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ABSTRACT 

 

A NOVEL METHODOLOGY FOR MEDIUM AND LONG-TERM 

ELECTRICITY MARKET MODELING 

 

 

 

İlseven, Engin 

Doctor of Philosophy, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Murat Göl 

 

 

 

November 2020, 192 pages 

 

 

In the electricity market, there is a considerable degree of uncertainty in electricity 

demand, supply, and price due to the uncertainty in parameters such as economic 

growth, weather conditions, fuel prices, and timing of new investments, etc. These 

factors in return affect the predictability of the electricity market. This thesis aims to 

increase the predictability and observability of the electricity market by means of a 

suitable and validated electricity market modeling methodology designed for 

medium and long-term horizon. The proposed methodology consists of electricity 

demand, supply, and price modeling parts for the medium-term horizon and reveals 

the possible range of electricity prices considering the uncertainties in demand and 

supply. This methodology is upgraded with two new features for the utilization in 

the long-term horizon in the changing market environment. The first one of these 

features is a generator maintenance scheduling model which enables more realistic 

electricity supply modeling. The second one is a realistic electricity generation 

expansion planning model which determines the future electricity generation fleet. 

Based on these modifications and the previously established electricity price model 
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used for the medium-term horizon, this methodology can reveal how electricity 

market conditions can evolve for a selected year in the long-term horizon. Thanks to 

its dynamic structure and ability to yield results on hourly basis, the central planner 

can benefit from this modeling methodology in policy making. 

 

Keywords: Electricity Market Model, Electricity Price Forecasting, Generation 

Expansion Planning, Electricity Demand Forecasting, Generator Maintenance 

Scheduling 
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ÖZ 

 

ORTA VE UZUN DÖNEMLİ ELEKTRİK PİYASA MODELLEMESİ İÇİN 

YENİ BİR METODOLOJİ 

 

 

 

İlseven, Engin 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Doç. Dr. Murat Göl 

 

 

Kasım 2020, 192 sayfa 

 

Elektrik piyasasında ekonomik büyüme, hava koşulları, yakıt fiyatları ve yeni 

yatırımların zamanlaması vb. parametrelerindeki belirsizlik nedeniyle elektrik talebi, 

arzı ve fiyatında önemli derecede belirsizlik bulunmaktadır. Bunun karşılığında söz 

konusu faktörler elektrik piyasasının öngörülebilirliğini etkilemektedir. Bu tez 

çalışması, orta ve uzun vadeli ufuk için tasarlanmış uygun ve doğrulanmış bir 

elektrik piyasası modelleme metodolojisi ile elektrik piyasasının öngörülebilirliğinin 

ve gözlemlenebilirliğinin artırılmasını amaçlamaktadır. Önerilen metodoloji, orta 

vadeli ufka yönelik olarak elektrik talebi, arzı ve fiyatı modelleme bölümlerinden 

oluşmaktadır, ve talep ve arzdaki belirsizlikleri göz önünde bulundurarak elektrik 

fiyatının oluşması muhtemel aralığı ortaya koymaktadır. Bu metodoloji, değişen 

piyasa ortamında uzun vadeli ufukta kullanım için iki yeni özellik ile geliştirilmiştir. 

Bu özelliklerden ilki, daha gerçekçi elektrik arz modellemesi yapılabilmesine imkan 

veren bir jeneratör bakım planlama modelidir. İkincisi, gelecekteki elektrik üretim 

portföyünü belirleyen gerçekçi bir elektrik üretim genişleme planlama modelidir. Bu 

modifikasyonlara ve orta vadeli ufuk için daha önce kurulmuş olan elektrik fiyat 

modeline dayanarak, bu metodoloji elektrik piyasası koşullarının uzun vadeli ufukta 

seçilen bir yıl için nasıl gelişebileceğini ortaya çıkarabilmektedir. Dinamik yapısı ve 
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saatlik bazda sonuç verebilme kabiliyeti sayesinde, merkezi planlamacı politika 

yapımında bu metodolojiden yararlanabilir. 

 

Anahtar Kelimeler: Elektrik Piyasa Modeli, Elektrik Fiyat Tahmini, Üretim 

Genişleme Planlaması, Elektrik Talep Tahmini, Jeneratör Bakım Planlaması 
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𝐸𝑓𝑓𝑎 Efficiency of facility 𝑎, in % 

𝐹𝑑,𝑡 Frequency of representative day 𝑑 at year 𝑡 

𝐹𝑜,𝑡 Frequency of representative hour 𝑜 at year 𝑡 

𝐹𝑁𝑅𝑤,𝑟𝑔
𝑎𝑠,ℎ𝑠

 Filtered net reserve at week 𝑤, for region 𝑟𝑔, availability 

scenario 𝑎𝑠, hydro scenario ℎ𝑠, in MW 

𝛤 Discount rate, in % 

𝐻𝑇𝑅𝑠,𝑡 Heat rate of storage facility 𝑠 at year 𝑡 

𝐻𝑠
𝑚𝑎𝑥 Maximum number of hours that storage facility 𝑠 can 

continuously charge or discharge at rated capacity 

𝑖 Iteration number 

𝑖𝑚𝑎𝑥 Maximum number of iterations 

𝛪𝑎,𝑡 Parameter that takes value 1 if facility 𝑎 has investment cost 

repayment at year 𝑡 

𝐼𝐶𝑔 Installed capacity for generator unit 𝑔, in MW 

𝐼𝐶𝑎,𝑡
𝑚𝑎𝑥 Maximum capacity that can be commissioned for facility 𝑎 at 

year 𝑡, in MW 
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𝐼𝐶𝑔
𝑚𝑎𝑥 Maximum capacity of an existing plant 𝑔 without unit size 

limitation, in MW. For existing and candidate plant 𝑔 with unit 

size limitation, it corresponds to unit capacity, in MW. 

𝐼𝐶ℎ,𝑟 Installed capacity at hour ℎ, for resource 𝑟, in MW 

𝛫 Profit margin of plants, in % 

𝛬𝑎,𝑡 Parameter that takes value 1 if facility 𝑎 exists at year 𝑡 

𝑀𝐶𝑤,𝑟𝑔
𝑚𝑎𝑥 Maximum maintenance capacity at week 𝑤, for region 𝑟𝑔, in 

MW 

𝑀𝐹𝑆 Median filter step 

𝑀𝑅𝐺
ℎ,𝑟𝑔

𝑎𝑠,ℎ𝑠
 Must run generation at hour ℎ, for region 𝑟𝑔, availability 

scenario 𝑎𝑠, hydro scenario ℎ𝑠, in MWh 

𝑀𝑆𝐺𝑅𝑔 Minimum stable generation ratio of power plant 𝑔, in % 

𝛮 Offset parameter for storage hydropower plant capacity factor 

𝑁𝑀𝑔 Number of weeks in maintenance for generator unit 𝑔 

𝑁𝑅
ℎ,𝑟𝑔

𝑎𝑠,ℎ𝑠
 Net reserve at hour ℎ, for region 𝑟𝑔, availability scenario 𝑎𝑠, 

hydro scenario ℎ𝑠, in MW 

𝑜𝑓𝑣 Objective function value, in 106 $ 

𝛺 Auxiliary parameter that can take values -1, 0 and 1; used in 

the update procedure following the run of Model II-A 

𝑃
ℎ
𝐷 Demand at hour ℎ, in MW 

𝑃𝑜,𝑡
𝐷  Demand at representative hour 𝑜 & year 𝑡, in MW 

𝑆𝐻𝑜,𝑡
𝑅  Minimum level of hourly reserve at hour 𝑜 & year 𝑡, in % 

𝑇0 Base year. In this study, it corresponds to the year 2015 

𝑇0,𝑎 Commissioning year of facility 𝑎 

𝑇1,𝑎 Decommissioning year of facility 𝑎 

𝑇𝑔
𝑢𝑝

 Minimum number of hours that power plant 𝑔 must stay online 

after started up 

𝑇𝑔
𝑑𝑜𝑤𝑛 Minimum number of hours that power plant 𝑔 must stay offline 

after shut down 
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𝛩 Weight parameter for the lower-priority objective function 

shown in Model I-S 

𝑈𝑔
𝑚𝑎𝑥 Number of units of an existing power plant 𝑔  

𝑈𝑔,𝑡
𝑚𝑎𝑥 Maximum number of units that can be commissioned for a 

candidate power plant 𝑔 at year 𝑡 

𝑊𝐶𝐹𝑤
𝑎𝑣𝑒,ℎ𝑠

 Weekly average storage hydropower plant capacity factor at 

week 𝑤, for hydro scenario ℎ𝑠 

𝑊𝐶𝐹𝑤
𝑚𝑎𝑥,ℎ𝑠

 Weekly maximum storage hydropower plant capacity factor at 

week 𝑤, for hydro scenario ℎ𝑠 

𝑊𝐶𝐹𝑤
𝑚𝑖𝑛,ℎ𝑠

 Weekly minimum storage hydropower plant capacity factor at 

week 𝑤, for hydro scenario ℎ𝑠 

 

SETS 

𝑎(𝐴) Set of all facilities including existing, candidate generators and 

storage facilities; an element is 𝑎 

𝑎𝑠(𝐴𝑆) Availability scenario set, an element is a𝑠 

𝑑(𝐷) Representative day set for any year 𝑡, an element is 𝑑 

𝑔(𝐺) Plant set including all existing and candidate ones, an element 

is 𝑔 

𝑔(𝐺𝐶) Candidate plant set, an element is 𝑔 

𝑔(𝐺𝑀) Generator unit set to be in maintenance, an element is 𝑔 

𝑔(𝐺𝑟𝑒) Renewable plant set including existing and candidate 

generators, an element is 𝑔 

𝑔(𝐺𝑢𝑙) Plant set with unit size limitation, an element is 𝑔 

𝑔(𝐺𝑢𝑙𝑙) Plant set without unit size limitation, an element is 𝑔 

ℎ(𝐻) Hours of day, an element is ℎ 

ℎ(𝐻) Hours of year, an element is ℎ 

𝐻𝐶𝐹ℎ,𝑤,𝑚,𝑦,𝑟 Historical capacity factor set at hour ℎ, week 𝑤, month 𝑚, year 

𝑦 for resource 𝑟 
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ℎ𝑠(𝐻𝑆) Hydro scenario set, an element is ℎ𝑠 

𝑚(𝑀) Months of year, an element is 𝑚 

𝑜(𝑂) Representative hour set for any year 𝑡, an element is 𝑜 

𝑟(𝑆𝑇𝑂) Set of all storage hydropower plants, an element is 𝑟 

𝑟(𝐼𝑁𝑇) Set of all intermittent renewable power plants, an element is 𝑟 

𝑟(𝑅𝑂𝑅) Set of all run-of-river hydropower plants, an element is 𝑟 

𝑟(𝑆𝑂𝐿) Set of all solar power plants, an element is 𝑟 

𝑟(𝑇𝐻𝑅) Set of all thermal power plants, an element is 𝑟 

𝑟(𝑊𝑁𝐷) Set of all wind power plants, an element is 𝑟 

𝑟𝑔(𝑅𝐺) Set of all transmission regions, an element is 𝑟𝑔 

𝑟𝑠(𝑅𝑆) Random scenario set, an element is 𝑟𝑠 

𝑠(𝑆) Candidate storage facility set, an element is 𝑠 

𝑡(𝑇) Year set in the forecasting horizon, an element is 𝑡 

𝑤(𝑊) Weeks of year, an element is 𝑤 

𝑦(𝑌) Historical years, an element is 𝑦 

 

FUNCTIONS 

𝑎𝑣𝑒 Average function 

𝑞𝑛𝑡 Quantile function 

𝑠𝑚𝑝 Sampling function 

𝛼(ℎ𝑠) Function that defines quantile region for hydro scenario ℎ𝑠. 

