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ABSTRACT 
 
 

A BOUNDARY ELEMENT FORMULATION FOR AXI-SYMMETRIC 
PROBLEMS IN PORO-ELASTICITY 

 
 

Özyazıcıoğlu , Mehmet H. 
 

Ph. D., Department of Civil Engineering 
 

Supervisor : Prof. Dr. M. Yener Özkan 
 

Co-Supervisor : Prof. Dr. Münevver Tezer 
 

 
July 2006, 222 pages 

 
A formulation is proposed for the boundary element analysis of poro-elastic media 

with axi-symmetric geometry. The boundary integral equation is reduced to a set 

of line integral equations in the generating plane for each of the Fourier 

coefficients, through complex Fourier series expansion of boundary quantities in 

circumferential direction. The method is implemented into a computer program, 

where the fundamental solutions are integrated by Gaussian Quadrature along the 

generator, while Fast Fourier Transform algorithm is employed for integrations in 

circumferential direction. The strongly singular integrands in boundary element 

equations are regularized by a special technique. The Fourier transform solution is 

then inverted in to Rθz space via inverse FFT. The success of the method is 

assessed by problems with analytical solutions. A good fit is observed in each 

case, which indicates effectiveness and reliability of the present method.  

 
Key Words: Poro-Elasticity, Boundary Element Method, Axi-symmetric, Fast 
Fourier Transform, Wave Propagation 
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ÖZ 
 
 

POROELASTİSİTEDE EKSENEL SİMETRİK PROBLEMLER İÇİN BİR 
SINIR ELEMAN FORMÜLASYONU 

 
 

Özyazıcıoğlu , Mehmet H. 
 

Doktora, İnşaat Mühendisliği Bölümü 
 

Tez Yöneticisi : Prof. Dr. M. Yener Özkan 
 

Ortak Tez Yöneticisi : Prof. Dr. Münevver Tezer 
 

Temmuz 2006, 222 sayfa 
 
Eksenel simetrik geometriye sahip poro-elastik ortamlar için bir sınır eleman 

formülasyonu önerilmektedir. Sınır değişkenleri açısal yönde karmaşık Fourier 

serisine açılarak sınır integral denklemleri meridyen düzleminde her bir Fourier 

bileşeni için yazılan eğrisel integral denklemlerine indirgenmektedir. Sınır elemen 

denklemlerinde tezahür eden çekirdek fonksiyonları dönel cismi üreten eğri 

üzerinde Gauss metodu, açısal yönde ise Hızlı Fourier Dönüşüm algoritması 

kullanılarak integre edilmektedir. Sınır eleman denklemlerindeki tekil integraller, 

özel bir dönüşüm yolu ile düzenlenmektedir. Fourier uzayında elde edilen çözüm 

ters Hızlı Fourier Dönüşümü yolu ile Rθz uzayına taşınmaktadır. Yöntemin 

başarısı analitik çözümü bulunan örnek problemlerde test edilmiştir. 

Çözümlemelerin her durumda analitik ifadelerle iyi uyum göstermesi yöntemin 

etkin ve güvenirliliğini ortaya koymaktadır.  

 

Anahtar Kelimeler: Poro-Elastisite, Sınır Eleman Metodu, Eksenel Simetrik, Hızlı 

Fourier Dönüşümü, Dalga Yayılışı 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

Axi-symmetric boundary element formulations for elasto-dynamic (Brebbia and 

Dominguez 1992, Wang and Banerjee 1990, Becker 1992) and acoustic analysis 

(Juhl 1993, Soenarko, Pozrikidis 2002) are available in the literature. However, 

these formulations are either based on integration of the fundamental solutions in 

circumferential direction, hence fully axi-symmetric (both geometry and boundary 

conditions are axi-symmetric) or they expand the boundary quantities into regular 

(real) Fourier series separating the boundary excitations into symmetric and anti-

symmetric modes, the final response is obtained by combining solutions for each 

of these modes. The first approach suffers from the accurate evaluation of Elliptic 

Integrals, while in the second approach care ought to be given to integrations in 

circumferential direction where Gaussian Quadrature along with segmentation is 

proposed (Brebbia and Dominguez, 1992), for accurate evaluation; the 

segmentation procedure, on the other hand, lead to extended run times.  

Following the second approach described above, an axi-symmetric formulation for 

poro-elasticity is given by Dargush and Chopra (1996). Their formulation involves 

the symmetric modes only (symmetric boundary conditions), thus fully axi-

symmetric.  

An alternative method based on complex Fourier series expansion of boundary 

quantities is developed by Özkan (1995). In this method the integrations in 

circumferential direction is accomplished by the Fast Fourier Transform algorithm 

(Brigham, 1988), which is shown to bring in considerable savings in computer run 

times over integration using segmentation along with Gaussian Quadrature.  
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The formulation of Tsepora and Polyzos (2003) for gradient elasticity is similar to 

Özkan, 1995; however, they used the so called non-periodic FFT (Press, et. al., 

1992) for integrations in θ-direction when the source point lies in the integration 

element. According to this algorithm, the FFT is applied with the value at θ=0 is 

set to zero (actually the algorithm is to be modified for numerical stability as 

discussed by Press, et. al. 1992). The integrals when θ=0 are computed separately 

for each frequency by using advanced integration techniques (Guiggiani, 1992). 

In this study, we extend the method proposed in (Özkan, 1995) to axi-symmetric 

poro-elastodynamic analysis with arbitrary boundary conditions. To summarize, 

we first write the boundary integral equations in cylindrical coordinate system by 

transforming boundary variables from Cartesian (xyz) to cylindrical coordinate 

(Rθz) system; the z-coordinate of the Rθz-system coincides with the axis of 

revolution of the body. The boundary variables (generalised displacement and 

traction vectors) are then expanded in complex Fourier series with respect to           

θ-coordinate; thereby we reduce the surface (3-D) boundary integral equations to a 

set of N′ boundary integral equations in the generating plane (2-D), where the 

kernels appear in the form of Fourier integrals of fundamental solutions; where, N′ 

is the number of terms in the truncated complex Fourier series (N′ must be a 

positive power of 2). The kernels now appearing in line integral equations can be 

integrated effectively by FFT algorithm. The solution of N′ line (2-D) integral 

equations establishes the coefficients of the boundary variables in the complex 

Fourier expansions; the combination of these coefficients using again FFT 

algorithm yields the solution in Rθz space.  

The formulation developed in this study has two major advantages: First, the use 

of FFT algorithm in integrations over θ-direction increases computational 

performance considerably compared to Gaussian Quadrature for the same purpose. 

Second, using complex Fourier expansion obviates the analysis for symmetric and 

anti-symmetric modes separately (Özkan, 1995); analysis for a general boundary 

condition is accomplished in a single run.  
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The formulation is developed in frequency domain, yet solutions in time domain 

can be obtained by inverse FFT after solution vectors have been obtained for a 

sufficient number of frequencies. 

As a part of this work, a general purpose computer program, named AxiPoro, is 

implemented in ANSI standard C++ language. The program compiles equally well 

under both Windows and Unix, compilation under Linux should bring no 

problems. 

The method is assessed in four problems, these are, (i) the poro-elastic column 

problem, (ii) cylindrical cavity problem, (iii) spherical cavity problem and (iv) the 

vertical compliance function for a rigid circular foundation. The first three 

problems possess exact analytical solutions, for the last problem the results are 

compared with the numerical solution given by Apsel and Luco (1987). A good fit 

is observed in each case, except for the last problem where the largest relative 

difference in absolute value of the compliance is found to be %7.5; however, it 

should be noted that in the solution we provide an ideal elastic problem is 

simulated by a poro-elastic formulation, hence, a perfect match is not expected. 

 

The organization of this thesis is as follows: In Chapter 2, we make a review of 

theory of poro-elasticity including a brief history. The governing equations are 

derived using the methods of continuum mechanics and a short discussion of 

waves in infinite poro-elastic media is given. Chapter 3 is a review of published 

boundary element work concerning poro-elasticity only. In Chapter 4, we develop 

the boundary integral equations for poro-elasticity. Fundamental solutions of 

dynamic poro-elasticity are developed in Chapter 5. In chapter 6, boundary 

element formulation for axi-symmetric geometry using complex Fourier expansion 

of boundary variables is presented. The treatment for strongly singular integrals 

encountered when θ=0 is described. The computer implementation and manual of 

input instructions are described in Chapter 7. Assessment problems and results are 

presented in Chapter 8. The thesis ends in Chapter 9 with conclusions and 

suggestions for further study. 

 



 4 

 

 

 

 

CHAPTER 2 

 

 

REVIEW OF THE THEORY OF PORO-ELASTICITY 

 

 

 

2.1 Background Information 

 

A porous medium is a material matrix composed of a deformable solid skeleton 

with interconnected pores and fluid residing in these pores. The pores are 

interconnected, as mentioned, in the form of small irregular arcs so as to provide 

fluid mass exchanges within the body or with the outside. 

 

Although occurrence of more than one type of fluid, either miscible or immiscible, 

partially filling the pores is possible; this study addresses the presence of a single 

fluid fully saturating the pores. In this regard, a porous medium is the 

superposition in time and space of two media, the solid skeleton and the pore fluid 

(Coussy, 1995). 

 

  

 

Figure 2.1 Two phase porous medium as the superposition of a granular solid 
matrix and a fluent medium (after Coussy, 1995). 

= + 
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Examples of such media are foundation soils saturated with ground water and 

porous rock containing hydrocarbons and the bone; porous metals and plastics are 

also produced. The phenomenon may involve interaction of disparate materials 

like soil and water, oil or natural gas and porous rock, etc., but the general 

framework of study is the same, “pore-fluid solid interaction”. 

 

The mechanics of fluid filled porous media, as the solid went through deformation 

or fluid flowed in or out, has captivated the attention of many scientists and 

engineers for centuries, in connection with, for instance, the settlement of land 

surface in long term owing to a civil structure, underground water flow, flow 

through earth structures (e.g. dams), fluctuation of water levels in wells when 

trains pass nearby, land subsidence after extensive utilization of underground 

reservoirs and of course soil liquefaction during large earthquakes.  

 

It is immediately observed that the deformation of the porous solid skeleton and 

flow of the pore-fluid are not independent (one affects the other), and coupling 

always occurs among fluid mass content, fluid pressure (pore pressure), 

deformations in the bulk solid and applied stresses.  

 

The word solid is often used to refer to the skeletal framework of bulk porous-

material, and the terms fluid pressure and pore-pressure are used interchangeably. 

The bulk material will be referred to as “porous medium”. 

 

2.1.1 The Continuum Assumption 

 

If we were to the view the porous medium on a length scale on the order of the 

pore size, the pore space will appear extremely detailed and chaotic. If we hope to 

model the flow and transport of the fluid on a macro or mega volume of the porous 

medium, it is necessary to average the description of the system over a 

representative elementary volume (REV) that is large compared to the sizes of the 

pores but small compared to the macroscopic dimensions of the porous medium. 
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The properties of the system will be described by continuum variables such as 

porosity and permeability. 

 

Fundamental definitions: 

 

The term porosity is used to demonstrate how porous the bulk material is, in other 

words, what percent of the total bulk material volume is constituted by 

interconnected pores. Therefore, porosity, designated by n is the ratio of the 

interconnected pore volume to the total volume. Although considerations about the 

presence of two degrees of porosity (of pores and of fissures/cracks) exist in the 

literature, we stick to single porosity formulation. 

 

Permeability (after Dullien 1992), designated in this text by κ, refers to the 

conductivity of the porous medium to permeation by a fluid. A definition of such a 

general sense is of limited usefulness; because this permeability with respect to a 

particular porous medium changes with different permeating fluids and flow field. 

It would be more instructive and more practical as well as more scientific to single 

out the material parameter that gives the contribution of only the porous medium 

to the conductivity; and is independent of both fluid properties and flow field. This 

last quantity is called the intrinsic permeability “kd”, which is uniquely determined 

by the pore structure only.  

The definitions of permeability will gain more clarity when Darcy’s Law is 

discussed in the course. 

 

2.2 Brief History of Porous Media Theories 

 

In the following, we make a brief of the history of poro-elasticity following Wang 

(2000) and Chen (1992). Extensive review of the history of the development of 

porous media theories are covered in the works of de Boer (1996, 2000).  
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Although attempts to understand and model the behaviour of fluid-filled porous 

media start earlier, e.g. Telford in 1821(after Chen, 1992) drew attention to 

squeezing out water in the phenomenon of consolidation of soil, it is generally 

deemed that the study of fluid filled porous media begins with Darcy (1856) who 

studied one dimensional flow of water in homogenous sands in connection with 

the fountains of the city of Dijon, France.  

 

In the period 1900-1930, utilization of underground hydrocarbon reservoirs as well 

as heavy civil constructions (high rise buildings, dams, etc.) necessitated an 

improved understanding of fluid flow in porous media and deformational 

behaviour of soils and rock (Wang, 2000). In relation to the state of pore fluid, the 

principal problems were discharge and elastic storage in confined aquifers and in 

relation to deformation the problem was soil consolidation (Wang, 2000).  

 

First, mathematical model on deformation of a porous medium was established by 

Terzaghi in 1923 (after Detournay and Cheng 1993), who realizing that soil 

consolidation was in effect a diffusion process (escape of water from high pressure 

zone) set up his famous one-dimensional consolidation equation. Later an attempt 

was made by Rendulic in 1936 (after Detournay and Cheng 1993) to extend the 

Terzaghi’s 1-D theory to 3-D by replacing the spatial derivative for the Laplacian, 

however, in both cases this theory uncoupled the deformation from stresses and 

fluid pressure and flow; a fully coupled theory was yet to be developed.  

 

The era 1930-1970 witnessed development of constitutive theories for porous 

media. A real coupled quasi-static 3-D theory was established by Biot (1941.a). 

Other contributions were due to Kosten and Zwikker (1941), Frenkel (1944), 

Lubinski (1954 after Chen, 1992), Brutsaert (1964). Biot’s theory has gained the 

widest acceptance. Kosten and Zwikker and Frenkel, deserve a special note; 

Kosten and Zwikker (1941) were perhaps the first researchers to notice the 

existence of second compressional wave and Frenkel (1944) was the first to work 

out the first complete dynamic theory. Brutsaert’s unsaturated dynamic model 
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carries features similar to Biot’s theory for liquid saturation and to Kosten and 

Zwikker’s for gas saturation. More complex models using the theory of mixtures 

have also been developed (Steel 1967, Bowen 1976, 1980, 1982, Prevost 1980, 

Burridge and Keller 1981, de Boer 2005). These complex models reduce to Biot’s 

theory under certain simplifying assumptions (Schanz and Diebels, 2003); hence 

confirm the soundness of this theory. Some analytical solutions were also obtained 

during this period (Biot, 1941.b, 1941.c, 1942, 1956.a).  

 

Starting with 1960’s problems on complex domains with arbitrary boundary 

conditions were targeted at by powerful numerical methods (Finite Element 

Method, Boundary Element Method, Method of Characteristics (Mengi and 

McNiven, 1977), etc.) on digital computers. 

 

2.3 Biot’s Theory of Linear Poro-elasticity 

 

Biot’s poro-elasticity theory (Biot 1941.a, 1955, 1956.d, 1962.a, 1962.b) is a 

generalization of elasticity theory to materials with fluid filled pore spaces and it 

includes Terzaghi’s 1-D consolidation theory as a special case. Quite remarkably, 

this theory was developed by him only, over a deliberation of approximately 40 

years. During those years, Biot considered the theory from almost every angle, laid 

out the thermodynamical foundations to cover various dissipative effects and 

relaxation mechanisms (1962.a, b). His theory led to mathematical formulation of 

problems in soil mechanics, geophysics, acoustics and biomechanics (Cowin 1999, 

Lim and Hong 2000) predicting behaviour beyond that conceivable by classical 

elasticity theory. The predictions of the theory have been substantially verified 

experimentally (Plona 1980, Berryman 1980, Ogushwitz 1985, Bonnet and 

Auriault 1985, Klimentos and McCann 1988, Gurevich et. al. 1999). The material 

constants (Biot and Willis 1957) involved are easily discernible, physically 

meaningful and experimentally measurable. The theory redefines the concept of 

effective stress, which is a fundamental principle in soil mechanics. 
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In the following, the discussion will be restricted to homogenous and isotropic 

poro-elastic media. 

 

2.3.1 Governing Equations  

 

A note on the notation:  

In what follows, indicial notation (Cartesian tensor) together with (Einstein’s) 

summation convention will be used; all tensor quantities are to be resolved in 

Cartesian frames. Hence for example, a term like “vi” represents i-th component of 

the vector v in Cartesian coordinates. In summation convention, any (twice) 

repeated index implies automatic summation over its range. The following are 

equivalent designations for partial differentiation (of a vector v say): 

 

 j,iij

j

i vv
x

v
≡∂≡

∂

∂
 

 

All variables (displacements, fluid pressure, stresses, etc.) are functions of both 

space and time. 

 

The displacement field is defined by the displacements of the solid (skeleton) “ui” 

and the displacements of the fluid “Ui”. Then the relative displacement of the fluid 

with respect to solid is  

 

iii uUw −= .  

 

Assuming that the porosity of a material plane is the same as volume porosity “n”, 

the net flux of fluid through unit area in unit time is then given by 

 

   ii wnq &=  
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where “qi” denotes flux in the direction of i-th coordinate axis and w&  is relative 

velocity of the pore-fluid. 

The strains in the solid are defined as usual 

   ( )i,jj,iij uu
2

1
+=ε  

 

One more variable, increment of fluid content “θ” introduced by Biot (1941.a), is 

needed to define the change in the amount of fluid in a unit volume of bulk 

material. This variable measures the volume of fluid that has flowed in or out per 

unit volume of bulk material. Hence, 

       

   i,inw−=θ  

 

Drained and un-drained conditions: 

Although, one almost never encounters true drained as well as un-drained 

condition in reality, we still define a condition where all internal fluid is prevented 

from motion by impermeable boundaries as un-drained. The condition during or 

shortly after a rapid process (deformation, loading, injection, etc.) such that the 

pore-pressure induced cannot dissipate is also considered to be un-drained. On the 

other hand, if, free drainage of the fluid is permitted or the process is so slow that 

the excess pore-pressure can dissipate, the porous medium is said to be under 

drained condition. 

Mechanically, the un-drained condition corresponds to no relative motion: 

  

 0=−= iii uUw  →   un-drained. 

 

Whereas, drained condition corresponds to pore pressure keeping constant: 

 

 
0

0

≠

=

iw

p
   →    drained. 
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2.3.1. a Constitutive Equations 

 

Assuming that (1) the material is linear-elastic and isotropic (2) strains are small, 

Biot (1941.a) arrived at the following constitutive equations: 

 

p
Q

1

p2

kk

ijkkijijij

+=

−+=

αεθ

αδελδµετ

  …………………………………………………... (2.1) 

 

τij → components of total stress tensor 

 

The four elastic constants, 

  

 λ → drained Lame’s modulus (dimension ≡ F/L2) 

µ → drained shear modulus (dimension ≡ F/L2) 

α → Biot’s effective stress coefficient (dimensionless) 

Q→ Biot deformation modulus, corresponds to the reciprocal of 

constrained storage coefficient in hydrogeology (dimension ≡ F/L2) 

 

characterize the poro-elastic material. The material constants and their 

measurement techniques will be discussed in the next section. 

 

Effective Stress Principle (a measure of inter-granular stress): 

When the deformation (or strength) response of a porous medium (soil for 

instance) is considered, it is immediately discerned that the behaviour will not be 

the same with zero and nonzero pore-pressure. As first realized by Terzaghi, the 

strain in a soil element in a tri-axial cell should be governed by the inter-granular 

stresses. Then, which of the stress fields (fluid pore-pressure and solid) or what 

linear combination of them is directly responsible for the strength and 

deformational characteristics of the porous medium? This question (and other 

similar questions) leads naturally to the concept of effective stress” (Berrymann, 

1992). The effective stress principle is discussed extensively in soil mechanics 
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books (Lamb and Withman 1979, Suklje 1969) and there are scientific papers 

discussing this principle (Berrymann 1992, 1993; de Boer and Ehlers 1990) in 

many articles, here we choose the definition, which follows naturally from the 

constitutive equation (2.1) and generalizes the Terzaghi’s effective stress principle:  

 

ijijij pδα+τ=τ′  

 

where, ijτ′  is effective stress. Then, it is clear that Terzaghi’s definition 

 

 ijijij pδ+τ=τ′  

 

is the case when α = 1.  

