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ABSTRACT 

 

FREE VIBRATION ANALYSIS OF ANISOTROPIC LAMINATED  

COMPOSITE SHELLS OF REVOLUTION 

Yavuzbalkan, Erdem 

M.S., Department of Aerospace Engineering  

Supervisor: Assoc. Prof. Dr. Altan Kayran 

 

August 2005, 288 pages 

 

In this thesis, the free vibration analysis of anisotropic laminated composite shells of

revolution (ALCSOR) is studied. The governing equations are kinematic, constitutive, and motion 

equations. Geometrically linear strain-displacement equations of Reissner-Naghdi shell theory in 

combination with first-order shear deformation theory in which transverse shear and rotatory inertia 

effects are taken into consideration. The constitutive relations are for macrosopically ALCSOR in 

which statically equivalent force and moment resultants, instead of internal stresses for a single layer, 

are introduced. Equations of motion for the free vibration problem are obtained by the Hamilton’s 

principle. The derived governing equations for the free vibration analysis of ALCSOR are initially 

formulated into a system of partial differential equations in terms of fundamental variables. Then, 

those partial differential equations are reduced to a system of first order ordinary differential equations 

by applying finite exponential Fourier Transform method resulting in a two point boundary value 

problem. It has been demonstrated that the application of the finite exponential Fourier transform 

made it possible to solve the governing equations, comprising the full anisotropic form of the 

constitutive equations, which was otherwise impossible to solve with the classical Fourier 

decomposition method. First, the boundary value problem formulated is reduced to a series of initial 

value problems, then the multisegment numerical integration is used in combination with the 

frequency trial method in order to find the critical modes within a given range of natural frequencies. 



v

A computer code DALSOR is written for the solution of the natural frequencies and mode shapes of 

mascroscopically ALCSOR. DALSOR is applicable to any general boundary condition at both ends of 

the shell, and allows for variation of all elastic and geometric properties in the meridional direction. 

 

Numerical results are presented, and mainly discussions on the method of solution and the 

effect of macroscopic anisotropy on modal characteristics, mainly natural frequencies, are made. 

Various case studies are performed primarily on cylindrical shells in order to investigate the effects of 

mainly fiber orientation angle, stacking sequence, arbitrary boundary conditions at the edges of the 

shell, thickness-to-radius ratio on the modal characteristics, mainly natural frequencies. Application of 

the method of solution has also been demonstrated for a truncated composite spherical shell. 

 

Keywords: free vibrations, composite shells, anisotropy, shells of revolution, finite exponential 

Fourier transform, frequency trial method 
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ÖZ 

 

$1ø=27523ø.�.$70$1/,�.2032=ø7�(.6(1(/�6ø0(75ø.�
.$%8./$5,1�6(5%(67�7ø75(ùø0�$1$/ø=ø 

Yavuzbalkan, Erdem 

Yüksek Lisans, HavacÕOÕN�ve Uzay 0�KHQGLVOL÷L�%|O�P� 

Tez Yöneticisi: Doç. Dr. Altan Kayran 

 

$÷XVWRV 2005, 288 sayfa 

 

Bu tezde, Makroskopik Anizotropik KDWPDQOÕ� Kompozit  Eksenel Simetrik KabukODUÕQ 

�0$..(6.��VHUEHVW�WLWUHúLP�DQDOL]OHUL�oDOÕúÕOPÕúWÕU��$QD�GHQNOHPOHU�NLQHPDWLN��NRQVWLW�WLI�YH�KDUHNHW�
denklemleridir. Kinematik denklemler Reissner-Naghdi kabuk teorisinin geometrik lineer genleme-

yer GH÷LúWLUPH� GHQNOHPOHULQLQ� HQLQH� NHVPH� YH� G|QHO� DWDOHW� HWNLOHULQL� GH� EDUÕQGÕUDQ� ELULQFL� GHUHFH�
kayma –� GHIRUPDV\RQ� WHRULVL� LOH� ELUOLNWH� NXOODQÕOPDVÕQGDQ� ROXúPDNWDGÕU�� .RQVWLW�WLI� GHQNOHPOHUGH�
0$..(6.¶QLQ� WHN� NDWPDQ� LoLQ� LoVHO� JHULOPHOHULQ� \HULQH� VWDWLN� HúGH÷HU� \�N� YH� PRPHQW� VRQXoODUÕ�
NXOODQÕOPÕúWÕU��+DUHNHW� GHQNOHPOHUL� LVH� VHUEHVW� WLWUHúLP�SUREOHPL� LoLQ�+DPLOWRQ� SUHQVLEL�NXOODQÕODUDN�
HOGH�HGLOPLúWLU��0$..(6.¶QLQ�VHUEHVW�WLWUHúLP�DQDOL]L�LoLQ�W�UHWLOHQ�DQD�GHQNOHPOHU�WHPHO�GH÷HUOHUOH�
IRUP�OH� HGLOPLú� NÕVPL� GLIHUDQVL\HO� GHQNOHP� VLVWHPLQH� G|Q�úW�U�OP�úW�U�� 6RQUD� EX� GHQNOHPOHUL� LNL�
QRNWDOÕ� VÕQÕU� GH÷HU� SUREOHPL� RODFDN� úHNLOGH� VRQOX� hVWHO� )RXULHU� '|Q�ú�P� 0HWRGX� �h)'0��
X\JXODQDUDN� ELULQFL� GHUHFHGHQ� DGL� GLIHUDQVL\HO� GHQNOHPOHUH� G|Q�úW�U�OP�úW�U�� *|VWHULOPLúWLU� NL�
ÜFDM¶QLQ� X\JXODQPDVÕ�� WDP� DQL]RWURSLN� úHNLOGHNL� NRQVWLW�WLI� GHQNOHPOHULQLQ� NODVLN� )RXULHU�
$\UÕúWÕUPD� PHWRGX� NXOODQÕODUDN� RODQDNVÕ]� J|U�OHQ� o|]�P�Q�� RODVÕ� NÕOPÕúWÕU�� 6ÕQÕU� GH÷HU� SUREOHPL�
|QFHOLNOH� ELU� JUXS� EDúODQJÕo� GH÷HU� SUREOHPLQH� G|Q�úW�U�OP�úW�U�� %XQXQ� DUGÕQGDQ� YHULOHQ� GR÷DO�
IUHNDQV� DUDOÕ÷ÕQGDki kritik modlar frekans deneme PHWRGX� LOH� E�W�QOHúLN� oRN� SDUoDOÕ� VD\ÕVDO�
LQWHJUDV\RQ�NXOODQÕODUDN�EXOXQPXúWXU��0$..(6.¶QLQ�GR÷DO�IUHNDQV�YH�PRG�úHNLOOHULQLQ�o|]�P��LoLQ�
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DALSOR isimli bir bilgLVD\DU�NRGX�\D]ÕOPÕúWÕU��'$/625�KHU�W�UO��VÕQÕU�NRúXOODUÕ�YH�NDEX÷XQ�HNVHQL�
boyunca elastik ve geometrik özellik GH÷LúLPOHUL�LoLQ�X\JXODQDELOLU� 

6D\ÕVDO� VRQXoODU� VXQXOPXú� YH� o|]�P� PHWRGX� YH� PRGDO� NDUDNWHULVWLNOHU�� GDKD� oRN� GR÷DO�
frekanslar, üzerindeki maNURVNRSLN�DQL]RWURSL� HWNLVL� � WDUWÕúÕOPÕúWÕU�� 6LOLQGLULN� NDEXNODU� �]HULQGH�� DQD�
RODUDN�� ILEHU� RU\DQWDV\RQ� DoÕVÕ�� LVWLI� VÕUDVÕ�� NDEX÷XQ� KHU� LNL� XFXQGDNL� NH\IL� VÕQÕU� NRúXOODUÕ�� PRGDO�
NDUDNWHULVWHNL�NDOÕQOÕN�\DUÕoDS�RUDQÕQÕQ�HWNLVLQL�LQFHOH\HQ�ELU�oRN�GXUXP�oDOÕúPDVÕ�JHUoHNOHúWLULOPLúWLU��
d|]�P�PHWRGXQXQ�NHVLN�NRPSR]LW�N�UHVHO�NDEXN��]HULQH�X\JXODQPDVÕ�GD�D\UÕFD�J|VWHULOPLúWLU� 

Anahtar kelimeler:�6HUEHVW�WLWUHúLP��NRPSR]LW�NDEXNODU��DQL]RWURSL��HNVHQHO�VLPHWULN�NDEXNODU��VRQOX�
�VWHO�)RXULHU�G|Q�ú�P���IUHNDQV�Geneme metodu 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Composites are defined as materials which are combinations of two or more materials such 

as reinforcing elements, fillers, and composite matrix binder. Those materials differ in form or 

composition on a macroscale. The entities of the components in the composites do not change. Also, 

components of the composites can be physically identified and exhibit an interface between one 

another. Reinforcing material and matrix material are general two materials in the formation of 

composites. The task of the reinforcing material is to be the reinforcing or load-carrying agent. The 

reinforcing materials, which are typically strong and stiff, are mostly existed in the form of fibers or 

filaments. A filament, which is the smallest unit of a fibrous material, is usually of extreme length and 

very small diameter, usually less than 25 µm. A fiber is a general term for the filament with a finite 

length that is at least 100 times its diameter, which  typically corresponds to 0.10 to 0.13 mm. Fibers 

can be continuous or specific short lengths (discontinuous). Common metals like aluminum, copper, 

iron, nickel, steel, and titanium, and organic materials like glass, carbon, boron, and graphite materials 

are used as the fiber materials. The function of the matrix is to support and protect the fibers and to 

provide a means of distributing load among and transmitting load between the fibers. The matrix can 

be organic, ceramic, or metallic. There are three commonly accepted types of composite materials: 

 

1. Fibrous composites which consist of fibers in a matrix. 

2. Laminated composites which consist of layers of various materials. 

3. Particulate composites which are composed of particles in a matrix. 

 

Many composite structures used in aeronautical and astronautical, civil, maritime, nuclear, 

automative, petroleum and petrochemical engineering are made of laminated fiber-reinforced 

composites. The laminated fiber-reinforced composites consist of layers of fibers embedded into the 

matrix. Each layer is called a lamina or ply. The lamina is the fundamental building block of 

laminated fiber-reinforced composite materials. The layers of fiber-reinforced material are built up 

with the fiber directions of each layer typically oriented in different directions to give different 
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strengths and stiffnesses in the various directions. Thus, the strengths and stiffnesses of the laminated 

fiber-reinforced composite can be tailored to the specific design requirements of the structural element 

being built [1,2]. The laminated fiber-reinforced composite materials are also called advanced 

composite materials. 

 

Composite materials have better engineering properties than the conventional engineering 

materials, for instance, metals. The advantages and disadvantages of composite materials over metals 

are listed in the Table 1.1. 

 

Table 1.1 Advantages and disadvantages of composite materials over metals [3] 

 

Advantages of Composite Materials over Metals 

• Light weight 

• Resistance to corrosion 

• High resistance to fatigue damage 

• Reduced machining 

• Tapered sections and compound contours easily accomplished 

• Can orientate fibers in direction of strength/stiffness needed 

• Reduced number of assemblies and reduced fastener count when cocure and co-consolidation is 

used 

• Absorb radar microwaves (stealth capability) 

• Thermal expansion close to zero reduces thermal problems in outer space applications 

Disadvantages of Composite Materials over Metals 

• Material is expensive 

• Lack of established design allowables 

• Corrosion coupling can result from improper coupling with metals, especially when carbon or 

graphite is used (sealing is essential) 

• Degradation of structural properties under temperature extremes and wet conditions 

• Poor energy absorption and impact damage 

• Expensive and complicated inspection methods 

• Reliable detection of substandard bonds is difficult  

• Defects can be known to exist but precise location can not be determined 

• Requirement of intensive labor in manufacturing 

• Higher production and prototype tooling costs 
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Additionally, a representation of the strength-to-density and stiffness-to-density of many 

materials such as advanced composite materials and metals is shown in Figure 1.1. It is seen from 

Figure 1.1 that fibers alone are stiffer and stonger than when embedded in a matrix. Also, 

unidirectional configurations are stiffer and stonger than biaxially isotropic configurations. As seen 

from Figure 1.1, the highest stiffness and strength per unit weight can be obtained with boron fibers. 

When a unidirectional boron fibers embedded in an epoxy as a lamina, a significant decrease take 

place in the the relative strength of boron. whereas there is a quite little decrease in the relative 

stiffness of boron. A biaxially isotropic configured boron/epoxy is still stiffer than steel or titanium, 

although they both have same relative strength. High strength graphite fibers and composites behave 

similarly as boron/epoxy. However, the relative strengths of high modulus graphite fibers are 

generally lower than the materials depicted in Figure 1.1 although the stiffnesses of high modulus 

graphite fibers are biggest in all configurations among the other materials. The relative strength of a 

unidirectional S glass fiber embedded in an epoxy matrix is 2½ times greater than the relative 

strengths of steel or titanium. However, S glass/epoxy is less stiffer than steel or titanium. In Figure 

1.1, the relative stiffness of beryllium is six times greater than the relative stiffness of steel, titanium 

or aluminum. Some of general characteristics of beryllium wires in a matrix behave similarly as other 

composites depicted in Figure 1.1 [1]. 

 

Figure 1.1 Specific strength and specific stiffness of advanced composite materials [1] 

 

Advanced composite materials or fiber-reinforced composite materials are ideal for structural 

applications where high strength-to-weight and stiffness-to-weight ratios are required. Since aircraft 
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and spacecraft are typical weight-sensitive structures, advanced composite materials are essentially 

suitable and effective for aircraft and spacecraft structures. Actually, the need for reduced weight and 

increased performance properties in the structural applications of aircraft and spacecraft have led to  

the development and usage of advanced composite materials. 

 

“The most commonly used advanced composite fibers are carbon and graphite, Kevlar and 

boron. Among these fibers, carbon fiber is the most versatile of the advanced reinforcements and the 

most widely used by the aeronautical and space structural applications. On the other hand, matrix 

materials used in advanced composites to interconnect the fibrous reinforcements are as varied as the 

reinforcements. Resins or plastic materials, metals, and even ceramic materials are used as matrices. 

Today, epoxy resin is the primary thermoset composite matrix for airframe and aerospace 

applications. In all thermoset materials, the matrix is cured by means of time, temperature, and 

pressure into a dense, low-void-content  

structure in which the reinforcement is aligned in the direction of anticipated loads. Thermoset 

matrices are dominated because they allow ready impregnation of fibers, their malleability permits 

manufacture of complex forms, and they provide a means of achieving high-strength, high-stifness 

crosslinked networks in a cured part. In addition to thermosets, thermoplastics are rapidly taking place 

as the matrix materials. The advantages of thermoplastics over thermoset matrix composites include 

high service temperature, shorter fabrication cycle, no refrigeration required for storage, increased 

toughness, low moisture sensitivity, and no need for chemical cure” [3]. 

 

“Although man-made composites have existed for thousands of years, the high technology of 

composites has evolved in the aeronautics industry only in the last thirty years. Filament-wound 

pressure vessels using glass fibers were the first strength critical application for composites. World 

War II has been started the development of advanced composite materials due to the need for 

materials with improved structural properties. Before the emerge of advanced composite materials, 

aluminum and aluminum alloys, which provide high strength and fairly high stiffness at low weight, 

have provided good performance and have been the main materials used in aeronautical structures 

over the years. However, both corrosion and fatigue in aluminum alloys have produced problems. To 

eliminate corrosion and crack formation in high-performance structures was the initial motive to 

develop and use the advanced composite materials. Fiberglass-reinforced plastics had been used 

successfully in filament-wound rocket motors and in various other structural applications such as the 

pressure vessels. Then, with the salient developments and programs since 1950s, advanced composite 

materials have become an increasily attractive alternative to metals, especially aluminum alloys, for 

many airframe structural applications due to strong, durable, damage tolerant, and less weight 

characteristics and adequate satisfaction of design and certification requirements. Composite materials 

can also provide significant cost reductions because they readily adapt to innovative manufacturing 

techniques” [2]. 
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There have been four stages for the application of advanced composites to military and civil 

airframe structures. The first stage is the building of demonstration pieces. The philosophy of the first 

stage is “let’s see if we can build one”. The built pieces in the first stage have never been any intention 

to put the part on an aircraft and flight-test it. The second stage was the replacement pieces. The 

objective of the second stage was to flight-test a part that was designed to replace a metal part on an 

existing aircraft. The third stage was the actual production pieces. By the third stage, various parts of 

the aircraft were designed from the beginning and fabricated using fiber-reinforced composite 

materials. The final stage was the all-composite aircraft [1]. Serious development work with advanced 

composite materials started in the middle of 1960s with the boron fibers embedded in an epoxy resin 

matrix. After development of boron filaments, US Air Force has started to fund programs for usage of 

advanced composites in the aeronautical structures in the beginning of 1970s. These programs have 

resulted in the design, production, test, and development of primary and secondary aeronautical 

structures and aeronautical structural components made of advanced composites. The structures were 

fuselage sections, flight control surfaces and empennage parts. The General Dynamics F-111 

horizontal stabilizer was the first flight-worthy composite component. It is made of boron/epoxy like 

its fuselage section. Moreover, graphite/epoxy fuselage component for Northrop F-5 made by General 

Dynamics, and horizontal stabilizer of F-14 made of boron/epoxy, and carbon/epoxy horizontal 

stabilizer, vertical stabilizer, leading edge, and rudder in the empennage of F-16, the X-29A having a 

forward swept composite, carbon/epoxy wing box, forward fuselage, horizontal stabilizer, elevators, 

rudder, other control surfaces, wing skins and over-wing fairings of U.S. Navy’s AV-8B, and 

carbon/epoxy wing skins, the horizontal and vertical tail boxes, the wing and tail control surfaces, the 

speed brake, the leading edge extension, and various doors of F-18 could be given some examples for 

first, second and third stages. Subsequently, three programs which were the graphite/epoxy 

replacement of A-6 wing box, the Navy’s V-22 tilt rotor aircraft, and the U.S. Advanced Tactical 

Fighter F-22, have aimed to employ considerable amount of advanced composites. Apart from 

military advanced composite applications, NASA started Aircraft Energy Efficiency (ACEE) 

programs in 1975 for the design, manufacturing, and testing of composites. The ACEE programs 

greatly expanded the scope of commercial transport composite applications including three secondary 

and three primary aeronautical structures. The secondary aeronautical structures of ACEE programs 

were inboard aileron of Lockheed L-1011 (sandwich construction), elevator of Boeing 727 (sandwich 

construction), and rudder of McDonnell-Douglas DC-10 (all-graphite/epoxy structural box). The 

primary aeronautical structures of ACEE programs were vertical fin box of Lockheed L-1011, 

horizontal stabilizer box of Boeing 737 (graphite/epoxy), and vertical fin box of McDonnell-Douglas 

DC-10 (sandwich construction). The experience gained from the ACEE programs has resulted in 

increased composite usage on the next generation of commercial transports, such as the flight control 

surfaces and components of empennage of the Boeing B747, B757, B767, and B777. In 1985, Airbus 

became the first airframe manufacturer to use composite materials for series production of primary 

structures when it began to assemble the A310 with fins built of carbon/epoxy. The all-composite fin 

box of the Airbus A310-300 is an impressive structure in its simplicity in terms of only 95 parts 



6

compared with 2076 parts in the previous aluminum box structure, insuring a reduction of assembly 

costs. As a result, aircraft manufacturers became more comfortable with the composite materials and 

more efficient construction techniques were developed; the increased demand led to lower costs of 

composite materials. Since the beginning of the 1980’s, an all- or mostly-composite airframe has 

almost become a must in the developing and manufacturing of business aircraft as well as general 

aviation aircraft. Design approaches which differ from those of most commercial transport airframes 

and used to reduce cost and structural weight. These innovative designs and manufacturing techniques 

are pioneers in composite airframe structure development. P-180 Avanti, which had all-composite tail, 

utilized composites on the nose cone, forward wing (canard), nacelles, wing trailing edge, empennage, 

and control surfaces. The examples for all-composite utility aircraft can be given as the Lear Fan 

2100, the Starship, the AvTek 400, and the Voyager. The Lear Fan 2100 is the first all-composite 

airframe aircraft in which graphite/epoxy and Kevlar/epoxy composite materials were used. Titanium 

was used for all major fittings attached to graphite/epoxy structures to avoid galvanic corrosion [3,5]. 

In 1986, the Voyager [7], which was large span (36.09 m), high aspect ratio, long range all-composite 

aircraft, flied around the world in nine days. The Voyager was an aircraft with structural weight/gross 

weight fraction of only 9%; significantly lower than any existing man-rated aircraft. This flying-

around-the-world record was developed by the Global Flyer [7] which was built of graphite/epoxy. 

The nonstop and unrefueled flight of Global Flyer around world was performed only in 67 hours in 

2005. Recently, the world’s first twin-deck super-jumbo airliner, Airbus A380 has got 25% of its 

airframe structures built of advanced composites. Also, space tourisms will be performed by 

spacecrafts built of advanced composites within 10 years. The successful flight of Space Ship One [7] 

made us think in this respect. 

 

It is seen that using advanced composites has become an inevitable and standard task in the 

design and construction of the airframe structures of military and civil aeronautical and space 

vehicles. “The advanced composites should be treated totally different than metallic materials from 

the view point of design and analysis. Many structural metallic materials generally have homogeneous 

and isotropic properties. This implies that the mechanical, thermal, and environmental (like moisture) 

properties of the material are equal in all directions and at all locations. In contrast to a metallic 

material, a unidirectionally fiber-reinforced laminated composite material behaves like a 

homogeneous anisotropic material. On the account of the fact that the unidirectional fiber-reinforced 

lamina has inherent anisotropy, the corresponding properties exhibit different properties along 

different axes. For instance, a unidirectional fiber-reinforced lamina will be very strong along the fiber 

direction and weak in the transverse direction which is perpendicular to the fiber direction. Also, in 

order to compute mechanical behavior under loading two elastic constants should be known in the 

stiffness matrix for isotropic materials. Conversely, four and six elastic constants should be known for 

orthotropic and anisotropic materials, respectively in the stiffness matrix” [3]. 
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“A typical unidirectional fiber-reinforced lamina, which is shown in Figure 1.2, is orthotropic 

in nature, having three mutually perpendicular planes of elastic symmetry. Two of the elastic 

symmetry planes are parallel and transverse to the fiber direction, and the third is perpendicular to the 

plane of the lamina or parallel to the thickness direction. The principal material 1 and global lamina 

coordinate x are taken to be parallel to the fiber, the 2-axis and y-axis transverse to the fiber direction 

in the plane of the lamina, and the 3-axis and z-axis are perpendicular to the lamina” [3]. 

 

Figure 1.2 A unidirectional fiber-reinforced lamina with the principal material directions (1, 2, and 3) 

and the global or lamina coordinates (x, y, and z) [3]. 

 

Simple tension and shear tests are quite enough to understand to have indications for the 

qualitative understanding of the anisotropic behavior of a material. The outcomes of these tests are 

shown in Figure 1.3. Application of a normal stress to a rectangular block of isotropic or orthotropic 

material leads to only extension in the direction of the applied stress and contraction perpendicular to 

it, whereas an anisotropic material experiences extension in the direction of the applied normal stress, 

contraction perpendicular to it, as well as shearing strain. Conversely, shearing strains as well as 

normal strains caused by the application of a shear stress to an anisotropic material. Normal stress 

applied to an orthotropic material at an angle to its principal material directions causes it to behave 

like an anisotropic materials. This occurs because of the coupling between the two loading modes and 

the two deformation modes. Furthermore, when there is an angle between the global coordinates and 

the principal material coordinates in the lamina, some coupling terms between extension, shear, 

bending and twisting do exist in the stress-strain relations causing to an anisotropic behavior of the 

lamina [1]. This situation is compherensively discussed with the derivation of the governing equations 

of the present research given in Chapter 2. 
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The aeronautical structures are considered to be thin-walled structures. The basic elements of 

the thin-walled structures are beams, plates, and shells. Beams, plates and shells are known as 

continuous systems of structural mechanics. Generally, the aeronautical structures are combinations of 

various shapes of thin shell structures. 

 

Figure 1.3 Deformation of isotropic, orthotropic and anisotropic rectangular block under uniaxial 

tensile and pure shear loading [1]. 

 

“A shell is a three-dimensional body which is bound by two closely spaced curved surfaces. 

In case of a thin shell, the distance between the surfaces is small in comparison with the other 

dimensions. The locus of points which lies midway between these surfaces is called the middle 

surface of the shell. A shell has three fundamental identifying features: its reference surface, its 

thickness, and its edges. Of these, the reference surface is the most significant because it defines the 

shape of the shell, and the behavior of the shell is governed by the behavior of its reference surface” 

[71]. 

 

“Time-dependent vibratory motions are set up in a shell whenever it is disturbed from a 

position of stable equilibrium. If these motions occur in the absence of external loads, they are 
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classified as free vibrations. If these motions are set up by time-dependent external loads, they are 

referred to as forced vibrations. A shell, since it is an example of an elatic continous body, is 

composed of an infinite number of mass particles. As a consequence, when it is set into motion it 

possesses an infinite number of degrees of freedom. Its response to a disturbance may thus be 

analyzed into an infinite number of periodic motions which are referred to as its normal modes of free 

vibration. Each of these normal modes has an associated natural frequency of free vibration” [71]. 

 

In the current thesis, we would like to address the dynamic analysis issue of the thin shell 

structures made of advanced composites. The foundations and scientific works about the free 

vibrations of anisotropic laminated composite shells of revolution will be reviewed in the following 

section. 

 

1.2 LITERATURE SURVEY 

 

Historical development of vibration analysis of continuous structural elements is explained in 

the first chapter of Soedel [8]. The analytical methods for the vibration of continuous systems like 

beams and plates can be studied in Meirovitch [9]. 

 

Leissa [11] reviewed the shell vibration research up to 1973. It included about 1000 papers 

on the shell vibration. The vast majority of papers dealing with shell vibrations have focused on 

homogeneous isotropic shells with few papers regarding composite shells (less than 20 out of 1000). 

All of the shell theories in the Leissa’s monograh was classical shell theories based on the first 

accurate thin shell theory of Love [10]. In this theory, Love introduced his first approximation for 

bending analysis of shells. This approximation defined a linear analysis of thin shells, in which 

various assumptions were introduced. These assumptions are known to be the Love-Kirchoff 

assumptions which are: (1) the shell is thin; (2) the displacements and rotations are small; (3) 

transverse normal stresses are negligible; and(4) normals to the shell reference surface before 

deforrnation remain normal after deformation.These assumptions led to thin shell theory which was an 

extension to Kirchhoff plate theory. In fact, three-dimensional phemona of vibration analysis is 

reduced to two-dimensional approximated theory by Love- Kirchhoff’s thin elastic shell theory. In 

deriving the equilibrium equations, statically equivalent forces and moments acting on the reference 

surfaces can be defined by integrating stresses through the thickness. In this way, the three-

dimensional shell behavior can be fully described using a two-dimensional approximation. 

 

Since the first approximation of Love-Kirchhoff thin shell theory, other classical shell 

theories were developed. The reason why many classical shell theories based on more or less on Love-

Kirchhoff first approximation for thin shell theory have been developed was that there was an 

inconsistency in the original version of Love-Kirchhoff thin shell theory since all strains did not 

vanish for rigid-body motion. The classical shell theories differed with some terms in the derivations. 
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Review of different classical shell theories was presented in the Leissa’s monograph [11] and the 

books by Kraus [12] and Soedel [13]. Chapter 8 of Krauss’s book gave a very comprehensive 

description of the shell vibration topic along with methods of solution and example solutions of 

cylindrical and spherical shells. On the other hand, Soedel’s book was entirely devoted to vibrations 

of shells and plates, and it was an excellent reference for the introduction to the free vibration and 

dynamic analysis of shell and plate type structures. These different classical shell theories were 

derived from the original version of Love-Kirchhoff thin shell theory. Also, Bushnell [16] discussed 

the equations governing stress, stability, and vibration analyses for unstiffened and stiffened elastic 

shells of revolution using classical shell theories. 

 

There are many theories for layered anisotropic shells in the literature. Many of these 

theories were developed for thin shells and are based on the Kirchhoff-Love first approximation. The 

first analysis which incorporated the bending-stretching coupling was done by Ambartsumayan [17]. 

The bending-stretching coupling takes place when the layers are arranged unsymmetrically around the 

reference surface of the shell. He assumed that the individual orthotropic layers were oriented such 

that the principal axes of material symmetry coincided with the principal coordinates of the shell 

reference surface. When the material symmetry axes do not coincide with the principal coordinates of 

the shell reference surface, the shell is said to be anisotropic. This induces coupling between the 

membrane and in-plane shear effects and between bending and twisting effects. 

 

In the classical shell theories, the shell is assumed to be so thin that all transverse 

deformation effects, transverse stresses and strains can be neglected. However, these transverse effects 

become more significant as the shell becomes thicker relative to its in-plane dimensions and radius of 

curvature. There is a gross error in predicting the natural frequencies without considering the 

transverse shear deformation effects The experimantal observations revealed that classical plate theory 

neglecting transverse shear strains leads to underestimates of deflections and overpredictions of 

natural frequencies and buckling loads. In addition, the transverse shear deformation should be 

included in the computational modeling for shells built of advanced anisotropic laminated composite 

materials such as graphite/epoxy and boron/epoxy, where the ratio of elastic moduli to shear moduli 

are very high. The effective flexural stiffness of anisotropic laminated shells is reduced with the 

transverse shear strains. Koiter [18] pointed out that meaningful refinement of Love-Kirchhoff first 

approximation for thin elastic shell can be made by taking the effects of transverse shear and normal 

stresses into consideration. The inclusion of shear deformation was made for beams by Timoshenko 

[19] and expanded for plates by Reissner [20] and Mindlin [21]. Mindlin also included the rotary 

inertia terms in the free vibration analysis in the plates. The refined shell theories which account for 

shear deformation and rotary inertia effects are known to be thick shell theories or shear deformation 

shell theories. A first-order shear deformation shell theory (FOSDST) is the simplest of the shear 

deformation shell theories in which there is a uniform distribution of transverse shear strains through 

the thickness. Dong and Tso [22] were the first to carry out a first-order shear deformation shell 
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theory. They retained one or two terms in the Taylor’s series for transverse and tangential 

displacement components, respectively. They constructed a laminated orthotropic shell theory 

including the effects of transverse shear deformation through the thickness. 

“In laminated composite plates and shells using FOSDST, the transverse shear stresses vary 

through layer thickness and do not satisfy the transverse shear boundary conditions on the top and 

bottom surfaces of the plate or shell because of the assumption of a constant shear angle through the 

thickness.This discrepancy is often corrected in computing the transverse shear force resultants by 

considering shear correction factor. This factor is computed such that the strain energy due to 

transverse shear stresses equals the strain energy due to the true transverse stresses predicted by the 

three-dimensional elasticity theory. This factor depends, in general, on the lamination parameters such 

as number of layers, stacking sequence, degree of orthotropy and fiber orientation in each individual 

layer in the laminate” [39]. The shear correction factor is studied in [23,24, and 25] compherensively. 

 

Whitney and Sun [26,27] developed a shear deformation theory for laminated anisotropic 

cylindrical shells which includes both transverse shear deformation and transverse normal strain as 

well as expansional strains. The theory is based on a displacement field in which the displacements in 

the surface of the shell are expanded as linear functions of the thickness coordinate and the transverse 

displacement is expanded as a quadratic function of the thickness coordinate. There are other higher 

order shear deformation shell theories such as Reddy and Liu [28], Bhimaraddi [29], Librescu [30] 

and Librescu and Khedir [31] based on nonlinear (or piecewise linear) variation of displacements 

and/or stresses through the shell thickness other than the Whitney and Sun’s shell theory. Noor and 

Burton [32] made a review of the different approaches for computational models used for multilayered 

composite shells. They focused on different approaches for developing two-dimensional shear 

deformation theories; classification of two-dimensional theories based on introducing plausible 

displacement, strain and/or stress assumptions in the thickness direction; first-order shear deformation 

theories based on linear displacement assumptions in the thickness coordinate; and efficient 

computational strategies for anisotropic composite shells. In addition, Noor, Burton and Peters [33] 

conducted numerical studies to show the effects of variation in the lamination and geometric 

parameters of simply supported composite cylinders on the accuracy of the static and vibrational 

responses predicted by eight different modeling approaches based on two-dimensional shear 

deformation theories. Computational modeling approaches for two-dimensional approximation 

theories used for layered composite shells are given in Table 1.2. Furthermore, Noor and Burton also 

carried out [34,35] the similar studies done for same shell structures [32,33] for multilayered 

anisotropic plates. 

 

There has been some attempts to make a unique and generalized laminated shell theory by 

combining the classical shell theories with the shear deformation shell theories. Touratier [36] 

presented a generalization of geometrically linear shear deformation theories for small elastic strains 
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for multilayered axisymmetric shells of general shape without any assumption other than neglecting 

the transverse normal strain. The shear is taken into account by using a function which is introduced in 

the assumed kinematics. All equations with the shear function in the kinematics are directly applicable 

to: Kirchhoff-Love, first-order shear deformation, third-order shear deformation theories, and the 

proposed generalized shear deformation theory by using certain sine shear function. Therefore, no 

shear correction factors are needed with the proposed generalization of shear deformation theories. 

Furthermore, Soldatos and Timarci [37] achieved a theoretical unification of most of the variationally 

consistent classical and shear deformable cylindrical shell theories by introducing certain general 

shear deformation shape functions into the shell displacement approximation involving five unknown 

displacement components. The choice of such a shear deformation shape function is not unique and is 

based on the satisfaction of certain mechanical, material and/or geometrical constraints of the problem 

considered, and in general, characterizes the degree of sophistication or even the degree of accuracy of 

the resulting shell theory. The general shear deformation shape functions are not introduced before or 

during the variational formulation of the theory, and this procedure leads to leaving open possibilities 

for a multiple, a-posteriori specification of such a shear deformation shape function. 

 

Toorani and Lakis [39] gave the general equations of anisotropic plates and shells including 

transverse shear deformations, rotatory inertia and initial curvature effects. They also reviewed the 

literature with respect to three topics: the discussion of both linear and nonlinear theories on the 

analysis of plate and shell structures; the study of the effect of shear deformation on both the static and 

dynamic behavior of plates and shells; especially those made of advanced composite (or anisotropic) 

materials; and the discussion of the effects of structure-fluid interaction on the vibrations of plates and 

shells giving special attention to cylindrical shells immersed in or filled with a liquid or subjected to a 

flowing fluid. 

 

Noor [41] discussed a number of aspects of the mechanics of anisotropic plates and shells. 

He covered the topics including computational models of anisotropic plates and shells, consequences 

of anisotropy on deformation couplings, symmetry types, stress concentrations and edge effects, and 

importance of transverse shear deformation, recent applications and recent advances in the modeling 

and analysis of anisotropic plates and shells, and new research directions. 

