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ABSTRACT

FREE VIBRATION ANALY SIS OF ANISOTROPIC LAMINATED
COMPOSITE SHELLS OF REVOLUTION

Y avuzbal kan, Erdem
M.S., Department of Aerospace Engineering
Supervisor: Assoc. Prof. Dr. Altan Kayran

August 2005, 288 pages

In this thesis, the free vibration analysis of anisotropic laminated composite shells of
revolution (ALCSOR) is studied. The governing equations are kinematic, constitutive, and motion
equations. Geometrically linear strain-displacement equations of Reissner-Naghdi shell theory in
combination with first-order shear deformation theory in which transverse shear and rotatory inertia
effects are taken into consideration. The constitutive relations are for macrosopicaly ALCSOR in
which statically equivalent force and moment resultants, instead of internal stresses for a single layer,
are introduced. Equations of motion for the free vibration problem are obtained by the Hamilton's
principle. The derived governing equations for the free vibration analysis of ALCSOR are initially
formulated into a system of partia differential equations in terms of fundamental variables. Then,
those partial differential equations are reduced to a system of first order ordinary differential equations
by applying finite exponential Fourier Transform method resulting in a two point boundary value
problem. It has been demonstrated that the application of the finite exponential Fourier transform
made it possible to solve the governing equations, comprising the full anisotropic form of the
congtitutive eguations, which was otherwise impossible to solve with the classica Fourier
decomposition method. First, the boundary value problem formulated is reduced to a series of initial
value problems, then the multissgment numerical integration is used in combination with the

frequency trial method in order to find the critical modes within a given range of natura frequencies.
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A computer code DALSOR is written for the solution of the natural frequencies and mode shapes of
mascroscopicaly ALCSOR. DALSOR is applicable to any general boundary condition at both ends of

the shell, and allows for variation of all elastic and geometric propertiesin the meridional direction.

Numerical results are presented, and mainly discussions on the method of solution and the
effect of macroscopic anisotropy on modal characteristics, mainly natural frequencies, are made.
Various case studies are performed primarily on cylindrical shellsin order to investigate the effects of
mainly fiber orientation angle, stacking sequence, arbitrary boundary conditions at the edges of the
shell, thickness-to-radius ratio on the modal characteristics, mainly natural frequencies. Application of
the method of solution has a so been demonstrated for a truncated composite spherical shell.

Keywords: free vibrations, composite shells, anisotropy, shells of revolution, finite exponential

Fourier transform, frequency trial method
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ANIZOTROPIK KATMANLI KOMPOZIT EKSENEL SIMETRIK
KABUKLARIN SERBEST TIiTRESIM ANALIZI

Y avuzbalkan, Erdem
Y Uksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Altan Kayran

Agustos 2005, 288 sayfa

Bu tezde, Makroskopik Anizotropik Katmanli Kompozit Eksenel Simetrik Kabuklarin
(MAKKESK) serbest titresim analizleri ¢aligilmistir. Ana denklemler kinematik, konstitiitif ve hareket
denklemleridir. Kinematik denklemler Reissner-Naghdi kabuk teorisinin geometrik lineer genleme-
yer degistirme denklemlerinin enine kesme ve donel atalet etkilerini de barindiran birinci derece
kayma — deformasyon teorisi ile birlikte kullanilmasindan olugmaktadir. Konstitiitif denklemlerde
MAKKESK’nin tek katman igin i¢sel gerilmelerin yerine statik esdeger yiilk ve moment sonuglari
kullanilmigtir. Hareket denklemleri ise serbest titresim problemi igin Hamilton prensibi kullanilarak
elde edilmistir. MAKKESK’nin serbest titresim analizi icin tiiretilen ana denklemler temel degerlerle
formiile edilmis kismi diferansiyel denklem sistemine doniistiirilmiistiir. Sonra bu denklemleri iki
noktali sinir deger problemi olacak sekilde sonlu Ustel Fourier Doniisim Metodu (UFDM)
uygulanarak birinci dereceden adi diferansiyel denklemlere donustiiriilmustir. Gosterilmistir ki
UFDM’nin uygulanmasi, tam anizotropik sekildeki konstitiitif denklemlerinin klasik Fourier
Ayrigtirma metodu kullanilarak olanaksiz goriilen ¢oziimiinii olast kilmistir. Sinir deger problemi
oncelikle bir grup baslangic deger problemine doniistiirilmistiir. Bunun ardindan verilen dogal
frekans araligindaki kritik modlar frekans deneme metodu ile biitiinlesik ¢ok parcali sayisal

integrasyon kullanilarak bulunmugtur. MAKKESK’nin dogal frekans ve mod sekillerinin ¢dziimu i¢in
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DALSOR isimli bir bilgisayar kodu yazilmistir. DALSOR her tiirlii sinir kosullart ve kabugun ekseni

boyunca elastik ve geometrik 6zellik degisimleri igin uygulanabilir.

Sayisal sonuglar sunulmus ve ¢dziim metodu ve modal karakteristikler, daha cok dogal
frekangdar, tzerindeki makroskopik anizotropi etkisi tartistimistir. Silindirik kabuklar tizerinde, ana
olarak, fiber oryantasyon agisi, istif sirasi, kabugun her iki ucundaki keyfi sinir kosullari, modal
karakteristeki kalinlik yarigap oraninin etkisini inceleyen bir ¢ok durum calismasi gergeklestirilmistir.

Co6ziim metodunun kesik kompozit kiiresel kabuk tizerine uygulanmasi da ayrica gosterilmistir.

Anahtar kelimeler: Serbest titresim, kompozit kabuklar, anizotropi, eksenel simetrik kabuklar, sonlu

tistel Fourier doniisiimii, frekans deneme metodu
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Composites are defined as materials which are combinations of two or more materials such
as reinforcing elements, fillers, and composite matrix binder. Those materials differ in form or
composition on a macroscale. The entities of the components in the composites do not change. Also,
components of the composites can be physically identified and exhibit an interface between one
another. Reinforcing material and matrix material are general two materials in the formation of
composites. The task of the reinforcing material is to be the reinforcing or load-carrying agent. The
reinforcing materials, which are typically strong and stiff, are mostly existed in the form of fibers or
filaments. A filament, which is the smallest unit of afibrous material, is usually of extreme length and
very small diameter, usualy less than 25 um. A fiber is a generd term for the filament with a finite
length that is at least 100 times its diameter, which typically corresponds to 0.10 to 0.13 mm. Fibers
can be continuous or specific short lengths (discontinuous). Common metals like aluminum, copper,
iron, nickel, steel, and titanium, and organic materials like glass, carbon, boron, and graphite materials
are used as the fiber materials. The function of the matrix is to support and protect the fibers and to
provide a means of distributing load among and transmitting load between the fibers. The matrix can

be organic, ceramic, or metallic. There are three commonly accepted types of composite materials:

1. Fibrous composites which consist of fibersin amatrix.
2. Laminated composites which consist of layers of various materials.

3. Particulate composites which are composed of particlesin a matrix.

Many composite structures used in aeronautical and astronautical, civil, maritime, nuclear,
automative, petroleum and petrochemical engineering are made of laminated fiber-reinforced
composites. The laminated fiber-reinforced composites consist of layers of fibers embedded into the
matrix. Each layer is called a lamina or ply. The lamina is the fundamental building block of
laminated fiber-reinforced composite materials. The layers of fiber-reinforced material are built up

with the fiber directions of each layer typicaly oriented in different directions to give different
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strengths and stiffnesses in the various directions. Thus, the strengths and stiffnesses of the laminated

fiber-reinforced composite can be tailored to the specific design requirements of the structural element
being built [1,2]. The laminated fiber-reinforced composite materials are also called advanced
composite materials.

Composite materials have better engineering properties than the conventiona engineering

materials, for instance, metals. The advantages and disadvantages of composite materials over metals
arelistedinthe Table 1.1.

Table 1.1 Advantages and disadvantages of composite materials over metals [3]

Advantages of Composite Materialsover Metals

Light weight

Resistance to corrosion

High resistance to fatigue damage

Reduced machining

Tapered sections and compound contours easily accomplished
Can orientate fibersin direction of strength/stiffness needed

Reduced number of assemblies and reduced fastener count when cocure and co-consolidation is

used

Absorb radar microwaves (stealth capability)

Thermal expansion close to zero reduces thermal problemsin outer space applications

Disadvantages of Composite M aterials over Metals

Material is expensive
Lack of established design allowables

Corrosion coupling can result from improper coupling with metals, especially when carbon or

graphite is used (sealing is essential)

Degradation of structural properties under temperature extremes and wet conditions
Poor energy absorption and impact damage

Expensive and complicated inspection methods

Reliable detection of substandard bondsis difficult

Defects can be known to exist but precise location can not be determined
Requirement of intensive labor in manufacturing

Higher production and prototype tooling costs




Additionally, a representation of the strength-to-density and stiffness-to-density of many
materials such as advanced composite materials and metals is shown in Figure 1.1. It is seen from
Figure 1.1 that fibers aone are stiffer and stonger than when embedded in a matrix. Also,
unidirectional configurations are stiffer and stonger than biaxially isotropic configurations. As seen
from Figure 1.1, the highest stiffness and strength per unit weight can be obtained with boron fibers.
When a unidirectional boron fibers embedded in an epoxy as a lamina, a significant decrease take
place in the the relative strength of boron. whereas there is a quite little decrease in the relative
stiffness of boron. A biaxially isotropic configured boron/epoxy is still stiffer than steel or titanium,
athough they both have same relative strength. High strength graphite fibers and composites behave
similarly as boron/epoxy. However, the relative strengths of high modulus graphite fibers are
generally lower than the materials depicted in Figure 1.1 although the stiffnesses of high modulus
graphite fibers are biggest in al configurations among the other materias. The relative strength of a
unidirectiona S glass fiber embedded in an epoxy matrix is 22 times greater than the relative
strengths of steel or titanium. However, S glass/epoxy is less stiffer than steel or titanium. In Figure

1.1, the relative stiffness of beryllium is six times greater than the relative stiffness of steel, titanium

or aluminum. Some of general characteristics of beryllium wiresin a matrix behave similarly as other

composites depicted in Figure 1.1 [1].
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Figure 1.1 Specific strength and specific stiffness of advanced composite materials[1]

Advanced composite materials or fiber-reinforced composite materials are ideal for structural
applications where high strength-to-weight and stiffness-to-weight ratios are required. Since aircraft
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and spacecraft are typical weight-sensitive structures, advanced composite materials are essentially
suitable and effective for aircraft and spacecraft structures. Actually, the need for reduced weight and
increased performance properties in the structural applications of aircraft and spacecraft have led to

the devel opment and usage of advanced composite materials.

