nanocrystals 

are strong candidates for a new generation of flash memory, solar cell application 

and other optoelectronic technology. 

The most challenging task is the understanding of light emitting mechanisms from 

Si nanocrystals. Because of radiative and nonradiative recombination processes 

that may occur at interface and within the core of the nanoparticle, one can expect 

that the characteristics of photoluminescence from Si nanocrystals are related to 

both the crystal size and the environment of its surface. After intensive efforts in 

many research laboratories around the world, a consensus has been reached that 

both surface defect-related and QC mechanisms play a role, but it is difficult to 

distinguish the two contributions from each other [23]. Obviously, the optical 

response of semiconductor nanoparticles is influenced by both particle size and 

surface chemistry. These factors must be controlled and optimized by any 
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production methods to obtain best conditions for aging in light emitting 

properties. Particularly, several techniques [100] have been employed for 

production of free-standing Si nc but it has been rather difficult to synthesize a 

very small, spherical, disagglomerated and highly pure nanopowders. The laser 

pyrolysis technique is the most attractive one for producing such ideal 

nanopowders. The silane pyrolysis that used a CO2 laser to decompose the silicon 

precursor was first reported in 1982 by Cannon et al. [43,44]. This group didn’t 

see the PL behaviour from their products.  Significant PL signal upon etching with 

HF reported by Huisken et al  [48, 101] The laser induced SiH4 pyrolysis is also 

an efficient method for preparing large quantities of Si nanoparticles at rates of 

20–200 mg which reported by Swihart and coworkers. These particles with 5 nm 

diameter show tunable photoluminescence upon controlling etching with HNO3–

HF [52, 102]. In last decades, a number of groups have studied different aspects 

of the production of free standing Si nc. Both preparing large amount of free 

standing Si nc and some ability to tailor shape have been demonstrated [103- 

105]. But still some important challenges remain. One of them is the reliability of 

different methodologies on reactors and second one is hazardous chemical 

processes for effective control over the nanocrystals size. Recently, the role of the 

reaction sensitizer and of the quenching collection system on the production of 

very small nanoparticles has been deeply studied by E. Borsella group. The effect 

of the size and crystallinity of the collected Si-np on the optical emission 

properties, before and after wet chemical oxidation, has been studied [42]. 

Freestanding silicon nanoclusters are light emitters with strong luminescence in 

the wavelength range from red to blue depending on their size [105, 52, 103]. In 

addition to the crystal size, there are other variables that affect the luminescence 

properties of FS-nc-Si such as laser induced thermal effect and excitation 

wavelength. Intense laser light may increase temperature in absorbing materials so 

the laser heat becomes highly stronger for freestanding nanocrystals [45, 106]. 

Moreover, freestanding nanocrystals show emission fluctuation which is called 

photoluminescence bleaching and PL intermittency: ON-OFF blinking. Briefly it 
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is fluctuation of the photo-luminescence signal from Si nanocrystals under laser 

exposure with the duration of the order of ten seconds [107, 108]. 

In this chapter, we focus on photoluminescence and Raman properties of 

freestanding Si nanocrystals prepared by laser pyrolysis technique at Borsella 

group. The production and oxidation processes of free standing Si nc have been 

described in chapter 2.  Here, the term “freestanding” is used for structures which 

do not require full contact with a solid substrate to sustain their shape and 

properties. We performed temperature dependent photoluminescence by using 

two different lasers. Fluctuation of photoluminescence was studied as a function 

of time and temperature. In order to study of structural properties, we report 

Raman spectra and TEM images. This information is valuable for discussions on 

light-emission mechanism of this material. 

 

6.2. Temperature dependent photoluminescence properties of Free-standing 

Si nanocrystals.    

