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ABSTRACT 

 

MODELING AND EXPERIMENTAL EVALUATION OF 

VARIABLE SPEED PUMP AND VALVE CONTROLLED HYDRAULIC 

SERVO DRIVES 

 

 

Çalışkan, Hakan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Tuna Balkan 

Co-Supervisor: Prof. Dr. Bülent E. Platin 

 

September 2009, 209 pages 

 

 

In this thesis study, a valveless hydraulic servo system controlled by two 

pumps is investigated and its performance characteristics are compared with a 

conventional valve controlled system both experimentally and analytically. The 

two control techniques are applied on the position control of a single rod linear 

actuator. In the valve controlled system, the flow rate through the actuator is 

regulated with a servovalve; whereas in the pump controlled system, two variable 

speed pumps driven by servomotors regulate the flow rate according to the needs of 

the system, thus eliminating the valve losses. 

To understand the dynamic behaviors of two systems, the order of the 

differential equations defining the system dynamics of the both systems are reduced 

by using the fact that the dynamic pressure changes in the hydraulic cylinder 

chambers become linearly dependent on leakage coefficients and cylinder chamber 

volumes above and below some prescribed cut off frequencies. Thus the open loop 

speed response of the pump controlled and valve controlled systems are defined by 



v 

second order transfer functions. The two systems are modeled in MATLAB 

Simulink environment and the assumptions are validated. 

For the position control of the single rod hydraulic actuator, a linear state 

feedback control scheme is applied. Its state feedback gains are determined by 

using the linear and linearized reduced order dynamic system equations. A linear 

Kalman filter for pump controlled system and an unscented Kalman filter for valve 

controlled system are designed for estimation and filtering purposes. 

The dynamic performances of both systems are investigated on an 

experimental test set up developed by conducting open loop and closed loop 

frequency response and step response tests. MATLAB Real Time Windows Target 

(RTWT) module is used in the tests for application purposes. 

 

Keywords: Fluid Power Control, Variable Speed Pump Control, Energy 

Efficient, Valve Control, State Feedback, Kalman Filtering, Unscented Kalman 

Filter. 
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ÖZ 

 

DEĞİŞKEN DEVİRLİ POMPA VE VALF DENETİMLİ 

SERVO HİDROLİK SİSTEMLERİN MODELLENMESİ VE DENEYSEL 

DEĞERLENDİRİLMESİ 

 

 

Çalışkan, Hakan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez yöneticisi: Prof. Dr. Tuna Balkan 

Yardımcı tez yöneticisi: Prof. Dr. Bülent E. Platin 

 

Eylül 2009, 209 sayfa 

 

Bu tez çalışması kapsamında iki pompa denetimli valfsiz bir hidrolik sistem 

incelenmiş ve geleneksel valf denetimli hidrolik sistem ile deneysel ve analitik 

olarak karşılaştırılmıştır. Bu iki kontrol tekniği tek milli bir hidrolik eyleyicinin 

konum denetiminde uygulanmıştır. Tez kapsamında kurulan valf denetimli 

sistemde eyleyiciye giden debi bir servo valf ile ayarlanırken, pompa denetimli 

sistemde sistemin gerek duyduğu debi pompa hızı değiştirilerek ayarlanmakta 

böylelikle valf kayıpları elenmektedir. 

Sistemlerin dinamik davranışlarıını anlamak için her iki sistemi tanımlayan 

türevsel denklemlerin mertebesi eyleyici oda basınçlarının belirli kesim 

frekanslarından önce ve sonra sızıntı katsayıları ve silindir oda hacimleriyle doğru 

orantılı olarak değiştiği gösterilerek azaltılmıştır. Böylelikle iki sistemin açık döngü 

hız tepkileri ikinci mertebeden bir aktarım fonksiyonu ile ifade edilebilmiştir. Her 

iki sistem MATLAB Simulink ortamında modellenerek yapılan varsayımlar 

doğrulanmıştır. 
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Tek milli hidrolik eyleyicinin konum denetimi için doğrusal durum geri 

beslemesi uygulanmıştır. Durum geri beslemesi katsayıları mertebesi düşürülmüş 

doğrusal ve doğrusallaştırılmış dinamik sistem denklemleri kullanılarak 

hesaplanmıştır. Durum tahmini ve filtreleme amacı ile pompa denetimli sistemde 

doğrusal Kalman filtre ve valf denetimli sistemde doğrusal olmayan Kalman filtre 

uygulanmıştır. 

Her iki sistemin dinamik performansı tez kapsamında kurulan test 

düzeneğinde açık döngü ve kapalı döngü frekans tepkisi ve basamak girdi testleri 

yapılarak incelenmiştir. Testlerde denetim uygulamasında MATLAB yazılımının 

Real Time Windows Target (RTWT) modülü kullanılmıştır. 

 

Anahtar kelimeler: Akışkan Gücü Kontrolü, Değişken Devirli Pomp 

Denetimi, Valf Denetimi, Enerji Verimliliği, Durum Geri Beslemesi, Kalman 

Filtre, Doğrusal Olmayan Kalman Filtre 

 

  



viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my country… 

  



ix 

 

 

ACKNOWLEDGEMENTS 

 

 

I would, first of all, like to thank to Prof. Dr. Tuna Balkan and Prof. Dr. 

Bülent E. Platin for their guidance, suggestion and support throughout the thesis 

study. 

I would specially like to thank to Suat Demirer for his financial and 

technical support and suggestions, also I would like to thanks to all the employees 

of Demirer Teknolojik Sistemler Inc. for their support and friendship during the 

production of the test set up. 

I would like to thank to my colleagues for their useful discussions, support 

and friendship. 

I would, sincerely, like to thank to my family for their patience support and 

love. 

 

 

 

  



x 

 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ................................................................................................. iv 

ÖZ ................................................................................................................. vi 

ACKNOWLEDGEMENTS ......................................................................... ix 

TABLE OF CONTENTS .............................................................................. x 

LIST OF FIGURES ................................................................................. xiviv 

LIST OF TABLES ...................................................................................... xx 

LIST OF SYMBOLS ................................................................................. xxii 

CHAPTERS 

1. INTRODUCTION ..................................................................................... 1 

1.1 Background and motivations ......................................................... 1 

1.2 Literature Survey ........................................................................... 4 

1.3 Objective of the Thesis .................................................................. 9 

1.4 Thesis Outline ............................................................................. 10 

2 HYDRAULIC POWER SYSTEMS ......................................................... 12 

2.1 Conventional Valve Controlled Hydraulic Power Systems ........ 12 

2.2 Energy Efficient Hydraulic Power Systems ................................ 22 

2.2.1 Energy Efficiency in Valve Controlled Circuits ..................... 22 

2.2.2 Variable Displacement Pump Controlled Systems ................. 26 

2.2.3 Variable Speed Pump Controlled Systems .............................. 30 

3. SYSTEM MODELING AND SET UP CONFIGURATION ................. 35 



xi 

3.1 Experimental Test Set-up ............................................................ 35 

3.2 Pump Controlled System ............................................................. 44 

3.2.1 Principle of the Hydraulic Circuit ........................................... 44 

3.2.2 Mathematical Modeling of the System ................................... 46 

3.2.2.1 Pump Model ....................................................................... 47 

3.2.2.2 Hydraulic Actuator Model .................................................. 54 

3.2.2.3 Load Model ........................................................................ 57 

3.2.3 Steady State Characteristics of the System ............................. 58 

3.2.4 Dynamic Characteristics of the System .................................. 61 

3.3 Valve Controlled System ............................................................ 71 

3.3.1 Mathematical Modeling of the System ................................... 71 

3.3.1.1 Valve Model ....................................................................... 72 

3.3.2 Steady State Characteristics of the System ............................. 74 

3.3.3 Linearized Valve Coefficients ................................................. 76 

3.3.3.1 Extension Case ................................................................... 77 

3.3.3.2 Retraction Case ................................................................... 79 

3.3.4 Dynamic Characteristics of the System .................................. 81 

4. CONTROLLER DESIGN AND IMPLEMENTATION ......................... 91 

4.1 State Space Representation of Pump Controlled System ............ 91 

4.1.1 4th Order State Space Representation of Pump Controlled 

System ....................................................................................... 92 

4.1.2 Reduced 3th Order State Space Representation of Pump 

Controlled System ..................................................................... 94 

4.2 State Space Representation of Valve Controlled System ............ 95 

4.2.1 4th Order State Space Representation of the Valve Controlled 

System ....................................................................................... 96 



xii 

4.2.2 Reduced 3th order state space representation of valve controlled 

system ........................................................................................ 97 

4.3 Controller Design for the Pump System ..................................... 98 

4.4 Controller Design for the Valve System ................................... 105 

4.5 Kalman Filter Theory and Design ............................................. 111 

4.5.1 Discrete Kalman Filter .......................................................... 112 

4.5.2 Application in Pump Controlled System ............................... 117 

4.5.3 Unscented Kalman Filter ....................................................... 118 

4.5.4 Application in Valve Controlled System .............................. 123 

4.5.5 Filter Tuning .......................................................................... 124 

4.5.5.1 Pump Controlled System .................................................. 126 

4.5.5.2 Valve Controlled System .................................................. 132 

5. PERFORMANCE TESTS OF THE SYSTEM ..................................... 133 

5.1 System Identification ................................................................. 135 

5.1.1 Hydraulic Pump Leakage Coefficients ................................. 135 

5.1.2 Hydraulic Cylinder Friction .................................................. 139 

5.2 Step Response of Pump Controlled System .............................. 144 

5.3 Step Response of Valve Controlled System .............................. 147 

5.4 Frequency Response Test .......................................................... 152 

5.4.1 Test Signal ............................................................................. 153 

5.4.2 Open Loop Frequency Response of Pump Controlled Hydraulic 

System ................................................................................... 153 

5.4.3 Close Loop Frequency Response of Pump Controlled Hydraulic 

System ..................................................................................... 156 

5.4.4 Open Loop Frequency Response of Valve Controlled Hydraulic 

System ..................................................................................... 165 



xiii 

5.4.5 Closed Loop Frequency Response of Valve Controlled 

Hydraulic System .................................................................... 167 

5.5 Comparison of Two Systems .................................................... 174 

6. DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS .... 179 

6.1 Outline of the Study and Discussions ....................................... 179 

6.2 Conclusions ............................................................................... 182 

6.3 Recommendations for Future Work .......................................... 184 

REFERENCES ...................................................................................................... 187 

APPENDICES 

A. TRANSFER FUNCTION DERIVATION FOR PUMP CONTROLLED 

SYSTEM ........................................................................................................ 191 

B. TRANSFER FUNCTION DERIVATION FOR VALVE CONTROLLED 

 SYSTEM ........................................................................................................ 197 

C. MATLAB FILES ............................................................................................ 202 

D. DRIVERS AND DAQ CARD CONNECTIONS .......................................... 207 

  



xiv 

 

 

LIST OF FIGURES 

 

 

FIGURES 

 

Figure 1-1 The Circuit Operation and Sum Pressure Principle [19] ........ 8 

Figure 2-1  Conventional Valve Controlled Hydraulic Circuit ............... 13 

Figure 2-2  Constant Pressure Valve Controlled Hydraulic Circuit ....... 15 

Figure 2-3  Valve Characteristic Curves for Different Valve Openings . 17 

Figure 2-4   Valve Losses of a Constant Pressure Valve Controlled Circuit 

for Maximum Energy Efficiency ......................................... 18 

Figure 2-5   Pressure Compensated Pump [23]........................................ 23 

Figure 2-6   Load Sensing Pump Schematic [23] .................................... 24 

Figure 2-7  Electro-Hydraulic Load Sensing System with Constant 

Displacement Pump [8] ........................................................ 24 

Figure 2-8  Individual Meter In Meter Out Valve Control System [24] . 25 

Figure 2-9   Variable Displacement Pumps ............................................. 26 

Figure 2-10 Hydrostatic Transmission System with Variable Displacement 

Pump Control Technique ..................................................... 27 

Figure 2-11 Single Rod Symmetric Linear Actuator [25] ....................... 28 

Figure 2-12  Displacement Controlled Drive with Single Rod Cylinder in 

Position Control [7] .............................................................. 29 

Figure 2-13 Constant Displacement Pump Types a) Screw Type, b) 

External Gear, c) Internal Gear ............................................ 30 



xv 

Figure 2-14  Electro  Hydraulic Actuation System of Habibi and 

Goldenberg with Symmetric Actuator [3] ............................ 31 

Figure 2-15  Two Pump Control Circuit Configurations .......................... 32 

Figure 3-1  A photograph of the Experimental Test Set-Up ................... 36 

Figure 3-2  Schematic Diagram of the Experimental Test Set-Up ......... 37 

Figure 3-3  Servovalve Frequency Response Diagram [27] ................... 41 

Figure 3-4  Flow Rate versus Valve Spool Position Signal of the Servo 

Solenoid Valve [27] ............................................................. 42 

Figure 3-5  Variable Speed Pump Control Circuit .................................. 45 

Figure 3-6  Hydraulic Pump Operation in 4 Quadrants .......................... 48 

Figure 3-7  Representation of Flow Losses in Hydraulic Pumps and 

Motors [28] ........................................................................... 50 

Figure 3-8  Flow Rates of the Hydraulic Cylinder and Pumps ............... 53 

Figure 3-9  MATLAB Simulink Model of the Hydraulic Pump/Motor  

Unit ....................................................................................... 54 

Figure 3-10  MATLAB Simulink Model of the Hydraulic Actuator ........ 56 

Figure 3-11 MATLAB Simulink Model of the Hydraulic Cylinder 

Chamber Volumes ................................................................ 57 

Figure 3-12  MATLAB Simulink Model of the Overall System .............. 58 

Figure 3-13  Electrical Analogy of the Pump Leakage Flow Rates .......... 59 

Figure 3-14  Representation of the Hydraulic Pump Leakages with 

Additional External Leakages .............................................. 65 

Figure 3-15  Block Diagram Representation of the Open Loop Position 

Response of the Variable Speed Pump Controlled System .. 68 

Figure 3-16  Pump Dynamic Chamber Pressure Change Relations ......... 69 

Figure 3-17  Schematic Representation of the Valve Controlled System . 72 



xvi 

Figure 3-18  MATLAB Simulink Model of the Proportional Valve with 

Zero Lap ............................................................................... 74 

Figure 3-19  Schematic Representation of the Valve Spool Opening for 

Extension .............................................................................. 77 

Figure 3-20  Schematic Representation of the Valve Spool Opening for 

Retraction ............................................................................. 80 

Figure 3-21  Dynamic Pressure Change Ratios ........................................ 85 

Figure 3-22  Block Diagram Representation of the Valve Controlled System 

for the Extension Case .......................................................... 87 

Figure 4-1  Block Diagram Representation of the Close Loop Pump 

Controlled System .............................................................. 100 

Figure 4-2  MATLAB Simulink Model of the Closed Loop Pump 

Controlled Position Control System ................................... 104 

Figure 4-3  Block Diagram Representation of the Closed Loop Valve 

Controlled System .............................................................. 105 

Figure 4-4  MATLAB Simulink Model of the Closed Loop Valve 

Controlled Position Control System ................................... 111 

Figure 4-5  Kalman Filter Block Diagram ............................................ 113 

Figure 4-6  Kalman Filter Algorithm .................................................... 116 

Figure 4-7  MATLAB Simulink Kalman Filter Model for the Variable 

Speed Pump Controlled System ......................................... 118 

Figure 4-8  Unscented Kalman Filter Algorithm .................................. 123 

Figure 4-9 Position Transducer Measurement for Zero Reference Input .. 

  ............................................................................................ 127 

Figure 4-10  Hydraulic Cylinder Chamber B Pressure Transducer 

Measurement for Zero Speed ............................................. 127 

Figure 4-11  Hydraulic Cylinder Chamber A Pressure Transducer 

Measurement for Zero Reference Signal ........................... 128 



xvii 

Figure 4-12  Kalman Filter Position Filtering Performance ................... 130 

Figure 4-13  Kalman Filter Pressure Filtering Performance ................... 130 

Figure 4-14  Kalman Filter Performance Load Pressure ........................ 131 

Figure 5-1  MATLAB Simulink RTWT Controller of the Pump Controlled 

System ................................................................................ 134 

Figure 5-2  MATLAB Simulink RTWT Controller of the Valve Controlled 

System ................................................................................ 135 

Figure 5-3  Steady State Chamber Pressures ........................................ 137 

Figure 5-4  Steady State Cylinder Position for the Given Offset Pump 

Speeds................................................................................. 138 

Figure 5-5  Friction Test Signal and System Response ........................ 140 

Figure 5-6  Friction Force vs Cylinder Velocity ................................... 142 

Figure 5-7  Mean Friction Force vs Cylinder Velocity ......................... 142 

Figure 5-8  Body Force due to Acceleration ......................................... 143 

Figure 5-9  Step Response of the Pump Controlled System with Dominant 

Desired Closed Loop Pole Located at െ2.2ߨ rad/s............ 145 

Figure 5-10  Step Response of the Pump Controlled System with Dominant 

Desired Closed Loop Pole Located at െ10.2ߨ rad/s ......... 147 

Figure 5-11  Step Response of the Valve Controlled System with Dominant 

Desired Closed Loop Pole Located at െ2.2ߨ rad/s............ 149 

Figure 5-12  Step Response of the Valve Controlled System with Dominant 

Desired Closed Loop Pole Located at െ10.2  rad/s ......... 150 

Figure 5-13  Real System Valve Spool Position Command and Simulink 

Model Spool Position Command ....................................... 151 

Figure 5-14  Pump Controlled System Open Loop Frequency Response 

Test Signal .......................................................................... 154 



xviii 

Figure 5-15 Experimental and Theoretical Open Loop Frequency Response 

of the Pump Controlled System ......................................... 154 

Figure 5-16 Hydraulic Cylinder Position in Open Loop Tests .............. 155 

Figure 5-17  Position Response of Pump Controlled System ................. 157 

Figure 5-18  Detailed View of Position Response of Pump Controlled 

System ................................................................................ 158 

Figure 5-19  Error Between the Measured and Filtered Position Signal 159 

Figure 5-20  Pressure Response .............................................................. 160 

Figure 5-21  Servomotor Response ......................................................... 161 

Figure 5-22  Load Pressure ..................................................................... 162 

Figure 5-23  Magnitude Plot of the Experimental and Theoretical 

Frequency Response of Pump Controlled System with Desired 

Dominant Pole Located at –  rad/s .............................. 163 ߨ5.2

Figure 5-24  Phase Plot of the Experimental and Theoretical Frequency 

Response of Pump Controlled System with Desired Dominant 

Pole Located at –  rad/s ............................................... 164 ߨ5.2

Figure 5-25  Test Signal for Valve Controlled System Open Loop 

Frequency Response ........................................................... 165 

Figure 5-26  Magnitude Plot of the Experimental and Theoretical Open 

Loop Frequency Response of the Valve Controlled System166 

Figure 5-27  Phase Plot of the Experimental and Theoretical Open Loop 

Frequency Response of the Valve Controlled System ....... 167 

Figure 5-28  Valve Controlled System Position Response ..................... 169 

Figure 5-29  Valve Controlled System Error Between the Measured and 

Filtered Position Signal ...................................................... 170 

Figure 5-30  Valve Controlled System Hydraulic Cylinder Chamber 

Pressure Response .............................................................. 171 



xix 

Figure 5-31  Valve Controlled System Load Pressure Response ........... 172 

Figure 5-32  Experimental and Theoretical Frequency Response of Valve 

Controlled System with Desired Dominant Pole Located at 

–  rad/s ......................................................................... 173 ߨ5.2

 

  



xx 

 

 

LIST OF TABLES 

 

 

TABLES 

 

Table 3-1  Hydraulic Oil Properties ......................................................... 38 

Table 3-2  Hydraulic Pump/Motor Unit Properties ................................. 39 

Table 3-3  Hydraulic Actuator Properties ................................................ 40 

Table 3-4  Servovalve Properties ............................................................. 41 

Table 3-5  Pole and Zero Comparison of Reduced and Full Order Transfer 

Functions ................................................................................. 71 

Table 3-6  Pole and Zero Comparison of Reduced and Full Order Transfer 

Functions ................................................................................. 89 

Table 3-7  Numerical Values of the System Parameters .......................... 90 

Table 5-1 Pump Controlled System Step Response Test-1 Data .......... 144 

Table 5-2  Pump Controlled System Step Response Test-2 Data .......... 146 

Table 5-3  Valve Controlled System Step Response Test-1 Data .......... 148 

Table 5-4  Valve Controlled System Step Response Test-2 Data .......... 150 

Table 5-5  Pump Controlled System Frequency Response Test Data .... 157 

Table 5-6  Valve Controlled System Frequency Response Test Data .... 168 

 

  



xxi 

 

 

LIST OF SYMBOLS 
 

 

SYMBOLS 

 
b Viscous friction force coefficient 

k
e   Priori state estimate error 

ke   Posteriori state estimate error 

Lf   Force applied on the load 

ff   Friction force 

 f    Non-linear process model 

g   Gravitational acceleration 

 h    Non-linear observation model 

m   Mass 

Pn   Pump drive speed 

1n   Dynamic drive speed of pump 1, output of the position control 

loop 

2n   Dynamic drive speed of pump 2, output of the position control 

loop 

1on   Offset drive speed of pump 1, output of the pressure control loop 

2on   Offset drive speed of pump 2, output of the pressure control loop 

1tn   Total drive speed of pump 1 

2tn   Total drive speed of pump 2  

  Pressure differential  

  Cap end hydraulic cylinder chamber pressure 

  Steady state cap end hydraulic cylinder chamber pressure 

p

Ap

_A ssp



xxii 

  Steady state cap end side cylinder chamber pressure while 

extending 

  Steady state cap end side cylinder chamber pressure while 

retracting 

  Hydraulic cylinder rod end side chamber pressure 

  Steady state rod end side hydraulic cylinder chamber pressure 

  Steady state rod end side cylinder chamber pressure while 

extending 

  Steady state rod end side cylinder chamber pressure while 

retracing 

  Load pressure 

  Static load pressure 

  Non dimensional load pressure 

  Supply pressure of the valve controlled hydraulic system 

  Sum of the hydraulic cylinder chamber pressures 

  Hydraulic oil tank pressure 

q   Flow rate 

1q   Flow rate through valve orifice opening 1 

2q   Flow rate through valve orifice opening 2 

3q   Flow rate through valve orifice opening 3 

4q   Flow rate through valve orifice opening 4 

Aq   Flow rate entering the cap end side of the hydraulic cylinder 

_A ssq   Steady state flow rate entering the cap end of the hydraulic 

cylinder 

Bq   Flow rate exiting from the rod end side of the hydraulic cylinder 

_B ssq   Steady state flow rate exiting from the rod end of the hydraulic 

cylinder 

aq   Flow rate of a general hydraulic pump input (suction) port 

_ _A ss extp

_ _A ss retp

Bp

_B ssp

_ _B ss extp

_ _B ss retp

Lp

_L sp

Lp

sp

sump

tp



xxiii 

bq   Flow rate of a general hydraulic pump output port 

_a mq   Flow rate of a general hydraulic motor output port 

_b mq   Flow rate of a general hydraulic motor input port 

caq   Compressibility flow losses of a general hydraulic pump/motor 

port a 

cbq   Compressibility flow losses of a general hydraulic pump/motor 

port b 

eaq   External leakage flow losses from hydraulic pump/motor port a 

ebq   External leakage flow losses from hydraulic pump/motor port b 

iq   Internal (cross-port) leakage flow of a general hydraulic 

pump/motor 

tq   Theoretical hydraulic pump / motor flow rate 

2p Aq   Flow rate of the pump 2 outlet port (hydraulic cylinder cap end 

side) 

2p Bq   Flow rate of the pump 2 inlet port (hydraulic cylinder rod end 

side) 

1p Aq   Flow rate of the pump 2 outlet port (hydraulic cylinder cap end 

side) 

Lq   Load flow rate  

Lq   Non dimensional load flow rate 

maxq   Maximum flow rate of the valve 

kq   Kalman filter state vector at time step k 

ˆ
k
q   Priori state estimate vector 

ˆ
kq   Posteriori state estimate vector 

t   Time 

u   Reference valve spool position signal in terms of voltage 

vu   Valve spool position 

maxu   Maximum valve spool position  



xxiv 

extu   State feedback control signal for the extension of the hydraulic 

cylinder 

retu   State feedback control signal for the retraction of the hydraulic 

cylinder 

u   Control input vector 

x   Hydraulic cylinder position 

x   Hydraulic cylinder velocity 

x  Hydraulic cylinder acceleration 

refx   Reference hydraulic cylinder position 

x   State vector 

y   Output vector 

v   Process noise vector 

w   Measurement noise vector 

ow   Valve orifice perimeter  

kz   Discrete output vector 

A   System matrix 

extA   System matrix for the extension of hydraulic cylinder 

retA   System matrix for the retraction of hydraulic cylinder 

  Hydraulic cylinder cap end side area 

  Hydraulic cylinder rod end side area 

B   Input matrix 

extB   Input matrix for the extension of hydraulic cylinder 

retB   Input matrix for the retraction of hydraulic cylinder 

C  Output matrix 

  Valve orifice discharge coefficient 

  Internal leakage coefficient of hydraulic pump 

  Pump internal and external leakage ratio 

AA

BA

dC

iC

RatioieC



xxv 

 Artificial external leakage coefficient of hydraulic cylinder cap 

end side  

  Artificial external leakage coefficient of hydraulic cylinder rod 

end side  

  Equivalent leakages coefficient of the pump controlled system  

  External leakage coefficient of hydraulic pump port a 

  External leakage coefficient of hydraulic pump port b 

D  Feed forward matrix 

PD   Pump displacement 

E   Hydraulic oil bulk modulus 

G   Input matrix in discrete time domain 

H   Measurement matrix in discrete time domain 

I   Identity matrix 

vK   Valve flow gain 

K   State feedback gain vector 

kK   Kalman gain matrix 

extK   State feedback gain vector for the extension of the hydraulic 

cylinder 

retK   State feedback gain vector for the retraction of the hydraulic 

cylinder 

2 _u extK   Linearized valve spool position gain of orifice 2 for extension 

4 _u extK   Linearized valve spool position gain of orifice 4 for extension 

2 _p extK   Linearized valve pressure gain of orifice 2 for extension 

4 _p extK   Linearized valve pressure gain of orifice 4 for extension 

1 _u retK   Linearized valve spool position gain of orifice 1 for retraction 

3 _u retK   Linearized valve spool position gain of orifice 3 for retraction 

1 _p retK   Linearized valve pressure gain of orifice 1 for retraction 

3 _p retK   Linearized valve pressure gain of orifice 3 for retraction 

AextC

BextC

LeakC

eaC

ebC



xxvi 

M   Controllability matrix 

extM   Controllability matrix for the extension of hydraulic cylinder 

retM   Controllability matrix for the retraction of hydraulic cylinder 

k
P   Priori state estimate error covariance matrix 

kP   Posteriori state estimate error covariance matrix 

P   Non dimensional power transmitted to the system over valve 

maxP   Maximum non dimensional power transmitted to the system 

_loss RVP  Non dimensional power lost on the relief valve 

_loss FCVP  Non dimensional power lost on the flow control valve 

  Process noise covariance matrix 

  Measurement noise covariance matrix 

T   Transformation matrix 

extT   Transformation matrix for extension of hydraulic cylinder 

retT   Transformation matrix for retraction of hydraulic cylinder 

AV   Hydraulic cylinder cap end side volume 

BV   Hydraulic cylinder rod end side volume 

   Hydraulic cylinder chambers volume ratio for a fixed cylinder 

position 

   Offset pump speed ratio 

  Hydraulic cylinder area ratio 

   Dynamic pressure change ratio of the hydraulic cylinder 

chambers 

   Non dimensional valve spool opening 

   Hydraulic oil density 

n   Natural frequency 

   Damping ratio 

Φ   Discrete state transition matrix  

   Conversion factor between the hydraulic cylinder chamber 

pressures sum and pump 2 speed 

Q

R





1 

CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Background and Motivations 

The history of fluid power transmission dates back to 1795 where a patent 

was granted for a hydraulic press to transmit and amplify force by using a hand 

pump [1]. In 1850’s there were many other cranes, winches, presses and extruding 

machines utilizing fluid power transmission. However control of these devices was 

open loop. The first closed loop fluid power system was patented by Brown in 

1870, where a mechanical feedback from the rudder to position a valve controlled 

cylinder in a ship steering system [2]. The fluid power technology is boosted in 

1940’s by the demand for automatic fire control systems and military aircraft 

control, till that time the electro hydraulic servo systems appeared and developed 

steadily. 

Today, in most of engineering fields the fluid power transmission is used 

extensively such as in heavy duty industrial robots, presses, mining and 

earthmoving machines, material handling, forestry and agricultural applications, 

manufacturing, construction and so forth. Some of the main reasons why they are 

used so extensively can be given as follows [3, 4]. 

 Comparatively small final actuator size, 

 High power/mass ratio, 

 Ability to apply high forces with high load stiffness, 
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 Easy heat dissipation of moving elements by means of hydraulic oil, 

also it acts as a lubricant, 

 Long operation life even in harsh environments. 

However, there exist many important drawbacks to use hydraulic actuators 

in engineering systems, which can be simply given as, 

 Requirement for a bulky power system with large oil reservoir, 

 Low efficiency, requirement of a constant supply pressure 

depending on application, 

 Leakage, 

 Noise,  

 Environmental risks of the oil, 

 Complex control strategies due to its non-linear nature. 

Most conventional hydraulic control systems are based on valve controlled 

cylinders, in which valves located next to the actuator regulate the flow rate by 

changing their orifice areas. In spite of their high precision and fast dynamic 

behavior, a considerable amount of hydraulic energy is wasted as heat loss to the 

environment due to throttling in control valves, increasing the oil temperature. This 

is an important drawback for hydraulic systems. 

In past, the power efficiency of hydraulic circuits was not an important 

factor; much attention has been oriented to their high system performance. 

However, in recent years, engineering systems are forced to be energy efficient due 

to limited and high-priced energy resources and the increasing environmental 

sense. For this reason, factors like the total energy usage, noise level, amount of oil 

used and oil replacement cost are becoming important performance criteria 

combined with the fast dynamic response. 

Therefore, in today’s hydraulic engineering, the energy efficiency becomes 

an important subject. The basic approach to improve the energy efficiency in 

hydraulic systems is to decrease or eliminate valve losses. To do so, several new 

valve control circuits are developed which utilize programmable valves to decouple 

the incoming and outgoing flow rate of the hydraulic cylinder and control them 
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independently. This new technique has more complex controllers but the added 

control flexibility is used to significantly reduce the fluid power energy [5]. 

However, to eliminate the valve losses completely, the flow should be 

completely regulated according to the load requirements, Thus, the final control 

element of fluid power actuators and drives should be replaced with pumps and 

motors instead of valves. Hence, in energy efficient hydraulic systems, pump 

control techniques became the center of the focus [6]. 

There are mainly two methods to control the flow rate of a pump. In the first 

method, the flow rate is regulated by changing the pump displacement whereas in 

the second one, the flow rate is regulated by changing the drive speed of a constant 

displacement pump. Furthermore, the combination of these two methods that is 

changing the flow rate by both changing the displacement and drive speed of the 

pump can also be used. 

There are many advantages of pump control techniques over the 

conventional valve control technique, which can be given as [7]. 

 improved utilization of energy, 

 use of load and brake energy, 

 smaller oil reservoir, 

 less cooling power required, 

 load independent system behavior, 

 simpler systems, reduced number of interfaces and fittings, 

 low filtration rate in main circuit, 

 less fuel consumption and pollution. 

Besides the numerous advantageous written above, the dynamic 

performance of the pump controlled systems are considered not to have as high as 

the valve controlled systems. This is due to the slow dynamic response of standard 

pumps. However, today with the developing technology, it is possible to have a fast 

dynamic response by utilizing specially designed hydraulic pump/motor units with 

electrical servomotor drives. 



4 

1.2 Literature Survey 

In a conventional valve controlled hydraulic circuit, most of the energy 

transmitted to the system is converted into heat energy as a consequence of 

pressure losses across throttling valves. To decrease the valve losses, there exist 

several solutions utilizing the control of the power source without changing the 

final control element, that is the flow control valve. One way to achieve energy 

efficiency in valve controlled systems is to adjust the flow rate of the pump such 

that no excess flow rate is delivered to the system, in the mean time maintaining a 

constant supply pressure of the valve. These systems are called as "pressure 

compensated systems" and generally a variable displacement pump is utilized to 

regulate the flow rate. 

Other type of energy efficient valve controlled systems is called “load 

sensing systems”. In these systems, the pump flow rate is adjusted such that the 

pressure drop across the flow control valve remains constant independent of the 

load pressure. Variable displacement pumps with a controller inside are utilized in 

these systems and they are favorable in mobile applications where the drive speed 

is constant. Nowadays there are also systems where the flow rate is adjusted by the 

drive speed of a constant displacement pump. These systems are called as "electro-

hydraulic load sensing systems". They are generally used in stationary applications 

and the speed of the electric motor driving a constant displacement pump is 

controlled via a frequency converter [8, 9]. 

Furthermore, different from the control of the power source, a distinctive 

research area appears on the flow control valve itself nowadays. Instead of using a 

typical 4-way valve, four or five cartridge type valves are used to regulate the meter 

in and meter out flow rate of the hydraulic actuator. Here, the "meter-in" stands for 

the flow rate from power supply to the hydraulic actuator, and "meter-out" stands 

for the flow rate from the hydraulic actuator to the hydraulic tank. In this valve 

configuration, different from a typical 4-way flow control valve, the meter-in and 

meter-out flow rates are independent, as there is no mechanical connection between 
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the valve orifice openings, this gives a tremendous control flexibility as well as 

ability to increase the energy efficiency if it is well utilized [5, 10]. 

