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ABSTRACT

EFFICIENT CALIBRATION OF A MULTI-CAMERA MEASUREMENT SYSTEV
USING A TARGET WITH KNOWN DYNAMICS

Aykin, Murat Deniz
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Afsar Saranli

August 2008, 86 pages

Multi camera measurement systems are widely used to extract informationthb@D con-
figuration or “state” of one or more real world objects. Camera calibratidimeigorocess of
pre-determining all the remaining optical and geometric parameters of the reessu sys-
tem which are either static or slowly varying. For a single camera, this carigtst internal
parameters of the camera device optics and construction while for a multiplescaystem,

it also includes the geometric positioning of the individual cameras, nametgred” pa-
rameters. The calibration is a necessary step before any actual statreneasts can be
made from the system. In this thesis, such a multi-camera state measuremantaydtia
particular the problem of procedurallytfective and high performance calibration of such a

system is considered.

This thesis presents a novel calibration algorithm which uses the knowandys of a bal-
listically thrown target object and employs the Extended Kalman Filter (EKF)ltiorate the
multi-camera system. The state-space representation of the target staiméntadywith the

unknown calibration parameters which are assumed to be static or slowlggyargh respect
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to the state. This results in a “super-state” vector. The EKF algorithm istosegursively
estimate this super-state hence resulting in the estimates of the static camerdqrardhig
demonstrated by both simulation studies as well as actual experiments thathsHeilistic
path of the target is processed by the improved versions of the EKF algottie camera cal-
ibration parameter estimates asymptotically converge to their actual values.tBénicnage
frames of the target trajectory can be acquired first and then pratefidee, subsequent
improvements of the EKF algorithm includepeatedand bidirectional versions where the
same calibration images are repeatedly used. Repeated EKF (R-EKK)gsrconvergence
with a limited number of image frames when the initial target state is accurately pobvid
while its bidirectional version (RB-EKF) improves calibration accuracy lsp &stimating

the initial target state.

The primary contribution of the approach is that it provides a fast calibragtiocedure where
there is no need for any standard or custom made calibration target piatring the ma-
jority of camera field-of-view. Also, human assistance is minimized since atidrdata is
processed automatically and assistance is limited to making the target throwspé&éut of

convergence and accuracy of the results promise a field-applicableatialibprocedure.

Keywords: Calibration and Identification, Visual Tracking, Dynamics.
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COK KAMERALI BiR OLCUM SISTEMININ BILINEN DINAMiGI OLAN BIR HEDEF
ILE KAL IBRE EDILMES]

Aykin, Murat Deniz
Yilksek Lisans, Elektrik ve Elektronik vhendislgi Bolumi

Tez Yoneticisi : Yrd. Doc. Dr. Afsar Saranli

Agustos 2008, 86 sayfa

Cok kamerali sistemler bir veya birden ¢ok objenin 3 boyutlu kaméigyonu ya da “durum”
kestirimi ile ilgili bilgi elde etmek amaciyla siklikla kullanilmaktadir. Kamera kalibrasyonu
statik ya da yavas dgsen optik ve geometrik parametreledinceden belirlenmesidir. Kalib-
rasyon tek bir kamera igin, kameranin yapimi ve @ipte ilgili ic parametrelerin belirlenme-
sine karsilik gelirken, cok kamerali bir sistemde kameralarin birbirleidne gozisyonlarinin
kestirimini, yani “dis” parametre kestirimini de icermekteddictim sistemi ile durum kesti-
rimi yapabilmek icin kalibrasyon gerekli vénemli bir adimdir. Bu tezde ¢ok kamerali bir
Olclim sistemi ile bu sistemingntemsel olarak etkin veijksek performansli kalibrasyonu

problemi incelenmistir.

Bu tez kapsaminda balistik olarak firlatilan bir objenin bilinen dir@nin genisletilmis
Kalman Filtresi (EKF) yardimiyla cok kamerall bir sistemin kalibrasyonu iciltakuimasi
onerilmistir. Hedef objenin dina@inin durum-uzayi gsteriminin bilinmeyen statik ya da
yavas dgisen kamera parametreleri ile genisletiimesiylagsr durum vekirl” elde edilir.

EKF durum kestirme algoritmasiiper durum velkirinin tahmin edilmesi icin kullaniimakta
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ve oylece bilinmeyen kamera parametreleri de hesaplanmaktadir. Yapilalasyon calis-
malari ve gercek deneyler hedefin ballistiériingesininonerilen iki yeni EKF algoritmasi
ile islenmesi sonucunda kamera kalibrasyon parametrelerinin gergeklelene sonusurda
kararli bir sekilde yakinsagini gostermistir. Kalibrasyon icin gerekli olamgintiler elde
edildikten sonra ¢evirim disi bir sekilde islenmeleriimkiin oldwWundan, ayni grintilerin
defalarca kullanildyi zyinelemelive iki yonlii EKF versiyonlaridnerilmistir. Ozyinelemeli
EKF (R-EKF) hedef objenin ilk durum vedti dajru olarak verildginde parametrelerin
sinirl bir sayida grintl karesi kullanilarak yakinsamasing&aken iki yonli 6zyinelemeli
EKF (RB-EKF) ise parametre kestiriminin yani sira ilk durum veihin de kestirimini

gerceklestirdjinden daha digru sonuc elde edilmesini amaktadir.

Onerilen algoritmanin enilyiik katkisidnceden hazirlanmis desenli bir plakanin kameralarin
cogunlugunun @rus alanini kapsayacak sekilde hizalanmasi gerekmeden hizli ve kgjay u
lanabilir bir kalibrasyon prosént sajlamasidir. Ayrica kalibrasyon karelerinin otomatik
islenmesi, insan desimin sadece hedef firlatma ile sinirlanmasinylamistir. D@ru ve
hizli bir sekilde sonudiretiimesi algoritmanin sahada uygulanabilir bényem old@unu

gostermistir.

Anahtar Kelimeler: Kalibrasyon ve TanimlamadiGelizleme, Dinamik Hareket.
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CHAPTER 1

Introduction

1.1 General

The use of a multi-camera setup to extract information about both static aranity3D
configuration (state) of real world objects is an important problem of 3@wigL, 2, 3]. In
the particular application case of robot vision, the cameras may be parbbbtc platform
(such as a mobile robot, unmanned aerial, land or underwater vehicl¢hesthte in ques-
tion may belong to the platform in motion. Alternatively, the camera setup may betatbun
externally as a measurement setup to externally measure the robot bodyitstdiigh preci-
sion [4, 5]. The increase in precision is due to the possibilityfBfine processing of data as
well as abundance of computational hardware as compared to the dasiagpgbn a moving
platform. Commercial multi-camera "motion capture” systems exist for this lattétgmoof
precise robot body state measurement [6]. All of these systems nelyesesguire steps for
calibration, namely the derivation of the internal parameters of each camehzed (internal
calibration) as well as the parameters of the geometric arrangement ottmeseas (external
calibration) [7]. The collection of these calibration parameters charaetevizrything in the
measurement setup and they can be used to extract the actual measwegiabl@s (e.g. the

3D position of an external object).

Internal and external parameters shofeatent characteristics with respect to rate of change
or sensitivity to external disturbances. In general, camera itself is a rigiaigtructed object
and hence the internal parameters of the camera is more robust as coiaptire external
parameters. Given that the internal calibration parameters are obtailtod @td medium

accuracy levels temporal variations in these parameters for consuatkr-cgmeras are gen-



erally not significant [8]. Therefore, a proceduraljigent and fast method for the internal
calibration is not considered critical since it is usually performed per caaned can remain
valid for a long time. On the other hand, the external calibration, which cteraes the geo-
metric arrangement of the individual cameras, is much less robust atulltbesepeated every
time the arrangement of the cameras is changed. For some applications veteaméras are
mounted permanently, e.g. in a laboratory setup, these are much less pisieiioances
and a slow and manual calibration may be tolerated. For some other applici@nas in
robotics and for experimental measurements in the field, the situation is sigtifiddferent.
A multi-camera setup in this case is often constructed on tripods and specifacatyduct
one patrticular set of experiments. The setup is open to disturbancesttiedigld conditions
such as loose ground, wind, accidental bumping to the tripods and simildrese circum-
stances, the re-calibration of the setup may be necessary on a much esguenirbasis and
the re-calibration fort may constitute a large percentage of the experimefi@aite This is

clearly undesirable.

In our considered application problem, a multi-camera setup is deemed algcEseasure

the body-state of an experimental hexapod platform: RHex [9]. Suclsterayis critical

for good experimental practice with aim of generating ground truth datthéoevaluation

of the on-board state estimation, control and navigation algorithms. Sinceutatopally

more complex i-line state estimation algorithms can be used on an external system, those
estimates can generally be considered as ground truth as compared twawleE achieved

on-board.

RHex is a robotic platform claiming outdoor mobility on complex terrain. Advanttiegtate

of research on this platform demands field experimentation in various envenats. This is
opposed to many mobile robotics platforms constrained to laboratory envinbrwiere a
fixed measurement setup can fivedable. The application demands a fast and procedurally
efficient calibration process (procedure and algorithm) since the camerds be carried

to the site and suitably located for each experiment. There is high probability tiatu-

ral disturbance may move the setup and render the external calibratidid.inmeeach such
occurrence, the external calibration has to be repeated, making esalécdtion procedure
critical. If the calibration have to be performed frequently one needdfanmeat calibration
method that is both computationally fast but which also requires minimal huffam, €.9.,

by requiring minimal materials and special equipment such as specially builtatai pan-



els. The design of such a calibration method with competent calibration peroe is the

focus of the present thesis.

1.2 Scope and Contribution of the Thesis

In this thesis, a novel calibration algorithm for obtaining the external passef a camera
setup is presented. The method uses the known dynamics of a targetfobjeadibration.
The aim is to exploit this extra knowledge about an easy to use target thjmimize the
calibration éfort and provide a fast and proceduralffi@ent technique. Itis claimed that the
proposed method is particularly beneficial for any application whereuéeigre-calibration

is required such as outdoor field measurement applications using multipleasamer

In this thesis, we assume that a set of cameras, whose internal paraanetienswn apriori,
are placed and oriented such that the required measurement area is vétlowvettapping
section of the field-of-views (FOV) of all cameras. It is further assuthed their resulting
external calibration parameters are to be determined. The motivation of éeenprwork
suggests that an easy to carry rigid target and simple to generate 3D motiomelikmown

dynamics can be used to generate the calibration data set. A feasible examgphedt rigid

ball with well defined color and suitable mass which is ballistically thrown within Hmaera
joint FOV. In 3D space, the motion of this ball is fully described by Newtowjgaions of
motion. Assuming that wind and other secondary disturbances are négligabdynamics

of this motion can therefore be modeled with good accuracy.

It is the claim and contribution of the present thesis that given enoughratidib data (in the
form of camera frames from all involved cameras) the repeated anddiidital extensions
of the EKF algorithm asymptotically converge to the estimates of the camera taliljpa-

rameters. We claim that standard EKF can provide usable estimates if tadaeggr number
of image frames while the proposed extensions can generate these estiittataesiet less
number of image frames. The repeated use of the calibration data (R-Ed#if)l¢s conver-
gence while its repeated and bi-directional use (RB-EKF) further imgrdwe accuracy of

the estimates.

The Kalman framework takes into account the process and observatgessach as wind

effect and pixel errors. We also demonstrate that the RB-EKF version lemat®significant

3



uncertainty in the initial state of the target (i.e. the initial position and velocity ofetuet).
It should also be pointed out that despite our focus being on the use balfeemotion to
find the external calibration parameters of the camera setup, it is obsbateah interesting
complementary problem is also solved, namely that of estimating the state of awitge

known dynamics with an uncalibrated camera setup.

At this point it should be stated that the proposed method is not limited to thenpeggaica-
tion scenario and can be extended to other areas: E.qg., with the growiresinte8D-TV, 3D
multi-camera capture of sports events becomes important, requiring theatxdalibration
of the camera setup. Due to the existence of a well defined ball, which foHdwalistic
path, in most competition games (tennis, football, basketball, etc.), the metrsmhfwe here

is directly applicable.

1.3 Outline of the Dissertation

The motivation and the context for this work together with the main contributicaprae-
sented in Chapter 1. Chapter 2 summarizes the state of the art relating to abgoiath
internal and external calibration and also relating to basic video trackingoaetiChapter 3
focuses on the Kalman framework and the Extended Kalman Filter (EKF) angs#yge in si-
multaneous state and parameter estimation (SSPE) problems. The definitionarisitered
calibration problem within an EKF framework and the augmentation of the tatgt with
the unknown camera parameters to form the "super-state” is presentéajneC 4. Chapter
5 presents the two approaches proposed for estimating the complete statdéimitkdanum-
ber of measurement data, namely the R-EKF and RB-EKF algorithms. CléagterChapter
7 presents the results of the experiments which are performed to evalugerfitlenance of
the implemented calibration method, with both simulated and actual physical cashepa s
and image frame data. Finally, Chapter 8 gives the conclusions of this thgethdo with

possible avenues for future studies.



CHAPTER 2

Background on Camera Calibration

In all measurement systems, the calibration of the measurement instrumen¢éessary
step in order to find the transformation between the raw readings from tinenrent to the
actual physical measurement variables of interest. When the state of tlieovdhe ego-
state (state of the body on which the sensor(s) are mounted) is being stbdmaugh the
use of cameras as sensors, the system needs calibration so that thenena tnages can be
transformed into this measurement of the state. Essentially, calibration parsoside seen
as the collection of all parameters that characterize the transformationdretiaeraw data
from the instrument and the desired variables to be measured. Calibratiaomspulsory

initial step for any measurement system including a multi-camera 3D vision system.

For the particular case of camera calibration, we are concerned withdbegsrof estimating
the internal (intrinsic) and external (extrinsic) parameters of a camestaray The internal
parameters characterize the optical properties of the lens system in theaasweell as the
interaction of this lens system with the other components of the camera suah sengor.
In short, it is a collection of all parameters that determine how the image is beinged

on the sensor of a single camera. External parameters on the otherefeaedthis camera
unit (with its internal parameters) to a global reference frame, henceseqt the 3D geo-
metrical placement and orientation. If multiple cameras are involved, the ektaiibration

parameter set represent this geometric specification for all camerasdleadescribing their

relative positions and orientations.

This chapter reviews the previous work on camera calibration and its hatesolution.
Most of the previous work focus on internal calibration techniques &ingle camera. How-

ever especially for the last two decades, the number and variety of theasime/e been



increasing rapidly while their prices have been decreasing, making multiplereamaging
systems more accessible to the research community. The necessity of lexadibration

methods for such multiple camera setups have encouraged recent stuthisssubject.

A review of the state of the art techniques is introduced first for the inteaddoration of
a camera and then for the external calibration of a multiple camera networktiorse2.1
and 2.2 respectively. This is followed by an overview of object detectiooas in section
2.3 which are necessary to generfaturesor observationdor the calibration algorithms.
Finally the relationship between calibration and dynamic state estimation (traaksimg
Kalman Filtering is introduced in 2.4. Also in this last section, a survey of tHeeeaalibra-

tion methods utilizing the Extended Kalman Filter is presented.