The optical properties of the free standing Si ncs were investigated by using UV–

visible PL spectroscopy. PL spectra of free standing Si excited with NdYAG laser 

is shown in Figure 6.1 for both as prepared and oxidized powders at 300 K. The 

nanoparticle size is equal to 6.0 nm before oxidation, and then it decreases to 5.9 

nm after oxidation [42]. One can see the dramatic blue shift after chemical 

oxidation processes. This is evidence of more and small Si nanocrystalline 

structure in the oxidized sample rather than as-prepared one. 
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Figure 6.1. Photoluminescence spectra of as prepared sample and oxidized sample, at 

300 K. NdYAG laser, 532 nm, was used as an excitation source. 

 

Free standing Si nc has been studied through the temperature dependent 

photoluminescence spectroscopy. The PL behavior of Si nc strongly depends on 

the temperature and excitation wavelength. In particular, the PL intensity was 

found to be increasing with decreasing temperature, which is contrary to what is 

commonly observed for the nanocrystals embedded in a matrix. It should be noted 

that all analysis was made by considering the relative intensity of 

photoluminescence experiments and all spectra was taken under same conditions. 

Temperature dependence of PL spectrum is shown in figures 6.2 and 6.3 before 

and after oxidation, respectively.  
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Figure 6.2. Photoluminescence spectra of oxidized sample with respect to different 

temperature. 
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Figure 6.3. Photoluminescence spectra of as prepared sample with respect to different 

temperature. 

 

Figure 6.4 shows the peak position intensity as a function of temperature for 

oxidized and as prepared sample. The PL intensity of the samples increases with 

decreasing the temperature down to a certain value but below this temperature, it 
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starts to decrease. This critical temperature is at around 50 K for the samples 

studied here. 
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Figure 6.4. PL emission maxima intensity as a function of 1/T. 

0 50 100 150 200 250 300

760

780

800

820

840

860

880

900

920

940

 

 

 As prepared
 Oxidized

W
av

el
en

gt
h 

(n
m

)

Temperature (K)

 

Figure 6.5. Wavelength of PL emission maxima as a function of temperature. 
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The peak position of oxidized sample shifts slightly to the higher wavelengths 

while the temperature increases. However, there is no shift with increasing 

temperature for as-prepared samples. This behavior is shown in figure 6.5. In 

order to see the different light emitting components to the total measured signal a 

deconvolution process has been applied to the PL spectra of both as prepared and 

oxidized samples. The deconvoluted PL spectra for oxidized sample are shown 

figure 6.6. Here, we identify four components centered at ~690 nm, ~790 nm, 

~845 nm, and ~980 nm. Temperature dependence of these peaks is indicated in 

figure 6.7. The peak centered at ~790 nm has highest intensity. All peaks show 

nearly same behavior as a function of temperature. 
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Figure 6.6. Deconvolution spectra for oxidized taken with NdYAG Laser at 300 K. PL 

spectra are deconvoluted by four peaks and labeled as follows black is Peak 1, red is 

Peak 2, green is Peak 3, and blue one is Peak 4. 
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Figure 6.7. PL emission maxima intensity as a function of 1/T for oxidized sample.. 

The deconvoluted PL spectra the as-prepared sample is shown in Figure 6.8. PL 

spectra are deconvoluted by four peaks and labeled as follows Black is Peak 1, red 

is Peak 2, Green is Peak 3, and  Blue one is Peak 4. Similarly we identified four 

different PL peaks studied them as a function of the temperature. The PL intensity 

of the samples increases slightly with decreasing the temperature down to 100 K, 

but below this value, it decreases as shown in figure 6.9. 
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Figure 6.8. Deconvolution spectra for oxidizedsample  taken with NdYAG laser at 300 K.  
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Figure 6.9. PL emission maxima intensity as a function of 1/T for as prepared sample. 
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Figure 6.10. Wavelength of PL emission maxima as a function of temperature. 

Photoluminescence spectra were also measured with HeCd laser operating at 325 

nm as a function of temperature, and the results are depicted in figure 6.11. As the 

temperature increases, the intensity of PL spectra decreases significantly. 

Photographs of photoluminescence observed for oxidized sample upon exposure 

to a UV light, HeCd laser, can be seen in the inset of figure 6.11. As shown in the 

picture, nanopowders have bright and intense luminescence that can be seen with 

naked eye. If we compare the emission spectra taken by 532 nm line of NdYAG 

laser and HeCd laser, there is significant bule-shift in PL spectra as shown in 

figure 6.12. The shift of the PL with excitation wavelength results from the 

excitation of different sizes of nanocrystals that have different optical transition 

energies, thus confirming size-dependent energy levels consistent with a quantum 

confinement model. The size distribution is evident from the emission of the 

sample over a range of energies in the visible region. 
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Figure 6.11. Photoluminescence spectra of oxidized sample with respect to different 

temperature conducted by HeCd Laser, 325 nm. 