In a valve controlled hydraulic circuit, whether it is pressure compensated 

or load sensing, the throttling losses are inevitable. To get rid of throttling losses 

completely the valve, as the final element of the hydraulic circuit, should be taken 

out from the circuit. One such circuit can be made up by using variable 

displacement pumps or variable speed pumps. In these circuits, the final control 

element that regulates the flow rate going through the hydraulic actuator is the 

pump itself. By adjusting the drive speed or the displacement of the pump, the flow 

rate going through the hydraulic actuator is fully adapted to the load requirements; 

thus, eliminating the throttling losses.  

Using a pump as the final control element is not a new concept. The 

hydrostatic servomotor control circuits utilize variable displacement pumps. In 

these circuits, the speed and direction of the motor are adjusted by the swash plate 

angle of the variable displacement pump. These type of drives are often employed 

in machine tool control centers, tension control systems, gun turret drive, antenna 

drives, and ship steering systems [11]. In electric-hydrostatic drives, the same 

principle is applied by adjusting the drive speed of a constant displacement pump. 

They are suitable for stationary applications like injection molding machines. The 

position tracking control of the double rod clamping cylinder is accomplished by 

adjusting the speed of an asynchronous AC motor driving a constant displacement 

pump [12]. 

One important property of the hydrostatic systems is the use of symmetric 

actuators. Here, assuming the leakages are compensated, the input flow rate of the 

variable displacement pump or variable speed pump will be equal to the output 

flow rate of the actuator making the control very simple. However if an asymmetric 

single rod cylinder is used as the hydraulic actuator, then the flow entering the 

actuator will not be equal to the flow exiting from the actuator. To overcome this 

problem, a novel symmetric single rod actuator design is presented by Goldenberg 

and Habibi [3]. However, manufacturing of this new design necessitate more 
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precision than the simple single rod cylinder and introduce more manufacturing 

cost. 

To compensate the asymmetric flow rate of a single rod hydraulic actuator, 

hydraulic transformers are utilized. A hydraulic transformer converts an input flow 

at a certain given pressure to an output flow at any other pressure level. Here, the 

product of pressure and flow at the input is equal to the product of pressure of flow 

at the output. It can be compared to an electric transformer where the product of 

voltage and current in principle remains constant [13]. In 1988, Berbuer introduced 

a hydraulic transformer for the volume flow compensation of the single rod 

cylinder. The ratio of the transformer is designed according to the single rod 

cylinder area ratio [14]. 

In 1994, a closed circuit displacement control concept was patented. It 

utilizes a variable displacement pump and a low pressure charge line for 

compensating the difference in volumetric flow through the cylinder [15]. A 2-

position 3-way valve is used to connect the charge line to the low pressure side of 

the cylinder. A similar concept was developed by Ivantysynova and Rahmfeld [7] 

which uses a variable displacement pump with differential flow compensation via a 

low pressure charge line and two pilot operated check valves. This concept is not 

only limited to variable displacement pumps, but also speed variable constant 

displacement pumps can be used. In literature, there are also studies utilizing the 

Rahmfeld’s circuit solution with speed variable pumps [16]. 

Another way to balance the unequal flow rates entering and leaving the 

cylinder volumes is using the two pump control principle. In literature several 

solutions utilizing two pump working dependently or independently for the control 

of single rod cylinder. The pumps can be speed controlled or displacement 

controlled. 

The energy efficiency of displacement controlled and speed controlled 

pump systems are compared by Helduser [17]. In this study, the total power usage 

of a plastic injection machine was measured for one hour experimentally for a 

predetermined duty cycle. It was seen that the speed controlled pump was more 
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energy efficient than the displacement controlled pump system, to due its energy 

saving potential during the idling. 

In the following two papers two variable speed pumps are utilized for the 

position control of a single rod hydraulic actuator. 

Long and Neubert utilized speed variable pumps to implement closed loop 

differential cylinder control [18]. In the control circuit, two compound controlled 

speed variable pumps were used to control the non-symmetric flow of the 

differential cylinder. In their study, they used two control loops one for the control 

of the sum of the hydraulic cylinder chamber pressures, and one for the control of 

the hydraulic cylinder position. The proposed circuit scheme of the control strategy 

is shown in Figure 1-1. The aim of the pressure control loop is to maintain a 

constant hydraulic cylinder chamber pressure sum so that in case of a loading the 

dynamic pressure changes of the cylinder chambers are equal in magnitude but 

opposite in direction. They proposed that the sum pressure control strategy can 

automatically compensate the leakages of the pump and the cylinder and make the 

system have the same technology characteristics as the valve controlled circuit, 

where the sum of the hydraulic cylinder chambers are always equal to the supply 

pressure. However, it should be noted that, in valve controlled circuits, the sum of 

the hydraulic cylinder chambers is equal to supply pressure only when the actuator 

is symmetric. Hence, this is not true for single rod actuators with unequal cylinder 

areas. Long and Neubert used a PI controller for the pressure control loop and PID 

controller for the position control loop. After pressurizing the cylinder chambers 

and setting the position of the cylinder to a fixed value, they applied a 65 bar load 

pressure as a step input, and measured the chamber pressure changes, the chamber 

pressures vary toward opposite direction and with equal amplitude. In dynamic 

state the maximum value of the position error was observed as 2.5 mm while in 

steady state it was 0.6 mm. 

In their latter study related to variable speed pump control circuit, Quan and 

Neubert reduced the double degree of control principle to one, by omitting the 

closed loop pressure control [20]. The new method is based on leakage 

compensation. The leakage flow losses of the system are compensated in an open 
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loop manner, by driving the pumps with offset speeds. They showed 

mathematically that the pressure responses of cylinder chambers to preloading act 

as first order systems, where their time constants are determined by the bulk 

modulus of the oil and the volume of the individual chamber. They concluded that, 

as long as the speed loop is steady, the pressure response of each chamber will be 

steady, the disturbance as the outer load does not affect these time constants. They 

also concluded that the response speeds of the chamber pressures have hardly any 

influence on the controlling process of the position loop. Different from the sum 

pressure control principle, in this single loop circuit, the pressures in each chamber 

changes in opposite direction but not in equal amplitude. Then they presented a 

formula for the pressure changes of the chambers with respect to pump speed 

variations, and concluded that for a certain pump leakage coefficient ratio, the 

pressure change characteristics will be the same as the valve controlled system. 

 

 

 

Figure 1-1 The Circuit Operation and Sum Pressure Principle [19] 
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1.3 Objective of the Thesis 

The main objective of this thesis study is to investigate a valveless hydraulic 

servo system controlled by two independent servo pumps and compare it with the 

conventional valve controlled hydraulic system both experimentally and 

analytically. It is aimed to eliminate the valve losses without conceding from the 

dynamic performance [21]. 

To this end, because one of the objectives is analytical comparison, both 

valve and pump controlled systems are modeled mathematically. The novelty of 

this thesis is the reduced order system modeling. Different from the previous 

researches [18,20], in this thesis study, a transfer function between the hydraulic 

cylinder chamber pressures is derived and it is shown that; the chamber pressure 

changes become linearly dependent above and below some prescribed frequencies. 

Thus, it is possible to derive a second order transfer function defining the open loop 

speed response of the system indicating the system dynamics explicitly. Likewise, 

the same procedure is applied to the linearized valve controlled system equations 

and the two systems are compared mathematically. 

For the objective of experimental comparison, an experimental test set-up 

including both valve and pump control techniques is constructed. A single rod or 

asymmetric hydraulic actuator with unequal cylinder area is utilized in the test set-

up, because it is the most common actuator type in industrial applications due to its 

simple design and lower cost. Furthermore in the experimental test set-up, common 

industrial use low cost sensors and drivers are used. 

The position control of the single rod hydraulic actuator is aimed in this 

thesis study. For this purpose, closed loop linear state feedback controllers are 

designed both for pump and valve controlled systems. The state feedback gains are 

calculated by using the reduced order linear and linearized dynamic system 

equations of the pump and valve controlled systems, for the identical desired close 

loop pole locations. 

The other objective is to attenuate the highly noise on the measurement 

signals due to the low cost measurement system, and estimate the unknown state 
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which is not measured and necessary for state feedback. For this purpose Kalman 

filtering is utilized. A linear Kalman filter is designed for the pump controlled 

system and an Unscented Kalman filter is designed for the valve controlled system. 

The two filters smooth feedback position and pressure signals while estimating the 

unmeasured actuator velocity. 

To compare the performance of the two systems step response and open 

loop and closed loop frequency response tests are conducted on the constructed 

experimental test set-up. 

1.4 Thesis Outline 

This thesis study deals with the modeling, application and comparison of an 

energy efficient variable speed pump controlled hydraulic system with the 

conventional valve controlled hydraulic system. The thesis manuscript has three 

principal parts: the first part deals with the mathematical modelings of the pump 

controlled and valve controlled test systems, the second part deals with the 

controller design and Kalman filter design based on the modeled systems, and the 

third part concerns with the performance tests and the comparison of the two 

systems in term of their dynamic performance. These parts are organized as five 

chapters as summarized below. 

In Chapter 2, some general features of hydraulic systems are investigated. 

Energy losses in the conventional valve controlled hydraulic systems are 

introduced and the proposed energy efficient hydraulic control systems are 

presented. 

In Chapter 3, the experimental hydraulic set-up which consists of a variable 

speed pump controlled system and a valve controlled system is introduced. The 

mathematical model of the two systems are developed and explained in detail.  

In Chapter 4, the state space representations of the pump controlled and 

valve controlled systems are given, and controller designs for the both systems are 

explained. The design of a Kalman filter for the linear pump controlled system and 
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the design of an unscented Kalman filter for the non-linear valve controlled system 

are explained and its details are provided. 

In Chapter 5, the unknown system parameters are found experimentally and 

the mathematical models of the two systems are validated with the test results. A 

series of step response and frequency response tests are performed for both systems 

and compared with their simulation results. At the end of this chapter, the 

performances of two systems are compared. 

In Chapter 6, the whole performed study is summarized, the conclusions 

drawn from the investigations are presented, and the prospects for application and 

further developments are discussed. 
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CHAPTER 2  

 

 

HYDRAULIC POWER SYSTEMS 

 

The subject of this thesis study is to investigate an energy efficient 

hydraulic control system. Thus, to understand the importance of energy efficiency 

in hydraulic systems, it would be useful to discuss the conventional valve 

controlled hydraulic systems before investigating the variable speed pump 

controlled hydraulic systems. For this reason, this chapter is devoted to investigate 

the losses in conventional valve controlled hydraulic systems and introduce the 

solutions to increase the energy efficiency. 

In Section 2.1, the theoretical energy losses in a conventional valve 

controlled hydraulic systems will be investigated. In Section 2.2 the methods to 

increase the efficiency of a valve controlled system and the recently developed 

valve technologies are introduced. In Sections 2.2.2 and 2.2.3, the control 

principles, which eliminate the throttling losses completely by omitting the valve 

and using the pump as the final control element will be introduced. In Section 

2.2.3, several circuit solutions utilizing 2 pump control principle will be discussed 

and the circuit which is the subject of this thesis study is introduced. 

2.1 Conventional Valve Controlled Hydraulic Power Systems 

A conventional hydraulic control system represented in Figure 2-1 consists 

of the following components: 

 Power source, 

 Pump, 
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 Relief valve, 

 Fluid reservoir, 

 Control valve, 

 Actuator 

In the circuit illustrated in Figure 2-1, generally an AC electric motor or an 

internal combustion engine (especially for mobile applications) is used as the 

power source. The motor drives a positive displacement pump. It is a common 

practice to use fixed displacement pumps since they are cheaper than other types of 

pumps. The fixed displacement pump is driven in one direction with constant 

speed; it sucks oil from the oil reservoir and delivers a constant flow rate through 

the hydraulic cylinder. The direction of motion of the hydraulic cylinder and its 

velocity are controlled by a flow control valve, which can be a proportional or 

servovalve. This valve regulates the flow by changing its orifice area. Assuming 

that the pressure drop across the valve is kept constant, there is a linear relationship 

between the flow rate and the orifice area. To retard or decelerate the hydraulic 

cylinder, the orifice area decreases, but this time as the valve resistance increases 

the pump exit pressure increases.  

 

 

Figure 2-1 Conventional Valve Controlled Hydraulic Circuit 
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To have a constant pressure, a pressure relief valve is used at the pump 

outlet. This valve is normally closed, however, when the exit pressure of the pump 

reaches the set pressure of the relief valve, it opens and the excess flow returns to 

the oil tank through the relief valve. By this way, as long as an excess flow rate is 

delivered to the system, the relief valve will be always open limiting the pump exit 

pressure so that it does not affect by the changing valve orifices areas. 

The circuit in Figure 2-1 is called as the "constant pressure (CP) valve 

controlled hydraulic system". The other type of the valve controlled hydraulic 

systems is the constant flow (CQ) systems. In constant pressure systems, the supply 

pressure to the control valve is kept constant whereas, in constant flow systems the 

rate of flow from the source through the control valve is kept constant. Therefore 

the supply pressure of the valve at any instant depends upon the conditions of 

operation at any time in CQ systems. The CP systems are the most popular one in 

hydraulic applications. Because the valve characteristics of CQ systems are highly 

non-linear compared with the CP systems, also with CQ systems it is not suitable to 

drive multi actuators from the same source [11]. 

The following discussion covers the theoretical power losses in simple CP 

valve controlled hydraulic systems. For simplicity, the hydraulic actuator is 

assumed to be double rod with equal areas at each side of the piston and the 

hydraulic servo/proportional valve is assumed to be zero lapped. In a zero lapped 

valve, there is no dead band when the spool is centered. The orifice opening is zero 

for the centered spool position and under constant pressure drop across the valve 

the valve flow gain is constant for every spool position. The hydraulic circuit 

representation of such a system is shown in Figure 2-2. 

In Figure 2-2 only two of the arms are open at any time since the valve is 

zero lapped [11]. When ݑ௩ ൐ 0 (extension of the hydraulic actuator), the 

pressurized oil from the supply passes trough orifice 2 to the hydraulic cylinder 

chamber A, and the oil in chamber B passes through the orifice 4 back to the oil 

reservoir. When ݑ௩ ൏ 0 (retraction the hydraulic actuator), the pressurized oil 

coming from the supply passes through orifice 3 to the cylinder chamber B and the 

oil at chamber A passes through the orifice 1 back to the oil reservoir. This 
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configuration corresponds to a simple series circuit as shown in Figure 2-2 and it 

simplifies the derivation of the characteristic equations. 

 

 

Figure 2-2 Constant Pressure Valve Controlled Hydraulic Circuit 

 

Because the actuator has a double rod with equal areas, the flow rates 

passing through the orifices 2 and 4 for the extension and 1 and 3 for the retraction 

will always be the same. Moreover, because the valve is symmetric the orifice 

resistances are also identical. Therefore, in this series circuit, the pressure drop at 

each orifice will be the same and can be expressed as 
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The hydraulic valve dynamics can be represented by the equations 

presented by Merritt [22]. The flow rate through a servovalve is proportional to the 

square root of the pressure drop across the port and the valve opening. The flow 

rate through the load Lq , is defined as, 

2 2

2
s t L

L d o v d o v

p p p
q C w u p C w u

 
 

    (2.2) 

where, 

dC  represents the orifice discharge coefficient, 

ow  represents the perimeter of the orifice, 

vu  represents the orifice opening which is same as the spool position, 

  represents the hydraulic oil density. 

By taking the squares of each side and rearranging the Eq. (2.2), the 

expression for the load pressure is obtained as 

2
2 2 2L s t L

d o v

p p p q
C w u

 
    

 
 (2.3) 

If Eq. (2.3) is nondimensionalized, the following non-dimensional load pressure 

expression is obtained. 

2
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maxq  is the maximum flow rate, 

_ maxvu  is the maximum valve spool opening. 

By using Eq. (2.4), valve characteristic curves for the constant pressure zero 

lapped valve control circuit can be drawn as in Figure 2-3. 

 

 

Figure 2-3 Valve Characteristic Curves for Different Valve Openings 

 

In Figure 2-3, the nondimensional 1x1 area formed by the non-dimensional 

flow and pressure axes represents the total power supplied to the system by the 

pump. The area formed by drawing perpendicular lines from an arbitrary point A 

on the valve characteristic curve to the non-dimensional pressure and flow axes 
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the point A should be on the curve drawn for maximum non-dimensional valve 

opening; that is, 1  . 

Note that any characteristic curve of a drive whether it is an equivalent 

valve curve or any other, should enclose the load locus completely to perform the 

given operation fully [11]. The load locus is defined as the complete boundary of 

the region of the Lq - Lp  plane that may be swept out by the load during its full 

cycle. It represents the pressure and flow requirement of the load. A load locus 

curve for a fictitious load is drawn in Figure 2-4. 

 

 

Figure 2-4 Valve Losses of a Constant Pressure Valve Controlled Circuit for 
Maximum Energy Efficiency 
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locus should be tangent to the drive curve at one or more points without yielding to 

any excessive points above the drive curve. 

The point of tangency of a fictitious load locus and a valve drive curve is 

represented by point A in Figure 2-4. Now the problem is to determine the 

coordinates of point A which will represent the peak power requirement of the 

fictitious load is equal to the maximum power that can be transmitted by the valve. 

In other words, this point A will represent the maximum theoretical output power 

of an ideal constant pressure supply valve controlled circuit. This can be found by 

writing the non-dimensional power equation transmitted to the load, which is the 

area formed by drawing perpendicular lines to the axis. 

The power transmitted to the load is 

L LP q p  (2.5) 

From the Eq. (2.4) for maximum spool opening 1   Eq. (2.5) becomes, 

 21L LP q q    (2.6) 

If the Eq. (2.6) differentiated with respect to non-dimensional flow Lq  and 

set zero, the nondimensional flow rate required for maximum power output is 

found as follows, 

2

1 0
3
Lq

P     (2.7) 

1

3Lq   (2.8) 

and from Eq. (2.4) the corresponding non-dimensional pressure is found as, 

2

3Lp   (2.9) 

Hence the maximum theoretical nondimensional power output of the CP 

valve controlled system is found to be 

max 0.385L LP q p   (2.10) 
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which is equal to the 38.5% of the total power supplied by the pump to the system. 

The remaining power is lost on the pressure relief valve and the flow control 

valve. The excess flow rate of the pump which is equal to 1 Lq , returns to the tank 

through the pressure relief valve with a nondimensional pressure drop value of 1. 

Then, the power loss on the pressure relief valve can be found as 

_

1
1 1 0.423

3loss RVP
 

    
 

 (2.11) 

The power loss on the flow control valve is equal to the multiplication of 

non-dimensional load flow rate by the non-dimensional pressure drop across the 

flow control valve which can be defined as 

_

1 2
1 0.192

3 3loss FCVP     
 

 (2.12) 

All these losses are represented in Figure 2-4. Area 1 represents the 

maximum theoretical power that can be transmitted to the load. Area 2 represents 

the power loss on the relief valve and the area 3 shows the power loss on the flow 

control valve. 

Note that all these calculations are carried out by assuming a fictitious load 

whose peak power requirement is equal to the maximum power output of the series 

valve circuit. Of course this is an unrealistic assumption as no load runs at its full 

load. The analysis above is to find the efficiency for an instant of time 

corresponding to the maximum power requirement of the load. During the duty 

cycle of the load the efficiency of the hydraulic circuit will be less than 38.5%. For 

example, the load locus of the fictitious load in Figure 2-4 is tangent to the valve 

curve only at one point at A, that is in all remaining times of its duty cycle the 

valve opening ratio  , will be smaller than 1 so that decreasing the overall 

efficiency. 

The overall efficiency of the system not only depends on the load and its 

duty cycle, but also on the nature of the power supply. As it can be understood 

from the Figure 2-4, most of the power is lost on the relief valve, due to the excess 
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flow rate of the pump returning to the oil reservoir. Because the constant 

displacement pump is running at a constant speed there will be always an excess 

flow. However, the requirement of the hydraulic circuit is to obtain a constant valve 

supply pressure independent of the load flow rate. Therefore, while supplying a 

constant pressure, the flow rate supplied by the pump can be adjusted through 

changing its displacement or its driving speed according to load flow rate 

requirement. Theoretically, if the pump flow rate delivered to the system is 

adjusted so that there is no excess flow over relief valve, then at point A the 

maximum power output of the system will be 66.7%. 

Another source of the power loss is the throttle losses on the zero lapped 

flow control valve which corresponds to 19.2% of the total power supplied to the 

system, at the instant of maximum power output. The valve used in the analysis is a 

zero lapped 4-way valve which is modeled as a series circuit, where only two ports 

of the valve remain open at any instant of time. As these two ports are 

mechanically connected, their resistance to flow is the same for any spool 

movement. Thus, half of the power lost is on the meter-in port, which is the port 

where the flow coming from the supply pressure passes through the hydraulic 

cylinder chamber, and the remaining half of the power is lost on the meter-out port 

where the flow coming from the hydraulic cylinder chamber passes through the 

tank. By utilizing mechanically decoupled meter-in and meter-out valves, the 

power lost on the flow control valve can be decreased as their resistance will not 

have to be the same and adjusted independently. 

Remembering that the power loss in hydraulic circuits are absorbed by the 

hydraulic oil, an additional power is lost for the cooling necessities, which also 

increase the amount of the oil used, resulting in a bulky reservoir. 

In the next sub-section, the solutions to power losses in hydraulic systems 

will be discusses in much more detailed manner and the hydraulic circuit which is 

the subject of the thesis will be introduced. 
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2.2 Energy Efficient Hydraulic Power Systems 

There are several methods to increase the energy efficiency of a hydraulic 

circuit. To avoid any confusion, they are classified into three categories. 

 Energy efficient valve controlled systems, 

 Variable displacement pump control systems, 

 Variable speed pump control systems. 

In the first class of systems, the control principle is not changed; still the 

flow rate through the hydraulic actuator is controlled via flow control valve, but the 

system efficiency is increased by modifying circuit components. In the second and 

third class of systems, the control principle is completely changed. The flow rate 

going through the hydraulic actuator is not adjusted via valves, but the pump itself, 

thus eliminating all the throttle losses. In the following sub-section, the techniques 

used to increase the efficiency of valve control system will be discussed, in Section 

2.2.2 the variable displacement pump control circuits will be introduced, and in 

Section 2.2.3 the variable speed pump control circuits will be introduced which is 

the subject of this thesis study. 

2.2.1 Energy Efficiency in Valve Controlled Circuits 

In Section 2.1 it is stated that most of the power supplied to the hydraulic 

system is lost on the relief valve in order to maintain a constant pressure at the 

valve intake. It is also discussed that this lost should be minimized if the excess 

flow passing through the relief valve is reduced by means of regulating the flow 

rate delivered by the pump. 

In order to decrease the power losses on the relief valve, pressure 

compensated variable displacement pumps are used. This system is also referred as 

the "demand flow system" because the pump supplies only the required flow rate to 

minimize the excess flow passing through the relief valve. The schematic diagram 

of this type of pump is shown in Figure 2-5. 
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Figure 2-5 Pressure Compensated Pump [23] 

 

In this system, the pump is running at a constant speed; however, the flow 

rate is adjusted by adjusting the pump displacement. When the pump output 

pressure comes to its regulated pressure, the pump decreases its pump displacement 

and supplies right amount of flow only to maintain the pump output pressure. 

When a flow is demanded by the load, it increases its displacement and supplies 

only the required rate of flow, without changing the pump output pressure. By this 

way, theoretically, the relief valve losses represented by the area 2 of the Figure 2-4 

is eliminated totally, thus the new power losses of the system is only on the flow 

control valve and represented by the dashed area shown in Figure 2-5. 

Another technique to increase the energy efficiency is to use load sensing 

pumps. Like the pressure compensated pump, the load sensing pump delivers only 

the required flow rate by the load but differently the pump output pressure changes 

according to the load pressure. In this system, not the valve supply pressure but the 

differential pressure across the valve is constant. The schematic diagram of load 

sensing pump is shown in Figure 2-6. 

In this system, the load pressure is fedback to the pump compensator. The 

compensator control valve inside the pump adjusts the pump displacement to 

maintain a constant pressure drop across the flow control valve and in the mean 

time delivering the required flow rate. Because the valve supply pressure is not 

constant, but changes to maintain a constant pressure drop over the flow control 
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valve, the power loss on the flow control valve, which was represented by the area 

3 in Figure 2-4, is reduced and represented by the dashed area in Figure 2-6. 

 

 

Figure 2-6 Load Sensing Pump Schematic [23] 

 

There are also electro-hydraulic load sensing systems where the pump 

output pressure and the flow rate delivered to the system are adjusted by changing 

the drive speed of a constant displacement pump. Figure 2-7 shows the circuit 

diagram of an electro-hydraulic load sensing system circuit diagram. 

 

 

Figure 2-7 Electro-Hydraulic Load Sensing System with Constant 
Displacement Pump [8] 
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In Figure 2-7, the pump is driven by an AC asynchronous motor. The drive 

speed of the motor is controlled by a frequency converter according to the feedback 

pressure signals of the load pressure, pump output pressure, and the pump angular 

velocity [8,9]. 

Except for the relief valve, there occurs a considerable amount of power 

loss on the flow control valve itself. In recent years, a new valve technology is 

developed to reduce the power loss on the flow control valve, by mechanically 

decoupling the meter in meter out ports. The schematic diagram of the new valve 

control concept utilizing individual metering is shown in Figure 2-8. In the first 

circuit two 3/3 valves are used and in the second circuit four 2/2 valves are used. 

 

 

Figure 2-8 Individual Meter In Meter Out Valve Control System [24] 

 

In a 4-way valve, the meter-in port and the meter-out port are mechanically 

linked together, so that their resistances to flow are also dependent. But in an 

individual meter-in meter-out valve, all ports are independent giving a control 

flexibility to improve system efficiency by adjusting the port resistances 

independently. For example, while extending the hydraulic cylinder with an 

opposing resistive load, the valve resistance of the meter-in port is adjusted to 

satisfy the velocity and force requirements. However, the resistance of the meter-

out port is adjusted only to deliver the flow back to the oil reservoir. This provides 
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a considerably energy saving as the power loss on the meter-out port will not be the 

same as the meter-in port but lesser. 

The individual meter-in meter-out valve control concept is a developing 

research area; despite its complex control strategy it also allows energy 

regeneration and energy recuperation [24]. 

Note that in all three techniques discussed above, the final control element 

is the valve. Therefore, there is always a throttling loss to regulate the flow rate 

through the actuator. Of course, the most obvious way to get rid of throttling losses 

is not to use valves. In the next sections valveless hydraulic control systems are 

discussed. 

2.2.2 Variable Displacement Pump Controlled Systems 

A variable displacement pump is a positive displacement pump, where its 

displacement therefore the volume swept by the pump in one revolution can be 

changed. Shown in Figure 2-9 are two different types of variable displacement 

pump. The displacement of the vane type pump can be changed by changing the 

eccentricity ratio defined by "e" in the Figure 2-9-a and the displacement of the 

piston pump can be changed by changing the swash plate angle defined by "α" in 

Figure 2-9-b. Generally the variable displacement piston pumps are used in 

hydraulic applications as they are more suitable to work with high pressures. 

 

 

Figure 2-9 Variable Displacement Pumps a) Vane Pump, b) Piston Pump 

a) b) 
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The drive speed of the pump is kept constant; therefore, internal combustion 

engines as well as electric motors can be utilized as the pump driver. This feature 

makes them suitable especially for mobile applications. 

Using the pump as the final control element is not a new concept. The 

variable displacement pumps are generally utilized in hydrostatic transmission 

systems, where the pump drives a hydraulic fixed displacement motor. The speed 

and direction of the motor is adjusted by the swash plate angle of the variable 

displacement pump. A simple circuit diagram of the hydro-static transmission 

system is shown in Figure 2-10, where an auxiliary constant displacement pump is 

utilized to keep a minimum pressure in each line and compensate the leakages of 

the system. 

 

 

Figure 2-10 Hydrostatic Transmission System with Variable Displacement 
Pump Control Technique 

 

Note that if the leakages are assumed to be zero, then the input flow rate of 

the variable displacement pump will be equal to the output flow rate of the actuator. 

This is due to the symmetric geometry of the hydraulic motor. The case will be the 

same if a double rod symmetric actuator is to be utilized as the hydraulic actuator. 
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However, in industrial applications, single rod actuators have a common use 

for space restriction reasons. This kind of asymmetric actuator cannot be controlled 

by a single variable pump without additional devices for balancing unequal flow. 

One solution to use of single rod actuator is presented by Goldenberg and Habibi 

[3]. They designed a single rod actuator, with equal effective pressure area as 

shown in Figure 2-11. As the ingoing and outgoing flow of the actuator is the same, 

the simple hydro-static circuit can be applied to this new type actuator. 

 

 

Figure 2-11 Single Rod Symmetric Linear Actuator [25] 

 

The general use of single rod cylinders in industry is not only for space 

requirements but also for its compact simple design and mostly for its low price, 

however the design of Goldenberg and Habibi is not cost effective due to the 

increased precision of the actuator.  

For the control of a standard asymmetric cylinder Rahmfeld and 

Ivantsysnova proposed a new circuit solution to control a differential cylinder as 

shown in Figure 2-12 [7]. In this circuit the variable displacement pump (1) is the 

final control element, a secondary pressure compensated pump (4) and a hydraulic 

accumulator (5) are used for compensation of the in going and outgoing flow of the 

cylinder chambers on the low pressure side. Two pilot operated check valves (3) 

are used to make sure that the low pressure side of the hydraulic cylinder (2) is 
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always connected to the accumulator. Different from the conventional hydrostatic 

systems, this circuit uses an hydraulic accumulator as an energy storage element. 

When the load is working in motor mode, the low pressure side fills the 

accumulator. 

 

 

Figure 2-12 Displacement Controlled Drive with Single Rod Cylinder in 
Position Control [7] 

 

Using pumps as the final control element offers the most energy efficient 

hydraulic control system, as all the throttling losses in the system are eliminated. 

Rahmfeld compared the energy efficiency of the displacement controlled drive with 

the load sensing system on a excavator. The load sensing system efficiency on the 

excavator was always smaller than 40% while the displacement controlled systems 

maximum efficiency was 70%. 

Different from changing the pump displacement, the pump flow rate can 

also be regulated by changing pump drive speed. Then the same variable 

displacement pump control circuits can be used as the variable speed pump control 

circuits. In the next section, the variable speed pump control will be introduced. 
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2.2.3 Variable Speed Pump Controlled Systems 

The variable speed pump control techniques utilize constant displacement 

pumps. Some types of constant displacement pumps are shown in Figure 2-13. The 

first one in Figure 2-13-is a screw type pump, the second and third one are internal 

and external gear pumps. Generally internal gear pumps are utilized as they are 

more suitable to work with high pressures.  

 

 

Figure 2-13 Constant Displacement Pump Types a) Screw Type, b) External 
Gear, c) Internal Gear 

 

It should be noted that, according to the type of the application, these 

hydraulic pumps should be able to turn into reverse direction without a dead band 

at zero velocity also; hence, in many applications, they are operated under high 

pressure and nearly zero speed. This is a drawback of the speed controlled pump 

systems, because standard pumps are not designed to run around zero speed and the 

pump efficiency in component level around zero speed is very low. For this reason, 

specially designed pumps with equal resistance for the flow rate turning both 

directions should be used. Furthermore, they should be able to work as a hydraulic 

motor. They should not only transmit the energy from the electrical drives to the 

hydraulic system but also should be able to transmit the energy of the hydraulic 

system back to the electrical drives. For example, while braking an inertial load, 

a) b) c) 
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some of the energy is dissipated by friction and the remaining is to be transmitted 

over the pump to an energy storage element like a hydraulic accumulator or to an 

energy dissipation or transformer element like the servomotor drives. 

Different from the variable displacement pumps, as the drive speed of the 

pump is controlled to regulate the demanded flow rate of the system generally 

electrical drives are utilized as the pump drive elements. This is another drawback 

of variable speed pump control systems in mobile applications.  

The variable speed pumps can be utilized in the hydrostatic circuits in place 

of variable displacement pumps. In Figure 2-14, where the hydrostatic circuit of 

Goldenberg and Habibi [15] is shown, a special symmetric single rod cylinder is 

used as the actuator. The circuit is the same with the classical hydro-static circuits, 

except a hydraulic accumulator is utilized to keep a minimum pressure in hydraulic 

lines and compensate the leakages. The hydraulic pump is driven by a 3-phase AC 

electrical motor. A high gain inner loop velocity controller is used for the electric 

motor to alleviate the effect of dead band of the hydraulic system [15]. It has 

demonstrated a high level of performance moving a load of 20 kg with an accuracy 

of 10 µm and a rise time of 0.2 seconds. 

 

 

Figure 2-14 Electro  Hydraulic Actuation System of Habibi and Goldenberg 
with Symmetric Actuator [3] 
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Not only the symmetric actuators but also the asymmetric actuators like 

single rod cylinder can be controlled by speed controlled pumps utilizing the same 

circuit solutions of the variable displacement pumps. However, they are not given 

here in order to avoid repeating similar points. Instead, different circuit 

configurations for the control of single rod hydraulic actuators are discussed below. 

They may be named as two pump control. 

Shown in Figure 2-15 are the possible circuit schemes of two pump control 

method offered by many researchers [26, 19] for the control of asymmetric 

cylinder. The flow deviation of the inlet and outlet cylinder chambers due to area 

ratio is compensated by utilizing a second pump.  