2.1 Internal Camera Calibration

The image formation process can be seen as a mapping fronbtheB8d to the D image
plane. The usual modeling of this mapping isd@ntral projective mappingn this mapping
rays reflected from al3 point in space is passed through a fixed point which isctraer of
projection The rays intersect thenage planewhich is placed at a specific distance from the
center of projection, and their intersection forms the image point. Throudhizuprocess

involving a single camera, the depth information is lost due to the loss of one siionen

Most cameras are modeled by the central projective mapping assumptjoit fitOcenter of
the lens of a camera is assumed as the center of projection. A ray of ligh&f@ point in
the world passes through the lens and produces an image point on a filnoptoaelectronic

capturing device (i.e., imaging sensor).

Homogenous coordinates allowffiae transformations to be represented by a matrix and
make calculations possible in projective space [11]. The mapping of aipdiit to R? on

the image plane by a camera can be represented by a projection Phatrilke homogenous
coordinates. Thi® matrix can be decomposed into two matrigesepresenting the internal
parameters of a camera aml|[t] representing the rotation and translation between the camera

and the world coordinate frames. The transformation is given by Eqnk) ¢8d (2.2) and
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further elaborated in section 4.1.2.

x = PX (2.1)

U
Il

K[R|1] (2.2)

Internal calibration of a camera is therefore the task of obtainindKtineatrix which repre-

sents the inner characteristics of the camera. These calibration paraanetspgcifically

e focal length the distance between the center of projection and the image plane,
e pixel aspect ratiothe width of a pixel divided by its height,
e principal point gfset the misplacement of the image origin,

e skew the non-orthogonality of the camera axes.

Classic photogrammetric methods use non-linear optimization for solving all aiiwa-

tion parameters simultaneously [12, 13, 14]. The parameter values arydi@mputed by a
non-iterative closed form algorithm. The algorithms are fast since no itasadice involved,
but the lens distortion can not be incorporated into these algorithms andme#surements

may cause quick deterioration of performance.

More recently, two-step methods which can successfully handle lenstidiskohave been
proposed in the literature [15, 16, 17, 18, 19]. All of these techniqu&tsefstimate the cali-
bration parameters using a closed form solution similar to earlier methods, thieguaram-
eters are improved iteratively through nonlinear optimization, taking the lettitis into

account.

These two-step methods make use of a special planar calibration pattdedmma plate
and placed in the camera FOV. By the use of a planar chess-board pattarge number
of data points can be supplied and the algorithms yield reliable results by minimizng th
averagee-projection erroron the collection of the points. Average re-projection error can be
defined as the mean square error between the scene points visible in thlecaotera and
their projection in the reference camera whose characteristics arébaesiy the employed

camera model and the acquired calibration parameters [20].

As a further improvement to the aforementioned algorithms, a four-stepat#ibiprocedure

is suggested by Heikkiland Silen [21]. The authors claim that these additional steps further
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improve the compensation for distortion and provide the necessary ttomeAlso a linear

method for solving the parameters of the inverse model is presented in this wor

The suggested algorithm given in [22] aims to generalize the camera modéh, particular,
try to provide a solution for cameras which do not have a sinfjective viewpoint (termed
asnon-central cameraby the authors). To achieve this goal, a very general mapping between

rays and pixels is used instead ofentral projection mapping

A recent survey summarizes the current approaches on cameratiatilarad present a com-
parison of dfferent algorithms [8]. Thef@ciency of the bundle adjustment techniques are
presented with experimental results.The changing profiles of the radiadtitia for different

color channels is also discussed.

The calibration methods which are proposed by Tsai [16] and Zhaidgf&évidely accepted
and popularly used for computer vision. Although these two-step methedgsiararily inter-

nal calibration methods, it is suggested that they can be extended foratialipthe external
parameters as well. However, these extensions for calibrating a camexakare subject

to practical dfficulties. This is due to the fact that successful external calibration esquir
that multiple diferent orientations of a 2D planar calibration pattern to be viewable from the
joint-FOVs of all cameras in the network. Indeed, such a pattern candmefisam two (or
more) diferent cameras only if both cameras are placed on the same side of thefplane.
thermore the pattern should be appropriately scaled in accordance with gméficzdion of

the cameras and also in accordance with the placement and orientation &iNsir

The camera calibration toolbox which is part of the MATLAB package (fidiathWorks
Inc.) provides another algorithm used extensively for internal anidlyfar external calibra-

tion [23]. However the same visibility problem of the calibration plate still exists.

These popular camera calibration techniques yield reliable results by minimiarayénall

re-projection error defined over the collection of data points that anad®d by the planar
chess-board pattern. However it is the very same planar fixed sizedatiaibobject that
causes significant visibility, scalability and procedural complexity probletmsvihe meth-
ods are used for external calibration. It should be noted that thebiepre form the primary
motivations for our approach where we rather provide a simple but movwailitgyation target

avoiding these diiculties.



The basic idea behind our approach is the use of a simple to detect targkeiswmoving with
known dynamics. For this we propose a ballistically moving rigid object suehtsl with
given color. The path followed by such a projectile can easily be vieweduddiiple cameras
looking from all possible angles, even when the cameras are facingp#aah Furthermore,
the calibration field can be utilized maximally by throwing the ball according to thartis
between the cameras. So the present method not only solves the visibilitgrpriobt it also
handles the scalability problem as well. The calibration target considereda(ixall) can
easily be obtained, and the calibration procedure is practical and faatlyf-the knowledge
of the global gravity vector provides additional information about the asiecalibration
which is not present in other techniques (unless the calibration plate isrejtity aligned

with the gravity vector).

2.2 External Camera Calibration

When a ® scene is projected onto a plane, depth information is lost during the process
Hence it is not possible to extract the complete geometry of a scene fromgla giew. The

3D structure of a scene through image analysis can either be obtained by a anudtiac
system [24] or by taking multiple frames of the same scene with a single camenagmov
space. For both cases a fundamental problem, that is called externahtatipis to obtain

the camera positions and orientations for each image frame. Without this &prieviedge

of the acquisition system it is not possible to obtain the flbl &cene structure. It should

be noted that we only consider standard image sensors and we do satermspecialized

measuring devices that provide depth information directly, such as laggr sganners.

Multi camera external calibration is the task of obtaining the rotation and ttaorslaf each
camera with respect to each other or relative to a global world coordiratef Let R | t]
matrix represent the rotation and translation for a cameraRlimatrix of size 3x 3 is called

as therotation matrixand represents the rotations around the coordinate axes.mdigix of
size 3x 1 is called as théranslation vectorand represents the position of the camera along
the three coordinate axes. Since the transpose of a rotation matrix is egsaht@rse [7],

R actually consists of only 3 unknowns. If the camera coordinate systermsdewed, the
negative of the translation vectbalso represents the origin of the world referance frame in

camera coordinates. Therefore a total of 6 parameters are requitée fexternal calibration
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of each camera, specifically 3 being for representing the orientationi¢mjtaf the camera

and 3 being for the position (translation) of each camera.

The inverse problem of image formation is computing the camera location andatioe
from the projection matrix. It involves solution of simultaneous nonlinear &opsin sev-
eral variables and is consideredfatiult. To accomplish this inversion a simple analytical

technique that works well in practice is suggested in [25].

In [26] the issues concerning the calibration of multiple camera systems anessksl. It
is argued that the ease of production of the calibration object hencefthia calibration
process is in a traddiowith the accuracy of calibration, because the most accurate calibration
process would likely require a complicated calibration object and procesghe present
thesis, we demonstrate that with the use of known target dynamics, this iscessarily the
case. We aim at a very simple calibration target and a simple process whilaailsiaining

the accuracy of calibration.

The work in [27] also makes use of multiple images of a static chessboardatalibpat-
tern. Cross projection errors between the cameras are minimized for exjesityle camera

calibration method to multiple cameras.

Complete multi-camera calibration procedures, which uses a laser pointendge gen-

eration, are presented by Han et al [28], and Svoboda et al [29¢ aEsumption of only
reasonable overlap between camera subgroups makes the proaddhesalgorithms to be
easily applicable. The drawback of these methods appear to be theityeokatleast three
cameras for calibration, hence making the calibration of stereo camerassitiiposThe

procedure also requires total darkness, rendering the outdoor apfiticof these methods
limited. The calibration methods presented in the present thesis on the otlerdraseam-
lessly handle stereo cameras and can also work in daylight and outdosidaal that the

target is detectable over the background scene.

Other approaches are presented in [30] and [31]. Instead of tpalsingle calibration point
in image sequences , a reference bar with light sources on it is moved giditional depth
information which is the constant length of the bar. Note that this additionainraftion re-

quires the construction of a rather complicated calibration bar with embedskeddainters

on it. In our approach constant gravitational acceleration gives aguitvadditional informa-
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tion without the associated complication in the calibration target or procedure.

2.3 Object Detection

Object detection is the process of detecting and determining the position bjeant within a
givenimage. Clearly, for the methods discussed in the present thesigedgto “detect” the
calibration object, reliably determining its center position within the image framsijlpgst
sub-pixel resolution. The problem can be very simple (such as in theotasehite ball with

a black background farther away) or may get gradually harder (asictying to detect the
ball over a busy urban or natural background). The problem caelped by the use of target
color selection or target illumination (e.g. with IR LEDs mounted on the target) ceadb

with appropriate filter on the cameras.

The algorithms on this subject are mostly focused on the application areasdéearid car
detection in the sequential video frames. Some of these basic methods atiewsdrin this

section.

Object detection algorithms that are specialized to certain objects of inteeesbmmonly
based on learning the caracteristics of these objects [32, 33, 34, 357,388, 39]. These

algorithms need too many training examples and depend on huge trainingseest§dba].

An extremely fast object detection technique is presented by Viola et aBE7 This study
not only uses learning to train the classifiers, but also improves the detéictiorof the
features by representing the image in a new format. Furthermore, byaonntne classifiers
in a cascade manner the background image is discarded and hence moregpaatisn
object-like regions. This study is improved with the introduction of a noveb$ebtated

Haar-like features by Lienhart et al [39].

Two probabilistic approaches are presented in the histogram based nieth@d object
detection by Schneiderman at al [41] and visual learning method basdehsity estimation

in a high dimensional space by Moghaddam et al [32].

Throughout our study we assume that the cameras are fixed, and alyepnsmall cali-
bration target is moving in the common camera FOV. Therefore the baclkdjimage can

approximately be acquired by obtaining the mean image of the video seqseuécantly
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reducing the complexity of the target detection problem. For this reasonedeSwoboda’s
LED detection method [29] with some modification for the automatic detection of tire ca
bration target, instead of using a complicated learning based algorithm. In thiemae not
only can avoid the computational cost of a complex method, but avoid theforeadraining

database.

2.4 Links between Calibration and State Estimation

The approach in the present thesis is based on the idea that the estimataiit gessameters
can be integrated into a dynamic state estimation problem. The benefit of thimaps its
ability to make use of the knowledge of target dynamics in order to bettenabtfer calibra-

tion target positions, hence attaining high precision with a relatively coangpet abject.

This idea is clearly not entirely new. For example, our problem has signifgimilarities
with the Simultaneous Localization and Mapping (SLAM) approach, whergyraptimal
state estimation (Kalman filtering) formulation is used to simultaneously estimate a moving

robot’s position (dynamic state) and the map of the environment (static state)Jp

This approach has the property that a generalestenand its associateslugmented stats
defined such that the unknown locations of the features of the envirdringerthe map) are
made part of the augmented state of the system and are subjected to the ogtiimeti@n
process. Here, the known dynamics of the robot platform, namelyntiael of the system
is exploited for a better estimate than is possible simply by static observations raftbie
position relative to known features of the environment. Moreover, thdtatthe robot itself
is moving makes static observations of landmarks with respect to a globeg¢meéeframe

impossible

In the present study, we build on this idea in fietient context and with a fierent objective.
Indeed, there are other instances of the idea in the existing literature retlea present
context. However, we believe that the specific motivation and solution approconsidered
in the present study to be of significantly more general than any other existrk in the

literature, hence of considerable value.
For example, a number of studies attempt to give the camera orientations]4st, réctify
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the ground plane by tracking moving objects [46], while solving a planatioakhip using

the video sequences fromfixed cameras at unknown positions. The planarity constraint is
ensured by placing the cameras high enough from the ground planeo W&t ave such a
constraint in the present work and provide a more general calibrationitalg as a result.

An extension to these works is [47], which takes the topology of the canverdap as an
unknown and estimate a planar tracking correspondence model in addittom ¢alibration

parameters of the large camera network.

Kalman Filter is used in [48] to recursively estimate the motion, pointwise struetndegpcal
length from feature correspondences, and in [49] for determiningtkieawn transformation
between a camera and an IMU. No known dynamic model of a target is expinigther of

these studies hence the Kalman Filter may just be acting as a low pass filter.

Again in [50], a calibration algorithm based on Kalman Filter is presentednidibod claim

to reduce human intervention during calibration but can not fully eliminate it. ZIR&D
correspondence of the moving object and at least 6 other points on ahbigict are needed

to initialize EKF algorithm and guarantee its convergence. The necessitglahar ground

is also another constraint and drawback of this approach. We shotddhat for our case in
the present thesis, neither anp-3D correspondences nor any extra information is needed

for the initialization of the algorithms.
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CHAPTER 3

The Extended Kalman Filter

This chapter aims to give the basic knowledge about Kalman filtering frankeawmat in par-
ticular the use of Extended Kalman filter (EKF) in simultaneous state and paragsétaa-
tion (SSPE) problems. The objective is to provide the adequate backbtodacilitate our
discussion in chapter 4, which is built upon the assumption of a generaldaige on these

issues.

A review of the EKF algorithm is given in section 3.2. The SSPE method is disdua 3.3.

Finally an example that illustrates the SLAM approach is given in 3.3.2.

3.1 General

Kalman filter (KF) is theoptimal state estimator for discrete-time linear dynamic systems
driven bywhite noisg51]. KF is also proved to be the best linear state estimator in the linear

non-Gaussiarcase.

Starting from an initial state which is assumed to be a random variable with ancertan
and covariance, Kalman filter estimates the next states by representingnidmaidy of the
system as a Markov Decision Process (MDP) which assumes that the fsthte system
depends only on the previous state and action [52]. Hence, KF is asiezestimator, which
predicts the state only from the previous time step and current measurersteidirof the
history of observations as in batch estimation methods. If the initial state, teegzr@and
the measurement noises are Gaussianmntlially independenKF is the minimum mean

square error (MMSE) estimator [53].
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Although the linear system withero-mean white noisgssumption seems to restrict the ap-
plicable usage of the filter, through a number of extensions, this technaquée used in
numerous problems. The extensions make it possible to map the problendaht@one
that meets the above constraints. For example most non-trivial systemeret@ear and
they violate the linearity assumption of the basic KF. Such non-linearities in tleegswr
observation models can be handled by the Extended Kalman filter (EKF) vghachapprox-

imation to the optimal estimate.

Occasionally some of the continous-valued parameters of the system maki@mn. In
such cases the state can be augmented by adding the unknown parantetles BKF can
be used for estimating both the state and the system parameters. This simdtataeu
and parameter estimation (SSPE) method is popularly used in robot mappbigrpsoand

specifically named as the simultaneous localization and mapping (SLAM).