 

 

 

 

 

 

 

 

Figure 6.12. Photoluminescence spectra of oxidized sample with respect to different 

excitation wavelength at 300 K. (NdYAG, 532 nm and HeCd, 325 nm) 
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We also performed a multi-Gaussian fitting procedure in order to separate the 4 

different components of the emission peaks for the oxidized sample excited by 

HeCd Laser at 300 K which is shown in figure 6.13. The fitting procedure is 

performed in the wavelength range from 400 nm to 1100 nm. PL spectra are 

deconvoluted by four peaks and labeled as follows Black is Peak 1, red is Peak 2, 

Green is Peak 3, and Blue one is Peak 4. The peak position, of each PL bands 

report in figure 6.14 as a function of temperature. While the temperature increases 

the intensity of each band decreases. 
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Figure 6.13. Deconvoluted spectra for oxidized taken with HeCd Laser at 300 K.  
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Figure 6.14. PL emission maxima intensity as a function of temperature for oxidized 

sample.   

6.3. Photoluminescence Experiments as a function of Time 

During the PL experiments, we noticed that the photoluminescence intensity 

varies with the time. Here, we should emphasize that the temperature-dependent 

measurements were consistent within itself because all measurements were taken 

under the same condition and compared relative to each other. In order to 

investigate variations in the PL intensity, we conducted a series of 

photoluminescence experiments as a function of time at the wavelength of 

maximum PL intensity. The PL intensity decreases sharply in a few seconds then 

stabilize around some value as shown in figure 6.15. When the laser power 

intensity is increased, the photoluminescence intensity also increases 

correspondingly, while the same characteristic is observed in the intensity 

variation. The interesting point is that the photoluminescence intensity recovers 

itself after some time upon switching the laser power off. A summary of this 

behavior found from PL measurements is depicted in figure 6.16. This experiment 

was conducted by measuring the intensity as a function of time and the full 

recovery of PL intensity was observed after 1 hour.  
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Figure 6.15. PL intensity of the emission at 800 nm under continuous irradiation (NdYAG 

laser) as a function of time 

 

 

 

 

 

 

 

 

Figure 6.16. Recovery PL intensity of the emission at 800 nm as a function of time. 

The first question about this observation whether or not this behavior is related to 
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nonlinear rise of light emission [109]. Therefore the laser heat becomes very 

important for luminescence properties of freestanding nanocrystals [106]. 

However, in the present case, the fluctuation of PL is found to be reversible. In 

order to be sure about this behavior is not resulting of laser annealing; we 

performed photoluminescence experiment by continuously exposing the sample 

during 150 minutes and recorded PL intensity for every 5 minutes.  As one can 

see in figure 6.17, during the laser exposure the PL intensity is almost same.  If it 

is laser induced effect, we should observe drastic change in intensity. The results 

indicate that the fluctuation of PL intensity is independent of laser annealing. 

 

 

 

 

 

 

 

 

Figure 6.17. PL intensity of the emission under continuous irradiation with NdYAG laser 

as a function of time. 

In order to check low temperature behavior of intensity, samples cooled and 

photoluminescence spectroscopy study was carried out as a function of time by 

using two different lasers. At low temperatures, the PL intensity again decreases 

by showing different exponential decay. This result is reported in figure 6.18 and 

6.19 for the oxidized sample measured by UV and visible illumination, 
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of the intensity takes longer time than those measured at room temperature. The 

low temperature decay of the PL intensity as a function of time suggests the 

presence of two possible mechanisms. The first one is a faster decay occurring 

immediately after laser exposure while the second one is a slower process which 

is dominating the decay process after some time. These two different decay 

mechanisms suggest that there are two different trapping sites for the carriers as 

discussed below. Probably, at low temperature, an electron trapping takes longer 

time for one of these sites.  

