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Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Aydın Alatan
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Bŭgra Koku
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ABSTRACT

EFFICIENT CALIBRATION OF A MULTI-CAMERA MEASUREMENT SYSTEM
USING A TARGET WITH KNOWN DYNAMICS

Aykın, Murat Deniz

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Afşar Saranlı

August 2008, 86 pages

Multi camera measurement systems are widely used to extract information about the 3D con-

figuration or “state” of one or more real world objects. Camera calibration isthe process of

pre-determining all the remaining optical and geometric parameters of the measurement sys-

tem which are either static or slowly varying. For a single camera, this consistof the internal

parameters of the camera device optics and construction while for a multiple camera system,

it also includes the geometric positioning of the individual cameras, namely “external” pa-

rameters. The calibration is a necessary step before any actual state measurements can be

made from the system. In this thesis, such a multi-camera state measurement system and in

particular the problem of procedurally effective and high performance calibration of such a

system is considered.

This thesis presents a novel calibration algorithm which uses the known dynamics of a bal-

listically thrown target object and employs the Extended Kalman Filter (EKF) to calibrate the

multi-camera system. The state-space representation of the target state is augmented with the

unknown calibration parameters which are assumed to be static or slowly varying with respect
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to the state. This results in a “super-state” vector. The EKF algorithm is usedto recursively

estimate this super-state hence resulting in the estimates of the static camera parameters. It is

demonstrated by both simulation studies as well as actual experiments that whenthe ballistic

path of the target is processed by the improved versions of the EKF algorithm, the camera cal-

ibration parameter estimates asymptotically converge to their actual values. Since the image

frames of the target trajectory can be acquired first and then processed off-line, subsequent

improvements of the EKF algorithm includerepeatedandbidirectional versions where the

same calibration images are repeatedly used. Repeated EKF (R-EKF) provides convergence

with a limited number of image frames when the initial target state is accurately provided

while its bidirectional version (RB-EKF) improves calibration accuracy by also estimating

the initial target state.

The primary contribution of the approach is that it provides a fast calibration procedure where

there is no need for any standard or custom made calibration target plates covering the ma-

jority of camera field-of-view. Also, human assistance is minimized since all frame data is

processed automatically and assistance is limited to making the target throws. Thespeed of

convergence and accuracy of the results promise a field-applicable calibration procedure.

Keywords: Calibration and Identification, Visual Tracking, Dynamics.
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ÖZ

ÇOK KAMERALI B İR ÖLÇÜM SİSTEMİNİN BİL İNEN DİNAM İĞİ OLAN BİR HEDEF
İLE KAL İBRE EḊILMESİ

Aykın, Murat Deniz

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Afşar Saranlı

Ağustos 2008, 86 sayfa

Çok kameralı sistemler bir veya birden çok objenin 3 boyutlu konfigürasyonu ya da “durum”

kestirimi ile ilgili bilgi elde etmek amacıyla sıklıkla kullanılmaktadır. Kamera kalibrasyonu

statik ya da yavaş değişen optik ve geometrik parametrelerinönceden belirlenmesidir. Kalib-

rasyon tek bir kamera için, kameranın yapımı ve optiği ile ilgili iç parametrelerin belirlenme-

sine karşılık gelirken, çok kameralı bir sistemde kameraların birbirlerine göre pozisyonlarının

kestirimini, yani “dış” parametre kestirimini de içermektedir.Ölçüm sistemi ile durum kesti-

rimi yapabilmek için kalibrasyon gerekli vëonemli bir adımdır. Bu tezde çok kameralı bir

ölçüm sistemi ile bu sistemin ÿontemsel olarak etkin ve yüksek performanslı kalibrasyonu

problemi incelenmiştir.

Bu tez kapsamında balistik olarak fırlatılan bir objenin bilinen dinamiğinin genişletilmiş

Kalman Filtresi (EKF) yardımıyla çok kameralı bir sistemin kalibrasyonu için kullanılması

önerilmiştir. Hedef objenin dinamiğinin durum-uzayı g̈osteriminin bilinmeyen statik ya da

yavaş dĕgişen kamera parametreleri ile genişletilmesiyle “süper durum vekẗorü” elde edilir.

EKF durum kestirme algoritması süper durum vekẗorünün tahmin edilmesi için kullanılmakta
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ve b̈oylece bilinmeyen kamera parametreleri de hesaplanmaktadır. Yapılan simülasyon çalış-

maları ve gerçek deneyler hedefin ballistik yörüngesininönerilen iki yeni EKF algoritması

ile işlenmesi sonucunda kamera kalibrasyon parametrelerinin gerçek değerlerine sonuşurda

kararlı bir şekilde yakınsadığını g̈ostermiştir. Kalibrasyon için gerekli olan görüntüler elde

edildikten sonra çevirim dışı bir şekilde işlenmeleri mümkün oldŭgundan, aynı g̈orüntülerin

defalarca kullanıldı̆gı özyinelemelive iki yönlü EKF versiyonlarıönerilmiştir. Özyinelemeli

EKF (R-EKF) hedef objenin ilk durum vektörü dŏgru olarak verildĭginde parametrelerin

sınırlı bir sayıda g̈orüntü karesi kullanılarak yakınsamasını sağlarken iki ÿonlü özyinelemeli

EKF (RB-EKF) ise parametre kestiriminin yanı sıra ilk durum vektörünün de kestirimini

gerçekleştirdĭginden daha dŏgru sonuç elde edilmesini sağlamaktadır.

Önerilen algoritmanın en büyük katkısıönceden hazırlanmış desenli bir plakanın kameraların

çoğunlŭgunun g̈orüş alanını kapsayacak şekilde hizalanması gerekmeden hızlı ve kolay uygu-

lanabilir bir kalibrasyon prosedürü săglamasıdır. Ayrıca kalibrasyon karelerinin otomatik

işlenmesi, insan desteğinin sadece hedef fırlatma ile sınırlanmasını sağlamıştır. Dŏgru ve

hızlı bir şekilde sonuç̈uretilmesi algoritmanın sahada uygulanabilir bir yöntem oldŭgunu

göstermiştir.

Anahtar Kelimeler: Kalibrasyon ve Tanımlama, Görselİzleme, Dinamik Hareket.

vii



To my loving mother
and to the memory of my beloved father

viii



ACKNOWLEDGMENTS

I would like to express my deep and sincere gratitude to my supervisor, Professor Afşar
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CHAPTER 1

Introduction

1.1 General

The use of a multi-camera setup to extract information about both static and dynamic 3D

configuration (state) of real world objects is an important problem of 3D vision [1, 2, 3]. In

the particular application case of robot vision, the cameras may be part of arobotic platform

(such as a mobile robot, unmanned aerial, land or underwater vehicle) andthe state in ques-

tion may belong to the platform in motion. Alternatively, the camera setup may be mounted

externally as a measurement setup to externally measure the robot body statewith high preci-

sion [4, 5]. The increase in precision is due to the possibility of off-line processing of data as

well as abundance of computational hardware as compared to the case ofbeing on a moving

platform. Commercial multi-camera ”motion capture” systems exist for this latter problem of

precise robot body state measurement [6]. All of these systems necessarily require steps for

calibration, namely the derivation of the internal parameters of each camerainvolved (internal

calibration) as well as the parameters of the geometric arrangement of thesecameras (external

calibration) [7]. The collection of these calibration parameters characterize everything in the

measurement setup and they can be used to extract the actual measurementvariables (e.g. the

3D position of an external object).

Internal and external parameters show different characteristics with respect to rate of change

or sensitivity to external disturbances. In general, camera itself is a rigidlyconstructed object

and hence the internal parameters of the camera is more robust as compared to the external

parameters. Given that the internal calibration parameters are obtained atlow and medium

accuracy levels temporal variations in these parameters for consumer-grade cameras are gen-
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erally not significant [8]. Therefore, a procedurally efficient and fast method for the internal

calibration is not considered critical since it is usually performed per camera and can remain

valid for a long time. On the other hand, the external calibration, which characterizes the geo-

metric arrangement of the individual cameras, is much less robust and hasto be repeated every

time the arrangement of the cameras is changed. For some applications where the cameras are

mounted permanently, e.g. in a laboratory setup, these are much less prone todisturbances

and a slow and manual calibration may be tolerated. For some other applicationssuch as in

robotics and for experimental measurements in the field, the situation is significantly different.

A multi-camera setup in this case is often constructed on tripods and specificallyto conduct

one particular set of experiments. The setup is open to disturbances due tothe field conditions

such as loose ground, wind, accidental bumping to the tripods and similar. Inthese circum-

stances, the re-calibration of the setup may be necessary on a much more frequent basis and

the re-calibration effort may constitute a large percentage of the experimental effort. This is

clearly undesirable.

In our considered application problem, a multi-camera setup is deemed necessary to measure

the body-state of an experimental hexapod platform: RHex [9]. Such a system is critical

for good experimental practice with aim of generating ground truth data forthe evaluation

of the on-board state estimation, control and navigation algorithms. Since computationally

more complex off-line state estimation algorithms can be used on an external system, those

estimates can generally be considered as ground truth as compared to whatcan be achieved

on-board.

RHex is a robotic platform claiming outdoor mobility on complex terrain. Advancingthe state

of research on this platform demands field experimentation in various environments. This is

opposed to many mobile robotics platforms constrained to laboratory environment where a

fixed measurement setup can be affordable. The application demands a fast and procedurally

efficient calibration process (procedure and algorithm) since the cameras are to be carried

to the site and suitably located for each experiment. There is high probability that a natu-

ral disturbance may move the setup and render the external calibration invalid. In each such

occurrence, the external calibration has to be repeated, making ease ofcalibration procedure

critical. If the calibration have to be performed frequently one needs an efficient calibration

method that is both computationally fast but which also requires minimal human effort, e.g.,

by requiring minimal materials and special equipment such as specially built calibration pan-
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els. The design of such a calibration method with competent calibration performance is the

focus of the present thesis.

1.2 Scope and Contribution of the Thesis

In this thesis, a novel calibration algorithm for obtaining the external parameters of a camera

setup is presented. The method uses the known dynamics of a target objectfor calibration.

The aim is to exploit this extra knowledge about an easy to use target objectto minimize the

calibration effort and provide a fast and procedurally efficient technique. It is claimed that the

proposed method is particularly beneficial for any application where frequent re-calibration

is required such as outdoor field measurement applications using multiple-cameras.

In this thesis, we assume that a set of cameras, whose internal parametersare known apriori,

are placed and oriented such that the required measurement area is within the overlapping

section of the field-of-views (FOV) of all cameras. It is further assumedthat their resulting

external calibration parameters are to be determined. The motivation of the present work

suggests that an easy to carry rigid target and simple to generate 3D motion withwell known

dynamics can be used to generate the calibration data set. A feasible example isa small rigid

ball with well defined color and suitable mass which is ballistically thrown within the camera

joint FOV. In 3D space, the motion of this ball is fully described by Newton’s equations of

motion. Assuming that wind and other secondary disturbances are negligable, the dynamics

of this motion can therefore be modeled with good accuracy.

It is the claim and contribution of the present thesis that given enough calibration data (in the

form of camera frames from all involved cameras) the repeated and bidirectional extensions

of the EKF algorithm asymptotically converge to the estimates of the camera calibration pa-

rameters. We claim that standard EKF can provide usable estimates if there are large number

of image frames while the proposed extensions can generate these estimates with much less

number of image frames. The repeated use of the calibration data (R-EKF) provides conver-

gence while its repeated and bi-directional use (RB-EKF) further improves the accuracy of

the estimates.

The Kalman framework takes into account the process and observation noises such as wind

effect and pixel errors. We also demonstrate that the RB-EKF version can tolerate significant
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uncertainty in the initial state of the target (i.e. the initial position and velocity of thetarget).

It should also be pointed out that despite our focus being on the use of theball’s motion to

find the external calibration parameters of the camera setup, it is observedthat an interesting

complementary problem is also solved, namely that of estimating the state of a target with

known dynamics with an uncalibrated camera setup.

At this point it should be stated that the proposed method is not limited to the present applica-

tion scenario and can be extended to other areas: E.g., with the growing interest in 3D-TV, 3D

multi-camera capture of sports events becomes important, requiring the external calibration

of the camera setup. Due to the existence of a well defined ball, which followsa ballistic

path, in most competition games (tennis, football, basketball, etc.), the method presented here

is directly applicable.

1.3 Outline of the Dissertation

The motivation and the context for this work together with the main contributions are pre-

sented in Chapter 1. Chapter 2 summarizes the state of the art relating to algorithms for

internal and external calibration and also relating to basic video tracking methods. Chapter 3

focuses on the Kalman framework and the Extended Kalman Filter (EKF) and the usage in si-

multaneous state and parameter estimation (SSPE) problems. The definition of theconsidered

calibration problem within an EKF framework and the augmentation of the targetstate with

the unknown camera parameters to form the ”super-state” is presented in Chapter 4. Chapter

5 presents the two approaches proposed for estimating the complete state with alimited num-

ber of measurement data, namely the R-EKF and RB-EKF algorithms. Chapter6 and Chapter

7 presents the results of the experiments which are performed to evaluate theperformance of

the implemented calibration method, with both simulated and actual physical camera setups

and image frame data. Finally, Chapter 8 gives the conclusions of this thesis together with

possible avenues for future studies.
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CHAPTER 2

Background on Camera Calibration

In all measurement systems, the calibration of the measurement instrument is a necessary

step in order to find the transformation between the raw readings from the instrument to the

actual physical measurement variables of interest. When the state of the world or the ego-

state (state of the body on which the sensor(s) are mounted) is being measured through the

use of cameras as sensors, the system needs calibration so that the raw camera images can be

transformed into this measurement of the state. Essentially, calibration parameters can be seen

as the collection of all parameters that characterize the transformation between the raw data

from the instrument and the desired variables to be measured. Calibration is acompulsory

initial step for any measurement system including a multi-camera 3D vision system.

For the particular case of camera calibration, we are concerned with the process of estimating

the internal (intrinsic) and external (extrinsic) parameters of a camera system. The internal

parameters characterize the optical properties of the lens system in the camera as well as the

interaction of this lens system with the other components of the camera such as the sensor.