Takes values 0-0.25 for low, 0.25-0.75 for reference and 0.75-

1 for high scenarios 

𝛽(𝑤) Function that calculates storage hydropower plant generation 

base effect at week 𝑤. Takes values 0, 0.25 and 0.50 for low, 

medium and high-water inflow seasons 

𝛿(ℎ𝑠, 𝐻𝐶𝐹) Function that adds standard deviation of historical capacity 

factor set for high scenario, subtracts for low scenario and does 

nothing for reference 



 

 

xxvi 

𝜃𝑟𝑠(𝑎𝑠) Function that operates as minimum, average and maximum for 

availability scenarios low, reference and high over random 

scenarios 𝑟𝑠 

𝜙(𝑟, 𝑟𝑔) Function that calculates the installed capacity share of resource 

𝑟 in region 𝑟𝑔 

𝜓(𝑟𝑔) Function that calculates the demand share of region 𝑟𝑔 

 

MAPPINGS 

ℎ𝑠 → 𝑦 Mapping from hydro scenario ℎ𝑠 to elements of set of years 𝑦 

𝑟𝑔 → 𝑔 Mapping from region 𝑟𝑔 to elements of set of generator units 

𝑔 

𝑤 → ℎ̅ Mapping from week 𝑤 to elements of set of hours of year ℎ̅ 

𝑤 → ℎ Mapping from week 𝑤 to elements of set of hours of day ℎ 
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CHAPTER 1  

1 INTRODUCTION  

Turkey has unique electricity generation and demand characteristics. The storage 

hydropower capacity has an important role in electricity generation and the changes 

in hydro conditions across years significantly affect the conditions in the electricity 

market. The electricity generation fleet is rapidly evolving with the addition of 

renewable energy resources. Also, the electricity demand in Turkey has not been 

saturated yet. According to the official demand forecasts [1], it is expected to double 

in the next 20 years and reach to an extent that is around today’s level of electricity 

consumption in Germany. Based on electricity demand growth expectations as well 

as its high wind and solar potential thanks to the advantages brought by its 

geographical position, the electricity demand and generation characteristics of 

Turkey as of today will likely to evolve further in the coming years. This requires 

the analysis of future market conditions with great care.  

The electricity market is liberalized in Turkey, similar to the trends in the developing 

and developed counties. The reference price for electricity, which is the most 

important signal for all market participants, is determined on hourly basis in the day-

ahead market according to supply and demand dynamics. Despite its unique 

electricity generation and demand characteristics, the way that the electricity market 

operates makes the proposed models and approaches in this thesis applicable to other 

electricity markets in different counties. 

This thesis presentes a novel methodology for electricity market modeling to be 

utilized in medium and long-term planning and forecasting targeting electricity 

sector. The methodology is designed based on the characteristics of Turkey. 

However, with proper modifications, it can be utilized for any electricity market. 
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1.1 Motivation and Problem Definition 

The subject of the thesis is the design of a novel electricity market modeling 

methodology which can perform electricity price forecasting and can concurrently 

calculate the corresponding electricity generation by fuel and supply-demand 

balance, i.e. system reserve, for each time step of the forecast horizon. The general 

purpose of this methodology is to increase the predictability and observability of the 

electricity market, and ultimately help the central planner take necessary actions.  

The central planner can be thought as the main decision maker who has all the means 

to influence and direct other decision makers in electricity sector. Here, the term 

“central planner” can correspond to the ministry, regulator or electricity system 

operator depending on the legislations in a territory. Likewise, the term “central 

planning” is used for the cooperative decision and behavior of these bodies.  

The planning activity in this thesis is assumed to be fulfilled with some basic 

assumptions such as;  

 Electricity industry is deregulated,  

 Reference price for electricity and supply-demand schedules for the next day 

are determined in the day-ahead market operating on hourly basis, which 

corresponds to the marginal cost of the most expensive operating plant for 

the respective hour, 

 Electricity demand is inelastic,  

 Market participants bid their marginal costs to the market, and they cannot 

influence the market price by their own decisions,  

 New investors take investment decisions fully in line with the targets that the 

central planner announces. 

Based on its needs from various fields, the central planner can use various models 

and methodologies independent from each other. The electricity market modeling 

methodology in the thesis can be utilized to address the following questions with an 

integrated modeling approach:  
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 Main question 1: What will be the range of electricity market price in medium 

term? What will be the level of electricity market price in long term?  

o According to various cases and corresponding results, the central 

planner can investigate whether it will be sufficiently low from 

consumer point of view, and whether the corresponding level of 

electricity generation and the resulting revenue will be enough for the 

continuity of operation of each power producer based on a reasonable 

profit margin. 

 Main question 2: What will be the range of reserve capacity in medium and 

long term?  

o According to various cases and corresponding results, the central 

planner can analyze whether there will be sufficient reserve in order 

to maintain uninterruptible power supply. 

 Main question 3: From both electricity price and reserve point of view, what 

should be the level of electricity generation capacity in long term?  

o According to various cases and corresponding results, the central 

planner can observe whether there will be a need for additional action 

after checking detailed operational results and determine the relevant 

actions accordingly.   

Not limited to the questions above, with the utilization of the proposed modeling 

methodology, the central planner can have insight on various topics with hourly 

details such as; 

 Electricity generation by fuel, 

 Amount of fuel that will be consumed for electricity generation and the 

resulting import bill, 

 Self-sufficiency and import dependency in electricity generation, 

 CO2 emissions from electricity generation activity, 

 Evolution of hourly electricity prices and their pattern, 

 How to design future renewable energy support schemes, 
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 Feasibility of various power plant and storage projects. 

In both regulated and deregulated electricity markets, the central planner has the 

responsibility for monitoring the conditions in electricity sector taking into account 

the necessity for providing sufficient, good quality, uninterrupted, low cost, and 

environment-friendly electrical energy to end consumers. However, the capability of 

tools and measures over which the central planner has control are effective mostly 

in medium and long-term planning horizons. In shorter term, the decisions are related 

to day-to-day operations, and in case there are persisting problems having arisen in 

short term, these can be solved by developing various measures which are expected 

to take effect beyond short term. Considering that the modeling methodology in this 

thesis is designed for the central planner and the impact of the decisions taken by the 

central planner have a lag time, the modeling methodology addresses the questions 

in medium and long-term horizons. It is assumed that throughout the thesis the 

medium-term horizon typically corresponds to 1 year and can have a range from 1 

year to 5 years. Also, the long-term horizon is considered to be over 5 years. 

Among the previous main questions, the first and second ones deal with both medium 

and long-term horizons whereas the third one is applicable only for long term. The 

variation of the first two questions is based on the fact that one of the goals in 

utilizing medium-term horizon is to reveal the risks associated with the fundamental 

parameters such as economic growth, climate and hydro inflow conditions over the 

scenarios derived. Therefore, the area of interest is the “range” of results, rather than 

“point forecast”. For the long-term horizon, the main problem is to find a proper 

generation expansion plan and to put it to further examination in detail for selected 

years in order to evaluate the future system conditions. Given that the fundamental 

parameters are fixed due to increasing uncertainty over medium term; “point 

forecast” is applicable for the long-term horizon. 

The time step in the modeling methodology is 1 hour. It means that the electricity 

market model operates on hourly basis and produces hourly results in a similar way 

that day-ahead markets operate in liberalized electricity markets. The consolidation 
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of hourly outputs yields monthly and yearly results in aggregated terms. This manner 

of operation is fully compatible with the de facto situation in the electricity market, 

at the same time providing complete transparency on results, at the expense of 

increased complexity. The central planner can perform detailed analysis and examine 

the root cause of possible future problems, if there will be any, or create justifications 

for its future decisions.  

1.2 Proposed Methods and Contributions 

1.2.1 Proposed Methods 

The purpose of each model is stated in Table 1.1. In addition, the behavior of each 

model varies according to planning horizon as summarized as in Table 1.2. 

Table 1.1 Purpose of Each Model in the Modeling Methodology 

Modeling Purpose 

Electricity demand modeling To obtain hourly electricity demand forecast 

series to be used in the electricity price model 

Electricity supply modeling To obtain hourly available electricity generation 

capacity by market participant to be used in the 

electricity price model 

Electricity price modeling To calculate hourly electricity price based on the 

results from electricity demand and electricity 

supply modeling parts considering the specific 

characteristics of power plants 

Generation expansion planning To decide on the size and fuel type of new 

generation capacities 
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Table 1.2 Behavior of Each Model in the Modeling Methodology 

Modeling Medium-Term Long-Term 

Electricity 

demand 

modeling 

Electricity demand is 

forecasted on daily or monthly 

terms based on economic and 

climate variables, then 

disaggregated into hourly 

terms using the demand 

profiles calculated according 

to historical realizations 

Electricity demand is 

exogenously given based on the 

results from the officially 

announced electricity demand 

projection studies 

Electricity 

supply modeling 

Hourly available generation 

capacity is determined based 

on historical realizations 

Hourly available generation 

capacity is calculated according 

to a generator maintenance 

scheduling model which reflects 

the long-term effect of changing 

electricity generation mix on 

maintenance periods in a year, 

and thereof on availability 

factors 

Electricity price 

modeling 

The operation of electricity price model, i.e. the determination of 

electricity price, in medium and long term is the same 

Generation 

expansion 

planning 

Capacity expansion is 

exogenously given based on 

the progress level of existing 

power plants under 

construction 

Capacity expansion is decided 

by a generation expansion 

planning model from medium 

to long-term planning horizon 

 

Day-ahead market is an essential part of organized wholesale electricity markets, in 

which the reference price for electricity is determined based on supply and demand 

dynamics. In this respect, a methodology targeting hourly electricity price forecast 

and the resulting hourly generation should put specific emphasis on demand and 

supply modeling parts so that the fundamentals of electricity market can precisely be 
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reflected without missing critical details. Accordingly, the modeling structure of the 

proposed electricity market modeling methodology is built on the parts such as 

“electricity demand modeling”, “electricity supply modeling”, “electricity price 

modeling”, and “generation expansion planning”.  

The distinction among medium and long-term planning horizons is illustrated in 

Figure 1.1. In this figure, the minimum and maximum values of ‘T1’ are 1 year and 

5 years, respectively. Likewise, the minimum value of ‘T2’ is 5 years whereas the 

maximum value of it can cover the period from 5 years up to 10, 20, or 50 years, i.e. 

whatever is required by the central planner. 