 

 

 

 

 

 

 

 

 

Figure 6. 18. PL intensity of the emission at 744 nm under continuous irradiation (HeCd 

laser) as a function of time at 50 K. 
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Figure 6.19. PL intensity of the emission at 775 nm under continuous irradiation (NdYAG 

laser) as a function of time at 100 K. 
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Figure 6.20. PL intensity of the emission at 800 nm under continuous irradiation (with 

respect to Ndyag laser power) as a function of time at RT. 

0 10000 20000 30000 40000 50000 60000
0,00000

0,00002

0,00004

0,00006

0,00008

 

 

In
te

ns
ity

 (a
rb

.u
.)

Time (ms)

 2 h
 1 h
 30 min
 15 min
 5 min
 0 min

Oxidized 



 
 

72 

In order to see the effect of laser power, we have performed PL measurement as a 

function of laser power. Results are shown in Figure 6.20 and 6.21 for oxidized 

and as prepared samples respectively. We observe that the PL decay decreases 

with decreasing laser power. We did not see fluctuation below certain laser power. 

We have studied the dependence of the decay on the PL wavelength as shown in 

Figure 6.22. Although the PL intensity varies with the wavelength, the intensity 

decay exhibits the same behavior for all three wavelengths.  
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Figure 6.21. PL intensity of the emission intensity as a function of time under continuous 

irradiation with different laser power. 
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Figure 6.22. PL intensity of the emission intensity as a function of time under continuous 

irradiation with different observation wavelength at RT. 

6.4. Photoluminescence bleaching and possible mechanisms for the observed 

intensity decay 

A possible origin of the observed intensity fluctuations can be bleaching or 

photoluminescence intermittency: ON-OFF blinking. Photoluminescence blinking 

and bleaching were frequently observed under continuous-wave (cw) laser 

excitation and can be mainly attributed to interactions of the Si nanocrystals with 

its local environment [107]. Briefly, photoluminescence blinking of nanocrystals 

is caused by a random switching between light-emitting ‘‘on’’ and non-light-

emitting ‘‘off’’ states even under continuous-wave (cw) laser excitation. Power 

and exponential dependence is the key indication for understanding of the 

blinking mechanism ( ܲሺݐሻ ൌ .ݐݏ݊݋ܿ ଵ.ହ݁ቀିିݐ
೟
ഓ ቁ ). This model is explained as 

follows (shown in figure 6.23): electron- hole pairs, forming a confined exciton, 

are generated by absorbing a photon. Nanocrystals confine exciton tightly but it is 

possible that it penetrates to a region with complicated energy profile and could 



 
 

74 

come across a nonradiative center. Thus, the average QE of radiative 

recombination is reduced. By taking into account of the slow PL decay for SiNCs 

together with high QE of the radiative recombination occurring in SiNC (in ON 

state) a second exciton is highly expected to be produced while the other is still 

around so that there could happen an exciton-exciton scattering. Such scatterings 

should essentially affect both radiative and nonradiative recombination processes. 

Nonradiative recombination of exciton can be induced by the inelastic scattering. 

The Auger recombination is for example another way to create the effect when an 

exciton recombinates with a third quasiparticle. A charge separation could happen 

under appropriate conditions. The Auger recombination effectively destroys the 

excitons produced in the charge separated state which leaves the NC dark until the 

next charge recombination takes place [108]. 

 

 

Figure 6.23. “Schematic illustration of processes involved in the radiative and 

nonradiative recombination of a single Si nanocrystal” [108]. 

The bleaching phenomena are closely related to blinking process of the PL 

measurement. The bleaching can be described by the time dependent emission 

intensity of particles which are on state at a certain time. The bleaching process 
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shows reversible characteristic after switching off the excitation on a long time 

scale. The bleaching curve of silicon nanocrystals are well fitted with power law 

according to  ܫ ൌ ݐ଴ሺܫ ൅ ߬଴ሻିఉ, where τ0 is related to the mean on time and β is 

empirically found to follow β =2-αoff, where αoff is the exponent of the off time 

statistics. Therefore it is possible to predict the bleaching of nanocrystal 

ensembles from the blinking statistics of single nanocrystals [107]. In general, the 

bleaching in Si nanostructures is attributed to a blinking process which is 

observed in a single nanoparticle populated by more than one exciton under strong 

laser illumination [107, 108]. It should be noted that, bleaching and blinking of PL 

upon strong laser irradiation is often observed, however the underlying 

mechanism is not fully understood. This phenomenon of Si nanocrystal emission 

intermittency is related to the nature of the trap states at the interface between 

nanocrystal and the surrounding oxide layer. According to our results, we suppose 

that the observed PL intermittency is the combination of PL blinking and 

bleaching mechanisms, since our measuring system does not allow focusing on 

single nanoparticle, which facilitate observation of blinking.  