The first two circuit solutions have an open circuit configuration, and the 

last two have a closed circuit solution; that is, the oil returning from the hydraulic 

actuator directly goes through the pump inlet instead of returning to the oil 

reservoir. The open circuit solutions are advantageous to closed circuits, in terms of 

heat dissipation; because, the returning oil to the reservoir can be cooled there. This 

is a desired and mandatory process in valve controlled systems as much of the 

power is used to heat the hydraulic oil; however in pump controlled systems as 

there are no throttling losses cooling the hydraulic oil is not much of interest as in 

the valve controlled case. Furthermore, in the closed circuits proposed not only all 

the flow exiting from the cap end of the cylinder goes through the pump, but some 

of it returns to oil reservoir. 

 

 

Figure 2-15 Two Pump Control Circuit Configurations 
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In Figure 2-15 the 1st and 3rd circuit solutions use one angular rotation 

source to actuate the both pumps, while in the 2nd and 4th circuit solutions use two 

independent drive sources to actuate the pumps. This is a big advantage in 

comparison as the number of power source directly affects the system's cost. 

However, these solutions are proposed both for variable displacement and variable 

speed pump control techniques. In variable displacement pump control technique, 

because the flow rate is adjusted via pump displacement, the actuation of the 

pumps from the same source is not much of interest. However in variable speed 

pump control, this means a reduction in control elements. It should be noted that in 

order to drive a load with a given speed and direction, one pump should deliver 

hydraulic oil to the one cylinder chamber and the other pump should suck hydraulic 

oil from the other cylinder chamber, assuming that they are turning in same 

direction. However, to pressurize the cylinder chambers without moving the load, 

both pumps should deliver hydraulic oil to the cylinder chambers, meaning that 

they should be turning in reverse directions. The 1st and 3rd circuit solution can 

accomplish both of these two missions if a variable displacement pump is used. 

However, they cannot do so if a variable speed pump technique is used as they will 

be forced to turn both in the same and in the reverse direction. Pressurizing the 

cylinder chambers without moving the load is a necessary operation, because to 

move a load one cylinder chamber pressure should is decreased while the other is 

increased. Then, before applying a dynamic load pressure change, two chambers 

should be pressurized at a static equilibrium in order not to be exposed to any 

negative pressure. 

The 2nd and 4th circuit solutions with independent pump actuators remain to 

be convenient for the variable speed pump control technique. In the 2nd circuit 

scheme, the direction and the velocity of the hydraulic cylinder are determined by 

both pumps. However, in the second circuit solution, the velocity and direction of 

the cylinder are determined by only one pump which is connected between the 

cylinder chambers whereas the other pump connected to the hydraulic tank and cap 

end of the cylinder only compensates the flow rate difference due to the area ratio. 

This can be well understood if the cylinder areas are assumed to be constant, then 

without any leakage only the pump connected to both cylinder chambers is to be 
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able to drive the load, resembles the hydrostatic circuit. Furthermore, in the open 

circuit scheme, the two pumps work in 2-quadrant; the direction of flow of the 

pumps change but the direction of load pressure on the pumps are fixed. However, 

in the closed circuit scheme, the pump connected between the two chambers of the 

hydraulic cylinder, work in 4-quadrant while the other pump works in 2 quadrant. 

In this thesis, the closed loop hydraulic circuit solution utilizing two pumps 

with independent actuators (circuit scheme 4) is adopted for the position control of 

a hydraulic differential cylinder. In the next chapter, the constructed test set up is 

explained, the working principle of the circuit and control scheme are presented in 

detail, and the mathematical modeling of the whole system is given in depth. 
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CHAPTER 3  

 

 

SYSTEM MODELING AND SET UP CONFIGURATION 

 

In this chapter a detailed analysis and a description of the physical model of 

the experimental test set-up and its components will be stated. In Section 3.1 the 

test set-up components both for pump controlled and valve controlled system are to 

be introduced. In Section 3.2 the mathematical model of the variable speed pump 

controlled system and in Section 3.3 the mathematical model of the valve 

controlled system is to be obtained. 

3.1 Experimental Test Set-up 

An experimental test set-up is constructed to test the two different; pump 

controlled and valve controlled, control techniques. Because there will be a 

comparison, all the components of the experimental test set up, that is the plant, 

actuators, sensors, hardware and software are kept the same except for the control 

elements. In the valve controlled system, the final control element is the servo 

solenoid valve whereas in the pump controlled system the final control element is 

the variable speed constant displacement pump units. Test set up is constructed in 

such a flexible way that the same load is actuated with the same actuator, but with 

different control element after changing the actuator connections. 

A photograph of the constructed experimental test set-up is shown in Figure 

3-1, and the schematic diagram of the experimental set up is represented in Figure 

3-2. The blue lines represent the variable speed pump controlled circuit, and the 

dashed red lines represent the valve controlled circuit. Switching between the valve 
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controlled and pump controlled circuits are accomplished by changing the coupling 

connections 1, 2, 3. 

In Figure 3-2, it is seen that the variable speed pump control system is 

composed of three main parts; a hydraulic actuator, two constant displacement 

pumps, and two servomotors to drive the pumps independently. The position of the 

differential cylinder is controlled without any throttling elements by adjusting the 

flow rates of the pumps via controlling the drive speeds of the servomotors. Both 

pumps can rotate in both directions, according to the flow need of the system. 

 

 

Figure 3-1 A photograph of the Experimental Test Set-Up 

 

The two check valves shown in Figure 3-2 are for safety reasons of the 

pump controlled circuit. The check valves permit flow in one direction, from tank 

to the cylinder chambers A or B, and block the flow to the opposite direction. In 

normal operation conditions, the check valves remain close as both the hydraulic 
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cylinder chambers are pressurized. In case of an unexpected pressure drop 

(negative pressure) where the pressure differential across the valve is greater than 

the cracking pressure, the check valve opens and a passage occurs between the 

chamber lines A/B and the tank. Thus, the suction of the pump is done through the 

check valve and the possibility of cavitations is prevented. 

 

 

Figure 3-2 Schematic Diagram of the Experimental Test Set-Up 

 

Valve controlled circuit is a conventional common use circuit. It is the same 

that is investigated in Section 2.1 and represented in Figure 2-2. During the valve 

control operation the pumps drive speeds and directions are constant. The two 

pump both suck oil from the tank and deliver flow to the servovalve inlet. In order 

to not to add any additional hoses to the system, the suction of the servo pump 2 is 

kept the same; thus, it sucks oil through the check valve 2. At the pump outlet, 
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there stays a pressure relief valve, it is used to limit the supply pressure of the 

pump. The servo solenoid valve in the circuit serves as the final control element, 

the direction and magnitude of the flow rate going through the hydraulic cylinder is 

controlled by adjusting the servo solenoid valve spool position. 

The experimental test set-up components are, 

 Hydraulic oil, 

 Hydraulic pumps (internal gear pump/motor unit), 

 Hydraulic actuator, 

 Transmission line elements, 

 Load, 

 Servo proportional valve and valve driver, 

 Servomotors and motor drivers, 

 Sensory elements, 

 Computer environment and DAQ card. 

 

Hydraulic Oil 

Hydraulic oil is the main element of a hydraulic system as it serves as the 

power transmission medium. Shell Tellus 37 type mineral hydraulic oil is used in 

the experimental test set up. This oil is chosen due to its general use in most of the 

industrial hydraulic applications because its very low viscosity variation with 

temperature, high shear stability, outstanding anti-wear performance, and oxidation 

resistant and corrosion protection properties. The physical properties of the 

hydraulic oil are listed in Table 3-1. 

 

Table 3-1 Hydraulic Oil Properties 

Manufacturer and type Shell Tellus 37 
Kinematic viscosity at 20 °C  100 mm2/s 
Density at 15 °C  875 kg/m3 
Pour Point -33 °C 
Flash Point 207 °C 
Bulk Modulus 1300 MPa 
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Hydraulic Pump 

Two Bucher Hydraulics QXM series internal gear pumps are used in the 

experimental test rig. The pumps used in this project differ from the standard 

pumps. Due to their symmetric design, these pumps can operate both as a hydraulic 

pump or as a hydraulic motor and direction of rotation is not restricted. This is 

called 4-quadrant operation. Some properties of the hydraulic pump/motor unit is 

listed in Table 3-2. 

 

Table 3-2 Hydraulic Pump/Motor Unit Properties 

Manufacturer and Type Bucher Hydraulics QXM32-016 

Fluids 
HLP mineral oils to DIN51524 
HFB, HFD and HFC fluids to VDMA 24317 

Min. fluid cleanliness level NAS 1638, class 9 or ISO 4406 
Minimum inlet pressure 0.85-2 bar. 
Nominal and Effective 
Displacements 

16 -15.6 cm3/rev 

Maximum Speed 
3900 rpm as a pump 
5500 rpm as a motor 

Continuous / Intermitted 
Pressure 

210 / 250 bar 

Torque 52.0 N.m 

 

Because the pumps can operate both as a pump and as a motor, they are 

named as QXM drive unit by the manufacturer, but throughout the thesis they will 

be named as just "pump". 

 

Hydraulic Actuator 

Due to their compact design, low cost and ease of manufacture in most of 

the industrial applications like presses, injection molding machines, cranes, single 

rod hydraulic actuators are used. In the experimental test set up a differential 

cylinder with an area ratio 1.96 is used. The hydraulic actuator at produced in 

OSTIM Ankara. 

 



40 

Table 3-3 Hydraulic Actuator Properties 

Rod diameter 35 mm 
Piston diameter 50 mm 
Stroke 100 mm 

 

Transmission Line Elements 

The transmission line elements consist of hoses, couplings, and fittings. 

SEMPERPAC 2SNK .DIN 12 ½" W24 X oil resistant synthetic rubber hoses are 

used in the low pressure lines of the hydraulic system. Since elastic hoses may act 

as an accumulator and affect the system dynamics when building up pressure, 

12.mm and 15 mm steel tubes are used in the high pressure lines of the system to 

minimize their effects. 

 

Load 

A steel plate of mass 11.6 kg is used as the load element. However the total 

mass of the load is 12.3 kg if the hydraulic cylinder piston mass is to be added. The 

steel plate is fixed to the hydraulic cylinder via an M16 screw. To restrict the 

rotation of the plate it is supported with two sliders at each end. The cylinder and 

load are positioned in the vertical direction to the ground for the purpose of simple 

construction. 

 

Servo Proportional Valve and Valve Driver 

BOSCH 4WRPH type servo solenoid valve with an electrical position 

feedback is used as the flow control valve. The valve driver is occupied with spool 

position feedback from the servo proportional valve LVDT, and receives its 

reference spool position command and other parameters via an DAQ card interface. 

The valve drive is able to return current spool position and diagnostic information. 

The properties of the servo solenoid valve used in the test set-up are listed in Table 

3-4. The cable connections of the valve driver are given in Appendix D. 
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Table 3-4 Servovalve Properties 

Type 4WRPH 6 C4B24L –2X/G24Z4 /M 
Material no 0 811 404 038 

Nominal Flow Rate 
24lt/min under 70bar valve pressure difference 
(35bar/metering notch) 

Reference Spool Position 
Command 

±10 V 

Working Hydraulic Oil Mineral oil (HL, HLP) to DIN 51524 
Power Supply 24V DC 

 

The valve is a single stage proportional valve; however, the position 

feedback of the valve spool to its drive makes it a high a performance servovalve. 

The bandwidth of the servovalve for 100% spool is given as 70.Hz, the frequency 

response (Bode) diagram of the servo proportional valve is shown in Figure 3-3. 

 

 

Figure 3-3 Servovalve Frequency Response Diagram [27] 

 

The valve used in the experimental set up is a zero lapped valve; this means 

that there exists zero orifice opening when the valve is in center position. 

Therefore, under constant pressure, the differential the valve gain, which is the ratio 

between the input reference spool position voltage and the valve flow rate, is 

constant and does not change with valve spool position. The valve flow gain with 
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respect to spool position under 7.MPa pressure differential is shown in Figure 3-4. 

It is seen that the slope of the line is constant revealing that the valve is zero 

lapped. It should be strictly noted that while finding the valve flow gain, not the 

valve pressure differential but the pressure drop at the orifice, which is half of the 

valve pressure differential for zero lapped valves, should be considered. 

 

 

Figure 3-4 Flow Rate versus Valve Spool Position Signal of the Servo Solenoid 
Valve [27] 

 

Servomotors and Motor Drivers 

TECO 9300 JS DA 30 AC servomotors are used as the pump driver. The 

servomotors are driven with single phase 220.V AC source. The nominal power of 

the servomotor is 1.kW. The servomotor driver has analog velocity or torque 

output. 

 

Position Transducer 

Balluf BTL series contactless linear position transducer is utilized to 

measure the position of the steel plate. The stroke of the transducer is 0-100 mm 
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and the resolution is 10 microns. The transducer has a 0-10 V analog output and the 

supply voltage is 24 V DC. 

 

Pressure Transducer 

Stauff SPT B0400 series pressure transmitters are utilized to measure the 

hydraulic cylinder chamber pressures. The operating range of the transducer is 0-

400 bar and the resolution is 4 bar. The output of the transducer is 4-20 mA. The 

current is converted to 0-10 V analog output via Weidmuller WAS4 series 

converter. The supply voltage of the pressure transducer and current to voltage 

converter are 24 V DC. 

 

Computer Environment and DAQ Card 

MATLAB R2008b and Simulink software is used for modeling and 

controller design purposes. The real time control of the system is performed by 

using the MATLAB xPC Real Time Windows Target module. The discrete solver 

is used in all real time control applications with a sampling frequency of 1,000 Hz. 

National Instruments 6025E type data acquisition card is utilized in the test 

set up. The card has 16 analog input channels and 2 analog output channels. The 

analog input channels of the card are utilized to interface with the pressure and 

position transducer and the analog outputs channels are utilized to interface with 

the servomotor and servovalve drives.  

All the connections of the data acquisition card for valve the valve 

controlled and pump controlled system are shown in Appendix D. 

A SCB 100 shielded connector block with 100 screw terminals is utilized to 

interface between the transducer and drives signal cables and the data acquisition 

card.  

A standard desktop PC is utilized as a target PC. 
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Pressure Relief Valve 

Bucher Hydraulics DVPA 10 HM series pressure relief valve is used to 

limit the pump exit pressure. The pressure range of the relief valve is 10-210 bar. 

The cracking pressure is set with a screw adjuster. 

3.2 Pump Controlled System 

In Section 3.2.1 a brief explanation of the variable speed pump controlled 

system operation is given. In Section 3.2 the mathematical model of the pump 

controlled hydraulic position system is obtained; the steady state characteristics of 

the system is investigated; the relation between the steady state pumps speeds, 

which are required to pressurize cylinder chambers and compensate for the 

leakages, are obtained; the dynamic characteristics of the systems is investigated 

and a transfer function between the second pump speed and hydraulic cylinder rod 

velocity is derived. 

3.2.1 Principle of the Hydraulic Circuit 

Figure 3-5 shows a variable speed pump controlled differential cylinder 

position control system. The system consists of two independent control loops; 

namely, the pressure and position control loops. The inputs to the system are 
refx  

which is the reference position and sump , which is the desired value of the chamber 

pressure sum at steady state given as 

_ _sum A ss B ssp p p   (3.1) 

The pressure control loop is an open loop static process, aiming to 

pressurize the cylinder chambers to a predetermined value and to assure a static 

force balance. At steady state, the cylinder chambers are pressurized to compensate 

for the pump leakages; if not, the hydraulic cylinder will not be stable and move 

freely under any disturbance due to pump leakages. Pump 2 turns in negative 

direction and supply flow to the cylinder chamber B. Some of the oil is compressed 
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to form Bp  and some to compensate the internal and external leakages of the 

chamber B. Pump 1 turns in positive direction some of the flow rate supplies the 

need of pump 2, some of the flow is compressed to form Ap  and remaining is used 

to compensate the leakages of chamber A. 

 

 

Figure 3-5 Variable Speed Pump Control Circuit 

 

It is important to note that the revolutions of pump 1 and 2 are not 

independent. As the static balance of the cylinder is aimed, there exist a ratio   

which completely depends on the leakage characteristics of the system and assures 

a stationary hydraulic cylinder. The definition of   is given as 

1 2o on n  (3.2) 

where 1on  and 2on  represent the offset pump speeds of pumps 1 and 2, 

respectively. Note that since directions of rotations of the pumps is opposite, the   
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constant has a negative value. The other constant in the pressure control loop is   

which determines the relation between desired sum pressure and the pump 2 speed. 

The constants   and   can be found from the system continuity equations at 

steady state. 

The position control loop is a closed loop dynamic process. The position of 

the hydraulic cylinder is measured and feedback to the controller. After comparing 

with the reference position signal the controller creates manipulated input signal 2n  

and sends to the servomotor drivers. 

Assuming all the leakages of the system are compensated, if the hydraulic 

actuator is a double rod actuator having equal cylinder areas, then pump 2 will be 

adequate to control the direction and the velocity of the actuator. However the 

hydraulic actuator used in this thesis study is a single rod differential cylinder, with 

an area ratio greater than one and defined by Eq. (3.3). 

1A

B

A

A
    (3.3) 

Therefore, the output flow of the chamber 2 is not equal to the inlet flow 

rate of the chamber B due to the area difference of the differential cylinder for a 

given cylinder speed. To compensate this asymmetric flow rate, there is a ratio 

between the dynamic pump speeds determined by the area ratio and defined by Eq. 

(3.4) 

 1 21n n   (3.4) 

By this way, pump 2 controls the direction and speed of the actuator while 

pump 1 compensates the asymmetric flow rate due to the difference in areas on two 

sides of the piston. During the extension, pump 1 provides the lacking flow for the 

cap end and during the retraction it absorbs the excess flow of pump 2. 

3.2.2 Mathematical Modeling of the System 

The pump controlled hydraulic position system consists of four main parts: 
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 Hydraulic pumps, 

 Hydraulic differential cylinder, 

 Servomotors, 

 Transmission line elements. 

Here, the mathematical modeling of the hydraulic pumps and the hydraulic 

cylinder is explained in detail. The servomotors are not modeled and are assumed 

to be ideal angular velocity sources, as each has a controller inside and both have 

higher dynamics than the hydraulic system. Furthermore, all hydraulic transmission 

lines are assumed to be lossless and not modeled. However, the hydraulic 

capacitances constituted by the transmission line volumes which affect the 

dynamics of the system heavily, are lumped into the associated hydraulic cylinder 

chamber volumes. The mathematical models of the remaining parts of the system 

are given below. 

3.2.2.1 Pump Model 

Two identical internal gear pumps are used in this application. The pumps 

used in this project differ from the conventional pumps in terms of their symmetric 

design. The inlet and outlet ports are of the same geometry and have equal 

resistance to the flow in both directions. This gives the pumps the ability to operate 

in 4-quadrants. The "4-quadrant" stands for the 4 quarter of the differential pressure

p  versus flow q  plane. Operation in 4-quadrant is an important property as the 

load locus is in 4-quadrants the pumps and the servomotor should be able to 

operate in 4-quadrants. 

Operation in 4-quadrant means that the pump unit can both work as a 

hydraulic pump or a hydraulic motor that is both the high pressure port and the 

flow direction can change. Figure 3-6 represents on the pump how the high and low 

pressure ports and the flow direction changes in the 4-quadrant. 
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Figure 3-6 Hydraulic Pump Operation in 4 Quadrants 

 

In Figure 3-6 the counter clockwise (CCW) rotation of the pump is assumed 

to be positive. The high pressure port is designated with red arrow and the low 

pressure port is designated with blue arrow. The A side (left side) of the pump is 

defined as the outlet and the B side (right side) of the pump is defined to be the 

inlet port. 

 In the 1st quadrant the differential pressure between the inlet and the 

outlet ports of the pump is positive, 0A Bp p p     and the pump 

is running in positive direction, thus the power transmitted to the 

system is positive 0p q    and the pump is working on the pump 

mode. 

 In the 2nd quadrant the differential pressure between the inlet and the 

outlet ports of the pump is positive, 0A Bp p p     but the pump 

is running in negative direction, thus the power transmitted to the 
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system is negative 0p q   , in other words system is doing work 

on the pump and the pump is working on the motor mode. 

 In the 3rd quadrant the differential pressure between the inlet and the 

outlet ports of the pump is negative, 0A Bp p p     and the pump 

is running in negative direction, thus the power transmitted to the 

system is positive 0p q   , and the pump is working on the pump 

mode. 

 In the 4th quadrant the differential pressure between the inlet and the 

outlet ports of the pump is negative, 0A Bp p p     and the pump 

is running in positive direction, thus the power transmitted to the 

system is negative 0p q   , in other words system is doing work on 

the pump and the pump is working on the motor mode. 

 

Flow Losses 

There are factors like temperature, pressure, speed etc. affecting the leakage 

coefficients meaning that machine performance is almost impossible to define in 

general terms [28]. But, in literature, it is seen that simple linear terms may be 

adequate to model the flow losses for systems performance studies. As the flow 

rate of the leakage through its path is generally very small, the leakage flow can be 

assumed to be laminar, and then the leakage flow will only depend on the pressure 

differential. 

The following assumptions are made for modeling the flow losses of a 

pump/motor unit. 

 The flow losses of the pump/motor unit consists of the internal 

leakages, external leakages and the losses due to compressibility. 

 The internal leak leakage of a pump/motor unit is proportional to the 

differential pressure between the inlet and outlet ports. 

 The external leakage flow contains two components. One 

component of the external flow is from high pressure side to the 

pump casing and the remaining part of the external leakage is from 



50 

low pressure side of the pump to the pump casing. The pressure 

inside the casing is negligible. 

According to the assumptions given above, the losses in a pump/motor unit 

can be expressed as below. 

iq :  Internal (cross-port) leakage flow 

eaq , ebq : External leakage flow losses from high and low pressure sides 

to the casing 

caq , cbq : Compressibility flow loss at the high and low pressure side 

These loss terms are represented in Figure 3-7 on a hydraulic pump and a 

hydraulic motor separately. The tq in the figure is the theoretical flow rate. 

 

 

Figure 3-7 Representation of Flow Losses in Hydraulic Pumps and Motors 
[28] 

 

From Figure 3-7 the flow continuity equations are written in terms of flow 

rates for the hydraulic pump at its outlet port  

a t i ea caq q q q q     (3.5) 
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b t i eb caq q q q q     (3.6) 

for the hydraulic motor at its inlet port 

_a m t i ea caq q q q q     (3.7) 

and at its outlet port 

_b m t i eb caq q q q q     (3.8) 

The theoretical or ideal flow tq , is caused by gear displacement as defined 

by the ideal equation, 

t P pq n D  (3.9) 

It was assumed that the internal leakage is proportional to the differential 

pressure across the ports 

 i i a bq C p p   (3.10) 

The external leakages will be proportional to inlet or outlet port pressure 

when the drain pressure is neglected. 

ea ea aq C p   (3.11) 

eb eb bq C p   (3.12) 

The flow loss due to compressibility of the hydraulic fluid is modeled as 

follows. 

p a
ca

D dp
q

E dt
  (3.13) 

p b
cb

D dp
q

E dt
  (3.14) 

Where pD  
is the pump displacement; and since it is very small with respect 

to transmission lines and cylinder chamber volumes, the compressibility losses can 

be neglected and lumped into the transmission lines and the cylinder. 

From the flow continuity Eqs. (3.5) to (3.8), written for the hydraulic pump 

and hydraulic motor, it seems that two different formulation should be written for 
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the internal gear pump unit whether it is operating in pump mode or motor mode. 

However if the flow continuity equations are written in terms of port pressures, 

then the signs of the coefficients will automatically be corrected, regardless of 

pump mode or motor mode. Of course to do so, the inlet and the outlet ports of the 

pump unit should be defined and fixed. 

As shown in Figure 3-5, the counter clockwise rotation of the pumps are 

assumed to be positive. Then, for pump 1, the port connected to the cap end of the 

hydraulic cylinder (chamber A) is defined as the inlet port and the port connected 

to the hydraulic tank is defined as outlet port and for pump 2, the port connected to 

the rod end of the hydraulic cylinder (chamber B) is defined as the inlet port and 

the port connected to the cap end of the hydraulic cylinder (chamber A) is defined 

as the outlet port. 

Neglecting the compressibility losses in the pump displacement volume and 

assuming that the internal leakage flow coefficients of the pumps are the same, 

since the two pumps used in the test set up are identical; the flow continuity 

equations for the pump/motor units can be expressed as 

for the outlet (A side) port of pump 2, 

 2p A P p i A B ea Aq D n C p p C p     (3.15) 

for the inlet port (B side) port of pump 2, 

 2p B P p i A B eb Bq D n C p p C p     (3.16) 

for the outlet (A side) port of pump 1, 

1p A P p i A ea Aq D n C p C p    (3.17) 

Note that these equations from Eq. (3.15) to Eq. (3.17) are valid in 4-

quadrants, the signs of the coefficients do not change according to the working 

mode pump or motor. The terms Ap  and Bp  represent the hydraulic cylinder cap 

end side and rod end side chamber pressures not the high and low pressure ports of 

the hydraulic pump/motor. 
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In Figure 3-8, a positive 1p Aq  stands for a flow rate delivered by the pump 1 

to the cap end side of the hydraulic cylinder (chamber A). A positive 2p Aq  stands 

for a flow rate delivered by the pump 2 to the hydraulic cylinder chamber A, and a 

positive 2p Bq  stands for a flow rate sucked by the pump 2 from the hydraulic 

cylinder chamber B. 

 

 

Figure 3-8 Flow Rates of the Hydraulic Cylinder and Pumps 

 

According to the formulation defined from Eq. (3.15) to Eq.(3.17) , a linear 

model of the two pumps are formed in MATLAB Simulink environment. The 

model is shown in Figure 3-9. 
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Figure 3-9 MATLAB Simulink Model of the Hydraulic Pump/Motor Unit 

 

The input to this Simulink sub-system is the pump drive angular velocity in 

terms of revolution per second [rps] and the output is the pumps' inlet and outlet 

flow rates in terms of [mm3/s]. Note that no torque losses are mentioned in the 

pump model because servomotors are assumed to be ideal angular velocity sources 

as they have an inner control loop. 

The leakage coefficients of the pumps can be determined through an 

experimental study by measuring the inlet and outlet flow rates under a known 

pressure differential. In this study, due to the lack of flow meters, the leakage 

coefficients are not found experimentally and but their values on the 

manufacturer’s manual are used instead. However, in the open loop tests, it is seen 

that the real system response is not consistent with the modeled system response 

due to the incorrect values of the leakage coefficients. For this reason, the leakage 

coefficients are found indirectly by using the steady state chamber pressure 

response of the test set up. 

3.2.2.2 Hydraulic Actuator Model 

As there are a lot of hydraulic actuator models in literature, the hydraulic 

cylinder model is given below without going in its details. 

The assumptions used to model the hydraulic cylinder are 
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 The leakage coefficient between the two chambers of the hydraulic 

cylinder is laminar flow and it is proportional with the differential 

pressure between them. Note that, in the mathematical model of the 

overall system, the cylinder leakage coefficient will be coupled with 

the pump internal leakage coefficient. As the pump leakage 

coefficient is expected to be much higher than the cylinder leakage 

coefficient, it can be neglected. 

 The friction force between the hydraulic cylinder and the piston 

sealing is assumed to be proportional with the cylinder velocity. 

Only viscous friction is included in the system linear model. The 

frictional characteristics of the system are found experimentally. 

 The hydraulic piston is assumed to be a distinct load and lumped 

into the mass which is connected to the hydraulic cylinder. 

 The chamber volumes are assumed to be constant in linear 

mathematical model. However in the MATLAB Simulink model, 

the chamber volumes are changing proportional to the cylinder 

position. 

In the hydraulic actuator model the hydraulic cylinder chamber A (cap-end) 

is assumed to be inlet and the hydraulic cylinder chamber B (rod-end) is assumed 

to be the outlet. Thus, the upward movement of the cylinder is assumed to be 

positive. In Figure 3-8, the positive flow rate Aq that is entering the chamber A, and 

the positive flow rate Bq  that is leaving the chamber B are shown. 

The continuity equations for the hydraulic cylinder chambers can be written 

as 

A A
A A

V dp
q A x

E dt
    (3.18) 

B B
B B

V dp
q A x

E dt
    (3.19) 

and the load pressure is defined as 

 A A B B B A Bp A p A A p p    (3.20) 
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L A Bp p p   (3.21) 

Then, the force transmitted to the load will be expressed by the equation, 

L L Bf p A   (3.22) 

The MATLAB Simulink model of the hydraulic actuator is represented in 

Figure 3-10. The inputs to this sub-system are the flow rates of the inlet and outlet 

ports of the pump 1 and pump 2 in terms of [mm3/s] and the outputs of the sub-

system are the chamber A and chamber B pressures Ap , Bp  in terms of [MPa] and 

the load force Lf  in terms of [N].  

 

 

Figure 3-10 MATLAB Simulink Model of the Hydraulic Actuator 

 

In the MATLAB Simulink model of the system, the hydraulic cylinder 

chamber volumes are not constant but changing with the hydraulic cylinder 

position. In fact, this does not affect the simulation results much as the dead 

volume due to the transmission lines are much more than the volume change due to 

the cylinder position. Hydraulic cylinder chamber volume models in MATLAB 

Simulink environment are given in Figure 3-11. The common input of both sub-

systems is the hydraulic cylinder position, x , in terms of [mm], and the outputs of 

the sub-systems are the chamber volumes AV , BV  in terms of [mm3]. 
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Figure 3-11 MATLAB Simulink Model of the Hydraulic Cylinder Chamber 
Volumes 

 

3.2.2.3 Load Model 

The test system load can simply be thought as a mass-damper system. The 

mass consists of the hydraulic piston and the steel plate attached to it, and 

represented by m . The friction force which is assumed to be viscous constitutes the 

damping part of the load and the viscous friction coefficient is represented by b . 

The friction force acting on the load is highly non-linear. However to have a 

linear model, there assumed to be viscous friction between the hydraulic cylinder 

and piston sealing. The friction is not a parameter that can be measured directly or 

specified by manufacturer. In this thesis, the friction characteristics of the hydraulic 

cylinder is determined through an experimental procedure by measuring the 

hydraulic cylinder chamber pressures. 

After modeling the system as a mass-damper system, the structural equation 

for the load by using the Newton’s 2nd law, can be written as, 

Lf mx bx mg     (3.23) 

The mg  term in Equation (3.23) represents the weight of the hydraulic load 

consisting of the steel plate and the hydraulic cylinder piston. It is not included in 

the dynamic analysis of the system. 

The overall MATLAB Simulink model of the pump controlled hydraulic 

system is given in Figure 3-12. The inputs to the pump controlled hydraulic system 

are the pump 2 speed 2n , in terms of [rps] and the set pressure setP , in terms of 
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[MPa], which is the desired sum of the chamber pressures. The output of the 

system is the cylinder position, y in terms of [mm]. 

 

 

Figure 3-12 MATLAB Simulink Model of the Overall System 

 

Note that there is a single control input to the system which is the pump 2 

speed. The pump speed 1 is determined according to this speed. The relation 

between these two pump speeds will be explained in the following sections. 

3.2.3 Steady State Characteristics of the System 

In Section 3.2.1, it is explained that there should be offset pump speeds 1on , 

2on  to pressurize the cylinder chambers. The offset speeds of the pumps are 

adjusted to compensate the leakage flows; so that the hydraulic cylinder is not 

moving but is stationary. Thus, at steady state, the system can be thought as a 

simple resistance which is a function of the internal and external leakages 

coefficients, the input to the system is the ideal flow rate generated by the two 

pumps revolutions and the output is the chamber pressures of the hydraulic 

cylinder. This simple resistance analogy of the system is shown in Figure 3-13. 

At steady state, the two chamber pressures Ap  and Bp are not independent 

variables, for the zero loading case the from the Eqs. (3.20) (3.22) and (3.23), the 

relation between the chamber pressures is; 
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_ _ _L s A ss B ssp p p   (3.24) 

where _L sp term stand for the static load pressure which is caused by the mass of 

the hydraulic cylinder and the load. It is equal to; 

_L s
B

mg
p

A
  (3.25) 

 

 

Figure 3-13 Electrical Analogy of the Pump Leakage Flow Rates 

 

Note that, according to Eq. (3.24), as the chamber pressures are not 

independent at steady state, there should be a single pressure output of the 

resistance circuit shown in Figure 3-13 and it is selected as the sum of the chamber 

pressures. Sum pressure is expressed as. 

_ _sum A ss B ssp p p   (3.26) 

Likewise there should be a single input, that is the pumps speeds must be 

dependent otherwise the hydraulic cylinder will not be stationary and the flow rate 

supplied by the pumps will not only compensate the leakage flows, but moves the 

cylinder upwards or downwards. 