“The most commonly used advanced composite fibers are carbon and graphite, Kevlar and
boron. Among these fibers, carbon fiber is the most versatile of the advanced reinforcements and the
most widely used by the aeronautical and space structural applications. On the other hand, matrix
materials used in advanced composites to interconnect the fibrous reinforcements are as varied as the
reinforcements. Resins or plastic materias, metas, and even ceramic materials are used as matrices.
Today, epoxy resin is the primary thermoset composite matrix for airframe and aerospace
applications. In al thermoset materials, the matrix is cured by means of time, temperature, and
pressure into a dense, |ow-void-content
structure in which the reinforcement is aigned in the direction of anticipated loads. Thermoset
matrices are dominated because they allow ready impregnation of fibers, their malleability permits
manufacture of complex forms, and they provide a means of achieving high-strength, high-stifness
crosslinked networks in a cured part. In addition to thermosets, thermoplastics are rapidly taking place
as the matrix materials. The advantages of thermoplastics over thermoset matrix composites include
high service temperature, shorter fabrication cycle, no refrigeration required for storage, increased
toughness, low moisture sensitivity, and no need for chemical cure” [3].

“ Although man-made composites have existed for thousands of years, the high technology of
composites has evolved in the aeronautics industry only in the last thirty years. Filament-wound
pressure vessels using glass fibers were the first strength critical application for composites. World
War |l has been started the development of advanced composite materials due to the need for
materials with improved structural properties. Before the emerge of advanced composite materials,
aluminum and aluminum aloys, which provide high strength and fairly high stiffness at low weight,
have provided good performance and have been the main materials used in aeronautical structures
over the years. However, both corrosion and fatigue in aluminum alloys have produced problems. To
eliminate corrosion and crack formation in high-performance structures was the initial motive to
develop and use the advanced composite materials. Fiberglass-reinforced plastics had been used
successfully in filament-wound rocket motors and in various other structural applications such as the
pressure vessels. Then, with the salient devel opments and programs since 1950s, advanced composite
materials have become an increasily attractive alternative to metals, especially aluminum aloys, for
many airframe structural applications due to strong, durable, damage tolerant, and less weight
characteristics and adeguate satisfaction of design and certification requirements. Composite materials
can also provide significant cost reductions because they readily adapt to innovative manufacturing
techniques’ [2].



There have been four stages for the application of advanced composites to military and civil
airframe structures. The first stage is the building of demonstration pieces. The philosophy of the first
stageis“let’s see if we can build one”. The built piecesin the first stage have never been any intention
to put the part on an aircraft and flight-test it. The second stage was the replacement pieces. The
objective of the second stage was to flight-test a part that was designed to replace a metal part on an
existing aircraft. The third stage was the actual production pieces. By the third stage, various parts of
the aircraft were designed from the beginning and fabricated using fiber-reinforced composite
materials. The final stage was the all-composite aircraft [1]. Serious development work with advanced
composite materials started in the middle of 1960s with the boron fibers embedded in an epoxy resin
matrix. After development of boron filaments, US Air Force has started to fund programs for usage of
advanced composites in the aeronautical structures in the beginning of 1970s. These programs have
resulted in the design, production, test, and development of primary and secondary aeronautical
structures and aeronautical structural components made of advanced composites. The structures were
fuselage sections, flight control surfaces and empennage parts. The General Dynamics F-111
horizontal stabilizer was the first flight-worthy composite component. It is made of boron/epoxy like
its fuselage section. Moreover, graphite/epoxy fuselage component for Northrop F-5 made by General
Dynamics, and horizontal stabilizer of F-14 made of boron/epoxy, and carbon/epoxy horizontal
stabilizer, vertical stabilizer, leading edge, and rudder in the empennage of F-16, the X-29A having a
forward swept composite, carbon/epoxy wing box, forward fuselage, horizontal stabilizer, elevators,
rudder, other control surfaces, wing skins and over-wing fairings of U.S. Navy's AV-8B, and
carbon/epoxy wing skins, the horizontal and vertical tail boxes, the wing and tail control surfaces, the
speed brake, the leading edge extension, and various doors of F-18 could be given some examples for
first, second and third stages. Subsequently, three programs which were the graphite/epoxy
replacement of A-6 wing box, the Navy's V-22 tilt rotor aircraft, and the U.S. Advanced Tactica
Fighter F-22, have aimed to employ considerable amount of advanced composites. Apart from
military advanced composite applications, NASA started Aircraft Energy Efficiency (ACEE)
programs in 1975 for the design, manufacturing, and testing of composites. The ACEE programs
greatly expanded the scope of commercial transport composite applications including three secondary
and three primary aeronautical structures. The secondary aeronautical structures of ACEE programs
were inboard aileron of Lockheed L-1011 (sandwich construction), elevator of Boeing 727 (sandwich
construction), and rudder of McDonnell-Douglas DC-10 (all-graphite/fepoxy structural box). The
primary aeronautical structures of ACEE programs were vertical fin box of Lockheed L-1011,
horizontal stabilizer box of Boeing 737 (graphite/epoxy), and vertical fin box of McDonnell-Douglas
DC-10 (sandwich construction). The experience gained from the ACEE programs has resulted in
increased composite usage on the next generation of commercial transports, such as the flight control
surfaces and components of empennage of the Boeing B747, B757, B767, and B777. In 1985, Airbus
became the first airframe manufacturer to use composite materials for series production of primary
structures when it began to assemble the A310 with fins built of carbon/epoxy. The all-composite fin
box of the Airbus A310-300 is an impressive structure in its simplicity in terms of only 95 parts
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compared with 2076 parts in the previous aluminum box structure, insuring a reduction of assembly
costs. As aresult, aircraft manufacturers became more comfortable with the composite materials and
more efficient construction techniques were developed; the increased demand led to lower costs of
composite materials. Since the beginning of the 1980's, an all- or mostly-composite airframe has
amost become a must in the developing and manufacturing of business aircraft as well as general
aviation aircraft. Design approaches which differ from those of most commercia transport airframes
and used to reduce cost and structural weight. These innovative designs and manufacturing techniques
are pioneers in composite airframe structure development. P-180 Avanti, which had all-composite tail,
utilized composites on the nose cone, forward wing (canard), nacelles, wing trailing edge, empennage,
and control surfaces. The examples for all-composite utility aircraft can be given as the Lear Fan
2100, the Starship, the AvTek 400, and the Voyager. The Lear Fan 2100 is the first all-composite
airframe aircraft in which graphite/epoxy and Kevlar/epoxy composite materials were used. Titanium
was used for all mgjor fittings attached to graphite/epoxy structures to avoid galvanic corrosion [3,5].
In 1986, the Voyager [7], which was large span (36.09 m), high aspect ratio, long range all-composite
aircraft, flied around the world in nine days. The Voyager was an aircraft with structural weight/gross
weight fraction of only 9%; significantly lower than any existing man-rated aircraft. This flying-
around-the-world record was developed by the Globa Flyer [7] which was built of graphite/epoxy.
The nonstop and unrefueled flight of Global Flyer around world was performed only in 67 hours in
2005. Recently, the world's first twin-deck super-jumbo airliner, Airbus A380 has got 25% of its
airframe structures built of advanced composites. Also, space tourisms will be performed by
spacecrafts built of advanced composites within 10 years. The successful flight of Space Ship One[7]
made us think in this respect.

It is seen that using advanced composites has become an inevitable and standard task in the
design and construction of the airframe structures of military and civil aeronautical and space
vehicles. “The advanced composites should be treated totally different than metallic materials from
the view point of design and analysis. Many structural metallic materials generally have homogeneous
and isotropic properties. This implies that the mechanical, thermal, and environmental (like moisture)
properties of the material are equal in al directions and at al locations. In contrast to a metallic
material, a unidirectionally fiber-reinforced laminated composite material behaves like a
homogeneous anisotropic material. On the account of the fact that the unidirectional fiber-reinforced
lamina has inherent anisotropy, the corresponding properties exhibit different properties along
different axes. For instance, a unidirectional fiber-reinforced laminawill be very strong along the fiber
direction and weak in the transverse direction which is perpendicular to the fiber direction. Also, in
order to compute mechanical behavior under loading two elastic constants should be known in the
stiffness matrix for isotropic materials. Conversely, four and six elastic constants should be known for

orthotropic and anisotropic materials, respectively in the stiffness matrix” [3].



“A typical unidirectional fiber-reinforced lamina, whichis shown in Figure 1.2, is orthotropic
in nature, having three mutually perpendicular planes of elastic symmetry. Two of the elastic
symmetry planes are parallel and transverse to the fiber direction, and the third is perpendicular to the
plane of the lamina or parallel to the thickness direction. The principal material 1 and global lamina
coordinate x are taken to be parallel to the fiber, the 2-axis and y-axis transverse to the fiber direction

in the plane of the lamina, and the 3-axis and z-axis are perpendicular to the lamina’ [3].

Matrix

Fiber

Figure 1.2 A unidirectional fiber-reinforced lamina with the principal material directions (1, 2, and 3)

and the global or lamina coordinates (x, y, and z) [3].