 

Qatu has investigated recent research advances in the dynamic behavior of shells between 

1989 and 2000 for laminated composite shells [42] and for isotropic shells [43]. In his papers, he 

listed more than 350 papers for laminated composite shells and 600 papers for isotropic shells on the 

dynamic behavior of shells, heavily emphasized the free vibration problem. He studied the dynamic 

behavior of shells according to shell theories, shell geometries, experimental investigations, analytical 

and numerical methods, comparisons among various theories, and complicating effects. Recently, he 

has given the governing equations, the methods of solution about the vibrations of laminated shells 

and plates in different configurations in his book [44]. 
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Table 1.2 Computational modeling approaches for two-dimensional approximation theories used for layered 

composite shells [28] 

 

Model 

number Description 

Through-the-thickness 

displacement 

assumptions 

Constraint 

conditions 

on stresses 

Total number of 

displacement 

parameters 

1, 1A First-order shear 

deformation theory 

• linear u, v 

• constant w
0=rσ

5

2 First-order theory with 

transverse normal 

stresses and strains 

included 

• linear u, v, and w

none 

6

3 Lo-Christensen-Wu 

type theory 

• cubic u, v 

• quadratic w
none 

11 

4 Higher-order shear 

deformation theory 

• quintic u, v, and w
none 

18 

5

Simlified higher-order 

theory 

• cubic u, v 

• constant w

0=rσ throughout and 

rxσ and 0=θσ r at top and 

bottom surfaces 

5

6

Discrete-layer theory 

(based on purely 

kinematic hypotheses) 

• Piecewise linear u, 

v

• Constant w

(through-the-

thickness) 

0=rσ throughout 

2 × NL + 3 

(NL: number of 

layers) 

7

Simlified discrete-layer 

theory 

• Piecewise linear u, 

v

• Constant w

(through-the-

thickness) 

• 0=rσ

• Continuity of rxσ and 

θσ r at layer interfaces 

5

8, 8A Predictor-corrector 

procedures 

Predictor Phase 

• Linear u, v 

• constant w

Corrector Phase 

See the note 1 

Predictor Phase 

0=rσ
Corrector Phase 

None 

5

(1) In model 8, the corrector phase is based on adjusting the transverse shear stiffnesses, and in model 8A it 

is based on correcting the thickness distribution of the in-plane and transverse displacement components. 
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Cohen [45] developed an integrated computer program entitled Field Analysis of Shells of 

Revolution (FASOR) in order to analyze prebuckling, buckling, initial postbuckling and vibrations 

under axisymmetric static loads as well as linear response and bifurcation under asymmetric static 

loads. He also extended the capability of FASOR to solve the problems of general anisotropy and 

transverse shear deformations of stiffened laminated shells. The response modes of each of the 

problems of nonlinear prebuckling, buckling, initial postbuckling and vibration under axisymmetric 

static loads and linear prebuckling and (bifurcartion) buckling under asymmetric static loads were 

calculated by reducing to the solution of a sequence of even-ordered linear Hermitian self-adjoint 

boundary-value problems in ordinary differential equations. Then, each of these problems was solved 

by the field method in which the boundary-value problem is converted into two numerically stable 

initial-value problems which in turn were solved by a standard forward integration scheme (Runge-

Kutta) with self-regulating step size. 

 

Padovan [49] developed a quasi-analytical finite element procedure which can analyze the 

static and dynamic problems for axisymmetric fully anisotropic shells and three-dimensional solids 

using complex series representations. The solution procedure presented by Padovan was for the 

problems of axisymmetric shells or three-dimensional solids with arbitrary laminate construction with 

locally mechanically anisotropic lamina composed of composite materials, meridional and radial 

variations in material properties, arbitrary boundary and initial conditions. In addition, static as well as 

transient problems were solved. Padovan and Lestingi [50] also developed a complex multi-segment 

numerical integration procedure in combination with a complex series representation in order to make 

static analysis of mechanically and thermally loaded branched laminated anisotropic shells of 

revolution with arbitary meridional variations in thickness and material properties. 

 

Tan [51] presented an efficient substructuring analysis method for predicting the natural 

frequencies of shells of revolution in arbitrary shape of meridian, general type of material property 

and any kind of boundary condition using the first-order shear deformation theory as well as the 

classical thin shell theory.The method effectively used the symmetry property of a shell of revolution 

In this respect, the shell of revolution was discretized by the meridians of circumferentially, and 

general spline functions and Lagrangian polynomials were used to represent the displacement 

variations along the meridian and in the circumferential direction in an element, respectively. The 

Sturm sequence method in conjunction with the massive substructuring technique was used so as to 

find the natural frequencies of a shell of revolution.  

 

Ganesan and Sivadas [52] presented the free vibration analysis of circular cylindrical and 

circular conical composite shells (angle wound) using Love-Kirchhoff first approximation for thin 

elastic shells and moderately thick shell with shear deformation and rotatory inertia. In the solution, 

the semi-analytical finite element method was used. In the meridional direction, the thin shells, and 

moderately thick shells were discretized with a two-noded axisymmetric finite element with 16 



15

degrees of freedom per element, and  a higher-order semi-analytical finite element with three nodes 

and 30 degrees of freedom per element respectively. The circumferential variation was presented in 

terms of a double Fourier series in order to incorporate the effect of coupling due to anisotropic 

properties. 

 

Heylinger and Jilani [56] used the Ritz method for the problem of free vibrations of 

laminated anisotropic composite shells with various end conditions. The natural frequencies were 

evaluated for a number of geometric and material combinations using a combination of power and 

Fourier series as the approximating functions for three displacement components. No assumptions 

were required regarding the type of motion because of the usage of the full equations in the 

formulation. The transverse shear strains, deformation of the normals, and all inertial terms were 

included in the formulation. The form of the approximating function assumed the continuity of the 

displacement components and their derivatives through the thickness of the shell. 

 

Noor Ahmed K., and Peters Jeanne M. [58] presented an efficient computational procedure 

for the free vibration analysis of laminated anisotropic shells of revolution, and for assessing the 

sensitivity of their response to anisotropic material coefficients. The analytical formulation was based 

on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear 

deformation and the laminated anisotropic material response The fundamental unknowns in the 

computational procedure were the eight stress resultants, the eight strain components, and the five 

generalized displacements of the shell. Each of the shell variables were expressed in terms of 

trigonometric functions in the circumferential coordinate and a three-field mixed finite element model 

was used for the discretization in the meridional direction. The three key elements of the procedure 

were: (a) use of three-field mixed finite element models in the meridional direction with discontinuous 

stress resultants and strain components at the element interfaces, thereby allowing the elimination of 

the stress resultants and strain components on the element level; (b) operator splitting, or 

decomposition of the material stiffness matrix of the shell into the sum of an orthotropic and 

anisotropic parts, thereby uncoupling the governing finite element equations corresponding to the 

symmetric and antisymmetric vibrations of each Fourier harmonic; and (c) application of a reduction 

method through the successive use of the finite element method and the classical Bubnov-Galerkin 

technique. 

 

The three-dimensional elasticity theory solution for free vibrations of anisotropic laminated 

composite shells of revolution is always sought to check the accuracy of the natural frequencies 

calculated by the two-dimensional shell theories. Noor and Peters [60] developed an efficient 

computational procedure for stress, free vibration, and buckling analyses of multilayered composite 

cylinders with a large number of layers. The analytical formulation was based on the linear three-

dimensional elasticity theory, including the effects of the orthotropic material response of the 

individual layers. The fundamental unknowns consisted of the six stress components and three 
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displacement components of the cylinder. Each of the stress and displacement components was 

expanded in a double Fourier series in the circumferential and longitudinal directions, and a two-field 

mixed finite element model was used for the discretization in the thickness. The basic idea of the 

proposed procedure was to approximate the stress, vibration, and buckling responses of the cylinder 

associated with a certain range of Fourier harmonics in the circumferential and longitudinal directions 

by a linear combination of global approximation vectors generated for a particular pair of Fourier 

harmonics within that range. The three key elements of the procedure were: (1) Two-field mixed finite 

element models in the thickness direction, with the stress components allowed to be discontinuous at 

element interfaces; (2) operator splitting or additive decomposition of the different arrays in the 

governing finite element equations to delineate the effects of the different Fourier harmonics in the 

longitudinal and circumferential directions; and (3) a reduction method or successive application of 

the finite element method and the classical Rayleigh-Ritz technique. Soldatos [62] reviewed the 

literature on three-dimensional dynamic analyses of circular cylinders and cylindrical shells. 

 

1.3 PRESENT RESEARCH 

 

1.3.1 MOTIVATION 

 

The use of anisotropic laminated composite shells as structural elements in many engineering 

applications of aeronautical, maritime, civil, space, automative, and nuclear engineering has been 

increased tremendously and significantly in the last four decades. By virtue of their high strength-to-

weight and stiffness-to-weight ratios compared to metallic materials, the advanced composite 

materials are preferred in the design and manufacture of anisotropic laminated composite shells. As a 

result of the increase in their use, the static and dynamic behavior of the anisotropic laminated 

composite shells under divergent loading must be clearly understood so that they can be used safely. 

 

The main interest of this study is the dynamic behavior of anisotropic laminated composite 

shells used in airframe and space structures. Generally speaking, a knowledge of the free-vibration 

characteristics of shells is important both to our general understanding of the fundamentals of the 

behavior of a shell and to the industrial application of shell structures. The structural design of a 

typical shell type structure requires that the response of the shell to various mission-dictated 

excitations be accurately predicted so that the integrity of the shell structure can be assessed. To this 

end, a thorough understanding of the natural modes of the shell is extremely helpful, if not essential. 

 

Actually, the mechanical and material properties of anisotropic laminated composite shells 

are different from isotropic shells, a consistent computational model is required in the structural 

analysis and design. The computational models are divided into two: exact or three-dimensional 

models and two-dimensional or approximated models. The use of three-dimensional and quasi-three-

dimensional models for predicting the response characteristics of anisotropic laminated composite 
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shells is computationally expensive, and not feasible for practical structures in enginnering. “The two-

dimensional shear-deformable models can give fairly accurate predictions for the gross response 

characteristics (such as free vibration frequencies, buckling loads) of laminated composite shells; 

however, they are not adequate for the accurate prediction of the transverse stresses and deformations” 

[32]. 

 

Shells of revolution, in particular circular cylindrical shell, made of composite material find 

widespread applications in various industries  including the aerospace industry. Some common 

examples are pressure vessels used for various purposes of storing high pressurized gases. Filament 

winding is one manufacturing method used to produce cylindrical shells for this purpose. With this 

manufacturing technique, one can produce cylinders composed of multilayers with each layer at a pre-

specified orientation. In addition to filament winding method, normal wet lay-up, vacuum bagging, 

vacuum infusion methods are some of the other manufacturing techniques with which one can 

produce laminated shells with each layer being at any arbitrary fiber orientation by using uni-

directional fiber rolls. 

 

Besides pressure vessels, cylindrical shells also find application in external stores integrated 

to airframe structures such as aircraft and helicopter. These structures can serve for the purpose of 

carrying various equipment ranging from electronic devices to fuel. When combined with the primary 

structure of the vehicle to which it is installed, the dynamic characteristic of the store itself becomes 

very important. Structural integrity of the store is not the only concern that one has to tackle but also 

possible interference of the external store and primary structure dynamic characteristics can give rise 

to serious dynamic instability problems ranging from limit cycle oscillations to flutter. One can 

actually increase the examples for the use of thin shells of revolution in aerospace structures. 

However, in all the applications an accurate estimate of the dynamic characteristics of the composite 

shells of revolution is quite important. 

 

Fiber orientation is one critical parameter which only affect the stiffness coefficients but also 

cause for deformation coupling between different modes of deformation. The effect of anisotropy on 

the dynamic characteristics of shells of revolution has not received the attention it deserves simply 

because of the complexity of the resulting equations for a general shell of revolution. In this thesis one 

of the aims is to characterize the effect of anisotropy on the dynamic characteristics of shells of 

revolution and understand the dynamics of thin-walled shells of revolution better. 

 

1.3.2 OBJECTIVE AND SCOPE 

 

The objective of the present thesis is to determine free vibration characteristics such as 

natural frequencies and associated mode shapes of anisotropic laminated composite shells of 

revolution. To achieve this objective, a computer code DALSOR (Dynamic Analysis of Anisotropic 
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Laminated Shells of Revolution) is developed in Fortran 77. A flow-diagram and a brief explanation 

of the developed code DALSOR are given in Chapter 3. The theory used in DALSOR is the first-order 

shear deformation theory. The governing equations of an anisotropic laminated composite shell of 

revolution are derived and the process is given in the Chapter 2. The developed code DALSOR has 

the following main capabilities: 

 

• Inclusion of the transverse shear deformation effects to the geometrical linear Reissner-Naghdi 

thin shell theory equations (First-Order Shear Deformation Theory). 

• Determination of natural frequencies and displacement, rotation, force and moment resultant 

mode shapes along the meridional direction of any laminated composite shell of revolution. 

• Analysis with general boundary conditions at the ends (initial end point and final end point) of the 

shells of revolution (including any linear combination of displacements). 

• Any general type of shell of revolution (circular cylindrical, truncated conical, paraboloid shells, 

etc.). 

• Full anisotropic constitutive equations. 

• Framework for continuous variation of material and geometric properties in the meridional 

direction of the shell. 

• Framework for discrete variation of material and geometric properties in the meridional direction 

of the shell. 

 

Most of the previous work listed in the Literature Survey section either lack the 

comprehensive treatment of the effect of anisotropy on the dynamic characteristics of shells or lack a 

general methodology for the solution for general shells of revolution and concentrate on simple shell 

geometries such as cylindrical or conical shells where the meridional curvature vahishes and general 

equations of motion simplify significantly. 

 

In case of shells of revolution, which have complete circumferential properties, an alternate 

method based on multisegment numerical integration procedure is available in addition to the finite 

element/finite difference techniques. For such geometries the multisegment numerical integration 

technique has demonstrated advantages over both of these methods. Of utmost importance is the 

uniform convergence property of the multisegment numerical integration technique. 

 

The present work has its foundations on the general method of multisegment numerical 

integration for the solution of static and dynamic analysis of shells of revolution developed brilliantly 

by Kalnins [66,67]. Kalnins in his papers [66] and [67] demonstrated the application of multisegment 

numerical integration method for the solution of static and dynamic problems of shells of revolution 

using classical shell equations and for isotropic materials. 
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Kayran in his works [72] and [73] extended the applicability of the multisegment numerical 

integration method for the solution of free vibration problems of general shells of revolution using 

classical shell theory equations and including first-order shear deformation theory and for orthotropic 

cross-ply laminates in which most of the coupling terms vanish. 

 

The present work extends the work of Kalnins and Kayran by incorporating full anisotropic 

nature of constitutive equations in which all coupling terms are included. It has already been 

demonstrated that when all the coupling terms are included in the constitutive equations, the 

application of the traditional Fourier decomposition to the fundamental shell variables does not lead to 

elimination of the circumferential coordinate; hence, preventing the generation of ordinary differential 

equations. 

 

In the present work, the well-known Reissner-Naghdi thin shell theory equations are used 

and full anisotropic constitutive realtions are utilized. It has been shown that through the use of Finite 

Exponential Fourier Transform Method one can actually double the size of fundamental system of 

equations but completely get rid of the circumferential coordinate; and thus end up with ordinary 

differential equations to which multisegment integration method can be applied. 

 

In this thesis, the traditional frequency trial method developed by Kalnins is carried out in a 

modified way to the equations of free vibrations of full anisotropic laminated composite shells of 

revolution and it has been shown that one can actually determine the natural frequency of the full 

anisotropic laminated composite shells of revolution through the use of modified frequency trial 

method. 

 

1.3.3 OVERVIEW OF THE THESIS 

 

The remaining chapters of this thesis are organized as follows: 

 

Chapter 2 presents the mathematical modeling for free vibration analysis of anisotropic 

laminated composite shells of revolution. In this respect, the governing equations of free vibration 

analysis of anisotropic laminated composite shells of revolution are derived.  

 

Chapter 3 explains the reduction of the governing equations into a system of ordinary 

differential equations involving a two-point boundary value problem through the use of Finite 

Exponential Fourier Transform Method. Chapter 3 also gives the conversion of the two-point 

boundary value problem into a series of initial value problems and explains the use of modified 

frequency trial method for the determination of natural frequencies and mode shapes of full 

anisotropic laminated composite shells of revolution. Chapter 3 concludes with the brief description 

and flow-diagram of the developed code DALSOR. 
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Chapter 4 starts with one case study in order to show the reliability of the DALSOR. Then, 

various numerical results are obtained so as to investigate the effects of the variation of the 

geometrical, material and lamination properties to the free vibration characteristics. The numerical 

results for the specified different case studies are given in tabular and graphical forms. Additionally, 

the discussions about the numerical results are made. 

 

Finally, conclusions are summarized and recommendations for future work are discussed in 

Chapter 5. 
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CHAPTER 2 
 

MATHEMATICAL MODELING 

 

2.1 INTRODUCTION 

 

In this chapter, the mathematical modeling for the free vibration analysis of macroscopically 

anisotropic laminated shells of revolution is presented. The relationships governing the behavior of 

thin elastic shells are based on the study of the deformations of its reference surface. Thus, it is 

appropriate to have an understanding of the basic principles of the differential geometry for the 

deformation analysis of reference surface before embarking upon the derivation of the theory of thin 

elastic shells. After studying the basic principles of the differential geometry, the properties of 

surfaces of revolution is given to define shells of revolution. Then, basic considerations of the 

Reissner-Naghdi shell theory for the present study are expressed. Within the framework of the 

Reissner-Naghdi shell theory, the kinematic relations such as displacement functions and strain-

displacement equations are defined with respect to the reference surface of the thin doubly curved 

elastic shells using First Order Shear Deformation Theory (FOSDT). Next, constitutive equations are 

derived valid for anisotropic laminated composite doubly curved shells. By using Hamilton’s 

principle, the dynamic equations of motion are obtained for this study. Finally, the field equations of 

anisotropic laminated composite doubly curved shells are transformed to those of anisotropic 

laminated composite shells of revolution 

 

2.2 REFERENCE SURFACE OF SHELL 

 

This study is concerned with thin elastic shells. A thin shell is a three-dimensional elastic 

body which is bounded by two closely spaced curved surfaces. In case of a thin shell, the distance 

between the surfaces is small in comparison with the other two dimensions. The locus of points which 

lies midway between these surfaces is called the middle or reference surface of the shell.  

 

A shell has three fundamental identifying features: its reference surface, its thickness, and its 

edges. Of these, the reference surface is the most significant because it defines the shape of the shell, 

and the behavior of the shell is governed by the behaviour of its reference surface. Therefore , it may 
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be worthwhile to discuss the differential geometry or the theory of surfaces so as to analyze the 

deformation of the reference surface. This is done in the following section. 

 

2.3 DIFFERENTIAL GEOMETRY 

 

This section consists of two parts: the theory of space curves and the theory of surface. All 

materials of section 2.3, which are the basics of the differential geometry in order to describe the 

deformation of the reference surface of the shell, are taken from Kraus [12]. 

 

2.3.1 SPACE CURVES 

 

“A three-dimensional curve in a rectangular coordinate system (x1, x2, x3) can be represented 

by the locus of the end point of the position vector (Figure 2.1): 

 

332211 )()()( etxetxetxx
&&&& ++= (2.1) 

 

for all values of the parameter t that lie in the interval 21 ttt ≤≤ If we require that the xi (i=1,2,3) be 

single-valued functions of the parameter t, then we shall insure that a given value of t defines only one 

point on the space curve. In Equation 2.1, 321 ,, eee
&&&

are the unit normal vectors of the rectangular 

coordinate system. 

 

Figure 2.1 The position vector of a space curve [12]. 
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2.3.1.1 UNIT TANGENT VECTOR 

 

Let us call s the variable of arc length along the space curve defined by Equation 2.1 and take  

the derivative of the position vector x
&

with respect to s,

3
3

2
2

1
1 e

ds

dx
e

ds

dx
e

ds

dx

ds

xd &&&
&

++= (2.2) 

 

Now if we form the scalar product of the foregoing derivative with itself, we obtain 
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From the differential calculus, we know that  

 

( ) ( ) ( ) ( )2
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1
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hence 

1=⋅
ds

xd

ds
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&&

(2.5) 

 

This tells us that dsxd
&

is a unit vector. Its geometrical interpretation is depicted in the 

Figure 2.2. The vector x
&∆ joins two consecutive points Q and Q′ on a curve C . Thus, the vector 

sx ∆∆& has the same dimension as x
&∆ and, as s∆ approaches zero, sx ∆∆& becomes the vector 

tangent to the curve C at the point Q . We call the vector  

 

s

x

ds
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t
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&&
&
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the unit tangent vector. We note further that  
 

dt

ds

ds

xd

dt

xd
x

&&
& ==
.

(2.7) 

 

is also a tangent vector but it is not necessarily of unit length. 
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Figure 2.2 Tangent vector description [12]. 
 

2.3.1.2 OSCULATING PLANE, PRINCIPAL NORMAL 

 

In the preceding section, the tangent to a curve at a point Q was found to be the limiting 

position of the line connecting the points Q and Q′ as Q′ approaches Q . Thus, it could be stated that 

the tangent to a curve passes through two consecutive points on the curve. As a next step, it is natural 

to consider the limiting position of a plane passing through three consecutive points of a curve as two 

of the points approach the third. Such a plane is called the osculating plane. It can be found by 

specifying that the vector ( )xX
&&

− from a general point X in the osculating plane to a general point 

x on the curve must lie in the same plane as the tangent vector x�
&

joining two points on the curve and 

the rate of change in the tangent vector ( )x��
&

which occurs in passing to the third point. Since the triple 

scalar product of three coplanar vectors is zero, an expression for the osculating plane is found from 

 

( ) ( ) 0=×⋅− xxxX ��&�&&&
(2.8) 

 

It is now appropriate to define the principal normal to a curve at a point Q as that vector in 

the osculating plane Q which is perpendicular to the tangent t
&

to the curve at Q .

2.3.1.3 CURVATURE 

 

By Equation (2.5), 1. =tt
&&

. If we differentiate this scalar product with respect to arc length, 

we obtain 
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( ) 0.2. =′= tttt
ds

d &&&&
(2.9) 

 

where the prime denotes differentiation with respect to s. This result indicates that the vector t ′
&

is 

perpendicular to t
&

. From the definition of t
&

, we can write  

 

,tx
ds

dt

dt

xd

ds

xd
t ′===

&�&
&&

&
(2.10) 

 

and upon differentiation with respect to the arc length s the result is 

 

( )2
txtxt ′+′′=′
&��&&�&&

(2.11) 

 

This indicates that the vector t ′
&

lies in the plane of the vectors x�
&

and x��
&

(that is, in the 

osculating plane). Since t ′
&

has also been shown to be perpendicular to the tangent t
&

, we conclude 

that t ′
&

is parallel to the principal normal and is, therefore, proportional to it as follows: 

 

Nkkt
&&&

==′ (2.12) 

 

where N
&

is a unit normal vector in the direction of the principal normal to the curve at a point. The 

vector k
&

is called the curvature vector and expresses the rate of change of the tangent vector as a 

point moves along the curve. The proportionality factor k is called the curvature, and its reciprocal 

)( 1−= kR is the radius of curvature. It is the radius of the osculating circle that passes through three 

consecutive points of the curve. Although the sense of t ′
&

is determined solely by the curve, the sense 

of the principal normal N
&

is arbitrary. The sign of the factor k , therefore, depends on the sense of 

N
&

. To maintain consistency in our development, we shall assume that the normal vector N
&

points 

away from the center of curvature. Thus, Equation (2.12) tells us that when the sense of N
&

and k are 

the same, 0>k ,and when the sense of N
&

is opposite to that of k , we have 0<k .
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2.3.2 SURFACES 

 

2.3.2.1 PARAMETRIC CURVES OF A SURFACE; FIRST FUNDAMENTAL FORM 

 

Every surface S in the rectangular coordinate system may be written as a function of two 

parameters 1α and 2α as follows: 

 

( ) ( ) ( )213321222111 ,,,,, αααααα fxfxfx === (2.13) 

 

where 21, ff and 3f are single-valued and continuous functions of 1α and 2α . The parameters 

1α and 2α are called the curvilinear coordinates of the surface. By fixing, in turn, one of the 

parameters and varying the other, we obtain a family of curves called the parametric curves of the 

surface as shown in Figure 2.3. Equation (2.13) can also be written as a vector equation 

 

( ) ( ) ( ) ( ) 32132212121121 ,,,, efefefr
&&&& αααααααα ++= (2.14) 

 

A differential change rd
&

in the vector r
&

as we move from a point P to an infinitesimally 

close point P′ on the surface S can be written as 

 

22,11, αα drdrrd
&&& += (2.15) 

 

where we have introduced the notation  

 

2,1,, =
∂
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r
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&
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(2.16) 

 

for partial derivatives of vectors. The square of the magnitude of the differential change vector rd
&

is 

obtained by taking the scalar product of rd
&

with itself. Thus 

 

( ) ( ) ( ) ( )2
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2
1

2 2. αααα dGddFdErdrdds ++== &&
(2.17) 

where  

,.,.,. 2,2,2,1,1,1, rrGrrFrrE
&&&&&& === (2.18) 
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Figure 2.3 Parametric curves of a surface and differential change of a position vector on the surface 

[12]. 

 

Equation (2.17) is known as the first fundamental form of the surface S defined by the 

vector ),( 21 ααr
&

; ,, FE and G are called the first fundamental magnitudes. Along the parametric 

curves themselves, the differential length of arc takes the simplified forms 

 

11 αdEds = along a curve of constant 2α

22 αdGds = along a curve of constant 1α
(2.19) 

 

We notice here that since 1,r
&

and 2,r
&

are tangent to curves of constant 2α and 1α , respectively, 

the quantity F will be zero if the parametric curves form an orthogonal net. In such cases, it is 

customary to write the first fundamental form as  

 

( ) ( ) ( )2
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2
2

2
1

2
1

2 αα dAdAds +=  (2.20) 

where 

0,, 21 === FandGAEA (2.21) 

 

2.3.2.2 NORMAL TO A SURFACE 

 

At every point P of a surface there exists a unit normal vector ),( 21 ααn
&

which is 

perpendicular to 1,r
&

and 2,r
&

and hence to the plane at P that contains these vectors (the tangent plane 
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at P ). The unit normal vector is thus parallel to the cross product of 1,r
&

and 2,r
&

. Since a unit vector is 

a vector divided by its magnitude, an expression for ),( 21 ααn
&

is given as 

 

2,1,2,1,21 )(),( rrrrn
&&&&& ××=αα (2.22) 

 

From vector algebra, we have 

 

θsin2,1,2,1, rrrr
&&&& =× (2.23) 

and 

θcos. 2,1,2,1, rrrr
&&&& = (2.24) 

 

where θ is the angle between the vectors 1,r
&

and 2,r
&

. Thus, from Equation (2.18), we obtain 

EGF=θcos (2.25) 

and, therefore, 

EGFEG )(sin 2−=θ (2.26) 

 

The final expression for the unit normal vector is 
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provided that H does not vanish. We should point out here that the principal normal N
&

of a curve on 

a surface need not be normal to the surface (that is, generally 1. ≠nN
&&

). 

 

Like the principal normal of a curve, the sense of the normal to a surface is arbitrary. 

Therefore, we should adopt the convention that the parametric curves should always be arranged in 

such a manner that the normal n
&

points from the concave side to the convex side of the surface. 

 

2.3.2.3 SECOND FUNDAMENTAL FORM 

 

In our previous discussion, we have described the curvature vector k
&

of a space curve. We 

shall now consider a curve on a surface and use the properties of the curvature vector to derive an 
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important feature of surfaces called the second fundamental form. Let us resolve the curvature vector 

k
&

of the curve into its components normal and tangential to the surface. Thus 

 

tn kk
ds

td
k

&&&&
+== (2.28) 

 

Here nk
&

and tk
&

are referred to as the normal curvature vector and tangential curvature vector, 

respectively. In our analysis, we are only interested in the former one. Since nk
&

is in the direction of 

the normal to the surface, it is proportional to n
&

and can be expressed in terms of it as follows: 

 

nKk nn

&&
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where nK is called the normal curvature. The minus sign takes into account the fact that the sense of 

the curvature vector k
&

is opposite to that of the normal vector n
&

.

Since n
&

is perpendicular to t
&

, differentiation of the scalar product 0. =tn
&&

with respect to 

s along the curve on the surface gives  
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If we form the scalar product of Equation (2.29) with n
&

, we find that 

 

nn Knk =⋅− )(
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(2.31) 

 

and the scalar product of Equation (2.28) with n
&

gives (since n
&

is perpendicular to tk
&

): 

 

nkndstdn
&&&& ⋅=⋅ )(  (2.32) 

 

Finally, if we combine Equations (2.32), (2.31), and (2.30), we obtain 
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where we have used rdrdds
&& ⋅=2)( . Now, if we notice that 

 

22,11,22,11, , αααα drdrrddndnnd
&&&&&& +=+= (2.34) 

 

and if we substitute the foregoing expressions into Equation (2.33), we obtain 
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where the following new quantities, which are called fundamental magnitudes, have been defined: 

 

2,2,1,2,2,1,1,1, ,)(2, nrNnrnrMnrL
&&&&&&&& ⋅=⋅+⋅=⋅= (2.36) 

 

By differentiation of the expressions 01, =⋅ nr
&&

, and 02, =⋅ nr
&&

, we obtain the alternative 

expressions: 
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where we have used the following notation 
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We have also assumed, in the derivation of the alternate expression for M that r
&

has 

continuous second derivatives. This will insure that 21,12, rr
&& =

In the expression (2.35) for the normal curvature, we notice that the denominator )(I is the 

first fundamental form which is derived previously. The numerator )(II is referred to as the second 

fundamental form. Since NMLGFE ,,,,, can all be expressed as functions of 1α and 2α .They 

are constants at a given point, it is seen upon consideration of Eq.(2.35) that the normal curvature 

depends only on the direction 21 / αα dd . It can thus be stated that all curves through a point on a 

surface which are tangent to the same direction have the same normal curvature. 

 



31

2.3.2.4 PRINCIPAL CURVATURES 

 

It is interesting at this point to seek those directions 12 / αα dd for which the normal 

curvature nK has a maximum or a minimum. If, from now on, we drop the subscript n, and if we 

define the direction to be 12 / ααλ dd= , the expression for the normal curvature becomes  
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++
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The normal curvature attains an extremum in a particular direction λ if ,0=λddK or  

 

0))(2())(2( 22 =+++−+++ λλλλλλ GFNMLNMGFE (2.40) 

 

By noting also that  

 

)()(2 2 λλλλλ GFFEGFE +++=++
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(2.41) 

we find that 

))(())(( λλλλ MLGFNMFE ++=++ (2.42) 

 

The extremum curvature is now found by substituting Equation (2.40) into Equation (2.39) 

and  

then making use of Equation (2.42). This procedure gives 
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An equation for determining the direction λ corresponding to the extremum curvatures is 

found by expanding Equation (2.42), with the result that 

 

0)()()( 2 =−+−+− MELFNELGNFMG λλ (2.44) 

 

This quadratic equation yields two roots, 1λ and 2λ , corresponding to two directions, 

112 )/( αα dd and 212 )/( αα dd , of extremum curvature. One of these solutions is the maximum 
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curvature while the other is the minimum curvature. 1K and 2K , corresponding to 1λ and 2λ , are 

called the principal curvatures, and 1
11
−= KR and 1

22
−= KR are the principal radii of curvature. The 

directions of principal curvature are orthogonal. Proof of this orthogonality is given in detail in the 

section 1.3d of [12]. Integration of Equation (2.44) gives us the lines of curvature on the surface. 

These form an orthogonal family of curves on the surface. 

 

Now let us examine the situation in which the lines of curvature are taken as the parametric 

lines (curves) of the surface. In this case, Equation (2.44) must be satisfied by 

0/ 21 =αα dd and 0/ 12 =αα dd . For this to be possible, we must have 

 

0=− MELF and 0=− NFMG (2.45) 

 

Since we have postulated the parametric lines are to be the lines of curvature and since the 

latter is known to be orthogonal, .0=F It can be shown that ,02 >− FEG so that for 0=F ,

neither E nor G can be zero. Thus, we are led to the conclusion, from Equation (2.45), that 

0=M and, therefore, the conditions under which the parametric lines are also lines of curvature are 

 

0== MF (2.46) 

 

When the parametric curves are the lines of curvature, we can find their curvatures by setting  

F=M=0 in Equation (2.35), then letting 01 =αd and 02 =αd , in turn, to give 
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The development of the theory of thin elastic shells is considerably clarified if the lines of 

curvature of the reference surface are used as the parametric lines. Thus, we shall assume that 

Equation (2.46) is satisfied our subsequent work. 

 

2.3.2.5 DERIVATIVES OF UNIT VECTORS ALONG PARAMETRIC LINES 

 

In our development of the fundamental theorem of the theory of surfaces, it will be necessary 

to have on hand some expressions for the derivatives of unit vector along the parametric lines. With 

this in mind, let us, therefore, consider a triplet of mutually orthogonal unit vectors ),,( 21 ntt
&&&

that are 

oriented at a given point on a surface so as to be tangent to the 1α and 2α directions and normal to the 

surface, respectively. As the triplet of unit vectors is moved over the surface, the magnitudes of the 



33

vectors will remain constant at unity and their directions will remain mutually orthogonal. However, 

the orientation of the triplet will vary and, as a result, special attention must be given to the derivatives 

of the unit vectors. To begin, we notice that a unit vector can be defined to be any vector divided by 

its magnitude. Thus 

 

11,1,1,1 Arrrt
&&&&

==

22,2,2,2 Arrrt
&&&&

==

)()()( 212,1,21 AArrttn
&&&&& ×=×=

(2.48) 

 

where we have adopted the notation introduced by Equation (2.20) for orthogonal systems of 

parametric lines. Since derivatives 1,n
&

and 2,n
&

are perpendicular to n
&

, they lie in the plane formed by 

1t
&

and 2t
&

and each can be decomposed into its components along 1t
&

and 2t
&

. For example,  

 

211, tbtan
&&& += (2.49) 

 

where a and b are unknowns which represent the projections of 1,n
&

on  1t
&

and 2t
&

, respectively. To  

determine a and b , we form the following scalar products: 
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A

M

A
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&&&&
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&&
⋅+⋅==

⋅
=⋅

(2.50) 

 

On account of our restriction to orthogonal systems, 210 ttM
&&

⋅== and, therefore, 

 

0,
1

== b
A

L
a (2.51) 

 

An expression for 1,n
&

is then, 

 

1
1

1, t
A

L
n

&& = (2.52) 

 



34

and since, by Equation (2.47) 

 

2
11

1

1

A

L

R
K ==  (2.53) 

 

we obtain as the final result 

 

1
1

1
1, t

R

A
n

&& = (2.54) 

 

In a similar fashion, it follows that 

 

2
2

2
2, t

R

A
n

&& = (2.55) 

 

To find the derivatives of 1t
&

and 2t
&

along the parametric lines we proceed as we did for the 

case of the derivatives of n
&

. The manipulations are slightly more involved in this case and are 

facilitated by noting, first, that for functions with continuous second derivatives .21,12, rr
&& = This 

permits us to write, taking into account Equations (2.48),  

 

1,222,11 )()( tAtA
&&

= (2.56) 

or  

[ ]1,222,112,11
2

1,2

1
AtAttA

A
t

&&&&
−+= (2.57) 

 

To find ,1,1t
&

for example, we observe that this derivative will be perpendicular to 1t
&

and will 

thus lie in the plane formed by 2t
&

and n
&

. We may, hence, express 1,1t
&

in terms of 2t
&

and n
&

as 

 

21,1 tdnct
&&&

+= (2.57) 

 

where c and d are the unknown projections of 1,1t
&

on 2t
&

and n
&

. To determine c and d we form the 

scalar products 

 

ctndnnctn =⋅+⋅=⋅ )()( 21,1

&&&&&&
(2.58) 
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dttdntctt =⋅+⋅=⋅ )()( 2221,12

&&&&&&

We now proceed by nothing that, since ,0)( 1 =⋅ nt
&&

0)( 1,11,11, =⋅+⋅=⋅ tnntnt
&&&&&&

(2.59) 

and therefore, 

1

1
1,11,1 R

A
nttnc −=⋅−=⋅= &&&&

(2.60) 

 

where we have employed Equation (2.54). In the same way, 

 

1,211,12 ttttd
&&&&

⋅−=⋅= (2.61) 

 

and becomes, upon use of Equation (2.56), 

 

[ ]1,222,112,11
2

1 AtAttA
A

t
d

&&&
&

−+⋅−= (2.62) 

 

Since 2,1t
&

is perpendicular to ,1t
&

the above expression simplifies to 

 

2,1
2

1
A

A
d −=  (2.63) 

 

The final result for 1,1t
&

is 

 

2
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1
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1
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1
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(2.64) 

 

By proceeding in an analogous manner, we can show that the remaining derivatives are given 

by 

2
1

2

1
2,1

1
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A

A
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1
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2
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A

A
t

&&

α∂
∂= (2.65) 



36

1
1

2

12

2
2,2

1
t

A

A
n

R

A
t

&&&

α∂
∂−−=

2.3.2.6 FUNDAMENTAL THEOREM OF THE THEORY OF SURFACES 

 

We shall now derive three differential equations (known as the Gauss-Codazzi conditions) 

that relate the quantities ,,, 121 RAA and 2R of a given surface. These equations, as part of the 

fundamental theory of surfaces, are used to ascertain whether an arbitrary choice of these four 

parameters will define a valid surface. These relationships are found from the equality of the mixed 

second derivatives of the unit vectors, a result which presumes that these vectors have continuous 

second derivatives. For example, if we start with 

 

21,12, nn
** = (2.66) 

 

we notice, upon use of expressions for the derivatives of n
&

along the parametric lines derived in the 

previous section, that 
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If we carry out the differentiations indicated in the foregoing and make use of the expressions for the 

derivatives of 1t
&

and 2t
&

, we obtain 
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This vector equation will be true only if the square brackets vanish; hence we obtain 
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2
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These are known as the Codazzi conditions. If we proceed in a similar fashion from the equation 

 

21,112,1 tt
&&

= (2.70) 
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We obtain two more relations of which only the following is new: 
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2,1

21,
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1
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A
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A
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



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



(2.71) 

 

This is known as the Gauss condition. The fact that four quantities can be related by no more than 

three homogeneous equations, if they are to possess nontrivial solutions, leads us to the conclusion 

that no new information will be obtained from a consideration of the remaining equality 

 

21,212,2 tt
&&

= (2.72) 

 

We now indicate, in a formal manner, the role of the Gauss-Codazzi conditions by stating the 

fundamental theorem of the theory of surfaces: 

 

If ,,, LGE and N are given as functions of the real curvilinear coordinates 1α and 2α and 

are sufficiently differentiable and satisfy the Gauss-Codazzi conditions while 0>E and 0>G , then 

there exists a real surface which has its first and second fundamental forms 

 

2
2

2
1

2
2

2
1 )()(,)()( αααα dNdLIIdGdEI +=+=

This surface is uniquely determined except for its position in space. 