In short, it is a collection of all parameters that determine how the image is being formed

on the sensor of a single camera. External parameters on the other hand relate this camera

unit (with its internal parameters) to a global reference frame, hence represent the 3D geo-

metrical placement and orientation. If multiple cameras are involved, the external calibration

parameter set represent this geometric specification for all cameras hence also describing their

relative positions and orientations.

This chapter reviews the previous work on camera calibration and its historical evolution.

Most of the previous work focus on internal calibration techniques for asingle camera. How-

ever especially for the last two decades, the number and variety of the cameras have been
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increasing rapidly while their prices have been decreasing, making multiple camera imaging

systems more accessible to the research community. The necessity of external calibration

methods for such multiple camera setups have encouraged recent studies on this subject.

A review of the state of the art techniques is introduced first for the internal calibration of

a camera and then for the external calibration of a multiple camera network in sections 2.1

and 2.2 respectively. This is followed by an overview of object detection methods in section

2.3 which are necessary to generatefeaturesor observationsfor the calibration algorithms.

Finally the relationship between calibration and dynamic state estimation (tracking)using

Kalman Filtering is introduced in 2.4. Also in this last section, a survey of the earlier calibra-

tion methods utilizing the Extended Kalman Filter is presented.

2.1 Internal Camera Calibration

The image formation process can be seen as a mapping from the 3D world to the 2D image

plane. The usual modeling of this mapping is bycentral projective mapping. In this mapping

rays reflected from a 3D point in space is passed through a fixed point which is thecenter of

projection. The rays intersect theimage plane, which is placed at a specific distance from the

center of projection, and their intersection forms the image point. Throughout this process

involving a single camera, the depth information is lost due to the loss of one dimension.

Most cameras are modeled by the central projective mapping assumption [10]. The center of

the lens of a camera is assumed as the center of projection. A ray of light from a 3D point in

the world passes through the lens and produces an image point on a film or an opto-electronic

capturing device (i.e., imaging sensor).

Homogenous coordinates allows affine transformations to be represented by a matrix and

make calculations possible in projective space [11]. The mapping of a pointin R
3 to R

2 on

the image plane by a camera can be represented by a projection matrixP in the homogenous

coordinates. ThisP matrix can be decomposed into two matricesK representing the internal

parameters of a camera and [R | t] representing the rotation and translation between the camera

and the world coordinate frames. The transformation is given by Eqns. (2.1) and (2.2) and
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further elaborated in section 4.1.2.

x = PX (2.1)

P = K [R | t] (2.2)

Internal calibration of a camera is therefore the task of obtaining theK matrix which repre-

sents the inner characteristics of the camera. These calibration parametersare specifically

• focal length: the distance between the center of projection and the image plane,

• pixel aspect ratio: the width of a pixel divided by its height,

• principal point offset: the misplacement of the image origin,

• skew: the non-orthogonality of the camera axes.

Classic photogrammetric methods use non-linear optimization for solving all of thecalibra-

tion parameters simultaneously [12, 13, 14]. The parameter values are directly computed by a

non-iterative closed form algorithm. The algorithms are fast since no iterations are involved,

but the lens distortion can not be incorporated into these algorithms and noisymeasurements

may cause quick deterioration of performance.

More recently, two-step methods which can successfully handle lens distortions have been

proposed in the literature [15, 16, 17, 18, 19]. All of these techniques first estimate the cali-

bration parameters using a closed form solution similar to earlier methods. Then, the param-

eters are improved iteratively through nonlinear optimization, taking the lens distortion into

account.

These two-step methods make use of a special planar calibration pattern printed on a plate

and placed in the camera FOV. By the use of a planar chess-board pattern, a large number

of data points can be supplied and the algorithms yield reliable results by minimizing the

averagere-projection erroron the collection of the points. Average re-projection error can be

defined as the mean square error between the scene points visible in the actual camera and

their projection in the reference camera whose characteristics are described by the employed

camera model and the acquired calibration parameters [20].

As a further improvement to the aforementioned algorithms, a four-step calibration procedure

is suggested by Heikkilä and Silv́en [21]. The authors claim that these additional steps further
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improve the compensation for distortion and provide the necessary correction. Also a linear

method for solving the parameters of the inverse model is presented in this work.

The suggested algorithm given in [22] aims to generalize the camera model, and in particular,

try to provide a solution for cameras which do not have a single effective viewpoint (termed

asnon-central camerasby the authors). To achieve this goal, a very general mapping between

rays and pixels is used instead of acentral projection mapping.

A recent survey summarizes the current approaches on camera calibration and present a com-

parison of different algorithms [8]. The efficiency of the bundle adjustment techniques are

presented with experimental results.The changing profiles of the radial distortion for different

color channels is also discussed.

The calibration methods which are proposed by Tsai [16] and Zhang [19] are widely accepted

and popularly used for computer vision. Although these two-step methods are primarily inter-

nal calibration methods, it is suggested that they can be extended for calibrating the external

parameters as well. However, these extensions for calibrating a camera network are subject

to practical difficulties. This is due to the fact that successful external calibration requires

that multiple different orientations of a 2D planar calibration pattern to be viewable from the

joint-FOVs of all cameras in the network. Indeed, such a pattern can be seen from two (or

more) different cameras only if both cameras are placed on the same side of the plane.Fur-

thermore the pattern should be appropriately scaled in accordance with the magnification of

the cameras and also in accordance with the placement and orientation of theirFOVs.

The camera calibration toolbox which is part of the MATLAB package (fromMathWorks

Inc.) provides another algorithm used extensively for internal and partly for external calibra-

tion [23]. However the same visibility problem of the calibration plate still exists.

These popular camera calibration techniques yield reliable results by minimizing the overall

re-projection error defined over the collection of data points that are provided by the planar

chess-board pattern. However it is the very same planar fixed sized calibration object that

causes significant visibility, scalability and procedural complexity problems when the meth-

ods are used for external calibration. It should be noted that these problems form the primary

motivations for our approach where we rather provide a simple but moving calibration target

avoiding these difficulties.
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The basic idea behind our approach is the use of a simple to detect target which is moving with

known dynamics. For this we propose a ballistically moving rigid object such asa ball with

given color. The path followed by such a projectile can easily be viewed bymultiple cameras

looking from all possible angles, even when the cameras are facing eachother. Furthermore,

the calibration field can be utilized maximally by throwing the ball according to the distance

between the cameras. So the present method not only solves the visibility problem but it also

handles the scalability problem as well. The calibration target considered (i.e. a ball) can

easily be obtained, and the calibration procedure is practical and fast. Finally, the knowledge

of the global gravity vector provides additional information about the external calibration

which is not present in other techniques (unless the calibration plate is not carefully aligned

with the gravity vector).

2.2 External Camera Calibration

When a 3D scene is projected onto a plane, depth information is lost during the process.

Hence it is not possible to extract the complete geometry of a scene from a single view. The

3D structure of a scene through image analysis can either be obtained by a multi camera

system [24] or by taking multiple frames of the same scene with a single camera moving in

space. For both cases a fundamental problem, that is called external calibration, is to obtain

the camera positions and orientations for each image frame. Without this aprioriknowledge

of the acquisition system it is not possible to obtain the full 3D scene structure. It should

be noted that we only consider standard image sensors and we do not consider specialized

measuring devices that provide depth information directly, such as laser range scanners.

Multi camera external calibration is the task of obtaining the rotation and translation of each

camera with respect to each other or relative to a global world coordinate frame. Let [R | t]

matrix represent the rotation and translation for a camera. TheR matrix of size 3× 3 is called

as therotation matrixand represents the rotations around the coordinate axes. Thet matrix of

size 3× 1 is called as thetranslation vectorand represents the position of the camera along

the three coordinate axes. Since the transpose of a rotation matrix is equal toits inverse [7],

R actually consists of only 3 unknowns. If the camera coordinate system is considered, the

negative of the translation vectort also represents the origin of the world referance frame in

camera coordinates. Therefore a total of 6 parameters are required for the external calibration
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of each camera, specifically 3 being for representing the orientation (rotation) of the camera

and 3 being for the position (translation) of each camera.

The inverse problem of image formation is computing the camera location and orientation

from the projection matrix. It involves solution of simultaneous nonlinear equations in sev-

eral variables and is considered difficult. To accomplish this inversion a simple analytical

technique that works well in practice is suggested in [25].

In [26] the issues concerning the calibration of multiple camera systems are discussed. It

is argued that the ease of production of the calibration object hence that of the calibration

process is in a trade off with the accuracy of calibration, because the most accurate calibration

process would likely require a complicated calibration object and process.In the present

thesis, we demonstrate that with the use of known target dynamics, this is not necessarily the

case. We aim at a very simple calibration target and a simple process while alsomaintaining

the accuracy of calibration.

The work in [27] also makes use of multiple images of a static chessboard calibration pat-

tern. Cross projection errors between the cameras are minimized for extending single camera

calibration method to multiple cameras.

Complete multi-camera calibration procedures, which uses a laser pointer forimage gen-

eration, are presented by Han et al [28], and Svoboda et al [29]. The assumption of only

reasonable overlap between camera subgroups makes the proceduresof the algorithms to be

easily applicable. The drawback of these methods appear to be the necessity of at least three

cameras for calibration, hence making the calibration of stereo cameras impossible. The

procedure also requires total darkness, rendering the outdoor applicability of these methods

limited. The calibration methods presented in the present thesis on the other hand can seam-

lessly handle stereo cameras and can also work in daylight and outdoors provided that the

target is detectable over the background scene.

Other approaches are presented in [30] and [31]. Instead of tracking a single calibration point

in image sequences , a reference bar with light sources on it is moved giving additional depth

information which is the constant length of the bar. Note that this additional information re-

quires the construction of a rather complicated calibration bar with embedded laser pointers

on it. In our approach constant gravitational acceleration gives equivalent additional informa-
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tion without the associated complication in the calibration target or procedure.

2.3 Object Detection

Object detection is the process of detecting and determining the position of an object within a

given image. Clearly, for the methods discussed in the present thesis, oneneeds to “detect” the

calibration object, reliably determining its center position within the image frame, possibly at

sub-pixel resolution. The problem can be very simple (such as in the caseof a white ball with

a black background farther away) or may get gradually harder (suchas trying to detect the

ball over a busy urban or natural background). The problem can behelped by the use of target

color selection or target illumination (e.g. with IR LEDs mounted on the target) combined

with appropriate filter on the cameras.

The algorithms on this subject are mostly focused on the application areas like face and car

detection in the sequential video frames. Some of these basic methods are overviewed in this

section.

Object detection algorithms that are specialized to certain objects of interest are commonly

based on learning the caracteristics of these objects [32, 33, 34, 35, 36, 37, 38, 39]. These

algorithms need too many training examples and depend on huge training databases [40].

An extremely fast object detection technique is presented by Viola et al [37, 38]. This study

not only uses learning to train the classifiers, but also improves the detectiontime of the

features by representing the image in a new format. Furthermore, by connecting the classifiers

in a cascade manner the background image is discarded and hence more time isspent on

object-like regions. This study is improved with the introduction of a novel setof rotated

Haar-like features by Lienhart et al [39].

Two probabilistic approaches are presented in the histogram based methodfor 3D object

detection by Schneiderman at al [41] and visual learning method based ondensity estimation

in a high dimensional space by Moghaddam et al [32].

Throughout our study we assume that the cameras are fixed, and only one very small cali-

bration target is moving in the common camera FOV. Therefore the background image can

approximately be acquired by obtaining the mean image of the video sequence,significantly
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reducing the complexity of the target detection problem. For this reason we used Svoboda’s

LED detection method [29] with some modification for the automatic detection of the cali-

bration target, instead of using a complicated learning based algorithm. In this manner we not

only can avoid the computational cost of a complex method, but avoid the needfor a training

database.

2.4 Links between Calibration and State Estimation

The approach in the present thesis is based on the idea that the estimation of static parameters

can be integrated into a dynamic state estimation problem. The benefit of this approach is its

ability to make use of the knowledge of target dynamics in order to better observe the calibra-

tion target positions, hence attaining high precision with a relatively coarse target object.

This idea is clearly not entirely new. For example, our problem has significant similarities

with the Simultaneous Localization and Mapping (SLAM) approach, where noisy optimal

state estimation (Kalman filtering) formulation is used to simultaneously estimate a moving

robot’s position (dynamic state) and the map of the environment (static state) [42, 43].

This approach has the property that a generalizedsystemand its associatedaugmented stateis

defined such that the unknown locations of the features of the environment (i.e. the map) are

made part of the augmented state of the system and are subjected to the optimal estimation

process. Here, the known dynamics of the robot platform, namely themodel of the system

is exploited for a better estimate than is possible simply by static observations of therobot

position relative to known features of the environment. Moreover, the fact that the robot itself

is moving makes static observations of landmarks with respect to a global reference frame

impossible

In the present study, we build on this idea in a different context and with a different objective.

Indeed, there are other instances of the idea in the existing literature, evenin the present

context. However, we believe that the specific motivation and solution approach considered

in the present study to be of significantly more general than any other existing work in the

literature, hence of considerable value.

For example, a number of studies attempt to give the camera orientations [44, 45] or rectify
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the ground plane by tracking moving objects [46], while solving a planar relationship using

the video sequences fromn fixed cameras at unknown positions. The planarity constraint is

ensured by placing the cameras high enough from the ground plane. We do not have such a

constraint in the present work and provide a more general calibration algorithm as a result.

An extension to these works is [47], which takes the topology of the camera overlap as an

unknown and estimate a planar tracking correspondence model in addition tothe calibration

parameters of the large camera network.

Kalman Filter is used in [48] to recursively estimate the motion, pointwise structure,and focal

length from feature correspondences, and in [49] for determining the unknown transformation

between a camera and an IMU. No known dynamic model of a target is exploited in either of

these studies hence the Kalman Filter may just be acting as a low pass filter.