Simple tension and shear tests are quite enough to understand to have indications for the
qualitative understanding of the anisotropic behavior of a material. The outcomes of these tests are
shown in Figure 1.3. Application of a normal stress to a rectangular block of isotropic or orthotropic
material leads to only extension in the direction of the applied stress and contraction perpendicular to
it, whereas an anisotropic material experiences extension in the direction of the applied normal stress,
contraction perpendicular to it, as well as shearing strain. Conversely, shearing strains as well as
normal strains caused by the application of a shear stress to an anisotropic material. Normal stress
applied to an orthotropic material at an angle to its principal material directions causes it to behave
like an anisotropic materials. This occurs because of the coupling between the two loading modes and
the two deformation modes. Furthermore, when there is an angle between the global coordinates and
the principal material coordinates in the lamina, some coupling terms between extension, shear,
bending and twisting do exist in the stress-strain relations causing to an anisotropic behavior of the
lamina[1]. This situation is compherensively discussed with the derivation of the governing equations

of the present research given in Chapter 2.



The aeronautical structures are considered to be thin-walled structures. The basic elements of
the thin-walled structures are beams, plates, and shells. Beams, plates and shells are known as
continuous systems of structural mechanics. Generally, the aeronautical structures are combinations of

various shapes of thin shell structures.
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Figure 1.3 Deformation of isotropic, orthotropic and anisotropic rectangular block under uniaxial

tensile and pure shear loading [1].

“A shell is athree-dimensional body which is bound by two closely spaced curved surfaces.
In case of a thin shell, the distance between the surfaces is small in comparison with the other
dimensions. The locus of points which lies midway between these surfaces is caled the middle
surface of the shell. A shell has three fundamental identifying features: its reference surface, its
thickness, and its edges. Of these, the reference surface is the most significant because it defines the
shape of the shell, and the behavior of the shell is governed by the behavior of its reference surface”
[71].

“Time-dependent vibratory motions are set up in a shell whenever it is disturbed from a
position of stable equilibrium. If these motions occur in the absence of externa loads, they are
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classified as free vibrations. If these motions are set up by time-dependent external loads, they are
referred to as forced vibrations. A shell, since it is an example of an elatic continous body, is
composed of an infinite number of mass particles. As a consequence, when it is set into motion it
possesses an infinite number of degrees of freedom. Its response to a disturbance may thus be
analyzed into an infinite number of periodic motions which are referred to as its normal modes of free

vibration. Each of these normal modes has an associated natural frequency of free vibration” [71].

In the current thesis, we would like to address the dynamic analysis issue of the thin shell
structures made of advanced composites. The foundations and scientific works about the free
vibrations of anisotropic laminated composite shells of revolution will be reviewed in the following
section.

1.2LITERATURE SURVEY

Historical development of vibration analysis of continuous structural elementsis explained in
the first chapter of Soedel [8]. The analytical methods for the vibration of continuous systems like
beams and plates can be studied in Meirovitch [9].

Leissa [11] reviewed the shell vibration research up to 1973. It included about 1000 papers
on the shell vibration. The vast majority of papers dealing with shell vibrations have focused on
homogeneous isotropic shells with few papers regarding composite shells (less than 20 out of 1000).
All of the shell theories in the Leissa’'s monograh was classical shell theories based on the first
accurate thin shell theory of Love [10]. In this theory, Love introduced his first approximation for
bending analysis of shells. This approximation defined a linear analysis of thin shells, in which
various assumptions were introduced. These assumptions are known to be the Love-Kirchoff
assumptions which are: (1) the shell is thin; (2) the displacements and rotations are small; (3)
transverse normal stresses are negligible; and(4) normals to the shell reference surface before
deforrnation remain normal after deformation. These assumptions led to thin shell theory which was an
extension to Kirchhoff plate theory. In fact, three-dimensional phemona of vibration anaysis is
reduced to two-dimensional approximated theory by Love- Kirchhoff's thin elastic shell theory. In
deriving the equilibrium equations, statically equivalent forces and moments acting on the reference
surfaces can be defined by integrating stresses through the thickness. In this way, the three-

dimensional shell behavior can be fully described using a two-dimensional approximation.

Since the first approximation of Love-Kirchhoff thin shell theory, other classical shell
theories were devel oped. The reason why many classical shell theories based on more or less on Love-
Kirchhoff first approximation for thin shell theory have been developed was that there was an
inconsistency in the origina version of Love-Kirchhoff thin shell theory since all strains did not

vanish for rigid-body motion. The classical shell theories differed with some terms in the derivations.
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Review of different classica shell theories was presented in the Leissa’s monograph [11] and the
books by Kraus [12] and Soedel [13]. Chapter 8 of Krauss's book gave a very comprehensive
description of the shell vibration topic along with methods of solution and example solutions of
cylindrical and spherical shells. On the other hand, Soedel’s book was entirely devoted to vibrations
of shells and plates, and it was an excellent reference for the introduction to the free vibration and
dynamic analysis of shell and plate type structures. These different classical shell theories were
derived from the origina version of Love-Kirchhoff thin shell theory. Also, Bushnell [16] discussed
the equations governing stress, stability, and vibration analyses for unstiffened and stiffened elastic
shells of revolution using classical shell theories.

There are many theories for layered anisotropic shells in the literature. Many of these
theories were developed for thin shells and are based on the Kirchhoff-Love first approximation. The
first analysis which incorporated the bending-stretching coupling was done by Ambartsumayan [17].
The bending-stretching coupling takes place when the layers are arranged unsymmetrically around the
reference surface of the shell. He assumed that the individual orthotropic layers were oriented such
that the principal axes of material symmetry coincided with the principal coordinates of the shell
reference surface. When the material symmetry axes do not coincide with the principal coordinates of
the shell reference surface, the shell is said to be anisotropic. This induces coupling between the
membrane and in-plane shear effects and between bending and twisting effects.

In the classical shell theories, the shell is assumed to be so thin that all transverse
deformation effects, transverse stresses and strains can be neglected. However, these transverse effects
become more significant as the shell becomes thicker relative to its in-plane dimensions and radius of
curvature. There is a gross error in predicting the natural frequencies without considering the
transverse shear deformation effects The experimantal observations revealed that classical plate theory
neglecting transverse shear strains leads to underestimates of deflections and overpredictions of
natural frequencies and buckling loads. In addition, the transverse shear deformation should be
included in the computational modeling for shells built of advanced anisotropic laminated composite
materials such as graphite/epoxy and boron/epoxy, where the ratio of elastic moduli to shear moduli
are very high. The effective flexural stiffness of anisotropic laminated shells is reduced with the
transverse shear strains. Koiter [18] pointed out that meaningful refinement of Love-Kirchhoff first
approximation for thin elastic shell can be made by taking the effects of transverse shear and normal
stresses into consideration. The inclusion of shear deformation was made for beams by Timoshenko
[19] and expanded for plates by Reissner [20] and Mindlin [21]. Mindlin also included the rotary
inertia terms in the free vibration analysis in the plates. The refined shell theories which account for
shear deformation and rotary inertia effects are known to be thick shell theories or shear deformation
shell theories. A first-order shear deformation shell theory (FOSDST) is the simplest of the shear
deformation shell theories in which there is a uniform distribution of transverse shear strains through
the thickness. Dong and Tso [22] were the first to carry out a first-order shear deformation shell
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theory. They retained one or two terms in the Taylor's series for transverse and tangential
displacement components, respectively. They constructed a laminated orthotropic shell theory

including the effects of transverse shear def ormation through the thickness.

“In laminated composite plates and shells using FOSDST, the transverse shear stresses vary
through layer thickness and do not satisfy the transverse shear boundary conditions on the top and
bottom surfaces of the plate or shell because of the assumption of a constant shear angle through the
thickness.This discrepancy is often corrected in computing the transverse shear force resultants by
considering shear correction factor. This factor is computed such that the strain energy due to
transverse shear stresses equals the strain energy due to the true transverse stresses predicted by the
three-dimensional elasticity theory. This factor depends, in general, on the lamination parameters such
as number of layers, stacking sequence, degree of orthotropy and fiber orientation in each individual

layer in the laminate” [39]. The shear correction factor is studied in [23,24, and 25] compherensively.

Whitney and Sun [26,27] developed a shear deformation theory for laminated anisotropic
cylindrical shells which includes both transverse shear deformation and transverse normal strain as
well as expansional strains. The theory is based on a displacement field in which the displacementsin
the surface of the shell are expanded as linear functions of the thickness coordinate and the transverse
displacement is expanded as a quadratic function of the thickness coordinate. There are other higher
order shear deformation shell theories such as Reddy and Liu [28], Bhimaraddi [29], Librescu [30]
and Librescu and Khedir [31] based on nonlinear (or piecewise linear) variation of displacements
and/or stresses through the shell thickness other than the Whitney and Sun’s shell theory. Noor and
Burton [32] made areview of the different approaches for computational models used for multilayered
composite shells. They focused on different approaches for developing two-dimensional shear
deformation theories; classification of two-dimensional theories based on introducing plausible
displacement, strain and/or stress assumptions in the thickness direction; first-order shear deformation
theories based on linear displacement assumptions in the thickness coordinate; and efficient
computational strategies for anisotropic composite shells. In addition, Noor, Burton and Peters [33]
conducted numerical studies to show the effects of variation in the lamination and geometric
parameters of simply supported composite cylinders on the accuracy of the static and vibrational
responses predicted by eight different modeling approaches based on two-dimensional shear
deformation theories. Computational modeling approaches for two-dimensional approximation
theories used for layered composite shells are given in Table 1.2. Furthermore, Noor and Burton also
carried out [34,35] the similar studies done for same shell structures [32,33] for multilayered

anisotropic plates.

