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ABSTRACT 

 

 

PREPARATION AND CHARACTERIZATION OF TITANIA-SILICA-GOLD THIN 
FILMS OVER ITO SUBSTRATES FOR LACCASE IMMOBILIZATION 

 

 

Eker, Zeynep 

M.S., Department of Micro and Nanotechnology 

        Supervisor: Prof. Dr. Gürkan Karakaş 

Co-Supervisor: Prof.Dr.Mürvet Volkan 

 

September 2009, 82 

 

 

The aim of this study was to immobilize the redox enzyme laccase over TiO2-SiO2-

Au thin film coated ITO glass substrates in order to prepare electrochemically 

active surfaces for biosensor applications. Colloidal TiO2-SiO2-Au solution was 

synthesized by sol-gel route and thin film was deposited onto the substrates by 

dipcoating method. The cysteamine was utilized as a linker for immobilization of 

enzyme covalently through gold active sites. Preliminary studies were conducted 

by using invertase as model enzyme and Pyrex glasses as substrates.  

 

The effect of immobilization parameters such as immobilization temperature, 

concentration of enzyme deposition solution, immobilization time for laccase were 

examined. Leakage  studies  were conducted and storage stability of immobilized 

laccase was determined. Highest laccase activity was achieved when 

immobilization was performed with 50 µg/ml solution at 4°C for 2 hours. Laccase 

activity decreased after 4 hours of impregnation in enzyme solution. Laccase 

leakage was observed in the first usage of substrates and 55% activity decrease 

was determined in the subsequent use which might be attributed to the presence 

of uncovalently adsorbed enzyme on the fresh samples. In air and in buffer 

storage stabilities were also tested. It was found that the activity of samples almost 
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vanished after 6 days regardless of storage conditions. Both enzymes had more 

activity on ITO substrate. 

 

Keywords: Biosensor, immobilization, thin films, laccase, ITO, TiO2, SiO2, Au, sol-

gel 
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ÖZ 
 
 

LAKKAZ TUTUKLANMASI İÇİN ITO ÜZERİNDE TİTANYUM DİOKSİT-SİLİSYUM 
DİOKSİT-ALTIN İNCE FİLMLER ELDE EDİLMESİ VE KARAKTERİZASYONU  

 

 

Eker, Zeynep 

Yüksek Lisans, Mikro ve Nanoteknoloji Bölümü 

Tez Yöneticisi: Prof. Dr. Gürkan Karakaş 

Tez Eş-Yöneticisi: Prof. Dr. Mürvet Volkan 

 

Eylül 2009, 82 sayfa 

 

Bu çalışmanın amacı, biyosensor uygulamaları için elektrokimyasal aktif yüzey 

hazırlamak için TiO2-SiO2-Au ince filmi ile kaplanmış ITO üzerine redox enzim 

lakkaz tutuklanmasıdır. TiO2-SiO2-Au kolloid solüsyonu sol-jel yoluyla sentezlendi 

ve ince film substrat üzerine daldırmalı çıkarmalı kaplama yöntemiyle 

depolandı.Enzimi altın aktif bölgelerine kovalent olarak tutuklamak için sistamin 

bağlayıcı olarak kullanıldı. Ön çalışmalar invertazın model enzim ve payreks 

camların substrat olarak kullanılmasıyla yürütüldü. 

 

Tutuklama sıcaklığı, enzim depolama solüsyon konsantrasyonu, tutuklama zamanı 

gibi immobilizasyon parametrelerin etkisi lakkaz için incelendi. Kayıp çalışmaları 

yürütüldü ve tutuklanmış lakkazın raf ömrü kararlığı belirlendi. En yüksek lakkaz 

aktivitesine, tutuklanma 50 µg/ml solüsyonla 4°C’de 2 saat  gerçekleştirildiğinde 

ulaşıldı. Enzim solusyonu içinde 4 saatten fazla tutulduğunda lakkaz aktivitesi 

azaldı. Substratın ilk kullanımında lakkaz kaybı gözlemlendi ve bir sonraki 

kullanımda yeni örneklerde nonkovalent adsorplanan enzimin olmasıyla 

ilişkilendirilebilir %55’lik bir aktivite azalması belirlendi. Havadaki ve tampon 



vii 
 

çözeltideki raf ömrü kararlılığı da test edildi. Örneklerin aktivitelerin 6 gün sonra raf 

ömrü koşullarına bağlı olmaksızın hemen hemen tamamen yok olduğu bulundu. 

Her iki enzim de ITO substrat üzerinde daha yüksek aktiviteye sahiptiler. 

 

 

 

Anahtar Kelimeler: Biyosensör, tutuklanma, ince filmler, lakkaz, ITO,TiO2, SiO2, 

Au, sol-jel 
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     CHAPTER 1 
 

 

1. INTRODUCTION 

 

 

 

Immobilization is a widely used technique in order to fix biomolecules such as DNA, 

antibodies and enzymes onto a solid support or into a solid matrix. Enzymes are 

protein based molecules catalyzing chemical reactions in living organisms and they 

have unique properties in terms of activity, selectivity and specificity. However, 

enzymes are very sensitive to environmental parameters and thermally and 

chemically unstable. They are highly soluble in water and potential to 

substrate/product inhibition. These facts limit their use in large scale implementation. 

Immobilization provides reusability by easy separation, better stability, and widens 

the applications. Solid-phase immobilized enzyme reactors, immobilized enzyme 

membranes incorporated into sensors such as potentiometric enzyme electrodes 

and optical sensors and solid-phase immobilized enzyme films are examples of 

immobilized enzyme forms used in applications (Worsfold, 1995).  

 

Nanostructures such as nanoparticles, nanofibers, mesoporous thin or thick films 

and sol-gel route encapsulation having special functional properties contribute to the 

enhancement of immobilization and stabilization. Larger surface area, tunable pore 

size for biomolecule  selectivity (shape and size), surface functionalization, and 

lowered mass-transfer limitations are some examples of the use of nanostructures in 

enzyme immobilization (Kim et al., 2006). Sol-gel method is a practical technique for 

the construction of nanotructured thin films or powders from colloidal solutions and it 

is widely used.  

 

Titania and silica are the materials that can be sythesized by sol-gel route and they 

are biocompatible materials that can be utilized as host matrix in variety of 

immobilization applications of biomolecules. Sol-gel derived silica has high thermal 

stability and porosity. However the silica structure is fragile and thermal shrinkage is 

the major drawback for film formation. Titania is a suitable material for enzyme 
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electrodes and easily produced by sol-gel route. It is a very attractive semiconductor 

material allowing electron reduction and direct electron transfer of enzymes during 

the biological processes, reactions and transformations etc. But, it suffers from low 

porosity and aggregation. Titania-silica provides homogeneous dispersion of titania 

and better mechanical strength, thermal stability and high surface area than pure 

titania and it becomes a good candidate for enzyme immobilization with good 

conductive and large surface area for use in a variety of acid-base catalysis, redox 

catalysis and photocatalytic processes. Indium-tin oxide (ITO) is a widely used 

material in enzyme electrode construction. It is a wide band gap semiconductor and 

has metal like electrical properties. High transparency in visible range and near-IR 

region, high electrical conductivity, wide electrochemical working window are its 

superior properties.  

 

In this study, the redox enzyme laccase was immobilized over TiO2-SiO2-Au coated 

ITO glasses for the preparation of electrochemically active thin film surfaces. 

Immobilization of enzyme was performed by covalent binding method using the 

thiolamine linker cysteamine. Previous studies were conducted by using model 

enzyme invertase instead of laccase as it is well-known and abundantly available. 

Factors, which affect laccase immobilization, such as immobilization temperature, 

concentration of immobilization enzyme solution and immobilization time were 

examined. Also, stability studies for immobilized laccase were done. Such an 

enzyme mediated electrochemically active, conductive and nanosized thin film 

surface can find a wide range of application like power supplying, environmental 

remediation, biomimetic systems and biosensors. 
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CHAPTER 2 
 

2. LITERATURE SURVEY 

 
 
 

2.1. Biosensors 

 
Biosensors are analytical devices to obtain a biological response via biological 

recognition entity such as enzyme, antibody, bacteria, tissue etc. There are three 

main components in a sensor. The first one is the responding element which detects 

the analyte species and produces a signal. It should provide qualitative or 

quantitative or both qualitative and quantitative analysis of the analyte. The 

biosensor must fulfill the sensitivity, reproducibility, and selectivity requirements. The 

second component of a biosensor is an amplifier which increases the signal of the 

responding element and the third component is the detector that takes the amplified 

signal and turns it into a value that resembles the analyte species and/or its 

concentration (Pradeep, 2008). 

 

Linearity, sensitivity, selectivity and response time are the most important 

parameters that determine a biosensor’s performance. The more linearity of the 

sensor is the better detection of high substrate concentration. Sensitivity is the 

measure of electrode response per substrate concentration. High selectivity means 

the minimum contribution of chemicals other than current analyte. Finally, response 

time corresponds to obtain the time required to 95% of the response (Li, 2007). In 

the scope of these properties, nanotechnology contributes to high throughput ratio of 

the biosensors’ performance and recently paramount importance is given to 

nanoparticles in the development of biosensors (Jianrong et al., 2004; Xu et al., 

2003; Guo et al., 2007). The advantageous of using inorganic nanoparticles can be 

listed as; 

1. Having high surface to volume ratio, they provide extremely high 

electrochemically-active sites, i.e. the interacting area with the analyte, and 

resulting in an enhanced sensitivity (Guo et al., 2009; Huang et al., 2009, 

Jianrong et al., 2004). 
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2. Especially metal nanoparticles can act as promoters in electron transfer between 

electrode and target molecules and so lead to rapid response time for analyte 

molecules (Guo et al., 2009). 

3. It is possible to form desired constructions on the surfaces with the help of 

superior functional properties of inorganic nanoparticles and modify an 

electrochemical-sensing interface (Guo et al., 2009). 

4. Nanoparticles can be used as support for biomolecules and redox enzymes but 

also can behave as nano-activators for them and can be electrical labels for 

biorecognition events (Guo et al., 2009). 

5. Nanoparticle assemblies offer lower limits of detection (LOD) compared to 

conventional macrosized counterparts due to higher ratio between Faradaic and 

capacitive currents (Guo et al., 2009). 

 

Numerous applications of biosensors are possible with nanoparticles that bind to 

biological molecules. Acoustic wave, optical, magnetic and electrochemical 

biosensors are the main types of nanoparticle based biosensors (Jianrong et al., 

2004). 