 

As a consequence of the fundamental theorem, we might refer to the Gauss-Codazzi 

conditions as the compatibility conditions of the theory of surfaces. It should be noticed that, as stated 

above, the theorem is already restricted to the surfaces whose lines of curvature are also its parametric 

lines (since F=M=0). The extension to more general parametric lines can be made but requires more 

general forms of the Gauss-Codazzi conditions than we have derived here”. 

 

2.4 CLASSIFICATION OF SHELL SURFACES 

 

There are three types of shell surfaces such as surfaces of revolution, surfaces of translation, 

and ruled surfaces. 

 

“Surfaces of revolution are generated by revolving a plane curve, called the meridian, about 

an axis not necessarily intersecting the meridian”[15]. Some examples for surfaces of revolution are 

given in the Figure 2.4. In Figure 2.4, the radius of curvatures are denoted as ir i=1, 2. 
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“A surface of translation is defined as the surface generated by keeping a plane curve parallel 

to its initial plane as we move it along another plane curve”[15]. Figure 2.5 shows the surfaces of 

translation. 

 

“Ruled surfaces are obtained by the translation of straight lines over two end curves”[15]. 

They are depicted in the Figure 2.6. 

 

Figure 2.4 Some examples for surfaces of revolution 

(a) Circular Cylinder, (b) Cone, (c) Elliptic dome, (d) Hyperboloid of revolution, (e) Toroid [15]. 
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Figure 2.5 Some examples for Surfaces of translation 

(a) Elliptic paraboloid, (b) Hyperbolic paraboloid, (c)Hyper and its straight-line generators [15]. 

 

Figure 2.6 Ruled Surfaces (a) Hyperboloid of revolution of one sheet, (b) Conoid [15]. 

 

Since the main concern of this study is the shells of revolution, the surface of revolution is 

studied comprehensively in the next section. 

 

2.4.1 SHELLS OF REVOLUTION 

 

Shells whose reference surfaces are the surface of revolution are called shells of revolution. 

 

A surface which is obtained by rotation of a plane curve about an axis lying in the plane of 

the curve is called surface of revolution. The plane curve is called a meridian of the surface, and its 

plane is the meridian plane. The intersection of the surface with planes perpendicular to the axis of 
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rotation are parallel circles and are called parallels. For the shells of revolution, the lines of principal 

curvature are its meridians and parallels. 

 

Figure 2.7 shows the geometry and coordinate system of the shells of revolution. The 

orthogonal curvilinear coordinate system, ,, 21 αα andζ , of the reference surface of the shell, is 

replaced by ,,θφ andζ , respectively for the shells of revolution. The angle φ shown in the Figure 

2.7 is the angle between the normal to the reference surface and the axis of rotation, and the angle 

θ shown in the Figure 2.7 is the angle determining the position of a point on the corresponding 

parallel circle. 

 

The position vector r
&

of the point P on the reference surface of the shells of revolution is 

given by [14]: 

)cossin(cos
sin

),( 0
kji eee

R
rr

&&&&& φθθ
φ

θφ ++



== (2.73) 

 

where 0R is the radius of the parallel at position 3x ,and kji eee
&&&

,, are the unit normal vectors of the 

rectangular coordinate system. 

 

Differentiating the position vector with respect to φ andθ separately, we get the followings 
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The first fundamental magnitudes, E and G , of the shells of revolutions can be determined 

by using Equations (2.74) and (2.75) in Equation (2.18). 
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Figure 2.7 Geometry and coordinate system of shells of revolution 
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The unit normal vector of the surface of revolution is obtained by substituting Equations 

(2.74), (2.75), (2.76), and (2.77) into Equation (2.27) and taking 0=F .
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We get the derivatives of the unit normal vector n
&

with respect to φ andθ as follows: 
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We have the second fundamental magnitudes, L and N for the shells of revolution by 

inserting Equations (2.74), (2.75), (2.80), and (2.81) into Equation (2.36). 
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1K and 2K , the principal curvatures are given by Equation (2.84), and 1R and 2R , the 

principal radii of curvatures are given by Equation (2.85) for shells of revolution. 
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Recalling Equation (2.21), and inserting Equations (2.76) and (2.77) into it, we get 
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Rewriting Equation (2.69) which is Gauss condition, 
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Substituting Equations (2.84), (2.85), (2.86), and (2.87) into Equation (2.69), we can write 

the Gauss condition for shells of revolution as 
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Also, rewriting Equation (2.71) which is Codazzi condition, 
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Again, substituting Equations (2.84), (2.85), (2.86), and (2.87) into Equation (2.71), we can 

write the two components of Codazzi condition of shells of revolution in the form 
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The left and right sides of Equations (2.88) and (2.89) are similar after substituting the 

expressions for 2121 ,,, RRAA obtained for shells of revolution into Gauss-Codazzi conditions. In 

other words, the Gauss-Codazzi conditions are clearly satisfied for shells of revolution. 

 

The infinitesimal distance 52PP between two arbitrary points on the reference surface of the 

shells of revolution is given by (refer to Figure 2.7) 
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2
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2)( PPPPds +=  (2.90) 

 

and from Figure 2.7 it is clear that 

 

φφ dRPP =21 (2.91) 

 

θφθ dRPP sin51 = (2.92) 

Hence 

( ) ( )222 sin)( θφφ θφ dRdRds +=  (2.93) 

 

On the other hand, from Equation (2.20) the distance between any two points on the 

reference surface of a shell is given by 
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where 1A and 2A are sometimes called Lamé parameters which are related with the first fundamental 

magnitudes of the reference surface of the shell. Switching the notation of curvilinear coordinates to 

the notation of φ andθ

( ) ( ) ( )22222 θφ θφ dAdAds +=  (2.95) 

 

Thus, comparing Equations (2.93) and (2.95), the Lamé parameters φA and θA for a shell of 

revolution are given by 

 

φφ RA = (2.96) 
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φθθ sinRA = (2.97) 

 

Furthermore, from Figure 2.7 the following relationships can readily be seen 

 

0sin RR =φθ (2.98) 

and 

( ) φφφ φθ dRRd cossin = (2.99) 

 

It should be noted that since the shell geometry is rotationally symmetric φA , θA , φR , θR are 

functions of φ only. Therefore, 
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θφθφθ
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2.5 THEORY OF LAMINATED COMPOSITE ELASTIC SHELLS FOR 

DYNAMIC ANALYSIS 

 

After reviewing the necessary preliminaries presented so far to understand the thin elastic 

shell theory, we can start to formulate the governing equations for dynamic analysis of laminated 

composite elastic shells with free vibration definition. Subsequently, the analysis of thin-walled 

structural elements, particularly shells of revolution in this thesis, made of laminated composite 

materials is presented. 

 

A detailed study of the theoretical formulations of governing equations of laminated 

composite elastic shells constitutes the objective of the remaining part of this chapter. The methods of 

solution for the dynamic analysis of laminated composite shells will be expressed in the next chapter. 

 

In this thesis, the free vibration analysis of laminated composite elastic shells is taken into 

consideration. 

 

In dynamic analysis of the elastic structure, the task is to determine its response, namely the 

behavior of it, when subjected to a certain excitation. The excitation can be divided into forcing 

functions, initial displacements and velocities, and moving supports. The vibration resulting from the 

action of forcing upon a system is known as forced vibration, and the one resulting from initial 

conditions is called free vibration. Moving supports result in forcing functions in the form of inertia 

forces and elastic forces and, as such, they lead to forced vibration problems. The response is taken as  



46

periodic in time. 

 

When an elastic structure is displaced from its equilibrium position and then released, it will 

oscillate about that position before returning to state of rest. The elastic structure is said to be 

exhibiting free vibration when it is given an initial displacement from its equilibrium position and 

thereafter allowed to oscillate with no further imposed force. 

 

It is known that the theory of shells is the subclass of the theory of elasticity. There are 

various shell theories pertaining to their different aspects. They can generally be divided into two 

groups: three-dimensional shell theories and two-dimensional shell theories. “The two-dimensional 

shell theories are derived from three-dimensional elasticity theory by making suitable assumptions 

concerning the kinematics of deformation through the thickness of the shell. These assumptions allow 

the reduction of a three-dimensional problem to a two-dimensional problem. The two-dimensional 

shell theories include thin and thick shell theories, shallow and deep shell theories, linear and 

nonlinear shell theories defined according to the ratio of the thickness of shell to the shortest of the 

span length or radii of curvatures, the ratio of the shortest span length to one of the radii of curvature 

or vice versa, and the magnitude of linear and rotational displacements, respectively” [42]. 

 

Aeronautical structures, which are considered as thin-walled structures, consist of various 

shell and plate configurations as basic structural elements. In this thesis, we make use of thin elastic 

shell theory. The thin elastic shell theory is interested with the study of small elastic deformations of 

thin elastic bodies under the influence of loads. By small deformations, it is assumed that the 

equilibrium conditions for deformed elements are the same as if they were not deformed. The 

relationships governing the behavior of thin elastic shells are based upon the equations of the theory of 

linear elasticity. However, the consideration of the complete three-dimensional elasticity field 

equations which are equilibrium (motion) equations, strain-displacement geometrical equations, 

compatibility equations and constitutive equations, do not assure the analytical solutions of thin elastic 

shells. “In fact, the three-dimensional equations of elasticity in rectangular coordinate system are 

complicated when written in curvilinear coordinate system defining shell geometry. There are two 

main “difficulty factors” involved in achieving an analytical solution of the boundary value problem 

using the three-dimensional elasticity theory. The first of these factors deals with the “degree of the 

geometrical complexity” of the shells, for example prescribed in the circular coordinate system. The 

number of boundaries in the shell geometry can lead to difficulties in the application of boundary 

conditions. The second “difficulty factor” involved in the solution of the three-dimensional equations 

of motion and the strain-displacement relations of shells in the circular coordinate system deals with 

the “degree of material complexity”. In fact, the most general form of the constitutive equations, do 

not have analytical solutions available in the literature. Therefore, almost all shell theories for thin 

elastic shells reduce the three-dimensional elasticity problem into a two-dimensional problem by 

making suitable assumptions. This is done usually by eliminating the coordinate normal to the shell  
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surface in the development of the two-dimensional shell theories” [42]. 

 

A number of theories have arisen and are used for thin homogeneous elastic shells. Leissa’s 

monograph [11] gives a summary and comparison of shell theories used in vibration of shell. All 

theories presented in the monograph [11] are considered to be classical shell theories. The linear 

differential equations of classical shell theories which describe the deformations of a thin elastic shell 

do not agree generally with each other. They have some differences due to the various assumptions 

made about the form of small terms and the order of terms which are returned in the analysis. 

Furthermore, the classical shell theories are based on the Love-Kirchhoff assumptions (or first 

approximation theory). These assumptions can be itemed as: 

 

(1) Straight lines normal to the undeformed reference surface remain straight and normal to the 

deformed reference surface; 

(2) The normal stresses perpendicular to the reference surface can be neglected in the stress-

strain relation (plane stress condition in the two-dimensional elasticity); 

(3) The transverse displacement is independent of the thickness coordinate (the transverse 

normal of the reference surface is inextensible). 

 

“The classical shell theories are expected to yield sufficiently accurate results when (i) the 

lateral and/or longitudinal dimension, or the radii of curvature-to-thickness ratio is large (thin elastic 

shell); (ii) the dynamic excitations are within the low-frequency range (in the scope of small 

deformations); (iii) the material anisotropy (isotropic or orthotropic) is not severe. However, the 

application of Love-Kirchhoff assumptions based theories to laminated composite shells could lead to 

errors in deflections, stresses, buckling loads and natural frequencies. These errors are occurred due to 

the anisotropy and heterogeneity of the materials of different layers and the existence of layers which 

exhibit weak resistance to transverse shear and normal deformations. A remedy for decreasing errors 

to some extent is to account for transverse shear deformations in two-dimensional shells theories for 

the laminated composite shell analysis. As a matter of fact that the experiments have revealed that 

neglecting transverse shear strains in the modeling leads to underestimations of deflection and 

overestimates of natural frequencies and buckling loads. In the case of plates and shells made of 

advanced laminated composite materials such as graphite-epoxy and boron-epoxy, where the ratio of 

elastic in-plane moduli to transverse shear moduli are very great (i.e., of the order 25-40 instead of 2.6 

for isotropic materials), the transverse shear deformation becomes significant. Actually, as pointed out 

by Koiter [18], refinement of Love-Kirchhoff assumptions based theory, namely classical shell theory, 

of thin elastic shells is meaningless unless the effects of transverse shear and normal stresses are taken 

into consideration. Transverse shear deformation plays a very important role in reducing the effective 

flexural stiffness of anisotropic and laminated plate and shell structures than in corresponding 

isotropic plate and shell structures”[39]. Therefore, refined shell theories and computational models 

are developed to predict the response and failure characteristics of anisotropic and laminated 



48

composite shells accurately. “Roughly, they can be splitted into three categories: the three-

dimensional elasticity models, the quasi-three-dimensional models, and the two-dimensional shear-

flexible models. In the three-dimensional elasticity models, the 15 unknowns (3 displacements, 6 

normal and shear stresses, and 6 normal and shear strains) are tried to be found out directly by 15 

available equations of elasticity (3 equilibrium equations, 6 stress-strain relations, and 6 strain-

displacement relations) without any assumptions whereas in quasi-three-dimensional models, 

simplifying assumptions are made regarding the stress (or strain) state in the shell (or in the individual 

layers), but no a priori assumptions are made about the distribution of the different response quantities 

in the thickness direction. The use of both three-dimensional and quasi-three-dimensional models for 

predicting the response characteristics of anisotropic and laminated composite shells with complicated 

geometry is computationally cumbersome; therefore, they are only applied to shells with simple 

geometries, loading and boundary conditions. On the other hand, the two-dimensional shell theories 

are adequate and practical for predicting the gross response characteristics such as natural frequencies, 

buckling loads, and average through-the-thickness displacements and rotations of anisotropic and 

laminated composite shells. But they are not adequate for the precise accurate prediction of the 

transverse stresses and deformations. There are four approaches for constructing two-dimensional 

shell theories for laminated composite shells which can be listed as: 

 

1. Method of hypotheses; 

2. Method of expansion; 

3. Asymptotic integration technique; 

4. Iterative methods and methods of successive corrections. 

 

The first approach is an extension of the Kirchhoff-Love approach and is based on 

introducing a priori plausible kinematic or static assumptions regarding the variation of displacements, 

strains and/or stresses in the thickness direction. The simplest of these hypotheses is the linear 

variation of the displacement components used in conjunction with first-order shear deformation 

theories. Although the method of hypotheses has the advantages of physical clarity and simplicity of 

applications, it has the drawback of not providing an estimate of the error in the response predictions. 

 

The second approach is based on a series expansion, in terms of the thickness coordinate for 

displacements and/or stresses. It also includes the method of initial functions in which the 

displacements and stresses are expanded in a Taylor series in the thickness coordinate. The relations 

between the higher-order derivatives of each of the displacements and stresses and their lower-order 

derivatives are obtained by successive differentiation of the three-dimensional elasticity relations. 

 

In the third approach, appropriate length scales are introduced in the three-dimensional 

elasticity equations for the different response quantities, followed by parametric (asymptotic) 

expansions of these quantities in power series in terms of a small thickness parameter. The three-
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dimensional elasticity equations are thereby reduced to recursive sets of two-dimensional equations, 

governing the interior and edge zone responses of the shell. The edge zone (or boundary layer) is 

produced by self-equilibrated boundary stresses in the thickness direction. The lowest-order system of 

two-dimensional equations, depending on the choice of the length of scales, corresponds to the thin-

shell assumptions. The higher-order systems introduce thickness correction effects in a systematic and 

consistent manner. 

 

The fourth approach includes various iterative approximations of the three-dimensional 

elasticity equations, and predictor-corrector procedures based on a single correction or successive 

corrections of the two-dimensional equations”[32]. 

 

This study focuses on a two-dimensional shell theory including shear deformation based on 

the method of hypotheses in association with the smeared continuum approach. “The smeared 

continuum approach is defined with the simplifying assumption of laminated anisotropy which is 

often used in applying two-dimensional theory to plates and shells consisting of layers of composite 

materials. In this approach, the individual properties of composite constituents, the fibers and the 

matrix, are “smeared” and thus each lamina is treated as an orthotropic material”[39]. “The two-

dimensional laminated composite shell theories including shear deformation vary among themselves 

due to different assumptions. These different assumptions can be classified such that: 

 

(1) global through-the-thickness, or piecewise, layer-by-layer, approximations; 

(2) purely kinematic assumptions (on displacements and strains), or a hybrid combination of 

kinematic and stress assumptions; 

(3) linear or nonlinear, through-the-thickness, variation of the response of quantities; 

(4) including or neglecting the transverse normal strains. 

 

In our computational modeling, we are concerned with the first-order shear deformation 

theory which is a particular case of global approximation theories. In global approximation theories, 

global through-the-thickness displacement, strain and/or stress approximations are carried out; and the 

laminated composite shell is replaced by an equivalent single-layer anisotropic shell”[32]. 

 

The equivalent single-layer theories are developed by assuming the form of the displacement 

field or stress field as a linear combination of unknown functions and the thickness coordinate: 
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where iϕ is the ith component of displacement or stress, ),( yx are the in-plane coordinates, z is the  
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thickness coordinate, t denotes the time, and j
iϕ are functions to be determined [4]. 

 

The following assumptions and considerations are made during the derivation of governing 

equations using Reissner-Naghdi’s thin elastic shell theory for the free vibration analysis of 

anisotropic  

laminated composite, thin, doubly curved shells: 

 

(1) The shell is considered to be thin when the ratio of the shell thickness to the wavelength of 

the deformation mode and/or radii of curvature is less than 1/10. 

(2) The thickness is constant throughout the shell. 

(3) The shell undergoes geometrical linear deformation. In other words, all the displacement 

terms and their derivatives are linear in the kinematic relations. 

(4) There is no change in the temperature of the shell during the analysis (isothermal state). 

(5) The shell is to be linear elastic; namely, there is a one-to-one relation between the state of 

stress and the state of strain. Thus, the Hooke’s Law is applicable.  

(6) The displacements are prescribed with the assumed displacement field using consistent two-

dimensional shell theory. 

(7) The system of curvilinear coordinates ( )ζξξ ,, 21 is chosen in a manner that at each point 

the elastically equivalent directions coincide with coordinate directions, noting that, 

infinitesimally small elements defined at different points of the body by three pairs of coordinate 

surfaces, being anisotropic possess identical elastic properties. 

(8) The doubly curved shell has mutually orthogonal curvilinear coordinate system. The two of 

the curvilinear coordinates, 1ξ and 2ξ coincides with the orthogonal lines of principal curvature of 

its reference surface. The third coordinate, the thickness coordinate, is normal to the reference 

surface at that point. 

(9) The normal stresses perpendicular to the reference surface of the shell are small when 

compared to other stress so that they can be neglected in the stress-strain relation. This leads to 

plane stress elasticity problem. 

(10) A linear element normal to the undeformed reference surface undergoes at most a translation 

and a rotation and suffers no extension. Thus, a linear element normal to the reference surface 

before deformation remains linear but does not necessarily remain normal to the reference surface 

after the deformation of the shell. This phenomena results in the inclusion of the shear 

deformation effects in the formulation whereas this does not exist in the classical shell theory. In 

addition to shear deformation, the rotary inertias are included in the formulation. In this study, the 

first-order shear deformation theory is used. 

(11) The assumed displacement field does not satisfy the transverse shear boundary conditions on 

the top and bottom surfaces of the shell since a constant shear angle through the thickness is 

assumed, and plane sections remain plane. Therefore, shear correction factors are usually required 
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for equilibrium consideration. The shear correction factors are only functions of lamination 

parameters (number of layers, stacking sequence, degree of orthotropy and fiber orientation in 

each layer). 

(12) The transverse normals of the shell are considered to be inextensible. This results in zero 

transverse normal strain. In other words, the transverse displacement of the shell is independent 

of the thickness. 

(13) The laminated composite shell is replaced by an equivalent single-layer which is statically 

and dynamically in equilibrium. 

(14) The reference surface of the laminated composite doubly curved shell is taken at the middle 

of the laminate. 

(15) An anisotropic body is one which has different values of a material property in different 

directions at a point; namely, material properties are directionally dependent, the functions of 

position. In laminated anisotropic shells, the individual layers are, in general, anisotropic and/or 

orthotropic depending on the fiber orientation angle, and the principal axes of material symmetry 

of the individual layers coincide with only one of the principal coordinates of the shell (the 

thickness normal coordinate). 

(16) The layers of the lamination are assumed to be perfectly bonded. The perfectly bonding 

between layers exists when there is no gap of flaw between layers, no lamina can slip relative to 

another, and the laminate acts as a single lamina with special integrated properties. 

(17) The material properties of the equivalent single-layer are constant along 

1ξ and 2ξ directions, or φ andθ directions for doubly curved shells or shells of revolution, 

respectively. 

(18) The shell structure is physically linear; that is, there are no discontinuities and complexities 

such as holes, stiffeners or being crack-free and invariable crossectional area in any direction. 

However, shells with circumferential stiffeners or rings can be considered in the further analysis. 

 

In the following sections, the differential element and the curvilinear coordinate system are 

defined for doubly curved shells at first. In addition, the expressions studied in the differential 

geometry section are presented for an arbitrary point on the surface located ζ away up to the 

reference surface in the shell space. Then, the field equations of doubly curved shell are derived. 

Subsequently, these derived equations ate transformed to the governing equations of a shell of 

revolution. 
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2.5.1 THE COORDINATE SYSTEM AND DIFFERENTIAL ELEMENT OF A SINGLE-

LAYER DOUBLY CURVED THIN SHELL AND ITS SURFACE RELATED FEATURES 

 

Figure 2.8 shows the curvilinear coordinate system and differential element of a doubly 

curved thin shell and its reference surface. Here, the middle surface is chosen as the reference surface 

of the shell. Let 1ξ , 2ξ andζ define the mutually orthogonal curvilinear coordinate system. As stated 

previously, the two of the curvilinear coordinates, 1ξ and 2ξ coincides with the orthogonal lines of 

principal curvature of reference surface of the shell. The third coordinateζ , the thickness coordinate, 

is normal to the reference surface. 

 

The position vector describing the location of an arbitrary point in the space occupied by the 

thin doubly curved shell is defined as: 
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where r
&

is the position vector of a corresponding point on the reference surface, n
&

is the unit normal 

vector from the reference surface to the point, and ζ denotes the distance of the point from the 

corresponding point on reference surface along n
&

and ranges over the local thickness ( )21,ξξh . The 

quantities 0
2

1
1

0
1 ,, ξξξ and 1

2ξ , in Equation (2.102), are bounding parametric lines which define, on the 

reference surface, the extent of the shell. 

 

Inserting Equation (2.102) into Equation (2.17), we find out the magnitude of the distance 

between two arbitrary points in the shell space. 
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Recalling Equations (2.34) and (2.102) we make the dot product of Equation (2.103) 

explicitly 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( )2

2

2

ζζζζ
ζζζζ

ζζ

dnndndndrdn

dnndndndrdnd

dnrdndrdrdrddS

&&&&&&

&&&&&&

&&&&&&

⋅+⋅+⋅+

⋅+⋅+⋅+
⋅+⋅+⋅=

(2.104) 
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Figure 2.8 Differential element and coordinate system of a doubly curved thin shell [12]. 

 

Incorporating the orthogonality of curvilinear coordinate system, Equations (2.94), (2.48), 

(2.54), and (2.55) with Equation (2.104) yields 
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Simplifying Equation (2.105) yields 
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Making analogy with the Equation (2.20), the first two terms on the right-hand side of 

Equation (2.106) can be considered as the first fundamental form of a surface located a distance 

ζ from the reference surface. Let 1T
&

and 2T
&

defining two tangent unit vectors passing through an 

arbitrary point on that surface. There exists n
&

, the normal unit vector, at that point which is 

perpendicular to both 1T
&

and 2T
&

. Here, n
&

, 1T
&

and 2T
&

are orthogonal to each other. Substituting 

Equation (2.102) into Equation (2.48), the expressions for n
&

, 1T
&

and 2T
&

are given by: 
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and 
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Substituting Equations (2.108) and (2.109) into Equations (2.110) and (2.111), respectively, 

we get 
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Recalling Equations (2.20), (2.48), (2.54) and (2.55), Equations (2.112) and (2.113) become 
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1T
&

and 2T
&

can be expressed finally as follows: 
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From the Figure 2.8 and the Equation (2.106), the length of the shaded surface whose unit 

normal is in 2ξ is 
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and for the one whose unit normal vector is in 1ξ is given by: 
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The areas of the shaded strips shown in the Figure 2.8 are  
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We presume that the Equation (2.102), the position vector, has continuous second derivatives 

such that 21,12, RR
&&

= . Inserting Equation (2.116) and (2.117) into that relation, and making necessary 

manipulations, we obtain 
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From Equation (2.122), we obtain two relations which will be used afterwards. 
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and 
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
+

= 2

1,2
22,1

1
11

2,1
1

2
2

1,2 111

1

1
T

R
AT

R
AT

R
A

R
A

T
&&&& ζζζ

ζ (2.124) 

 

To get the derivatives of the normal vector n
&

with respect to 1ξ and 2ξ using the position 

vector R
&

, we follow the same methodology that we used to get Equations (2.54) and (2.55). The 

derivatives of n
&

with respect to 1ξ and 2ξ can be written as: 
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1
1

1
1

1,
1

1

T
R

R
A

n
d

n &&
&

ζ

ζ

ξ +







+

==
(2.125) 

2
2

2
2

2,
2

1

T
R

R
A

n
d

n &&
&

ζ

ζ

ξ +







+

==
(2.126) 

 

The Codazzi relations using the position vector, R
&

, are found out in a similar procedure 

which used to derive Equation (2.69). In this perspective, 2,11,1 ,TT
&&

are perpendicular to 1T
&

and will 

therefore lie in the plane formed by 2T
&

and n
&

, and 1,1T
&

and 2,1T
&

can be expressed one by one in terms 

of 2T
&

and n
&

as 

 

2211,1 TcncT
&&&

+= (2.127) 

and 

2432,1 TcncT
&&&

+= (2.128) 

 

where 21 ,cc and 43 ,cc are unknown projections of 1,1T
&

and 2,1T
&

,respectively, on n
&

and 2T
&

. Similarly, 

1,2T
&

and 2,2T
&

can be written in terms of 1T
&

and n
&

2651,2 TcncT
&&&

+= (2.129) 

and 

2872,2 TcncT
&&&

+= (2.130) 

 

where 65 ,cc and 87 ,cc are unknown projections of 1,2T
&

and 2,2T
&

,respectively, on n
&

and 1T
&

.

Since 21,TT
&&

and n
&

are orthonormal vectors, the following relations are valid 

 

( ) 01 =⋅ nT
&&

(2.131) 

( ) ( ) 01,11,11,11
1

=⋅+⋅=⋅=⋅
∂
∂

nTnTnTnT
&&&&&&&&

ξ
(2.132) 
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( ) ( ) 02,12,12,11
2

=⋅+⋅=⋅=⋅
∂
∂

nTnTnTnT
&&&&&&&&

ξ
(2.133) 

( ) 02 =⋅ nT
&&

(2.134) 

( ) ( ) 01,21,21,22
1

=⋅+⋅=⋅=⋅
∂
∂

nTnTnTnT
&&&&&&&&

ξ
(2.135) 

( ) ( ) 02,22,22,22
2

=⋅+⋅=⋅=⋅
∂
∂

nTnTnTnT
&&&&&&&&

ξ
(2.136) 

 

To find the coefficients 1c , 2c , we multiply both sides of Equations (2.127) with n
&

and 2T
&

one by one. For 3c and 4c , both sides of Equation (2.128) are multiplied with n
&

and 2T
&

separately. 

Note that the orthogonality of unit vectors does exist. 

 

( ) ( ) 12211,1 cTncnncTn =⋅+⋅=⋅
&&&&&&

(2.137) 

( ) ( ) 2222211,12 cTTcnTcTT =⋅+⋅=⋅
&&&&&&

(2.138) 

and 

( ) ( ) 32432,1 cTncnncTn =⋅+⋅=⋅
&&&&&&

(2.139) 

( ) ( ) 4214232,12 cTTcnTcTT =⋅+⋅=⋅
&&&&&&

(2.140) 

 

Substituting, Equation (2.125) and Equation (2.132) into Equation (2.137), 1c become 

 

ζ

ζ

+







+

−=
1

1
1

1

1

R

R
A

c
(2.141) 

 

Also, substituting Equation (2.124) into Equation (2.138), 2c is found to be 

 



























+







+

−=
2,1

1

2
2

2 1

1

1

R
A

R
A

c
ζ

ζ (2.142) 

 

The Equation (2.127) is written finally as 
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2

2,1
1

2
2

1

1
1

1,1 1

1

1
1

T
R

A

R
A

n
R

R
A

T
&&&















































+







+

−+





















+







+

−= ζ
ζζ

ζ

(2.143) 

 

Substituting, Equation (2.126) and Equation (2.133) into Equation (2.139), 3c become 

 

03 =c (2.144) 

 

Also, substituting Equation (2.123) into Equation (2.140), 4c is found to be 

 



























+







+

=
1,2

2

1
1

4 1

1

1

R
A

R
A

c
ζ

ζ (2.145) 

 

The Equation (2.128) is written finally as 

 

2

1,2
2

1
1

2,1 1

1

1
T

R
A

R
A

T
&&















































+







+

= ζ
ζ

(2.146) 

 

In a similar manner, the coefficients 5c , and 6c are determined by multiplying both sides of 

Equations (2.129) with n
&

and 1T
&

one by one. For 7c and 8c , both sides of Equation (2.130) are 

multiplied with n
&

and 1T
&

separately. We again keep the orthogonality condition of unit vectors in 

mind. 

 

( ) ( ) 51651,2 cTncnncTn =⋅+⋅=⋅
&&&&&&

(2.147) 

( ) ( ) 6116151,21 cTTcnTcTT =⋅+⋅=⋅
&&&&&&

(2.148) 

and 

( ) ( ) 71872,2 cTncnncTn =⋅+⋅=⋅
&&&&&&

(2.149) 

( ) ( ) 8118172,21 cTTcnTcTT =⋅+⋅=⋅
&&&&&&

(2.150) 
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Substituting, Equation (2.125) and Equation (2.135) into Equation (2.147), 5c become 

 

05 =c (2.151) 

 

Also, substituting Equation (2.124) into Equation (2.148), 6c is found to be 

 



























+







+

=
2,1

1

2
2

6 1

1

1

R
A

R
A

c
ζ

ζ (2.152) 

 

The Equation (2.129) is written finally as 

 

1

2,1
1

2
2

1,2 1

1

1
T

R
A

R
A

T
&&















































+







+

= ζ
ζ

(2.153) 

 

Substituting, Equation (2.126) and Equation (2.136) into Equation (2.149), 7c become 

 

ζ

ζ

+







+

−=
2

2
2

7

1

R

R
A

c
(2.154) 

 

We take the dot product of 1T
&

with 2T
&

and get the derivative of it with respect to 2ξ

( ) 021 =⋅TT
&&

(2.155) 

 

( ) 02,2122,12,21 =⋅+⋅=⋅ TTTTTT
&&&&&&

(2.156) 

 

Substituting Equations (2.150) and (2.123) into Equation (2.156), 8c is found to be 
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

























+







+

−=
1,2

2

1
1

8 1

1

1

R
A

R
A

c
ζ

ζ (2.157) 

 

The Equation (2.130) is written finally as 

 

1

1,2
2

1
1

2

2
2

2,2 1

1

1
1

T
R

A

R
A

n
R

R
A

T
&&&















































+







+

−+





















+







+

−= ζ
ζζ

ζ

(2.158) 

 

Inserting Equations (2.125) and (2.126) into Equation (2.66) and expanding that 

 





















+







+

+





















+







+

=





















+







+

+





















+







+





















+







+

=





















+







+

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

2

2
2

1,22

1,

2

2
2

1

1
1

2,11

2,

1

1
1

1,

2
2

2
2

2,

1
1

1
1

11

11

11

R

R
A

TT
R

R
A

R

R
A

TT
R

R
A

T
R

R
A

T
R

R
A

&&

&&

&&

(2.159) 

 

Substituting Equations (2.146) and (2.153) into Equation (2.159), we get 
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1

2,1
1

2
2

2

2
2

2

1,

2

2
2

1

1
1

1,2
2

1
1

21

2,

1

1
1

1

1

1
11

1

1

1

1
1

T
R

A

R
A

R

R
A

T
R

R
A

R

R
A

R
A

R
A

TT
R

R
A

&&

&&















































+







+





















+







+

+





















+







+

=





















+







+















































+







+

+





















+







+

ζ
ζζ

ζ

ζ

ζ

ζ

ζ
ζ

ζζ

ζ

(2.160) 

 

Collecting the coefficients of 1T
&

and 2T
&

, we can write a similar expression like Equation 

(2.68) to derive the Codazzi condition 

 

0

1

1
1

1
1

1

2

1,

2

2
2

1,2
2

1

1

2,1
1

2

2,

1

1
1

=













































+







+

−





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



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
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
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−







































+








+

−





















+







+

T
R

R
A

R
A

R

T
R

A
RR

R
A

&

&

ζ

ζ
ζ

ζ

ζ
ζζ

ζ

(2.161) 

 

The equality in Equation (2.161) holds when the coefficients of 1T
&

and 2T
&

are both zero. 