As described above, blinking is a result of charge trapping at the trap states 

located at the interface or in the SiO2 shell surrounding the nanocrystal. A 

nanocrystal can be at ON or OFF state depending on whether an electron is 

trapped or not. If a nanocrystal stays longer time at the OFF state than ON state 

the overall PL intensity generated by an assembly of nanocrystals will decay with 

time. This PL intensity will approach a constant value after a steady state trapping 

and de-trapping process has been established. 

A visual summary of the possible mechanism for the observed PL decay for the 

oxidized sample is shown in Figure 6.24. 
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Figure 6.24. The colored arrows indicate the recombination ways for an excited 

electron. Green arrows: excitation with  photons by using 2.33 eV light . Blue arrows: 

indirect absorption. Red arrows: indirect radiative recombination (with the assistance of 

a phonon). Black arrow: Auger recombination. Orange arrows: nonradiative 

recombination mechanism. 

6.5. Raman Spectroscopy 

Raman spectroscopy is a powerful tool to study the vibrational dynamics and 

bonding of amorphous and crystalline solids, and it has been also extensively 

applied for silicon materials.  

In general, a broad Raman band around ~ 470 cm-1 is an evidence for the presence 

of amorphous silicon [110]. It also indicates that Si excess in SiOx is not 

distributed homogenously so that amorphous Si agglomerates are formed. 
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Additionally, if there exists, with annealing,  a narrowing as well as up-shifting of 

Raman bands as shown in Fig. 6.25, there is strong possibility that Si 

crystallization occurs [111]. 

 

Figure 6.25. The Raman spectra of as-grown and annealed sample for a Si/SiO2 

superlattice [112]. 

The change of the Raman band position can be explained by the stress in the 

lattice. It is well known that a compressive stress generated by the surrounding 

matrix causes an increase in the phonon frequency and therefore there exist an up-

shift in the relative wavenumber of the first-order Stokes line and the situation is 

reversed for a tensile stress, which is mentioned in chapter 2.  Additionally, the 

phonon confinement model suggests that unstressed 4-nm Si nanocrystals scatter 

at 517-518 cm-1 with a bandwidth of ~12 cm-1 [112-116]. 4-nm is the lower limit 

of the Si-nc size based on possible stress and size distributions.  
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The Raman shift in wavenumber decreases related to the reduced dimensionality 

as well as the stress which are originated from the quantum confinement of the 

ensemble of Si NC’s. In fact, in addition to the two effects, there is also another 

important possibility that is caused by the local temperature of the point on the 

sample where the laser beam is exposed [117].  

In order to investigate the contributions of laser annealing and laser heating to the 

PL bleaching we performed the Raman Spectroscopy to our samples. Raman 

scattering spectra were taken on a confocal micro-Raman (HR800, Jobin Yvon), 

attached with Olympus microanalysis system and a charge-coupled device (CCD) 

camera providing a resolution of ~1 cm-1. The spectra were carried out in 

backscattering geometry with the 632.8 nm line of He-Ne laser at room 

temperature.  

To perform Raman study, we have used two samples; free-standing as-prepared 

and oxidized Si nanopowders. The Raman spectra of the as-prepared and oxidized 

Si nanocrystals are shown in figure 6.26. The Raman band of oxidized Si 

nanocrystals is slightly narrower and stronger than the bands of the as-prepared 

one. 
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Figure 6.26.  Raman spectra of the as-prepared and oxidized free-standing Si 

nanocrystals. 