3.2 Overview of the EKF Algorithm

The Kalman filter is the best studied state estimation technique and it was invgriseceb-

ling (1958) and Kalman (1960). KF assumes that the observations areflimesions of the
state and the next state is a linear function of the previous state. Note thassi@arandom
variable which is passed through a linear function yields another Gaussidom variable.

This knowledge plays an important role in the derivation of KF.

Unfortunately neither the systems nor the measurements can always bedrimdetdy linear
transformations. In fact the state transitions and measurements are razahsiince real life
systems lack the simplicity that would enable us to use the KF directly. The naritinef
the process or measurement models (or both) can be associated by tued>Xalman filter
(EKF).

In EKF the state transition and observation models are assumed to be nomlifiesgntiable

functions of the state. Let us express the state transition and obsenguiatioas:

f( Xk, Uksr )+ Wi (3.1)

h( X1 )+ Vi (3.2)

Xk+1

Zx+1
Herexyy1 andxy are state vectors, ang,; is the control vector at timk+ 1. The process
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and observation uncertainties at tirke- 1 are modeled by the random variablgg,; and

Vk+1 respectively. The predicted state is computed from the present estimate lsyath
transition functionf and similarly the measurement is computed from the predicted state
by the observation functioh. Sincef andh are not directly applicable for the covariance
calculation their Jacobian is calculated at each time step by using the lateistquiesiates.
This Jacobian computation step is the key idea underlying the EKF approxinwétioh is

calledlinearization

The Jacobian matrices can be used in KF equations resulting in the exteattedrKfilter

equations given in Table 3.1Qk.1 andR,1 are the covariance matrices of the posterior state

Table 3.1: The extended Kalman filter algorithm in discrete time

Algorithm _EKF ( uk, Xk, Uk+1, Zk+1 )
Prediction:

,@Hl = f(uk, Uks1)

Tie1 = Fier T FlL; + Quet

Update: _

Kie1 = Zksr HY,; (Hier Zsa HE, | + Rie) ™
Mkel = fks1 + Ki1(Zra — (k1))

Tir1 = (I = Ky Hir1)Eie1

Returm(uy,1, Zk+1)

and measurement noises. The state transition and measurement Jagebiefisiad as

of oh

Fk+1 = a_xl,uk, Uk41? Hk+1 = a_XlﬁkJrl (33)

Similar to the Kalman filter, the EKF represents the state at trbhg the mearnu, and the
covarianceZy. The filter updates these parameters wheandXy are given as the input of
the EKF together with the contral,; and measuremen, for the next time step. The

output is the estimate at tinke+ 1, represented byi,1 andXy, 1.

In the prediction step the predicted beligf 1 andXy,, is calculated representing the belief
for the next time step by only incorporating the contugl; but not the measurement, 1.

In the update step thi€alman gainK .1 andinnovation which is the diference between the

measuremerty, 1 and the expected measuremb(iy,1), are computed. Innovation is used
to update the predicted belief into the desired one up to a degree specifieigiman gain.

The derivation of the EKF algorithm is available in [51], [53], [54] an8]/5
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The major drawback of the extended Kalman filter is its non-optimality. The EKFevey
quickly diverge if the modeling of the system is not correctly handled or ifiniteal state
estimate is not close to the actual state. The unobservability of the processsnasause
divergence of the EKF [55]. Yet the EKF can give reasonable reaotsn fact practically it

is the standard estimation method for many applications such as navigation sgate@BS.

3.3 Simultaneous State and Parameter Estimation

The extended Kalman filter can be used for state estimation in nonlinear dyngstems. In
general the parameters of the state transition fundtiand measurement functidnshould
be known for EKF employment. When there are unknown system paranveltésh are
continuous valuedr slowly varyingit is still possible to obtain the state and the parameters

simultaneously by means of an extended Kalman filter.

3.3.1 The SSPE Algorithm

The simultaneous state and parameter estimation (SSPE) method suggeststiaggimen
base statdy the unknown system parameters. Let us denote the unknown paraimgier
vectord, the base state vector By and the augmented state vectonhyThe state equation

in (3.1) can be rewritten as
Xkel = F (X, Oy Ukgr ) + Wit (3.4)
and the dynamic equation of the parameter vector is assumed to be time invariant
Or1 = Ok (3.5)

Then thesuper-stategy consist ofx andé

Yk =

X ‘ (3.6)
0

Combining Eqgns. (3.4), (3.5) and (3.6) we get the following expressiothéosuper-state

Yk+1 = fA( Yk,  Uks+1 )+ Wi 1 (3-7)

For completeness the minor update in equation (3.2) is also given as

Zib1 = h (yper ) + Vit (3.8)
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The EKF can be used with these resulting state and observation equationsn@ (3.8) for
the estimation of the entire super-state. Note that the measurement vectonégdet! to be
augmented or redefined as the state vector even if the measurement fimuiyralso be a

function of6.

The parameter dynamics are assumed to be constant by Eqn. (3.5). Smtagiance will
asymptotically converge to zero. In addition to this, if the process noisesmonding to
these parameters is also assumed to be zero, then the filter gain will tend tehzenowill

result in wrong estimates. Thus the situation where the parameter variardeslmed to
zero is undesirable. In order to overcome this problenardificial process noisewﬁ+1 may

be added to the unknown parameter vector. This correspond to repkgqpmd3.5) by
Oke1 = Ok + Wﬁ+1 (3.9)

The artificial noisewﬁ+1 prevents the variances of the parameter estimates from converging to
zero, so that the calculated variances can be balanced with the estimatisn €hispseudo-
noiseassumption also enables the filter to estimate slowly varying parameters. Ttardtan
deviation of the process noise is generally chosen as a few percestgid¢ssed value of the

parameter. Furtheuning of the filtercan be done as explained in [53].

3.3.2 An Example on SSPE

Let us now give an example about the use of EKF in a simultaneous stateasandgier
estimation problem. For simplicity assume that the base state is a one dimensitoorhaec

the state equation be given as
_ Wbase
Xks1 = A1 Xk + Dt Uk + kel (3.10)

whereay,; andby,1 are the unknown system parameters which may slowly vary in time, and
V\i;j‘ieis the base state process noise at tkrel. Let us also define the observation as a one

dimensional vector and the related equation as

41 = Ck1 Xk+1 + Vit (3.11)

wherecy,1 is again an unknown measurement parameter.
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As defined in section 3.3.1, the augmentation of the base state with the unkacavngters

gives us a four-dimensional state veggptand the corresponding process naoige

[ Xi ] [ WEase-
wa
Vi = % | and Wy = K (3.12)
bx wP
| O | W

Note thatw?, vvtkJ andw, are the pseudo process noises. The augmented state equation is then

|| R | | e
2 2 wWa

V=] | = % +| K (3.13)
Ve Vi W,

f( Yk, Uk )+Wk

which exactly has the same form as given in equation (3.7). The obsereafimtion

Zer1 = Yeoq Yoo + Vird (3.14)

= h(Yk+1) + Vke1
also has the form given in equation (3.8).
Let us define the process noise and measurement noise covariances.
Q = diag(01, 02, G3.04) and R=r; (3.15)

For EKF implementation the Jacobian of the functibasdh should also be obtained. In our

example these matrices are easily calculated as

» Ve Vi u O 7

Fi = oL and Hy = yT<1+1 00 Y|]('+1 (3'16)
0 0 1 0
|0 0 0 1

The super-statg can now be estimated by using the EKF algorithm given in Table 3.1. With
this simple example we have shown the steps of augmenting the state vector hirtben
system parameters and computing the necessary matrices to be able to UsetBEparam-

eter estimation. However note that the real life problems may be much more camgblican
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our simple example. There may be too many unknown parameters and aftegtherdation
process the state vector dimension may become quite large. This will be slyaavrobot

mapping example.

3.3.3 An Example on Simultaneous Localization and Mapping

Simultaneous localization and mapping is one of the most fundamental probleafmiits.
An autonomous vehicle or robot, which is moving in an unknown environmaoyld not
only be able to estimate its state but also the unknown map parameters of itsdimgsu

This concurrent mapping and localization problem can in fact be treatd 8SPE problem.

Assume that a robot is moving on a planar surface with the ability to rotate toiedies
direction. The base state of such a robot is composed of three elepf[epﬁsand pi which
denote the robot's coordinates at titke The D location of the robot is denoted by, p;
and the orientation is denoted lpﬁ When the robot state is augmented with the unknown

map parameters the combined vector is given by

Xk
Yk = (3.17)
0
=(P P Py Mux My S My Moy S ... Myx Myy Su)'
wherem; x, my are the coordinates of theth landmark, fori = 1, ..., N ands is its

signature. The size of the base state is increasedN\owBere N denotes the number of

landmarks in the map hence the dimension of the complete state-4s33

In this example the number of landmarks are assumed to be predefined @md by the
robot. A more general approach also assumes that the correspondemc®t known and an
incrementamaximum likelihoodML) estimator is used to determine these correspondences.
In fact there are various SLAM algorithms that are produced to refiigrént requirements.

Still, all these methods are built upon the basic SSPE algorithm presentediamse8.1.

There may be more than 1000 point landmarks which will result in a huge-stgde vector
even in the known correspondence case. The robot pose is defir@adybthree variables
while the complete state dimension may reach up to thousands or even more.le@hig c

demonstrates that we may need to process a much larger super-stat¢haettbe base state
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that we want to estimate. Usually at eackfetient orientation of the robot just a few land-
marks are observable, so only a small part of the complete state is updatezhdtme step
k. Instead of using the complete state with the basic EKF algorithm, the SLAM algarith
check whether the landmark has ever been seen before or not aatgsifpite state by using
the observed features only. In SLAM observing a landmark does Hptimprove the po-
sition estimate of that landmark but it also improves the robot pose estimate aaswibé
position estimates of the other landmarks. Since SLAM is not the main subjeds dfidsis
it deemed not necessary to provide the complete SLAM algorithm. Howevéntdrested

readers can find a complete study on SLAM in [54].
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CHAPTER 4

Simultaneous Tracking and Camera Calibration

In this chapter the concept of simultaneous state and parameter estimatiofiad &pphe

problem of simultaneous tracking and camera calibration (STCC). Theagppresented in
this thesis suggests that an easy to carry rigid target and simple to gerenateti®n with

well known dynamics can be used to generate the calibration data set. Needqo@tions
of motion fully describe the ballistic trajectory followed by a thrown target in Acg, and
they form the state transition equations for the base state. On the othenttarrthbecamera
parameters can be taken as the static or slowly varying unknowns of tteensgad hence

they can be made part of the state by augmenting the base state as desémtihim3.3.1.

Dynamic motion model for a ballistically moving target and the model of an opticaluneas
ment device are given in section 4.1. The detection of the target from theraaviews is
explained in 4.2. Finally the problem is transformed into an SSPE form by theentation

of the base state in section 4.3.

4.1 Ballistic Motion and Camera Measurement Models

The state and observation equations of the system are needed for tbé arse@xtended
Kalman filter. The state equations of a ballistically thrown object and the cdtsamequa-
tions of a camera under the assumption of central projection mapping iedénisections

4.1.1 and 4.1.2 respectively.

22



4.1.1 Ballistic Motion Model

Objects under the influence of gravitational attraction follow a ballistic trajgetben thrown
with an initial state (initial position and velocity vectors) if other disturbantects like the
air friction can be ignored. Under normal weather conditions (no wind, @ snow) and
for short motion trajectories, the air-friction can be reasonably ignave@ fdense object.
Assume thay-axis coincide with the negative direction of gravity, hence placingxthed
z-axes on the ground plane. Then the equations of motion for the trajedtarallistically
moving object can be derived by using Newton’s 2nd law. If the velocity tifrown object

is decomposed into its, y andz components the velocity update equation can be written as

VI:(+1 VI? 0
Vier=| V/, |=| V/—0AT |[=Vik+| —gAT (4.1)
VIf+1 VIE 0

The components which are parallel to the groMli‘dandVIf do not change with respect to
time since there are no force acting in these directions during the ballistic fliggrticdHwe
can dropk from these components and ugé and V* hereafter. Gravitational force acts
towards earth and therefore the velocity component direction decreases by an amount
determined by the gravitational acceleratgand the time dferenceAT between each time

step. Integration of the velocity update equation w.r.t time yields the positiorteipdaation

as
Xk+;|_ Xk + VAT
Xest = | Yior |=| Ya+ VAT - BF (4.2)
Zyi1 Z + VEAT
0

Xy + VRAT + _gAsz

0

The complete state equation in discrete-time can then be given by

So1 = As"+u (4.3)

dyn

wheres ”" stands for the dynamic system state at tikné\ represents the state transition

matrix andu corresponds to the input as described in Egns. (4.4), (4.5) and (4.6).
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(1 0 0AT 0 O
010 0 AT O
001 0 0 AT
A = (4.4)
000 1 0 O
000 O 1 O
000 0 0 1]
dyn | T
s’ = | XY z w W VZ]k (4.5)
[ AT2 T
u=]o -4 00 -gaT 0 (4.6)

[XY T, [VX VY VAT are the position and velocity vectors of the ballistic target object
andg represents the gravitational acceleration alongibgativey-axis direction.AT is the

sampling period.

4.1.2 The Pinhole Camera Model

In this section we give the pinhole camera model since it consist a funddrpentaf the
overall problem. A pinhole camera can be represented with a centratfioojenapping from

the 3D world to a 2D image [7]. Using the homogenous coordinate system thj@mgagan

be represented by ax34 matrix P, which can be decomposed intc38 K and 3x 4 [R | t]
matrices. HereK represents the inner parameters of the camera such as focal lengttt, asp
ratio, principal point ffset, and skew, whil® andt represent the external parameters such as
camera orientation and displacement with respect to a world coordinate &sitiestrated

in Figure 4.1. Here, we have vectoXsandx as the homogenous points in 3D world and 2D
image coordinates respectively. The defining equations of this projeatogiveen in Egns.

(4.7), (4.8), and (4.9). Note th&has 11 degrees of freedom: 5 ¥r(ax, ay, Xo, Yo, 9), 3
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for R and 3 fort.

x = PX (4.7)

P = K[RIt] (4.8)
ax S X

K =10 a yo (4.9)
0 0 1

Projection matrixP, can be divided into submatric&sand R | t] as shown in Eqn. (4.8).
Note that the world and the camera coordinate frames are related due tdienrated a
translation.X, is first multiplied with R | t], which corresponds to representing the 3D point
in the camera coordinate frame. Then the resultant point passes thraeigtairparameter
matrix, K, providing the 2D projectiorx. In Eqn. (4.9)ax anday represent the focal length
of the camera in terms of pixel dimensions towaxdandy directions respectivelyxp, yo] "

is the principal point in terms of pixel dimensions asds the skew parameter. Detailed

information about camera models and multiple view geometry can be found in [7].

A Ycam

Figure 4.1: The Euclidean transformation between the world and camendirtate frames.
C is the camera centeX is the 3D world pointx is the 2D projection onto the camera image
plane

4.2 Raw measurements: Detection of the Target

The EKF based algorithms discussed in this work clearly need the pixalicates of the
calibration target in the image frames, possibly at sub-pixel resolution.slmalation the
target can be selected as a point mass with a predefined 3D trajectarg, iteeprojection,

which absolutely corresponds to a single point on the image frame, catiydbecomputed
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via pinhole camera model. However in reality, there is no exact knowlednyet #ie actual
target trajectory. Additionally, the calibration target may be chosen as a lsatlalvhich will

definitely cover many pixels in the image frames. Therefore to provide anasabrobust
calibration method, detection of the target and extraction of its center pixaldocshould be

performed automatically for each calibration frame.