Thus, it results in 

 

2,1
1

2

2,

1

1
1

1
1

1















+








+

=





















+







+

R
A
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R
A

ζ
ζζ

ζ

(2.162) 

1,

2

2
2

1,2
2

1

1

1
1





















+







+

=













+








+ ζ

ζ
ζ

ζ R

R
A

R
A

R
(2.163) 
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We substitute the two terms of Equation (2.69) appropriately into Equations (2.162) and 

(2.163), and make necessary simplifications. 

 

2,1
22,1

1 11 A
RR

A 





+=














+ ζζ

(2.164) 

1,2
11,2

2 11 A
RR

A 





+=














+ ζζ

(2.165) 

 

The Equations (2.164) and (2.165) are the Codazzi conditions. They will be used in the 

strain-displacement relations. 

 

2.5.2 KINEMATIC RELATIONS OF A LAMINATED COMPOSITE DOUBLY CURVED 

SHELL 

 

Since the current developed shell theory is a displacement-based approach, the derivation of 

governing equations is initiated by stating a suitable displacement field. Thus, the displacement field 

using First Order Shear Deformation Theory is defined with 

 

( ) ( ) ( )ttutU ,,,,,,, 21121
0

21 ξξβζξξζξξ += (2.166) 

( ) ( ) ( )ttvtV ,,,,,,, 21221
0

21 ξξβζξξζξξ += (2.167) 

( ) ( )twtW ,,,,, 21
0

21 ξξζξξ = (2.168) 

 

where U ,V andW are the displacements along the 1ξ , 2ξ , andζ coordinates, respectively, and t is 

the time variable. 0u , 0v and 0w denote the displacements of a point on the reference surface of the 

shell in the 1ξ , 2ξ , andζ directions, respectively. 1β and 2β are the rotations of a transverse normal 

about the 2ξ - and 1ξ - curvilinear coordinates. All these quantities ( )21
000 ,,,, ββwvu are called 

the generalized displacements. Also, 0u , 0v and 0w can be expressed as: 

 

( ) ( ) ti meUtu ωξξξξ 21
0

21
0 ,,, = (2.169) 

( ) ( ) ti meVtv ωξξξξ 21
0

21
0 ,,, = (2.170) 

( ) ( )
( ) ( ) ( ) ( ) titi

ti

mm

m

etet

eWtw
ωω

ω

ξξβξξβξξβξξβ
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where mω is the natural frequency corresponding to the mth mode, and 000 ,, WVU are unknown 

functions to be determined. 

 

The strain-displacement relations by the theory of elasticity in the orthogonal curvilinear 

coordinate system are expressed as [39]: 

 

3,2,1,
2

1 3

1

=
∂
∂+











∂
∂= ∑

=

i
g

ug

gg

u

k

k

k k

i

ii

i

i
i αα

ε (2.172) 

jij
g

u
g

g

u
g

gg j

j

i
j

i

i

j
i

ji

ij ≠=

























∂
∂+











∂
∂= ,3,2,1,

1

αα
γ (2.173) 

 

where )()( , jorijori uα and )( jorig are, respectively, the curvilinear coordinates of the geometry, 

components of the displacement vector and geometrical scale factor quantities. When the Equations 

(2.172) and (2.173) are applied to shells, the variables in the normal and shearing strain components 

turn into following: 
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where U ,V ,W , iA , iR , andζ are the displacement vector components, Lamé coefficients, the 

principal radii of curvatures and the thickness coordinate, respectively. Substituting the relations in 

Equation (2.174) into Equations (2.172) and (2.173), the following strain-displacement relations are 

obtained in the shell space. 

 

The normal strain components are: 
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ζ
εζ ∂
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(2.177) 

 

and, the shearing strain components are: 
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Since the terms ( )1Rζ and ( )2Rζ are assumed to be much less than unity in the 

Naghdi-Reissner Shell Theory, they are neglected in the Equations (2.175), (2.176), and (2.178). In 

addition, the first ( )1Rζ and ( )2Rζ terms appearing in Equations (2.179) and (2.180), 

respectively, are neglected. The strain displacement equations turn into the following 
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Equations (2.164), (2.165), (2.166), (2.167) and (2.168) are substituted properly into 

Equations from (2.181) to (2.186), then the strain displacement relations can be represented as the sum 

of extensional (or membrane) strains and flexural (or bending) strains. 
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11 ηγ ζ = (2.190) 

22 ηγ ζ = (2.191) 

 

where 0
iε , normal strains of the reference surface are 
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iκ , the curvature changes of the reference surface are 
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0
iγ , shearing strains of the reference surface are 
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iτ , the twist changes of the reference surface are 
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and, finally, iη , the transverse shear strains are 
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It is seen throughout the present section that the kinematic relations are independent of the 

material of the shell. In other words, the defined displacement field and the strain-displacement 

relations are valid for isotropic, orthotropic and/or anisotropic shell configurations. 

 

2.5.3 CONSTITUTIVE RELATIONS OF AN ANISOTROPIC LAMINATED COMPOSITE 

DOUBLY CURVED SHELL 

 

After determining governing equations for the state of deformation in the previous section, 

the constitutive relations; viz. force and moment resultants will be examined in this section. 

 

In general, the stress-strain relation for a linear elastic material is given in tensor 

(uncontracted) notation as [4] 

 

31,31, −=−=

=

lkandji

C klijklij εσ
(2.202) 

 

where ijσ , klε , ijklC are the Cauchy stress components ( )211213313223332211 ,,,,,,,, σσσσσσσσσ ,

are the infinitesimal strain components ( )211213313223332211 ,,,,,,,, εεεεεεεεε , and are the 

material coefficients or stiffness tensor, respectively. It is seen that ijklC has 81 components; however, 

there exist only 36 independent elastic coefficients due to the symmetry of both ijσ and klε .

Equation (2.202) can be expressed in the contracted notation for the stress-strain relations or  

generalized Hooke’s Law: 
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where ijC are the elastic constants, and are obtained from ijklC by the following change of subscripts: 

 

612,513,423,333,222,111 →→→→→→

and the stress tensor 

 

126135234333222111 ,,,,, σσσσσσσσσσσσ ======

and the strain tensor 

 

126135234333222111 ,,,,, εεεεεεεεεεεε ======

The resulting ijC are also symmetric, jiij CC = ; therefore, there are only 21 independent 

coefficients of the matrix [ ]C .

The shell configuration in this thesis is considered to be laminated composite which is made 

of layers of fiber-reinforced lamina. A lamina or ply represents the basic building block of a 

composite laminate, and a fiber-reinforced lamina consists of many unidirectional fibers embedded in 

a matrix material. Unidirectional fiber-reinforced lamina exhibits the highest strength and modulus in 

the direction of the fibers, but it has very low strength and modulus in the direction transverse to the 

fibers. It should be noted that the individual properties of the composite constituents, the continuous 

fibers and the matrix, are smeared and thus each lamina can be treated as an orthotropic material. This 

assumption is often used in the application of the two-dimensional shell theory to shells having layers 

of composite materials. Since the orthotropic material has three orthogonal planes of material 

symmetry, the number of independent elastic coefficients in the Equation (2.204) is reduced to 9. As a  
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result, the stress-strain relations for orthotropic materials can be written in the form of 
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The elastic coefficients in the stiffness matrix ijC in Equation (2.205) in terms of the 

engineering constants iE , ijν , and ijG are [39] 
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where 321 ,, EEE are Young’s moduli in 1, 2, and 3 directions, respectively, ijν is Poisson’s ratio 

defined as ratio of transverse strain in the jth direction to the axial strain in the ith direction, when 

stressed in the i-direction ij εε− (for σσ =i and all other stresses are zero) (i, j=1,2,3), and 

121323 ,, GGG are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. Due to fact that the 

normal stress is assumed to be negligible in the present computational model, the plane stress state is 

prevailed in the stress-strain relations of the lamina. Accordingly, the linear Hooke’s Law according to 

plane stress state is given by 
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and 
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where the ijQ are the reduced stiffnesses, and are written in terms of engineering constants 
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Let’s consider a small element of a lamina of constant thickness h, in which the principal 

material axes are denoted as 1, 2, and 3; that is, 1, also called longitudinal, direction is parallel to the 

fibers, 2, also called transverse, direction is perpendicular to it and 3, also called thickness, direction is 

normal to the plane formed by 1 and 2. Further, consider this lamina specimen is a part of the shell 

configuration which has geometric axes of 1ξ , 2ξ andζ . This consideration is shown in the Figure 

2.9. If the principal material coordinate system of a lamina coincides with the shell coordinate system, 

shown in the Figure 2.9a, this kind of lamina is known to be specially orthotropic lamina. In laminated 

composites, each layer of the laminate may not actually get the principal material directions to 

coincide with the shell coordinates. Actually, each lamina in the laminate may be located with 

different orientation of their principal material directions with respect to the shell coordinates. The 

difference in orientation between the principal material directions and the shell coordinates is called 

the orientation angle,α , and it is measured in counter-clockwise direction from the shell coordinates 

to the principal material coordinates. The lamina, shown in the Figure 2.9b, is called generally 

orthotropic lamina when the orientation angle is different than zero. 

 

When there is� DQ� DQJOH�� � EHWZHHQ� WKH� VKHOO coordinates and the principal material 

coordinates, the stress-strain relations for Specially Orthotropic Lamina given by Equations (2.207) 

and (2.208) are transformed into ones for Generally Orthotropic Lamina. 

 

(a) (b) 

 

Figure 2.9 (a) Specially Orthotropic Lamina, (b) Generally Orthotropic Lamina. 
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where the coefficients of the transformed reduced stiffness, ijQ ,are [4] 
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principal material coordinates. 

 

The transformation of stresses and strains between the shell coordinates and the principal 

material coordinates is done by using the following relations. 
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and 
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where{ }T
621 ,, σσσ ,{ }T

54 ,σσ ,{ }T

2121
,, ξξξξ τσσ , and{ }T

ζξζξ ττ
21

, are the material in-plane 

stresses, the material transverse stresses, the shell in-plane stresses and the shell transverse stresses, 

respectively. In addition,{ }T
621 ,, εεε ,{ }T
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,, ξξξξ γγε , and { }T

ζξζξ γγ
21

, are the 

material in-plane strains, the material transverse strains, the shell in-plane strains and the shell 

transverse strains, respectively. [ ]1T and[ ]2T are transformation matrices obtained from the direction 

cosines and are written as 
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where 0=α .

The figure 2.10 shows the internal stresses on a single layer doubly curved shell element. The 

internal stresses are in their positive directions. Due to defined displacement field by Equations 

(2.166), (2.167), and (2.168), the displacements are determined to vary linearly through the thickness 

of the lamina. In order to obtain a two-dimensional shell theory like the present computational model, 

it will be convenient to introduce statically equivalent forces and moments instead of internal stresses. 

Forces and moments acting on the edges of the shell element shown in the Figure 2.10 can be derived 

by integration of the stresses over the thickness. It can be shown that the stresses are known functions 

of thickness coordinate, ζ , if we substitute displacement field into strain-displacement relations, then 

the strains into stress using Hooke’s Law. As a result, the introduction of stress resultants and moment 

resultants permits the elimination of ζ coordinate in the equilibrium equations to assure two-

dimensional computational model. The reference surface is taken at the middle surface of the 

laminate. 
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Figure 2.10 Internal Stresses on a Doubly Curved Shell Element 

 

The normal and shear force resultants acting on the face perpendicular to the 1ξ coordinate 

are given by 
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and the normal and shear force resultants acting on the face perpendicular to the 2ξ coordinate are 

given by 
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The force resultants acting on the reference surface are shown in Figure 2.11. These forces 

act at the reference surface and have units of force/length (N/m). 

 

Similarly, the bending and twisting moment resultants having unit surface normals in the 1ξ -

direction are 
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and the bending and twisting moment resultants having unit surface normals in the 2ξ -direction are 

 

{ } ζζζσ
ξ

ξξ d
R

M
h

h
∫

−










+=

2/

2/ 1

22
1 (2.227) 

{ } ζζζτ
ξ

ξξξξ d
R

M
h

h
∫

−










+=

2/

2/ 1

1212
1 (2.228) 

 

Also, the moment resultants acting on the reference surface are shown in Figure 2.12. They 

have dimensions of moment/length (Nm/m). Note that even though 
1221 ξξξξ ττ = from the symmetry 

of the stress tensor, the same does not hold for stress and moment 

resultants;
1221 ξξξξ NN ≠ &

1221 ξξξξ MM ≠ , unless 
21 ξξ RR = because the areas over which the 

stresses 
21 ξξτ ,

12 ξξτ act are different on the different edges of the shell elements shown in the Figure 

2.10. The expressions for force and moments resultants when Reissner’s shell theory are obtained by 

neglecting 
1ξζ R and

2ξζ R in comparison to unity. Therefore, for Reissner’s shell 

theory,
1221 ξξξξ NN = and

1221 ξξξξ MM = .
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Figure 2.11 Force resultants in the shell coordinates. 

 

Figure 2.12 Moment resultants in the shell coordinates. 

 

A laminate of doubly curved shell element is shown in Figure 2.13. For a laminated shell, the 

stress components can be integrated across each lamina, then must be added together. In the 

lamination, laminae are assumed to be bonded perfectly to each other so that the displacements are 

continuous across the laminate. However, since each lamina might have different elastic moduli, the 

stresses will be discontinuous across the interface of two laminae. 
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Figure 2.13 N-layered laminate of a doubly curved shell element. 

 

Since the transverse shear strains are represented as constant through the laminate thickness 

due to the assumed displacement field, it follows that the transverse shear stresses will also be 

constant. The constant transverse shear stresses do not satisfy the transverse shear boundary 

conditions on the top and bottom surfaces of the shell. However, it is well known from elementary 

theory of beams that the transverse shear stress varies parabolically through the beam thickness and is 

zero at the top and bottom surfaces. Accordingly, the following continuous function )(ζf [8] is used 

as a weighting function in order to provide the parabolic distribution of the transverse shear stresses 

throughout the thickness of the laminated composite shell and their top and bottom surface boundary 

conditions. 
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It should be noted that the coefficient (5/4) in the Equation (2.229) can be called the shear 

correction factor and it is consistent with the the established shear factor from previous work of 

Reissner and Mindlin for isotropic case. 

 

Consequently, the normal and shear resultants for the complete laminate of N-layers using 

Reissner’s shell theory are given by 
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Combining Equations (2.187) to (2.191), (2.210), (2.211), (2.213) to (2.216) with Equations 

(2.230) to (2.37) and making necessary changes for the some subscripts, we obtain the expressions for 

the force and moments resultants as 
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As a result, the constitutive equations for the anisotropic laminated composite doubly curved 

shell are 
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where ijA , the extensional stiffness matrix which relates the in-plane stress resultants to the reference 

surface strains, are given by 
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and ijB , the bending-stretching coupling matrix which relates the in-plane stress resultants and 

bending and twisting moment resultants to curvature and twist changes of the reference surface, 

respectively, are given by 
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and ijD , bending stiffness matrix which relates the bending and twisting moments to curvature and 

twist changes of the reference surface, are given by 
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and ijAs , transverse shear stiffness matrix which relates the transverse shear resultants to transverse 

shear strains, are given by 
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The presence of each term in the ijA , ijB , ijD , ijAs stiffness matrices result in different 

types of deformation couplings in the anisotropic laminated composite shell with orthotropic 

symmetry in each lamina. 

 

Extension-shear couplings take place when the elements 16A , 26A are not zero, in-plane 

normal force resultants 
1ξN ,

2ξN cause shear deformation 0

21 ξξγ , and a shear (or twist) force 

resultant 
21 ξξN causes elongations in the 1ξ and 2ξ directions. 

 

Bending-twist coupling takes place when the elements 16D , 26D are not zero, bending 

moment resultants 
1ξM ,

2ξM cause the twist of the laminate 
21 ξξκ , and a twist moment resultant 

21 ξξM causes curvatures in the ζξ −1 and ζξ −2 planes, namely
1ξκ and

2ξκ .

Extension-twist and bending-shear coupling exist when the elements 16B , 26B are not zero, 

in-plane normal force resultants 
1ξN ,

2ξN cause twist 
21 ξξκ , and bending moment resultants 

1ξM ,
2ξM result in in-plane shear deformation 0

21 ξξγ .

In-plane—out-of-plane coupling exists when the elements ijB are not zero, in-plane force 

resultants 
1ξN ,

2ξN ,
21 ξξN cause out-of-plane deformations (curvatures), namely 

1ξκ ,
2ξκ ,

21 ξξκ , of 

the laminate, and moment resultants 
1ξM ,

2ξM ,
21 ξξM cause in-plane deformations, that is 

0

1ξε , 0

2ξε , 0

21 ξξγ , in the  1ξ - 2ξ plane. 

 

The preceding four types of coupling are characteristic of composite materials and do not 

occur in homogeneous isotropic materials. The following two couplings occur in both composite and 

isotropic materials. 

 

Extension-extension coupling happen when the element 12A is not zero, a normal force 

resultant 
1ξN causes elongation in the 2ξ direction 0

2ξε , and a normal force resultant 
2ξN causes 

elongation in the 1ξ direction 0

1ξε .

Bending-bending coupling occurs when the element 12D is not zero, a bending moment 

resultant 
1ξM causes curvatures of the laminate in the 2ξ -ζ plane 

2ξκ , and a bending moment  



80

resultant 
2ξM causes curvature of the laminate in the  1ξ -ζ plane 

1ξκ .

2.5.4 EQUATIONS OF MOTION OF AN ANISOTROPIC LAMINATED COMPOSITE 

DOUBLY CURVED SHELL 

 

The last set of the governing equations for free vibration analysis of anisotropic laminated 

composite doubly curved shell is obtained in the present section. For this purpose, the Hamilton’s 

Principle is used to derive the equations of motion and the corresponding boundary conditions. The 

Hamilton Principle can be written as 
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=Π−∫ dtK
t

t

δ (2.247) 

 

where Π is known as the total potential energy and is given by  

 

DLABR UUU −−=Π (2.248) 

 

and K is called the kinetic energy of the elastic body and is given by 
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where U�
&

is described as the displacement vector at equilibrium, and obtained by adding the described 

displacement field given in Equations (2.166) to (2.168). 
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and 

( )( ) ζξξζζ ξξξξ dddRRAAdV 212121
11 ++= (2.251) 

 

The kinetic energy K can be written explicitly as 
 

( ) ( ) ( )[ ] ( )( )∫ ∫ ∫∑ ++++++=
=

1 2

212121 21
1

202020 11
2

1

ξ ξ
ξξξξ

ζ
ξξ ζξξζζβζβζρ dddRRAAwvuK

N

k
k �����

(2.252) 
 

Neglecting the terms ( )
1

1 ξζ R+ and ( )
2

1 ξζ R+ in comparison to unity yields 
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If we take the middle surface of the shell laminate as the reference surface, the integration in 

the ζ , thickness, direction is done from 2/h− to 2/h , K turns out to be 
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where ρ is the overall density of the composite laminate, and given by 
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The second term of Equation (2.247) can be written as follows 
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Taking variation of Equation (2.254) 

 

( )( ) ( )( ) ( )( )
( )( ) ( )( )[ ] dtddAAh

wwvvuu
hK

t

t

21
2

000000

21

1

0 1 2 221112

ξξ
βδββδβ

δδδ
ρδ ξξ

ξ ξ ξξξξ
∫ ∫ ∫













++

++
=

����

������

(2.257) 

 

Applying integration by parts to the first term on the right hand side of Equation (2.257) 
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Since the variational displacements and rotations at 0tt = and 1tt = are zero, the Equation  
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(2.258) turns out to be  
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Similarly applying the same procedure to the remaining terms of Equation 

(2.257), Kδ becomes 
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In Equation (2.248), the terms U , ABRU ,and DLU is described as the strain energy, the 

energy input to the shell due to the applied boundary resultant, and the energy input due to the 

distributed loading applied on the surface of the shell, respectively. In this study, it is assumed that 

there are no applied boundary resultants and distributed loading. Hence, there is only strain energy left 

in the total potential energy expression. U , the strain energy of the shell is defined in terms of a strain 

energy density function P as: 
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V

dVPU (2.261) 

where 
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The variation of the strain energy is  
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The variation of the strain energy function is given by 
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It can be shown from the definition of the strain energy function P that 



83

ij
ij

P

ε
σ

∂
∂= (2.265) 

 

As a result, 
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Since ζσ is assumed to be negligible when compared to other stresses, Equation (2.266) is 

written as 
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Thus, the expression for the variation of the strain energy takes the form 
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Substituting the strain-displacement relations, (2.187) to (2.191) into Equation (2.268) yields 
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Combining the constitutive equations (2.230) to (2.237) with Equation (2.269) and taking 

variation and whenever necessary applying the integration by parts, the Equation (2.247) results in 
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(2.270)

The detailed derivation of Equation (2.270) is given in Appendix A. The equation (2.270) 

can only be satisfied if each of the triple and double integral parts is equal to zero. Furthermore, since 

the variational displacements and rotations; namely 0uδ , 0vδ , 0wδ ,
1ξδβ ,

2ξδβ , are arbitrary, each 

integral equation can only vanish only if the coefficients of the variational displacements and rotations 

are zero. Therefore, when the coefficients of the triple integral are set to zero, the following five 

equations of motion for free vibration analysis of an anisotropic laminated composite doubly curved 

shell are obtained 
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It should be noted that each of the double integrals given in Equation (2.270) is equal to 

zero only if the coefficients of the variational displacements, variational displacements or one of the 

two for each term are zero. Since variational displacements are only zero at all times when the 

boundary displacements are prescribed, this translates into the following possible boundary conditions 

for an 1ξ =constant edge. 

 

Either  
1ξN or  00 =u (2.276) 

Either  
21 ξξN or  00 =v (2.277) 

Either  
1ξQ or  00 =w (2.278) 

Either  
1ξM or  0

1
=ξβ (2.279) 

Either  
21 ξξM or  0

2
=ξβ (2.280) 

 

This states the intuitively obvious fact that one has to prescribe at a boundary either forces 

(moments) or displacements (rotations). However, five conditions have to be identified per edge. 

Similarly, examining Equation (2.270) for an 2ξ =constant edge, the five boundary conditions have to 

be 

Either  
21 ξξN or  00 =u (2.281) 

Either  
2ξN or  00 =v (2.282) 

Either  
2ξQ or  00 =w (2.283) 

Either  
21 ξξM or  0

1
=ξβ (2.284) 
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Either  
2ξM or  0

2
=ξβ (2.285) 

 

Equations (2.271) to (2.275) together with the associated boundary conditions (Equations 

(2.276) to (2.285)) given above constitutes the equations of motion for free vibrations of an 

anisotropic laminated composite doubly curved shell. 

 

2.6 GOVERNING EQUATIONS FOR FREE VIBRATION ANALYSIS OF 

ANISOTROPIC LAMINATED COMPOSITE SHELLS OF REVOLUTION 

 

In the preceding sections, the governing equations for free vibration analysis of anisotropic 

laminated composite doubly curved shells are derived using First Order Shear Deformation Theory. 

These formulations can be translated to the governing equations for free vibration analysis of 

anisotropic laminated shells of revolution by first replacing the coordinates 1ξ , 2ξ andζ with φ ,θ ,

and ζ ; then substituting the Equations (2.96), (2.97) and (2.100) conveniently into the governing 

equations. After performing these transactions, the following governing equations for shells of 

revolutions are obtained. 

 

The strain-displacement relations are: 
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The constitutive equations are 

 

























































=































φθ

θθ

φφ

φθ

θθ

φφ

φθ

θθ

φφ

φθ

θθ

φφ

κ
κ
κ
γ
ε
ε

0

0

0

662616662616

262212262212

161211161211

662616662616

262212262212

161211161211

DDDBBB

DDDBBB

DDDBBB

BBBAAA

BBBAAA

BBBAAA

M

M

M

N

N

N

(2.299) 

and 

















=









φ

θ

φ

θ

η
η

4445

4555

AsAs

AsAs

Q

Q
(2.300) 

 

where 
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Writing the each element of the left hand side of Equation (2.299) in terms of strain 

components 
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The equations of motion are 
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CHAPTER 3 

 

METHOD OF SOLUTION 

 

3.1 INTRODUCTION 

 

The objective of the current chapter is to present a method of solution to the governing 

equations derived for free vibration analysis of anisotropic laminated composite shells of revolution in 

the previous chapter. At first, methods of solution used for free vibration of shells of revolution are 

discussed briefly. Then, the governing equations given in the section 2.6 are formulated into a suitable 

form to carry out determined numerical method in this thesis in order to compute the free vibration 

characteristics; namely, natural frequencies and mode shapes. For this reason, the governing equations 

for free vibration of a laminated shell of revolution using First Order Shear Deformation Theory are 

initially formulated into the system of partial differential equations in terms of fundamental variables. 

Then, this formulated fundamental system of equations is reduced to an equivalent system of first 

order ordinary differential equations with respect to φ by applying the method of Finite Exponential 

Fourier Transform. In addition, the procedure to get the nondimensional form of the resulting system 

of first order ordinary differential equations is presented. The system of first order ordinary 

differential equations with the prescribed boundary conditions at the two edges of shell of revolution 

is considered as a two-point boundary value problem. Subsequently, this boundary value problem is 

turned into a set of initial value problems. Finally, a particular numerical integration method in 

combination with Frequency Trial Method is explained comprehensively as the method of solution. 

 

3.2 OVERVIEW OF THE METHODS OF SOLUTION FOR FREE 

VIBRATION OF HOMOGENEOUS OR LAMINATED SHELLS OF 

REVOLUTION 

 

The methods of solution for free vibration of homogeneous or laminated shells can be 

divided into two: exact and numerical methods. Qatu [42, 43] reviewed the various methods of 

solution for dynamic behavior of homogeneous and laminated composite shells in terms of 

experimental investigations and analytical methods. Moreover, Soldatos [62] presented a survey of 

three dimensional dynamic analyses of circular cylinders and cylindrical shells. 
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“The most commonly used approach for the free vibration analysis of shells of revolution 

is based on the representation of shell variables by a Fourier series in the circumferential 

coordinateθ , combined with the use of a numerical discretization technique such as finite elements, 

finite differences or numerical integration in the meridional direction”[58]. The one can refer to the 

Literature Survey section of Chapter 1 for a comprehensive review of methods used. For shells with 

uniform circumferential properties, the Fourier series representation permits separation of variables 

for isotropic and laminated shells having specially orthotropic layers, and equations uncouple in 

harmonics. 

 

“The fundamental problem of the theory of free vibration analysis of laminated composite 

thin elastic shells is the formulation of a two-dimensional system of differential equations and 

boundary conditions, for a rational approximate determination of stresses and deformations in three-

dimensional elastic bodies shaped as a thin elastic layer surrounding a surface in space, the middle or 

reference surface of the shell”[36]. The equations governing the free vibration analysis of an 

anisotropic laminated composite shell of revolution consist of ten differential equations which are five 

equations of motion and five strain-displacement equations plus eight algebraic constitutive equations. 

Any method of analysis of shells must start with the reduction of these 18 equations to a manageable 

system of equations. Two methods of obtaining such a manageable system have been successfully 

employed for shells of revolution: (A) reduction of the 18 equations to a single m-th order differential 

equation involving a single unknown; and (B) reduction to an equivalent system of m first order 

differential equations involving m unknowns. The number m depends on the type of a shell theory 

employed. In this study, m=10 when using the First Order Shear Deformation Theory for shell with 

cross ply or specially orthotropic lamination whereas m=20 for shell with angle ply or generally 

orthotropic lamination [65]. 

 

Method (A) has been successfully applied to some simple shell configurations, such as 

cylindrical and spherical shells with constant thickness and elastic properties. The usual procedure is 

to eliminate from the system of equations all dependent variables except one, which is usually taken 

as the transverse displacement of the reference surface denoted here by w . In principle, it should be 

possible to carry out such elimination for any arbitrary shell, but in practice this has been mainly done 

for cylindrical and spherical shells. By means of this approach, the resulting single differential 

equation may be written in the form 

 

( ) ( ) ( )[ ] 00
2

1
4

22/ =+++⋅⋅⋅⋅+ wkkkk m
m (3.1) 

 

where ( )2
denotes a second order differential operator and the ik are constants with respect to 

meridional and circumferential coordinates (φ and θ ) which contain the geometric and elastic 
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parameters of the shell and derivatives with respect to time. Upon separation of variables in the 

circumferential direction θ for a shell of revolution equation (3.1) becomes an ordinary m-th order 

differential equation in the meridional coordinate φ with constant coefficients ik , whose general 

solution consists of a sum of solutions of 

 

( )[ ] ( ) 02 =− φλ Wi (3.2) 

 

The m/2 numbers iλ are the m/2 roots of the algebraic equation 

 

( ) ( ) ( ) 00
2

1
4

22/ =+++⋅⋅⋅⋅+ kkkk m
m (3.3) 

 

The general solution of the homogeneous boundary value problem can be written for every 

dependent variable jy as 

 

( )∑
=

=
m

i
iiijj WACy

1

φ (3.4) 

 

where ijC are constant factors and iA are m arbitrary constants. With the use of (3.4), the frequency 

equation is easily constructed from the m homogeneous boundary conditions which must be given 

with the statement of the problem. The general solution in the form of (3.4) has been derived 

explicitly for cylindrical and spherical shells. The solutions ( )φiW for these shells are given by the 

usual hyper geometric series expansions; in particular, ( )φiW for a cylindrical shell are trigonometric 

functions, for a shallow spherical shell they are Bessel functions, while for a nonshallow spherical 

shell they are Legendre functions. 

 

Method (B) is based on the idea that the boundary value problem of a shell of revolution 

can be stated in the form of a system of m first order differential equations, containing m unknowns, 

subject to m boundary conditions. Since the basic shell equations are at most first order to begin with, 

such a system can be derived for a general shell of revolution much easier with much more generality 

than the uncoupled equations required by method (A). The only restriction of method (B) is that the 

shell (but not the vibration) must be rotationally symmetric; that is, all geometric and elastic properties 

of the shell can vary arbitrarily (even discontinuously) along the meridian of the reference surface of 

the shell but not along its circumference. 

 

According to method (B) as given in [65], the boundary value problem is stated in terms  
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of exactly m unknowns denoted by ( )φiy in the form 

 

( ) ( ) ( )miyyyF
d

dy
mi

i ,,2,1,,,, 21 ⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅= φ
φ
φ

(3.5) 

 

and m boundary conditions at two values of φ . It is very convenient to choose the m unknowns 

( )φiy as those quantities which appear in the natural boundary conditions on a rotationally symmetric 

edge of the shell of revolution, because the boundary conditions can involve either iy or their linear 

combinations, but not their derivatives. 

 

After deriving the m first order equations for the method (B), the boundary value problem 

is replaced by m initial value problems to which the solution can be obtained by means of either hyper 

geometric series (which is at present possible for cylindrical and spherical shells) or direct numerical 

integration (for arbitrary rotationally symmetric shells). Of course, method (B) is most powerful for 

the cases where the hyper geometric series solutions are not known and therefore numerical 

integration must be employed. However, since very accurate numerical integration codes are available 

through various computer program libraries, the direct integration phase of method (B) can be handled 

very easily. 

 

3.3 FORMULATION OF THE SYSTEM OF FIRST ORDER ORDINARY 

DIFFERENTIAL EQUATIONS 

 

The governing equations for free vibration analysis of anisotropic laminated composite 

shells of revolution are given in Section 2.6. In this section, they are attempted to be reduced to a 

system of first order, ordinary differential equations which can be written in the form 

 

( ) ( ) ( )φφ
φ
φ

ynA
d

dy
,,Ω= (3.6) 

 

where ( )φy is an (m,1) column matrix which contains m unknown dependent variables, A is an mxm

coefficient matrix, Ω is dimensional natural frequency, and n is the wave number in the 

circumferential direction. 

 

If we take an arbitrary cut which is perpendicular to axial direction, the displacement and 

rotation variables of θφθφ ββ ,,,, 000 uuw , and the force and moment resultant variables, which are 
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φθφφ NNQ ,, , φθφ MM , , exist in the normal and parallel direction of the corresponding cut. 

Furthermore, these variables should be prescribed at the two boundary edges of shells of revolution. 

 

As a result, { }ψ ={ }T
MMNNQuuw φθφφθφφθφθφ ββ ,,,,,,,,, 000 is referred as column 

vector of fundamental variables. 

 

The reduction of governing equations into a system of first order ordinary differential 

equations with respect to the axial direction, φ , in terms of the fundamental variables is done in two 

consecutive steps. In the first step, the governing equations of free vibration analysis of anisotropic 

laminated composite shells of revolution are reduced into the system of partial differential equations. 

Then, in the second step, the system of partial differential equations is turned into the system of first 

order ordinary differential equations using Method of Finite Exponential Fourier Transform. The 

dependency in the circumferential direction is removed with the second step. 

 

3.3.1 SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS 

 

The system of partial differential equations in terms of fundamental variables will be 

obtained in this section. The fundamental set of equations is started with the first term which is 
φ∂

∂ 0w

by getting the shear force resultant, φQ in Equation (2.300) in terms of displacements and rotations 

variables in Equations (2.296) and (2.298) into (2.300). It yields 
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After necessary manipulation and leaving the term φ∂∂ 0w on the left hand side, we get 
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(3.8) 

 

where the coefficients 1514131211 ,,,, cccccp and 16c are given in Appendix C. All the coefficients 

following in this section are also listed in the Appendix C. 

 

The equations, ( )φβφβφφ θφθφ ∂∂∂∂∂∂∂∂ ,,, 00 uu can be easily derived from (2.305),  
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(2.307), (2.308), and (2.310). After combining the strain-displacement equations with (2.305), (2.307),  

(2.308) and (2.310), we can write following four equations. 
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The equations (3.9) to (3.12) can be written in compact form as: 
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The Equation (3.14) is solved symbolically by implementing the Symbolic Toolbox of 

Matlab. Matlab is a trademark of Mathworks Inc. [68]. The results are given in the Appendix B. The 

equations for 
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are written in terms of fundamental variables as follows: 
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Up to this point, the displacements and rotations terms of the system of partial differential 

equations are found in terms of fundamental variables and their derivatives with respect toθ . The 

desired stress resultants terms can now be extracted from equations of motion derived for free 

vibration analysis of anisotropic laminated shells of revolution. 