 

Acoustic wave biosensors incorporated to a biological component works with the 

principle of measurement of mechanical acoustic waves. Mass-amplified crystal 

detectors are sol particles coated with biological reagent (i.e antibody) and when 

exposed to antigen they resonate at a fundamental frequency. The vibrational 

frequency of the crystal affected due to the mass change and this is measured. The 

size of the sol particles influence the detection limit and the preferred size range is 

reported as 5-100 nm (Jianrong et al., 2004). Au, Pt, CdS, TiO2 and polymers are 

also used as support particles. Piezoelectric materials are preferably utilized in most 

of the acoustic wave biosensors as crystals because they can propagate and convey 

acoustic waves in a frequency-dependent way. Quartz (SiO2), lithium niobate 

(LiNbO3) and lithium tantalate (LiTaO3) are widely used piezoelectric materials. High 

sensitivity is an important factor and surface of the acustic wave electrode should be 

chemically stable containing immobilized biological reagents abundantly in a thin 

coating (Jianrong et al., 2004; Leonard et al., 2003). 
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Optical biosensors are based on the detection of absorbance or fluorescence 

changes of an indicator or detection of refractive index changes. During the 

biorecognitive interactions, metal nanoparticles over the surface of the detector 

reflects enhanced resonance signals. Nanoclusters dispersed over the reflecting 

conductor surface transducer an optical signal as a result of resonant enhancement. 

Gold nanoparticles are recently used as novel fluorescence quenchers (Jianrong et 

al., 2004; Ravindra et al., 2007). 

 

Magnetic biosensors are freshly used devices that take the advantage of magnetic 

properties of nanoparticles. Magnetic nanoparticles provide strong and resourceful 

analysis in biology and medicine. Single domain or superparamagnetic types that 

are bound to biorecognitive molecules can be used for the separation and 

enrichment of the substance to be detected. Magnetic cell separation, magnetic 

immunoassays are the techniques that uses the magnetic field gradients (Jianrong 

et al., 2004). 

 

Electrochemical biosensors are based on the reactions that produce ions. An 

enzymatic reaction in the presence of analyte of interest takes place over the 

surface of the working electrode and the ions produced cause a potential that can be 

measured with respect to  reference electrode and converted to a signal. There are 

two types of electrochemical biosensors; amperometric and potentiometric (Ravindra 

et al., 2007). Recent developments in electrochemical biosensors mostly include 

metallic nanoparticles. High surface area of them provide high amount of 

biomolecules immobilized over the electrode that contributed to the sensitivity and 

lower detection limit.  Both enzymatic and non-enzymatic biosensors can be 

produced with functionalization of electrode surface with metal nanoparticles, which 

responds to the redox reactions. In enzymatic sensors, enzyme modified metal 

nanoparticles are sensing parts and nanoparticles acts as mediators. In non-

enzymatic sensor, metal nanoparticles directly act as sensing elements (Santos et 

al., 2002). Transition metals have unique catalytic features for many organic 

reactions. Metal nanoparticles can also act as labeling agents. Many biological 

molecules can be labeled by using metal nanoparticles without altering their 

biological activities that leads to construction of affinity assays (Jianrong et al., 

2004). 
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Enzymes are superior candidates for the use in biosensors. They have outstanding 

operational properties such as activity, selectivity and specificity resulting in a 

capability of catalyzing very complex chemical processes under mild conditions. 

They can also provide a wide range of measurable quantities such as protons, ions, 

electrons and mass. In addition, they have an amplification effect as they are used 

more than once during a catalytic reaction (Turner et al., 2002).   

 

2.1.1. Amperometric Biosensors 

 

In amperometric biosensors, detection is based on the measurement of the current 

response of a redox reaction catalyzed by an enzyme or during a bioaffinity reaction 

on the electrode surface (Jianrong et al., 2004). Enzyme electrodes are small 

transducers that are composed of immobilized enzymes that perform 

electrochemical reactions on the surface. In general, enzymatic detection is carried 

out by following the rate of formation of a product or disappearance of a substrate. 

Amperometric detection is possible if the reagent or product is electro active. This 

class of biosensors mostly depends on the electron donor or acceptor 

oxidoreductase enzymes (Sarmaa et al., 2009). The working principle of 

amperometric sensors is illustrated in Figure 2.1. 

 

 

 

 

 

Figure 2.1. A schematic of an amperometric sensor (Sarmaa et al., 2009) 
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The performance of the biosensor is affected by the structure of the electrode 

surface including the material choice. Conductivity and hardness of the electrode are 

the primary considerations and solid supports such as gold, carbon, platinum and 

their derivatives are generally preferred. Immobilized enzymes over the surface are 

redox enzymes and alcohol dehydrogenase (Zhao et al., 2009), aldehyde 

dehydrogenase, glucose oxidase (GOx) (Ren et al., 2009), glutaminase, horse 

radish peroxidase (HRP) (Mateo al., 2008), catalase (Itoh et al., 2009), xanthine 

oxidase (Shanet al., 2009), choline oxidase (Bai et al., 2008), urease (Chenet al., 

2008), billirubin oxidase, and lactate oxidase (Huang et al., 2008) are just brief 

examples.  

 

Direct electron transfer between the electrode and the enzyme by metal 

nanoparticles is another method based on the principle of direct electron transfer 

between redox proteins and electrode without need for any mediator (Guo et al., 

2007; Xu et al., 2003). The schematic representation of direct and indirect electron 

transfer is given in Figure 2.2. Nanoparticle modified electrode surfaces ensure such 

a native environment and create conducting tunnels to facilitate direct electron 

transfer by decreasing the insulating effect of protein shell.  

 

 

 

 

 

Figure 2.2. Scheme of direct and indirect electron transduction. a) Direct 

transduction: the electrons only generate a measurable current if the reaction takes 

place close to the surface.  b) Indirect transduction: mediator shuttles the electrons 

between the reaction site and the surface. (Grieshaber et al., 2008) 

 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ECSDRL&possible1=Ma%2C+Xiaoling&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6THH-4TTMJPW-3&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2acc75b374edebf30398c598cde5b857#vt1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6THH-4S7J5F1-3&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=2fb200c486654aba40e167b51f6a2fcb#vt1
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2.2. Immobilization of Biomolecules on the Surface 

 

Immobilization is the one crucial step to produce biosensor electrodes 

(Böyükbayram et al., 2006; Kim et al., 2006; Gürsel et al., 2003). In general, the 

enzyme immobilization is carried out by adsorption, microencapsulation, entrapment, 

crosslinking and covalent bonding techniques.  

 

2.2.1. Physical Adsorption 

 

In physical adsorption (physisorption), proteins are adsorbed to the surface by weak 

forces such as electrostatic forces, Van der Waals bonds or hydrogen bonds. 

Physisorption may alter the structure of enzyme and significant conformational 

changes may take place by adsorption (Drevon et al., 2002; Ahuja et al., 2007; 

Eggins, 2002). The hydroplicity of the support material also affects the 

thermostability of the enzyme. Enzyme kinetics is not affected much during the 

immobilization. Adsorption of enzymes and the stability of ad-enzyme species are 

highly vulnerable to changes in pH, temperature, ionic strength. Another 

disadvantage is the leakage or leaching of enzyme from the support surface which 

results in reduction of lifetime and sensitivity of the electrode. There are studies on 

immobilization of biomolecules via adsorption onto mesoporous silica examining the 

effects of pore size, surface charge, ionic strength to the rate of adsorption, 

enzymatic activity (Leeet al., 2009; Diaz et al., 1996; Deere et al., 2002). A 

schematic representation of adsorption on the surface can be seen in Figure 2.3. 

 

 

 

 

Figure 2.3. Immobilization of biomolecules by adsorption (Zhang et al., 2007) 

 
 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B82X8-4VP1CVC-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7f27fcf09dee1a7736760d1e1f6c9b8c#vt1
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2.2.2. Microencapsulation 

 

Microencapsulation method is the trapping of biomaterial in the electrode surface by 

the use of an inert membrane (Eggins, 2002). Enzymes can be encapsulated into 

vesicles, polymersomes or polyelectrolyte capsules.  Providing a protective cage in a 

natural environment, less inactivation is achieved. In addition, encapsulated 

biomolecules have a good stability against temperature, pH, ionic strength and 

substrate concentration. Also the immobilized biomolecule concentration might be 

increased by the microencapsulation technique. The encapsulated biomaterial is 

very close to the transducer surface and incorporating nanomaterials amplifying 

signal. Studies on the encapsulation of enzymes in nanopores have revealed higher 

stability and enhanced detection capability. Many studies have been conducted on 

encapsulation in polyelectrolyte multilayer capsules such as negatively charged 

poly(sodium styrenesulfonate) and positively charged poly(allylaine hydrochloride), 

micelles that are block copolymers with a hydrophobic inner shell such as 

poly(acrylic acid)or polyester and hydrophilic outer shell such as poly(ethylene 

glycol), vesicles or liposomes such as palmitoyl-oleoylphosphocholine (POPC),  

hydrogels and sol-gels such as nanoporous silica matrix (Drevon et al., 2002; Leeet 

al., 2009; Sarmaa et al., 2009, Grieshaber et al., 2008). A schematic representation 

of encapsulation of biomolecules is illustrated in Figure 2.4. 

 

 

 

 

Figure 2.4. Immobilization of biomolecules by encapsulation (Zhang et al., 2007). 

 
 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B82X8-4VP1CVC-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7f27fcf09dee1a7736760d1e1f6c9b8c#vt1
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2.2.3. Entrapment 

 

Similar to encapsulation, biomolecules might also be embedded within a polymeric 

gel. Widely used membranes are polyacrylamide hydrogels, polyurethane and starch 

gels, nylon, silastic gels and conducting polymers (Eggins, 2002; Luo et al., 2004). 

Enzymes can be entrapped into a matrix by electropolymerization of monomer 

solution in the presence of enzyme (Liu et al., 2007). The diffusion barrier for the 

substrate through the membrane slows down the reaction. So the diffusion limitation 

is one of the disadvantages encountered with this technique. Leakage of the enzyme 

and loss of enzyme activity through the pores depending on the thickness of the 

membrane is another drawback of entrapment technique. In order to overcome 

enzyme leakage, enzyme might be crosslinked with polymere matrix by using proper 

linker (Eggins, 2002; Luo et al., 2004). A schematic representation of entrapment of 

the biomolecules can be seen in Figure 2.5. 

