SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CENGIZ TOGAY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER ENGINEERING

JULY 2008

Approval of the thesis:

SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

Submitted by CENGIZ TOGAY in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Ozgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali H. Dogru

Supervisor, Computer Engineering Dept., METU

Examining Committee Members

Prof. Dr. Muslim Bozyigit
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali H. Dogru

Computer Engineering Dept., METU

Prof. Dr. Mehmet R. Tolun

Computer Engineering Dept., Cankaya University

Assoc. Prof. Dr. Halit Oguztiiziin

Computer Engineering Dept., METU

Assist. Prof. Dr. Biilent Glimiis
Industrial Engineering Dept., TOBB Univ. of Econ. and Tech.

Date: 16/07/2008

il

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name: Cengiz Togay

Signature

il

ABSTRACT

SYSTEMATIC COMPONENT-ORIENTED DEVELOPMENT WITH
AXIOMATIC DESIGN

Togay, Cengiz
Ph.D., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Ali Hikmet Dogru

July 2008, 131 pages

In this research, component oriented development is supported with design
guidance by extending the Axiomatic Design Theory for component orientation,
and utilizing domain engineering and ontology mechanisms. Guidance is offered
in the form of suggesting missing components and discovering incompatibilities
among the candidate elements of software development, corresponding to
different phases such as requirement analysis, design, and implementation. A
mature domain concept is developed suggesting the availability of reference
models for customer needs, software system requirements, software design, and
also a rich set of implemented components. As the system is being defined starting
with the customer needs and progressing towards components, at every step the
developer is presented what is available in the domain and what becomes
unavailable. This guidance is based on the selections made so far, utilizing
ontology based constraint checking. Feature Models are incorporated for modeling

customer needs. Case studies are presented for demonstration purposes.

Keywords: Component Orientation, Axiomatic Design Theory, Feature Model,

COSEML, Ontology.

v

(0Y/

AKSIYOMATIK TASARIM iLE SISTEMATIK BiLESENE YONELIK
GELISTIRME

Togay, Cengiz
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ali H. Dogru

Temmuz 2008, 131 sayfa

Aksiyomatik tasarim teorisi, bilesen yonelimli gelistirmeyi desteklemek iizere
genisletilmigtir. Ayrica, bilesen yonelimli gelistirmeyi desteklemek icin alan
mithendisligi ve ontoloji mekanizmalar1 yardimi ile bir tasarim rehberligi
olusturulmustur. Rehberlik, eksik bilesenlerin ve gelistirme Ogeleri adaylar
arasindaki uymusuzluklarin gereksinimler, tasarim, ve uygulama gibi degisik
safhalara yonelik olarak Onerilmesi seklindedir. Olgun alan kavrami, miisteri
ihtiyaglari, yazilim sistem gereksinimleri, yazilim tasarimi ve cok sayida
gelistirilmis bilesenler icin referans modellerinin mevcut olmasina bagl olarak
gelistirildi. Sistem gelistirme siireci, miisteri ihtiyaglarindan baslayarak bilesenlere
ulagma yoniinde devam ederken her daimda gelistiriciye alanda neyin uygun
oldugu ve neyin uygunsuzlastigi bildirilir. Bu rehberlik, yapilmis se¢imler 1s18inda
ontolojiye dayanarak kisitlarin kontrol edilmesi yolu ile gergeklestirilir. Miigteri
gereksinimlerinin modellenmesi icin yetenek modeli kullanilmaktadir. Ornek

uygulamalar ile yontem anlatilmistir.

Anahtar Kelimeleri: Bilesen yonelimi, Aksiyomatik Tasarim Teorisi, y Modeli,

COSEML, Ontoloji.

vi

To My Wife Sine

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my supervisor,
Assoc. Prof. Dr. Ali H. Dogru, for his guidance, advice, criticism,

encouragements, insight and patience throughout the research.

I would also like to thank my committee members Prof. Dr. Mehmet R. Tolun,
Prof. Dr. Muslim Bozyigit, Assoc. Prof. Dr. Halit Oguztiiziin, and Assist. Prof.

Dr. Biilent Gilimiis for their invaluable suggestions and comments.

Prof. Dr. Murat Tanik’s guidance and suggestions during my visit at University of

Alabama (UAB) have presented crucial steering which I appreciated deeply.

I would also like to thank Prof. Dr. Muslim Bozyigit, Burak Ulutoprak, Dr. Okan
Topgu for their technical support for developing simulations, Orhan Ugtepe for his
technical support while developing ADCO tool, my friends Alper Kilig, Alev
Mutlu, Eren Kogak Akbiyik, Gayathri Sundar, Giilsah Tiimiikli, Levent Bayindir,
Selma Siiloglu, Oral Dalay, Dr. Ozgiir Aktung, Ozgiir Kaya, Dr. Urcun Tanik, and
all my friends not named for their support during my Ph.D, and the staff members
at CENG department, especially Sultan Arslan, Perihan Ilgun and Giildane Ocal

for their indefinite help and cooperation.

Last but not least, I would like to give special thanks to my wife and my parents

for their continual and indefinite support and prayers.

This study was supported by the State Planning Organization (DPT) Grant No:
BAP-08-11-DPT2002K120510.

vil

TABLE OF CONTENTS

ABSTRACT ...ttt sttt st a e st be et et e v

OZ ettt \%

DEDICATIONcoittiiieteeeeteeete ettt sttt st et ebesneensesaeensesneensenee vi

ACKNOWLEDGMENTS ..ottt vii

TABLE OF CONTENTSttt viii

LIST OF TABLES ..ottt ettt sttt Xi

LIST OF FIGURESootiiieieieeceee ettt ettt ae e xii

LIST OF ABBREVIATIONS......cooiiiiieieeseeee et XV
CHAPTERS

1. INTRODUCTION ..ottt ettt 1

2. BACKGROUND ..ottt 4

2.1. Axiomatic Design TREOTY.......ccccievierieiiieiieiieceeeee e 4

2.1.1. Concepts of Axiomatic Design Theoryc.ccccvvveeverrrreannnen. 4

2.1.1.1. DOMAINS c..eeiiiieiieiieeiieeie ettt 4

2.1.1.2. Hierarchiesccccceevvieeoieeiieeieeieeeeeee e 7

2.1.1.3. ZiZZAGTING ..ot 7

2.1, 1.4, AXIOMS..ioiiiiiieiieiieeieeteete ettt sre e nee s 8

2.1.1.4.1. Independence AXiOM.........ccceeveererrveecreererennnenns 10

2.1.1.4.2. Information AXIOM.....cccereeruerrerruenreerierieniennans 12

2.1.2. Axiomatic Design of Object-Oriented Software Systems..... 19

2.2. High Level Architecture and Object Model Template 21

2.3. Component Oriented Software Engineering..........ccccceeceeeeveverenennne. 23

2.4. COSE Modelling Language...........cceceevuerieieneenieneeienienieneeieneeenen 28

2.5. Design Structure MatriX.......cocceeeeviereeiienenieneeiesieeieie e 31

2.6. Communicating Sequential Process.........ccceevevvieveieneenieeieenieeseeenne 35

viil

2.7, Feature MOAELcoooviviiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeees 41

2.8. Knowledge-Base........cccccveviieiieiiiecieeieeeee e 48

2.9. Mature DOmainccoeceririeiiininineneeeseeeeeee e 50

3. ONTOLOGY MODELINGcoctiiteiiiinieienteieeeeesieeeesee e 53
3.1. Modeling Featuresc.ccceeeeueeeieeeiierieiie e eeeree et 55

3.2. Modelling Functional Requirementscccceevercvrerieneencreeeeennen. 58

3.3. Modelling Design Parameters............ccceeveerveenienieniieiieie e 60

3.4. Modelling Process Variablesccccevveeeiiiiienieiiecieeceecee e, 60

4. PROPOSED APPROACH.........cccciiiiiiiiiinieicnieeceeceseece e 62
4.1. Development PrOCESSESc.cevierierieeciieriienieeieeseesee e eveeseesaeens 62

4.1.1. Mature Domain Creationcccceceeverienereeneneenieseenennens 65

4.1.1.1. Application Development...........cccccvveereerreerrennnens 65

4.1.1.2. Mature Domain Developmentcccccevveeneen.. 69

4.1.2. ADCO PIrOCESSccoveruriiiriieiiniieieeiecteeieere sttt 71

4.2, GUIAANCE ...ttt 73

4.2.1. Conference Management Systemcccceveereireceeeneenennne. 75

4.2.2. Aircraft SIMulations..........cccereeviiniiienienenieeneeseee e 82

5. CONCLUSION ...ttt ettt 101
5.1. Conducted WOrkc.coeriiniiiiniiiiiiccecccceceee e 101

5.2, EValUBLION c..couviiiiiiiiiicceceee e 103

5.3 Future Workcoooeeiiiiiiiieceeeee e 105
REFERENCES ...ttt 107

... 119
A.l. Author COMPONENLoecvieriieriieiieiieeie et 119
A.2. Database COMPONENLcceevuirirrienirrienieieniieieneeeeeeeeeee 120
A3, Edit COMPONENLovuiiiiriiiiiiirieieeiereee e 121
A.4. File System Component...........ccceeeeeevveerreeneeneenreesreennennnes 122
A5, Paper COMPONENL........ccueverveerrieerieeeieenieeeereeeeeeeeeeeenenees 123
A.6. Paper Topic COMPONENLccveeerevieeireeriirerereeeieeesreeereneenns 124
A.7. Submit COMPONENLcccviierieeirieeiieeeireerreeesireesreeesneeens 125

1X

A.8. System Environment Component.............cceeeereeneeeceeeennns
A.9. Utility COMPONENL ...c..eovviriiiiiriiiiinieeiereeie st
CURRICULUM VITAE.......coiiiiiiiiieteeeteeeeeesitee st

LIST OF TABLES

TABLES
Table 2.1 Meaning of the design domains in various disciplines (adapted from
L0 T) ettt ettt s et neeaea 6
Table 2.2 Design Ranges of Components (adapted from [111, 116]).....cccueneen. 17
Table 2.3 FR design ranges (adapted from [111, 116])..ccccvvevvireciienciiiiieeeieeens 18
Table 2.4 Probability of success for FRs (adapted from [111, 116])...........c........ 18
Table 2.5 Information content of components corresponding to the related design
ranges (adapted from [111, 116]).ccceeciieoiieiieiee e 18
Table 2.6 Information content of application components.............cccceeeeeeveennennne. 19
Table 2.7 Development Process (adapted from [114])...cccceevvvevienieniieiieiienenne, 31
Table 2.8 CSP expressions used in this articleoceeveeeviievienieniieiieeeeee 35
Table 2.9 COSEML and CSP representationscccveerveeerveeereeesveeseeneessneeanes 37
Table 2.10 CSP representations of an Application that compose Component 1,
Component 2 (adapted from [112]) .c.oeeeeeoeerieieeeeeeeeee e 39
Table 2.11 Summary of constructors to form different description logics (adapted
TTOI [5]) e evrieiiee ettt et ettt e et e e re e e are e ereaens 49
Table 2.12 Mature Domain CONCEPLSc.eevverreeciierrierrienieereesreesreesreeeeeeseesseenes 51
Table 4.1 Application development process without mature domain (adapted from
[116] and [T14]) cueeuieieieieiieieeeeee ettt 66
Table 4.2 Mature domain development ProCESSeevveerrrveercreeeiiveerreesereeeveeenes 69
Table 4.3 Application development process with mature domain......................... 71
Table 4.4 Constraints for Conference Management SyStemcccevervenennnene 78
Table 4.5 Constraints for FRI 1 1 S..oieoieiieeiieieeeeeee et 81
Table 4.6 Adapted FEDEP process with ADT (adapted from [118]).................... 82
Table 4.7 OMT classes of simulation (adapted from [118]).....c.cccceevvreiienriennnnnne. 85
Table 4.8 Constraints for simulation domain............ccecceeveereeeiiniienieneeeeee 98
Table 5.1 A comparison of ADCO with COSEML and ADT.........cccceeevenennen. 104

X1

LIST OF FIGURES

FIGURES

Figure 2.1 Domains and their elements (adapted from [101]).....ccceevvrecrienreennnnnen. 5
Figure 2.2 Zigzagging (adapted from [101]) ..ccceeeeieeiieriiniieiieceeeeeeee e 8
Figure 2.3 Partial Design Matrix of Submit Component Interface........................ 10

Figure 2.4 Design range, system range, common range, and system probability

density (adapted from [TO1]). ceeeveveiieiieiii e 13
Figure 2.5 Probability of DP1 success with specified FR (adapted from [111,
L] ettt 14
Figure 2.6 Probability of success graph of composed two components (adapted
FTOM [111, T16])cuieeieiiiiieieieeteeeee et 15
Figure 2.7 Probability of success for a composition of two components with
specified FRs (adapted from [111, 116]). c.cccveveerieiciieieiiecieeiecee e 16
Figure 2.8 Mature domain (adapted from [111, 116])..c.ccccvveeevievriencieiree e 17
Figure 2.9 Systematic OO Programming with Axiomatic Design (adapted from
[B4])ittt b bbb et 20
Figure 2.10 Mapping between design matrix and OO class diagrams (adapted
O [TOTT) ettt 20
Figure 2.11 High Level Architecture based components communication (adapted
O [118]) ettt 22
Figure 2.12 COSEML symbols used in this study (adapted from [114]).............. 29
Figure 2.13 Axiomatic design representation (left side) and COSEML
representation (Tight S1A@)ecverieiiiieiiee e 30
Figure 2.14 Example Design Structure Matrix (adapted from [120])c........ 32

Figure 2.15 DSM table for the components in the example (adapted from [120])33
Figure 2.16 Axiomatic design diagrams of components 0-2 (deadlock free)

(adapted from [120]) .ueieirieecieecieeeree et sre e sre e e reesre e e ser e e areeseree s 34

Xi1

Figure 2.17 Axiomatic design diagrams of components 0-2 (deadlock) (adapted

FTOIM [120]) it ettt et et et e eare e b s 35
Figure 2.18 COSEML representation of Component 1 and Component 2 (adapted
O [112]) ettt 38
Figure 2.19 Design matrix of Component 1 (adapted from [112]).....cccccveveeennnnes 40
Figure 2.20 Design matrix of Component 2 (adapted from [112]).....ccccevvveennnnes 40
Figure 2.21 Feature Model (adapted from [64])cccceveveierieencieirieeciee e 43
Figure 2.22 Three layers of the Feature Models representation in OWL (adapted
1002 003 [2) O OO UU U U U URUU PSP 45
Figure 2.23 Meta-ontology classes (adapted from [14]).....ccccceevvierciiecieniencienienns 46
Figure 2.24 An example Feature Model for military vehicles(adapted from [117])
.. 47
Figure 2.25 Semantic web represention of knowledge..........cceovvevvieciiiciieneennns 48
Figure 3.1 Partial Feature Model of the Conference Domain.............ccceceeveeneene 56
Figure 3.2 Partial FR-DP Design Matrix of the Conference Domain 59
Figure 4.1 Development PrOCESSES........cecuieeiiriieiieiesieeie et 64
Figure 4.2 Axiomatic design process for CO software system: white boxes
represent additions to V-Model (adapted from [116]).....cceevvvevirecereciiennnen. 66
Figure 4.3 Domain view of ADCO T0OIcccoeeeuieciieniiriieieeeesee e 74
Figure 4.4 Conference Management COMPONENLScccvveerveeeriveerreesrereessneeanes 76
Figure 4.5 Partial FR-DP design matriXccccoceevvieeriveeicieenree e esreesereesvee s 77
Figure 4.6 Partial Feature Model of the conference management system............. 80
Figure 4.7 FR-DP design matrix representing inConsistencies............cceeeeereeennenns 82
Figure 4.8 All components in Aircraft sSimulation..........cecceeeeveecieeceeneenieecieee, 84

Figure 4.9 Screenshot from F18 federate includes F16, F18, and Su25 federates 86

Figure 4.10 Software COMPONENLSccueveeriirieriirieienieesieeee e 87
Figure 4.11 FR-DP design matrix of Control componentccccceeceeieeneenenne 88
Figure 4.12 FR-DP design matrix of Terrain component............cccceeveeiieneeneene &9
Figure 4.13 FR-DP design matrix of GUI component.............cccccerevrrieeiieneennne 90
Figure 4.14 FR-DP design matrix of System component............ccccceeveeriienenennne 91
Figure 4.15 F16 component and interfaces...........cceeveeeeeciienienieeieeieeeeeieeiens 92
Figure 4.16 F16_Request COMPONENLcc.evueeiiriirieniieiienieeie et 93

Xiil

Figure 4.17 F16_Service COMPONENL.........ceceeiierieeieeieeiteeee e eie e seee e 94

Figure 4.18 FR-DP design matrix of F16 componentcccccceevveeciieneenceennnenns 95
Figure 4.19 Feature Model of simulation domainccceeeveereervercieecreeneennenns 96
Figure 4.20 Domain FR-DP design matrix of domain and application................. 97
Figure 4.21 Selected features.........oevveeiiiiiiiiiieieecie e sre e s eae e 99
Figure 4.22 Mature Domain FR-DP design matrix of application after constraint
EVAIUALIONeiiiiiiiiiei ettt ettt 100
Figure A.1 Design matrix of Author component............ccccceeveeiieniienieeceeneeeee. 119
Figure A.2 Design matrix of Database component............cccecceereeriersieecieeneennen. 120
Figure A.3 Design matrix of Edit component...........c.cccceevevireiieceenienienie e, 121
Figure A.4 Design matrix of File System componentcccceeevvenenienennne 122
Figure A.5 Design matrix of Paper component............cccceeeveevienerienenieneenenn 123
Figure A.6 Design matrix of Paper Topic component...........c.cccveevverveeveenneennen. 124
Figure A.7 Design matrix of Submit component............cccccveevvrveevreenerieenveeennnen. 125
Figure A.8 Partial process diagram of submit method (adapted from [1]).......... 126
Figure A.9 Design matrix of System Environment component........................... 127
Figure A.10 Design matrix of Utility component............ccccoeeevuenerienenienennenn 128

Xiv

ADCO

ADT

CN

CORBA

COSE

COSEML

COTS

CSP

DCOM

DM

DP

DSM

EJB

FR

HLA

IDL

OMT

00

PV

UML

OWL

LIST OF ABBREVIATIONS

Axiomatic Design with Component Orientation
Axiomatic Design Theory

Customer Need

Common Object Request Broker Architecture
Component Oriented Software Engineering
Component Oriented Software Engineering Modeling Language
Commercial Off-The Shelf

Communicating Sequential Process

Distributed Component Object Model

Design Matrix

Design Parameter

Design Structure Matrix

Enterprise JavaBeans

Functional Requirement

High Level Architecture

Interface Definition Language

Object Model Template

Object Oriented

Process Variable

Unified Modeling Language

Web Ontology Language

XV

CHAPTER 1

INTRODUCTION

The Axiomatic Design Theory (ADT) has been proposed by Suh as a scientific
approach [100-103]. ADT encapsulates the design process from customer needs to
product, utilizing two fundamental axioms and corollaries to obtain “good design”
in terms of complexity, maintenance, and testing concepts. ADT has been applied to
software engineering for structured analysis and development of software designs
[32], object oriented software design [19, 33, 34, 91, 101], requirements
management [46], and project planning [98]. In this study, we applied ADT to
Component-Oriented Software Engineering (COSE) [113, 114, 116, 118, 119] and
named the new approach as Axiomatic Design with Component-Orientation
(ADCO). We also added some enhancements to ADT such as collaboration
diagrams [114] that are proposed to identify dependencies in the ADT’s design
matrix, deadlock detection [112, 120] to test solutions against requirements,
component interface representations in terms of COSEML [114], component
congruity measurement in terms of information content [111], and Feature Models

[64] utilized to identify customer needs.

Using component technologies is one of the cost-effective ways of constructing
systems. In Component-Based software engineering approaches, system design and
component usage are not drastically different from Object-Oriented software
development [37]. However, in COSE, components, identified based on customer
requirements and their composition, are represented, hence avoiding code
development. In one of the COSE approaches namely COSEML [36, 37],
requirements are evaluated and systems are created through structural
decomposition. COSEML approach is based on the available components and

developer experience. Success of system development with COSE is dependent on

1

availability of mature domains. Mature domains including various components still
carry some problems in terms of integration. In this dissertation, we are proposing
another COSE approach based on ADT that is Axiomatic Design with Component
Orientation (ADCO) for mature domains. One advantage of integrating ADT and
COSEML [36, 37] is to support component interfaces with more information. Well
defined interfaces and constraints help to locate and integrate components [21]. If
information about the components is not adequately presented to the developers, the

developers will not optimally benefit from the reuse potential of the components.

In our approach, we assume that the services published by components are
implemented to solve functional requirements. Incorporating ADT, supplements
component interfaces with a design matrix that stores all relationships among
functional requirements and interface items (methods, attributes, and events). Also,
any component internal dependencies as well as external dependencies are possible

to represent.

There are two opposite approaches for system design. In the first approach, same set
of functional requirements can be solved with the same solution set. This approach
increases reliability, decreases design cost because most of the design problems
have been identified and solved before. The gained expertise is transferred to the
mature domain for future use. Also mature domains increase chance of utilization
success for components. But at the same time, this approach prevents finding more
effective solutions. The second approach proposes to focus on functionalities
without considering available designs [45]. Since in software world, reuse is a
primary goal in the software development because of well known reasons, ADCO is

closer to the first approach.

In a mature domain, a generic system is defined that is utilized in the instantiation of
specific products. Mature domains include experiences of the designer. Experiences
are reflected to the mature domain with various constraints. Constraints which relate
to components, features, requirements, design parameters, and dependencies should

be evaluated and utilized to guide designers. Expert requirements analysts can

2

decide which functional requirements can be defined in a new system through
interpretation of the customers' needs. Customer needs can be identified with
various tools such as brainstorming, interviews, observation of work patterns,
reverse engineering, technical documentation review etc. [45]. We have utilized
features [64] to identify customer needs. Feature Models as a domain analysis tool
provides a communication environment between customers and other stakeholders
such as designers. Since features can include requirements, implementation level
information, constraints, etc., they can be useful in mature domains. Therefore, one
of the contributions in this study is to construct a bridge between customers and the
solution, based on available solution alternatives in mature domains. Another
advantage of Feature Models is guidance for customers to express themselves with
available materials (features). Generally, customers do not express themselves
because of cultural/educational differences between customers and designers.
Customers define their needs using the domains Feature Model through selection of
features. Designers benefit from the selected features to specify Functional
Requirements for specific systems originating from the mature domain. We define a
mapping approach based on ontology among the features and ADT domains

corresponding to requirements, design, and implementation domains.

Beyond this first chapter, the dissertation is organized as follows: In chapter 2,
required background and our related studies are described. In Chapter 3, our
ontology creation method is described. In Chapter 4, ADCO approach is explained
and applied to two different domains namely Conference Management System (web
service based application) and High Level Architecture [54] based simulations. A
brief conclusion for this dissertation and further work that can be performed based

on this work is represented in the last chapter.

CHAPTER 2

BACKGROUND

2.1. Axiomatic Design Theory

Axiomatic Design Theory (ADT) is a systematic methodology to decompose
requirements and solution in a top-down fashion that assists designers to structure
design problems [101, 103, 104]. Ultimate goal of ADT is to reach the “best” or
“good” design as other Decision Based Design (DBD) methods and methodologies
[82]. ADT is an interdisciplinary approach which is applied to various engineering
domains such as mechanical [80, 130], GRID engineering [107], and software
engineering such as structured analysis and development of software designs [32],
object oriented software design [19, 33, 34, 91, 101], requirement management [46],
project planning [98], and Component-Oriented software design [113, 114, 116,
118, 119]. Also, research has been conducted for incorporating collaboration
diagrams [114], deadlock detection [112, 120], COSEML [114], component
congruity [111], test concepts [46] in the ADT. Concepts of ADT are introduced in
section 2.1.1 and a systematic approach for Object Oriented design is explained

briefly in section 2.2.2.

2.1.1. Concepts of Axiomatic Design Theory

Essentially, axiomatic design concentrates on four concepts: domains, hierarchies,

zigzagging, and axioms [101]. The following subsections explain those concepts.

2.1.1.1.Domains

The domains are divided into four inter-related parts: (1) customer domain, (2)

functional domain, (3) physical domain, and the (4) process domain, providing

respectively, Customer Needs (CNs), Functional Requirements (FRs), Design

Parameters (DPs), and Process Variables (PVs), as shown in Figure 2.1.

Customer Functional Design Process

Needs Requirements Parameters Variables

Customer Functional Physical Process
Domain Domain Domain Domain

Figure 2.1 Domains and their elements (adapted from [101])

The relation between the domains is expressed as “What” and “How” questions
(e.g. what the customer wants (CN) is addressed by how it is accomplished (FR)).
FRs are defined as a minimum set of independent requirements that completely
characterize the functional needs. The FRs represent system requirements in a
hierarchy that specifies CNs and should describe the expectations from the products,
and how such expectations should succeed is not of concern. DPs are defined as the
key physical variables such as methods, services, components, and some
abstractions in terms of software that characterizes the design that satisfies the FRs.
The PVs satisfy the DPs with implemented items such as implemented components.
Design domains can be interpreted differently by various disciplines as listed in
Table 2.1. As represented in Table 2.1, in this dissertation, we have characterized
customer attributes as features [64] in the customer domain. Features are mapped to
FRs and there are many to many relationships among FRs, DPs, PVs, and features.
This is one of our contributions to ADT. How relationship between FRs and

features are defined is explained in Chapter 3.

Table 2.1 Meaning of the design domains in various disciplines (adapted from

[101])
Customer Functional Physical Process
Domain Domain Domain Domain
Manufacturin Customer | FRs specified | DPs that can PVs that
& attributes for product satisfy FRs control DPs
Materials Desired Requlrgd Microstructure Process
performance properties
People and
Functions of Programs, other
oo Customer
Organizations . . the offices, resources to
satisfaction . L
organization activities support
programs
Attributes -
) Mach
desired of the | FRs of the achines,
Systems components, Resources
overall system
subcomponents
system
. . Human and
. Business Business .
Business ROI financial
goals structure
resources
. Output Input variables, Subrout.mes,
Attributes . . . machine
Ny specification algorithms,
General desired in the codes,
of program modules, .
software compilers,
codes program codes
modules
© -
5 Object Customer Objects Data Sur?lzcc):lkll?rf ”
z Oriented attributes J
5 codes
wn Processes,
Component Attributes methods, Real
P desired in the | FRs specified | abstractions components
Oriented
software for products (component, and web
(features) interface, services
package)

Constraints are used to define the boundaries of the acceptable solutions and they
have to be consistent with each other [101]. There are two kinds of constraints
namely input and system constraints [101]. Input constraints are defined in the
beginning of design activity and affect the whole design decisions for instance

price, time, industrial standards, environment constraints, etc. System constrains

such higher- level design decisions are specified during design process. In this
study, we have used ontology definitions as explained in Chapter 3 to define some

input constraints.

2.1.1.2.Hierarchies

The second concept of axiomatic design that is consistent with Simon [96] is
hierarchical decomposition process for all ADT domains. According to Simon, an
important approach to solving complex problems is to divide the problems into
simpler parts, solve them, and integrate into the solution [96]. Thus, axiomatic
design decomposes the problems (functional requirements) into simpler parts since
it has a top-down approach (hierarchies), while introducing the concept of

Zigzagging in all axiomatic design domains.