 

(a) Medium-term horizon (b) Long-term horizon 

Figure 1.1. Stages of the electricity market modeling methodology 

There are four main stages of the proposed modeling methodology which are related 

to electricity demand, generation capacity, electricity supply, and electricity price, 

respectively. The proposed modeling approach can be summarized as follows: 
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To begin with the medium-term horizon, the modeling activity starts with electricity 

demand forecasting with the utilization of a proper model considering the factors 

influencing demand. Here, the ultimate goal of demand forecasting model is to obtain 

an hourly electricity demand series to be used in subsequent modeling stages. Since 

trying to forecast electricity demand on hourly basis over 1-year period is unrealistic 

and not reasonable, it is firstly forecasted on daily or monthly basis and then 

disaggregated into hourly time interval resolution. A daily electricity demand 

forecasting model with a GAM (generalized additive model) is proposed for the 

utilization of the methodology up to 1 year, and monthly modeling with a MARS 

(multivariate adaptive regression splines) model is proposed for the utilization over 

1 year and up to 5 years. Both of these models include economic, climate, and 

calendar variables. 

In the second stage of the medium-term horizon, the capacities with respect to fuel 

type should be determined for future years. In the medium-term horizon, a separate 

modeling approach for capacity expansion is not needed given that new power plants 

that will be commissioned in this horizon will be among the ones having already 

been decided for investment or under construction. This piece of information is 

expected to be available to the central planner, without resorting to any specialized 

model dedicated for this task.  

In the third stage of the medium-term horizon, the modeling activity continues with 

electricity supply modeling. Here, the purpose is to obtain hourly available 

generation capacity for each market participant, which is calculated based on 

historical data. Available generation capacity corresponds to the expected electricity 

generation for the ones of which output cannot be controlled. This group includes 

renewable energy resources such as wind, solar, biomass, geothermal, and run-of-

river type hydropower. For the other group, of which output is controllable, available 

generation capacity corresponds to the maximum possible electricity output for the 

relevant hour. This group is composed of thermal resources such as gas and coal.  
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In the last stage of the medium-term horizon, the modeling activity is concluded by 

running the electricity price model and obtaining the relevant results. The electricity 

price model operates on daily basis and calculates hourly electricity prices based on 

the hourly information provided by electricity demand and supply modeling. The 

calculation of electricity price considers the technical capability of thermal power 

plants, which is represented by the block order structure in day-ahead markets. In the 

previous paragraph, the only type of capacity that has not been mentioned in supply 

modeling is storage hydropower. Considering that the storage hydropower capacity 

has the ability to store energy and generate electricity according to MCP (market 

clearing price), an iterative scheme is designed in order to find the reasonable level 

of electricity generation from storage hydropower plants and MCP. 

For the long-term horizon, the above stages involve different modeling approaches. 

In the first stage, the utilization of the medium-term electricity demand forecasting 

model operating on daily or monthly basis will be misleading considering that 

climate variables in the long-term modeling approach will unnecessarily complicate 

the model. Therefore, unlike the medium-term horizon, the electricity demand is 

exogenously given based on the results from the officially announced electricity 

demand projection studies which have full information on the most critical variable, 

i.e. economic growth. Likewise, another option for electricity demand forecasting 

can be based on energy sector modeling tools which can model all types of energy 

resources and sectors in a combined manner using a bottom up approach. However, 

this is beyond the scope of the thesis.  

In the second stage of the long-term horizon, there is a need to determine the future 

electricity generation capacity by a specialized model, called generation capacity 

expansion. Here, the future electricity generation capacity by fuel and vintage is 

decided. The generation capacity expansion problem is nonlinear and requires 

significant amount of simplification in representing the market participants and 

horizon. In order to reduce the size of problem, the power plants showing similar 

characteristics are grouped, modeling horizon is represented by 5-year intervals, and 

each time step is represented by a representative day instead of modeling all 8760 
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hours of a year. Since it is not feasible to consider all hours of the long-term modeling 

horizon in the generation expansion planning (GEP) model, the expansion plan is 

tested at the last stage in the electricity price model, and following the analysis of 

details on hourly basis it can be updated if necessary. 

In the third stage of the long-term horizon, the electricity supply modeling approach 

of the medium-term horizon is still valid except for thermal power plants. Here, 

electricity supply modeling is incorporated by a generator maintenance scheduling 

model which determines the most plausible maintenance schedule plan for thermal 

power plants. In principle, the central planner arranges maintenance schedules in 

such a way that the average reserve capacity in the system is targeted to be evenly 

distributed throughout a year, if possible. In today’s system conditions, firstly spring 

secondly autumn seasons are mostly preferred for generator maintenance due to 

relatively lower electricity demand in those seasons and increased availability of 

hydropower resources in spring season, which is implicitly reflected on available 

generation capacity forecasts in the medium-term horizon. However, in longer terms, 

with the evolution of electricity generation fleet and electricity demand, relying on a 

static maintenance schedule plan can be misleading depending on the degree of 

evolution, hence a generator maintenance scheduling model is integrated into the 

modeling methodology in order to enable a dynamic electricity supply modeling.  

The last stage of the long-term horizon is similar to that of medium-term. The only 

difference is that following the run of electricity price model and obtaining the 

results, in order to fully comply with the predetermined requirements of the central 

planner, the detailed analysis over all 8760 hours of the selected year may signify to 

take additional actions over the expansion plan that the generation expansion 

planning model has previously yielded. In this case, following the amendment of 

expansion plan, the electricity supply and electricity price models are proposed to be 

rerun until the requirements are fully satisfied. 
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1.2.2 Contributions 

The general concepts related to the parts of the modeling methodology in this thesis 

have already been studied individually and discussed in the literature for a very long 

time. There are numerous works in the literature regarding electricity demand and 

price forecasting, generator maintenance scheduling, and generation expansion 

planning. This thesis focuses on a couple of points that have not been addressed in 

the literature. The uniqueness of the proposed structure and contributions can be 

summarized as follows: 

 Significant accuracy improvements are achieved for electricity demand 

forecasting which is modeled on daily and monthly basis with the utilization 

of GAM and MARS models. For demand forecasting, the attention has been 

given to the short-term horizon in the literature so far. Based on the needs in 

this thesis, GAM and MARS model are studied in the medium-term 

forecasting horizon.  

 The electricity supply modeling part of market models has not been stressed 

in the literature with its details. In this thesis, a new hourly availability factor 

calculation methodology based on historical data is proposed to be used in 

the price forecasting stage.  

 An electricity price forecasting methodology is proposed based on day-

ahead market operation. For electricity price forecasting, attention has been 

given to short-term horizon and artificial intelligence-based models in the 

literature so far. Due to data requirements, fundamental market models have 

not been frequently studied. In this thesis, considering the bidirectional 

relation between storage hydropower generation and electricity market 

price, a unique iterative scheme is proposed to reach a solution. It is shown 

that the proposed methodology operating based on the fundamentals of 

electricity market is able to forecast electricity price with satisfactory 

accuracy. According to various demand and supply scenarios, the possible 

range of electricity prices is revealed. It is shown that the yearly average 
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price in Turkey for the medium-term horizon can be realized in a wide range, 

corresponding to nearly half of the actual price.  

 For the utilization of the electricity market modeling methodology in the 

long-term horizon, electricity supply modeling is improved with the 

inclusion of a GMS model in order to use more realistic availability factors 

for market participants and obtain more reasonable price forecasts. The 

dynamics of storage hydropower generation capability is also reflected 

inside the GMS model. In the literature, GMS studies have not been 

considered together with energy sector planning and forecasting studies so 

far whereas a novel connection between GMS and long-term studies are 

established in this thesis. The proposed GMS model is tested with the data 

belonging to the year 2018, and it yields a reasonable GMS pattern that is 

similar to the realization. With further analysis, it is revealed that the GMS 

plan and profile may significantly change based on hydropower and 

renewable generation expectations, which signify the importance of utilizing 

such a GMS algorithm in the long-term horizon. 

 Another improvement of the electricity market modeling methodology for 

the long-term utilization is the inclusion of a GEP model. GEP is a subject 

that has widely been studied in the literature. Therefore, in this thesis, GEP 

is approached through various cases and from a different point of view such 

as the missing money problem, which is a widespread phenomenon in 

today’s electricity market. The research direction is unique given that the 

missing money problem has not yet been addressed together with GEP 

problems in this context in the literature. A conventional GEP model, a 

price-based GEP model and a reformulation of conventional GEP model is 

comparatively used to investigate whether the missing money problem 

should be taken into consideration in long-term planning studies. Analyses 

show that any attempt to mitigate the missing money problem in long-term 

planning would yield higher operation costs, higher market clearing prices, 

and higher combined costs of generators and consumers. In addition, an 
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alternative price-based GEP approach is employed based on a dynamic 

procedure for the determination of market clearing prices. With this model, 

it can be directly identified which candidate facilities are profitable for 

investment, instead of the pure cost minimization view in the conventional 

approach. 

 The electricity market modeling methodology is used to analyze the market 

conditions of 20 years later based on various cases. The most outstanding 

results from this analysis are such that with electricity demand and 

intermittent renewable capacity reaching the levels of Germany as of today;  

o The average electricity price significantly decrease by one-fourth 

compared to the prices of 2019,  

o The electricity price pattern remarkably changes such that zero 

electricity prices are observed in daytime and nearly in all months,  

o There is a need to curtail electricity from renewable energy resources 

in nearly one-fourth of the hours in a year,  

o At the same time, there can be instances of unmet demand when wind 

and solar capacity factors are low which is accompanied by 

significantly low yearly average utilization rates of thermal power 

plants.  

Although this is one of the examples for the ways to benefit from such a 

modeling methodology, the observations made for Turkey is unique. With 

this methodology, the central planner can explore opportunities to increase 

the system flexibility with new emerging technologies, or alternatively in its 

long-term plans it can determine more conservative targets that are more 

appropriate considering the market conditions. 

1.3 Outline of the Thesis 

This thesis is composed of six chapters including the introduction and conclusion 

parts.  
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Chapter 2 aims to facilitate the understanding for the rest of the thesis. It is dedicated 

to introduce the background information regarding the characteristics of the 

electricity sector in Turkey such as electricity demand, generation fleet, generation, 

supply and demand balance, electricity market, price, medium and long-term 

planning studies.  

Chapter 3 presents the literature review on electricity demand forecasting, electricity 

price forecasting, generator maintenance scheduling, and generation expansion 

planning.  

Chapter 4 and 5 are the main blocks that represent the structure of the electricity 

market modeling methodology for medium and long term in detail. In fact, these 

chapters are comparatively long, and several sections can be a separate chapter in 

any study. These chapters are intentionally kept long and integrated in order to 

demonstrate the necessary and connected steps in reaching realistic and reasonable 

electricity market modeling in medium and long-term horizons, respectively.  

Chapter 4 goes into details of the electricity demand, supply, and price modeling 

parts for the medium-term horizon. In Chapter 5, the electricity supply modeling 

with the inclusion of generator maintenance scheduling as well as the details and 

discussions over generation expansion planning from the view of missing money 

problem are given. 

In the last chapter, all the findings are summarized along with possible improvements 

to be performed in the future.  
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CHAPTER 2  

2 BACKGROUND INFORMATION 

In this chapter, the background information about various topics such as electricity 

demand, generation fleet, generation, supply and demand balance, electricity market, 

medium and long-term planning studies in Turkey are presented. Additionally, the 

simplified market modeling approach that is utilized throughout the thesis is 

introduced. At the end of the chapter, the key findings are summarized. Since the 

aim of this chapter is to help the reader to become familiarized with the concepts 

mentioned in the thesis, the fundamental characteristics of the Turkish electricity 

sector are focused. 