From Eq. (3.24) and Eq. (3.25), the steady state chamber pressures can be 

written in terms of static load _L sp , pressure and sum pressure sump  as follows, 

_
_ 1

sum L s
A ss

p p
p







 (3.27) 
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_
_ 1

sum L s
B ss

p p
p








 (3.28) 

At steady state, the compressibility term in the flow continuity equation of 

the hydraulic cylinder chamber B drops and Eq. (3.19) becomes, 

_ 0B B
B ss B

V dp
q A x

E dt
     (3.29) 

From continuity, as there are no flow losses at the transmission lines the 

flow rate exiting the cylinder chamber B, is equal to the flow rate entering the 

hydraulic pump 2 which is defined by Eq. (3.16) 

_ 2B ss p Bq q  (3.30) 

 2 _ _ _0 P o i A ss B ss eb B ssD n C p p C p     

 2 _ _P o i A ss i eb B ssD n C p C C p    (3.31) 

Substituting Eq. (3.27) and Eq. (3.28) into Eq. (3.31), the relation between 

the pump 2 speed and the sum pressure becomes 

 
   2 _

1 2

1 1
i eb i eb

o sum L s
P p

C C C C
n p p

D D

 
 

  
  

   (3.32)
 

For the hydraulic cylinder chamber A at steady state, the flow rate defined 

by Eq (3.18), the compressibility terms will drop and this equation becomes, 

_ 0A A
A ss A

V dp
q A x

E dt
     (3.33) 

From continuity, this flow is equal to the sum of the output flow rates of the 

pump 1 and the pump 2, defined by the equation, 

_ 1 2A ss p A p Aq q q   (3.34) 

   1 _ 20 _ _ _0 P o i ea A ss P i A ss B ss ea A ssD n C C p D n C p p C p             

 1 2 _ _2 2P o P o ea i A ss i B ssD n D n C C p C p     (3.35) 
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Substituting Eq. (3.27) and Eq. (3.28) and Eq. (3.31) into Eq. (3.35), the 

relation between the pump 1 speed and the sum pressure becomes 

   1 _

2 2

1 1
ea eb i i ea eb

o sum L s
P p

C C C C C C
n p p

D D


 

   
 

 
 (3.36) 

Note that if the static load pressure is neglected due to the low mass, then 

the ratio between these two offset speeds defined can be found by using Eq.(3.32) 

and Eq.(3.36) , 

 
1

2

2

1
o i ea eb

o i eb

n C C C

n C C




 
 

  
 

 (3.37) 

Note that the constant  is a negative value that is the pumps rotate in 

opposite direction with respect to each other. To pressurize the cylinder chambers 

pump 2 turns in CW direction (negative), while the pump 1 turns in CCW direction 

(positive). 

The relation between the desired sum pressure and the offset pump 2 speed 

is obtained from Eq. (3.32) as 

 
 2

1

1
i eb

o sum sum
P

C C
n p p

D

 


 
   


 (3.38) 

 
 

1

1
i eb

P

C C

D

 


 
  

  (3.39)
 

3.2.4 Dynamic Characteristics of the System 

In this section, a general transfer function between the input pump 2 speed 

and the output cylinder position is obtained. The formulation is the same as the 

steady state analysis but this time, flows due to the rod movement and 

compressibility is added to the continuity equations defined by Eq. (3.30) and 

Eq..(3.34). 
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For the rod end side of the hydraulic cylinder if the continuity equation is 

written by using Eq. (3.19) and Eq. (3.16), 

2B p Bq q  (3.40) 

 2
B B

B P i A B eb B

V dp
A x D n C p p C p

E dt
       (3.41) 

For the cap end side of the hydraulic cylinder if the continuity equation is 

written by using Eq. (3.15), Eq. (3.17) and Eq.(3.18), 

1 2A p A p Aq q q   (3.42) 

   1 2
A A

A P i ea A P i A B ea A

V dp
A x D n C C p D n C p p C p

E dt
         (3.43) 

Note that the pump speeds 1n and 2n written in Eq. (3.41)and Eq. (3.42) are 

the manipulated input speed signals generated from the position control loop. The 

offset speeds are not included to the formulation, because they are static and do not 

affect the dynamic behavior of the system. Also it should be pointed out that the 

pump speeds 1n and 2n  are not independent; due to the area difference there should 

always be relation as explained in Eq. (3.4) in Section 0. 

 1 21n n   (3.44) 

If Eq.(3.3) and Eq.(3.44) are substituted into Eq.(3.41) and Eq. (3.43), then 

rearranged the continuity equations can be written in s-domain as, 

       2
B

P B i A i eb B

V
D N s A sX s C P s s C C P s

E
      
 

 (3.45) 

       2 2 2 A
P B i ea A i B

V
D N s A sX s C C s P s C P s

E
            

 (3.46) 

From Eq. (3.20), Eq. (3.22) and Eq. (3.23) the force balance on the load 

gives, 

       A B BP s P s A ms b sX s       (3.47) 
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The two continuity and the one structural equations, Eq. (3.45), Eq. (3.46), 

Eq..(3.47), written above are the general equations that defines the overall variable 

speed pump controlled system dynamics. Arranging these three equations, the 

transfer function between the drive speed of pump 2 and the hydraulic cylinder rod 

velocity can be written as follows, 

 
 

1 2
3 2

2 1 2 3 4

V s a s a

N s b s b s b s b




  
 (3.48) 

where 
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 

  




 

   

  

 

    



    

         

        

 

Here the term   represents the hydraulic cylinder chambers volume ratio 

for a predetermined fixed position, 

A

B

V

V
   (3.49) 

Since the order of the denominator is three and cannot be written in factored 

form, it is very hard to interpret how the system parameters affect the roots of the 

characteristic equation. However, if the numerical values of the system parameters 

are used in this transfer function it will be seen that the system has a zero and a 

pole next to each other. This is due to the chamber pressure relations. By writing an 

appropriate relationship between the dynamic pressures changes of the cylinder 

chambers the order of the system can be reduced by one. 
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Note the relationship between Eq. (3.45) and Eq. (3.46), it is seen that left 

hand sides of the equations are proportional with the area ratio  . From these two 

equations if Eq. (3.45) is multiplied by   and subtract from Eq. (3.46) the relation 

between the hydraulic cylinder chambers pressures can be written as follows, 

 
 

 
 

1

2 2

B
i eb

A B
A

i ea

V
C C s

EP s P s
V

C C s
E

  



  
 

  
 (3.50) 

It is strictly noted that in the above equation, AP  and BP  terms are the 

dynamic pressure changes of the hydraulic cylinder chambers under an applied 

load. It does not represent the magnitude of the real pressure in the cylinder 

chambers. The real pressure is the sum of the steady state pressures due to the 

offset pump speeds plus the dynamic pressure change due to loading. 

Eq. (3.50) implies that for the specific volume ratio and leakage coefficients 

if the time constants of the numerator and the denominator are identical then the 

relation between the chamber pressure changes will be linearly dependent and can 

be represented as, 

   A BP s P s   (3.51) 

where the dynamic pressure change ratio is, 

 
 

1

2 2
i ebB

A i ea

C CV

V C C

 



 

 
 

 (3.52) 

To satisfy this condition, the external and internal leakages of the pumps 

have to be adjusted, however this is practically impossible. For this reason one way 

to hold this condition is to add external leakage paths to the transmission lines. In 

Figure 3-14, the pump internal and external leakages paths are represented with the 

additional external leakage paths to the transmission lines. 

As it can be understood from Figure 3-14 the additional external leakage 

paths are parallel to the external leakage paths of the pumps. Therefore, nothing 
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will be changed if the following replacements defined by Eq. (3.53) are made in the 

formulations, 

2 2ea ea Aext

eb eb Bext

C C C

C C C

 

 
 (3.53) 

 

 

Figure 3-14 Representation of the Hydraulic Pump Leakages with Additional 
External Leakages 

 

The desired values of the additional external leakage coefficients AextC , BextC

, so that the condition defined by Eq. (3.51) holds, can be found by equating the 

time constants of the numerator and denominator of the transfer function defined 

by Eq. (3.50). 

     1 2 2i eb Bext i ea Aext

B A

C C C C C C

V V

E E

  



     
  (3.54) 
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Taking the external leakage coefficient on line B, 0BextC  , the resulting 

AextC  is,

 
    1 2 2A

Aext i eb i ea
B

V
C C C C C

V
  


       (3.55) 

When the condition defined by Eq. (3.51) holds, and the order of the 

transfer function between the drive speed of pump 2 and hydraulic cylinder rod 

velocity reduces from 3 to 2, then a much simpler and understandable transfer 

function can be derived by using Eq. (3.45), Eq. (3.46), Eq. (3.47) and Eq. (3.51). 

The derivation of the reduced order transfer function between the drive speed of 

pump 2 and hydraulic cylinder rod velocity is given in the Appendix A in detail. 

Below, the second order transfer function defining the open loop velocity response 

of the hydraulic cylinder to the pump 2 speed is given, 

 
 

 
 

2

2 2 2

P B

B B
Leak Leak B

D AV s

V VN s
m s b mC s bC A

E E

 

 
 




      
 

 (3.56) 

where 

    2 2

1
i ea eb

Leak

C C C
C

       


    



 (3.57) 

stands for the equivalent leakage flow coefficient of the pump and the parameter   

represents the assumed dynamic pressure change ratios of the hydraulic cylinder 

chambers, defined by Eq. (3.52). 

Note that the 2nd order transfer function defined by Eq. (3.56) is identical to 

the 3rd order transfer function defined by Eq. (3.48). Because after adding an 

external leakage to the system defined by Eq.(3.57), one of the roots of the 

denominator of the 3rd order transfer function becomes equal to the root of its 

numerator and reduces to a 2nd order transfer function. 

The transfer function defined by Eq. (3.56) is more meaningful, than the 

transfer function defined by Eq. (3.48). This second order transfer function can be 

used to understand the dynamic behavior of the system. The natural frequency and 
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the damping ratio of the variable speed pump controlled hydraulic system can be 

written as, 

 2 2
Leak B

n
B

bC A
E

m V

 




 
  (3.58) 

 

  2 2

1

2
B

Leak

B Leak B

b VE
mC

Em V bC A




  
   
  

 (3.59)

 
It is seen that the equivalent leakage resistance term leakC  increases the 

natural frequency and damping of the system. Then after adding external leakage 

paths on the transmission lines the system becomes faster as it will increases the 

equivalent leakage flow coefficient leakC  so that the natural frequency of the 

system. However, it should be remembered that the additional leakage paths 

decreases the efficiency of the system due to the throttling losses. Another 

important factor which determines the natural frequency of the system is the 

hydraulic cylinder chamber volumes. Different from the valve controlled hydraulic 

systems, where the valve is mounted next to the cylinder, in the pump controlled 

system there are transmission lines between the pump inlet/outlet and cylinder 

inlet/outlet. From the equations above, it is seen that the dead volume of these 

transmission lines decreases both the natural frequency and the damping ratio. 

Lastly, the term 2   appearing in the above equations indicate that increasing 

the area ratio and dead volume ratio, increases the natural frequency of the system 

while decreases the damping ratio. 

The equivalent block diagram representation of the open loop position 

response of the variable speed pump controlled system is given below in Figure 

3-15. 

Mathematically adding an external leakage element to the system with a 

pre-determined value is simple, but practically this does not seems rational. 

Furthermore, this additional leakage element reduces the energy efficiency of the 

system. 
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Figure 3-15 Block Diagram Representation of the Open Loop Position 
Response of the Variable Speed Pump Controlled System 

 

If the frequency response of the transfer function between the dynamic 

pressure changes of the hydraulic cylinder chambers    /A BP s P s , which is 

defined by Eq. (3.50) is plotted, it will be seen the relation is linear below and 

above some predetermined cut off (corner) frequencies. For simplicity, the dynamic 

pressure change relation is written in a standard first order transfer function form. 
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where 
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 (3.61) 

If the frequency response of this first order transfer function defining the 

dynamic chamber pressure change relation is investigated, it is seen at low 

excitation frequencies ሺ߱ ՜ 0ሻ the dynamic pressure change ratio is equal to the 

open loop gain OLK  which is fully determined by the pump leakage coefficients. At 

higher excitation frequencies ሺ߱ ՜ ∞ሻ, the dynamic pressure change ratio is equal 
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to the ratio of time constants which is fully determined by the hydraulic cylinder 

volumes and area ratio. For the frequencies between the cut off frequencies, which 

are determined by 1T  and 2T , the dynamic pressure change ratio will be determined 

by both leakage flow coefficients and hydraulic cylinder volumes together with the 

area ratio. 

From the investigation above, it can be concluded that, for low excitation 

frequencies the hydraulic oil tends to leak out and the leakage flow coefficients 

determines the change of chamber pressures, while for high excitation frequencies 

the hydraulic oil tends to compress and the hydraulic cylinder chamber volumes 

determines the change of chamber pressures. The frequency response of the 

dynamic pressure change ratio is plotted in Figure 3-16 by using the numerical 

values defined in Table 3-7. 

 

 

Figure 3-16 Pump Dynamic Chamber Pressure Change Relations 
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It is seen that at low excitation frequencies ሺ߱ ՜ 0ሻ the dynamic pressure 

changes ratios of the cylinder chambers are 13.17 dB (magnitude 4.55) which is 

equal to the gain OLK  of the transfer function (Eq.(3.61)), and at higher frequencies 

   that are larger than 3 Hz, the dynamic pressure change ratio drops to 

0.39dB (magnitude 1.05) which is equal to the / /B AV V      value. 

Practically this means that under a sinusoidal dynamic loading whose 

frequency is higher than 3 Hz, to compensate the dynamic load pressure, the 

chamber pressure Bp  will reduce p  value from its steady state value, while the 

chamber pressure Ap  will increase 1.05 p  value from its steady state value. Thus 

the order of the position control system will reduce from 4 to 3 as the chamber 

pressures become linearly dependent.  

Therefore, it will be a reasonable assumption to use the linear dynamic 

pressure change relation A Bp p   instead of adding an additional leakage path 

to the system. Because, the inertial effects of the load on the chamber pressures are 

very small and negligible for low excitation frequencies,   value should be 

calculated for higher excitation frequencies ሺ߱ ՜ ∞ሻ. Then, the linearly dependent 

chamber pressure relation is equal to the ratio of time constants and written as 

follows, 

1

2

B

A

T V

T V


  

 (3.62)
 

To verify the linear dynamic pressure change assumption the numerical 

values of the system defined in Table 3-7 will be used. Below in the first row of 

Table 3-5, the poles and zeros of the general 3rd order transfer function defined by 

Eq. (3.48) between the drive speed of pump 2 and hydraulic cylinder rod velocity 

are given. In the remaining rows, the poles of the reduced 2nd order transfer 

function defined in Eq.(3.56) between the drive speed of pump 2 and hydraulic 

cylinder rod velocity for different   values are given. 
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Table 3-5 Pole and Zero Comparison of Reduced and Full Order Transfer 
Functions 

 Poles Zeros Error Between  
the poles of 
3rd order TF and 
2nd order TF 

General 3rd order TF 
 

-120.02 +1874.63i 
 -120.02 -1874.63i 
 -6.9582 

-6.9588 

Reduced 2nd order TF 

1.047B

A

V

V


    

-120.02 +1874.63i 
 -120.02 -1874.63i 

0 0.00047+0.0030i 

Reduced 2nd order TF 
4.555K    

-119.21 +1874.59i 
 -119.21 -1874.59i 

0 0.81359+0.0368i 

Reduced 2nd order TF 
2   

-119.58 +1874.61i 
 -119.58 -1.874.61i 

0 0.44623+0.01878i 

 

From Table 3-5, it is seen that third pole and zero of the general 3rd order 

transfer function are very close, canceling each other, and the remaining complex 

conjugate pole pairs are very close to the pole pair of the reduced second order 

system. Furthermore, the error between the third order transfer function poles and 

second order transfer function poles are much smaller if the dynamic chamber 

pressure change ratio,  , is determined for higher excitation frequencies. 

3.3 Valve Controlled System 

In the valve controlled system, the load and the hydraulic actuator are the 

same with the pump controlled circuit. As the mathematical models for the 

hydraulic actuator and the load are derived in Section 3.2.2, they will not be 

modeled again. Additionally, the mathematical model of the valve used in the test 

set up is derived. 

3.3.1 Mathematical Modeling of the System 

As explained in Section 3.1, the valve driver has a spool position controller 

which takes spool position feedback from the LVDT on the valve. The bandwidth 

of the valve used in this study for 100% command input signal is around 70 Hz 
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which is very high with respect to the hydraulic applications, and can be assumed 

to be an ideal flow rate source for a given reference spool position command. 

Therefore, of the valve controlled system the valve dynamics is neglected in the 

mathematical modeling given below and the servovalve opening is directly related 

to the reference spool position command. 

3.3.1.1 Valve Model 

Shown in Figure 3-17 is the schematic of representation of the valve 

controlled asymmetric cylinder. According to the defined direction for a given 

positive spool position vu , the following cylinder movement is upwards, in positive 

direction. 

The valve used in the test set up is a servo proportional close centered zero-

lap valve; therefore, as there is no dead zone or initial opening, the valve orifice 

area is proportional to the spool displacement at any time. Thus, under constant 

pressure differential across the valve, the flow gain is constant and does not change 

with the spool position. The flow gain versus command signal graph is shown in 

Figure 3-4. 

 

 

Figure 3-17 Schematic Representation of the Valve Controlled System 
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In the zero lap valve, only two of the arms are open at any time, therefore 

only two orifice equations can represent the valve dynamics. Assuming zero tank 

pressure, these expressions can be written as follows. 

For positive spool position, 0vu   

 2
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2

2

d o v S A

d o v B

q C w u p p

q C w u p
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 (3.63) 

For negative spool position 0vu   
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q C w u p p
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

 

 (3.64) 

Note that the valve and oil parameters dC , w , and   are constants and 

generally not given in the manuals. Instead, they are represented by a flow gain, vK

, that can be obtained from the valve manual from the relation between the flow 

rate and valve input current u . 

2
v d oK C w


  (3.65) 

Then the valve flow equations becomes, 
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 (3.66) 
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It is important to note that the parameter u  is an electrical signal 

representing the reference spool position command of the driver not the spool 

position. 

The MATLAB Simulink model of the valve is shown in Figure 3-18. Here 

the input to valve sub-system is the spool position signal in terms of Volt, and the 

output of the system is the flow rate in terms of mm3/s. 

 

 

Figure 3-18 MATLAB Simulink Model of the Proportional Valve with Zero 
Lap 

 

3.3.2 Steady State Characteristics of the System 

The symmetric or single rod cylinders have different characteristics for 

extending and for retracting motions. This is due to the area difference between two 

faces of the hydraulic cylinder piston. The steady state chamber pressures Ap  and 

Bp  for a given valve spool position input is derived below for both extending and 

retracting case. 
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At steady state, the compressibility terms in the flow continuity equations of 

the hydraulic cylinder chambers A and B drop and Eq. (3.18) and Eq. (3.19)

become, 

_B ss Bq A x   (3.67) 

_A ss A Bq A x A x    (3.68) 

From the equations above, the steady state relation between the flow rate 

entering the cylinder chamber A and leaving the cylinder chamber B is obtained as 

_ _A ss B ssq q  (3.69) 

Assuming that there exist no flow losses at the transmission lines, the 

continuity requires that the steady state inlet and outlet flow rates of the cylinder 

are equal to the valve flow rates. 

Hence, for the extending case, 

_ 2A ssq q  (3.70) 

_ 4B ssq q  (3.71) 

and for the retracting case, 

_ 1A ssq q  (3.72) 

_ 3B ssq q  (3.73) 

Substituting Eq. (3.66), Eq. (3.70) and Eq. (3.71) into Eq. (3.69) the relation 

between the steady state chamber pressures can be found. 

Hence, for extending case, 

_ 2 _ _ 4 _A ss v S A ss v B ss B ssq q K u p p K u p q q       
 (3.74)

 

2 2 2 2
_ _A ss B ss Sp p p   (3.75) 

and for retracting case, 

_ 1 _ _ 3 _A ss v A ss v S B ss B ssq q K u p K u p p q q         (3.76) 
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2 2 2 2 2
_ _A ss B ss Sp p p    (3.77) 

For zero loading case, the static equilibrium is written as, 

_ _ 0A ss B ssp p   (3.78) 

Then, the steady state chamber pressures for extracting and retracting in terms of 

supply pressure can be written by using Eq.(3.75), (3.77) and (3.78). 

Hence, for extending case, 

_ _ 3 1
S

A ss ext

p
p





 (3.79) 

_ _ 3 1
S

B ss ext

p
p







 (3.80) 

and for retracting case 

2

_ _ 3 1
S

A ss ret

p
p







 (3.81) 

3

_ _ 3 1
S

B ss ret

p
p







 (3.82) 

3.3.3 Linearized Valve Coefficients 

As the valve flow equation is highly non-linear, in order to obtain a linear 

relationship between the input spool position and output cylinder position, the 

characteristic flow equation of the valve should be linearized. Another non-linearity 

comes from the differential area of the cylinder, the chamber pressures shows 

different characteristics for extension and retraction. In this section, the 

characteristic valve flow equation is linearized both for extending and retracting 

cases. 

To linearize the valve flow equation it is assumed that, under a dynamic 

loading, the chamber pressures are at steady state, and the dynamic pressure 

changes due to compensate the load pressure are small with respect to the steady 
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state pressures. Then the flow continuity equations defined by Eq. (3.66) can be 

linearized at the steady state pressures defined by Eq. (3.79) through Eq. (3.82) for 

a given constant reference spool position input ou u . 

3.3.3.1 Extension Case  

For the extension case, the pressurized oil coming from the supply passes 

through the orifice 2 and goes to the chamber A and the oil in chamber B passes 

through orifice 4 and goes to the tank. Therefore, for the extension case, the 

linearization of the orifices 2 and 4 for a given spool input position ou  at steady 

state extension chamber pressures _ _A ss extp  and _ _B ss extp  should be performed. 

 

 

Figure 3-19 Schematic Representation of the Valve Spool Opening for 
Extension 

 

Orifice 2 

The flow rate passing through the orifice 2 can be linearized as follows, 

2 2 _ 2 _v S A u ext p ext Aq K u p p K u K p     (3.83) 

Here the terms 
2 _u extK is valve spool position gain of orifice 2 linearized at 

the spool position ou  and steady state chamber pressure 
_ _A ss extp .  

_ _A ss extp _ _B ss extp

AA  

BA  

Sp  
tp  tp  

2 1 3 4 
2q  

u 

Extension 

4q  

ou  

x 
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_ _

2
2 _ _ _ 3

3

2 _ 3

1

1

o

A A ss ext

s
u ext v S A ss ext v s

u u
p p

s
u ext v

pq
K K p p K P

u

p
K K










    
 




 (3.84) 

The term 
2 _p extK  is the valve pressure gain of orifice 2 which is also 

linearized at the spool position ou  and steady state chamber pressure 
_ _A ss extp . 

_ _

2
2 _

_ _
3

2 _ 3

3

2
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1

2
1

o

A A ss ext

v o v o
p ext

u uA S A ss ext Sp p
S

v o
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S

K u K uq
K

p p p p
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K u
K

p


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




 
   

 









 (3.85) 

If a comparison is made with the variable speed pump controlled system, 

the valve spool position gain 
2 _u extK  defines the relation between the valve spool 

position and the flow generated. Therefore, it can be thought as the pump 

displacement PD , which is the gain between pump drive speed and pump flow rate. 

The valve pressure gain 
2 _p extK  defining flow losses of the valve for a given spool 

position can be thought as the leakage flow coefficients of the pump. 

 

Orifice 4 

The flow rate passing through the orifice 2 can be linearized as follows, 

4 4 _ 4 _v B u ext p ext Bq K u p K u K p    (3.86) 

Here the terms 4 _u extK is valve spool position gain of orifice 2 linearized at 

the spool position ou  and steady state chamber pressure _ _B ss extp  

_ _

2
4 _ _ _ 3

4 _ 3

1

1

o

B B ss ext

s
u ext v B ss ext v

u u
p p

s
u ext v

pq
K K p K

u

p
K K











  
 




 (3.87) 
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The term 4 _p extK  is the valve pressure gain of orifice 2 which is also 

linearized at the spool position ou  and steady state chamber pressure _ _B ss extp  

_ _

4
4 _

_ _
3

4 _

3

2
2

1

2
1

o

B B ss ext

v o v o
p ext

u uB B ss ext sp p

v o
p ext

s

K u K uq
K

p p p

K u
K

p










 
  









 (3.88) 

Note that the valve spool position gain of the orifice 2 is   times the valve 

spool position gain of orifice 4. 

2 _ 4 _u ext u extK K  (3.89) 

The valve pressure gain of the orifice 4 is   times the valve pressure gain of 

orifice 2. 

4 _
2 _

p ext
p ext

K
K


  (3.90) 

3.3.3.2 Retraction Case 

Shown in Figure 3-20, to retract the hydraulic cylinder, the pressurized oil 

coming from the supply passes through the orifice 3 and goes to the chamber B, the 

oil in chamber A passes through orifice 1 and goes to the tank. Therefore, for the 

retraction case, the linearization of the orifices 1 and 3 for a given spool input 

position ou  at steady state retraction chamber pressures _ _A ss retp , _ _B ss retp , should 

be performed. 

 

Orifice 3 

The flow rate passing through the orifice 3 can be linearized as follows, 

3 3_ 3_v S B u ret p ret Bq K u p p K u K p     (3.91) 
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Here the terms 3 _u retK is valve spool position gain of orifice 2 linearized at 

the spool position ou  and steady state chamber pressure _ _B ss extp  

_ _

3
2

3 _ _ _ 3

3 _ 3

1

1

o

B B ss ext

s
u ext v S B ss ext v s

u u
p p

s
u ext v

pq
K K p p K P

u

p
K K










    
 




 (3.92) 

The term 3 _p retK  is the valve pressure gain of orifice 3 which is also 

linearized at the spool position ou  and steady state chamber pressure 
_ _B ss extp  

_ _

2
3 _ 3

_ _

3
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 
   

 









 (3.93) 

 

 

Figure 3-20 Schematic Representation of the Valve Spool Opening for 
Retraction 

 

Orifice 1 

The flow rate passing through the orifice 1 can be linearized as follows, 

1 1_ 1_v A u ret p ret Bq K u p K u K p    (3.94) 

_ _A ss retp _ _B ss retp
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Here the terms 1 _u retK is valve spool position gain of orifice 1 linearized at 

the spool position ou  and steady state chamber pressure _ _A ss extp  

_ _

1
1_ _ _

2

1_ 3 1

o

A A ss ext

u ext v A ss ext
u u
p p

s
u ext v

q
K K p

u

p
K K








 





 (3.95) 

The term 
1 _p retK  is the valve pressure gain of orifice 1 which is also 

linearized at the spool position ou  and steady state chamber pressure _ _A ss extp  

_ _

1
1_ 2

_ _

3

1_ 2
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1

2
1

o

A A ss ext

v o v o
p ext
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v o
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K u K uq
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p p p

K u
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p










 
  









 (3.96) 

Note that the valve spool position gain of the orifice 1 is   times the valve 

spool position gain of orifice 3. 

1 _ 3 _u ext u extK K  (3.97) 

The valve pressure gain of the orifice 3 is   times the valve pressure gain of 

orifice 1. 

3 _
1_

p ext
p ext

K
K


  (3.98) 

3.3.4 Dynamic Characteristics of the System 

In this section, a transfer function between the input valve spool position 

and the output cylinder rod velocity is derived. In order to obtain a linear 

relationship, the linearized valve flow coefficients found in the previous sub-

section are to be used. A dynamic analysis for the extending case is carried out 

below. Since the procedure is the same; the transfer function derivation for the 

retraction case is not explained. 
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Likewise in the pump controlled system, two flow continuity equations of 

the cylinder chambers and valve and one structural equation of the load define the 

system dynamics. 

For the cap end of the hydraulic cylinder, the flow continuity equation can 

be written by using the linearized valve flow equation Eq. (3.83) and the flow 

continuity equation of the cylinder chamber Eq.(3.18), 

2 Aq q  (3.99) 

2 _ 2 _
A A

u ext p ext A A

V dp
K u K p A x

E dt
    (3.100) 

For the rod end of the hydraulic cylinder, the flow continuity equation can 

be written by using the linearized valve flow equation Eq.(3.86) and the flow 

continuity equation of the cylinder chamber Eq.(3.19), 

4 Bq q  (3.101) 

4 _ 4 _
B B

u ext p ext B B

V dp
K u K p A x

E dt
    (3.102) 

The structural equation of the load is the same with the pump controlled 

system given by Eq. (3.47) and it is repeated here as, 

       A B BP s P s A ms b sX s       (3.103) 

These 3 equations, with one known control input u , and 3 unknowns which 

are cylinder chamber pressures Ap , Bp  and cylinder rod velocity x , can be solved 

to find the transfer function between the input spool position u , and output cylinder 

rod velocity x . The derivation of the transfer function is explained in detail in 

Appendix B. 

The transfer function between the reference input spool position command 

 U s  and the cylinder rod velocity  V s  for the extension case is as follows, 
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 (3.104) 

 

The result is a 3rd order transfer function. Since the characteristic equation 

cannot be written in a factored form; it is very hard to interpret how the system 

parameters affect the roots of the characteristic equation. Therefore, likewise in the 

variable speed pump controlled system a relationship between the chamber 

pressures will be defined to reduce the order of the system. 

By using Eq.(3.89), Eq.(3.90), Eq. (3.100) and Eq. (3.102) the relation 

between the chamber pressures can be written. Inserting Eq.(3.89) into Eq. (3.100), 

Eq.(3.90) into Eq. (3.102), multiplying Eq. (3.102) by   and subtracting from Eq. 

(3.100) the relation between Ap  and Bp  in s-domain can be obtained as follows, 

   
2

2 _

2 _

B
p ext

A B
A

p ext

V
s K

EP s P s
V

s K
E

 
 


 (3.105) 

This equation represents the dynamic pressure changes under an applied 

load. Likewise in the pump controlled system, if the frequency response of the 

transfer function between the dynamic chamber pressure changes is investigated, it 

will be seen the relation is linear below and above some predetermined frequencies. 

By this way a linear relationship between the dynamic pressure changes can be 

defined as follows, 
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   A BP s P s   (3.106) 

Similar to the variable speed pump control system case at high frequency 

excitations the chamber pressure change ratio will be determined by the chamber 

volumes and cylinder area ratio and will be equal to, 

B

A

V

V


   (3.107) 

For low frequency excitations the chamber pressure change ratio will be 

determined by the cylinder area ratio, and will be equal to 

2   (3.108) 

Note that if the valve pressure coefficients are linearized for zero spool 

opening 0ou  , then the valve pressure flow gain will be zero 

2 _ 2 _ 0p ext p extK K  , and the dynamic pressure changes relation will be, 

   B
A B

A

V
P s P s

V


   (3.109) 

That is, for an applied loading independent of excitation frequency, the 

chamber pressure, Ap , will change /B AV V  times greater than the change of the 

chamber pressure, Bp . 

The frequency response of the dynamic pressure change ratios are shown in 

Figure 3-21. Here the valve pressure coefficients are linearized at a spool position 

0.1ou V  and for supply pressure 12sP MPa . 

It is seen at low excitation frequencies that the dynamic pressure ratio of the 

cylinder chambers is 11.7 dB (magnitude 3.85) which is equal to 2 . At higher 

frequencies larger than 1 Hz, the dynamic pressure change ratio drops to 4.dB 

(magnitude 1.047) which is equal to the / /B AV V      value. Practically, this 

means that under an oscillatory dynamic loading whose frequency is higher than 

1.Hz, to compensate the dynamic load pressure, the chamber pressure Bp  will 

reduce P  value from its steady state value, while the chamber pressure Ap  will 
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increase 1.047 P  value from its steady state value. Thus, the order of the open 

loop velocity response of the valve controlled system reduces by one, as the 

chamber pressures become linearly dependent. 

 

 

Figure 3-21 Dynamic Pressure Change Ratios 

 

Of course, the valve pressure coefficient linearized at a higher spool 

position will increase the cut off frequency as it will increase the 2 _p extK , but it 

should be noted that in closed loop control applications the spool movement is not 

constant and always changing during the transient zone, and at steady state it 

becomes zero. Then assuming the spool position value as zero or a very small value 

will be reasonable rather than assuming spool position values like 1 or 2.  
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Practically it will be a reasonable assumption to use the linear dynamic 

pressure change relation Eq. (3.106) calculating the dynamic pressure change ratio 

 , for higher excitation frequencies. That is, 

B

A

V

V


   (3.110) 

When the dynamic chamber pressure changes are linearly dependent, the 

order of the system reduces from 4 to 3. Then a much simpler and understandable 

transfer function can be derived by using the same continuity equations of the valve 

and cylinder chambers and structural equation of the load. The derivation of the 

transfer function is explained in detail in Appendix B.  

The transfer function between the reference input spool position command 

 U s  and the cylinder rod velocity  V s  for the extension case is as follows, 

 

 
 

 
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2
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2 _ 2 _1 1

u ext B

B B
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U s m V b V
s m K s b K A

E E

 

       
 




  
       

(3.111) 

 

In Figure 3-22 the equivalent block diagram representation of this reduced 

order differential cylinder valve controlled system is given for the extension case. 

Note that it is very similar to the variable speed pump controlled system block 

diagram representation which is shown in Figure 3-22. The pump displacement 

term is replaced with the valve spool position gain and the pump leakage term is 

replaced with the valve pressure gain, as expected and explained in Section 3.3.3.1. 
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Figure 3-22 Block Diagram Representation of the Valve Controlled System 
for the Extension Case 

 

Note that, for the retraction case, the following replacements for the 

linearized valve spool position and valve pressure coefficients, in Eq.(3.104), Eq. 

(3.111) and in Figure 3-22 should be made 

4 _ 3_

2 _ 1_

u ext u ret

p ext p ret

K K

K K




 (3.112) 

This second order transfer function can be used to understand the dynamic 

behavior of the system. The natural frequency and the damping ration of the valve 

controlled hydraulic system can be written as, 

 2 2
2 _1 p ext B

n
B

b K A

E
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 
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 (3.114) 

From the natural frequency and damping ratio equations defined above if a 

comparison is to be made with the pump controlled system it is seen that valve 

pressure gain 2 _p extK , which is found through the linearization of the valve flow 
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equation around a fixed spool position and a constant supply pressure is similar to 

the equivalent leakage coefficient term leakC  of the pump controlled system. 