 

 

 

 

Figure 2.5. Immobilization of biomolecules by entrapment (Klis et al., 2009) 

 

 

2.2.4. Crosslinking 

 

Bi- and poly- functional reagents might be utilized as crosslinker to fix the protein 

molecule to support matrix. As a result, inter- and intra-molecular covalent linkages 

are formed between the proteins. Carbodiiimides and gluteraldehyde are widely 

known bi-functional reagents that make covalent bond with amino and carboxyl 

groups. Crosslinking is an effective method to reduce leakage and stabilization of 
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enzymes by preventing unfolding and protein dissociation. On the other hand, major 

disadvantages are limited substrate diffusion into the cross-linked enzymes, possible 

damage to the enzyme, poor mechanical strength and unpredictable progress that is 

poor control in the aggregate sizes etc. (Drevon et al., 2002; Eggins, 2002; Leeet al., 

2009). Crosslinking of biomolecules is presented in Figure 2.6. 

 

 

 

 

Figure 2.6. Schematic representation of crosslinked biomolecules(Bickerstaff et. al, 

1997) 

 

2.2.5. Covalent Bonding 

 

Side chains are the nonessential parts of an enzyme for catalytic activity and might 

be reacted with functional groups at the support surface for the covalent  

immobilization (Drevon et al., 2002; Eggins, 2002). Covalent bonds are mostly 

formed between side-chain-exposed functional groups of proteins with suitably 

modified supports, resulting in an irreversible binding and producing a high surface 

coverage (Rusmini et al., 2007). Lysine, arginine and histidine are the amine-

containing side chain groups of the enzyme and they contain the N-terminal α-amine 

of the protein chain. Supports are modified with functional groups by chemical 

treatment and it is accessible to pretreated surfaces commercially. Nucleophilic 

(amine, thiol) or electrophilic groups (active carboxylic acid, alkyl chloride) are used 

for the coupling with silanated solid surface. Typical covalent coupling linkages and 

the potential functional groups of protein side chains are given in Table 2.1 and 

Table 2.2 respectively. Enzyme might be negatively affected by the coupling 

conditions. The moderate coupling environment such as low temperature, ionic 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B82X8-4VP1CVC-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7f27fcf09dee1a7736760d1e1f6c9b8c#vt1
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strength, proper pH level etc. is essential. Coupling also decreases the enzyme 

flexibility. (Drevon et al., 2002; Ahuja et al., 2007; Eggins, 2002; Lee et al., 2009). 

 

 
Table 2.1. Typical covalent couplings for immobilization (Eggins, 2002) 

 

Reactive group 

(on surface) 

Reactive group 

(on enzyme) 

Coupling linkage 

 
 

 

  
 

 
 

 

 

 

 

  

   

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B82X8-4VP1CVC-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7f27fcf09dee1a7736760d1e1f6c9b8c#vt1
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Table 2.2.Commonly Available Functional Groups in Proteins and Functionalities of 

the Required Surfaces (Rusmini et al., 2007) 

 

Side Groups Amino acids Surfaces 

- NH2 Lys, hydroxyl- Lys 

carboxylic acid 

active ester (NHS) 

Epoxy 

Aldehyde 

- SH Cys 

Maleimide 

pyridyil disulfide 

vinyl sulfone 

- COOH Asp, Glu Amine 

- OH Ser, Thr Epoxy 

 

 

 

2.3. Synthesis methods of thin films 

 

Response time and reversibility are the most important performance features of a 

sensor. Diffusion of any reagent through the sensing element to react and diffusion 

of the product out are essential steps. Thus, the sensing film thickness is an 

important factor on mass transfer rate, response time and reversibility (Davis et al., 

2005). Physical vapor deposition, chemical vapor deposition, self–assembled 

monolayer (SAM), layer-by-layer assembly, Langmuir-Blodgett (LB) films and sol-gel 

coating techniques can be applied to fabricate thin films.  

 

In the present study, sol-gel technique is employed to produce thin films of TiO2-SiO2 

mixed oxides and no further information about the other thin film production process 

will be given.  
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2.3.1. Sol-Gel Method 

 

Sol- gel process is a colloidal synthesis method for ceramics that consists of an 

intermediate stage as a sol and/or a gel state (Pierre, 2008).  A sol is a stable 

mixture of a colloidal suspension (Jones, 1984; Brinker et al., 1990).  When the solid 

particles aggregate they constitute a particular volume in solution depending on the 

microstructure of the particles as can be seen in Figure 2.1. 

 

 

 

 

Figure 2.7. Schematic Diagram of solid particle distribution for (a) peptized colloid, 

(b) aggregated particles and (c) gel (Jones, 1989) 
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The sedimentation volume is equal to the original solution when the particles are 

crosslinked and structured being able to stable the solvent. In this case, resultant 

form exhibits visco-elastic properties and it is called as gel (Jones, 1984).  

 

Sol-gel method is used to fabricate a broad range of products such as ceramics, 

semiconductors, aerogels, xerogels and etc. Different routes for sol-gel processed 

materials reported in literature and s illustrated in Figure 2.8. A  typical  sol-gel  

process  using  an  alkoxide  precursor  involves  the  following steps:  (1)  formation  

of  stable  sols;  (2)  casting  or  shape  formation;  (3)  gelation  of the  sols;  (4)  

aging  of the  gel;  (5)  drying  of the  gel;  (6)  calcination;  (7)  sintering  if necessary 

(Lin et al., 1998).  

 

 

 

 

Figure 2.8. Routes for sol-gel processed materials (modified from Brinker et al., 

1990) 

  

A precursor material that can be an inorganic salt or metal alkoxide which can be 

hydrolyzed to form hydrous metal oxide or hydroxide. This monomer suspension 

(sol) that consist reactive species eager to form higher-order species is peptized by 

a series of condensation reactions (Lee, 2008). Hydrolysis and condensation 
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reactions cannot be clearly distinguished and it is difficult to control their relative 

reaction rates.  Depending on pH, water content and structure of the precursors, the 

rate of hydrolysis and condensation reactions alter. Hydrolysis is the equilibria of 

aquo (M-(OH2)), hydroxo (M-OH) and/or oxo (M=O) ligands formed by deprotonation 

of the solvated metal cation (Pierre, 1998; Brinker et al., 1990) with Equation 2.1 

 

       (2.1)                    

 

Condensation is a process by which polynuclear complexes are formed by 

mononuclear complexes (Pierre, 1998). Two types of condensation reaction are 

possible: olation in which there is a hydroxo ligant between two metal atoms and 

oxolation in which there is oxo bridge between two metal atoms (Pierre, 1998). 

Reaction mechanisms of hydrolysis and condensation for metal alkoxide precursors 

are schematized as Equations 2.2 – 2.6. 
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Hydrolysis and condensation reactions are catalyzed by the addition of an acid or a 

base and the nature of the gel is strongly depended on the choice of the catalyst. 

Hydrolysis occurs by electrophilic attack on alkoxide groups under acidic conditions 

and by nucleophilic attack on metal ion under basic conditions. Condensation is 
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directed toward the end groups of the chains in acidic conditions because of the 

attack on the electron providing ligands resulting in a more linear chains rather than 

highly branched polymers. Conversely, it is directed toward the middle groups of the 

chains in basic conditions because of the nucleophilic attack on the positively 

charged metal ions resulting in highly branched species. It is observed that in acidic 

conditions hydrolysis is faster and subsequent fast condensation occurs resulting in 

high polymeric rearrangement. However, in basic conditions, hydrolysis is relatively 

slow and condensation is favored (Jones, 1984; Brinker et al., 1990; Schwartz et al., 

2004).  

 

Applying sol gel technique brings some advantages on the production of metal 

oxides such as: 

 

 low temperature close to room temperature 

 mild conditions, extreme pH values can be avoided  

 nanocrystalline and highly porous products 

 tunable pore size and porosity 

 appropriate for covalent attachment of biomolecules by functionalization 

 thin films fabrication without machining and melting 

 good optical quality materials (Wright et al., 2001) 

 

2.3.2. Coating Techniques 

  

Spin coating and dip coating are mostly used techniques for preparing thin films with 

sol or solutions. In the spin coating process substrate is placed on a spinner and 

hold by vacuum. The liquid is dripped on the surface and then spinner is accelerated 

rapidly to 1000 to 8000 rpm (Brinker et al., 1990; Schwartz et al., 2004). The film 

formation is explained by a four stage process: deposition, spin-up, spin-off and 

evaporation. In the deposition stage liquid is spread over the surface, the liquid slips 

away radially outward by centrifugal force in spin-up stage, the film thickness is 

reduced by making excess liquid move through perimeter and leave as droplets, and 

in the final stage, evaporation takes place thinning the film as seen in Figure 

2.9(Brinker et al., 1990). Thickness of the film depends on the angular velocity, 

spinning time and viscosity of the solution (Schwartz et al., 2004). 
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Figure 2.9. Schematic of Spin Coating (Brinker et al., 1990) 

 

 

In dip-coating substrate is immersed in solution and withdrawn at a constant rate. 

The process is divided to five stages: immersion, start up, deposition, drainage and 

evaporation as seen in Figure 2.10. After the immersion, the withdrawal of the 

substrate from solution starts in start-up, then the substrate is completely removed 

from solution after deposition, solvent evaporation and drainage steps (Schwartz et 

al., 2004). In deposition, while moving along the solution, the substrate sweeps 

some of the liquid toward the deposition region in a boundary layer which is divided 

into two (Figure 12c) (Brinker et al., 1990).  The inner layer moves upward with the 

substrate where the outer layer moves back to the solution, and the division between 

the layers affects the film thickness. Viscous drag, gravity force and the surface 

tension in the concavely curved meniscus are the main factors controlling the film 

thickness (Brinker et al., 1990). In addition, solution properties such as sticking, 

aggregation and gelation (Schwartz et al., 2004), and process parameters such as 

removal rate of substrate and number of the coating layers designate the thickness 

and the nature of the film. 
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Figure 2.10 .Schematic of Dip-coating (Brinker et al., 1990) 

 

 

2.4. Support Materials 

 

2.4.1. Titania Silicate Mixtures 

 

The intrinsic chemical and physical properties of high porosity crystallites, together 

with their high surface areas, open up potential applications in biosensors, 

magnetics, electronics, mechanics, and micro devices (Qian et al., 2008). Hosts that 

have good conductivity and large surface area provide good environment for 

enzyme loading and substrate diffusion, and result in high sensitive and long-term 

stable biocatalyst. Titania-silica mixed oxides are active solid catalysts or catalyst 

supports that can be used in a variety of acid-base catalysis, redox catalysis, and 

photocatalytic processes (Liu et al., 2009). 