2.1 Electricity Demand 

As of the end of 2019, the electricity demand in Turkey is about 304000 GWh which 

is 56% higher compared to 10 years ago [2]. The electricity demand evolution and 

year-over-year change in the last 20 years is drawn in Figure 2.1. 

The evolution of electricity demand is closely associated with economic activity. As 

shown in Figure 2.2, there is a directly proportional relationship between GDP (gross 

domestic product) and electricity demand [2], [3]. At times when GDP shrinks, 

electricity demand reduces compared to the previous year, and vice versa, when GDP 

rises, electricity demand increases. Starting from the year 2013, the yearly change in 

electricity demand has stayed below its 5% long-term average, with the exception of 

the years 2016 and 2017. 
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Figure 2.1. Electricity demand evolution 

 

Figure 2.2. Relation between GDP and electricity demand  

Despite the fact that the electricity demand growth in Turkey has slowed down in 

recent years, the demand is expected to increase significantly in long term. 

According to the reference scenario of the official demand projection study [1], it is 

expected to reach over 600 TWh around the year 2040. With the improvement of the 

economy in the future and considering that the electricity consumption per capita, 

which is an indicator for the development level of a country, is now around 3650 

kWh that is well below its counterparts and EU average, over 600 TWh electricity 

demand is a reasonable level for Turkey. Electrification trends around the world, 

including the transformation in transport sector with electric vehicles can possibly 

further increase the existing expectations for electricity demand.  
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On seasonal basis, the electricity demand in Turkey is higher in summer and winter, 

and lower in spring and autumn seasons. Temperature is a major factor affecting 

electricity demand through cooling and heating needs. The pattern of electricity 

demand is exemplified in Figure 2.3 on hourly basis for the year 2018 [4]. The peak 

demand including unlicensed generation is around 50000 MW in mid-summer, as 

well as the winter peak approaches to 45000 MW. The periods coinciding feasts are 

accompanied by exceptionally low electricity demand, near 20000 MW. It is not 

possible to attribute this effect to summer season since they are moving 10 days 

earlier every year due to calendar effect.  

 

Figure 2.3. Hourly electricity demand in 2018 

The pattern of electricity demand throughout a day in various seasons is shown in 

Figure 2.4. In all seasons, there is a valley in early hours of a day, followed by a 

sharp increase in the morning. The high-demand period continues within the day 

until the evening. On average, the electricity demand fluctuates in a 10000-15000 

MW range, corresponding to over 30% of the average demand. This characteristic 

of electricity demand requires the efficient utilization of flexible resources in the 

electricity generation fleet. Considering the load pattern of similar countries that 

Turkey is expected to reach in terms of total electricity demand like Germany, the 

range in which the demand is fluctuating will likely expand, and in this case the 

importance of flexible resources will increase even more.  
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Figure 2.4. Average hourly electricity demand in various seasons  

2.2 Electricity Generation Fleet 

As of the end of 2019, the total electricity generation capacity in Turkey surpassed 

91000 MW, doubled in a 10-year period of time [2]. The fuel with the highest share 

is hydropower with 29000 MW installed power. Then, in the second and third place, 

there are natural gas with 26000 MW and coal with 20000 MW. The amount of 

renewable capacity excluding hydropower exceeded 16000 MW. The overview of 

installed capacity is shown in Figure 2.5. 

With policies prioritizing renewable and domestic energy resources, the share of 

renewable capacity reaches 49%, up from 35% 10 years ago. That corresponds to 

29000 GW capacity increase out of 46500 MW in total. In the last decade, 63% of 

capacity increase has come from renewable energy resources. 

Nearly 21000 MW of total hydropower capacity is of storage hydropower type, and 

the remaining 8000 MW being run-of-river. High storage hydropower capacity 

bringing both flexibility and uncertainty is one of the most prominent features that 

describe the electricity generation fleet in Turkey. At the beginning of 2000s, Turkey 

had already owned 11000 MW storage hydropower capacity with big projects such 

as 2400 MW Atatürk Dam, 1800 MW Karakaya Dam and 1330 MW Keban Dam. 

In late 2000s and then early 2010s, thanks to profitability of investments with 
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moderately high electricity market prices in USD terms and the implementation of 

the renewable energy support mechanism ensuring certain level of revenue stream 

for a 10-year period of time after commissioning provided pace for hydropower 

investments, especially for the small scale run-of-river type.  

 

Figure 2.5. Installed capacity development  

Out of 26000 MW natural gas power plant capacity, nearly 90% is above 100 MW, 

and these are predominantly natural gas combined cycle power plants. The first 

significant rise in natural gas installed capacity occurred in early 2000s, with the 

construction of power plants with the build-operate (BO) and build-operate-transfer 

(BOT) models, which were contracted in late 1990s due to increasing electricity 

demand and tightening reserve margin. The second significant rise occurred in early 

2010s with private sector investments without any purchase guarantee. The 

constitution of free electricity market accompanied by satisfactory profit margins 

and expectations for electricity demand growth were the main promoters of private 

sector investments. 

The same motivation also helped coal capacity to increase in the same period. Turkey 

had already owned 7500 MW coal power plants in early 2000s, nearly all of which 

operated with domestically produced lignite. The investments gained pace with a 

pattern similar to natural gas. The majority of these new investments use hard coal 

as fuel which is imported. Both lignite and hard coal capacity play a major role in 
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the generation fleet as they serve as base load power plants and make a reliable 

contribution in meeting the surging electricity demand. 

The installed capacity of other renewable energy resources such as wind, solar, 

geothermal and biomass increased from 1000 MW in 2009 to over 16000 MW in 

2019. Wind and solar are the main contributers with nearly 14000 MW combined. 

Similar to the trends in emerging and developed countries, Turkey has achieved 

remarkable success in commissioning renewable energy investments mainly thanks 

to the successful implementation of the renewable energy support mechanism 

accompanied by reducing capital costs. The existing mechanism provides support 

for a 10-year period of time after commissioning with feed-in-tariffs 73 $/MWh for 

wind and run-of-river hydro, 105 $/MWh for geothermal, 133 $/MWh for solar and 

biomass. As of September 2020, it is valid for power plants to be commissioned until 

the end of June 2021, but it will be revised according to decreasing cost trends around 

the world.  

In terms of renewable energy potential, Turkey can be said to be rich in resources. 

The estimated wind capacity potential is 48000 MW according the wind energy 

potential atlas [5] prepared in the second half of 2000s and the average annual solar 

radiation is 1527 kWh/m2.year [6]. The realization of wind and solar projects requires 

acquiring the right in the beginning to build capacity based on a competition 

procedure. The degree of utilizing wind and solar potential will surely depend on the 

level of electricity demand and the flexibility of the system to manage the 

intermittency problem posed by these resources. The potential for hydropower is 

estimated to be around 35000 MW [7]. The potential for geothermal is estimated to 

be between 2000 and 4000 MW depending on the viability of the projects awaiting 

announcement for the revision of the renewable energy support scheme.  

One of the mains pillar of the existing electricity policy in Turkey is the promotion 

of domestic and renewable energy resources [8]. Based on that policy, Turkey is 

expected to take as much renewable capacity as possible without incurring any 

significant cost on electricity consumers, but at the same time as the complement of 
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renewables it aims to meet its surging base load need from coal power plants to be 

built near unexploited domestical lignite fields. Furthermore, as a diversification and 

strategic step, Turkey is now constructing its first nuclear power plant in Akkuyu, 

which is expected to be commissioned in the period of 2023-2026. The studies for 

additional new nuclear power plants are still ongoing on various sites. 

2.3 Electricity Generation 

As of the end of 2019, the electricity generation in Turkey is around 304000 GWh 

[2]. In the presence of limited electricity transactions with its neighbours, the 

electricity generation in Turkey follows the pattern of electricity demand.  

The share of resources in total electricity generation is shown in Figure 2.6. For many 

years, natural gas has the largest share, and with 99% of natural gas being imported, 

it has raised concerns for import dependency. The trends in electricity generation 

have started to change profoundly from the year 2015, with the increase in renewable 

generation capacity and below-expected sluggish electricity demand growth.  

As hydropower has the largest share in the electricity generation fleet, it brings 

unique characteristics to the electricity generation in Turkey. With hydropower being 

the most dominant energy resource, the meteorological conditions in Turkey make a 

significant impact on the electricity sector. Depending on the amount of water 

inflow, in wet seasons excessive hydro generation displaces thermal capacity with 

which deficient hydro generation in dry seasons is compensated. From year to year, 

the average capacity factor of hydropower plants can range roughly from 20% to 

40%. That is a 50 TWh spread for a 29000 GW hydro fleet, corresponding to a huge 

17% of the total electricity generation. The level of uncertainty in the electricity 

generation fleet requires painstaking planning in medium and long-term horizons 

and ensuring adequate reserve capacity amidst moderate electricity demand 

expectations.   
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Figure 2.6. Shares of resources in electricity generation  

The uncertainties in both electricity generation and demand are managed by natural 

gas power plants which have the highest marginal cost in the generation fleet except 

oil power plants, but at the same time have moderate amount of flexibility. After 

hitting an all-time high in terms of the amount of electricity generation with over 

120000 GWh in 2014 which is a remarkably dry year, its generation shrinks to 57000 

GWh in 2019, a wet year. Thereby, the share of gas in electricity generation 

plummets from 48% to an unexpected 19%.  

In the reduction of the share of natural gas, firstly electricity demand and secondly 

renewable energy investments has played a major role. If Turkey had succeeded in 

growing its electricity demand at the same level, which is 5%, occurred in the period 

of 2000-2015, the electricity generation would have reached 340000 GWh. It means 

that around 40000 GWh higher electricity demand would have been compensated by 

natural gas, and its share would have been significantly higher. The share of 

renewable energy resources excluding hydropower increases from 1% in 2009 to 

15% in 2019. If over 16000 MW renewable energy investments had not been 

achieved, the electricity generation from natural gas would have been 45000 GWh 

more. Furthermore, the share of intermittent resources in electricity generation, 

including wind, solar and run-of-river hydropower reaches a remarkable 15% in 

2019. There are not any significant adverse effects reported so far due to 

intermittency. However, the lack of flexible generation capacity like pumped 
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hydropower and battery energy storage facilities as well as the limited electricity 

trade opportunities considering the comparatively low level of electricity 

consumption in the neighbouring countries require carefully assessing the impacts 

of intermittent renewables on the grid and measuring the maximum possible level of 

intermittent resources in electricity generation. 

2.4 Supply and Demand Balance 

One of the most important indicators of security in an electricity system is reserve 

capacity. Reserve capacity represents the supply and demand balance in a system, 

and has two components such as total available electricity generation capacity and 

total electricity demand. The difference among these two components defines the 

reserve capacity. 

For a secure operation of electricity system, there is always a need to keep certain 

amount of reserve capacity depending on the characteristics of generation resources. 

From the point of view of electricity system operator, it is more preferable to have a 

balanced reserve capacity throughout a year. It can also be translated as excessively 

high or low reserve capacity is undesirable. 

As mentioned previously, the electricity demand in Turkey is significantly higher in 

summer and winter months compared to other seasons of a year. Therefore, the 

pattern of electricity demand realizes in such a way that it influences the reserve 

capacity in the decreasing direction in summer and winter months, and vice versa in 

the increasing direction in spring and autumn seasons.  