2.1.1.3.Zigzagging

The third concept is Zigzagging. Instead of decomposing only the FR domain
thoroughly, independent of any other domain, zigzagging allows a parallel
decomposition of all four domains. Process starts with specifying the customer
needs. FRs are specified by answering the question, “What must this design do to
satisfy our customer’ needs?” We used Feature Models to define customer’s needs.
Hence, the decomposition of a complex problem starts with determination of the
most general FR from the customer needs. Then, the designer “zigs” to the DP
domain and determines an appropriate DP to fulfill that particular FR. Once a DP is
chosen to satisfy FR and the DP is not implementable, then the designer “zags” to
the FR domain to a level below the former FR, thus creating a dependency of that
particular FR to the previous DP choice. This process of zigzagging continues until
all the leaves of the DPs are satisfied with implementable PVs, as shown in Figure

2.1 and Figure 2.2.

Functional Domain Physical Domain

Figure 2.2 Zigzagging (adapted from [101])

2.1.1.4.Axioms

The fourth concept establishes two axioms to select the best design among
candidates and also accelerate the design in the right direction without much trial
and error [69]. Axioms defined based on the investigation of various system designs

in different engineering disciplines are listed below [101]:

Axiom | (Independence): “Maintain the independence of the functional
requirements”: The independence here corresponds to the functional
requirements set so that a requirement is understood easily without having to
refer to the others extensively. The axiom leads to keeping the design
simple.

Axiom 2 (Information): “Minimize the information content of the design”:
Information content is measured based on the design range specified by the
designer and system range provided by DP. This axiom also prevents the

design from getting unnecessarily complex.

Mappings between domains are represented using a square design matrix implying
the expectation that one FR should correspond to one and only one DP. Square
design matrices are recommended to provide independence axiom but design may

be started with non-square matrix. There are two kinds of design matrices in ADT

8

namely FR-DP and DP-PV matrices called Process Matrix. Mappings between FR
and DP vectors can be represented in equation 2.1 where |A| is called the FR-DP

design matrix.

FRl All A12 A13 DF)]
FR,{=|4, A, A,[{DP, (2.1)
FR3 A31 A32 A33 DPZ

Elements of the equation can be written as defined in equation 2.2.

FR, = 4,,DR + A,DP, + A DB
FR, = A4, DP + A4,,DP, + AyDP, (2:2)
FR, = 4, DP, + A4,,DP, + A, DP,
Similarly, DP-PV matrix is represented in equation 2.3.
Df)l Bll Bl2 BIS PI/I

DP, =B, B, By\\PV, (2.3)
DP, By, By, By PV,

[
o
o
= s}
2 3 o
W [= c o ic =
55 ,253 & _TsEy B
ﬁﬂmgﬁﬁug = T_Ug“ltllgh?ﬁhl
£E52, B0 £3;5%8RBIE58¢E
w 2S2Efgiop S5,/8E858547°
B CEECI%&E%gmla'égulggldlﬁnl
s a8 L8832 s Hd%E 50 28 LF
EEAIIULIRU eI B SE ST S
EL NN d P oo B0 D P 0 T
[I R e L s B B A I VR S I oY)
EE d o B
a —
g;.......g..........
=0 0
l':) 1 Component Iterface ~
=19 1.1 Published Methods Aol o o T [0 T o T o o
- # 1.1,1 5end notification email to contact author about pap Ly o o o o o o o o 0 o 0 O
- 1.1.2 Authors can upload papers in allowed bype (pdf, de] Lol (ol to (o o T i o I (o (o o v Lo T
- 4 1,1.3 Add all authors with paper id Q|0 (ol iwo ol o T3 (o o T o [0 T - S [
- @ 1.1.4 Check paper with unigue information in the system, [l gie] (e Lol o i (o [o o o o [I 0 R 0
- @ 1.1.5 Add paper topics with paper id [sls s} (n] (ol o (ol w3 e (o o ' [o T (o 3
- 1.1.6 Submit nojE KA R SO D Dl R D D D D D D
- 4 1.1.7 Checking corference submit (oo (o1 (o (oI (o] (e T a (e (o TN (o' (o o T (o 20 (o I (o I
=23 1.2 Subscribed Methods Lo le o I [y (o [0 0 (o 0
- 4 1.2.1 Check conference is open or nat Lo oo I (o o [0 (o 3 0] [eJ oo (o o (T e T (e 20 o]
- 4 1,2,2 Add paper to system and return paper id Q|0 O |0 D (OO (D O QD (O D OO D
- @ 1.2.3 Validate emall addresses in terms of syntax Lol (oo Tnlo T o T o Ty (o o] Lolle] (el el (Wi o T o 0 0]
- 4 1,2.4 Password and its confirmation password have ko be Q|0 O |0 D (OO (D Lo Jniwly o] O D (O DD (O
- @ 1,2.5 Get conkact email LoRg i Lo I T w0 W 0 Lol Lo o I 1o 0D (D (D (D
- @ 1.2.6 Is paper Uploaded Lo le 30 o T[Tl il (e] (0 0 o] LeJ e (o (' o] (oo oo
-- 4 1,2.7 Move paper LoRg i Lo I T w0 W 0 Lol o o T Lo (I] Lol e
- 4 1.2.8 Add authors to DB Lolgiwinio ol ool oy o] Lol ol o oI (o Iy o] OO
- 1,2,9 Check Paper Lol 30 o I (' ol (o] (0 3 0] Q000|000 (0]
- 4 1.2.10 Add paper topic o Lo oo I (o o [0 (o 3 0] (oo (o (ol Tl o 2 (0 0 o]

Figure 2.3 Partial Design Matrix of Submit Component Interface

The mappings between domains can be described with “X” symbols in related cells
of the matrix. So if Aij is “X” then FRi is related to DP;j for the FR-DP matrix.
Otherwise, the case of no relationship is indicated by “0” as depicted in Figure 2.3.
In the design matrix, FRs are represented in rows and DPs are represented in
columns. As an example, FR1.1.1 is satisfied by DP1.1.1 and DP1.2.5. The main DP to
satisfy FR1.1.1 is the DP1.1.1. The DP1.2.5 is the supporter DP required by DP1.1.1.

2.1.1.4.1. Independence Axiom

The Independence Axiom is used to identify whether the design is coupled,
decoupled, or uncoupled by utilizing design matrices. Independence axiom is used
during decomposition to reduce couplings. Coupling corresponding to the
dependencies among FRs increases the complexity of a system. The three cases

involved in such fulfillments are as follows:

10

e Uncoupled Design: This kind of design is the ideal case, but rarely occurs in
the real world. Each FR is satisfied by one DP so that a diagonal design
matrix is produced. Diagonal matrix is formed when Aj; =0 except those

where i=j.

e Decoupled Design: This arrangement occurs most often in the design world.
The design matrix must be triangular, meaning that all the relationships
indicated by “X” must be placed at only one of the sides of the diagonal in

the design matrix.

e Coupled Design: The relationships “X”’s are everywhere in the design

matrix, indicating a highly interdependent design.

Independence axiom should be applied after partitioning algorithms [97, 99].
Although some designs can be seen coupled, after the application of partitioning
algorithms they can be converted to decoupled designs. A design can satisfy the
independence axiom if it is uncoupled or decoupled. There may be a unique solution
that satisfies the FRs in a coupled design but such a design produces various
problems. For instance, if one of the FRs is changed all the design matrix is effected
from this change. If the system is uncoupled it provides advantages such as FRs and
related DPs can be changed or modified dynamically without affecting others. This
property is important for Component Oriented Approaches. Another advantage of
the uncoupled design occurs during decomposition. Uncoupled parts can be
decomposed separately from others. Any modification of the higher-level FRs is

local in uncoupled designs.

The coupling degree of a design matrix can be a quality factor for design. Coupled
designs can cause unintended consequences [34] such as deadlocks [120]. An
approach has been proposed to measure strength of a coupled design [99]. Another
method is proposed by Suh [102] named imaginary complexity and calculated as
equation 2.4:

Ci=-log ; (z/m!) 2.4)

11

where z is the number of acceptable sequences and m is the design tasks. Therefore,
fuzzy values can be obtained to evaluate the coupling degree of a design. In another
study, we combined ADT and Design Structure Matrix [97] to identify some design
conflicts [44, 120].

2.1.1.4.2. Information Axiom

A problem can be solved by different designers through different functionally
equivalent and acceptable set of solutions. The main goal of the information axiom
is to define the best solution among alternatives providing a quantitative

measurement to determine the complexity of a design [101].

Probability of success Pi is defined as the overlapping of the System Range (SR)
that is provided by the DP and the Design Range (DR) that is provided by the
design. In terms of probability of success (Pi) of FRi and the information content (Ii),
information content of the system (Isys) for the case where all FRs are independent is

represented in equation 2.5.

n

Isys :_le :_zllogZPz (25)

i=1

When an FRi is not statistically independent, conditional probability of success
Pi|{j} is calculated with all other correlated FRj where j = 1,...,m. The information
axiom states that the minimum information content Isys is the best. The overlapping
area between the design range and the system range is called the common range as
shown in Figure 2.4. Pi is represented with proportion of them as given in equation

2.6.

p="= (2.6)

12

FProbability density

COMUNOLN TAtZe
or | de! ar” dr
f—— design range —
pb—ayatem range ————

Figure 2.4 Design range, system range, common range, and system probability

density (adapted from [101]).

Although, designers should satisfy the independence axiom first for acceptable
designs, there is a relationship between independence and information axioms.
Coupled designs cause more information content than decoupled designs. ADT
states that there can be decoupled or uncoupled designs which have less information

than coupled design.

A direct relationship between information measure and Taguchi’s Quality Loss
Function and a new measure of quality named Signal to Noise (S/N) ratio is
identified in [69]. Depending on the study, when a DP has low information content,

it has also low quality loss and high S/N ratio.

It is possible that semantically correct and deadlock free components may not be
composed because of their constraints [111, 116]. Information axiom can be used
for accordance measurements of component to design or component to component.
For applying the information axiom, all components and applications must be
designed based on our axiomatic design approach introduced in Chapter 4.

Although it is not mandatory to define the design range of components or

13

applications, some of them can have this definition. For example, we can assume
that there are two components. One of them is a wind turbine that produces
electricity from wind speeds in the range of 5 to 25 km/hr and the other is the
environment component that produces a range of wind speeds that is 50 to 100
km/hr. These two components are suitable to compose in terms of their interfaces
but their design ranges are not. That means if we compose these components, the
wind turbine component will not do anything. Also application developer can define
design ranges such as a wind tribune application that can run with winds of 1 to 10
km/hr strength. We have utilized the information axiom to calculate congruity
among methods of components [111, 116]. Regular information content calculation
is based on the FR and DP ranges. The client server relationship between FRs and
DPs can also be among methods since methods can call other methods. A designer
only concentrates on the satisfaction of the FRs with DPs. DPs such as methods
need other methods which are not considered in design. When a method is called,
the method can call other methods of components if all required components which
are required are in the system. We have identified three cases to utilize information

content between methods:

1. This is regular form of calculation of information content. An FR satisfied

by a DP is shown in Figure 2.5.

Probability Density

FCommon Range

| System Range i

Figure 2.5 Probability of DP1 success with specified FR (adapted from [111, 116]).

14

2. This case can occur when the range of FR is not defined and a DP calls
another DP. In this situation, we can calculate method-to-method
information content. If DP; is called by DP, then the design range of DP,;

can be accepted as the system range as shown in Figure 2.6.

Probahility Density

DR

F—— Common Range —————
I

| Design Range |

[System RHange |

Figure 2.6 Probability of success graph of composed two components (adapted from

[111, 116]).

3. For the calculation of information content of composed methods,
intersection area of DPs can be accepted as system range as shown in Figure
2.7. This depicts the composed DPs harmony within the given design range
that correspond to a FR. Common area of DPs’ ranges forms the system
range. Information content calculated based on the common area of the

intersection of FR’s design range and the system range.

Applications are formed from components and components share methods. We have
applied this method to evaluate congruity of components and to guide designer

about detecting conflicts among components.

15

Probability Drensity

FR

——— Common Range ————

| Design Range |

I Systemn Range |

Figure 2.7 Probability of success for a composition of two components with

specified FRs (adapted from [111, 116]).

Information content represents the FRs’ satisfaction by DPs. Similarly sum of the
information contents of methods in a component represent the satisfaction degree of
the component depending on other components. Value of information content will
increase based on the number of methods, and ranges. Evaluation of the value of
information content is left up to designer. It should be noted that zero value
represents the best congruity and infinity represents the incongruity. In the
incongruity case, designer has to decide which components will be changed or
modified. Designer can decide to change or modify the component that has infinity

value or its neighbors cause the infinity value.

In our case study [111], we generated seven components (Cy.) and their related
eleven DPs with design ranges that are as listed in Table 2.2. Publish-subscribe
information is obtained from Figure 2.8. For instance, Cy publishes DP;, DP; and
subscribes to DPy, DP3, and DPy. As an example, Cy subscribes DP, with ranges
between 50 and 150, and publishes to DP; with ranges between 30 and 100 as
shown in Table 2.2.

16

Table 2.2 Design Ranges of Components (adapted from [111, 116])

DP, | DP, | DP, | DP; | DP, | DPs | DPs | DP; | DPg | DPy | DPy
Co | 50, | 30, 60, 10, | 100,
150 | 100 70 50 | 200
G 5, | 300, 1000, | 50, 20,
45 | 400 3000 | 200 30
G 100 | 0, 30, 50,
350 | 100 150 150
C; 500,
1000
Cy 0, | 10, | 100,
150 | 150 | 200
Cs 0,
300
Cs 0,
5000
« DP, DP; DP;
e Kl —{ g C, Cs
DP; DP;
DPyy| |(DP; DP4
A\ 4 \ 4
Co |l © C;

We assume the FR design ranges are specified by application designer as listed in
Table 2.3. We can obtain the probability of success for FRs as listed in Table 2.4

and total information contents are listed in Table 2.5. There are only three

Figure 2.8 Mature domain (adapted from [111, 116])

17

components that relate with FR’s design ranges as listed in Table 2.4. We know that
smaller information content means better fit for composition. If information content
of component is not infinity then these components can be accepted for
composition. However, if there are similar components then the component which

yields less information content is selected.

Table 2.3 FR design ranges (adapted from [111, 116])

DP, DP; | DPy
Design Ranges | 10 - 40 | 50-150 | 0-100

Table 2.4 Probability of success for FRs (adapted from [111, 116])

Components | DP; | DP; | DPy
Co 0.142 | 1.0 | 1.0
Ci 0.75 1.0
C 0.5

Table 2.5 Information content of components corresponding to the related design

ranges (adapted from [111, 116])

Components | Information content
Co 2.807
Cy 0.415
C, 1
C; 0
Cy 0
Cs 0
Cs 0

18

When our third approach is applied for calculating the information content (utilizing
intersections), results in Table 2.6 are obtained. Information content of Cj; is
calculated as infinity. We know that infinity value depicts the incongruity between
components. Therefore, C; or connected component (C;) has to be modified or

replaced with another one in the domain or a new component should be developed.

Table 2.6 Information content of application components

Components | Information content
Co 0
Ci 1.16
C 7.38
C; infinity
C, 1.5
Cs 0
Cs 0

2.1.2. Axiomatic Design of Object-Oriented Software Systems

One of the applications of ADT is Object-Oriented (OO) software systems [33, 34,
101]. A systematic OO programming methodology is represented in Figure 2.9. OO
development with respect to ADT starts with considering the customer needs and
continues towards completing a design matrix obtained and then the design matrix
is mapped to class diagrams as depicted in Figure 2.10. The created class diagrams
are implemented and integrated. In this methodology, FRs are accepted as an object
which has behavior. The DPs represent the DATA which are used by behaviors.
FR-DP dependencies are represented in a matrix and mapped to class diagrams as
methods. We have extended this approach for component oriented software

engineering, as described in Chapter 4. In another OO software engineering

19

approach based on ADT [33, 34, 91, 101], functional requirements are represented

with use case diagrams.

Softweare
Customer Product
needs
Detre Top-down Bottom-up _ Code
=ine s Approach Approach with system
architecture
M;'E o Estabtish
= interfaces
) Define Identify Build
Build the modules | Decompose | claszes Application

gofturare
hierarchy

——

Ohtait
full design of matrix

Figure 2.9 Systematic OO Programming with Axiomatic Design (adapted from

[34])
Parent Level DP
Leaf Level DP
(DATA)
] Class NAME
Parent | Leaf Level . . Mapping DATA
Level FR Design Matrix METHOD
FR |(Behaviour) Elements
(NAME) (METHOD)

Figure 2.10 Mapping between design matrix and OO class diagrams (adapted from

[101])

20

2.2. High Level Architecture and Object Model Template

Both High Level Architecture (HLA) [54-56] and its ancestor Distributed
Interactive Simulation (DIS) [51, 52] were developed by the US Department of
Defense to provide a common architecture for simulations. HLA provides re-
usability and interoperability among federates. The first version of HLA was
released in August 1996, and the final version was released in March 1998. The
responsibility for HLA evolution was moved to IEEE’s Simulation Interoperability
Standards Committee in 1997 [81]. The committee has released three standards to

define the core specifications [109]:

The Framework and Rules [54] (IEEE Std. 1516) specify the federation and federate
responsibilities through ten defined rules. HLA Federate Interface Specification [55]
(IEEE Std. 1516.1) defines the standard services of an interface to runtime
infrastructure (RTI). The RTI is a simulation-oriented middleware that provides
services. The RTI describes the interface between federates and the RTI in six
classes of services, namely federation management, declaration management, object
management, ownership management, time management, and data distribution
management. For using these services, HLA application programming interfaces are
prepared for various programming languages (C++, ADA 95, Java, and WSDL).
Therefore, federates implemented in different platforms can communicate with

others in federations.

Figure 2.11 depicts the structure of communication between federates. All
communication must be provided by the RTI. Publish/subscribe methods are used
for the communication of federates in HLA simulations. A federate that wants to
announce a variable or an interaction declares to the simulation environment that it
will publish. Federates, that are interested in the variable or interaction that is
published, subscribe to it [56]. Federates do not require to have information about
the location of each other in the environment. For executable simulation, at least
one publisher has to publish an attribute or interaction for other federates to
subscribe to it. RTI controls the data and procedure flows among concurrently

running federates like an operating system.

21

Federate Federate

Runtime Infrastructure

Figure 2.11 High Level Architecture based components communication (adapted

from [118])

HLA Object Model Template (OMT) [56] is used to specify the interface of
federates (known as Simulation Object Model (SOM)) that describes which items
(objects, attributes, interactions (methods), parameters) will be exchanged with
other federates. Also OMT is used to specify simulation objects which will be
shared in a federation (known as a Federation Object Model (FOM)). A FOM file is
used during the beginning of a federation; however, a SOM file is used only to
describe the federate. Federates do not communicate with one another directly;
therefore, each federate defines objects which will be shared (published) with others
and required (subscribed) from others in the SOM file. Objects are defined in
fourteen tables (object model identification, object class structure, interaction class,
attribute, parameter, dimension, time representation, user-supplied tag,
synchronization, transportation, switches, data type, notes, and FOM/SOM lexicon)
of an OMT. These tables define all the information about the federate or the

federation.

Federation Development and Execution Process (FEDEP) [57] introduce a process
to create federations, promoting interoperability among federates. Our component

oriented approach is applied to FEDEP process as defined in Section 4.2.2.

In 2005, the HLA Evolved Program Development Groups (EPDG) was established
to evaluate proposals for improving IEEE standards in the areas of WSDL API for

22

IEEE 1516.1, fault tolerance, dynamic link compatible HLA API for IEEE 1516.1,
XML schema for [EEE 1516.2, conformance specification, and additional flexibility
in update rate [81]. In terms of component oriented approaches, a federate is called
an “HLA component,” and a federation that consists of more than one component is
called a “distributed system” [84, 87]. An HLA component can be a computer
simulation, a manned simulator, a simulation utility (data collector, passive viewer,
etc.), or a simulation interface to live players [27, 29]. An HLA component can

consist of one or more software components.

Interoperability has been considered from two perspectives: technical
interoperability ~and substantive interoperability. = Resolving technical
interoperability issues ensures that the federation will run, but says nothing about
the adequacy of the federation to accomplish its mission. Technical interoperability
includes composition anomalies defined in [28, 47, 108, 109]. These anomalies
should be detected and solved during composition of federates. Substantive
interoperability is driven by the needs of the federation and has to be addressed by

each federation in a federation specific way [8].

2.3. Component Oriented Software Engineering

All industries attempt to reduce cost and time required to develop increasingly
sophisticated products without sacrificing reliability. Reuse is the primary goal of
the components. There are various and similar definitions of components; one of
them is [50] “software components are (binary) units of independent production,
acquisition, and deployment that interact to form a functioning system.” Definitions
of components are not enough to define all properties of them. We have identified

some common properties of component definitions as following:

o As defined by Szyperski [105], component reuse will be cost effective easier
than redeveloping it. We can expand the easier term as cheaper, time
effective etc. Their weight is dependent on the stakeholders. For example,

important issue for some stakeholders is time, for another, cost.

23

Components can be developed in different programming languages and then

compiled. Therefore, binary form of components is language-neutral. For

example, a component can be developed through a C++ environment, and it

can be composed by EJB components.

Components should provide enough information about themselves. This

information should be what components are publishing as services and what

they need from other components. Five level categories are introduced to

represent the information in [13, 77] :

Syntactic Level (Basic Contract): Signature of the component (such as
Interface Description Languages defined by CORBA, COM) which
includes published operations, input output parameters, and possible
exceptions. Most of the component interfaces include this level of
information. However, signature of the component does not provide
required information to compose components [127]. Since internal
mechanisms are not known factors proposed, they cannot be considered

during component quantification of third—party components [Bro96].

Behavioral Level: Semantic descriptions are represented. Since third
party component users do mnot have access to component
implementations, they can only expect the component to do the
functionality what method names imply. To provide more information
about components, Boolean assertions and pre and post conditions can
be used. In COSEML [37], required relations among components are

represented in a graphical form.

Synchronization Level: Concurrency issues are represented. One
approach is synchronization policies attached to components. Another
approach proposed by Yelling and Strom [127] introduce collaboration
specification that consist of set of sequencing constraints that defines the

legal ordering of messages.

24

¢ Quality-of-Service Level: Nonfunctional requirements are represented
such as maximum delay, average response, quality of response, etc.
Quality attributes for components are introduced with more detail in [12,

601.

e Non-Technical Level: Business oriented information such as submitted
by, resource url, category, language, marketing type, version number

contact address, price, etc. [11].

Components can be developed or implemented independently.

Components reduce maintenance costs. Modifications on components are local

because of the inherent encapsulation of components.

Components reduce test costs. Although, components are self tested, they also

should be tested in the application based on such as a black box technique.

Components increase the reliability of applications. Components are shared

among various applications; therefore they are tested in different application
sets. Component usage provides more reliable systems than newly coded

systems.

Components can be classified as visual (controls and containers) and non-visual

components (command packages, interacts with visual objects such as spelling

checker, library, business, and framework) [121].

Components can offer many interfaces [37, 59].

We refer to components for two separate purposes: 1- as software components 2- as

federates of HLA (HLA components) [54-56].

Inter-connection technologies .NET, CORBA and J2EE provide environments for

components to create runtime instances of components, discover other components,

25

and communicate components. These technologies provide mainstream software
buses for components to connection. Ideally, each component should be able to
connect with components developed anywhere; bridges among technologies provide
capability to connect components wherever there are problems due to different

technologies.

In software engineering world, objects and components are confused most
commonly. Although, components and objects have commonalities such as
encapsulation, well defined interfaces etc., an object is not a component [105].
Object exists at runtime, while components are binaries. Components can be
developed through highly collaborative objects (classes), but when they are
compiled they form components. Users of the component do not need to know how
a component is internally represented such as class diagrams etc. Therefore another
difference is the granularity between objects and components. One of the important
concepts in object orientated software engineering is inheritance. Instead of
inheritance, composition is proposed in Component Oriented Software Engineering

(COSE).

Other confused terminologies are Component-Based and Component-Oriented. In
component-based approaches component development and integration is essential
but Component-Oriented approaches are based on integration of already available

components [37].

Some challenges exist that can be generally attributed to following:

e Multiple competing standards such as .NET, CORBA and J2EE [62].

e Lack of standards (such as documentation), as is often the case with

separately designed components [62].

e Component interfaces present insufficient information about its capabilities

and functionalities [13, 62, 70, 77].

26

e Component finding through internet is defined as a cumbersome effort in
2002 [121], and still continues. Some web sites for component searching are

listed in [121].

e Lack of security policies. Especially during component selection security

requirements should be identified and defined by components [76].

e Functional congruency: when composing with other components some

incompatibilities can occur such as:

o Type problem such as a method can get a parameter as integer and
other component can try to call the method with real. To solve this

problem interface mapping is required [127].

o Protocol (synchronization or control) problems. [127]. To solve this
problem, Yelling and Strom [127] introduce collaboration

specification.

There are two approach to solving complex problems namely top-down and bottom-
up. In bottom-up approach, components are iteratively composed into higher level
components until a system that satisfies the customer expectations is emerged [10].
In this approach, components are being composed without considering the system.
There is no idea about the whole system when composition is started. In top-down
approach, most abstract requirement based on customer needs is specified and
decomposition is started. Decomposition progress toward concrete components. In
top-down approach, complex problems are solved by the “divide and conquer”
approach, which seeks to divide the problem into simpler parts, solve them, and
integrate into a viable solution [18, 96, 106]. Problem of the top-down approach is
requirements analysis. Such as designer in the beginning can define abstractions
wrongly because of missing requirements, inconsistent requirements etc. [10].
Practical experiences indicate hybrid approaches being the best for component
based-oriented systems [10]. A kind of approach is introduced by Dogru and Tanik
named COSE Modeling Language (COSEML) [37]. COSEML stresses that while

top-down decomposition is continuing, existing components should be kept in mind.

27

2.4. COSE Modelling Language

Component-Oriented development environments generally assume the existence of
already developed components as an integral part of a successful Component-
Oriented development process [37, 59]. COSEML is a graphical modeling language
utilizing a single hierarchy diagram supports this. Modeling starts with a top-down
decomposition of a system while defining its modules in such a way that those
modules can be matched by available components. Therefore, system development
is reduced to a decompose-find-integrate operation instead of define-develop from
scratch. Component-Oriented development environments generally assume the
existence of already developed components as a requirement for a successful
Component-Oriented development process [37]. To be effective, available
components should be considered while decomposing the system. COSE separates
the parts of the system (components) from its abstract specification. A COSEML
specification consists of two parts: abstractions and components as shown in Figure
2.12. Decomposition starts with a package and a package can include more than one
component or sub packages. Each component has zero or more interfaces to
represent its properties, methods in, methods out, events in, and events out elements.
The methods in and events in represent the published services of a component and
the methods out and events out represent the subscribed services of other
components. COSEML representation forms the static view of the system structure.
There is a need for a dynamic model to verify compatibility of static structure with
requirements. Therefore, logical and run- time collaboration diagrams are used [35,
123]. If a given set of abstractions are not enough to provide the required

functionality then decomposition must be reconsidered.

28

—

; —
Package1 Data (Function
N Abslraclions
Components
Component Inferface
Properties
Interface 1
Interface 2 Methads in
Methods out
Events in
Events out

Figure 2.12 COSEML symbols used in this study (adapted from [114])

Component oriented approaches have not incorporated the relationships among
requirements (FRs) and solutions (Design Parameters (DPs)). Although interface
concepts are important, interfaces do not include enough information to describe
components. Therefore, we presented an approach [114, 116, 118] that composes
the axiomatic design and COSE concepts. This approach provides an environment
to design and develop components and applications in a mature domain. A mature
domain is formed from components that are designed using this approach. This
approach contains the design matrix that is used to keep relationships between FRs
and DPs. COSEML and design matrix depict the different views of systems. While
COSEML presents the system view with components and their integration, design
matrix presents the relationships among FRs and DPs (property, method, and event
names) as shown in Figure 2.13. Creation of design matrices suffers from missing
of a method to specify the dependency relationships among FRs and DPs. It is
completely left to the developer. In [114], we proposed usage of the collaboration
diagrams to find these relationships. After specifying components, they can be
verified depending on specific scenarios. Scenarios are prepared using run-time
collaboration diagrams. Assuming that all components are designed with Axiomatic

Design, giving two advantages:

29

1. We can see the relations among DPs (attributes, methods, events) in one

component,

2. Design matrix carries the information on why a specific DP is used or which

functionalities are satisfied.