Hence, in Biot’s definition of effective stress, a fraction α of fluid stress 

( ijij pδσ −= ) is subtracted from total stress. There is experimental evidence that 

this definition better describe the volumetric strain under confining stress (Wang 

2000, p.45). 

 

The constitutive equations (2.1) can be rewritten for effective stresses in the 

following form: 

 

 kkijijijijij p ελδ+µε=δ+τ=τ′ 2  

  

 or, 

  

 
klijklij

C ε=τ′  

 

where, 

 

( )
jkiljlikklijijkl

C δδ+δδµ+δλδ=  
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Sign convention: 

In equation (2.1) the stress components “ ijτ ” represent total stresses and are 

positive when tensile, on the other hand, “p” represents the pore-fluid pressure and 

is positive when compressive. 

 

An alternative form of constitutive equations is possible (in fact there are four 

alternatives, see Wang, 2000) if pressure is isolated in the second equation in (2.1) 

 

θ+εα−=

θδα−εδλ+µε=τ

QQp

Q2

kk

ijkkijuijij   ……………………………………………….   (2.2) 

 

where  

 

Qu
2α+λ=λ   

 

is the undrained Lame’s modulus. We know, on physical grounds that λλ >u  

hence, Q must be positive (refer to the discussion before equation 2.11). In fact, 

thermodynamic considerations also stipulate positiveness of Q (Biot, 1962.a). 

 

2.3.1. b Poro-elastic Material Constants 

 

In order to gain insight into the material constants, it is useful to consider spherical 

stress volumetric strain relations, thus applying contraction over the index “i” in 

(2.1) and (2.2) above 

 

Q

p
e

pKe

+=

−=

αθ

ασ

 ………………………………………………………...… (2.3) 

 

and 
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θα

θασ

QQep

QeK u

+−=

−=
 ……….……………………………………….…… (2.4) 

 

where,  

 

modulusbulk  undrained  QK
3

2
K

modulusbulk  drained  
3

2
K

strain c volumetri e

stress normalmean   
3

2
uu

kk

kk

→+=+=

→+=

→=

→=

αµλ

µλ

ε

τ
σ

 

 

 

Skempton’s Coefficient “B” (for pore-pressure built up during confined loading): 

 

Skempton’s coefficient B (Skempton, 1954) is defined to be the ratio of the 

induced pore water pressure to applied all round isotropic stress increment under 

un-drained conditions,  

 

   
θσ∂

∂
−=

p
B …………………………………………….. (2.5) 

 

A negative sign is necessary because positive (tensile) σ gives rise to negative 

(tensile) p. As can be seen B is non-dimensional. 

 

From (2.3),  

 

 

σσ
α

σ

θ
σ

α
σσ

∂

∂
+

∂

∂
= →

∂

∂

∂

∂
−

∂

∂
= →

∂

∂

p

Q

1e
0      

pe
K1      

p

gives

gives
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combining 

 

uK

Q
B

α
=  ………………………………………………………………. (2.6) 

 

recalling the relation QKK 2
u α+=  

 

B1

K
K u

α−
=  …………………………………………………………... (2.7) 

 

From (2.5) it is clear that 

 

1B0 ≤≤  ……………………………………………………… (2.8) 

 

Skempton’s B may also be defined as 

 

  
σθ∂

∂
−=

e
B  

 

The effective stress coefficient (Biot’s “α”): 

 

“α” is a dimensionless coefficient. From (2.3) 

 

  
pe∂

∂
=

θ
α  ……………………………………………………… (2.9) 

 

For a solid matrix of single material (individual grains are made of identical 

material), a restriction on the range of values that α is given by the following  

 

  1n ≤≤ α  …………………………………………………….. (2.10) 
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This conclusion is established in (Biot, 1957). For solid grains of mixed material 

the lower bound on α has to be relaxed to zero (Berrymann, 1992).  

 

Now from (2.7) with (2.8) and (2.10) one infers that KK u ≥ . Since,  

 

QKK 2
u α+=   

 

one has  

 

KQK 2 ≥α+   

or 

 0Q2 ≥α   

 

thus 

 

0Q ≥   ……………………………………………………………… (2.11) 

 

Methods to measure “α”, “K” and “Ku” 

 

i) Unjacketed Test 

 

In an unjacketed test, a specimen is tested under a constant cell pressure 

“σc” while pore-pressure is also maintained at the same level (Fig 2.2). 

This is equivalent to immersing the bare (or with a perforated 

membrane) specimen in a fluid, till a confining pressure “σc” is 

attained; the same fluid pressure develops in the pore space.  
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If now, unjacketed bulk modulus is defined as  

 

σ

σ

−=∂

∂
=′

p

s
e

K  

 

from (2.3), 

 

   

( )( )

{ {
ss KK

e
K

e

Ke
e

′′

∂

∂
+=

∂

∂

−−=
∂

∂

σ
α

σ

σασ

 

Hence, 

    

sK

K

′
−= 1α  …………………………………..  (2.12) 

 

For an incompressible solid skeleton 
s

K′→ ∞, when α = 1. In this case, Biot’s 

effective stress reduces to Terzaghi’s effective stress definition. 

σc 

p = σc 

σc 

σc σc 

impervious 
membrane 

Figure 2.2    Specimen under unjacketted test, pore-pressure is kept equal to cell 
(surrounding) pressure, as if the membrane were missing (after Wang, 2000). 
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It may be noted that, though sK ′  appears to be the same as the bulk modulus of 

solid grains, i.e. sK , this is true only when the grains are of  the same material; 

when the solid phase is composed of  two types of minerals, e.g. a sandy clay, 

there is still one sK ′ , although, one cannot speak of a single grain modulus sK . 

 

ii) Jacketed test 

 

This test is the usual drained test; a specimen is tested under a constant 

cell pressure while pore-pressure is kept constant by allowing free 

drainage of the pore-fluid. 

 

 

 

If pore pressure is kept at zero value (p=0), equation (2.3) provides Biot’s “α” and 

drained bulk modulus “K”: 

 

  
{

e
          

Q

)0(p
e

e
K          pKe

gives

cgives

0

c

θ
ααθ

σ
ασ

= →
=

+=

−= →−=−
=  

Figure 2.3 Specimen under jacketed test, i.e. pore-pressure is kept constant, normally 
at zero level. Fluid freely drains out (after Wang, 2000). 

Fluid freely 
drains out 

σc 

σc σc 

impervious 
membrane 

σc 
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Poisson’s ratio: 

 

Poisson’s ratio is defined, in solid mechanics, as the ratio of the lateral to 

longitudinal strain under uniaxial loading in longitudinal direction.  

 

   

jj
ii

jj

σ
ε

ε
ν  −=   (i ≠ j) 

 

The underline is to mean summation is discarded. 

 

There are two possible definitions for Poisson’s ratio in poroelasticity 

 

Drained Poisson’s ratio: 

  

It is the Poisson’s ratio under drained conditions (p=0) 

 

   
0;

 
=

−=

p
ii

jj

jjσ
ε

ε
ν  

 

It can be related to un-drained shear and Lame’s moduli through 

 

   
)(2 µλ

λ
ν

+
=  ……………………………………...… (2.13) 

 

Un-drained Poisson’s ratio: 

 

It is the Poisson’s ratio under un-drained conditions (θ=0) 

 

   
0;

 
=

−=

θσ
ε

ε
ν

jj
ii

jj

u   
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Similarly, 

 

   
)(2 u

u
u

µλ

λ
ν

+
=  ……………………………………. (2.14) 

 

Recalling the relations 

 

   

µλ

α

α

αλλ

3

2
K

B1

K
K

K

Q
B

Q

u

u

2
u

+=

−
=

=

+=

 

 

One finally derives, 

 

   
( )

( )να

ναν
ν

21B3

21B3
u

−−

−+
=  ……………………………….... (2.15) 

 

from which, it is clear that νν >u . (2.15) can also be used to relate Skempton’s 

“B” to “νu, ν and α” as, 

 

   
( )

( )( )u

u

121

3
B

ννα

νν

+−

−
=  ……………………………….... (1.26) 

 

Another useful formula can be obtained from (2.14) if the relation 

 

   Q2
u αλλ +=  ……………………………….……….. (2.17) 

 

is substituted and “Q” is solved for, 



 21 

   
( )

( )ν−ν−α

ν−νµ
=

21)21(

2
Q

u
2

u  ………………………………. (2.18) 

 

Rearranging (2.17) as 
2

uQ
α

λ−λ
=  

 

or 

 

   
2

u KK
Q

α

−
=  ………………………………...………... (2.19) 

 

Remark 1: Although various combinations are possible, an isotropic poro-elastic 

material is fully defined by four independent constants, others can be derived from 

the relationships given above.  

Remark 2: The poro-elastic constants of various earth materials have been 

measured in the laboratory. A summary table can be found in Wang (2000). The 

reader is also referred to Yew and Jogi (1978) and Fatt (1959). 

 

A sample procedure to determine poro-elastic constants: 

 

1. From a jacketed (drained) test (isotropic consolidation); determine {α, K}. 

2. From an un-drained test (isotropic compression), determine {B or Ku}. B 

can also be determined, if suitable, by measuring volume expansion of the 

bulk material per unit volume of fluid injection under back pressure, while 

cell pressure is zero (see expression 2.9). 

3. Measure Young’s modulus “E” in a drained test,  

 

)1(*2E νµ +=  …………………..………………………….. (2.20) 

 

4. Compute Ku from (2.7) and Q from (2.19) or (2.6). 

5. Using (2.13, 2.14, 2.17 and 2.20) compute ν, νu, µ, λ, λu. 
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2.3.1. c Field Equations (Balance Laws) 

 

Conservation of Linear Momentum (LME or SEM): 

 

Newton’s second law of motion states that in an inertial reference frame, material 

rate of change of momentum of a body is equal to the resultant of applied forces. 

Hence, 

 

Ωρ+Ωρ=Ω+Γ ∫∫∫∫
ΩΩΩΓ

dUn
dt

d
du

dt

d
dfdt ifidii

&&  ………………………. (2.21) 

 

where, 

 

ti → components of the traction vector 

fi → components of the body force vector (defined per unit volume of the bulk                

material) 

ρs → density of the solid material 

ρf → density of the pore fluid 

ρd → dry density of the bulk material, which is equal to s)n( ρ−1  

 

and, Ω designates the body (domain) and Γ the surface, boundary of Ω. 

Inserting, Ui = ui + wi and recalling, the Cauchy’s stress formula 

 

jiji nt τ=  ……………………………………………………………… (2.22) 

 

(2.21) becomes 

 

Ωρ+Ωρ+Ωρ=Ω+Γτ ∫∫∫∫∫
ΩΩΩΩΓ

dwn
dt

d
dun

dt

d
du

dt

d
dfdn ififidijij

&&&  ….… (2.23) 
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The first integral on the left can be converted to a volume integral by Gauss 

Integral Theorem as, 

 

∫∫ Ωτ=Γτ
V

j,ji

S

jij ddn  …………………………………………………... (2.24) 

 

hence, (2.23) becomes  

 

( ) Ωρ+Ωρ+ρ=Ω+Ωτ ∫∫∫∫
ΩΩΩΩ

dwndu ndfd ififdij,ji
&&&&  

 

But, 

 

43421
d

sf
)n1(n

volume (bulk) total

solid)(fluid mass total
 ˆdensity bulk ˆ

ρ

ρ−+ρ=ρ

+
==ρ

 

 

therefore, 

 

[ ] 0dwnuf ifiij,ji =Ωρ−ρ−+τ∫
Ω

&&&&  

 

this implies, 

 

ifiij,ji wnuf &&&& ρ+ρ=+τ  ……………………………………….………. (2.25) 

 

which is the LME or Stress Equation of Motion (SEM). 
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Equation of Continuity:  

 

Consider, an infinitesimal cube of PE material with faces parallel to coordinate 

planes. Assuming that percent cross-sectional area occupied by the fluid is equal to 

the porosity, we have for net fluid flux per unit time through i-th face : 

 

 

 

 

 

 

 

 

 

 

 

If a(t) represents fluid source per unit volume, law of conservation of mass can be 

written as follows: 

 

444 3444 21
444 3444 214444 34444 21

rr

∫
∫∫

−∂

θ∂



















+
















=
















S

VV dSq.n

dV)t(adV
t

time

unitin  surface the

 throughpassing

fluid ofamount 

unit timein 

inside generated

fluid ofamount 

unit timein  volume

 theinside fluid of

amount in the Change

 …...…. (2.26) 

(2.26) can concisely be stated in words as “accumulation equals net influx plus net 

generation”. Hence, 

 

{

{∫∫∫ −=
∂

θ∂

S q

kk

VV

dVqndV)t(adV
t

boundary the
r throughflux vecto fluid

 ofcomponent  normal

n

 .................................................  (2.27) 

 

x1 

x2 

x3 

 

Amount of fluid mobilized in x2 -direction  
=  

(percent  pore area ) * (relative fluid displacement = wi ) 

           
              = n     = U2 – u2  

Figure 2.4 Definition of flux vector. 
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using Gauss Integral Theorem (GIT) the second integral (surface integral) on the 

right can be converted in to a volume integral, 

 

∫∫∫ −=
∂

θ∂

V

k,k

VV

dSqdV)t(adV
t

 

 

collecting the terms 

 

0dV)t(aq
tV

k,k =







−+

∂

θ∂
∫  

 

hence (since V is arbitrary); 

 

a(t)q
t

θ
kk, =+

∂

∂
   ………………………………...................................  (2.28) 

 

Darcy’s Law: 

 

We interpret Darcy’s Law as the linear momentum equation for the fluid phase, in 

disguise; otherwise the so called Generalized Darcy’s Law (Chen, 1992, 1994a, 

1994b) sometimes causes confusion. Thus, writing the LME for the fluid phase per 

unit volume of the bulk material; 

 

( ) drag frictionalterms inertial termforce bodyf
j,ji +=+σ  

 

but, ij

f

ij pδ−=σ  (stress in the fluid) 

 

f

i

volume unit  per
force seepage

ifiifi, gwn
k

1
gwmup −ρ++ρ=−

43421

&&&&&  …………….………………… (2.29) 
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where k  is the “hydraulic conductivity” or Darcy’s coefficient in the units of 

velocity, [ ] 1LTk −≡  and
n

n
m af ρ+ρ

= . aρ  is added mass density, introduced by 

Biot (Biot 1956.b) to describe the interaction between the internal fluid and the 

solid skeleton, some authors (e.g. Zienkiewicz et. al., 1980, 1999) discard this 

effect and take 0a =ρ ; and 
f

ig  is body force acting per unit volume of fluid 

representing such effects as gravity or magnetism. 

Rearranging equation (2.29) 

 









−

ρ+ρ
+ρ+κ−=

f

ii

af

ifi,i
gw

n

n
upwn &&&&&  ……………….…………….... (2.30) 

 

where, 
g

k

fρ
κ =  now is the coefficient of permeability, with units [ ]

M

TL3

≡κ . In 

terms of intrinsic permeability dk  ( [ ] 2d Lk ≡ ) and dynamic viscosity of the fluid 

η  ( [ ] 11TML −−≡η ) permeability coefficient can be written as 

 

η
=κ

dk
 ………………………………………………………………. (2.31) 

 

The relative velocity wi can be related to specific flux qi by 

 

ii wnq &=  

 

thus, 

 









−

ρ+ρ
+ρ+κ−=

f

ii

af

ifi,i
gw

n

n
upq &&&&  ……….............………………. (2.32) 

 

which is the Generalized Darcy’s Law for an isotropic medium. In the absence of 

dynamic effects and body forces, (2.32) reduces to the form of Darcy’s flow 
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equation as it is used in soil mechanics and well hydraulics. In what follows, the 

body force term ig  will be discarded in this work also. 

 

(alternatively, we can write per unit volume of bulk material: 

iiaif
f
i

f
j,ji wbwUnngn &&&&& +ρ+ρ=+σ   ………….. (*) 

where “b” is the drag coefficient and “ aρ ” is added mass density both defined per unit 

volume of bulk material due to fluid resistance to moving particles. Note that, when the 

fluid is inviscid drag coefficient vanishes, however the fluid continues to develop against 

accelerating particles. Hence, added mass density aρ  remains regardless of the viscosity 

of the internal fluid.  

If we insert in (*): ij
f
ij pδ−=σ  and iii wuU +=  and divide by “n” 

f
ii

a
ififi,i gw

n
wupw

n

b
−

ρ
+ρ+ρ+=− &&&&&&&  

or 

 







−

ρ
+ρ+ρ+−= f

ii
a

ififi,

2

i gw
n

wup
b

n
wn &&&&&&&  

finally the Darcy’s Law follows 









−

ρ+ρ
+ρ+κ−= f

ii
af

ifi,i gw
n

n
upq &&&&  

note the relation
b

n 2

=κ .) 

 

Conservation of Angular Momentum (ANME): 

 
Conservation of angular momentum yields the symmetry of the total and hence, 

effective stress tensors, i.e. jiijjiij and ττττ ′=′=  (Coussy, 1995). 

 

2.3.2 Boundary and Initial Conditions  

 

A well posed problem in mechanics is not fully defined unless a proper set of 

initial and boundary conditions are specified.  In poro-elasticity, these conditions 

are defined in terms of the following pairs: 
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( )

( )n

ii

q,p

t,u

  ………………………..………………………… (2.33.a, b) 

 

For each boundary condition, either one term from the above pairs is specified or a 

combination for each separate pair is defined over part of or the whole boundary. 