 

Sol-gel derived silica synthesized under ambient conditions is biocompatible and 

enzymes can retain their biocatalytic activity. It has some advantages such as 

unable porosity, high thermal stability and chemical inertness (Sun et al., 2008; Yu et 

al., 2003). However, silica sol-gel matrix is fragile and easily shrinks, cracks and 

delaminates from the electrode surface (Doong et al., 2006, Yu et al., 2003).  

 

Titania is also biocompatible and it has been widely used in solar cell, electronic 

devices, catalyst support and immobilization of proteins and enzymes because of its 

remarkable chemical, electronic and optical characteristics, and nano-TiO2 could be 

used as a good promoter for the direct electron transfer of enzymes (Cheng et al., 

2008). However, electrodes and protein immobilization, for which traditional 
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nanosized crystalline titania is used, have low porosity and titania easily aggregate 

(Qian et al., 2008).  

 

Titania-silica mixed oxides have a high percentage of the titanium oxides in a 

uniformly dispersed state and have some advantages such as higher mechanical 

strength, thermal stability and specific surface area compared to pure TiO2 (Liu et 

al., 2009; Jung et al., 1999). Ti–O–Si bonds forms in silica-modified titanium dioxide 

and the silica-modified titanium dioxides had high thermal stability and the addition 

of silica in TiO2 particle could effectively suppress the formation of rutile phase and 

the growth of the titanium dioxide crystals on calcinations (Li et al., 2005) .In 

addition, binary TiO2–SiO2 mixtures have higher photocatalytic activity than 

traditional TiO2 (Luo et al., 2009; Anderson et al., 1997; Jung et al., 1999). A broad 

spectrum of organosilanes are available to modify the silica surface with functional 

groups to give it desired properties (Claesson et al., 2007) and titanium coordinates 

with amine and carboxyl groups on the surface of enzymes (Cheng et al., 2008) and 

with these properties, they are widely used as supports for covalent attachment of 

enzymes.  

 

2.4.2. Indium-tin oxide (ITO) 

 

Indium-tin oxide is a wide band gap semiconductor having metal like electrical 

properties (Zhou, 2006). Energy diagram of In2O3 and ITO is illustrated in Figure 

2.11. As ITO has metal like electrical properties and the ITO-Semiconductor contact 

is essentially a metal-semiconductor contact (Zhou, 2006).  

 

ITO has high transparency in visible range and near-IR region, high electrical 

conductivity, wide electrochemical working window, good substrate adhesion and 

stable electrochemical and physical properties (Lin et al., 2007; Zhang et.al., 2005; 

Sun et al., 2006; Moore et al., 2006). 
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Figure 2.11. Energy diagram of In2O3 and ITO (Zhou, 2006) 

 

 

It has been widely used in development and applications of electronic and optical 

sensors, direct electron transfer of proteins, electrochemical nucleic acid biosensors, 

microfluidic on-chip detection, electrochemiluminescence analysis, transparent 

heating elements, antistatic coatings over electronic instruments, liquid crytal 

displays, transparent electrodes for various display devices and transparent contact 

(Lin et al., 2007 ; Zhou, 2006).  

 

2.5. Gold Nanoparticles 

 

Recently, nanoparticles that are in 1-100 nm sized have been extensively used as a 

part of biosensors. These nanoparticles include metal nanoparticles, oxide 

nanoparticles, semiconductor nanoparticles and composite nanoparticles (Huang et 

al., 2009). Nanoparticles have unique functional properties and each contribute to 

enhancement of biosensor performance in different manner. Mainly, they have high 

surface to volume ratio, have high surface energy and they are biocompatible and 

enhance the electrode conductivity, facilitate the electron transfer and improve the 

sensitivity, selectivity and stability (Huang et al., 2009; Liu et al., 2003; Luo et al., 

2004; Cai et al., 2001; Zhang et al., 2005). Among them, gold nanoparticles are the 

most stable and one of the most widely used nanoparticles (Zhang et al., 2005). 

Gold allows easy adsorption of biomolecules to its surface stably without losing their 

biological activity and stable immobilization (Lin et al., 2007; Guo et al., 2007; 

Pingarron et al., 2008; Shipway et al., 2000). In addition, gold nanoparticles act as 

tiny conducting centers and provide direct electron transfer during redox reactions of 
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enzymes without need of another mediator. There two ways to prepare gold 

modified surfaces: electrostatically and covalently bond. In the first one, electrostatic 

stabilization is provided between gold nanoparticles with citrate and negatively 

charged particles are adsorbed to the electrode surface. In the second one, surface 

is modified with functional groups (–SH, –NH2, –CN) and gold nanoparticles bind 

covalently to these groups (Liu et al., 2003; Mena et al., 2005) as Equation 2.7 ; 

 

RSH + Au ↔ RS-Au + e− + H+           (2.7) 

 

All of these properties have made gold nanoparticles to be used in a wide range of 

biosensor applications and some examples of redox enzyme biosensors modified by 

gold nanoparticles can be seen in Table 2.3. 
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2.6. Redox Enzymes 

 
 
Redox enzymes basically catalyze electron transfer reactions that have 

importance in biological systems such as respiration and photosynthesis and also 

in biotechnological such as degradation of pollutants and biomass, and drug and 

food processing (Gilardi et al., 2001). Main reactions catalyzed by redox enzymes 

are summarized in Figure 2.12. 

 

Wide range of redox enzymes are used for the detection of analytes having 

medical or environmental importance and it has been developed several routes for 

electron coupling between the redox enzyme such and the electrode as by 

electroactivity of substrate or product of the enzyme, by using redox mediators or 

by direct electron transfer between the electrode and the redox enzyme (Gilardi et 

al., 2001). In Figure 2.13 some mechanisms of redox enzyme use are shown. 
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Figure 2.13. Use of redox proteins (a) Sensing the binding of a ligand based on 

changes of the redox properties, (b) Optical device sensing changes in optical 

properties of the redox centre upon ligand binding, (c) Detection of enzymatic 

activity through measurement of catalytic current, (d) protein with multi-redox 

centres, immobilized on an electrode surface (Gilardi et al., 2001). 
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2.6.1. Polyphenol oxidases 

 
 
Polyphenol oxidases are oxidoreductases that catalyze oxidation of phenolic 

compounds (Durán et al., 2000). Phenolic compounds are widely distributed in 

nature and their oxidations are important in such processes as cellular oxidation, 

cellular wall protection, fruit browning, juices and wines processing, pulps 

delignification, fabrics decoloration, decontamination of soils and water pollution 

(Durán et al., 2000). Laccases and tyrosinases are two groups that catalyze the 

transformation of a large number of phenolic and non-phenolic aromatic 

compounds and immobilization of them have been widely studied for synthetic and 

analytical purposes, bioremediation of contaminated soils, wastewater treatment 

and beverage treatment (Durán et al., 2002).   

 

2.6.1.1. Laccases 

 

Laccases (E.C.   1.10.3.2,   benzenediol:oxygen   oxidoreductase)   are copper-

containing  phenol oxidases  that  catalyse  the  oxidation  of  some  inorganic  and  

(e.g., organic  compounds phenols and aromatic or aliphatic amines) to their 

corresponding radicals with the concomitant electroreduction of oxygen to water 

(Jeon et al., 2008; Manole et al., 2008) as seen in Equation 2.7; 

 

                                                                                  (2.7) 

            

Laccases are produced by plants, fungi, bacteria and even by insects which make 

redox reactions stimulated by it in ever-present in nature. They exhibit great 

potential for development as green chemistry model systems as they do not need 

a heme cofactor, they use molecular oxygen as a final electron acceptor without 

requiring hydrogen peroxide supply and they have broad substrate specificity 

(Jeon et al., 2008; Bendl et al., 2008 ). They are industrially relevant enzymes that 

can be used for a number of diverse applications, e.g. for biocatalytic purposes 

such as delignification of lignocellulosics and cross-linking of polysaccharides, for 

bioremediation such as waste detoxification and textile dye transformation 

(Gianfreda et al., 1999). 
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Laccase contains four copper atoms that have been classified  according  to  their  

electron  paramagnetic  resonance (EPR) features: Type 1 or blue, Type 2 or 

normal and Type 3 or coupled binuclear copper site where the coppers are 

antiferromagnetically  coupled  through  a  bridging  ligand (EPR undetectable) 

(Dur´an et al., 2002). Schematic model of laccase with active side structure is 

seen in Figure 2.14. Type I (T1) copper gives the typical blue colour to the protein 

and is the site where substrate oxidation takes place and Type 2 (T2) and Type 3 

(T3) copper form a trinuclear cluster, where reduction of molecular oxygen and 

release of water takes place (Riva, 2006).The amino acid Histidine (His) has as a 

positively charged imidazole functional group. 

 

 

 

 

Figure 2.14. Active side structure of laccase from Trametes versicolor made of 

four copper atoms (Dur’an et al., 2002) 

 

 

Laccase oxidizes many substrates: phenolic dyes, phenols, chlorophenols, lignin 

related diphenylmethanes, benzopyrenes, N-substituted p-phenylenediamines, 

organophosphorus and non-phenolic beta-O-lignin model dimer (Durán et al., 

2000). Simple  diphenols  such  as  hydroquinone, catechols, guaiacol and 2,6-

dimethoxyphenol, syringaldazine are  good  substrates  for  the  majority  of  
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laccases, and  also nonphenolics such as N-Hydroxybenzotriazol,  violuric  acid  

and N-hydroxyacetanilide, and 2,2-azobis(3-ethylbenzothiazoline-6-sulphonic acid) 

(ABTS) are N–OH compounds capable of mediating a range of laccase-catalyzed 

biotransformation (Durán et al., 2002; Mayer et al., 2002). Schematic 

representation of different redox catalytic cycles of laccase is shown in Figure 

2.15.  

 

 

 
 

 

Figure 2.15. Schematic representation of laccase-catalyzed redox cycles for 

substrates oxidation in the absence (a) or in the presence (b) and of chemical 

mediators(c) (Riva, 2006). 