Using fixed cameras with a single moving target in the calibration frames redlieeom-
plexity of the object detection problem. Hence the detection and localizatios atezach
calibration frame can be performed in an easy and reliable manner by theifglalgo-

rithm:

e For each camera the mean of the calibration frames are obtained. Each mgan ima

approximately provides the static background scene for the correisigoremera.

e The background image is subtracted from each calibration frame to obtaiartjet

position at that frame.

e This difference image is converted to binary scale. Dilation and erosion operaténs a

applied consecutively. Then,

e if only a single blob exists, the pixels within the blob are assumed to correspond
to the target projection. The center of the target (in pixel coordinateg)ésilated by

averaging the pixel coordinates.

e if there are more than one blob, the operator is asked to select the target by
clicking on the image that is being processed, so that the blob corresgatadihe
target can be seperated from the others and averaging the pixels diothgields the

target center.

e else if there are no blobs left, the localization can not be achieved.

This algorithm can be used to distinguish any moving target on a constakgrbaad with
subpixel accuracy. The examples of a mean, standard deviatfferedice and binary images

are shown in 4.2.

Note that if colored cameras are used, then the target color can paijitidahosen dferent
from the background for easier detection. For example if the dominardunding color is

green then the target can be chosen as red colored ball, and the Igigathen can exactly
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(a) (b)

(©) (d)
Figure 4.2: Detection of the target calibration object. (a) Mean image of thieratéon

frames. (b) Standard deviation image of the calibration frames. (c) Tdiceghage of a
calibration frame. (d) Binary image of a calibration frame. The center of tiyetids also

marked.

be applied in the red band. Such an algorithm is used by Svoboda et &l ifofZautomatic

detection of LED projections.

When the localization of the target is not achieved no measurement is avédalie cor-
responding frame. Hence the measurement update equations in the EKEhalgan not
be executed at that time step. But the state can still be updated and the filf@ogagss to
the next time step. So missing of the target position in a few frames is not a Higidea
omission of the measurement update once in a while does not practicallyptiesdilter to

converge.

4.3 Definition of Super-State

The motion model, the camera model and the detection of the target in the caliliratres
are explained in the previous parts. From now on the transformation ofolbem into the
SSPE framework is demonstrated. In section 4.3.1 the external camemzepemrmare defined

and the base state is augmented with these unknown parameters, and ins8Qitime state
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and measurement equations are extended for the overall state.

4.3.1 Augmented System Representation

In the following discussion, the system is described and the augmentedegtiasantation is
defined for the two camera case. The results can quite easily be gertetal@multi camera

problem but this generalization is considered to be beyond the scope séttign.

Y cam2 7
ZCamZ Zcam
YCalml
XCamZ RCamZ tCam2 X
Cam?2 ‘—\_/ Camil
XCaml

Figure 4.3: Two-camera system assumed for illustration purposes to béedama fixture
with the unknown rotation and translation between them consisting the extaliahton
parameters.

The system is composed of two arbitrarily placed cameras whose intelibahtian parame-
ters are predetermined. For illustration of the basic ideas, suppose thartvevas are rigidly
mounted on a fixture as shown in 4.3. Assume the cameras are labeled as1@h@dna?.
Our aim is to find the unknown but constant rotation and translation of thereameéth

respect to the basis frame.

Let X, y andzaxes form a right handed reference frame that we calbtms coordinate
frame Without losing generality centers of the basis frame andXaeil coordinate frame
are assumed to be coincident as shown in 4.4. Actually the necessity @ratgegpasis frame
instead of using Cam1-frame as the reference frame arises from thedtttie gravitational
pull is towards the center of thearth Thereforey-axis should always coincide with the

negative gravity vector direction in order to use Eqgn. (4.3).

Note that as long as the center of the calibration target object thrown intathera FOV
is the only processed feature in the image, the rotation of the fixture asearis is unde-
tectable. To visualize this, assume that the mounting fixture is rotated ayeaxid. The

position of the trajectory in the image plane will change. However, since thmbgloca-
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Figure 4.4: First camera shown on th&sis coordinate frameThe relation between the basis
frame andCarl coordinate framés represented with the rotation angted andg* around
Zandx-axes respectively.

tion of this trajectory is also unknown (except for the direction of the graxgtgtor which
is observable from the trajectory) we cannot deduce this global rotatigie.a Therefore,
we conclude that the measurements taken from the target are invariaatrotdtion around

y-axis.

On the other hand, a rotation of Cam1 arowahd x-axes will cause the object to acceler-
ate at a dierent direction in the image plane measurements, indicating the global direction
of gravity. Therefore these rotations of the fixtusé' andjc!, are measurable and are cal-
ibration unknowns of the process which should be determined. Rotatiotramslation of
Camz, on the other hand, is completely independent from the basis fraththeanfore all
these 6 parameters (3 rotations and 3 translations) are calibration pasathateare also to

be determined.

The EKF algorithm can be used in order to track the state of the calibrationtabjd si-
multaneously estimate the static unknown parameters of the camera system. Dgbjgctic
state,s™", can be augmented with the static camera parameters to form a super-stelte, wh

will be used as the state vector in the EKF algorithm formulation.

The calibration object state®", is already defined in Eqn. (4.5). Now, &2 represent the
static calibration parameters. Then the augmented super-state is the caticatefs®y" with

s*@as given in Eqn. (4.10). This augmentation procedure enables us tactsa powerful
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noisy state estimation tool, EKF, for static parameter estimation.

sdyn
s=| | (4.10)
Ssta
S'sta — (aC1 ﬁcl acz ,302 1—02 Cg:(z C;Z C;Z)T (4.11)

whereo® ands®® are the rotation angles of Cam1 arourahd x-axes respectivelyy©?, 5%
andI'® are the rotation angles of Cam2 aroung-z-axes respectively, and final@$?, C§2

andC¢ represent the center location of Cam2 with respect to the basis frame.

4.3.2 Augmented System Equations

We will now define the system state and measurement equations in a stateefgpasentation
which are necessary for the EKF implementation. Since the camera paraaretergariant
in time, their update matrix can be represented with an88identity matrix and the overall

state update equation can be written as

St = Ay + (0 (4.12)
where
A A O u
- > 1 a= (4.13)
Osxe loxs Osx1

The measurement equations (4.14) and (4.15) are directly written by usipgitiole camera
model which is explained in section 4.1.2. The tracked point (i.e. the centiee calibration
object) is projected into the camera planes; hence our measurements asethecptions
of the projection. 3D target positiorX(Y 2T is projected to give us corresponding 2D

measurementsift V1T and (%% v)T.

uCl
Al vl = Ky RCl(a/, B) 031 (4-14)

1

r N < X

k

uc2
pi VCZ — K2 RCZ(G,’ IB, 1") fCZ (415)

1

N < N

k
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CY
%= -R%@, B, 1| CcZ (4.16)
C?

K, andK» are the internal calibration matrices for Cam1 and CaR2.andR stands for
the rotation matrices of Cam1 and Cam2 with respect tchtisis frame Finally t is the

translation of Cam2 in the world coordinate frame and it can be formulated in t&rthe

state variables as in Eqn. (4.16).
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CHAPTER 5

Estimating the Super-State

In order to use the Kalman filter, the observations should be linear funafahe state and
the next state should be a linear function of the previous state. In oulepraithough the
state transition equation is a linear one, the measurement equations are bighigar which
removes the possibility of direct KF employment at its simplest form. Insteadx@mded
Kalman filter, which can handle the non-linearities of the observation equaimuld be

used.

Let the measurements® v*1)T and (% v*)T be concatenated to form the complete mea-

surement vectog, as

z= (Ut v U V)T (5.1)

Then the disturbancedtacting the process and observations should be modeled by adding

random white Gaussian noisesindw to obtain the usual EKF relations

ASk +0+ Wi+1 (5.2)

S+l

Zks1 N( S1,  Uker )+ Viea (5.3)

whereh is obtained from (4.14), and (4.15). The process nais@odels the disturbances
affecting the target motion such as air friction while the observation naisedels the distur-
bances fiecting the cameras such as possible vibrations during filming or other pigeser

The process and observation noise covariances are given as

Q =diag(q1,d2, ..., Q13,q14) and R =diag(ri,rz,rs,ra). (5.4)

For EKF implementation the Jacobiantois computed by MATLAB 71. Note that together

with the state transition matri&, this Jacobian matrikl determines how well internal states
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of our system can be inferred by knowledge of its outputs, in other wibkgbservability
of the system. For that purpose numerical matrix entries can be reguladiedhduring the
EKF iterations. The Jacobian calculation is a simple procedure, howegerain observation
equations are highly nonlinear the result&himatrix is extremely complex to give in the

content of this thesis.

At this point all the necessary equations and matrices are obtained teeréduproblem to

an EKF framework.

5.1 Standard EKF Algorithm

In most applications, EKF is used for tracking a platform in real time. Semg@asurements
are continuously processed by the EKF together with the system dynamliessaboptimal
state estimation is performed. Even if the initial state of the system is not knaaatlygxhe

filter converges to the true state in time.

In our problem we have checked the convergence of the EKF by implergehtrfilter for
the calibration of a two camera system in a simulation environment. Even thoughpke
state is set to a wrong initial value, EKF can yield accurate estimates of the stiiti@tion
parameters as well as the final target state. However, for the filter teegmvo the true
state, about 1000 filter iterations are performed and hence that manyoitaisagf the flying
target is used during the iterations. Although in a simulation environment datts pan be
supplied as much as desired by increasing the fps rates of the camerasg] framera setups
that can not be done. For a standard 30 fps camera setup, it takes moteatha minute
to capture 1000 frames. That is too long time for a ballistically moving target toirstine
joint-FOV of the cameras. For reasonable camera poses, when thetoatilotgect is thrown
into the joint-FOV it may stay there for about one second and only 30 meaeuts can be
obtained by a 30 fps camera setup. How can we satisfy the EKF to conwitigso few

measurements?

In order to solve this convergence problem of EKF with limited number of it data, 2
different algorithms are proposed: Repeated EKF and Repeated BidiréEtikdhaAs under-
stood from their names the essence of these methods depends on usamggmeesasurements

repeatedly.
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5.2 Repeated EKF Algorithm

Let us first divide the state,into its sub-parts:
T
s:( X V C ) (5.5)

whereX corresponds to the positiow, corresponds to the velocity of the calibration object,
andC stands for the calibration parameters. Let us continue with the assumpti@ttnrget
is thrown into the joint FOV of a two camera system, and the ballistic trajectory ¢étbet is
simultaneously captured by each camera yielding 30 frames to be usedilioatoan. Start-
ing from a wrong initial state, the calibration parameters would not be obtaceadrately

after only 30 filter iterations.

The very first idea to solve this problem is to repeatedly use the measuresthéiatsd. Let

us define thdilter andthrow iterations:

o Filter Iteration: The extraction of the next state from the present state; in other words a

single iteration of the EKF

e Throw Iteration All filter iterations for one set of measurement data (i.e., 30 iterations

of the filter).

After the completion of one throw iteration the state will not probably convdyggeit will be

estimated to some extent. We suggest keeping the calibration parametersfatahe#iues
and starting the extended Kalman filter again and again (Figure 5.1). Sotlewegh the
same observations are used, the state can be estimated better and be&¢heSiatbration

is performed €-line, there is enough time for the repetition of the iterations.

The idea here is to make many throw iterations and hope for the calibratiomgigrs to
converge to their real values in a reasonable time. The calibration pararaetekept and
provided to the next throw iteration while the target state is reset to its initial vedube path
followed by the ball is estimated better and better since the calibration paramppetach
towards their real values and vice versa. Thisep the static parameters, reset the dynamic

stat€ idea forms the essence of thepeated EKF (R-EKF) algorithm.

It should be reminded that simple KF yields the optimal solution with a single usesof th

measurements. So repeated use of the same measurements can not impesdttheven
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Figure 5.1: The flow chart for the repeated EKF algorithm.
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after smoothing the state. On the other hand the EKF linearizes the non-lumeiohs at
the predicted state, hence linearization performance can be improved byhamgathe state.
Therefore even by using the same measurements, better estimates cariries ddytan EKF

due to this improvement in the linearization.

The drawback of the R-EKF algorithm is that the results are highly demémahethe initial
uncertainty of the dynamic state. Actually not only the camera parametertsbuha target
position and velocity are not available at the beginning, because urditetyrihe target is
thrown at an arbitrary position with an unknown velocity. The initial state ofctdération
target is not estimated during the iterations, but always the originally gkiel'f] " vector is
used. So the estimate for this initial state vector should be provided via extezaaurements
as in [50]. Human factor and measurement errors which may bdt#gtahe calibration

results is inevitable with this approach.

5.3 Repeated Bidirectional EKF Algorithm

The second idea is to implement EKF in both forward and backward direcfl¢nescalibra-
tion object state and the camera parameters are again estimated repeatetily, thue in
two directions. In other words the target motion is first tracked in the fahwi&ection and
then in the reverse direction. This algorithm remedies the main problem of RskiKe the

initial target state is predicted when the reverse motion estimation is performed.

The flow sequence of threpeated bidirectional EKF (RB-EKF) algorithm is shown by the
flowchart in Figure 5.2. The augmented state is sej toitially and forward throwestimation
is performed till all the frames are swept one time. Then the target trajectestinsated from
backwards by using the measurements in reverse order. Note that thigywedztor should
be negated at the end of@ward andbackward throwteration while the position vector and

camera parameters remain same.

RB-EKF yields both the dynamic and static states with negligible error in a short #se
stated beforehand the accuracy of the estimations depends on the initialirstatéainty,

hence being able to estimate the initial state reduces this dependency. Retheviegessity
of measuring the initial target state and hence avoiding the human relatesl érre method

not only provides an easily applicable calibration, but it also reducesrthkefiror.
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Figure 5.2: The flow chart of the repeated bidirectional EKF algorithm.

37



CHAPTER 6

Simulation Experiments

In this chapter the experiments which are performed on a computer simulativarenent

are presented. The proposed calibration method is tested on a simulatiomplatépared

in MATLAB7 .1. For data generation, instead of the real camera images of a dynamically
moving target, the dynamic motion model and pinhole camera model are used tatgene

simulated data points.

The experiments are chosen to identify the scenarios that can be enmedumeeal life
problems. First atargetin free fall is used for calibration with R-EKF aBeBKF algorithms
in sections 6.1 and 6.2 respectively. Section 6.3 focuses on the compafiBesEKF with

RB-EKF when the initial target state is not known. White Gaussian randaceps and
measurement noises are also added on the measurement data for a tistieeealuation.
In section 6.4 the performance of RB-EKF is investigated for a ballistic trajgetod then
multiple trajectories are used for calibration in section 6.5. Finally a generalsti®on of the

simulation experiments is given in section 6.6.