Depending on the spool position where the linearization is performed, as the 

valve pressure gain decreases with the increasing supply pressure, it seems that the 

natural frequency of the open loop system will decrease with the increasing supply 

pressure. However it should be noted that as the valve spool position gain 
2 _u extK , 

also depends on the supply pressure, the response of the closed loop system will 

increase by increasing the supply pressure as it will increase the valve spool 

position gain which is the open loop gain and shown in Figure 3-22. 

Other important parameters which determine the natural frequency of the 

system is the hydraulic cylinder chamber volumes, bulk modulus of the hydraulic 

oil and cylinder area. The natural frequency of the system increases with the 

cylinder area and bulk modulus of the oil, whereas decreases with the hydraulic 

cylinder volume. Furthermore, the load mass decreases the natural frequency of the 

system as expected. Lastly, likewise in the pump controlled system, the term 

2   appearing in the above equations indicate that increasing the area ratio and 

dead volume ratio, increases the natural frequency of the system while decreases 

the damping ratio. 

Lastly the linear dynamic chamber pressure change assumption is checked. 

Table 3-6 gives the roots of the characteristic equations of the reduced second order 

transfer function defined by Eq. (3.111), and the third order transfer function 

defined by Eq. (3.104). The numerical values of the system parameters for the 

calculation of the transfer functions are taken from Table 3-7 and the valve flow 

coefficients are linearized at the spool position 0.1ou V  for supply pressure 

12sp MPa . 
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Table 3-6 Pole and Zero Comparison of Reduced and Full Order Transfer 
Functions 

 Poles Zeros Error between  
The poles of 
3rd order TF and 
2nd order TF 

General 3rd order TF 
 

    -108.79 +1978.14 
    -108.79 -1978.14 
    -9.2330  

-9.2339 

Reduced 2nd order TF 

1.047B

A

V

V


    

    -108.78 +1978.15 
    -108.78 -1978.15 

0 0.00062+0.00431i 

Reduced 2nd order TF 
2 3.844    

    -107.85 +1978.10 
    -107.85 -1978.10 

0 0.92891+0.04406i 

Reduced 2nd order TF 
2   

    -108.24 +1978.12 
    -108.24 -1978.12 

0 0.05493+0.02422i 

 

Likewise the pump controlled system, in valve controlled system it is seen 

in Table 3-6 that third pole and zero of the general 3rd order transfer function are 

very close, canceling each other, the remaining complex conjugate pole pairs are 

very close to the pole pair of the reduced second order system. Furthermore, the 

error between the real third order transfer function poles and second order transfer 

function poles are much smaller if the dynamic chamber pressure change ratio, , 

is determined for higher excitation frequencies 

  


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Table 3-7 Numerical Values of the System Parameters 

Hydraulic Cylinder Parameters 
Cap side area  mm2 1963.5 

Rod Side area  mm2 1001.4 
Area ratio - 1.9608 
Initial Cylinder Position  mm 50 

Cylinder Stroke  mm 100 

Cap side chamber Volume (Pump System)  mm3 172030 

Rod Side Chamber Volume (Pump System)  mm3 91842 
Volume Ratio (Pump Sys)  - 1.8731 
Cap side chamber Volume (Valve System)  mm3 154387 

Rod Side Chamber Volume (Valve System)  mm3 82455 
Volume Ratio (Valve Sys)  mm3 1.8724 

Load Parameters 
Mass Ton 0.0123 
Viscous friction coefficient  N s/mm 2.6 

Pump Parameters 
Pump displacement  mm3/rev 15600 

Internal leakage coefficient  mm3/(s.MPa) 1027 

External leakage coefficient (cap side) mm3/(s.MPa) 120 

External leakage coefficient (rod side) mm3/(s.MPa) 120 
Hydraulic Oil Parameters 

Bulk Modulus MPa 1300 
Valve Parameter 

Valve Gain  mm3/(s.V) 21380 
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CHAPTER 4  

 

 

CONTROLLER DESIGN AND IMPLEMENTATION 

 

This section is devoted to the controller and Kalman filter design for the 

variable speed pump and valve controlled systems. A state feedback control 

scheme is applied to both systems, as their performance is to be compared; the 

desired pole locations are chosen to be the same for the both systems. The linear 

state equations of the pump controlled system is used for pole placement in pump 

controlled system, whereas, the linearized state equations are used for the non-

linear valve controlled system. As not all the states are measured directly and the 

measured ones are noisy, for filtering and estimation purposes a Kalman filter is 

designed. For the linear pump controlled system linear discrete time Kalman filter 

is designed, and for the non-linear valve controlled system a non-linear unscented 

Kalman filter is designed. 

In this chapter the dynamic equations, which are already obtained in 

Chapter 3 for the pump controlled and valve controlled systems are expressed in 

state space form, the linear state feedback controller design and Kalman filter 

design are explained. 

4.1 State Space Representation of Pump Controlled System 

In order to design a state feedback controller and a Kalman filter, the 

systems should be defined in the form of state space. Thus, in this sub-section the 

state space representation of the variable speed pump controlled system will be 

obtained by using the dynamic equations defined in Section 3.2.4. 
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In Section 3.2.4, the order of the transfer function defining the speed 

response of the variable speed pump controlled system is found as 3. However, 

after showing that the hydraulic cylinder chamber pressures are linearly dependent 

below and above two prescribed cut off frequencies, it is concluded that the speed 

response can be represented by a 2nd order open loop transfer function. However if 

the position response is to be considered, then the order of the open loop transfer 

functions increases by one, due to the integration. 

In this section, a general 4th order and a reduced 3rd order state space 

representation of the variable speed pump and valve controlled system are given. 

The reduced 3rd order state space representations of the systems will be used in the 

controller design. Because the cylinder chamber pressure changes are assumed to 

be dependent, the system can be defined and controlled by 3 states. The general 4th 

order state space representation will be used in Kalman filter design, because both 

of the hydraulic actuator chamber pressures are measured and filtered 

independently. 

4.1.1 4th Order State Space Representation of Pump Controlled System 

The system equations can be written in the standard state space form as, 

 

 

x Ax Bu

y Cx Du


 (4.1) 

where 

x : state vector 

y : output vector 

u: control input 

A : system matrix 

B : input matrix 

C : output matrix 
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D: feedforward matrix 

The state variables, 1x , 2x , 3x  and 4x  are chosen as 

 
 

1

2

3

4

Hydraulic cylinder position

Hydraulic cylinde velocity

Hydraulic cylinder chamber A cap end pressure

Hydraulic cylinder chamber B rod end pressure

A

B

x x

x x

x p

x p









 (4.2) 

Then from the definition of the state variables and Eq.(3.37), Eq. (3.38), Eq. 

(3.41), Eq. (3.43), Eq.(3.44) and Eq. (3.47) the state equations are obtained as, 

   

 

1 2

2 2 3 4

3 2 3 4 2

4 2 3 4 2

2 2 1

B B

B i ea i p p sum
A A A A A

B i i eb p p sum
B B B A A

x x

A Ab
x x x x

m m m
E E E E E

x A x C C x C x D n D p
V V V V V

E E E E E
x A x C x C C x D n D p

V V V V V



  




  

        

      









 (4.3) 

Note that in the pump control system, there are two control signals 

determining the total pump drive speed. One of them is the open loop pressure 

control signal 2on , which is used to compensate the leakages and pressurize the 

cylinder chambers to a desired sum pressure value sump . This control input 

determines the static chamber pressures. The other control signal is the closed loop 

position control signal 2n . The position control signal determines the dynamic 

characteristics of the system that is the change of position, velocity and chamber 

pressures. To find the absolute value of the chamber pressures not only the position 

control signal 2n , but also the static pressure control signal 2on  is required. Thus 

the control inputs are defined as, 

2

sum

n

p

 
  
 

u  (4.4) 

Then the state equations can be rewritten in standard vector matrix from as, 
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 

 

 
1 1

22 2

3 3

4 4

0 1 0 0
0 0

0 00

1
2 2

0

0

B B

p p
i ea iB

sumA A
A A A

p p
i ebiB

B B
B B B

A Ab
x x

m m m
D E D E nx x

C C E C EA E
px x V V

V V V
x x D E D E

C C EC EA E
V V

V V V



 


 
                                                          

 






 (4.5) 

In Kalman filter application, all the states are estimated. There is no feed 

through element as the control input does not affect the output directly. Then the 

output expression can be written in standard vector matrix form as, 

1

22

3

4

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
sum

x

nx

px

x

    
                   
    

    

y  (4.6) 

4.1.2 Reduced 3th Order State Space Representation of Pump Controlled 

System 

The reduced order state space equations will be used to in controller design. 

To reduce the order of the system it is assumed that the dynamic changes of 

chamber pressures are linearly dependent, as it is explained in Section 3.2.4. 

A Bp p   (4.7) 

Then the structural equation of the load can be written in terms of dynamic 

load pressure Lp instead of hydraulic cylinder chamber pressures Ap  and Bp . 

L A Bp p p   (4.8) 

Then the states 1x , 2x  and 3x  of the system will be, 

1

2

3

Hydrauliccylinder position

Hydrauliccylinder velocity

Dynamic load pressurechangeL

x x

x x

x p





  (4.9) 

and the state equations will be, 
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   

1 2

2 2 3

2 2
3 2 3 2

B

B leak P
B B B

x x

Ab
x x x

m m
E E E

x A x C x D n
V V V

   
  




 

     







 (4.10) 

Note that only the position control signal 2n  appears as a control input in 

the state equations. Because the offset pressure control signal 2on  does not affect 

the dynamics of the system, but only steady state chamber pressures, it is not 

included. 

The output of the system is the hydraulic cylinder position which is to be 

controlled, and then the corresponding state equations and the output expressions 

can be written in standard matrix form as,  

   

1 1

2 2 2

2
3 32

0 1 0
0

0 0

0

B

P
B

leak B
B B

x x
Ab

x x n
m m

x x D E
A E E

C V
V V

  
 

                                             





 (4.11) 

   
1

2 2

3

1 0 0 0

x

y x n

x

 
   
  

 (4.12) 

4.2 State Space Representation of Valve Controlled System 

In Section 3.3 it is explained that, in valve controlled hydraulic circuit, there 

are two main non-linearities, affecting the system dynamics. The first one is the 

pressure flow relationship defined by Eq.(3.66). This non-linear flow equation is 

linearized around steady state chamber pressures and a prescribed spool position. 

Another main non-linearity is the result of the single rod cylinder with unequal 

piston areas, this result in unequal flow gains for the retracting and extraction of the 
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hydraulic circuit. As a result, a piecewise linearized system is formed, the 

linearized dynamic equations are written both for extension and retraction cases. 

4.2.1 4th Order State Space Representation of the Valve Controlled System 

Likewise the pump control system, the valve controlled system is also 

defined fully by the same four states. Here, to be compatible with the pump 

controlled circuit, the state space representation of the 4th order system will be 

given by using the linearized valve dynamic equations. However different from the 

pump controlled system the 4th order state space representation of the valve system 

will not be used in Kalman filter design, as it is a non-linear filter. 

The states of the system are, 

 
 

1

2

3

4

Hydraulic cylinder position

Hydraulic cylinde velocity

Hydraulic cylinder chamber A cap end pressure

Hydraulic cylinder chamber B rod end pressure

A

B

x x

x x

x p

x p









 (4.13) 

Then from the definition of the state variables and Eq. (3.100), Eq. (3.102), 

Eq. (3.103) and Eq. (3.89), Eq. (3.90) the state equations for the extension case are 

obtained as 

1 2

2 2 3 4

3 2 2 _ 3 4 _

4 2 2 _ 4 4 _

B B

B p ext u ext
A A A

B p ext u ext
B B B

x x

A Ab
x x x x

m m m
E E E

x A x K x K u
V V V

E E E
x A x K x K u

V V V



 






  

   

  









 (4.14) 

where the control input of the system is the valve spool position, u
 

 u u  (4.15) 

Then the state equations can be rewritten in standard vector matrix from as, 
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 
1 1

4 _2 2

2 _3 3

4 4 4 _

2 _

0 1 0 0 0

00

0 0

0 0

B B

u ext
B

p ext A
A A

u ext
B

p ext B
B B

A Abx x
m m m K Ex x
A E E u

K Vx x
V V

x x K E
A E E

K VV V








                                                  






 (4.16) 

Note that the state equations above are written for the extension case, for the 

retraction case the pressure flow gain, 
2 _p extK  should be replaced with 

1 _p extK  and 

the valve spool position flow gain 4 _u extK  should be replaced by 3 _u extK . The 

output expression in standard vector matrix form is, 

 
1

2

3

4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

x

x
y u

x

x

    
    
     
    
    

    

 (4.17) 

4.2.2 Reduced 3th Order State Space Representation of Valve Controlled 

System 

The reduced order state space equations will be used to in controller design. 

Likewise the pump controlled system, in valve controlled system, the order of the 

system can be reduced by assuming a linear relationship between the dynamic 

pressure changes of the hydraulic cylinder chambers and using dynamic load 

pressure Lp  instead of hydraulic cylinder chamber pressures Ap  and Bp . 

A Bp p   (4.18) 

L A Bp p p   (4.19) 

then the states 1x , 2x  and 3x  of the system will be, 

1

2

3

Hydrauliccylinder position

Hydrauliccylinder velocity

Dynamic load pressurechangeL

x x

x x

x p





  (4.20) 
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The corresponding state equations can be written if the assumed chamber 

pressure relations defined by Eq. (4.18) and Eq. (4.19) are substituted in the general 

form of state equations. The arrangement of the equations in more detail is given in 

Appendix B. 

   

1 2

2 2 3

2 2
3 2 2 _ 3 4 _1

B

B p ext u ext
B B B

x x

Ab
x x x

m m
E E E

x A x K x K u
V V V

     
   




 


     









 (4.21) 

The corresponding state equations and the output expressions for the 

extension case of the hydraulic cylinder can be written in standard matrix for as,  

   

1 1

2 2

2
3 32 4 _

2 _

0 1 0
0

0 0

0
1

B

u ext
B

p ext B
B B

x x
Ab

x x u
m m

x x K E
A E E

K V
V V

       

                                             





(4.22) 

   
1

2

3

1 0 0 0

x

y x u

x

 
   
  

 (4.23) 

Note that for the retraction case the pressure flow gain in the above the 

reduced order state equations, 
2 _p extK  should be replaced with 

1 _p extK  and the 

valve spool position flow gain 4 _u extK  should be replaced by 3 _u extK . 

4.3 Controller Design for the Pump System 

In Table 3-5 the dominant open loop pole pairs of the transfer function 

defining the speed response of the pump controlled system is given as -120.02 

±1874.63i indicating a damping ratio of 0.064. Low damping is a drawback of the 

hydraulic systems, as it causes the system to oscillate; therefore, critical damping 

ratio is also a desired property to avoid overshoot as well as high bandwidth. From 
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the transfer function given in Eq. (3.56) or the block diagram representation of the 

system given in Figure 3-15, it is obvious that the damping ratio of the system can 

be increased by increasing the equivalent leakage coefficient leakC , meaning adding 

external leakage elements to the system resulting in additional energy losses. 

However the damping ratio of the system can be increased without conceding from 

energy efficiency, by control means. 

To increase the damping of the hydraulic system, load pressure feedback or 

acceleration feedback can be applied. Because the load pressure feedback is 

directly proportional to the acceleration, they have the same effect on the closed 

loop system. In practical means, the load pressure feedback corresponds to an 

increase in the leakage coefficient. In Figure 4-1, if a block diagram reduction is 

made then the equivalent leakage coefficient will becomes  2
leak LP PC K D   . 

Then, the closed loop poles can be moved to desired locations by simply adjusting 

the gain of a proportional controller. However, in position control systems, in 

addition to complex conjugate pole pairs, there appears to be a pole at the origin 

pulling the root locus to the right half of the complex s-plane. Therefore, the 

desired closed loop pole locations are limited and the system will have a poor 

stability and even instability with the increasing gain value. 

To have a critically damped system, that is dominant closed loop poles 

without imaginary parts, a compensator is necessary. For example if a second order 

compensator is utilized and the complex zero pair of the compensator are chosen 

such that they cancel the lightly damped pole pair of the plant, then the desired 

dominant closed loop pole locations can be specified by adjusting the pole pair of 

the compensator. 

Another way is the pole placement, where not only the dominant closed 

loop pole locations, as in the conventional design approached discussed above, but 

all the closed loop pole locations are specified. If the system is fully state 

controllable and all the states are available then the closed loop pole locations can 

be chosen freely only limited by the saturation of the control element. By this way 

the dynamic characteristics of the system can be specified easily. 
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In this thesis study, the controller is designed through a pole placement via 

linear state feedback for the position control of the variable speed pump controlled 

system. The control system is designed using the linear set of reduced order system 

equations defined in Section 4.1.2. 

The system is defined by three states which are 

 cylinder position,  

 cylinder velocity, 

 load pressure.  

The block diagram representation of the closed loop position control of the 

variable speed pump controlled system with the defined states is given in Figure 

4-1. The parameters posK , velK , PLK  represent the state feedback gains of the 

position, velocity, and the load pressure signals. 

 

 

Figure 4-1 Block Diagram Representation of the Close Loop Pump Controlled 
System 

 

After applying state feedback, the closed loop transfer function of the 

position control system becomes, 

2n xLp

leakC

B

E

V s 2
PD  BA Lf  1

ms b
1

s

 2
BA 

pq

-

-

+

PLK   

velK   

- 

+ 
posK

-- 
+ 
refx

x
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 
 

 

  
     

 

2

3 2
1 2 3 4

1

2
2

2 2
3

2
4

P B pos

ref

B

B
leak LP P

leak LP P B vel P B

P B pos

D A KX s

X s a s a s a s a

V
a m

E
V

a m C K D b
E

a b C K D A K D A

a D A K

 




 

   

 




  



   

     

 

 (4.24) 

While designing the controller, it is assumed that all the state variables are 

available for feedback. The position and chamber pressures are measured and 

filtered through the Kalman filter, and the cylinder velocity is estimated by the 

Kalman filter. 

The state equations and output expression derived in Section 4.1.2 is 

repeated below. 

   

1 1

2 2 2

2
3 32

0 1 0
0

0 0

0

B

P
B

leak B
B B

x x
Ab

x x n
m m

x x D E
A E E

C V
V V

  
 

                                             





 (4.25) 

   
1

2 2

3

1 0 0 0

x

y x n

x

 
   
  

 (4.26) 

In order to apply a state feedback, the control signal is chosen to be 

u  Kx  (4.27) 

where 

 1 2 3k k kK  (4.28) 

K  is the state feedback gain vector. 
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All the closed loop poles of the system can be placed at any arbitrary 

locations in the complex s-plane if the system is fully state controllable, requiring 

that the rank of the controllability matrix M , is equal to number of states, that is 3. 

The controllability matrix is defined by 

2   M B AB A B   (4.29) 

Since M  is a 3x3 square matrix, the controllability condition reduces to 

  3
2 2

det( ) 0
P B

B

D E A

V m

 



            
M  (4.30) 

which is automatically satisfied, indicating that the system is fully state 

controllable. 

The numerical values of A , B , M  and  det M  are given below by using 

the numerical values of the hydraulic system parameters defined in Table 3-7. 

0 1 0

0 211.38 81413.22

0 43.27 28.66

 
   
   

A  (4.31) 

0

0

674.04

 
   
  

B  (4.32) 

7

7 10

2 4 9

0 0 5.48 10

0 5.48 10 1.32 10

6.74 10 1.93 10 2.37 10

 
     
      

M  (4.33) 

18det( ) 2.03 10  M  (4.34) 

The characteristic equation of the system is obtained as 

3 2 6240.04 3.53 10 0s s s s     I A  (4.35) 

with the following coefficients of the characteristic equation 

6
1 2 3240.04 3.53 10 0a a a     (4.36) 
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It is seen that since there is a free s term in characteristic equation, the open 

loop system for position output behaves as an integrator. For the speed output 

system, the order reduces to two and the system is stable, as all the coefficients are 

of the same sign (positive). 

In this thesis study, the performance of the system is determined through a 

sine sweep test, from their frequency responses. Therefore an m-file script is 

written which is calculating the state feedback gains for desired bandwidths, and 

then the system is tested for these gains and compared with the mathematical model 

results. The calculation of the controller gains for 5.Hz bandwidth is illustrated 

below. 

For the closed loop position control system, in order to have a 5.Hz 

bandwidth, the desired closes loop poles are chosen as 

 1 2 35 2 600 700           (4.37) 

The locations of the last two of the desired poles are chosen far away from 

the origin compared to the location of the first pole, which is the dominant one. The 

last two poles will decay very quickly, so that the fist pole, closer to the origin, will 

dominate in system response and determine the bandwidth of the system. 

As a result the desired characteristic equation becomes, 

    3 3 2 5 7
1 2 3 1.33 10 4.61 10 1.32 10s s s s s s             (4.38) 

yielding the following coefficients of the desired characteristic equation, 

3 5 7
1 2 31.33 10 =4.61 10 1.32 10b b b      (4.39) 

Then the state feedback matrix can be obtained by the flowing equation [29]. 

  1
3 3 2 2 1 1b a b a b a    K T  (4.40) 

where the transformation matrix T  is given by 

T MW  (4.41) 

where M  is the controllability matrix derived previously, and W  is given by 
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6
2 1

1

1 3.53 10 240.04 1

1 0 240.04 1 0

1 0 0 1 0 0

a a

a

  
      
     

W  (4.42) 

thus T is calculated to be 

7

7

7 5 2

5.49 10 0 0

0 5.49 10 0

9.54 10 1.42 10 6.74 10

 
   
     

T  (4.43) 

Finally the desired feedback gain vector K , obtained by use of the Eq.(4.40), is 

calculated to be, 

 0.2404 0.0601 1.6191 K  (4.44) 

The feedback gain vector K  is used to control the linear variable speed 

pump controlled hydraulic system. The MATLAB Simulink model of the closed 

loop position control system is shown in Figure 4-2. 

 

 

Figure 4-2 MATLAB Simulink Model of the Closed Loop Pump Controlled 
Position Control System 
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4.4 Controller Design for the Valve System 

The same procedure applied in the pumped controlled system will be 

repeated here for the valve controlled system. Because of the inherent property that 

different extending and retracting dynamic characteristics of the single rod 

cylinder, unlike from the pump controlled system, here two set of controller gains 

are calculated one set for extension and another for retraction. 

Similar to the variable speed pump controlled system, the valve control 

system is designed using the linearized set of reduced order system equations 

defined in Section 4.2.2 through pole placement via linear state feedback. The 

system is defined by three states which are  

 cylinder position, 

 cylinder velocity, 

 load pressure. 

The block diagram representation of the closed loop position control of the 

valve controlled system with the defined states is given in Figure 4-3.  

 

 

Figure 4-3 Block Diagram Representation of the Closed Loop Valve 
Controlled System 

2n xLp

B

E

V s 2
4_u extK  BA  

Lf 1

ms b

pq

-

-

+

PLK   

2_1 p extK
  




- 

+ 
posK

-- 
+ 

refx

x   2
BA   

velK   

1

s



106 

In Figure 4-3, the parameters , ,  represent the state feedback 

gains of the position, velocity and the load pressure signals. 

Note that this block diagram representation is for the extension of the 

hydraulic actuator, for the retraction it will be the same if the replacement of valve 

gains defined in Eq. (3.112) are made. 

After adding state feedback the closed loop transfer function of the position 

control system becomes 

 
 

 2
4 _

3 2
1 2 3 4

u ext B pos

ref

K A KX s

X s a s a s a s a

 


  
 (4.45) 

 

    

 

1

2
2 2 _ 4 _

2 2
3 2 _ 4 _ 4 _

2
4 4 _

1

1

B

B
p ext LP u ext

p ext LP u ext B vel u ext B

u ext B pos

V
a m

E

V
a m K K K b

E

a b K K K A K K A

a K A K



    


      


 



 
     

 
       

 

 

In the controller designs, it is assumed that all the state variables are 

available for feedback. The position and chamber pressures are measured and 

filtered through the unscented Kalman filter while the cylinder velocity is estimated 

through the unscented Kalman filter. 

The state equations and output expression derived in Section 4.2 is repeated 

below for extension 

   

1_ 1

2 _ 2 2

2
3 _ 32 4 _

2 _

0 1 0
0

0 0

0
1

ext

B
ext

ext u ext
B

p ext B
B B

x x
Ab

x x n
m m

x x K E
A E E

K V
V V

       

                                             





(4.46) 

for retraction 

posK velK PLK
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   

1_ 1

2 _ 2 2

2
3 _ 32 3 _

1_

0 1 0
0

0 0

0
1

ret

B
ret

ret u ext
B

p ext B
B B

x x
Ab

x x n
m m

x x K E
A E E

K V
V V

       

                                             





(4.47) 

   
1

2 2

3

1 0 0 0

x

y x n

x

 
   
  

 (4.48) 

In the state feedback control algorithm of the valve controlled system, two 

different control signals are generated, one for extension and another for retraction. 

ext ext ext

ret ret ret

u

u

 

 

K x

K x

 (4.49) 

where 

1_ 2 _ 3 _

1_ 2 _ 3 _

ext ext ext ext

ret ret ret ret

k k k

k k k

   

   

K

K

 (4.50) 

where extK  is the state feedback gain vector for the extension of the hydraulic 

cylinder and retK  is the state feedback gain vector for the retraction of the hydraulic 

cylinder. 

All the closed loop poles of the system can be replaced at any arbitrary 

locations in the complex plane if the system is fully state controllable, requiring 

that the rank of the controllability matrix M , is equal to number of states, that is 3. 

The controllability matrix is defined by 

2   M B AB A B    (4.51) 

Since M  is a 3x3 square matrix, the controllability condition reduces to 
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 
  3

2 2
3 _

det 0
u ext B

B

K E A

V m

 



            
M   (4.52) 

which is automatically satisfied, indicating that the system is fully state 

controllable. 

The valve system is linearized at a spool position corresponding to 

0.1ou V  and for a supply pressure of 8.3sP MPa . The numerical values of A , 

B , M  and  det M  are given below by using the numerical values of the hydraulic 

system parameters defined in Table 3-7. 

0 1 0

0 211.38 81413.22

0 48.21 5.68

0 1 0

0 211.38 81413.22

0 48.21 7.96

ext

ret

 
   
   

 
   
   

A

A

 (4.53) 

0 0

0 0

1295.98 925.52
ext ret

   
       
      

B B  (4.54) 

8

8 10

3 9

7

7 10

3 9

0 0 1.05 10

0 1.05 10 2.29 10

1296 7.37 10 5.09 10

0 0 7.53 10

0 7.53 10 1.65 10

925 7.37 10 3.63 10

ext

ret

 
     
     

 
     
     

M

M

 (4.55) 

19

18

det( ) 1.44 10

det( ) 5.25 10

ext

ret

  

  

M

M

 (4.56) 

The characteristic equation of the system is obtained as for extension 
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3 2 6217.07 3.93 10 0exts s s s     I A  (4.57) 

and for retraction 

3 2 6219.34 3.93 10 0rets s s s     I A  (4.58) 

with the following coefficients of the characteristic equationfor extension 

6
1_ 2 _ 3_217.07 3.93 10 0ext ext exta a a     (4.59) 

and for retraction 

6
1_ 2 _ 3_219.34 3.93 10 0ret ret reta a a     (4.60) 

It is seen that, for the speed output, the system is stable, as all the 

coefficients are of the same sign (positive). 

In order to be compatible with the pump controlled system, the state 

feedback gains will be calculated for the same desired closed loop pole locations. 

 1 2 35 2 600 700           (4.61) 

The desired characteristic equation is the same with the variable speed 

pump controlled system, 

      3 3 2 5 7
1 2 3 1.33 10 4.61 10 1.32 10s s s s s s             (4.62) 

yielding the following coefficients of the desired characteristic equation, 

3 5 7
1 2 31.33 10 =4.61 10 1.32 10b b b      (4.63) 

Then the state feedback matrix sets both for extension and retraction can be 

obtained by the flowing equation [29]. 

1
3 3 _ 2 2 _ 1 1_

1
3 3 _ 2 2 _ 1 1_

ext ext ext ext ext

ret ret ret ret ret

b a b a b a

b a b a b a





     

     

K T

K T

 (4.64) 

where the transformation matrix T  is given by 
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ext ext ext

ret ret ret





T M W

T M W

 (4.65) 

where M is the controllability matrix derived previously, and W is given by 

6
2 1

1

6
2 1

1

1 3.93 10 217.07 1

1 0 217.07 1 0

1 0 0 1 0 0

1 3.93 10 219.34 1

1 0 219.34 1 0

1 0 0 1 0 0

ext

ret

a a

a

a a

a

  
      
     

  
      
     

W

W

 (4.66) 

thus T is calculated to be 

8

6 8

6 5 3

7

6 7

5 2

1.05 10 0 0

3.81 10 1.05 10 0

1.91 10 2.74 10 1.29 10

7.53 10 0 0

3.31 10 7.53 10 0

0 1.96 10 9.25 10

ext

ret







 
    
     

 
     
   

T

T

 (4.67) 

Finally the desired feedback gain vector sets extK  and retK  are obtained by use of 

the Eq.(4.40), is calculated to be, 

 

 

0.1251 0.0351 0.8598

0.1751 0.0491 1.2015

ext

ret

 

 

K

K

 (4.68) 

The feedback gain vector sets extK  and retK  are used to control the 

linearized vale controlled hydraulic system. According to the spool position at the 

previous time step 1ku  , the control signal at time step k, ku  is chosen as follows, 

1

1

0

0
k k ext ext

k k ret ret

u u K x

u u K x




   

   
 (4.69) 
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The MATLAB Simulink model of the closed loop position control system is 

shown in Figure 4-4. 

 

 

Figure 4-4 MATLAB Simulink Model of the Closed Loop Valve Controlled 
Position Control System 

 

4.5 Kalman Filter Theory and Design 

In this thesis study, Kalman filter is used both for filtering and estimation 
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resulting in chattering of the actuator (servomotor for the pump controlled case and 

solenoid valve for the valve controlled case). Therefore, the noise on the measured 

signals should be attenuated and the signal should be smoothed before feedingback 

to the controller. Both in the variable speed pump controlled and valve controlled 

systems, three states are measured, which are hydraulic actuator position ( x ) and 

hydraulic actuator chamber pressures ( Ap , Bp ). The noisy measured states are 

smoothed via Kalman filter and send to the controller. However, the controller 

needs another state, which is the hydraulic actuator velocity ( x ); this state is 

estimated via Kalman filter. 
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In this section, a conventional discrete Kalman filter is designed and 

explained for the variable speed pump controlled system. However for the valve 

controlled system, an unscented Kalman filter is designed and explained. 

4.5.1 Discrete Kalman Filter 

A Kalman filter is a set of mathematical equations that provides an efficient 

way to estimate the state of the process; it minimizes the mean of the squared error 

between the measured and estimated state. The filter is powerful in estimation of 

past, present and even future states [30]. 

In order to use a Kalman filter to remove noise from a signal, the process 

that is measured must be describable by a linear system [31]. A general linear 

discrete time system is simply a process that can be described by the following two 

difference equations; namely, 

state equation, 

௞ܙ. ൌ ઴ ܙ௞ିଵ ൅ ௞ିଵܙ۵  ൅  ௞ିଵ (4.70)ܟ

and measurement equation 

k k k z H q v   (4.71) 

where Φ  is the (nxn) state transition matrix, G is the (nxr) input matrix, H is the 

(mxn) measurement matrix, kq  is the (nx1) state vector, kz  is the system output, 

1ku  is the (rx1) control input, kw  is the (nx1) process noise and kv  is the (mx1) 

measurement noise. 

Both process and measurement noise ( kw , kv ) are assumed to have zero 

mean and Gaussian distribution. The covariances of these noise vectors are 

represented by R and Q covariance matrices in Kalman filter equations.  

The (nxn) covariance matrix Q of the process noise kw  is defined by 

TE    Q w w   (4.72) 
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The (mxm) covariance matrix R of the measurement noise kv  is defined by 

TE    R v v   (4.73) 

The R and Q matrices depend on the noise level of the measurements 

together with the accuracy of the sensors, and the modeling uncertainties. 

The Kalman filter uses a predictor corrector algorithm to perform the 

estimation of states. Using the system model, a priori state estimate vector at time 

state k is predicted by using the previous state estimate at time state k-1. Then this 

predicted priori estimate is corrected by the actual measurements. To be more 

understandable a block diagram representation of the filter is drawn in Figure 4-5. 

 

 

Figure 4-5 Kalman Filter Block Diagram 

 

Here kz  is the actual measurement, ˆ
k
q  is the priori estimate, which is an 

estimate at step k given the knowledge of the process at step k-1 and ˆ
kq  is the 

posteriori state estimate which is the corrected value of the measurement prediction 

ˆ
k
H q  with the actual measurements. 

For the predictor-corrector algorithm of the Kalman filter defined in Figure 

4-5, two estimate errors can be defined. One is the error between the actual state 

values and priori estimates, and the other is the error between the actual state values 

and posteriori state estimates as expressed below. 
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ˆ
k k k e q q   (4.75)

 

The nxn covariance matrices of the priori and posteriori estimate errors are 

defined as 

T
k k kE     P e e   (4.76) 

T
k k kE    P e e   (4.77) 

Returning to the Figure 4-5 again, the mathematical formulation of the 

block diagram can be written as, 

 ˆ ˆ ˆ
k k k k k

   q q K z Hq   (4.78) 

The main goal of the filter here is to find the nxm Kalman gain matrix kK  

which will minimize posteriori estimate error covariance, which is defined as 

Eq..(4.77). This minimization can be accomplished by first substituting Eq..(4.78) 

into the above definition for ke , substituting that into Eq..(4.77), performing the 

indicated expectations, taking the derivative of the trace of the result with respect to 

kK , setting that equal to zero and then solving for kK . The details of these 

calculations can be found in literature [30]. 