There has been some attempts to make a unique and generalized laminated shell theory by
combining the classical shell theories with the shear deformation shell theories. Touratier [36]
presented a generalization of geometrically linear shear deformation theories for small elastic strains
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for multilayered axisymmetric shells of general shape without any assumption other than neglecting
the transverse normal strain. The shear is taken into account by using a function which isintroduced in
the assumed kinematics. All equations with the shear function in the kinematics are directly applicable
to: Kirchhoff-Love, first-order shear deformation, third-order shear deformation theories, and the
proposed generalized shear deformation theory by using certain sine shear function. Therefore, no
shear correction factors are needed with the proposed generalization of shear deformation theories.
Furthermore, Soldatos and Timarci [37] achieved a theoretical unification of most of the variationally
consistent classical and shear deformable cylindrical shell theories by introducing certain general
shear deformation shape functions into the shell displacement approximation involving five unknown
displacement components. The choice of such a shear deformation shape function is not unique and is
based on the satisfaction of certain mechanical, material and/or geometrical constraints of the problem
considered, and in general, characterizes the degree of sophistication or even the degree of accuracy of
the resulting shell theory. The general shear deformation shape functions are not introduced before or
during the variational formulation of the theory, and this procedure leads to leaving open possibilities

for amultiple, a-posteriori specification of such a shear deformation shape function.

Toorani and Lakis [39] gave the general equations of anisotropic plates and shells including
transverse shear deformations, rotatory inertia and initial curvature effects. They aso reviewed the
literature with respect to three topics: the discussion of both linear and nonlinear theories on the
analysis of plate and shell structures; the study of the effect of shear deformation on both the static and
dynamic behavior of plates and shells; especially those made of advanced composite (or anisotropic)
materials; and the discussion of the effects of structure-fluid interaction on the vibrations of plates and
shells giving specia attention to cylindrical shellsimmersed in or filled with aliquid or subjected to a
flowing fluid.

Noor [41] discussed a number of aspects of the mechanics of anisotropic plates and shells.
He covered the topics including computational models of anisotropic plates and shells, consegquences
of anisotropy on deformation couplings, symmetry types, stress concentrations and edge effects, and
importance of transverse shear deformation, recent applications and recent advances in the modeling

and andysis of anisotropic plates and shells, and new research directions.

Qatu has investigated recent research advances in the dynamic behavior of shells between
1989 and 2000 for laminated composite shells [42] and for isotropic shells [43]. In his papers, he
listed more than 350 papers for laminated composite shells and 600 papers for isotropic shells on the
dynamic behavior of shells, heavily emphasized the free vibration problem. He studied the dynamic
behavior of shells according to shell theories, shell geometries, experimental investigations, analytical
and numerical methods, comparisons among various theories, and complicating effects. Recently, he
has given the governing equations, the methods of solution about the vibrations of laminated shells
and platesin different configurationsin his book [44].
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Table 1.2 Computational modeling approaches for two-dimensional approximation theories used for layered
composite shells [28]

Through-the-thickness Constraint Total number of
Model displacement conditions displacement
number Description assumptions on stresses parameters
1 1A First-order shear * linear u,v 0 =0 5
deformation theory e constant w re
2 First-order theory with | « linear u, v, and w 6
transverse normal
) none
stresses and strains
included
3 Lo-Christensen-Wu e cubicu,Vv 11
none
type theory e quadraticw
4 Higher-order shear + quinticu,v, andw 18
none
deformation theory
5 * cubicu,v 0, = Othroughout and 5
Simlified higher-order | « constant w
theory 0,,and 0,, = Oat top and
bottom surfaces
6 e Piecewise linear u, 2XNL+3
Discrete-layer theory Y (NL: number of
(based on purely . Constant w 0, = Othroughout layers)
kinematic hypotheses) (through-the-
thickness)
7 ; - — — 5
Piecewise linear u, | o, = 0
v
Simlified discrete-layer «  Continuity of 0. and
e Constant w rx
theory
(through-the- 0, at layer interfaces
thickness)
8, 8A Predictor-corrector Predictor Phase Predictor Phase 5
procedures e Linearu,v
o, =0

. constant w
Corrector Phase
Seethe note 1

Corrector Phase

None

(1) In model 8, the corrector phase is based on adjusting the transverse shear stiffnesses, and in model 8A it

is based on correcting the thickness distribution of the in-plane and transverse displacement components.
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Cohen [45] developed an integrated computer program entitled Field Analysis of Shells of
Revolution (FASOR) in order to analyze prebuckling, buckling, initial postbuckling and vibrations
under axisymmetric static loads as well as linear response and bifurcation under asymmetric static
loads. He also extended the capability of FASOR to solve the problems of general anisotropy and
transverse shear deformations of stiffened laminated shells. The response modes of each of the
problems of nonlinear prebuckling, buckling, initial postbuckling and vibration under axisymmetric
static loads and linear prebuckling and (bifurcartion) buckling under asymmetric static loads were
caculated by reducing to the solution of a sequence of even-ordered linear Hermitian self-adjoint
boundary-value problems in ordinary differential equations. Then, each of these problems was solved
by the field method in which the boundary-value problem is converted into two numerically stable
initial-value problems which in turn were solved by a standard forward integration scheme (Runge-
Kutta) with self-regulating step size.

Padovan [49] developed a quasi-analytical finite element procedure which can analyze the
static and dynamic problems for axisymmetric fully anisotropic shells and three-dimensional solids
using complex series representations. The solution procedure presented by Padovan was for the
problems of axisymmetric shells or three-dimensional solids with arbitrary laminate construction with
locally mechanically anisotropic lamina composed of composite materials, meridional and radia
variationsin materia properties, arbitrary boundary and initial conditions. In addition, static aswell as
transient problems were solved. Padovan and Lestingi [50] also developed a complex multi-segment
numerical integration procedure in combination with a complex series representation in order to make
static analysis of mechanically and thermally loaded branched laminated anisotropic shells of

revolution with arbitary meridional variationsin thickness and material properties.

Tan [51] presented an efficient substructuring analysis method for predicting the natural
frequencies of shells of revolution in arbitrary shape of meridian, general type of material property
and any kind of boundary condition using the first-order shear deformation theory as well as the
classical thin shell theory. The method effectively used the symmetry property of a shell of revolution
In this respect, the shell of revolution was discretized by the meridians of circumferentially, and
general spline functions and Lagrangian polynomials were used to represent the displacement
variations along the meridian and in the circumferential direction in an element, respectively. The
Sturm sequence method in conjunction with the massive substructuring technique was used so as to
find the natural frequencies of a shell of revolution.

Ganesan and Sivadas [52] presented the free vibration analysis of circular cylindrical and
circular conical composite shells (angle wound) using Love-Kirchhoff first approximation for thin
elastic shells and moderately thick shell with shear deformation and rotatory inertia. In the solution,
the semi-analytical finite element method was used. In the meridional direction, the thin shells, and
moderately thick shells were discretized with a two-noded axisymmetric finite element with 16
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degrees of freedom per element, and a higher-order semi-ana ytical finite element with three nodes
and 30 degrees of freedom per element respectively. The circumferential variation was presented in
terms of a double Fourier series in order to incorporate the effect of coupling due to anisotropic

properties.

Heylinger and Jilani [56] used the Ritz method for the problem of free vibrations of
laminated anisotropic composite shells with various end conditions. The natural frequencies were
evaluated for a number of geometric and material combinations using a combination of power and
Fourier series as the approximating functions for three displacement components. No assumptions
were required regarding the type of motion because of the usage of the full equations in the
formulation. The transverse shear strains, deformation of the normals, and all inertial terms were
included in the formulation. The form of the approximating function assumed the continuity of the

displacement components and their derivatives through the thickness of the shell.

Noor Ahmed K., and Peters Jeanne M. [58] presented an efficient computationa procedure
for the free vibration analysis of laminated anisotropic shells of revolution, and for assessing the
sensitivity of their response to anisotropic material coefficients. The analytical formulation was based
on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear
deformation and the laminated anisotropic material response The fundamental unknowns in the
computational procedure were the eight stress resultants, the eight strain components, and the five
generalized displacements of the shell. Each of the shell variables were expressed in terms of
trigonometric functions in the circumferential coordinate and a three-field mixed finite element model
was used for the discretization in the meridional direction. The three key elements of the procedure
were: (a) use of three-field mixed finite element models in the meridional direction with discontinuous
stress resultants and strain components at the element interfaces, thereby allowing the elimination of
the stress resultants and strain components on the element level; (b) operator splitting, or
decomposition of the material stiffness matrix of the shell into the sum of an orthotropic and
anisotropic parts, thereby uncoupling the governing finite element egquations corresponding to the
symmetric and antisymmetric vibrations of each Fourier harmonic; and (c) application of a reduction
method through the successive use of the finite element method and the classical Bubnov-Galerkin

technique.

The three-dimensional elasticity theory solution for free vibrations of anisotropic laminated
composite shells of revolution is aways sought to check the accuracy of the natural frequencies
caculated by the two-dimensional shell theories. Noor and Peters [60] developed an efficient
computational procedure for stress, free vibration, and buckling analyses of multilayered composite
cylinders with a large number of layers. The anaytical formulation was based on the linear three-
dimensional elasticity theory, including the effects of the orthotropic material response of the
individual layers. The fundamental unknowns consisted of the six stress components and three
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displacement components of the cylinder. Each of the stress and displacement components was
expanded in a double Fourier series in the circumferential and longitudinal directions, and a two-field
mixed finite element model was used for the discretization in the thickness. The basic idea of the
proposed procedure was to approximate the stress, vibration, and buckling responses of the cylinder
associated with a certain range of Fourier harmonics in the circumferential and longitudinal directions
by a linear combination of global approximation vectors generated for a particular pair of Fourier
harmonics within that range. The three key elements of the procedure were: (1) Two-field mixed finite
element models in the thickness direction, with the stress components allowed to be discontinuous at
element interfaces; (2) operator splitting or additive decomposition of the different arrays in the
governing finite element equations to delineate the effects of the different Fourier harmonics in the
longitudinal and circumferential directions; and (3) a reduction method or successive application of
the finite element method and the classica Rayleigh-Ritz technique. Soldatos [62] reviewed the

literature on three-dimensional dynamic analyses of circular cylinders and cylindrical shells.