System
P c
[=] (=]
5€ 3
c 3 i
n Eln Z
= 4 w2 W
o =R = = 4_-
A~ 85 %53
Sz I ogwm
e~ e~ EE {l
g — gl OO
H= - S = < @ w Author1
(=8 — (] (b I o
E R L Q- g
LF]
D D
[} Component Iterface ”

=3 1.1 Published Methods

: # 1.1.1 Add an authar

H ‘@ 1.1.2 Delete an author
EI{f} 1.2 Subscribed Methods
‘- # 1.2.1 Operation an DB
----- # 1.3 Publishad Everts

‘o 1.4 Subscribed Events

|:| Interface é

Add_Authar
Delete_Author
S0L_Execution

Figure 2.13 Axiomatic design representation (left side) and COSEML

representation (right side)

The method includes the construction of the COSEML model and the design matrix
of ADT corresponding to the system. Table 2.7 lists the steps to perform our
suggested development method in [114].

30

Table 2.7 Development Process (adapted from [114])

Step [Description

1 Construct the COSEML decomposition and compatible design matrix for

abstract levels.

2 Prepare the logical collaboration diagrams for abstract functions of
COSEML diagram.

3 Specify available and missing components

4 Add FRs and DPs of components, gathering from their design matrices, to

the system design matrix. If there is no candidate component then define
components with interfaces and specify corresponding FRs and DPs in the

system design matrix.

5 Prepare the run-time collaboration diagrams for each specific scenario.
6 Verify the components’ functionality with run-time collaboration diagrams
7 Develop missing components depending on run-time collaboration

diagrams and design matrices.

8 Integrate components.

2.5. Design Structure Matrix

The Design Structure Matrix or Dependency Structure Matrix (DSM) was
developed by Steward [97] for representing and analyzing task dependencies. DSM
also provides a visual representation to detect requirement of compositions and
decompositions [15]. Categorized DSM applications are given in [15] in a form
such as component-based representation that represents component relationships,

team-based representation that represents team relations; activity-based

31

representation that represents information flows, and parameter-based
representation that represent physical design parameters relationships. Since DSM
uses a square matrix called N* diagram. We utilized DSM for component-based
applications where the elements listed are one-to-many comparisons of four
components and component-component interactions as shown in Figure 2.14 and
Figure 2.15. Some applications of DSM’s cells include more than one information
such as spatial, energy, information and materials [92]. For the simplicity, relations
represented with “X” as in design matrix of ADT are depicted in Figure 2.14. In the
matrix in Figure 2.14, the publisher components are listed in the columns and the
subscriber components are listed in the rows, such as component B, provides some
information to component C and component D. Also it can be inferred that

component D is a subscriber component publishing nothing to other components.

Figure 2.14 Example Design Structure Matrix (adapted from [120])

Relations are used to calculate coupling degrees of components similar to ADT.
Coupling degrees of components show their run time communication way;
uncoupled components can be executed concurrently, decoupled components can be
executed sequentially since one component influences the behavior of another
element in a uni-directional fashion, and coupled components may not be executed
together. Coupled components assembly can result in architectural mismatch when
trying to integrate components with incompatible interaction behavior resulting in
deadlocks, live-locks, or failing to satisfy some desired functional properties of the
system [58]. Complexity of DSM matrix is reduced using partitioning algorithm
[97, 99] that rearranges the DSM matrix.

32

In one of our studies [120], we utilized DSM to detect coupled components.
However, not all coupled components can be detected by DSM which cause
deadlock. Component dependency relation in DSM matrix represents high-level
relationships among components. Low-level (wiring level) relations have to be
considered. We proposed to use Axiomatic Design Theory and design matrix to
identify the method and attribute interactions of the components and discover

deadlock situations among the coupled components [120].

DSM can be used to detect this kind of interaction that could lead to coupling. We
create a DSM shown in Figure 2.15 by considering the transition property
represented in Figure 2.8, as indicated by the conclusion that Cy = C; (Cy publishes
method(s) to Cj3), since Cy = C; (Cy publishes method(s) to C;) and C;> C; (C;
publishes method(s) to C;). The values in the cells of the DSM show distance
values; e.g. In Figure 2.8, the distance between the C; and Cj; is shorter than the
distance between Cyand C;. One value in the cell represents the direct connection
between components. Such as, Cs and C, components are directly connected as

shown in Figure 2.15.

CS C6 C4 C() C] Cz C3

Cs | Cs

Cs Cs

Cs| 1 Cy

Co 2 131G |2]|1

C; 1 1212]1]GC
C; 4 1212|111 |GCs

4
Ci|2 |3]1]1]Ci| 2
3
3

Figure 2.15 DSM table for the components in the example (adapted from [120])

The DSM table as depicted in Figure 2.15 shows that Cy, C; and C, are tightly

coupled. Coupled components can cause deadlock but not always. Our method to

33

confirm whether the coupled components can cause deadlock or not, is by
developing the components using Axiomatic Design principles and by mapping
their DPs and FRs using a design matrix. For instance the design matrices for each
of the coupled components, Cy, C; and C, could be developed based on same FRs
with different DPs. The design matrices for three components are shown in Figure
2.16 and Figure 2.17. Components can be used in composition only if their relations
do not occasion the components to deadlock as depicted in Figure 2.16. If the
coupled components do not cause a deadlock, they can be used to form a super-
component in the mature domain. Coupling test is a very difficult task for complex
systems which includes various components. To handle this problem, we have
proposed an approach [112] to utilize communicating sequential process (CSP) [48]

as defined in section 2.6.

DP1
DP1 o o v | o DP1
= |8 | &a|l =
2= a|a|ala e I B
= | & | & o |0|ao|o = | & | =
51 &8 FRI1 | X 6| &8
FR11 X FR12 X FR1.1 X
FR1
FR1| FR12 X X FR13 X v FR1| FR1.2 X X
FR13 X FR14 X FR1.3
Component 0 Component 1 Component 2

Figure 2.16 Axiomatic design diagrams of components 0-2 (deadlock free) (adapted
from [120])

34

DP1
DP1 a o o| o DP1
— | & o | m
e e ala|ala =
= | &N | @ o|d|o|o el B
5| 8|8 FR11 | X c|& |8
FR11 X FR12 X X FR1.1 X
FR1

FR1| FR12 X X FR13 X FR1| FR1.2 X X
FR13 X FR14 X FR1.3 X

Component 0 Component 1 Component 2

Figure 2.17 Axiomatic design diagrams of components 0-2 (deadlock) (adapted
from [120])

2.6. Communicating Sequential Process

Communicating Sequential Processes (CSP) is a process algebra introduced by
Hoare [48]. CSP is a language and is supported by the tools: Failures-Divergence-
Refinement (FDR2) [40] for model checking and Process Behavior Explorer
(ProBE) [41] for state machine based models. Wright [2, 4] is an architecture
description language that uses a CSP like notation to describe components’ ports
and roles. For instance, HLA Runtime Infrastructure (RTI) [55] is formalized using
Wright to detect deadlocks and race conditions [3]. It should be noted that
developed tools translate the Wright representation to CSP for utilizing the FDR2
tool. CSP can also be used for modeling complex service choreography for

checking for deadlock among integrated services [128, 129].

Table 2.8 CSP expressions used in this article

CSP Expression Explanation

P[IA[]1Q P and Q processes are partial interleaved parallel
composition. A is the set of the events. If A is empty then

composition of P and Q behaves interleaved parallel.

PlQ P and Q are interleaved parallel

35

Table 2.8 (Cont’d)

e->P Event e performed first and then Process P is executed

after an external trigger occurred.

SKIP Successfully termination

STOP Deadlock

Datatype x =a| b | ¢ | Defines x datatype with a set of alternatives
Channel e Defines event e

Channel e:x Defines event e with x datatype

e?a Defines input on event e of an item defined during

channel definition. As defined in datatype, instead of an

item, b or ¢ items can be used.

ela Defines output on event e of an item. After this expression
is performed, e?a expression in another process in waiting
situation can be performed. Input and output expressions

are used to provide synchronization.

Union Unions the sets.

In CSP, processes defined statically include a set of events. Events are atomic and
provide synchronization among processes. They are used to define the behavior of
processes. More than one process can be executed at a time in concurrent systems.
This causes well known problems such as deadlocks. CSP theory and FDR2 are
used for checking defined processes in terms of traces, stable failures, and failure-
divergence models. In this section, we will concentrate on the traces to check for the
deadlock situation in the composed system using the FDR2 tool. CSP expressions

that will be used in this article are listed in Table 2.8.

In one of our studies [112], we have utilized CSP to detect deadlocks of a system
constructed from components. Deadlock also represents the availability of missing
components. We have defined a method to translate design matrices of components

to CSP language in order to detect deadlocks in federations and compatibilities

36

among federates in terms of system requirements. Component interfaces are
represented in COSEML notation. A process concept in CSP corresponds to a
partial or a whole component. Methods and component events are defined as events
in terms of CSP and they are represented in a process. Input and output definitions

in COSEML notation are represented in CSP as listed in Table 2.9.

Table 2.9 COSEML and CSP representations

COSEML representation | CSP representation
Component Process

Published method a Output event (e ! a)
Subscribed method a Input event (e ? a)

Published event a

Output event (e ! a)

Subscribed event a

Input event (e ? a)

Systems can be defined in an application design matrix which includes components
composed to satisfy functional requirements. The application design matrix is
represented with the CSP language to utilize the FDR2 tool. The required mapping

mechanism is listed in the following rules [112]:

e Input and output definitions are specified based on dependence relationships
of published methods or events. For instance, Method I requires Event I is

represented as “Eventl1? el -> Method1! m1”

e A Component is represented as a process that consists of one or more sub

processes as shown in Table 2.10.

e An application is also represented as a process and it is formed from one or

morc COl’l’lpOIlCIlt processes.

37

e Processes are composed based on shared methods or events among
processes. If there is no shared item(s) than the “|||” term is used to connect

processes. If there are, then “[| |]” is used.

e Shared items among processes are looked up from the design matrix. If there
are events defined as input events (subscribed) and required output events
(published) from other components, they must be considered during the

forming of the application process.

— Component] [5 Component2 [

Method 2 Method 1
Method 1 Method 2
Eventl Event3
Event2

Event4 Event
Event3

Figure 2.18 COSEML representation of Component 1 and Component 2 (adapted
from [112])

Based on the mapping mechanism and design matrices of components as depicted in
Figure 2.19 and Figure 2.20, we can create CSP language representation of the
application design matrix as depicted in Table 2.10. Component I has four
published items therefore there are four sub processes which are C/ SUBI,
Cl SUB2, Cl1 _SUB3, and C1 _SUB4. Only Method 2 is shared between CI SUBI
and CI SUB2. Processes CI SUB3 and CI SUB4 can be executed concurrently
since there is no shared item between them. Component 2 has two published items
therefore there are two sub processes namely C2 SUB/ and C2 SUB2. Only
Method 1 is shared between C2_SUBI and C2_SUB2. Composition of Component 1

and Component 2 is represented in Table 2.10 as one process namely

38

APPLICATION. The process composes components with their shared items namely
Method 1, Method 2, Event 1, and Event 3.

We tested the executable CSP codes in Table 2.10 and obtained a deadlock free
application. Although, coupling is available between Component I and Component
2 as shown in the design matrix in terms of DSM, we can conclude that components
which are sharing methods and events are not forming cycles. In this application, all
components are satisfied in terms of their required interface items. Otherwise,
FDR2 tool warn us about deadlock which means some of the processes require

other process (es) to produce required items.

Table 2.10 CSP representations of an Application that compose Component 1,

Component 2 (adapted from [112])

datatype D _il=11,D i2=1i2,D el=el,D e2=¢2,D e3=¢3,D ed=c4
channel Method1:D _il, Method2:D i2, Eventl:D el, Event2:D e2,
Event3:D_e3, Event4:D e4

Component 1
C1_SUBI = Eventl?el -> Method1?i1 -> Method2!i2 -> C1_SUBI
C1_SUB2 = Method2?i2 -> Event3?e3 -> Event4!e4 -> C1_SUB2

C1 _SUB3 =Eventl!el ->C1_SUB3

C1 _SUB4 =Event2!e2 -> C1_SUB4

C1 =(C1_SUBI [|{|Method2|}|] C1_SUB2)| C1_SUB3 ||| C1_SUB4

Component 2
C2 _SUBI = Eventl?el -> Method1!il ->C2_SUBI

C2 _SUB2 = Method1?il -> Method2?i2 -> Event3!e3 -> C2_SUB?2
C2 =(C2_SUBI [|{|Method1|}|] C2 SUB2)

Application
APPLICATION=(C1[| union(union(union ({|Eventl|}, {{Method1|}),
{{Method2|}), {|Event3|})|] C2)

39

i) [t | —
o

m - - — o "
L a5 4 oo oo L
':'EO'E I:I:I:Jilﬂl:
;lgﬂlgEgggog
S R i
ML < L T 2T
e - o] Do oA o Do
I L
A= — = o o o o e
(ol — [t} [ar} -+
S ® 8 _ 288 _»
] H H I H
ol T (D (D (D

= Component Interface A
BE} 1.1 Published Methads
. Lo# 111 Method 2
EIJE} 1.2 subscribed Methods
e # 1.2.1Method 1
EIJE} 1.3 Published Events
o # 1.3.1Event1
@ 1,32 Evert 2
. . ® 1.3.3Eventd
=25 1.4 Subscribed Events
‘@ 1.4.1Event 3

S| OD
DS D

OSSO DS S D
H| O[S D) OS] S O

OSSO DS D
O S| FE| DD DD D

Figure 2.19 Design matrix of Component 1 (adapted from [112])

Errace

- 4 1.1.1 Methad 1

1.2.1 Method 2
23 1.3 Event_In

onent Ink
1.1 Method_In

13 1Event3

1.2 Method_Cut
59 1.4 Event_out

- 4 1.4.1Event 1

=} Component Interface

=] 79 1.1 Published Methods

‘o 1.1.1 Method 1

173 1.2 Subscribed Methods

. le® 121 Method 2

=] 75 1.3 Published Events

. le# 1.3.0Event3

EIE} 1.4 Subscribed Events
‘s 1.4.1Event 1

[

Figure 2.20 Design matrix of Component 2 (adapted from [112])

40

2.7. Feature Model

Customer needs are mapped to functional requirements but there is no defined
straightforward method in ADT for narrowing this gap. Customers concentrate on
the system features and designers focus on solutions [124]. Feature concept is
introduced by Kang [64] to define information about the domain in the Feature
Oriented Design Analysis (FODA) [64] and its enhanced version: Feature Oriented
Reuse Modeling (FORM) [65]. There are various definitions of a feature [30, 53,
75, 124] but all definitions have a common point that features are stakeholder (user,
customer, developer, domain expert, etc.) visible aspects and they represent the
commonality and variability of products in terms of aspect, quality or characteristic.
It is essentially an abstract or product characteristic that both costumer and
developer understand [67]. They have also the capability to represent customer
needs in a domain. Therefore, Feature Modeling can be defined as a domain
modeling technique [25]. There are some example domains where Feature Model is
applied such as the bulletin board system domain [65], the private branch exchange
domain [66], web services domain [94], elevator control systems [72], bank account

and transaction systems [75].

Features should be well-known by both customers and designers and can be
functional (services or operations) and nonfunctional (capacity, usage, cost, and
other quality attributes) [67]. Main source to be used in the identification of features
are books, user manuals, experiences of experts, customers’ domain knowledge,
terminology, etc. [64]. Different stakeholders have different interests about features
therefore features are classified in terms of capabilities (services and non-functional
characteristics), domain-technologies (way of implementing services),
implementation techniques (synchronization mechanisms), and operating
environments [64]. Features are organized in a graphical model called Feature
Model that represents distinctiveness and commonalities among features in a
hierarchical view [64, 65, 67]. Feature Models can be represented in both graphical
[23, 64] and textual forms such as Feature Definition Language [31] , feature

diagram algebra [31], textual specification language [65], semantic model [61] and

41

XML based [17]. Features are organized in multiple levels of increasing detail in the
Feature Model [25]. Feature Model is utilized by various methods, architectures
such as reuse driven software engineering business [43], aspect-oriented
programming [73], generative programming [22], product line software engineering
[20, 67, 68], reengineering [85, 86], object oriented software engineering [66, 72,
90], component based systems [63, 65, 88, 110, 115, 117], feature oriented

programming [6].

The core feature diagram, presented in [64], has been expanded with the
introduction of the new extensions and variations in the recent years [23, 24] and
still there is no consensus on notation of Feature Models [9]. Set of features interact
to define purpose of the product [39]. Five main types of feature interactions namely
intentional interaction, resource-usage interaction, environment induced interaction,
usage dependency, and excluded dependency are identified [39]. There are three
types of relationships between parent and children features: composed-of,
generalization/specialization, and implemented-by. Features are represented in a
diagram formed as a tree and connected to their parents in the diagram through
mandatory, optional, and group relationships as represented in Figure 2.21. To
avoid redundancy, a feature can be child of more than one parent feature, however
in this situation tree form is broken. To handle this problem Czarnecki et al. [22]
proposed the sub-models for reusing and connecting a feature to various parent
features [16]. Mandatory features are common features among all products and they
have to be selected in all products. On the contrary, optional features may take place
in some products and selection of optional features is left to the customers hence
letting the customer define a product. There are two kinds of grouping among
features namely OR and alternative (XOR). In OR grouping, one or more children
features can be selected however in alternative grouping only one of the children
features can be selected. Also features can specify constraints that define exclude
and require relationships with other features. When a feature is selected, required
other features have to be selected and excluded other features have to be un-

selected.

42

The level of standardization in a field can perhaps indicate the maturity of
engineering in the field [64]. For example, the car domain is matured and therefore
no one designs all parts from the beginning. In the designing of a new car, probably
it will not be necessary to design a new transmission. Perhaps it will be sufficient to
select its feature: automatic or manual as depicted in Figure 2.21. In this diagram,
Air Conditioning is an optional feature and in order to be selected, the car is
required to have 100 horse-power of engine capacity. Transmission can be

automatic or manual.
Car

Transmission Horsepower Air Conditioning

"

Automatic Manual

r 1

1 Composition rule: 1| Legend

! Air conditioning requires Hoursepower>100 E Mandatory
E _ ; O Optional

i Rationale: ! A XOR

i Manual more fuel efficient ;

Figure 2.21 Feature Model (adapted from [64])

Amount of features and constrains are important factors, of complexity of Feature
Models. For instance, as one of the mature domains the automotive industry has
Feature Models consisting of up to 10.000 features [8]. Relationships among
features are defined through rules. It should be noted that independently defined
relations can be inconsistent with other relations [95]. Therefore, we have identified

two methods to handle complexity in multi-level feature trees [93] and checking the

43

consistency of the Feature Model. Checking method is a challenging problem [9,
14, 89, 125, 126]. Descriptive power of ontologies is applied to Feature Models [14,
25, 126]. Feature Models are represented in Web Ontology Language (OWL) for
tool support utilizing query and constraint mechanisms [25]. Consistency can be
required in a Feature Model, or instance Feature Model which is created through
feature selections in the Feature Model. We have utilized number 7 in the following
list, as defined in number 8, for this work. There are eight approaches to handle this

problem:

1. Approach [9] is utilizing Constraint Satisfaction Problem [9] and Java
constraint solvers through Feature Model with cardinalities translating into

Constraint Satisfaction Problem.

2. In approach [7], logic truth maintenance systems [7] and SAT solver [38]
are utilized to debug by confirming compatible and incompatible feature

sets.

3. In approach [95]., feature computation tree model is proposed to consistency

checks of requirements

4. Approach [26] proposing the Object Constraint Language (OCL) [83] and
SAT solver [38] to verify feature configurations.

5. In our approach [14], we represented the Feature Model with utilizing OWL
and Semantic Web Rule Language (SWRL) [49, 79] based on feature
notations [23, 24]. As depicted in Figure 2.22, we proposed a three-layer
approach for representing the Feature Models in OWL. Meta ontology as
depicted in Figure 2.22 is a base to create Feature Models. During feature
configuration, the user creating instances of features have to obey
constraints. As well as parent child relationships among features, the most
common constraints in the Feature Model, the “requires” and “excludes” are
required to obey. These rules are defined by using SWRL and checked by

the supporting rule engine. Previous approaches are applied after Feature

44

Model is created, but our approach directly involves the user with

consistency.

6. Approach [89] is similar to our approach [14] and both papers are
simultaneously published. They are different in terms of representation of

Feature Models in ontology.

7. Approach [126] is about utilizing OWL [78] and reasoning engine Fast
Classification of Terminologies (FACT++) [122]. Instance of the Feature
Model have to be consistent with the core Feature Model and its constraints.
Constraint violating features can be detected through executing a reasoning

engine.

8. We have expanded the seventh approach with our axiomatic design
ontology and ADCO tool. Since feature diagram view of ADCO tool saving
all information about parent child, required, excluded etc. relations, we have
omitted the hierarchical representation of features as depicted in [14] and
represented only features and their dependencies through setting constraints.
Reasoning engines provide the information about consistency of an instance
of the domain Feature Model as defined in [126]. Detailed information is

given in Chapter 3.

; Met?— ntology

@\’éénstance Laye

Figure 2.22 Three layers of the Feature Models representation in OWL (adapted
from [14])

45

v Cardinality
FeatureCardinality
GroupCardinality

Interval

L MocelLink
Grouplink
SubFeaturelink

k4 ModelMade
FeatureMode
Grouphode
RootMode

Figure 2.23 Meta-ontology classes (adapted from [14])

Axiomatic design theory considers the customer and functional domains separately.
Domain analysis artifacts are not employed to specify functional requirements but
they are used as an input to functional analysis process [64]. The system capabilities
are specified by customer needs represented in a Feature Model. Features can be not
only requirements but also implementation level information. Features are different
from the functional requirements and a mapping is required. Therefore, we utilized
the Feature Model in the customer domain of ADT to create common understanding

between designers and customers.
Feature Models are used by different approaches in different ways:

e Feature Models are used to represent variations and communalities among
products or components [20]. Similar approach proposed for Service
Oriented Architectures with utilizing OWL. Therefore there is a direct
connection between features and components such as defined in [63, 65]. In
[63], many-to-many relationship is identified between features and

components thus a feature-based component selection is targeted.

46

e Features are mapped to reference architecture including subsystem, process,
and module models and the reference architecture is used to obtain

components [65].

e Features are mapped to behaviors that are described by scenarios.

Requirements or goals are achieved by scenarios [71].

In one of our studies [117], we have identified relationships between features and
Object Model Template (OMT) [56] items in High Level Architecture (HLA) [54]
based simulations. As illustrated in Figure 2.24, maneuver feature is connected to
Turn_Right, Get Wind Speed, and Coordinate XYZ OMT items. Relationship
between features and OMT is hidden from end-users. When user selects maneuver
feature, federates (components) that are publishing or subscribing to related OMT

items are searched.

Simulation
Air Vehicle Land Vehicle Environment
Plane Helicopter Car Tank Wind Moisture
F4 Fl6 M60 Leopard
Accelerate Maneuver Accelerate Maneuver
T T T -~ Optional
.',.-" ,“l * \o.\' "‘-.\" Feature
e o : ~ N
e ’ l s A \ // Mandato
H . . : a
\ TunRight Get Wind Speed Coordinate XYZ / S
. , Needed OMT items

.. e OR
~, R
TSee -)

Figure 2.24 An example Feature Model for military vehicles(adapted from [117])

47

We have identified some problems:

e There is no representation of dependency relationship between OMT items.
As noted in [65], interaction problems can occurr and ordering relations

should be defined for functional features [95].

e Most of the time a feature is not capable to define requirements as defined in

[64, 65].

Therefore, in this dissertation, we are using Feature Models to capture customer
understanding, and mapping them to FRs. Even there is no direct mapping between
features and functional requirements. Some combinations of features, FRs, and DPs
only causes the activation of an FR. FRs are defined by the designer and then
combinatorial dependency is set between the FR and features. Components and their
methods satisfy the FRs, therefore there is no direct connection from features to

components.

2.8. Knowledge-Base

Knowledge-bases include the symbols of the computational model in form of
statements about the domain and use them to perform reasoning [42]. With utilizing
knowledge-base, applications can make their decisions based on domain-relevant
questions [42]. Concepts and relationships among them are represented in semantic
networks [42]. For instance, Professor and Course concepts are connected with

instructorof relationships and it can be represented as depicted in Figure 2.25.

instructorof

Professor Course

\ 4

Figure 2.25 Semantic web represention of knowledge

48

Another form of expressing knowledge is rules [42]. Such as relationship between

Professor and Course concepts are represented in the equation 2.7.

Proffesor(x?) A instructorOf (x?,y?)——> Course(y ?) 2.7)
Both semantic networks and rules can be represented with logic languages [42].

Such as, rule in equation 2.7 can be represented in logic as depicted in equation 2.8.

Vx, y : (instructorOf (x, y) ——> Professor(x) A Course(y)
(2.8)
Vx : 3y : (Course(x) —> Professor(y) A instructerOf (y, x)

Knowledge is processed by reasoning engines through deriving new statements
[42]. Such as, based on “student is a human”, “Ahmet is a student” statements,
reasoning engine such as (Fast Classification of Terminologies (FACT++) [122])
can derive “Ahmet is a human” statement. Description logic (DL) [5] is one of
formalism to represent rules. In abstract notation, we use the letter 4 for atomic
concepts, the letter » for atomic roles, and the letters C and D for concept

descriptions. Table 2.11 lists some DL constructs used in this dissertation.

Table 2.11 Summary of constructors to form different description logics (adapted

from [5])
Name Syntax |Description
Atomic Concept A Class
Atomic negation -A Complement of class
Concept conjunction crhp [Intersection of classes
Concept disjunction cuD |Unionofclasses

49

Table 2.11 (Cont’d)

Value restriction Vr.C All range of values of r in C

Limited existential restriction |3, ¢ some range of values of rin C

(@!
Il
o

Concept equivalence Equivalence of concepts

Inclusion axiom C Specialization

N
O

A knowledge-base in the basic DL has two parts: the TBox and the ABox. TBox
introduces the terminology, i.e., the vocabulary of the domain of discourse, while

the ABox contains assertions about named individuals in terms of this vocabulary.

TBox axioms can be concept inclusions of the form C S D or concept equivalences

of the form C =D (i.e. C € D and D € C). The equation 2.8 can be represented as

utilizing DL as following:

Course < FinstructorOf .Pr ofessor (2.9)

An important ontology language is Web Ontology Language (OWL) [78] that
provides an expressive ontology model for Semantic Web. It has three subsets with
different power of expressiveness - OWL Lite, OWL-DL and OWL Full. In this
dissertation, we use OWL-DL as it provides direct support for (classical) negation,
disjunction, cardinality restrictions, enumerations, and value restrictions compared
to OWL Lite. Protégé is one of the tools to represent OWLs and plugins such as

FACT++ [122] reasoning engines can be utilized for reasoning.