Raman spectroscopy exhibits a four-band structure so that it can be fitted by the 

use of four Gaussians as shown in Figure 6.27.  The Raman spectrum gets broader 

and asymmetrical as the wavenumber decreases. By considering the 400-550 cm-1 

part of the Raman spectra, we found that there is a broad lower-energy band 

centered at 490–500 cm−1 (Peak 2) [110], which is resulted from amorphous 

structures, and a narrow high-energy peak centered at 514–516 cm−1 (Peak 1), 

which is due to the bindings between Si nanocrystals [112, 115].  In addition to 

the broad signal, Peak2, on the lower wavenumber part of the spectrum near 350 

cm-1, there are two additional peaks (Peak 3, Peak 4) for both as-prepared and 

oxidized Si nanopowders as seen in figure 6.27.  
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Figure 6.27. Deconvolution of Raman spectra for oxidized free-standing Si nanocrystal. 

To make sure that the laser annealing effect is not responsible for the decrease in 

the PL intensity the Raman spectroscopy measurements were performed for both 

as-prepared and oxidized samples by first exposing continuous wave Nd-YAG 

laser on the samples for a while. The results for the laser exposed samples are 

reported in Figure 6.28. As seen from this figure, the position and width of the 

Raman bands do not change significantly. Thus, it seems that there is no 

measurable change in the size of the nanocrystals for both as-prepared and 

oxidized free-standing Si nanopowder samples measured with continuous wave 

laser radiation with %10 of total power (3 Watts). However, increase in the 

Raman signal indicates an improvement in the crystallinity of the nanocrystals.  
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Figure 6.28. Comparative Raman spectra of the laser induced oxidized free-standing Si 

nanocrystals according to oxidized and as prepared sample.  

In order to have a complete picture of the Raman spectra it is worth comparing the 

deconvoluted peaks for all samples reported in table 6.1. The Raman spectra are 

deconvoluted by four peaks labeled as Peak 1, Peak 2, Peak 3, and Peak 4, shown 

in Figure 6.27. One can conclude from table 6.1. The following: 

• In the as prepared sample, there is no significant shift and broadening after 

laser irradiation for the Peak 1 (centered at ~515 cm-1). On the other hand, 

the Peak 2 shifts towards to higher wavenumber from 484 to 498 cm-1. 

• In the oxidized sample, we observe the same behavior for the Peak 1 as in 

the as prepared sample. Unlike to the as prepared case, the Peak 2 shifts 

towards to the lower wavenumber with the laser power increasing (The 

peaks at 500, 490, 480 cm-1 for the oxidized, the laser %10 and the laser 

%30 of 3 Watt, respectively ) 

• In general, the Peak 1 has approximately same position and width for all 

the case but the Peak 2 shifts towards to higher wavenumber after certain 
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oxidation processes take place. Existing of such shifts in the spectrum is in 

fact indicating the formation of Si nanocrystals in the system. 

• In general, the Peak 1 has approximately same position and width for all 

the case but the Peak 2 shifts towards to higher wavenumber after certain 

oxidation processes take place. Existing of such shifts in the spectrum is in 

fact indicating the formation of Si nanocrystals in the system. 

 

Table 6.1. The deconvolution parameters of the Raman spectra for all samples. 

    Area  Center 
(cm‐1) 

Width  Height 

As‐prepared 

Peak1  2623,6  515,9  11,0  191,2 
Peak2  7454,5  484,1  55,2  107,8 
Peak3  3650,4  352,7  39,8  73,1 
Peak4  3001,2  306,9  51,5  46,5 

Oxidized 

Peak1  1609,8  515,7  9,3  138,7 
Peak2  8281,8  500,1  68,8  96,1 
Peak3  3171,4  355,4  26,6  95,1 
Peak4  4629,9  319,0  53,8  68,6 

Oxidized, Laser 
Irradiated 

(%10,150 min) 

Peak1  4693,3  515,0  10,3  363,6 
Peak2  8590,5  490,4  48,0  142,7 
Peak3  6395,4  353,6  31,3  163,0 
Peak4  12328,8  316,4  64,5  152,6 

Oxidized, Laser 
Irradiated  
(%30,4 min) 

Peak1  4105,9  515,2  10,7  305,6 

Peak2  6614,0  480,5  54,9  96,1 

As‐prepared, Laser 
Irradiated  
(%30,4 min) 

Peak1  1708,9  516,8  9,6  141,7 

Peak2  7710,9  498,4  62,1  99,0 

 

 