1.3 PRESENT RESEARCH

1.31MOTIVATION

The use of anisotropic laminated composite shells as structural elements in many engineering
applications of aeronautical, maritime, civil, space, automative, and nuclear engineering has been
increased tremendously and significantly in the last four decades. By virtue of their high strength-to-
weight and stiffnessto-weight ratios compared to metalic materials, the advanced composite
materials are preferred in the design and manufacture of anisotropic laminated composite shells. Asa
result of the increase in their use, the static and dynamic behavior of the anisotropic laminated
composite shells under divergent loading must be clearly understood so that they can be used safely.

The main interest of this study is the dynamic behavior of anisotropic laminated composite
shells used in airframe and space structures. Generally speaking, a knowledge of the free-vibration
characteristics of shells is important both to our general understanding of the fundamentals of the
behavior of a shell and to the industrial application of shell structures. The structural design of a
typical shell type structure requires that the response of the shell to various mission-dictated
excitations be accurately predicted so that the integrity of the shell structure can be assessed. To this
end, a thorough understanding of the natural modes of the shell is extremely helpful, if not essential.

Actually, the mechanical and material properties of anisotropic laminated composite shells
are different from isotropic shells, a consistent computational model is required in the structura
analysis and design. The computational models are divided into two: exact or three-dimensional
models and two-dimensional or approximated models. The use of three-dimensional and quasi-three-

dimensional models for predicting the response characteristics of anisotropic laminated composite
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shellsis computationally expensive, and not feasible for practical structuresin enginnering. “ The two-
dimensional shear-deformable models can give fairly accurate predictions for the gross response
characteristics (such as free vibration frequencies, buckling loads) of laminated composite shells;
however, they are not adequate for the accurate prediction of the transverse stresses and deformations”
[32].

Shells of revolution, in particular circular cylindrical shell, made of composite material find
widespread applications in various industries including the aerospace industry. Some common
examples are pressure vessels used for various purposes of storing high pressurized gases. Filament
winding is one manufacturing method used to produce cylindrical shells for this purpose. With this
manufacturing technique, one can produce cylinders composed of multilayers with each layer at a pre-
specified orientation. In addition to filament winding method, normal wet lay-up, vacuum bagging,
vacuum infusion methods are some of the other manufacturing techniques with which one can
produce laminated shells with each layer being at any arbitrary fiber orientation by using uni-
directional fiber ralls.

Besides pressure vessels, cylindrical shells aso find application in external stores integrated
to airframe structures such as aircraft and helicopter. These structures can serve for the purpose of
carrying various equipment ranging from electronic devices to fuel. When combined with the primary
structure of the vehicle to which it is installed, the dynamic characteristic of the store itself becomes
very important. Structural integrity of the store is not the only concern that one has to tackle but also
possible interference of the externa store and primary structure dynamic characteristics can give rise
to serious dynamic instability problems ranging from limit cycle oscillations to flutter. One can
actualy increase the examples for the use of thin shells of revolution in aerospace structures.
However, in al the applications an accurate estimate of the dynamic characteristics of the composite

shells of revolution is quite important.

Fiber orientation is one critical parameter which only affect the stiffness coefficients but also
cause for deformation coupling between different modes of deformation. The effect of anisotropy on
the dynamic characteristics of shells of revolution has not received the attention it deserves simply
because of the complexity of the resulting equations for a general shell of revolution. In thisthesis one
of the aims is to characterize the effect of anisotropy on the dynamic characteristics of shells of
revolution and understand the dynamics of thin-walled shells of revolution better.

1.3.2 OBJECTIVE AND SCOPE

The objective of the present thesis is to determine free vibration characteristics such as
natural frequencies and associated mode shapes of anisotropic laminated composite shells of
revolution. To achieve this objective, a computer code DALSOR (Dynamic Analysis of Anisotropic
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Laminated Shells of Revolution) is developed in Fortran 77. A flow-diagram and a brief explanation
of the developed code DALSOR are given in Chapter 3. The theory used in DALSOR is the first-order
shear deformation theory. The governing equations of an anisotropic laminated composite shell of
revolution are derived and the process is given in the Chapter 2. The developed code DALSOR has
the following main capabilities:

¢ Inclusion of the transverse shear deformation effects to the geometrica linear Reissner-Naghdi
thin shell theory equations (First-Order Shear Deformation Theory).

e Determination of natural frequencies and displacement, rotation, force and moment resultant
mode shapes along the meridional direction of any laminated composite shell of revolution.

¢ Anaysiswith general boundary conditions at the ends (initial end point and final end point) of the
shells of revolution (including any linear combination of displacements).

¢ Any generd type of shell of revolution (circular cylindrical, truncated conical, paraboloid shells,
etc.).

e Full anisotropic constitutive equations.

¢ Framework for continuous variation of material and geometric properties in the meridional
direction of the shell.

e Framework for discrete variation of materia and geometric properties in the meridional direction
of the shell.

Most of the previous work listed in the Literature Survey section either lack the
comprehensive treatment of the effect of anisotropy on the dynamic characteristics of shells or lack a
general methodology for the solution for general shells of revolution and concentrate on simple shell
geometries such as cylindrical or conical shells where the meridional curvature vahishes and general

equations of motion simplify significantly.

In case of shells of revolution, which have complete circumferential properties, an aternate
method based on multisegment numerica integration procedure is available in addition to the finite
element/finite difference techniques. For such geometries the multissgment numerical integration
technique has demonstrated advantages over both of these methods. Of utmost importance is the

uniform convergence property of the multisegment numerical integration technique.

The present work has its foundations on the generad method of multisegment numerical
integration for the solution of static and dynamic analysis of shells of revolution developed brilliantly
by Kalnins [66,67]. Kalninsin his papers [66] and [67] demonstrated the application of multisegment
numerical integration method for the solution of static and dynamic problems of shells of revolution
using classical shell equations and for isotropic materials.
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Kayran in his works [72] and [73] extended the applicability of the multisegment numerical
integration method for the solution of free vibration problems of general shells of revolution using
classical shell theory equations and including first-order shear deformation theory and for orthotropic

cross-ply laminates in which most of the coupling terms vanish.

The present work extends the work of Kalnins and Kayran by incorporating full anisotropic
nature of constitutive eguations in which al coupling terms are included. It has aready been
demonstrated that when all the coupling terms are included in the congtitutive equations, the
application of the traditional Fourier decomposition to the fundamental shell variables does not lead to
elimination of the circumferential coordinate; hence, preventing the generation of ordinary differential

equations.

In the present work, the well-known Reissner-Naghdi thin shell theory equations are used
and full anisotropic constitutive reations are utilized. It has been shown that through the use of Finite
Exponential Fourier Transform Method one can actually double the size of fundamental system of
equations but completely get rid of the circumferential coordinate; and thus end up with ordinary
differential equations to which multisegment integration method can be applied.

In this thesis, the traditiona frequency trial method developed by Kalninsis carried out in a
modified way to the equations of free vibrations of full anisotropic laminated composite shells of
revolution and it has been shown that one can actually determine the natural frequency of the full
anisotropic laminated composite shells of revolution through the use of modified frequency trial
method.

1.3.30VERVIEW OF THE THESIS

The remaining chapters of thisthesis are organized as follows:

Chapter 2 presents the mathematical modeling for free vibration analysis of anisotropic
laminated composite shells of revolution. In this respect, the governing equations of free vibration

analysis of anisotropic laminated composite shells of revolution are derived.

Chapter 3 explains the reduction of the governing equations into a system of ordinary
differential equations involving a two-point boundary value problem through the use of Finite
Exponential Fourier Transform Method. Chapter 3 aso gives the conversion of the two-point
boundary value problem into a series of initial value problems and explains the use of modified
frequency triadl method for the determination of natural frequencies and mode shapes of full
anisotropic laminated composite shells of revolution. Chapter 3 concludes with the brief description
and flow-diagram of the devel oped code DALSOR.
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Chapter 4 starts with one case study in order to show the reliability of the DALSOR. Then,
various numerical results are obtained so as to investigate the effects of the variation of the
geometrical, material and lamination properties to the free vibration characteristics. The numerical
results for the specified different case studies are given in tabular and graphical forms. Additionaly,
the discussions about the numerical results are made.

Finally, conclusions are summarized and recommendations for future work are discussed in
Chapter 5.
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CHAPTER 2

MATHEMATICAL MODELING

2.1INTRODUCTION

In this chapter, the mathematical modeling for the free vibration anaysis of macroscopically
anisotropic laminated shells of revolution is presented. The relationships governing the behavior of
thin elastic shells are based on the study of the deformations of its reference surface. Thus, it is
appropriate to have an understanding of the basic principles of the differential geometry for the
deformation analysis of reference surface before embarking upon the derivation of the theory of thin
elagtic shells. After studying the basic principles of the differential geometry, the properties of
surfaces of revolution is given to define shells of revolution. Then, basic considerations of the
Reissner-Naghdi shell theory for the present study are expressed. Within the framework of the
Reissner-Naghdi shell theory, the kinematic relations such as displacement functions and strain-
displacement equations are defined with respect to the reference surface of the thin doubly curved
elastic shells using First Order Shear Deformation Theory (FOSDT). Next, congtitutive equations are
derived valid for anisotropic laminated composite doubly curved shells. By using Hamilton's
principle, the dynamic equations of motion are obtained for this study. Finally, the field equations of
anisotropic laminated composite doubly curved shells are transformed to those of anisotropic

laminated composite shells of revolution

2.2 REFERENCE SURFACE OF SHELL

This study is concerned with thin elastic shells. A thin shell is a three-dimensional elastic
body which is bounded by two closely spaced curved surfaces. In case of a thin shell, the distance
between the surfaces is small in comparison with the other two dimensions. The locus of points which

lies midway between these surfacesis called the middle or reference surface of the shell.