In other words, from (2.33.a) 

 

s)B.C.' (solid 
(Neuman)  tt         ,or

)(Dirichlet uu   either,

ii

ii







=

=

Γ

Γ  …………………….. (2.34.a, b) 

 

and from (2.33.b), 

 

)s.'C.B fluid(
)Neuman(qq         ,or

)Dirichlet(pp    either,

nn 





=

=

Γ

Γ  …………………..… (2.35.a, b) 

 

must be specified; alternatively combination type boundary conditions (Robin 

type) of  

 

ΓΓ
= jiji ukt  ………...………………………………………………   (2.36) 

 

or/and  

 

ΓΓ
= pqn β  ………..………………………………………………     (2.37) 

 

may be specified. Boundary conditions may be different on different parts of the 

boundary and on some part (2.34) and (2.37) or (2.35) and (2.36) types of 

boundary conditions (mixed type) may be given.  
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2.3.3 Governing Equations in Fourier Transform Domain 

 

The Fourier and inverse Fourier transform of a function ( )tf is defined by the 

following pair 

  

 ( ) ( ) ( ) ( )∫∫
∞

∞−

ω
∞

∞−

ω− ωω
π

=↔=ω deF
2

1
tf        dtetfF titi  

 

Taking Fourier transform of equations (2.1), (2.25), (2.28), (2.32) and assuming 

zero initial conditions for velocity and displacement one gets the frequency 

domain expressions,  

 

CE’s    →   
FF

kk
F

ij
F

ij
F
kk

F
ij

F
ij

p
Q

1
αεθ

δαpδλε2µτ

+=

−+= ε

 ................................... (2.38.a, b) 

 

SDR →  [ ]FFF

i,jj,iij
uu

2

1
+=ε  .................................................. (2.39) 

 

SEM →  F
if

2F
i

2FF wnuf
ij,ji

ρωρωτ −−=+  .……………...…........ (2.40) 

 

CONT →  FFF aqi
kk,

=+ωθ  ……................................................... (2.41) 

 

Darcy’s Law  → 




 +
−−−= Ffa2F

f
2FF

iii,i
w

n

n
upq

ρρ
ωρωκ .................... (2.42) 

 

but, since ii wnq &=  

 

F
i

F
i nwiq ω=  …………................................................. (2.43) 

 

hence, we get  
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[ ]F
if

2F
i,

fa
22

F
i up

)n(ni

n
w ρω

ρρκωω

κ
+−

+−
=  ……………...... (2.44) 

 

or designating  

 

)n(ni

n

fa
22

2
f

2

ρρκωω

ωκρ
β

+−
= ……………………...................... (2.45) 

 

(2.44) becomes → 

 

[ ]F
if

2F
i,2

f

F
i up

n

1
w ρω

ωρ
β −−=  ................................................ (2.46) 

 

alternatively 

 









+

−
= F

i
F
i,

f
2

F
i upiq β

ρω

β
ω  ........................................................ (2.47) 

 

Inserting (2.39) into (2.38.a) one gets 

 

 [ ] ji
F

ji
F

k,k
F

i,j
F

j,i
F
ji puuu δαδλµτ −++=  ……………………...................  (2.48) 

  

insert (2.48) and (2.46) into (2.40) we obtain the first three of GE’s in terms of 

skeleton isplacements and pore fluid pressure in frequency domain, 

 

F
if

2F
i

F
i,

F
ji,j

F
ij,j

F
jj,i u)(fp)(uuu βρρωβαλµµ +−=++−++  ................... (2.49) 

 

Next, inserting (2.39) into (2.38.b)  
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 FF
kk,

F p
Q

1
αuθ += .................................................................................. (2.50) 

 

and (2.50) into (2.41)  

 

FFFF
kk, aqp

Q

1
αui

kk,
=+








+ω ................................................................. (2.51) 

and recalling (2.43) hence 

  

 F
k,k

F
k,k nwiq ω=  ..................................................................................... (2.52)  

 

and from (2.46) 

 

 [ ]F
k,kf

2F
kk,2

f

F
k,k up

n

1
w ρω

ωρ
β −−=  ...................................................... (2.53) 

 

inserting (2.53) into (2.52) and the result into (2.51) one gets as a result the fourth 

GE, 

  

 FFF
k,k

F
kk,

f
2

a
i

1
p

Q

1
u)(p

1

ω
βα

ρω
β =+++−  ........................................ (2.54) 

 

In operator form (2.49) and (2.54) are 

 

( ) F
f

FFFFF )(p)(.).( ufuuu βρ+ρω−=+∇β+α−∇∇λ+∇∇µ+∇µ 22 ...............(A)

FFFF

f

a
i

p
Q

.)(p
ω

=+∇β+α+∇
ρω

β−
111 2

2
u  ............................................. (B) 

 

In matrix form, equations (A) and (B) would read, 
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( )[ ] ( ) ( )

( ) 0
a

f

p

u

Q

i

i
i

   

F

F

F

F

2

f

f

22

=







+






















ω

−∇
ωρ

β
−∇β+αω−

∇β+α−∇∇µ+λ+•βρ+ρω+∇µ

•

•I
   

………………….......... (2.55) 

 

or, alternatively 

 

( )[ ] ( ) ( )

( ) 0
a

f

p

u

Q

i

i
i

    

F

F

i

F

F

j

kk

f

j

iijijf

2

kk

=







+
























ω

−∂
ωρ

β
−∂β+αω−

∂β+α−∂µ+λ+δβρ+ρω+∂µ

 

       ……………………….. (2.56) 

 

 

2.3.4 Wave Propagation in Infinite Poro-elastic Media 

 

The preceding section dealt with governing equations of Biot’s poro-elasticity 

theory.  In this section we investigate the types of body waves that exist in poro-

elastic media. Contrary to the classical elasticity theory, Biot’s theory infers the 

existence three body waves; two dilatational waves and one shear wave (Biot 

1956.b, c).  

To simplify the discussion, we consider the case of infinite permeability; i.e. κ→∞ 

(or wave propagation in the absence of dissipation). In this case the governing 

equations of poro-elasticity (2.56) become, 

 

 0p
m

n
p

Q

1
u

m

n
jj,j,j

f =−+






 ρ
−α &&&&  …………………………………...... (2.57) 

 ( ) i
f

i

2

f
ij,jjj,i p

m

n
u

m

n
uu 







 ρ
−α+







 ρ
−ρ=µ+λ+µ &&  ………...…………... (2.58) 

 

Now, we introduce the potentials for the displacement vector u as 
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 j,kijki,iu ψε+φ=  …………………………………………………… (2.59) 

 

Where, φ  and ψ  are the irrotational and solenoidal (divergence free, 0j,j =ψ ) 

parts, respectively. Inserting (2.59) into (2.57) and (2.58), we get 

 

0p
m

n
p

Q

1

m

n
kk,kk,

f =−+φ






 ρ
−α &&&&  …………………………………. (2.60) 

( ) p
m

n

m

n
2 f

2

f
kk, 







 ρ
−α=φ







 ρ
−ρ−φµ+λ &&  ………………………….. (2.61) 

0
m

n
k

2

f
mm,k =ψ







 ρ
−ρ−µψ &&  ……………………………………….... (2.62) 

 

It is obvious that equations (2.60) and (2.61) govern the dilatational waves (p-

waves), while (2.62) governs the rotational (shear) waves. From (2.62), we obtain 

the propagation velocity of the shear waves as 

  

 








 ρ
−ρ

µ
=

m

n
c

2

f

s  ……………………………………………………. (2.63) 

 

This shows that the shear waves in poro-elastic media propagate slightly faster 

than an idealized elastic body with same shear modulus and density (bulk density). 

Equation (2.63) is slightly different from that obtained by Biot (1956.b), this stems 

from the fact that Biot disregards equation of continuity in his investigation. 

Equations (2.60) and (2.61) are two coupled wave equations for which we assume 

plane harmonic wave solutions of the form 

 

 )txk(iAe ω−⋅=φ  , )txk(iAep ω−⋅=  ……………………………………….... (2.64) 

 

Substituting (2.64) into (2.60) and (2.61), we get the dispersion relation 
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 ρ
−α

++
ρ

−ρ

µ+λ
−

43421444444 3444444 21

 ……… (2.65) 

 

where, 
k

cp

ω
=  is the propagation velocity of dilatational waves. It is obvious that 

(2.65) gives two wave velocities corresponding to the slow and fast compressional 

waves respectively. Investigating the coefficients B (>0) and C (≥0), we observe 

that (2.65) always have two positive roots for 2

pc  (C= 0c*c 2

p

2

p 21

>  → 2

p1

c and 

2

p 2

c have the same sign, B= 0c*c 2

p

2

p 21

>  → 2

p1

c and 2

p 2

c both positive).  

An interesting case occurs when we assume dry soil, i.e. Q=0 and ρa=0. In that 

case the dispersion relation (2.65) reduces to 

 

 0c
n

2
c 2

p

f

4

p =
ρ−ρ

µ+λ
−  …………………………………………..…….. (2.66) 

 

this gives  

 

 
f

2

p
n

2
c

1 ρ−ρ

µ+λ
=  ; 0c2

p2
=  ………………………………….…………. (2.67) 

 

as expected. 

For the case of infinite permeability, the waves are non-dispersive, however for 

finite permeability (2.65) become frequency dependent and therefore the p-waves 

become dispersive. The slow wave is difficult to observe in experiments (Yew and 

Yogi 1976, Klimentos and McCann 1988); nevertheless, Plona (1980) and 

Gurevich et. al. (1999) verified the existence of this wave experimentally. 

 

 



 35 

 

 

 

CHAPTER 3 

 

 

STATE OF THE ART - BEM IN PORO-ELASTICITY 

 

 

The basic idea of boundary element method consists of transforming the partial 

differential equation in to a boundary integral via the use of method of weighted 

residuals or theorem of reciprocal work together with the fundamental solutions 

(free space Green’s functions) of the adjoint differential operator. Then a system of 

algebraic equations is formed by bringing the source point to the boundary and 

numerically integrating the resulting boundary integrals after proper discretization 

of the boundary. Since correct fundamental solutions are essential for successful 

deployment of BEM, the first applications of BEM in poro-elasticity had to wait 

until they are established. We can investigate the BEM studies in poro-elasticity in 

two eras. Quite naturally, in the early era the focus was on quasi-statics, and in the 

latter on dynamic applications.  

 

BEM in Quasi-static Poro-elasticity: 

For linear quasi-static poro-elasticity an indirect BEM in the Laplace domain was 

developed by Cleary (1977) without application, where he proved the reciprocity 

theorem for poro-elasticity and introduced the quasi-static fundamental solutions. 

Banerjee and Butterfield (1981) give a time marching scheme to solve Biot 

consolidation problems. Aramaki (1986) extends this scheme for soil profiles 

including thin layers of high permeability.  

Predeleanu (1981) presents a time domain BIE formulation aiming at applications 

in Biot consolidation problems; he suggests that the fundamental solutions be 
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found by using the analogy between thermo-elasticity and poro-elasticity. The 

paper adjourns with recommendations for possible future extensions. 

Cheng and Ligget (1984 a, b) proposed both 2 and 3-D Laplace domain poro-

elastic BEM and numerical results were presented for 2-D only. The procedure 

was reformulated later by Cheng and Detournay (1988) for new material 

parameters which were physically more meaningful.  

In 1985, Nishimure (after Chen 1992) published a 2-D time domain BEM for soil 

consolidation. Dargush (1987) and Dargush and Banerjee (1989) developed time 

domain BE formulations for both 2-D and 3-D quasi-static poro-elasticity. These 

BEM formulations were extended to axisymmetric consolidation (Dargush and 

Banerjee, 1991); in this work full (both geometry and loading) axi-symmetry was 

assumed.  

A 3-D BEM formulation via the reciprocal work theorem in Laplace-transform 

domain was given by Badmus et. al. (1993). Numerical results for one dimensional 

soil consolidation of a column and 3-D consolidation of a finite soil layer were 

compared to the existing exact analytical solutions, the comparisons display 

excellent agreement. The solution for the 3-D Mandel problem by the BEM model 

was also compared to an available FEM solution from the older literature.  The 

quasi-static fundamental solutions were listed in the appendix.  

Cavalcanti and Telles (2003) discus the application of time independent 

fundamental solutions to solve Biot's plane strain consolidation equations. 

 

BEM in Dynamic Poro-elasticity: 

In dynamic poro-elasticity, no progress was made until the first fundamental 

solutions were published (Bonnet 1987 and Boutin 1987); although the first 

attempt to derive fundamental solutions had been made as early as 1975, the work 

of Burridge and Vargas (1979)  (based on an earlier work (Vargas, 1975 )) did not 

contain all of the fundamental solutions. Norris (1985) derived point load 

fundamental solutions only. Bonnet (1987) showed that the six displacement 

components (3 solid and 3 fluid) in poro-elasticity were not independent and a 

formulation with solid displacements and the pore-pressure was sufficient; noting 
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also the analogy in frequency domain to thermoelasticity, he pointed out that 3-D 

fundamental solutions were available in Kupradze, 1979. Bonnet then described 

the procedure to derive the 2-D fundamental solutions; however, he did not present 

all fundamental solutions.  

The Laplace domain BEM formulation by Manolis and Beskos (1989) contained 

six independent variables (3 skeleton and 3 relative fluid displacements).  

Based on the reciprocity theorem by Cleary, Wiebe and Antes (1991), presented a 

direct time domain BEM formulation for dynamic poro-elasticity using the fluid 

and solid displacements as the state variables (six variables); for the case of 

inviscid fluid, they worked out the first true time domain fundamental solution in 

closed form.  

Cheng, et. al. (1991) derived the integral equations of poro-elasticity from the 

reciprocity relation in frequency domain. They obtained the 3-D as well as 2-D 

fundamental solutions by the frequency domain thermoelastic analogy. Although 

the fundamental solutions were given in differential form only, they are listed in 

explicit form in the dissertation by Badmus (1990) and Cheng and Detournay 

(1998). An analytical solution to the one dimensional poro-elastic column, 

harmonically excited either from the top by a vertical solid stress/fluid pressure or 

from bottom by specified displacement was provided and to verify the model 

numerical results from a two dimensional BEM implementation were compared to 

these solutions. A preliminary Coulomb failure analysis in plain strain was 

provided. 

Dominguez (1991, 1992) published an application of BEM in 2-D dynamic poro-

elasticity. He used Bonnet’s fundamental solutions with corrections. 

The first complete set of fundamental solutions in Laplace transform domain was 

published by Chen (1992). Chen derived time domain fundamental as well, but 

they are not in closed form and contain some integrals.  

Approximate time domain fundamental solutions were derived by Kaynia (1992) 

and Gatmiri and Kamalian (2002). 

A full axi-symmetric formulation for dynamic analysis of foundations on poro-

elastic media by BEM was accomplished by Dargush and Chopra (1995).  
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Antes and Wiebe (1996), discuss both time and Laplace domain BEM 

formulations for wave propagation problems, using two formulations of poro-

elasticity, namely the solid-fluid displacement (u-U formulation, 6 unknowns) and 

solid displacement-pore pressure (u-p formulation, 4 unknowns). They present the 

boundary integral equations for the 4 different formulations and discuss the forms 

of fundamental solutions in each case. The authors’ claim that time domain 

fundamental solutions, in explicit form, can only be obtained in the idealized case 

of infinite permeability. The methods of deriving fundamental solutions are briefly 

mentioned and the 3-D fundamental solutions for displacements in Laplace 

domain are given in explicit form. Numerical results from a 3-D BEM solution for 

1-D column problem (classical bar theory) are presented in graphics; the results 

compare well to analytical solution (Cheng et. al. 1991). The paper discusses the 

importance of finite permeability in connection to the superfluous resonances 

occurring in the case of infinite permeability. The authors compare poro-elastic 

waves to purely elastic waves and conclude that for short observation times a one 

phase elastic solution with bulk material properties would be sufficient. They 

remark also that the problem may best be formulated in transform domain using 

four variables (u-p). A nice review of formulation of integral equations and 

fundamental solutions is given by Cheng and Detournay (1998). 

Chopra (2001) gives a review of theoretical background of poro-elasticity and the 

use of BEM in related problems. 

A time domain poro-elastodynamic boundary element formulation using a special 

time stepping procedure, called Convolution Quadrature Method by Lubic, which 

requires the Laplace transform fundamental solutions only, has been published 

(Schanz, 2001a, b).   

Fundamental solutions of poro-elasticity in the dynamic rage for both ui-p (solid 

displacements-pore pressure) and ui-Ui (solid displacements-fluid displacements) 

formulations are investigated by Pryl and Schanz (2004) for incompressible 

constituents.  

More recently, a simplified BE model is developed for low relative velocity 

behaviour by Schanz and Struckmeier (2005). 
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CHAPTER 4 

 

 

BIE FORMULATION FOR PORO-ELASTICITY 

 

 

4.1 Boundary Integral Equations (BIE): 

 

Boundary integral equations of poro-elastodynamics can be obtained from either 

the weighted residual statement or the theorem of reciprocal work (Schanz 2001.a, 

b). Here, both methods will be presented to show that they yield the same BIE’s.  

 

In what follows every variable is in Fourier transform space, but to simplify the 

notation, the superscript F() designating Fourier transform will be omitted later.  

 

4.1.1 BIE by the Method of Weighted Residuals 

 

The equations (2.49) and (2.54) are multiplied by two different weight functions 

and integrated over the problem domain. Since (2.49) is a vector equation it must 

be multiplied by a vector function and (2.54) with a scalar function 

 

The technique essentially consists in taking the inner product of the system of 

PDE’s (2.55) with a vector of weighting functions [ ]T

i PU , i.e., let [ ]B  represent 

the partial differential operator pertaining to equations (2.55) of the chapter 2, then 

one can write these equations in matrix form as, 
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  [ ] { } 0F
p

u
B i =+








 ………………………........................ (4.1) 

where, 

  { } 
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a

f
F i  ......................................................................  (4.2) 

 

Then the weighted residual statement becomes, 
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∫
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B  ........................................................ (4.3) 

 

Then, 

0dU*).492 .eqn( i =Ω∫
Ω
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ij,j
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F
jj,i =Ω++++−++∫
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44 344 2143421

βρρωβαλµµ  ............. (4.4) 

 

Now, each integral will be evaluated by parts separately,  

 

(1)→ ( ) ∫∫∫ −=
ΩΩΩ

ΩµΩµΩµ dUudUudUu j,ij,ij,ij,iijj,i  

 

the first integral on the right can now be transformed to surface integral by 

applying GIT. Hence, 

 

 ( ) ∫∫∫ −=
ΩΓΩ

ΩµΓµΩµ dUudnUudUu j,ij,ijij,iijj,i  

 

applying integration by parts and GIT to the second integral, 
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( ) ( ) ∫∫∫∫ +−=
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similarly, 

 

(2) →  with GIT twice 

 

∫∫∫∫ +−=
ΩΓΓΩ

ΩµΓµΓµΩµ dUudUundUundUu ji,ijj,ijiii,jjiij,j  

 

(3) →  with GIT twice 

 

∫∫∫∫ +−=
ΩΓΓΩ

ΩλΓλΓλΩλ dUudUundUundUu ij,iji,ijjij,jiiji,j  

 

(4) → ( ) ( ) ( )∫∫∫ +−−+−=+−
ΩΓΩ

ΩβαΓβαΩβα dpUdpUndUp i,iiiii,  

 

(5) → ( )∫
Ω

Ω+− dUu iif
2 βρρω  

 

(6) →  ∫
Ω

ΩdUf ii  
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collecting the terms, 
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or, 
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Next for equation (2.54), 
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Again employing GIT 
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Now, adding (4.7) and (4.9) 
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collecting terms, 
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Equation (4.11) is the basic integral equation (BIE) of poro-elasticity. Recalling 

that stress tensor is related to displacements by equation (2.48) 

 

( )[ ]jijik,ki,jj,iji puuu δαδλµτ −++=   

 

traction (stress) vector to stress tensor by Cauchy’s stress formula (2.22) 
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components of the flux vector to pressure and skeleton displacements by (2.47) 
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and normal component of flux vector is 
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one can then identify the following in eqn. (4.11),  
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 45 

( )[ ] *
ijjijik,ki,jj,i tnPUUU →−++ δαδλµ  ………………………… (4.12.b) 
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then BIE abbreviates to the following form 
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If there are no body forces ( 0f F
i = ) and no internal fluid sources ( 0a F = ), eqn. 

(4.15) further simplifies to, 

 

[ ] { }

( )[ ]

0dP
Q

1
U)(Pp 

dU)(PUUUu

dpqPq
i

1
dutUt

2E

i,iii,

f
2

1E

if
2

i,ji,jij,jjj,ii

*
nni

*
iii

=Ω







+++

−
+

Ω+++−+++

+Γ−+Γ−

∫

∫

∫∫

Ω

Ω

ΓΓ

44444 344444 21

4444444444 34444444444 21

βα
ρω

β

βρρωβαλµµ

ω

 ….………….. (4.16) 

 

It is seen that the terms designated by E1 and E2 in equation (4.16) are the same 

form of PDE’s as equations (2.49) and (2.54), the governing equations of poro-

elasticity.  

 

From (4.16), two boundary integral equations result in the following way 
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then (4.16) gives 

 

[ ] [ ]∫∫ −+−=
ΓΓ

Γ
ω

Γ dpqPq
i

1
dutUt )A(u

*l
n

Sl
ni

*l
i

Sl
iil  …..…………………. (4.18) 

 



 47 

if it is noted, (4.17) are the same equations as (2.49) and (2.54), the GE’s of poro-

elasticity, with body force per unit volume )P,A(f il
F
i ∆δ= and fluid source 0a F

i = . 

Then, (4.17) can be interpreted as another poro-elastic medium under the influence 

of a unit load at point “A” in “l” direction and no fluid source. Schematically, 

(4.17) defines, 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Interpretation of fundamental solutions in weighted residual 
method as suddenly applied point loads in poro-elastic full space. 
 

s' P and s' U
SlSl

i  are found by applying the unit load in 1, 2, 3 directions in 

succession. 
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then (4.16) gives, 
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again (4.19) are the same equations as (2.49), (2.54) with zero body forces and unit 

impulsive fluid source at point “A”. 