Again in [50], a calibration algorithm based on Kalman Filter is presented. Themethod claim

to reduce human intervention during calibration but can not fully eliminate it. One2D-3D

correspondence of the moving object and at least 6 other points on a rigidobject are needed

to initialize EKF algorithm and guarantee its convergence. The necessity of aplanar ground

is also another constraint and drawback of this approach. We should note that for our case in

the present thesis, neither any 2D-3D correspondences nor any extra information is needed

for the initialization of the algorithms.
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CHAPTER 3

The Extended Kalman Filter

This chapter aims to give the basic knowledge about Kalman filtering framework and in par-

ticular the use of Extended Kalman filter (EKF) in simultaneous state and parameter estima-

tion (SSPE) problems. The objective is to provide the adequate background to facilitate our

discussion in chapter 4, which is built upon the assumption of a general knowledge on these

issues.

A review of the EKF algorithm is given in section 3.2. The SSPE method is discussed in 3.3.

Finally an example that illustrates the SLAM approach is given in 3.3.2.

3.1 General

Kalman filter (KF) is theoptimal state estimator for discrete-time linear dynamic systems

driven bywhite noise[51]. KF is also proved to be the best linear state estimator in the linear

non-Gaussiancase.

Starting from an initial state which is assumed to be a random variable with a certain mean

and covariance, Kalman filter estimates the next states by representing the dynamics of the

system as a Markov Decision Process (MDP) which assumes that the state of the system

depends only on the previous state and action [52]. Hence, KF is a recursive estimator, which

predicts the state only from the previous time step and current measurement instead of the

history of observations as in batch estimation methods. If the initial state, the process and

the measurement noises are Gaussian andmutually independent, KF is the minimum mean

square error (MMSE) estimator [53].
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Although the linear system withzero-mean white noiseassumption seems to restrict the ap-

plicable usage of the filter, through a number of extensions, this technique can be used in

numerous problems. The extensions make it possible to map the problem at hand into one

that meets the above constraints. For example most non-trivial systems are non-linear and

they violate the linearity assumption of the basic KF. Such non-linearities in the process or

observation models can be handled by the Extended Kalman filter (EKF) whichis an approx-

imation to the optimal estimate.

Occasionally some of the continous-valued parameters of the system may be unknown. In

such cases the state can be augmented by adding the unknown parameters and the EKF can

be used for estimating both the state and the system parameters. This simultaneous state

and parameter estimation (SSPE) method is popularly used in robot mapping problems and

specifically named as the simultaneous localization and mapping (SLAM).

3.2 Overview of the EKF Algorithm

The Kalman filter is the best studied state estimation technique and it was invented by Swer-

ling (1958) and Kalman (1960). KF assumes that the observations are linear functions of the

state and the next state is a linear function of the previous state. Note that a Gaussian random

variable which is passed through a linear function yields another Gaussianrandom variable.

This knowledge plays an important role in the derivation of KF.

Unfortunately neither the systems nor the measurements can always be modeled by only linear

transformations. In fact the state transitions and measurements are rarely linear since real life

systems lack the simplicity that would enable us to use the KF directly. The non-linearity of

the process or measurement models (or both) can be associated by the extended Kalman filter

(EKF).

In EKF the state transition and observation models are assumed to be nonlinear, differentiable

functions of the state. Let us express the state transition and observation equations:

xk+1 = f ( xk, uk+1 ) + wk+1 (3.1)

zk+1 = h ( xk+1 ) + vk+1 (3.2)

Herexk+1 andxk are state vectors, anduk+1 is the control vector at timek+ 1. The process
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and observation uncertainties at timek+ 1 are modeled by the random variableswk+1 and

vk+1 respectively. The predicted state is computed from the present estimate by the state

transition functionf and similarly the measurement is computed from the predicted state

by the observation functionh. Sincef andh are not directly applicable for the covariance

calculation their Jacobian is calculated at each time step by using the latest predicted states.

This Jacobian computation step is the key idea underlying the EKF approximationwhich is

calledlinearization.

The Jacobian matrices can be used in KF equations resulting in the extended Kalman filter

equations given in Table 3.1.Qk+1 andRk+1 are the covariance matrices of the posterior state

Table 3.1: The extended Kalman filter algorithm in discrete time

Algorithm EKF ( µk, Σk, uk+1, zk+1 )
Prediction:
µ̄k+1 = f (µk,uk+1)
Σ̄k+1 = Fk+1 Σk FT

k+1 +Qk+1

Update:
K k+1 = Σ̄k+1 HT

k+1 (Hk+1 Σ̄k+1 HT
k+1 + Rk+1)−1

µk+1 = µ̄k+1 + K k+1(zk+1 − h(µ̄k+1))
Σk+1 = (I − K k+1 Hk+1)Σ̄k+1

Return(µk+1, Σk+1)

and measurement noises. The state transition and measurement Jacobians are defined as

Fk+1 =
∂f
∂x
|µk, uk+1, Hk+1 =

∂h
∂x
|µ̄k+1 (3.3)

Similar to the Kalman filter, the EKF represents the state at timek by the meanµk and the

covarianceΣk. The filter updates these parameters whenµk andΣk are given as the input of

the EKF together with the controluk+1 and measurementzk+1 for the next time step. The

output is the estimate at timek+ 1, represented byµk+1 andΣk+1.

In the prediction step the predicted beliefµ̄k+1 andΣ̄k+1 is calculated representing the belief

for the next time step by only incorporating the controluk+1 but not the measurementzk+1.

In the update step theKalman gainK k+1 andinnovation, which is the difference between the

measurementzk+1 and the expected measurementh(µ̄k+1), are computed. Innovation is used

to update the predicted belief into the desired one up to a degree specified bythe Kalman gain.

The derivation of the EKF algorithm is available in [51], [53], [54] and [55].
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The major drawback of the extended Kalman filter is its non-optimality. The EKF mayeven

quickly diverge if the modeling of the system is not correctly handled or if theinitial state

estimate is not close to the actual state. The unobservability of the process mayalso cause

divergence of the EKF [55]. Yet the EKF can give reasonable resultsand in fact practically it

is the standard estimation method for many applications such as navigation systemsand GPS.

3.3 Simultaneous State and Parameter Estimation

The extended Kalman filter can be used for state estimation in nonlinear dynamic systems. In

general the parameters of the state transition functionf and measurement functionh should

be known for EKF employment. When there are unknown system parameterswhich are

continuous valuedor slowly varyingit is still possible to obtain the state and the parameters

simultaneously by means of an extended Kalman filter.

3.3.1 The SSPE Algorithm

The simultaneous state and parameter estimation (SSPE) method suggests augmenting the

base stateby the unknown system parameters. Let us denote the unknown parameters by a

vectorθ, the base state vector byx, and the augmented state vector byy. The state equation

in (3.1) can be rewritten as

xk+1 = f ( xk, θk, uk+1 ) + wk+1 (3.4)

and the dynamic equation of the parameter vector is assumed to be time invariant

θk+1 = θk (3.5)

Then thesuper-statey consist ofx andθ

yk ≡





















xk

θ





















(3.6)

Combining Eqns. (3.4), (3.5) and (3.6) we get the following expression for the super-state

yk+1 = f̂ ( yk, uk+1 ) + ŵk+1 (3.7)

For completeness the minor update in equation (3.2) is also given as

zk+1 = h ( yk+1 ) + vk+1 (3.8)
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The EKF can be used with these resulting state and observation equations (3.7) and (3.8) for

the estimation of the entire super-state. Note that the measurement vector is notneeded to be

augmented or redefined as the state vector even if the measurement functionh may also be a

function ofθ.

The parameter dynamics are assumed to be constant by Eqn. (3.5). So theircovariance will

asymptotically converge to zero. In addition to this, if the process noise corresponding to

these parameters is also assumed to be zero, then the filter gain will tend to zerowhich will

result in wrong estimates. Thus the situation where the parameter variances are inclined to

zero is undesirable. In order to overcome this problem anartificial process noisewθk+1 may

be added to the unknown parameter vector. This correspond to replacingEqn. (3.5) by

θk+1 = θk + wθk+1 (3.9)

The artificial noisewθk+1 prevents the variances of the parameter estimates from converging to

zero, so that the calculated variances can be balanced with the estimation errors. Thispseudo-

noiseassumption also enables the filter to estimate slowly varying parameters. The standard

deviation of the process noise is generally chosen as a few percent of the guessed value of the

parameter. Furthertuning of the filtercan be done as explained in [53].

3.3.2 An Example on SSPE

Let us now give an example about the use of EKF in a simultaneous state and parameter

estimation problem. For simplicity assume that the base state is a one dimensional vector and

the state equation be given as

xk+1 = ak+1 xk + bk+1 uk+1 + wbase
k+1 (3.10)

whereak+1 andbk+1 are the unknown system parameters which may slowly vary in time, and

wbase
k+1 is the base state process noise at timek+ 1. Let us also define the observation as a one

dimensional vector and the related equation as

zk+1 = ck+1 xk+1 + vk+1 (3.11)

whereck+1 is again an unknown measurement parameter.
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As defined in section 3.3.1, the augmentation of the base state with the unknown parameters

gives us a four-dimensional state vectoryk and the corresponding process noisewk.
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



















































xk

ak

bk

ck





















































and wk ≡





















































wbase
k

wa
k

wb
k

wc
k





















































(3.12)

Note thatwa
k, wb

k andwc
k are the pseudo process noises. The augmented state equation is then
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= f
(

yk, uk

)

+ wk

which exactly has the same form as given in equation (3.7). The observation equation

zk+1 = y4
k+1 y1

k+1 + vk+1 (3.14)

= h(yk+1) + vk+1

also has the form given in equation (3.8).

Let us define the process noise and measurement noise covariances.

Q = diag(q1,q2,q3,q4) and R = r1 (3.15)

For EKF implementation the Jacobian of the functionsf andh should also be obtained. In our

example these matrices are easily calculated as
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and Hk =

[

y4
k+1 0 0 y1

k+1

]

(3.16)

The super-statey can now be estimated by using the EKF algorithm given in Table 3.1. With

this simple example we have shown the steps of augmenting the state vector by the unknown

system parameters and computing the necessary matrices to be able to use EKFfor the param-

eter estimation. However note that the real life problems may be much more complicated than
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our simple example. There may be too many unknown parameters and after the augmentation

process the state vector dimension may become quite large. This will be shown by a robot

mapping example.

3.3.3 An Example on Simultaneous Localization and Mapping

Simultaneous localization and mapping is one of the most fundamental problems in robotics.

An autonomous vehicle or robot, which is moving in an unknown environment, should not

only be able to estimate its state but also the unknown map parameters of its surroundings.

This concurrent mapping and localization problem can in fact be treated asan SSPE problem.

Assume that a robot is moving on a planar surface with the ability to rotate to a desired

direction. The base state of such a robot is composed of three elementspx
k, py

k andpθk which

denote the robot’s coordinates at timek. The 2D location of the robot is denoted bypx
k, py

k

and the orientation is denoted bypθk. When the robot state is augmented with the unknown

map parameters the combined vector is given by

yk =
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(3.17)

= ( px
k py

k pθk m1,x m1,y s1 m2,x m2,y s2 . . . mN,x mN,y sN )T

wheremi,x, mi,y are the coordinates of thei-th landmark, fori = 1, . . . , N and si is its

signature. The size of the base state is increased by 3N whereN denotes the number of

landmarks in the map hence the dimension of the complete state is 3N + 3.

In this example the number of landmarks are assumed to be predefined and known by the

robot. A more general approach also assumes that the correspondences are not known and an

incrementalmaximum likelihood(ML) estimator is used to determine these correspondences.

In fact there are various SLAM algorithms that are produced to reply different requirements.

Still, all these methods are built upon the basic SSPE algorithm presented in section 3.3.1.

There may be more than 1000 point landmarks which will result in a huge super-state vector

even in the known correspondence case. The robot pose is defined by only three variables

while the complete state dimension may reach up to thousands or even more. This clearly

demonstrates that we may need to process a much larger super-state vectorthan the base state

20



that we want to estimate. Usually at each different orientation of the robot just a few land-

marks are observable, so only a small part of the complete state is updated ateach time step

k. Instead of using the complete state with the basic EKF algorithm, the SLAM algorithms

check whether the landmark has ever been seen before or not and updates the state by using

the observed features only. In SLAM observing a landmark does not only improve the po-

sition estimate of that landmark but it also improves the robot pose estimate as wellas the

position estimates of the other landmarks. Since SLAM is not the main subject of this thesis

it deemed not necessary to provide the complete SLAM algorithm. However theinterested

readers can find a complete study on SLAM in [54].
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CHAPTER 4

Simultaneous Tracking and Camera Calibration

In this chapter the concept of simultaneous state and parameter estimation is applied to the

problem of simultaneous tracking and camera calibration (STCC). The approach presented in

this thesis suggests that an easy to carry rigid target and simple to generate 3D motion with

well known dynamics can be used to generate the calibration data set. Newton’s equations

of motion fully describe the ballistic trajectory followed by a thrown target in 3D space, and

they form the state transition equations for the base state. On the other hand external camera

parameters can be taken as the static or slowly varying unknowns of the system and hence

they can be made part of the state by augmenting the base state as described insection 3.3.1.

Dynamic motion model for a ballistically moving target and the model of an optical measure-

ment device are given in section 4.1. The detection of the target from the camera views is

explained in 4.2. Finally the problem is transformed into an SSPE form by the augmentation

of the base state in section 4.3.

4.1 Ballistic Motion and Camera Measurement Models

The state and observation equations of the system are needed for the useof an extended

Kalman filter. The state equations of a ballistically thrown object and the observation equa-

tions of a camera under the assumption of central projection mapping is derived in sections

4.1.1 and 4.1.2 respectively.
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4.1.1 Ballistic Motion Model

Objects under the influence of gravitational attraction follow a ballistic trajectory when thrown

with an initial state (initial position and velocity vectors) if other disturbance effects like the

air friction can be ignored. Under normal weather conditions (no wind, rain, or snow) and

for short motion trajectories, the air-friction can be reasonably ignored for a dense object.