 

φ
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∂
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,

φ
φ

∂

∂N
,

φ
φθ

∂

∂N
,

φ
φ

∂

∂M
, and 

φ
φθ

∂

∂M
are obtained from Equations (2.313), (2.311), 

(2.312), (2.314) and (2.315), respectively. The required term is placed on the left hand of its relevant 

equation. Then, we substitute not only the stress resultants other than existing in the column vector of 

fundamental variables in terms of displacement field variables such that ,,,, 000
φθφ βuuw and θβ but 

also Equations (3.8) and (3.15) to (3.18) whenever necessary into the right hand side of the equations 

of motion. After making necessary manipulations and collecting similar terms together, we get the 

following equations for the remaining terms of the system of partial differential equations in terms of 

fundamental variables and their derivatives with respect toθ .
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3.3.2 SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 

 

In the preceding section, the system of partial differential equations for free vibrations of an 

anisotropic laminated composite shell of revolution is obtained from the corresponding governing 

equations. In this system, the fundamental variables have dependency with both the axial coordinate 

φ , and the circumferential coordinate,θ . Furthermore, for free vibration problem, assuming 

harmonic vibration in time, the dependence of each fundamental variable on time appears in a 

factor tie ω , where ω is the natural frequency, t is time, and 1−=i . Since the shell of revolution is 

rotationally symmetric, the motion must be periodic inθ . For the shell of revolution which is 

laminated in cross-ply (specially orthotropic) configurations, each variable in the governing equations 

for free vibrations of the laminated composite shell of revolution can be separated in θ as a function 

of ( )θncos or ( )θnsin , where n is the circumferential wave number, commonly known as the 

Fourier components. This type of separation of variables like Navier-type or Levy-type solutions is 

known as traditional Fourier decomposition procedure. For example, Kalnins [66] used the traditional 

Fourier decomposition procedures for analysis of shells of revolution subjected to symmetrical and 

unsymmetrical loads. Moreover, he applied the same procedure in the free vibration of rotationally 

symmetric shells [67]. The other scientific works using traditional Fourier decomposition procedure 

are presented in [71-75]. However, the traditional Fourier decomposition procedure is inapplicable for 

laminated composite shells of revolution possessing the material anisotropy in each layer due to the 

existence of deformation couplings. The deformation couplings are such as extensional-

shear ( )2616 , AA , extensional-bending ( )2616 , BB , bending-twisting ( )2616 , DD couplings, and 

transverse shear coupling ( )45A between shear strain in the ζφ − plane and shear strain in the 

ζθ − plane. 

 

In the manner of Lestingi and Padovan [64], the system of partial differential equations for 

free vibration analysis of an anisotropic laminated composite shell of revolution can be converted into 

a system of first order ordinary differential equations in real form so as to apply the multisegment 

numerical integration procedure as the method of solution. In the works of Lestingi and Padovan [64], 

governing equations derived by the classical shell theory for static analysis were reduced to sixteen 

first-order ordinary differential equations after applying the Finite Exponential Fourier Transform 

Method. For our study, the governing equations for free vibration analysis of anisotropic laminated 

composite shells of revolution are reduced to the system of first order ordinary differential equations 

having 20 homogeneous linear first order ordinary differential equations and 20 unknowns with the 

application of Finite Exponential Fourier Transform Method. This system of equations and the 

unknowns are called the fundamental system and the fundamental variables, respectively, because 

they are necessary and sufficient for a complete statement of the problem. The conversion from 

system of partial differential equations to system of first order ordinary differential equations is 
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accomplished with the use of method of Finite Exponential Fourier Transform. Consequently, the 

fundamental variables are only function of the axial coordinate which isφ . The application of the 

method of finite exponential Fourier Transform will now be demonstrated by carrying out it to the 

first equation (Equation (3.8)) of the fundamental system of partial differential equations for free 

vibrations of an anisotropic laminated composite axisymmetric shell. The application of method of 

Finite Exponential Fourier Transform to arbitrary functions is given in Appendix D. 

 

Let us consider the dimensional transverse displacement ( )tww ,,00 θφ= . It can be 

expanded as 

( ) ( ) θφθφ ni
n etwtw ,,, 00 ∑

∞

∞−
= (3.24) 

where 

( ) ( ) θθφφ θ detwtw ni
n

−
Π

∫Π
=

2

0

00 ,,
2

1
, (3.25) 

 

Actually, Equations (3.24) and (3.25) are the exponential form of Fourier series given by 
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neCtf (3.26) 
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1
(3.27) 

 

where ( )tf is any periodic function with a period of T . Equation (3.25) can further be written as 

 

( ) ( ) ( )[ ] ( )[ ]nsnc twitwdetwtw ni
n ,,,,
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1
, 00
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00 φφθθφφ θ −=
Π
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(3.28) 

where 

( )[ ] ( ) θθθφφ dntwtw nc cos,,
2

1
,
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00 ∫
Π

Π
= (3.29) 

( )[ ] ( ) θθθφφ dntwtw ns sin,,
2

1
,

2

0

00 ∫
Π

Π
= (3.30) 

θθθ nine ni sincos ±=± (3.31) 

 

Rewriting the first equation of the system of partial differential equations (Equation (3.8)): 
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Carrying out the Finite Exponential Fourier Transform to Equation (3.8) 
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Using Equation (3.28), (3.29) and (3.30) in Equation (3.32) yields 
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Writing Equation (3.33) in terms of (3.29) and (3.30) 
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We separate the real and imaginary parts of Equation (3.34). First, writing real parts of 

Equation (3.34) term by term: 
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Then, writing imaginary parts of Equation (3.34) term by term: 
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The application of the method of Finite Exponential Fourier Transform to the remaining 

elements of the system of partial differential equations is done in Appendix E. 

 

As a result, the system of partial differential equations for the free vibration of an anisotropic 

laminated composite shell of revolution is transformed into the system of first order ordinary 

differential equations. The resulting system can be written in the following form. 

 

[ ]








=








2

1

2

1

ψ
ψ

ψ
ψ

φ
K

d

d
(3.37) 

where 
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(3.38) 

 

The elements of the coefficient matrix K are given in the Appendix F. 

 

3.4 NONDIMENSIONALIZATION OF THE SYSTEM OF FIRST ORDER 

ORDINARY DIFFERENTIAL EQUATIONS 

 

The Equation (3.37) can be put into nondimensional form by using the following scheme 

 

( ) ( ) huuwuuw 000000 ,,,, θφθφ = (3.39) 

( ) ( ) hRRRRRR ,,,, θφθφ = (3.40) 

and 

( ) ( )5,4,6,2,1,11 == jihEAA ijij (3.41) 

( ) ( )6,2,1,2
11 == jihEBB ijij (3.42) 

( ) ( )6,2,1,3
11 == jihEDD ijij (3.43) 

and 

( ) ( ) ( )hENNQNNQ 11,,,, φθφφφθφφ = (3.44) 

( ) ( ) ( )2
11,, hEMMMM φθφφθφ = (3.45) 

 

Similarly, the nondimensional form of the fundamental system of first order ordinary 

differential equations for free vibration analysis of an anisotropic laminated composite shell of 

revolution may be cast in a matrix form as 
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[ ]












=












2

1

2

1
ψ

ψ

ψ

ψ

φ
K

d

d
(3.46) 

 

where K is a 20x20 coefficient matrix, and { }ψ is the column vector of nondimensional 

fundamental variables. The matrix K incorporates the nondimensional natural frequency, 

Ω implicitly. When the Equations (3.39) to (3.45) are applied to the Equation (3.37) so as to obtain 

the Equation (3.46), it is found that the elements of matrix K look as same as the elements of matrix 

K in Equation (3.37). They differ in two aspects. The first difference is that all variables in the matrix 

K are the barred form of the corresponding variables of the matrix K . The second difference is that 

the dimensional natural frequency in Equation (3.37) is denoted byω whereas the nondimensional 

natural frequency in Equation (3.46) is represented with 11Eh ρω=Ω .

3.5 NUMERICAL SOLUTION FOR THE TWO POINT BOUNDARY VALUE 

PROBLEMS 

 

When a problem involves a system of homogeneous ordinary differential equations like 

Equation (3.37), we can not solve it numerically without specifying boundary conditions. The nature 

of boundary conditions determines which numerical methods will be used.  

 

Boundary conditions are divided into two broad categories [70]: 

 

• The initial value problem is a type of boundary value problems in which all the fundamental 

dependent variables, ( )φψ are given at the some starting value, say at minφ , and it is desired to find 

( )φψ ’s at some arbitrary point φ , or at some discrete list of φ coordinates. 

 

• The two point boundary value problem is a type of boundary value problems in which boundary 

conditions are specified at more than oneφ , sometimes at two points that give the name. Typically, 

some of conditions will be specified at minφ , and the remainder at maxφ .

Numerical methods for solving the boundary value problems depend on which type they are. 

For the initial value problems, we consider three major types of practical methods for solving initial 

value problems for the system of ordinary differential equations: 
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(i) single-step methods 

(ii) extrapolation methods (Bulirsch-Stoer methods) 

(iii) multi-step methods 

 

On the other hand, there are two distinct classes of numerical methods for solving two point 

boundary value problems: 

 

(i) shooting methods  

(ii) relaxation methods (finite-difference equations) 

 

“The crucial distinction between initial value problems and two point boundary value 

problems is that in the former case we are able to start an acceptable solution at its beginning (initial 

values) and just march it along by numerical integration to its end (final values); while in the later 

case, the boundary conditions at the starting point do not determine a unique solution to start with and 

a random choice among the solutions that satisfy these (incomplete) starting boundary conditions is 

almost certain not to satisfy the boundary conditions at the other specified point(s). Thus two point 

boundary value problems require considerably more effort to solve than done for initial value 

problems because iteration is needed in general to satisfy these spatially scattered boundary conditions 

into a single global solution of the system of ordinary differential equations”[70]. 

 

The theory of boundary value problems for ordinary differential equations relies rather 

heavily on the initial value problems. The existence and uniqueness theories for two point boundary 

value problems are quite complicated than corresponding theories for initial value problems. 

Therefore, theories of initial value problems are utilized generally in order to derive the theories for 

two point or general boundary value problems. Moreover, it is a significant fact that initial value 

problems are used in some of the most generally applicable numerical methods for solving boundary 

value problems.  

 

In previous sections, it is shown that equations governing the free vibrations of anisotropic 

laminated composite shells of revolution can be reduced to a system of first order ordinary differential 

equations. The equation (3.37) represents the dimensional form of this system. Also, nondimensional 

form of this reduced system is written in the Equation (3.46). Either dimensional system of differential 

equations or nondimensional system of differential equations together with prescribed boundary 

conditions at the two edges of the shell constitutes a two point boundary value problem. 

 

Here, if we take into consideration the dimensional system of first order ordinary differential 

equations for the present study which can be written as 
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( ){ } ( )[ ] ( ){ }φψφφψ
φ

K
d

d = (3.47) 

 

where ( ){ }φψ is a (20,1) column matrix which contains 20 unknown dependent variables, and K is a 

20x20 coefficient matrix whose elements have been already given in Appendix F. The unknown 

dependent variables are the fundamental variables of First Order Shear Deformation Theory by using 

the Reissner-Naghdi shell theory at any meridional coordinate. The fundamental variables are given 

completely in Equation (3.38). 

 

The object is to determine the ( ){ }φψ in the interval maxmin φφφ ≤≤ subject to 10 

boundary conditions at each end of the axisymmetric shell. In this regard, some of the fundamental 

variables in the column vector ( )φψ at each edge of the shell must be prescribed. If edges of the shell 

are taken as minφφ = and maxφφ = then 10 elements of ( )minφψ and 10 elements of ( )maxφψ are 

considered to be known. For different conservative boundary conditions which are SS=simply 

supported, C=clamped, and F=free, the prescribed fundamental variables in ( )φψ vary. They are 

 

000 ===== φφθθ β MNuw (3.48) 

 

for the case of simply supported boundary conditions, 

 

0000 ===== θφθφ ββuuw (3.49) 

 

for the case of clamped boundary conditions, and 

 

0===== φθφφθφφ MMNNQ (3.50) 

 

for the case of free boundary conditions. 

 

For the present study, the prescribed boundary conditions of the free vibration analysis of an 

anisotropic laminated composite axisymmetric shell are 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] 0,,,,,

,,,,, 0000

=====
=====

nsncnsncns

ncnsncnsnc

tMtMtNtNt

ttututwtw

φφφφφβ
φβφφφφ

φφφφθ

θθθ (3.51) 
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for simply supported boundary conditions, 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] 0,,,,,

,,,,,
0

00000

=====

=====

nsncnsncns

ncnsncnsnc

tttttu

tutututwtw

φβφβφβφβφ

φφφφφ

θθφφθ

θφφ (3.52) 

 

for clamped boundary conditions, and 

 

( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] 0,,,,,

,,,,,

=====

=====

nsncnsncns

ncnsncnsnc

tMtMtMtMtN

tNtNtNtQtQ

φφφφφ
φφφφφ

φθφθφφφθ

φθφφφφ (3.53) 

 

for free boundary conditions. 

 

Consequently, Equation (3.47) with appropriate boundary conditions at the two edges of the 

shell represents a two point boundary value problem. A numerical method for this two point boundary 

value problem is explained in the next section. 

 

3.5.1 REDUCTION TO INITIAL VALUE PROBLEMS 

 

In this section, the two point boundary value problem (Equation (3.47)) will be reduced to a 

series of initial value problems. “The solution for the fundamental variables of a shell of revolution in 

the Equation (3.47) can be written in the form 

 

( ){ } ( )[ ]CW φφψ = (3.54) 

 

where ( )φW is a 20x20 matrix whose columns represent 20 linearly independent solutions of the 

homogeneous governing equations, and C denotes a column matrix of 20 arbitrary constants. The 

solution is obtained by defining the columns of ( )φW as the solutions of 20 initial value problems in 

the interval ( )maxmin ,φφ governed by the system of equations in Equation (3.47) and subjected to 

arbitrary linearly independent initial conditions at minφφ = . If the independence requirement is met 

at minφφ = , then the solutions will be independent at any other value of φ in the 

interval ( )maxmin ,φφ .
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 Since the only requirement of the columns of ( )φW is that they be linearly independent 

solutions of the system of equations (3.47), in place of ( )φW we may employ in the interval 

( )maxmin ,φφ a matrix of linear combinations of the solutions of equations (3.47), which at 

minφφ = reduces to a unit matrix I . This is done by evaluating Equation (3.54) at minφφ = .

( ){ } ( )[ ]CW minmin φφψ = (3.55) 

 

Solving for C

( )[ ] ( ){ }min
1

min φψφ −= WC (3.56) 

 

and replacing C in (3.54) by (3.56) to give 

 

( ){ } ( )[ ] ( )[ ] ( ){ }min
1

min φψφφφψ −= WW  (3.57) 

Defining  

( )[ ] ( )[ ] ( )[ ] 1
min

−= φφφ WWT (3.58) 

 

The expression for the solution is obtained in the form 

 

( ){ } ( )[ ] ( ){ }minφψφφψ T= (3.59) 

 

where ( )φT is the transfer matrix of the shell and ( )φψ is a column vector of fundamental dependent  

variables at any arbitrary φ .

It should be noted that if the columns of ( )φW are homogeneous solution of (3.47) then the 

columns of ( )φT are linear combinations of ( )φW ; therefore, also homogeneous solutions of (3.47). 

 

Substituting Equation (3.59) into Equation (3.47) the columns of ( )φT are given as the 

solutions of 20 initial value problems  

 

( ){ } ( )[ ] ( ){ }φφφ
φ

TKT
d

d = (3.60) 
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 The initial values for ( )φT at minφφ = is obtained from 

 

( )[ ] ( )[ ] ( )[ ] IWWT == −1
minminmin φφφ (3.61) 

 

The elements of the rows of ( )φT in Equation (3.60) represent those fundamental variables 

that are contained in the corresponding rows of ( )φψ in Equation (3.47). It is important to note that 

the solutions ( )φT depend only on the geometric and material properties of the shell given by 

coefficient matrix ( )φK but not on the boundary conditions. The same solutions ( )φT can be used for 

any appropriate boundary conditions imposed at the edges of a given shell. For this reason, the 

solution of the free vibration problem of a shell of revolution is completely determined by ( )φT .

The solution of Equation (3.47) in the interval maxmin φφφ ≤≤ is formally given by 

Equation (3.59) where ( )φT is obtained from the 20 solutions of the initial value problems defined by 

Equations (3.60) and (3.61). In order to make such a solution also satisfying the prescribed boundary 

conditions given in section 3.5, one evaluates Equation (3.59) at maxφφ = ,

( ){ } ( )[ ] ( ){ }minmaxmax φψφφψ T=
(3.62) 

 

Once ( ){ }minφψ is known, the solution at any value of φ is obtained from Equation (3.59) 

provided that the values of ( )φT at that particular φ are stored. This completes the reduction of a two 

point boundary value problem defined by Equation (3.47) to 20 initial value problems given by 

Equations (3.60) and (3.61)”[71]. 

 

3.5.2 METHOD OF SOLUTION FOR A ONE SEGMENT SHELL 

 

“In order to solve Equation (3.47) numerically, at each edge of the shell, that is, at 

minφφ = and maxφφ = , 10 fundamental variables in ( )minφψ and ( )maxφψ must be prescribed as 

boundary conditions. Therefore, 10 elements of ( )minφψ and 10 elements of ( )maxφψ in our case are 

considered to be known, and the remaining ones in ( )minφψ and ( )maxφψ are unknown. Furthermore, 

we need to arrange the elements of ( )φψ at minφφ = and maxφφ = in such way that the known and 

unknown fundamental variables of ( )minφψ and ( )maxφψ are separated into two partitioned matrices. 
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When the first 10 elements of ( )minφψ , denoted by ( )min1 φψ , and the last 10 elements of ( )maxφψ ,

denoted by ( )max2 φψ , are determined as the prescribed fundamental variables, the Equation (3.62) 

can be written as a partitioned matrix product in the form 

 

( )
( )

( ) ( )
( ) ( )

( )
( )















=









min2

min1

max
4

max
3

max
2

max
1

max2

max1

φψ
φψ

φφ
φφ

φψ
φψ

TT

TT
(3.63) 

 

where the 10 by 10 matrices ( )maxφjT are the partitioned matrices of ( )maxφT . If we assume that for 

the free vibration ( ) ( ) 0max2min1 == φψφψ when basic boundary conditions such as simply 

supported, clamped or free are applied appropriately at the two edges of shell, then the unknowns 

( )min2 φψ are directly obtained from 

 

( )[ ] ( ){ } 0min2max
4 =φψφT (3.64) 

 

The above matrix equation gives a set of linear homogeneous equations with unknown 

coefficients which are given by ( ){ }min2 φψ .

Since a nontrivial solution for ( ){ }min2 φψ is possible if the matrix ( )max
4 φT is of rank 9, 

the frequency equation of the system is given by 

 

( )[ ] 0max
4 =φT (3.65) 

 

There exist natural frequencies implicitly in Equation (3.65). The Equation (3.65) is called as 

characteristics equation of the given system. Once a frequency is found that satisfies Equation (3.65), 

the corresponding solution for ( ){ }min2 φψ is obtained from 

 

( ) ( ) i
ii Mr 1

min2 1 +−=φψ (3.66) 

 

where ( )min2 φψ i denotes the ith element of ( ){ }min2 φψ , r is an arbitrary constant, and iM is the 

determinant obtained from any [9,10] submatrix of rank 9 contained in ( )[ ]max
4 φT by deleting the ith 

column. After ( ){ }min2 φψ is calculated from Equation (3.66), the corresponding mode shapes for a 

particular natural frequency are found from Equation (3.59). The necessary computation of the matrix 
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( )φT at anyφ can be done by numerical integration of Equation (3.60) with initial values given by 

Equation (3.61). 

 

The method so far is essentially a generalization of the one employed in the analysis of 

axisymmetric vibration of a conical shell in [76]. It works very well for a shell with a relatively short 

interval ( )maxmin ,φφ . However, when the length of the meridian of the shell is increased, the 

elements of ( )maxφT increase rapidly in magnitude while the value of the frequency determinant does 

not, and, consequently, an increasing number of significant digits is subtracted out in the process of 

calculation of the determinant of ( )max
4 φT . Furthermore, if any required number of significant digits 

were kept in all initial value integrations, and matrix operations, then the method would give correct 

solution for any size of the interval maxmin φφφ ≤≤ . However, if only a fixed number of significant 

digits like in digital computers are kept in the calculation, the solution loses all accuracy beyond a 

critical length of the interval. The loss of accuracy is not caused by cumulative errors in the 

integration process, rather caused by the subtraction of almost equal very large numbers. Similarly, 

because of the large values of the elements of ( )φT at large values ofφ , accuracy is invariably lost 

when the mode shapes are obtained from Equation (3.59). Therefore, the loss of accuracy of the 

solution can be avoided and shells of revolution with much larger meridional lengths can be analyzed 

by means of the direct integration technique if the multisegment method discussed in the next section 

is used”[71]. 

 

3.5.3 EXTENSION OF PRESENT METHOD OF SOLUTION TO A MULTISEGMENT 

SHELL 

 

“Let the shell be divided into M segments denoted by iS , where Mi ,...,2,1= . The 

coordinates of the ends of the segments are denoted by iφ . The left-hand edge of the shell is at 

1φφ = and the right-hand edge at 1+= Mφφ , as shown in Figure 3.1. In analogy to Equation (3.59), 

the solution within each segment iS is given by 

 

( ){ } ( )[ ] ( ){ }iiT φψφφψ = (3.67) 

 

where ( ){ }φiT are obtained from the initial value problems defined in iS by 

 

( ){ } ( )[ ] ( ){ }φφφ
φ ii TKT

d

d = (3.68) 
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( ){ } IT ii =φ (3.69) 

 

Continuity requirements on all fundamental variables at the end point of the segments lead, 

from Equation (3.67), to 

 

( ){ } ( )[ ] ( ){ }iiii T φψφφψ 11 ++ = (3.70) 

 

where Mi ...,,2,1= .

Using the partitioned matrix product of as given by Equation (3.63) for the single segment of 

shell, Equation (3.70) can be written as 

 

( ) ( ) ( ) ( ) ( ) 01121
2

11
1 =−+ +++ iiiiiii TT φψφψφφψφ (3.71) 

( ) ( ) ( ) ( ) ( ) 01221
4

11
3 =−+ +++ iiiiiii TT φψφψφφψφ (3.72) 

 

where Mi ...,,2,1= .

Figure 3.1 Division of meridional length of the shell of revolution into segments [71]. 

 

Equations (3.71) and (3.72) constitute a system of M2 linear homogeneous matrix equations 

with M2 unknowns: ( )iφψ 1 for 1,...,3,2 += Mi and ( )12 +iφψ for Mi ...,,2,1= . For free 

vibration problems, we assume that the prescribed quantities ( ) ( ) 01211 == +Mφψφψ designating 
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boundary conditions. By means of Gauss elimination, the system of Equations (3.71) and (3.72) are 

brought to the form 

 

( )
( )

( )
( )

0

000

00

000

00

11

2

21

12

1

1

=































⋅
⋅



























⋅⋅
−⋅⋅
⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

⋅−
⋅⋅−

+M

M

M

M

C

IE

IC

IE

φψ
φψ

φψ
φψ

(3.73) 

 

where the (10,10) matrices 1E , 1C are defined by 

 

[ ] [ ]2
11 TE = (3.74) 

[ ] [ ][ ] 1
1

4
11

−= ETC (3.75) 

 

and for Mi ...,,3,2=

[ ] [ ] [ ][ ] 1
1

12 −
−+= iiii CTTE

(3.76) 

[ ] [ ] [ ][ ]( )[ ] 11
1

34 −−
−+= iiiii ECTTC (3.77) 

 

A nontrivial solution of the system of Equations (3.73) is possible if the (10, 10) 

matrix MC is of rank 9 

 

[ ] 0=MC (3.78) 

 

and then the solution for elements of ( ){ }11 +Mφψ , denoted by ( )11 +M
i φψ , where 10...,,2,1=i is 

given by 

( ) ( ) i
i

M
i Mr 1

11 1 +
+ −=φψ (3.79) 

 

where r is again an arbitrary constant and the determinant iM is obtained from any (9,10) 

submatrix of rank 9 contained in MC by deleting the ith column. Once ( ){ }11 +Mφψ is known, the 

remaining unknowns can be found successively from Equation (3.73) as 
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( ){ } [ ] ( ){ }11
1

2 +
−= MMM E φψφψ (3.80) 

 

and for 1...,,2,1 −= Mi

( ){ } [ ] ( ){ }12
1

11 +−
−

−+− = iMiMiM C φψφψ (3.81) 

( ){ } [ ] ( ){ }11
1

2 +−
−

−− = iMiMiM E φψφψ (3.82) 

 

describing the corresponding mode shapes in terms of both displacements, rotations and stress 

resultants”[71]. 

 

3.6 FREQUENCY TRIAL METHOD 

 

Frequency trial method is essentially a systematized process of trial and error in which the 

input to each iteration step is a trial value of the frequency. This method has been successfully applied 

for the solution of free vibration problem of isotropic shells of revolution by Kalnins [67]. In this 

study, the frequency trial method is extended to compute the mode shapes and their corresponding 

natural frequencies of the anisotropic laminated composite shell of revolution with appropriate 

boundary conditions and given mechanical and geometrical properties. 

 

The frequency trial method is considered to have two main parts. The first part deals with the 

determination of the system of homogeneous first order ordinary differential equations for the free 

vibration analysis of an anisotropic laminated composite shell of revolution by using mathematical 

modeling presented in Chapter 2 in combination with the method of Finite Exponential Fourier 

Transform given in this chapter. Then, in the second part, the system of differential equations 

formulated in the first part is reduced to the series of initial value problems, and the shell is divided 

into segments. After then, the multisegment integration method is carried out to solve the conceived 

problem numerically to find out the free vibration characteristics. It should be noted that the proposed 

numerical solution procedure cannot provide free vibration results directly as the undetermined natural 

frequency ω is included in matrix K in Equation (3.47). 

 

Some steps of the numerical solution method of the second part of the frequency trial method 

are repeated in order to determine the free vibration characteristics such as natural frequencies and 

mode shapes. In particular, the determinant of MC in Equation (3.78) for the given corresponding 

natural frequency in the prescribed natural frequency range is needed to be computed iteratively. The 

subparts of the second part of the Frequency Trial Method are depicted in Figure 3.2. 
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Figure 3.2 The subparts of the second part of Frequency Trial Method. 

 

It is better to explain how the natural frequency is determined by the second block given in 

Figure 3.2 with an example. Consider a single layer simply supported isotropic circular cylindrical 

shell. It has the following mechanical and geometrical properties such that Young’s modulus, density, 

Poisson’s ratio, thickness, radius, length are given as MpaE 145.10= , 3/105338.2 4 mkgx=ρ ,

33.0=ν , cmh 05.0= , cmR 10= , cmL 20= , respectively. The first natural frequency 1ω for 

circumferential wave number 1=n is calculated as rad/sec11972.28 by using traditional Fourier 

Decomposition procedure. The frequency search is started with an initial value. Then the determinant 

of the given trial frequency is calculated. The behavior of calculated determinant of the given natural 

frequency is examined. For our example, some natural frequencies with their computed determinant in 

order to find the first natural frequency of the problem for n=1 are given in Table 3.1. 

 

Whenever the determinant changes sign, in our case its sign changes from negative to 

positive, a relatively small frequency range is determined around the first natural frequency, then a 

standard Regula-Falsi root determination routine is employed to find the first natural frequency 

accurately. The standard Regula-Falsi root determination procedure can be studied from [69]. 

Furthermore, the geometric representation of behavior of natural frequency versus computed 

determinant is given in Figure 3.3a with traditional Fourier Decomposition procedure used as a 

method of solution. 

 

In our study, as presented in this chapter, the method of Finite Exponential Fourier 

Transform is employed in order to decouple the fundamental variables of free vibration analysis of an 
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anisotropic laminated composite axisymmetric shell. In our example, there is no coupling effect; 

however, it is also solved using the Method of Finite Exponential Fourier Transform. The dimension 

of the system of first order differential equations for free vibration analysis of the isotropic single 

layer circular cylindrical shell is 10 by 10 using traditional Fourier Decomposition procedure whereas 

it becomes 20 by 20 after the application of Method of Finite Exponential Fourier Transform. A 

Fortran program which is prepared to calculate the free vibration characteristics of anisotropic 

laminated composite circular cylindrical shells is run in the frequency range of (11900,12050) for our 

example which was already solved by the classical Fourier decomposition method of solution. The 

values of the trial natural frequencies and their computed determinants using Method of Finite 

Exponential Fourier Transform are given in Table 3.2. The first natural frequency for n=1 is found to 

be sec/39.11972 rad=ω with the method of Finite Exponential Fourier Transform. The graphical 

representation of them is shown in Figure 3.3b. 

 

Table 3.1 Trial natural frequencies and their computed determinants in order to find first natural 

frequency of the example problem with traditional Fourier Decomposition procedure. 

 

Trial Natural Frequenciesω (rad/sec) Corresponding computed determinants ( )ωdet

11900 -1.156926E-07 

11910 -9.704969E-08 

11920 -7.924888E-08 

11930 -6.229280E-08 

11940 -4.618408E-08 

11950 -3.092539E-08 

11960 -1.651947E-08 

11970 -2.969108E-09 

11980 9.722855E-09 

11990 2.155352E-08 

12000 3.251994E-08 

12010 4.261911E-08 

12020 5.184795E-08 

12030 6.020336E-08 

12040 6.768214E-08 

12050 7.428107E-08 
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first natural frequency of the example problem (n=1)
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Figure 3.3 Finding first natural frequency of the example problem with (a)traditional Fourier 

Decomposition Method, and (b) Method of Finite Exponential Fourier Transform. 

 

Comparison of the determinants in Tables 3.1 and 3.2 reveal that the determinant values 

given in Table 3.2 is the square of the corresponding values given in Table 3.1. Graphically, this is 

clearly seen in Figure 3.3(b). Proof of this is demonstrated in Appendix G for a generic two-point 

boundary value problem composed of 2 fundamental variables. 
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Table 3.2 Trial natural frequencies and their computed determinants in order to find first natural 

frequency of the example problem with method of Finite Exponential Fourier Transform. 

 

Trial Natural Frequenciesω (rad/sec) Corresponding computed determinants ( )ωdet

11900 1.338479E-14 

11910 9.418642E-15 

11920 6.280386E-15 

11930 3.880393E-15 

11940 2.132969E-15 

11950 9.563798E-16 

11960 2.728929E-16 

11970 8.815602E-18 

11980 9.453392E-17 

11990 4.645544E-16 

12000 1.057547E-15 

12010 1.816388E-15 

12020 2.688210E-15 

12030 3.624444E-15 

12040 4.580872E-15 

12050 5.517678E-15 

Based on Figure 3.3, it can be said that in order to determine the root by the application of 

Finite Exponential Fourier Transform Method (doubling the total number of equations), standard 

Regula-falsi method can not be applied. Rather a slope change algorithm is necessary to pin the 

natural frequency as shown in Figure 3.3(b). 

 

In the present study, a computer code, DALSOR is developed in FORTRAN 77. The 

DALSOR stands for (Dynamic Analysis of Anisotropic Laminated Shells of Revolution). The 

DALSOR performs the following main tasks: 

 

• Multisegment numerical integration of the equations of general anisotropic shells of 

revolution (Equations 3.37 or 3.46). 

• Determination of the characteristic matrix MC given in Equation 3.78. 

• A slope change algorithm to determine the natural frequency which is graphically shown in 

Figure 3.3(b) for a particular example. 

• Mode shape determination algorithm to determine the displacements, rotations and 

force/moment resultants across the shell meridional axis. 
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In addition to the above mentioned main blocks, the slope change algorithm is also modified 

such that the method for the determination of the natural frequency is brought into a form to which 

classical regula-falsi method can be applied easily. This method actually makes use of the fact that the 

values of the determinant of the characteristic matrix determined by the Finite Exponential Fourier 

Transform Method is square of the value of the determinant of the characteristic matrix obtained by 

the traditional Fourier decomposition procedure for the same shell and for the same trial frequency. 

Notice that as it is seen in Figure 3.3, one can actually take the square root of the determinant of 

Figure 3.3(b) and switch signs of the determinant either above or below the root, and employ the 

traditional Regula-falsi method to pin the natural frequency. This way, much faster convergence to the 

root can be achieved by employing standard Regula-falsi method to Figure 3.3(a) as compared to the 

slope change algorithm employed in Figure 3.3(b). 

 

3.7 DESCRIPTION AND FLOW-CHART OF THE DEVELOPED CODE, 

DALSOR 

 

The developed code DALSOR (Dynamic Analysis of Anisotropic Laminated Shells of

Revolution) is written in Fortran 77 in order to determine the free vibration characteristics; namely, 

mode shapes and their corresponding natural frequencies, of the anisotropic laminated composite 

shells of revolution. The DALSOR has 3 main programs and 8 subprograms. Laminate, Natural 

Frequency, Mode Shape are the main programs. The flow-chart of Laminate and Natural Frequency 

programs, and the flow-chart of Mode Shape Program of the developed FORTRAN code DALSOR is 

given in Figure 3.4, and Figure 3.5, respectively. Among the 8 subprograms, one external subprogram, 

DIVPAG, is called as an external subroutine in both Natural Frequency and Mode Shape Programs. 

DIVPAG carries out the numerical integration of Equation (3.60). DIVPAG is a subroutine of the 

IMSL FORTRAN Numerical Libraries v.5. DIVPAG solves initial-value problems for ordinary 

differential equations using either Adams-Moulton’s or Gear’s BDF method. The Adams-Moulton’s 

method is chosen to take numerical integration of Equation (3.60) in the DALSOR. The IMSL 

FORTRAN Numerical Libraries v.5, which is a product of Visual Numerics Inc. [77], is a collection 

of FORTRAN routines and functions useful in mathematical analysis research and application 

development. 

 

The DALSOR is based on the computational model discussed in the Chapter 2. The 

computational model is the Reissner-Naghdi shell theory with transverse shear deformation effects 

included. It also includes full anisotropic form of constitutive equation based on lamination theory. 

The governing equations of free vibration analysis of an anisotropic laminated composite shell of 

revolution are derived in the Chapter 2. In the current chapter, the method of solution for those 

governing equations is presented. One can refer to the previous section for the tasks performed by the 

DALSOR. Generally speaking, the main capabilities of the developed code DALSOR have been  
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already given in the section 1.3.2 of Chapter 1. 

 

Figure 3.4 Flow-chart of Laminate and Natural Frequency Programs of the DALSOR. 
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Figure 3.5 Flow-chart of Mode Shape Program of the DALSOR. 

 

1Want mode 
shapes ?

Y

N
Stop 

MODE SHAPE PROGRAM

Read the natural frequency,ω , to determine its mode shapes  

Start 

Read the elements of stiffness matrices, A, B, D, and As; the total thickness and overall 
density of the laminate; circumferential wave number, N; boundary conditions; number of 
segments in the axial direction; geometric parameters, R, L. 

Find all of the unknown fundamental variables at the 
final end point of the shell by using known ω

(solution of Equation (3.79)) 

Normalize the found fundamental variables at the final end point, ( ){ }1+Mφψ , with 

respect to a largest non-zero component of ( ){ }1+Mφψ .

Find the remaining fundamental variables at each station along meridional 
direction of the shell by using Equations (3.80), (3.81), and (3.82)

Normalize cosine and sine terms(*) of displacements ( )000 ,, θuuw x and rotations ( )θββ ,x with 

respect to the largest one of calculated fundamental variables from 1 to 10. 

Stop 

Normalize cosine and sine terms(*) of force resultants ( )θxxx NNQ ,, and moment resultants 

( )θxx MM , with respect to the largest one of calculated fundamental variables from 11 to 20. 