 

Solutions to (4.17) and (4.19) give the fundamental solutions of 3-D poro-

elasticity in Fourier Transform Space (FTS). It is to be noted that fundamental 

solutions correspond to unit Dirac sources in time and space, for both body force 

and fluid source terms in governing equations (2.55). That is in time domain, 

fundamental solutions correspond to solutions of the governing equations for 
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where, ie
r

 designates a unit vector in the direction of i-th coordinate axis. 

 

4.1.2 BIE by Reciprocal Work Theorem for Poro-elasticity 

 

Define two poroelastic systems : 

 

1. Actual System (ACS), actual poro-elastic medium to be analysed. 

2. Auxillary System (AXS), fictitious infinite medium of same PE material 
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Figure 4.2 Definition of the actual (ACS) and auxiliary (AXS) poro-elastic 
systems in reciprocal work theorem. 
 

The reciprocity theorem states (in FTS) that, 
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where ( )* designates AXS variables. 

 

Proof of the reciprocity (in FTS) (Schanz 2001 a, b): 

 

Recall → Constitutive equations of poro-elasticity in FTS (eqn. 2.38), 
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which proves the reciprocity theorem for PE in FTS. Now, to obtain the boundary 

integral equation integrate (4.21) over the domain of ACS ; 
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Now, applying GIT to the first integral on the right and employing SEM, 
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(1) + (2) = (3) + (4)  →   gives 
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making the following subtitutions in the above, 

From Darcy’s Law (Eqn. 2.42): 
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several terms cancel and the following integral equation will result, 
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In the absence of body forces ( 0f i = ) and fluid source (a = 0) in ACS, (4.24) 

becomes 
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From (4.25), two integral equations will result if ; 

 

1. *
if  is taken as point load with unit stregth (unit Dirac source) at the source 

point A in xl -direction, and a* is zero; i.e., ( ) 0a and P,Af *
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In which case, *
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where, 
*l*l

i p and u  are the fundamental solutions. There are  

9 (for 
*l

iu ) + 3 (for 
*lp ) = 12 (total) fundamental solutions for this set. 
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2. *
if are zero and a* is a point fluid source of unit strength (unit Dirac 

source), i.e., ( )P,Aa and 0f **l
i ∆==  

In which case, *
iu and *p are the solution of the system : 
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where, **
i p and u  are the fundamental solutions. There are 3 ( *

iu ) + 1 ( *p ) = 4 

fundamental solutions for this set. 

 

Then one obtains the following set of boundary integral equations, 
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The BIE’s in (4.26) contain a set of 16 fundamental solutions in total. Note that, 

eqn.’s (4.26) are the same BIE obtained earlier by method of weighted residuals 

(eqn’s (4.18) and (4.20)). 

 



 55 

 

 

 

 

CHAPTER 5 

 

 

FUNDAMENTAL SOLUTIONS (3-D) OF DYNAMIC PORO-ELASTICITY 

 

 

5.1 Fundamental Solutions 

 

The early attempts to find the fundamental solutions for poro-elastodynamics are 

due to Burridge and Vargas (1979), Bonnet (Bonnet, 1987) and Boutin (Boutin, 

1987). However, the solutions they provided were incomplete or contained errors 

(Chen, 1994.a). The first successful derivation therefore is known to have provided 

by Chen (1992) who followed the method utilized by the Soviet applied 

mathematician Kupradze in his monograph (Kupradze, 1979) in connexion with 

thermoelasticity (see also Nowacki, 1975). The method is deemed to be due to 

Swiss mathematician Hörmander (Kupradze 1979). In the following we lay out 

this method, and give full derivations of the fundamental solutions of the 

governing equations of poro-elastodynamics. 

 

5.1.1 An Operator Method for Finding Fundamental Solutions of Systems of 

Differential Operators 

 

A linear partial differential operator with constant coefficients follows the same 

rules of linear algebra, i.e. it can be added, multiplied, inverted much the same as 

an ordinary matrix.  

 

For instance, consider the following linear ordinary differential equation, 
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since “L” is a linear operator with constant coefficients, it can be expanded to 

power series much as we do with algebraic functions, that is: 
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The solution is then, 
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Same idea applies to systems of ODE also, e.g. consider the system, 
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which can be written in matrix form as, 
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then, the particular integral is given by 
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evaluating the inverse operator, one gets 
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and finally, 
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is the required particular integral of the system. 
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The same techniques can be applied to find the fundamental solutions for many 

ordinary differential equations as well. For instance, it can be shown that the 

fundamental solution to the first order operator 
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is 

 ( )( ) ( ) ( )ax1 eaxsign
2

1
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Although, it is possible to derive the above fundamental solution via Fourier (or 

Laplace transform) we present a method based on a transformation over the 

dependent variable, as 
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This reduces the differential equation to 

 

[ ] )ax(),ax(VD −δ=λ−  

 

on integration, we get 

 

 )ax(sign
2

1
),ax(V −=λ−  

 

Thus, on back substitution the fundamental solution for )1(U becomes, 

 

 )ax()1( e).ax(sign
2

1
),ax(U −λ−=λ−  

 

It is to be noted that above fundamental solution reduces in the limit 0       →λ   to 
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 ( ) ( ) ( )axsign
2

1
0,axU 1 −=−  

 

which is the fundamental solution of  ( ) ( )axaxDU −δ=−  

 

In view of this information one can derive the fundamental solution to the 1-D 

Helmholtz equation: 

 

( ) ( ) ( )ax),ax(UD 222 −δ=λ−λ−  →  1-D Helmholtz equation 

 

But the 1-D Helmholtz operator can algebraically be factored to read  

 

 ( )( ) ( ) ( )ax),ax(UDD 2 −δ=λ−λ+λ−  

 

then the fundamental solution is given by 

 

 ( ) ( )
( )( )λ+λ−

−δ
=λ−

DD

ax
),ax(U 2  

 

applying partial fractions expansion the inverse operator becomes 

 

( )

( ) ( )
( )ax

D

1

D

1

2

1
),ax(U 2 −δ









λ+
−

λ−λ
=λ−  

 

then the fundamental solution of the 1-D Helmholtz equation can be written as the 

sum of those of two first order operator’s as 

 

 ( ) ( ) ( )[ ]),ax(U),ax(U
2

1
),ax(U 112 λ−−−λ−

λ
=λ−  

 

more explicitly 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )
( )

axsinh
2

1
                     

axsinh
2

axsign
                      

2

ee

2

axsign
                      

eaxsign
2

1
eaxsign

2

1

2

1
),ax(U

axsinh

axax

axax2

−λ
λ

=

−λ
λ

−
=








 −

λ

−
=









−−−

λ
=λ−

−λ

−λ−−λ

−λ−−λ

44 344 21  

 

which is the same as given in many references, e.g. Rashed 2002, Pozrikidis 2002, 

and Kythe 1995. 

 

Using this technique, it is possible to derive the fundamental solutions of higher 

order operators, to mention e.g. 

 

 ( ) ( ) ( )ax),ax(UD 444 −δ=λ−λ−  

 

which governs beam bending for instance, by the above method has the 

fundamental solution 

 

 

( )

( )
( )

( )

( )

[ ]axsinaxsinh
4

1
                     

i2

axisinh

2

axsinh

2

1
                     

ax
D

1

D

1

2

1
                     

ax
D

1
),ax(U

3

2

iD

22222

44

4

22

−λ−−λ
λ

=










λ

−λ
−

λ

−λ

λ
=

−δ

















λ+
−

λ−λ
=

−δ
λ−

=λ−

λ−

321  

 

this checks with that given by Schanz 2001.b. 
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Now, these ideas will be extended to partial differential equations with constant 

coefficients, and the method will then be applied to obtain fundamental solutions 

of poroelasticity as particular integrals of the governing equations with Dirac 

sources. 

A set of coupled partial differential equations is written in matrix operator form as, 

 

0uB =  …………………………………………………………….….. (5.1) 

 

where B is the matrix partial differential operator and u is the vector of unknowns. 

A matrix differential operator is a matrix whose elements are partial differential 

operators. A multiplication of such a matrix with a vector of functions means that 

the differential operators as the elements of the matrix are to be applied on the 

functions in the vector following the rules of normal matrix multiplication, the 

following example is provided by M. Schanz (Schanz 2001 b), 

 

let 
















∂∂

∂∂

∂∂

=

21

2t

21

20

4

0

B  and ( ){ }
( )
( )
( )
















==

t,xu

t,xu

t,xu

t,xuu

j3

j2

j1

ji  

 

Then, 0uB =  → means, 

 

( )
( )
( )

0

t,xu

t,xu

t,xu

20

4

0

j3

j2

j1

21

2t

21

=

































∂∂

∂∂

∂∂

      ⇔      

0)t,x(u2)t,x(u                

0)t,x(u)t,x(u4)t,x(u

0                  )t,x(u)t,x(u

j32j21

j32j2j1t

j22j11

=∂+∂

=∂++∂

=∂+∂

 

 

The rules of matrix algebra apply analogously. The elements cof
ijB of the cofactor 

matrix of B are then computed by the determinant of the sub matrix of B with the 

row “i” and column “j” deleted multiplied by ( ) ji1 +
− . Then, 

 

















∂∂−∂∂∂−∂∂

∂∂−∂∂∂∂−

∂∂∂∂−∂∂−∂

=

2t12122

112122

1t2t211
cof

4

22

28

B  ………………………………………….. (5.2) 
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The determinant of B is defined similarly; 

 

( ) ( )t222121

21

2t

21

28

20

4

0

B ∂∂∂−∂∂−∂∂=

∂∂

∂∂

∂∂

==∆  ………………………….……… (5.3) 

 

The cofactor and determinant provides definition of the inverse operator because, 

 

( )

( ) ( )
( ) ( ) ( )

( ) ( )

I 

 

4

22

28

20

4

0

BB

2t142221100

01122124222t0

002t2221181

2t12122

112122

1t2t211

21

2t

21
Tcof

∆=

















=

















∂∂−∂∂∂−∂∂

∂∂−∂∂∂∂−

∂∂∂∂−∂∂−∂

















∂∂

∂∂

∂∂

=

∂∂−∂∂+∂∂−∂

∂∂−∂+∂∂+∂∂−∂

∂∂−∂+∂∂−∂∂

 

Therefore, the inverse operator is given by 

 

( )Tcof1 B
1

B
∆

=
−  ………………………………………………………………….. (5.4) 

 

The operator method applied to find the fundamental solutions of poro-

elastodynamics: 

 

For the governing equations of poro-elastodynamics, the differential operator is 

(recall equation (2.55)) 

 

( ) ( ) ( )

( )
















ω
−∇

ωρ

β
−∂β+αω−

∂β+α−δβρ+ρω+∂∂µ+λ+δ∇µ

=

Q

i

i
i

B

f
j

iijfjiij

2

22

 ……………..…………. (5.5) 

 

or in extended form, 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )






















−∇−∂+−∂+−∂+−

∂+−++∂∂++∇∂∂+∂∂+

∂+−∂∂+++∂∂++∇∂∂+
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Q

i

i
iii

B

2

f
321

3f
2

33
2

2313

232f
2

22
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12

13121f
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11
2

ω

ωρ

β
βαωβαωβαω

βαβρρωµλµµλµλ

βαµλβρρωµλµµλ

βαµλµλβρρωµλµ

  …………... (5.6) 

 

then the governing equations in matrix extended form are 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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∂+−∂∂+++∂∂++∇∂∂+

∂+−∂∂+∂∂+++∂∂++∇

0

0

0

0

a

f

f

f

p

u

u

u

Q

i2

fi3i2i1i

3f
2

33
2

2313

232f
2

22
2

12

13121f
2

11
2

3

2

1

3

2

1

ω

ωρ

β
βαωβαωβαω

βαβρρωµλµµλµλ

βαµλβρρωµλµµλ

βαµλµλβρρωµλµ

 

                 …………. (5.7) 
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The fundamental solutions are the 4 set of solutions for (u, p) when one of {f1, f2, 

f3, a} in (5.7) is set equal to the Dirac delta function and others to zero. 

Designating the fundamental solution matrix by G, one has for the fundamental 

solutions 

 

  ( ) 0IP,AGB =∆+  ……………………………………………… (5.8) 

where, 

 

  







=

**
k

*
llk

*

pp

uu
G  

 

is a 4x4 matrix of fundamental solutions. 

 

If we let  ( ) Φ=
TcofBG  ………………………………………………….... (5.9) 

 

  ( ) ( ) 0IP,ABB
Tcof

=∆+Φ  

 

but since   

 

( ) ( )IBdetBB
Tcof

=  

 

  ( ) ( ) 0P,ABdet =∆+Φ  ………...………………………………… (5.10) 

 

If now, (5.10) can be solved for Φ  then fundamental solutions can be evaluated 

from (5.9). It remains to evaluate cofB  and ( )Bdet , solve (5.10) for Φ  then evaluate 

the matrix of fundamental solutions by ( ) Φ=
TcofBG  

 

Before proceeding to find determinant and the cofactor transpose of B matrix, we 

introduce the abbreviations, 
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( )

2

2

f

f
22

CiBDF

Q

i

i
D

C

B

A

ω

ω

ωρ

β

βα

µλ

βρρωµ

+=

+∇=

+=

+=

++∇=

 ………………………………………………… (5.11) 

 

then det(B) is written as, 

 

( )

DCiCiCi

CBABB

CBBAB

CBBBA

Bdet

321

3333231

2322221

1312111

−∂−∂−∂−

∂−∂∂+∂∂∂∂

∂−∂∂∂∂+∂∂

∂−∂∂∂∂∂∂+

=

ωωω

 ……………………… (5.12) 

 

multiplying the first row by 32∂∂ , second row by 31∂∂  and the third by 21∂∂  ,  

 

 

( )

DCiCiCi

CBABB

CBBAB

CBBBA

Bdet

−∂ω−∂ω−∂ω−

∂−∂+∂∂∂

∂−∂∂+∂∂

∂−∂∂∂+∂

∂
=

321

12312331212231123

12312331223131123

12312331223112323

112233

1  

 

where, operations like 321 ∂∂∂  have been abbreviated as 123∂ , etc. 

The determinant can then be simplified by row operations to yield 

 

( )

123D1233Ci1223Ci1123Ci

01233D

2C
iB12A1223D

2C
iB1123D

2C
iB

012130

001323

11122333

2
A

Bdet

∂∂∂∂

∂++∂∂+∂+

∂−∂

∂−∂










































∂

−
=

ωωω

ωωω
 

 

factoring 
12D

2
C

iB ∂+ 









ω  out and expanding about the last column, 
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332313

1213

1323

1233

2

D

2
C

iB

A
0

0DA

)Bdet(
D

2C
iB

∂+∂∂

∂−∂

∂−∂

∂














−

=

+

+

ω

ω

 

 

Finally, 

 

( ) ( )[ ]ADCiBDABdet 222 +∇+−= ω  …………………………………….… (5.13) 

 

(5.13) when extended reads, 
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( ) ( )

( )

( )

( )
( )

( )
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µ+λ

βρ+ρω
−

µ+λβ

β+αρω
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β
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+∇
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2

2

f
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2
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2

Q

f
2
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2

f
2

2

fi

2
2
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which can be factored to read, 

 

( ) ( )





 −∇




 −∇





 −∇

+
−= 2

2
22

1
2

2
2
3

2

fi

22
Bdet λλλ

ωρ

µµλβ
 ……………….. (5.14) 

 

where, 
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( )

( )

( )
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( )
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+
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+

β

ρω

±
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−
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+

β

ρω

=λ

µ
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2
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f
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2

f
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2
f

2

Q

f
2

2

12
2,1

f
2

2
3

 ……... (5.15) 
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Then, according to (5.10) one has 

 

( ) ( ) 0P,A2
2

22
1

2
2

2
3

2

fi

22
=∆+Φ





 λ−∇




 λ−∇





 λ−∇

ωρ

µµ+λβ
−  …………… (5.16) 

 

Let  

 

( )
Φ




 −∇

+
−=Ψ 2

3
2

fi

22
λ

ωρ

µµλβ
 ……..………………………………… (5.17) 

 

Then, 

 

( ) 0P,A 2
2

22
1

22
3

2 =∆+Ψ




 −∇




 −∇




 −∇ λλλ  ………………………… (5.18) 

 

 

Algebraic Reduction - The difference trick: (Ortner, 1989)  

 

Introduce the following, 

 

Ψ




 −∇




 −∇=Ψ

Ψ




 −∇




 −∇=Ψ

Ψ




 −∇




 −∇=Ψ

 2
2

22
1

2
3

 2
1

22
3

2
2

 2
2

22
3

2
1

λλ

λλ

λλ

 ………………………………………….. (5.19) 

 

Then from (5.18) 

 

( ) ( )
( ) ( )
( ) ( ) 0P,A

0P,A
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3
2
3

2

2
2
2

2

1
2
1

2

=∆+Ψ−∇

=∆+Ψ−∇

=∆+Ψ−∇

λ

λ

λ

 ……………………………………………….. (5.20) 
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These equations are well known Helmholtz equations, thus the solutions are 

 

r
3

r
2

r
1

3

2

1

e
r4

1

e
r4

1

e
r4

1

λ

λ

λ

π

π

π

−

−

−

=Ψ

=Ψ

=Ψ

 ………………………………...……………………….. (5.21) 

 

where,  

 

( )( )
iiiiAP

axaxrrPAr

P and A sintpo between cetandisr

−−=−==

=
rr  ……………………..………….… (5.22) 

 

From (5.19) 
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hence,  
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Ψ−Ψ
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 ………………………………………….. (5.24.a, b) 

 

subtracting (5.24.b from 5.24.a) 
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Substituting 331 Ψ ,Ψ ,Ψ  from (5.21) into (5.25) 
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rearranging, 
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The fundamental solutions can now be determined from (5.9): 

 

( ) Φ=
TcofBG . 

 

where, 
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        ……………….. (5.28) 

 

Where, the factor “F” is defined in (5.11). We also recall (5.17),  
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from which Φ  can be obtained by inversion as, 
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1
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Recall also the factor A in (5.28) is given by )(A 2

3

2 λ−∇µ= , then the fundamental 

solution matrix in extended form is 
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simplifying,  
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...................................... (5.31) 

 

or more simply in index notation 

 

( )
( )

( ) ΨABAACi
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2

i
G 22
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iijij
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∇+−∂ω−

∂−∂−δ∇+
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ωρ
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Thus, the 16 fundamental solutions in four groups are given by 
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( )
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( )
[ ]ΨAC
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+
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 ...........................................................   (4.35) 

 

( )
[ ]ΨABA

2

i
pG 22f*

44 ∇+
µµ+λβ

ωρ
−==  .....................................................  (4.36) 

 

 

5.2 Derivation of Fundamental Solutions of Poro-elastodynamics 

 

In this section, explicit expressions for the 1st and 2nd fundamental solutions 

(FS’s) of the dynamic poro-elasticity in frequency domain will be derived.  

1st FS’s can be obtained by inserting the expression for ψ  from (5.27) into (5.33), 

(5.34), 5.35) and (5.36). 

2nd FS’s, however are obtained from the 1st FS’s via the relationships for the 

traction vector (Cauchy’s Stress Formula, eqn. 2.22) and fluid flux (Darcy’s Law, 

eqn. 2.47) 

Before derivation, we repeat the expression for ψ  (5.27) below. 
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Also, the following identities will prove to be useful and will be used frequently in 

the course: 

Recall that r designates the distance from the source point “A” to the field point 

“P”, (5.22)  

 

( )( )iiiiAP axaxrrPAr −−=−==
rr
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)P,A(rr =  is a two point scalar function. Then, the gradient of “r”,  
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=∇   ........................................................ (5.37) 

 

will be a vector, when the differentiation is evaluated in (5.37) 

 

r

ax
r ii

i,

−
=   ……………………………............................................... (5.38) 

 

which are identified to be the components of the unit vector ( )irr =  pointing in the 

direction from “A” to “P”. 