Assume thaty-axis coincide with the negative direction of gravity, hence placing thex and

z-axes on the ground plane. Then the equations of motion for the trajectory of a ballistically

moving object can be derived by using Newton’s 2nd law. If the velocity ofa thrown object

is decomposed into itsx, y andz components the velocity update equation can be written as
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(4.1)

The components which are parallel to the groundVx
k andVz

k do not change with respect to

time since there are no force acting in these directions during the ballistic flight. Hence we

can dropk from these components and useVx and Vz hereafter. Gravitational force acts

towards earth and therefore the velocity component iny direction decreases by an amount

determined by the gravitational accelerationg and the time difference∆T between each time

step. Integration of the velocity update equation w.r.t time yields the position update equation

as
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(4.2)

= Xk + Vk∆T +
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The complete state equation in discrete-time can then be given by

sdyn
k+1 = Asdyn

k + u (4.3)

wheresdyn
k stands for the dynamic system state at timek, A represents the state transition

matrix andu corresponds to the input as described in Eqns. (4.4), (4.5) and (4.6).

23



A =





















































































1 0 0 ∆T 0 0

0 1 0 0 ∆T 0

0 0 1 0 0 ∆T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




















































































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sdyn
k =

[

X Y Z Vx Vy Vz
]T

k
(4.5)

u =

[

0 −
g∆T2

2 0 0 −g∆T 0
]T

(4.6)

[X Y Z]T , [VX VY VZ]T are the position and velocity vectors of the ballistic target object

andg represents the gravitational acceleration along thenegativey-axis direction.∆T is the

sampling period.

4.1.2 The Pinhole Camera Model

In this section we give the pinhole camera model since it consist a fundamental part of the

overall problem. A pinhole camera can be represented with a central projection mapping from

the 3D world to a 2D image [7]. Using the homogenous coordinate system this mapping can

be represented by a 3× 4 matrixP, which can be decomposed into 3× 3 K and 3× 4 [R | t]

matrices. Here,K represents the inner parameters of the camera such as focal length, aspect

ratio, principal point offset, and skew, whileR andt represent the external parameters such as

camera orientation and displacement with respect to a world coordinate frameas illustrated

in Figure 4.1. Here, we have vectorsX andx as the homogenous points in 3D world and 2D

image coordinates respectively. The defining equations of this projection are given in Eqns.

(4.7), (4.8), and (4.9). Note thatP has 11 degrees of freedom: 5 forK (αx, αy, x0, y0, s), 3
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for R and 3 fort.

x = PX (4.7)

P = K [R | t] (4.8)
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Projection matrix,P, can be divided into submatricesK and [R | t] as shown in Eqn. (4.8).

Note that the world and the camera coordinate frames are related due to a rotation and a

translation.X, is first multiplied with [R | t], which corresponds to representing the 3D point

in the camera coordinate frame. Then the resultant point passes through internal parameter

matrix,K , providing the 2D projection,x. In Eqn. (4.9)αx andαy represent the focal length

of the camera in terms of pixel dimensions towardsx andy directions respectively; [xo, yo]T

is the principal point in terms of pixel dimensions ands is the skew parameter. Detailed

information about camera models and multiple view geometry can be found in [7].

 

K, R, t 
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Figure 4.1: The Euclidean transformation between the world and camera coordinate frames.
C is the camera center,X is the 3D world point,x is the 2D projection onto the camera image
plane

4.2 Raw measurements: Detection of the Target

The EKF based algorithms discussed in this work clearly need the pixel coordinates of the

calibration target in the image frames, possibly at sub-pixel resolution. In asimulation the

target can be selected as a point mass with a predefined 3D trajectory, hence its projection,

which absolutely corresponds to a single point on the image frame, can directly be computed
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via pinhole camera model. However in reality, there is no exact knowledge about the actual

target trajectory. Additionally, the calibration target may be chosen as a smallball which will

definitely cover many pixels in the image frames. Therefore to provide an easy and robust

calibration method, detection of the target and extraction of its center pixel location should be

performed automatically for each calibration frame.

Using fixed cameras with a single moving target in the calibration frames reduces the com-

plexity of the object detection problem. Hence the detection and localization steps at each

calibration frame can be performed in an easy and reliable manner by the following algo-

rithm:

• For each camera the mean of the calibration frames are obtained. Each mean image

approximately provides the static background scene for the corresponding camera.

• The background image is subtracted from each calibration frame to obtain thetarget

position at that frame.

• This difference image is converted to binary scale. Dilation and erosion operations are

applied consecutively. Then,

• if only a single blob exists, the pixels within the blob are assumed to correspond

to the target projection. The center of the target (in pixel coordinates) is calculated by

averaging the pixel coordinates.

• if there are more than one blob, the operator is asked to select the target by

clicking on the image that is being processed, so that the blob corresponding to the

target can be seperated from the others and averaging the pixels on thatblob yields the

target center.

• else if there are no blobs left, the localization can not be achieved.

This algorithm can be used to distinguish any moving target on a constant background with

subpixel accuracy. The examples of a mean, standard deviation, difference and binary images

are shown in 4.2.

Note that if colored cameras are used, then the target color can particularly be chosen different

from the background for easier detection. For example if the dominant surrounding color is

green then the target can be chosen as red colored ball, and the given algorithm can exactly
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(a) (b)

(c) (d)

Figure 4.2: Detection of the target calibration object. (a) Mean image of the calibration

frames. (b) Standard deviation image of the calibration frames. (c) Threshold image of a

calibration frame. (d) Binary image of a calibration frame. The center of the target is also

marked.

be applied in the red band. Such an algorithm is used by Svoboda et al in [29] for automatic

detection of LED projections.

When the localization of the target is not achieved no measurement is availablefor the cor-

responding frame. Hence the measurement update equations in the EKF algorithm can not

be executed at that time step. But the state can still be updated and the filter canprogress to

the next time step. So missing of the target position in a few frames is not a big deal since

omission of the measurement update once in a while does not practically prevent the filter to

converge.

4.3 Definition of Super-State

The motion model, the camera model and the detection of the target in the calibrationframes

are explained in the previous parts. From now on the transformation of the problem into the

SSPE framework is demonstrated. In section 4.3.1 the external camera parameters are defined

and the base state is augmented with these unknown parameters, and in section4.3.2 the state
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and measurement equations are extended for the overall state.

4.3.1 Augmented System Representation

In the following discussion, the system is described and the augmented state representation is

defined for the two camera case. The results can quite easily be generalized to a multi camera

problem but this generalization is considered to be beyond the scope of thissection.

RCam2, tCam2 XCam2 

Cam2 

YCam2 

ZCam2 

XCam1 

YCam1 

ZCam1 

Cam1 

X 

Z 

Figure 4.3: Two-camera system assumed for illustration purposes to be mounted on a fixture
with the unknown rotation and translation between them consisting the external calibration
parameters.

The system is composed of two arbitrarily placed cameras whose internal calibration parame-

ters are predetermined. For illustration of the basic ideas, suppose the two cameras are rigidly

mounted on a fixture as shown in 4.3. Assume the cameras are labeled as Cam1 and Cam2.

Our aim is to find the unknown but constant rotation and translation of the cameras with

respect to the basis frame.

Let x, y andz-axes form a right handed reference frame that we call thebasis coordinate

frame. Without losing generality centers of the basis frame and theCam1 coordinate frame

are assumed to be coincident as shown in 4.4. Actually the necessity of a separate basis frame

instead of using Cam1-frame as the reference frame arises from the factthat the gravitational

pull is towards the center of theearth. Thereforey-axis should always coincide with the

negative gravity vector direction in order to use Eqn. (4.3).

Note that as long as the center of the calibration target object thrown into the camera FOV

is the only processed feature in the image, the rotation of the fixture aroundy-axis is unde-

tectable. To visualize this, assume that the mounting fixture is rotated aroundy-axis. The

position of the trajectory in the image plane will change. However, since the global loca-
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Figure 4.4: First camera shown on thebasis coordinate frame. The relation between the basis
frame andCam1 coordinate frameis represented with the rotation anglesαc1 andβc1 around
zandx-axes respectively.

tion of this trajectory is also unknown (except for the direction of the gravityvector which

is observable from the trajectory) we cannot deduce this global rotation angle. Therefore,

we conclude that the measurements taken from the target are invariant of the rotation around

y-axis.

On the other hand, a rotation of Cam1 aroundz andx-axes will cause the object to acceler-

ate at a different direction in the image plane measurements, indicating the global direction

of gravity. Therefore these rotations of the fixture,αc1 andβc1, are measurable and are cal-

ibration unknowns of the process which should be determined. Rotation andtranslation of

Cam2, on the other hand, is completely independent from the basis frame, and therefore all

these 6 parameters (3 rotations and 3 translations) are calibration parameters that are also to

be determined.

The EKF algorithm can be used in order to track the state of the calibration object and si-

multaneously estimate the static unknown parameters of the camera system. Dynamicobject

state,sdyn, can be augmented with the static camera parameters to form a super-state, which

will be used as the state vector in the EKF algorithm formulation.

The calibration object state,sdyn, is already defined in Eqn. (4.5). Now, letssta represent the

static calibration parameters. Then the augmented super-state is the concatenation ofsdyn with

ssta as given in Eqn. (4.10). This augmentation procedure enables us to use such a powerful
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noisy state estimation tool, EKF, for static parameter estimation.

s=
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
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, (4.10)

ssta =
(

αc1 βc1 αc2 βc2 Γc2 Cc2
x Cc2

y Cc2
z

)T
(4.11)

whereαc1 andβc1 are the rotation angles of Cam1 aroundz andx-axes respectively;αc2, βc2

andΓc2 are the rotation angles of Cam2 aroundz-x-z-axes respectively, and finallyCc2
x , Cc2

y

andCc2
z represent the center location of Cam2 with respect to the basis frame.

4.3.2 Augmented System Equations

We will now define the system state and measurement equations in a state spacerepresentation

which are necessary for the EKF implementation. Since the camera parametersare invariant

in time, their update matrix can be represented with an 8× 8 identity matrix and the overall

state update equation can be written as

sk+1 = Âsk + û (4.12)

where
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(4.13)

The measurement equations (4.14) and (4.15) are directly written by using the pinhole camera

model which is explained in section 4.1.2. The tracked point (i.e. the center ofthe calibration

object) is projected into the camera planes; hence our measurements are the pixel locations

of the projection. 3D target position (X Y Z)T is projected to give us corresponding 2D

measurements (uc1 vc1)T and (uc2 vc2)T .
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t̂c2 = −Rc2(α, β, Γ)


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(4.16)

K1 andK2 are the internal calibration matrices for Cam1 and Cam2.Rc1 andRc2 stands for

the rotation matrices of Cam1 and Cam2 with respect to thebasis frame. Finally t̂c2 is the

translation of Cam2 in the world coordinate frame and it can be formulated in termsof the

state variables as in Eqn. (4.16).
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CHAPTER 5

Estimating the Super-State

In order to use the Kalman filter, the observations should be linear functionsof the state and

the next state should be a linear function of the previous state. In our problem although the

state transition equation is a linear one, the measurement equations are highly nonlinear which

removes the possibility of direct KF employment at its simplest form. Instead, anextended

Kalman filter, which can handle the non-linearities of the observation equation, should be

used.

Let the measurements (uc1 vc1)T and (uc2 vc2)T be concatenated to form the complete mea-

surement vector,z, as

z = (uc1 vc1 uc2 vc2)T (5.1)

Then the disturbances affecting the process and observations should be modeled by adding

random white Gaussian noisesv andw to obtain the usual EKF relations

sk+1 = Âsk + û + wk+1 (5.2)

zk+1 = h( sk+1, uk+1 ) + vk+1. (5.3)

whereh is obtained from (4.14), and (4.15). The process noisew models the disturbances

affecting the target motion such as air friction while the observation noisev models the distur-

bances affecting the cameras such as possible vibrations during filming or other pixel errors.

The process and observation noise covariances are given as

Q = diag(q1,q2, . . . , q13,q14) and R = diag(r1, r2, r3, r4). (5.4)

For EKF implementation the Jacobian ofh is computed by MATLAB 7.1. Note that together

with the state transition matrix̂A, this Jacobian matrixH determines how well internal states
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of our system can be inferred by knowledge of its outputs, in other wordsthe observability

of the system. For that purpose numerical matrix entries can be regularly checked during the

EKF iterations. The Jacobian calculation is a simple procedure, however since our observation

equations are highly nonlinear the resultantH matrix is extremely complex to give in the

content of this thesis.

At this point all the necessary equations and matrices are obtained to reduce the problem to

an EKF framework.

5.1 Standard EKF Algorithm

In most applications, EKF is used for tracking a platform in real time. Sensormeasurements

are continuously processed by the EKF together with the system dynamics and a suboptimal

state estimation is performed. Even if the initial state of the system is not known exactly, the

filter converges to the true state in time.

In our problem we have checked the convergence of the EKF by implementing the filter for

the calibration of a two camera system in a simulation environment. Even though thesuper-

state is set to a wrong initial value, EKF can yield accurate estimates of the static calibration

parameters as well as the final target state. However, for the filter to converge to the true

state, about 1000 filter iterations are performed and hence that many data points of the flying

target is used during the iterations. Although in a simulation environment data points can be

supplied as much as desired by increasing the fps rates of the cameras, for real camera setups

that can not be done. For a standard 30 fps camera setup, it takes more than half a minute

to capture 1000 frames. That is too long time for a ballistically moving target to stayin the

joint-FOV of the cameras. For reasonable camera poses, when the calibration object is thrown

into the joint-FOV it may stay there for about one second and only 30 measurements can be

obtained by a 30 fps camera setup. How can we satisfy the EKF to convergewith so few

measurements?

In order to solve this convergence problem of EKF with limited number of calibration data, 2

different algorithms are proposed: Repeated EKF and Repeated Bidirectional EKF. As under-

stood from their names the essence of these methods depends on using the same measurements

repeatedly.
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5.2 Repeated EKF Algorithm

Let us first divide the state,s into its sub-parts:

s=
(

X V C
)T

(5.5)

whereX corresponds to the position,V corresponds to the velocity of the calibration object,

andC stands for the calibration parameters. Let us continue with the assumption thata target

is thrown into the joint FOV of a two camera system, and the ballistic trajectory of thetarget is

simultaneously captured by each camera yielding 30 frames to be used for calibration. Start-

ing from a wrong initial state, the calibration parameters would not be obtainedaccurately

after only 30 filter iterations.