6.1 Experiment 1. R-EKF / Free Fall Motion

In our first simulation experiment we try to initially show that R-EKF method cafdyiam-
era poses under some facilitative but restrictive assumptions. As disciis€hapter 5, the
performance of the R-EKF algorithm is highly dependent on the initial waicgy of the dy-
namic state. In order to use R-EKHieiently, the initial state of the calibration target should
be measured and provided to initialize the EKF, which makes R-EKF an impiadgoaithm

to use on the field. Since this experiment is a preliminary testing of the concepissume
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Figure 6.1: The synthetic images of a free falling target captured by sostareera sys-
tem. The black dots denote the originally captured points and the small ciraliesedibe
re-projected points that are obtained after 1000 throw iterations by BebEKF algorithm.

that the initial target state is known even though such an assumption is listicea

For a real case the initial position of the calibration target can approximasetydasured by
means of a ruler although that will not be practical. However to obtain its inigkloity is
even harder. Yet &ee falling target may reduce the unknowns since the initial velocity of
a free falling object is a well know@ nys vector. So, a target can be dropped into the joint
FOV of a multi camera system and the captured image sequence can berubedekternal
calibration. In this experiment we try to inspect the convergence perfarenaf the R-EKF

algorithm by using the synthetic data of a free falling target.

In our simulation setup two cameras are placed in parallel whnmddistance between them
and zero rotation with respect to the basis frame. Such a configuration is soraliuman’s
vision system, so for easy understanding one can assume that a stesra amounted on
a planar platform which is placed parallel to the ground. When a point nafisdriely in
front of the camera setup, the image sequences obtained by these twasameeshown in

Figure 6.1.

The target is dropped from.Zb m above, B m in front of Cam1. So its initial condition

vector is equal to
Xo=1[0 025 18]", Vo=[0 0 O]".
The camera parameters are all equal to zero exceptplsition of Cam2 center, due to the
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Figure 6.2: Convergence of the Repeated EKF Algorithm thrdw iterations. All calibra-
tion parameters converge to their true values. (a) Rotation angles; (i®ldtian parameters.
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0.2 m gap between the cameraxidirection. Hence the original parameter vector is equal to
C=[000000200].
The actual initial target stateXp Vo], is exactly used for initializing the R-EKF, so
Xo=1[0 0.25 18]", Vo=[0 0 O]
and the initial estimate vector for the camera parameters is assumed to be

Co=[0.3 03 03 03 03 03 02 02]".

As illustrated in Figure 5.1 during the throw iterations the initial state of the taxgew[j]"
is repeatedly used while the calibration parameter estinfamverge towards their actual
valuesC. The convergence curves of the rotation and translation parametesh@aw@ in

Figure 6.2

The evaluation of 1000 throw iterations by R-EKF algorithm has taken foul09 seconds

with a hyper-threaded Pentium40&Hz CPU. The camera parameters are estimated as
C =[0.0000 00000 —0.0092 00151 00109 01992 00271 00101]

which is almost same as the original parameter veCtorThe re-projection pixel error is
computed as.6712x 10~* pixels for Cam1 and.Q056 pixels for Cam2. Note that this is the
error in the image plane. In a simulation since the real parameters are krnewaniobtain
the norm of the dference between the real camera parameters and the estimated ones.
average of the rotation and translation errors for both cameras areexb&sr0208 radians

and 00290 meters respectively.

In this experiment we have shown that if the initial state of the calibration olgeneasur-
able, then R-EKF algorithm can yield accurate results. However, sindnitiad state of the
target is not estimated during iterations, the results are highly dependdéme amtial state
uncertainty. This is the major drawback of the R-EKF method. Also note thaighout this
experiment we assume there are no disturbances which would causemeasyrements.
But unfortunately in real life unwanted disturbances do exist. That'swithyout noise anal-
ysis the actual performance of the R-EKF algorithm can not be fully wtoled. In fact due
these disturbances we even may not be able to obtain the initial state of thattatibarget

accurately which may tragically diminish the success of the R-EKF method.
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Figure 6.3: The synthetic images of a free falling target captured by eostaraera sys-
tem. The black dots denote the originally captured points and the small circiesedde
re-projected points that are obtained after 1000 throw iterations by RepBairectional
EKF algorithm.

6.2 Experiment 2: RB-EKF / Free Fall Motion

In this section the first experiment is repeated for the RB-EKF algorithm. Wetshow
that RB-EKF converges under facilitating assumptions. The same orientdtiba camera
setup is used again to capture the same free falling motion of the target. Mgndg and

C vectors have the same values as in section 6.1. The initial estimate of the tatgetrsl
the camera parameter vectots, Vo, Co are also provided to the RB-EKF algorithm as in

section 6.1.

The original and re-projected points are shown in Figure 6.3 and theeqgamnce curves of
the RB-EKF algorithm are plot in Figure 6.4. Note that RB-EKF algorithm estisnadéonly
the camera parameters but also the initial target state. However in this expettiménitial
target state is exactly provided and since trying to estimate an already givemgter may
lead to some error, the resultant calibration error of the RB-EKF is slightlerian that of

the R-EKF.

It takes 1367 seconds to complete 1000 throw iterations for RB-EKF algorithm. This igynear
twice as much as it takes with the R-EKF method, because one throw iteratidd-BKR

includes both the forward and backward iteration of the target movemers.cdlibration
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vector is estimated as
C= [0.0004 Q0450 - 0.0120 Q0454 00102 02048 00003 00006]T

which is very close to the original parameter vec@oIThe re-projection error is computed as
0.0227 pixels for Cam1 and. D613 pixels for Cam2. The rotation and translation errors are

obtained as 0658 radians and.0048 meters respectively.

In this experiment we have shown that if the initial state of the calibration obgattbe
measured accurately, RB-EKF algorithm can yield the parameter estimatgatabc Note
that RB-EKF can also handle initial uncertainty since the initial target statedsatsnated.
That makes RB-EKF a practical method that may be used on the field applcaioause
very accurate initial state measurement is quit@alilt to obtain in real cases. Even when
one tries to measure the position of the target by means of a ruler, the imtyestahe initial
state is unavoidable. Therefore we should further test RB-EKF methader umore realistic

assumptions.

6.3 Experiment 3: Comparison of R-EKF and RB-EKF

In the previous experiments we have mentioned that the initial state may notbeimty
measurable and also other disturbances nfi@gthe dynamic motion of the target object as
well as its projections on to the image plane. The external disturbances onsgy ttee actual
target motion deviate from the dynamic target motion model and also the actoataanea-
surements deviate from the ones that would be obtained by the pinhole candeh mahis
part the R-EKF and RB-EKF algorithms are compared under reasonéiidé umcertainty

and noise fects.

Introduction of an additional measurement system to obtain an accurateasttrabte of the

target state would result in a complicated and pointless calibration procé®krause if one

already has the necessary equipment to obtain the target pose in aat@ccanner, then that
may also be used to obtain the camera poses. So a practicaffi@mehecalibration method,

which uses the EKF for parameter estimation, should be able to tolerate th#aimess of

the initial target state.
In this part the camera poses and the target trajectory are used as in $etfibut this time
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Figure 6.4: Convergence of the Repeated Bidirectional EKF Algorithmtiwotviterations.
All calibration parameters converge to their true values. (a) Rotation ar{ple$ranslation

parameters.
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the initial target state and the camera poses are assumed to be guessenpeydto by only
inspecting the system. Therefore the initial position uncertainty must be toldnatetdeast
half a meter, because that much mistake is fairly reasonable for humantiprediche initial

velocity of the free falling target is assumed tolays. Hence
Xo=[0 0 15]", Vo=[0 0 O

vectors may be accepted as reasonable initial estimates for the target $teieth@ initial

super-state estimate is given as
T T ATT
So = [Xo Vo Col (6.1)
where the initial camera parameter vedByris taken same as the first experiment.

In order to model the disturbances, process and observation noésadded while obtaining
the camera views of the falling object. The target position and the cameramae&sus are
disturbed with White Gaussian noises. The process and observatiorvana®es are set to

0.002 m and (L pixels respectively.

The measurements and the re-projected points obtained after 1000 thratiofitemwith R-
EKF and RB-EKF methods are shown in Figure 6.5. The convergenve<of the R-EKF
and R-EKF algorithms are illustrated in Figure 6.6 and Figure 6.7. The reseltams for

both algorithms are presented in Table 6.1.

The final estimation vector of the camera parameters are obtained as

CR-EKF = 10.0015 01916 —0.0125 01263 00318 01852 — 0.0683 — 0.1170]

CRB-EKF - 10,0193 00828 00194 00824 — 0.0223 02345 —0.0021 00053 .
The initial target state is also estimated by RB-EKF as
Xo = [-0.0045 01173 21923], Vo =[0.0379 —0.1758 —0.7339] .

RB-EKF has clearly better performance in this more realistic example. ThlecAnaera
parameters obtained by RB-EKF turned up to be closer to their actual vadngsared to
R-EKF. The final re-projection, angle and translation errors for R&~B&re obtained to be
quite smaller then those for R-EKF as seen in Table 6.1. Also when the gemaer curves in
Figure 6.6 and Figure 6.7 are compared, RB-EKF seems to be the supettiadnbetween
the two. Therefore it is concluded that RB-EKF should be preferred BvEKF when the

initial target state is not known accurately.
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Figure 6.5: The synthetic images of a free falling target captured by astamera system.
The motion and observation noise variances are takerD82 0 and QL pixels. The black
dots denote the originally captured points and the small circles denote thejeetpd points
that are obtained after 1000 throw iterations by (a) Repeated EKF; (iddRed Bidirectional
EKF.

Table 6.1: The final re-projection, angle and center errors for R-&d-RB-EKF

CamXkeprojerror | CamZkeprojerror | Angle Error | Center Error
R-EKF 5.8282 3.5549 0.2320 0.1363
RB-EKF 0.4822 0.7799 0.1220 0.0350
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Figure 6.6: Convergence of the Repeated EKF Algorithm whraw iterations. Since the

initial target state is not truly provided the calibration parameters are notatety obtained
(a) Rotation angles; (b) Translation parameters.
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Figure 6.7: Convergence of the Repeated Bidirectional EKF Algorithmtiwotv iterations.
Even though the initial target state is not truly provided the calibration parassneteverge
to their true values. (a) Rotation angles; (b) Translation parameters.
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6.4 Experiment 4: RB-EKF / Ballistic Motion

Until now we have focused on a free falling target scenario for calibwagince the initial
velocity uncertainty is minimized in this manner. However such one dimensional maftio
the target may cause singularities in the estimation process. For exaffiptertiorientations
of the cameras may yield the same calibration frames. Assume two camerascagt qia
a circle which is parallel to the ground and let principle axes of the camerasiigruent
with the diameter of the circle. When the target is dropped towards the cdrités aircle
all the cameras on the circle yields the same image sequence. So there mayeh&anor
one possible orientation for the cameras when a free falling target is asedrhera pose

estimation.

Another drawback of the free fall case is that only a small part of the me&age planes
are covered by the vertical motion of the target. But the image planes sheuwdvered
as much as possible by the calibration object in order to estimate the cameaatehatics
better. To overcome these problems we move into a more information gatheringhmotio
that RB-EKF can handle arbitrary initial conditions. So instead of dropghiegcalibration
object, we throw it into the joint camera FOV with an initial velocity, hence the alptiows

a 2D ballistic trajectory. Therefore not only the singularities will be previthtd also greater

regions on the image planes will be covered.

Caml view of the 3D trajectory Cam?2 view of the 3D trajectory
- Original points
—e— Backprojected points

200 200

150 150

100 100

50 50

0 100 200 300

Figure 6.8: The synthetic images of the ballistic trajectory of a thrown targeticd by
a stereo camera system. The black dots denote the originally captured pairiteeassmall
circles denote the re-projected points that are obtained after 1000 thratioites by Repeated
Bidirectional EKF algorithm.

Since the initial velocity of the target can not be measured easily, it shoukktimated
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together with the calibration parameters. RB-EKF can estimate the initial targetsih as
shown in section 6.3, it yields more accurate results than R-EKF when the iarget state
is not accurately known. So for thmllistic throwcases only the results obtained by RB-EKF

are presented.

Suppose that two cameras are placed at the diagonal corners ofra sduese edge length
is equal to 15 m as shown in Figure 6.10. Also assume that Cam2 is pla@tGbove
Caml level. Let the orientations of the cameras be arranged to make theipaliaxes
nearly perpendicular to each other. Then assume that the operatos tarakget into the
joint camera FOV. An example initial target state for this setup and a calibraéi@anyeter

vector can be given as

Xo=[05 0 1]', Vo=[-12 4 12],

C=[-02 -02 —n/2 n/2 n/2 15 02 15]".
and reasonable initialization vectors may be selected as

Xo=[0.7 02 07]", Vo=[-1 3 1T,

Co=[00 —15 15 151 0 1].

We disturb the target position and the camera measurements by White Gaussemwith
variances set t0.002 m and @ pixels. Starting from the super-stass,= [XJ V{ CI17,
after 1000 throw iterations RB-EKF yields the initial target state and the capageaneters

as

Xo =[0.4960 00002 09931], Vo =[-1.1917 40040 12121],

C=[-0.1972 -0.2024 15784 15566 15645 14982 01913 14750].

All the re-projected points are close to their original measured locationsoassn Figure
6.8. Also note that the convergence is actually achieved with less than 200itarations as

illustrated in Figure 6.9.

The re-projection error is computed a$077 pixels for Cam1 and. 4998 pixels for Cam2.
The rotation and translation errors are obtained.@$7r radians and.0265 meters respec-

tively.
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Figure 6.9: Convergence of the Repeated EKF Algorithm thrdw iterations. All calibra-
tion parameters converge to their true values. (a) Rotation angles; (i®ldtian parameters.
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Cam2

1.5m Caml

Figure 6.10: The cameras are placed perpendicular to each otherthieddgégonal corners
of a square with 1.5 meter edge length.

In this example we have demonstrated that RB-EKF can give successills for both the
camera pose estimates and the target trajectory even when the initial targés$ siat mea-
surable. So, a ballistic motion can be used for calibration by RB-EKF methedcdithe
calibration results will be improved since the singularities in the free fall ceseravented

and the image plane is better covered by the target.

6.5 Experiment 5: RB-EKF / Multiple Trajectories

For pose estimation of a two camera setup we have defined 8 parameterstioiagesl. With
the additional 6 variables corresponding to the target state, a total ofdreters should be
predicted. By using a single target trajectory however, only a small nuailveeasurements
can be obtained. Although repeated evaluation of EKF provides camnveggvith a limited

number of measurements, more calibration data would probably improve thetestisna

Another drawback of &ingle throwscenario is that, the EKF may get stuck with a local
minima, and hence the parameters may not be precisely predicted. To avbidtases,
multiple trajectories can be used instead of a single one. In other worddlithraitan object
can be thrown a few times and various trajectories of the target can beezpithis surely
provides additional calibration data that may improve the estimates. In thisimamtithe

effect of usingmultiple trajectoriesduring the calibration procedure is investigated.

Suppose that for the same camera orientation and target motion describégthe&alibra-

tion object is thrown for a second time with the initial conditions

Xo=[-05 025 13]", Vo=[1.2 35 12]".
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Table 6.2: The final re-projection, angle and center errors for simglelauble throw cases

CamZeprojerror | CamZeprojeror | Angle Error | Center Error
First Throw 0.5177 0.4998 0.0177 0.0265
Second Throw 0.5757 0.5296 0.0150 0.0350
Both Throws 0.5006 0.6152 0.0054 0.0122

Let their initial estimates be taken as

Xo=[00 1]", Vo=[1 2 1]".