Following the literature, it is argued that under intense laser irradiation the 

structural reorganization can be seen in Si material which is called Laser 

Annealing (LA) [118]. The laser light can heat the illuminated region up. At 
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higher excitation powers (higher temperature), the Raman bands shift towards to 

lower wavenumber and with a broaden width due to the phonon confinement 

effect [112, 115]. However, we have observed different behavior than in the 

literature [27]. For example there are no variations in the Raman spectra except 

that of Peak 2 which shows similarity to those reported in the literature. We may 

conclude from the Raman results that the cw laser irradiation can make the Si-nc 

inclusions better ordered. These results demonstrate an improvement in the 

quality of the Si nanocrystals. It can also be seen from our results that the laser 

irradiation and its effect on the samples are not responsible for decreasing PL 

intensity in time. 

6.6. Transmission electron microscopy (TEM) 

TEM eliminates many ambiguities associated with optical spectroscopic 

techniques and provides direct estimate of the nanocrystals size, interface quality, 

etc. The structural and compositional characterization of free-standing Si 

nanopowders by high resolution transmission electron microscopy because 

HRTEM allows having deeper information on crystalline structure of Si nc. These 

observations show that free-standing nanopowders consist of many Si 

nanocrystals. Figure 6.29 shows HRTEM bright field images of free-standing Si 

nanopowders for oxidized sample. The lattice fringes in the image clearly indicate 

that the nano dots are crystalline in nature and have an average diameter of 

approximately 3-5 nm as seen in Figure 6.29 (b) and (c). In addition to individual 

Si nanocrystals, one can see the agglomerated Si with amorphous structure in 

Figure 6.29 (a). 
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Figure 6.29. The HRTEM image of free-standing nanopowders containing Si 

nanocrystals. a) agglomerated free-standing Si nano particles., b) Si-nc with diameter ~5 

nm, c) Si-nc with diameter ~3 nm. 

6.7. Conclusion 

In this chapter we have presented photoluminescence experiments performed in 

freestanding Si nanocrystals using temperature dependent photoluminescence 

spectroscopy. The main findings are summarized a few points: 

• PL spectrum of nanopowders show board shape band that fitted four 

Gaussian peaks. Cryogenic experiments performed down to 20 K and the 

main peak shifted towards to higher energies.   

• The emission PL spectra were collected with using two excitation 

wavelengths 325 nm and 532 nm. A size-dependent luminescence property 

is observed in the PL spectra as expected.  The observed blue shift (45 nm) 

c
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in PL maximum can be attributed to quantum confinement effects arising 

from decreased particles size. 

• The high resolution transmission electron microscopy images confirmed 

the presence of both crystalline and amorphous nanoparticles with an 

average diameter of 5 nm. The chemical structure of the nanoparticles was 

identified by Raman spectroscopy which exhibited two bands 

corresponding Si-Si bonds in crystalline and amorphous form. 

• PL emission of freestanding nanocrystals shows intermittence on the time 

scale of a few seconds. Cryogenic experiments show different 

characteristics as a function of temperature. The bleaching in Si 

nanostructures is generally attributed to a blinking process which is 

observed in a single nanoparticle populated by more than one exciton 

under strong laser illumination. It is commonly accepted that the blinking 

occurs only in connection with and Auger assisted charge trapping.  We 

discuss the observed PL decreasing in terms of exciton trapping at the 

interface between nanocrystal and the surrounding oxide layer.  

• The strong PL emission performance of freestanding nanocrystals is 

excellent but the non-radiative transitions somehow reduce the overall 

emission. Therefore photoluminescence blinking and bleaching must be 

studied and understood in details in order to find how to increase and 

stabilize PL emission.  
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CHAPTER 7 

 

 

CONCLUSIONS 
 

 

 

We have presented experimental measurements on the luminescence properties of 

Si nanocrystals embedded in silicon dioxide matrix. In effort to enhance the 

understanding of Si nanostructure properties, a fabrication process based on the 

combination of ion implantation, sputtering, and laser pyrolysis and annealing has 

been studied to yield well controlled luminescent Si nc. The samples studied by 

ion implantation have the advantage of great controllability. However it also 

introduces damage into sample, which requires high temperature annealing to 

repair. The choice of the annealing environment was found to have a significant 

importance on the luminescence of Si nanocrystals. PL from annealed at 1050 oC 

in N2 and %5 H2 in N2 were found similar but the latter one show more efficient 

PL. The increase on the PL intensity is due to the passivation of non-radiative 

defects on the nanocrystals/oxide interface. The passivation with Hydrogen 

influences the efficiency of PL but not the peak position nor its shape. 