A shell has three fundamental identifying features: its reference surface, its thickness, and its
edges. Of these, the reference surface is the most significant because it defines the shape of the shell,

and the behavior of the shell is governed by the behaviour of its reference surface. Therefore , it may
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be worthwhile to discuss the differential geometry or the theory of surfaces so as to anayze the

deformation of the reference surface. Thisis done in the following section.

2.3 DIFFERENTIAL GEOMETRY

This section consists of two parts: the theory of space curves and the theory of surface. All
materials of section 2.3, which are the basics of the differential geometry in order to describe the
deformation of the reference surface of the shell, are taken from Kraus[12].

2.3.1 SPACE CURVES

“A three-dimensional curve in arectangular coordinate system (X1, Xo, X3) can be represented

by the locus of the end point of the position vector (Figure 2.1):

X=X (D)8 + X%, (1)&, + ()& 21
for al values of the parameter t that liein theinterval t; <t <t, If we require that the x; (i=1,2,3) be
single-valued functions of the parameter t, then we shall insure that a given value of t defines only one

point on the space curve. In Equation 2.1, €,&,,€;are the unit normal vectors of the rectangular

coordinate system.

X3

es

x2

€

xi

Figure 2.1 The position vector of a space curve[12].
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23.1.1UNIT TANGENT VECTOR

Let us cal sthe variable of arc length along the space curve defined by Equation 2.1 and take

the derivative of the position vector X with respect to s,

X _dx o, dx . dx
SL=1g 28 478 2.2
ds ds & ds & ds % (22

Now if we form the scalar product of the foregoing derivative with itself, we obtain

0 (R _ b [, T, Ed—g 23)

ds ds [d5[ [ds[ [ds[

From the differential calculus, we know that

(@s) = (dx) +(dx,f + () 24)

hence

Xy @9)

ds ds

This tells us that dX/ds is a unit vector. Its geometrical interpretation is depicted in the
Figure 2.2. The vector AX joins two consecutive points Qand Q' on a curve C. Thus, the vector
A)?/ AShas the same dimension as AX and, as ASapproaches zero, A)?/ S becomes the vector

tangent to the curve C at the point Q. We call the vector

O o G A V'
t=—=|im— (2.6)
ds 4s-0As
the unit tangent vector. We note further that
L dx _dX
;- X _dRds o
dt dsdt

is also atangent vector but it is not necessarily of unit length.
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Figure 2.2 Tangent vector description [12].

2.3.1.2 OSCULATING PLANE, PRINCIPAL NORMAL

In the preceding section, the tangent to a curve at a point Qwas found to be the limiting

position of the line connecting the points Qand Q' as Q' approachesQ . Thus, it could be stated that

the tangent to a curve passes through two consecutive points on the curve. As a next step, it is natural
to consider the limiting position of a plane passing through three consecutive points of a curve as two

of the points approach the third. Such a plane is called the osculating plane. It can be found by

specifying that the vector ()Z - 7() from a general point X in the osculating plane to a general point

X on the curve must lie in the same plane as the tangent vector ijoi ning two points on the curve and

the rate of change in the tangent vector (X) which occurs in passing to the third point. Since the triple

scalar product of three coplanar vectorsis zero, an expression for the osculating planeisfound from
(X -x)drx%)=0 (28

It is now appropriate to define the principal normal to a curve at a point Q as that vector in

the osculating plane Q which is perpendicular to the tangent t to the curve at Q.
2.3.1.3 CURVATURE

By Equation (2.5), T.f =1. If we differentiate this scalar product with respect to arc length,

we obtain
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9 Ef)=2=0 (29

where the prime denotes differentiation with respect to s. This result indicates that the vector t'is

perpendicular tot . From the definition of T , we can write

f="=""2" =%t (2.10)

=%+ X' (2.11)

This indicates that the vector t'lies in the plane of the vectors X and i(that is, in the
osculating plane). Since i has also been shown to be perpendicular to the tangent i, we conclude

that T isparallel to the principal normal and is, therefore, proportional to it as follows:
' =K =kN (2.12)

where N is a unit normal vector in the direction of the principal normal to the curve at a point. The
vector K is called the curvature vector and expresses the rate of change of the tangent vector as a
point moves along the curve. The proportionality factor Kis called the curvature, and its reciprocal
(R=k™) istheradius of curvature. It is the radius of the osculating circle that passes through three
consecutive points of the curve. Although the sense of T is determined solely by the curve, the sense
of the principal normal Nis arbitrary. The sign of the factor k , therefore, depends on the sense of
N . To maintain cons stency in our development, we shall assume that the normal vector N points
away from the center of curvature. Thus, Equation (2.12) tells us that when the sense of N and K are

the same, kK > 0 ,and when the sense of N is opposite to that of K, we have k < 0.
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2.3.2 SURFACES

2.3.21 PARAMETRIC CURVES OF A SURFACE; FIRST FUNDAMENTAL FORM

Every surface Sin the rectangular coordinate system may be written as a function of two

parameters @, and @, asfollows:

X = fl(al’az) X = fz(alvaz)’ X3 = fs(alvaz) (213

where f;, f,and f,are single-valued and continuous functions of @ and @,. The parameters

a,and Q,are called the curvilinear coordinates of the surface. By fixing, in turn, one of the

parameters and varying the other, we obtain a family of curves called the parametric curves of the

surface as shown in Figure 2.3. Equation (2.13) can also be written as a vector equation
I7(01’ 02): fl(al’ aZﬁl + f2(al’ OZE + fS(al’ aZF& (2'14)

A differential change dr in the vector T as we move from a point P to an infinitesimally

close point P’ on the surface S can be written as
dr =r,da, +T7,da, (2.15)

where we have introduced the notation
r = PR 1=12 (2.16)

for partial derivatives of vectors. The square of the magnitude of the differential change vector df is

obtained by taking the scalar product of df with itself. Thus
(ds)2 =drdr= E(dcrl)2 + 2F(dalda2)+ (_“-,(darz)2 (2.17)

where

E=r.f,, F=rF,, G=r,r,, (2.18)
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Figure 2.3 Parametric curves of a surface and differential change of a position vector on the surface
[12].

Equation (2.17) is known as the first fundamental form of the surface Sdefined by the
vector 7'(a,,a,); E,F,and G are called the first fundamental magnitudes. Along the parametric

curves themselves, the differential length of arc takes the simplified forms

ds, =+Eda, @dongacurveof constant @,
(2.19)

ds, = \/Edaz along acurve of constant &,

We notice here that since ', and I, are tangent to curves of constant @', and @ , respectively,

the quantity F will be zero if the parametric curves form an orthogonal net. In such cases, it is

customary to write the first fundamental form as

(@sy = A’(da,) + A (da, f (220

where

A =vJE, A, =G, and F=0 (2.21)
2.3.22NORMAL TO A SURFACE

At every point Pof a surface there exists a unit norma vector f(a,,a,) which is

perpendicular to FJ and fz and hence to the plane at P that contains these vectors (the tangent plane
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at P). The unit normal vector is thus parallel to the cross product of I, and I, . Since a unit vector is

avector divided by its magnitude, an expression for n(a,,a,)isgiven as
n(a,,a,) = (flez)/|fle2| (222
From vector algebra, we have
|r,1xr,2| :|'7,1||F,2|Sin0 (2.23)
and

r, =|Fy/|F;|cosé (2.24)

where 6 isthe angle between the vectors I'; and T',. Thus, from Equation (2.18), we obtain

cosf=F / VEG (2.25)
and, therefore,
sind=,/(EG-F?)/EG (2.26)

The final expression for the unit normal vector is

i(a,a,) = g—@ JEG-F? (2.27)

provided that H does not vanish. We should point out here that the principal normal N of acurveon

asurface need not be normal to the surface (that is, generally N.A # 1).
Like the principal normal of a curve, the sense of the normal to a surface is arbitrary.
Therefore, we should adopt the convention that the parametric curves should always be arranged in

such a manner that the normal 1 points from the concave side to the convex side of the surface.

2.3.2.3 SECOND FUNDAMENTAL FORM

In our previous discussion, we have described the curvature vector K of a space curve. We

shall now consider a curve on a surface and use the properties of the curvature vector to derive an
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important feature of surfaces called the second fundamental form. Let us resolve the curvature vector

K of the curve into its components normal and tangential to the surface. Thus
. odt - -
k=—=Kk, +k (2.28)
ds

Here k,and K, are referred to as the normal curvature vector and tangential curvature vector,

respectively. In our analysis, we are only interested in the former one. Since Izn isin the direction of

the normal to the surface, it is proportional to N and can be expressed in terms of it as follows:
k ==K i (2.29)

where K, is caled the normal curvature. The minus sign takes into account the fact that the sense of

the curvature vector K is opposite to that of the normal vector i .

Since fi is perpendicular to T, differentiation of the scalar product . = O with respect to

S aong the curve on the surface gives
L (2.30)
If we form the scalar product of Equation (2.29) with i, we find that
- (k, 0) =K, (2.31)
and the scalar product of Equation (2.28) with T gives (since N is perpendicular to K ):

A [(df /ds) = fi [k, (2.32)
Finaly, if we combine Equations (2.32), (2.31), and (2.30), we obtain

K., = (dF [di)/(dF [dF) 2.33)
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where we have used (ds)? = df’ [&lf" . Now, if we notice that

di =n,da, +i,da,, dr =r,da, +7,da, (2.34)
and if we substitute the foregoing expressions into Equation (2.33), we obtain

L L(da,)? + 2Mda,da, + N(da,)?
| E(da,)? +2Fda,da, + G(da,)?