 
 
Beside commonly used mediator compound, ABTS is used for determining 

enzyme activity directly. ABTS is readily oxidized by free radicals, various 

peroxidases and laccases to the cation radical ABTS+•, and the concentration of 

the intensely coloured, green-blue cation radical can be correlated to the enzyme 

activity. Laccase activity can be determined by monitoring the oxidation of ABTS to 

the stable cationic radical ABTS+• at 420 nm with extinction coefficient ε420 = 

36,000 M−1 cm−1 (Wolfenden et al., 1985). It is well known that cation radicals 

represent an intermediate oxidation step in the redox cycle of azines, and upon 

extended oxidation and abstraction of the second electron, the corresponding 
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dications can be obtained (Majchereczyk et al., 1999) and ABTS redox cycle is 

shown in Figure 2.16. 

 

 

 

 

Figure 2.16. Formation of the cation radical and the dication by removal of one and 

two electrons from ABTS (Majchereczyk et al., 1999) 
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CHAPTER 3 
 
 

3. MATERIALS AND METHODS 
 
 

3.1. Materials 

 
 
Laccase (EC.1.10.3.2) was purchased from Novozymes (USA) and invertase (EC 

.3.2.1.26) from Novonordisk. Cysteamine was purchased from Fluka (USA). Bovin 

serum albumin (BSA), 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 

diammonium salt (ABTS) and Bradford reagent  were obtained from SIGMA 

(USA). Titanium isopropoxide (TTIP) were used as titania precursor, the silica 

colloidal mixture Ludox SM30 was used as silica source (more information is 

presented in Appendix A) and they were both obtained from SIGMA. PEG 4000 

and AuCl3 were also obtained from SIGMA (USA). Other reagents were of 

analytical grade and obtained from SIGMA or MERCK. Ultrapure water was used 

throughout this research. 

 

3.2. Sol-Gel Synthesis 

 

Titania-Silica binary colloidal mixture was prepared with the procedure shown in 

Figure 3.1. 200 ml distilled H2O and 1 ml acetic acid, which was the catalyst, were 

mixed and 5 ml TTIP was added dropwise while stirring in order to start hydrolysis. 

Then, 0.7 ml 65 % (v/v) HNO3 was added for setting pH 3.5 and the mixture was 

stirred at 80°C for 30 mins under reflux and continued stirring at room temperature 

for 2 hours. 6.4 ml Ludox SM 30 was added and after stirring overnight (22.5 

hours), 21.3 ml PEG 4000 was added in order to obtain porous surfaces. The 

mixture was stirred for 24 hours and 18.5 ml HAuCI4, 1 % (w/w) of TiO2+SiO2, was 

added. Finally, the mixture was removed from stirring after 24 hours.  

 

Preparation of HAuCl4 solution:  50 ml dark brown bottle was cleaned with the 

mixture of 15 ml HCI and 5 ml HNO3 and subsequently rinsed with distilled water 
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and dried at 100°C. 0.1 g AuCI3 was added to 32.973 ml distilled water in cleaned 

bottle and it was dissolved 27 µl HCI was put. Prepared HAuCI4 solution was 

stored at 4°C. 

 

 

 

 

Figure 3.1. Schematic Representation of Sol-gel Preparation 

 
 



 

 

 

 

 

 

34 

 

 

 

 

 

 

 

3.3. Pretreatment of Pyrex and ITO Glasses 

 

Microscope slides which were obtained from Industrial Quality and one side ITO 

coated glasses which were supplied commercially by Şişecam were used as 

substrates for preparation of thin film surfaces and they were cleaned before being 

used. Slide  surface  is  usually  dirty  and  contaminated  with  stains  and  has  

scratch marks. Slides can be pretreated with detergent by which dust, dirt and 

residues are removed or with organic solvents such as ethanol or acetone which 

remove oils and organic residues. For deep clean, glasses can be etched by 

inorganic acid such as HCl, nitric acid, aqua regia or base such as ammonium 

water or NaOH and KOH (Wang et al., 2004). 

 

Microscope slides in dimesions of 25mm x 75 mm x 1 mm that were used as 

Pyrex glass substrates were etched and cleaned by 1 N KOH solution by 

immersing for 48 hours. Then, glasses were rinsed with water till pH 7 and 

subsequently ultrasonicated in ethanol for 1 hour. Lastly, glasses were wiped with 

drying towel and dried at 100˚C in for 1 hour.  

 

ITO glasses were cleaned only by using acetone and isopropyl alcohol without 

etching in order not to damage thin ITO coating. Glasses were ultrasonicated with 

acetone and isopropyl alcohol for 30 mins each respectively. Then, they were 

dried at 100˚C for 15 mins. 

 

3.4. Thin Film Coating 

 

3.4.1. Dip-Coating and Thermal Treatment 

 

Sol-gel derived thin films were deposited on Pyrex and ITO substrates by dip-

coating method as seen in Figure 3.2. Three layers of sol gel were coated on the 

substrates. While layer by layer coating, each layer is dried at a temperature and 

humidity for gelation before next layer in order to provide adhesion and 

densification. The degree of dryness is where there are no reactive groups that 

may react with the subsequent layer (Debsikdar, 1989). Calcination, relatively high 
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temperatures than drying, is heat treatment for consolidation of the coatings and 

crystallization of the film (Yu et al., 2008; Chan et al., 1999). In addition, porosity is 

provided by solvent evaporation and the organic residuals are removed (Linda et 

al., 2009; Kim et al., 2006). 

 

Both Pyrex and ITO glass substrates were withdrawn with the velocity of 0.5 

cm/min after dipping into the sol-gel as 25 x 40 mm. After each layer, substrates 

were dried at 100°C (Nüve FN 055) for 10 mins. Finally, the films were calcinated 

at 500°C in air for 15 mins in a tube furnace (Protherm 1000W, PTF 12/50/250) in 

order to accomplish the oxidation and crystallization of the film.  

 

Commercially obtained ITO glasses had one side conducting surface that is one 

side ITO coating and this side should have been coated with sol-gel. For this 

purpose, non-conducting side was coated with paraffin in order to prevent being 

coated with water based sol-gel. Paraffin was dissolved in octane 10 % (w/v). Non-

conducting surface was coated with paraffin solution by brush and dried and all 

process was done under fume exhaust hood. This procedure was repeated 

between each layer coating after drying at 100°C for 10 min. After the third run, 

ITO glasses were dried at 100°C for 10 mins same as microscope glass slides and 

calcinated and there was no paraffin left on the surface. By this way, conducting 

sides of ITO substrates were coated with sol-gel.   

 

 

 

 
 

 
 
 
 

Figure 3.2. Dip-coating of substrates with sol-gel 
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3.5. Enzyme Immobilization 

 

3.5.1. Cysteamine Linking on the Surface 

 

Enzyme was immobilized on sol-gel derived TiO2-SiO2-Au thin film by the 

thiolamine linker cysteamine (2-mercaptoethylamine) (HSCH2CH2NH2) which is 

shown in Figure 3.3. Cysteamine was expected to covalently bind to gold on the 

surface with its thiol group as shown in Equation 3.1.   

 

 

  
Figure 3.3. Structure of cysteamine 

 

RSH + Au ↔ RS-Au + e− + H+      (3.1) 

 

TiO2-SiO2-Au sol-gel coated substrates were immersed in 20 mM aqueous 

cysteamine solution for 3.5 hours at room temperature under stirring in dark at 250 

rpm. Then, the substrates were washed with water in order to remove unbound 

cysteamine. 

 

Immobilization reaction was expected to take place between carboxyl group of the 

enzyme and amine group of cysteamine with carbodiimide bond formation.  

 

3.5.2. Immobilization of Laccase 

 

Laccase was immobilized on cysteamine modified TiO2-SiO2-Au thin film. Different 

enzyme concentrations from 0.25 to 900 µg/ml and different loading times 

between 30 min and 12 h were used for immobilization. Laccase solutions of 

desired concentrations were prepared in 0.1 M pH 5.0 sodium acetate buffer as 

illustrated in Table 3.1. Substrates were dipped into the enzyme solution at 4 °C 

under stirring at 250 rpm in dark for a definite loading period. Substrates were 

withdrawn and each rinsed with 100 ml buffer in order to remove unbound enzyme 

from the surface.  
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Table 3.1. Laccase immobilization solutions 

 

 Concentration (µg/ml) 

 2.5 5 10 25  100 180 360 400 600 900 

Laccase (µl)  25  50  100  250  1000 2000 4000 4000 6000 9000 

Buffer (µl) 975  950 900  750  - - - - - - 

Buffer (ml) 179 179 179 179 179 198 196 176 174 171 

Total (ml) 180 180 180 180 180 200 200 180 180 180 

 

 

3.5.3. Immobilization of Invertase 

 

Invertase used as model enzyme was immobilized as a preliminary study. 

Invertase was immobilized on cysteamine modified TiO2-SiO2-Au thin film 

substrates in 10 µg /ml enzyme solution prepared in 0.1 M pH 5.0 sodium acetate 

buffer. Substrates were dipped into the enzyme solution at room temperature 

under stirring at 250 rpm in dark for 12 h. Substrates were withdrawn and each 

rinsed with 100 ml buffer in order to remove unbound enzyme from the surface. 

 

3.6. Analytical Methods 

 

Activity measurements of laccase and invertase were done spectrophotometrically 

using double-beam UV-Vis spectrophotometer (Thermo Electron Cooperation 

Nicolet Evolution 100). Both invertase and laccase reactions were carried out in 

shaking water bath (Nüve ST 402) at 40°C. 

 

3.6.1. Free Laccase Activity 

 

Laccase activity was measured by following the oxidation of ABTS (2.2’.azmobis 

(3.ethly benzthiazoline-6-suplhonate)) (ε420=36,000 M-1 cm-1) (Bendl et al., 2008; 

Bourbonnais et al., 1990). 0.5 mM ABTS was prepared in 0.1 M pH 5.0 sodium 

acetate buffer and preheated to 40 °C. In order to start the reaction, 10 µl 0.045 
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mg/ml of enzyme was mixed with 990 µl ABTS in cuvette in spectrophotometer. 

Blank was the mixture of 990 µl ABTS and 10 µl buffer. Reaction was monitored 

during 90 sec at 420 nm in 5 sec intervals. 