 

Similarly,  
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Also, since the function ψ  contains terms like
r
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, we further needs;  
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Here, we introduce the abbreviation 

 

( ) ( ) ji
2

ijjiijji2ij rrrr3
r

rr3
r

1
R λ+δ−

λ
+δ−=λ  



 73 

because it will often recur in the development to follow. By (5.40) one can infer 

the following easily, 
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Now, we start deriving the components of G matrix. 

 

5.2.1 First (Displacement) Fundamental Solutions 

 

The terms *
iju  : Solid Displacement components at the field point “P” due to unit 

point load in j-direction at the source point “A”: 
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where, (recall 5.11) 

 



 74 

 

( )[ ]

( ) ( )
Q

i

iQ

i

i
       

Q

i

i
AD

f
3

2

f

f
2

4

f

2

f
f

22

βρρω

ωρ

βρρβωωµ

ωρ

µβ

ω

ωρ

β
βρρωµ

+
+∇









 +
++∇=









+∇++∇=

 

 

and 

 

 
( ) ( )

( ) ( ) ( )22

f

22

f

2

i
Q

i

i
                       

i
Q

i

i
CiBDF

βαω
µλω

ωρ

µλβ

βαω
ω

ωρ

β
µλω

++
+

+∇
+

=

++







+∇+=+=

 

 

Then,

 

( ) ( ) ( ) ( ) ( )
Q

i
i

iQ

i
2

i
2FAD f

3
22

f

f
2

4

f

2 βρρω
βαω

ωρ

βρρβωω
µλ

ωρ

β
µλ

+
+∇








++

+
+++∇+=∇+  

        .......................... (5.45) 

(1) → Evaluate ( )Ψ∇+ 2FAD  
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Collecting terms for each rieλ , and taking the factor 
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this expression is substantially simplified on simplifying the multipliers I1, I2, I3,  
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(2) Evaluate Ψ∂ ijF  → 
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Referring to (5.40) and (5.42), i.e. 
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The above expression for *
ijij uG =  can be shortened by algebraic manipulations: 
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The terms *
iu  : Solid Displacement components at the field point “P” due to unit 

fluid injection rate at the source point “A”: 

 

( )
[ ]ΨAC

2

i
uG i

f*
i4i ∂−

+
==

µµλβ

ωρ
 ………………..................................... (5.54) 

 

Recall → 
( )

βα

λµβρρωµ

+=

−∇=++∇=

C

)(A 2
3

2
f

22

 

Then, 

 

( )
( )

[ ]

( )
( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) 







































−−
−

−−
−

−−

−−
+

−−
+

−−
∂

+

+
−=

−∇∂
+

+
−=

−−−

−−−

2
2

2
3

2
1

2
3

r2
3

2
1

2
2

2
3

2
2

r2
3

2
3

2
1

2
2

2
1

r2
3

2
2

2
3

2
1

2
3

r2
3

2
1

2
2

2
3

2
2

r2
2

2
3

2
1

2
2

2
1

r2
1

i
f

2
3

2
i

f
4i

321

321

eee
-          

eee

r4

1

2

i
      

2

i
G

λλλλ

λ

λλλλ

λ

λλλλ

λ

λλλλ

λ

λλλλ

λ

λλλλ

λ

πµλβ

βαωρ

ψλψ
µλβ

βαωρ

λλλ

λλλ

 

         .............. (5.55) 

upon simplification 
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carrying out the differentiation, 
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finally, 
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The terms *
jp  : Fluid Pressure at the field point “P” due to unit load in j-direction 

at the source point “A”: 
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The term *p  : Fluid Pressure at the field point “P” due to unit fluid injection at the 

source point “A”: 
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where, using the identities (5.41) and (5.43) 
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The expressions T1, T2, T3 can be simplified by algebraic manipulations as 

follows, 
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Similarly, 
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Since, *
44 pG =  is the solution for the fluid part, which cannot sustain shear waves. 

As a result, we have 
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5.2.2 Second Fundamental Solutions (FS’s for Tractions and Net Flux)  

 

The terms *
ijt  → FS for tractions due to unit force at the source pt. “A” in “j” 

direction: 
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First we recall Cauchy’s Stress Formula (2.22) for the traction vector, 
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Hence, replacing the index “l” by “j” 
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The terms j*
nq  → FS for normal fluid flux due to unit force at the source pt. “A” in 

“j” direction: 
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Recall → Equation 2.47 (Darcy’s Law in FTS) 
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it  → FS for tractions due to unit fluid injection rate at the source pt. “A”: 
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(note, derivation of (5.97) follows the same outline as given for j*
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nq  → FS for normal component of fluid flux vector due to unit fluid injection rate 
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5.3 Investigation of Singularities of the Fundamental Solutions 
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5.4 BIE in Matrix Form and the Free Term Coefficient 

 

We recall the BIE of PE in the absence of body sources (Eqn. 4.26) 

 

( )

( ) ∫∫∫∫
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         ........................ (4.26) 

 

Introducing the notation,  
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where, u  represents a generalized displacement and t  represents a generalized 

traction vector, but equation (4.26) gives the solid displacement and the fluid 

pressure for a point inside the domain, when the source point “A” is brought to the 

boundary “Г” the BIE (3.26) can be expressed in matrix form as 

 

( ) ( ) ( ) ( ) ( )∫∫
ΓΓ

Γ′−Γ′= dPuP,AHdPtP,AGAuc  .......................................................... (5.122) 

 

where,  
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and 
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The constant “c” is called the free term coefficient and is equal to 0.5 for a smooth 

boundary. 
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CHAPTER 6 

 

 

BOUNDARY ELEMENT FORMULATION FOR PORO-ELASTIC SOLIDS 

WITH AXI-SYMMETRIC GEOMETRY 

 
 

 
 

We closely follow the basic outline of the formulation given in Özkan, 1995. 

Consider a poro-elastic isotropic axi-symmetric body of boundary S, referred to a 

cylindrical coordinate system R-θ-z as shown in Figure 6.1 where the z-axis is the 

axis of revolution of the body. It will be assumed that the boundary conditions are 

not axi-symmetric. In this section, the 3-D boundary integral equation developed 

previously for poro-elastodynamics will be expressed in cylindrical coordinates 

through a coordinate transformation and the method presented in Özkan, 1995 will 

be extended to poro-elastodynamic boundary element formulation. This method is 

based on complex Fourier series expansion of the boundary quantities 

(displacements, pore-pressure, tractions and normal component of fluid flux 

vector) in circumferencal direction.  

There are two main advantages of this method (Özkan, 1995) over others available 

in the literature (Brebbia and Dominguez 1992, Dargush and Chopra 1996) :  

i) the evaluation of integrals in θ direction is accomplished by FFT algorithm, 

which reduces the computational load, 

ii) the need for differentiating symmetric and anti-symmetric modes in the 

analysis is eliminated, which facilitates computer programming. 

 

 



 115 

 
 

 

  

Figure 6.1  An axi-symmetric body referred to Rθz coordinate system: a) three 

dimensional body, b) x-section on R-Z plane  
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6.1 Boundary Integral Equations in Cylindrical Coordinates 

 

We start by recalling the 3-D boundary integral formulation in FTS when the body 

is referred to a rectangular coordinate system, in matrix form: 

 

( ) ( ) ( ) ( ) ( )∫∫
ΓΓ

Γ′−Γ′= dPuP,AHdPtP,AGAuc    ............................................. (6.1) 

 

where the terms involving body sources have been disregarded as previously. We 

again note that an underline designates a matrix quantity; G′ and H′  matrices (4x4) 

contain first and second fundamental solutions of poro-elastodynamics, 

respectively. We recall that these solutions are two point (source point A and field 

point P) functions and associated with an infinite medium with either a point force 

in only one coordinate direction in turn or a unit fluid injection rate at a point “A” 

(called the source point). The point “P” in the Eqn. (6.1) is the integration point on 

the boundary “S”. t and u are (4x1) column matrices representing generalized 

traction and displacement vectors at the boundary points, respectively; as may be 

recalled, c is a (4x4) matrix which has the form  

 

  I
2

1
c =            ............................................................................... (6.2) 

if the boundary is smooth at the source point “A”. Equation (6.2) holds in our 

formulation, as we shall use constant elements in the analysis. 

The fundamental solutions in Eqn. (6.1) are functions of the positions of the source 

point A and the integration point P, and on the angular frequency ω; and they 

involve the variables (recall 5.57, 58, 61 65, 90, 98, 100, 104) : 

 

 r :  the distance between “A” and “P” 

 r  : unit vector in AP direction 

n : outer unit normal vector at “P” 
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nr  : derivative of r in n direction at P (n is the normal axis at 

“P”) 

 

where, 

 

 

[ ]( )

iin

ii
i

iiii

nr
n

r
r

r

ax
r

axaxr

=
∂

∂
=

−
=

−−=

    .................................................................. (6.3) 

jj a ,x    : coordinates of “P” and “A” , respectively in 

rectangular coordinate system j runs 1-3.  

 

In cylindrical coordinates, we refer the point “P” by (R, θ, z) and point “A” by  

(R´, θ´, z´), see Figure 6.1. 

 

One can infer that the resolution of the generalized displacements and tractions in 

cylindrical and rectangular coordinate frames obey the following transformation 

rule. 

 

 ct Qt =     and   cu Qu =    …………………………………................... (6.4) 

 

where, [ ]T

rc uu p  u  u  zθ=  and [ ]T

rc tt nz q    t  tθ=  are the generalized 

displacement and traction vectors resolved in cylindrical coordinate frame. The 

transformation (rotation) matrix Q  is defined at a certain point “D” by 

 

 

















 −

=

1000

0100

00cossin

00sincos

αα

αα

Q  …………………………………………. (6.5) 

 

where “α ” is the angular (θ) coordinate of the point “D”. 
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Then the transformation rule for the generalized displacement and traction vectors 

at points “A” and “P” can be written as  

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )PtPQPt

AtAQAt

PuPQPu

AuAQAu

c

c

c

c

=

=

=

=

         …………………………………………...……  (6.6) 

 

on substituting (6.6) in (6.1) we have for the BIE 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
ΓΓ

Γ′−Γ′= dPuPQP,AHdPtPQP,AGAuAQc ccc     …...……….…….. (6.7) 

 

on multiplying (6.7) from right by ( )AQT , the superscript “T” designates the matrix 

transpose, we get 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
ΓΓ

Γ′−Γ′= dPuPQP,AHAQdPtPQP,AGAQAu AQ c AQ c

H

T

c

G

T

c

c

T

ccc

444 3444 21444 3444 2144 344 21
  

 

or, more simply   

 

( ) ( ) ( ) ( ) ( )∫∫
ΓΓ

Γ−Γ= dPu P,AHdPt P,AGAu c
cccccc …………………..……  (6.8) 

 

The surface integrals in (6.8) can be written as two iterated integrals, over the 

circumferential direction and over the generator “C”, if one notes that the surface 

differential element in cylindrical coordinates is ds d Rd θ=Γ , i.e. 

 

 ( ) ( ) sd d R .....         d.....

C

2

0

becomes ∫∫∫
π

Γ

θ →Γ  

 

hence (5.8) becomes, 
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 ( ) ( ) ( ) ( ) ( )∫∫∫∫
ππ

θ−θ=

C

2

0

cc

C

2

0

cccc dsRdPu P,AHdsRdPt P,AGAu c   ………………..… (6.9) 

 

where the differential element along the generator “C” is 

 

 22 dzdrds +=  

 

Equation (6.9) is the expression of BIE of poro-elastodynamics in cylindrical 

coordinates. Here ( )P,AG
c

 and ( )P,AH
c

 represent the fundamental solution 

matrices in cylindrical coordinates and are given by 

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )PQP,AHAQP,AH

PQP,AGAQP,AG

T
c

T
c

′=

′=
           …………………………………….. (6.10) 

  

 also, the free term coefficient  cc  in cylindrical coordinates is related to  c by 

 

( ) ( )AQ c AQ c T
c =  ………………………………………………….…… (6.11) 

 

In view of the orthogonality of  Q  and the form of c , we have 

 

 I
2

1
c c =            ........................................................................................ (6.12) 

 

In (6.11) it is understood that the boundary is smooth at the source point “A”. 

Now, the variables n ,r ,
rr

r  which appear in ( )P,AG c  and ( )P,AH c
 have the 

expressions, in cylindrical coordinates, as 

 

 ( ) ( ) ( )[ ]222 zzsinRsinRcosRcosRr ′−+θ′′−θ+θ′′−θ=    ………………... (6.13) 
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( ) ( ) ( ) ( )[ ]zz ,sinRsinR ,cosRcosR
r

1
r ,r ,rr 321

′−θ′′−θθ′′−θ==  ………. (6.14) 

 ( ) ( )zRR321 n ,sinn ,cosnn ,n ,nn θθ==    ……………………………... (6.15) 

  

where Rn , zn are the cylindrical components of the outer unit normal vector n  at 

the integration point "P". It may be noted that due to the axi-symmetry of the body, 

the θ -component of the normal vanishes, i.e. 0n =θ . 

 

6.2 Expansion of Field Variables in Complex Fourier Series 

 

The expansion of boundary quantities in complex Fourier series stems from the 

awareness that these quantities ( iu , p , it , nq ) are periodic in angular direction. 

Consider, for instance, the solid displacement components in cylindrical 

coordinates. From the axi-symmetry, it is immediately realized that 

 

 ( ) ( )z,2,Ruz,,Ru ii π+θ=θ   ………………………………………..…. (6.16) 

 

hence, the boundary displacements are “2π” periodic in angular direction, the 

same is true for other boundary quantities. Any periodic function ( ) ( )Tff += θθ , 

where T is the period, can be expanded into complex Fourier series as 

 

∑
∞

−∞=

θω
=θ

k

ik kef
~

)(f  ………………………………………………...…… (6.17) 

 

where, 

T

k2
k

π
=ω                   ………………………………………………… (6.18) 

( )∫ θθ=
θω−

T

0

ik def
T

1
f
~

k        ……………………………………………… (6.19) 

 

Here, kf
~

is the Fourier coefficient at the frequency “k” (k=0, ±1, ±2, ±3,…). 
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Then, for f to represent a typical element of u or t which are “2π” periodic, we 

can write in discrete form  

 

 

( )

( )1-N , ..... 2, 1, 0,n         ,             ef
~

f

1-N , ..... 2, 1, 0,k         ,       ef
N

1
f
~

1N

0k

N

kn
2i

kn

1N

0n

N

kn
2i

nk

==

==

∑

∑
−

=

π

−

=

π−

      ……………...… (6.20) 

 

The formulas in Eqn.’s (6.20) can be obtained by subdividing the interval [ ]π2 ,0  

into “N” (N is an even integer) equal parts and by taking into account the 

periodicity of the function “f” with the period π2 . nf  in Eqn.’s (6.20) designate 

the value of the function at θθθ ∆== nn , with
N

π
θ

2
=∆ . The two formulas in 

Eqn.’s (6.20) are referred to as “discrete” and “inverse discrete Fourier transform” 

formulas, respectively. The frequency ck
N

k ==
2

 corresponds to the cut-off 

frequency, which is the highest frequency that can be considered in the analysis. 

We note that the discrete and inverse discrete Fourier transforms can effectively be 

computed by FFT algorithm (Brigham 1988), if the subdivision “N” is chosen to 

be M
N 2= , where “M” is a positive integer. 

 

When the generalized displacement cu and traction ct  are expanded in θ-direction 

in complex Fourier series,  

 

 

( )

( )

( )∑

∑

∑

∞

−∞=

θ

∞

−∞=

θ

∞

−∞=

θ′
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k

ikk
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k

ikk
cc

k

ikk
cc

ez,Rt)z,,R(t

ez,Ru)z,,R(u

ez,Ru)z,,R(u

   ………………………………………….. (6.21) 

  

then the equation (6.9) looks 
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( )
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since 1ee ikik
=

θ′−θ′ , we can play the following trick, 
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and, 
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∑

∫ ∫

∫ ∫
∑

∞

−∞=
π
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π
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collecting all the terms to one side and combining under one summation, 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

0
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π
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π
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since harmonics θ′ike  are linearly independent, for the above summation to be zero 

we must have  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0dsRdez,Ru~P,AHdsRdez,Rt
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P,AGz,Ru~ c
C

2

0

ikk

cc

C

2

0

ikk

cc
k

cc =











θ+θ−′′ ∫ ∫∫ ∫

π
θ′−θ

π
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or, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ ∫
π

θ′−θ
π

θ′−θ θ−θ=′′
C

2

0

k

c
ik

c

C

2

0

k

c
ik

c
k

cc Rdsz,Ru~ deP,AHRdsz,Rt
~
 deP,AGz,Ru~ c  …. (6.23) 

 

since ( )z,Rt
~k

c  and ( )z,Ru~k
c  no longer are functions of “θ”. 

                

It can be shown that the fundamental solutions ( )P,AG c  and ( )P,AHc  are functions of 

the form  

 

  ( )zz,,rG
c

′−θ′−θ , ( )zz,,rHc
′−θ′−θ    ……………………………………... (6.24)  

 

When (6.23) is observed along with the form in (6.24), one can identify the inner 

integrals in (6.23)  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∫

∫
π

θ′−θ

π
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ik
c

k
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2

0

ik
c

k
c

deP,AHz,R ; z,RH

deP,AGz,R ; z,RG

         ……………...……………..  (6.25) 

 

since θ ′  is unvarying under the integral sign; or equivalently we can write 

 

( ) ( )

( ) ( )∫

∫
π

θ

=θ′

π

θ

=θ′

θ=′′

θ=′′

2

0

ik

0c
k
c

2

0

ik

0c
k
c

deP,AHz,R ; z,RH

deP,AGz,R ; z,RG

  …………………………………...…. (6.26) 

 

Then for the k-th Fourier component of boundary quantities, we have 
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( ) ( ) ( ) ( ) ( )∫∫ ′′−′′=′′

C

k
c

k
c

C

k

c
k
c

k
cc Rdsz,Ru~zR, ; z,RHRdsz,Rt

~
zR, ; z,RGz,Ru~c  ……….... (6.27) 

 

Again, it may be noted that “C” is a generating curve of the axi-symmetric body 

passing through point “P → (R, θ, z)”. Because the integrals in (6.27) are line 

integrals (in stead of surface integrals in 6.8), this procedure reduces the 

dimensionality of the boundary integral equations by one.  

 

6.3 Spatial Discretization and Boundary Element Equations 

 

The first step in our aim is to solve (6.27) for a number of Fourier coefficients of 

the unknown boundary quantities, i.e. k

c
u~ ,

k

c
t
~  once the Fourier coefficients are 

available, the solution in (R, θ, z) system can then be produced numerically by an 

inverse FFT. 

 

Figure 6.2 Boundary Element discretization of the generator in R-z plane 

 

To solve (6.27) we introduce the constant element formulation, where the curve 

“C” is approximated by straight line segments (called boundary elements) over 

which the boundary quantities are assumed to be constant. The node of a boundary 
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element will be taken as its mid point. Let the node and boundary of the j-th 

element be ( )z,R    Q j
′′→  and jC  respectively, see Figure 6.2. 

When we introduce the spatial discretization equation (6.27) reads 

 

( ) ( ) ( )∑ ∫∑ ∫ 
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  …..… (6.28) 
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j
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ij
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k
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G
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u~c    ……………………………………..… (6.29) 

 

where, 
j

k
c

u~  and 
j

k

c
t
~  are the values of k

cu~ and k

ct
~  over the element “j”, and 
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ij
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i
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ij
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When the definitions of ( )Q ; QG
i

k

c
 and ( )Q ; QH

i

k

c
 are inserted in (6.30) and change 

the order of integration is reversed, we get 
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     ……………………………. (6.31) 

 

here we introduce,  
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( ) { {

( ) { {∫
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θ′θ′′=θ

j

i

j

i

C 0
QQ

cij

C 0
QQ

cij

 ds R-;zR, ; z,RHH

 ds R-;zR, ; z,RGG

   ……………………………………  (6.32) 

 

hence (6.31) abbreviates to  

 

 

( )

( )∫

∫
π

θ

π

θ

θθ=

θθ=

2

0

ik
ij

k

ij

2

0

ik
ij

k

ij

de HH
~

de GG
~

   …………………….…………………………...…. (6.33) 

 

The integrals in (6.32) with respect to the integration point Q ≡ (R, z) in R-z plane 

can be computed numerically for a given θ , hence  ( )θijG  and ( )θijH  are 

determined at a series of angles θ ; then the integrals in (6.33), which are in the 

form of Fourier integrals,  can be evaluated effectively by FFT algorithm. 