As the share of renewable energy resources increases, their capacity factors become 

more influential on the reserve capacity. The capacity factors of the most dominant 

renewable energy resources in the Turkish electricity generation fleet, including 

storage hydropower are calculated based on [4] and shown in Figure 2.7, for a 4-year 

period from 2015 to 2018. Wind has a generation pattern that is higher in summer 

and winter, and lower in other seasons of the year, which perfectly matches the 
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pattern of electricity demand. Solar capacity factor is highest in summer season; 

however, it has a pattern that is above its yearly average in spring and autumn seasons 

and below its yearly average in winter season. This feature of solar generation is 

incompatible with electricity demand, hence careful analysis should be made upon 

possibly high amount of solar capacity commissioning in the future. As for run-of-

river type hydropower, it has a negative correlation with electricity demand given 

nearly the half of its yearly generation occurs in spring season. Storage hydropower 

generation is more stabilized throughout a year. It has above-average generation 

pattern in summer and winter seasons, which indicates that its flexibility is utilized 

when needed in those months while concurrently water inflow is lower. However, 

its summer-like capacity factor in April signifies its flexibility has a degree up to a 

certain extent, and its generation has to increase even when electricity demand is 

low.  

 

Figure 2.7. Capacity factor of renewable energy resources by months 

In a similar fashion, the capacity factors of fossil fuel generation capacity including 

hard coal, lignite and natural gas are calculated based on [4] and shown in Figure 

2.8, for a 4-year period from 2015 to 2018. All of these resources have something in 

common, that is, their capacity factors are lowest in spring season and highest in 

summer season. This generation pattern occurs as a result of electricity demand and 

high amount of electricity generation from hydropower in spring season.  
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Figure 2.8. Capacity factor of fossil fuel resources by months 

As a consequence of supply and demand balance, a certain amount of fossil fuel 

generation capacity becomes idle in spring season which is mostly preferred for 

planned generator maintenance. This can be followed from Figure 2.9, calculated 

based on [4]. Generator maintenance schedules are proposed by generation 

companies and approved by the system operator. The system operator has the right 

to disapprove the proposed maintenance plan of a company and reschedule it. The 

motivation of the system operator is to maintain the secure operation of power 

system with adequate amount of reserve capacity.  

 

Figure 2.9. Weekly average fossil fuel capacity in maintenance in 2018  

As the future electricity generation fleet of Turkey is expected to evolve based on 
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between electricity demand and electricity generation from solar, except summer 
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season, it is essential to predict the effect of capacity evolution on the existing 

generation maintenance schedules, and regarding it as an important parameter in 

medium and long-term planning horizons. 

2.5 Electricity Market 

The electricity sector in Turkey has experienced major changes since early 2000s. 

The restructuring process was stirred by the unbundling of vertically integrated 

Turkish Electricity Company into Turkish Electricity Generation & Transmission 

Company and Turkish Electricity Distribution Company in 1993. The attempts to 

attact private sector investment were not successful amidst surging electricity 

demand in the second half of 1990s, and thereby new power plant projects would be 

constructed by the BO and BOT models with 20-year purchase guarantee agreements 

to be signed in order not to have supply shortage in 2000s. During the financial crisis 

in 2001, it had already been understood that this mechanism was not sustainable, and 

private sector investments would be crucial for new generation capacity requirement. 

In this regard, the restructuring process gained pace as an electricity market law was 

enacted which unbundled generation, transmission and distribution activities and 

established Energy Market Regulatory Authority (EMRA), an independent body for 

the supervision of electricity sector. With all these attempts, the basic idea is to create 

a free market environment and attact private sector investments in order to 

sufficiently meet electricity demand. These are followed by the establishment of the 

organized electricity market in 2006, which is proceeded by the opening of the day-

ahead planning with hourly settlement in 2009, and as the final point, the day-ahead 

market mechanism started in late 2011. 

The electricity market structure can be broadly classifed according to the delivery of 

electricity, such as physical and financial. As of the end of 2019, the financial market 

has yet to started its operation by Borsa Istanbul. The physical market, which 

requires physical delivery, can be categorized into three parts such as bilateral 

contracts, spot market and real time market. The bilateral contracts among market 
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participants are realized individually or via over-the-counter (OTC) platforms, but 

the trade volumes in these environments are low. The spot market is composed of 

day-ahead and intraday markets operated by the market operator, EXIST. The real 

time market is composed of balancing power market and ancillary services market 

operated by the electricity system operator, TEİAŞ.  

Among all of these market environments, the one that defines the reference price for 

electricity is the day-ahead market. In the day ahead market, the offers of market 

participants are submitted and the market is cleared one day before the delivery. In 

liberalized markets, day-ahead is a crucial point of time for market participants to 

cover their positions [9]. 

Although in EU there are examples for smaller time frames such as 15-minute, the 

day-ahead market in Turkey operates on hourly basis, and the reference price for 

electricity, named as market clearing price (MCP), is determined at the level where 

supply and demand curves intersect for each hour [10]. The day-ahead market 

operates on portfolio basis, not on plant basis, indicating that if its sell offer is 

accepted, a market participant has the option to satisfy the need for electricity 

generation from any plant in its portfolio.  

The offers in the day-ahead market can be categorized as hourly, block and flexible. 

The most preferred types of offers are hourly and block. Hourly offers contain 

information regarding quantity and price for the respective hour whereas block offers 

include quantity and price information along with the time period encompassed. 

Block offers are either fully accepted or fully rejected, and they are preferrable by 

market participants having power plants with lower flexibility. More details on the 

bid types and market clearing algorithm are broadly given in [10].  

2.6 Electricity Price 

Since the MCP determined in the day-ahead market is the representative price for 

electricity sector, it has a crucial role in defining how much generators earn and how 
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much consumers pay. The level of MCP in both Turkish Lira and USD terms is 

shown on yearly basis as in Figure 2.10, from the year 2012 to 2019 [4]. Electricity 

price is an indicator of supply and demand balance. Therefore, it is expected to 

evolve in an inversely proportional relation with reserve capacity. However, since 

the reserve capacity is not the only influential parameter, commenting on the trend 

of electricity price requires examining in a broader perspective.  

 

Figure 2.10. MCP in Turkish Lira and USD terms  

In USD terms, the MCP in Turkey has a declining trend. The main reason behind the 

corresponding decline is the fall of oil prices after the year 2014, which influenced 

oil-indexed natural gas prices starting from the year 2015. Considering that the 

market participants submit their true marginal costs for electricity generation, the 

accepted offer with the highest price in the day-ahead market determines the MCP 

for the whole system, and natural gas has an important share in the electricity 

generation fleet; natural gas power plants become the marginal ones at most of the 

hours in a year, which makes MCP to be closely related to natural gas price. It should 

be noted that oil price has only slightly recovered from its fall in 2015. The second 

important aspect of the decrease in MCP is the effect of depreciated Turkish Lira 

against other currencies. Lastly, the third critical aspect can be counted as the 

slowdown of high electricity demand growth, which improves average reserve 

capacity. All of these factors can be said to play important roles on the trend of MCP 
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in recent years. Despite the fact that the years 2014 and 2018 coincide with dry 

seasons, the MCP in 2014 is lower than the previous year, and the MCP in 2018 is 

around the similar level of the year 2017. This is an indication of that the 

aforementioned three factors conceal the effect of hydropower availability on the 

MCP in USD terms.  

In Turkish Lira terms, the trend of MCP is almost stable from the year 2012 to 2017. 

The effect of depreciated currency is reflected on MCP starting from mid-2018 with 

increased natural gas prices for power plants. The effect of dry and wet seasons can 

be followed more clearly from Figure 2.10. The MCP in 2014 gained nearly 10% 

compared to the year 2013 due to dry season, which is then followed by a sharp 

decrease on the next year. However, caution is always needed due to the mixed effect 

of various factors while commenting on MCP.  

The inversely proportional relationship between daily average reserve capacity and 

MCP can be followed from Figure 2.11. As reserve capacity becomes tighter, more 

expensive units must be operated, and thus MCP increases as expected. Therefore, 

availability calculations can be said to have crucial importance in order to properly 

represent supply and price dynamics. Likewise, this relation can also be interpreted 

with the trend of monthly average MCP as shown in Figure 2.12. In Turkish Lira 

terms, the sharp valleys in spring seasons of the years 2012, 2015, 2016 and lastly 

2019 are originated from increasing hydropower generation accompanied by 

increasing reserve capacity. The effect of natural gas shortages on MCP can be seen 

on February 2012, December 2013 and December 2016. Those are the times when 

MCP either hits the price cap of 2000 TL/MWh or approaches this cap. The effect 

of doubling natural gas price on MCP can also be noticed, which is later stabilized 

on the following year.  

The hourly pattern of MCP on monthly basis for the year 2019 is shown in Figure 

2.13 based on [4]. This figure would have been drawn in terms of USD; however, 

the effect of currency rate fluctuation might have been misleading. The year 2019 

coincides to a wet season, and the characteristics of a wet season can be followed 
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especially from May. In early hours of May, the average MCP approaches 0. The 

similar effect can also be noticed in June and even in January in which unexpectedly 

high amount of water inflow and rainfall occurred, respectively.  

 

Figure 2.11. Daily average reserve and the corresponding MCP for the year 2018 

 

Figure 2.12. Monthly average MCP in Turkish Lira and USD terms  
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Figure 2.13. Hourly average MCP by month  
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Many further elaborations can be made on Figure 2.13. Probably one of the most 

remarkable ones, when compared to the pattern of electricity demand on hourly 

basis, is that the highest price within a day occurs late in the afternoon and in the 

evening, which is slightly different than the pattern of demand. This is a crucial 

finding showing the impact of reserve capacity on MCP through the availability of 

resources. Among them, even with 6000 MW installed capacity, solar generation 

notably affects the MCP in the decreasing direction especially at noon. This can be 

observed in nearly all months except summer and December. 

2.7 Medium and Long-Term Planning Studies 

The planning studies on electricity sector, in a way, regards electricity security of 

supply, and those are defined in the electricity market law in Turkey. The 

responsibility for monitoring electricity security of supply and taking necessary 

measures is given to the ministry (MENR).  

The first study in this context is the electricity demand projection study covering the 

next 20 years, and it is published biennially. The report consists of the methodology 

and the results with three scenarios [1]. 

The electricity demand projection study is the reference point for the electricity 

system operator, TEİAŞ, to prepare the long-term electricity generation plan for the 

next 20 years and the generation capacity projection for the next 5 years. The latter 

one is published annually; however, to the best of its knowledge, the first study is 

not publicly available. The generation capacity projection report considers 

generation investments under construction and calculates reserve capacity as well as 

electricity generation potential according to various scenarios. In [11], this report is 

described as having a practical and empirical approach, and not based on a modeling. 

It rather focuses on a medium-term horizon to check whether the planned projects 

will suffice to meet the future electricity demand. In the past, for supply modeling 
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WASP model was used by TEİAŞ in order to determine the future electricity mix, 

dispatch and capacity planning on yearly basis having 12 time steps [11].  