 

One unit of laccase activity (U) was defined as the amount of enzyme that 

catalyzes oxidation of 1 µmole ABTS per min under operating condition (40°C, pH 

5.0). Free laccase activity was calculated using the slope of reaction curve as 

given in Equation 2.2:  

 

 

(2.2) 

where; 

 

ΔOD = change in the absorbance at 420 nm 

Δt = change in time, sec 

ΔOD/ Δt = slope of reaction curve 

ε = extinction coefficient, ( M-1 cm-1) 

 

3.6.2. Immobilized Laccase Activity 

 

Activity of the laccase immobilized on the substrate was determined with the 

modification of free enzyme activity procedure. Reaction was carried out in dark 

and shaking water bath was used in order to provide good mixing and increase 

substrate/enzyme interaction. 100 ml 0.5 mM ABTS was used as substrate for 

enzyme immobilized glass. Substrate was prepared in 600 ml beaker for 

increasing the liquid-gas interface area for O2 diffusion. A small piece of glass was 

placed on the base of the beaker in order to provide an inclined position for the 

enzyme immobilized glass without entirely lying on the base of the beaker. 

Immobilized glass was immersed in the substrate that preincubated at 40°C and 

reaction was monitored by taking 500 µl of reaction mixture and recording the 

change of absorbance at 420 nm during a minimum 20 min in 5 or 10 min 

intervals. Blank consisted of only substrate solution. 
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Immobilized laccase activity per glass plate (U/plate) was determined by using 

slope of the reaction curve with the formula in Equation 2.3; 

 

 

(2.3) 

where; 

 

ΔOD = change in the absorbance at 420 nm 

Δt = change in time, min 

ΔOD/ Δt = slope of reaction curve 

ε = extinction coefficient, ( M-1 cm-1) 

 

3.6.3. Free Invertase Activity 

 
Invertase activity was determined with DNS (dinitrosalycylic acid) method (Miller, 

1959) following the hydrolysis reaction of sucrose to glucose and fructose. 

Reaction was followed by mixing 1 ml 2 µg/ml invertase and 24 ml 50 mg/ml 

sucrose at 40°C. Both solutions were prepared with 0.1 M pH 5.0 sodium acetate 

buffer. 

 

3.6.4. Immobilized Invertase Activity 

 

Immobilized invertase activity was also determined with DNS method. 50 mg/ml 

sucrose in 100 ml 0.1 M pH 5.0 sodium acetate buffer was incubated at 40°C in 

tube having 4 cm diameter and 16 cm length. Reaction was started by immersing 

invertase immobilized glass and 1ml reaction mixture was taken in every 5 or 10 

min for minimum 30 min and mixed with 1 ml DNS in test tubes and vortexed. Test 

tubes were boiled for 5 min and cooled for 5 min. Glucose concentration during 

reaction was followed by reading absorbance at 540 nm. Glucose standard was 

prepared in between 0-150 µg/ml concentrations with 1 mg/ml glucose solution. 

DNS preparation was given in Appendix B. 
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One unit of invertase activity (U) was defined as the amount of enzyme which 

catalyzes the hydrolysis of 1 μmole sucrose per min under the reaction conditions 

(40oC, pH 5.0). Immobilized invertase activity per glass plate (U/plate) was 

determined by using slopes of the reaction curve and glucose standard curve in 

the formula in Equation 2.4; 

 

 

(2.4) 

 

ΔOD = change in the absorbance at 540 nm 

Δt = change in time, min 

ΔC = change in reducing sugar 

ΔOD/ Δt = slope of reaction curve 

ΔOD/ ΔC = slope of the glucose standard curve 

 

As glucose and fructose were two reducing sugars, the equation was divided by 2 

for conversion to hydrolyzed sucrose. 

 

3.6.5. Protein Concentration 

 

Protein concentration was determined by Bio-Rad Dye Reagent Concentrate 

microassay which is a Bradford dye binding method. BSA served as the standard 

protein. The procedure and standard curve are given in Appendices C and D 

respectively. 1/25 and 1/50 dilutions of pure laccase were used in Bradfrod 

method. 

 

3.7. Contact angle measurement 

 

Surface wettabilities of the Pyrex and ITO glass substrates were studied with 

contact angle measurements of CAM (Contact Angle Meter) in Environmental 

Catalysis Laboratory, Chemical Engineering Department, METU. Pyrex glass and 

ITO glass were cleaned and etched before coating as explained in section 2.3. 

Contact angles of substrates before and after cleaning were measured by 
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dropping distilled water on the surface and hydrophobicity changes of Pyrex and 

ITO glasses were examined. 

 

3.8. AFM Measurements 

 

Surface topography of bare substrate and sol-gel derived TiO2-SiO2-Au thin film 

was analyzed by Atomic force microscopy (AFM). Images were obtained in non-

contact mode with silicon tip from Nanosurf easyScan 2 in Environmental 

Catalysis Laboratory, Chemical Engineering Department, METU. 

 

3.9. SEM Measurements 

 

Surface was characterized also by Scanning electron microscopy (SEM). SEM 

images of thin film coated ITO and Pyrex glasses were collected on Quanta 200 

scanning electron microscope (FEI, USA) in Gazi University. The accelerating 

voltage was 15 kV and 1000 magnification was applied. Also, SEM images of the 

thin film and enzyme immobilized thin film were obtained from QUANTA 400F 

Field Emission SEM in METU Central Lab with accelerating voltage of 30 kV and 

at 2000 and 250 000 magnifications. 
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CHAPTER 4 

 

4. RESULTS AND DISCUSSION 
 
 

4.1. Introduction 

 

In this study, the immobilization of redox enzyme laccase over semiconductor thin 

film coated Pyrex® glass and ITO (indium-tin oxide) substrate was studied. The 

enzyme immobilization over sol-gel derived TiO2-SiO2-Au thin film was achieved 

by using linker molecule with two functional groups.  Cysteamine is thiolamine 

group molecule comprising of thiol (SH) amine (NH2) functional groups forming a 

covalent bond between the gold–thiol (Au-S) and amine-enzyme (NH-COOH) as 

seen in Figure 4.1. Gold-amine bond formation is another possibility as it is 

reported in literature (Liu et al., 2003).  Previously, immobilization studies were 

examined by using invertase as a model enzyme since invertase is commonly 

studied enzyme being easily available and cheap.  

 

In the experimental studies the effect of immobilization parameters such as 

immobilization temperature, enzyme concentration of immobilization solution, 

immobilization time for laccase were tested and leakage and storage stability of 

immobilized laccase were determined. 
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Figure 4.1. Functionalization and immobilization of enzyme immobilization 

 

 

4.2. Characterization of Thin Films 

 

4.2.1. AFM Images of Thin Films 

 

Surface topology of thin films was characterized by AFM. Figure 4.2 is the AFM 

image of etched and cleaned glass. Surface change can be seen when looking at 

Figure 4.3 which is AFM image of TiO2-SiO2-Au thin film coated surface. It was 

achieved to form homogeneously dispersed spherical nanosized particles as thin 

film as seen in Figure 4.2  (a). Comparison of the Figure 4.2 (b) and Figure 4.3 (b), 

the 3D images, indicates that produced TiO2-SiO2-Au thin film was porous.  
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4.2.2. SEM Micrographs of Thin Films 

 
 
Surface morphology of thin films was characterized by SEM. Figure 4.4 is the SEM 

image of TiO2-SiO2-Au thin film and Figure 4.5 is the image of enzyme immobilized 

TiO2-SiO2-Au-Cys thin films. Both images were taken at 30 kV and 2000 

Figure 4.2 (a) AFM image of etched cleaned glasses, and (b) 3D image 

 

Figure 4.3. (a) AFM image of TiO2-SiO2-Au thin film, and (b) 3D image 
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magnification and enzyme was the model enzyme invertase. The SEM images 

verify there is a homogeneous thin film coating on the surface. Figure 4.6 that is 

the 250000 magnified SEM image shows there is nanosized particles on the 

surface. 

 

Surface images given in Figure 4.4 and Figure 4.5 depict that sol-gel derived TiO2-

SiO2-Au thin film is well adhered to surface and enzyme immobilization has no 

adverse effect on coating. Enzyme on the surface cannot be seen in SEM images 

even in large magnifications. Qiu et al. (2009) compared the SEM images of 

surface with and without enzyme and interpreted that the reason of darker and 

more blurred image of surface with enzyme was that enzyme was much less 

electron dense than the substrate gold in their study. 

 

Higher magnifications reveal that surface is comprised of particles with 10nm size 

with very sharp particle size distribution. EDX analysis verified the presence of Ti 

and Si. However, no proof was evidenced for gold (Au) because of high 

instrumental background (Appendix E). 

 

 

 

 

Figure 4.4. SEM micrograph of TiO2-SiO2-Au thin film 
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Figure 4.5. SEM micrograph of enzyme immobilized TiO2-SiO2-Au-Cys thin film 
surface 

 
 

 
 
 
Figure 4.6. SEM micrograph of TiO2-SiO2-Au thin film at 250000 magnification 
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In fact, such kind of a sol-gel material should be analyzed in detail by using X-ray, 

FTIR, BET and porosimetry. However, synthesized thin films were about 800 nm 

in this study with SEM results (Koç, 2009) and it is not possible to characterize 

such thin films with these kinds of techniques. FTIR was tried but, it was 

unsuccessful. Analysis can be done with powders synthesized with the same sol-

gel, but it will not give equivalent results. Thus, no further study was done on this. 

 

4.3. Enzyme immobilization on Pyrex and ITO glasses 

 

The adhesion of the colloidal solution depends on the wetting properties of the 

surface. The amount and success of enzyme immobilization on the surface is 

directly related with the thickness and porosity of the resulting film. ITO glass 

surface is more hydrophobic than the Pyrex glasses and contact angle 

measurements with water over substrate surfaces are presented in Table 4.1. As it 

is clearly seen from Table 4.1, Stock Pyrex glasses are much hydrophilic than the 

stock ITO coated substrates. However, the wetting properties of ITO surfaces 

enhanced with cleaning pretreatments with acetone and isopropyl alcohol 

solutions significantly. Similarly, the Pyrex glasses become slightly more 

hydrophobic after etching and cleaning with KOH and ethanol solutions. Davenas 

et al. (2008) performed wettability studies of ITO substrates to examine the 

surface properties and found that elimination of organic contaminants upon the 

cleaning treatment (ultrasonic bath in organic solvents) lead to an increase of the 

free energy of the ITO surface. 

 

Table 4.1.  Contact angle measurement of not cleaned and cleaned Pyrex and ITO 

glasses 

Not Cleaned Cleaned 

Pyrex ITO Pyrex ITO 

    35°        92°  44°     51° 

 

 

Pyrex and ITO glass substrates were coated with three successive layers of TiO2-

SiO2-Au sol-gel by using dip coating method and calcinated at 500 °C for 15 min 

under air flow. The both sides of the glass substrates are coated with the dip 
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coating technique and in order to make a better comparison with the Pyrex 

substrates, the bare side of ITO coated glass substrates are masked with paraffin. 