 

For that we write, 
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  ..……………….…………..……………………. (6.34) 

 

where n

ijG  and n

ijH  are the values of  ( )θijG  and ( )θijG  at nθθ = , i.e. 

 

 
( )

( )
n

n

ij
n
ij

ij
n
ij

HH

GG

θ

θ

θ=

θ=

      ……………………………………………………….. (6.35) 

 

where,  



 127 

 

N

2

nn

π
=θ∆

θ∆=θ

     ..…………………..……………………..………………. (6.36) 

 

To summarize, 
k

ijG
~

 and 
k

ijH
~

 in (6.33) can be computed numerically in two steps:  

 

• Take 
N

n2
n

π
=θ=θ  and compute the line integrals in (6.32) by 

Gaussian quadrature (or by a special Gaussian rule if the integral is 

singular), which determines N values of n

ijG  and n
ijH , (n=0 … N -1). 

• Insert these values in (6.34) to compute the sums, i.e. 
k

ijG
~

 and 
k

ijH
~

 

for the frequency range k = 0 … N -1, for this step FFT algorithm 

can be used to facilitate the computations.  

 

Recall now, the discretized boundary element equation (6.29), this equation can be 

written in matrix form as 

 

 
kkkk

t
~

G
~

u~H
~

= ,     1-N ..., 2, 1, ,0k ′=     ……...……………...………… (6.37) 

 

In (6.37) the Fourier expansion is truncated to N΄=2M΄ terms, it may be noted that 

the number of subdivisions N=2M for integration in θ-direction does not have to be 

equal to the number of terms in truncated complex Fourier series sum; for more 

accurate integrations N ≥ N΄. The solution of (6.37) for unknown boundary 

quantities determines the Fourier coefficients of all the boundary quantities ku~  

and
k

t
~ , the solution in (R, θ, z) system is then found through inverse FFT over all 

“k”. In constant element formulation, 
k

H
~  and 

k
G
~

are (4M x 4M) dimensional 

matrices, where M is the number of boundary elements, with  

 

 









δ+=





=

ij

k

ij

k
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k

I
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1
H
~

H
~

G
~

G
~

     ……………………………….………………….. (6.38) 
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ku~  and  
k

t
~  on the other hand are (3Mx1) column matrices with 

 
[ ]
[ ]k

i

k

k

i

k

t
~

t
~

u~u~

=

=
            …………………………... ………………………… (6.39) 

Finally the formulation is complete and we can summarise the procedure as 

follows: 

1. Choose MM2N =  (N is the number of subdivisions in θ - direction), 

and compute the increment N/2πθ =∆ . N must be a number in 

power of “2” for FFT to be applied. 

2. Discretize the generating curve “C” in (R, z) plane, let the number of 

boundary elements be M. 

3. Choose the number of terms N΄=2MMp to be retained in complex 

Fourier expansion of boundary variables. Compute the Fourier 

coefficients of the boundary excitations in θ-direction at frequencies 

1-N ..., 2, 1, ,0k ′=  either analytically if they have a simple analytical 

form or by FFT algorithm if their analytical form is complicated or 

they are specified in discrete form. 

4. Compute 
s

ijG
~

 and 
s

ijH
~

(s=0…N-1), and form the system matrices 
k

H
~

 and 

k

G
~

for 1-N ... 0k ′= . A frequency shift is necessary when assembling 

s

ijG
~

and 
s

ijH
~

into 
k

G
~

and
k

H
~

, as “s” and “k” run through different ranges. 

5. Solution of the complex algebraic system of equations in (6.37) 

together with the specified boundary conditions yields the Fourier 

coefficients k
u~  and 

k
t
~  at frequency points 1-N ..., 2, 1, ,0k ′= . 

6. By an inverse FFT evaluate the boundary quantities in (R, θ, z) space. 
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6.4 Computation of ( )θijG and ( )θijH  

 

When the collocation (source) point iQ  does not belong to the boundary element, 

over which the integration is performed, the integrals in (6.32) are all ordinary 

(non singular) integrals and can be computed to high precision by Gaussian 

Integration. On the other hand, when the collocation point (source point) belongs 

to the boundary element (i.e. when, when i = j and θ = 0 in (6.32)), these 

expressions become singular and require special treatment.  

 

6.4.1 The Non-Singular Integrals  

 

Here, we start by repeating (6.32), 
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 ds R-;zR, ; z,RGG

321

321

   

 

Recall that, 
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then, (6.32) becomes 

 

 

( ) ( )
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j

j

C

0
i
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ij

C

0
i

T

ij

 ds R)(Q,Q; ;QH)(QH

 ds R)(Q,Q; ;QG)(QG

    ………………….……… (6.40) 

or 
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( )

( ) )(Q  ds R,Q; ;QHH

)(Q   ds R,Q; ;QGG

j

j

C

0
iij

C

0
iij

θ∗θθ′′
=

θ∗θθ′′
=

∫

∫
=θ′

=θ′

      ……………………………… (6.41) 

 

when 0or   ji ≠θ≠ , ijG and ijH  will be computed by standard Gaussian quadrature, 

else the integrands become singular whose treatment is considered in the next 

section. In (6.41), ( )z ,RQ i ′′=  represents R-z coordinates of the source point as the 

node ‘i’ in 0=θ′ plane, and ( )z ,RQ =  represents R-z coordinates of the integration 

point in the element ‘j’ which is in θ -plane. 

Over a typical boundary element, Figure 6.3, the coordinates of the mid-node are 

given by  
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…………………………………………..…………… (6.42) 

 

where, ( ) ( )k
i

k
i z,R  are the coordinates of the end-points of the BE in Rz-plane.   

 

 

Figure 6.3 Typical boundary element, unit tangent and normal vectors  

Element - Ck 
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We define 
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 ………………………………………………………. (6.43) 

Then, one has for the parametric description of the integration point Q, 
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   …………………………………………………….... (6.44) 

where t = -1 .. 1 is the parameter. With this parametric form, one has dt Lds = , L is 

the half element length (Figure 6.3). Then (6.41) becomes 
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   ……………....... (6.45) 

 

The kernels in (6.45) contain variables, such as 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2i
z

j2i
R

j2i
R

j azsinasinRcosacosRr −+θ′−θ+θ′−θ=  

 

or, when 0=θ′  

 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2i
z

j2j2i
R

j azsinRacosRr −+θ+−θ=  …………………………… (6.46) 

 

also, 
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 the unit vector parallel to the element in the direction from (1) to (2): 
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and the unit normal vector to the BE has components, 

 

RzzR sn   and   sn −==  ………………………………….…….. (6.49) 

 

6.4.2 Treatment of Singular Integrals  

 

The singular terms in (6.45) become singular when ji =  and ( ) 0=θ′=θ . The 

kernels in (6.41) and (6.45) are the fundamental solutions, which can be written as 

the sum of a regular and a singular part ( SinggRe GGG ′
+

′
=

′  and SinggRe HHH ′
+

′
=

′ ). 

The singular parts of fundamental solutions were previously investigated in section 

5.3. Therefore, the singularity problem in equations (6.41 - 6.45) essentially reduce 

to the integration of the singular parts of the fundamental solutions. To illustrate, 

consider e.g. the fundamental solution for the displacements due to unit load on the 

solid that is  
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whose singular part as shown earlier is the elastostatic fundamental solution, i.e.  
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Therefore, the singular part in (6.45) is 
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As an example, we may consider the term ( )Sing

ii11G , 
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then, from (6.46) and (6.47) we have for ji =  and 0=θ  
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Thus, for the term ( )
ii11G′  we have 
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     ……………….…………….… (6.55) 

 

Therefore, ( )Sing
ijmnG′  and ( )Sing

ijmnH′ are not generally integrable in the form (6.45).  

 

Now, consider a surface element kS  formed around the axi-symmetric BE kC  and 

subtended by the angle θ∆ , Figure 6.4. If the angle θ∆  is sufficiently small, one 

can write (by the mean value theorem) for the surface integral of some function 

( )Pf over kS  
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Hence, we propose that (after Özkan 1995) the singular parts of integrals in (6.45) 

when 0   and   ji =θ= can be approximated by the following surface integrals (see 

Figure 6.4), 
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when 0    →θ∆  , ( )0G    G kk0 =θ→  and ( )0H    H kk0 =θ→ , where subscript ‘k’ refers to the 

constant boundary element ‘Ck’ along the generator and its node. 

 

 

Figure 6.4 Surface Sk about element Ck for singular integration. 

 

Since, θ is small, we can use the approximations 

 

 ( ) ( ) 1cos      and       sin =θθ≈θ      ……………………..………………. (6.58) 

 

In (6.57), the coordinates of the node Qk are 
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 ( ) ( )k
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and for the integration point ‘P’, we can write, 
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where,  

 

 1v,u1 ≤≤−      ……………………………………………………….. (6.61) 

 

 

Figure 6.5 The image of surface element Sk in u-v space and the polar coordinates. 

 

Equations (6.60) parameterize the curved surface element Sk and define a 

coordinate transformation from Rθz system to u-v plane. 

 

When (6.60) is used in (6.46) and (6.47), we have 
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where, 
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Note that,  

( )
( )

z3

2

R1

aza

0sinRa

aRcosRa

=′=

=θ′′=

=′=θ′′=

  

 

and the normal vector to the surface element is 

 

 
( )
( )zRR

321

n  ,sinn   ,cosn   

n ,n ,nn

θθ=

=
 



 138 

 

since θ is small,  

  

 
( )








 θ∆
=

θ=

zRR

zRR

n   ,v
2

n   ,n   

n   ,n   ,nn

     ……………………………………………. (6.66 a) 

 

since the surface element Sk is generated by a straight line, Rn  and zn  components 

of the normal vector does not change with position and are given by (see 6.49) 
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Also, the differential surface element ‘dA’ becomes 

  

 dudv J Rdsd RdA =θ=    ………………………………………….……… (6.67) 

 

where, 
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2
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It may be noted that the jacobian in (6.68) is given by 
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where G
r

is the infinitesimal area vector and in this case, 
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Now, the singular parts of the fundamental solutions are to be integrated according 

to the formula (6.57). The singular parts of the fundamental solutions have been 

derived in chapter 5, section (5.3). Recall the form of the singular part of the first 

fundamental solution matrix 
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Hence according to (6.57) 
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Now, consider ( )( )Sing*
iju   terms in (6.72), 
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However, this term vanishes in the limit when 0      →θ∆  
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The terms  
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 and  
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since )r(O~u 0*
j   and )r(O~p 0*

j  are non-singular. 
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The term 0
44G  → 

 ( )( )

r

1

4

i
p fSing*

πβ

ωρ
−=                   ………………………………………….. (6.89) 

therefore, 

 

( )
( )∫

∫







 θ∆
+

∗θ∆πβ

ωρ
−=

πβ

ωρ
−

θ∆
=

k

k

S

RR
f

S

f0
44

dudv 
2

Luba 
vu,DL

11

4

i
      

dA R 
r

1

4

i1
G

   

 

( )
444 3444 21

1I

1

1

1

1

R

R

Rf0
44 dudv 

vu,D

u
a

b
1

2

a

4

i
G ∫∫

− −














+

πβ

ωρ
−=    …………………………………….. (6.90) 

 

1
fR0

44 I
4

i

2

a
G ∗









πβ

ωρ
−=    …………………………………………………. (6.91) 

 

The final expression for (6.72) is then 
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Now, consider the singular part of the second fundamental solution matrix  
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Therefore, according to (6.57) we have  
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The expressions for the singular parts are given in section 5.3 of Chapter 5. Recall 

that, 
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Now, we consider each term of the matrix separately. 

 

The term 
0

11H  → 
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the result tends to zero as 0      →θ∆ , therefore we take 
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integrands of both integrals on the right are odd functions of “v”, hence the 

integrals evaluate to zero. We have, 
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therefore, 0

31H  becomes 
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the second term tends to zero as 0        →θ∆ , as a result 
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Similarly, the other terms of the 0H  can be obtained and one has as a result 
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0G and 0H   contain the following integral expressions: 
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It may be noted that in writing 3I  in equation 6.102, we dropped the 
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However, the integrals (6.102) are still singular at the origin. We regularize them 

further by the following polar transformation in u-v plane (Figure 6.5): 
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Accordingly,  
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and the integrals (6.102) become 
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Referring to the Figure 6.5 and considering that ( )γρ,D  is an even function of ‘ γ ’, 

the integrals in (6.107) can be put in the form 
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where, 
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The integrands (6.109) are non-singular and can be computed by standard 

Gaussian quadrature. It may be of interest to note that to accelerate computations 

the integrals in (6.108) can be evaluated analytically over “ ρ ”; then the resulting 

forms would be as follows: 
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It is found that the computer subroutines that use above forms execute much faster 

than those employing forms (6.108). We, in addition, note that further dividing the 

angular interval at 
2

π
=γ  improves numerical accuracy considerably, since 

( ) ( ) ( ) ( ) ( )[ ] ( )γγρ+
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+γ=γρ 22k

R
k
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2 sincosba
2

cos,D  tends to zero at 
2

π
=γ when 0     →θ∆ . 

Also, it has to be noted that, the preceding expressions all contain “ Rb ” in the 

denominator which can become zero; therefore a further regularization is required 

to avoid division by zero error for vertical elements. 

 

6.5 Computation of Stress Resultants 

 

The force and moment resultants are of use when checking the solution for 

equilibrium or they can be used as impedance functions to be used in sub-structure 

methods in soil-structure interaction analysis.  

The general expressions for the resultants of the surface tractions over a part S΄ of 

the body (considering the axi-symmetry of the geometry) in integral form are 
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where,  

 

 C΄ : the generator of the surface part S΄ 
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 it  : Cartesian traction components 

 ix  : components of the distance vector b/w the origin and the surface  

iF  : force resultant in ix -direction 

 iM  : moment resultant in ix -direction 

 

The Cartesian components of the tractions it  are related to the cylindrical 

components as 

 

 θ−θ= θ sintcostt r1  

 θ+θ= θ costsintt r2    ………………………………………………... (6.111) 

  z3 tt =  

 

and, as done previously, we proceed by expanding rt , θt  and zt  in complex 

Fourier series 
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To obtain the expression for the resultants in terms of Fourier coefficients of the 

tractions, we insert (6.112) and (6.111) in (6.110). The following integrals 

repeatedly appear in the expressions and it is worth noting the results here, 
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For example, for “ 1F ”, we have 

 

( ) ( )∫ ∫∫ ∫
′

π

θ

′

π











θθ−θ=










θ=

C

2

0

r

C

2

0

11 RdsdsintcostRdsdtF    ……………………..  (6.114) 

 

∫ ∑ ∫∫
′

∞

−∞=

π
θ

θ

π
θ














 θθ−θθ=

C k

2

0

ikk2

0

ikk
r1 Rdsdsinet

~
dcoset

~
F    ………...………... (6.115) 

 

in view of (6.113) we have 
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But, in discrete Fourier Transform, the Fourier amplitudes are circular (periodic) 

with period “N΄” and therefore, the amplitudes in the negative Frequency region 

0k
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−  are the same as those to the right of the cut-off (Nyquist) frequency 
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Hence, we write  
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The line integral over C΄ can be evaluated after discretization, in view of constant 

element formulation 
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where summation is over all the elements comprising C΄. 

The integral on the right hand side can be evaluated after noting that, over an 

element 
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where, jL  is the half length of the BE. 

 

Thus,    
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Similarly, 

 

( ) ( )[ ] ( ) ( )[ ][ ]( ) ( )∑
−′

θθ

−′
++−π=

j
jjR

1N

j

1

j

1N

jr

1

jr2 L2a t
~

t
~

   t
~

t
~

  i F     ……..………….. (6.120) 

 

 ( ) ( ) ( )∑π=
j

jjR

0

jz3 L2at
~

2F  …………………………………………….. (6.121) 

 

 

Similarly, for the moment resultants, 
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where, jα and jβ  are defined by 
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For a constant element, above integrals for jα and jβ can be evaluated analytically, 

considering that a typical BE jC  (Figure 6.3) can be parameterized by 
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where zzRR b ,a ,b ,a are as defined in (6.42) and (6.43), then one finds 
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6.6 Solutions at Interior Points 

 

Once the Fourier coefficients of the boundary quantities k

cu~  and k

ct
~ are 

determined, the displacements - pore pressure, and total stress (or effective stress) 

- fluid flux components can be computed at interior points of interest, if desired.  
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6.6.1 Determination of Displacements and Pore-Pressure at Internal Points 

 

We again start by writing the boundary integral equation (6.8) in cylindrical 

coordinates,  

 

( ) ( ) ( ) ( ) ( )∫∫
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Γ−Γ= dPu P,AHdPt P,AGAu ccccc   ………………….... (6.128) 

 

which relates the displacements and pore-pressure at an interior point “A” to the 

boundary quantities, which have already been determined in the preceding analysis 

procedure, note that, for an interior point the free term coefficient Ic c = .  As 

before, we expand the boundary quantities (only) in to complex Fourier series in 

circumferential direction and write,  
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where the surface integral has been decomposed into two iterated integrals. 

 

With the shorthand,  
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deP,AGQ,QĜ
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we have 
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After truncating the series in (6.131) to N΄ terms, and introducing boundary 

discretization with constant elements, 
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or 
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where we introduced,  
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for brevity. Equation (6.133) determines displacement components and pore-

pressure at an interior point “A” in cylindrical coordinates in terms of the complex 

Fourier coefficients 
k

ct
~  and k

cu~ . Since no singularity is involved, the matrices 
k

jĜ  

and 
k

jĤ  in (6.133) can be computed by employing Gaussian Integration along the 

generator, while FFT algorithm along θ-direction. 
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CHAPTER 7 

 

 

COMPUTER IMPLEMENTATION 

 

 

As a part of this study, a computer program has been developed for the 

elastodynamic analysis of porous solids with axi-symmetric geometry, following 

the formulation derived and outlined in the previous chapters. The implementation 

uses ANSI-99 standard C++ language instructions. The program has been 

developed under WINDOWS environment (successful compilation are achieved 

using gnu C++ compiler versions 3 and 4, Dev-C++ (uses MingW compiler) 

versions 4 and 5, MS-C compiler version 2003, BORLAND compiler V5.2). 

Compilation under UNIX (Linux) systems brings no problems; the author 

managed to compile the program under IBM-AIX using both xlc and g++ 

compilers without modifications. 

 

7.1 Organization of the Computer Program 

 

The flow chart of the program AxiPoro is given in Figure 7.1. The main steps of 

the program are as follows: 

a) First the system matrices Gk and Hk are formed. We do that by performing 

integrations in r-z plane by Gaussian Quadrature while that in circumferential 

direction is obtained via FFT algorithm. 

b) Then the BE equation 6.37 is solved for each frequency, in view of the given 

boundary conditions, which establish the Fourier coefficients of the boundary 

quantities. 
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c) Trough inverse FFT, the boundary quantities are computed in rθz space. 

d) Finally, if desired, the resultant forces and moments are compute via 6.119-

6.123, and displacement at interior points by 6.133. 