The resulting Kalman gain matrix K that minimizes the posteriori state 

estimate error covariance Eq. (4.77) is found as, 

T
k

k T
k






P H
K

HP H R
  (4.79) 

From the Eq. (4.79) it is seen that as the measurement error covariance goes 

to zero, the Kalman gain weights the residual  ˆ
k k

z Hq  defined in Eq.(4.78).  

1

0
lim k






R
K H   (4.80) 

As the priori estimate error covariance k
P  goes to zero, the Kalman gain 

weights the residual  ˆ
k k

z Hq  less heavily. 
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0
lim 0
k

k
P 

K   (4.81) 

In other words, if the measurement error covariance R goes to zero, that is 

using high accuracy sensors in a noise-free environment, the Kalman filter trusts 

more on the actual measurements kz , while the predicted measurement ˆ
k
H q  are 

trusted less. If the priori estimate error covariance k
P  goes to zero the Kalman 

filter trusts less on the actual measurements kz , and trusts more on the system 

model, which is the predicted measurement ˆ
k
H q . 

Kalman Filter Algorithm 

The equations of the Kalman filter fall into two groups, time update 

equations and measurement update equations. Time update equations can also be 

considered as predictor equations, while measurement equations can be considered 

as corrector equations. 

Time update equations are responsible for projecting the current state and 

error covariance estimates at time step k-1 to obtain the priori estimates for the time 

step k. 

ෝ௞ܙ.
ି ൌ ઴ ܙෝ௞ିଵ ൅  ௞ିଵ (4.82)ܝ۵ 

௞۾.
ି ൌ ઴ ۾௞ିଵ઴் ൅  (4.83) ۿ 

In Eq. (4.82) a priori (predicted) state estimate vector, ˆ
k
q , at time step k is 

defined from the posteriori (corrected) state estimate, 1
ˆ

kq , at the previous time step 

k-1, by using the given system model and the control input 1ku . Likewise, in the 

Eq. (4.83) a priori estimate error covariance k
P  at time step k is defined from the 

posteriori estimate error covariance 1kP  at the previous time step k-1. 

The measurement update equations are responsible for incorporating new 

measurements into the priori estimate to obtain an improved posteriori estimate 

  1T T
k k k

  K P H H P H R   (4.84) 

 ˆ ˆ ˆ
k k k k

   q q K z Hq   (4.85) 
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 k k k
 P I K H P   (4.86) 

In Eq. (4.84) the (nxm) Kalman gain kK  at time step k is calculated. As 

explained above this equation is the result of the minimization operation of the 

posteriori estimate error covariance. In other words, if the Kalman gain kK  is 

written in the way defined in Eq. (4.84), the error covariance between the actual 

measured states and the output estimated states will be minimized. 

In Eq. (4.85) a posteriori state estimate ˆ
kq  is obtained as a linear 

combination of the priori estimate ˆ
k
q  and a weighted difference between the actual 

measurements kz  and a measurement prediction ˆ
k
H q . Lastly in Equation (4.86) a 

posteriori estimate error covariance is obtained. 

After each time and measurement update pair, the process is repeated with 

the previous a posteriori estimates used to project or predict the new a priori 

estimates. This recursive predictor corrector structure of the Kalman filter defined 

by the Equations (4.82), (4.83), (4.84), (4.85), (4.86).is represented in the Figure 

4-6. 

 

 

Figure 4-6 Kalman Filter Algorithm 
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4.5.2 Application in Pump Controlled System 

Since the Kalman filter is a discrete time process and to be compatible with 

the real time digital computing, the state space equations defining the pump 

controlled systems are discretized.  

Instead of writing analytical expressions for the discrete time state space 

equations MATLAB software is used to convert the continuous time states space 

equations which, are defined by Eq. (4.5), to discrete time state space equations. 

The MATLAB function used for this conversion is "c2dm". 

The state space equations are discretized by using forward difference 

method for the sampling frequency of 1000.Hz. The resulting, system matrix, input 

matrix and output matrix are given below. 

 

1 0.0005 0.0548 0.0279

0 0.3069 72.1932 36.6187

0 0.0067 0.1762 0.4178

0 0.0067 0.7826 0.5927

d

 
   
 
  

A  (4.87) 

0.0072 0.0001

18.8356 0.1223

0.1213 0.0015

0.1153 0.0054

d

 
  
 
  

B  (4.88) 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

d

 
 
 
 
 
 

C   (4.89) 

MATLAB Simulink model of the Kalman filter is shown in Figure 4-7. The 

model is formed by using the Eq. (4.82) to (4.86). 
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Figure 4-7 MATLAB Simulink Kalman Filter Model for the Variable Speed 
Pump Controlled System 

 

4.5.3 Unscented Kalman Filter 

Application of Kalman filters to non-linear systems is difficult, for this 

reason an extension of linear Kalman filter which is called extended Kalman filter 

(EKF) is developed to apply the Kalman filter algorithm in non-linear systems. 

EKF linearize all the non-linear system equations around the last states so that the 

traditional linear Kalman filter algorithm can be applied to non-linear systems. 

However, although it has common use, in literature a number of drawbacks of EKF 

algorithm is given, such as possibility of unstable filter, dependence on time 

interval, and especially unreliable estimates for highly non-linear systems. 

In this thesis study a new approach, called unscented Kalman filter (UKF), 

is employed for the filtering and estimation purposes of the states of the valve 

controlled hydraulic system. 

The unscented Kalman filter has the same structure with the linear discrete 

Kalman filter. Linear Kalman filter utilize linear transformation to predict the mean 

and covariance of the estimated states, Eq.(4.82) and Eq. (4.83), as the state 

transition matrix and the measurement matrix are linear, however UKF uses a 

transformation called unscented transform to calculate the mean and covariance of 

the states undergoing a non-linear transform. The details of this transformation can 

4

Pb

3

Pa

2

vel

1

Pos

A

SystemMatrice

H

Z

qk(-)

e

Residual
A

U

qk

qk(-)

Priori_State_Est

P

A

Q

P(-)

Priori_Error_Cov

Q

PrNsCovMtr

K

e

qk(-)

qk

Posteriori_State_Est

P(-) 

H

K

P

Posteriori_Error_Cov

C

OutputMatrice

R

MeasNsCov.Mtx

H

MeasMtr

Matrix
Multiply

P(-)

R

H

K

Kalman_Gain

2

Measurement

1

Control Input



119 

be found in the papers of Julier and Uhlmann [32]. Here the procedure will be 

summarized. 

The problem of the unscented transformation is to predict the mean y  and 

the covariance 
yyP  of a m-dimensional vector random variable y from the n-

dimensional random variable x  with mean x and covariance xxP , where the y is 

related to x  by the non-linear transformation, 

 fy x   (4.90) 

The unscented transformation procedure can be summarized as below, 

 Compute a 2n dimensional vector of sigma points, x . The mean of 

the set of the sigma points are zero and all the sigma points have the 

same covariance xxP  with the random variable x . 

  1i xx
i

n i n  x x P    (4.91) 

  1i n xx
i

n i n   x x P    (4.92) 

where  xx
i

n P  is the ith row or column of the matrix square root of  

 Transform each point. 

 i ify x    (4.93) 

 Compute the mean yand covariance yyP  by computing the average 

of the transformed sigma points, 

2

1

1

2

n

i
in 

 y y   (4.94) 

  
2

1

1

2

n T

yy i i
in 

  P y y y y    (4.95) 
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Unscented Kalman Filter Algorithm 

A non-linear discrete time process is simply described by the following two 

difference equations; namely, 

discrete time non-linear state transition equation, 

 1 1 1, ,k k k k  q f q u w   (4.96) 

and measurement equation 

 ,k k kz h q v   (4.97) 

where  f   is the non-linear process mode,  h   is the non-linear measurement 

model, kq  is the (nx1) state vector, kz  is the system output, 1ku  is the (rx1) control 

input, kw  is the (nx1) process noise and kv  is the (mx1) measurement noise. Both 

process noise and measurement noise ( kw , kv ) are assumed to have zero mean 

Gaussian distribution and uncorrelated. The covariances of the noise vectors are 

represented by R and Q covariance matrices in unscented Kalman filter equations.  

The structure of the UKF algorithm is the same as Kalman filter. Likewise 

the Kalman filter, the equations of the UKF fall into two main groups, time update 

equations and measurement update equations. 

Time update equations are responsible for transforming the current state and 

the error covariance estimates at time step k-1 to obtain the priori estimates for the 

time step k. Different from the Kalman filter where linear transformation is applied, 

unscented transformation is applied in UKF to find the priori estimates and their 

covariance. 

The algorithm for time updating states are supplied below. 

Compute the sigma points 1
i
k q  at time k-1, by using the posteriori 

(corrected) state estimate 1
ˆ

kq  at time step k-1 and the posteriori (corrected) 

estimate error covariance 1kP . 

 1 1 1
ˆ 1i

k k k
i

n i n    q q P    (4.98) 



121 

 1 1
ˆ 1i n

k k xx
i

n i n
   q q P    (4.99) 

Transform the sigma points 1
i
k q  at time step k-1, to time step k, by using 

the given non-linear system model and the control input 1ku  . 

1 1
ˆ , ,i i

k k k ku t    q f q   (4.100) 

Compute the priori state estimate ˆ
k
q  at time step k, by averaging the 2n 

dimensional transformed sigma points ˆ i
kq . 

2

1

1
ˆ ˆ

2

n
i

k k
in





 q q   (4.101) 

Compute the priori estimate error covariance k
P  at time step k-1. 

  
2

1
1

1
ˆ ˆ ˆ ˆ

2

n Ti i
k k k k k k

in
  




   P q q q q Q   (4.102) 

Similarly the observation vector and the observation error covariance is 

calculated as, 

ˆ ˆ ,i i
k k kt   z h z   (4.103) 

2

1

1
ˆ ˆ

2

n
i

k k
in 

 z z   (4.104) 

  
2

1

1
ˆ ˆ ˆ ˆ

2

n Ti i
z k k k k k

in 

   P z z z z R   (4.105) 

and the cross covariance matrix between the priori state estimates and observation 

is calculates as, 

  
2

1

1
ˆ ˆ ˆ ˆ

2

n Ti i
qz k k k k

in




  P q q z z   (4.106) 

Likewise in the Kalman filter, the measurement update equations are 

responsible for incorporating new measurements into the priori estimate to obtain 

an improved posteriori estimate.  

The algorithm for time updating measurements are supplied below. 
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First calculate the Kalman filter gain kK  at time step k 

1
k qz z

K P P   (4.107) 

Calculate the posteriori (corrected) state estimate ˆ
kq  as a linear 

combination of the priori state estimate ˆ
k
q  and a weighted difference between the 

actual measurement kz  and measurement prediction which is the predicted 

observation vector ˆ kz . 

 ˆ ˆ ˆk k k k k
  q q K z z   (4.108) 

Lastly calculate the posteriori (corrected) estimate error covariance at time 

step k 

T
k k k z k

 P P K P K   (4.109) 

Likewise in the linear Kalman filter, after each time and measurement 

update pair, the process is repeated with the previous posteriori estimates used to 

predict the new priori estimates. This recursive predictor corrector structure of the 

Kalman filter defined through Eq.(4.98) to Eq.(4.109) is represented in the Figure 

4-8. 
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Figure 4-8 Unscented Kalman Filter Algorithm 

 

4.5.4 Application in Valve Controlled System 

For the real time control of the valve controlled hydraulic cylinder a 

MATLAB embedded function is written, implementing Eq.(4.98) to Eq.(4.109) in 

discrete time. The MATLAB m-file script is given in Appendix C. The sampling 

time of all the real time application is selected to be 1000 Hz that is measurements 

(observations) are taken every 1.ms. 
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Likewise in the pump controlled system, to be compatible with real time 

digital computing the non-linear state equations represented by  f   in Eq. (4.96)

are discretized by forward difference method, and the measurement model 

represented by  h   in Eq.(4.97) is not discretized, as it is linear and equal to the 

measurement matrix H appearing in the pump controlled system. 

However, during the offline tests, it is seen that, for time steps smaller than 

1.ms, while transforming the sigma points from time step k-1 to time step k, the 

process defined by Eq. (4.100), the non-linear discrete state equations diverge 

resulting in a failure of the UKF. Therefore to be on the safe side, a 4th order Runge 

Kutta scheme with 4 steps between each sample time is employed for the numerical 

integration process defined by Eq. (4.100). The 4th order Runge Kutta algorithm 

can be seen in the UKF m-file script given in Appendix C with the name "ffunc". 

The remaining UKF equations are written directly in the m-file script. 

4.5.5 Filter Tuning 

In this sub-section, the selection of the measurement noise and process 

noise covariance matrices (R & Q) that are introduced in Section 4.5.1 is 

explained. 

The measurement noise matrix, R, represents the accuracy of the 

measurement. It is the covariance of the measurement noise kv  that appears in Eq. 

(4.71). As it is measurable and depends on the quality of the measurement device it 

is possible to determine the R matrix from a sample off-line measurement. 

The diagonal terms of the R matrix are found directly by taking the 

covariance of the measured data from the sensors of systems. The diagonal 

elements of the R matrix are written below. 

11

22

33

cov( )

cov( )

cov( )
A

B

x Measurement

P Measurement

P Measurement





R

R

R

 (4.110) 
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It should be noted that R is a 3x3 matrix, as there are 3 measured states, 

which are hydraulic cylinder position and hydraulic cylinder chamber pressures 

, . 

The off-diagonal elements of the measurement noise matrix represent the 

covariances between the measurements. These elements can be set to any value 

between 0 and ii jjR R  [33]. Since no appreciable amount of covariance between 

the measurements is expected due to independent measurements, the off-diagonal 

elements are set to zero. 

0ij R  (4.111) 

Note that, using a diagonal matrix as the measurement noise covariance so 

that using independent scalar measurements rather than a vector measurement is 

more advantages in terms of reduced computation time and improved numerical 

accuracy [34]. 

The process noise matrix, Q, represents the accuracy of the mathematical 

model of the system. It is the covariance matrix of errors in the state variables 

represented by kw  in Eq.(4.70) that have been caused by Φ  not being truly 

representative of the system. Unlike the measurement noise matrix R, the 

determination of Q matrix is not easy as it is not a measurable quantity. 

However it should be noted that the Kalman filter performance does not 

depend on the absolute values of Q and R matrices but on their relative relationship 

[35]. This relation was investigated in Eq. (4.79). Therefore first fixing the 

measurement noise covariance matrix R, which can be determined from 

measurements and then tuning the process noise matrix Q through an offline 

procedure is a reasonable way. 

Likewise the measurement noise covariance matrix R, the off-diagonal 

elements of the nxn Q matrix can be taken any value between 0 and ii jjQ Q . 

These elements represent the covariance between the uncertainty of the states of the 

system and taking them as zero reduces the computation time and numerical 

accuracy. Therefore the off-diagonal elements are taken as zero. 

x

Ap Bp
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0ij Q  (4.112) 

The diagonal elements of the Q  matrix are written below. 

11

22

33

44

cov ( uncertainty of model )

cov ( uncertainty of model )

cov ( uncertainty of model )

cov ( uncertainty of model )
A

B

x

x

P

P






Q

Q

Q

Q


 (4.113) 

It should be noted that the Q is a 4x4 dimensional matrix, as the system is 

defined by 4 states, hydraulic cylinder position , hydraulic cylinder velocity  

and hydraulic cylinder chamber pressures , . 

4.5.5.1 Pump Controlled System 

To find the diagonal elements of the measurement noise matrix R the 

position and pressure data is acquired from the sensors while sending zero 

reference signals to the servomotors. By this way the only data collected by the 

sensors are the environment noise. 

The Figure 4-9 shows the noise of the position transducer. The covariance 

of position data is calculated by MATLAB built in "cov" function and written as 

the first diagonal element of the measurement covariance matrix.  

The Figure 4-10 and Figure 4-11 show the noise on the pressure transducers 

at the hydraulic cylinder chambers A and B. Likewise in the position transducer, 

the covariance of these data are calculated and written as the second and third 

diagonal elements of the measurement noise matrix R. 

 

 

x x

Ap Bp
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Figure 4-9 Position Transducer Measurement for Zero Reference Input 

 

 

Figure 4-10 Hydraulic Cylinder Chamber B Pressure Transducer 
Measurement for Zero Speed 
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Figure 4-11 Hydraulic Cylinder Chamber A Pressure Transducer 
Measurement for Zero Reference Signal 

 

Then the measurement noise covariance matrix is found as, 
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As it was explained in the above section, the Kalman filter performance 

does not depends on the absolute values of the R and Q matrix but their relative 

relationship.  

Therefore the process noise covariance matrix Q is found through an offline 

iterative procedure. For tuning purposes a R/Q ratio is defined for each diagonal 

element of the process noise covariance matrix. If the R/Q ratio increases the 

Kalman filter trusts on the measurement more heavily, while if the R/Q ratio 

decreases the Kalman filter trusts on the model more heavily. 
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For the position estimation R/Q ratio is decreased till the noise on the 

position measurement is attenuated. A lowerr R/Q ratio means a smoother position 

signal. But, as the Kalman filter trusts more on the model than the measurement, at 

higher frequencies the filtered signal differs from the actual measured signal. For 

the velocity and pressure estimation R/Q ratio is decreased more to thrust on the 

model, rather than the measurement. 

The resulting process noise covariance matrix found throughout the offline 

trial and error iterative process is given below, 

 

5

9

7

7

2.36 10 0 0 0

0 2.36 10 0 0

0 0 5.77 10 0

0 0 0 6.55 10









 
  
 
 

 

Q  (4.115) 

 

According to the selected process noise matrix Q, and the measurement 

noise matrix R, the Kalman filter performance tested on the variable speed 

hydraulic test set up with proportional controller. The proportional gain is 1 while 

the reference input signal is a 1.Hz sinusoidal signal with 5 mm amplitude. 

Figure 4-12 shows the performance of the designed Kalman filter for 

position estimate. The covariance of the error between the measured and filtered 

position signal is 0.229 with standard deviation 0.15 mm. 

Figure 4-13 shows the pressure filtering performance of the Kalman filter. 

The noisy blue data is the actual measurement data, the red one is the filtered 

pressure data, and the magenta data is the linear MATLAB Simulink model 

response. Note that the actual pressure measurements seem different from the 

model response. This is due to the static friction of the hydraulic cylinder which is 

not taken into account in the linear model of the system. The effect of static friction 

can be seen more clearly in Figure 4-14. 
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Figure 4-12 Kalman Filter Position Filtering Performance 

 

 

Figure 4-13 Kalman Filter Pressure Filtering Performance 
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In Figure 4-14 it is seen that the measured load pressure response of the 

system is a square wave like signal, although the reference input of the system is a 

sinusoidal position signal. This is due to the static friction on the hydraulic 

cylinder, which becomes dominant at low cylinder speeds. However, despite the 

real square wave like load pressure, Kalman filter estimated the load pressure as a 

sinusoidal signal, which is similar to the linear MATLAB Simulink model 

response. This is done intentionally. Because the load pressure is one of the 

feedback elements of the linear state feedback controller, the Q matrix is tuned 

such that the filter thrusts on the model more heavily and do not reflect the non-

linear system properties on the linear controller, as it may result in the instability of 

the system. 

 

 

Figure 4-14 Kalman Filter Performance Load Pressure 

 

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

Measured, Filtered and Model Output Load Pressure PL

Time [s]

Pr
es

su
re

 [
M

Pa
]



132 

4.5.5.2 Valve Controlled System 

The same sensors are used in the valve controlled system as in the variable 

speed controlled system. Therefore the measurement noise covariance matrix R , is 

taken to be the same in the variable speed pump controlled system. However, as the 

two system models are different, the process noise covariance matrix Q , is 

different. 

Likewise in the variable speed pump controlled system, the process noise 

covariance matrix is tuned offline through a trial and error procedure, by defining 

/R Q  ratio for each diagonal element. 

The numerical values of R  and Q  used throughout all the valve controlled 

system tests are given below 

Measurement noise matrix covariance, 

2

3

3

2.3635 10 0 0

0 5.7700 10 0

0 0 6.5500 10







 
   
  

R   (4.116) 

Process noise matrix covariance 

6

11

12

12

2.36 10 0 0 0

0 2.36 10 0 0

0 0 5.77 10 0

0 0 0 6.55 10









 
  
 
 

 

Q  (4.117) 
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CHAPTER 5  

 

 

PERFORMANCE TESTS OF THE SYSTEM 

 

In this chapter, real time test results of the valve controlled and pump 

controlled system are given. In Section 5.1, the test procedure to find the pump 

leakage coefficients and hydraulic cylinder friction are explained. In Section 5.2 

and 5.3, step responses of pump controlled and valve controlled system are 

illustrated. In Section 5.4, frequency responses of valve controlled and pump 

controlled systems are given for 5.Hz desired dominant closed loop pole location. 

In Section 5.5, a comparison of two systems is made in terms of dynamic 

performance. 

All the tests are conducted on the MATLAB Simulink Real Time Windows 

Target environment. For the entire control applications, a discrete fixed step size 

solver with 1000.Hz sampling frequency is used. 

Figure 5-1 shows the MATLAB Simulink Real Time Windows Target 

model of the pump controlled system. The inputs of the model measured via data 

acquisition card are: actuator position, the hydraulic cylinder chamber pressures, 

and the servomotor speeds. Through a look up table, the measured signals in terms 

of Volts are converted to mm, MPa, and rps, respectively. Then, the position and 

pressure signals are feed through the Kalman filter. The Kalman filter attenuates 

the noise on the position and pressure signals and estimates the velocity. Then, the 

smoothed position signal is compared with the reference position signal, and sent 

through the controller accompanying with the other two states. The controller 

generates the manipulated input signal that is the speed of the servomotor 2. After 

adding the offset speeds determined according to the desired sum of the chamber 
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pressures, the signal is converted to Volts from rps through a look up table and sent 

to the servomotor 2 driver, meanwhile the reference speed of the servomotor 1 is 

adjusted according to the servomotor 2 speed. 

 

 

Figure 5-1 MATLAB Simulink RTWT Controller of the Pump Controlled 
System 

 

Figure 5-2 shows the MATLAB Simulink Real Time Windows Target 

model of the valve controlled system. All the procedure is the same in the pump 

controlled case, differently in the controller, two manipulated input signals are 

generated, and according to the spool position one of them is selected and send to 

the valve driver. The second output of the system is the servomotors' speed 

command which is constant and determined manually according to the frequency 

and amplitude of the test signal. The servomotor speeds should be chosen such that 

the pumps always deliver excess flow to the system so that the pressure relief valve 

is always open fixing the supply pressure. 

The magnitude and frequency of test signals are selected such that no 

saturation occurs in servomotors or valve driver. For this reason, each test signal is 

run on the MATLAB Simulink models of the systems before conducting real time 

tests. 
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Figure 5-2 MATLAB Simulink RTWT Controller of the Valve Controlled 
System 
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the hydraulic cylinder chambers are determined mainly by the leakage coefficients 

and pump flow rate. 

Remembering the electrical analogy of the pump controlled system 

represented by Figure 3-13, if the voltage difference across a resistance and the 

current through it are known, then the value of the resistance can be obtained. Thus, 

in this sub-section the internal and external leakage coefficients are obtained by 

using the steady state sum pressure of the hydraulic cylinder chambers due to 

steady state flow rate generated by a known pump speed command. 

The relation between the pump offset speeds and the relation between the 

hydraulic cylinder chambers pressure sum and pump 2 speed, expressed in Section 

3.2.3, are repeated here for convenience. 

 
1

2

2

1
o i ea eb

o i eb

n C C C

n C C




 
 

  
 

 (5.1) 

 
 2

1

1
i eb

o sum sum
P

C C
n p p

D

 


 
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Note that as the two pumps used in the system are identical and there is no 

external leakage paths added to the system, the leakage coefficients eaC  and ebC  are 

assumed to be the same and will be represented by eC . 

From the Eq. (5.1), a ratio between the internal and external leakages can be 

found as, 
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 (5.3) 

In Eq. (5.3), because the   constant has always a negative value and both 

  and   are greater than unity, 
RatioieC  is a positive constant. If the Eq..(5.3) is 

substituted in Eq. (5.2) then the external leakage coefficient is expressed as 

 
  

20 1

1
Ratio

p
e

ie sum

n D
C

C p



 

 


 
 (5.4)

 



137 

To find the pump internal coefficients an open loop test procedure is 

applied. Pumps are driven with two independent speed inputs, 10n ,and 20n . It is 

important to remember that the above equations are valid for zero hydraulic 

cylinder movement. Thus, through a trial and error process the right speed ratio 

which makes the hydraulic cylinder velocity zero is found. 

Shown in Figure 5-3 is the steady state chamber pressures, for a given two 

independent pump speeds 10 0.5n  rps and 20 0.42n   rps. The mean value of the 

measured chamber pressure is _ 5.05A ssP  MPa and the mean value of the 

chamber B pressure is 
_ 9.74B ssP  MPa. 

 

 

Figure 5-3 Steady State Chamber Pressures 
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If the steady state chamber pressure values and the motor speeds are 

inserted into Eq. (5.3) and Eq. (5.4), the internal and external leakage coefficients 

of the pumps will be found as, 

3120 / .e ea ebC C C mm s MPa    (5.5)
 

31097 / .iC mm s MPa  (5.6)
 

Figure 5-4 shows the steady state cylinder position due to the applied offset 

speeds. Because this is an open loop process, it is very hard to fix the hydraulic 

cylinder without position feedback. However as can be seen from the Figure 5-4, 

during 33.seconds the actuator moves only 2.mm and can be assumed to be 

motionless. Then, the flow rates delivered by the pumps directly used to 

compensate the leakages, while pressurizing the hydraulic cylinder chambers. 

 

 

Figure 5-4 Steady State Cylinder Position for the Given Offset Pump Speeds 
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5.1.2 Hydraulic Cylinder Friction 

In Section 3.2.2.3 in load model, it is assumed that the friction force is 

viscous. In this sub-section, the experimental study to find the viscous friction 

coefficient is explained. 

The friction in the experimental test set-up is mainly due to the sliding 

surfaces between the hydraulic piston seals and the hydraulic cylinder. Furthermore 

another friction force exists between the steel plate and the two sliders due to the 

misalignment of the two sliders. 

To find the friction force acting on the system, a reference position signal is 

sent to the closed loop hydraulic position control system. The reference signal is 

chosen to be a low frequency sinusoidal signal, to minimize the inertial effects on 

the hydraulic cylinder chamber pressures. Throughout the test the hydraulic 

cylinder chamber pressures and cylinder position are measured and the hydraulic 

cylinder velocity is estimated by use of a Kalman filter. After calculating the 

friction force defined by Eq.(5.7), the friction force versus cylinder velocity is 

plotted. The acceleration represented by x in Eq.(5.7) is neither measured nor 

estimated from the Kalman filter. The acceleration data is obtained off-line by 

using the MATLAB Simulink model of the system. 

 f A A B Bf p A p A m g x    
 (5.7) 

Note that friction is a highly non-linear process that depends on many 

physical parameters and environmental conditions. When two sliding materials are 

lubricated, different sliding speeds cause different film thicknesses of the lubricant 

and therefore friction characteristics may change. Another factor affecting the 

friction is the hydraulic cylinder chamber pressures as it will affect the surface area 

of the sealing in contact with the hydraulic cylinder wall. Also it is observed that 

the hydraulic cylinder location and thus the amplitude of the reference test signal 

effects the friction force characteristics. 

To find the friction characteristics of the hydraulic actuator, a chirp signal, 

which has an increasing frequency from 0.1.Hz to 4.Hz is used as a test signal. The 
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signal frequency increases linearly in time. The total duration of the signal is 

66.seconds. As the hydraulic cylinder location affects the friction characteristics the 

amplitude of the chirp signal is chosen as 5 mm with a 50.mm offset cylinder 

stroke. Because the chamber pressures affect the friction force the desired chamber 

pressure sum is set to 12.MPa, which will be the same in the closed loop position 

control system. Figure 5-5 shows the test signal used to determine the friction 

characteristics of the hydraulic cylinder. 

In Figure 5-5 the blue signal is the reference position signal and the red 

signal is the response of the close loop hydraulic system. The position response of 

the system is filtered by the Kalman filter. In the close loop hydraulic position 

control system a proportional controller with gain 1pK   is used. 

 

 

Figure 5-5 Friction Test Signal and System Response 
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Figure 5-6 shows the friction force versus velocity graph. The friction force 

is calculated by using Eq. (5.7). The chamber pressures used for the friction force 

calculation are not filtered. However to reduce the noise level, the pressure data 

which have a 1000.Hz sampling frequency is averaged at every 10 data interval. 

The velocity data which is the x axes of the graph is not measured but estimated by 

using the designed Kalman filter for pump controlled system. 

Furthermore, the acceleration data to find the inertial forces is calculated by 

using the mathematical model of the system. Figure 5-8 shows the inertial forces. 

Note that when the chirp signal frequency becomes greater than 2.Hz the inertial 

forces seems to be important nevertheless its maximum value is around 17.N which 

may be negligible with respect to the friction force. 

The friction force data in Figure 5-6 seems very scattered. This is not due to 

the noisy pressure measurement but due to the different friction force 

characteristics for different cylinder speeds. The friction force resulting from the 

low frequency components of the chirp signal dominates the static friction around 

zero, while the friction force resulting from the high frequency components of the 

chirp signal dominates dynamic friction at higher velocities. Furthermore it seems 

there exist a large hysteresis between the extending and retracting friction forces at 

low velocity region. However at high velocity region, that is for the velocities 

greater than 20 mm/s the friction force for the extracting and retracting seems to be 

the same and proportional with velocity. 

From the data represented in Figure 5-6 it is very hard to approximate a 

viscous friction coefficient. Thus the velocity data is divided into 40 equal velocity 

intervals between the maximum and minimum cylinder velocity. An equivalent 

friction force is calculated by taking the mean of the friction forces at each velocity 

interval. The resulting friction force versus cylinder velocity is represented in 

Figure 5-7. The red line in Figure 5-6 is formed by connecting these points. 
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Figure 5-6 Friction Force vs Cylinder Velocity 

 

 

Figure 5-7 Mean Friction Force vs Cylinder Velocity 
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The friction force characteristics represented in Figure 5-7 is more 

understandable. There seems to be a non-linearity around zero velocity, causing a 

stick-slip motion while moving the cylinder. After the cylinder is moved the 

friction force decreases. This type of friction can be modeled with Karnopp’s 

friction model if the friction at low velocity is considered. However, in this thesis 

study, the both hydraulic control systems are modeled as linear systems, therefore, 

the friction is assumed to be viscous. 

From the higher velocity region of the Figure 5-7, the viscous friction force 

coefficient of the system both for extending and retracting is taken to be, 

2.6 . /b N s mm  

 

 

Figure 5-8 Body Force due to Acceleration 
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5.2 Step Response of Pump Controlled System 

In this sub-section, the step response of the pump controlled system is 

given. A step signal with 10.mm amplitude and 0.5.Hz frequency is chosen as the 

reference position signal. The system is controlled with linear state feedback 

control algorithm as explained in Section 4.3. The bandwidth of the closed loop 

system is chosen to be 2.Hz and therefore the dominant desired closed loop pole of 

the system is located at െ2.2ߨ rad/s. The desired poles of the closed loop position 

control system and the corresponding controller gains are given in Table 5-1 with 

the accompanying test signal properties. 

 

Table 5-1 Pump Controlled System Step Response Test-1 Data 

Reference Step Signal 
Magnitude 10 mm 
Frequency 0.5 Hz 

Desired Closed Loop Poles ሾെ2.2ߨ, െ600, െ700ሿ 
State Feedback Gains ሾ0.0962, െ0.0604, 1.5912ሿ 

 

Figure 5-9 shows the step response of the closed loop pump controlled 

system. The black signal is the reference position signal, while the blue one is the 

measured position signal, the red one is the filtered signal, which is the output of 

the Kalman filter and used as the feedback signal, and lastly the magenta signal is 

the position response of the linear MATLAB Simulink model. It is seen that the 

linear model response and the real system response are consistent.  

Note that the desired closed loop pole that dominates the system behavior is 

located at െ2.2ߨ rad/s. Because the other two poles (-600.rad/s,-700.rad/s) are 

located very far to the left of the desired closed loop pole, their effects on the 

response can be assumed to be negligible, so that the closed loop position control 

system can be thought as a first order system with the following transfer function. 

 
 

1

1r

X s

X s Ts



 (5.8) 
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and the time constant T is equal to 

1
0.0795

2 2
T s


 


 (5.9) 

Time constant T is an important parameter of first order systems, because at 

time t=T, the response of the system reaches 63.2% of its total change. This can be 

verified from the system response, at time t= 10.08 s the hydraulic cylinder position 

is 52.3 mm which is 61.5% of its total change. 

 

 

Figure 5-9 Step Response of the Pump Controlled System with Dominant 
Desired Closed Loop Pole Located at െ૛. ૛࣊ rad/s 
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a free "s" term in the denominator. Because the system acts as an integrator, the 

steady state error in the response is not expected. 

The static friction of the hydraulic cylinder and the dead band of the 

servomotor and the pump may be the reason of this steady state error. 

To decrease the steady state error, the state feedback gains of the system are 

increased, the dominant desired closed loop pole of the system is located at 

െ10.2  rad/s while the location of the other closed loop poles are remained 

unchanged. The test signal properties, the desired closed loop poles and the 

corresponding state feedback gains are given in Table 5-2. 