2.9. Mature Domain

From the early days on when the module concept was introduced, reuse has been a
very important topic because of well-known considerations such as cost and time to
develop. It is beneficial to satisfy same functional requirement items using the same

set of existing design items. Therefore, in a mature domain, a generic system is

50

defined that is utilized in the instantiation of specific products. Mature domain
concept is also investigated by Kang et al. [65]. In terms of Kang et al., maturity is
indicated by the existence of utilization of standards, documented standard
terminology, availability of experts, etc. COSE approaches assume that there are
some mature domains that include components which are suitable for integration.
Table 2.12 lists the assets that should be included in a mature domain for the

proposed approach.

Table 2.12 Mature Domain Concepts

Item Description

A Feature Model |Mature Domains must be satisfying the common
understanding. All features in a mature domain are
represented in a feature diagram. An instance of the
domain Feature Model identifies customer needs for a new
application. Customer selects the features considering

dependencies among features.

A dictionary Features are read by all stakeholders therefore stakeholders
should have the same understanding about them. Also,

standard method names are implemented by components.

A design Matrix |A mature domain has one FR-DP design matrix. This
matrix is used later to create the applications FR-DP design
matrix. Therefore, a new system’s design matrix is only a

subset of this matrix.

Components There should be sufficient number of components in

mature domain to implement designs.

51

Table 2.12 (Cont’d)

Design matrices [Since components are designed through ADCO as
of components described in chapter 4, there are design matrices defining
functionalities and dependencies.
Ontology e Features
e FRs, DPs (methods), PVs (components)
e Components and their design matrices
e Relationships based on rules among features, FRs,
DPs, and components
e Object Model Template Classes for HLA based
simulations
Collaboration Collaboration diagrams can be helpful to define FR-DP
diagrams dependencies and verify application in terms of
functionality.

To be effective, mature domains are allowed to be populated with new components

as time progresses. A mature domain expert can add or delete components to a

domain. In mature domains, applications can be created as instances of the domain.

Different FR subsets of the domain are utilized to satisfy customer needs. Also,

mature domains can provide DP alternatives that have similar capabilities to satisfy

an FR. Number of alternative DPs increase the flexibility of a mature domain. At

the same time it increases the complexity of the design process. This complexity is

due to the fact that a selected DP should be consistent with the rest of the mature

domain.

52

CHAPTER 3

ONTOLOGY MODELING

The gap between customer needs and Functional Requirements (FRs) is reduced
through utilizing Feature Models, description logic and ontologies which are used to
provide formal mechanisms for representing system requirements and component
specifications. We assume that a mature domain includes a number of elements
such as a Feature Model, FRs, Design Parameters (DPs), and Process Variables
(PVs). In our methodology, each of these elements is represented by the
corresponding ontology in order to be reused in development processes with the
representation and reasoning capabilities of the Description Logic (DL). These

ontologies, as a whole, constitute the knowledge-base (i.e. TBox) of the domain.

Mature domain concepts namely features, FRs, DPs, PVs and their dependencies are
represented in an ontology that is expanding Wang’s method [126]. Each concept
may have one or more concept relationships derived from a base concept.
Dependencies are represented using the Linkedtoaconceptname role. A concept is

represented with an equivalence constraint for reasoning:

Concept; = 3 LinkedtoConcept;.Concept;
Relationships among concepts are represented using the subsumption constraint (ex.

Concepti requires Conceptm) as represented below.

Concept; < d LinkedtoConcept,,.Concept,

53

Constraints can be combinations of more than one constraint (union, intersection or
complement). We can write the restriction related with Concept; such as: Concepti

requires Concept,, and complement of Concept,.

Concept; < d LinkedtoConcepty,.Concept, M —dLinkedtoConcept,.Concept,

Definition of any element (feature, FR, DP, or PV) in our mature domain ontology
is determined by the base concepts, namely Feature, FunctionalRequirement,
DesignParameter, and ProcessVariable. In the text, we refer to this ontology as the

mature domain core ontology.

Definition 1: (Mature Domain) Given a set of features, F={f1,...,fn}, functional
requirements, FR={fr,,..., fr,}, design parameters, DP={ dpi,..., dps}, and
PV={pvy,...,.pvi}, a mature domain is defined as a terminology including the

following basic axioms:

fi = 3 Linkedtofi.fi for I<i<n
fi € — 3 Linkedtof.f; for 1<i<n
e frj = 3 Linkedtoft;.frj, for I<j<m
fr; © — 3 Linkedtofr;.ft;, for I<j<m
e dpx = I Linkedtodpy.dpx, for 1<k <s
dpx € — 3 Linkedtodpx.dpx, for 1<k <s
e pvx = 1 Linkedtopvy.pvy for 1I<x <t

pvx S — 3 Linkedtopvy.pvy, for 1I<x <t

In the early stages of design, FRs and DPs do not have complemented subsumption
restrictions because applications which are instances of the domain have to have
these FRs and DPs. Therefore feature and PV concepts violate the constraints in the
core ontology. The core ontology is utilized by applications which are instances of

the domain. Our implementing tool allows application designer to select only

54

features and components. Therefore, applications only reflect selections to the core

ontology with deleting the following restrictions:

f; € — 3 Linkedtof.f;, for 1<i<n

pvx S — 3 Linkedto pvx.pvx, for ISx <t

When a reasoning engine such as FACT++ [122] executes on the ontology,
elements which are not selected and all dependent concepts will be in an unusable

state.

In the following sections, we introduce ontology modeling for each base concept.
There are many-to-many relationships among concepts. For instance, a FR can

depend on a combination of features, FRs, DPs, and PVs.

3.1. Modeling Features

Features are an important part of the mature domain as they are the means to allow
customers to specify their needs. As stated in Definition 1, each feature is
represented as a sub-class of the base Feature concept in our mature domain.
Although this is necessary, it is not sufficient to define the full semantics of a
feature within the ontology. The actual semantics can only be revealed by
considering the relationships of a feature with other features as described in Section
2.7. The parent/child relations in a Feature Model, represented as a complete tree
have not been incorporated in the ontology presented in this article. Such work has
been included in [14] and summarized in section 2.7. In this section, we will explain
our Feature Modeling technique and explain it on a conference management system
and an aircraft simulation example depicted in Figure 3.1. The representations of

relations in the Feature Model such as mandatory and optional are presented below.

55

Conference

] |Paper Operation|)
| Notification || Revugwmg Authoring
| Email | | Mail Submit Edlt |

Legend /\.

|__._| Mandatory Feature | Upload Paper Info

Optional Feature
/\ Alternative Rel.

Figure 3.1 Partial Feature Model of the Conference Domain

Proposition 1: Given a parent feature f, and its mandatory subfeature f;, a
mandatory feature relationship between them can be defined by further restriction

such as:

f, © J Linkedtofs. f;

For Submit feature in our example Feature Model in Figure 3.1, we can specify a

mandatory Paperlnfo subfeature as:

Submit € 3 Linkedto PaperInfo.PaperInfo
In a similar fashion, we can define other feature relationships.

Proposition 2: Given a parent feature f, and its optional subfeature f;, there is no

need to define any restriction.

Proposition 3: If a set of subfeatures Fy={ f;i,..., f;,} is related to a parent feature f,

over an Or relationship, concept f, is restricted with the following restriction:
f, € 3 Linkedtofy;.fs; Ll...U3 Linkedtofy,.fy,

Proposition 4: Alternative relationship is also similar to Or relationship, but this
time we can select one and only one subfeature. If a set of disjoint subfeatures
Fe={fs1,....fin} 1s related to a parent feature f, over an Alternative relationship, parent

concept f, is restricted with the following restriction:

f, € (3 Linkedtofy;.fy; M — 3 Linkedtofy,.fM...M — 3 Linkedtofs,.fin)
L...1(3 Linkedtofy,.fy, M — 3 Linkedtofy;.f5M...M — 3 Linkedtofy,.;.fn.1)

For instance, Notification feature in the example includes a number of notification
means represented by features within an Alternative relationship. Therefore, we

include such a restriction to show this in the ontology:

Notification < (3 LinkedtoEmail.Email M — 3 LinkedtoMail.Mail) LI
(— 3 LinkedtoEmail.Email M 3 LinkedtoMail.Mail)

It should be noted that constraints which include complementof is not observable
unlikely others. This constraint yields the Root as unusable (represented in the
following statement) but not the related concept. For instance, notification feature
will be consistent when Email and Mail features are selected. However, root
concept which includes all concepts as represented in the following statement will
be unusable. To detect which statement makes Root concept unusable, debugging is
required. Our implemented tool includes a Feature Model preparation and

debugging capability.

Root € 3 LinkedtoEmail.Email M1 3 LinkedtoMail.Mail 1 3
LinkedtoNotification.Notification 1 ...

57

3.2. Modelling Functional Requirements

As depicted in Figure 3.2, FRs are represented in a tree structure. In this study, we
have identified two properties of the parent child relationship between FRs,
corresponding to mandatory and optional specifications. Parent FR can be
considered as decomposed if some set of the child FRs are consistent with the
ontology. This kind of relationship is similar to mandatory relationship in the
Feature Model. Other relationship is similar to optional relationship in the Feature
Model meaning that implementation of a set of child FRs do not affect the parent
FR. Each FR has to be satisfied by at least one DP. For FRI.I in Figure 3.2, we can
specify FRI1.1.4 and FRI.1.5 as mandatory FRs since without them FRI.I is not

capable to realize Submit process.

Other children FRs are not added as restrictions as defined in Proposition 2. FRs are

satisfied by DPs. Therefore, restriction for FRI.1 is defined as following.

FR1 1 < (3 LinkedtoFR1 1 4.FR1 1 4) M (3 LinkedtoFR1 1 5. FR1 1 5)
r (3 LinkedtoDP1_1. DP1 1)

In some situations, FRs can be satisfied by one among the alternative DPs. Designer
has to select one of them. This restriction is similar to restrictions of alternative

features and is defined as in the following statement.

fr, © (ILinkedtodpyi.dpki M — JLinkedtodpy,.dpko...M — ILinkedtodpin.dpn

) U...u(ILinkedtodpys.dpxs M — ILinkedtodpy;.dpkiM...M — Linkedtodpin.
1.dpn-1)

FRs can be dependent on features. For instance, FR1.1.1.1 is dependent on Email

feature and corresponding restriction is defined as following:

FR1 1 1 1 < (3 LinkedtoEmail. Email) 11 (3 LinkedtoDP1 1 1 1.
DP1 1.1 1)

FRs can be dependent on the complements of features, DPs, or FRs.

58

Urewo(J 0UdIdJuo)) Ay} Jo XN udisoq Ja-Y [ended 7 € 2In3i

[s][e]is][s]

(o] [s][e][s]]e]

(=]
(&)

[elis]le][s]ie][e]

[}
o

=]

[s][s]ls]is][s][e]is]]s]

[s][s][e]is][s][e]]s]]s]

[s][s]le]is][s][e]]s]]s]

[eli=]lel[s]lis][e][s]lo][s]

Q00|00 |00
[s][e]is][s][e]is]][s]

[s][e]is][s][s]is][s][e]is]][s]

L]

[oli=]lel[s]is][elis]ie][s]le][s]]]

QOO0 0|0 |0 0|0 |0 0|0

OOI0|0|0|0|0[0|0(0[0|0 (0|0

[ollellelis]l=][sli=]le]l[s]is][e][s]ieo][e]

QOI000|I0|0|0|0(0|0|0[0|0]|0

[ollellelis]l=][sli=]le]l[s]is][e][s]ie][e]

[s][s]lelis][s][e]is]]=]
D00 0|00 O
[s][s] (e} s][=]]e]
000|000
D00 D

Q0|00 |0 |00
Q0|00 |0|0|0

QOO0 |0 0|0 |0 0|0
QOI0|0C|0|0|0 |00
D00 D00 00O
D00 D00 00O
QOI0|0C|0|0|0 |00

<l

25 20 07 SAEY PIOMSSED LUOIJELLIJUDD 531 PUE pUOMSSED MaN Z'E°T'T #
HEJUAS JO 5ULIS] Ul S2552UPPE |IBWS 2JERIEA TS T'T &
suonesedo Aypn et 832
PessgE 29Epdn F 2T 8
Pl Jeded yyv piomssed 23epdn £ 2 T'T @
(7 "aop “pd) 2dAy pamvo)e w siaded peojdnad ued siouIny 220101 @
paowssed pue plaaded ypw wibo T2 1T @
sizded A2y 23Epdn UED SIOUINY 21 T°TM.._m_
pi teded ypm sxidoy daded ppy £ TUT0T A
2317 JT "W2ISAS 247 W UoiELIo) Snbun yps seded 2200 9 T T T
P Jeded yyim SI0UINE B PPY STTUTCT M
Pl Jeded winj2s pue wejsAs o] seded ppy £ T T'T @
(~-"a0p ‘ypd) 2dAy pamo)e w sieded peojdn ueD SioUINY £ T T T @
J0U J0 U=dD S| 2IURJUDD YD T LT
i Jeded Jnoge JoyIne J2EIUCD 0] EW UOIIEIIIOU PUSS 2T T T T @
iaded Jnoge JoYIne JPEJUDD 0 JEWS UOIEIJIOU PURS T'T' T T'T &
UCHEIYOON T'T°T° 1 @_m_

ssaded yau sywgns ued sioupny 111 -5
suoiElado J2ded 1°1 @_m_

T O

-
-
—
fad
i
<
@
=
i
o
i
W
w
=
=}
=N

*
—
—
e
=
=
o
o
&

@
o

m
3

&

o
=
—_
w
-
[
=
=
=
]
=
1]
E.
=
[=]
3
w

IEIEqY T 2Ep

dn ez T e

dNEZTT 8

peodnay 22 1'% -

plomssed agep

UBET 1T T

WA TTE)E

ado taded ppy LT T
Jaded BuppayD W e T T T 8
SIONY PRY WS T'T'T

Jaded PRy £ T'T'T @
suoiieledO peojdn W £ 1 T°T

uadg asuaiaguod BubpaLD W Z T T

-
—
—
—_
—_
i
=
i
il
=1
o
=
o
=
=
(]
w
o
o
=1
=
o

*
-
—
—
—
o
=
i
@
3
o
=
=]
=
=]
[l
p_
o
<]
5
=
3
o,

o
-
—
—
—
e
=
o
g
=
[l
Fel
(=4
(=]
3
L]
b=
k]
a
o
o
3
7

B..
=
—_
—_
b=
I
=
=3
3
ES
o]
k=1
m
o
=
I+
5

—
—_
=
o
w
=
@
o
=
1]
o
o
o
=]
w

59

3.3. Modelling Design Parameters

Design parameters satisfy the FRs and they can be in the form of a process (method)
in terms of software terminology. Design parameters can be dependent on other
DPs, features, and components. DPs are published by components and DP-
component relationship is defined in the DP concepts. For instance, DP1.1.4 in
Figure 3.2 is published by PV [(such as PaperOperations component). Therefore
without PV 1, DPI.1.4 is not a valid DP. This restriction can be represented as

follows:

DP1_1 4 < (3 LinkedtoPV_1.PV_1)
If more than one component is publishing a DP then this restriction is defined as in
the following statement.
dpx © 3 Linkedtopvy.pvo L ... L3 Linkedtopvs.pvs

DPs can be dependent on features. For instance different implementations of DPs
can have different capabilities with different PVs. This kind of restrictions is

presented for dp in pvy as in the following statement:

dpx € (3 Linkedtopvy.pvx I 3 Linkedtof.f;), for 1<i<n

DPs can be dependent on other DPs and this restriction is represented for dp; in pvy

as following:

dpi< (3 Linkedtopvy.pvx M 3 Linkedtodp;.dp;) , for I<j<n

DPs can be dependent on complements of features, DPs, FRs, or PVs.

3.4. Modelling Process Variables

Components are represented as PVs. There can be relationships between PVs and
features and other PVs. Some examples of dependencies (e.g. pv; requires pv;) are

represented as following:

60

pvi € (3 Linkedtopvy. pvi)

pv; can be dependent on features.

pvj € (3 Linkedtofy,. f,) , for ISm<n

PVs can be dependent on complemented forms of features or PVs.

61

CHAPTER 4

PROPOSED APPROACH

4.1. Development Processes

In this study, we propose a systematic component oriented system development
framework. We have utilized complementary tools such as Feature Model,
Axiomatic Design Theory, COSEML, and Ontology which are explained in Chapter
2. Since axiomatic design’s process model does not yet address component level
architecture issues, we have outlined a new method to combine Component-
Oriented (CO) approach with the Axiomatic Design Theory (ADT) process model,
offering design guidance. This approach is based on the Axiomatic Design with
Component-Orientation (ADCO) approach [116, 118]. ADT provides some

advantages when applied to Component-Orientation:

1. Documentation: Software industries tend to develop systems with limited
documentation because of cost and time constraints. However, in ADT,
design artifacts (requirements, customer needs, design matrices, etc.) are
part of the design - without them design cannot be completed. Therefore,
documentation is mandatory in ADT. Additional to standard artifacts of the
ADT, we have proposed using collaboration diagrams and Feature Models.
Since design matrices, Feature Models, and collaboration diagrams are
products of the design process, documentation is produced without extra

effort.

62

2. Component Interface: COSEML based interfaces are represented in design
matrices. Dependency information among methods (published or
subscribed) is represented in design matrices. Functional requirements
represent why a method is defined or implemented. Since design matrices
are a product of the design process, component interfaces are enhanced

without extra effort.

3. Scientific bases: ADT is an assurance towards “better design”. In terms of

software, it means less maintenance costs, design failures etc.

4. Measurement quality of design: Some derived complexity formulas are used
to measure complexity of system in terms of coupling of system. When
coupling is increased, various problems can be occurred such as

maintenance, debugging etc. costs.

5. Independent designs: One of the axioms independence axiom advice
uncoupled designs (ideally). There are various advantages of modular

designs.

e (Customer requirements can be changed in different phases of
development. Changes in customer requirements can easily be

reflected to the uncoupled designs.

e We propose to design components based on ADT. Therefore, as
addition to interface enrichment, components can be decomposed

easily to sub-components if required.

e Interdependent modules (methods, components, etc.) can be tested

separately.

63

ADCO is based on the mature domain concept. There are two ways of creating
mature domains for compatibility with our approach: 1) utilizing ADT and 2) other
software development as depicted in Figure 4.1. Although, currently available
projects are prepared with different software design and development methods, they
may be used to create mature domains. In the following sections, we have assumed

that projects are designed and developed with utilizing axiomatic design approach.

Application Application
Development Development
with with

ADT Different Methods

»

Projects

l

Mature Domain
Development

Mature Domain
Creation

Mature

Domain ADCO

Application
Development
with
ADCO

Figure 4.1 Development Processes

64

4.1.1. Mature Domain Creation

Component-Oriented Software Engineering (COSE) approaches assume that there
are mature domains that include components that are suitable for integration [37].
This is also a fundamental assumption in our approach. When number of projects in
a domain is increased, mature domains can be created. One way of create mature
domains is utilizing existing projects developed based on the axiomatic design
concepts and similar projects. Reusing of the similar projects increases the chance
of creation mature domains since mature domains are formed from similar projects

which share lots of commonality especially in the design matrices.

4.1.1.1. Application Development

We expanded Do and Suh’s specific process model called the V-Model [34] as
depicted in Figure 4.2, which serves as an axiomatic methodology for Object-
Oriented (OO) software development as defined section 2.1.2. The parts of our
approach that depart from the original OO version are shown in white boxes. The
development process looks very similar to that of the original OO version.
However, there are key differences due to the COSE approach that assumes the
existence of components in a domain. A general an //-step method is adapted from

[118] for the proposed process as listed in Table 4.1.

The process starts with identification of customer needs. The developer then
identifies the domains which include similar projects based on the identified
customer needs. Then a top-down design utilizing projects’ design matrices in
accordance to AD principles is applied. Therefore, software modules are effectively
identified in a top-down fashion. Modules represent the services which are satisfied
by components. If there are projects utilized during decomposition, their
components may help to satisfy required services. If components are still required,
first their design matrices are created based on the application design matrix.
Application design matrix includes the required services and other dependent

services. Then components are developed and added to the repository. Components

65

are integrated and designer solves integration problems. Application development

with ADT process [116] is outlined in Table 4.1.

Tdentify

dotain Integrate

Top-down Bottom-up
approach approach Add
components
to repositary

Develop
, missing
Bs?éi:rl: cotmpotents
hierarch Identify Expand the
¥ missing hatire
componen| dotnaity

. . »
FR:. Fun_chonal Requirement Chtain
DF: Design Parameter . .
full design matrix

Figure 4.2 Axiomatic design process for CO software system: white boxes represent

additions to V-Model (adapted from [116])

Table 4.1 Application development process without mature domain (adapted from

[116] and [114])

Step Description

Step 1 Customer Needs: The first step in designing a software application is to
determine the customer needs (CNs) or attributes in the customer domain
that the software systems must satisfy. One way to solve communication

problem between customers and designers is utilizing Feature Models.

66

Table 4.1 (Cont’d)

Step 2

Identify Domain: The next step is to find similar projects related with the
customer needs. As defined by Suh [101], if an Functional Requirement
(FR) and its decomposition is already included in a project, then it should
be reused. More than one project can be utilized, in an application. As we

define later, these projects will be composed to create a mature domain.

Step 3

Define Functional Requirements (FRs): FRs are defined by the developer
to satisfy the customer needs. Lower-level FRs guide the developer in
selecting a specific attribute or a method. Design matrices corresponding
to mature domain components help in determining lower-level FRs. It
must be kept in mind that FRs are defined without considering Design

Parameters (DPs).

Step 4

Define Design Parameters (DPs): FRs are mapped to DPs. We are using
COSEML notations to define DPs. Therefore a DP can be a package
name, abstractions, component, interface, method, property, or event
name. Abstract representations are preferred especially for higher-level
DPs. If function or data abstraction is used, then logical collaboration
diagrams can be prepared [114]. Since projects design matrices and their
components are shared in various projects, standard name pools (such as,
OMT tables in HLA) are created. All DPs do not have to correspond to
existing component interface items but all physical DPs must be extracted
from the standard name pool or they should be added to the pool if
required. Abstract DPs, however, can be in COSEML’s abstract
representation. It should be noted that the independence axiom must be

applied to the design.

Step 5

Decomposition: Decomposition is continued until all FRs are mapped to
physical DPs (component, method, property, or event). Therefore steps 2-

5 must be conducted recursively.

67

Table 4.1 (Cont’d)

Step 6

Define Modules: Leaf-level DPs are specified as system modules that can
be components, methods, properties, or events. These modules define

what is required and should be satisfied by components.

Step 7

Identify Missing Components: Since DPs are chosen from the name pool,
identified DPs in the previous step can be used to reach existing
components. When all components are identified, missing DPs required
by other components or defined in the application matrix but not satisfied
by identified components are ascertained. More than one component can
be used to solve the application problem. We are proposing two methods

to select components among alternatives:

e The Information Axiom is applied to pick correct components in
terms of their information content and also for inter-component

congruity detection as explained in section 2.1.1.4.2.

e Communicating Sequential Processes (CSP) [48] and Failures-
Divergence-Refinement (FDR2) [40] tool utilizing our method
explained in section 2.6 can be used. This method is used where

number of components is huge and relationships are complex.

Step 8

Develop Missing Components: The FRs of the application and the related
components provide the development reason for the required DPs. At this
point, the design phase is already completed for the components because
the FRs and DPs and their dependencies in the design matrix and
collaboration diagrams are known. Components are implemented

depending on the design matrix and optionally collaboration diagrams.

Step 9

Add Components to Repository: For the purpose of reuse, all newly

developed components are added to the component repository.

68

Table 4.1 (Cont’d)

Step 10 | Integration: Components are integrated during the execution. Mismatch
problems [62] and composition anomalies defined in [28, 47, 108, 109]
may need to be solved.

Step 11 | Software Product: Execute the application.

4.1.1.2. Mature Domain Development

When number of related projects increase in a field, a mature domain is created by a

domain expert. Feature Model is one of the fundamental tools in domain creation.

Feature Model is used to define customer needs. These features are mapped to

functional requirements considering design parameters. Also these features are used

to define capabilities of components. All mappings are realized through our

mapping approach based on ontology among the features and ADT domains

corresponding to requirements, design, and implementation domains as defined in

Chapter 3. We have identified five steps to create a mature domain and listed in

Table 4.2. At the end of this process, a mature domain with a domain design matrix

and an ontology file that includes design constraints are created.

Table 4.2 Mature domain development process

Step | Description

Step 1 | Domain Identification: Mature domain concept is required where similar
projects are created again and again with minor differences. Therefore,
selection of similar projects is very important for identification of a
domain.

Step 2 | Domain Analysis: Domain expert prepares a reference Feature Model for

a domain. This Feature Model will be used to define customer needs and

69

Table 4.2 (Cont’d)

to create rules on FRs, DPs and PVs. Customers domain view will help in
the definition of relations among the features, FRs, DPs, and PVs should
be located in the Feature Model. In other words, if a feature is not utilized
in a rule, it should not be defined. Otherwise, lots of features are located in
Feature Models and they increase the complexity of Feature Models. Also,
unused features can confuse customer since features defines the
expectation of customers. Feature Model is created by investigating

available domain projects.

Step 3

Functional Requirement and Design Parameter specification: Intersection
of the domain projects’ design matrices creates domain (reference) design

matrix.

Step 4

Design is satisfied by project’s components. However still there can be
request to design and develop components as defined in step 8 in Table
4.1. Some components can be created newly, some components can be
composed, some of them decomposed to create new components, and

some of them modified.

Step 5

Create ontology: Relationships among features, FRs, DPs and components

are defined and added to ontology as explained in Chapter 3.

e Set Rules for features: Relationships among features are added to

the ontology.

e Set Rules for FRs: To activate an FR, dependent FRs, DPs, and
features are specified and added to the ontology. In this step, new

features can be added or unused features can be deleted.

e Set Rules for DPs: DPs’ publishing and subscribing relationship
with PVs and feature relationships are added to the ontology. We
assume that all DPs are published by at least one PV.

70

Table 4.2 (Cont’d)

e Set Rules for DPs: DPs’ publishing and subscribing relationship
with PVs (components) and feature relationships are added to the
ontology. We assume that all DPs are published by at least one
PV.

e Set Rules for PVs: Relationships among PVs (such as require and
mutually exclusive), relationships among features and PVs are

added to the ontology as defined in Chapter 3

4.1.2. ADCO Process

In this section, we are proposing the application development process in mature
domains. We have identified seven steps to create applications in mature domain
and listed in Table 4.3. Developer first seeks to find a mature domain (a collection
of interrelated components and their AD artifacts). Application designers benefit
from features selected by customers to specify functional requirements for specific
systems originating from the mature domain. All constraints among features, FRs,
DPs, and PVs are used to define consistency conditions of FRs which are set during

mature domain creation process.

Table 4.3 Application development process with mature domain

Step | Description

Step 1 |Identify mature domain: The most related domain is selected. Since
domains can be flexible, if expansions are required, they have to be
consistent with available features, FRs, DPs, and PVs in the mature

domain and should be conducted by domain experts.

Step 2 |Identify customer needs: Customer needs are identified through mature

71

Table 4.3 (Cont’d)

domain Feature Model. Therefore, application Feature Model is a sub-
Feature Model of the mature domain. Customers select or unselect the
features to specify their needs. A Feature Model guides the customer

about which features can be selectable.

Step 3

Select Components: Application designer can decide to extract some
components from the solution space. After that, a reasoning engine is

executed on the ontology.

Step 4

Design the system: Application design matrix is created from the domain
design matrix. Since reasoning over the ontology reveals usable and
unusable concepts (features, FRs, DPs, and PVs), designer can be warned
about unusable FRs. If root FR concept is consistent, there is an
application including at least one component. If inconsistency starts with
the root FR, in this situation no application will be implemented, because
selected features and components cause inconsistency. Designer can

debug the causes of the inconsistency using the ontology.