(2.35)

n

where the following new quantities, which are called fundamental magnitudes, have been defined:

LzF,l[ﬁ,li 2M =(F,1[ﬁ,2+r,2[ﬁ,1)1 N :F,z[ﬁg (2.36)
By differentiation of the expronsrf1 [(A=0, ad F,z [A=0, we obtain the alternative

expressions:
L=-r, 0, M =-r,[H, N =-T,, [ (2.37)
where we have used the following notation

= 07T .
r=——, 1,]=12 2.38
Y 0a0a, (2.38)
We have also assumed, in the derivation of the alternate expression for M that T has

continuous second derivatives. Thiswill insurethat ', =T,

In the expression (2.35) for the normal curvature, we notice that the denominator (1) is the
first fundamental form which is derived previously. The numerator (I1) is referred to as the second
fundamental form. Since E, F,G, L, M, N can al be expressed as functions of a,and a,.They
are constants at a given point, it is seen upon consideration of Eq.(2.35) that the normal curvature

depends only on the direction da, / da, . It can thus be stated that all curves through a point on a

surface which are tangent to the same direction have the same normal curvature.
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2.3.2.4 PRINCIPAL CURVATURES

It is interesting at this point to seek those directions da,/da,for which the normal
curvature Kn has a maximum or a minimum. If, from now on, we drop the subscript n, and if we

define the directionto be A = da, / da,, the expression for the normal curvature becomes

2
K(A) = L+2MA + NA2 (2.39)
E+2FA +GA

The normal curvature attains an extremum in a particular direction A if dK/dA =0, or

(E+2FA +GA*)(M +NA) = (L +2MA + NA*)(F +GA) =0 (2.40)
By noting also that

E+2FA+GA* =(E+FA)+ A(F +GA)
(2.41)
L +2MA + NA? = (L + MA) + A(M + NA)

we find that
(E+FA)(M +NA) =(F +GA)(L+MA) (242

The extremum curvature is now found by substituting Equation (2.40) into Equation (2.39)
and
then making use of Equation (2.42). This procedure gives

=M+N/\=L+M/1
F+GA E+FA

(2.43)

An equation for determining the direction A corresponding to the extremum curvatures is
found by expanding Equation (2.42), with the result that

(MG -NF)A*> +(LG-NE)A +(LF -ME) =0 (2.44)

This quadratic equation yields two roots, A;andA,, corresponding to two directions,

(da,/da,),and(da,/da,),, of extremum curvature. One of these solutions is the maximum
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curvature while the other is the minimum curvature. K, andK,, corresponding to A, and A,, are

called the principal curvatures, and R, = K, " and R, = K 'are the principal radii of curvature. The

directions of principal curvature are orthogonal. Proof of this orthogonality is given in detail in the
section 1.3d of [12]. Integration of Equation (2.44) gives us the lines of curvature on the surface.
These form an orthogonal family of curves on the surface.

Now let us examine the situation in which the lines of curvature are taken as the parametric

lines (curves) of the surface. In this case, Equation (2.44) must be satisfied by

da,/da, =0andda, /da, = 0. For thisto be possible, we must have

LF -ME=0ad MG-NF =0 (2.45)

Since we have postulated the parametric lines are to be the lines of curvature and since the
latter is known to be orthogonal, F =0. It can be shown that EG — F?2>0,so that for F =0,

neither E nor G can be zero. Thus, we are led to the conclusion, from Equation (2.45), that

M = 0 and, therefore, the conditions under which the parametric lines are also lines of curvature are
F=M=0 (2.46)

When the parametric curves are the lines of curvature, we can find their curvatures by setting

F=M=0in Equation (2.35), thenletting da, =0andda, =0, inturn, to give

Kl = =—, K2 = = (2.47)

m|r
Oz

1
R,

|-

The development of the theory of thin elastic shells is considerably clarified if the lines of
curvature of the reference surface are used as the parametric lines. Thus, we shall assume that
Equation (2.46) is satisfied our subsequent work.

23.25DERIVATIVESOF UNIT VECTORSALONG PARAMETRIC LINES

In our development of the fundamental theorem of the theory of surfaces, it will be necessary

to have on hand some expressions for the derivatives of unit vector along the parametric lines. With

thisin mind, let us, therefore, consider atriplet of mutually orthogonal unit vectors ('fl,fz,ﬁ) that are

oriented at a given point on a surface so as to be tangent to the @, and @, directions and normal to the

surface, respectively. As the triplet of unit vectors is moved over the surface, the magnitudes of the
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vectors will remain constant at unity and their directions will remain mutually orthogonal. However,
the orientation of the triplet will vary and, as a result, special attention must be given to the derivatives
of the unit vectors. To begin, we notice that a unit vector can be defined to be any vector divided by

its magnitude. Thus

L=/l =12/ A (248)
1= (6 XE) = (7, x7,)/(AA)

where we have adopted the notation introduced by Equation (2.20) for orthogona systems of

parametric lines. Since derivatives ﬁyl and ﬁ,z are perpendicular to i, they lie in the plane formed by

fl and fz and each can be decomposed into its components along fl and fz . For example,
f, =at, +bt, (2.49)

where aand b are unknowns which represent the projections of ﬁvlon fl and fz , respectively. To

determine aand b, we form the following scalar products:

t M, =———==— =a(f1 [ﬁl)"'b(fl |:ﬁ}z)
A A
(2.50)
- r,n M . S
t,(h, = L= = a(t, ) +b(t, )
A A
On account of our restriction to orthogonal systems, M =0 = fl [fz and, therefore,
L
a=—, b=0 (2.51)
A
An expression for ﬁylisthen,
i, = L ¢ (2.52)
1~ A 4 .
A



and since, by Equation (2.47)

K, = 1.t (2.53)
1= 5 " Az :
R A
we obtain as the fina result
_ A
n,=—y. (2.54)
R
Inasimilar fashion, it follows that
~ A -
n,=—=t, (2.55)
R,

To find the derivatives of fland fz along the parametric lines we proceed as we did for the
case of the derivatives of . The manipulations are dightly more involved in this case and are
facilitated by noting, first, that for functions with continuous second deriva'[ivesf12 = f21. This

permits us to write, taking into account Equations (2.48),

(Af),=(AL), (2.56)

or

- 1 - - -
t,, = E [Aitl,z +HA, - tZAZ,l] (2.57)

To find fl,l’ for example, we observe that this derivative will be perpendicular to fl and will

thus liein the plane formed by t, and fi. We may, hence, express t, ,interms of t,andfias

t,=chi+dt, (2.57)

where Candd are the unknown projections offlvlonf2 andfi. To determine Candd we form the

scalar products

Alt, =c(iln)+d(flt,) =c (2.58)
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t, @, =c(t, @) +d(t, d,) =d
We now proceed by nothing that, since (t; [A) =0,

(tm), =t +nl,=0 (2.59)

and therefore,

c=nl,=-t 0, = —% (2.60)

d=t,[t, =-t [, (2.61)

and becomes, upon use of Equation (2.56),
t, . -
d= _El ['[Aitl,z +LA, _tzAz,l] (262)

Since tﬁlv2 is perpendicular to fl, the above expression smplifiesto

1

d=-—A, (2.63)
A
The final result for flylis
11 S N A 2
R Ada,
By proceeding in an anal ogous manner, we can show that the remaining derivatives are given
by
e LoA
12~ A A 2
A oa,
- _ 1 0A
t,, =—— 2.65
21 Az aaz 1 ( )



t,, =

_iﬁ_ aﬁf
R, da, *

2|

2.3.2.6 FUNDAMENTAL THEOREM OF THE THEORY OF SURFACES

We shall now derive three differentia equations (known as the Gauss-Codazzi conditions)
that relate the quantities A, A,, R, and R, of a given surface. These equations, as part of the

fundamental theory of surfaces, are used to ascertain whether an arbitrary choice of these four
parameters will define a valid surface. These relationships are found from the equality of the mixed
second derivatives of the unit vectors, a result which presumes that these vectors have continuous

second derivatives. For example, if we start with

Ny, =N, (2.66)

we notice, upon use of expressions for the derivatives of N along the parametric lines derived in the

E%ﬁ%;%%t}%:o (2.67)

If we carry out the differentiations indicated in the foregoing and make use of the expressions for the

previous section, that

derivatives of t; andt,, we obtain

R RE e

This vector equation will be true only if the square brackets vanish; hence we obtain

=E%EZ éAM:E%% (2.69)

These are known as the Codazzi conditions. If we proceed in a similar fashion from the equation
t1 i (2.70)
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We obtain two more relations of which only the following is new:

R

This is known as the Gauss condition. The fact that four quantities can be related by no more than
three homogeneous equations, if they are to possess nontrivial solutions, leads us to the conclusion

that no new information will be obtained from a consideration of the remaining equality

2 2.72)

—
I
—+
NG
N
N

We now indicate, in aformal manner, the role of the Gauss-Codazzi conditions by stating the
fundamental theorem of the theory of surfaces:

If E,G,L,andN are given as functions of the real curvilinear coordinates@, and @, and

are sufficiently differentiable and satisfy the Gauss-Codazzi conditions while E > 0andG > 0, then
there exists areal surface which hasitsfirst and second fundamental forms

| = E(da,)’ +G(da,)?, Il = L(da,)? + N (da,)?
This surface is uniquely determined except for its position in space.

As a consequence of the fundamental theorem, we might refer to the Gauss-Codazzi
conditions as the compatibility conditions of the theory of surfaces. It should be noticed that, as stated
above, the theorem is already restricted to the surfaces whose lines of curvature are also its parametric
lines (since F=M=0). The extension to more genera parametric lines can be made but requires more
general forms of the Gauss-Codazzi conditions than we have derived here”.

2.4 CLASSIFICATION OF SHELL SURFACES

There are three types of shell surfaces such as surfaces of revolution, surfaces of trandation,
and ruled surfaces.

“Surfaces of revolution are generated by revolving a plane curve, called the meridian, about

an axis not necessarily intersecting the meridian’[15]. Some examples for surfaces of revolution are

giveninthe Figure 2.4. In Figure 2.4, the radius of curvatures are denoted as I; =1, 2.
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“A surface of translation is defined as the surface generated by keeping a plane curve parallel
to its initial plane as we move it along another plane curve’[15]. Figure 2.5 shows the surfaces of

trandation.