The very first idea to solve this problem is to repeatedly use the measurementsat hand. Let

us define thefilter andthrow iterations:

• Filter Iteration: The extraction of the next state from the present state; in other words a

single iteration of the EKF

• Throw Iteration: All filter iterations for one set of measurement data (i.e., 30 iterations

of the filter).

After the completion of one throw iteration the state will not probably converge, but it will be

estimated to some extent. We suggest keeping the calibration parameters at theirfinal values

and starting the extended Kalman filter again and again (Figure 5.1). So, even though the

same observations are used, the state can be estimated better and better. Since the calibration

is performed off-line, there is enough time for the repetition of the iterations.

The idea here is to make many throw iterations and hope for the calibration parameters to

converge to their real values in a reasonable time. The calibration parameters are kept and

provided to the next throw iteration while the target state is reset to its initial value, so the path

followed by the ball is estimated better and better since the calibration parametersapproach

towards their real values and vice versa. This “keep the static parameters, reset the dynamic

state” idea forms the essence of therepeated EKF (R-EKF) algorithm.

It should be reminded that simple KF yields the optimal solution with a single use of the

measurements. So repeated use of the same measurements can not improve theresults even
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Figure 5.1: The flow chart for the repeated EKF algorithm.
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after smoothing the state. On the other hand the EKF linearizes the non-linear functions at

the predicted state, hence linearization performance can be improved by smoothing the state.

Therefore even by using the same measurements, better estimates can be obtained by an EKF

due to this improvement in the linearization.

The drawback of the R-EKF algorithm is that the results are highly dependent on the initial

uncertainty of the dynamic state. Actually not only the camera parameters but also the target

position and velocity are not available at the beginning, because unfortunately the target is

thrown at an arbitrary position with an unknown velocity. The initial state of thecalibration

target is not estimated during the iterations, but always the originally given [X0 V0]T vector is

used. So the estimate for this initial state vector should be provided via external measurements

as in [50]. Human factor and measurement errors which may badly affect the calibration

results is inevitable with this approach.

5.3 Repeated Bidirectional EKF Algorithm

The second idea is to implement EKF in both forward and backward directions. The calibra-

tion object state and the camera parameters are again estimated repeatedly, but this time in

two directions. In other words the target motion is first tracked in the forward direction and

then in the reverse direction. This algorithm remedies the main problem of R-EKF since the

initial target state is predicted when the reverse motion estimation is performed.

The flow sequence of therepeated bidirectional EKF (RB-EKF) algorithm is shown by the

flowchart in Figure 5.2. The augmented state is set tos0 initially and forward throwestimation

is performed till all the frames are swept one time. Then the target trajectory isestimated from

backwards by using the measurements in reverse order. Note that the velocity vector should

be negated at the end of aforward andbackward throwiteration while the position vector and

camera parameters remain same.

RB-EKF yields both the dynamic and static states with negligible error in a short time. As

stated beforehand the accuracy of the estimations depends on the initial stateuncertainty,

hence being able to estimate the initial state reduces this dependency. Removingthe necessity

of measuring the initial target state and hence avoiding the human related errors, this method

not only provides an easily applicable calibration, but it also reduces the final error.

36



% & ' () & *+ , - .
. / *) & *+ , - .

0 1 2 3 1
4 5 67 6& 8 69 : 7 ; : < 7 & 7 :0 = > 0 ?

, 5 + / @' & 8 6A * & 7 6/ 5 B
, 5 + / @C : & < D *: C : 5 7 < B

E /

47 : * & 7 : , - .@ / *) & *+ <
E / F : <

, E G

F : <
H I JH

47 : * & 7 : , - .A & ' ) & *+ <
, 5 + / @C : & < D * : C : 5 7 < B

E /
F : <H I JH

Figure 5.2: The flow chart of the repeated bidirectional EKF algorithm.
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CHAPTER 6

Simulation Experiments

In this chapter the experiments which are performed on a computer simulation environment

are presented. The proposed calibration method is tested on a simulation platform prepared

in MATLAB7 .1. For data generation, instead of the real camera images of a dynamically

moving target, the dynamic motion model and pinhole camera model are used to generate

simulated data points.

The experiments are chosen to identify the scenarios that can be encountered in real life

problems. First a target in free fall is used for calibration with R-EKF and RB-EKF algorithms

in sections 6.1 and 6.2 respectively. Section 6.3 focuses on the comparisonof R-EKF with

RB-EKF when the initial target state is not known. White Gaussian random process and

measurement noises are also added on the measurement data for a more realistic evaluation.

In section 6.4 the performance of RB-EKF is investigated for a ballistic trajectory and then

multiple trajectories are used for calibration in section 6.5. Finally a general discussion of the

simulation experiments is given in section 6.6.

6.1 Experiment 1: R-EKF / Free Fall Motion

In our first simulation experiment we try to initially show that R-EKF method can yield cam-

era poses under some facilitative but restrictive assumptions. As discussed in Chapter 5, the

performance of the R-EKF algorithm is highly dependent on the initial uncertainty of the dy-

namic state. In order to use R-EKF efficiently, the initial state of the calibration target should

be measured and provided to initialize the EKF, which makes R-EKF an impractical algorithm

to use on the field. Since this experiment is a preliminary testing of the concept, we assume
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Figure 6.1: The synthetic images of a free falling target captured by a stereo camera sys-
tem. The black dots denote the originally captured points and the small circles denote the
re-projected points that are obtained after 1000 throw iterations by Repeated EKF algorithm.

that the initial target state is known even though such an assumption is not realistic.

For a real case the initial position of the calibration target can approximately be measured by

means of a ruler although that will not be practical. However to obtain its initial velocity is

even harder. Yet afree falling target may reduce the unknowns since the initial velocity of

a free falling object is a well known~0 m/s vector. So, a target can be dropped into the joint

FOV of a multi camera system and the captured image sequence can be used for the external

calibration. In this experiment we try to inspect the convergence performance of the R-EKF

algorithm by using the synthetic data of a free falling target.

In our simulation setup two cameras are placed in parallel with 0.2 m distance between them

and zero rotation with respect to the basis frame. Such a configuration is similarto a human’s

vision system, so for easy understanding one can assume that a stereo camera is mounted on

a planar platform which is placed parallel to the ground. When a point mass falls freely in

front of the camera setup, the image sequences obtained by these two cameras are shown in

Figure 6.1.

The target is dropped from 0.25 m above, 1.8 m in front of Cam1. So its initial condition

vector is equal to

X0 = [0 0.25 1.8]T , V0 = [0 0 0]T .

The camera parameters are all equal to zero except thex position of Cam2 center, due to the
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Figure 6.2: Convergence of the Repeated EKF Algorithm w.r.tthrow iterations. All calibra-
tion parameters converge to their true values. (a) Rotation angles; (b) Translation parameters.
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0.2 m gap between the cameras inx direction. Hence the original parameter vector is equal to

C = [0 0 0 0 0 0.2 0 0]T .

The actual initial target state, [X0 V0], is exactly used for initializing the R-EKF, so

X̂0 = [0 0.25 1.8]T , V̂0 = [0 0 0]T

and the initial estimate vector for the camera parameters is assumed to be

Ĉ0 = [0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2]T .

As illustrated in Figure 5.1 during the throw iterations the initial state of the target [XT
0 VT

0 ]T

is repeatedly used while the calibration parameter estimatesĈ converge towards their actual

valuesC. The convergence curves of the rotation and translation parameters areshown in

Figure 6.2

The evaluation of 1000 throw iterations by R-EKF algorithm has taken for about 70.9 seconds

with a hyper-threaded Pentium4, 3.0GHz CPU. The camera parameters are estimated as

Ĉ = [0.0000 0.0000 − 0.0092 0.0151 0.0109 0.1992 0.0271 0.0101]T

which is almost same as the original parameter vectorC. The re-projection pixel error is

computed as 6.5712× 10−4 pixels for Cam1 and 0.1056 pixels for Cam2. Note that this is the

error in the image plane. In a simulation since the real parameters are known we can obtain

the norm of the difference between the real camera parameters and the estimated ones. The

average of the rotation and translation errors for both cameras are obtained as 0.0208 radians

and 0.0290 meters respectively.

In this experiment we have shown that if the initial state of the calibration objectis measur-

able, then R-EKF algorithm can yield accurate results. However, since theinitial state of the

target is not estimated during iterations, the results are highly dependent onthe initial state

uncertainty. This is the major drawback of the R-EKF method. Also note that throughout this

experiment we assume there are no disturbances which would cause noisymeasurements.

But unfortunately in real life unwanted disturbances do exist. That’s whywithout noise anal-

ysis the actual performance of the R-EKF algorithm can not be fully understood. In fact due

these disturbances we even may not be able to obtain the initial state of the calibration target

accurately which may tragically diminish the success of the R-EKF method.
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Figure 6.3: The synthetic images of a free falling target captured by a stereo camera sys-
tem. The black dots denote the originally captured points and the small circles denote the
re-projected points that are obtained after 1000 throw iterations by Repeated Bidirectional
EKF algorithm.

6.2 Experiment 2: RB-EKF / Free Fall Motion

In this section the first experiment is repeated for the RB-EKF algorithm. We try to show

that RB-EKF converges under facilitating assumptions. The same orientationof the camera

setup is used again to capture the same free falling motion of the target. HenceX0, V0 and

C vectors have the same values as in section 6.1. The initial estimate of the target state and

the camera parameter vectorsX̂0, V̂0, Ĉ0 are also provided to the RB-EKF algorithm as in

section 6.1.

The original and re-projected points are shown in Figure 6.3 and the convergence curves of

the RB-EKF algorithm are plot in Figure 6.4. Note that RB-EKF algorithm estimates not only

the camera parameters but also the initial target state. However in this experiment the initial

target state is exactly provided and since trying to estimate an already given parameter may

lead to some error, the resultant calibration error of the RB-EKF is slightly more than that of

the R-EKF.

It takes 136.7 seconds to complete 1000 throw iterations for RB-EKF algorithm. This is nearly

twice as much as it takes with the R-EKF method, because one throw iteration of RB-EKF

includes both the forward and backward iteration of the target movement. The calibration
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vector is estimated as

Ĉ = [0.0004 0.0450 − 0.0120 0.0454 0.0102 0.2048 0.0003 0.0006]T

which is very close to the original parameter vectorC. The re-projection error is computed as

0.0227 pixels for Cam1 and 0.1613 pixels for Cam2. The rotation and translation errors are

obtained as 0.0658 radians and 0.0048 meters respectively.

In this experiment we have shown that if the initial state of the calibration objectcan be

measured accurately, RB-EKF algorithm can yield the parameter estimates accurately. Note

that RB-EKF can also handle initial uncertainty since the initial target state is also estimated.

That makes RB-EKF a practical method that may be used on the field applications because

very accurate initial state measurement is quite difficult to obtain in real cases. Even when

one tries to measure the position of the target by means of a ruler, the uncertainty of the initial

state is unavoidable. Therefore we should further test RB-EKF method under more realistic

assumptions.

6.3 Experiment 3: Comparison of R-EKF and RB-EKF

In the previous experiments we have mentioned that the initial state may not be accurately

measurable and also other disturbances may affect the dynamic motion of the target object as

well as its projections on to the image plane. The external disturbances may cause the actual

target motion deviate from the dynamic target motion model and also the actual camera mea-

surements deviate from the ones that would be obtained by the pinhole camera model. In this

part the R-EKF and RB-EKF algorithms are compared under reasonable initial uncertainty

and noise effects.

Introduction of an additional measurement system to obtain an accurate initialestimate of the

target state would result in a complicated and pointless calibration procedure. Because if one

already has the necessary equipment to obtain the target pose in an accurate manner, then that

may also be used to obtain the camera poses. So a practical and efficient calibration method,

which uses the EKF for parameter estimation, should be able to tolerate the uncertainties of

the initial target state.

In this part the camera poses and the target trajectory are used as in section 6.1, but this time
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Figure 6.4: Convergence of the Repeated Bidirectional EKF Algorithm w.r.tthrow iterations.
All calibration parameters converge to their true values. (a) Rotation angles; (b) Translation
parameters.
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the initial target state and the camera poses are assumed to be guessed by theoperator by only

inspecting the system. Therefore the initial position uncertainty must be toleratedby at least

half a meter, because that much mistake is fairly reasonable for human prediction. The initial

velocity of the free falling target is assumed to be~0 m/s. Hence

X̂0 = [0 0 1.5]T , V̂0 = [0 0 0]T

vectors may be accepted as reasonable initial estimates for the target state. Then the initial

super-state estimate is given as

s0 = [X̂T
0 V̂T

0 ĈT
0 ]T (6.1)

where the initial camera parameter vectorĈ0 is taken same as the first experiment.

In order to model the disturbances, process and observation noises are added while obtaining

the camera views of the falling object. The target position and the camera measurements are

disturbed with White Gaussian noises. The process and observation noisevariances are set to

0.002 m and 0.1 pixels respectively.

The measurements and the re-projected points obtained after 1000 throw iterations with R-

EKF and RB-EKF methods are shown in Figure 6.5. The convergence curves of the R-EKF

and R-EKF algorithms are illustrated in Figure 6.6 and Figure 6.7. The resultant errors for

both algorithms are presented in Table 6.1.

The final estimation vector of the camera parameters are obtained as

ĈR−EKF = [0.0015 0.1916 − 0.0125 0.1263 0.0318 0.1852 − 0.0683 − 0.1170]T

ĈRB−EKF = [0.0193 0.0828 0.0194 0.0824 − 0.0223 0.2345 − 0.0021 0.0053]T .

The initial target state is also estimated by RB-EKF as

X̂0 = [−0.0045 0.1173 2.1923]T , V̂0 = [0.0379 − 0.1758 − 0.7339]T .