 

 

Figure 7.1 Flow chart diagram for the program AxiPoro 

 

Read Input Data and perform data generation 

START 

Compute Complex Fourier Coefficients of Boundary Conditions (FFT) 

For each frequency k, 
check if this frequency 

is excited 

YES 

NO  
uk=0 
tk=0 

form Gk and Hk and compute Fourier coeff.s of boundary quantities uk and tk 

interior 
points 

Compute the stress resultants 

Write results 

STOP 

Compute uc at specified interior points 

inverse FFT to determine uc and tc in rθz 
space 

YES 

NO 
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7.2 Description of Functions in the Computer Program AxiPoro 

 

The main steps of the program are as follows; 

• Read the input file 

• Form system matrices 
k

G
~

and 
k

H
~

(equation 6.36) 

• Solve the system (6.37) for Fourier coefficients of boundary quantities 

• Compute solution at interior points (6.133), and the stress resultants (6.119-

124 and ) if desired 

• Compute the solution in Rθz-space through inverse FFT 

 

The C functions that fulfill the required tasks are described below:  

 

main :  

Performs partial input and organizes function calls in the order 

described above 

initialize : 

Allocates space for matrices used in the analysis. 

Mult : 

Performs multiplication of two complex matrices; this function is 

called by RRot and RL_Rot functions 

 Form_Rot_Mat : 

Forms rotation matrix for a given angle of rotation, equation (6.5). 

 RRot : 

Multiplies element matrices by rotation matrix before FFT 

 II123 : 

Computes the integrals in equation (6.102) 

 GS0, HS0 : 

Fills in 0G and 0H matrices, equations (6.92) and (6.101). 

 fund3D_singular_part: 

Computes singular parts of fundamental solutions. 

fund3D : 
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Computes complete dynamic fundamental solutions. 

integrate1 : 

Integrates the fundamental solutions when source point falls in the 

integration element (singular case). 

integrate2 : 

Integrates the fundamental solutions when source point falls outside 

the integration element (non-singular case). 

AssembleElement : 

For a particular element forms element matrices by proper calls to 

functions integrate1 or integrate2, then assembles the element 

matrices in system matrices 
k

G
~

and 
k

H
~

. This function is called by 

Assemble. 

 ReadBoundaryConditions : 

Reads 2 blocks of boundary condition data. 

 interpolate : 

Interpolates a given vector of boundary condition data at  
N

2

′

π
 

intervals. 

 WriteInterpolatedBoundaryConditionData: 

Write interpolated boundary conditions in output file. 

 TransformInterpolatedBoundaryConditions : 

Transforms boundary condition data via FFT. 

 RearrangeSystem : 

Rearranges the system equation (6.37) into bxA = form. 

 ImposeBoundaryConditions : 

Forms the right hand side vector in the rearranged system 

equation bxA = . 

Assemble : 

Performs the task of forming system matrices by calling 

AssembleElement function successively. 

 Solve : 



 162 

Solves the linear system bxA =  by calling lu_dec and forw_back 

functions. 

 lu_dec  : 

Performs LU decomposition of a square matrix by partial pivot 

changes. 

forw_back : 

Solves a linear system for a given right hand side vector after the 

coefficient matrix has been LU decomposed. 

 Compute_Solution_at_an_interior_point : 

Computes solution at a given interior point. 

 RL_Rot : 

Performs rotation of element matrices before integration in 

circumferential direction by FFT, this function is called by 

Compute_Solution_at_an_interior_point. 

BackTransformBoundaryQuantities : 

Transforms boundary quantities in to rθz-space, after all unknown 

Fourier coefficients have been found. 

WriteSolution : 

Prints boundary quantities in the output file. 

Write_Solution_Interior_Points : 

Prints solutions computed at requested interior points. 

 Stress_Resultants : 

Computes stress resultants over given elements, if requested. 

Write_Stress_Resultants : 

Prints stress resultants in output file. 

 CleanUpMemory : 

De-allocates space for all matrices. 

 fft :  

Performs Fast Fourier Transform of a vector of complex numbers. 
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7.3 Input Instructions for Program AxiPoro 

 

All the data related to program execution is to be written in a single input file. The 

name of the input file is interactively specified by the user; the input file name may 

be any valid file name (with or without extensions), accepted by the system.  

The input file is free format and is composed of the following blocks of data: 

 

TITLE : 

The program expects to read a single line of input at top. Write a single line of any 

thing of the form 

 

 TITLE 

 

A descriptive sentence up to 255 characters can be written; otherwise a blank line 

at top must be left. TITLE will be re-printed in the output file. 

 

GENERAL INFORMATION DATA BLOCK: 

This block has the following information; this information can be input in a single 

line or broken into multiple lines as appropriate; individual data values are 

separated by any number of spaces: 

 

OME     PORO     KAPP    RO   ROf    ROa     MU     NU     HYS 

ALF    Q 

N_NODES    N_ELEMS    N_INT_PTS     N_ELEM_RES  

MM     MMp     N_GAUSS     CODE 

 

where, 

 

OME : the angular frequency  

PORO : porosity 

KAPP : permeability coefficient (κ) in equation 2.32 
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RO : bulk mass density 

ROf : mass density of fluid 

ROa : added mass density  

MU : shear modulus 

NU : drained Poisson’s ratio 

HYS : hysteretic damping ratio, (values in the range 0.05-

0.15 are common for granular earth materials like 

soil) 

ALF : α in equation (2.1) 

Q : Q in equation (2.1) 

N_NODES : number of nodes 

N_ELEMS : number of elements 

N_INT_PTS : number of internal points 

N_ELEM_RES : number of elements for stress resultants 

MM : 2’s power (N=2MM) which defines number of angular 

subdivisions for integrations in θ-direction 

MMp : 2’s power (N′=2MMp) which defines the number of 

terms to be retained in truncated complex Fourier 

series 

N_GAUSS : number of Gauss points used in integrations along 

the generator 

CODE : a control parameter, either “1” or “0”, which 

specifies whether the interpolated boundary 

conditions are to be printed or not, if “1” is entered 

program prints the interpolated boundary condition 

values at angular deviations 
N

2
nn

′

π
=θ ;  n=0…N′-1. 

Remarks:  

1. No upper limits are set for the size of the problem (N_NODES, 

N_ELEMS, MM, MMp, etc.); the problem size is limited only by the 

hardware memory. 

2. Any number of Gauss points can be specified between 1 and 22. 
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3. MM must be greater than or equal to MMp. 

4. The program uses two different N (N and N΄) values for integrations in 

θ direction and for the complex Fourier series sum; this stems from the 

fact that one needs refined angular sub-divisions (MM=7, 8 is usually 

good) for accurate integration of fundamental solutions in θ-direction 

while a small number of terms (MMp=2-4) in complex Fourier series is 

sufficient in many cases. Jumps in the boundary conditions may 

necessitate number of terms in the complex Fourier series to be increased.  

5. For element as well as system matrices the program allocates matrices 

with three indices. These matrices can be conceived as sheets of 2-D 

matrices each corresponding to a particular Fourier amplitude in equation 

(6.27). The use of different N values in the computation of integrals and 

in the number terms in Fourier series results in element matrices to 

contain more frequencies for θ variation than the system matrices. When 

assembling the element matrices, the program makes a frequency 

adjustment to match element matrix sheets to system matrix sheets 

properly. 

6. The program divides elements into two when integrating, thus uses 

twice as many Gauss points as specified by N_GAUSS. A special cubic 

transformation (Kahaner et. al. 1989, Telles 1987) is also implemented to 

smooth the kernels for end point singularities. 

 

BOUNDARY POINTS DATA BLOCK: 

This block defines the nodal coordinates of boundary elements in the form: 

 

 NO R Z 

 

where, 

 

 NO : node number 

 R : R coordinate of boundary node 
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 Z : z coordinate of boundary node 

 

The nodes need not be entered in successive order.  

 

ELEMENT DEFINITION DATA BLOCK: 

Defines the element connectivity. Input N_ELEMS lines in the following form: 

 

 ENO node1 node2 

where, 

 

 ENO  : element number 

node1  : beginning node of the element 

node2  : end node of the element 

 

BOUNDARY CONDITIONS DATA BLOCK: 

The program expects to read two blocks of boundary condition data; one block for 

generalized displacement boundary conditions and one block for generalized 

traction boundary conditions. There is no definitive order for each block. The two 

blocks are in the following format: 

 

(1) TYPE  N_BC 

(2) EL_NO COMP  N_VALS 

(3) 0   val ………. … angle   val …………. 360   val 

 

where,  

 

 TYPE : boundary condition type for this block, enter either 

“D” for displacement boundary conditions and “T” 

for traction boundary conditions 

 N_BC : number of boundary conditions of type TYPE 

 EL_NO : element number for boundary condition input 
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 COMP : component no of generalized vector (u or t), ranges 

from 1 to 4. For displacement boundary conditions 4 

specifies pore-pressure while for tractions the net 

outward flux. 

 val : boundary condition value 

 angle : angular deviation (in degrees) for boundary condition 

value 

 

Repeat (2) and (3) N_BC times for boundary condition of type TYPE. 

Remark 1: The boundary condition values are to be the cylindrical components of 

the boundary variables. 

Remark 2: If a boundary condition specified by (2) and (3) above must contain 0 

and 360 degree angular deviations; for instance if boundary condition is uniform in 

θ-direction (axi-symmetric), it suffices to enter value at zero and 360 degree 

angular deviation only. 

If there are no boundary conditions of a particular type (displacement or traction), 

write only line (1) and enter 0 for N_BC. 

Remark 3: If no boundary condition (either displacement or traction) is specified 

for a boundary variable component, the program automatically assumes traction 

free boundary condition; which may significantly reduce the input requirements.  

 

INTERIOR POINTS DATA BLOCK: 

Contains N_INT_PTS lines of input for the rectangular coordinates of interior 

points where displacement and pore-pressure output is requested. Input 

N_INT_PTS lines of the form 

 

 X Y Z 

 

where,  

 

 X : x-coordinate of interior point 
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 Y : y-coordinate of interior point 

 Z : z-coordinate of interior point 

 

If N_INT_PTS is 0 skip this block. 

 

ELEMENTS FOR STRESS RESULTANTS DATA BLOCK: 

Contains the element no’s of those elements over which the force and moment 

resultants are to be computed. Write N_ELEM_RES element no’s separated with 

spaces in the following form: 

 

 el1  el2  ………….. elN_ELEM_RES 

 

If N_ELEM_RES specified in the “general information data block” is 0, then skip 

this block. 

  

7.4 Output File 

 

The name of the output file is entered interactively by the user, the file name can 

be any valid name (with or without extensions) accepted by the system. The output 

file is self descriptive and consists of the following sections. 

 

INPUT ECHO: 

The input information, such as the title, material data, element information and 

boundary conditions, is copied for input checking purposes. 

 

RESULTS AT THE BOUNDARY: 

First generalized displacements then generalized tractions at every boundary 

element are printed at angular deviations
N

2
nn

′

π
=θ ;  n=0…N′-1. It should be noted 

that both displacement and traction components are referred to the cylindrical 

coordinate system. 
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RESULTS AT INTERIOR POINTS: 

Generalized displacement components are printed at desired interior points. 

Displacement components are referred to cylindrical coordinate system. 

 

FORCE AND MOMENT RESULTANTS: 

The force and moment resultants of the tractions acting on the prescribed part of 

the boundary (defined in the elements for stress resultants data block of the input 

file) are printed in this section. The values are the Cartesian components of the 

forces and moments, where moment resultants are computed with respect to the 

origin of the coordinate system.  

 

7.5 Convergence 

 

In this section we make a simple convergence check for the method of integration 

employed in the computer implementation. For that purpose, we compute one term 

from each of the two BE matrices using the proposed method and compare them 

with the values obtained by usual methods of calculus. We start by repeating 

(6.33a), where the coefficients of the tractions are given by 
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π
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and  
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T
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when (7.3) and (7.2) are substituted in (7.1), we get 
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2

0

ik

C

i

k

ij de Q ds R,0,Q,QGG
~

j

  …………………..…….. (7.4) 

 

Now consider that we want to compute (7.4) for the top surface of a cylindrical 

poro-elastic (PE) body of unit base radius, as shown in Figure 7.2.  

 

 

Figure 7.2 A cylindrical PE body; the meridional plane and the generating curve 

are highlighted. 

 

The top surface “S” of the PE body is depicted in more detail in Figure 7.3. Since, 

we discretize only the generator; for the top surface we introduce only one 

boundary element along x1 – axis and take the source point (A) on the same 

element in order to enforce the integration to be a singular case.  

    

x1 

x2 

x3 

n 

n=(0, 0, 1) 
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Figure 7.3 The top surface of the previous cylindrical PE body. 

 

 

We further simplify by taking ω=0 (static problem) and k=0 (zeroeth frequency in 

angular direction). Therefore, we have 
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θθ













θ=θ′′=

2

0 C

i

0k

ii dQ ds R,0,Q,QGG
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 ……….…………………...…… (7.5) 

 

but, this integral is simply a surface integral over the top surface “S”. Hence, we 

can write 

 

( )∫ ′=
=

S

0k

ii dA P,AGG
~

  .………………………………………………..…. (7.6) 

 

We want to compute the third diagonal element in (7.6), we shall do this first by 

usual methods of calculus and than by the procedure outlined in Sections 6.3 and 

6.4, and we would like to check if the results from the latter will converge to the 

x1, x1
′ 

x2 

1 

(S- S´) 

( )θ−=ρ cos2
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x2
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( )θ−=ρ cos    
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Ci 
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4

1
)cos(r 2 +ϕρ−ρ=
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value we obtain from the first when the number of subdivisions in angular 

direction is increased. 

Taking the material parameters .1=µ and 25.0=ν , the third diagonal element of 

1st  FS matrix reduces (in static case) for the element in Figure 7.2 to 

 

( )[ ]

r6

1
        

rr43
)1(8

1
G 333333

π
=

+δν−
ν−πµ

=′

 ………………………..…………… (7.7) 

 

since 0r3 =  on the top surface. Therefore,  

 

∫π
==
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0k
33 dA 
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6

1
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  …………………………………………….…...…… (7.8) 

 

where we removed the indices “i” for clarity. The integral in (7.8) can best be 

integrated by dividing the region “S” into two: (i) a smaller circular region “ S´ ” 

of radius 0.5 about the singular point “A”, (ii) the remaining region “ S- S´ ” where 

the kernel is never singular. Therefore, we continue by writing 

 



















+
π
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′−′ 321321
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6

1
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  …………………………………………… (7.9) 

 

We integrate the terms on r.h.s. of (7.9) separately. The first term K1 can be 

integrated exactly if one converts to polar coordinates over S´ 
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6

1
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1 =θ
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 ………………...……………………..... (7.10) 
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For the second term, by referring to the Figure 7.2 and noting the polar 

representations of the inner and outer circles in the shifted coordinate 

frame 21 x - x ′′  , we write, 

 

( )

( )

∫ ∫

π

π
−

θ−

θ−

θρρ
π

=

2

2

cos2

cos

2 dd    
r

1
    

6

1
K  …………………………………….….… (7.11) 

 

The distance “r” can be expressed in terms of “ρ” via cosine theorem: 
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2

2
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r 2
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+ρ=  …………..….… (7.12) 

 

hence, 
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ρ

π
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2

2

cos2
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1
cos

    
6

1
K  ……………………… (7.13) 

 

Although (7.13) cannot be evaluated analytically, it can be computed to any 

desired accuracy (by any numerical integration method), since it does not contain 

the singular point. Here, we present the value produced by the program MAPLE 

(MATHCAD 2001 computes exactly the same result as above): 

 

K2=0.1447384859 ……………………………….…………………... (7.14) 

 

The second term 2K  can of course be integrated more conventionally as follows; 

 



 174 

( )

( )


































+







+

+








π
=

∫ ∫

∫ ∫

−









−−









−

−

1

0

x1

2

1
x

2

1

12

2

2

2

1

0

1

x1

0

12

2

2

2

1

2 2
1

2

1

2

2
1

dxdx   

x
2

1
-x

1
                                       

dxdx   

x
2

1
-x

1
    

2
6

1
K  .. (7.15) 

 

in which case MAPLE produces the result, 

 

K2=0.1447363638 ………………………………………………….... (7.16) 

 

(MATHCAD 2001, in this case disagrees with MAPLE and computes 

K2=0.144738519468) 

 

Hence, we get the following half analytical result for 
0
33G

~
 : 

 

31140515.0KKG
~

21
0
33 =+=  (using 7.14) 

 

or       …………………...…... (7.17) 

 

31140303.0KKG
~

21
0
33 =+=  (using 7.16) 

 

Similarly, from (6.33 - b) 
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where, 

( ) {∫
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and  

 

( ) ( ) ( ) ( )θθθ′′θ′=θ′−θ Q,,Q,QHQ,Q,QH i
T

ic  ………………………….……… (7.20) 

 

when (7.20) and (7.19) are substituted in (7.18), we get 
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Again, we want to compute one element of (6.23) for the top surface of a 

cylindrical poro-elastic (PE) body of unit radius, as shown in Figure 6.1. To 

simplify, we set ω=k=0  

Therefore, we have 

 

( ) ( )∫ ∫
π

=
θθ
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 ……………………….………… (7.22) 

 

but, this integral is simply a surface integral over the top surface “S”. Hence, we 

can write 

 

( )∫ θ=θ′′=
=

S

i

0k

ii dA ,0,Q,QHH
~   …………………………………………. (7.23) 

 

We want to compute (1, 3) element of (7.23), we shall do this first by usual 

methods of calculus and than by the procedure outlined in sections 6.3 and 6.4. 

We again select the material parameters .1=µ and 25.0=ν , the third element of 

first row of 2nd FS matrix reduces (in static case) for the element in Figure 7.2 to 
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Since, ( )θ= cosRx1  and ( )0cosRa1 =  
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where we removed the indices “i” for clarity. We again divide the region “S” into 

two as shown in Figure 7.2, hence, 
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We integrate the terms on r.h.s. of (7.26) separately. The first term KK1 can be 

integrated exactly if one converts to polar coordinates over S´, we note that (7.26) 

is strongly singular and must be understood in “Cauchy Principle Value” sense, 

thus 
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One can convince oneself about this result, by writing the integral KK1 

alternatively as 
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and MATHCAD 2001 produces 

 

 9
1 10952.1KK −×−=    ……...…………………………………………. (7.29) 

 

Still, another approach would be to have MATHCAD compute the following, 
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For 1510−=ε MATHCAD 2001 computes ( )
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For the second term, by referring to the Figure 7.2 and noting the polar 

representations of the inner and outer circles in the shifted coordinate 

frame 21 x - x ′′  , we write, 
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Alternatively, one can write 
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MATHCAD 2001 computes 046322183.0KK 2 −=  for (7.31) and 

046322205.0KK 2 −=  for (7.32), respectively. Finally,  
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046322183.0H
~ 0

13 −=   …………………………………..…………….  (7.33) 

 

The computed values for 0
33G

~
and 0

13H
~

, by the procedure we described earlier, are 

summarized in the following table, 

 

Table 7.1 Convergence computations for the proposed method 

N= 2M Gauss Rule 0
33G

~  0
13H

~  

8         (M=3) 8 0.304332 -0.005506 

16 8 0.308021 -0.027872 

32 8 0.309817 -0.037362 

64 8 0.310637 -0.041865 

128 8 0.311026 -0.044095 

256     (M=8) 8 0.311216 -0.045208 

512     (M=9) 8 0.311310 -0.045767 

1024   (M=10) 8 0.311359 -0.046032 

2048   (M=11) 8 0.311393 -0.046225 

4096   (M=12) 8 0.3114056 -0.046264 

8192   (M=13) 8 0.3113876 -0.046237 

8192   (M=14) 8 0.3113613 -0.046242 

8192   (M=14) 10 0.3113848 -0.046267 

8192   (M=14) 14 0.3114006 -0.046294 

16384 (M=15) 8 0.3113428 -0.046256 

16384 (M=15) 15 0.3113956 -0.046300 

16384 (M=15) 20 0.3114019 -0.046312 

MATHCAD2001  0.3114052 -0.0463222 

 

 

The values in Table 7.1 are computed by the computer program developed in this 

work. In the computations, line elements are divided into six sub-elements     (-1.0 
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.. -0.2 .. -0.1 .. 0.0 .. 0.1 ..0.2 .. 1.0) and to compute expressions in (5.102) 17 point 

Gauss rule is used in both ρ and γ directions. As seen these values converge to the 

half-analytical value (MATHCAD 2001) as the number of divisions in angular 

direction is increased. Unfortunately, the numerical accuracy is spoiled “slightly” 

when angular divisions are too much refined, i.e. N>12, but this can be amended 

by using more Gauss points at increased computational cost. 
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CHAPTER 8 

 

 

ASSESSMENT OF THE FORMULATION 

 

 

8.1 One Dimensional Wave Propagation in a PE Layer  

 

This problem, in the context of poro-elasticity is first mentioned in Cheng et. al. 