 

Table 5-2 Pump Controlled System Step Response Test-2 Data 

Reference Step Signal 
Magnitude 2.5 mm 
Frequency 0.5 Hz 

Desired Closed Loop Poles ሾെ10.2ߨ, െ600, െ700ሿ 
State Feedback Gains ሾ0.4809, െ0.0595, 1.6657ሿ 

 

Figure 5-10 shows the step response of the closed loop pump controlled 

system with the dominant desired closed loop located at െ10.2ߨ rad/s. Again, the 

model response and the real system response are consistent. For the dominant 

desired closed loop pole located at െ10.2ߨ rad/s, the time constant of the 

equivalent first order system is 0.016 seconds. In Figure 5-10, it is seen that the 

system reaches 63.2% of its total change at this time as expected. Different from 

the model response there occur a 5.4% overshoot of the real system response 

indicating that the closed loop system tends to be oscillatory if a high bandwidth is 

desired. 
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Figure 5-10 Step Response of the Pump Controlled System with Dominant 
Desired Closed Loop Pole Located at െ૚૙. ૛࣊ rad/s 
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Table 5-3 Valve Controlled System Step Response Test-1 Data 

Reference Step 
Signal 

Magnitude 10 mm 
Frequency 0.5 Hz 

Desired Closed Loop Poles ሾെ2.2ߨ, െ600, െ700ሿ 

State Feedback 
 Gains 

Extension ሾ0.0449, െ0.0317, െ0.7588ሿ 

Retraction ሾ0.0629, െ0.0443, െ1.0602ሿ
 

Linearized at 

Supply Pressure 8.3 MPa 

Spool Position 0.1 V 

 

Figure 5-11 shows the step response of the closed loop valve controlled 

system. The black signal is the reference position signal, while the blue one is 

measured position signal and the red one is the filtered signal, which is the output 

of the unscented Kalman filter and used as the feedback signal, and lastly the 

magenta signal is the position response of the non-linear MATLAB Simulink 

Model. 

Different from the pump controlled system, the non-linear model behavior 

and the real system behavior are not the same at transient zone. When the non-

linear model reaches 63.2% of its total change, which corresponds to the cylinder 

position of 52.64.mm, the total time passed is 87.ms, this is consistent with the 

linearized closed loop system model with the dominant closed loop pole located at 

െ2.2ߨ rad/s with the corresponding time constant of 80.ms. However from the 

graph it is seen that the real system response reaches this position with a 50.ms 

delay. The same behavior is valid for the settling time; the real system reaches 96% 

of its total change after 250.ms from the non-linear model. 

It should be noted that there seems a difference between the real 

measurement and the Kalman filter output. This is because the filter trusts on the 

model rather than the real position measurement. Thrusting on the model is a 
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necessary strategy for this type of controller. Because the controller gains switch at 

zero spool position, any noise in the feedback position signal causes chattering of 

the valve. 

 

 

Figure 5-11 Step Response of the Valve Controlled System with Dominant 
Desired Closed Loop Pole Located at െ૛. ૛࣊ rad/s 
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dominant closed loop pole moves from െ2.2ߨ rad/s to െ10.2ߨ rad/s, the time 

constant of the real system decreases from 130 ms to 35 ms. 

 

Table 5-4 Valve Controlled System Step Response Test-2 Data 

Reference Step 
Signal 

Magnitude 2.5 mm 
Frequency 0.5 Hz 

Desired Closed Loop Poles ሾെ10.2, െ600, െ700ሿ 

State Feedback 
 Gains 

Extension ሾ0.2246, െ0.0312, 0.7936ሿ 

Retraction ሾ0.3145, െ0.0437, 1.1090ሿ
 

Linearized at 
 

Supply Pressure 8.3 MPa 

Spool Position 0.1 V 

 

 

Figure 5-12 Step Response of the Valve Controlled System with Dominant 
Desired Closed Loop Pole Located at െ૚૙. ૛  rad/s 
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Despite the high dynamics, it is seen that increasing gains causes stability 

problems. At steady state the hydraulic cylinder tends to make random oscillations. 

Increasing the state feedback gains make the control signal more sensitive to noise 

as seen in Figure 5-13. In this figure, the reference valve spool position command 

sent to the valve driver is compared with the valve spool position command of the 

non-linear MATLAB Simulink model of the valve controlled system. It is seen 

that, in the real system, the spool position command makes oscillations around 

zero, whereas in the Simulink model the spool position is constant and equal to 

zero at steady state. 

In order to overcome this problem, a dead band can be defined in the 

controller instead of switching immediately at zero spool position. 

 

 

Figure 5-13 Real System Valve Spool Position Command and Simulink Model 
Spool Position Command 
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Next to increasing the controller gains, another way to increase the 

dynamics of the closed loop valve controlled systems is to increase the supply 

pressure. This can be seen clearly when the block diagram of the valve controlled 

system, Figure 3-22, is investigated. The valve spool position gain 
4 _u extK  is 

proportional to the square root of the supply pressure as defined in Eq. (3.87). 

Theoretically, doubling the supply pressure will increase the valve spool position 

gain 1.414 times, which is equivalent to increasing all the state feedback gains 

1.414 times while remaining the supply pressure unchanged. Of course increasing 

the supply pressure will decrease the energy efficiency of the system. 

5.4 Frequency Response Test 

In this sub-section the frequency of a sinusoidal signal is varied over a 

certain range and the resulting system response is studied. The open loop and 

closed loop frequency responses of the system are obtained throughout an 

experimental procedure and compared with the modeled system response. 

The dominant closed loop poles are chosen to determine the bandwidth of 

the closed loop position control hydraulic system. The desired bandwidth is 5.Hz. 

The linear state feedback controller gains corresponding to the desired closed loop 

pole locations are determined by following the procedure explained in Section 4.3. 

The experimental data in the time domain is transformed into frequency 

domain by using MATLAB built in functions. To find the frequency response of 

the system Fast Fourier Transforms (FFT) of the input signal and the system output 

are taken to determine the amplitudes of the constituting harmonics and their 

frequencies. FFT’s are taken with MATLAB "fft" command. The m-file script 

written for this purposes is given in Appendix C. 
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5.4.1 Test Signal 

In this experimental study, a MATLAB m-file script is written for 

generating the reference sine sweep signal.  

For the open loop tests the written m-file generates a sinusoidal signal with 

exponentially decaying amplitude and linearly decreasing frequency with time. In 

the open loop test in order to prevent the saturation of the hydraulic actuator, that 

is, to prevent the piston rod to reach the end of the stroke at low frequencies, this 

type of signal is generated. 

For the closed loop tests, constant amplitude sinusoidal test signals are 

generated with linearly increasing frequencies. This signal is the same as the 

MATLAB Simulink Chirp signal. 

Note that the amplitude and frequency range of the input signals are 

selected by considering the saturation limits of the servomotor and valve drivers. 

5.4.2 Open Loop Frequency Response of Pump Controlled Hydraulic System 

In the open loop frequency response test, a sinusoidal signal with an 

exponentially decaying magnitude is applied. The amplitude of the test signal starts 

from 10.V decreases to zero in 70.seconds with a time constant of 13.77.s, while its 

frequency starts with 10.Hz and decreases linearly in time down to 0.1 Hz. In 

Figure 5-14 the open loop test signal which is the reference signal of the 

servomotor 2 and its response is shown. 

Figure 5-15 shows the experimental and the theoretical open loop frequency 

responses of the system. Since the type number of the transfer function defining the 

position response of the open loop system is one, the system acts as an integrator 

and the slope of the Bode diagram at the low frequency region is –20.dB/dec as 

expected.  
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Figure 5-14 Pump Controlled System Open Loop Frequency Response Test 
Signal 

 

 

Figure 5-15 Experimental and Theoretical Open Loop Frequency Response of the 
Pump Controlled System 
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It is seen from the Bode diagram that the theoretical resonance frequency of 

the system is around 295.Hz. Only in the neighborhood of this frequency, damping 

dominates the dynamic behavior and some time should pass for the system to reach 

steady state. However, at low frequency region the system rapidly responses to the 

input signal and there is no need to wait for the system to reach steady state. Thus 

continuously changing the test signal frequency is not a problem for this frequency 

response tests. 

Figure 5-16 shows the hydraulic cylinder position response and illustrates 

why an exponentially decaying amplitude sinusoidal signal is chosen as the test 

signal. By decreasing the amplitude and frequency with time saturation of the 

hydraulic cylinder is prevented.  

 

 

Figure 5-16 Hydraulic Cylinder Position in Open Loop Tests 
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Theoretically the cylinder is expected to make oscillations without moving 

upwards or downwards movement. However in the open loop frequency response 

test it is seen that the cylinder is continuously moving upwards while making 

oscillations. This is due to the leakage coefficients found in Section 5.1.1 not truly 

representing the real system leakage characteristics. While modeling the system, 

the leakage flow is assumed to be linear, however it is known that the volumetric 

efficiency of the pump, which is the representative of the pump flow losses changes 

with the pump drive speed. Furthermore, the pump excitation frequency also affects 

the pump leakage characteristics. Because the pump leakage coefficients in Section 

5.1.1 are found for constant pump speeds it is not an unexpected result to see that 

the model and the real system behaves differently. However despite the sharp slope 

of the upwards movement at high frequency region, this slope decreases at low 

frequency region showing that the real system leakage characteristics are much 

similar to the assumed ones. 

5.4.3 Close Loop Frequency Response of Pump Controlled Hydraulic System 

In the closed loop frequency response test, a sinusoidal signal with 4 mm 

amplitude is chosen with a frequency starting from 0.1 Hz and linearly increasing 

to 10 Hz in 100 seconds. The maximum motor speed corresponding to maximum 

frequency is 8 rps (480 rpm), eliminating the risk of the saturation of the 

servomotor speeds. The desired bandwidth of this closed loop position control 

system is 5 Hz, therefore the desired closed loop poles are selected as 

ሾെ5.2ߨ, െ600, െ700ሿ. Note that the last two poles, ሾ െ600, െ700ሿ, are located far 

away from the origin with respect to the first pole, so that their dynamics can be 

neglected and the closed loop system dynamics is determined by the first pole 

located at െ5.2ߨ rad/s.  

The linear state feedback controller gains are determined by following the 

procedure explained in Section 4.3. The test signal properties, the desired closed 

loop poles and the corresponding state feedback gains are listed in Table 5-5. 
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Table 5-5 Pump Controlled System Frequency Response Test Data 

Reference Chirp Signal 
Magnitude Start Frequency Stop Frequency Duration 
4 mm 0.1 Hz 10 Hz 100 s 
Desired Closed Loop Poles ሾെ5.2, െ600, െ700ሿ 
State Feedback Gains ሾ0.2405, െ0.0601, െ1.6191ሿ 

 

Figure 5-17 shows the response to sine sweep input of the variable speed 

pump controlled hydraulic system. The black signal is the reference position signal, 

while the blue one is measured position signal and the red one is the filtered signal, 

which is the output of the Kalman filter and used as the feedback signal, and lastly 

the magenta signal is the position response of the linear MATLAB Simulink model. 

In Figure 5-17, the general behaviors of the closed loop systems seem to be 

consistent with the model, however it is hard to see the performance of the system 

therefore a detailed view is given in Figure 5-18. 

 

 

Figure 5-17 Position Response of Pump Controlled System 
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The upper plot of the Figure 5-18 shows the response of the closed loop 

pump speed controlled system at low frequency range. The excitation frequency is 

around 1.Hz. It is seen that, at low frequency region, the Kalman filter works well 

and the closed loop model response is similar to the measured real system response. 

In low frequency range, the affect of noise on the position signal is substantial. If 

the measured signal is to be used directly as the feedback position signal, then it 

will cause noise and chattering in the servomotors. 

 

 

Figure 5-18 Detailed View of Position Response of Pump Controlled System 
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The bottom plot of the Figure 5-18 shows the response of the system around 

10.Hz. It is seen that the model response and the measured real system response are 

consistent. However, at high frequency range, the performance of Kalman filter 

begins to deteriorate, there occurs a small phase difference between the measured 

and estimated position signal. This is an expected result since the filter thrusts more 

on the model than the measurement, when the model uncertainties becomes 

effective at high frequencies the error between the measurement and model 

increases. Note that, different form the conventional low pass, band pass etc. filters, 

where the filtered signal lags the measured signal, the Kalman filter output signal 

leads the measured signal. 

In Figure 5-19 the performance of Kalman filter is illustrated by plotting the 

error between the measured and filtered position signals. 

 

 

Figure 5-19 Error Between the Measured and Filtered Position Signal 
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0.2.mm at around 1 Hz excitation frequency. However, it should be noted that the 

increasing error is mainly due to the phase shift at higher frequencies. 

Furthermore, from the position response, it is useful to look at the pressure 

response as they are feedback signals and are used to manipulated input command. 

Figure 5-20 shows the pressure response of the hydraulic cylinder chambers during 

the sine sweep test. The blue signal is the measured signal, the red one is the 

filtered, and the magenta is the linear MATLAB Simulink model response. The 

pressure signal with higher amplitude, around 8.MPa, is the rod side chamber 

pressure (Chamber B with smaller cylinder piston area), and the signal with lower 

amplitude, around 4.MPa, is the cap side chamber pressure (Chamber A bigger 

cylinder piston area). 

 

 

Figure 5-20 Pressure Response 
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chamber pressure sum are 4 MPa and 8MPa, showing that the open loop pressure 

control works well. This also confirms the internal and external leakages 

coefficients found experimentally in Section 5.1.1, as they determine the open loop 

pressure control coefficients   and  . Although the open loop sum pressure 

control works well at low frequency region, the chamber pressures begin to differ 

from the model response around time 75t s at high frequency region. This is 

mainly due to the changing leakage characteristics at higher frequencies. Also it 

should be noted that at these frequencies the servomotors which were assumed to 

be ideal angular velocity sources with zero dynamics do not respond to the desired 

velocity command. This can be clearly seen in Figure 5-21 where the reference and 

measured servomotor 2 speeds are plotted. It is seen that after time 75t s  at 

higher frequencies, the measured velocity signal, the blue one, differs from 

reference velocity signal, the red one. 

 

 

Figure 5-21 Servomotor Response 
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In Figure 5-20, it is seen that when the unexpected decrease of the chamber 

pressure at higher frequencies occurs, the filtered signals tracks the measured ones. 

However, the filtered pressure signals are not truly representative of the real 

chamber pressures. In Kalman filter, the measurement and process noise covariance 

matrices (R and Q) are tuned such that the filter trusts more and more on the model 

rather than the measurement. This is to prevent the effects of the non-linear real 

system properties on the linear controller. 

 

 

Figure 5-22 Load Pressure 
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Figure 5-22, where the measured and estimated load pressures are plotted. It is seen 

that despite the sinusoidal excitation, the load pressure at low frequency region 

resembles a square wave. This is due to the static friction on the sealing of the 

hydraulic cylinder, whereas the filtered signal is sinusoidal as expected and is 

similar to the model response. By this way, the feedback load pressure signal, 

which is calculated with the Kalman filter output chamber pressures, does not 

reflect the effect of static friction. At high frequency region the effect of static 

friction on the load pressure decreases due to increased effect of the inertial forces. 

The model pressure response and filtered pressure signals become consistent with 

the real load pressure for higher excitation frequency. 

In Figure 5-23 and Figure 5-24, the frequency response of the real system 

and the model are compared on frequency domain. 

 

Figure 5-23 Magnitude Plot of the Experimental and Theoretical Frequency 
Response of Pump Controlled System with Desired Dominant Pole Located at – ૞. ૛࣊ 

rad/s 
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The red signal shows the frequency response of the closed loop transfer 

function given in Eq. (4.24). The frequency response of the transfer function is 

drawn by the MATLAB built in "bode" command. The frequency response of the 

experimental data is converted from time domain to frequency domain by using 

MATLAB built in "fft" function. The MATLAB m-file script written for this 

purposes is given in Appendix C. It is seen that the real system response and the 

model response are consistent. The magnitude of the closed loop frequency 

response is -3.dB at 5.Hz excitation frequency, indicating the bandwidth of the 

system. This is an expected result, because the desired closed loop poles were 

located at ሾെ5.2ߨ, െ600, െ700ሿ. Because the last two poles are far away from the 

imaginary axes with respect to the first pole, the pole located at െ5.2ߨ rad/s 

dominates the system characteristics, and resulting in a 5.Hz bandwidth of the 

closed loop system. 

 

 

Figure 5-24 Phase Plot of the Experimental and Theoretical Frequency 
Response of Pump Controlled System with Desired Dominant Pole Located at – ૞. ૛࣊ 
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5.4.4 Open Loop Frequency Response of Valve Controlled Hydraulic System 

For the open loop test of the valve controlled system a sinusoidal signal 

with 1.V amplitude and -0.1.V offset is chosen. The frequency of the test signals 

starts from 0.1 Hz and linearly increases to 10.Hz in 100 seconds. The test signal 

used in the open loop test of the valve controlled system is shown in Figure 5-25. 

 

 

Figure 5-25 Test Signal for Valve Controlled System Open Loop Frequency 
Response 
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steady state. Thus continuously changing the test signal frequency is not a problem 

for this frequency response tests. 

 

 

Figure 5-26 Magnitude Plot of the Experimental and Theoretical Open Loop 
Frequency Response of the Valve Controlled System 
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loop valve controlled system. However, as the roots of the characteristic equation 

defining the dynamics for retraction and extension is very closer, it is seen as a 

single curve. 

 

 

Figure 5-27 Phase Plot of the Experimental and Theoretical Open Loop 
Frequency Response of the Valve Controlled System 
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response tests the supply pressure of the servo solenoid valve is fixed by setting the 

set pressure of the relief valve to 8.3.MPa. The test signal properties, the desired 

closed loop poles and the corresponding state feedback gains are listed in Table 

5-6. 

 

Table 5-6 Valve Controlled System Frequency Response Test Data 

Reference Chirp Signal 
Magnitude Start Frequency Stop Frequency Duration 
4 mm 0.1 Hz 10 Hz 100 s 
Desired Closed Loop Poles ሾെ5.2ߨ, െ600, െ700ሿ 

State Feedback 
 Gains 

Extension ሾ0.1132, െ0.0315, 0.7719ሿ 

Retraction ሾ0.1573, െ0.0441, 1.0784ሿ
 

Linearized at 

Supply Pressure 8.3.MPa 

Spool Position 0.1.V 

 

Figure 5-28 shows the response of the valve controlled hydraulic system. 

The black signal is the reference position signal, while the blue one is measured 

position signal and the red one is the filtered signal, which is the output of the 

unscented Kalman filter and used as the feedback signal, and lastly the magenta 

signal is the position response of the non-linear MATLAB Simulink model. 

The second plot of the Figure 5-28 shows the detailed view of the response 

of the closed loop valve controlled system at low frequency range. The excitation 

frequency is around 1.Hz. It is seen that at low frequency region unscented Kalman 

filter works well, the filtered signal and the measured signal are the same without 

any phase difference. In low frequency region, it is seen that the effect of noise is 

substantial as in the case of pump controlled system. If the measured signal is not 

smoothed and directly used as feedback signal then the noise will cause chattering 

in the servo solenoid valve. 
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In the second plot of Figure 5-28, it is seen that the sinusoidal position 

response is rugged just after the peaks, for example at time 55.seconds or 

57.seconds. This oscillatory behavior is due to the switching of the controller gains, 

at this time, the linear state feedback gains for extension is replaced with the 

controller gains for retraction. Because the gains are switched exactly at zero spool 

position command, there occurs oscillations, this is nothing to do with the noise, in 

non-linear MATLAB Simulink model response there also occur oscillations. To get 

rid of this response with unwanted property, the controller should be modified. 

However this is out of the scope of the thesis, as the aim is just to make 

performance comparison with the pump controlled system. 

 

 

Figure 5-28 Valve Controlled System Position Response 
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The third plot of Figure 5-28 is the detailed view at higher frequencies. The 

excitation frequency is around 10.Hz. It is seen that the non-linear model response 

and the real system response are consistent. However, the performance of 

unscented Kalman filter begins to deteriorate and a small phase shift occurs 

between the real and measured signals. This is an inevitable property as the filter 

trusts more on the model. 

 

Figure 5-29 Valve Controlled System Error Between the Measured and 
Filtered Position Signal 

 

In Figure 5-29, the error between the measured and filtered position signal 

is plotted. From the detailed views it is seen that the error increases to 0.5.mm 

around 10.Hz excitation frequency, where it is 0.3.mm at around 1.Hz excitation 

frequency. However this error is mainly due to the phase shift, as the filter output 

leads the measured signal. 

In the third plot of Figure 5-28, at higher frequencies, it is seen that the real 

system and the non-linear model responses seem to track not an exact sinusoidal 

profile, but rather a ramp like profile. This the result of switching type controller 

strategy with the gains calculated according to the linearized system equations, if 

0 20 40 60 80 100

-1

0

1

Error Between Measured and Estimated Position

E
rr

or
 [

m
m

]

55 55.5 56 56.5 57 57.5 58
-1

0

1

E
rr

or
 [

m
m

]

99.5 99.6 99.7 99.8 99.9 100

-1

0

1

E
rr

or
 [

m
m

]

Time [s]



171 

the same controller is to be applied on the linearized model, it will be seen that the 

response profile is exactly sinusoidal. 

 

 

Figure 5-30 Valve Controlled System Hydraulic Cylinder Chamber Pressure 
Response 
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Figure 5-31 Valve Controlled System Load Pressure Response 
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In Figure 5-32 the frequency response of the real system and the model are 

compared. The red signal shows the frequency response of the linearized closed 

loop transfer function obtained by the Eq.(3.111). It is drawn by the MATLAB 

built in "bode" command. 

 

 

Figure 5-32 Experimental and Theoretical Frequency Response of Valve 
Controlled System with Desired Dominant Pole Located at – ૞. ૛࣊ rad/s 
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Note that because the desired closed loop pole locations for extension and 

retraction are the same, the dynamic response of the closed loop system for 

extension and retraction are identical, therefore unlike from the open loop 

frequency response graph, there exists only one frequency response curve defining 

the closed loop system characteristics. 

In Figure 5-32 it is seen that, the magnitude plot of the real system response 

reflects the desired closed loop system behavior. The magnitude of the closed loop 

frequency response is -3.dB at 5.Hz excitation frequency, indicating the bandwidth 

of the system. This is an expected result, because the desired closed loop poles are 

located at ሾെ5.2ߨ, െ600, െ700ሿ. Because the last two poles are far away from the 

imaginary axis with respect to the first pole, the pole located at െ5.2ߨ rad/s 

dominates the system characteristics, and resulting in a 5.Hz bandwidth of the 

closed loop system. However, the real system response is not consistent with the 

linearized model response at higher frequencies. This is the result of linearization, 

with the increasing excitation frequency the operating points where the 

linearization is performed changes. For example, the valve gains are linearized at 

steady state operating pressures both for extension and retraction, the steady state 

chamber pressure values are constant and do not change with the spool position, 

but the spool direction. However, with the increased excitation frequency when the 

valve spool changes direction the time passed in transient period dominates the 

total excitation frequency period, resulting in a different system behavior than the 

linearized one. 

5.5 Comparison of Two Systems 

Throughout the performance tests the closed loop position control of a 

single rod asymmetric cylinder is performed by utilizing the conventional valve 

control and variable speed pump control techniques independently.  

Due to the inherent property of the single rod hydraulic actuator with 

unequal cylinder areas, the flow rate entering the cap end side chamber is not equal 

to the flow rate exiting from the rod end side.  
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In valve controlled systems the asymmetric flow rate of the hydraulic 

actuator results in such a non-linearity that different steady state chamber pressures 

exists according to the valve spool position; causing different valve spool position 

gains and different extension and retraction speeds.  

The different dynamics characteristics of the valve controlled system for 

extension and retraction brings about the necessity to use different controller gains 

for extension and retraction. However switching the controller gains according to 

spool position causes somewhat oscillatory-rugged behavior on the hydraulic 

actuator position response at switching times. Of course, this unwanted property 

can be eliminated by modifying the control strategy, but this brings another 

complexity. 

However, in pump controlled system, there exist two servo pumps, which 

can be actuated and controlled independently. This brings the edge of 

compensating the unequal flow rate of the single rod asymmetric hydraulic 

actuator. In the constructed variable speed pump control circuit, the pump 1 is 

utilized to compensate the leakage flows and the unequal flow rate of the hydraulic 

actuator, and the pump 2 is left with the position and direction control of the 

hydraulic actuator. Because pump 1 is always compensating the unequal flow rate 

pump 2 can be thought as a control element regulating the flow rate of a symmetric 

double rod cylinder. Thus the dynamic characteristic defined between the pump 2 

drive speed and the hydraulic actuator position remains the same for extension and 

retraction.  

The same dynamic characteristics for extension and retraction brings the 

superiority of the two pump controlled circuit, over the valve control circuit. The 

position of the single rod actuator can be controlled with only one set of state 

feedback gains thus eliminating the controller complexity and its unwanted results 

on the system response. 

In addition to the simpler controller requirement the pump controlled circuit 

is superior to the valve controlled circuit, due to its linear nature. If the non-linear 

friction characteristic of hydraulic actuator is neglected, it is seen that the total 

system dynamics can be defined fully by linear set of differential equations. As a 
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result, the desired system response and the real system response are consistent. 

However in the valve controlled circuit, unlike from the pumped controlled circuit 

where the flow rate is proportional to the drive speed but it is proportional to the 

square root of the valve pressure differential. This non-linear valve flow 

characteristics brings the necessity of linearization to define a transfer function 

representing the system dynamics. From the experimental test results it is seen that 

the real system response designed according to the linearized system equations, 

performs well at low frequency region. Nevertheless, at high frequency region the 

response characteristics of the real system differ from the linearized system, as the 

operating points, where the linearization is performed, changes suddenly. 

As a result, in terms of dynamic performance, controller simplicity due to 

same dynamic characteristics for extension and retraction and the consistency with 

the desired system response due to its linear nature are the superiorities of the 

variable speed pumped controlled system over the valve controlled system. 

Besides the dynamic performance, if the energy efficiency of the two 

circuits is to be compared, it is seen that the pump controlled circuit is by far 

advantageous over the valve controlled circuit. Because the flow rate is regulated 

by adjusting the pump drive speed there exist no throttling losses in the pump 

controlled circuit. In valve controlled circuit most of the energy loss is due to 

throttling losses. However, if the Figure 2-4, where the power losses of a 

conventional valve controlled circuit is illustrated, is to be remembered, it is 

understood that most of the power losses is not due to regulate the flow rate 

through the hydraulic actuator but to supply a constant pressure for the servo 

solenoid valve intake. Most of the flow delivered by the pump to the system passes 

through the relief valve to the oil tank, accompanying with a pressure drop 

equivalent to the valve supply pressure. One way to reduce the power loss on the 

relief valve is to decrease the pump drive speed, thus to decrease the amount of oil 

delivered to the system. However, this will result in the fluctuations of the supply 

pressure, and affect the dynamic behavior adversely. Another alternative is to use a 

pressure compensated pump, where the flow rate is adjusted according to the 

system requirements by changing pump displacement, while maintaining a constant 
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supply pressure for the flow control valve intake. However it should be noted that 

this will increase the total cost of the hydraulic drive system. 

It should be remembered that the fluid power energy lost on the servo 

solenoid valve and the relief valve transforms into heat energy, warming up the 

hydraulic oil. Hydraulic oil characteristics change with the increasing oil 

temperature, thus necessitate for cooling of the hydraulic oil arises in the valve 

controlled system. This should be accounted for another additional energy loss. 

Furthermore, the oil used in the pump controlled system is not heated up fewer 

amount of hydraulic oil is used with respect to the valve controlled system, thus 

decreasing the bulky oil reservoir volume. 

The hydraulic systems are famous as drive systems, due to their high power 

to weight ratio, this is the biggest advantage of the valve controlled circuit. For 

example a valve mounted directly on the hydraulic actuator of a robot arm will not 

increase the total inertia however if a pumped controlled circuit is utilized, the mass 

of the two pumps and the two servomotors, will increase the inertia of the robot 

arm considerably. A solution to this may be using long transmission lines and 

mounting the pump motor assembly on the ground, but this time the dead volumes 

due to long transmission line will decrease the dynamic performance of the 

hydraulic system. For this reason in manipulator like applications, where the power 

to mass ratio is important, the valve controlled systems seems to be favorable. 

In variable speed pump control technique the drive speed of the pumps are 

adjusted via servomotors powered from an AC electric supply. In the valve 

controlled circuit, the pumps are also driven with electric motors; however, as the 

drive speed is constant, an internal combustion engine can also be utilized as the 

power source. This brings another superiority of the valve controlled system, which 

is the ability to be used in mobile application. 

At last, in most of the engineering applications, cost is by far the most 

important criteria. Of course, using only a servovalve accompanied with a standard 

power supply seems to be reasonable rather than using two special pumps and two 

servomotors. But despite the investment cost, if the operating cost is to be 

considered, pump controlled systems may be advantageous. The energy savings of 
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the pump controlled circuit, the reduced amount of hydraulic fluid, accompanying 

with the increased oil change period are considerable costs in a hydraulic system. 

Despite the energy point of view, the maintenance cost of the pump controlled 

circuit is another advantage over valve controlled systems, as the pump controlled 

hydraulic circuit is simpler than the valve controlled one with less number of 

components. Another important factor that determines the cost of a hydraulic 

system is the oil contaminations level. It should be noted that because the pump 

controlled system is less sensitive to oil contamination, rather than the valve 

controlled system the filtering cost will also decrease the operating cost. 
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CHAPTER 6  

 

 

DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Outline of the Study and Discussions 

The tasks accomplished within the scope of this thesis study include  

 modeling of the valve controlled and pump controlled systems in 

MATLAB Simulink environment; 

 derivation of linear and linearized reduced order differential equations 

defining the system dynamics; 

 linear state feedback controller design by using the reduced order linear 

and linearized system equations; 

 design of linear and non-linear unscented Kalman filters for filtering and 

estimation purposes; 

 construction of the experimental test set up where the two control 

techniques can be applied on the same actuator; 

 system identification and finding the unmeasurable quantities 

experimentally; 

 conducting the performance tests; 

  comparison of the two hydraulic control techniques. 

At the beginning of the study, detailed mathematical models of pump 

controlled systems and valve controlled systems are developed. For simplification 
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purposes, the dynamics of the valve actuator and the pump actuator are considered 

to be ideal elements with no dynamics assuming that they have a high bandwidth 

controller inside. A non-linear model of the valve controlled system and a linear 

model for the pump controlled system consisting of the hydraulic actuator and the 

load dynamics are developed in the MATLAB Simulink environment. 

Next to numerical methods used in computer environment, both systems are 

also modeled analytically to understand their system dynamics fully. The cylinder 

dynamics accompanied with the load dynamics results in a 3rd order differential 

equation between the actuator input and the hydraulic cylinder velocity response. 

However when the relation between the dynamic change of hydraulic cylinder 

chamber pressures is investigated, it is seen that dynamic pressure changes in the 

hydraulic cylinder chambers become linearly dependent above and below some 

prescribed cut off frequencies. Thus, assuming linearly dependent chamber 

pressure response, the order of the dynamic equations defining the system 

dynamics is reduced, resulting in a 2nd order transfer function between the actuator 

input and the hydraulic cylinder velocity. By this way, the parameters affecting the 

system dynamics of the system are explained clearly. Different from the pump 

controlled system, the valve flow characteristic equation is linearized at steady state 

chamber pressures for extension and retraction at a given spool position to derive a 

transfer function for the valve controlled system. From the block diagram 

representations drawn for the open loop response of the two systems Figure 3-15 

and Figure 3-22 it is concluded that the system dynamics of the two control 

techniques are the same except for the actuator gains between the control input and 

the flow rate delivered to the system and the load pressure feedback gain, which is 

determined by pump leakages in the pump controlled circuit and determined by the 

valve pressure gain in the valve controlled circuit. 

For the position control of the single rod hydraulic actuator, it is decided to 

use a linear state feedback control scheme. In the pump controlled system the state 

feedback gains are determined by using the linear reduced order system equations, 

and in valve controlled system the linearized reduced order system equations are 

used. Unlike from the pump controlled system, there exist only one control element 
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in the valve controlled system. Therefore, the unequal flow rate of the single rod 

cylinder is not compensated, resulting in two different system dynamics for 

extension and for retraction. For this reason, two different state feedback gain sets 

are determined in the valve controlled system for extension and for retraction. In 

the applied control algorithm the state feedback gains are switched according to the 

valve spool position command. 

Because the measured position and the pressure signals are noisy and should 

be smoothed in order to be used as the feedback signal through the controller, and 

there exist an unknown state which is the actuator velocity and should be estimated 

to be used in state feedback control algorithm, Kalman filters are utilized both for 

the filtering and estimation purposes. For the pump controlled system due to its 

linear nature a conventional discrete linear Kalman filter is designed, however for 

the valve controlled system due to its non-linear characteristics an unscented 

Kalman filter is designed. The two Kalman filters are tuned such that the filtered 

pressure responses and the velocity estimations thrust on the system model rather 

than the measurement. By this way the undesirable properties of the real systems, 

which are not modeled like the static friction of the hydraulic cylinder, are 

prevented to affect the controller performance. Another outcome of this filtering 

strategy is that the hydraulic cylinder position can also be controlled with the same 

state feedback controller algorithm by only using the position transducer. 

In both systems, the unknown parameters, which are the pump leakage 

characteristics and the hydraulic cylinder friction characteristics, are found 

indirectly through a test procedure as they are not measurable quantities. The 

internal and external leakage coefficients are found from the steady state chamber 

pressures and the hydraulic cylinder friction characteristics is found by applying a 

chirp signal and measuring effective load pressure acting on the hydraulic cylinder. 

To test the performance of the valve controlled and pump controlled 

hydraulic systems, step response and open loop and closed loop frequency response 

tests are conducted on the constructed experimental test set up. For control 

purposes, the MATLAB Simulink Real Time Windows Target module is utilized. 