RB-EKF has clearly better performance in this more realistic example. The final camera

parameters obtained by RB-EKF turned up to be closer to their actual valuescompared to

R-EKF. The final re-projection, angle and translation errors for RB-EKF are obtained to be

quite smaller then those for R-EKF as seen in Table 6.1. Also when the convergence curves in

Figure 6.6 and Figure 6.7 are compared, RB-EKF seems to be the superior method between

the two. Therefore it is concluded that RB-EKF should be preferred over R-EKF when the

initial target state is not known accurately.
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Figure 6.5: The synthetic images of a free falling target captured by a stereo camera system.
The motion and observation noise variances are taken as 0.002 m and 0.1 pixels. The black
dots denote the originally captured points and the small circles denote the re-projected points
that are obtained after 1000 throw iterations by (a) Repeated EKF; (b) Repeated Bidirectional
EKF.

Table 6.1: The final re-projection, angle and center errors for R-EKFand RB-EKF

Cam1Repro j Error Cam2Repro j Error Angle Error Center Error
R-EKF 5.8282 3.5549 0.2320 0.1363

RB-EKF 0.4822 0.7799 0.1220 0.0350
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Figure 6.6: Convergence of the Repeated EKF Algorithm w.r.tthrow iterations. Since the
initial target state is not truly provided the calibration parameters are not accurately obtained
(a) Rotation angles; (b) Translation parameters.
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Figure 6.7: Convergence of the Repeated Bidirectional EKF Algorithm w.r.tthrow iterations.
Even though the initial target state is not truly provided the calibration parameters converge
to their true values. (a) Rotation angles; (b) Translation parameters.
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6.4 Experiment 4: RB-EKF / Ballistic Motion

Until now we have focused on a free falling target scenario for calibration since the initial

velocity uncertainty is minimized in this manner. However such one dimensional motion of

the target may cause singularities in the estimation process. For example different orientations

of the cameras may yield the same calibration frames. Assume two cameras are placed on

a circle which is parallel to the ground and let principle axes of the cameras be congruent

with the diameter of the circle. When the target is dropped towards the center of this circle

all the cameras on the circle yields the same image sequence. So there may be more than

one possible orientation for the cameras when a free falling target is used for camera pose

estimation.

Another drawback of the free fall case is that only a small part of the camera image planes

are covered by the vertical motion of the target. But the image planes should be covered

as much as possible by the calibration object in order to estimate the camera characteristics

better. To overcome these problems we move into a more information gathering motion now

that RB-EKF can handle arbitrary initial conditions. So instead of droppingthe calibration

object, we throw it into the joint camera FOV with an initial velocity, hence the object follows

a 2D ballistic trajectory. Therefore not only the singularities will be prevented but also greater

regions on the image planes will be covered.
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Figure 6.8: The synthetic images of the ballistic trajectory of a thrown target captured by
a stereo camera system. The black dots denote the originally captured points and the small
circles denote the re-projected points that are obtained after 1000 throw iterations by Repeated
Bidirectional EKF algorithm.

Since the initial velocity of the target can not be measured easily, it should beestimated
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together with the calibration parameters. RB-EKF can estimate the initial target state and as

shown in section 6.3, it yields more accurate results than R-EKF when the initialtarget state

is not accurately known. So for theballistic throwcases only the results obtained by RB-EKF

are presented.

Suppose that two cameras are placed at the diagonal corners of a square whose edge length

is equal to 1.5 m as shown in Figure 6.10. Also assume that Cam2 is placed 0.2 m above

Cam1 level. Let the orientations of the cameras be arranged to make their principal axes

nearly perpendicular to each other. Then assume that the operator throws a target into the

joint camera FOV. An example initial target state for this setup and a calibration parameter

vector can be given as

X0 = [0.5 0 1]T , V0 = [−1.2 4 1.2]T ,

C = [−0.2 − 0.2 − π/2 π/2 π/2 1.5 0.2 1.5]T .

and reasonable initialization vectors may be selected as

X̂0 = [0.7 0.2 0.7]T , V̂0 = [−1 3 1]T ,

Ĉ0 = [0 0 − 1.5 1.5 1.5 1 0 1]T .

We disturb the target position and the camera measurements by White Gaussian noises with

variances set to 0.002 m and 0.1 pixels. Starting from the super-state,s0 = [X̂T
0 V̂T

0 ĈT
0 ]T ,

after 1000 throw iterations RB-EKF yields the initial target state and the cameraparameters

as

X̂0 = [0.4960 0.0002 0.9931]T , V̂0 = [−1.1917 4.0040 1.2121],

Ĉ = [−0.1972 − 0.2024 1.5784 1.5566 1.5645 1.4982 0.1913 1.4750].

All the re-projected points are close to their original measured locations as shown in Figure

6.8. Also note that the convergence is actually achieved with less than 200 throw iterations as

illustrated in Figure 6.9.

The re-projection error is computed as 0.5177 pixels for Cam1 and 0.4998 pixels for Cam2.

The rotation and translation errors are obtained as 0.0177 radians and 0.0265 meters respec-

tively.
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Figure 6.9: Convergence of the Repeated EKF Algorithm w.r.tthrow iterations. All calibra-
tion parameters converge to their true values. (a) Rotation angles; (b) Translation parameters.
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 1.5 m 

Figure 6.10: The cameras are placed perpendicular to each other and atthe diagonal corners
of a square with 1.5 meter edge length.

In this example we have demonstrated that RB-EKF can give successful results for both the

camera pose estimates and the target trajectory even when the initial target state is not mea-

surable. So, a ballistic motion can be used for calibration by RB-EKF method. Hence the

calibration results will be improved since the singularities in the free fall case are prevented

and the image plane is better covered by the target.

6.5 Experiment 5: RB-EKF / Multiple Trajectories

For pose estimation of a two camera setup we have defined 8 parameters to be estimated. With

the additional 6 variables corresponding to the target state, a total of 14 parameters should be

predicted. By using a single target trajectory however, only a small numberof measurements

can be obtained. Although repeated evaluation of EKF provides convergence with a limited

number of measurements, more calibration data would probably improve the estimations.

Another drawback of asingle throwscenario is that, the EKF may get stuck with a local

minima, and hence the parameters may not be precisely predicted. To avoid such cases,

multiple trajectories can be used instead of a single one. In other words the calibration object

can be thrown a few times and various trajectories of the target can be captured. This surely

provides additional calibration data that may improve the estimates. In this experiment the

effect of usingmultiple trajectoriesduring the calibration procedure is investigated.

Suppose that for the same camera orientation and target motion described in 6.4, the calibra-

tion object is thrown for a second time with the initial conditions

X0 = [−0.5 0.25 1.3]T , V0 = [1.2 3.5 1.2]T .
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Table 6.2: The final re-projection, angle and center errors for single and double throw cases

Cam1Repro j Error Cam2Repro j Error Angle Error Center Error
First Throw 0.5177 0.4998 0.0177 0.0265

Second Throw 0.5757 0.5296 0.0150 0.0350
Both Throws 0.5006 0.6152 0.0054 0.0122

Let their initial estimates be taken as

X̂0 = [0 0 1]T , V̂0 = [1 2 1]T .

We disturb the target position and the camera measurements by White Gaussian noises with

variances set to 0.002 m and 0.1 pixels. When the calibration is performed by using the second

trajectory only, after 1000 throw iterations RB-EKF yields

X̂0 = [−0.5002 0.2690 1.3062]T , V̂0 = [1.2140 3.5089 1.2027],

Ĉ = [−0.2044 − 0.2116 1.5650 1.5647 1.5707 1.5171 0.2302 1.4952].

The re-projection error is computed as 0.5757 pixels for Cam1 and 0.5296 pixels for Cam2.

The rotation and translation errors are obtained as 0.0150 radians and 0.0350 meters respec-

tively.

When two of the trajectories are successively used to estimate the camera poses, after 1000

throw iterations RB-EKF yields

Ĉ = [−0.1972 − 0.2029 1.5692 1.5679 1.5720 1.5075 0.2080 1.5053].

The re-projection error is computed as 0.5006 pixels for Cam1 and 0.6152 pixels for Cam2.

The rotation and translation errors are obtained as 0.0054 radians and 0.0122 meters respec-

tively. The convergence plots are given in Figure 6.11.

The errors corresponding to the single and double throw scenarios arecompared in Table 6.2.

When the pixel errors are observed, using both trajectories seem not tohave any significant

advancement compared to using either of the first or the second trajectoryalone. However,

although pixel error is useful to evaluate the real life performance, it is computed on the

image plane only. In the simulation we have the actual values of the calibration parameters

and hence the real rotation and translation errors. When they are compared the performance
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Figure 6.11: Convergence of the Repeated EKF Algorithm w.r.tthrow iterations when two
different target trajectories are used for calibration. All calibration parameters converge to
their true values. (a) Rotation angles; (b) Translation parameters.
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of the multiple throw case turns out to be significantly better. Therefore the calibration data

can be increased by throwing the target several times, and even when thepixel error, which

is the fundamental performance measure for a real life setup, does not improve, the estimated

parameters will probably be closer to their actual values. So, we are especially encouraged to

try calibration by multiple throws to increase the accuracy.

6.6 Discussion on Simulation Experiments

In this chapter simulation experiments are performed to understand the workings and evaluate

the convergence performances of the proposed methods. Experiments are realized to compare

the performances of the R-EKF and RB-EKF methods. The effects of using a free falling

target or a ballistically moving target and the effects of using a single or multiple trajectories

for calibration are also investigated.

In the early experiments a free falling target trajectory is used since the initialvelocity of such

a motion is a well defined 0 m/s vector. R-EKF has the best performance when the initial

target state is exactly provided for EKF initialization. However such an exact knowledge of

the initial state is not easy to obtain in real life. Further experiments show that unlike R-EKF,

RB-EKF can tolerate significant initial state uncertainties. Hence RB-EKF is amuch more

suitable method in practical applications, especially for the field applications where the ease

of the calibration method is desired most, but the uncertainty is unavoidable.

A free fall motion reduces the unknowns of the initial target state and opensthe way to use

R-EKF, however such a motion is not sufficiently informative since only a small part of the

camera image planes are covered. Additionally different poses of the cameras may yield the

same calibration frames for a free falling target. This means that there may be more than

one possible solution for the same set of calibration frames in a free fall scenario, and the

filter may converge to one of these solutions according to its initialization. In order to prevent

such situations, using a ballistic trajectory is suggested. Although that would increase the

initial state uncertainty and R-EKF can not be utilized anymore, RB-EKF can still be reliably

employed as shown in section 6.4.

The accuracy also depends on the sufficiency of the available calibration data. Increasing the

calibration data would probably result in better pose estimates. One way of increasing the
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number of calibration points is to use more than one target trajectory. Thougheach additional

trajectory brings 6 additional unknowns corresponding to the initial targetstate more accurate

parameter estimates are obtained as shown in section 6.5. Although the average reprojection

pixel errors stay at the same level as in a single trajectory case, the parameter estimates are

much closer to their actual values when multiple target trajectories are used.

To sum up, the simulation experiments demonstrate that for practical applications the RB-

EKF method is superior to R-EKF method. Furthermore using a ballistic motion and multiple

trajectories are superior to using a free fall motion and a single trajectory. Therefore the

camera parameters can be estimated best by using RB-EKF method together with multiple

ballistic trajectories.
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CHAPTER 7

Physical Experiments

Simulation experiments help us to understand the workings of the presented algorithms. How-

ever, although in simulations something works excellent, in real life we have to deal with

several unexpected situations and difficulties. These difficulties and real life performances of

our methods are discussed in this chapter.

First, the components of the multi camera setup that is used throughout the experiments are

described in section 7.1. Next, the internal parameters of the cameras are obtained by MAT-

LAB calibration toolbox in section 7.2. Then the physical experiments to test theproposed

R-EKF and RB-EKF methods are presented. A free falling target is used for calibration with

R-EKF and RB-EKF algorithms in sections 7.3 and 7.4. Then RB-EKF is used with a single

ballistic target trajectory to obtain the camera poses for parallel, perpendicular and arbitrary

placement of the cameras in sections 7.5 and 7.6 and 7.7 respectively. Section 7.8 presents

the RB-EKF performance when multiple target trajectories are used for pose estimation of ar-

bitrarily placed cameras and finally a general discussion of the physical experiments is given

in section 7.9.

7.1 The Multi Camera Setup Components

In this part the multi camera setup, which is prepared for evaluating the performance of our al-

gorithm, is described. The utilized video capture card and the analog cameras are presented in

sections 7.1.1 and 7.1.2 respectively. The connection cables tripods and clamps are displayed

in section 7.1.3.
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Figure 7.1: Eurotech CTR-1472 frame grabber and MPEG-4 Compressor

7.1.1 CTR-1472 MPEG-4 Compressor

The CTR-1472 is a high performance four channel MPEG-4 Video Compressor that supports

real-time video encoding. The CTR-1472 can be used to capture analog video streams (from

PAL/NTSC cameras, VCR and other video sources) up to four sources at thesame time.

CTR-1472 can encode frames in MPEG-4 format and send them to a host via PCI BUS. This

PC/104-Plus compliant CTR-1472 MPEG-4 compressor, which is developed by Eurotech

Company is shown in Figure 7.1.

7.1.2 Measurement Cameras

The UWC-300 camera, the product of Outland Technologies Inc., is an underwater camera de-

signed for deep sea operation. It is illustrated in Figure 7.2. UWC-300 canserve as a general

purpose camera for our experiments since its image quality in the air is also acceptable.