Write cosine and sine terms(*) of  θθθθ ββ xxxxxxx MMNNQuuw ,,,,,,,,, 000
to discrete files 

(*)
Cosine and sine terms are symmetric and antisymmetric components with 

respect to θ , respespectively.
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CHAPTER 4 

 

NUMERICAL RESULTS AND DISCUSSIONS 

 

4.1 INTRODUCTION 

 

In the previous two chapters, the governing equations for free vibration analysis of an 

anisotropic laminated composite shell of revolution and solution procedure to those equations were 

presented. A computer code named DALSOR (Dynamic Analysis of Anisotropic Laminated Shells of

Revolution) is developed so as to determine the free vibration characteristics; namely natural 

frequencies and their mode shapes, of the anisotropic laminated composite shell of revolution. In this 

chapter, numerical results produced with the developed code DALSOR are presented and discussed. It 

can be seen from the coefficient matrix K in Equations (3.47) and (3.60) that the free vibration 

characteristics are dependent on the boundary conditions at each edges of the shell, circumferential 

wave number, laminate properties, material and geometrical properties of the shell. The laminated 

composite circular cylindrical shell, which is the one of laminated composite shells of revolution 

mostly studied in the literature, is taken as an illustrative example in this thesis in order to investigate 

the effects of primarily fiber orientation angle, stacking sequence, boundary conditions at the edges of 

the shell, thickness-to-radius ratio on the natural frequencies of a laminated composite circular 

cylindrical shell. Therefore, studies are carried out for the following cases: 

 

• For comparison of present method of solution with the exact method of solution, a simply 

supported single layer orthotropic circular cylindrical shell. 

• The variation of fiber orientation angle in a simply supported laminated composite circular 

cylindrical shell. 

• The laminated composite circular cylindrical shell having six different stacking sequence: 

[ ] [ ] [ ] [ ] [ ] [ ]ssssss 222222222222222222 45/0/90,0/45/90,0/90/45,90/0/45,90/45/0,45/90/0 ±±±±±±

• (i) Boundary condition: Clamped-Clamped 

 Thickness to radius ratio: approximately 0.01 

 (ii) Boundary condition: Clamped-free 

 Thickness to radius ratio: approximately 0.01 
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• The laminated composite circular cylindrical shell having six different stacking sequence: 

[ ] [ ] [ ] [ ] [ ] ,0/45/90,0/90/45,90/0/45,90/45/0,45/90/0 222222222222222 sssss ±±±±±

[ ]
s222 45/0/90 ±

(i) Boundary condition: Clamped-Clamped 

 Thickness to radius ratio: approximately 0.1 

 (ii) Boundary condition: Clamped-free 

 Thickness to radius ratio: approximately 0.1 

• The simply supported laminated composite circular cylindrical shell with symmetrical, 

antisymmetrical and unsymmetrical laminate schemes for the purpose of identifying the coupling 

effects. 

• The laminated composite spherical shell with clamped-free (CF) boundary condition. 

 

In the following section, the laminated composite circular cylindrical shell is described 

before the presentation of the numerical results for free vibration analysis of the anisotropic laminated 

composite circular cylindrical shell. 

 

4.2 LAMINATED COMPOSITE CIRCULAR CYLINDRICAL SHELL 

 

Static and dynamic analysis of circular cylindrical shells built up composite materials are 

mostly studied by the researchers. The ease of manufacturing and widespread usage of circular 

cylindrical shells made of advanced composite materials as a primary and secondary structural 

components in various structural applications, especially in aeronautical and space structures, are 

undoubtedly the reasons for those studies. 

 

The governing equations for the free vibration analysis of anisotropic laminated composite 

shells of revolution are derived in Chapter 2. The strain-displacement relations are given from 

Equation (2.286) to Equation (2.298), the constitutive equations from Equation (2.299) to (2.310), and 

the equations of motion from Equation (2.311) to Equation (2.315). Thereafter, those governing 

equations are reduced to a system of first-order differential equations given by Equation (3.37). This 

system of first-order differential equations for general shells of revolution can be transformed into 

circular cylindrical shells by applying the following scheme 
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where R is the mean radius of laminated composite circular cylindrical shell. 

 

Figure 4.1 General Configuration and Coordinate System of Laminated  

Composite Circular Cylindrical Shell and its Laminate. 

 

General configuration and coordinate system of laminated composite circular cylindrical 

shell and its laminate used in the numerical results of free vibration analysis are shown in Figure 4.1. 

zandx ,,θ denote the axial, circumferential, and thickness coordinates, respectively. Also, 

wandvuhR ,,,, denote the mean radius, laminate total thickness, axial displacement, circumferential 

displacement, and transverse displacement of the laminated composite circular cylindrical shell, 

respectively. 

 

The circular cylindrical shell is known to vibrate axisymmetrically when the circumferential 

wave number, n, is zero. Also, it undergoes asymmetrical vibration when the value of circumferential 

wave number is equal to or greater than one. Figure 4.2 shows the mode shapes of a simply supported 

circular cylindrical shell when the axial wave number, m, changing from one to three, and the 

circumferential wave number, n, changing from zero to four. 
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n=0 n=1 n=2 n=3 n=4 

Circumferential Nodal Patterns 

m=1 m=2 m=3 

Axial Nodal Patterns 

 

Figure 4.2 Circumferential Nodal Patterns and Axial Nodal Patterns for a Simply Supported Circular 

Cylindrical Shell without axial constraint [78]. 

 

In the particular case of axisymmetric vibrational motion, the displacements are only 

functions of the axial or meridional coordinate, x. Two systems of equations can be obtained. The first 

one is the torsional system. It is a function of the circumferential displacement V , and the rotation of 

the transverse normal about x coordinate θβ , and the torsional system gives zero mode shapes of 

xandWU β,, . The other system which is a function of the axial displacement U , the transverse 

displacement W ,and the rotation of the transverse normal about θ coordinate xβ , is called non-

torsional system. The non-torsional system gives zero mode shapes of V and θβ .

4.3 VERIFICATION OF THE DALSOR 

 

In order to show the accuracy and efficiency of the numerical results obtained by developed 

code  

DALSOR for the free vibration analysis of anisotropic laminated composite shells of revolution, one 

case study is conducted. This study is a comparison study of the present method of solution presented 

in Chapter 3 with an exact method of solution in [13].  

 

4.3.1 VERIFICATION OF THE PRESENT METHOD OF SOLUTION 

 

In this section, the comparison study of the present method of solution presented in Chapter 3  
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with an exact method of solution is carried out with a single layer simply supported specially 

orthotropic circular cylindrical shell. Soedel [13] gives the exact solution for the free vibrations of 

circular cylindrical shell which is simply supported at ,0=x and Lx = in the section 5.5 of his 

book. The geometrical and material properties of the problem studied in this subsection are given in 

Table 4.1. It should be noted that the same shell theory is used in DALSOR as that of Soedel [13]. In 

addition, Soedel’s solution can only be produced for a special boundary condition case; simply 

supported, at both ends. Soedel’s solution is exact for the shell theory used. However, the assumptions 

of the shell theory do still exist there. 

 

Table 4.1 Geometrical and material properties of the single layer, simply supported circular 

cylindrical shell used in comparison study of the method of solution. 

 

Geometrical properties Mechanical Properties [52] 

Radius [m] 0.1 E1 [GPa] 206.9 

Meridional Length [m] 0.22 E2 [GPa] 18.62 

Thickness [m] 0.002 G12 [Gpa] 4.48 

G13 [Gpa] 4.48 

G23 [Gpa] 2.24 

12ν 0.28 

ρ [kg/m3] 2048 

Figure 4.3 shows the comparison of natural frequencies calculated by the exact method of 

solution [13] with those calculated by the present method of solution from n=0 to n=10 for three 

lowest natural frequencies which correspond to each n. For brevity, these three lowest natural 

frequencies are depicted as m=1, 2, and 3 in the tables and figures in this section and in this chapter. 

The numerical values of Figure 4.3 is given in Table 4.2. It can be clearly seen from Figure 4.3 and 

relative percentage difference values in Table 4.2 that the natural frequencies of the single layer 

simply supported specially orthotropic circular cylindrical shell obtained with the DALSOR are in 

good agreement with the results of the exact method of solution for the axial wave numbers, m, from 

one to three and the circumferential wave numbers, n, from zero to ten. 
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Figure 4.3 The comparison of natural frequencies calculated by the exact method of 

solution [13] with those calculated by the present method of solution from n=0 to n=10 

for m=1, 2, and 3. 

 

Table 4.2 Natural Frequencies (rad/sec) calculated with DALSOR as the present method of solution 

and calculated with the exact solution in [13] and the relative % differences between them  

for m=1-3 and n=0-10. 

 

m exact 

method of 

solution 

present method 

of solution 

relative 

% diff.*
m exact 

method of 

solution 

present method 

of solution 

relative 

% diff.*

1 21120.355 21120.454 4.67E-04 1 14010.545 14010.631 6.16E-04 

2 30169.964 30169.890 2.47E-04 2 23410.345 23410.411 2.83E-04 

n=
0 

3 30513.722 30513.671 1.70E-04 

n=
1 

3 28636.483 28636.522 1.38E-04 

1 9045.061 9044.961 1.11E-03 1 6575.209 6575.114 1.45E-03 

2 16986.293 16986.364 4.23E-04 2 13222.606 13222.522 6.35E-04 

n=
2 

3 23619.471 23619.371 4.20E-04 

n=
3 

3 19943.890 19943.838 2.57E-04 

1 5587.279 5587.187 1.66E-03 1 5809.237 5809.143 1.62E-03 

2 11179.295 11179.346 4.51E-04 2 10377.671 10377.756 8.19E-04 

n=
4 

3 17683.947 17684.035 4.99E-04 

n=
5 

3 16542.672 16542.771 6.01E-04 

1 7009.775 7009.709 9.39E-04 1 8903.127 8902.972 1.74E-03 

2 10611.252 10611.171 7.68E-04 2 11726.976 11726.982 4.91E-05 

n=
6 

3 16315.327 16315.386 3.59E-04 

n=
7 

3 16881.355 16881.475 7.08E-04 

1 11298.669 11298.815 1.29E-03 1 14100.779 14100.932 1.08E-03 

2 13563.910 13563.753 1.16E-03 2 15981.332 15981.455 7.68E-04 

n=
8 

3 18153.247 18153.116 7.26E-04 

n=
9 

3 20051.677 20051.775 4.88E-04 

1 17262.576 17262.716 8.09E-04 

2 18878.118 18877.979 7.36E-04 

n=
10

 

3 22503.035 22502.875 7.08E-04 
( ) ( )

( ) 100
.

..
.%.

*

×
−

=
solexact

solpresentsolexact
diffrel

differencepercentagerelative
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4.4 CASE STUDIES 

 

After performing comparison study of the present method of solution to check the efficiency 

and accuracy of the DALSOR, we will investigate the effects of the fiber orientation angle, the 

stacking sequence, the boundary conditions, the thickness-to-radius ratios in the following sections. 

 

4.4.1 CASE STUDY ON THE EFFECT OF FIBER ORIENTATION ANGLE 

 

The free vibration characteristics are determined for each case while changing the fiber 

orientation angle in the laminate from 0 degree to 90 degrees with the increment of 10 degrees in the 

present case study. The simply supported laminated circular cylindrical shell is used and its 

geometrical, mechanical and laminate properties are given in Table 4.3. 

 

Table 4.3 Geometrical, material properties, and laminate properties of the simply supported 

laminated composite circular cylindrical shell used for the case study on the fiber orientation angle. 

 

Geometrical properties Mechanical Properties of E-glass/Epoxy[55] 

Radius [m] 0.1 E1 [GPa] 38.704963 

Meridional Length [m] 0.22 E2=E3 [GPa] 8.293963 

Thickness [m] 0.002 G12 [Gpa] 4.146981 

G13 [Gpa] 4.146981 

Laminate Properties G23 [Gpa] 4.146981 

Ply thickness [m] 0.0005 
231312 ννν == 0.26 

Layup 
[ ]sαα / where α changes from 0 to 

90 with the increment of 10 degress 

ρ [kg/m3] 2550.60 

When ply stacking sequence, material, and geometry (ply thickness) are symmetric about the 

midplane of the laminate like in this case, the laminate is called a symmetric laminate. For a 

symmetric laminate, the upper half through the laminate thickness is a mirror image of the lower half. 

Hence, in our case, the stacking sequence of [ ]sαα / is a short display of the present symmetric 

laminate of [ ]αααα /// . The subscript “s” stands for symmetric. 

 

First of all, we will investigate the effect of the variation of the fiber orientation angle on 

laminate stiffness coefficients such as the extensional stiffness coefficients, ijA (Equation(2.243)) ; 
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the bending-stretching coupling coefficients, ijB (Equation(2.244)) ; the bending stiffness 

coefficients, ijD (Equation(2.245)) ; and the transverse shear stiffness coefficients, 

ijAs (Equation(2.246)). The extensional stiffness coefficients, ijA depend only the thicknesses and 

stiffnesses of the plies but not on their placement through the thickness. On the other hand, the 

bending stiffness coefficients, ijB , and the transverse shear stiffness coefficients, ijAs depend not 

only on the layer thicknesses and stiffnesses but also on their location relative to the midplane. 

Dependancy on the layer thicknesses, stiffnesses and their location relative to the midplane is also 

valid for the bending-stretching coupling coefficients. 

 

When the laminate is a symmetric laminate, all terms of the bending-stretching coupling 

coefficients ijB become zero due to the symmetry of the layer transformed reduced stiffness 

coefficients, ( )
kijQ , distances, kζ , and thicknesses kh about the midplane of the laminate for every 

layer or ply. From production point of view, symmetrical laminates do not have the tendency to twist 

from the thermally induced contractions that occur during cooling following the curing process. 

 

The effect of the fiber orientation angle on the coefficients of the stretching stiffness, the 

transverse shear stiffness and the bending stiffness are  shown in Figures 4.4, 4.5 and 4.6, respectively 

for this case study. Since the laminate used in this section is a symmetric laminate, all coefficients of 

the bending-stretching coupling stiffness, ijB are zero. As seen in Figure 4.4, the value of the 

coefficient 11A decreases as the fiber orientation angle α increases. In contrast, the value of the 

22A increases as α increases. 66A is zero when o0=α , then has its maximum value when 

o45=α , and becomes zero when o90=α . It can be seen that the coupling coefficient 16A is 

maximum at approximately o30=α . In addition, the 26A takes its maximum value at 

approximately o60=α . From Figure 4.5, the transverse shear coefficients, 554544 ,, AAA keep 

constant due to the same values of 13G and 23G . Variation of bending stiffness coefficients ijD

follow the similar variation as extensional stiffness coefficients, and they are shown in Figure 4.6. 
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variation of stretching stiffness matrix elements with respect to alpha
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Figure 4.4 Effect of the fiber orientation angle on the elements of stretching stiffness matrix. 
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Figure 4.5 Effect of the fiber orientation angle on the elements of transverse shear stiffness matrix. 
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variation of flexural stiffness matrix elements with respect to alpha

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 10 20 30 40 50 60 70 80 90

orientation angle, alpha [deg]

fl
ex

u
ra

l 
st

if
fn

es
s 

m
at

ri
x 

el
em

en
ts

, 
D

ij
 

w
h

er
e 

(i
=

1,
2,

6;
 j

=
1,

2,
6)

, 
[N

]

D11 D12 D16 D22 D26 D66

 

Figure 4.6 Effect of the fiber orientation angle on the elements of flexural stiffness matrix. 

 

Natural frequencies (rad/sec) when the fiber orientation angle changes from 0o to 90o with the 

increment of 10 degrees for the first three lowest frequency modes (for m=1,2, and 3) are given in 

Tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 for n=0-10, respectively. 

 

Table 4.4 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=0, and m=1,2, and 3. 

n=0 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 18023 18045 18137 18207 18305 18396 18449 18421 18300 18209 

2 18121 18110 18163 18539 19398 20827 22929 24898 25512 25610 

3 18208 18509 18609 18707 19872 21648 24143 27073 31619 36417 
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Table 4.5 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=1, and m=1,2, and 3. 

n=1 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 11153 11209 11376 11582 11695 11650 11494 11327 11222 11191 

2 12751 13120 14142 15371 15970 15927 15235 14102 13133 12751 

3 15976 16129 16618 17586 18565 19113 19706 20667 21915 22608 

Table 4.6 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=2, and m=1,2, and 3. 

n=2 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 7076 7091 7110 7077 6940 6691 6378 6077 5857 5775 

2 12561 12812 13473 14168 14493 14487 14348 14201 14082 14025 

3 15547 15731 16365 17533 18407 18681 18942 19530 20330 20762 

Table 4.7 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=3, and m=1,2, and 3. 

n=3 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 4805 4752 4620 4451 4271 4096 3938 3811 3728 3698 

2 9868 10122 10698 11168 11251 10966 10469 9944 9546 9394 

3 13456 13724 14580 15815 16480 16358 15892 15439 15143 15035 

Table 4.8 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=4, and m=1,2, and 3. 

n=4 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 3725 3681 3601 3557 3571 3635 3726 3826 3908 3941 

2 8070 8294 8740 9023 8991 8692 8248 7794 7455 7329 

3 11793 12108 13039 14159 14621 14295 13522 12665 12009 11761 
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Table 4.9 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=5, and m=1,2, and 3. 

n=5 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 3619 3625 3683 3842 4099 4425 4790 5157 5459 5583 

2 7094 7300 7702 7984 8051 7947 7753 7550 7402 7347 

3 10707 11043 11972 12963 13321 12985 12237 11399 10747 10499 

Table 4.10 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=6, and m=1,2, and 3. 

n=6 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 4274 4321 4486 4793 5231 5776 6402 7071 7670 7938 

2 6888 7092 7525 7931 8223 8422 8574 8721 8858 8915 

3 10233 10577 11485 12420 12816 12647 12153 11591 11162 11002 

Table 4.11 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=7, and m=1,2, and 3. 

n=7 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 5419 5488 5715 6118 6697 7440 8337 9353 10327 10799 

2 7371 7577 8060 8613 9145 9653 10167 10714 11224 11443 

3 10360 10702 11595 12545 13089 13206 13093 12949 12881 12867 

Table 4.12 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=8, and m=1,2, and 3. 

n=8 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 6889 6972 7239 7719 8429 9377 10572 11980 13389 14108 

2 8410 8616 9138 9813 10553 11344 12216 13199 14166 14609 

3 11038 11374 12256 13261 14002 14451 14767 15110 15492 15671 
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Table 4.13 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=9, and m=1,2, and 3. 

n=9 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 8614 8707 9009 9566 10415 11587 13109 14955 16851 17843 

2 9871 10076 10626 11399 12320 13380 14621 16077 17560 18277 

3 12191 12521 13397 14469 15415 16199 16955 17822 18725 19146 

Table 4.14 Natural Frequencies (rad/sec) when the fiber orientation angle changing from 0 to 90 with 

the increment of 10 degrees for n=10, and m=1,2, and 3. 

n=10 

m 0=α 10=α 20=α 30=α 40=α 50=α 60=α 70=α 80=α 90=α

1 10564 10668 11009 11650 12651 14068 15950 18276 20704 21992 

2 11662 11868 12443 13303 14396 15728 17358 19325 21368 22392 

3 13742 14068 14946 16089 17234 18347 19549 20968 22448 23154 

For the first three lowest frequency modes, the variation of natural frequency with respect to 

circumferential wave number is plotted in Figures 4.7, 4.8, and 4.9 for m=1,2, and 3, respectively. It is 

seen that natural frequencies initially decrease with n until a certain circumferential mode, after then 

the natural frequencies increase with n. This general behavior is common in shells and referred to by 

Warburton in [79]. It was shown in [79] that bending strain energy associated with vibratory motion 

increases with n whereas stretching strain energy decreases with n. Therefore, the total strain energy 

curve shows a somewhat parabolic form having a minimum at a particular circumferential mode. 

Figure 7 of [79] is given in Figure 4.10 which displays the strain energy variation of a particular 

cylindrical shell. This general behavior was observed for all fiber orientation cases given in Figures 

4.7, 4.8, and 4.9 for the lowest frequency modes. It should also be stressed that as n gets larger, we 

have 2n number of nodes in the circumferential direction (see Figure 4.2). These nodes actually 

correspond to points of zero displacement. Considering that bending energy dominates at high n 

values, we should expect higher natural frequencies for shells which are circumferentially stiffer. This 

effect is clearly seen in Figures 4.7, 4.8, and 4.9. In the portions of the graphs where bending strain 

enery dominates (after a certain n), it is seen that as the fiber orientation angle α is made more 

circumferential, the natural frequencies increase with the largest difference in natural frequencies 

being between o90=α and o0=α .
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Figure 4.7 Natural Frequency versus circumferential wave number changing from 0 to 10 for fiber 

orientation angle of 0o to 90o with the increment of 20 degrees when m=1. 
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Figure 4.8 Natural Frequency versus circumferential wave number changing from 0 to 10 for fiber 

orientation angle of 0o to 90o with the increment of 20 degrees when m=2. 
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Figure 4.9 Natural Frequency versus circumferential wave number changing from 0 to 10 for fiber 

orientation angle of 0o to 90o with the increment of 20 degrees when m=3. 

 

Figure 4.10 Variation in strain energy in a particular cylindrical shell with increasing number of 

circumferential modes [79]. 

 

Natural frequency versus fiber orientation angle is plotted for m=1, 2, and 3 in Figures 4.11, 

4.12, and 4.13, respectively for different values of the circumferential wave number ranging from 0 to 

10.  
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Figure 4.11 Natural Frequency versus fiber orientation angle for the first lowest fundamental mode 

(m=1). 
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Figure 4.12 Natural Frequency versus fiber orientation angle for the second lowest fundamental mode 

(m=2). 
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Figure 4.13 Natural Frequency versus fiber orientation angle for the third lowest fundamental mode 

(m=3). 

 

Figures 4.11, 4.12, and 4.13 show that for asymmetric modes (n>0), after a certain 

circumferential wave number there is a marked increase in natural frequencies as the fiber orientation 

angle approaches o90 . If one were to take a slice of cylinder and unwrap, it would resemble to a 

beam with high number of nodes for large n. Thus, by orienting the fibers in the circumferential 

direction we would actually make this beam stiffer and for high number of nodes along the 

circumference, this would result in a marked increase in natural frequency compared to axial fiber 

orientation case. It can be deduced that for large n, bending strain energy dominates, a shell with 

fibers oriented in the circumferential direction would have a much higher bending stiffness compared 

to a shell with axial fiber orientation leading to a marked increase in natural frequency. On the other 

hand, as n gets lower, the stretching strain energy also becomes dominant and the effect of fiber 

orientation angle on the natural frequencies decrease. 

 

It is also noted that for n=0, axisymmetric vibration case, most of the first three lowest 

natural frequency modes were transverse displacement dominant. Since n=0, these modes actually 

correspond to breathing modes. It has been observed that for the breathing modes as we go to higher 

axial bending modes (m=1, 2, 3), the effect of fiber orientation becomes significant again with 

increasing natural frequencies as the fibers are oriented in the circumferential direction. 

 However, it is warned that for the lower circumferential modes, especially axisymmetric 

mode (n=0), due to high contribution of the extensional strain energy to the total strain energy, the 

lowest natural frequencies may also turn out to be axial displacement xu or circumferential 
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displacement θu dominant, as well, depending on boundary conditions, material and geometrical 

properties of the shell. In those cases the effect of fiber orientation angle may be different from the 

breathing mode case. Therefore, different conclusions can be inferred with regard to the effect of fiber 

orientation angle on the natural frequencies of low n modes depending on dominant displacement 

mode. For instance, for n=1 in Table 4.5 m=2 case, natural frequencies corresponding to different 

fiber orientation angle conditions have extensional displacement ( xu ) dominant modes. On the other 

hand, the first (m=1) and the third (m=3) lowest frequency modes for n=1 are transverse displacement 

( w ) dominant modes. 

 

Mode shapes for the first fundamental transverse mode corresponding to three different 

circumferential modes; namely n=1,2, and 3, are given in Figures 4.14, 4.15, and 4.16, respectively. It 

should be noted that, as explained in section 3.3.2, the application of method of the finite exponential 

Fourier transform to the first order system of partial differential equations yields 20 first order 

ordinary differential equations in terms of cosine and sine Fourier components as the fundamental 

variables. 

 

The magnitude of the fundamental variables is constructed using Equation (4.2) 

 

( ) ( ) ( )22 ___ nnn swcwmagw +=  (4.2) 

 

where the Equation (4.2) is written for the finite exponential transform of the transverse displacement 

as an example. Equation (4.2) lets us calculate the actual finite exponential transform of the transverse 

displacement from its cosine and sine Fourier components for any particular circumferential wave 

number. 

 

Figures 4.14, 4.15, and 4.16 give the mode shape for the transverse displacement, which 

corresponds to the fundamental frequency (m=1), for different fiber orientation angles. On the same 

figures, the cosine and sine Fourier components are also plotted since they are actually the output the 

mode shape program of the DALSOR. 

 

Notice that o0=α corresponds to the orthotropic case since we have a symmetric laminate. 

This case is shown in Figures 4.14-16 (a). For this case, it is seen that sine Fourier component is zero 

as it should be. This fact can be studied in [13]. Increase in fiber orientation angle results in nonzero 

sine and cosine Fourier components. Notice that although the sine and cosine Fourier components are 

not symmetric with respect to midspan of the symmetric configured circular cylindrical shell, the 

actual finite exponential transform of the transverse displacement determined by Equation (4.2) is 

symmetric with respect to the midspan of the same shell as it should be. 
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 Mode shape algorithm developed within the scope of the thesis determines the sine and 

cosine Fourier components along the meridional direction of the shell for all fundamental variables. 

Once they are determined, the actual finite exponential transform of the each fundamental variable is 

determined by calculating the magnitude. 

 

Figures 4.14, 4.15, and 4.16 are intended to demonstrate that for different circumferential 

wave numbers, the finite exponential transform of the transverse displacement is indeed symmetric 

with respect to midspan of the symmetric configured shell for all fiber orientation angle cases. 
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Figure 4.14 Mode shapes for the first fundamental transverse mode when α changes from 0o to 90o

with the increment of 10o (n=1). 
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Figure 4.15 Mode shapes for the first fundamental transverse mode when α changes from 0o to 90o

with the increment of 10o (n=2). 
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Figure 4.16 Mode shapes for the first fundamental transverse mode when α changes from 0o to 90o

with the increment of 10o (n=3). 
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4.4.2 CASE STUDY ON STACKING SEQUENCE 

 

The effect of the stacking sequence on the natural frequencies of a laminated composite 

circular cylindrical shell clamped at both edges is studied herein. Six different symmetric layups listed 

in Table 4.15 are utilized. ooo 45/90/0 ± lamination scheme is a widely used scheme in practical 

applications. Especially for hand layup/vacuum bagging applications. ooo 45/90/0 ± is the common 

scheme because manufacturing of such a laminate is relatively easy. While o0 and o90 layers give 

axial and transverse strengths, o45± layers account for strength in shear. Symmetric laminate 

configuration is a preferred configuration in most structural applications because of the nonexistence 

of bending-stretching coupling. 

 

Table 4.15 Six symmetric layups used in the case study on the stacking sequence. 

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]slayup

slayup

slayup

slayup

slayup

slayup

245/20/290:6

20/245/290:5

20/290/245:4

290/20/245:3

290/245/20:2

245/290/20:1

±

±

±

±

±

±

The geometrical, mechanical and laminate properties of the clamped laminated composite 

circular cylindrical shell are given in Table 4.16. 

 

Figures from 4.17 to 4.19 show the effect of stacking sequence on the laminate stiffness 

coefficients. As seen from Figure 4.17, the stretching stiffness coefficients of 11A and 22A are the 

largest for all stacking sequence listed in Table 4.15. Note that the stretching and transverse shear 

stiffness coefficients are same for all layups. This is because extensional stiffness coefficients ijA do 

not depend on the placement of the plies within the laminate [1]. Moreover, all layups are symmetric 

laminates, the stretching-bending coupling stiffness coefficients are zero. The coefficients 

16A and 26A are zero, and since the 13G and 23G are equal to each other, the coefficient 45A is also 

zero. In terms of the flexural stiffness coefficients, 11D is maximum for layup 2, 22D is maximum for 

layup 5. Also, the coupling coefficients 16D and 26D , are maximum for layups 3 and 4. In contrast to 
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the extensional stiffness coefficients, the bending stiffness coefficients ijD depend on the placement 

of the plies within the laminate [1]. 

 

Table 4.16 Geometrical, material properties, and laminate properties of the clamped-clamped 

laminated composite circular cylindrical shell used for the case study on stacking sequence. 

 

Geometrical properties Mechanical Properties of High Modulus 

Graphite/Epoxy[55] 

Radius [m] 0.21 E1 [GPa] 207.348182 

Meridional Length [m] 1.20 E2=E3 [GPa] 5.183702 

Thickness [m] 0.00192 G12 [Gpa] 3.110261 

Laminate Properties G13 [Gpa] 3.110261 

Layup For each, refer to Table 

4.19 

G23 [Gpa] 3.110261 

Ply thickness [m] 0.00012 
231312 ννν == 0.25 

ρ [kg/m3] 1524.4740 

The results of the six different stacking sequence for the lowest three natural frequencies 

(m=1,2,3) corresponding to ten circumferential modes (n=0-9) are given for layup 1, layup 2, layup 3, 

layup 4, layup 5, and layup 6 in Tables 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22, respectively when (h/R) 

is approximately equal to 0.01 for clamped-clamped (CC) boundary condition. For n>1, all the three 

lowest natural frequencies turned out to be the first three transverse displacement modes ( )w . This is 

confirmed by plotting the mode shapes as done in Figures 4.14 to 4.16. Since the mode shape 

algorithm scales the values with respect to the maximum displacement, the displacement component 

having maximum displacement of unity is the governing mode. However, for the axisymmetric mode, 

it is turned out that the lowest three modes primarily consisted of extensional modes. In other words, 

the substantial modes become θu and xu dominant. 
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Figure 4.17 Effect of the stacking sequence on the elements of stretching stiffness matrix (h/R=0.01). 

variation of transverse shear stiffness matrix elements 
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Figure 4.18 Effect of the stacking sequence on the elements of transverse shear stiffness matrix 

(h/R=0.01). 
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variation of flexural stiffness matrix elements 
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Figure 4.19 Effect of the stacking sequence on the elements of flexural stiffness matrix (h/R=0.01) 

Table 4.17 Natural frequencies (rad/sec) for n 0 to 9 for the layup 1 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s245/290/20 ± (layup 1) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7088 3609 2114 1771 2199 3035 4110 5373 6807 

2 17872 13951 7862 4807 3358 2980 3391 4287 5478 6882 

3 22375 20706 12563 8079 5626 4435 4214 4729 5729 7041 

Table 4.18 Natural frequencies (rad/sec) for n 0 to 9 for the layup 2 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s222 90/45/0 ± (layup 2) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7089 3606 2059 1503 1579 2031 2686 3477 4387 

2 17874 13951 7863 4790 3244 2596 2592 3023 3716 4578 

3 22375 20706 12566 8077 5577 4225 3666 3712 4183 4932 
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Table 4.19 Natural frequencies (rad/sec) for n 0 to 9 for the layup 3 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s222 90/0/45± (layup 3) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7086 3607 2099 1688 1995 2691 3607 4689 5925 

2 17863 13948 7860 4810 3355 2916 3206 3944 4950 6148 

3 22375 20702 12560 8087 5656 4471 4199 4596 5428 6540 

Table 4.20 Natural frequencies (rad/sec) for n 0 to 9 for the layup 4 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s222 0/90/45± (layup 4) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7085 3607 2125 1805 2249 3091 4168 5432 6870 

2 17859 13947 7858 4819 3413 3093 3546 4461 5657 7061 

3 22375 20700 12557 8090 5687 4584 4461 5044 6076 7402 

Table 4.21 Natural frequencies (rad/sec) for n 0 to 9 for the layup 5 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s222 0/45/90 ± (layup 5) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7083 3611 2211 2173 2989 4235 5765 7539 9543 

2 17852 13946 7855 4844 3590 3620 4523 5924 7646 9628 

3 22375 20698 12550 8091 5764 4900 5196 6289 7872 9791 

Table 4.22 Natural frequencies (rad/sec) for n 0 to 9 for the layup 6 in Table 4.15 for CC (h/R=0.01). 

 

[ ]s222 45/0/90 ± (layup 6) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7086 3612 2190 2090 2838 4013 5465 7151 9057 

2 17863 13948 7859 4835 3531 3473 4284 5596 7228 9111 

3 22375 20701 12556 8087 5721 4771 4953 5935 7414 9228 
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 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-clamped (CC) boundary condition are plotted in Figures 4.20, 4.21, and 4.22 for the lowest 

three modes (m=1, m=2, and m=3) , respectively. Up to a certain n, every stacking sequence gives 

almost closer natural frequencies. Because the laminate stiffness coefficients are similar except the 

flexural stiffness coefficients for all layups, the differences in the flexural stiffness coefficients 

determine which laminate has the higher or lower natural frequencies. In this respect, as seen from 

Figures 4.22 to 4.24, the laminated composite circular cylindrical shell with [ ]s290/245/20 ± is less 

stiff whereas the shell with [ ]s20/245/290 ± is most stiff. As it was explained previously, as the 

circumferential wave number gets higher, bending strain energy dominates whereas for lower 

circumferential modes extensional strain energy dominates. 

 

From the laminate stiffness coefficients shown in Figures 4.17, 4.18, and 4.19, it is clearly 

seen that layup 5 has the highest bending stiffness coefficient 22D in the transverse direction, 

implying circumferential direction. Hence, as n gets higher a shell with a high 22D bending stiffness 

value is expected to have the highest natural frequency. Figures 4.20, 4.21, and 4.22 verify this 

expectation. It should also be noted that the difference between the natural frequencies of the layup 5 

(with the highest 22D ) and layup 2 (with the highest 11D ) slowly diminishes as we go to higher axial 

modes. Because, as we go to higher axial modes (m=2, and 3), the number of nodal points along the 

meridional axis of the shell increases and bending along the meridional axis of the shell becomes 

significant. Therefore, one should expect the natural frequencies of layup 5 and layup 2 get close to 

each other. This behavior is obviously seen when one investigates Figures from 4.17 to 4.19. It is also 

pointed out that for n=9, m=3 case 22D still dominates the bending stiffness such that layup 5 has the 

highest natural frequency. However, as one goes to higher axial modes, it is expected that this trend 

would change. On the other hand, for low circumferential wave numbers we almost have the same 

natural frequency for all six different stacking sequence cases. This result is also expected because for 

low n extensional strain energy prevails and extensional stiffness coefficients have the primary effect 

on the natural frequencies. Since extensional stiffness coefficients are same for all six different layups, 

the natural frequencies are nearly same for low circumferential modes.  

 

Careful observation of the results in Tables 4.17 to 4.22 reveals that for low circumferential 

modes (low n) natural frequencies are very close to each other for every layup of six different stacking 

sequences. However, for high circumferential modes (high n) natural frequencies differ from one 

stacking sequence to another. This behavior is attributed to the fact that for low circumferential modes 

the extensional strain energy prevails, and thus extensional stiffness of the laminate plays a significant 

role on the natural frequency compared to bending stiffness. Since for each of the six stacking 

sequences the extensional stiffnesses are the same we have close natural frequencies for low 

circumferential modes. However, as the higher circumferential modes we get, the more influence of 



150

bending strain energy takes place. The different values of the bending stiffness of each of the six 

stacking sequences will result in different amount of contributions to the magnitudes of the natural 

frequencies. 