Step 5

Search components: Consistent PVs (components) in the ontology
represent the usable components. Alternative components can be available
in solution space. Designer selects the components among the alternatives

utilizing the information axiom (section 2.1.1.4.2) and CSP (section 2.6).

Step 6

During the integration, mismatch problems [62, 118] and composition
anomalies defined in [28, 47, 108, 109] may need to be resolved (e.g. by

type casting, synchronization, etc.).

Step 7

Execute system: If unexpected results occur in terms of customer
expectation, design is modified. It should be noted that modifications will

be local; that is an advantage of this approach if design is uncoupled.

72

4.2. Guidance

We have identified that design guidance can be provided where mature domains and
various parameters (constraints) in the mature domains are available. Our aim is
helping designer to consider all parameters (customer needs, functional
requirements, design parameters, components etc.) during his decisions. To handle
this requirement, we are proposing a guidance mechanism that considers all
ingredients of design artifacts and guides application designer in the mature
domains. Designer is warned about functional requirements which should be
implemented utilizing related customer needs and the environment which includes
available components. We have developed an ADCO tool as depicted in Figure 4.3
to implement our framework. The ADCO tool has a capability to create designs for
mature domains, components, and applications based on the mature domain. There

are six views in the ADCO tool:
1. FR-DP design matrix

2. Component lists: component designer/domain expert can decide intuitively
which components are not congruent to execute together because of conflicts

such as performance, price, security, etc. with a specific component.

3. COSEML harmonized with the design matrix view represents components

in structural view.
4. Feature Model: Feature Model view is used to define customer needs.
5. Rule List: Constraints are created and represented as rules.

6. Information: Represents the mappings with ontology concepts and design

items (features, FRs, DPs, and PVs) and some debugging information.

73

A A

Explorer

|
| Component Desian |
Domain Design

Rell-¥ ¥ W

|E|--{f:} Damain Design
=Ml conference
Axiomatic Design

S Component List

1| [Domain Design: conference] x]

| B
.................. = | & Feature Model || f5t Rule List
|

FR-DP |

ﬂ Axiomatic Design

B3 cosemL I| E—‘g Component Listl

| Save % Edit H Add S Insert 3¢ Delete

<

<l

LF___'} 1 Domain

.1 A Paper Operations

2

A Checking Conference Open
.3 A Upload Operations

.4 Add_Pa

_Paper
.5 A Add Authors

.6 A Checking Paper

Wl
Wl
Wl

.7 A Add Paper Topic

-4 1,1,.2,2 Reupload
- 4 1.1.2.3 Update_Password
- 4 1.1.2.4 Update_Abstract

lity Operations

=1134

ake_Email
- 4 1,1,3.2 Verify_Password

¥

=

EH':'} 1.1 Paper Operations
BE) 1.1.1 Authors can submits their p

1.1.1.1 Matification

1.1.1.1.1 Send notificatic
“- @ 1.1.1,1.2 Send notificatic
----- # 1.1.1.2 Check conference is ¢

----- # 1.1.1.3 Authors canupload p
----- # 1.1.1.4 Add paper to system

----- # 1.1.1.5 Add all authors with
----- # 1.1.1.6 Check paper with uni
----- # 1.1.1.7 Add paper topics witt

=139 1.1.2 Authors can update their p.

----- # 1.1.2.1 Login with paper id ar

----- # 1.1.2.2 Authors can reuploac

----- # 1.1.2.3 Update password wit
----- # 1.1.2.4 Update abstract

=172 1.1.3 Utility Operations

Figure 4.3 Domain view of ADCO Tool

X
opblojolok oo
obojolojololojololoofolo
Woopoohbjojolojololololololo
oojoloolobjojolololoololo
obolo@ololoolojolololololoolo
oboplo@oloolojolololololoolo
obooolo@oolojolololololoolo
opoojolox Wojojojolofofolo i
oboololojolo@ojolololololoolo
obooolox oo ®@ololojolooolo
opbojojolojoloololo B ool
oblojolololoololo olojololo
oblojolololoololo Wolopolo
oblojolololoololo @olofo
oblojolojoloolole oo @ololo
ololololololololololo - I

These views become different depending on where they are used: COSEML view

represents all components used in Application Design but represents a component

related with its design matrix in Component Design as depicted in Figure 2.13.

Although our framework is more general and applicable to other domains, we

applied it to the Conference Management System domain and the HLA based

Aircraft Simulations domain as detailed in the following sections.

74

4.2.1. Conference Management System

We will represent our guidance on a Conference Management System example.
This example is adapted from Open Conference [131] which is a conference
management system based on the PHP technology. Some functionalities of this PHP
based system is converted to a component based system. To represent guidance we
concentrate on the submit functionality and we also identified nine core components
(web services) as depicted in Figure 4.4 and their design matrices are depicted in
Appendix A. We have also represented function call order of Submit method with
BPMN representation as depicted in Figure A.8 which can be used to detect
dependencies similar to collaboration diagrams. Some of these components can also
be used to satisfy other functionalities in the mature domain such as editing etc. The
FR-DP design matrix belonging to the conference management system domain is

shown in Figure 4.5.

75

Jjdo) Tieded ppy
Jaded™yoayo
oLy Ry
all{"papeo|dn” a0
a4 papeojdns|
SS5alpPyY WEU0D A
ploMSsEd ALIaA,
JIEWT T 3lEpIEA,

Jaded ppy

uadg Hwgns 189

uadg aausdauo BuyIayD Y
uoiedado puans v
ado L Jaded ppy'y

Jaded Guyaayo v

SI0UINY ARy Y

syjuouodwo)) JUSWAFLURA] JOUIJUO)) 4§ 9INJI]

uopnaaxd a8

uopnaax31os

laded ppy
poMSsEd T 1aBIUOD 18D
SSEINPY WE0DT18S
auoy4laeoD a0
[IEME el U fo i L el
alepdrisen aepdn
sioynaygio” ajepdn
sploadas alepdn
sjlawoD " ajepdn
Peasay aepdn
Jeon " alepdn
auoydieuon - alepdn
Juapnisaepdn
plomssed aepdn
JlEWT B0 189
ladelolagquinp 180

a|l4~ papeo|dn a0
all4 papeodns|
ploMESSEd JIEU0O IO

uopnaEx3 s

uopnIax3 105

louyny ™ alepdn

JIELITBlEpIEA, usdQ TP 189 suoesado peojdn vy | | adol adedTei8ag ladedT1ag | | Il Rapeoidn a0 peojdnay ag-8sa0 loyiny~a18|aq

piomssed Auas | [usdoTHwangTag I UDNEIUNaN pUAg Y Jido] 1aded ppy laded a8y 8|14 papeadn S| uifio] ga-uadg oy

asepa| _u asepau| n_ ajepa| n_ _u asepam| n_ asepR| n_ _u ajepa| n_ _u ajepa| n_ _u asepa| n_ _u asepR| n_
Ann WAWUO AT WIBJSAS) Pugns aido] ~ 1aded 1aded waysAs ajy w3 aseqeeq 1oyny

E

E

E

E

wWaysAs Juawalieueyy asualajio)

76

=3 1.1.1 A Submit Operation

E}L'f) 1.1.1.1 A Notification Operations

- # 1.,1.1.1.1 A Send Notification Email
~- 4 1.1.1.1.2 A Send Notification Mail

A Checking Conference Open
.3 A Upload Operations
per

4 Add_Pa

o

.5 A Add Authors
.6 A Checking Paper

.7 A Add Paper Topic

-4 1,1.2.1 Login
- 4 1,1.2.2 Reupload

-~ # 1,1.2.3 Update_Password
- @ 1.1.2.4 Update_Abstract

1.1.3 A Utility Operations

E}D 1.1 A Paper Operations

1.1.3.1 Validate_Email
- @ 1,1.3.2 Verify_Password

]! Domain]

|[*

-7 1.1 Papsr Operations

=3 1.1,

=0

=L
=
fo -

1 Authors can submit their papers
1.1.1.1 Maotification

- # 1.1,1.1.1 Send netification email to contact authar ak
- # 1.1,1,1.2 Send notification mail ko contact author abe

1.1.1.2 Check conference is open or not

1.1.1.3 Authors can upload papers in allowed bype (pdf, «
1.1.1.4 Add paper to system and return paper id

1.1.1.5 Add all authars with paper id

1.1.1.6 Check paper with unique information in the syster
1.1.1.7 Add paper topics with paper id

.2 Authors can update their papers

1.1.2.1 Login with paper id and passwaord

1.1.2.2 Authors can reupload papers in allowed type (pdf
1.1.2.3 Update password with paper id

1.1.2.4 Update abstract

.3 Utility Operations

1.1.3.1 Validate email addresses in terms of syntax
1.1.3.2 New password and its confirmation password hav

[s1=] Fa]s]

[=1E=]1Es1k=]ks]

[s1i=1ks]=]F=]]=]

ololoolo|/olo
ololo[o|o|o|o

(=] i=i=1=] =]l

[=]

[s]=]Is]=]ks]Ts] Fa]ls]

ololo|olo|/olololo|o
o|lo|o|olo|o|o|ololo

olo|o|olo|o|o|ololo
olo|o|olo|o|ololo|o
olo|o|olo|o|lolololo

(=]

[s]

[s]1k=]=]E=]=]k=]k=] =] E=]k=] =] s]k=]ks]

[=1E=1=s1E=]1E=1k=1k=]]=]

[s]=]¥s =] s]i=]Na]i=] s]i=]Na]]ks]ls]

o|lojo[o|o|o|o|o|o|o|o|o|a|o|dD
o|o|o[o|o|o|o[o|o|o|olololo
o|olo[o|o|olo[o|o|olololo
[s]i=]k=]=] sl =]Na]is]s]=]Na]s]

=== k=] E=1E=1E=]+]

olo|o[o|o|o|o[o|o|o
o|o|o[o|ololo[o|o
[s]I=]k=}i=] s]=]Na]]s]

o|o|o[o|olo
ololo[olo
[s]=]ke]s]

oo o|o|o|o
|OOOOOOO

Figure 4.5 Partial FR-DP design matrix

ADCO tool automatically produces some constraints as explained in Chapter 3,

such as dependencies among FRs and DPs. We have defined some rules in addition

to the automatically generated rules for the Conference Management System as

listed in Table 4.4. Normally concepts are defined with unique identifiers in the

ontology; for simplicity we used abbreviations such as the names for FRs start with

“FR”, DPs start with “DP”, features start with “F” and components start with “PV”

in the Tables 4.4 and 4.5. Some rules are defined for FR-DP design matrix

represented in Figure 4.5 by the designer and represented in Table 4.4. For instance,

“FR1.1.1: Authors can submit their papers” can be consistent, if “FR1.1.1.4: Add

paper to system and return paper id” and “FR1.1.1.5: Add all authors with paper id”

77

are consistent. This constraint defines FR/.1.1.4 and FRI.1.1.5 as mandatory FR for

FRI1.1.1. Another example, “FR.1.1.1.1.1: Send notification email to contact author

about submission” can be consistent if Email, Notify Author, and Alternate Email

features are selected as represented in Figure 4.6.

Table 4.4 Constraints for Conference Management System

No Constraints
1 FR1< 3 LinkedtoFR1 1. FRI 1
2 FR1 1< 3 LinkedtoFRI 1 1.FRI 1 1
3 FR1 1 1< JLinkedtoFSubmit.FSubmit
4 FR1 1 1S (3 LinkedtoFR1 1 1 4. FR1 1 1 41 3
LinkedtoFR1 1 1 5.FRI 1 1 5)
S FR1 1 2< JLinkedtoFEdit FEdit
6 FR1 1 1 1< 3 LinkedtoFR1 1 1 1 1.FRI 1 1 1 1L
3 LinkedtoFR1 1 1 1 2.FRI1 1 112
7 FR1 1 1 3< JLinkedtoFUpload.FUpload
8 FR1 1 1 5< dLinkedtoFName.FName
9 FR1 1 2 2< dLinkedtoFReupload.FReupload
10 FR1 1 1 1 _1<3 LinkedtoFEmail.FEmail M LinkedtoFNotify Author.
FNotify Author M LinkedtoFAlternate Email
11

FR1 1 1 1 2<3 LinkedtoFMail.FMail M LinkedtoFNotify Author.

FNotify Author M LinkedtoFAddress

78

Based on the automatically generated constraints and constraints defined by domain
experts, reasoning engine provides information about inconsistencies. We are
interested in figuring out which FRs should be implemented. If FRI (root FR) is
specified as an unusable concept then the application designer can decide that no
application can be implemented in this circumstance. Which constraints cause this

circumstance can be found through debugging.

79

WISAS JUIWIFeURW JOUIIIJUOD

o} JO [OPOIA 2Inyed, [ented 9’4 2In31]

SERAppY pAOMESE suayda|s | IE W B3E uIEy|Y
EELNET spdomiay sSRJppY |IEW3T SWELING AdaunoD A0Uany T 30EI0 D uniEzIuebl o \L SUIEL
Nz
JUEIL0D 341 SA0YING [EUORIppPY douyany SERY T |EIINYDIA]
[
IELN JIEWwg UoEwdou] dadey peojdnay uoEwdou] dadey peojdn AoyIng T AYROR
N/
AARELLELI Hp3 Jwgnsg sdaded aae2idng Moy

POLIELL UOE D30

suonedado dade g

100y

Bunioying

buiwainzy

80

In Table 4.5, we have represented all constraints related with FRI [[5. First four
rules are the same as those in Table 4.4. The following constraints are automatically
generated from the design matrices of domain and design matrices of the Author
and Database components. If a dependency chain is broken somewhere the
reasoning engine will detect the inconsistency and ADCO tool will warn the
application designer. For instance if there is no Author component in the
environment, concepts will be unusable; DPAdd Author concept because of
constraint six, FRI 1 1 5 concept because of constraint five, FRI [[concept
because of constraint three, FR1 1 concept because of constraint two, and FRI
concept because of constraint one will be unsatisfied. ADCO tool represents all
these inconsistencies in the design matrix as depicted in Figure 4.7. When the Mail
feature is not selected from the Feature Model, FRI I 1 1 2 will be unusable

because of violation constraint eleven in Table 4.4 as represented in Figure 4.7.

Table 4.5 Constraints for FRI 1 1 5

No Constrains

1 FRI1S 3 LinkedtoFR1 1. FR1 1
2 FR1 1< 3 LinkedtoFR1 1 1.FRI 1 1
3 FRI 1 1< (3 LinkedtoFR1 1 1 4. FR1 1 1 41 3

LinkedtoFR1 1 1 5.FRI1 1 1 5)

4 FR1 1 1 5< dLinkedtoFName.FName
5 FR1 1 1 5< JLinkedtoDPAdd Author. DPAdd_Author
6 DPAdd Author< dLinkedtoDPSQL Execution. DPSQL Execution I1

JLinkedtoPV Author. PV Author

7 DPSQL_Execution & JLinkedtoPVDatabase. PVDatabase

81

- 4 1.1.1.1.1 A Send Notification Email
- 4 1.1.1,1.2 A Send Notification Mail
- 4 1.1.1.2 A Checking Conference Open

- # 1,1,1.3 A Upload Operations
- # 1.1.1.4 Add_Paper

- 4 1.1,1.5 A Add Authors

- # 1.1,1.6 A Checking Paper

- 4 1.1,1.7 A Add Paper Topic

(03 1.1.2 Edit

=0 1.1.1.1 A Motification Operations

H@ 1.1.3 A Utility Operations

=3 1.1.1 A Submit Operation

E}@ 1.1 A Paper Operations

SN
=03 1.1 Paper Operations
=+ 1.1.1 Authars can submits their papers
2 1.1.1.1 Notfication
- # 1.1.1.1.1 Send natification email ko contact author about
i 4 1,1.1.1.2 Send notification mail to contact suthor about C
----- # 1.1.1.2 Check conference is open or not
----- # 1.1.1.3 Authors can upload papers in allowed type (pdf, doc,
----- # 1.1.1.4 Add paper to system and return paper id
----- # 1.1.1.5 Add all authaors with paper id
----- # 1.1.1.6 Check paper with unigue infarmation in the system. If
----- # 1.1.1.7 Add paper topics with paper id
[1.1.2 Authars can update their papers 0
[1.1.3 Utility Operations L]

|*

[s1l=1i=]Ne]
[s1k=]=]k=]ks!
[=1=1 =] =1 =] =]

[=Is]=1NslNs1N=1N=] s
[=s1i=Is1i=1ls]is]N=]Ne] sl
Qoo o|olo|o|o 0|0

o|lo|o|o|o|o|o|o|o
[s]=1k=]¥s1l=] =]a]ls]
[s1l=1=]k=]r=1=]k+]
[s]=1k=]ks]l=] =]
o|o[=[o[*=

[s]I=1k=]ks1l=]=]ks]ks]
[=1l=]I=] =]

Figure 4.7 FR-DP design matrix representing inconsistencies

4.2.2. Aircraft Simulations

We have adapted ADT to FEDEP [118]. The steps of this process are listed in Table
4.6. This approach is similar to application development process without mature

domain as presented in Table 4.1.

Table 4.6 Adapted FEDEP process with ADT (adapted from [118])

Step | Description

Step 1 | Define federation objectives: Costumer requirements and features of the

expected software systems are determined.

82

Table 4.6 (Cont’d)

Step 2

Perform conceptual analysis: The next step is to find mature domains
related to the customer needs. Customer needs to point to a general idea

about which domain (s) can include the components.

Step 3

Design federation: Problem is decomposed to the parts utilizing ADT.
Available federates are identified utilizing a design matrix for the problem
and design matrices of available federates. Required actions are listed

below:
= Define Functional Requirements (FRs)
= Define Design Parameters (DPs)
= Define dependencies among FRs and DPs
= Check axioms

= [Identify missing components

Step 4

Develop federation: Missing federate development and/or available

federate modifications are realized utilizing design matrices in this step.

Step 5

Plan, integrate, and test federation.

Step 6

Execute federation and prepare outputs.

Step 7

Analyze data and evaluate results.

ADCO process is applied to simulations based on High Level Architecture [118]

and explained in this case study. Since HLA can be used to develop agents for

games [74], and military simulations are so popular, we developed a war-vehicle

domain. There are two kinds of components: software components and federates

formed by the software components as represented in Figure 4.8. We have applied

&3

ADCO to HLA based simulations in two levels. As it can be seen in Figure 4.8,
software components create federates and federates forms federation. Federates
communicate with federates through RTI and software components communicate in
software components. In this section, we will represent three aircraft (F16, F18,
Su25) federates and software components formed these federates. One of federates
F18 with center view is represented in Figure 4.9. In this simulation, only OMT
attributes as listed in Table 4.7 and saved as FED file are shared among federates.

There is no OMT interaction classes in this case study.

F16 Federate _Fl8Federate Su2s Federate
F16 FI8 Su25
i Terrain i E Terrain i E Terrain i
GUI GUI GUI
E Controller E E Controller E E Controller E
E System i E System i E System i
E F16 Service E E F18 Service E E SU25 Service E
i F16 Request i i F18 Request i i SU25 Request i

Figure 4.8 All components in Aircraft simulation

In the simulation environment, there are four software components common in
federates as represented in Figure 4.8 and Figure 4.10. In our example, all federates
can be implemented thorough these components because of their similar
capabilities. Recalling the ADCO processes, mature domains are created where
some components and functionalities become common. Controller component is

used to control federates. [ts COSEML representation is depicted in Figure 4.10 and

84

FR-DP design matrix is depicted in Figure 4.11. In the Terrain component, aircrafts
and effects are represented as depicted in Figure 4.10 and design matrix of Terrain
component is depicted in Figure 4.12. In the GUI component, actual values of OMT
attributes are represented as depicted in Figure 4.9 and design matrix is depicted in
Figure 4.13. System component produce events which are obtained from operating

system such as keyboard events as shown in Figure 4.10 and Figure 4.14.

Table 4.7 OMT classes of simulation (adapted from [118])

Class Attribute DataType | Description
Longitude Integer Actual longitude within terrain
Altitude Integer Actual altitude within terrain
Latitude Integer Actual latitude within terrain

Roll_Angle Integer Roll angle of wvehicle to
represent vehicle on terrain
Pitch Angle | Integer Pitch angle of vehicle to
represent vehicle on terrain
Yaw_ Angle | Integer Yaw angle of vehicle to
) represent vehicle on terrain
Vehicles Vehicle Type | String Vehicle type: F16, F18, etc.
(PublishSubscribe) ["Craghed Boolean | Value is set to “true” if vehicle
has crashed
Height Integer Height of vehicle to represent
vehicle on terrain and
calculating crashes
Width Integer Width of vehicle vehicle to
represent vehicle on terrain
and calculating crashes
Speed Integer Actual speed value of vehicle

85

SOJBIOPAJ GTNS PUB ‘YT ‘91,1 SOPN[OUT AJeIOPAJ §T.J WOIJ JOYSUIOG 6 9InS1]

¥

000052 20001~ = 3pmine {3731H3A] 914 103l
E1ZF7EE0B0L = 2pmiBuoT 313434 G2ns 128
B090LEEET = 8PPl [31DIHIA] G2n5 108
SELOGF 6266 = SPANET [31IIHIA] G2n5 10e
£A0RESBOG0 L = =pryBus [373IHIA] 5ghs sl
9987E6°EE = 3pmnly [3721HIA] G2ng 108
Z09LEE 665 = 2pmne] [372HIAI G2nsG 12
1559209801 = =pnybun [3731H3A] 914 122
ZGLEST T LT = 2Py [I12IHIA] 914 2l
8BEEEZ 2000 1- = SPme [312IH3A] 914 10l
22 LIS60950 1 = =pmyiBuo [3731H3A] 914 w0
LGEE0L t 19 = 8prilily [312IHIA] 914 198
JE£91Z°20001- = 3pmieT {3731H3A] 914 103l

2EGedn| @0ug g D000'E68E-| sprugen
oo0gegse| AOURod D00/AL20Lf EPMADMOT

0003000 paadg 000001023 SpryE

sMElg

cezzoonl| EPEET
gas0ga0l| pnubuoy
clesgple] APy |

3aLE| Jauyin

24
[57ze s meddl 814 TP

86

Controller Gul System Terrain
lj Interface IJ lj Interface IJ IJ Interface IJ |:| Interface
Increase_Speed Display_Parameter Display_Explosion_Effects
Decrease_Speed Getaltitude Key 1 Pressed Display_Trail_Effects
Control_Crashing GetLongitude ey 2 Pressed Display_Terrain_from_Back_of_Plane
Turn_Left Get_Latitude Key 3 Pressed Display_Terrain_from_Front_of_Flane
Turn_Right GetSpeed Key 4 Pressed Display_Terrain_fram_Top_of_Plane
g \W_TIMER EE: Z E:Eizgz Display_Terrain_Left_of_Plane
Down Display_Terrain_Center_of_Flane
Calculate_Position Key A Display_Smoke_Effects
Initialize Key Z Display_Terrain_Right_of_Plane
GetAltitude ViR GetPitch_Angle
GetLongitude VK_DOWN GetRoll_Angle
GetlLatitude VKLEFT Gefyaw_Angle
GetHeight VK_RIGHT Getaltitude
GetRitch_Angle HM_TIMER GetLongitude
GetRoll_Angle GetlLatitude
Getwidth GetCrashed
Getvaw_Angle Getvehicle_Type
SEigE Key 1 Pressed
SetCrashed Key 2 Pressed
SetHeight Key 3 Pressed
Setlatitude Key 4 Pressed
SetLongitude Key & Pressed
SetPitch_Angle Key G Pressed
SetRoll_Angle \WM_TIMER
SetsSpeead
Setvehicle_Type
SetWidth
Setvaw_Angle
GetSpeed
Wi_LEFT
Wi_RIGHT
Wi_LP
Wh_DOWWN
Whi_TIMER
ey A
Key £

Figure 4.10 Software components

87

ZAN LT
LECVER
HIWILTWM ST
NMOT A b1
dTHAE T
IHITE AT +'T
LETHA 1T

N0 WA

urTu=Ag

peadsieo 022’1
2By MEARS 61°Z'T
UIPIAES 81°Z'T

adAL apyantes L1721
paadsEs a1z’
3By |IodRs S1°T'T
Uy YPIdIRS F1T T
2pmybucTiEs £1°2'T
SpMRETES Z1'T' T
WBRHIES T1°T'1
paysenIRs 01'T'
apMYIEs 6°C'1
2(buy MEAIRD 8'T'1
YPIANED 21T
albuyjlowED 9°2' T
3By Y1d1e0 52T
WBIEHIED +'2'T
apmpeTED £ 1
2pryfuonEn 71
aprMIEs 121

0T poyIEN
2ZEIPUTET'T
uoiysog”=E[mED 8'1'1
umeg £1°1

ano Tt

WerdTuInL 571
YT unL Tl
Bunysey joauen £ 1°1
peads aseansg z'1'l
paads aseanu] 1'1°1

o

o]

000000
o]

oPpPEloloR[E00 O

oo

oo

sssssnse
o000
oopP|[o
ool
Clolofolole

o000

o

R
+Q

&

ool

oololelofoplole
ojoololojofplole

o
oo

OCopPoopoj0O o0

Olelol00oO000IO

OCcol0Co0DCODQCCOOICI00I0

oOoooOpO@OOOIOOOOI0OO |0

OO0 |0 o0
OpooOopO@EOoO|0 |00

o000

OCol0CoDCCOQCPOPCPEOLPECPIC

OCOpPOooOO@OEOP000|000|[0

000|000
ool EO0O[0[0

[=]
o
o
(=]
o
(=]
(=]
o
(=]
(=]
o
(=]
(=]
o
(=]
(=]
o
(=]
(=]
o
(=]
(=]
o
(=]
o
o
L=]

Oo0OOoOPO@OOOOOOOOO|0|00|00|[0
0O 0000000

Oopl0ooPIo0OI0

Do po@O0|0 0
OCoOpOpoOO@COO0I0|0
OQCOOoOO@OOO|000|0 0|0

Qoo RIEOOREOCIO0[0
OQooopPOopoOpPEOPPEOM@O|00
QP00 oRPIECOROOICIO0I0

88

OopO@ODoOCPEOOC0|00N0 00|00 0|00

I N N NN

oRPElePR[0
C 00 ojo0 00|00

CoOpPOopPoODoOOCPPOEPOEOPPEOPOPEEEOPEPEOPOOP|000|00
CopOpPopOOOoOPOOE@OOPOOOOOPOOO[00O|0|0|0|00|[0
CRCRCHCECECHCECECHCE R RN R RNl R A CRCE CA CECE A CACE =R =N N -]
CoQOpPoPOoODoOCPPOEEODEOPCPOOPEPEOPEOPOOP|00|0|00|[0
CopOpPopOOOoOPOOE@OOPOOOOOPOOO[00O|0|0|0|00|[0
CRCRCHCECECHCECECHCE R RN R RNl R A CRCE CA CECE A CACE =R =N N -]
CoQOpPoPOoODoOCPPOEEODEOPCPOOPEPEOPEOPOOP|00|0|00|[0
CopOpPopOOOoOPOOE@OOPOOOOOPOOO[00O|0|0|0|00|[0
CRCRCHCECECHCECECHCE R RN R RN N R A A CRCE CA CECE A CACE =R =N N -]