The camera sensor is sensitive to low light conditions (down to 0.0003 lux) and the sensor

provides a 600 horizontal lines of resolution. The UWC-300 camera comeswith a 3.6 mm

focal length integrated lens. It gives analog video output and therefore necessitate a video

frame grabber. Due to the large amount of data from multiple cameras, the captured board

requires a video compressor. The cameras are therefore used together with CTR-1472 MPEG-

4 compressor.
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Figure 7.2: Outland Tech. UWC-300 underwater cameras (black cylinder, top)

7.1.3 Connection Cables, Tripods and Clips

UWC-300 and other underwater cameras have their standardized underwater connectors which

are not commonly available. To work in the laboratory, connectors are manufactured by us

in the laboratory environment. After some trials, these connectors are produced to minimize

noise and provide data with high quality. The PC104 stack which is set in the laboratory and

the attached connectors are shown in Figure 7.3(a). The connection cables are coaxial CCTV

cables which also include a number of control signal lines. Another connector which was

needed in the laboratory is the one that connects the video cables to the CTR-1472 MPEG-4

compressor as shown in Figure 7.3(b).

 

(a)

 

(b)

Figure 7.3: The connection cables and connectors. (a) PC104 stack which includes CTR-1472

MPEG-4 compressor and the manufactured cable set connecting the cameras to the stack. (b)

CTR-1472 connector.
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Figure 7.4: Tripod-clamp-camera trio and the calibration pattern. (Shown for a single camera)

To hold the cameras in a secure manner during the internal and external calibration suitable

set of tripods (SLIK-ABLE 300DX) and clamps(MONFROTTO SUPER CLAMP 035) are

acquired. This setup is shown in Figure 7.4 with a single camera and Figure 7.5shows the

synchronous video capture from the set of four cameras and the associated preliminary soft-

ware interface.

 

Figure 7.5: 4 pieces of BWC-300 underwater cameras and synchronous video capturing with
these cameras.
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7.2 Internal Calibration

After all the connections are made in order to capture video synchronously from 4 cameras

as a first step, the software which was provided by Eurotech is updated and used so that the

video frames could be captured, compressed and saved. When the camera hardware became

ready, the captured frames could be compressed and saved in the MPEG-4 format with the

help of the software provided by Eurotech, the manufacturer of the framegrabber/compressor

card. When MPEG-4 compressor captures in PAL format with 100 fps ratethe frames are

obtained in 354× 248 pixel resolution and if the frame rate is 25 fps then the resolution is

doubled.

While the work on video capturing was in progress, we contacted the Eurotech Company and

obtained the source code of the video capturing software. The source code is valuable as it

provides a large number of examples on how the drivers of the card can be configured and

used. This allows us to incorporate the functionality into our own software and modify and

extend what is provided by the standard test interface of the manufacturer. As an example,

in order to perform the internal calibration of the cameras, a single frame ofa static scene

is needed instead of a long video sequence. This problem is solved by adding a SaveOne-

Framefunction to the source code so that single frame capturing and saving in JPEG format

is achieved. This allowed the capture of the necessary images which are used to obtain the

internal calibration parameters of the cameras with the help of the MATLAB Calibration

Toolbox [23] since the calibration software uses the photographs (or a single video frame) of

a chess pattern Figure 7.6 from different angles.

Although MATLAB Calibration Toolbox inspired the main initialization step from Zhang’s

calibration algorithm [19], the closed form estimation of the internal parameters is slightly dif-

ferent. For example the distortion parameters are not estimated at the initializationstep, and

intrinsic camera model is inspired from Heikkilä and Silv́en’s work [21] which includes two

extra distortion coefficients corresponding tangential distortion. Radial and tangential distor-

tion model is taken directly from the Brown’s work [56] which is one of the first introductions

of the camera model.

In the simulations two cameras have been used for testing our external calibration algorithms.

Although the internal parameters were perfectly known in the simulations, forthe physical
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Figure 7.6: The calibration view obtained from 4 cameras synchronously.This kind of chess-
board pattern shown in the figure is used for internal calibration purpose.

experiments, first of all, the internal parameters of the cameras should be obtained. We have

performed the internal calibration by MATLAB calibration toolbox in order to calibrate two of

the UWC-300 cameras. For the first camera focal length, principal point,skew, and distortion

coefficients are obtained as

Focal length : fc = [277.44915 298.82608]± [1.19135 1.27202]

Principal point : cc = [183.64332 117.42620]± [1.59237 1.64054]

Skew : alpha c = [−0.00084]± [0.00093]

Distortion : kc = [−0.42093 0.20117 − 0.00270]

± [0.01084 0.02578 0.00095]

Pixel error : err = [0.28266 0.26950]

and for the second camera the same parameters are obtained as

Focal length : fc = [270.39002 291.26888]± [1.42153 1.55879]

Principal point : cc = [180.25090 118.13432]± [1.61322 1.68951]

Skew : alpha c = [−0.00026]± [0.00099]

Distortion : kc = [−0.39303 0.14915 − 0.00353]

± [0.01171 0.02362 0.00099]

Pixel error : err = [0.30324 0.30778]

In a real image formation process the lens distortion may cause great fluctuations from the

pinhole camera model. Apart from the focal length, principal point and skew parameters,

MATLAB calibration toolbox yields the distortion coefficients too. Luckily an additional
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utility to undistort the images is also included in the toolbox. We integrated that function in

our external calibration method, so that undistorted images of a calibration target can be ac-

quired and directly used by our calibration algorithms. Otherwise the distortedimages would

be used in the expense of low calibration accuracy. In fact we previously tried to include the

distortion model in the EKF equations to be able to use the original distorted imagesacquired

from the cameras, but the evaluation time for the Jacobian matrix was increased too much due

to the higher complexity.

Finally note that the internal calibration error is in the order of 0.3 pixel for both cameras. In

the simulations no such error corresponding to the internal calibration results was taken into

account. Anyway this additional disturbance can be accepted as part ofthe observation noise

in the EKF equations.

7.3 Experiment 1: R-EKF / Free Fall Motion

In this experiment the simulation experiment in section 6.1 is repeated with real data. Two

cameras are tried to be placed in parallel with zero rotations. The main difference from the

simulation experiment is the distance between the cameras towardsx-axis. Instead of a 0.2

m gap the cameras are separated by half a meter distance. A free falling target is used to

calibrate the two camera system with R-EKF algorithm. The initial target state is measured

as

X̂0 = [0.25 0.35 1.10]T , V̂0 = [0 0 0]T ,

and the camera parameter vector is initially set as

Ĉ0 = [0 0 0 0 0 0.5 0 0]T .

After 1000 throw iterations, R-EKF algorithm yields the camera parameters as

Ĉ = [−0.0191 0.0160 0.0106 0.0145 0.0083 0.4916 − 0.0054 − 0.0162]T .

As discussed in section 6.1 the target position is measured by a ruler and the initial velocity is

taken as~0 m/s since the calibration object falls freely. However, the acquired initial position

value is not exact due to uncontrollable measurement errors. The initial velocity is not also

absolutely equal to~0 m/s, because the moment that the target is dropped can not be synchro-

nized with the camera capturing instant. Furthermore while releasing the calibration object,
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Table 7.1: The final parameter estimates for different initial positions of the calibration object
and the corresponding re-projection pixel errors after 1000 throw iterations with R-EKF.

αc1 βc1 αc2 βc2 Γc2 Cc2
x Cc2

y Cc2
z errc1 errc2

ex1 −0.02 0.02 0.01 0.01 0.01 0.50 0.00 −0.02 5.16 4.97
ex2 −0.01 −0.05 0.02 0.01 0.02 0.48 0.08 0.00 7.92 7.73
ex3 −0.01 0.07 0.03 0.08 0.18 0.53 0.04 −0.07 8.12 7.02
ex4 −0.03 0.08 0.02 0.05 0.01 0.51 −0.05 −0.08 8.76 7.14
ex5 0.02 −0.05 0.00 0.05 0.00 0.49 0.13 0.04 7.60 5.38

undesired movements inx andz directions may also occur. Still taking the initial velocity of

a free falling target as~0 m/s is a reasonable assumption.

The final re-projection pixel errors for Cam1 and Cam2 are 5.1617 and 4.9735 pixels respec-

tively. Although our algorithm is not an optimization method that minimizes the pixel error,

this re-projection error is a measure that reflects the accuracy of our estimation. Figure 7.7

illustrates the original and re-projected points for both cameras. The convergence graphs for

the calibration parameters are shown in Figure 7.8.

In four additional examples the initial position of the calibration object is changed and the

same experiment is repeated. In other words the calibration target is freelydropped from

different locations but the cameras are not moved. R-EKF results for 1000 throw iterations

are presented in Table 7.1. Although all of the parameters are consistent with our expectations

the pixel errors are changing from 5 to 9 pixels. This much error is mainly caused by the

inaccurate measurement of the initial target state.
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Figure 7.7: The extracted 2-D positions of a free falling target captured by a stereo camera
system. The black dots denote the originally captured points and the small circles denote the
re-projected points that are obtained after 1000 throw iterations by Repeated EKF algorithm.
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Figure 7.8: Convergence of the Repeated EKF Algorithm w.r.tthrow iterations, (a) Rotation
angles; (b) Translation parameters.
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7.4 Experiment 2: RB-EKF / Free Fall Motion

In this section the first experiment is repeated for the RB-EKF algorithm. Theinitial target

state and the initial camera parameter vector are provided to the RB-EKF algorithm as in

section 7.3 since the same observation data (i.e. captured videos of the freefalling target) is

used. At the end of 1000 throw iterations RB-EKF yields

Ĉ = [−0.0459 0.0265 − 0.0015 0.0220 − 0.0105 0.5142 − 0.0266 − 0.0071]T

and also the initial target state is also estimated as

X̂ = [0.3040 0.3238 1.1714]T , V̂ = [−0.0446 − 0.0441 − 0.0233]T

with only 0.1448 and 0.2693 re-projection pixel errors for Cam1 and Cam2 respectively.

The camera parameters are similar to the ones obtained by the R-EKF, however the final

re-projection errors are much more smaller. The main reason for such an error reduction with

the RB-EKF is that the initial target state is also estimated in addition to the camera param-

eters. Remember that in the simulations since the initial target state was exactly known and

provided, R-EKF had a better performance. Unfortunately in real life such an exact measure-

ment seems not possible to be acquired, so in practice the RB-EKF algorithm works much

more efficiently.
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Figure 7.9: The extracted 2-D positions of a free falling target captured by a stereo camera
system. The black dots denote the originally captured points and the small circles denote the
re-projected points that are obtained after 1000 throw iterations by Repeated Bidirectional
EKF algorithm.
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Figure 7.10: Convergence of the Repeated Bidirectional EKF Algorithm w.r.t throw iterations,
(a) Rotation angles; (b) Translation parameters.
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Table 7.2: The final parameter estimates for different initial positions of the calibration object
and the corresponding re-projection pixel errors after 1000 throw iterations with RB-EKF.

αc1 βc1 αc2 βc2 Γc2 Cc2
x Cc2

y Cc2
z errc1 errc2

ex1 −0.05 0.03 0.00 0.02 −0.01 0.51 −0.03 −0.01 0.14 0.27
ex2 −0.02 0.05 0.02 0.07 0.02 0.49 0.03 −0.02 0.15 0.31
ex3 −0.02 0.00 0.03 0.05 −0.01 0.52 0.08 −0.02 0.18 0.46
ex4 −0.03 0.02 0.01 0.04 0.00 0.52 0.00 −0.02 0.21 0.42
ex5 −0.02 −0.02 0.00 −0.01 −0.02 0.53 0.00 −0.02 0.37 0.67

The original and re-projected points are shown in Figure 7.9 and the convergence curves of

the RB-EKF algorithm are plot in Figure 7.10. For the additional four examples in which the

target is initiated from different places in the joint-FOV of the cameras while the cameras are

kept fixed, the RB-EKF results after 1000 throw iterations are summarized inTable 7.2. The

re-projection pixel errors are on the order of 0.2− 0.5 pixels and it should be noted that part

of it is caused by the internal calibration error. The calibration parametersare obtained as

expected and the parameter estimations in different examples are nearly equal to each other.

7.5 Experiment 3: RB-EKF / Ballistic Motion

In this experiment a ballistic trajectory is used for calibrating the two camera system instead

of a free fall motion. The cameras are kept fixed at their parallel poses as described in section

7.3. Since the calibration target is thrown into the joint camera FOV, the initial position and

velocity of the target are not known approximately as in the previous cases,but they can only

be roughly guessed by the operator.

Since the cameras are placed in a parallel position with half a meter distance between them,

the calibration parameters are approximately known in our example. Howeverwhen the cam-

eras are placed in an obscure manner with rotation and translation in all directions, the oper-

ator may not be able to provide the initial estimation for the camera poses as accurate as we

have done until now. In this experiment we observe the performance of theRB-EKF algo-

rithm when the initial estimates for the target state and camera parameters are not provided

precisely.

The initial estimate for the camera orientations and target state is assumed to be provided by

the operator by only looking at the camera poses and calibration frames. Wehave estimated
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the initial target state roughly by looking at the calibration frames as

X̂0 = [−0.25 0 1]T , V̂0 = [1 2 1]T .

It is a reasonable assumption that human eye may predict the rotation and translation param-

eters with less than 0.5 rad, and 0.5 m errors. So the camera parameters are distorted by that

amount and the initial parameter estimate vector is provided as

Ĉ0 = [0.5 0.5 0.5 0.5 0.5 0 0.5 0.5]T .

After 1000 throw iterations with RB-EKF method the complete state is obtained as

X̂ = [0.0355 0.0733 0.8864]T , V̂ = [1.1149 1.8869 0.7419]T ,

Ĉ = [−0.0091 0.0120 − 0.1212 0.0503 0.1260 0.5158 0.0408 − 0.0126]T

with 0.4009 and 1.3721 re-projection pixel errors for Cam1 and Cam2. Note that all of the

camera parameters are obtained as expected. One can argue that−0.1212 and 0.1260 values

are too high because their expected value is approximately zero. Howeversincez-x-z rotation

is used,αc2 andΓc2 terms both correspond to the rotations aroundz-axis. Sinceβc2 is also

approximately zero, these−0.1212 and 0.1260 terms nearly cancel each other validating the

parallelism of the cameras.