(1991), an analytical solution is also provided in the same reference. We briefly 

work out the theory here in cylindrical coordinates. 

 

Figure 8.1 One dimensional wave propagation in a layer. 

 

In this problem we consider a PE layer of infinite extent loaded at the top surface 

by a uniform pressure (infinitely wide) which is suddenly applied and removed, 

PE layer 

Uniform dynamic impulse 
of infinite extent 

Cylindrical cut in the layer 
r 

Fixed or 
uz=U0δ(t) 

z 

P0δ(t) 

H 
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the fluid is assumed to drain freely from the top surface while the bottom surface is 

impermeable; displacement excitation at the bottom is considered separately. Since 

the surface load is infinitely wide, one can readily assume that lateral 

displacements are zero, thus the governing equations of 3-D poro-elasticity, 

equations (2.55), in this case reduce to the following: 

 

( ) ( ) ( )

( ) 0up
Q

1
p

0upu2

z,zzz,

f
2

zf
2

z,zz,z

=β+α++
ρω

β
−

=βρ+ρω+β+α−µ+λ

 ………………………………….... (8.1) 

 

together with the boundary conditions (in FTS) 
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The solution to this system is given in Cheng et. al. (1991) and Schanz (2001.b), 

the following solution from Schanz (2001.b) is reproduced here (set, s=iω),  
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where,  1λ and 2λ are the positive roots of the following characteristic equation; 
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In solving this problem by BEM, we model the PE “layer” by a PE “column” of 

unit diameter as shown in figure 8.2. 

 

Figure 8.2 Equivalent column model of PE layer for BE analysis. 

 

Although, the PE column in Figure 8.2 is not an exact model for the layer in 

Figure 8.1, the impermeable rigid walls can sufficiently prevent lateral 

displacement and flow, in which case the behaviour of PE column closely 

approximates that of PE layer. The material properties are given in Table 8.1 

below. 

 

Table 8.1 Material data for Berea sand stone 

n α Q (Pa) µ(Pa) ν κ(m4/N/s) ρ(kg/m3) ρf(kg/m3) ρa(kg/m3) 

0.19 0.778 1.353*1010 6*109 0.2 1.9*10-10 2458 1000 125.4 

 

The poro-elastic column problem is solved by program AxiPoro. The column is 

modelled by 40 axi-symmetric boundary elements. N=128 (27) and N=32 (25) sub-

divisions for circumferential integrations were used for convergence checking. A 

slight hysteretic damping is introduced with zH=0.003. The results for top 

displacement are plotted in Figures 8.3-8.5 together with the analytical solution, 

equation 8.3.  
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Figure 8.3 PE column: Top displacement amplitude spectra (traction B.C. at top), 

BEM vs. analytical solution; E=2λ+µ. 
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Figure 8.4 PE column: Real part of top displacement (traction B.C. at top), BEM 

vs. analytical solution, E=2λ+µ. 
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Figure 8.5 PE column: Imaginary part of top displacement (traction B.C. at top), 

BEM vs. analytical solution, E=2λ+µ. 

 

The circular frequency is non-dimensionalized (ND) with respect to fundamental 

vibration frequency of the dynamically impermeable porous material  

 

H4

V
2 u

f
⋅

⋅π⋅=ω  ……………………………………………...…….…. (8.7) 

where, 

  

ρ

µ⋅+λ
=

2
V u

u  …………………………………………………..…. (8.8) 

 

is the p-wave velocity for dynamically impermeable material. 

 

The results for pore-pressure at the bottom of layer are displayed in the Figures 

8.6-8.8 below. 
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Figure 8.6 PE column: Pore-pressure amplitude at the bottom, (traction B.C. at 

top), BEM vs. analytical solution. 
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Figure 8.7 PE column: Real part of pore-pressure at the bottom (traction B.C. at 

top), BEM vs. analytical solution. 
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Figure 8.8 PE column: Imaginary part of pore-pressure at the bottom (traction 

B.C. at top), BEM vs. analytical solution. 

 

Next, we consider the same body for displacement boundary conditions at the 

bottom; the top surface is free of tractions. This time the boundary conditions read 

as 
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Again from Schanz (2001.b) the solution is,  
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where, 
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 ( ) ρ−αρ+λµ+λ= f

2

ii 2D  ..…………………………………………. (8.12) 

 

Again the column is modelled by 40 axi-symmetric boundary elements. The 

angular divisions for circumferential integrations were N=28 = 256. A hysteretic 

damping of 0.5% is introduced. The results for top displacement are plotted in 

Figures 8.9-8.11 together with the analytical solution, equation 8.8. 
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Figure 8.9 PE column: Top displacement amplitude spectra, (displacement B.C. at 

the bottom) BEM vs. analytical solution, E=2λ+µ. 
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Figure 8.10 PE column: Real part of top displacement, (displacement B.C. at the 

bottom) BEM vs. analytical solution, E=2λ+µ. 
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Figure 8.11 PE column: Imaginary part of top displacement, (displacement B.C. at 

the bottom) BEM vs. analytical solution, E=2λ+µ. 
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8.2 Sudden Pressurization of a Circular Cavity (Infinitely long cylinder in a 

PE full space) 

 

This problem was investigated by Senjuntichai and Rajapakse (1993). They 

considered step load, gradually applied step load and triangular pulse load type 

pressurizations for either drainage free or impermeable wall conditions. However, 

the governing equations they solved did not include the “continuity equation”, 

therefore, to comply with our BEM formulation, we re-work the solution for 

sudden pressurization (Dirac loading in time) of the circular cavity with permeable 

wall condition below, following the outline in Senjuntichai and Rajapakse (1993). 

 

Figure 8.12 Circular cavity (infinite cylinder) in a poro-elastic full space suddenly 

pressurized. 

 

 

We consider an infinitely long cylindrical cavity, whose axis of revolution 

coincides with the vertical axis (z-axis), Figure 8.12, in a PE medium of infinite 

extent. Because the displacement conditions are essentially that of plane strain and 

the boundary conditions are also axi-symmetric, we write 

 

( ) 0.
z

u z =
∂

∂
=  and ( ) 0.u =

θ∂

∂
=

θ
 ………………………………… (8.13)  

 

 
    p= S0

.δ(t) 

Infinite PE 
medium 2.a 

y 

x 
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(ur, ut, uz) are the components of the displacement vector in cylindrical 

coordinates. Under these conditions the governing equations of 3-D poro-

elasticity, equations (2.55), in this case reduce to the following: 

 

( ) ( ) ( ) ( )

( ) ( ) 0
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dr
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1
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ρω
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µ+λ

 ………… (8.14) 

 

where, we substituted u for ur for simplicity. 

If we introduce a displacement potential φ , such that
dr

d
u

φ
= , then (8.14) become 
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where, ( )
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Eliminating p between (8.15) and (8.16), we get 

 

 ( )( ) 02

2

2

r

2

1

2

r =φλ−∇λ−∇  ………………………………………….… (8.17) 

 

where,  
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( )
( )µ+λβ

βρ+ρρω
=

2Q

ff
4

c  …………………………………………………… (8.20) 

 

It is well known that the solution to (8.17) can be written in the form, 

 

 21 φ+φ=φ  …………………………………………………………... (8.21) 

 

where, 
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)r(KC)r(IA

20202

10101

λ⋅+λ⋅=φ

λ⋅+λ⋅=φ
 ………………………………………. (8.22) 

 

where, 0I and 0K are modified Bessel functions of order zero (Abramowitz and 

Stegun, 1964). For (8.22) to be regular at infinity, the constants A and B must be 

zero. Thus,  

  

 )r(KD)r(KC 1010 λ⋅+λ⋅=φ  …………………………………….…. (8.23) 

 

Thus, the radial displacement function is 

 

 )r(KD)r(KC
dr

d
u 212111 λ⋅⋅λ−λ⋅⋅λ−=

φ
=  ……………………….…. (8.24) 

 

Similarly, one obtains for the pore-pressure solution 

 

 )r(KCd)r(KCdp 202101 λ⋅+λ⋅=  ……………………………...…… (8.25) 
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where, 
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The radial stress is obtained from 
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Te unknown coefficients are determined from boundary conditions (B.C.’s). The 

B.C.’s for circular (cylindrical) cavity problem are the following: 
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From (8.27) one finds for the unknown constants “C” and “D”  
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where, 
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Finally, we obtain 
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( ))r(K)a(Kd)r(K)a(Kd
Det

S
u 211012112021
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( ))r(K)a(K)r(K)a(K
Det

ddS
p 21101120

210 λ⋅⋅λ+λ⋅⋅λ−
⋅⋅

=  …………………. (8.34) 

 

The poro-elastic circular cavity problem is solved by program AxiPoro, the 

material data are again that of Berea sandstone’s (Table 8.1). A finite cylindrical 

cavity of 10 metres height is modelled by 25 axi-symmetric boundary elements. 

The angular divisions for circumferential integrations were N = 27 = 128. A slight 

hysteretic damping is introduced with zH=0.05. The results for radial surface 

displacements (compliance) at mid-height of the cavity are plotted in Figures 8.13-

8.15 together with the analytical solution (equation 8.33). Some noise is observed 

in the figures due to waves generated at the ends of the cavity. 
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Figure 8.13 Circular cavity: Absolute value of ND compliance, BEM vs. 

analytical solution, E=2λ+µ. 
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Figure 8.14 Circular cavity: Real part of ND compliance, BEM vs. analytical 

solution, E=2λ+µ. 
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Figure 8.15 Circular cavity: Imaginary part of ND compliance, BEM vs. 

analytical solution, E=2λ+µ. 
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8.3 Sudden Pressurization of a Spherical Cavity in an Infinite PE Medium  

 

This problem is solved for this study, an extensive literature survey revealed no 

earlier solution available in the literature. We consider a spherical cavity in an 

infinite PE medium; in the absence of body forces and fluid source, the governing 

equations of 3-D poro-elasticity in FTS (eqn.’s 2.55) in this case reduce to the 

following: 
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0uu == φθ  …………………………………………………………...... (8.37) 

 

If one introduces a displacement potential Φ  such that, 
r

u r
∂

Φ∂
=  then (8.35) and 

(8.36) become, 
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where, 
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and, as defined before, ( )
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Now, we assume solutions of the form, 
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Substituting (8.13) in (8.10) and (8.11), one obtains the eigenvalue problem: 
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hence the characteristic equation: 
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Introduce the following abbreviations, 
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Thus, the roots of the characteristic equation are 
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Then the solution of the system (8.38) and (8.39) becomes, 
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It is clear that the terms rim ke ω represent waves propagating inwards. In an infinite 

medium no waves propagate from infinity, hence we discard these terms and write, 
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Moreover, the amplitudes kΨ , kχ are related through (8.42) as 
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Finally, one obtains 
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Where, we introduced u=ur for simplicity. The integration constants 1Ψ and 2Ψ are 

to be evaluated from boundary conditions at ar = : 
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Finally,  
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where, 
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The poro-elastic spherical cavity problem is solved by program AxiPoro, the 

material data are again that of Berea sandstone’s (Table 8.1). The cavity is 

modelled by 35 axi-symmetric boundary elements. The angular divisions for 

circumferential integrations were N = 27 = 128. No hysteretic damping is 

introduced for this problem. The results for radial displacement at the surface 

(compliance) are plotted in Figures 8.16-8.18 together with the analytical solution, 

equation 8.51. The pore-pressure at ND radial distance R=1.5 is plotted in figures 

8.19-8.21. The circular frequency is non-dimensionalized with a/Vu, where Vu is 

given by (8.8).  

To obtain distribution of displacement and pore-pressure along the radius, 8 

interior output points are specified along R-axis at coordinates (R,z) = (1.5,0), 

(2.0,0), (2.5,0), (3.0,0), (5.0,0), (8.0,0), (12.0,0), (20.0,0). The distribution of 

displacement (radial) and pore-pressure along the radius for varying frequencies 

are displayed in Figures 8.22 - 8.26. 
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Figure 8.16 Spherical cavity: Absolute value of ND compliance, BEM vs. 

analytical solution, E=2λ+µ. 
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Figure 8.17 Spherical cavity: Real part of ND compliance, BEM vs. analytical 

solution, E=2λ+µ. 
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Figure 8.18 Spherical cavity: Imaginary part of ND compliance, BEM vs. 

analytical solution, E=2λ+µ. 
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Figure 8.19 Spherical cavity: Absolute value of ND pore-pressure at R=1.5. 
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Figure 8.20 Spherical cavity: Real part of ND pore-pressure at R=1.5. 
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Figure 8.21 Spherical cavity: Imaginary part of ND pore-pressure at R=1.5. 
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Figure 8.22 Spherical cavity: Radial distribution of ND displacement  

at 225.0=ω , E=2λ+µ. 
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Figure 8.23 Spherical cavity: Radial distribution of ND pore-pressure  

at 225.0=ω . 
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Figure 8.24 Spherical cavity: Radial distribution of ND pore-pressure  

at 45.0=ω . 
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Figure 8.25 Spherical cavity: Radial distribution of ND pore-pressure  

at 9.0=ω . 
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Figure 8.26 Spherical cavity: Radial distribution of ND pore-pressure at 8.1=ω . 

 

8.4 Vertical Compliance for Rigid Circular Foundation on Elastic Half Space 

 

Compliance (or impedance) functions are needed in soil-structure interaction 

analysis. Here, we show how program AxiPoro can be used to determine 

compliance (or impedance) relations for rigid axi-symmetric foundations; we 

consider a rigid circular disc resting on an elastic half space. This problem was 

considered earlier by Apsel and Luco (1987). The geometry and the BE mesh used 

are described in figures 8.27 and 8.28, the angular sub-divisions used in this 

analysis is N = 27 = 128. We solve the problem in non-dimensional (ND) space, 

appropriate ND variables and parameters   
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Where over-bar denotes a ND variable and Fi are resultant forces, 
ρ

µ
=sc .is the 

shear wave velocity for ideal elastic material. The problem we consider is an ideal 

elastic problem, yet our formulation involves poro-elastic media; in order to 

simulate elastic behaviour, we set 1=κ  and other poro-elastic material parameters 

are given negligibly small values, namely, αρρ , , ,Q af  are set to 10-4.  

Impedance at a particular frequency is the force acting on the foundation for unit 

displacement; the compliance is the algebraic reciprocal of the impedance. When 

requested, the program AxiPoro computes the stress resultants for specified 

elements and prints at the end of the output file. In this case the impedance is the 

vertical stress resultant for elements 1 through 10. The results are plotted in 

Figures 8.29 and 8.30. There is a good agreement between the results of Apsel and 

Luco (1987) and the program AxiPoro, the maximum absolute difference being 

7.5%; it should however be noted that, Apsel and Luco’s results, based on a 

numerical method, were not exact either. 

 

Figure 8.27 Rigid circular foundation resting on an elastic half space. 
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Figure 8.28 Rigid circular foundation on EHS, axi-symmetric BE mesh. 
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Figure 8.29 Rigid circular foundation on EHS, real part of ND vertical 

compliance. 
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Figure 8.30 Rigid circular foundation on EHS, imaginary part of ND vertical 

compliance. 
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Figure 8.31 Rigid circular foundation on EHS, absolute value of ND vertical 

compliance. 
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CHAPTER 9 

 

 

CONCLUSIONS  

 

 

In this study, the axi-symmetric formulation proposed in Özkan, 1995 is extended 

for dynamic poro-elasticity. The formulation is explained in Chapter 6 and can be 

summarized as follows: 

 

• expand the traction and displacements in complex Fourier series in 

circumferential direction, this reduces surface BI equations to line integral 

equations along the generator, for each frequency of the series expansion 

• the kernels appearing in the reduced BIE are now in the form of Fourier 

integrals, which can be computed efficiently by FFT algorithm 

• introduce boundary discretization along the generator and solve the 

reduced BE equations for each frequency of the complex Fourier series 

expansion, thereby determine the Fourier coefficients of the unknown 

boundary quantities. The integrations along the generator can be performed 

via Gaussian Quadrature; however a special treatment is necessary when 

the source point is on the integration element.   

• combine the complex Fourier coefficients of the boundary variables 

through inverse FFT to compute the variation of unknown boundary 

quantities in circumferential direction. 

 

The proposed formulation has features superior to the other methods described 

in the literature.  To be precise, 
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1. The expansion of boundary variables in complex Fourier series, 

instead of real Fourier series, obviates the need for differentiating 

symmetric and anti-symmetric modes in the analysis. This further 

provides for easier coding in the case of arbitrary boundary 

conditions.  

2. The integrations in circumferential direction are performed by FFT 

algorithm, thereby the reduced BE equations at all frequencies are 

obtained in one roll simultaneously. In other methods these 

integrals are computed by Gaussian Quadrature (Brebbia and 

Dominguez 1992) at each frequency separately. The use of FFT 

algorithm, therefore, increases the computational performance and 

accuracy remarkably. Still other formulations entail numerical 

evaluation of complete elliptic integrals (Guiggiani and Cassalini, 

1986), which is both computationally involved and problematic 

when the modulus “k” approaches unity. 

3. When the source point is on the integration element, the line 

integration at θ=0 pose a particular hyper-singular behaviour. This 

difficulty is circumvented by a special technique described in 

Chapter 6. In alternative formulations complete elliptic integrals has 

to be computed numerically, which may lead to numerical 

instabilities at high frequencies. 

4. The convergence of the method for a given BE mesh is controlled 

by the number of subdivisions in circumferential direction as shown 

in section 7.6. Good accuracy is obtained for N = 28 angular sub-

divisions while perfect convergence is observed at N = 212 sub-

divisions. 

 

The proposed formulation is coded in C language as a part of this 

work. The program computes unknown boundary quantities, force 

and moment resultants over specified elements, as well as the 

displacements and pore-pressure at prescribed interior points. The 
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boundary conditions in circumferential direction are input at 

arbitrary angular positions; the program can interpolate to obtain 

variation of boundary values at appropriate angular deviations for 

FFT computations. In the current implementation only real 

boundary conditions are to be input, for complex boundary 

conditions analytical expressions can be entered in the code, 

otherwise a slight modification in the implementation is still 

possible to accommodate for input of complex boundary conditions.  

 

In the example problems presented in Chapter 8, a good fit is 

observed between the solutions obtained by the proposed method 

and the analytical solutions, which shows the effectiveness of this 

formulation. 

 

The accuracy is improved as the number of angular sub-divisions 

(N = 2MM) and the number of terms in the complex Fourier series 

(Np = 2MMp) are increased, sufficient accuracy is obtained for MM 

= 7 and MMp = 2 for uniform boundary conditions (axi-symmetric 

boundary conditions). For good results MM = 8 is recommended. 

The parameter MMp should be increased for non axi-symmetric 

boundary conditions, especially when there are jumps in the 

variation of boundary conditions in θ-direction. It should be noted 

that boundary element mesh refinement may also be needed to 

rectify the results.  

 

Recommendations for Further Study: 

 

The axi-symmetric bodies having two different materials cannot be 

handled with the program developed in this study. The program can 

be modified to handle multi-domain problems.  

 



 211 

Similarly, the formulation can be extended for self weight and 

similar body force effects by exploiting the derivable from a 

potential nature of these effects, or otherwise dual-reciprocity 

approach is always within easy reach. 

 

Stress and flux vector components can be computed after stress 

kernels of 3-D poro-elastodynamics are implemented in the 

computer program. These kernels are available in Badmus, 1990; 

however, to author’s knowledge, the kernels have not been verified 

and should be used with caution. 

 

The evaluation of singular integrals discussed in Chapter 6 can 

alternatively be performed using asymptotic expansion of kernels 

for θ tending to zero. This will be the subject of a further study. 
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