CoOpOo0 00|00
Qoo oPECO]0
C 00 ojo0 00|00
CoOpOo0 00|00
Qoo oPECO]0
CoOpOo0 00|00
Qoo oPECO]0
C 00 ojo0 00|00
Qoo oPECO]0
C 00 ojo0 00|00
CoOpOo0 00|00
CoOpOo0 00|00
Qoo oPECO]0
CopopPooojoP |0
Qoo oPECO]0

v

Figure 4.11 FR-DP design matrix of Control component

1.4.4Down button is pressed
-~ # 1,4.5 Time event in specific intervals

1.4.1Left button is pressed
- @ 1.4.6Key Ais pressed

1.1.3 Contral crahings
- @ 1.1.4 Turn left
- @ 1,1.5 Turn right
1.2.2 Get langitude
- # 1,2,3 Get latitude
- % 1.2,4 Get height
1.2.5 Get pitch angle
- # 1,26 Get rall angle
- # 1,2,7 Get width
1.2.8 Get yaw angle
- # 1,2,9 Set altitude
1.2.11 Set height
- # 1,2,12 Set |atitude
- @ 1.2,13 Set |angitude
1.2.14 Set pitch angle
- # 1,215 Sek roll angle
- @ 1.2,16 Set speed
® 1.2.17 Set vehicle type
- # 1,2,18 Set width
1.2.20 Get speed
1.3 Published Events
- # 1,42 Right button is pressed
- @ 1.4.3 Up button is pressed
® 1.4.7Key Zis pressed

1.1.9Initislize
=3 1.4 Subscribed Events

-2 1.2 Subscribed Methods

® 1.16Up

- # 1.1.1 Increase spead
- % 1.1.7Down

- # 1.1.2 Decrease speed
- % 1.1.8 Calculate position
-~ # 1.2,10 Set crashed

-~ @ 1.2,19 Set yaw angle

- % 1.2,1 Get alttude

{3 1.1 Published Methads

=]

HIWIL WM 24T
passaid 9 A2y 9T
passald g A2y ST
passald & A3y b T
passald £ A £ T
passald Z A2y T T
passaud T A2y T'¢'T

QAT 11 -
uruBAg £ @
adATBPIEAIRD 82T @

Paysed3D LT # -

SPRIRETRD 9'C'T @

apnybuoEs 5z

SPNIAYIED +
2buy”MeA}RS £
3|Puy 0D 212" T

BBUY PR T'T'T @

NOTPoLEW 2T -

Ul o Bl Ue LR T ARdSIO 6 T @
s2)JT oS ARjdSIg e T T @ -

aUe|d J0 IRjuaD U LIR T ARdSIq AT T e
aue|d Jo 327 !

aue|d Jo-do T woly ue.
ale|dJo Juold Wwoy
ale|d J0 g Woy UE
spayI el Aedsig T T @

81323 uoso|dxg ARdsI T 1T @

urpoan 11 -

o]

O [0 0[O0

Q0000

LB R R B B 8

O[O [O]0|0|O0|0

OO0 I|0|0

opfofololofofolelo
olofeololo

O [0 [0 0|0

o]

0 [0

0 [0 |0 [0
0000

Q000]|0

O [0 0[0j0]0

OO0 I|0|0

Q000000

QOO0 0]|O|0
OpOEOpPEPOPOPEOPOPoDOX0[0I|O0|0

OOoOOO00|O|0

o
o

QOO0 |0I|0

QopPOpPPEEPPEPOC00|0I0

- -
- -
* -
- -

OO0 O|0]|0|0

OPOEOpPPOEOOoO|0|0|0
O 00000 |0

O 00000

(o]
o]
o]

Qo000
OO0oOOO|0o|0|0|0

QPopPpEPEPEPRPPRRERIPERIIIIC IO
QOooOoOOPOPOPEPPEEEOEOIOO|0|O0|0]0|0
QOooOoOOPOPOPEPPEEEOEOIOO|0|O0|0]0|0
QopPpPPPPEEPPEODPIIO|O|0 0|0
OOooOOOPOOPPO@OOOIOIO|0|OI|0|0|0
QOooOoOOPOPOPEPPEEEOEOIOO|0|O0|0]0|0
QopPOpPPEpPPEEPPOEODOIO|00 0|0
OOooOOOPOOPPO@OOOIOIO|0|OI|0|0|0
QOooOoOOPOPOPEPPEEEOEOIOO|0|O0|0]0|0

OOoOOOoo|o|0|0
QOO0
OO0oOOO|0o|0|0|0
OOoOOOoo|o|0|0
Qoo 0o|0|0
QPoEEEpPEOPI|C
OOoOOOoo|o|0|0
OOoOOOoo|o|0|0

3y terrain from back
3y terrain from Front
3y terrain from center
3y smoke effects

3y terrain from top
ay terrain Fram right

ay terrain from left
=L 1.2 Subscribed Methads

3y explosion effect
ay trail effect

ethods

M

errace

omponent In
- # 1.4.7 Get tick in specific time interval

- # 1.2.1 Get pitch angle of plane
- 4 1.2,2 Get roll angle of plane
- 4 1,2.3 Get yaw angle of plane
- # 1,2.4 Get altitude of plans

- 4 1.2,5 Get langitude of plane
- 4 1.2,6 Get latitude of plane

- # 1.2.7 Check crashing
- # 1,2.8 Get vehicle type

1.3 Published Events

=L 1.4 Subscribed Events
- 4 1.4.1Key 1 is pressed

- % 1.4.2Key 2 is pressed
- # 1.4.3Key 3 is pressed
- # 1.4.4 Key 4 is pressed
- # 1.4,5Key 5is pressed
- 4 1.4.6 Key 6 is pressed

- 4 1.1.1 Displ
- 4 1.1.2 Displ
- # 1,1,3 Displ
- 4 1.1.4 Displ
- 4 1.1.5 Displ
- 4 1,1.6 Displ
- 4 1.1.7 Displ
- 4 1.1.8 Displ
-4 1.1.9 Displ

B 1.1 Published

1:

Figure 4.12 FR-DP design matrix of Terrain component
89

]

D

5 L

s v 5 2 4
W o == R =] [}
w 1 == =
i zsfcRR F
Fl E & € 3 PR
M= 0 oD oo - 3%
S5 88859%
=
2 -2~ EE
g — @ ool el B
E-—cE.—c.—c.—c.—cLuLuﬁ
o . il [
E PR SR IR IR L R

4 h 10
=0

(=]
=19 1.1 Published Methods
Lo 1101 Display Parameters
EIE} 1.2 Subscribed Methods
. Lo # 1.2.1Get Altitude
- # 1.2.2 Get Langitude
L@ 1.2.3 Get Latitude
: ‘e @ 12,4 Get speed
----- # 1.3 Published Events
=9 1.4 Subscribed Events
L. 1.4.1 Modify parameters with specific time interval

[

FEEEEEEE

=FEEEEEER

QO OO DD DD
QOO oD DD D

Figure 4.13 FR-DP design matrix of GUI component

90

‘essed
essed
essed
essed
essed
‘essed

-~ # 1.3.11 VE_LEFT

- 4 1,312 VE_RIGHT
- 4 1,313 WM_TIMER

-~ 4 1,2 Method_Out

=9 1.3 Event_In
Key 2P

-~ 1.3.3Key 3P
- 4 1.3.4Key 4P
-4 1,.3.5Key5P
-4 1,.3.6Key6P
- 1.3.7Key A

- # 1.3.8KeyZ

-4 1.3.9VE_UP

-
- 1310 VE_DOWN

omponent Interface
-4 1.31Key 1P

- 4 1.3

- 4 1,1 Method_In
- i 1.4 Event_Ouk

3 b]_l:

U
[

(]

(=]

(]

(]

(]

(]

(=]

(=]

(]

(]

(]

(]

(=]

(]

----- # 1.1 Published Methods

----- # 1.2 Subscribed Methods

= JE} 1.3 Published Events

1.3.1 Key 1 is pressed
1.3.2 Key 2 is pressed
1.3.3 Key 3 is pressed
1.3.4 Key 4 is pressed
1.3.5 Key 5 is pressed
1.3.6 Key 6 is pressed
1.3.7 Key A is pressed
1.3.8 Key Z is pressed
1.3.9 Key Up is pressed
1.3.10 Key down is presse:
1.3.11 Key left is pressed
1.3.12 Key right is pressed
1.3.13 Produce event in sp
----- # 1.4 Subscribed Events

=]
=]
=]
=]
=]
=]
=]
=]
=]
=]
=]
=]
=]

[=1E=1Esll=]

[s1r=1ks]=]s]

[s]k=]r=1ks] =]s!
o|lo|o|olo|lo|o
[s1E=I=1E=]1r=1Es] =]k=
[=1l=1slis]=1Es1E=]s]}s]
[=1E=1Es1isi=1 s]h=] s]Ralls]
[s]r=1is]=1Is1ks] =] s]i=]=]ks]

[s1ls1s1N =N R Nsl sl sl s Na]ia]
[sIEs1EsINsIN= =] iaiislNs]N=IN=]Rallalls] =]l

iiiiiiiiiiiii

[=1E=1i=1Es]=1E«1E=] =] is]E=]s]R=] = lle] s
[sli=Ii=1E=] =1 Es]N=]Is]Esll=] sl R=] k] iall]
FEIEIEEIEEEIEIEEIEE
[s]islislis]rsis] =] Islis] =] s]ls]
[s]E=Is1E=1 =1 sl =1 IslRs] =] s
[s1E=Ik=1Es]l=1 s]h=] =]l e]
[s1E=Ik=1E=]E =1 s1k=] s]}s]
[s]i=lks1k=] =1 =]l =]ls]
[s][=]ks]k=]=]F=] =]

olo[o/olo|o

[s]E=1k=1k=] =]

Qoo D

Figure 4.14 FR-DP design matrix of System component

Federates publish some functionalities such as for F16 is represented in Figure 4.15.
Federates are represented by communication components Request and Service used
during communication with other federates. Such component representations for
F16 federate are depicted in Figure 4.15. The F16 Request component accepts
subscribed OMT attributes published by other federates through RTI. The OMT
attributes are evaluated as events in the components. Values of OMT attributes are
used through published methods of the FI/6 Request component by software
components. Such as for F16 federate, dependencies between methods and OMT
attributes are depicted in Figure 4.16. The F16_Service component publishes OMT
attributes and they can be reachable by software components through get and set

methods as represented in Figure 4.17.

91

F16 d F16_Request Fl16_Service
I:| Interface I:| Interface d I:| Interface é
Display_F16_terrain GetAltitude Getaltitude
Dizplay_F16_crashing_effects GetCrashed GetCrashed
Cantral F16 GetHeight GetHeight
Initialize F16 GetlLatitude GetlLatitude
Display_trail_F16_effects GetLongitude GetLongitude
Display_Terrain_Right_of_Plane GetPitch_Angle GetPitch_Angle
Display_Terrain_Center_of_Plane GetRall_Angle GetRoll_Angle
Display_Terrain_Left_of_Plane GetSpeed GetSpeed
Display_Terrain_from_Top_of_Flane Getvehicle_Type Getvehicle_Type
Display_Terrain_from_Frant_of_Plane Getidth Getidth
Display_Terrain_from_Back_of_Flane Getraw_Angle Getraw_Angle
Dizplay_Explosion_Effects Setaltitude
Display_Trail_Effects ALTITUTE SetCrashed
Display_Smoke_Effects CRASHED SetHeight
Initialize HEIGHT Setlatitude
Display_Parameter LOMNGITUDE SetLongitude
Key A ;T_:(;THUDE SetPitch_Angle
Key 7 CoLL SetRall_Anale
WIK_LEFT SPEED SetSpeed
Wik LIP Setvehicle_Type
= WEHICLE_TYPE ,
Wi_DOYH WD TH Setvidth
WIK_RIGHT v Setvaw_Angle
ALTITUTE
CRASHED
HEIGHT
LOMGITUDE
LATITUDE
FITCH
ROLL
SPEED
WEHICLE_TYPE
WIDTH
AW

Figure 4.15 F16 component and interfaces

92

MEATTH' T # - olololololololololololx|olo ololololololololo
|_._E;_,_n:_§¢... ololololololololololx|ololo clolololojololo o]
AL FDHIA ST & - olololololololololxlolololo ololololololo =1l=1
Q335 2'+'T & olo|olo|lolo|o|olx|olo|lo|olo ololololololo ololo
TCH LT # oo lofololo|olxlolo|olo|olo ololo|o|ololso oo
HOLI4 94T & ololololololxlololololololo olololo|olk olo|ololo
JANLLLISHT & - ololo|lolxlololololololololo olololo olololo|o
FANLISMOT T @ olololololx|loloolololololo olololxloloolololoo
LHOIIHEF'T & - ololol=xlolololololololololo oo oo ololololo
QIHETLD 2T » - ololx|ololololololololololo olxlololololololololo
ANLILTE T8 & Clxlolololololololololololo olo|ololololololo|o
u:oucmi:@..m =<|o|lo|o|olololololo|o|ololo
r|_:cm.>m_m;...... ololololololololololololomololololoololololololo
O POEH ZT @ olololo|olololololo|lo|lolkdo|o|olo|o|ololo|o|o|o|olo
SPugTMRAIED TT'T'T @ olololololololo|o|olklololo|o|o|o|ololololo|o|o|o
PPAED 0T T'T ololololololololo clololol ololololololololololo
adh BPIEAED 6T T @ - ololololo|ololollololololo|ololololo|olololololo
_umm.n_mumwm_it.. olololololololkiololololololololololololololololo
BBUYTITRD T @ clolololololkololo|lolololololo|lolololololololo]o
SBUy RO 9 T @ clolololoklolololo|lololololololololololololololo
SpnybuoTED 51T @ - olo|o|o ololololclolololololololololololoolo|o
SPRYIETIED BT T clololxiolololololololololololo|lolololololololo|o
MEEHED £ T s} [} olo|o|lo|oo|clooo|o|o|lo|looo|o|o|o|o|o|o
Paysesg@n Z Tl W cliolololololololololololololo|lolololololololo]o
m._u:u_u_ﬂwui_ﬁt.... olololololololololololololololelolololololololo
T powE 1°1 - ololo|olololoo|olo|o|ololo
mi{) |8
< |7
=l
- E 2
- =)
o LoEL 7238 4
== -
£58 5255085
w O S.Eﬁ.m.ﬁhammm.._h
L L = R = -)
- o T o = o] P =Ty B R g2
Bl =] [= =} s =] S =wm 3 Fm L =
a9 oo 30 gL o £2c Trgop>=Ypm 203
L2 E 652552 EBEL ;o Rt 2857
s "y S c 2l E Rt f o280 fTE oS T
s @ oC TO0OF P Ar L oWy 3L L B2 FaUl
T srirrsrsssd88gLE8FcREsagsE
S omp Do owe S D202 FS T SSEEARESD
R T - B R R T B B T =R = R R
G o Rt S SR R S .~ S S i S I
o T T s g L A e s s A
[e I I I I e I B B R TR I " EER Ty R T T B T T T T
CTevsesssvsessvse " sessssnnnee
@""""""""""".‘...n@""""""""""
- el

Figure 4.16 F16_Request component
93

NG BT BT
Mg\ TTET -

HLaI 0T'E'T

3dALTITDIHANEE'T

J33d5 8'2'T

Nod e

HOLId 9'E'T

A0NLILYIS'E'T

AANLIONOT +'E'T

IHEIEH £E'T

JIHSYHD Z'E'T

ALNLILTY TE'T

[g -R o L B

00000

Lo oo g W w (o I o 0 o T (0 L0

LA R N B N BN K XS]
00000

00D o000

(oo io o 0 T (00 0
000 oO00 0|0
(e oo W o (o I o 3 o

Lo oo w0 (o 0o o o o o o

MOTPOBN 2T #

AUy HEARS 22T T
WpIIRS 1271

add 1 "apyEagEs 02 T
paadcEs 61T
20Uy |0HIEs 81
albuy ades 410
apryBuoTias 91
SRETRS ST
WEI2HIRS +I
payseinies £
apmylyIss 21
abuyweA1E 110
WPIED 0T T

add | TapyanEn 6 T
peadsyEn 'y
afuy” e T
(BT YI=D o' T
aprfiuoTiEn 51
2prNETIRD £ 1
WhEHED £ T
payseInEn 2' T
SPrANERD T'T'T # -

Ul pazay 11 -5

(- o T o (e o (I o T w o (o (o 3 o

Lole o I (o o o o O o o o o oo o o o o o T o o T o o T o o 0 (0 R 0

(LA R E R B R EREEREEREEREEEERSERX:.]
LeJ (o] o o (o (o I [0 1)

Lol (s] w3 ol (o (o 1 (o 00w]

Lol g e e (o I o 10 (0 0]

Lol (sl s el (e (o I o 30 (o) (e (o 0 0}

(oo o o (e (o I o o o 0 [0 3 L]

Lol (eI o (o (o (o I (o T e o (o 0 (o 0 [T]

Lo o] o e (o (o I [0 L (o o 0 o 0 o 0]

Lol (sl o ol (e (o 1 (o 0w (e (o 00 (o 00w Y (W I o 0 0]

Lo o] o e (o (o I o 3 L o o 0 (o o o R (0
COo@EooooooRoo000 0o

Lo o]t o o (o o I o o o o (o T o o o T o 0
CO@OEoooooRoo0 000000

Lo] o o (o (o I o L o o 0 o 3 o o T (o T o o L (O R 0
COo@EPooopRRoooo0 000000
Lole o T o o o o O o o o L T o o o o o 0 o [

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘OO

CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T
CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T
CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T
CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T
CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T
CoOOPRooooRRERoo00000[0000|[0
Lole o T o o o o O o o o L o o o o o o o [T

L4

~

1.3.1 Altitude value is changed
- # 1.3.2 Crashed value is changed
1,33 Height value is changed
- # 1.3.4 Longitude value is changed
1.3.5 Latitude value is changed
- # 1.3.6 Pitch value is changed
1.3.9Yehicle bype is changed

- 4 1.3,10 Width is changed
1.3.11 Yaw angle is changed

-4 1.4 Subscribed Events

1.3.7 Roll value is changed
- # 1.3.8 Speed value is changed

1.1,9 Get vehicle bype

1,15 Get longitude
- 4 1.1.6 Get pitch angle
1.1,7 Getroll angle

- 1.1.8 GetSpeed
-4 1.1.10 Get width
1.1,11 Get vaw angle
-4 1.1,12 St altitude
1.1.13 Set crashed
- 4 1.1,14 Set height
1.1.15 Set latitude
- 4 1.1,16 Set longitude
1.1,17 Set pitch anale
-4 1.1,18 Set roll angle
1,119 Set speed
- 4 1.1,20 Set vehicle type
1.1,21 Set width
- 4 1.1,22 Set yaw angle

1.2 Subscribed Methods

-4 1.1.1 Get altitude

- # 1.1.2 Get crashed

- 1.1.3 Get height
=43 1.3 Published Events

- 1.1.4 Get latitude

=43 1.1 Published Methads

igure
in a
the F16

F
depicted

in
. ADCO guides designer

1gn matrix

in as
feature Su25

b

21
interested

4

is case, in

ftware components as
1gner 1s

f the doma

1r SO
10ns

tuation, des

. Design matrix o

1

Feature Model as represented
in. If 18 component is extracted from a

in
94

.8 and automatically generated constraints from

lities of federat

ona

Figure 4.17 F16_Service component
8. Mature doma

ludes three federates and the
4

ludes funct

nc
inc

4.20

igure

F

utilizing constraints listed in Table 4

in
solution and features are selected as depicted in Figure 4.21, then the des

as depicted in Figure 4.22 is obtained. As it can be seen in Figure
federation that includes F16 federate without trail effect. For th

4.19 includes features to create federations
design matrices of components and doma
and Trail features are not selected. In this s

represented in Figure

Mature domain

component, Display trail F16 effects should be omitted and a new £'/6 component
should be generated. Also related components in F/6 federation with this method
can be required modifications. We can extract this knowledge from design matrices
and ontology. “FR1.5.1:F16 trail effect” in the application design matrix depicted in
Figure 4.22, requires “DP1.5.1:Display trail F16 effects” which is published by
F16 component as represented in Figure 4.18. Display trail F16 effects method
Since

requires Display trail effects published by the Terrain component.

Display trail effects is not required, then Terrain component also can be required

to be modified.

trail_F16_effects

Fl6_terrain

.1 Display
.1.2 Display_F16_crashing_effects

1.1.3 Control F16
1.1.4 Initialize F16
.S Display,

thod_Out

- 1

ght_of _Plane
rain_Cenker_of _Plane

rain_R.i

ay_Te
lay_Te
lay_Te
ay_Te
ay_Te
ay_Te

- 4 1.2.1 Displ
- 4 1.2.2 Displ

- # 1,2.3Displ
- 4 1.2.4 Displ
- 4 1.2.5 Displ
- # 1.2.6 Displ
- @ 1.2.7 Displ
- 4 1.2.8 Displ
- # 1.2.9 Displ

rain_Left_of_Plane

rain_from_Tol

of _Plane

p_or_t
rain_from_Front_of _Plane

rain_from_Back_of _Plane

losion_Effects

iy _Exp
lay_Trail_Effects
lay_Smoke_EFfects

- 4 1,4.5 VE_DOWHN
- 4 1.4.6 VE_RIGHT

- 4 1,2,10 Initialize

- 4 1.2.11 Display_Parameter
- @ 1.4, 1Key &

- 4 1,44 VE_UP

- @ 1.4.2Key 2
- 1.4 3VWK_LEFT

=13 1.2 Med

- # 1.3 Event_In

=23 1.4 Event_Out

&} Componert Interface
=149 1.1 Published Methods
- 4 1,1.1 Display F16 in a kerrain
- # 1,12 Display F16 crashing effects
- 4 1,1.3 Control F16 with keyboard buttons
- # 1.1.4 Initialize F16 plane
- 4 1.1.5 Display trail effect
(=13 1.2 Subscribed Methods

1.2.1 Display plane from right
1.2.2 Display plane from center
1.2.5 Display plane fram left
1.Z2.4 Display plane from top
1.2.5 Display plane fram Front
1.2.6 Display plane from back
1.2.7 Display explosion effect
1.2.8 Display trail effect
1.2.9 Display smoke effect
1.2.10 Initialize
1.2.11 Display all last values of speed, pitch ..
1.3 Published Events
=43 1.4 Subscribed Events

1.4.1 Increase speed when key & is pressed
1.4.2 Decrease speed when key 2 is pressed
1.4.3 Turn left
1.4.4 Climb
1.4.5Fal
1.4.6 Turn right

ssesssssese

ssesee

e

=] =1l
[s]Es] Il Es]

oo o] =[O

=FEEIEIEE

Ol oo o] =[O

Ol oo o] =0

[=]E=]E=1E=1EH s]

FEIEIEEE

[s]Es] Esl] le]
oo oo
FEIEIGEIE
[« Isl ks k=] ie]
ool o] =[O

[=]
[=]

[=]

[«1F=1=]ks]

[=] Sl =l E=] k=]
[s]s] FslEs]Es]]

[s1E=1k=]1k=]E=1k=1k=]

FEIEIEEIEIEIE

[s]E=]I=1k=]ks] Fs]is]a]]
ool o[olofo|o|oo]o

[=] =1 =1=] =] k=]K=] [=] <] k=] E=] i) =] 0=] F=] Fe] K])

Colo[o|o|o[o[o[o|o|o|olo[o|o| o oo o=
Colo[o|o|o[ofo|o|o|o|olo|o|o| o =[a[o[O
[«1E=1E=1k=1k=1 =1 =11 =1 === =1 =1=] =] k=]k=]
F EEEEEEEEEEEEEE EEEE
[«]1 =11kl ks]is]is]=] =] a] sl ia] Es] sl is] Ed el ia]]
[«1E=1E=1k=1k=1 =1 =11 =1 === =1 =1=] =] k=]k=]
F EEEEEEEEEEEEEE EEEE

[=]
[=]

[=]

[=]

[=1k=1k=]ks]

OOlOOO

(=] Il Es1ks]Es] =] s1i=] =] a] sl ia]is] s =] Is] sl kel el]

[«1E=1E=1k =]k =1 =] E=1=1E =1 =1=]1 =1 =1 E=1 =] =]« k=]1k=1 =]k =]ks] Fa]ls]

FH I EEEEEEEEEEEEEEEEEEEEE
Colo[o|o|o[ofolo|o|o| oo ol ofo[alo[o|o]o]o
[«]E=1E=1k=]1E=1E=1E=1=1 =1 =1F=1F=1 =1 =]1k=] =] =1 =1k =] =]F=]

F EEEEEEEEEEEEEE EEEIEE

[«] [s1Es]k=]k=] k=] is]]

oo o|o[o[olo|o|o|olo|o|o| oo
Fl EIEIEIEEEE EEEEEEIE EE
[«] =11 k=1ks] s is1=] =] =] ksl ia]is] s s] kel
olo[o|o|o[ofo|o|o|o|olo[a[o]
[«]E=1F=1k=]E=1E=1E=1k=] =1 =] F=] k=] s]ks]
FlEIEEEEEEEEEEE
olo[o|o|o[ofofo|o|o]olo
[«]E=1E=1k=]1k=1F=]k=1k=1 =] =]Fs]
FEIEEEEEEEE

[«] =11kl k=]] s]Ea]]
o|o[o|o|o[o[olo

o|o|C|o|o|o|o

[«] sl Es]=]ks]
[«]E=1F=]ks]

Figure 4.18 FR-DP design matrix of F16 component

95

UIBWOp UONEB[NWIS JO [OPOIA 2IMed] 6 9In31]

maly, dot maln by HmELn YaT MBI AZ3uE T MELA JuDa MEln J2Eeg
L
CEnsS S o714 HO Fjows Bulyseas \L uoiso|dx3 IEdL
s3|3YEa, umelsl s30843

00y

96

SP2YETGINS eIy ApdsIQ ST @ -
sPP2449 814 My Aedsig 2’5 T @ -
5198)49 91 |l ARdsSIO 1'S'T M -

5122442 ledy Aepdsig gl @..m_

SCNS BZEQUIE'H'T &
SId2TEQUICET - -

AT 2TEQUI T'E'T -

seaIYaA BZIEUL #'T -

GQCNS QIJUaD £'E' T 4 -

a1d[euod Z'E'T @

a1d [uoD T'E'T @ -

sapiyanjoauoD £'1 =

5138)J8 Buwse s gZns ARdsIg e Z'T W
5)72)48 Dunse s grd Aedsig z's' T @
537248 Dunse s o1 Aedsig ' T @
s332y)a Buyses Aedsig 1 (£
U2y Szns ARdsIq £ T T e -
ueLe] a1d Aedsig T @ -
uele] 914 Aedsig 1T T W -

s3Iyan AedsIQ 1T @_m_

QoQOpoooloI|0
QoOopOopEo@oo|0

OO0 [O(O|0

0

o]
o]

QopOoEoopo@0|0|0

QopEoOEoop@o|o|[0
CopPEOPEoRoo©0PI0I|0|0

QOpOoOPEoEpoO|0I0|0

o]

0
0

CRPopPpPpPRRPPRPRIoRPIE@I0|O|0
CRPPEPEEoPRPPEPPOPRIoOoOOEI0|0|0
CRPPOPPEPPPEPRIoOODI@IIC|0|0

CPoREROPPoEPPEIoODI|0L

QOO PPEIRIRIREOooI|oI|oI|o
QOO PPEIRIRIREOooI|oI|oI|o
QOO PPEIRIRIREOooI|oI|oI|o
QOO PPEIRIRIREOooI|oI|oI|o

OO0OCCCM@PIDPIMDOIMW|H
OO0OCCCM@PIDPIMDOIMW|H
OO00CCCMPIIDPIMIOIM0|0
OO00CCCMPIIDPIMIOIM0|0

QP@POPo©M0I|0
QP@POPo©M0I|0
CR@poPolI|0
CR@poPolI|0

8]

L8]
Q@00
o]0 |0
o]0 |0
o]0 |0

<

- # 1.3.1 Control F16 with keyboard
- 4 1,3.2 Control F18 with keyboard
- # 1.3.3 Control Su25 with keyboard