 

Furthermore, for n=0, axisymmetric modes, natural frequencies are almost equal to each 

other for all six stacking sequences. As it was stated before, for axisymmetric modes (n=0), for the six 

different stacking sequences, the three lowest modes were extensional modes, and the associated 

natural frequencies are mainly dependent on extensional stiffnesses of the layups. The natural 

frequencies are almost same since the extensional stiffnesses of the six different stacking sequences 

are same. 
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Figure 4.20 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-clamped (CC) boundary condition (m=1 and h/R=0.01). 
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Figure 4.21 Natural frequencies versus circumferential wave numbers for all stacking sequence 

for clamped-clamped (CC) boundary condition (m=2 and h/R=0.01). 
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Figure 4.22 Natural frequencies versus circumferential wave numbers for all stacking sequence 

for clamped-clamped (CC) boundary condition (m=3 and h/R=0.01). 
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4.4.3 CASE STUDY ON BOUNDARY CONDITION 

 

In the previous section, the natural frequencies of the laminated composite circular 

cylindrical shell clamped at both edges with six different stacking sequence were presented. In this 

section, the only difference from the previous problem will be the boundary condition, and the 

laminated composite circular cylindrical shell will have the boundary conditions of clamped at 0=x

and free at Lx = .

Natural frequencies of the results of the case study on stacking sequence for clamped-free 

(CF) are given for layup 1, layup 2, layup 3, layup 4, layup 5, and layup 6 in Tables 4.23, 4.24, 4.25, 

4.26, 4.27, and 4.28, respectively. Additionally, natural frequencies versus circumferential wave 

numbers for all stacking sequence for this boundary condition are plotted in Figures 4.23, 4.24, and 

4.25 for the three lowest axial modes (m=1,2, and 3). 

 

Table 4.23 Natural frequencies (rad/sec) for n 0 to 9 for the layup 1 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s245/290/20 ± (layup 1) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2096 794 752 1273 2031 2967 4073 5347 6786 

2 9060 7915 3883 2191 1795 2213 3050 4126 5390 6823 

3 16781 15974 8805 5192 3522 3052 3428 4313 5501 6905 

Table 4.24 Natural frequencies (rad/sec) for n 0 to 9 for the layup 2 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s222 90/45/0 ± (layup 2) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2096 775 564 837 1306 1896 2595 3404 4321 

2 9061 7916 3881 2143 1546 1623 2080 2736 3525 4430 

3 16781 15974 8806 5181 3423 2700 2674 3100 3792 4654 
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Table 4.25 Natural frequencies (rad/sec) for n 0 to 9 for the layup 3 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s222 90/0/45± (layup 3) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2095 788 681 1106 1745 2539 3478 4558 5779 

2 9059 7914 3884 2191 1745 2051 2744 3654 4729 5959 

3 16781 15972 8806 5206 3545 3037 3305 4034 5034 6227 

Table 4.26 Natural frequencies (rad/sec) for n 0 to 9 for the layup 4 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s222 0/90/45± (layup 4) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2095 796 759 1277 2027 2953 4045 5302 6719 

2 9058 7914 3885 2215 1858 2295 3133 4204 5462 6894 

3 16781 15971 8805 5215 3600 3206 3632 4537 5725 7124 

Table 4.27 Natural frequencies (rad/sec) for n 0 to 9 for the layup 5 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s222 0/45/90 ± (layup 5) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2094 827 996 1781 2854 4169 5717 7496 9499 

2 9057 7913 3887 2291 2201 3008 4254 5783 7554 9556 

3 16781 15970 8802 5234 3755 3694 4566 5957 7676 9655 

Table 4.28 Natural frequencies (rad/sec) for n 0 to 9 for the layup 6 in Table 4.15 for CF (h/R=0.01). 

 

[ ]s222 45/0/90 ± (layup 6) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5594 2095 820 951 1691 2710 3962 5437 7131 9042 

2 9059 7914 3886 2264 2110 2848 4023 5476 7163 9069 

3 16781 15972 8803 5220 3687 3535 4313 5615 7245 9128 
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 As it is seen from Figures 4.23, 4.24, and 4.25, we have the same trend of the variation of the 

natural frequency with the circumferential wave number as in the clamped-clamped. As n gets larger, 

layup 5 has the highest natural frequency and layup 2 has the lowest natural frequency; trend being the 

same for the three lowest axial modes. The discussion regarding the behavior of natural frequency 

with n is the same as that of the case for the clamped-clamped boundary condition. 

 

Comparison of the natural frequencies of the laminated composite circular cylindrical shell 

with clamped-clamped boundary condition with the clamped-free boundary condition is shown in 

Figures 4.26, 4.27, and 4.28 for the three lowest axial modes for the most stiff layup and the less stiff 

layup. As expected, the natural frequencies of the shell with clamped-clamped (CC) boundary 

condition are higher than the shell with clamped-free (CF) boundary condition for the two layups. 
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Figure 4.23 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=1 and h/R=0.01). 
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Figure 4.24 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=2 and h/R=0.01). 
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Figure 4.25 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=3 and h/R=0.01). 
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Figure 4.26 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=1 and 

h/R=0.01). 
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Figure 4.27 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=2 and 

h/R=0.01). 
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Figure 4.28 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=3 and 

h/R=0.01). 

 

4.4.4 CASE STUDY ON THICKNESS-TO-RADIUS RATIO 

 

In the previous two sections, various parametric studies are performed to investigate the 

effect of the stacking sequence, which is given in Table 4.15, boundary conditions on the free 

vibration characteristics of laminated composite circular cylindrical shells. The geometrical and 

material characteristics of those shells are given in Table 4.16. All of those shells have the laminate 

thickness to radius ratio of approximately 0.01. In this section we will analyze the same shell with the 

same geometrical (except thickness) and material properties as in the previous section. The layup 

stacking sequence is also kept as in Table 4.15. To achieve a thicker shell the only change made is in 

the layup thickness. In this case each ply thickness is increased to 1.2 mm from 0.12 mm. These 

properties are practical properties taken from Hexcel Composites catalogues. 0.12 mm ply thickness 

approximately corresponds to a fabric with approximately 100 grams per square meter weight. On the 

other hand 1.2 mm ply thickness corresponds to a fabric with approximately 900-1000 grams per 

square meter weight. In the following the shell having a thickness to radius ratio of about 0.01 will be 

named as thin shell whereas the shell with the thickness to radius ratio of approximately 0.1 will be 

named as thick shell.

Figures from 4.29 to 4.31 show the effect of stacking sequence on the laminate stiffness  
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coefficients for thick shell. The variations of the laminate stiffness coefficients for thick shell are as 

similar as those for thin shell except the values. 
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Figure 4.29 Effect of the stacking sequence on the elements of stretching stiffness matrix (h/R=0.1). 
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Figure 4.30 Effect of the stacking sequence on the elements of transverse shear stiffness matrix 

(h/R=0.1). 
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variation of flexural stiffness matrix elements 
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Figure 4.31 Effect of the stacking sequence on the elements of flexural stiffness matrix (h/R=0.1). 

Natural frequencies of the results of the thick shell configurations for the clamped-clamped 

(CC) boundary condition are given for layups 1-6 in Tables 4.29, 4.30, 4.31, 4.32, 4.33, and 4.34, 

respectively. In addition, natural frequencies of thick shell configuration versus circumferential wave 

numbers for clamped-clamped (CC) boundary condition are shown in Figure 4.32, 4.33, and 4.34 for 

the three lowest modes (for m=1, 2, and 3), respectively. Furthermore, natural frequencies of the 

results of the thick shell configurations for clamped-free (CF) boundary condition are given for layups 

1-6 in Tables 4.35-40, respectively. Additionally, natural frequencies of thick shell configuration 

versus circumferential wave numbers for clamped-free (CF) boundary condition are shown in Figure 

4.35, 4.36, and 4.37 for the three lowest axial modes (for m=1, 2, and 3), respectively. 

 

For thick shell, comparison of the natural frequencies of the laminated composite circular 

cylindrical shell with clamped-clamped (CC) boundary condition with the clamped-free (CF) 

boundary condition is shown in Figures 4.38, 4.39, and 4.40 for the three lowest axial modes for the 

most stiff layup and the less stiff layup. As expected, it is valid for thick shell that the natural 

frequencies of the shell with clamped-clamped (CC) boundary condition are higher than the shell with 

clamped-free (CF) boundary condition for the two layups. 

 

We know from the study of Warburton [79] that the bending strain energy of the shell is 

proportional to the cube of the shell thickness whereas the stretching strain energy of the shell is 

proportional to the thickness itself. Therefore, if one carefully studies Figure 4.10 by increasing the 

thickness we would actually be pulling the bending strain energy up much higher than the stretching 
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strain enery. This effect obviously causes the lowest point of the total strain energy to occur at lower 

circumferential wave numbers. This effect is clearly seen if one compares Figures 4.20, 4.21, and 4.22 

with Figures 4.32, 4.33, and 4.34 for the clamped-clamped (CC) configuration, and Figures 4.23, 4.24, 

and 4.25 with Figures 4.35, 4.36, and 4.37 for the clamped-free (CF) configuration. Figures 4.32 to 

4.34 and 4.35 to 4.37 display the similar trend of the variation of natural frequencies with the 

circumferential wave number for the thicker shell configuration as in the thin shell configuration. The 

careful study of the curves for thin shells (Figures 4.20-4.22 for CC and Figures 4.23-4.25 for CF) and 

thick shells (Figures 4.32-4.34 for CC and Figures 4.35-4.37 for CF) reveals that for the thick shell 

configuration the lowest natural frequency occurs at a smaller circumferential wave number compared 

to the thin shell configuration. It should also noticed that for both boundary condition configurations 

layup 5 [ ]s222 0/45/90 ± gives the highest natural frequencies over the circumferential wave 

number range studied for the three lowest axial modes (for m=1, 2, and 3). Additionally, the natural 

frequencies of layup 5 (most stiff) and layup 2 (less stiff) still get closer to each other as we go to 

higher modes. However, for the thick shell natural frequencies get close to each other much slowly as 

compared to the thin shell. These effects are more clearly seen in the comparison curves drawn for 

both thick and thin shell configurations in Figures 4.41 to 4.46. 

 

Comparison of the natural frequencies of the thick shell configurations with clamped-

clamped (CC) boundary conditions with the thin shell configurations with clamped-clamped (CC) 

boundary conditions is shown in Figures 4.41, 4.42, and 4.43 for the three lowest axial modes (for 

m=1, 2, and 3). Also, comparison of the natural frequencies of the thick shell configurations with 

clamped-free (CF) boundary conditions with the thin shell configurations with clamped-free (CF) 

boundary conditions is shown in Figures 4.44, 4.45, and 4.46 for the three lowest axial modes (for 

m=1, 2, and 3). As one can see from those comparison curves for the thicker shell configuration, 

natural frequencies are higher than the thin shell configuration as we go to the higher circumferential 

wave numbers. This behavior is expected because as the number of nodal points along the 

circumference (2n) and along the span of the shell (m) increase we actually experience substantially 

bending action. Higher thickness leads to the higher bending stiffness and higher natural frequencies. 

It is also noted that for both boundary condition cases for low circumferential modes the difference in 

natural frequencies between the thick and thin shell becomes very small, and natural frequencies are 

almost identical with thin and thick shells for axisymmtric vibration case. It is well known (from 

simplified shell equations on page 125 of Soedel [13] and [80]) that all natural frequencies in the 

absence of the effects of bending are independent of the thickness of the shell. Although this 

conclusion was made for isotropic shells, for laminated composite shells it still applies especially for 

low circumferential modes in which extensional strain energy prevails. One can actually show the 

elimination of thickness through the equilibrium equation if one sets the bending stiffness coefficients 

(Dij) to zero. By this way, thickness term passes through all the equations and the resulting equations 

will actually be independent of the thickness. This approximation is called as membrane or extensiona 
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extensional approximation. 

 

Table 4.29 Natural frequencies (rad/sec) for n 0 to 9 for the layup 1 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s245/290/20 ± (layup 1) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11185 7147 4354 6462 11086 16680 22813 29267 35905 42640 

2 17956 14074 8513 8149 11783 17093 23121 29522 36128 42840 

3 22370 20995 13418 11080 13259 17950 23723 29999 36532 43196 

Table 4.30 Natural frequencies (rad/sec) for n 0 to 9 for the layup 2 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s222 90/45/0 ± (layup 2) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7152 4094 4843 7922 12031 16821 22128 27833 33841 

2 17958 14087 8486 7269 9341 13071 17671 22852 28461 34391 

3 22374 21027 13510 10768 11677 14793 19068 24039 29490 35293 

Table 4.31 Natural frequencies (rad/sec) for n 0 to 9 for the layup 3 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s222 90/0/45± (layup 3) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11190 7136 4358 6093 10177 15262 20968 27087 33480 40046 

2 17947 14045 8670 8414 11622 16348 21843 27811 34087 40561 

3 22380 20928 13628 11779 13914 18093 23258 28989 35080 41408 

Table 4.32 Natural frequencies (rad/sec) for n 0 to 9 for the layup 4 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s222 0/90/45± (layup 4) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11190 7130 4485 6736 11351 16917 23023 29455 36074 42793 

2 17941 14030 8707 8845 12606 17843 23767 30072 36596 43241 

3 22380 20889 13609 12029 14668 19367 24988 31087 37456 43981 
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Table 4.33 Natural frequencies (rad/sec) for n 0 to 9 for the layup 5 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s222 0/45/90 ± (layup 5) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11187 7118 4823 8323 14065 20506 27225 34042 40871 47671 

2 17930 14000 8709 9739 14709 20928 27558 34327 41123 47900 

3 22374 20814 13405 12246 15958 21711 28149 34818 41553 48287 

Table 4.34 Natural frequencies (rad/sec) for n 0 to 9 for the layup 6 in Table 4.15 for CC (h/R=0.1). 

 

[ ]s222 45/0/90 ± (layup 6) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 11185 7133 4705 7956 13547 19891 26557 33351 40178 46990 

2 17946 14036 8626 9294 14048 20172 26760 33519 40325 47124 

3 22370 20897 13375 11795 15165 20778 27172 33841 40599 47367 
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Figure 4.32 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-clamped (CC) boundary condition (m=1 and h/R=0.1). 
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Figure 4.33 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-clamped (CC) boundary condition (m=2 and h/R=0.1). 
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Figure 4.34 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-clamped (CC) boundary condition (m=3 and h/R=0.1). 
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Table 4.35 Natural frequencies (rad/sec) for n 0 to 9 for the layup 1 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s245/290/20 ± (layup 1) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5593 2106 2373 6048 10925 16575 22729 29195 35840 42581 

2 9076 7954 4606 6565 11180 16767 22891 29338 35970 42700 

3 16777 16079 9411 8475 11960 17240 23256 29647 36244 42949 

Table 4.36 Natural frequencies (rad/sec) for n 0 to 9 for the layup 2 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s222 90/45/0 ± (layup 2) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5593 2108 1707 4070 7479 11667 16484 21802 27512 33522 

2 9076 7959 4446 5177 8236 12300 17047 22315 27987 33968 

3 16780 16092 9443 7832 9846 13544 18100 23232 28792 34679 

Table 4.37 Natural frequencies (rad/sec) for n 0 to 9 for the layup 3 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s222 90/0/45± (layup 3) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5595 2108 2393 5963 9483 14521 20129 26142 32431 38912 

2 9073 7945 4882 7043 10456 15460 21106 27185 33550 40098 

3 16785 16044 9703 9437 12167 16799 22202 28091 34305 40731 

Table 4.38 Natural frequencies (rad/sec) for n 0 to 9 for the layup 4 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s222 0/90/45± (layup 4) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5593 2104 3148 5963 10714 16228 22253 28609 35175 41859 

2 9071 7934 5095 7043 11571 17070 23132 29534 36134 42839 

3 16780 16016 9628 9437 13069 18214 24061 30304 36781 43391 
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Table 4.39 Natural frequencies (rad/sec) for n 0 to 9 for the layup 5 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s222 0/45/90 ± (layup 5) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5593 2105 3009 7943 13865 20345 27081 33912 40752 47564 

2 9074 7943 4928 8455 14171 20593 27300 34110 40933 47730 

3 16777 16044 9507 10091 14926 21108 27717 34471 41258 48027 

Table 4.40 Natural frequencies (rad/sec) for n 0 to 9 for the layup 6 in Table 4.15 for CF (h/R=0.1). 

 

[ ]s222 45/0/90 ± (layup 6) 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 5595 2109 2133 7648 13437 19823 26503 33305 40137 46953 

2 9074 7950 4776 8022 13607 19947 26607 33398 40222 47032 

3 16785 16058 9674 9558 14169 20268 26848 33601 40403 47198 
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Figure 4.35 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=1 and h/R=0.1). 
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Figure 4.36 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=2 and h/R=0.1). 
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Figure 4.37 Natural frequencies versus circumferential wave numbers for all stacking sequence for 

clamped-free (CF) boundary condition (m=3 and h/R=0.1). 
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Figure 4.38 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=1 and 

h/R=0.1). 
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Figure 4.39 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=2 and 

h/R=0.1). 
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Figure 4.40 Comparison of the natural frequencies of the laminated composite circular cylindrical 

shell having CC boundary conditions with the ones having CF boundary conditions (m=3 and 

h/R=0.1). 
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Figure 4.41 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-clamped (CC) boundary condition (m=1). 

 



169

0.00E+00

4.90E+03

9.80E+03

1.47E+04

1.96E+04

2.45E+04

2.94E+04

3.43E+04

3.92E+04

4.41E+04

4.90E+04

0 1 2 3 4 5 6 7 8 9

circumferential wave number, n

n
at

u
ra

l f
re

q
u

en
cy

 w
h

en
 m

=2
, [

ra
d

/s
ec

]

[0_2/90_2/+-45_2]s,(h/R=0.01) [0_2/+-45_2/90_2]s, (h/R=0.01)

[+-45_2/0_2/90_2]s, (h/R=0.01) [+-45_2/90_2/0_2]s, (h/R=0.01)

[90_2/+-45_2/0_2]s, (h/R=0.01) [90_2/0_2/+-45_2]s, (h/R=0.01)

[0_2/90_2/+-45_2]s, (h/R=0.1) [0_2/+-45_2/90_2]s, (h/R=0.1)

[+-45_2/0_2/90_2]s, (h/R=0.1) [+-45_2/90_2/0_2]s, (h/R=0.1)

[90_2/+-45_2/0_2]s, (h/R=0.1) [90_2/0_2/+-45_2]s, (h/R=0.1)

 

Figure 4.42 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-clamped (CC) boundary condition (m=2). 
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Figure 4.43 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-clamped (CC) boundary condition (m=3). 
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Figure 4.44 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-free (CF) boundary condition (m=1). 
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Figure 4.45 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-free (CF) boundary condition (m=2). 
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Figure 4.46 Comparison of the natural frequencies of the thick and thin shell configurations  

for clamped-free (CF) boundary condition (m=3). 

 

4.4.5 CASE STUDY ON EFFECT OF COUPLING TERMS 

 

To study the effect of coupling terms on the natural frequencies three different stacking 

sequences are used to get numerical results for the laminated composite circular cylindrical shells 

which has the geometrical, material and laminate properties given in Table 4.42. In order to get all the 

coupling terms with non-zero values highly orthotropic Boron/Epoxy is used in each ply as the 

material. For the test cases the circular cylindrical shell is taken as simply supported at both ends. 

Three different stacking sequences given in Table 4.41 are used, and in each of them 0o, 30o, 60o and 

90o fiber orientations are utilized for each ply. 

 

Table 4.41 Three different layups used in the case study on effect of coupling terms. 

 

Layup 1-symmetric [ ]s60/90/30/0

Layup 2-antisymmetric [ ]0/30/90/60/60/90/30/0 −−−

Layup 3-unsymmetric  [ ]60/90/30/0/60/90/30/0
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Table 4.42 Geometrical, material properties, and laminate properties of the simply supported 

laminated composite circular cylindrical shell used for the case study on effect of coupling terms. 

 

Geometrical properties Mechanical Properties of Boron/Epoxy [71] 

Radius [m] 0.21 E1 [GPa] 224.0 

Meridional Length [m] 1.20 E2=E3 [GPa] 12.7 

Thickness [m] 0.0016 G12 [Gpa] 4.42 

Laminate Properties G13 [Gpa] 4.42 

Layup For each, refer to Table 

4.41 

G23 [Gpa] 2.48 

Ply thickness [m] 0.0002 
231312 ννν == 0.256 

ρ [kg/m3] 2527.0 

Stretching, transverse shear, stretching-flexural coupling, and flexural stiffness coefficients 

for each of the three different layup cases are given in Figures 4.47, 4.48, 4.49, and 4.50, respectively. 

 

Tables 4.43, 4.44, and 4.45 give the natural frequencies of these three different stacking 

sequence cases for the circumferential wave number ranging from zero to nine. For each 

circumferential wave number first three (m=1, 2, 3) natural frequencies are tabulated in Tables 4.43, 

4.44, and 4.45. 
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Figure 4.47 Effect of the stacking sequence on the elements of stretching stiffness matrix  

for three different layups in the case study on effect of coupling terms. 
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variation of transverse shear stiffness matrix elements 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

symmetric antisymmetric unsymmetric

layups

tr
an

sv
er

se
 s

h
ea

r 
m

at
ri

x 
el

em
en

ts
, 

A
ij

 
w

h
er

e 
(i

=
4,

5;
 j

=
4,

5)
, 

[N
/m

2]

A44 A45 A55
 

Figure 4.48 Effect of the stacking sequence on the elements of transverse shear stiffness matrix  

for three different layups in the case study on effect of coupling terms. 

 

variation of stretching-flexural coupling stiffness matrix elements

-4.50E+04

-3.50E+04

-2.50E+04

-1.50E+04

-5.00E+03

5.00E+03

1.50E+04

2.50E+04

3.50E+04

4.50E+04

symmetric antisymmetric unsymmetric

layups

st
re

tc
h

in
g

-f
le

xu
ra

l 
co

u
p

li
n

g
  

m
at

ri
x 

el
em

en
ts

, 
B

ij
 w

h
er

e 
(i

=
1,

2,
6;

 j
=

1,
2,

6)
, 

[N
/m

]

B11 B12 B16 B22 B26 B66

Figure 4.49 Effect of the stacking sequence on the elements of stretching-flexural coupling stiffness 

matrix for three different layups in the case study on effect of coupling terms. 
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Figure 4.50 Effect of the stacking sequence on the elements of flexural stiffness matrix for three 

different layups in the case study on effect of coupling terms. 

 

Table 4.43 Natural frequencies (rad/sec) of circular cylindrical shell with symmetric layup [ ]s60/90/30/0 .

Symmetric layup [ ]s60/90/30/0

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 6501 3477 1513 847 786 1060 1492 2021 2634 3328 

2 12397 8316 4503 2644 1799 1564 1747 2179 2755 3432 

3 16080 12124 7555 4829 3336 2587 2374 2558 3006 3622 

Table 4.44 Natural frequencies (rad/sec) of circular cylindrical shell with antisymmetric layup 

[ ]0/30/90/60/60/90/30/0 −−− .

Antisymmetric layup [ ]0/30/90/60/60/90/30/0 −−−

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 8127 4189 1735 927 789 1018 1424 1936 2536 3218 

2 15726 10265 5364 3051 1990 1613 1700 2075 2618 3276 

3 16251 14792 9182 5719 3829 2832 2435 2491 2860 3430 
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Table 4.45 Natural frequencies (rad/sec) of circular cylindrical shell with unsymmetric layup 

[ ]60/90/30/0/60/90/30/0 .

Unsymmetric layup [ ]60/90/30/0/60/90/30/0

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 6506 3485 1537 944 1038 1481 2093 2822 3659 4598 

2 12408 8342 4545 2729 1996 1957 2364 3019 3824 4744 

3 16079 12131 7619 4932 3525 2939 2959 3402 4106 4979 

Natural frequencies for the three layup cases are plotted with respect to circumferential wave 

number in Figures 4.51, 4.52, and 4.53 for m=1,2, and 3, respectively. 
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Figure 4.51 Effect of coupling terms on the natural frequencies of the simply supported laminated 

composite circular cylindrical shell (m=1). 
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Figure 4.52 Effect of coupling terms on the natural frequencies of the simply supported laminated 

composite circular cylindrical shell (m=2). 
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Figure 4.53 Effect of coupling terms on the natural frequencies of the simply supported laminated 

composite circular cylindrical shell (m=3). 
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 In order to make meaningful explanations about the variation of natural frequencies, one 

needs to identify the dominant displacement component of the mode shapes. As discussed before after 

a certain n value the dominant displacement mode always become the transverse displacement 

w because bending strain energy starts to prevail. Results given in Tables 4.43, 4.44, and 4.45 

revealed that for 2≥n the first three lowest axial modes (m=1,2,3) were transverse displacement 

dominant mode shapes. It is noticed that as n gets larger the natural frequencies of symmetric and 

antisymmetric layups, although not equal, were very close to each other. However, the natural 

frequencies of the unsymmetric layup get higher and higher compared to symmetric and 

antisymmetric layups as the circumferential wave number gets higher. This behavior can easily be 

explained by looking at the stiffness coefficients of these layups given graphically in Figures 4.47 to 

4.50. For large n, bending strain energy prevails and we have 2n nodal points around the 

circumference of the shell. Therefore, as it was discussed previously that bending stiffness coefficient 

22D becomes the key element influencing the natural frequency. Because 22D for the unsymmetric 

layup is higher than either the symmetric layup or the antisymmetric layup, the natural frequencies 

associated with unsymmetric layup gets higher and higher as we go to higher circumferential wave 

numbers. Also, in general one should expect the natural frequency to decrease when coupling terms 

are introduced. When one compares the natural frequencies of symmetric layup and unsymmetric 

layup, it is seen that the effect of bending stiffness coefficient 22D in increasing the natural 

frequencies of the unsymmetric layup is more dominant and effective than the effect of stretching-

flexural coupling coefficients ( )ijB in reducing the natural frequencies.  

 

Careful study of Tables 4.43, 4.44, and 4.45 and Figures 4.51, 4.52, and 4.53 reveals that at 

low circumferential wave numbers antisymmetric layup has higher natural frequencies compared to 

symmetric and unsymmetric layups. It is noted that at low n values the extensional strain energy 

becomes more dominant and effective; therefore, stretching stiffness coefficients have significant 

impact on the natural frequencies. It is seen from Figure 4.47, which is the graphical representation of 

the stretching stiffness coefficients of the each layup, that the stretching-shear coupling terms 

( )2616 , AA are absent for an antisymmetric layup in contrast to symmetric and unsymmetric layups. 

Thus, relative stiffness of the antisymmetric layup becomes higher at low n values leading to an 

increase in natural frequencies. The dominance of the extensional strain energy is also seen when one 

compares the natural frequencies of symmetric and unsymmetric layups. At low n values natural 

frequencies of symmetric and unsymmetric layups are very close to each other. Because symmetric 

and unsymmetric layups consist of same number of orientation plies but in different stacking 

sequences. It is well known and also shown in Figure 4.47 that the stretching stiffness coefficients do 

not depend on the placement of plies within a laminate. Therefore, the stretching stiffness coefficients 

of the symmetric and unsymmetric layups are equal to each other. Hence, natural frequencies at low n 

values are predominantly governed by the stretching stiffness terms, and due to equality of those terms 
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for symmetric and unsymmetric layups natural frequencies are very close to each other. The slight 

difference in the natural frequencies is due to the difference in other stiffness coefficients such as 

ijB and ijD between the symmetric and unsymmetric layups. 

 

For n=0, 1, and 2 the mode shapes of θuux , , and w of the symmetric, antisymmetric, and 

unsymmetric layups for each three lowest axial modes (m=1, 2, 3) are given in Appendix H. For n=0 

and 1, the dominant mode shapes related to displacements determined by the mode shape program of 

the DALSOR are given in Table 4.46 below. For the other n values, the mode shapes are w dominant. 

 

Table 4.46 Dominant mode shapes for three layups for n=0, and n=1. 

 

Symmetric layup Antisymmetric layup Unsymmetric layup 

m n=0 n=1 n=0 n=1 n=0 n=1 

1
θu w

θu θu θu w

2
θu w

xu w
θu w

3
xu xu θu xu xu xu

As one can see from Table 4.46 for n=0, axisymmetric case, the dominant modes are all 

extensional modes xu and θu . Therefore, the natural frequencies of the symmetric and unsymmetric 

layups are very close to each other, natural frequency being predominantly governed by the 

extensional stiffness coefficients for n=0 case. It can be seen that for n=0 the first 2 modes for the 

three layups are θu dominant. Because θu is the tangential displacement, this mode implies torsional 

vibration mode. Kayran [74] has shown that for shells of revolution, for the axisymmetric vibration 

case (n=0), torsional modes totally uncouple from bending and extensional modes only when coupling 

stiffness coefficients with subscripts 16 and 26 are zero. Under those circumstances the torsional 

vibration natural frequencies depend on 66A , 66B , and 66D stiffness coefficients. Kayran has also 

shown that bending stiffness coefficient 66D , bending-twisting coefficient 66B has very little effect 

on the torsional natural frequency, and for all cross-ply layups the torsional natural frequencies are the 

same. In the current case study, because the 16 and 26 stiffness coefficients are not zero, one can not 

talk about the uncoupling of torsional modes from the extensional-bending modes. It is clearly seen 

that the existence of 16A and 26A terms for the symmetric and unsymmetric layups causes the 

torsional natural frequencies to be different from the antisymmetric layup. As a matter of fact that first 

two lowest torsional natural frequencies are seen to differ quite significantly when the layup stacking 
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sequence is changed such that 16A and 26A coupling terms vanished. The lowest frequency is 

increased from a value of about 6500 rad/sec to 8127 rad/sec which is a substantial increase 

demonstrating the significant effect of ply orientations on the dynamic characteristics of the laminated 

composite shell for a particular mode of vibration studied here. 

 

4.4.6 CASE STUDY ON THE EXISTENCE OF COUPLING TERMS 

 

In this section, the effect of the existence of the coupling terms on the free vibration 

characteristics is further studied. For this respect, the results of the unsymmetric layup case studied in 

the previous section are compared with the results of a hypothetical layup in which all the coupling 

terms of the unsymmetric layup are taken as zero. The stiffness coefficients for the unsymmetric layup 

when all the coupling terms are set to zero are given in Figures from 4.54 to 4.57. In Figures 4.54-

4.57, all coefficients with subscripts 16 and 26 and all stretching-flexural coupling coefficients ijB are 

set to zero at the right hand sides for the unsymmetric layup. The three lowest natural frequencies 

(m=1,2,3) for different circumferential wave numbers are listed in Table 4.47 for the unsymmetric 

layup with all coupling terms omitted. 

 

variation of stretching stiffness matrix elements

0.00E+00

4.00E+07

8.00E+07

1.20E+08

1.60E+08

coupling terms included coupling terms omitted

layups

st
re

tc
h

in
g

 m
at

ri
x 

el
em

en
ts

, 
A

ij
 w

h
er

e 
(i

=
1,

2,
6;

 j
=

1,
2,

6)
, 

[N
/m

2]

A11 A12 A16 A22 A26 A66

Figure 4.54 Elements of stretching stiffness matrix for the layups used in the case study on  

the existence of coupling terms. 
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variation of transverse shear stiffness matrix elements 
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Figure 4.55 Elements of transverse shear stiffness matrix for the layups used in the case study on  

the existence of coupling terms. 

 

variation of stretching-flexural coupling stiffness matrix elements

-4.50E+04

-3.50E+04

-2.50E+04

-1.50E+04

-5.00E+03

5.00E+03

1.50E+04

2.50E+04

3.50E+04

4.50E+04

coupling terms included coupling terms omitted

layups

st
re

tc
h

in
g

-f
le

xu
ra

l 
co

u
p

li
n

g
  

m
at

ri
x 

el
em

en
ts

, 
B

ij
 w

h
er

e 
(i

=
1,

2,
6;

 j
=

1,
2,

6)
, 

[N
/m

]

B11 B12 B16 B22 B26 B66
 

Figure 4.56 Elements of stretching-flexural coupling stiffness matrix for the layups used  

in the case study on the existence of coupling terms. 
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Figure 4.57 Elements of flexural stiffness matrix for the layups used  

in the case study on the existence of coupling terms. 

 

Table 4.47 Natural frequencies (rad/sec) of circular cylindrical shell with unsymmetric layup 

[ ]60/90/30/0/60/90/30/0 with all coupling terms omitted. 

 

Unsymmetric laminate [ ]60/90/30/0/60/90/30/0 with all coupling terms omitted 

m n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1 8139 4193 1741 1003 1072 1550 2223 3040 3985 5057 

2 15726 10278 5371 3079 2128 2009 2430 3152 4061 5116 

3 16278 14804 9194 5741 3913 3093 3018 3472 4255 5252 

The variation of the natural frequencies versus circumferential wave number is given in 

Figures 4.58, 4.59, and 4.60 for the three lowest modes (for m=1,2,3), respectively. Also, the variation 

of the natural frequency for the unsymmetric layup with coupling terms included is simultaneously 

given on the same figures. Figures 4.58, 4.59, and 4.60 reveal that when the coupling terms are 

omitted in the analysis, natural frequencies increase. This increase is due to the absence of coupling 

terms. The absence of coupling terms make the shell less stiff. It can be seen that after a certain 

circumferential wave number, further increase in n results in a larger difference in the natural 

frequency (for m=1 condition). Yet, when one goes to higher modes at each circumferential wave 
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number, the difference between the natural frequencies of coupling terms included and those of 

coupling terms omitted becomes less and less. For the low circumferential wave numbers the 

difference between the unsymmetric layup case and unsymmetric layup case with the coupling terms 

omitted is seen to be higher. 
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Figure 4.58 Effect of the coupling terms on the natural frequencies over n range of 0-9 (m=1). 
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Figure 4.59 Effect of the coupling terms on the natural frequencies over n range of 0-9 (m=2). 
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Figure 4.60 Effect of the coupling terms on the natural frequencies over n range of 0-9 (m=3). 

As seen from Figures 4.58-4.60, omitting coupling terms may introduce significant errors for 

certain modes. When one omits the coupling terms, the resulting equations look like the governing 

equations of orthotropic layup case for which quite easier solutions can be obtained. However, one 

actually needs to verify the actual difference in a forced vibration problem and build up a solution 

from the free vibration modes. In a forced vibration or transient loading problem one would start from 

the lower modes and superimpose the results and cut the modal participation after a certain mode. 

Since lower modes have considerable differences between the natural frequencies, it is expected that 

forced vibration or transient loading solutions for the unsymmetric layup case without coupling terms 

and the unsymmetric layup with coupling terms case would differ in a proportion that is not 

negligible. However, this is needed to be verified. 

 

One last interesting discussion can be made after comparing the results of the antisymmetric 

layup case with the unsymmetric layup case with coupling terms omitted. Comparison of the figures 

of stiffness coefficients (Figures 4.47-4.50 and Figures 4.54-4.57) shows us the followings: 

 

• Extensional stiffness terms ( )ijA are identical. Because in an antisymmetric layup 

16A and 26A terms turn out to be zero and they are omitted in the unsymmetric layup case. 

• Transverse shear stiffness terms ( )5544 AA and , although not the same, are very close to 

each other. 

• In terms of extensional-bending coupling terms ijB , antisymmetric layup has nonzero  
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16B and 26B terms only. The other terms are zero for both case. 

• From bending stiffness terms ( )ijD , 11D , 22D , 12D ,and 66D have different values from 

each other, but 16D and 26D terms are zero for both cases. 

 

Considering that at low circumferential modes extensional strain energy dominates, when 

one compares the layup stiffnesses given above, one can conclude that for low n values . natural 

frequencies should be very close to each other. This conclusion could actually be verified by 

extracting the natural frequencies of low n values, for instance for n=0,1, and 2, from the respective 

natural frequency tables of the antisymmetric layup case (Table 4.44) and the unsymmetric layup case 

with coupling terms omitted (Table 4.47). 

 

Table 4.48 Comparison of the natural frequencies (rad/sec) between antisymmetric  

layup case and unsymmetric layup with coupling terms omitted for n=0,1, and 2. 