The Surface morphologies of Pyrex and ITO substrates were obtained by SEM at 

15 kV and 1000 magnification. Figure 4.7 and Figure 4.8 show that both 

substrates were successfully coated with a homogenous layer of TiO2-SiO2-Au sol-

gel. The thin film was well-adhered to the Pyrex and ITO glasses and similar 

surface morphologies were observed. 

 

 

 
 
 
Figure 4.7. SEM image of Pyrex glass coated with TiO2-SiO2-Au sol-gel 
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Figure 4.8. SEM image of ITO glass coated with TiO2-SiO2-Au sol-gel 

 

 

Both the model enzyme invertase and laccase were immobilized on Pyrex glass 

and ITO substrates and their enzymatic activities were tested. In this study, the 

enzyme immobilization steps and enzymatic activity tests were carried out under 

dark conditions in order to prevent any photocatalytic reaction. (The samples with 

same composition TiO2 were prepared and their photocatalytic activities were 

studied separately (Çınar, 2009)). Reaction progress curves of free invertase and 

laccase are given in Figure 4.9 and Figure 4.10 respectively. Reaction progress 

curves of immobilized enzymes are given in Figure 4.11 – 4.14. Invertase was 

immobilized at room temperature by dipping in enzyme solution for 12 h in dark 

and laccase was immobilized also in dark at 4°C by dipping in enzyme solution for 

2 h. It was verified that the enzymes that catalyze the hydrolysis reaction 

(invertase) of sucrose and oxidation reaction (laccase) of ABTS were successively 

immobilized over the surface and reaction progress is continuous.  

 

The reaction of invertase converts sucrose to glucose and fructose and laccase 

oxidizes ABTS to ABTS++  as shown in Equations 4.1 and 4.2; 

 

         (Yun et al., 2007)        (4.1) 

                         (Nogala et al., 2008)      (4.2) 
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The enzyme leakage (leaching of enzyme into solution) is very important concern 

and tested by measuring the enzymatic activity. The stability of enzyme on the thin 

film samples were tested and during the reaction, the enzyme coated substrate 

was withdrawn and the activity measurements was continued. As it is shown in the 

Figure 4.11 and 4.12, the enzymatic activity of invertase is vanished after the 

withdraw of the Pyrex and ITO coated substrates. These results indicate that the 

invertase is successfully immobilized over SiO2-TiO2-Au-Cys thin films.  

 

 

 

 

 

Figure 4.9. Reaction progress curve of free invertase (at 40°C, pH 5.0, 0.145 M 

sucrose, 2µg/ml) 
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Figure 4.10. Reaction progress curve of free laccase (at 40°C, pH 5.0, 0.5 mM 

ABTS, 45 µg/ml laccase) 

 

 

 

 

 
Figure 4.11. Reaction curve catalyzed by invertase immobilized on conducting 

side of ITO glass in pairs (2.5x4 cm) (at 40°C, pH 5.0, 0.145 M sucrose) 
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Figure 4.12. Reaction curve catalyzed by invertase immobilized on two sides of 

Pyrex glass in pairs (2.5x6 cm) (at 40°C, pH 5.0, 0.145 M sucrose) 

 
 
 
Similarly, the same experiments were performed with the Pyrex and ITO coated 

substrates to test laccase activity. As seen in Figure 4.13 and Figure 4.14, 

experiment showed that the reaction continued with smaller rate when there was 

no glass substrate in the reaction medium. However, reaction rate increased again 

when the substrate was resumed into the reaction medium. The partial decrease 

in activity might be explained by two possibilities. The first possibility is the the 

autocatalytic reaction of the produced radicals in solution after the withdraw of the 

sample and the second as more undesirable case is the leakage of enzyme to the 

solution. These possibilities were further tested. 
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Figure 4.13. Reaction curve catalyzed by laccase immobilized on conducting side 

of ITO glass in pairs (2.5x4 cm) (at 40°C, pH 5.0, 0.5 mM ABTS) 

 
 
 

 

Figure 4.14. Reaction curve catalyzed by laccase immobilized on two sides of 

Pyrex glass (2.5x4 cm) (at 40°C, pH 5.0, 0.5 mM ABTS) 

 
 
 
The activity tests were also analyzed kinetically and the enzymatic reaction rates 

of the samples were calculated. As it is seen from Table 4.2, the invertase reaction 
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is much faster than the laccase.  Since laccase and invertase are different 

enzymes, their characteristics such as molecular weight, structure, activity values 

are different from each other, comparison should not be made between these two. 

Extracellular invertase from Saccharomyces Cerevisiae has molecular weight 80-

300 kDa while laccase from Trametes Pubescens has a max 65 kDa. When the 

invertase and laccase activities were compared over the Pyrex and ITO 

substrates, it is clearly seen that both enzyme has more activity over the ITO 

substrate in spite of only one side of ITO substrates were coated.  This might be 

explained by the higher amount of immobilization over the ITO surface, higher 

surface area or porosity.  

 

 
Table 4.2. Invertase and laccase activities immobilized on Pyrex and ITO glasses 

(one side is 2.5x4 cm) 

Immobilized Invertase Activity (U/plate)* Immobilized Laccase Activity (U/plate)** 

Pyrex ITO (one side) Pyrex ITO (one side) 

0.43 ± 0.02 0.56 ± 0.03 0.039 ± 0.002 0.049 ± 0.002 

 
* One unit of invertase activity (U) was defined as amount of enzyme required for 

hydrolyze 1 μmole sucrose per min under the reaction conditions (40°C, pH 5.0). 

** One unit of laccase activity (U) was defined as amount of enzyme required for 

oxidize 1 µmole ABTS per min under operating condition (40°C, pH 5.0). 

 
 

 

In order to elucidate the possibilities of autocatalytic reaction during the withdrwal 

of substrate or enzyme leakage to a solution, another set of experiment was 

conducted. For this purpose, two cycles of reactions were carried out 

consecutively with the same enzyme immobilized glass substrate. The test 

substrates were prepared by the immobilization of 0.36 mg/ml laccase at 4oC for 2 

hours. As it is shown in Figure 4.16, during the first reaction cycle, the enzyme 

immobilized substrates were withdrawn and the reaction progress was followed by 

activity measurements.  It was observed that, the reaction proceeds with %68 loss 

of activity in the absence of substrate compared to reaction with substrate. In the 

second cycle, the same substrate was used again and when it is withdrawn, no 
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activity was detected. This fact clearly revealed that the presence of activity 

followed after the withdrawal of substrate is because of the leakage of enzyme to 

the reaction medium other than the autocatalytic activity.  

 

The similar trends were also observed with the samples immobilized at room 

temperature and ITO substrates immobilized at 4°C (Figure 4.15 - 4.17). The 

results of these experiments are illustrated in Table 4.3. In a sense, consecutive 

reaction cycles give information about operational stability. As it is seen, there is 

about 45 percent decrease in second cycle that means low operational stability of 

immobilized laccase. 

 

 

 
Figure 4.15. Two consecutive reactions of laccase immobilized on Pyrex glass at 

room temperature for 2 h in 0.36 mg/ml enzyme solution (40°C, pH 5.0, 0.5 mM 

ABTS) 
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Figure 4.16.Two consecutive reactions of laccase immobilized on Pyrex glass at 

4°C for 2 h in 0.36 mg/ml enzyme solution (40°C, pH 5.0, 0.5 mM ABTS) 

 
 
 
 

 

Figure 4.17. Two consecutive reactions of laccase immobilized on ITO glass at 

4°C for 2 h in 0.36 mg/ml enzyme solution (40°C, pH 5.0, 0.5 mM ABTS) 
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Table 4.3. Immobilized Laccase Activities in leakage experiment 

Immobilized laccase activities (U/plate) 

 Pyrex glass Pyrex glass ITO 
 R.T. 4°C 4°C 

Cycle 
with 
glass 

without 
glass 

with 
glass 

with 
glass 

without 
glass 

with 
glass 

with 
glass 

without 
glass 

With 
Glass 

1st 0.046 0.024  0.073 0.024  0.051 0.028 0.055 

2nd 0.019 0.004 0.018 0.033 0.003 0.033 0.02 0.006 0.02 

Decrease 41 %   45%   40%   

 
 
 
 

4.4. Optimization of Immobilization Conditions 

 

The results of enzymatic activities showed that the methods applied were 

successful for both model enzyme invertase and laccase. However more detailed 

studies were continued with laccase for the production of active surface to detect 

phenolics by measuring electrochemical signals. In this part of the study, the 

enzymatic activities were tested by using different immobilization parameters. 

Immobilization temperature, immobilization enzyme solution concentration and 

immobilization time were some of the parameters that were studied for this 

purpose.  

 

4.4.1. Immobilization Temperature 

 

Laccases can be purified from various sources. However the specific activity, 

stability and working conditions change drastically depending on the source and 

method. Vianello et al. (2004) reported specific activities of laccases from different 

sources showing that there was even two orders of magnitude specific activity 

change between them. In another study, Koschorreck et al., (2008) cloned and 

expressed different genes of laccase and determined specific activities, optimum 

pH and temperatures and thermostabilities differing in a wide range.  
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In the present study commercially obtained laccase was identified in terms of 

thermostability with respect to time as indicated in Figure 4.18. For this purpose, 

the enzymatic activity of free laccase was tested at room temperature, 4°C and 

40°C in solution for 4.5 h. As it is seen from Figure 4.18, the laccase activity 

decreases with respect to time at all temperatures tested because of the 

denaturation. The activity loss was more pronounced with increasing temperature, 

and the most decrease in activity was observed at 40°C as expected.  