The magnitude and frequency of the test signals are chosen such that valve or 
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servomotor actuators will not saturate. Therefore, the test signals are pre-tested on 

the MATLAB Simulink system models, before running real time tests. Step 

response and frequency response tests are repeated for different closed loop pole 

locations. The test signal properties, and the desired closed loop pole locations are 

selected to be the same in the pump and valve controlled circuit. The test results 

revealed that the dynamic performance of variable speed pump controlled system is 

superior to the servo solenoid valve controlled circuit, in terms of controller 

simplicity and consistency with the model response. For the both control systems, it 

is seen that the bandwidth of the closed loop system can be adjusted via linear state 

feedback control algorithm. However in the valve controlled system the 

performance of the closed loop system degrades at higher frequencies. 

At last a comparison of the variable speed pump controlled and valve 

controlled system are made, in terms of dynamic performance, application and cost. 

At the end of this thesis study a hydraulic test set up is constructed, this set 

up may be used for different linear or non-linear control applications, with 

educational purposes. 

6.2 Conclusions 

Variable speed pump control technique is a recently developed research 

area in hydraulic control systems. In this thesis study, this recent method is 

investigated in depth with theoretical and experimental analyses and compared with 

the conventional valve controlled hydraulic systems. 

It is shown that the maximum efficiency of a conventional valve controlled 

circuit is 38.5%, and noted that this is valid for only at an instant of time when the 

maximum power requirement is equal to the maximum power input of the valve, if 

the total duty cycle of the load is considered, the efficiency of the hydraulic circuit 

will be lower than this figure. If this low efficiency of the conventional valve 

controlled circuits is considered, then the importance of pump controlled systems 

will be well understood where there exist no throttling losses. In the variable speed 

pump controlled circuit constructed and analyzed throughout the thesis study, two 
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variable speed pumps are utilized to regulate the flow rate going through the 

hydraulic actuator and eliminating throttling losses. Thus, all the throttling losses 

are eliminated and the only energy loss in this new circuit concept is the losses due 

to pump leakages, motor drives and transmission lines. 

Besides the elimination of throttling losses, in this thesis study, it is also 

revealed that the two pump control principle is superior to the valve control 

technique due to the ability to compensate for the asymmetric flow rate of the 

single rod cylinder. Thus different from the valve controlled circuit, where two 

different dynamic characteristics exist for extension and retraction, the dynamic 

response of the pumped controlled system is the same both for extension and 

retraction. This property makes the variable speed pump controlled circuit superior 

to the valve controlled circuit in terms of controller simplicity. The different 

characteristics of the valve controlled circuit for extension and retraction 

necessitates a complex controller than in the pumped controlled case. In this thesis 

study two different state feedback gains are calculated for extension and retraction 

of the valve controlled circuit. These gains are switched between each other for the 

zero spool position command and it is observed that this results in a rugged 

response at the switching times. However in the variable speed pump controlled 

system, a smooth response is obtained by using a simple linear state feedback 

control algorithm. 

Besides the controller simplicity, due to the linear nature of the variable 

speed pump controlled circuit, from the test results it is seen that the linear model 

responses are completely in accordance with the test results. Thus a high 

performance closed loop variable speed pump control system can be designed just 

by using the linear system equations with the conventional analytical controller 

design methods. However in valve controlled system the linearized model response 

differs from the real system at high frequency excitations, thus to design a high 

performance closed loop valve controlled circuit not the linearized system 

equations but the non-linear system equations should be used.  

Except the dynamic performance and the energy consumption if the two 

systems are compared in terms of cost, then it is seen that the investment cost of the 
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pump controlled system is higher than the valve controlled one, however if the 

operation and maintenance cost is considered the pump controlled system can 

amortize the investment cost depending on the duty cycle of the system. 

The main drawbacks of the variable speed controlled systems are the low 

power to mass ratio with respect to valve controlled systems and requirement for an 

electrical power supplies. Besides, the long transmission lines between the pumps 

and actuator is another drawback decreasing the dynamic performance in variable 

speed pump controlled system. All these factors oppose to apply variable speed 

pump control technique in mobile and robotic, manipulator like applications. 

However, for stationary applications, like industrial presses, where power to mass 

ratio is not important and a electrical supply is available, the variable speed pump 

control principle seem to be favorable. 

6.3 Recommendations for Future Work 

In this thesis study, motor dynamics is neglected completely and 

servomotors are assumed to be angular velocity resources as they have a high 

bandwidth controller inside. However, during the tests it is seen that motor 

dynamics has an effect on the system performance. Especially at high frequency 

excitations, the motor does not respond well, there occur a shift both in phase and 

magnitude level resulting in a decrease of the chamber pressures. To model the 

system more accurately not only the servomotor model dynamics should be added 

to system dynamic equations, but also the non-linear behavior of the servomotor 

should be taken into account. Because, the system is controlled by regulating the 

servomotor speed, especially at steady state where the servomotor speed is very 

low or near to zero, the dead band of the servomotor becomes more of issue and 

should be investigated. 

In this thesis study, the pumps are also assumed as ideal transformation 

elements, with linear internal and external leakage coefficients, transforming the 

input shaft speed to the flow rate delivered to the system. The pump characteristics 

are not investigated. However, it is known that the pump volumetric efficiency 



185 

changes with the motor speed implying that the leakage coefficients are not the 

same for high speed and low speed excitations. In variable speed pump controlled 

systems, the pumps are required to work under high pressures with very low drive 

speeds. Therefore, to increase the system performance, pump characteristics at low 

drive speeds should be investigated. The dead band in the pump drive speeds and 

non-linear leakage flow coefficients may be found experimentally. 

Considering the effects of the servomotor dynamics, non-linear pump 

characteristics, and of course designing and tuning an appropriate controller, the 

steady state behavior of the variable speed pump controlled system could further be 

improved. 

In this thesis study, the parameters like bulk modulus of the oil, leakage 

coefficients of the pump and the friction characteristics of the hydraulic cylinder 

are found through an experimental procedure. However, there are some studies in 

literature utilizing Kalman filters for monitoring system parameters which are not 

measurable directly. In this study, Kalman filters are used for only filtering and 

estimation purposes, the unknown parameters may also be estimated from the 

Kalman filters by adding these parameters as auxiliary states. By this way, the non-

linear characteristics of these parameters can be obtained without any need for 

excess measurement devices. For example, pump leakage flow coefficients are 

important parameters affecting the system dynamic and static behavior. To find 

these coefficients for variable drive speed a flow meter is required. If such a device 

is not available as in in this study, these coefficients can be estimated at different 

drive speeds with the help of a Kalman filter. 

In Chapter 3, the operation in 4-quadrants is explained, it is said that the 

pumps are able to operate as a hydraulic motor. In the pump controlled system 

while operating in motor mode the energy transmitted from the system through the 

hydraulic pumps to the servomotor drives are dissipated as heat energy on the 

servomotor resistances. To increase the energy efficiency of the system, an energy 

storage element like a hydraulic accumulator could be added to the system. 

Different from the valve controlled system, in pump controlled systems, 

pumps are not positioned next to the hydraulic actuator, they are mounted directly 
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on the power source. This arrangement results in long transmission lines, 

decreasing the dynamic performance of the system. In the modeling section of the 

thesis study, the transmission line volumes are lumped into the hydraulic cylinder 

volumes, and the lines are assumed to be lossless. Modeling the lines as conductive 

elements and neglecting the resistance is a valid assumption especially when the 

lines are short. However when long transmission lines are required as in the pump 

controlled case, their resistances may affect the system dynamics. As a future work 

in line dynamics, the pressure loss in the lines may be added to the system dynamic 

equations, and the effect of the transmission lines on the system performance may 

be investigated in more detail. 

In Chapter 3 in modeling section, it is explained that for high excitation 

frequencies, the dynamic pressure changes of the hydraulic cylinder chambers 

become linearly dependent. The state feedback controllers are designed, by using 

this property; however the cylinder chamber pressures are measured and filtered 

through Kalman filter. As a future work, the state feedback control algorithm for 

the position control of the hydraulic cylinder may be applied with reduced number 

of transducers. 
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APPENDIX A 

 

TRANSFER FUNCTION DERIVATION FOR PUMP CONTROLLED 

SYSTEM 

 

To be uniform and perceptible all the dynamic equations that define the 

pump controlled system are repeated below. 

The flow continuity equations of the pump/motor unit, 

For the outlet (A side) port of Pump 2, 

 2 2p A P i A B ea Aq D n C p p C p     (7.1) 

For the inlet port (B side) port of Pump 2, 

 2 2p B P i A B eb Bq D n C p p C p     (7.2) 

For the outlet (A side) port of Pump 1, 

1 1p A P i A ea Aq D n C p C p    (7.3) 

The flow continuity equations of the hydraulic cylinder: 

A A
A A

V dp
q A x

E dt
    (7.4) 

B B
B B

V dp
q A x

E dt
    (7.5) 

Load Pressure: 

L A Bp p p   (7.6) 

Structural equation of the load: 

L Bp A mx bx    (7.7) 
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Continuity equations: 

_ 2B ss p Bq q  1.39 (7.8) 

_ 1 2A ss p A p Aq q q   1.41 (7.9) 

Substituting Eq. (7.2) and Eq. (7.5) into Eq. (7.8), and Eq.(7.1), Eq.(7.3) and 

Eq.(7.4) into Eq.(7.9), 

 2
B B

B P i A B eb B

V dp
A x D n C p p C p

E dt
       (7.10) 

   1 2
A A

A P i ea A P i A B ea A

V dp
A x D n C C p D n C p p C p

E dt
                (7.11) 

and making the substitution defined below 

 1 21n n   (7.12) 

A BA A  (7.13) 

A BV V  (7.14) 

the continuity equations can be rewritten as 

 2 2 2B A
P i B i ea A B

V dp
D n C p C C p A x

E dt


         (7.15)

 

 2
B B

P i A i eb B B

V dp
D n C p C C p A x

E dt
         (7.16)

 

Taking the Laplace transformation, with zero initial conditions gives 

       2 2 2B
P B i ea A i B

V
D N s A sX s s C C P s C P s

E


        

 
 (7.17)

 

       2
B

P B i A i eb B

V
D N s A sX s C P s s C C P s

E
      
 

 (7.18) 

          2
A B L BP s P s P s A ms bs X s      (7.19) 

From the load pressure equation (Eq.6), the chamber pressures can be 

written as 
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     B A LP s P s P s   (7.20) 

     L B
A

P s P s
P s




  (7.21) 

Inserting Eq. (7.20) into Eq.(7.17), and inserting the Eq.(7.21) into 

Eq.(7.18) give 

          2 2 2B
P B i ea A i L

V
D N s A sX s s C C P s C P s

E


        

 
 (7.22)

 

       2

1i B
P B L i eb B

C V
D N s A sX s P s s C C P s

E


 

 
     

 
 (7.23) 

Multiplying Eq. (7.22) with 
1B

i eb

V
s C C

E




 
  

 
 and multiplying 

Eq..(7.23) with  2 2B
i ea

V
s C C

E


    

 
, then summing these two equations 

give 

      

   

   

2
2

2

1
2 2

1
2 2

1
2 2

B B
i eb i ea P B

iB B
i eb i ea L

B B
i eb i ea L

V V
s C C s C C D N s A sX s

E E

CV V
s C C s C C P s

E E

V V
s C C s C C P s

E E

 


 
 

 


              
   

              
   

          
  

(7.24) 

After rearranging, it becomes 

        

     

   
 

2 2 2
2

2 2 2 2

2 2
2

2

2

2 2 2

2 2 2

2
2

1 1
2 2 2 2

B
i eb ea P B

LB
i i eb i ea i

B B
i ea eb

L

i i ea i eb ea eb

V
s C C C D N s A sX s

E

P sV
C s C C C C C

E

V V
s C C C s

EE
P s

C C C C C C C

    

    


     


  
 

         

        
 

    
    
  

  
      

 

 (7.25) 
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Rearranging again, one obtains 

        

      

2 2 2
2

2
2 2

2

2 2 2

2 2 2 2

B
i eb ea P B

B B
i ea eb i ea eb i ea eb L

V
s C C C D N s A sX s

E

V V
s C C C s C C C C C C P s

EE

    


 

         
 

         
 

(7.26)
 

Inserting Eq. (7.26) into Eq.(7.19) gives 

        

  
  

 

2 2 2
2

2
2 2

2

2

2 2 2

2 2

2 2

B
i eb ea P B

B B
i ea eb

B
i ea eb i ea eb

V
s C C C D N s A sX s

E

V V
s C C C s ms bs

EE X s
A

C C C C C C

    


 

         
 

       
       

(7.27) 

Then the transfer function between the input pump 2 speed and the output 

hydraulic actuator velocity becomes, 

 
 

1 2
3 2

2 1 2 3 4

V s a s a

N s b s b s b s b




  
 (7.28) 

where 

 
  

  

       
     

2
1

2 2
2

2

1 2

2

2 2

2 2 2
3

2 2 2 2
4

2 2 2

2 2

2 2 2 2

2 2 2 2 2

B
P B

i eb ea P B

B

B B
i ea eb

B B
i ea eb i ea eb i ea eb B

i ea eb i ea eb i eb ea B

V
a D A

E

a C C C D A

V
b m

E

V V
b m C C C b

E E
V V

b m C C C C C C b C C C A
E E

b b C C C C C C C C C A

 

  




 

   

  

 

    



    

         

        
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Reduced Order Transfer Function Derivation is explained below. 

Multiplying Eq.(7.15) with the area ratio  , and multiplying Eq.(7.16) with 

the volume ratio  . 

 2 2 2B A
P i B i ea A B

V dp
D n C p C C p A x

E dt


             

  (7.29)
 

 2
B B

P i A i eb B B

V dp
D n C p C C p A x

E dt
            

  (7.30)
 

and summing the resulting expressions give the rate of the change of the load 

pressure  as
 

    
    

2
2

2

2 2B
L P i ea A

i eb B B

V
p D n C C p

E

C C p A x


    

    

    

    




 (7.31)

 

Assuming that the dynamic chamber pressure changes Ap  and Bp  are 

linearly dependent and defined by 

A Bp p   (7.32) 

and through Eq.(7.6) and Eq.(7.32)  writing the dynamic chamber pressure changes 

Ap  and Bp  in terms of load pressure Lp  as 

1
L

A

p
p







 (7.33) 

1
L

B

p
p







 (7.34) 

and substituting Eq.(7.33) and Eq.(7.34) into the Eq.(7.31) give 

    

    

2
2

2

2 2
1

1

B L
L P i ea

L
i eb B

V p
p D n C C

E

p
C C A x

 
    



    


    


    





 (7.35)

 

Lp
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Rearranging and taking the Laplace transform assuming zero initial 

conditions give 

      

       2 2
2

2 2

1
i ea ebB

L

P B

C C CV
s P s

E

D N s A sX s

       


   

     
   

   

 (7.36)

 

Defining 

  2 2

1
i ea eb

Leak

C C C
C

       


    



 (7.37)

 

and insert the Eq.(7.19) into Eq.(7.36) give 

         2 2
2

B
Leak B P

B

V ms b
s C sX s A sX s D N s

E A


         

 
 (7.38) 

Then the reduced order transfer function between the input pump 2 speed 

and the output hydraulic velocity is obtained as 

 
 

 
 

2

2 2 22

P B

B B
Leak Leak B

D AV s

V VN s
m s b mC s bC A

E E

 

 
 




      
 

 (7.39) 
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APPENDIX B 

 

TRANSFER FUNCTION DERIVATION FOR VALVE 

CONTROLLED SYSTEM 

 

To be uniform and perceptible all the dynamic equations that define the 

pump controlled system are repeated below. Because the procedure is the same, the 

transfer function is derived only for the extension of the hydraulic actuator. 

The linearized valve flow characteristic equations: 

2 2 _ 2 _v S A u ext p ext Aq K u p p K u K p     (7.1) 

4 4 _ 4 _v B u ext p ext Bq K u p K u K p    (7.2) 

The flow continuity equations of the hydraulic cylinder: 

A A
A A

V dp
q A x

E dt
    (7.3) 

B B
B B

V dp
q A x

E dt
    (7.4) 

Load Pressure: 

L A Bp p p   (7.5) 

Structural equation of the load: 

L Bp A mx bx    (7.6) 

Continuity equations: 

2 Aq q  (7.7) 

4 Bq q  (7.8) 



198 

Substituting Eq. (7.1)and Eq. (7.3)into Eq. (7.7), and Eq. (7.2) and Eq. (7.4) 

into Eq. (7.8), 

2 _ 2 _
A A

u ext p ext A A

V dp
K u K p A x

E dt
     (7.9) 

4 _ 4 _
B B

u ext p ext B B

V dp
K u K p A x

E dt
     (7.10) 

and making the substitution defined below 

A BA A  (7.11) 

2 _ 4 _u ext u extK K  (7.12) 

4 _ 2 _p ext u extK K  (7.13) 

A BV V  (7.14) 

and rearranging Eq. (7.9) and Eq. (7.10) 

4 _ 2 _
B A

u ext B p ext A

V dp
K u A x K p

E dt


      (7.15) 

4 _ 2 _
B B

u ext B p ext B

V dp
K u A x K p

E dt
      (7.16) 

Taking the Laplace transform, and rearranging 

     4 _

2 _ 2 _

u ext B
A

B B
p ext p ext

K A
u s sX s P s

V V
K s K s

E E

 
 

 
 

 (7.17) 

     4 _

2 _ 2 _

u ext B
B

B B
p ext p ext

K A
u s sX s P s

V V
K s K s

E E
 

  
 

 (7.18) 

Multiplying the Eq. (7.17) by the area ratio   and summing with the Eq. 

(7.18) give 



199 

 

     

2
4 _ 2 _ 4 _ 2 _

2 _ 2 _

2
2 _ 2 _

2 _ 2 _

B B
u ext p ext u ext p ext

B B
p ext p ext

B B
B p ext B p ext

A B
B B

p ext p ext

V V
K K s K K s

E E
U s

V V
K s K s

E E

V V
A K s A K s

E E
sX s P s P s

V V
K s K s

E E


 





 






        
   
     
  

        
     
     
  

 (7.19) 

Inserting Eq.(7.5) and Eq. (7.6) into Eq. (7.19) and rearranging give 

   

 
 

   

 
   

3 2
2 _

4 _2
2 2

2 _ 2 _2

3 2
22 _

2
2 2

2 _ 2 _2

1

1

1

1

B
p ext

u ext
B B

p ext p ext

B
p ext

B
BB B

p ext p ext

V
K s

E K U s
V V

s K s K
EE

V
K s

ms bsE A sX s X s
AV V

s K s K
EE

  


 

  


 

  

  

   
 

  

 (7.20) 

Arranging Eq. (7.20) again, the transfer function between the valve spool 

position and the hydraulic actuator velocity is given as 

 
 

 
 

 

   
 

1 2
3 2

1 2 3 4

2
1 4 _

3
2 4 _ 2 _

2

1 2

2

2 2 _ 2

2 2 2
3 2 _ 2 _

2 3 2
4 2 _ 2 _

1

1

1

1

B
u ext B

u ext B p ext

B

B B
p ext

B B
p ext p ext B

p ext p ext B

V s a s a

U s b s b s b s b

V
a K A

E

a K A K

V
b m

E

V V
b mK b

E E
V V

b m K bK A
E E

b b K K A

 








   

 




  

 

 



  

    

  

 (7.21) 
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Reduced Order Transfer Function Derivation for Valve Controlled System 

for Extension is explained below. 

Multiplying Eq.(7.15) with the area ratio   and multiplying Eq.(7.16) with 

the volume ratio  , 

2 2
4 _ 2 _

B A
u ext B p ext A

V dp
K u A x K p

E dt

 
       (7.22) 

4 _ 2 _
B B

u ext B p ext B

V dp
K u A x K p

E dt


        (7.23) 

and summing the resulting expressions give the rate of the change of the load 

pressure  as
 

   2 2
4 _ 2 _ 2 _

B
u ext B p ext A p ext B L

V
K u A x K p K p p

E


              (7.24) 

Assuming that the dynamic chamber pressure changes Ap  and Bp  are 

linearly dependent and defined by 

A Bp p   (7.25) 

and through Eq.(7.5) and Eq.(7.25) writing the dynamic chamber pressure changes 

Ap  and Bp  in terms of load pressure Lp  as 

1
L

A

p
p







 (7.26) 

1
L

B

p
p







 (7.27) 

and substituting Eq.(7.26) and Eq.(7.27) into the Eq.(7.24) give 

   2 2
4 _ 2 _1

B
u ext B p ext L L

V
K u A x K p p

E

     



     


   (7.28) 

Rearranging and taking the Laplace transform of above expression, 

assuming zero initial condition give 

         2 2
4 _ 2 _1

B
u ext B p ext L

V
K U s A sX s s K P s

E

      


 
       

(7.29) 

Lp
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Taking the Laplace transform of Eq.(7.6) and inserting into Eq. (7.29) give 

       

   

2 2 2
4 _

2 _1

u ext B B

B
p ext

K A U s A sX s

V
s K ms b sX s

E

   

   


   

 
    

 (7.30) 

Simplifying the above expression, the transfer function between the valve 

spool position and hydraulic actuator is obtained as 

 
 

 
 

2
4 _

2 2 2
2 _ 2 _1 1

u ext B

B B
p ext p ext B

K AV s

U s m V b V
s m K s b K A

E E

 

       
 



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APPENDIX C 

 

MATLAB FILES 

 

UNSCENTED KALMAN FILTER ALGORITHM 

function [xEst_k1,PEst_k1,yOut]=UKF(xEst,PEst,U,z,Q,R,Ts,Param_Mod) 
% This function performs one complete step of the unscented Kalman 
filter. 
% INPUTS    
%   - xEst             : state mean estimate at time k-1 
%   - PEst             : state covariance at time k-1 
%   - U                : control input (spool position) at time k-1 
%   - z                : measurement vector at time k 
%   - Q                : process noise covariance at time k-1 
%   - R                : measurement noise covariance at timek 
%   - Ts               : time step  
%   - Param_Mod        : vector containing model paramter 
% OUTPUTS  :   
%   - xEst_k1          : updated estimate of state mean at time k+1 
%   - PEst_k1          : updated state covariance at time k+1 
%   - yOut             : Output States 
% SUB FUNCTIONS:  
%   - ffunc            : process model function 
%   - hfunc            : measurement model function 
%   - CalcSigmaPoints  : sigma point calculation function 
%   - StateMatrix      : non-linear state matrix 
  
% The dimension of the vectors 
states       = 4; % 1 number of rows, 2 number of columns 
observations = 3; 
vNoise       = 4; 
wNoise       = 3; 
noises       = vNoise+wNoise; 
 
% Augment the state vector with the noise vectors. 
N=[Q zeros(vNoise,wNoise); zeros(wNoise,vNoise) R]; 
PQ=[PEst zeros(states,noises);zeros(noises,states) N]; 
xQ=[xEst;zeros(noises,1)]; 
 
%   TIME UPDATE EQUATIONS 
% Calculate the sigma points and there corresponding weights using 
the Scaled Unscented 
% Transformation 
[xSigmaPts, nsp] = CalcSigmaPoints(xQ, PQ); 
nsp=23; 
 
% Project the sigma points and their means 
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xPredSigmaPts = 
ffunc(xSigmaPts(1:states,:),repmat(U(:),1,nsp),xSigmaPts(states+1:s
tates+vNoise,:),Ts,Param_Mod); %evaluate the function ffunc 
zPredSigmaPts = 
hfunc(xPredSigmaPts,xSigmaPts(states+vNoise+1:states+noises,:)); 
 
% Calculate the mean 
xPred = sum((xPredSigmaPts(:,2:nsp) - 
repmat(xPredSigmaPts(:,1),1,nsp-1)),2); 
zPred = sum((zPredSigmaPts(:,2:nsp) - 
repmat(zPredSigmaPts(:,1),1,nsp-1)),2); 
xPred=xPred+xPredSigmaPts(:,1); 
zPred=zPred+zPredSigmaPts(:,1); 
  
% Work out the covariances and the cross correlations. Note that 
% the weight on the 0th point is different from the mean 
% calculation due to the scaled unscented algorithm. 
  
exSigmaPt = xPredSigmaPts(:,1)-xPred; 
ezSigmaPt = zPredSigmaPts(:,1)-zPred; 
  
PPred   = exSigmaPt*exSigmaPt'; 
PxzPred = exSigmaPt*ezSigmaPt'; 
S       = ezSigmaPt*ezSigmaPt'; 
  
exSigmaPt1 = xPredSigmaPts(:,2:nsp) - repmat(xPred,1,nsp-1); 
ezSigmaPt1 = zPredSigmaPts(:,2:nsp) - repmat(zPred,1,nsp-1); 
PPred     = PPred + exSigmaPt1 * exSigmaPt1'; 
S         = S + ezSigmaPt1 * ezSigmaPt1'; 
PxzPred   = PxzPred + exSigmaPt1 * ezSigmaPt1'; 
  
  
% MEASUREMENT UPDATE 
% Calculate Kalman gain 
K  = PxzPred / S; 
% Calculate Innovation 
inovation = z - zPred; 
% Update mean 
xEst_k1 = xPred + K*inovation; 
%   Output States 
C=[1 0 0 0;0 1 0 0; 0 0 1 0; 0 0 0 1]; 
yOut=C*xEst_k1; 
% Update covariance 
PEst_k1 = PPred - K*S*K'; 
  
function [xPts,nPts] = CalcSigmaPoints(x,P) 
% Inputs: 
%        x            mean 
%        P            covariance 
% Outputs: 
%        xPts    The sigma points 
%        nPts    The number of points 
  
% Number of sigma points and scaling terms 
n    = size(x(:),1); 
nPts = 2*n+1;             
  
% Allocate space 
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xPts=zeros(n,nPts); 
  
% Calculate matrix square root of weighted covariance matrix 
Psqrtm=(chol(n*P))'; 
% Array of the sigma points 
xPts=[zeros(size(P,1),1) -Psqrtm Psqrtm]; 
% Add mean back in 
xPts = xPts + repmat(x,1,nPts); 
  
  
function xout = ffunc(x,u,v,Ts,Param_Mod) 
% This function performs Runge Kutta Integration at 4 times in  
% each time step 
k1=StateMatrix(x,u,Param_Mod); 
k2=StateMatrix(x+0.5*k1*Ts,u,Param_Mod); 
k3=StateMatrix(x+0.5*k2*Ts,u,Param_Mod); 
k4=StateMatrix(x+k3*Ts,u,Param_Mod); 
x_delta=1/6.*(k1+2*k2+2*k3+k4)*Ts; 
%   Calculate New State 
xout=x+x_delta+v; 
  
  
function x_dot=StateMatrix(x,u,Prm) 
%%   Define the system Parameters 
%   Number of States 
n=size(x,1); 
%   Number of Sigma Points 
nSig=size(x,2); 
%   Define the parameters 
% Parameters=[M,Aa,Ab,Modulus,Kv,xin,xmax,Ps,Vo,b]; 
%   Mass 
M=Prm(1); 
%   Piston A and B Side Area 
Aa=Prm(2); 
Ab=Prm(3); 
%   Bulk Modulus  
Modulus=Prm(4); 
%   Valve Constant 
Kv=Prm(5); 
%   Minimum and the maximum stroke of the cylinder 
xin=repmat(Prm(6),1,nSig); 
xmax=repmat(Prm(7),1,nSig); 
%   Supply Pressure 
Ps=repmat(Prm(8),1,nSig); 
%   Initial Volume 
Va=repmat(Prm(9),1,nSig); 
Vb=repmat(Prm(10),1,nSig); 
%   Damping Ratio 
b=Prm(11); 
  
%%  State Matrix 
x_dot=zeros(n,nSig);  %   Since output must be column vector 
x_dot(1,:)=x(2,:); 
x_dot(2,:)=1/M*(Aa*x(3,:)-Ab*x(4,:)-b*x(2,:)); 
if (u(1,1)>=0)  %As all the other control signalas are the same 
    x_dot(3,:)=Modulus./(Va+Aa*(x(1,:))).*(Kv*u(1,:).*sqrt(abs(Ps-
x(3,:)))-Aa*x(2,:)); 
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    x_dot(4,:)=Modulus./(Vb+Ab*(xmax-x(1,:))).*(-
Kv*u(1,:).*sqrt(abs(x(4,:)))+Ab*x(2,:)); 
else 
    
x_dot(3,:)=Modulus./(Va+Aa*x(1,:)).*(Kv*u(1,:).*sqrt(abs(x(3,:)))-
Aa*x(2,:));   
    x_dot(4,:)=Modulus./(Vb+Ab*(xmax-x(1,:))).*(-
Kv*u(1,:).*sqrt(abs(Ps-x(4,:)))+Ab*x(2,:)); 
end 
  
  
function y = hfunc(x,n) 
% Measurement model for UKF 
%  INPUT 
%         x    :  state vetor at time k 
%         n    :  measurement noise vector at time k 
%  OUTPUT 
%         y    :  state observation vector at time k 
H=[1 0 0 0; 0 0 1 0; 0 0 0 1]; 
y = H*x+n; 

 

 

CALCULATION OF THE FFT OF THE MEASURED DATA 

function [x,y_mag,y_phase]= DrawBode(dat) 
%%   Load the mat files and read the data 
load(dat); 
%   Read the input from the Position Scope 
FlPos(:,1)=FiltPos;   %   Filtered position output 
RfPos(:,1)=RefPos;   %   Reference Position 
%% 
fs=1/Ts; %   Sampling Rate [Hz]  
tstart=T_step; %   Start Time [s] 
tend=Tsim;   %   End Time    [s] 
FreqMin=fr_start;    %   Minimum Frequency [Hz] 
FreqMax=fr_stop;  %   Maximum Frequncy    [Hz] 
Freq_Inc=.01;   %   Frequency Increment [Hz] 
%% 
%   Take the necessary Data 
for i=1:1 
    out(:,i)=FlPos(tstart*fs:tend*fs,i); 
%     in(:,i)=input(tstart*fs:tend*fs,i); 
    %   Remove the 'linear' trend of the output 
    out(:,i)=detrend(out(:,i)); 
    %   Calculate the FFT of the input and the Output 
%     in_fft(:,i)=fft(in(:,i)); 
    out_fft(:,i)=fft(out(:,i)); 
end 
%   Input sabit 
in(:,1)=RfPos(tstart*fs:tend*fs,1); 
in_fft(:,1)=fft(in(:,1)); 
  
%   Take the Avarage FFT 
for i=1:length(out_fft) 
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    out_fft_mean(i,1)=mean(out_fft(i,:)); 
%     in_fft_mean(i)=mean(in_fft(i,:)); 
end 
%   Time Array 
t=0:1/fs:(tend-tstart); 
%   Frequency Array 
FreqArray=0:fs/(length(in_fft)-1):fs; 
%%   Bode Plot  
Mag=20*log10(abs(out_fft_mean)./abs(in_fft)); 
PhsAngle=(-angle(in_fft)+angle(out_fft_mean))*180/pi; 
f=FreqMin; 
j=1; 
for i=1:(length(Mag)-1) 
    % 
    if PhsAngle(i+1,1)-PhsAngle(i,1)>200 
        PhsAngle(i+1,1)=PhsAngle(i+1,1)-360; 
    end 
    if PhsAngle(i+1,1)-PhsAngle(i,1)<-200 
         PhsAngle(i+1,1)=PhsAngle(i+1,1)+360; 
    end 
    % 
    if FreqArray(i)<FreqMax 
        if FreqArray(i)>f 
            x(j)=FreqArray(i-1); 
            y_mag(j)=Mag(i-1); 
            y_phase(j)=PhsAngle(i-1); 
            f=f+Freq_Inc; 
            j=j+1; 
        end 
    end 
end 
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APPENDIX D 

 

DRIVERS AND DAQ CARD CONNECTIONS 

 

Servo Proportional Valve Driver Connections 

0 V b2 Power Zero  

B
O

S
C

H
  S

E
R

V
O

-P
R

O
P

O
R

T
IO

N
A

L
 V

A
L

V
E

 
D

R
IV

E
R

 

Supply 24V z2 24 V 
 b4   z4  
SLND-2 b6 Solenoid output   z6  
SLND-1 b8 Solenoid output   z8  
 b10   z10  
0 V b12 Control Zero   z12  
 b14   z14  
 b16  Enable 10 V z16 Switch 
 b18  z18  
DAQ-23 b20 Signal Input Ref Signal Input z20 DAQ-20 
DAQ-15 b22 LVDT Feedback 

Signal 
 z22  

DAQ-1 b24 LVDT Feedback Ref.  z24  
 b26   z26  
 b28  Ground z28 0 V 
LVDT-1 b30 LVDT Supply -15 V  LVDT Supply +15 

V  
z30 LVDT-3 

 b32  Supply of pot.  10 
V 

z32 Switch 

 

Connect power zero b2 and control zero b12, b14 or z28 separately to 

central ground (neutral point) 
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Valve Controlled System NI 6025E Data Acquisition Card Connections 

 

  

DAQ Card

Press. Trns. A 

Position Trns 

Press. Trns. S 

Valve Sp. Pos 

Servo Mt. 1-2 
Valve Sp. z20 

Srv. Mts. Gnd 
Valve Gnd z20 

All 
Transducers 

Press. Trns. B 
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Pump Controlled System NI 6025E Data Acquisition Card Connections 

 
DAQ Card NI 6025 

Press. Trns. A

Position Trns

Press. Trns. S

Srv. Mt. 1
Srv. Mt. 2

Srv. Mt.1 Gnd 
Srv. Mt.2 Gnd

All 
Transducers 

Press. Trns. B

Servo M2 Sp

Servo M1 Sp