Taking into account the aforementioned studies, as well as the electricity market 

development report of the regulator, EMRA, the ministry is responsible for preparing 

the electricity security of supply report on annual basis. According to the law, the 

supply and demand balance, diversification of resources, findings on security of 

supply and operation of electricity market are taken into consideration. Similar to the 

long-term electricity generation plan, the electricity security of supply report is not 

publicly available.  

Given that two of the aforementioned studies are not available for the readers, it is 

not possible to comprehensively comment on neither those studies themselves nor 

the methodologies that they utilize. However, for the generation capacity projection 

report, the expected electricity generation by fuel that will meet the future electricity 

demand is not presented. In this context, the indicators related to electricity 

generation cannot be calculated. Furthermore, the results are provided on annual 

terms, and monthly details do not exist. As for electricity demand, two of the three 

scenarios from the official demand projection study are used in the generation 

capacity projection report. In such a medium-term study, the consideration of the 

possible range for electricity demand including economic and weather factors, and 

presenting results on monthly even daily basis at least for the following year can be 

a great contribution, which would increase the observability of electricity sector. In 

[11], the planning activities within the ministry and its relevant bodies are described 

to be based on ad-hoc projects, and the studies on demand forecasting, capacity 

planning and greenhouse gas emissions forecasting are performed separately.  

Further studies performed within the ministry and its relevant bodies are discussed 

in [12], mostly in terms energy demand modeling. Electricity demand forecasting 

studies are performed by the ministry for short-term, i.e. 45-day horizon, and long-

term, i.e. 20-year horizon. For various horizons, various studies are also performed 

or consolidated by EMRA and TEİAŞ. Based on the electricity market law and 
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related regulations, distribution companies submit their 10-year demand forecasts 

for their regions in the context of network development planning. These forecasts 

are said to be generally relying on statistical or econometric modeling such as 

ARIMA, EViews, etc. Moreover, short-term electricity demand and supply 

forecasting are performed by TEİAŞ, and these studies are said to be not relying on 

specific models [12]. 

As for electricity price forecasting, there are not any responsibilities or activities 

defined by the law for short, medium or long-term. This type of studies is possibly 

be prepared by the relevant bodies associated with the ministry and utilized when 

needed. 

2.8 Simplified Electricity Market Model 

The consideration of the effect of day-ahead market in medium and long-term 

planning studies requires the utilization of a simplified market model that can operate 

efficiently.  

From modeling perspective, the market clearing problem even for one day is 

exceptionally complex. However, in the changing market environment, electricity 

generation is shaped by day-ahead market. Therefore, in order to reflect the effect of 

day-ahead market and calculate an indicative electricity price more properly in 

planning activities, some critical assumptions have to be used regarding the rules of 

the market, number of market participants, elasticity of electricity demand, etc. 

These are preferred in order to simulate the electricity market in a realistic way and 

obtain solution in a reasonable amount of time. 

The famous supply curve, or also known as the merit-order curve, as well as demand 

curves at various time points and the corresponding levels of MCP are exemplified 

in Figure 2.14. The x-axis corresponds to the quantity of electrical energy, and the 

y-axis corresponds to the marginal cost for the respective supply source.  
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Figure 2.14. A representation of merit-order curve  

The merit-order curve, formed by the concetenation of the upper lines of each supply 

block, is ordered according to the available supply from the lowest marginal cost to 

the highest one. Typically, since renewable resources have nearly zero marginal cost, 

they are placed at the bottom of the merit-order curve. Then, there comes nuclear, 

coal and natural gas power plants ranked majorly according to fuel cost for unit 

electricity generation. The last part of the supply curve is composed of oil power 

plants with considerably higher unit electricity generation cost. The intersection 

point of the merit-order curve and demand at the relevant hour determines MCP. If 

supply is considered to be fixed, with the increasing or decreasing demand, MCP is 

also expected to increase or decrease, respectively. Considering that there can be 

significant marginal cost differences among supply oppornuties, forecasting 

electricity supply as well as electricity demand is of vital importance in electricity 

price forecasting studies. The price forecasting activity in this thesis is fulfilled based 

on hourly merit order curves, and based on the assumption that each power plant and 

the group of power plants showing similar characteristics are the market participants 

that submit orders on hourly and block basis. Additionally, the demand is assumed 



 

 

36 

to be inelastic in order to keep the problem linear and be able to obtain the MCP 

forecast for long-term horizons without computational difficulty. 

In the day-ahead market, MCP is determined according to the hourly orders 

regardless of block orders. Market clearing prodecures and acceptance criteria for 

block orders can vary across countries. When a block order is accepted, it is assumed 

to be an offer regardless of the resulting MCP and placed at the bottom of the merit-

order curve with 0 marginal cost. The acceptance of a block order mean it will earn 

at least at the submitted offer price, and it is possible to earn according to MCP if the 

submitted offer price is lower. This approach is utilized in the thesis.  

The fuel cost of each power plant to generate 1 MWh electrical energy can be 

calculated according to the fuel sales price, excise tax, grid/transportation cost for 

the delivery of the fuel and efficiency of the power plant. The fuel cost is 

supplemented by the variable operation and maintenance costs and variable 

component of the electricity grid tariff. The summation of all of these components 

yields the marginal cost for a power plant. Thanks to the competitive environment in 

the electricity market, market participants have the motivation to submit their true 

marginal costs in order to obtain revenue. The fixed costs such as the investment 

costs, fixed operation and maintenance cost and fixed part of the electricity grid tariff 

are not taken into consideration while calculating the marginal cost, as they are to be 

paid regardless of whether they operate or not. This is the prevalent approach of 

submitting offers in the Turkish day-ahead market, and the same logic is also utilized 

in this thesis.  

2.9 Summary 

According to the information given in this chapter, the main features of the electricity 

sector in Turkey can be summarized as follows:  
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 The electricity demand in Turkey is closely related to economic activity. The 

variations of demand across seasons and hours are significant. The electricity 

demand is expected to double and surpass 600 TWh in 20 years.  

 Turkey has a balanced electricity generation fleet with the contribution of 

hydropower, natural gas, coal and other renewables. Similar to the trends 

around the world, the share of renewable energy resources has been steadily 

rising. Turkey has a rich potential of wind and solar, and thanks to this 

property, it is highly possible that the amount of intermittent generation can 

increase tremendously in long term. 

 From year to year, according to hydro inflow conditions, hydropower 

generation dramatically affects the generation level of natural gas power 

plants. The uncertainties both in demand and supply sides are mostly 

undertaken by those facilities. 

 Seasonal variations among the generation capability of resources are 

significant. The wind generation pattern is perfectly compatible with 

electricity demand. For solar, the generation is compatible with the summer 

demand; however, for other seasons of the year, solar generation 

characteristics have a mismatch with electricity demand. The run-of-river 

type hydropower plant generation is again incompatible with electricity 

demand, having the highest amount of generation in spring season. The 

storage hydropower generation contributes to the system in terms of 

flexibility, but moderately high amount of generation in spring season 

indicates that its flexibility has a limited extent. The availabilities of thermal 

power plants are influenced by their maintenance periods, and they are 

determined based on the motivation to keep the reserve capacity in the system 

stable within a year. 

 The electricity sector in Turkey has undergone major changes since 2000s. 

There is an electricity market structure aiming to attract private sector 

investments. The reference price for electricity, called as the MCP, is 
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determined in the day-ahead market, similar to the practices in EU and other 

liberalized electricity markets around the world.  

 The level of MCP is influenced by the variable cost of natural gas power 

plants which are marginal at most times. The seasonal pattern of MCP 

reflects the conditions in supply and demand balance. Even with 

comparatively low solar capacity of 6000 MW, the MCPs at noon and 

afternoon are affected in the decreasing direction when the availability of 

solar power plants hits the maximum. 

 Medium and long-term studies in Turkey are defined in the electricity market 

law. The studies regarding supply side are either not published or prepared 

based on a practical approach, not modeling. It cannot be said that the 

planning activities regarding different levels and horizons are in harmony. In 

those studies, there is no evidence that the operation logic of day-ahead 

market is reflected, nor are there any studies published regarding electricity 

price forecasting on various horizons. 

 The utilization of a simplified electricity market model is needed in order to 

fulfil the planning and forecasting activity on hourly basis and in longer 

horizons. In the simplified electricity market modeling approach, the day-

ahead market operation can be emulated through the formation of merit-order 

curves including the reflection of hourly and block orders. 
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CHAPTER 3  

3 LITERATURE REVIEW 

In this chapter, the literature review on the components of the proposed electricity 

market modeling methodology such as electricity demand forecasting, electricity 

price forecasting, generator maintenance scheduling (GMS), and generation 

expansion planning (GEP) is presented. 

In the first and second parts, the classifications regarding time horizon and 

forecasting techniques are given for electricity demand and price forecasting, 

respectively. In the third part, the literature review is presented on the basis of GMS 

problem and how GMS is approached in long-term planning studies. In the last part, 

the literature is reviewed based on the structure of GEP problem, and bilevel models 

and solutions. 

3.1 Electricity Demand Forecasting 

Traditionally, electricity demand forecasting studies are critical for planning and 

operational decisions [13]. With the deregulation of electricity sector and 

technological progress, they become more important for both grid operators and 

market participants as well as regulators and ministries; and due to the stochastic and 

uncertain characteristics, accurate forecasting of electricity demand is still a 

challenging problem [14]. 

Demand forecasting studies can be classified according to time horizon. They can 

roughly be separated into two classes such as short-term load forecasting (STLF) and 

long-term load forecasting (LTLF) [15]. Typically, they are classified into three 

categories such as STLF, medium-term or mid-term load forecasting (MTLF), and 
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LTLF [13], [14], [16]. There are a couple of studies that introduce very short-term 

load forecasting (VSTLF) as an additional class [17], [18]. Although there is not an 

exact consensus on the cut-off time horizons i.e. the forecast ranges, they are 

generally stated as from 1 hour to 1 day for VSTLF, 1-2 weeks for STLF, 1-3 years 

for MTLF, and 10-20 years for LTLF [17], [13] - [18].  

In the literature, it is frequently stated that STLF studies are more prevalent than 

other classes since STLF is related to the daily operation of generation, and the 

studies for MTLF as well as LTLF are said to be few in number [17], [14], [18] - 

[19]. It can be alleged that there are a growing number of studies covering short term 

with both statistical and artificial intelligence techniques. The main purpose of STLF 

is to obtain information for economic and secure operation of power system while 

LTLF is employed for investment planning and decisions [20]. MTLF studies should 

not be underestimated considering their contribution on outage & maintenance 

scheduling, meeting load requirements, coordination of load dispatch and price 

settlement, economic operation of power system, hydro-thermal coordination, hydro 

resource management, cost efficient fuel purchasing strategies, and better contract 

negotiations in electricity trading [17], [16], [20] - [21], many of which do not fall 

into interest of short and long time horizons [22].  

With regard to forecasting techniques, demand forecasting studies are classified into 

two main groups such as statistical techniques and artificial intelligence techniques 

[17], [13] - [14]. Statistical techniques include multiple linear regression (MLR) 

models, semi-parametric additive models like generalized additive model (GAM), 

time series approaches including ARMA, ARIMA, SARIMA, etc. models, 

exponential smoothing models and similar-day approaches. Artificial intelligence 

techniques contain artificial neural network (ANN), fuzzy logic, support vector 

machines (SVM), and other methods such as genetic algorithm, expert systems, 

adaptive neuro-fuzzy inference system (ANFIS), and hybrid approaches. High 

adaptability to solve problems with nonlinear relations is stated as there is growing 

interest for intelligent techniques while statistical techniques are preferred for better 

interpretation and lack of explanatory variables [21], [23]. 