“Ruled surfaces are obtained by the trandation of straight lines over two end curves’[15].
They are depicted in the Figure 2.6.

Meridian

rp=a e

r=ry ry=c0

Meridian —»}

Meridian

Meridian

Meridian

(e}

Figure 2.4 Some examples for surfaces of revolution
(a) Circular Cylinder, (b) Cone, (c) Elliptic dome, (d) Hyperboloid of revolution, () Toroid [15].
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Ellipse
(z = constant)

Parabola
(convex)

Parabola
(convex)

(a)

Hyperbola
(z = constant)

Parabola Parabola
{convex) (concave)

(b) (c)

Figure 2.5 Some examples for Surfaces of trandation

(a) Elliptic paraboloid, (b) Hyperbolic paraboloid, (c)Hyper and its straight-line generators [ 15].

End curve

End curve

End curve (b)

(a)

Figure 2.6 Ruled Surfaces (a) Hyperboloid of revolution of one sheet, (b) Conoid [15].

Since the main concern of this study is the shells of revolution, the surface of revolution is

studied comprehensively in the next section.
241 SHELLSOF REVOLUTION

Shellswhose reference surfaces are the surface of revolution are called shells of revolution.

A surface which is obtained by rotation of a plane curve about an axis lying in the plane of
the curve is called surface of revolution. The plane curve is called a meridian of the surface, and its

plane is the meridian plane. The intersection of the surface with planes perpendicular to the axis of
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rotation are paralel circles and are called parallels. For the shells of revolution, the lines of principal

curvature are its meridians and parallels.

Figure 2.7 shows the geometry and coordinate system of the shells of revolution. The
orthogonal curvilinear coordinate system, Q,,Q,, and{ , of the reference surface of the shell, is

replaced by ¢,6,and{ , respectively for the shells of revolution. The angle ¢ shown in the Figure
2.7 is the angle between the normal to the reference surface and the axis of rotation, and the angle
6 shown in the Figure 2.7 is the angle determining the position of a point on the corresponding

parallel circle.

The position vector T of the point P on the reference surface of the shells of revolution is

given by [14]:

r=r(pb)= E%DECOSHQ +SiNOE; +Cosye,) (2.73)

where R is the radius of the parallel at position X;.and €€, ,€, are the unit normal vectors of the

rectangular coordinate system.

Differentiating the position vector with respect to ¢ and 6 separately, we get the followings

o _ r= E%gcoswcoseé +cosgsingeg, + ék) (2.74)

oF . OR [ . .- i}
- = = — ge + gée. 2.75
3 r, %g sinde +cos eJ ) ( )

The first fundamental magnitudes, E andG , of the shells of revolutions can be determined
by using Equations (2.74) and (2.75) in Equation (2.18).

2
E=r,[,= %jlqogcos2 o+1) (2.76)

2
G=r, T, = .;”';CUE e

40



1\}&3
Meridian
el ‘l ______ o
for” de B
o b
Parallel /9
Circle \ p )
3
- Ps Py 1
4
Position Vectorr —————— 7
PT\ ¢ ’ Pg
---------- e o T
B o_% b
Second e Ty
Principal T l
Section % '\Pﬁ
| a2
!
xl Pg/wr /|
Axis of Rotation |
|
!
X3 |
Tangent
« P
o Py
i

Figure 2.7 Geometry and coordinate system of shells of revolution
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The unit normal vector of the surface of revolution is obtained by substituting Equations

(2.74), (2.75), (2.76), and (2.77) into Equation (2.27) and taking F = 0.

2
H=VEG = E;:'—;(pglcosz p+1 (2.79)

A :glxrz Sl cosg§ +sinbg, — cosg8, ) (2.79)
H H/cos® p+1

We get the derivatives of the unit normal vector i with respect to ¢ and 6 asfollows:

1 os@ysing ~ osgsngl]. .. .
0SOE + ébi ngé -sin 2.80
cos’ g+1 %0052 p+1 % " Hoos? p+1 % J - E e

=N, = H— g—sineé + cosé?éj) (2.81)

A
QI:D

We have the second fundamental magnitudes, L and N for the shells of revolution by
inserting Equations (2.74), (2.75), (2.80), and (2.81) into Equation (2.36).

B} 1 1 R,
L=r [fH, = H 2.82
r,un, F COSZ¢+1%FOSZ¢+1 'nqaé (2.82)
N=r,,= S R E (2.83)
7 Hleos?p+1HEing

K,andK,, the principal curvatures are given by Equation (2.84), and R andR,, the

principal radii of curvatures are given by Equation (2.85) for shells of revolution.

H 1 1 ROE
1 L _yeos® g+1 os’ p+1{sing

K =—=—"= (2.84)

1 E 2
R % Ecos2 o+1)
ngo
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H 1 %SRO %
2 |
_ 1 _N_[ycos p+1fBNe (2.85)
R, G RZ E

2

inZgp

Recalling Equation (2.21), and inserting Equations (2.76) and (2.77) into it, we get

A=VE= %W (286)
A,=+/G = E%E (2.87)

Rewriting Equation (2.69) which is Gauss condition,

i N

Substituting Equations (2.84), (2.85), (2.86), and (2.87) into Equation (2.69), we can write
the Gauss condition for shells of revolution as
__sSing __ sing
Joos’ g+l \Jcos p+1

(2.89)

Also, rewriting Equation (2.71) which is Codazzi condition,

RATERED RARIRAS

Again, substituting Equations (2.84), (2.85), (2.86), and (2.87) into Equation (2.71), we can

write the two components of Codazzi condition of shells of revolution in the form

_ —-cos¢sing _ —cos¢sing
0=0. (cos® p+1)°?  (cos? p+1)°'2 (289)
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The left and right sides of Equations (2.88) and (2.89) are similar after substituting the
expressions for A, A, , R, , R, obtained for shells of revolution into Gauss-Codazzi conditions. In

other words, the Gauss-Codazzi conditions are clearly satisfied for shells of revolution.

The infinitesimal distance P, P, between two arbitrary points on the reference surface of the

shells of revolution is given by (refer to Figure 2.7)

@92 =R +([ERf (2.90

and from Figure 2.7 it is clear that

PP, =R,dg (2.91)
PP, = R,sinpdd (2.92)

Hence
(ds)? = (R dgpf + (R, singd6) (2.93)

On the other hand, from Equation (2.20) the distance between any two points on the
reference surface of ashell is given by

(ds) = A’(da, f + A2 (dar. 294
where A and A, are sometimes called Lamé parameters which are related with the first fundamental

magnitudes of the reference surface of the shell. Switching the notation of curvilinear coordinates to

the notation of ¢ and 6

(asf = A2(dgy + A2 (doY (295)

Thus, comparing Equations (2.93) and (2.95), the Lamé parameters Awand A, for ashell of

revolution are given by

A =R, (2.96)



A, = Rysing (2.97)

Furthermore, from Figure 2.7 the following relationships can readily be seen

R,sin¢g =R, (2.98)

and

d(R,sing)= R, cospdg (2.99)

It should be noted that since the shell geometry isrotationally symmetric A, Ay, R, R; are

functions of ¢ only. Therefore,

2 (A RuR)=0 e

25 THEORY OF LAMINATED COMPOSITE ELASTIC SHELLS FOR
DYNAMIC ANALYSIS

After reviewing the necessary preliminaries presented so far to understand the thin elastic
shell theory, we can start to formulate the governing equations for dynamic anaysis of laminated
composite elastic shells with free vibration definition. Subsequently, the analysis of thin-walled
structural elements, particularly shells of revolution in this thesis, made of laminated composite
materialsis presented.

A detailed study of the theoretical formulations of governing equations of laminated
composite elastic shells constitutes the objective of the remaining part of this chapter. The methods of

solution for the dynamic analysis of laminated composite shellswill be expressed in the next chapter.

In this thesis, the free vibration analysis of laminated composite elastic shells is taken into

consideration.

In dynamic analysis of the elastic structure, the task is to determine its response, namely the
behavior of it, when subjected to a certain excitation. The excitation can be divided into forcing
functions, initial displacements and velocities, and moving supports. The vibration resulting from the
action of forcing upon a system is known as forced vibration, and the one resulting from initial
conditions is called free vibration. Moving supports result in forcing functions in the form of inertia

forces and elastic forces and, as such, they lead to forced vibration problems. The response is taken as
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periodic in time.

When an elastic structure is displaced from its equilibrium position and then released, it will
oscillate about that position before returning to state of rest. The elastic structure is said to be
exhibiting free vibration when it is given an initial displacement from its equilibrium position and
thereafter allowed to oscillate with no further imposed force.

It is known that the theory of shells is the subclass of the theory of easticity. There are
various shell theories pertaining to their different aspects. They can generally be divided into two
groups. three-dimensional shell theories and two-dimensional shell theories. “The two-dimensional
shell theories are derived from three-dimensional elasticity theory by making suitable assumptions
concerning the kinematics of deformation through the thickness of the shell. These assumptions allow
the reduction of a three-dimensional problem to a two-dimensional problem. The two-dimensional
shell theories include thin and thick shell theories, shallow and deep shell theories, linear and
nonlinear shell theories defined according to the ratio of the thickness of shell to the shortest of the
span length or radii of curvatures, the ratio of the shortest span length to one of the radii of curvature
or vice versa, and the magnitude of linear and rotationa displacements, respectively” [42].

Aeronautical structures, which are considered as thin-walled structures, consist of various
shell and plate configurations as basic structural elements. In this thesis, we make use of thin elastic
shell theory. The thin elastic shell theory is interested with the study of small elastic deformations of
thin elastic bodies under the influence of loads. By small deformations, it is assumed that the
equilibrium conditions for deformed elements are the same as if they were not deformed. The
relationships governing the behavior of thin elastic shells are based upon the equations of the theory of
linear elasticity. However, the consideration of the complete three-dimensional elasticity field
equations which are equilibrium (motion) equations, strain-displacement geometrical equations,
compatibi