We disturb the target position and the camera measurements by White Gaussemwith
variances set t0.002 m and QL pixels. When the calibration is performed by using the second

trajectory only, after 1000 throw iterations RB-EKF yields

Xo = [-0.5002 02690 13062], Vo=[1.2140 35089 12027],

C =[-0.2044 -0.2116 15650 15647 15707 15171 02302 14952].

The re-projection error is computed a$157 pixels for Caml1 and.®296 pixels for Cam2.
The rotation and translation errors are obtained.@$3D radians and.0350 meters respec-

tively.

When two of the trajectories are successively used to estimate the camesa @fbar 1000

throw iterations RB-EKF yields
C =[-0.1972 -0.2029 15692 15679 15720 15075 02080 15053].

The re-projection error is computed a$@06 pixels for Caml1 and.®152 pixels for Cam2.
The rotation and translation errors are obtained.@8®4 radians and.0122 meters respec-

tively. The convergence plots are given in Figure 6.11.

The errors corresponding to the single and double throw scenarioerared in Table 6.2.
When the pixel errors are observed, using both trajectories seem hatecany significant
advancement compared to using either of the first or the second trajetdoi. However,
although pixel error is useful to evaluate the real life performance, ibmputed on the
image plane only. In the simulation we have the actual values of the calibratiameters

and hence the real rotation and translation errors. When they are ahtparperformance
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Figure 6.11: Convergence of the Repeated EKF Algorithm whrdw iterations when two
different target trajectories are used for calibration. All calibration parametsverge to
their true values. (a) Rotation angles; (b) Translation parameters.
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of the multiple throw case turns out to be significantly better. Therefore tiwation data
can be increased by throwing the target several times, and even whpixeherror, which
is the fundamental performance measure for a real life setup, does moviemfhe estimated
parameters will probably be closer to their actual values. So, we areialfpencouraged to

try calibration by multiple throws to increase the accuracy.

6.6 Discussion on Simulation Experiments

In this chapter simulation experiments are performed to understand the g®#ddad evaluate
the convergence performances of the proposed methods. Experimeerdalezed to compare
the performances of the R-EKF and RB-EKF methods. Tifiects of using a free falling
target or a ballistically moving target and theets of using a single or multiple trajectories

for calibration are also investigated.

In the early experiments a free falling target trajectory is used since the irgt@dity of such

a motion is a well defined 0 f& vector. R-EKF has the best performance when the initial
target state is exactly provided for EKF initialization. However such antewamvledge of
the initial state is not easy to obtain in real life. Further experiments showitlike (R-EKF,
RB-EKF can tolerate significant initial state uncertainties. Hence RB-EKFsieéh more
suitable method in practical applications, especially for the field applicatiorsanthe ease

of the calibration method is desired most, but the uncertainty is unavoidable.

A free fall motion reduces the unknowns of the initial target state and apensay to use
R-EKF, however such a motion is notfBaiently informative since only a small part of the
camera image planes are covered. Additionallfedent poses of the cameras may yield the
same calibration frames for a free falling target. This means that there may rieetinam
one possible solution for the same set of calibration frames in a free falhgoe and the
filter may converge to one of these solutions according to its initialization. kerdodorevent
such situations, using a ballistic trajectory is suggested. Although that woereaise the
initial state uncertainty and R-EKF can not be utilized anymore, RB-EKFtilhbesreliably

employed as shown in section 6.4.

The accuracy also depends on théisiency of the available calibration data. Increasing the

calibration data would probably result in better pose estimates. One wayrehsicg the
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number of calibration points is to use more than one target trajectory. Theaghadditional
trajectory brings 6 additional unknowns corresponding to the initial tatgé more accurate
parameter estimates are obtained as shown in section 6.5. Although theeanemagection
pixel errors stay at the same level as in a single trajectory case, the paras@mates are

much closer to their actual values when multiple target trajectories are used.

To sum up, the simulation experiments demonstrate that for practical appleatierRB-
EKF method is superior to R-EKF method. Furthermore using a ballistic motion attighleu
trajectories are superior to using a free fall motion and a single trajectdngrefore the
camera parameters can be estimated best by using RB-EKF method together ltifile mu

ballistic trajectories.
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CHAPTER 7

Physical Experiments

Simulation experiments help us to understand the workings of the preserteithaig. How-
ever, although in simulations something works excellent, in real life we havedbwith
several unexpected situations anflidulties. These diiculties and real life performances of

our methods are discussed in this chapter.

First, the components of the multi camera setup that is used throughout thénesmpts are
described in section 7.1. Next, the internal parameters of the camerastaireed by MAT-
LAB calibration toolbox in section 7.2. Then the physical experiments to tegtribyosed
R-EKF and RB-EKF methods are presented. A free falling target is wsezhfibration with
R-EKF and RB-EKF algorithms in sections 7.3 and 7.4. Then RB-EKF is usibdavsingle
ballistic target trajectory to obtain the camera poses for parallel, perpdsdand arbitrary
placement of the cameras in sections 7.5 and 7.6 and 7.7 respectively.nSe8taresents
the RB-EKF performance when multiple target trajectories are used fergstsnation of ar-
bitrarily placed cameras and finally a general discussion of the physigatients is given

in section 7.9.

7.1 The Multi Camera Setup Components

In this part the multi camera setup, which is prepared for evaluating therpehce of our al-
gorithm, is described. The utilized video capture card and the analog caarernaresented in
sections 7.1.1 and 7.1.2 respectively. The connection cables tripodtaamasare displayed

in section 7.1.3.
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Figure 7.1: Eurotech CTR-1472 frame grabber and MPEG-4 Compresso

7.1.1 CTR-1472 MPEG-4 Compressor

The CTR-1472 is a high performance four channel MPEG-4 Video Cesspr that supports
real-time video encoding. The CTR-1472 can be used to capture anakmstitams (from
PAL/NTSC cameras, VCR and other video sources) up to four sources atithe time.
CTR-1472 can encode frames in MPEG-4 format and send them to aiad3CVBUS. This
PC104-Plus compliant CTR-1472 MPEG-4 compressor, which is develogefubotech

Company is shown in Figure 7.1.

7.1.2 Measurement Cameras

The UWC-300 camera, the product of Outland Technologies Inc., iséderwater camera de-
signed for deep sea operation. Itis illustrated in Figure 7.2. UWC-308&e as a general

purpose camera for our experiments since its image quality in the air is alquaiulee

The camera sensor is sensitive to low light conditions (down@06@B lux) and the sensor
provides a 600 horizontal lines of resolution. The UWC-300 camera cavitiesa 36 mm
focal length integrated lens. It gives analog video output and therefecessitate a video
frame grabber. Due to the large amount of data from multiple cameras, theedboard
requires a video compressor. The cameras are therefore used tagdtheTR-1472 MPEG-

4 compressor.
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Figure 7.2: Outland Tech. UWC-300 underwater cameras (black cylitaggr

7.1.3 Connection Cables, Tripods and Clips

UWC-300 and other underwater cameras have their standardizedvateleconnectors which
are not commonly available. To work in the laboratory, connectors are fangnred by us
in the laboratory environment. After some trials, these connectors araqgaddo minimize
noise and provide data with high quality. The PC104 stack which is set in tbeakaioy and
the attached connectors are shown in Figure 7.3(a). The connecties eab coaxial CCTV
cables which also include a number of control signal lines. Another coomedich was
needed in the laboratory is the one that connects the video cables to th@47PRAPEG-4

compressor as shown in Figure 7.3(b).

(a) (b)

Figure 7.3: The connection cables and connectors. (a) PC104 stadkintludes CTR-1472
MPEG-4 compressor and the manufactured cable set connecting theasdmtre stack. (b)

CTR-1472 connector.
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Figure 7.4: Tripod-clamp-camera trio and the calibration pattern. (Shavandiogle camera)

To hold the cameras in a secure manner during the internal and extelibedto@n suitable
set of tripods (SLIK-ABLE 300DX) and clamps(MONFROTTO SUPER QUR 035) are
acquired. This setup is shown in Figure 7.4 with a single camera and Figushdwis the
synchronous video capture from the set of four cameras and theiassbpreliminary soft-

ware interface.

Figure 7.5: 4 pieces of BWC-300 underwater cameras and synclgeiaao capturing with
these cameras.
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7.2 Internal Calibration

After all the connections are made in order to capture video synchrignioas 4 cameras

as a first step, the software which was provided by Eurotech is updatedsad so that the
video frames could be captured, compressed and saved. When thedsarrare became
ready, the captured frames could be compressed and saved in the MRE@at with the
help of the software provided by Eurotech, the manufacturer of the fgaaidefcompressor
card. When MPEG-4 compressor captures in PAL format with 100 fpsthatérames are
obtained in 354« 248 pixel resolution and if the frame rate is 25 fps then the resolution is

doubled.

While the work on video capturing was in progress, we contacted the EarG®mpany and
obtained the source code of the video capturing software. The soodeeis valuable as it
provides a large number of examples on how the drivers of the cardecanrifigured and
used. This allows us to incorporate the functionality into our own softwadenawdify and

extend what is provided by the standard test interface of the manufacAsean example,
in order to perform the internal calibration of the cameras, a single franaestdtic scene
is needed instead of a long video sequence. This problem is solved mgad8aveOne-
Framefunction to the source code so that single frame capturing and saving (& ftiPEBat

is achieved. This allowed the capture of the necessary images whicheateougbtain the
internal calibration parameters of the cameras with the help of the MATLAB (zdidn

Toolbox [23] since the calibration software uses the photographs {pgk ¥ideo frame) of

a chess pattern Figure 7.6 fronfférent angles.

Although MATLAB Calibration Toolbox inspired the main initialization step from A&
calibration algorithm [19], the closed form estimation of the internal parasstslightly dif-
ferent. For example the distortion parameters are not estimated at the initializetiprand
intrinsic camera model is inspired from Heikkiand Silen’s work [21] which includes two
extra distortion cofficients corresponding tangential distortion. Radial and tangential distor-
tion model is taken directly from the Brown'’s work [56] which is one of thstfintroductions

of the camera model.

In the simulations two cameras have been used for testing our externahtialitalgorithms.

Although the internal parameters were perfectly known in the simulationshéophysical
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Figure 7.6: The calibration view obtained from 4 cameras synchrondtisiy kind of chess-
board pattern shown in the figure is used for internal calibration purpose

experiments, first of all, the internal parameters of the cameras shoulatdieed. We have
performed the internal calibration by MATLAB calibration toolbox in orderadilarate two of
the UWC-300 cameras. For the first camera focal length, principal ghiesy, and distortion

codlicients are obtained as

Focal length: fc = [277.44915 29832608]+ [1.19135 127202]
Principal point : cc = [18364332 11742620]+ [1.59237 164054]
Skew: alphac = [-0.00084]+[0.00093]
Distortion : kc = [-0.42093 020117 - 0.00270]

+ [0.01084 002578 000095]
Pixel error : err = [0.28266 026950]

and for the second camera the same parameters are obtained as

Focal length: fc = [270.39002 29126888]+ [1.42153 155879]
Principal point : cc = [180.25090 11813432]+[1.61322 168951]
Skew: alphac = [-0.00026]+ [0.00099]
Distortion : kc = [-0.39303 014915 - 0.00353]

+ [0.01171 002362 000099]
Pixel error : err = [0.30324 030778]

In a real image formation process the lens distortion may cause great floctutom the
pinhole camera model. Apart from the focal length, principal point arvgdarameters,

MATLAB calibration toolbox yields the distortion céigcients too. Luckily an additional
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utility to undistort the images is also included in the toolbox. We integrated thatidmna

our external calibration method, so that undistorted images of a calibratiget tzan be ac-
quired and directly used by our calibration algorithms. Otherwise the distioneges would
be used in the expense of low calibration accuracy. In fact we prdyitied to include the
distortion model in the EKF equations to be able to use the original distorted irmagesed
from the cameras, but the evaluation time for the Jacobian matrix was indreasauch due

to the higher complexity.

Finally note that the internal calibration error is in the order of 0.3 pixel thlzameras. In
the simulations no such error corresponding to the internal calibratiolig@gas taken into
account. Anyway this additional disturbance can be accepted as jihet olbservation noise

in the EKF equations.

7.3 Experiment 1. R-EKF / Free Fall Motion

In this experiment the simulation experiment in section 6.1 is repeated with real Tao
cameras are tried to be placed in parallel with zero rotations. The m@meatice from the
simulation experiment is the distance between the cameras towards. Instead of a.Q
m gap the cameras are separated by half a meter distance. A free falliagitatuged to
calibrate the two camera system with R-EKF algorithm. The initial target state isuneelas

as
Xo =[0.25 035 110]", Vo=1[0 0 O],
and the camera parameter vector is initially set as
Co=[00000050 0.
After 1000 throw iterations, R-EKF algorithm yields the camera parameters as
C = [-0.0191 00160 00106 00145 Q0083 04916 —0.0054 — 0.0162] .

As discussed in section 6.1 the target position is measured by a ruler andigh@éhocity is
taken a< nys since the calibration object falls freely. However, the acquired initiatipas
value is not exact due to uncontrollable measurement errors. The inikmityeis not also
absolutely equal t6 nys, because the moment that the target is dropped can not be synchro-

nized with the camera capturing instant. Furthermore while releasing the tialibodject,
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Table 7.1: The final parameter estimates fdfedent initial positions of the calibration object
and the corresponding re-projection pixel errors after 1000 throatiters with R-EKF.

o<t BT @ [ pZ [ T2 [ C& C;iz CZ [err [ en®
ext | -0.02| 0.02 | 001]001|001]|050| 000 | -0.02| 516 | 4.97
eX | -0.01| -0.05|0.02[ 0.01|002| 048] 008 | 000 | 7.92 | 7.73
ext | -0.01| 0.07 | 003[ 008|018 053] 0.04 | -0.07 | 812 | 7.02
ex* | -0.03| 0.08 | 0.02] 0.05|001|051|-0.05|-008]| 876 | 7.14
exX | 002 | -0.05|000[ 0.05|000|049] 013 | 004 | 7.60 | 5.38

undesired movements iandz directions may also occur. Still taking the initial velocity of

a free falling target a8 nys is a reasonable assumption.

The final re-projection pixel errors for Cam1 and Camz2 are 5.1617 &7838 pixels respec-
tively. Although our algorithm is not an optimization method that minimizes the pixet.er
this re-projection error is a measure that reflects the accuracy of tiomaésn. Figure 7.7
illustrates the original and re-projected points for both cameras. Theggence graphs for

the calibration parameters are shown in Figure 7.8.

In four additional examples the initial position of the calibration object is cadrand the
same experiment is repeated. In other words the calibration target is temiped from
different locations but the cameras are not moved. R-EKF results for 1684 ilerations
are presented in Table 7.1. Although all of the parameters are consiieninwexpectations
the pixel errors are changing from 5 to 9 pixels. This much error is mainigezh by the

inaccurate measurement of the initial target state.