 

[ ]0/30/90/60/60/90/30/0 −−−

Antisymmetric layup 

[ ]60/90/30/0/60/90/30/0

Unsymmetric layup with coupling terms 

omitted 

n=0 n=1 n=2 n=0 n=1 n=2 

m=1 8127 4189 1735 8139 4193 1741 

m=2 15726 10265 5364 15726 10278 5371 

m=3 16251 14792 9182 16278 14804 9194 

The results given in Table 4.48 also confirm that at low circumferential modes (low n) the 

influence of bending stiffness ijD is very little. Although these two layups have different bending 

stiffness coefficients, due to dominancy of the extensional strain energy at low n, natural frequencies 

are governed largely by the extensional stiffness coefficients. 

 

4.5 LAMINATED COMPOSITE SPHERICAL SHELL 

 

In this section, it is intended to show a solution for free vibration analysis of a spherical shell 

to demonstrate the applicability of the method of solution to any general shape of shell of revolution. 

Up to this point in this chapter, the numerical results for the free vibration analysis of anisotropic 

laminated composite shells of revolution are performed for a circular cylindrical shell. Like the 

circular cylindrical shell, a spherical shell is a typical example for the shells of revolution. Spherical 
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shells are also structural elements of the aeronautical and space structures such as an antenna of a 

satellite or a nose of an aircraft, etc. The geometrical, material, and material properties of the clamped-

free (CF) laminated composite spherical shell are given in Table 4.49. The side and perspective views 

of the laminated composite spherical shell is shown in Figure 4.61. The natural frequencies for n=1 

and m=1,2, and 3 are given in Table 4.50. Also, the mode shapes corresponding to those natural 

frequencies are given in Figures 4.62. 

 

Table 4.49 Geometrical, material properties, and laminate properties of the clamped-free laminated 

composite spherical shell. 

 

Geometrical properties Mechanical Properties of High Modulus 

Graphite/Epoxy[55] 

Radius [m] 1.0 E1 [GPa] 207.348182 

Thickness [m] 0.00192 E2=E3 [GPa] 5.183702 

G12 [Gpa] 3.110261 

Laminate Properties G13 [Gpa] 3.110261 

Layup [ ]s222 0/45/90 ± G23 [Gpa] 3.110261 

Ply thickness [m] 0.00012 
231312 ννν == 0.25 

ρ [kg/m3] 1524.4740 

Table 4.50 Natural Frequencies for the laminated 

composite spherical shell (n=1). 

 

m Natural Frequency [rad/sec] 

1 281 

2 4850 

3 6695 

As one can see from the mode shape plots, first three modes for n=1 correspond to transverse 

displacement modes. It is further seen that for a particular layup the sine Fourier components are 

much smaller than the cosine Fourier components in magnitude. Therefore, when both Fourier 

components are overlayed on the same figure (Figure 4.62) sine Fourier components almost seem to 

be nonexistent. Thus, practically one can regard variation of the cosine Fourier component as the 

actual mode shape. 
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Figure 4.61 The side and perspective views of the laminated composite spherical shell. 
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Figure 4.62 Dominant mode shapes (transverse displacement) of the corresponding natural 

frequencies given in Table 4.50 for (a) m=1, (b) m=2, and (c) m=3. 
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It can be considered that for the layup [ ]
s222 0/45/90 ± actually has stiffness coefficients  

very similar to a layup with no coupling terms. For layups with no coupling terms we have previously  

mentioned that sine Fourier components vanish. Therefore, low values for the sine Fourier component 

of the transverse displacement is verified. 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this thesis, the free vibration analysis of anisotropic laminated composite shells of 

revolution was studied. Shells of revolution made of advanced composite materials such as 

graphite/epoxy and/or boron/epoxy have been utilizing as primary and secondary structural 

components in aeronautical and space structures for more than fourty years. The advanced composite 

materials are preferred in the design and manufacture over metallic materials due to their high 

strength-to-weight and stiffness-to-weight ratios compared to metallic counterparts. For the sake of 

performance and structural integrity, the dynamic behavior of these structural components is needed to 

be investigated and to be understood compherensively. Thus, it is essential to determine dynamic 

characteristics such as natural frequencies and associated mode shapes. For this purpose a computer 

code named DALSOR (Dynamic Analysis of Anisotropic Laminated Shells of Revolution) was 

developed. The description and flow-chart of the DALSOR are given in Section 3.7. 

 

The governing equations for the free vibration analysis of anisotropic laminated composite 

shells of revolution were derived in Chapter 2. A displacement-based two dimensional shell theory; 

namely, Reissner-Naghdi shell theory with geometrically linear strain-displacement equations was 

used in combination with first-order shear deformation theory in which transverse shear and rotatory 

inertia effects are taken into consideration. Statically equivalent force and moment resultants instead 

of internal stresses for a single layer were introduced in the constitutive relations of the 

macrosopically anisotropic laminated composite shells of revolution. Equations of motion for the free 

vibration problem under consideration were derived with the help of the Hamilton’s principle. 

 

Chapter 3 presented the method of solution to the derived governing equations for the free 

vibration analysis of anisotropic laminated composite shells of revolution. Those equations were 

initially formulated into a system of partial differential equations in terms of fundamental variables 

which are displacements ( )ooo uuw
θφ

,, and rotations ( )θφ ββ , of the reference surface of the shell, 

force resultants ( )φθφφ NNQ ,, , and moment resultants ( )φθφ MM , . Then, the formulated system of 

partial differential equations was reduced to a system of first order ordinary differential equations with 
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the application of Finite Exponential Fourier Transform Method. Since the shell of revolution is 

rotationally symmetric, the motion must be periodic in θ . For the shell of revolution which is 

laminated in cross-ply (specially orthotropic) configurations, each fundamental variable in the 

governing equations for free vibrations of the laminated composite shell of revolution can be 

separated in θ as a function of ( )θncos or ( )θnsin , where n is the circumferential wave number, 

commonly known as the Fourier components. This type of separation of variables is known as 

traditional Fourier decomposition procedure. However, the traditional Fourier decomposition 

procedure is inapplicable for laminated composite shells of revolution possessing the material 

anisotropy in each layer due to the existence of deformation couplings as a result of fiber orientation 

making an angle α with the meridional direction of the shell. After the application of the finite 

exponential Fourier transform method, a two point boundary value problem was obtained including 20 

homogeneous linear first order ordinary differential equations and 20 unknowns which were actually 

the finite exponential Fourier transform of the fundamental variables. This way, the finite exponential 

Fourier transform of the fundamental variables in the system of first order ordinary differential 

equations became only functions of the axial coordinate φ of the shell of revolution. Then, this two 

point boundary value problem was reduced to a series of initial value problems. The multisegment 

numerical integration, in which Adam’s predictor-corrector method was utilized, was carried out via 

dividing the shell into segments so as to solve the obtained series of initial value problems. Natural 

frequencies were calculated by the Frequency Trial Method which is essentially a systematized 

process of trial and error in which the input to each iteration step is a trial value of the natural 

frequency. Within the given range of natural frequencies, a probable natural frequency (or 

frequencies) was (were) sought through the change of slopes calculated from the determinant of 

M
C in Equation 3.78 of consecutive natural frequencies. 

 

The scope of Chapter 4 was numerical results produced by the developed code DALSOR for 

the free vibration analysis of anisotropic laminated composite shells of revolution, and also the 

discussions made regarding those results. Various case studies were performed in order to investigate 

the effects of primarily fiber orientation angle, stacking sequence, arbitrary boundary conditions at the 

edges of the shell, thickness-to-radius ratio on the natural frequencies of a laminated composite 

circular cylindrical shell in Chapter 4. Additionally, mode shapes were determined for some cases. 

 

The following general conclusions can be drawn from the present research documented with 

this thesis: 

 

• It was aimed to build up an accurate and efficient tool for determining the free vibration 

characteristics of anisotropic laminated composite shells of revolution. The accuracy of the method of 

solution of the developed code was verified with the exact method of solution for a simply supported 

laminated composite shells of revolution whose procedure is given by Soedel [13] (refer to Table 4.2). 
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The frequency trial method coupled with multisegment numerical integration technique was extended 

to the vibration problem of macroscopically anisotropic shells of revolution including the transverse 

shear deformation and rotatory inertia. When the full anisotropic form of constitutive equations was 

included it has been demonstrated that the determinant of the frequency matrix 
M

C (Equation 3.78) 

does not change sign. Therefore, a slope change algorithm was designed to solve the resulting 

eigenvalue problem. Although the method of solution utilized is a trial method, for the particular shell 

theory the method developed in this thesis is actually exact. Therefore, high accuracy should be 

expected, and the accuracy of the method was verified. Thus, the method of solution can actually be 

used to verify results of different finite element codes. It should be noted that analytical solution of 

general shell of revolution which include all coupling terms in the stiffness coefficients does not exist. 

Therefore, finite element method is a common tool to solve the dynamic problems associated with 

anisotropic shells of revolution. However, in finite element approach there is a need to verify the 

accuracy of the developed code. This verification can only be done either comparing the results with 

the experimental results or by comparing the results of the finite element method with the results of 

other means whose accuracy can be relied on. Because there are so many design parameters for 

laminated composite shells of revolution, performing experiments for all combinations of design 

parameters is not feasible. Therefore, there is a definite need to have alternative method of solution to 

verify the results of finite element codes. It is claimed that the code developed DALSOR will provide 

an alternative solution method which can be used to verify the results of the finite element codes. In 

the current thesis, the laminated composite circular cylindrical shells without complicating effects 

were studied. However, we can encounter engineering problems having complicating effects and 

complex configurations in the real world. In order to solve those complex problems, the finite element 

tool is an effective and practical tool. It is believed in that the present developed code DALSOR will 

help one to determine an accurate finite element type for the dynamic analysis. First, a laminated 

composite shell of revolution, for instance a circular cylindrical shell, without complicating effects is 

solved with both the DALSOR and determined standard finite element software. During the dynamic 

analysis, the accurate finite element type can be searched among the available finite element types of 

the determined standard finite element software. Consequently, the determined finite element type can 

be used in the dynamic analysis of complex problems. 

 

For design problems in which the critical excitation frequency is known the method can be 

utilized very effectively and the dynamic characteristics of the structure modeled as a shell of 

revolution can be determined very accurately in a very short time. A priori knowledge of the critical 

frequency interval significantly reduces the work load with the present method and identification of 

natural frequencies in a frequency interval can be performed effectively. 

 

For dynamic loading or transient vibration type of problems one only requires certain number 

of low frequency modes for accurate determination of the response of the structure. Complete 
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spectrum of frequencies and modes shapes is not required in most dynamic problems. Therefore, the 

present method of solution can be regarded as a comparable method to the finite element method for 

extracting the dynamic characteristics. However, because the present method is actually an exact 

method for the particular shell theory used, compared to a finite element method utilizing the same 

shell theory the present method is expected to provide more accurate results. 

 

• Shell theories must incorporate both flexural and extensional deformations due to the existence of 

a curvature. In fact, the curvature of the shell results in coupling of the extensional and flexural 

deformations of the shell. The deformation of a shell can vary from purely extensional to purely 

flexural. It was shown by Warburton [79] (Fig. 4.10) that bending (or flexural) strain energy 

associated with vibratory motion increases with the circumferential wave number n, whereas 

stretching (or extensional) strain energy decreases with n. For all case studies performed in Chapter 4, 

the variation of natural frequencies with respect to circumferential wave number looked similar with 

the finding of Warburton given in Figure 4.10. In other words, it can be concluded that for larger n the 

bending strain energy dominates in the free vibration, and for lower n the extensional strain energy 

dominates in the free vibration. This fact is also confirmed by the determined mode shapes for each n. 

 

• In general, at low circumferential wave numbers, the natural frequencies of shells with meridional 

fiber orientation are higher than the natural frequencies of shells with circumferential fiber orientation. 

This can be explained with the higher extensional stiffness coefficient 
11

A and the higher flexural 

stiffness coefficient 
11

D for lower fiber orientation angles. However, for high circumferential modes 

the natural frequencies of circumferentially laminated shells become higher than the natural 

frequencies of meridionally laminated shells due to higher extensional stiffness coefficient 
22

A and 

higher flexural stiffness coefficient 
22

D for higher fiber orientation angles. However, depending on 

the particular mode of vibration and on dominant vibration mode, different conclusions can be 

inferred with regard to the effect of fiber orientation angle on the natural frequencies at low 

circumferential modes. For instance, for axisymmetric breathing mode of vibration for higher modes 

circumferential fiber orientation causes frequencies to increase. Therefore, for low circumferential 

modes the effect of fiber orientation should be analyzed case by case. 

 

• The natural frequencies of the thick shells are higher than the ones of the thin shells, for higher 

circumferential modes, when all mechanical, laminate, and geometrical properties except the 

thickness-to-radius ratio are kept same. However, at low circumferential modes the effect of thickness 

on the natural frequencies diminishes. The reason for this behavior is explained in detail in the thesis 

and it was primarily attributed to extensional vibration character of shells at low circumferential 

modes. It was observed that anisotropy did not alter this behavior.  It has also been shown that for 
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thicker shells lowest natural frequencies occur at lower circumferential modes compared to a thin 

shell. 

• The effect of coupling terms on the natural frequencies can be very significant especially at low 

circumferential modes. Therefore, especially for transient vibration problems such as buffeting, 

dynamic loading or store flutter type of problems full anisotropic form of the constitutive equations 

should be kept. Failure to do so could result in incorrect structural response because lower modes 

usually have higher modal participation to the response. 

 

RECOMMENDATIONS FOR FUTURE WORK 

 

The method presented can also be extended to the static problems. Thus, stress analysis of 

any macroscopically anisotropic laminated composite shell of revolution with general boundary 

conditions can be carried out by the shell theory used; first order transverse shear deformation theory 

of Reissner and Naghdi. 

 

The method of solution can further be extended to higher order transverse shear deformation 

theories by modifying the coefficient matrix K given in equation 3.47. There is no need of using the 

shear correction factor when higher order transverse shear deformation theories are used. Table 1.2 

gives the various higher order transverse shear deformation theories. 

 

Possibility of extending the present method of solution the laminated shells of revolution 

which are modeled as layerwise rather than as an equivalent single layer can be sought. 

 

The power of present method of solution can be demonstrated by applying it to problems in 

which meridional variation of shell design parameters such as thickness, layup, stacking sequence are 

taken into consideration. Circumferential stiffeners can also be incorporated into the analysis by slight 

modification of the code DALSOR. The procedure for including the stiffeners in the computational 

modeling of free vibration analysis of anisotropic laminated composite shells of revolution is 

explained with the aid of Figure 5.1 which displays the cross-sections of the laminated composite 

circular cylindrical shells with a single stiffener or more than one stiffener. Figure 5.1a shows the 

cross-section of the circular cylindrical shell with a single stiffener. The corresponding coefficient 

matrices of the stiffener part, the left non-stiffener part, and the right non-stiffener part, which are 

given in Equations (3.47) and (3.60), are computed properly by taking a continuous reference surface 

for the shell including every part. The meridional length of the shell should be divided into segments 

appropriately. The starting and final coordinates of each part are known; therefore, changing 

coefficient matrices K’s of the parts should be incorporated properly into Equation (3.73). The similar 

considerations can be taken when studying laminated composite circular cylindrical shells with more 

than one stiffener. 
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Figure 5.1 Cross-sections of the circular cylindrical shells with  

(a) a single stiffener, (b) two stiffeners or, (c) multi-stiffeners. 
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APPENDIX A 

 

VARIATIONAL COMPUTATION OF THE STRAIN ENERGY 

� U)

The application of integration by parts to two different example equations is given as 
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where 1C , 2C , 3C , and 4C are functions of 1ξ and 2ξ

Rewriting Equation (2.269), and carrying out the variation and taking the force and moment 

resultants into account, we obtain 

 



201

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
������� �������� 
	

������� �������� 
	

II

I

A

AAA
M

R

wA

AA

uv

A
N

A

AAA
M

R

wA

AA

vu

A
N

t

t












∂
∂

+
∂

∂
+












+

∂
∂

+
∂

∂

+




























∂
∂

+
∂

∂
+












+

∂
∂

+
∂

∂

∫ ∫ ∫

12

0

1

0

2

0

21

1

0

2

0

1

0

2

21

12

2

2

2

2

212

2

1

0 1 2 1

21

2

1

1

1

1

211

1

1

1

1

1

ξ
δβ

ξ
δβ

δ
ξ

δ
ξ
δ

ξ
δβ

ξ
δβ

δ
ξ

δ
ξ

δ

ξ

ξξ

ξξ

ξ
ξ

ξ

ξ

ξξξ
ξ

ξ ξ ξ

ξξ

ξξ

ξ
ξ

ξ

ξ

ξξξ
ξ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) dtdddAA
R

vw

A
Q

R

uw

A
Q

A

AAA

A

AAA
M

A

AA

vu

A

A

AA

uv

A
N

V

IV

III

ζξξδβδ
ξ

δ

δβδ
ξ

δ

ξ
δβ

ξ
δβ

ξ
δβ

ξ
δβ

ξ
δ

ξ
δ

ξ
δ

ξ
δ

ξξξ
ξξ

ξ

ξ
ξξ

ξ

ξ

ξξ

ξξ

ξ

ξ

ξξ

ξξ

ξ
ξξ

ξ

ξξξ

ξ

ξξξ
ξξ

21

0

2

0

0

1

0

1221

1

0

2

0

2

0

1

0

212

22

2

1

11

1

2

21

21

2

1

21

12

1

21

2

212

1

211

21

1

1

11

11
























+−

∂
∂+












+−

∂
∂+












∂
∂

−
∂

∂
+

∂
∂

−
∂

∂
+












∂
∂

−
∂

∂+
∂
∂

−
∂

∂+

������ ������� 
	

������ ������� 
	

������������ ������������� 
	

(A.3) 

 

Let us split the Equation (A.3) and do the variational computations term by term, and 

carrying out the integration by parts ((A.1) or (A.2)) when necessary 
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APPENDIX B 
 

 

SYMBOLIC COMPUTATION OF EQUATION (3.14) 
 
 

 The m-code written for the symbolic computation of Equation (3.9) in order to get the 

relations 















∂
∂

∂
∂

∂
∂

∂
∂

φ
β

φ
β

φφ
θφθφ ,,,

00
uu

is given below. 

 

syms h11 h12 h13 h14 h21 h22 h23 h24 h31 h32 h33 h34 h41 h42 h43 h44 

syms j11 j21 j31 j41 

H=[h11 h12 h13 h14;h21 h22 h23 h24;h31 h32 h33 h34;h41 h42 h43 h44]; 

J=[j11;j21;j31;j41]; 

B=H^-1*J; 

b11=B(1,1); 

pretty(b11) 

pause 

clc 

pause 

b21=B(2,1); 

pretty(b21) 

pause 

clc 

pause 

b31=B(3,1); 

pretty(b31) 

pause 

clc 

pause 

b41=B(4,1); 

pretty(b41) 

pause 

clc 

 The results are given as follow 
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φφ ∂∂ 0u : 

 

(B.1) 

 

 The expressions % 1 in (B.2), (B.3) and (B.4) are similar to the one given in (B.1).  

 

φθ ∂∂ 0u : 

 

(B.2) 
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φβφ ∂∂ : 

 

(B.3) 

 

φβθ ∂∂ : 

 

(B.4) 
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APPENDIX C 

 

COEFFICIENTS OF THE SYSTEM OF PARTIAL 

DIFFERENTIAL EQUATIONS DERIVED IN SECTION 3.3.1 

 

The coefficients of 
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∂
∂ 0w

given in Equation (3.8) 
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APPENDIX D 

 

METHOD OF FINITE EXPONENTIAL FOURIER TRANSFORM 

 

Carrying out Method of Finite Fourier Transform to some functions [ ]54321 ,,,, VVVVV and 

their derivatives up to order 2 with respect to φ and/or θ . During these operations the integration by 

parts is done whenever necessary. 
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APPENDIX E 

 

APPLICATION OF METHOD OF FINITE EXPONENTIAL 

FOURIER TRANSFORM TO THE SYSTEM OF DIFFERENTIAL 

EQUATIONS DERIVED IN SECTION 3.3.1 

 
Rewriting Equation (3.15) 
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Carrying out the Finite exponential Fourier transform to Equation (E.1) 
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 Using Equation (3.28) in Equation (E.2) yield 
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Separating the real and imaginary parts of Equation (E.4) 

 

First, writing real parts of Equation (E.4) term by term 
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Then, writing imaginary parts of Equation (E.4) term by term. 
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Rewriting Equation (3.16) 
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Carrying out the Finite exponential Fourier transform to Equation (E.7) 

 



233

( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] θθφθθφ

θθφθθφ

θ
θ

θφβθθφβ

θ
θ

θφβ
θθφβ

θ
θ

θφθθφ

θ
θ

θφ
θθφ

θθφθ
φ

θφ

θ
φθ

θ
φ

θ
φθ

θ
φ

θθθ
θ

θφθ
φ

θθθ
θ

θφθ
φ

θθθ

detMcdetMc

detNcdetNc

de
t

cpdetc

de
t

cpdetc

de
tu

cpdetuc

de
tu

cpdetuc

detwcde
tu

inin

inin

inin

inin

inin

inin

inin

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
−

Π
+

Π
+

Π
+

Π
+







∂
∂

Π
+

Π
+









∂

∂
Π

+
Π

+









∂

∂
Π

+
Π

+












∂

∂
Π

+
Π

+

Π
=








∂

∂
Π

2

0

310

2

0

39

2

0

38

2

0

37

2

0

35

2

0

35

2

0

24

2

0

24

2

0

0

33

2

0

0
33

2

0

0

32

2

0

0
32

2

0

0
31

2

0

0

,,
2

1
,,

2

1

,,
2

1
,,

2

1

,,

2

1
,,

2

1

,,

2

1
,,

2

1

,,

2

1
,,

2

1

,,

2

1
,,

2

1

,,
2

1,,

2

1

(E.8) 

 

Using Equation (3.28) in Equation (E.8) yields 
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We now separate the real and imaginary parts of Equation (E.10). First, writing real parts 

of Equation (E.10) term by term. 
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Then, writing imaginary parts of Equation (E.10) term by term. 
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Rewriting Equation (3.17) 
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Carrying out the Finite exponential Fourier transform to Equation (E.13) 
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Using Equation (3.28) in Equation (E.14) yields 
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We separate the real and imaginary parts of Equation (E.16) 

 

First, writing real parts of Equation (E.16) term by term. 
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Then, writing imaginary parts of Equation (E.16) term by term. 
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Rewriting Equation (3.18) 
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Carrying out the Finite exponential Fourier transform to Equation (E.19) 
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Using Equation (3.28) in Equation (E.20) yields 
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We separate the real and imaginary parts of Equation (E.22). First, writing real parts of 

Equation (E.22) term by term. 
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Then, writing imaginary parts of Equation (E.22) term by term. 
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Rewriting Equation (3.19) 
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Carrying out the Finite exponential Fourier transform to Equation (E.25). 
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Using Equation (3.28) in Equation (E.26) yields 
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We separate the real and imaginary parts of Equation (E.28). 
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 First, writing real parts of Equation (E.28) term by term. 
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Then, writing imaginary parts of Equation (E.28) term by term. 
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Rewriting Equation (3.20). 
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Carrying out the Finite exponential Fourier transform to Equation (E.31) 
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Using Equation (3.28) in Equation (E.32) yields 
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Separating the real and imaginary parts of Equation (E.34) 

 

First, writing real parts of Equation (E.34) term by term. 
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Then, writing imaginary parts of Equation (E.34) term by term. 
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 Rewriting Equation (3.21) 
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Carrying out the Finite exponential Fourier transform to Equation (E.37) 
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Using Equation (3.28) in Equation (E.38) yields 
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We separate the real and imaginary parts of Equation (E.40). First, writing real parts of 

Equation (E.40) term by term. 
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Then, writing imaginary parts of Equation (E.40) term by term. 
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Rewriting Equation (3.22) 
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Carrying out the Finite exponential Fourier transform to Equation (E.43) 
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Using Equation (3.28) in Equation (E.44) yields 
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We separate the real and imaginary parts of Equation (E.46) 

 

First, writing real parts of Equation (E.46) term by term. 
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Then, writing imaginary parts of Equation (E.46) term by term. 
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Rewriting Equation (3.23) 
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Carrying out the Finite exponential Fourier transform to Equation (E.49) 
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Using Equation (3.28) in (E.50) yields 
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We separate the real and imaginary parts of Equation (E.52). 

 

First, writing real parts of Equation (E.52) term by term. 
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Then, imaginary parts of Equation (E.52) 
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APPENDIX F 
 

THE ELEMENTS OF COEFFICIENT MATRIX K 
 

The elements of 1st row are: 

 

;0;0;0;0;0

;0;0;0;0;

;0;;0;;0

;;0;;;0

120119118117116

11511411311216111

110151918141716

1315141213111211

=====

=====

=====

=====

KKKKK

KKKKcK

KcKKcKK

cKKcKncpKK

(F.1-10) 

 

The elements of 2nd row are: 

 

0;0;0;0;0

;0;0;0;;0

;;0;;0;

;0;;0;0;

220219218217216

21521421316212211

15210291428271326

25122423221121

=====

=====

=====

====−=

KKKKK

KKKcKK

cKKcKKcK

KcKKKncpK

(F.11-20) 

 

The elements of 3rd row are: 

 

0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

32021031931829317316

2831531427313312311

253102539243824372336

233522342233322131

=====

=====

=====

=====

KcKKcKK

cKKcKKK

ncpKcKncpKcKncpK

cKncpKcKKcK

(F.21-30) 
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The elements of 4th row are: 

 

2104204192941841728416

41527414413412411

254102549244824472346

234522442243214241

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK

=====

=====

=−==−==

−==−===

(F.31-40) 

 

The elements of 5th row are: 

 

0;;0;;0

;;0;;0;0

;;;;;

;;;;0;

52031051951839517516

3851551437513512511

355103559345834573356

335532543253523151

=====

=====

=====

=====

KcKKcKK
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ncpKcKncpKcKncpK

cKncpKcKKcK

(F.41-50) 

 

The elements of 6th row are: 

 

3106206193961861738616

61537614613612611

356103569346834673366

336532643263316261

;0;;0;

;0;;0;0;0

;;;;;

;;;;;0

cKKcKKcK

KcKKKK

cKncpKcKncpKcK

ncpKcKncpKcKK

=====
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(F.51-60) 
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 The elements of 7th row are: 

 

0;;0;;0

;;0;;0;0

;;;;;

;;;;0;
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=====

=====

=====

=====
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(F.61-70) 

 

The elements of 8th row are: 

 

4108208194981881748816

81547814813812811

458104589448844874386
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(F.71-80) 

 

The elements of 9th row are: 
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(F.81-90) 
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 The elements of 10th row are: 
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The elements of 11th row are: 
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The elements of 12th row are: 
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 The elements of 13th row are: 
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The elements of 14th row are: 

 

710142014197914181417781416

78141577141414137614121411

75141075149741487414773146

73145721447214371142141

;0;;0;

;;;0;;0

;;;;;

;;;;;0

cKKcKKcK

ncpKcKKcKK

cKncpKcKncpKcK

ncpKcKncpKcKK

=====

−=====

=−==−==

−==−===

(F.131-140) 

 

The elements of 15th row are: 
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 The elements of 16th row are: 
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The elements of 17th row are: 
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The elements of 18th row are: 
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 The elements of 19th row are: 
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The elements of 20th row are: 

 

101020201010201920181092017

2016108201520141072013
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2
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(F.191-200) 
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APPENDIX G 

 

DEMONSTRATION OF THE RELATION BETWEEN THE 

DETERMINANT OF THE CHARACTERISTIC EQUATION 

DETERMINED BY THE TRADITIONAL FOURIER 

DECOMPOSITION METHOD AND THE ONE BY THE FINITE 

EXPONENTIAL FOURIER TRANSFORM METHOD 

 

 This demonstration, for ease of explanation, is performed for one segment shell with 2 

fundamental variable case. Let us have a sample system of first order ordinary differential equations 

which is given by 
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where 
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A  (G.2) 

 

 If the solution of (G.1) in the interval ( )10 ,φφ is expressed as: 
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 (G.3) 

 

then, the system of differential equations given in (G.1) can be reduced to series of initial value 

problems when (G.3) is substituted into (G.1). The obtained 4 initial value problems are given by 

 

( ){ } [ ] ( ){ }φφ
φ

TAT
d

d =  (G.4) 

 

 The initial values for ( )φT at 0φφ = is obtained from 

 

( )[ ] IT =0φ  (G.5) 
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where I is a 2 by 2 unit matrix. 

 

 The formal solution of (G.1) in the interval ( )10 ,φφ is given by (G.4) where ( )φT is obtained  

from the 4 solutions of the initial value problems defined by (G.4) and (G.5). If this solution is also 

aimed  

to satisfy the prescribed boundary conditions, then (G.3) is evaluted at 1φφ = . 
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where 
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 It can be seen that when variables at 0φ is known, the solution for (G.1) at any valueφ is 

obtained from (G.3). 

 

 ( )[ ]1φT can be obtained from (G.4) as: 
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and 
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 Putting (G.8) into the following form 
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For brevity, the following terms are determined 
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 Then, the 4th order Runge-Kutta is employed to calculate ( )[ ]1φT . The values of 

( )[ ]0φT are already known as initial values given in (G.12). The scheme for the 4th order Runge-

Kutta method for system of ODEs is given in [69]. As a result, ( )[ ]1φT is given by 
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 When the above computations are done symbolically using Matlab, the terms of ( )[ ]1φT are 

computed as: 

 

1_1T : 

 

(G.19) 

 

 

 

 

 

1_2T : 
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(G.20) 

 

1_3T : 

 

 

(G.21) 

and 1_4T : 

 

 

(G.22) 

 

If ( )11 φy and ( )01 φy are assumed to be prescribed, then (G.6) results in 
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( ) ( )( ) 0021_2 =φyT  (G.23) 

 

 The pertaining characteristic equation is obtained by finding the nontrivial solution of (G.23) 

by taking determinant of 1_2T  

 

( ) 01_2 =T  (G.24) 

 

 When the method of Finite Fourier Transform is applied to (G.1), the new form of the system 

of differential equations in (G.1) can be written in terms of real variables as 
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 (G.25) is written in compact form 
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 The formal solution of (G.26) in the interval ( )10 ,φφ  can be given by 

 



 270 

( )[ ]
( )[ ]
( )[ ]
( )[ ]

( )[ ]

( )[ ]
( )[ ]
( )[ ]
( )[ ] 
























=

























ns

nc

ns

nc

ns

nc

ns

nc

y

y

y

y

T

y

y

y

y

n

02

02

01

01

1

12

12

11

11

φ
φ
φ
φ

φ

φ
φ
φ
φ

 (G.28) 

( )[ ]
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )



















=

1
16

1
15

1
14

1
13

1
12

1
11

1
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1

φφφφ
φφφφ
φφφφ
φφφφ

φ

nnnn

nnnn

nnnn

nnnn

n

TTTT

TTTT

TTTT

TTTT

T  (G.29) 

 

( )[ ]1φnT  can be obtained from solutions of 16 initial value problems such that 
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 (G.30) is expanded to let us carry out single step numerical integration as follows: 
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where 
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(G.34) 

 

 The terms in (G.33) can be written in their short forms 
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Again, ( )[ ]1φnT is calculated with the following equation after employing 4th order Runge-

Kutta Method. 

( )[ ] ( )[ ] { } { } { } { }( )nnnnnn NMLKTT +++
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 Nonzero elements of ( ){ }1φnT computed by using Matlab Symbolic Toolbox are listed as 

follows: 
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nT 1_1 : 

 

 

(G.41) 

nT 1_3 : 

 

(G.42) 

nT 1_6 : 

 

(G.43) 
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nT 1_8 : 

 

 

(G.44) 

 

nT 1_9 : 

 

 

(G.45) 

 

nT 1_11 : 

 

 

(G.46) 
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nT 1_14 : 

 

 

(G.47) 

 

nT 1_16 : 

 

 

(G.48) 

 

 If ( )[ ]ncy 11 φ , ( )[ ]nsy 11 φ , ( )[ ]ncy 01 φ , and ( )[ ]nsy 01 φ assumed to be prescribed, then 

(G.28) results in 
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φ
φ

 (G.49) 

 

 The pertaining characteristic equation is obtained by finding the nontrivial solution of (G.49). 

 

( ) ( ) 01_71_41_81_3 =− nnnn TTTT  (G.50) 

 

 In (G.50), both nT 1_4 and nT 1_7 equals to zero, and nT 1_3 and nT 1_8 are both equal to the 

following (rewriting (G.42) and (G.44)): 
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(G.51) 

 

where (G.51) is same as 1_2T in (G.24). As a result, it can be concluded that the determinant obtained 

by the finite exponential Fourier transform method is the square power of the determinant obtained by 

the traditional Fourier decomposition method for a generic two point boundary problem having two 

fundamental variables. 
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APPENDIX H 
 

MODE SHAPES OF SYMMETRIC, ANTISYMMETRIC and 

UNSYMMETRIC LAYUPS for N=0, 1, and 2 CASES 
 

i) SYMMETRIC LAYUP 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

W_c W_s W_mag

(a) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Ux_c Ux_s Ux_mag

(b) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Utheta_c Utheta_s Utheta_mag

(c) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

W_c W_s W_mag

(d) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Ux_c Ux_s Ux_mag

(e) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Utheta_c Utheta_s Utheta_mag

(f) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

W_c W_s W_mag

(g) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Ux_c Ux_s Ux_mag

(h) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Utheta_c Utheta_s Utheta_mag

(i) 

Figure H.1 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=0) and (m=1);  

(d) w (e) φu (f) θu for (n=0) and (m=2); and (g) w (h) φu (i) θu for (n=0) and (m=3) 

 



281

 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

W_c W_s W_mag

(a) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Ux_c Ux_s Ux_mag

(b) 

-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00
1.25

0.00 0.25 0.50 0.75 1.00

Utheta_c Utheta_s Utheta_mag

(slightly smaller than 1) (c) 
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(i) 

Figure H.2 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=1) and (m=1);  

(d) w (e) φu (f) θu for (n=1) and (m=2); and (g) w (h) φu (i) θu for (n=1) and (m=3) 
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(i) 

Figure H.3 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=2) and (m=1);  

(d) w (e) φu (f) θu for (n=2) and (m=2); and (g) w (h) φu (i) θu for (n=2) and (m=3) 
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ii) ANTISYMMETRIC LAYUP 
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Figure H.4 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=0) and (m=1);  

(d) w (e) φu (f) θu for (n=0) and (m=2); and (g) w (h) φu (i) θu for (n=0) and (m=3) 
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(i) 

Figure H.5 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=1) and (m=1);  

(d) w (e) φu (f) θu for (n=1) and (m=2); and (g) w (h) φu (i) θu for (n=1) and (m=3) 
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(i) 

Figure H.6 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=2) and (m=1);  

(d) w (e) φu (f) θu for (n=2) and (m=2); and (g) w (h) φu (i) θu for (n=2) and (m=3) 
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iii) UNSYMMETRIC LAYUP 
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(i) 

Figure H.7 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=0) and (m=1);  

(d) w (e) φu (f) θu for (n=0) and (m=2); and (g) w (h) φu (i) θu for (n=0) and (m=3) 
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Figure H.8 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=1) and (m=1);  

(d) w (e) φu (f) θu for (n=1) and (m=2); and (g) w (h) φu (i) θu for (n=1) and (m=3) 
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Figure H.9 Mode Shapes in displacements of (a) w (b) φu (c) θu for (n=2) and (m=1);  

(d) w (e) φu (f) θu for (n=2) and (m=2); and (g) w (h) φu (i) θu for (n=2) and (m=3) 

 