 

 

41 

For MTLF, the literature is highly concentrated on artificial intelligence-based 

models, mostly ANN. Statistical techniques can be used separately or in comparison 

with ANN models. There is not any consensus on the best model for MTLF, and the 

results vary across cases or countries and can put forward different methods. For 

example, in [24], optimal network is found for ANN, and it is used to forecast the 

weekly electricity peak load of the next 52 weeks. [25] compares the results of ANN 

and MLR models, and ANN is found to be more reasonable and satisfactory. In [16], 

ANN and SVM are chosen to be applied to forecast the medium-term load, and it is 

concluded that although both ANN and SVM models successfully solves the 

problem of forecasting the electricity load for a period from a day to a year, using 

SVM to do load forecasting is faster as well as much more stable and reliable. [18] 

considers a variety of methods including exponential smoothing, SARIMA, 

ARIMA, ANN and ANFIS. Satisfactory results are claimed by ANFIS and ARIMA 

based various approaches. In [26], ANN is applied along with exponential smoothing 

and ARIMA, with ANN presenting better forecasting accuracy. 

As for GAM, there are only a couple of demand forecasting studies in the literature. 

In [27], GAM is used in a short-term demand forecasting study in order to forecast 

uncertainty in electricity demand, and the focus is given to probabilistic forecasting. 

In [28], GAM is again used for short-term demand forecasting, serving for modeling 

implicit nonlinear relations between response and explanatory variables. A semi-

parametric additive model is used in [29] for long-term peak electricity demand 

forecasting, and proposed in [30] for both short-term and long-term demand 

forecasting. 

As a non-parametric regression technique, multivariate adaptive regression splines 

(MARS) and its application for prediction purposes have increased recently, but so 

far, its usage in electricity sector has been mainly for price forecasting purposes [31], 

[32]. MARS can be seen as a method for flexible regression modeling of high 

dimensional data, and it uses piecewise basis functions to define relationships 

between a response variable and predictor variables [33], [34]. It enables fitting 

interaction among variables, but interactions are specified locally rather than 
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globally [34]. It emerges as a successful tool to model nonlinearities like ANN, but 

while doing so it conserves the property of interpretability. 

In this thesis, based on the literature review and objectives of the thesis, a proper 

electricity demand forecasting technique is searched for the medium-term 

forecasting horizon. Firstly, medium-term demand forecasting is performed on daily 

basis by utilizing two types of models based on statistical techniques such as MLR 

and GAM, and the improved performance of GAM is revealed. Secondly, medium-

term demand forecasting is performed on monthly basis by utilizing four models, 

from the classes of statistical and artificial intelligence techniques, such as MLR, 

GAM, MARS and ANN. In the end, it is found out that MARS model has superior 

performance among its counterparts while GAM and ANN show similar and 

satisfactory performances, as alternatives to MARS. Further details and discussion 

are presented in Section 4.1.  

3.2 Electricity Price Forecasting 

Similar to electricity demand forecasting, electricity price forecasting studies can be 

classified according to forecast period and modeling approach. 

As for modeling approach, various classifications can be claimed. In [35], price 

forecasting models are divided into three categories such as financial models, 

production cost models and market simulation models. Financial models benefit 

from time series methods, and they are based on the analysis of historical data. This 

method is only advised for the short-term horizon. Production cost models operate 

based on the principle to meet the electricity demand with minimum cost. They are 

said to capture the points that econometric models ignore. They are criticized for not 

being able to reflect the changing market conditions. Unlike production cost models, 

market simulation models can take into account the strategic decisions of market 

participants, and they are generally based on game theoretic approaches. Since the 



 

 

43 

behavior of market participants needs to be modeled, this type of modeling requires 

extensive data on purchase and sale bids which are not publicly available. 

One of the limited number of books on price forecasting [36] makes a classification 

such as production cost models, equilibrium models, fundamental models, 

quantitative models, statistical models, and artificial intelligence-based models. 

Production cost models are said to determine the market price based on supply and 

demand curves, and they are criticized for not being able to model market power. 

Equilibrium models employ game theoretic approach, but they include complex 

optimization procedures and require significant running time. Fundamental models 

are again based on supply and demand curves, with special attention to the 

parameters affecting electricity price such as temperature, precipitation, water 

inflow, snow cover, etc. The motivation of these models is to enable the user to be 

able to explain the fundamental changes in price. Quantitative models are known as 

stochastic, econometric and reduced-form models. They aim to predict the prices in 

derivatives market and use the statistical properties of electricity prices in 

forecasting. Statistical models employ similar day methods, exponential smoothing, 

regression, AR, ARMA, ARIMA and GARCH methods. They highly rely on 

historical data. Artificial intelligence-based models are attributed to be flexible, good 

at modeling nonlinearities. Similar to demand forecasting, ANN models are mostly 

used for price forecasting in the short-term forecast horizon. 

Based on the range of forecast period, price forecasting models can be divided into 

three categories. Long-term price forecast typically covers a period of a couple of 

years or longer, which has an objective of supporting strategic decisions. Medium-

term price forecast typically covers a period up to a couple of years and is used for 

risk management, resource allocation, bilateral contracting, hedging strategies, and 

budgeting. Short-term price forecast typically covers a period up to a couple of weeks 

and is related to portfolio management and maximizing profit [37], [38]. 

There are a large number of studies for short-term electricity price forecasting, but 

medium-term and long-term studies are few in number. Some of the medium-term 
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studies focus SVM in [39] and [40]; SVM, radial basis function neural network 

(RBF-NN) and weighted nearest neighbor (WNN) in [41], autoregressive modeling 

in [42], market equilibrium model with Monte Carlo simulation and spatial 

interpolation techniques in [43]. 

In [39], a SVM model is developed and tested by New England ISO data in United 

States, with data concerning average fuel price, demand, weather, calendar days, 

import/export power while economic and demographical factors are not included. 

Data preprocessing, feature selection and model selection processes are applied. It is 

found out that by normalizing the input data, forecasting accuracy can be enhanced 

with the use of SVM. Similarly, in [40], multiple SVM models are developed and 

tested at this time by the PJM data in United States, in order to forecast hourly 

electricity prices of six months ahead. A data classification module is designed 

before the price forecasting module in order to preprocess the input. In [41], various 

forecasting models and inputs are compared for Nord Pool in Europe and Ontario in 

Canada. Data preprocessing, feature selection and model selection processes are 

applied. WNN method relying on finding similarities in time series yields the best 

results for less volatile Nord Pool, whereas the most accurate predictions are 

obtained by the SVM model for Ontario which has highly dynamic price trends. In 

[42], two regression based linear forecasting models are developed to predict 

monthly average electricity prices for a full year forecast horizon of 12 months 

ahead, and they are tested with the data of Nord Pool. First lagged historical price is 

chosen to improve the accuracy of the results based on the finding that there is a 

large correlation between the electricity prices of consecutive months. In [43], a 

probabilistic hourly electricity price forecasting is performed for the Spanish market. 

The proposed approach consists of nested combination of several modeling stages 

such as generating multiple scenarios of uncertain variables, designing a 

fundamental market equilibrium model incorporating Monte Carlo simulation, 

reducing the number of scenarios and utilization of spatial interpolation techniques 

to estimate feasible realizations of electricity prices.  
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Recently, there is an increasing trend in the literature towards probabilistic 

forecasting of electricity prices. This is performed by various techniques such as a 

hybrid forecasting method by recalibrating a fundamental model with quantile 

regression in [44], quantile regression analysis in [45], generalized extreme machine 

learning in [46], a two-stage method based on extreme machine learning and 

maximum likelihood method in [47], a multiparametric linear programming 

technique in [48]. 

The literature on electricity price forecasting for the Turkish case is limited to a 

number of studies. These studies are concentrated on short-term price forecasting 

and methods such as time series models like ARIMA, SARIMA, etc. as in [49], [50], 

and artificial intelligence techniques like ANN as in [51], [52]. The aim of those 

studies is to obtain point forecasts rather than obtaining price ranges in the short-

term horizon. 

In [49], the dynamics of electricity prices observed in Turkish day-ahead market and 

their relationship with temperature are explored. AR and ARX models are compared, 

and it is concluded that there is little relation between price and temperature 

fluctuations. In [50], a combination of SARIMA and ANN model with back 

propagation learning is proposed. The trend component of price is forecasted by 

SARIMA whereas ANN forecasts the nonlinear residuals. Almost 4% of reduction 

of forecast errors is said to be achieved. In [51], an ANN model is created, and its 

performance is compared with a model built via ARIMA approach. Several types of 

inputs such as historical prices of similar hours of n days and m weeks before, 

weighted average temperature of the biggest three cities, electricity demand forecast, 

estimated volume of bilateral contracts, total available capacity and dummy variables 

indicating the respective day are utilized. It is found out that ANN model shows 

slightly better performance for the test period. In [52], the performances of an ANN 

and MLR model are compared. Historical price and load variables are claimed to be 

sufficient for accurate day-ahead price forecasting. It is concluded that MAPE for 

the test period is below 10%, hence the proposed model is said to produce reasonable 

accuracy for price forecasting. 
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The literature review process has shown that electricity price forecasting studies 

concentrate just on the price itself, not on other types of outputs such as generation 

by fuel, reserve capacity, etc. This aspect is more of a concern in medium and long-

term planning models included in commercial software dedicated for energy sector 

planning. Also, the general preference in the literature is to utilize statistical and 

artificial intelligence-based models rather than fundamental models. In this thesis, 

the electricity price forecasting approach belongs to the classification of fundamental 

models, which reflects the supply and demand dynamics of the market on hourly 

basis. This is necessary in order to establish a reasonable and transparent connection 

between electricity price and the influential factors mainly demand and supply. By 

doing so, it is possible to explicitly investigate the effects of parameters such as 

economic and climate conditions on electricity price through their effects on 

electricity demand and supply. 

Unlike electricity demand modeling, a literature review section is not dedicated for 

electricity supply modeling since there is not a specific discussion on how to 

determine the availability factors of power plants. These factors are calculated and 

utilized based on the statistical analysis of historical realizations, as presented in 

Section 4.2.  

In this thesis, the strategy is determined based on firstly proving the effectiveness of 

the proposed electricity price modeling approach in the medium-term forecasting 

horizon, as discussed in Section 4.3. Then, the utilization of this approach is extended 

to the long-term horizon, as presented in Chapter 5, considering the objectives of the 

thesis. The long-term utilization of this approach requires two modifications in 

electricity supply modeling. The first one is the inclusion of generator maintenance 

scheduling for thermal power plants in order to obtain a dynamic electricity supply 

modeling strategy in the long-term horizon. The second one is the inclusion of 

generation expansion planning in order to determine a reasonable electricity 

generation fleet for a future year. The following two sections present the literature 

review on those two topics.   
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3.3 Generator Maintenance Scheduling 

In this thesis, the role of generator maintenance scheduling is to enable a dynamic 

electricity supply modeling beyond the medium-term horizon. Therefore, emphasis 

is given to obtaining proper maintenance schedules for thermal power plants, 

calculating the availability factors accordingly, and then utilizing them in price 

modeling. Considering this framework, in this section, the literature is reviewed 

firstly according to the GMS problem itself, then long-term planning studies are 

examined from the GMS point of view. These are summarized under the next two 

titles. 