 

 

 

 
Figure 4.18. Thermal stability of free laccase at different temperatures 

 

 

 
In the light of the results of preliminary experiments, the laccase immobilization 

tests were performed at 4°C and room temperature. For this purpose, 

commercially obtained laccase was diluted 50 times which corresponds to a 

concentration of 0.36 mg/ml. The laccase concentration was determined by using 

Bradford method (Appendix C). Enzyme immobilization was carried out by dipping 

cysteamine modified TiO2-SiO2-Au thin film coated Pyrex glass substrates at room 

temperature and 4°C for a 2 h period. During the immobilization, in order to 

enhance the mass transfer conditions, the enzyme solution stirred by using 

magnetic stirrer. The reaction curve catalyzed by TiO2-SiO2-Au-Cys-Laccase thin 

films immobilized over Pyrex glass at 4°C and room temperature were presented 
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in Figure 4.19. As it can be seen from the Figure 4.19, the enzyme immobilization 

at 4°C results better activity than the one at room temperature. The laccase 

activities of the thin films were determined as 0.073 ± 0.003 U/plate and 0.041 ± 

0.003 U/plate for 4°C and room temperature respectively. The temperature effect 

is much more pronounced in immobilized laccase activity when the results were 

compared with the free enzyme activities. The limited activity of immobilized 

enzyme at room temperature might be attributed to the partial denaturation of 

enzyme and equilibrium kinetics between the surface and the enzyme molecules 

(Equation 4.3). 

 

Au-Cys   + Lac     Au-Cys-Lac        (4.3) 

 

 

 
 
Figure 4.19. Reaction curve catalyzed by laccase immobilized on Pyrex glasses at 

room temperature and 4°C (pH 5.0, 0.5 mM ABTS) 
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loadings. However, the hindrance effects, mass transfer limitations are the other 

effects that have to be considered.  

 

Laccase was immobilized on TiO2-SiO2-Au-Cys thin film coated Pyrex glass at 

different immobilization concentrations in the range of 2.5 – 900 µg/ml. 

Immobilization solutions were 180 ml and Pyrex glass substrates were dipped for 

2 h in dark at 4°C and the solution stirred by magnetic stirrer. As it is shown in 

Figure 4.20, steep increase in activity was observed with thin films coated with 

laccase solution with low concentration. Further increase in laccase solution 

concentration does not yield thin films with better activity. It has been verified in 

various enzyme immobilization studies that there is an optimum loading where 

further increase in concentration do not yield higher activity. Salis et al. (2009) 

reported the optimum enzymatic activity of laccase over SBA-15 as 217 kU gSBA-

15
−1 and the loss of activity at higher loadings. Campuzano et al. (2002) obtained 

an optimum enzyme loading after which response of glucose oxidase electrode 

response does not change. Gao et al. (2005) also found that increasing lipase 

loading resulted in faster formation of alkyl esters but further enzyme loadings lead 

to slower rate. The higher activity of lower loadings might be explained as the 

good dispersion of laccase over the active sites and the contrary formation of 

clumpy overcrowded surface with higher loadings. Salis et al., (2003) explained 

that the decrease in the activity at high enzyme loadings indicated that the system 

was subjected to mass transfer limitations and the chemical reaction may have 

been limited by the mass transfer of the reagents towards the surface of the 

catalyst by internal diffusion. Similarly, in this study, full coverage was achieved 

even with 2.5 µg/ml immobilization enzyme concentration and enzyme activity was 

nearly same up to 100 µg/ml enzyme concentration. Higher loadings resulted in 

decrease in the immobilized laccase activity. The reasons may be surface pore 

plugging, substrate diffusion limitation to/from active site of the enzyme because of 

high packing, steric hindrance of enzyme molecules and binding of enzyme in 

wrong orientation.  
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Figure 4.20. Effect of immobilization enzyme solution concentration on laccase 

activity 

 

4.4.3. Immobilization Time 

 

Enzyme immobilization time was examined to test the effect of impregnation time 

on enzymatic activity. For this purpose, TiO2-SiO2-Au-Cys samples were 

impregnated with 180 ml of 0.1 mg/ml laccase solution at 4°C and kept in solution 

between 30 mins to 12 hours.  Immobilization time up to 4 h resulted in almost the 

same activities of laccase and then activity decreased by further treatment as 

shown in Figure 4.21.  According to Jiang et al. (2005), longer treatment of 

magnetic chitosan microspheres with laccase results with lower accessibility of the 

substrates to the active sites. Cordek et al. (1999) commented that deposition of 

additional enzyme layer could be one of the reasons for the decline of glutamate 

dehydrogenase activity in their system after 25 h enzyme immobilization. So, 

decrease in the activity for higher incubation periods might be attributed to high 

enzyme loading causing limited substrate diffusion towards the enzyme molecules, 

steric effects and binding in wrong orientation as in the case with previous section. 
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Figure 4.21. Effect of immobilization incubation period on laccase immobilization 

on TiO2-SiO2-Au-Cys thin film 

 

4.5. Storage Stability 

 
 
Storage conditions and stability are important criteria and have to be characterized 

carefully. Storage temperature and dry or wet storage were taken into 

consideration with that respect. Laccase immobilized on TiO2-SiO2-Au-Cys thin 

film coated Pyrex glasses were stored at 4°C in accordance with the result in 

Section 3.3.1 that free enzyme retained its activity at 4°C. In addition, there are 

several studies that immobilized laccase should be stored at 4°C (Vianello et al., 

2004; Qiu et al., 2008; Rahman et al., 2008; Cracknell et al., 2008; Leontievsky et 

al., 2001; Jiang et al., 2005). 

 

Immobilized laccase was stored either in 0.1 M pH 5.0 sodium acetate buffer or in 

air. Storage stability was analyzed with immobilized enzyme on Pyrex glasses. In 

one experiment, enzyme was immobilized on four glass substrates for 2 h at room 

temperature in 0.36 mg/ml immobilization enzyme solution. Two of them were 

used for measuring fresh immobilized enzyme activity while other two were stored 

at 4°C for 16 in buffer and in air. Immobilized enzyme activites were determined as 

0.046 U/plate, 0.029 U/plate and 0.027 U/plate for fresh (as prepared), 16 h 

storage in buffer and 16 h storage in air respectively. In another experiment, 
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enzyme was immobilized on a pair of glass substrates for 2 h at 4°C in 0.1 mg/ml 

immobilization enzyme solution and then the same glasses were stored at 4°C for 

6 days, in buffer and in air. Immobilized enzyme activity was 0.066 U/plate, 0.0047 

U/plate and 0.0039 U/plate for fresh use, 6 day storage in buffer and 6 day storage 

in air respectively. As a result of these experiments, activity of immobilized laccase 

almost vanished after 6 days. Storage of immobilized laccase in buffer or air did 

not have significant difference with respect to store stability but, storing in air is 

advantageous for easy use and low cost. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

64 

 

 

 

 

 

 

 

 
     CHAPTER 5 

 
 

 
5. CONCLUSIONS 

 

 

 

In this study, invertase (model enzyme) and laccase were immobilized covalently 

on Pyrex and ITO glass substrates which were previously coated with porous 

TiO2-SiO2-Au thin film and modified with cysteamine. Both enzymes had more 

activity on ITO substrate. Immobilization of main enzyme laccase was examined 

deeply.  

 

Laccase immobilization at 4oC resulted better activity than the one at room 

temperature. Consecutive reaction experiments showed there was leakage into 

the reaction medium. About 55 % decrease in laccase activity was observed in two 

consecutive reactions which might be ascribed to leaching of physically adsorbed 

enzyme through the solution or unstability of enzyme in immobilized form. 

 

The laccase immobilization experiments showed that the enzyme activity of the 

substrates does not depend on the impregnation concentration during deposition 

however, the use of concentration enzyme solution higher than 50 µg/ml cause the 

loss of activity which might be attributed by accessibility, contamination and pore 

mouth plugging. Immobilization time up to 4 h resulted in almost the same 

activities of laccase and then activity decreased by further treatment. The reason 

might be again overcrowding of the surface by enzyme. Immobilized laccase 

activity almost vanished after 6 days storage. Storage of immobilized laccase in 

buffer or air did not have significant difference with respect to store stability but, 

storing in air is preferable because of easy use. 

 

In the lights of these facts, the surface structure used is not suitable for laccase 

immobilized sensor materials because of low stability and leakage. Increasing gold 

amount or increasing porosity might enhance enzyme immobilization resulting in 

higher activity but, focusing on covalent linking with other functional groups or 
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immobilization technique might be more reasonable for producing stable and 

electrochemically active surface with laccase. 
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APPENDICES 
 

      APPENDIX A 
 

 
 

A. SPECIFICATIONS OF LUDOX SM-30 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

79 

 

 

 

 

 

 

 
 
 

APPENDIX B 
 
 
 
 

B. PREPARATION OF DNSA REAGENT 

 
 
 
 
Chemicals used for preparing DNSA reagent are given in Table 1. 

 

 

Table B.1. Chemicals used in DNS reagent in percentage 

Chemicals % (w/v) Weight (g) (for 500 ml)  

3.5 dinitrosalyclic acid 1 5 

NaOH 1 5 

Sodium sulfite 0.05 0.25 

Phenol 0.2 1 

Na-K-tartarate  36.25 181.25 

 

 

Na-K-tartarate was dissolved in 300 ml distilled water (A) and 3.5 dinitrosalyclic 

acid was dissolved in distilled water in dark (B) separately. B was mixed with A 

and dissolve under stirring in dark. NaOH was added slowly. Finally, sodium sulfite 

and phenol was added and the volume was 500 ml adding by water . The mixture 

was stirred for about 2.5 - 3 h in order to dissolve totaly and stored in dark brown 

bottle. 
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        APPENDIX C 
 
 
 
 

C. BRADFORD METHOD 

 

 

 

 

The assay is performed in test tubes. 0.1 ml of the protein sample and 3 ml of 

Bradford Reagent are mixed as follows.  Bradford Reagent is brought to room 

temperature. Protein Standard and sample are prepared by diluting 2 mg/ml or 1 

mg/ml BSA protein standard as seen in Table 2. After mixing 3 ml Bradford 

Reagent with samples, they are vortexed immediately. Samples are incubated at 

room temperature for 10 mins. Brillant blue and protein binding gives an 

absorbance at 595 nm. Absorbances of samples are measured at 595 nm and 

protein concentration of unknown sample is determined by using the standard 

curve. 

 

Table C.1.  Preparation of BSA standard and sample tubes 

Tube No 
BSA Sample 

(ml) 

BSA Standard 

(mg/ml) 

Bradford Reagent 

(ml) 

1 0.1 0 3 

2 0.1 0.25 3 

3 0.1 0.5 3 

4 0.1 1 3 

5 0.1 1.4 3 

6 0.1 unknown 3 
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          APPENDIX D 

 
 
 

D. BSA STANDARD CURVE 

 

 
 
 
 

 
 
Figure D.1. BSA standard is prepared in the range from 0.1-1.4 mg/ml 
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