=I5 1.4 Initislize Vehicles
- i 1,5,3 5025 trail effect

- 4 1.1,1 F16 kerrain
-4 1,1,2 F18 terrain
-4 1,1,3 Su25 terrain
=) 1.2 Display crashing effects
- 4 1.2,1 F16 crashing
- 4 1.2,2 F18 crashing
- 4 1.2,3 5u25 crashing
=9 1.3 Contral vehicles
- 4 1.4.1 Initislize F16
- 4 1.4.2 Initislize F18
- 4 1.4.3 Initiglize Su25
-9 1.5 Display krail effects
- 4 1.5.1 F16 trail effect
- #¢ 1,52 F18 trail effect

=i 1.1 Display vehicles in 3 kerrain

=]

Figure 4.20 Domain FR-DP design matrix of domain and application
97

Table 4.8 Constraints for simulation domain

No Constrains

1 FRI< 3 LinkedtoFR1 1. FR1 1 U 3 LinkedtoFR1 3.FR1 3

2 FR1 1< 3 LinkedtoFR1 1 1.FRI 1 1L 3 LinkedtoFR1 1 2.
FR1 1 2 U 3 LinkedtoFR1 1 3.FR1 1 3

3 FR1 2< d LinkedtoFR1 2 1.FR1 2 1 U 3 LinkedtoFR1 2 2.
FR1 2 2 U 3 LinkedtoFR1 2 3.FR1 2 3

4 FR1 3< 3 LinkedtoFR1 3 1.FRI1 3 1L 3 LinkedtoFR1 3 2.
FR1 3 2 U 3 LinkedtoFR1 3 3.FR1 3 3

5 FR1 4< 3 LinkedtoFR1 4 1.FR1 4 1 U 3 LinkedtoFR1 4 2.
FR1 4 2 U 3 LinkedtoFR1 4 3.FR1 4 3

6 FR1 5< d LinkedtoFR1 5 1. FR1 5 1 U d LinkedtoFR1 5 2.
FR1 5 2 U 3 LinkedtoFR1 5 3.FR1 5 3

7 FR1 1 1< 3 LinkedtoFF16. FF16

8 FR1 1 2< 3 LinkedtoFF18. FF18

9 FR1 1 3< 3 LinkedtoFSu25. FSu25

10 FR1 2 1< d LinkedtoFF16. FF16 M 3 LinkedtoFCrashing.FCrashing

11 FR1 2 2< 7 LinkedtoFF18. FF18 M 3 LinkedtoFCrashing.FCrashing

12 FRI 2 3< 3 LinkedtoFSu25. FSu25 M 3 LinkedtoFCrashing.FCrashing

13 FRI 3 1< 3 LinkedtoFF16. FF16

14

FR1 3 2< 7 LinkedtoFF18. FF18

98

Table 4.8 (Cont’d)

15 FR1 3 3< 3 LinkedtoFSu25. FSu25
16 FR1 4 1< 3 LinkedtoFF16. FF16
17 FR1 4 2 3 LinkedtoFF18. FF18
18 FR1 4 3< 3 LinkedtoFSu25. FSu25
19 FR1 5 1< 3 LinkedtoFF16. FF16 M 3 LinkedtoFTrail FTrail
20 FR1 5 2< 3 LinkedtoFF18. FF18 1 3 LinkedtoFTrail. FTrail
21 FR1 5 2< 3 LinkedtoFSu25. FSu25 M 3 LinkedtoFTrail. FTrail
Root
Tearrain Vehicles
Explosion Crazhing Center Miew Fl&

Figure 4.21 Selected features

99

SyIeyE GEnS R ARdSIq £S5 T @ aelEEEEREEE
spaja gld eay ARdsIg 2G0T @ alolololalolalalalo
mu_umu_u_ml_uHH_I__M_H_I.__“.M__n_m_D ._”_m_.n .. [sll=1=1 =X i=R = s] =R =0i=)
speyET e Ardsa 5T O35 clololololololololo
SENS SZENUIE' T & - clololololololololo olololo
BT S2ENUIZ' T & clololololololololo olololo
T SZERMI T'F'T & olololololololololo olololo
sAREs S2eA] T -5 slolololelololololo clolols
SZMS (0U0D £t T clolololalololal |o olololololololo
8140 T @ olololololololo| |oleololololololololo
9T (005 TET olololololololo clololololololololo
sepijea”jnaueD £ - clololololololo olololololololo
sppaye Buysen sEns ARdSId £ T @ oclololo| lololxlolololololololololololo
spajE buysed g1 feddz e T @ - slololel lolmiololololalololololalolols
spays buysen o fedsid 12T @ - olololo olololololololololololololo
spays buysen heydsig 211 - olololo oclololololo|lololo|ololo
ey 5zns Aedsd e Tl # - ololmiolololololalolalololololalolole
weuey g Aedsig 2 T T @ clxlololololololololololalolololololo
Uee TS ARdSd T LT @ - olololololololololololo|lololo|lololo
seEmEs Aedsd 11 C0-5 olololololololololelolelolololo
< |7
T
TP W
m o O
Qo o 0
I R R
.m ==
= L mmh
B g £t o w B
L=} fres o == T [
E-o ST 2 EE R I I I =
s.m.mrﬂ_hhssHHcH-__bFFShEEH
Lo - g EW T D now o= T
g g oL PP SEH T O O EN NN L DTD K
=R =T = = =R s e B R T
fuxd oy T EE=csgiany
DL LA =L oLmpy o 8555 L L m
L B B B R A= By B B L B B B By B
g oS Bl Eeleim 8w o boulou
o R - S Ry S S = S R R
CTesssses"sss s sss
oo o 0 @ o

Figure 4.22 Mature Domain FR-DP design matrix of application after constraint
evaluation
100

CHAPTER 5

CONCLUSION

This chapter includes the final remarks about this dissertation. The first section
includes the evaluation and critique of the work performed and the following

subsection discusses future work and items open for improvement.

5.1. Conducted Work

This research proposed techniques for domain oriented software development,
through component facilities. Since component oriented software engineering is
based on integration of available components, component utilization can be
effective when a set of components that satisfy stakeholders’ expectations are
located. Therefore, two requirements are identified: 1- definition of stakeholders’
expectations and 2- locating components based on the expectations. Customer needs
can include wvarious attributes which can range from functional needs to
implementation-level details. Customer needs should be understandable by all
stakeholders. In order to locate components, they should include enough
information. Not only method names and some dependencies but also functional
reasons, why a method is defined, should be available. Success of component
location and integration is based on the domains’ maturity. Without mature
domains, component composition and integration suffers from implementation-level
problems. Also semantic matching between customer needs and component services

can suffer from such problems.

Mature domains can be formed from similar applications (projects). Our goal has
been to guide the designers based on their on-going decisions (constraints),

available components, and customer needs in mature domains. In order to achieve

101

this goal, we have proposed Axiomatic Design with Component-Orientation
(ADCO). ADCO integrates Axiomatic Design Theory (ADT) and Component-
Oriented Software Engineering approaches. ADT with scientific bases is an
assurance towards “good design”. Customer needs are evaluated and Functional
Requirements (FRs) are identified. The FRs are mapped to Design Parameters
(DPs). At the end of the design, design parameters are used to locate components
which are already developed based on ADT. In ADCO, Feature Models are utilized
to capture customer needs and they are mapped to FRs, DPs, and Process Variables
(PVs). Experiments/decisions of the design experts are saved in ontology through
features, FRs, and DPs. We have implemented an ADCO tool that utilizes reasoning

engines operating on the ontology to guide designers in mature domains.
ADCO is based on ADT and we have some contributions to it as listed below:

e Mappings between the ADT domains are represented in an ontology

representation for providing guidance through reasoning.
e Constraints are represented in the ontology.
e Feature models are proposed to specify customer needs.

e Collaboration models and process models are incorporated to identify the

dependencies between domains.

e A Component-Oriented measurement method based on information content

is proposed.

During the research, a deadlock checking mechanism was initially developed and
incorporated the Communicating Sequential Processes (CSP) notation and
supporting tools. Later it was found that a more general capability was attained by
conducting various constraint checking over the ontology. Therefore the final

version of the ADCO Tool does not include the CSP based operations.

102

In conclusion, we have developed the ADCO approach to guide designers in mature
domains in an effort to more successfully apply Component-Oriented software

development.

5.2. Evaluation

Our tool provides an environment to experiment with the proposed approach. Case
studies have operationally demonstrated the functionality of the mechanisms within
the specified perspective. It has been observed that for a mediocre design, manual
maintenance of the dependencies, constraints and the compatibility of various ADT
domains can easily grow to enormous complexities — Applying ADCO the process
becomes manageable. Also this highly specialized domain based experience
otherwise would be only recorded in the minds of the experts hence yielding the
valuable knowledge, to be volatile. Representing this knowledge in the mature
domain helps keeping the expertise partially in the organization, ready for

duplicated usage.

The involved approaches are all new. Unfortunately there is no compatible method
to be used in a comparative evaluation study on our method. Therefore the feasible
selection limits us to those involved approaches that were expanded in this study
anyway. One of those is Component Oriented Software Engineering (COSE) and
the other one is ADT. However, ADT is not component oriented whereas our
approach is. Table 5.1 presents a comparison of the proposed ADCO approach with
COSE and ADT approaches.

103

Table 5.1 A comparison of ADCO with COSEML and ADT

Comparison parameter ADCO | COSEML ADT
Design Dimension for Decomposition Functional | Structural | Functional
Decomposition criteria Yes No Yes
Representation of dependencies between Yes No No
methods in a component
Component interfaces carry enough Yes No -
information
Component modification method Yes No -
Domain support (Feature model) Yes No -
Guidance Yes No Very
limited
Product verification Yes No Yes
All components should be known by No Yes -
developer

During our case studies, some shortcomings have been observed and they are listed

below:
e Training is required for utilizing ADT for component orientation.
e Tracing of the dependencies becomes a problem in complex systems.

e Complexity of the Feature Models can be a problem during handling
consistency of the model and selection of the features. This is a common

problem for all the approaches utilizing Feature Models.

e Alternative DPs are not considered.

104

e Creating & modifying mature domains have difficulties.

e After new configuration based on feature selections, some components need
to be modified. This disadvantage will decrease in time because of increased

maturity.

e Non-functional requirements are not directly addressed. Although a feature-
based approach can treat most of such items similar to functional
requirements, an exclusive presentation of non-functional requirements

could prove useful.

As an overall assessment we can conclude that the approach can prove useful in

the software industry.

5.3. Future Work

This work has been a first attempt trying to enhance component-orientation through
design guidance. There are many directions this pioneer work can expand. Some
shortcomings are listed in the previous section already. As an initial list of possible

improvements, we are planning to enrich the ADCO tool by:

® integrating use case diagrams, collaboration diagrams, information axiom

calculation facility which was already implemented in C++ language,

® implementing partitioning algorithms for design matrices in an effort to

triangularize coupled designs,

¢ implementing DP-PV design matrix for showing the connections between

the DPs and components,

¢ implementing a master design matrix for the system under development, that

includes only the leaf level FRs and DPs — for easier visualization,

® implementing a capability to propose solution sets from available

components, and

105

¢ implementing a capability to identify missing components automatically.

We are also planning to adapt ADCO approach to Product Line Architecture (PLA).

Some theoretical work is already in progress in this venue.

106

REFERENCES

Akbiyik, E.K., Suloglu, S., Togay, C. and Dogru, A.H., Service Oriented
Systems Design Through Process Decomposition, Proceedings of the The
Eleventh World Conference on Integrated Design and Process Technology,
Tauichung, Taiwan, 2008, pp. 332-338.

Allen, R. and Garlen, D., 4 formal basis for architectural connection, ACM
Transactions on Software Engineering and Methodology, Vol. 6, No. 3,
1997, pp. 213-249.

Allen, R.J., Garlan, D. and Ivers, J., Formal modeling and analysis of the
HLA component integration standard, Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering,
1998.

Allen, R.J. and Garlen, D., 4 Formal Approach to Software Architecture,
Carnegie Mellon University, 1997.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. and Patel-Schneider,
P., The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

Batory, d., Feature-oriented programming and the AHEAD tool suite,
Proceedings of the 26th International Conference on Software Engineering
(ICSE 2004), 2004, pp. 702- 703.

Batory, D., Feature Models, Grammars, and Propositional Formulas,
Lecture Notes in Computer Science, Vol. 3714,2005, pp. 7-20.

Batory, D., Benevides, D. and Ruiz-Cortes, A., Automated Analysis of
Feature Models: Challenges Ahead, Communication of the ACM, Vol. 49,
No. 12, 2006, pp. 45-47.

Benavides, D., Segura, S., Trinidad, P. and Cortés, A.R., Using Java CSP
Solvers in the Automated Analyses of Feature Models, Lecture Notes in
Computer Science, Vol. 4143, No. 2006, 2006, pp. 399-408.

Bergner, K., Rausch, A., Sihling, M. and Vilbig, A., 4 Componentware
Development Methodology based on Process Patterns, Proceedings of the
Pattern Languages of Programs Conference (PLOP98), Monticello, Illinois,
1998, pp. 11-14.

107

[14]

[17]

Bertoa, M.F., Troya, J.M. and Vallecillo, A., A Survey on the Quality
Information Provided by Software Component Vendors, Proceedings of the
tth ECOOP Workshop on Quantitative Approaches in Object Oriented
Software Engineering, Darmstadt, Germany, 2003.

Bertoa, ML.F. and Vallecillo, A., Quality Attributes for COTS Components,
Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in
Object Oriented Software Engineering, Malaga, Spain, 2002.

Beugnard, A., Jezequel, J.-M., Plouzeau, N. and Watkins, D., Making
Components Contract Aware, IEEE Computer, Vol. 32, No. 7, 1999, pp. 38-
45.

Bicer, V. and Togay, C., Representing Feature Models with Semantic Web
Ontologies, Proceedings of the Ulusal Yazilim Mimarisi Konferansi
(UYMK), Istanbul, Turkey, 2006.

Browning, T.R., Applying the design structure matrix to system
decomposition and integration problems: a review and new directions, IEEE
Transactions on Engineering Management, Vol. 48, No. 3, 2001, pp. 292-
306.

Biihne, S., Lauenroth, K. and Pohl, K., Why is it not Sufficient to Model
Requirements Variability with Feature Models?, Proceedings of the
Automotive Requirements Engineering (AURE(O4), Nagoya, Japan, 2004,
pp. 5-12.

Cechticky, V., Pasetti, A., Rohlik, O. and Schaufelberger, W., XML-Based
Feature Modelling, Lecture Notes in Computer Science, Vol. 3107, No.
2004, 2004, pp. 101-114.

Christopher, A., Notes on the Synthesis of Form, Harvard University Press,
Cambridge, 1964.

Clapis, P.J. and Hintersteiner, J.D., Enhancing Object Oriented Software
Development through Axiomatic Design, Proceedings of the First

International Conference on Axiomatic Design, Cambridge, MA, 2000.

Clements, P. and Northrop, L., Sofiware Product Lines: Practices and
Patterns, Addison-Wesley, 2001.

Clements, P.C., From Subroutines to Subsystems: Component-Based
Software Development, The American Programmer, Vol. 8, No. 11, 1995.

Czarnecki, K. and Eisenecker, U., Generative Programming: Methods,
tools, and Applications, Addison-Wesley, 2000.

108

[23]

[29]

[32]

Czarnecki, K., Helsen, S. and Eisenecker, U., Formalizing Cardinality-
based Feature Models and Their Specialization, Formalizing Cardinality-
based Feature Models and Their Specialization, Vol. 10,2005, pp. 7-29.

Czarnecki, K., Helsen, S. and Eisenecker, U., Staged Configuration Using
Feature Models, Procedings of SPLC 2004, Lecture Notes in Computer
Science, Vol. 3154,2004, pp. 266-283.

Czarnecki, K., Kim, C.H.P. and Kalleberg, K.T., Feature Models are Views
on Ontologies 10th International Software Product Line Conference
(SPLC'06) 2006, pp. 41-51.

Czarnecki, K. and Pietroszek, K., Verifying feature-based model templates
against well-formedness OCL constraints, Proceedings of the Proceedings of
the Sth international conference on Generative programming and component
engineering, Portland, Oregon, USA, 2006 pp. 211-220.

D'Ambrogio, A. and Gianni, D., Using CORBA to FEnhance HLA
Interoperability in Distributed and Web-Based Simulation, Proceedings of
the 19th International Symposium on Computer and Information Sciences
(ISCIS'04), Lecture Notes in Computer Science, Vol. 3280/2004,2004, pp.
696-705.

Dahmann, J., Salisbury, M., Turrell, C., Barry, P. and Blemberg, P., HLA
and Beyond: Interoperability Challenges, Proceedings of the The 1999 Fall
Simulation Interoperability Workshop, Orlando,FL, 1999.

Dahmann, J.S. and Morse, K.L., High Level Architecture for simulation: an
update, Proceedings of the Proceedings of the Second International
Workshop on Distributed Interactive Simulation and Real-Time
Applications, Montreal, Que., Canada, 1998, IEEE Computer Society

Davis, A.M., The Design of a Familiy of Application-Oriented Requirements
Language, Computer, Vol. 15, No. 5, 1982, pp. 21-28.

Deursen, A.v. and Klint, P., Domain-specific language design requires
feature descriptions, Journal of Computing and Information
Technology2001, pp. 1-20.

Do, S.H. and Park, G.J., Application of Design Axioms for Glass-Bulb
Design and Software Development for Design Automation, Proceedings of
the Third CIRP Workshop on Design and Implementation of Intelligent
Manufacturing, Tokyo, Japan, 1996, pp. 119-126.

109

[33]

[37]

[38]

[39]

[40]

[41]

[42]

Do, S.H. and Suh, N.P., Object Oriented Software Design with Axiomatic
Design, Proceedings of the Proceedings of ICAD2000 First International
Conference on Axiomatic Design, Cambridge, 2000.

Do, S.H. and Suh, N.P., Systematic OO Programming with Axiomatic
Design, IEEE Computer, Vol. 32, No. 10, pp. 121-124.

Dogru, A.H., Component-Oriented Software Engineering, The Academy of
Learning and Advances Studies (The ATLAS), Dallas, 2006.

Dogru, A.H., Component Oriented Software Engineering Modeling
Language: COSEML, Proceedings of the Computer Engineering Department,
Middle East Technical University, Turkey, TR 99-3, 1999.

Dogru, A.H. and Tanik, M.M., 4 Process Model for Component-Oriented
Software Engineering, IEEE Software, Vol. 20, No. 2, pp. 34-41.

Eén, N. and Sorensson, N., An extensible SAT solver, Lecture Notes in
Computer Science, Vol. 2919, No. 2004, 2004, pp. 502-518.

Ferber, S., Haag, J. and Savolainen, J., Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy Product
Line, Lecture Notes in Computer Science, Vol. 2379, No. 2002, 2002, pp.
37-60.

Formal Systems Ltd., Failures-Divergence-Refinement: FDR2 User
Manual, 2003, http:/ www.fsel.com/documentation/probe/probe-doc.pdf,
last accessed date: 01/05/2008

Formal Systems Ltd., Process Behavior Explorer: Probe User Manual,
2003, http:// http://www.fsel.com/documentation/fdr2/fdr2manual.pdf, last
accessed date: 01/05/2008

Grimm, S., Hitzler, P. and Abecker, A., Knowledge Representation and
Ontologies, in Semantic Web Services, Springer Berlin Heidelberg, 2007,
pp. 51-105.

Griss, M.L., Favaro, J. and d'Alessandro, M., Integrating feature modeling
with the RSEB, in Fifth International Conference on Software Reuse,
Victoria, BC, Canada, 1998, pp. 76-85.

Guenov, M.D. and Barker, S.G., Application of Axiomatic Design and
Design Structure Matrix to the Decomposition of Engineering Systems,
Systems Engineering, Vol. 8, No. 1, 2005, pp. 29-40.

110

[45]

[46]

[47]

[48]

[49]

Gumus, B., Axiomatic Product Development Lifecycle, Mechanical
Enginnering, Texas Tech University, PhD Dissertation, 2005.

Gumus, B. and Ertas, A., Requirement Management and Axiomatic Design,
Journal of Integrated Design and Process Science, Vol. 8 No. 4, 2004, pp.
19-31.

Harmon, S.Y. and Youngblood, S.M., Leveraging Fidelity to Achieve
Substantive Interoperability, Proceedings of the Spring 2001 Simulation
Interoperability Workshop, Orlando, FL, 2001.

Hoare, C.A.R., Communicating Sequential Processes, Communication of
the ACM, Vol. 21, No. 8, 1978, pp. 666-677.

Horrocks, 1., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. and
Dean, M., SWRL: A Semantic Web Rule Language Combining OWL and
RuleML, 2004, http://www.w3.org/Submission/SWRL, last accessed date:
01/05/2008

Huizing, M., Component Based Development, Component Technology, Vol.
6, No. 2, pp. 5-9.

IEEE Std 1278.1-1995, [EEE Standard for Distributed Interactive
Simulation (DIS)--Application Protocol, 1995.

IEEE Std 1278.2-1995, [EEE Standard for Distributed Interactive
Simulation (DIS)--Communication Services and Profiles, 1995.

IEEE Std. 830-1998, [EEE Recommended Practice for Software
Requirements Specifications (IEEE Std 830-1998), IEEE Press New York,
1998.

IEEE Std. 1516-2000, /[EEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Framework and Rules, 2000.

IEEE Std. 1516.1-2000, IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA)- Federate Interface Specification, , 2000.

IEEE Std. 1516.2, IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA)-Object Model Template (OMT) Specification,
2000.

IEEE Std. 1516.3-2003, [EEE Recommended Practice for High Level

Architecture (HLA) Federation Development and Execution Process
(FEDEP), 2003.

111

[58]

[62]

[64]

Inverardi, P. and Uchitel, S., Proving Deadlock Freedom in Component-
Based Programming, Proceedings of the Proceedings of the 4th International
Conference on Fundamental Approaches to Software Engineering, 2001, pp.
65-75.

Iribarne, L., Troya, J.M. and Vallecillo, A., Selecting software components
with multiple interfaces, Proceedings of the Euromicro Conference, 2002,
pp. 26- 32.

ISO/IEC 9126-1:2001, Software Engineering—Product Quality—Part 1:
Quality model, June, 2001.

Jia, Y. and Gu, Y., The Representation of Component Semantics: A Feature-
Oriented Approach, Proceedings of the Component-based Software
Engineering Workshop: Composing Systems from Components
(ECBS2002), Lund, SWEDEN, 2002.

Jololian, L.K., Ngatchou, J.C. and Secker, R., 4 Component Integration
Meta-Framework using Smart Adapters, Proceedings of the IEEE
Proceedings of the 2004 International Symposium on Information and
Communication Technologies Las Vegas, Nevada, 2004, ACM, pp. 128-
133.

Kalaoja, J., Niemela, E. and Perunka, H., Feature modelling of component-
based embedded software, Proceedings of the 8th International Workshop on
Software Technology and Engineering Practice (STEP '97), 1997, pp. 444-
451.

Kang, K.C., Cohen, S.G., Hess, J.A., Nowak, W.E. and Peterson, A.S.,
Feature Oriented Domain Analysis Feasibility Study, Carnegie Mellon
University, Pittsburg, PA,, 1990.

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M., FORM: A
feature-oriented reuse method with domain-specific reference architectures,
J. C. Baltzer AG, Science Publishers Red Bank, NJ, USA, 1998.

Kang, K.C., Kim, S., Lee, J. and Lee, K., Feature-oriented engineering of
PBX software for adaptability and reuseability, Software: Practice and
Experience, Vol. 29, No. 10, 1999, pp. 875-896.

Kang, K.C., Lee, J. and Donohoe, P., Feature-Oriented Product Line
Engineering, IEEE Software, Vol. 19, No. 4, 2002, pp. 58-65.

Kang, K.C., Lee, K., Lee, J. and Kim, S., Feature Oriented Product Line
Software Engineering: Pricinples and Guidelines, in Hirota, T., Itoh, K. and
Kumagai, S. eds, Domain Oriented Systems Development: Perspectives and
Practices Routledge, UK, 2003.

112

[76]

[77]

Kar, A.K., Linking Axiomatic Design and Taguchi Methods via Information
Content in Design, Proceedings of the First International Conference on
Axiomatic Design, Cambridge, 2000, pp. 219-224.

Kim, 1.-G., Bae, D.-H. and Hong, J.-E., 4 component composition model
providing dynamic, flexible, and hierarchical composition of components for
supporting software evolution, The Journal of Systems and Software, Vol.
doi:10.1016/j.jss.2007.02.047,2007.

Kim, M., Yang, H. and Park, S., A Domain Analysis Method for Software
Product Lines Based on Scenarios, Goals and Features Proceedings of the
10th Asia-Pacific Software Engineering Conference (APSEC'03), 2003, pp.
126-135.

Lee, K., Kang, K.C., Chae, W. and Choi, B.W., Feature-Based Approach to
Object-Oriented Engineering of Applications for Reuse Sofware practive
and experience, Vol. 30, No. 9, 2000, pp. 1025-1046.

Lee, K., Kang, K.C., Kim, M. and Park, S., Combining Feature-Oriented
Analysis and Aspect-Oriented Programming for Product Line Asset

Development, Proceedings of the The 10th International on Software
Product Line Conference, 2006 pp. 103 - 112

Lees, M., Logan, B. and Theodoropoulos, G., Agents, games and HLA,
Simulation Modeling Practice and Theory, Vol. 14,2006, pp. 752-767.

Liu, D. and Mei, H., Mapping requirements to software architecture by
feature-orientation, Proceedings of the STRAW'03 Second International
Software Requirements to Architectures Workshop, Portland, Oregen, 2003.

Lloyd, W.J., 4 Common Criteria Based Approach for COTS Component
Selection, Journal of Object Technology, Vol. 4, No. 4, 2005, pp. 27-34.

Liier, C. and Rosenblum, D.S., WREN---an environment for component-
based development, Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, Vienna, Austria, 2001, pp. 207-
217.

McGuinness, D.L. and Harmelen, F.v., OWL Web Ontology Language
Overview, 2004, http://www.w3.org/TR/owl-features, last accessed date:
01/05/2008

Mei, J. and Bontas, E.P., Reasoning Paradigms for SWRL-enabled

Ontologies., Proceedings of the International Workshop on Protege with
Rules, Madrid, Spain, 2005.

113

[82]

[83]

[84]

[87]

[89]

[91]

Melvin, J.W., Axiomatic System Design: Chemical Mechanical Polishing
Machine Case Study, Mechanical Engineering, Massachusetts Institute of
Technology, PhD Dissertation, 2003.

Morse, K.L., Lightner, M., Little, R., Lutz, B. and Scrudder, R., Enabling
Simulation Interoperability, IEEE Computer, Vol. 39, No. 1, pp. 115-117.

Olewnik, A.T. and Lewis, K., On Validating Engineering Design Decision
Support Tools, Concurrent Engineering, Vol. 13,2005, pp. 111-121.

OMG, UML 2.0 OCL Specification, 2003, http://www.omg.org/docs/ptc/03-
10-14.pdf, last accessed date: 01/05/2008

Oses, N., Pidd, M. and Brooks, R.J., Critical issues in the development of
component-based discrete simulation, Simulation Modeling Practice and
Theory, Vol. 12,2004, pp. 495-514.

Pashov, I. and Reiebisch, M., Using feature modeling for program
comprehension and software architecture recovery, Proceedings of the 11th
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, 2004, pp. 406- 417.

Pashov, 1., Reiebisch, M. and Philippow, I., Supporting architectural
restructuring by analyzing feature models, Proceedings of the Eighth
European Conference on Software Maintenance and Reengineering, 2004,
pp. 25-34.