Caml view of the 3D trajectory Camz2 view of the 3D trajectory
Original points , ,
—o— Backprojected points % Eg
200{ : 1 200{ -8
150} ' ] 150}
> >
100} : ] 100}
50¢ i 1 50
0 : : : 0 : : :
0 100 200 300 0 100 200 300
u u

Figure 7.7: The extracted 2-D positions of a free falling target captuyeal siereo camera
system. The black dots denote the originally captured points and the smak desiete the
re-projected points that are obtained after 1000 throw iterations by RepEKF algorithm.

64



- - —estimate

E
8 -0.02 ’// ******************** ]
o]
-0.04
0.5
E
8 op-—"——7""""""""~"~"="—"—"—-———— — -
A
-0.5
0.02
('él oo T T T T T T T T T T T
S Op
o] I
-0.02
0.1
£
8 oy-—"—"~"""~""~"~"~""~"~"~""“">"™"™">"“>"">"">"*=7°
Q
-0.1
%1 0.02 T
S 0y
—
-0.02

0 200 400 600 800 1000 1200
Throw lterations

@

(m)
0.5 )
s P
& » 0.48} ]
(@}
046 L L L L L
0.5
£
8y Ofcmom oo 1
)
_05 1 1 1 1 1
0
I L o m m — — — .
o i
g 1
8. -0.05 1
O
-0.1 1 1 1 1 1
0 200 400 600 800 1000 1200

Throw lterations
(b)

Figure 7.8: Convergence of the Repeated EKF Algorithm thrdw iterations, (a) Rotation
angles; (b) Translation parameters.

65



7.4 Experiment 2: RB-EKF / Free Fall Motion

In this section the first experiment is repeated for the RB-EKF algorithm.ifiitial target
state and the initial camera parameter vector are provided to the RB-EKHtlagas in
section 7.3 since the same observation data (i.e. captured videos of tfelingetarget) is

used. At the end of 1000 throw iterations RB-EKF yields
C = [-0.0459 00265 —0.0015 00220 - 0.0105 05142 —0.0266 — 0.0071]
and also the initial target state is also estimated as
X =[0.3040 03238 11714], V =[-0.0446 —0.0441 —0.0233]

with only 0.1448 and ®693 re-projection pixel errors for Caml and Cam2 respectively.
The camera parameters are similar to the ones obtained by the R-EKF, hdhevaal
re-projection errors are much more smaller. The main reason for suchoamezluction with

the RB-EKF is that the initial target state is also estimated in addition to the cameara-par
eters. Remember that in the simulations since the initial target state was exaetly &nd
provided, R-EKF had a better performance. Unfortunately in real liéé sun exact measure-
ment seems not possible to be acquired, so in practice the RB-EKF algoribhks yuch

more dficiently.

Caml view of the 3D trajectory Camz2 view of the 3D trajectory
Original points
—e— Backprojected points g
2007 1 2007 :
150+ 1 150+
> >
100+ 1 100+
501 1 50t
0 : : : 0 : : :
0 100 200 300 0 100 200 300
u u

Figure 7.9: The extracted 2-D positions of a free falling target captuyeal siereo camera
system. The black dots denote the originally captured points and the smak desiete the
re-projected points that are obtained after 1000 throw iterations by RsepBirectional
EKF algorithm.
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Figure 7.10: Convergence of the Repeated Bidirectional EKF Algorithritiirowiterations,
(a) Rotation angles; (b) Translation parameters.
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Table 7.2: The final parameter estimates fdfedent initial positions of the calibration object
and the corresponding re-projection pixel errors after 1000 throatiters with RB-EKF.

o<t BT aZ [ B 2 | C& C)C,z CZ [err [ er®
ext | -0.05| 0.03 | 000| 0.02 | -0.01] 051 | -003| -0.01| 0.14 | 0.27
eX | -0.02| 0.05 | 002] 0.07 | 002 [ 049 | 003 | -0.02| 0.15 | 0.31
ext | -0.02| 0.00 | 0.03] 0.05 | -0.01] 052 | 0.08 | -0.02 | 0.18 | 0.46
ex* | -0.03| 0.02 | 001] 0.04 | 000 | 0.52| 0.00 | -0.02 | 0.21 | 0.42
exX | -0.02 | -0.02 | 0.00 | -0.01 | -0.02 | 0.53 | 0.00 | -0.02 | 0.37 | 0.67

The original and re-projected points are shown in Figure 7.9 and theemgamnce curves of

the RB-EKF algorithm are plot in Figure 7.10. For the additional four exasnplevhich the

target is initiated from dferent places in the joint-FOV of the cameras while the cameras are

kept fixed, the RB-EKF results after 1000 throw iterations are summariZéahie 7.2. The
re-projection pixel errors are on the order a2 8 0.5 pixels and it should be noted that part
of it is caused by the internal calibration error. The calibration paramatersbtained as

expected and the parameter estimations fietent examples are nearly equal to each other.

7.5 Experiment 3: RB-EKF / Ballistic Motion

In this experiment a ballistic trajectory is used for calibrating the two cametamyiastead
of a free fall motion. The cameras are kept fixed at their parallel pasdsscribed in section
7.3. Since the calibration target is thrown into the joint camera FOV, the initigigposind
velocity of the target are not known approximately as in the previous dasethey can only

be roughly guessed by the operator.

Since the cameras are placed in a parallel position with half a meter distanaehdtvem,
the calibration parameters are approximately known in our example. Howéegrthe cam-
eras are placed in an obscure manner with rotation and translation in atiatiset¢he oper-
ator may not be able to provide the initial estimation for the camera poses aatacas we
have done until now. In this experiment we observe the performance GBREKF algo-
rithm when the initial estimates for the target state and camera parameters previged

precisely.

The initial estimate for the camera orientations and target state is assumed twiolegiby

the operator by only looking at the camera poses and calibration framesaWeestimated
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the initial target state roughly by looking at the calibration frames as
Xo=[-0250 1], Vo=[1 2 1T .

It is a reasonable assumption that human eye may predict the rotation asldttcamparam-
eters with less than.B rad, and b m errors. So the camera parameters are distorted by that

amount and the initial parameter estimate vector is provided as
Co=[0.5 05 05 05 05 0 05 05]".
After 1000 throw iterations with RB-EKF method the complete state is obtained as

X

[0.0355 00733 08864], V =[1.1149 18869 07419],

C [-0.0091 00120 -0.1212 00503 01260 05158 00408 — 0.0126]

with 0.4009 and 13721 re-projection pixel errors for Cam1 and Cam2. Note that all of the
camera parameters are obtained as expected. One can argu8.124f2 and QL.260 values
are too high because their expected value is approximately zero. Hosiewer-x-z rotation
is used,a® andI'® terms both correspond to the rotations aroasakis. Sincgs® is also
approximately zero, these0.1212 and (L260 terms nearly cancel each other validating the

parallelism of the cameras.

The original and re-projected points are shown in Figure 7.11 and themnce curves of

the RB-EKF algorithm are plot in Figure 7.12.

Caml view of the 3D trajectory Cam2 view of the 3D trajectory
Original points
—o— Backprojected points .
2001 A 2007
150 15071
> >
100r 1001
50 50
0 : : 0 : : :
0 100 200 0 100 200 300
u u

Figure 7.11: The extracted 2-D positions of a ballistically moving target cegtoy a stereo
camera system. The black dots denote the originally captured points and theisctes
denote the re-projected points that are obtained after 1000 throw iterhtidRspeated Bidi-
rectional EKF algorithm.
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Figure 7.12: Convergence of the Repeated Bidirectional EKF Algorithrithwrowiterations,
(a) Rotation angles; (b) Translation parameters.
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7.6 Experiment 4: Perpendicular Camera Placement

Up to now the experiments are performed to calibrate two cameras which aexplaa
parallel configuration. Such a placement is not only quite useful foeatanaging, but
it also helps us to verify the trustiness of our algorithm since the actual eaposes are
approximately known. However the proposed method is not limited to calibratatheras
that are placed in parallel orientation. In this part we calibrate a two caretrg when the
cameras are placed on the diagonal corners of a square with 1 metdeegdtieand Cam1
is rotated 90 degrees around y-axis with respect to the basis coordiaate &s shown in

Figure 7.13.

Cam?2

1m Caml

Figure 7.13: The cameras are placed at the diagonal corners of ie sgjtta 1 meter edge
length.

We have estimated the initial target state roughly as
Xo=[-1051]", Vo=[1 2 1]".

Sincez-x-z rotation is used, Camz2 rotation parameters should initially be setas —n/2,

B% =r/2,T% = /2. So the initial parameter estimate vector is provided as

Co=[00 - 101].

s
2

NI R
NI X

After 1000 throw iterations with RB-EKF method the complete state is obtained as

X

[-0.3618 —0.1101 08088]/, V =[1.4191 25723 05942,

¢ = [-0.0115 -0.0010 —1.4995 16111 15774 10100 00662 10005]

with 0.3181 and (495 re-projection pixel errors for Cam1 and Cam2 respectively. Téte fi
two elements of th€ vector,a*? andg®, are nearly zero since Cam1 is placed approximately

parallel to the ground. The orientation of Cam2 is also obtained as exp&ntgdthe 00662
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value forCf,2 seems to be alittle bit away from its expected value of zero, because theasamer
are placed nearly at the same height. Still under the disturbdifemtsesuch as air friction, lens

Caml view of the 3D trajectory Cam2 view of the 3D trajectory

- Original points

200 200

150 150

100 100

50 : 50

0 100 200 300 0 100 200 300

Figure 7.14: The extracted 2-D positions of a ballistically moving target cegtoy a stereo
camera system. The black dots denote the originally captured points and theiscles
denote the re-projected points that are obtained after 1000 throw iterbtidRspeated Bidi-
rectional EKF algorithm.

distortion and pixel errors the obtained results are successful ebpatitne re-projection

pixel error sense.

The original and re-projected points are shown in Figure 7.14 and thegsnce curves of

the RB-EKF algorithm are plot in Figure 7.15.
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Figure 7.15: Convergence of the Repeated Bidirectional EKF Algorithritiwrowiterations,
(a) Rotation angles; (b) Translation parameters.
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7.7 Experiment 5: Arbitrary Camera Placement

In many practical applications the cameras may be placed arbitrarily and it engyite
difficult to provide the initializing parameters of the EKF accurately. Even thougmttial
state is not known it should be predicted by the operator to prevent thek¥Bto converge

to a local minimum solution which may be a wrong result. If the initial estimates for the
target state and camera parameters are given in a wrong manner, the fjltevenadiverge.

Therefore at least a rough estimate of the super-state should be @ avitdkly.

Cam1 view of the 3D trajectory Cam?2 view of the 3D trajectory
20071 2007
150+ 150+
> >
100+ 100+
501 — : 50t
Original points
—o— Backprojected points
0 : : : 0 : : :
0 100 200 300 0 100 200 300
u u

Figure 7.16: The extracted and re-projected 2-D positions of a ballisticaliynmdarget
captured by two arbitrarily placed cameras. The black dots denote theadgiaptured
points and the small circles denote the re-projected points that are obtéieetiddO throw
iterations by Repeated Bidirectional EKF algorithm.

In this part we place the cameras arbitrarily and give the initializing state estimagély
to the RB-EKF. No measuring device is used to obtain the initial state estimatebyJust

observing the thrown target and the camera system, the initial state estimawicsguras
Xo=[-1051]", Vo=[1 2 1]".

Co=[00 - 10 1].

il
2

NI X
NI X

After 1000 throw iterations the RB-EKF algorithm yields the initial target statetha cali-

bration parameter estimates as
X = [-0.2721 01341 06719, V =[0.7714 32010 04417],

C = [-0.3754 —0.3214 —1.3230 11549 13321 08160 04710 07604 .

74



- - —estimate ||

400 600 800 1000
Throw lIterations

@

1200

400 600 800 1000
Throw Iterations

(b)

1200

Figure 7.17: Convergence of the Repeated Bidirectional EKF Algorithritiiowiterations,
(a) Rotation angles; (b) Translation parameters.
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The re-projection pixel errors are0P63 and 122239 for Caml1 and Cam2 respectively. The
original and re-projected points are shown in Figure 7.16 and the aves curves of the
RB-EKF algorithm are plotin Figure 7.17. Note that the target is thrown witrerttoust than
expected, so at the highest position it stays out of the FOV of Cam2. Headmjectory is
not fully captured by Cam2. Anyway, those unobserved frames adidthhy only executing
thepredictionsteps but not thapdatesteps of the EKF algorithm given in Table 3.1. So even
when the calibration target is unobservable in some of the frames, thesgwpaethod can

still be efectively used.

In this experiment we have shown that when the initial target state and theacanenta-
tion vector for an arbitrary placement of the cameras are initialized by ordgreimg the
system (without using any measurement device), RB-EKF method can yelchtiration
parameters as well as the initial target state. Additionally even when the ¢albcdbject
is unobservable in some of the frames, our method can still be used fortiimatisn of the
parameters by only executing thesdictionstep of the EKF algorithm for those unobserved

frames.

7.8 Experiment 6: Using Multiple Trajectories for Arbitrary C amera Place-

ment

The physical experiments with a multi camera setup are finally concluded witfirthisal-

ibration performance of the RB-EKF by using multiple target trajectories. stinee camera
configuration as in section 7.7 is kept and two additional target trajectoresagtured for
calibration. The initial estimate for the first target and the camera parameter aee set as
in section 7.7. For the initial states of the additional two trajectories, the folloestighates

are used to initialize the EKF:

X2 = 1051, VE=[-12-1],

Po
o
Il

[-1 05 1", Vg=[1 2 1"

The target trajectories are alternately used for calibration and after 89 tterations for
each trajectory (i.e. a total of 900 throw iterations) the RB-EKF algorithm gitlld camera

parameters as

C = [-0.3795 —0.3144 —1.3250 11665 13336 08276 04712 07828
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and also the initial target state estimates for each throw as

[-0.2755 01320 06776], Vit =[0.7798 31949 045777,

>
=
1l

<
I

[0.4228 01714 09674] , Vit =[-1.2062 31798 — 0.2982]

Xts = [-0.0309 05113 07266], Vb =[0.5964 08585 11182] .

The average re-projection pixel errors ar@®l3 and 15296 for Cam1 and Cam2 respectively.
The original and re-projected points for all three trajectories are shhowigure 7.18 and the
convergence curves of the RB-EKF algorithm are plot in Figure 7.1%Mihe re-projection
pixel errors are compared with the ones in section 7.7 there seems to be ngempent over
using a single trajectory. However as shown in section 6.5 even if the ppakeare not
reduced by using multiple trajectories, the obtained estimates for the camanagpars can
be much more accurate than a single throw case, because much more caliboatis are

used for pose estimation.

As a final comment, note that only 9 observation points are provided by tbadérajectory
as shown in Figure 7.18(b). Such less data alone can normally notimEesu for accurate
parameter estimation. However many other data points are also providechwitigpie tra-

jectories are used for calibration, hence the trajectories for which esvydata points are

acquired may also be used to increase accuracy.

7.9 Discussion on Physical Experiments

In this chapter after the components of our multi-camera setup are desanbdeititernal
parameters of the cameras are obtained by MATLAB Calibration Toolboysigdl experi-
ments are performed to demonstrate the practical usability of the proposeihaits. After
performances of the R-EKF and RB-EKF are compared by using a dilregftarget, RB-
EKF method is tested for various positions of the cameras by either usingl@ singultiple

ballistic trajectories.