Additionally, it is also clear that with the increase of the annealing time a better 

passivation of nanocrystals surface is reached with the consequent reduction of 

non-radiative decay channels. 

We have demonstrated the effect of nanocrystals size to photoluminescence 

properties. Since the emission wavelength corresponds to size of nanocrystals, the 

red shift (QC) corresponds to an increase in the mean size optically active Si 

nanocrystals. 
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It is fact that, larger nanocrystals have a large surface area and thus more likely to 

contain defects. The temperature dependence of PL intensity was studied. By 

analyzing the temperature dependence of both PL intensity and lifetime, the 

activation energy has been calculated. This energy decreases by increasing Nc 

size in accordance with prediction of quantum confinement models. The 

temperature dependence of Si nanocrystals have been investigated in detail by 

using time-resolved photoluminescence to show the effect of excitonic fine 

structure of Si nanocrystals. Due to QC effects, the optical gap shifts to the higher 

energies as the nanocrystal size decreases as expected from quantum size effect. 

From the behavior of PL decay time as a function of temperature and wavelength, 

we have concluded that the light generation in nanocrystals occurs via 

involvement of three excitonic levels as suggested by a recently proposed model. 

The life times of the carriers residing in these levels have been determined by a 

curve fitting procedure, and found to be shorter than the previously reported 

values. The difference in the life time values can be attributed to the structural 

differences.  

 

The freestanding Si nanocrystals were studied using temperature dependent PL. 

PL spectrum of nanocrystals show broad shape band that fitted four Gaussian 

peaks. Cryogenic experiments performed down to 20 K and the main peak shifted 

towards higher energies.  The emission PL spectra were collected with using two 

excitation wavelengths 325 nm and 532 nm. A size-dependent luminescence 

property is observed in the PL spectra as expected.  The observed blue shift (45 

nm) in PL maximum can be attributed to quantum confinement effects arising 

from decreased particles size. The high resolution transmission electron 

microscopy images confirmed the presence of both crystalline and amorphous 

nanoparticles with an average diameter of 5 nm. The chemical structure of the 

nanoparticles was identified by using Raman spectroscopy which exhibits Si-Si 

bonds in crystalline and amorphous form. PL emission of freestanding 

nanocrystals shows intermittence on the time scale of a few seconds. Cryogenic 
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experiments show different characteristics as a function of temperature. The 

bleaching in Si nanostructures is generally attributed to a blinking process which 

is observed in a single nanoparticle populated by more than one exciton under 

strong laser illumination. It is commonly accepted that the blinking occurs only in 

connection with and Auger assisted charge trapping.  We discuss the observed PL 

decreasing in terms of exciton trapping at the interface between nanocrystal and 

the surrounding oxide layer.  The strong PL emission performance of freestanding 

nanocrystals is excellent but the non-radiative transitions somehow reduce the 

overall emission.  

 

Future Work 

Although the intense research effort directed on the Si nc over the two decades, a 

great number of question remain unanswered. Actually there is much intention for 

developing the understanding of optical properties of Si nanocrystals. This is 

significant because, although there is a general understanding and several model 

proposed of the PL mechanisms, the exact mechanisms still under debate.  The 

broad PL of Si nanocrystals hamper the understanding of the PL mechanisms. To 

handle this problem single dot spectroscopy are needed to reveal the PL 

mechanisms. This method is widely used for III- V and II- IV semiconductors but 

has rarely been used for Si nanocrystals. The use of Single dot spectroscopy 

techniques allowed the luminescence from each nanostructure to be individually 

resolved. Through single nanocrystal measurements, there can also be opportunity 

to measure the passivation efficiency directly and the efficiency on 

photoluminescence. Therefore photoluminescence blinking and bleaching should 

be studied and understood in details in order to find mechanisms of the PL 

emission from Si nanocrystals.  
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