Pawletta, S., Drewelow, W. and Pawletta, T., HLA-based Simulation within
an Interactive Engineering Environment, Proceedings of the 4th
International Workshop on Distributed Simulation and Real Time
Applications (DS-RT 2000), San Francisco, California, USA, 2000.

Peng, X., Wu, Y. and Zhao, W., 4 Feature-Oriented Adaptive Component
Model for Dynamic Evolution, Proceedings of the 11th European
Conference on Software Maintenance and Reengineering CSMR '07, 2007.

Peng, X., Zhao, W., Xue, Y. and Wu, Y., Ontology-Based Feature Modeling
and Application-Oriented Tailoring, Lecture Notes in Computer Science,
Vol. 4039, No. 2006, 2006.

Philippow, 1., Riebisch, M. and Boellert, K., The Hyper/UML Approach for
Feature Based Software Design, Proceedings of the The 4th AOSD
Modeling With UML Workshop, 2003.

Pimentel, A.R. and Stadzisz, P.C., Application of the Independence Axiom
on the Design of Object Oriented Software using the Axiomatic Design

114

[92]

[94]

[95]

[100]

[101]

[102]

[103]

Theory, Journal of Integrated Design & Process Science, Vol. 10, No. 1,
2006, pp. 57-69.

Pimmler, T.U. and Eppinger, S.D., Integration Analysis of Product
Decomposition, Proceedings of the ASME Design Theory and Methodogy
Conference, 1994.

Reiser, M.O. and Weber, M., Multi-level feature trees A pragmatic
approach to managing highly complex product families, Requirements
Engineering, Vol. 12, No. 2, 2007, pp. 57-75.

Robak, S. and Franczyk, B., Modeling Web Services Variability with
Feature Diagrams, Lecture Notes in Computer Science, Vol. 2593, No.
2008, 2008, pp. 120-128.

Roubtsova, E.E. and Roubtsov, S.A., A Feature Computation Tree Model to
Specify Requirements and Reuse, Proceedings of the ICEIS 2006 -
Proceedings of the Eighth International Conference on Enterprise
Information Systems: Databases and Information Systems Integration,
Paphos, Cyprus, 2006, pp. 118-125.

Simon, H.A., The Science of the Artificial, The MIT Press, 1969.

Steward, D., System Analysis and Management: Structure, Strategy and
Design, Petrocelli Books, New York, 1981.

Steward, D. and Tate, D., Integration of Axiomatic Design and Project
Planning, Proceedings of the First International Conference on Axiomatic
Design, Cambridge, 2000, pp. 286-289.

Su, J.C.Y., Chen, S.J.G. and Lin, L., 4 structured approach to measuring
functional dependency and sequencing of coupled tasks in engineering
design, Computers and Industrial Engineering, Vol. 45, No. 1, 2003, pp.
195-214.

Suh, N.P., Axiomatic Design Theory for Systems, Research in Engineering
Design, Vol. 10, No. 4, 1998, pp. 189-209.

Suh, N.P., Axiomatic Design: Advantages and Applications, Oxford
University Press, New York, 2001.

Suh, N.P., Complexity: Theory and Applications, Oxfor University Press,
New York, 2005.

Suh, N.P., Designing-in of Quality Through Axiomatic Design, 1EEE
Transactions on Reliability, Vol. 44, No. 2, 1995, pp. 256-264.

115

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Suh, N.P., The Principles of design, Oxford University Press, New York,
1990.

Szyperski, C., Component Software — Beyond Object-Oriented
Programming, Addison-Wesley and ACM Press, 1999.

Tanik, M.M. and Chan, E.S., Fundamentals of Computing for Software
Engineers, Van Nostrand Reinhold, New York, 1991.

Tate, D. and Cha, J., The Relationship between Axiomatic Design and Grid
Engineering, Proceedings of the 11th International Conference on
Concurrent Engineering, Beijing, China, 2004.

Taylor, SJ.E., HLA-CSPIF:The high level architecture-COTS simulation
package interoperation forum, Proceedings of the Fall Simulation
Interoperability Workshop, Orlando, FL, 2003.

Taylor, S.J.E., Wang, X. and Turner, S.J., Integrating Heterogeneous
Distributed COTS Discrete-Event Simulation Packages: An Emerging
Standards-Based Approach, 1EEE Transaction on Systems, Man, and
Cybernetics-Part A: Systems and Humans, Vol. 36, No. 1, January 2006, pp.
109-122.

Togay, C., HLA Tabanli Bilesenler ile Otomatik Uygulama Gelistirme,
Proceedings of the Ulusal Yazilim Muhendisligi Sempozyumu, Ankara,
Turkey, 2005.

Togay, C., Aktunc, O., Tanik, M.M. and Dogru, A.H., Measurement of
Component Congruity for Composition Based on Axiomatic Design,
Proceedings of the The Ninth World Conference on Integrated Design and
Process Technology, San Diego, CA, 2006.

Togay, C., Bicer, V. and Dogru, A.H., Deadlock Detection in High Level
Architecture Federations Using Axiomatic Design Theory, Proceedings of
the EUROSIMO07, Ljubljiana, Slovenia, 2007, pp. 139.

Togay, C. and Dogru, A.H., Aksiyomatik Tasarim ile Benzetim Bilesen Ara
Yiizlerinde Kazanimlar, Proceedings of the SAVTEK 2006, Savunma
Teknolojileri Kongresi, Ankara, 2006.

Togay, C. and Dogru, A.H., Component Oriented Design Based on
Axiomatic Design Theory and COSEML, Proceedings of ISCIS, Lecture
Notes in Computer Science, Vol. 4263/2006,2006, pp. 1072-1079.

Togay, C. and Dogru, A.H., Federasyonlarin HLA Tabanl Simulasyonlara
Tiimlestirilme Otomasyonu icin bir Mekanizma, Proceedings of the 1. Ulusal

116

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Savunma Uygulamalari Modelleme Simiilasyon Konferansi, Ankara,
Turkey, 2005.

Togay, C. and Dogru, A.H., A Framework for Component Integration Using
Axiomatic Design and Object Model Template for Simulation Applications,
Department of Electrical and Computer Engineering University of Alabama,
Birmingham, Alabama, 2005.

Togay, C. and Dogru, A.H., Infrastructure Design for HLA Based
Automated Federation Development, Proceedings of the The Eighth World
Conference on Integrated Design and Process Technology, Beijing, China,
2005, pp. 698-704.

Togay, C., Dogru, A.H. and Tanik, U.J., Systematic Component-Oriented
Development with Axiomatic Design, Journal of Systems and Software, Vol.
doi: 10.1016/5.jss.2007.12.746,2008.

Togay, C., Dogru, A.H., Tanik, U.J. and Grimes, G.J., Component Oriented
Simulation Development With Axiomatic Design, Proceedings of the The
Ninth World Conference on Integrated Design and Process Technology, San
Diego, CA, 2006.

Togay, C., Sundar, G. and Dogru, A.H., Detection of Component
Composition Mismatch with Axiomatic Design, Proceedings of the IEEE
Southern Conference, Memphis, TN, 2006, IEEE.

Traas, V. and Hillegersberg, J.v., The software component market on the
internet current status and conditions for growth, Software Engineering
Notes, Vol. 25, No. 1, 2000, pp. 114-117.

Tsarkov, D. and Horrocks, 1., FaCT++ Description Logic Reasoner: System
Description, Lecture Notes in Artificial Intelligence, Vol. 4130,2006, pp.
292-297.

Tuncel, M.B., Using Collaboration Diagrams in Component Oriented
Modeling, Computer Engineering Dept., Middle East Technical University,
Master Thesis, 2006.

Turner, C.R., Fuggetta, A., Lavazza, L. and Wolf, A.L., 4 conceptual basis
for feature engineering, The Journal of Systems and Software, Vol. 49, No.
1, 1999, pp. 3-5.

Wang, H., Li, Y.F., Sun, J., Zhang, H. and Pan, J., 4 SemanticWeb Approach

to Feature Modeling and Verification, Proceedings of the Workshop on
Semantic Web Enabled Software Engineering (SWESE'05), 2005.

117

[126]

[127]

[128]

[129]

[130]

[131]

Wang, H., Li, Y.F., Sun, J., Zhang, H. and Pan, J., Verifiying feature models
using OWL, Web Semantics: Science, Services, and Agents on the World
Wide Web, Vol. 5, No. 2, 2007, pp. 117-129.

Yellin, D.M. and Strom, R.E., Protocol Specifications and Component
Adaptors, ACM Transactions on Programming Languages and Systems,
Vol. 19, No. 2, 1997, pp. 292-333.

Yeung, W.L., Mapping WS-CDL and BPEL into CSP for Behavioral
Specification and Verification of Web Services, Proceedings of the Web
Services ECOWS '06, 2006, pp. 297-305.

Yeung, W.L., Wang, J. and Dong, W., Verifving Choreographic
Descriptions of Web Services Based on CSP, Proceedings of the The IEEE
Services Computing Workshops, 2006, pp. 97-104.

Yi, J.W. and Park, G.J., Development of a design system for EPS cushioning
package of a monitor using axiomatic design, Advances in Engineering
Software, Vol. 36,2005, pp. 273-284.

Zakongroup, OpenConf, 2007,

http://www.zakongroup.com/technology/openconf.shtml, last accessed date:
01/05/2008.

118

APPENDIX A

CONFERENCE MANAGEMENT SYSTEM
COMPONENTS

A.1. Author Component

Design matrix of Author I component is represented in Figure A.1. There are two
published methods namely Add Author and Delete Author. There is a subscribed
method namely SQOL Execution. As it can be seen in Figure A.l, both published
methods require the SOL Execution method.

P [y

[w] [m]

5= 5
-\E c q:l &35 I-IJI o
& oA %8 ca
=1 'g < O 'g I} 1 "1
2L ML EE
E2DZENE G
EZeelel
SO Dl es
[i 1 T S

) 1 Companent Iterface Al

=L 1.1 Published Methods # w0 oo
- ® 1.1.1 Add an author 2o o[oo
.t 1.1.2 Delete an authar OO (D [
= 1.2 Subscribed Methods O (o R o |
. - # 1.2.1 Operation on DB o | %0 (o
- @ 1.3 Published Everts CHERCHCENEY G
4 1.4 Subscribed Events oo 000D R

Figure A.1 Design matrix of Author component

119

A.2. Database Component

Database component is used to utilize database operations. There is no subscribed
method. SOL Execution method requires the Open_ DB and Close DB methods as
depicted in Figure A.2. Published methods can be required by other published
methods for instance Open DB and Close DB methods utilize SQL Execution

method as depicted in Figure A.2.

[

k=]

=]

)}
: oow g
o Dlﬂlx
5 5o
m
< C 1 2
el - o
P oL
5 [N
EDULHE 17
= e I
g~ —~ =3 &L
= — — — E I 1
C -
E PRI L R R
1)
= s

lﬂ 1 Component Ikerface
E| {f} 1.1 Published Methods

- 4 1.1.1 Open DB

- 4 1,1, Close DB

- 4 1.1.3 Execute an S0L cor
1.2 Subscribed Methods

i 4 1.3 Published Events

‘. 1.4 Subscribed Events

[

Figure A.2 Design matrix of Database component

120

A.3. Edit Component

Edit component provides methods for satisfying editing operations. There are two
published and three subscribed methods as depicted in Figure A.3. Login method
utilizes Get_Contact Password method published by Paper Component as depicted

in Figure A.5 to control password.

CE

tfa

=19 1.1 Methad_In

(=]

- i 1,4 Event_Out

it Ink

1.2 Methaod_Quk

-4 1.1.1 Login
- # 1,1.2 Reupload

=0
-

- # 1,21 Get_Contact_Passwiord
1.3 Event_In

- 4 1.2.2 Is_Uploaded_File
- 4 1.2.3 Move_Uploaded_File

)1 “omponent Interface
=49 1.1 Published Methads
1.1.1 Login with paper id and password
e @ 1.1.7 Papers can be reuploaded
=3 1.2 Subscribed Methads
1.2.1 Read password for paperid From db
1.2.2Is paper reuploaded
‘o @ 1,23 Move file
----- # 1.3 Published Events
----- # 1.4 Subscribed Events

23

DO DD DD DD

Figure A.3 Design matrix of Edit component

121

A.4. File System Component

File System component is utilized for file system operations as depicted in Figure
A.4. This component is one of the core components and provides upload service.
Although, there can be more methods we prefer to represent critical methods for our

case study. There are no subscribed methods.

ace

tf

=]

- @ 1.3Ewvent_In

onenk Ik
- i 1.4 Evenk_Cut

s 4 1.1.1 Is_Uploaded_File
o 4 1.1.2 Move_Uploaded_File

l.f} 1.1 Method_In
o 4 1,2 Method_Qut

=]! Comp

'} Component Iterface
=-423 1.1 Published Methods

. - ® 1.1.1Fileis uploaded

: Lo 1.1.7 Move upladed File
----- # 1.2 Subscribed Methods

----- # 1.3 Published Events

‘o #s 1.4 Subscribed Everts

[

Figure A.4 Design matrix of File System component

122

on database utilizing

operations

paper

SQL Execution method as depicted in Figure A.S.

all

provides

A.5. Paper Component
component

Paper

NG IUBAT BT
U JUSAT E'T
uannaexg 0 12T #
NG Py 211 -2
daded PRy 2T T
pAOMSSES 13RO 39D AT T T
S5EIpPY T IIEIUOD 1D AT T T
a4 39EIU0T 395 51T T
[lewyy3aeucs 23epdn 11T
aEpdriysET =epdn 21T T
SIS0 S9Epdn 2101 T
spaomdeya3epdn T1°T°T
sjUsWWoD a3epdn o1 1T
1Ensqy aEpdn 61T
1
1
1
1
1
1
1
1

Lo Lo I e[v 0 0]

Lo le (e g w (i 0 0]

Leie T e (o I oy A (0 0]

Lo Lo T el o o I o I o

Lo o o o o o 0 o (0 0

Lelte T e o o I I o I O L -

JFejuoD23epdn ' T
auoyd4Ieu0D a1epdn £ T
Juapris e3epdn oty
paowssES 29Epdr 5T
BT PEIU0D 350 b T
JadedjoiaquinyEs £ 1
Jaded 180 2 1

Jaded spayD 11T -
POyl 111 -2

QREPRRPEREPREPRCICIRK 0D

Lol I o I o o o L T o o o 0 O (0

Lo oo I o o o o o o o O (0

Lo Lo Ty e i e T o o T L o T o o o 0 i (0

Lo (e o I i I o o o o o o 0 0 0

LA B R B R R R E R EERSEESE XX}
o]
o]
O |00 |0
OO0
OO (O |0 O DD
O (O[O (OO (O D (O
O (O[O (OO O D O D
O (O (O (OO O D (O |0 (O
O 0 (O (DD (O (O D (OO
Lol (el ey e ol o (o I o o I o) []
Lo ey el oI (o I o o
Lol lw e oy oI o (o I o o 0
Lo oy el i o I o o o L o o o 0
O 0 (OO (O (O (O (O (D (O (0 (O D OO (O
Lo oy o I i o o o o L T o o o o o 0
Loie Ty e o Tl o i o I o [T L o L o [o
Qoo Ty el e Tl o i o I o o T L o T o o o

Lo.Jg (o o o I o T o o o o o o o 0 0)
OOOOOOOOOOOOOOOOOOOOlOO

<

w
o
|5
E=
]
=
o
o
=
]
=}
=]
o
.”JL
-

b

7 Updates phone number of contact author

- # 1,1.8 Update the author id which will be contact

- # 1,1.9 Update abstract

1.

1.1.14 Update alternative email of contact author

- # 1,1,15 return phone number of contact

1.1.3 Return number of paper in DB
- # 1.1.4 Return email of contact authar

- # 1.1.1 Check_Paper there is or not with name, surname and Litle
1.2.1 Operation on DB

- 4 1,1,2 Get paper from DB with an ID
- # 1,1,10 Update comment which is written by author For chair

- # 1,1,11 Update Keywords

- # 1,1.5 Updates password of contact author

- # 1,1.6 Updates student info
- # 1.1,16 return mail address of contack authar

- 4 1.1,17 return password of conkact authar

- # 1,1,18 Add papers to DB

- 4 1.1,12 Update other authors
=3 1.2 Subscribed Methods

- # 1,1,13 Update Last update

1,

1.3 Published Events
- # 1.4 Subscribed Events

f Paper component

123

A.5 Design matrix o

Figure

A.6. Paper Topic Component

Paper Topic component provides all topic operations on database utilizing

SQL Execution method as depicted in Figure A.6.

CE

e F =

(=]

- # 1.1.1 Add_Paper_Topic

- 4 1.1.2 Delete_Paper_Topic

- 4 1.2,1 50L_Execution

- 1,3 Event_In

- 4 1.4 Event_Cut

it It

ne

1.2 Method_Quk

1.1 Methad_In

- B 1 Comp

@&} Component Tterface
EIJE} 1.1 Published Methods

: # 1.1.1 Add an paper kopic

: # 1.1.2 Delete an paper topic
=3 1.2 Subscribed Methods

‘o 1.2.1 Operation on DE

- # 1.3Published Events

i 1.4 Subscribed Events

[

Figure A.6 Design matrix of Paper Topic component

124

A.7. Submit Component

Submit component is a complex component including methods to satisfy submitting
operations with utilizing other components as depicted in Figure A.7. Submit
method uses other published methods and represented in partial process diagram as

depicted in Figure A.8.

T
o
T b3 w

2= == T -8B e o

TreS2fE5 & _5LTLE S

E g 5o o2 g | 2 EHTE =L o5

Bo9fpgaopr Eroifiefsgi

SRazZdes SRS EES5348

c2o oo g TS5 A ST =Y ﬂmq:|¥-ul
ELZLRSERSO LB Sz E o5
L e Lt B = B T R = = R
TaLaaddCadTZwaI=REAEIT 50N
o I R T = R SV I o PR = N S T = (R T
i BT Rl B B B B R R B R
o e T T T T e e e e e R I A T R i}
Zesssssssssssssese’’
D H H H H H H H D H H H H H H H H H H ..
¥} i

.
po Ik ~

=+ 1.1 Published Methods | E o2 o T Lo o Lo o I o Tl Lo Lo T Lo O o 0]
- # 1,1.1 Send notification mail to contacts author about paper submission, Lol lw (w0
- 4 1.1,2 Authors can upload papers in allowed type {pdf, doc,...) L] OO0 D00 0000 E[E D000
- # 1,1,3 Add all authars with paper id Lee] Lo o T oo T o I o o I o T o o T o L Lo O o I Lo]
- 4 1.1.4 Check paper with unique infarmation in the system, IF there is alre 00O OO (O 0D (0D DD D00 E Do D
- # 1,1.5 Add paper topics with paper id Loy le Ty ey le] Qoo EoROooo0R 0D
- # 1,16 Submit R i EA e T e T o T v A o T o T e I 0 T o T o 0 I
- # 1,17 Checking conference submit L lw T o o e] O E QoD oo0o0o|0o
=9 1.2 Subscribed Methods Lo 2 oo T o [0 I o[} (e le]
- # 1,2.1 Check conference is open or not O (O (O (O (OO (OO oNielioNel oNIel o NIl e o]
- # 1,2.2 Add paper to system and return paper id O (O (O (O (OO (OO o] eNielisNe N o Nl el o]
- # 1,2.3 Yalidate email addresses in terms of synkax O (O (O (O (OO (OO Lelie} eNielisNe N o Nl el o]
- # 1,2.4 Password and its confirmation password have to be same O (O (O (O (OO (OO Lol e] leNls N s Nlo N s Nel s Wle]
- # 1,2.5 Get contact mail address (el ieln{o o o] 0o DD 0000000
- # 1,2.6 Is paper Uploaded O (O (O (O (OO (OO Lo I e e I o] O Q0000
- @ 1,27 Move paper QPEREpEE R Q[0 (O (D (O | O (D (O D (O
- # 1,2.8 Add authors to DB OO (O (D (O (D O (O Lol oo T ol (o o g (] OO (O (O
- # 1,2.9 Check Paper Lol oo T (o o 0l (0] Lol e TN o o Lo I (10 LoJgielyie]
- # 1,2.10 Add paper topic OO (O (D (O (D O (O OO O D (O D OO Lolgie)
----- # 1.3 Published Events Lo Lol o T {w i o I Lo Lo o o o o o Lo o o 0 o

----- # 1.4 Subscribed Events 2 Lo oo Tl L I oI Lo o R o o o o o o o o L0 0

Figure A.7 Design matrix of Submit component

125

Submit

=

SlemitOperatio}u

Pt
{ E_]

SlemitOp'eration

Syskem_Enviran...

=

get_cfp_open_0...
®=

get_ch_EEen_Cl. "

Uility

=

validEmaiIOperat'ion

fre=y
®
validEmailOperation

Utility_

= [
verify_password. .,

(=)
VEI'iFVJJ-E_S'S'NDI'd...

Paper

checl\paperOpef. e
fre=y
]
©
checkpaperCper. ..

Paper_

3ddj3|:-e|‘Cl|:-eré. "

®
3ddj3|:-§'&lpera. "

Author

il

PaperInfi rmation

check |paper {

ForEachl

addapthar

add authorOper. ..

Figure A.8 Partial process diagram of submit method (adapted from [1])

126

A.8. System Environment Component

System Environment component provides environment information about

conference as depicted in Figure A.8. This information is saved in a file.

rface

(=]

-4 1.3Event_In

C
[T
CL
I:::I|
=
c
L
jm}
Y
-
I o
0
it
—_
=

- 4 1.4 Event_Cut

nk: Ik

=]

ar

C
[T
CL
©
=
=l
&
-
(i)
0
e
=
=

=
=]
= =
=] =]
£ £
= =
D] D]
= =
— [
_ -

: ﬁ 1 Campe

[ﬁ 1 Companent Ikerface
BE} 1.1 Published Methods
: # 1.1.1 Return Submit is open or nok
i ‘o # 1.1.2 return Edit is open or not
----- # 1.2 Subscribed Methods
----- # 1.3 Published Everts
‘@ 1.4 Subscribed Events

[

Figure A.9 Design matrix of System Environment component

127

A.9. Utility Component

Utility component provides some useful methods as depicted in Figure A.9. Such as

validate email evaluates the congruity of the email address with standards.

=

=

2

n £

fULu|
P oo
-85
m
o T
A EE 5 S
'g::—::—'g 11
=L ™ML EE
iy — — @ T
H = - = = um
=1 — L I B
E PRI R
(] :
1) see

[} Component Iterface
Elb 1.1 Published Methods

Lo 111 Werify the passwords
- # 1.1,2 Validate_Email
1.2 subscribed Methods
1.3 Published Events
i 1.4 Subscribed Events

[

Figure A.10 Design matrix of Utility component

128

CURRICULUM VITAE

PERSONEL INFORMATION

Surname, Name: Togay, Cengiz

Nationality: Turkish (TC)

Date and Place of Birth: 30 October 1977, Hatay
Marital Status: Married

Phone: +90 312 2105533

Fax: +90 312 2105544

EDUCATION
Degree Institution Year of Graduation
MS Canakkale Onsekiz Mart University, 2001
Computer Engineering Department
BS Canakkale Onsekiz Mart University, 1999
Computer Engineering Department
High School ~ Iskenderun Lisesi 1994
WORK EXPERIENCE
Year Place Enrollment
2001-Present ~ Middle East Technical University, Research Assistant
Computer Engineering Department
1999-2001 Canakkale Onsekiz Mart University, Research Assistant
Computer Engineering Department
1997-1999 Figensoft Programmer
FOREIGN LANGUAGE
English
PUBLICATIONS

National Conferences

1.

Togay, C., Dogru, A.H, “Federasyonlarin HLA Tabanli Benzetimlere

Tiimlestirilme Otomasyonu icin bir Mekanizma”,

Uygulamalar1 Modelleme Simiilasyon Konferansi, 2005.

129

1.

Ulusal Savunma

2. Togay, C., “HLA Tabanli Bilesenler ile Otomatik Uygulama Gelistirme”, II.
Ulusal Yazilim Muhendisligi Sempozyumu (UYMS) 05, pg: 243-251, 22-24
September 2005.

3. Togay, C., Dogru, A.H., “Aksiyomatik Tasarim ile Benzetim Bilesen Ara
Yiizlerinde Kazanimlar”, SAVTEK 2006, Savunma Teknolojileri Kongresi,
vol. 2, Pg: 201-208, 29-30 June 2006, Ankara.

4. Bicer, V. and Togay, C., “Representing Feature Models with Semantic Web
Ontologies”, Ulusal Yazilim Muhendisligi Konferansi, pg. 70-78, Istanbul,
2006.

International Conferences

1. Togay, C., Dogru, A.H, “Infrastructure Design for HLA Based Automated
Federation Development”, The FEighth World Conference on Integrated
Design and Process Technology, Beijing, China, June 12-16, 2005, pp: 698-
704.

2. Togay, C., Sundar, G., Dogru, A.H., “Detection of Component Composition
Mismatch with Axiomatic Design”, [EEESouthEastCon06, March 31- April 2,
Memphis, USA.

3. Bicer, V., Togay, C., Dogru, A.H., “Service-Oriented e-learning Systems with
Axiomatic Design”, The Ninth World Conference on Integrated Design and
Process Technology, San Diego, California, June 25-30, 2006.

4. Togay, C., Dogru, A.H., Tanik, U.J., Grimes, G.J., “Component Oriented
Simulation Development with Axiomatic Design”, The Ninth World
Conference on Integrated Design and Process Technology, San Diego,
California, June 25-30, 2006.

5. Togay, C., Aktunc, O., Tanik. M., Dogru, A.H., “Measurement of Component
Congruity for Composition based on Axiomatic Design”, The Ninth World
Conference on Integrated Design and Process Technology, San Diego,
California, June 25-30, 2006.

6. Togay, C., Dogru, A.H., “Component Oriented Design Based on Axiomatic
Design Theory and COSEML”, Lecture Notes in Computer Science,
4263/2006: 1072-1079, 2006.

7. Bicer, V., Togay, C., Dogru, A.H., “A model Driven Approach for Service-
Centric System Development”, The Tenth World Conference on Integrated
Design and Process Technology, pg: 175-182, Antalya, Turkey, June 3-8,
2007.

130

8. Togay, C., Bicer, V., Dogru, A.H., “Deadlock Detection in High Level
Architecture Federations using Axiomatic Design Theory”, EUROSIMO7,
Slovenia, September, 2007.

9. Akbiyik, EK., Suloglu, S., Togay, C., Dogru, A.H.,”Service Oriented
Systems Design Through Process Decomposition”, The Eleventh World
Conference on Integrated Design and Process Technology, pg: 332-338,
Tauichung, Taiwan, June 1-6, 2008.

10. Alkislar, L., Ergun, R., Togay, C., Dogru, A.H., Fault Avoidance for Mission
Critical Systems”, The Eleventh World Conference on Integrated Design and
Process Technology, pg: 326-331, Tauichung, Taiwan, June 1-6, 2008.

International Journals

1. Togay, C., Dogru, A.H., Tanik, J.U.,” Systematic Component-Oriented
Development with Axiomatic Design”, The Journal of Systems & Software,
DOI information: http://dx.doi.org/10.1016/j.js5.2007.12.746

Technical Reports

1. Togay, C., Dogru, A.H., “A Framework for Component Integration Using
Axiomatic Design and Object Model Template”, Technical Report, 2005-11-
ECE-001, Department of Electrical and Computer Engineering, University of
Alabama, December, 2005.

2. Kaya, O., Alkislar, L., Togay, C., Dogru, A.H., “Modeling Fault Management

Domain with Fault Avoidance Capability”, Technical Report, METU-CENG-
TR-2007-12, Department of Computer Engineering, METU, December, 2007.

131