The original and re-projected points are shown in Figure 7.11 and the convergence curves of

the RB-EKF algorithm are plot in Figure 7.12.
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Figure 7.11: The extracted 2-D positions of a ballistically moving target captured by a stereo
camera system. The black dots denote the originally captured points and the small circles
denote the re-projected points that are obtained after 1000 throw iterationsby Repeated Bidi-
rectional EKF algorithm.
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Figure 7.12: Convergence of the Repeated Bidirectional EKF Algorithm w.r.t throw iterations,
(a) Rotation angles; (b) Translation parameters.

70



7.6 Experiment 4: Perpendicular Camera Placement

Up to now the experiments are performed to calibrate two cameras which are placed in a

parallel configuration. Such a placement is not only quite useful for stereo imaging, but

it also helps us to verify the trustiness of our algorithm since the actual camera poses are

approximately known. However the proposed method is not limited to calibrate thecameras

that are placed in parallel orientation. In this part we calibrate a two camera setup when the

cameras are placed on the diagonal corners of a square with 1 meter edgelength and Cam1

is rotated 90 degrees around y-axis with respect to the basis coordinate frame as shown in

Figure 7.13.

 

X 
Z 

Cam1 

Cam2 

 1 m 

Figure 7.13: The cameras are placed at the diagonal corners of a square with 1 meter edge
length.

We have estimated the initial target state roughly as

X̂0 = [−1 0.5 1]T , V̂0 = [1 2 1]T .

Sincez-x-z rotation is used, Cam2 rotation parameters should initially be set asαc2 = −π/2,

βc2 = π/2,Γc2 = π/2. So the initial parameter estimate vector is provided as

Ĉ0 = [0 0 −
π

2
π

2
π

2
1 0 1]T .

After 1000 throw iterations with RB-EKF method the complete state is obtained as

X̂ = [−0.3618 − 0.1101 0.8088]T , V̂ = [1.4191 2.5723 0.5942]T ,

Ĉ = [−0.0115 − 0.0010 − 1.4995 1.6111 1.5774 1.0100 0.0662 1.0005]T

with 0.3181 and 0.5495 re-projection pixel errors for Cam1 and Cam2 respectively. The first

two elements of thêC vector,αc2 andβc2, are nearly zero since Cam1 is placed approximately

parallel to the ground. The orientation of Cam2 is also obtained as expected.Only the 0.0662
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value forCc2
y seems to be a little bit away from its expected value of zero, because the cameras

are placed nearly at the same height. Still under the disturbance effects such as air friction, lens

0 100 200 300
0

50

100

150

200

Cam1 view of the 3D trajectory

u

v

 

 

0 100 200 300
0

50

100

150

200

Cam2 view of the 3D trajectory

u

v

Original points
Backprojected points

Figure 7.14: The extracted 2-D positions of a ballistically moving target captured by a stereo
camera system. The black dots denote the originally captured points and the small circles
denote the re-projected points that are obtained after 1000 throw iterationsby Repeated Bidi-
rectional EKF algorithm.

distortion and pixel errors the obtained results are successful especially in the re-projection

pixel error sense.

The original and re-projected points are shown in Figure 7.14 and the convergence curves of

the RB-EKF algorithm are plot in Figure 7.15.
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Figure 7.15: Convergence of the Repeated Bidirectional EKF Algorithm w.r.t throw iterations,
(a) Rotation angles; (b) Translation parameters.
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7.7 Experiment 5: Arbitrary Camera Placement

In many practical applications the cameras may be placed arbitrarily and it may be quite

difficult to provide the initializing parameters of the EKF accurately. Even though the initial

state is not known it should be predicted by the operator to prevent the RB-EKF to converge

to a local minimum solution which may be a wrong result. If the initial estimates for the

target state and camera parameters are given in a wrong manner, the filter may even diverge.

Therefore at least a rough estimate of the super-state should be provided initially.
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Figure 7.16: The extracted and re-projected 2-D positions of a ballistically moving target
captured by two arbitrarily placed cameras. The black dots denote the originally captured
points and the small circles denote the re-projected points that are obtained after 1000 throw
iterations by Repeated Bidirectional EKF algorithm.

In this part we place the cameras arbitrarily and give the initializing state estimate roughly

to the RB-EKF. No measuring device is used to obtain the initial state estimate. Justby

observing the thrown target and the camera system, the initial state estimate is predicted as

X̂0 = [−1 0.5 1]T , V̂0 = [1 2 1]T .

Ĉ0 = [0 0 −
π

2
π

2
π

2
1 0 1]T .

After 1000 throw iterations the RB-EKF algorithm yields the initial target state and the cali-

bration parameter estimates as

X̂ = [−0.2721 0.1341 0.6719]T , V̂ = [0.7714 3.2010 0.4417]T ,

Ĉ = [−0.3754 − 0.3214 − 1.3230 1.1549 1.3321 0.8160 0.4710 0.7604]T .

74



−0.4

−0.2

0

αC
am

1

(rad)

 

 

estimate

−0.4

−0.2

0
βC

am
1

−2

−1.5

−1

αC
am

2

1.1

1.2

1.3

βC
am

2

0 200 400 600 800 1000 1200

1.4

1.6

Throw Iterations

ΓC
am

2

(a)

0.5

1

1.5
(m)

C
C

am
2

X

 

 

estimate

0

0.5

C
C

am
2

Y

0 200 400 600 800 1000 1200
0.5

1

1.5

Throw Iterations

C
C

am
2

Z

(b)

Figure 7.17: Convergence of the Repeated Bidirectional EKF Algorithm w.r.t throw iterations,
(a) Rotation angles; (b) Translation parameters.
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The re-projection pixel errors are 1.0963 and 1.2239 for Cam1 and Cam2 respectively. The

original and re-projected points are shown in Figure 7.16 and the convergence curves of the

RB-EKF algorithm are plot in Figure 7.17. Note that the target is thrown with more thrust than

expected, so at the highest position it stays out of the FOV of Cam2. Hencethe trajectory is

not fully captured by Cam2. Anyway, those unobserved frames are handled by only executing

thepredictionsteps but not theupdatesteps of the EKF algorithm given in Table 3.1. So even

when the calibration target is unobservable in some of the frames, the proposed method can

still be effectively used.

In this experiment we have shown that when the initial target state and the camera orienta-

tion vector for an arbitrary placement of the cameras are initialized by only observing the

system (without using any measurement device), RB-EKF method can yield the calibration

parameters as well as the initial target state. Additionally even when the calibration object

is unobservable in some of the frames, our method can still be used for the estimation of the

parameters by only executing thepredictionstep of the EKF algorithm for those unobserved

frames.

7.8 Experiment 6: Using Multiple Trajectories for Arbitrary C amera Place-

ment

The physical experiments with a multi camera setup are finally concluded with thisfinal cal-

ibration performance of the RB-EKF by using multiple target trajectories. Thesame camera

configuration as in section 7.7 is kept and two additional target trajectories are captured for

calibration. The initial estimate for the first target and the camera parameter vector are set as

in section 7.7. For the initial states of the additional two trajectories, the followingestimates

are used to initialize the EKF:

X̂t2
0 = [1 0.5 1]T , V̂t2

0 = [−1 2 − 1]T ,

X̂t3
0 = [−1 0.5 1]T , V̂t3

0 = [1 2 1]T .

The target trajectories are alternately used for calibration and after 300 throw iterations for

each trajectory (i.e. a total of 900 throw iterations) the RB-EKF algorithm yields the camera

parameters as

Ĉ = [−0.3795 − 0.3144 − 1.3250 1.1665 1.3336 0.8276 0.4712 0.7828]T
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and also the initial target state estimates for each throw as

X̂t1 = [−0.2755 0.1320 0.6776]T , V̂t1 = [0.7798 3.1949 0.4577]T ,

X̂t2 = [0.4228 0.1714 0.9674]T , V̂t2 = [−1.2062 3.1798 − 0.2982]T ,

X̂t3 = [−0.0309 0.5113 0.7266]T , V̂t3 = [0.5964 0.8585 1.1182]T .

The average re-projection pixel errors are 0.6943 and 1.5296 for Cam1 and Cam2 respectively.

The original and re-projected points for all three trajectories are shownin Figure 7.18 and the

convergence curves of the RB-EKF algorithm are plot in Figure 7.19. When the re-projection

pixel errors are compared with the ones in section 7.7 there seems to be no improvement over

using a single trajectory. However as shown in section 6.5 even if the pixel errors are not

reduced by using multiple trajectories, the obtained estimates for the camera parameters can

be much more accurate than a single throw case, because much more calibration points are

used for pose estimation.

As a final comment, note that only 9 observation points are provided by the second trajectory

as shown in Figure 7.18(b). Such less data alone can normally not be sufficient for accurate

parameter estimation. However many other data points are also provided whenmultiple tra-

jectories are used for calibration, hence the trajectories for which very few data points are

acquired may also be used to increase accuracy.

7.9 Discussion on Physical Experiments

In this chapter after the components of our multi-camera setup are describedand internal

parameters of the cameras are obtained by MATLAB Calibration Toolbox, physical experi-

ments are performed to demonstrate the practical usability of the proposed algorithms. After

performances of the R-EKF and RB-EKF are compared by using a free falling target, RB-

EKF method is tested for various positions of the cameras by either using a single or multiple

ballistic trajectories.

First two experiments show the superiority of RB-EKF over R-EKF in the sense of re-projection

pixel errors. R-EKF performance relies on the accurate initialization of thetarget state. Un-

fortunately the initial target state can not be measured exactly even for a free falling target,
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Figure 7.18: The extracted and re-projected 2-D positions of three ballistically moving targets
captured by two arbitrarily placed cameras. The black dots denote the originally captured
points and the small circles denote the re-projected points that are obtained after 1000 throw
iterations by Repeated Bidirectional EKF algorithm for the (a) first; (b) second and (c) third
trajectories.
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Figure 7.19: Convergence of the Repeated Bidirectional EKF Algorithm w.r.t throw iterations,
(a) Rotation angles; (b) Translation parameters.
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because the camera capturing and target initiation instants can not be synchronized and hence

the velocity of the target is not exactly equal to~0 m/s when the first frame is captured. Ad-

ditionally the metric measurements for acquiring the target position w.r.t the centerof the

first camera can only be performed from the outer core of the camera bulk. Since the initial

target state can be estimated accurately by RB-EKF method, calibration parameters are also

estimated more accurately.

The RB-EKF is tested by using a single ballistic trajectory for parallel, perpendicular and

arbitrary placement of the cameras in sections 7.5, 7.6 and 7.7. Thus the capability of the

proposed method is presented by investigating the calibration performance ofthe algorithm

with various camera poses. In all of these experiments final estimates of the calibration pa-

rameters satisfy our expectations. Especially section 7.7 proves the practical applicability of

the algorithm since the poses of arbitrarily placed cameras are estimated successfully by using

partial observation of the target trajectory.

Finally multiple target trajectories are used for increasing the calibration accuracy in section

7.8. Although the re-projection pixel error is not reduced compared to a single trajectory case,

the estimations are expected to be more accurate as shown in 6.5.

In conclusion physical experiments demonstrate that the ease of applicabilityand the suc-

cessful calibration performance of the RB-EKF method makes it particularlybeneficial for

any application where frequent re-calibration is required such as outdoor field measurement

applications using multiple-cameras.
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CHAPTER 8

Conclusions and Future Work

We propose a procedurally effective and high performance method of calibrating a multiple-

camera measurement system by making use of the known dynamics of a targetobject. The

proposed method promises to considerably facilitate the field installation of a camera based

ground truth measurement system. In fact it needs only a ballistically thrown simple calibra-

tion target in the multi-camera joint-FOV to calibrate the complete system. Extension ofthe

two camera case considered for the formulation to a multi-camera system is straightforward

in two ways: first, we can either insert the calibration parameters and measurements taken

from the additional cameras into the state and measurement vectors and use the algorithm as

it is, or we can calibrate the cameras two by two, i.e., Cam1− 2, Cam1− 3, Cam1− 4, etc.

The latter approach may be more feasible since it does not increase the dimensionality of the

problem.

The simulation results validate that both R-EKF and RB-EKF algorithms can converge rapidly

and asymptotically yield the desired camera parameters. However for successful calibration

R-EKF needs an accurate estimate of the initial target state which is quite difficult to obtain

in a real case. On the other hand RB-EKF can tolerate significant initial stateuncertainty

when sufficient number ofthrow iterationsare performed. This removes the need for man-

ual geometric measurements performed by the experimenter (such as 3D-2Dcorrespondence

measurements) and hence results in the removal of the human related measurement errors that

can affect the calibration process. Although our primary motivation is to generate aneasily

applicable and fast calibration algorithm but not to surpass the performances of the standard

methods we feel that the eliminated human factor may enable us to get superior calibration

performance in practice compared to the methods that need 3D-2D correspondence measure-

ments.
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The testing of the algorithms on a real imaging system shows that RB-EKF methodcan be

successfully used for determining the external poses of the cameras in a multi-camera setup.

The cameras are placed in parallel, perpendicular and arbitrary positionsin order to test the

RB-EKF method for free fall and ballistic motion cases by either using a single or multiple

target trajectories. In all of the physical experiments the calibration parameters are estimated

around their expected values.

Although re-projection pixel error is used to demonstrate the success rateof our method one

should not forget that pixel error is computed on the 2D image plane, and itis not always

proportional with the actual 3D position errors. Our method tries to balance the information

coming from the dynamic motion model with the information due measurements. Some of

the present methods only use the measurements obtained from a static scene and minimize

the re-projection pixel error in order to calibrate a camera setup. Hence even when RB-EKF

yields higher re-projection pixel errors compared to these algorithms, the actual poses of the

cameras may still be estimated better. Moreover the presence of process and measurement

noise terms in the EKF algorithm compensate for modeling errors and unknowninputs to the

system, reducing the sensitivity to such factors as wind disturbance, image noise, ball center

detection errors etc.

An interesting extension to our study is to provide a full calibration (both internal and external)

by means of the proposed method. Even though internal calibration does not have the same

speed requirements of the external calibration and hence is not a critical candidate for this

method, these static internal parameters can also be made part of the state vector and obtained

similar to the external parameters. But it is clear that with the increasing dimensionality of

the problem, the convergence properties of EKF may change for the worse in terms of speed,

accuracy and stability.
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