First two experiments show the superiority of RB-EKF over R-EKF in theseire-projection
pixel errors. R-EKF performance relies on the accurate initialization ofaiget state. Un-

fortunately the initial target state can not be measured exactly even fee dditing target,
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Figure 7.18: The extracted and re-projected 2-D positions of three balligticoving targets
captured by two arbitrarily placed cameras. The black dots denote theadgiaptured
points and the small circles denote the re-projected points that are obtéieeti®0 throw
iterations by Repeated Bidirectional EKF algorithm for the (a) first; (bpsdand (c) third

trajectories.
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Figure 7.19: Convergence of the Repeated Bidirectional EKF Algorithritiirowiterations,
(a) Rotation angles; (b) Translation parameters.
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because the camera capturing and target initiation instants can not besynretl and hence
the velocity of the target is not exactly equalﬁicm/s when the first frame is captured. Ad-
ditionally the metric measurements for acquiring the target position w.r.t the centee
first camera can only be performed from the outer core of the camera Bulke the initial
target state can be estimated accurately by RB-EKF method, calibration persiae also

estimated more accurately.

The RB-EKF is tested by using a single ballistic trajectory for parallel, pefipatar and
arbitrary placement of the cameras in sections 7.5, 7.6 and 7.7. Thus thelitamwf the
proposed method is presented by investigating the calibration performaitioe agorithm
with various camera poses. In all of these experiments final estimates daflitbeation pa-
rameters satisfy our expectations. Especially section 7.7 proves the aragjpdicability of
the algorithm since the poses of arbitrarily placed cameras are estimatedsudy by using

partial observation of the target trajectory.

Finally multiple target trajectories are used for increasing the calibratiomamcin section
7.8. Although the re-projection pixel error is not reduced compareditigéedrajectory case,

the estimations are expected to be more accurate as shown in 6.5.

In conclusion physical experiments demonstrate that the ease of applicabttitthe suc-
cessful calibration performance of the RB-EKF method makes it particubemgeficial for
any application where frequent re-calibration is required such as oufigdd measurement

applications using multiple-cameras.
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CHAPTER 8

Conclusions and Future Work

We propose a procedurallyfective and high performance method of calibrating a multiple-
camera measurement system by making use of the known dynamics of aotajeygt The
proposed method promises to considerably facilitate the field installation of aadased
ground truth measurement system. In fact it needs only a ballistically thriomgiescalibra-
tion target in the multi-camera joint-FOV to calibrate the complete system. Extenstba of
two camera case considered for the formulation to a multi-camera system isitstnaigrd

in two ways: first, we can either insert the calibration parameters and ne@asots taken
from the additional cameras into the state and measurement vectors and akgtithm as

it is, or we can calibrate the cameras two by two, i.e., Can2l Caml- 3, Caml- 4, etc.
The latter approach may be more feasible since it does not increase thesidinadity of the

problem.

The simulation results validate that both R-EKF and RB-EKF algorithms carecgavapidly
and asymptotically yield the desired camera parameters. However forssfidogalibration
R-EKF needs an accurate estimate of the initial target state which is gffiteillito obtain
in a real case. On the other hand RB-EKF can tolerate significant initial whatertainty
when sifficient number othrow iterationsare performed. This removes the need for man-
ual geometric measurements performed by the experimenter (such as 8@2Bpondence
measurements) and hence results in the removal of the human related mmest@eors that
can dfect the calibration process. Although our primary motivation is to generagasity
applicable and fast calibration algorithm but not to surpass the perfoasasf the standard
methods we feel that the eliminated human factor may enable us to get supdiboaton
performance in practice compared to the methods that need 3D-2D curdesce measure-

ments.
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The testing of the algorithms on a real imaging system shows that RB-EKF medimolole
successfully used for determining the external poses of the cameras ilti-@amera setup.
The cameras are placed in parallel, perpendicular and arbitrary positionder to test the
RB-EKF method for free fall and ballistic motion cases by either using a singheuttiple
target trajectories. In all of the physical experiments the calibration paeasrere estimated

around their expected values.

Although re-projection pixel error is used to demonstrate the successfraie method one
should not forget that pixel error is computed on the 2D image plane, asddt always
proportional with the actual 3D position errors. Our method tries to balarcetbrmation
coming from the dynamic motion model with the information due measurements. Some of
the present methods only use the measurements obtained from a staticreteniaiaize

the re-projection pixel error in order to calibrate a camera setup. Herecevehen RB-EKF
yields higher re-projection pixel errors compared to these algorithmsctbelgoses of the
cameras may still be estimated better. Moreover the presence of procesgeasurement
noise terms in the EKF algorithm compensate for modeling errors and unknpwis to the
system, reducing the sensitivity to such factors as wind disturbance, inoé&gge ball center

detection errors etc.

An interesting extension to our study is to provide a full calibration (both iatennd external)
by means of the proposed method. Even though internal calibration dbbavethe same
speed requirements of the external calibration and hence is not a crdin@idate for this
method, these static internal parameters can also be made part of the satavéobtained
similar to the external parameters. But it is clear that with the increasing dinmatisjoof

the problem, the convergence properties of EKF may change for the wotsrms of speed,

accuracy and stability.

82



REFERENCES

[1] I. Kakadiaris and D. Metaxas, “Model-Based Estimation of 3D Humaridmg' 2000.

[2] DM Gavrila and LS Davis, “3-D model-based tracking of humans in acti@n
multi-view approach,” Computer Vision and Pattern Recognition, 1996. Proceedings
CVPR’96, 1996 IEEE Computer Society Conferencgopn73—80, 1996.

[3] J.M. Rehg and T. Kanade, “Visual Tracking of High DOF ArticulateduStures: an
Application to Human Hand TrackingECCV(2) pp. 3546, 1994.

[4] R. Stolkin, A. Greig, and J. Gilby, “A calibration system for measuriigddound truth
for validation and error analysis of robot vision algorithmslgasurement Science and
Technologyvol. 17, no. 10, pp. 2721-2730, 2006.

[5] V. Lippiello, B. Siciliano, and L. Villani, “3D pose estimation for robotic digations
based on a multi-camera hybrid visual systefrbdceedings of 2006 IEEE International
Conference on Robotics and Automatipp. 2732—-2737, 2006.

[6] Vicon MX Motion Capture Systems, “httfiwww.vicon.conmiproductgviconmx.html,”
(accessed August 19, 2008).

[7] R. Hartley and A. Zissermariyiultiple View Geometry in Computer Visio@ambridge
University Press, 2003.

[8] F. Remondino and C. Fraser, “Digital camera calibration methods:iderdions and
comparisons,Proc. ISPRS Commission V Symposipm 266—272, 2006.

[9] U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A Simple and Hygklobile
Hexapod Robot,”The International Journal of Robotics Researehl. 20, no. 7, pp.
616, 2001.

[10] C. Everitt, “Projective Texture MappingWhite paper, NVidia Corporatiqr2001.
[11] J. Bloomenthal and J. Rokne, “Homogeneous Coordinates,”.1993

[12] YI Abdel-Aziz and HM Karara, “Direct linear transformation frororoparator coordi-
nates into object space coordinates in close-range photogramnitwggedings of the
Symposium on Close-Range Photogrammeipy 1-18, 1971.

[13] KW Wong, “Mathematical formulation and digital analysis in close-rapgetogram-
metry,” Photogrammetric Eng. Remote Sensivig. 41, no. 11, pp. 1355-1373, 1975.

[14] W. Faig, “Calibration of close-range photogrammetry systems: Mattieahéormula-

tion,” Photogrammetric Engineering and Remote Sensiog 41, no. 12, pp. 1479—
1486, 1975.

83



[15] J. Weng, P. Cohen, and M. Herniou, “Calibration of stereo casnesang a non-linear
distortion model [CCD sensory]Pattern Recognition, 1990. Proceedings., 10th Inter-
national Conference qgrvol. 1, 1990.

[16] R.Y. TSAI, “A Versatile Camera Calibration Technique for High-Acacy 3D Machine
Vision Metrology Using @f-the-Shelf TV Cameras and LenseRadiometry1992.

[17] J. Weng, P. Cohen, and M. Herniou, “Camera Calibration with Distotimdels and
Accuracy Evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gencevol. 14, no. 10, pp. 965-980, 1992.

[18] G.Q. Wei and S. De Ma, “Implicit and explicit camera calibration: theamg experi-
ments,” Pattern Analysis and Machine Intelligence, IEEE Transactionsvoh 16, no.
5, pp. 469-480, 1994.

[19] Z. Zhang, “A flexible new technique for camera calibratiorRattern Analysis and
Machine Intelligence, IEEE Transactions,aml. 22, no. 11, pp. 1330-1334, 2000.

[20] J. Bastian and A. van den Hengel, “Computing Image-Based RegimjeError on
Graphics Hardware,Proc. VIIth Digital Image Computing: Techniques and Applica-
tions, 2006.

[21] J. Heikkila and O. Silven, “A four-step camera calibration procedwith implicit im-
agecorrection,” Computer Vision and Pattern Recognition, 1997. Proceedings., 1997
IEEE Computer Society Conference pp. 1106-1112, 1997.

[22] P. Sturm and S. Ramalingam, “A generic concept for camera calibratiBuropean
Conference on Computer Visiovol. 2, pp. 1-13, 2004.

[23] Camera Calibration Toolbox for MATLAB, “httpwww.vision.caltech.edbouguetj
calib.dog,” (accessed August 19, 2008).

[24] F. Pedersini, A. Sarti, and S. Tubaro, “Multi-camera syster8gjhal Processing Mag-
azine, IEEE vol. 16, no. 3, pp. 55-65, 1999.

[25] S. Ganapathy, “Decomposition of transformation matrices for rolsb,” Robotics
and Automation. Proceedings. 1984 IEEE International Conferenceainl, 1984.

[26] C. Wiles and A. Davison, “Calibrating a Multi-Camera System for 3D Mlbalg,”
Proceedings of the IEEE Workshop on Multi-View Modelling and Analysissofal/
Scenespp. 29-36, 1999.

[27] 1.O. Sebe and G.Q. Chen, “Multi-camera Calibration,” Tech. RepMiSioelectronics
Technical Report, 2002.

[28] M. Han and T. Kanade, “Creating 3D models with uncalibrated caniefgmplications
of Computer Vision, 2000, Fifth IEEE Workshop,qp. 178-185, 2000.

[29] T. Svoboda, D. Martinec, and T. Pajdla, “A Convenient Multicameedf-Calibration
for Virtual Environments,” Presence: Teleoperatos Virtual Environmentsvol. 14,
no. 4, pp. 407-422, 2005.

[30] H.G. Maas, “Image sequence based automatic multi-camera systenatatittech-
niques,” ISPRS Journal of Photogrammetry and Remote Sengoig54, no. 5-6, pp.
352-359, 1999.

84



[31] P. Baker and Y. Aloimonos, “Complete calibration of a multi-camera né&yvad@mni-
directional Vision, 2000. Proceedings. IEEE Workshopmm 134-141, 2000.

[32] B. Moghaddam et al.Probabilistic visual learning for object detectipriPh.D. thesis,
Massachusetts Institute of Technology, Dept. of Electrical EngineeridgComputer
Science, 1997.

[33] CP Papageorgiou, M. Oren, and T. Poggio, “A general franke¥ay object detection,”
Computer Vision, 1998. Sixth International Conferencepm 555-562, 1998.

[34] C. Papageorgiou and T. Poggio, “A Trainable System for Objete&ion,” Interna-
tional Journal of Computer Visigrvol. 38, no. 1, pp. 15-33, 2000.

[35] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-BasgdddDetection in Im-
ages by Components,” 2001.

[36] S. Agarwal and D. Roth, “Learning a sparse representatiooljact detection,Proc.
ECCV, vol. 4, pp. 113-130, 2002.

[37] P. Viola and M. Jones, “Rapid object detection using a boostecdasaf simple fea-
tures,” Proc. CVPRvol. 1, pp. 511-518, 2001.

[38] P. Viola and M. Jones, “Robust real-time object detectioimternational Journal of
Computer Visionvol. 57, no. 2, pp. 137-154, 2002.

[39] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysfisietection cascades
of boosted classifiers for rapid object detectioDAGM 25th Pattern Recognition Sym-
posium pp. 297-304, 2003.

[40] K. Levi and Y. Weiss, “Learning object detection from a small numiieexamples:
The importance of good featurestoc. CVPRvol. 2, pp. 53-60, 2004.

[41] H. Schneiderman and T. Kanade, “Statistical method for 3 D objeetten applied to
faces and cars,Proc IEEE Comput Soc Conf Comput Vision Pattern Recognitioh
1, pp. 746-751, 2000.

[42] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and MaggSLAM):
Part | The Essential AlgorithmsRobotics and Automation Magazinel. 13, pp. 99—
110, 2006.

[43] T. Bailey and H. Durrant-Whyte, “Simultaneous Localisation and MaggSLAM):
Part Il State of the Art,” Robotics and Automation Magazineol. 13, pp. 108-117,
2006.

[44] L. Lee, R. Romano, and G. Stein, “Monitoring activities from multiple wictreams:
establishing a common coordinate fram&EE Transactions on Pattern Analysis and
Machine Intelligencevol. 22, no. 8, pp. 758-767, 2000.

[45] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibration aacking with a
network of non-overlapping sensors&;omputer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conéeoaneol. 1.

[46] B. Bose and E. Grimson, “Ground plane rectification by tracking ngwhbjects,”
IEEE International Workshop on Visual Surveillance and PEA®3.

85



[47] C. Stadfer and K. Tieu, “Automated multi-camera planar tracking correspondende mo
eling,” Computer Vision and Pattern Recognitjqgp. 259-266, 2003.

[48] A. Azarbayejani and A.P. Pentland, “Recursive estimation of motbmicture, and
focal length,” IEEE Transactions on Pattern Analysis and Machine Intelligewod
17, no. 6, pp. 562-575, 1995.

[49] F.M. Mirzaei and S.I. Roumeliotis, “A Kalman filter-based algorithm fistlU-camera
calibration,” Intelligent Robots and Systems, 2007. IROS 2007. lR&EInternational
Conference onpp. 2427-2434, 2007.

[50] E. Stringa and C.S. Regazzoni, “A novel camera calibration algotidsed on Kalman
filter,” Proceedings of 15th International Conference on Pattern Recognpit@nl, pp.
872-875, 2000.

[51] Rudolph Emil Kalman, “A new approach to linear filtering and predictioobems,”
Transactions of the ASME—Journal of Basic Engineenirgd. 82, no. Series D, pp. 35—
45, 1960.

[52] T. PAEK and D.M. CHICKERING, *“Evaluating the Markov assumptionNtarkov
Decision Processes for spoken dialogue managemeahgjuage resources and evalu-
ation, vol. 40, no. 1, pp. 47-66, 2006.

[53] Y. Bar-Shalom, X.R. Li, and T. Kirubarajari:stimation with applications to tracking
and navigation Wiley New York, 2001.

[54] S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics (Intetgy Robotics and
Autonomous Agents),” 2005.

[55] G. Welch and G. Bishop, “An Introduction to the Kalman FiltekCM SIGGRAPH
2001 Course Note2001.

[56] D.C. Brown, “Close-range camera calibratioPhotogrammetric Engineeringol. 37,
no. 8, pp. 855-866, 1971.

86