3.3.1 GMS Problem 

The GMS problem has been widely studied in the past. By its nature, the GMS 

problem is a nonlinear, nonconvex and complex combinatorial optimization 

problem, hence it is a difficult problem to solve [53], [54]. The GMS problem have 

an impact on both short and long-term decisions such as unit commitment, storage 

hydropower plant operation, fuel scheduling, reliability calculations, generation 

costs, and system design [55]. Therefore, it can be alleged that GMS strongly affects 

MCP and the corresponding supply composition in electricity markets. 

There are two maintenance categories for power plants, such as corrective and 

preventive. Corrective maintenance is performed after breakdown occurs, and in the 

modeling procedure this affect is generally represented by a forced outage rate (FOR) 

by power plant. Preventive maintenance is performed in order to reduce the 

probability of failure and occurs at predetermined time intervals [56]. The GMS 

problem is concerned with the preventive maintenance. 

GMS studies can be evaluated in terms of solution methods, objective functions, 

constraints, time horizon, unit of time period, and targeted plant type. 
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Solution methods proposed in the literature can be broadly grouped under 

mathematical programming approaches, heuristics and metaheuristics, constraint 

programming, and game theory [56]. Under the group of mathematical 

programming, integer programming (it can be in the form of both mixed integer 

linear programming and integer linear programming) and dynamic programming can 

be counted. Heuristics and metaheuristics include genetic algorithm techniques, 

particle swarm optimization, simulated annealing, tabu search, knowledge-based 

models, etc. [53], [55] - [57]. Those techniques can be coupled with each other in 

search of yielding improved results. Constraint programming and game theory 

studies are few in number. 

Objective functions for the GMS problem can be categorized as reliability-based and 

cost-based or combination of both. From generator point of view, it is required to 

minimize the generation and operational costs or increase the revenues based on 

MCP, whereas from the perspective of system operator, it is required to operate the 

system by maintaining reliability [55]. Possible objective functions for the GMS 

problem are regarded as maximizing the minimum reserve (also known as “leveling 

of reserves”), maximizing the minimum of supply reserve rate (defined as the ratio 

of reserve and peak demand) by time interval, minimization of standard deviation in 

supply reserve rate, minimizing the maximum of some reliability indices by time 

interval such as loss of load expectation or probability (LOLE or LOLP), expected 

duration of unmet demand (EDUD), expected value of energy not served (EENS). 

Reliability indicators can also be expected unsupplied energy, expected lack of 

reserve, expected lack of peak net reserve, etc.  From cost point of view, the objective 

functions can be minimizing the total generation cost, minimizing the sum of the 

overall fuel cost and the overall maintenance cost. Those can include some types of 

functions such as inclusion of multi-criteria like CO2 minimization or minimizing 

the amount of schedule change compared to the existing schedule [53] - [55], [58], 

[59]. As in [60], the focus can be a GMS coordination mechanism between the 

system operator and generation companies in restructured electricity markets. The 

coordination mechanism possibly requires complex iterative negotiations between 
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counterparts. Here, the objective is to maintain the operational reliability for the 

system operator and to maximize the maintenance preference for generators at the 

same time. 

There can be various constraints for the GMS problem. For each time interval, those 

can be as follows [53], [55], [56]: 

 Supply-demand balance: Total output of all generators must be equal to 

demand. 

 Reserve constraint: Total reserve capacity must not be less than the 

summation of demand and required reserve. 

 Duration constraint: Once the maintenance of a unit starts, this unit must be 

in the maintenance state for a predetermined number of contiguous periods. 

 Sequence constraint: A unit can be taken out at least a predetermined number 

of weeks after another unit comes back online. 

 Exclusion constraint: No more than one of units can be in maintenance state 

simultaneously. 

 Generating unit constraint: The highest and lowest generation levels with 

ramp-up and ramp-down rates can be defined for each unit. 

The constraints can also include material and manpower, maintenance priority, 

maintenance exclusion, separation between consecutive maintenance outages, 

overlap in maintenance, electricity network, etc. [56], [61]. 

Time horizon in GMS studies can be short-term and long-term. The general 

preference is long-term with a time horizon of 1 year. The unit of time period is 

subperiods of equal length, which is generally one week. Higher time resolution, e.g. 

days, is not preferred to prevent possible high computational burden. 

In the vast majority of GMS studies, the scheduling problem concerns only thermal 

generators. However, there are a couple of examples dealing with the maintenance 

schedule optimization of only hydropower plants. In [62], a mixed-integer 

programming model considering time windows of maintenance activities and 
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nonlinearities of hydropower plant generation functions is proposed for a real 

hydropower system in Canada. The study focuses on decreasing the computational 

time by applying various approaches. In [63], an ant colony optimization formulation 

is proposed as an alternative, and test is applied on a hydropower system composing 

of five stations in Australia with various water inflow conditions. 

The effect of hydropower plant generation together with thermal power plants is only 

considered in a limited number of studies. In hydrothermal systems, there are 

difficulties arising from the dynamics of reservoir systems and uncertainty due to 

water inflow as well as their ability to meet peak loads and cover outages of thermal 

units [59]. In [59], the proposed method is based on transforming the load curve into 

a thermal load curve, enabling to separate completely the hydrothermal system 

thereby facilitating both the reliability evaluations and the maintenance scheduling 

via a heuristic algorithm assessing the reliability in terms of LOLE indicator, and 

seeking to level the risk in different periods. However, the fact that the hydro energy 

and capacity are fixed for each period can be regarded as a disadvantage. In [64], the 

proposed model is a medium-term production cost model formulated as a large-scale 

mixed integer optimization problem subject to operation and maintenance 

constraints, and the optimization is performed in two stages with cost and reliability 

criteria. However, the uncertainty in hydropower plant generation is treated under 

the assumption of average hydrology, and hydro constraints do not reflect the 

economic value of the water reserve. In [65], the approach is similar to [59] and the 

aim is to determine the optimal hydro energy production for a subperiod, in this case 

one month, over a one-year time span so that the annual hydraulic constraints are 

satisfied as well as the reliability of the system is leveled over all months. The 

proposed method is based on the approximation of the functions relating the LOLE 

of months with the hydro energy allotted to it. A test is performed on the Spanish 

power system in three steps: Firstly, the hydro energy is allocated according to initial 

hydro energy utilization selected by the user. Secondly, using this allocation, a 

maintenance scheduling program of the thermal units is established using a heuristic 

algorithm. Lastly, ten equally spaced hydro levels are selected, and LOLE is 
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calculated for each one of them. It is not possible to comment on the resulting GMS 

program since it is not presented, but with this approach it is considered that there is 

the risk of utilizing hydro resources in place of the thermal capacity in maintenance, 

and the hydro potential may be unduly spent in lower water inflow periods. 

In this thesis, the GMS methodology uses integer linear programming as a solution 

method, with the objective function of leveling reserve margins, on weekly basis for 

1-year horizon. The fundamental constraints in the literature are taken into account. 

The targeted plant types are thermal power plants considering that hydropower plants 

typically have maintenance when water inflow is lowest throughout a year, thus this 

does not have a significant impact on their available generation in the case of Turkey. 

As a secondary objective function, the criterion of minimizing the maximum of 

weekly storage hydropower plant reserves is included in order to utilize them 

reasonably and prevent the irrational utilization of the resource in place of the 

maintenance capacity.  

3.3.2 GMS in Long-Term Forecasting and Planning Studies 

Long-term forecasting and planning tools generally utilize block methodology for 

load profiles and establish supply and demand balance in each load profile. This 

representation is used to address the trade-off between accuracy and computation 

time. The time frame is mostly monthly or yearly, and daily or weekly results are out 

of consideration.  

In long-term studies, there are various approaches for GMS. In [66], a long-term 

power generation expansion planning model with a more than 20-year planning 

horizon capability as well as an hourly representation of day-ahead electricity 

markets are presented, and it is assumed that the scheduled maintenance occurs in 

low-demand months, i.e. from March to May and from September to November in 

ERCOT region. The disadvantage is to assume that low-demand months are fixed 

throughout the study period, which indeed should be expected to be influenced by 
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the evolution of electricity generation capacity and different characteristics of future 

resources. 

In [67], a generation expansion planning including the effects of variable renewables 

generation on thermal plants efficiency is presented with the integration of an hourly 

unit commitment problem for a 10-year planning period. It is stated that despite not 

frequent, plant outages with different causes such as breakdown and stoppages for 

maintenance must be considered, and this is reflected in the model with only a fixed 

reliability factor which is not influenced by total system reserve. 

In [68], a long-term simulation-based market model with system dynamics is of 

consideration, focusing on long-term prices and long-term supply reliability. The 

dynamics of the market is represented by nonlinear differential equations taking into 

account system feedbacks, delays, flow structures and nonlinearities. In this model 

with an integration step of 1/16 month to solve the delay-differential equations, a 

FOR is assumed for all generating units; however, to keep the model simple 

preventive maintenance is not considered. 

In [69] TIMES model and in [70] an extension of TIMES energy planning tool for 

investment decisions in electricity generation with consideration of seasonal, daily 

and hourly supply and demand dynamics are presented for Portugal, but they do not 

take into account generator maintenance. 

Also, similar studies are performed with a variety of focus such as; 

 Long-term potential supply scenarios and associated impacts on the marginal 

cost, global warming potential, etc. are studied in [71], [72], [73], 

 Influence of environmental variables in power system expansion and the 

resulting financial costs are focused in [74], 

 Several generation agents maximizing their profits are used in a system 

dynamics and genetic algorithm model in order to characterize the evolution 

of electricity price and demand, and solving individual optimization 

problems for agents as in [75], 
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 Different modeling methodologies for balancing electricity supply resources 

composed of intermittent renewable resources and demand are considered in 

[76], and it is concluded that choosing high time resolution reveals the 

overestimation of renewable share and underestimation of the amount of 

emissions in lower time resolution studies, 

 An improved version of MARKAL model that takes into account flexibility 

feature in electricity sector is developed in [77], in order to achieve more 

reliable results for supply figures and emissions. 

As a result of literature review process, it is concluded that in long-term forecasting 

and planning studies, the general tendency is to neglect the effect of GMS or to make 

simplifications to represent the effect of GMS by some fixed factors. Also, while the 

latest studies on GMS aim to improve the existing approaches and consider various 

new obstacles, the methodology in this thesis is rather dedicated to establishing a 

novel connection between the GMS study field and power sector forecasting & 

planning studies. For an evolving electricity generation fleet in which wind and solar 

resources are expected to dominate, the potential benefits of such a methodology are 

investigated in Section 5.1, and then it is used in various case studies as in Section 

5.3. 

3.4 Generation Expansion Planning 

In this thesis, the electricity market modeling methodology needs future electricity 

generation fleet data for long-term utilization. Future electricity generation capacity 

is forecasted by GEP models. In search of a reasonable generation fleet of the future, 

instead of directly utilizing a standard GEP model in the literature, special emphasis 

is given to the investigation of the missing money problem, which is a widespread 

phenomenon in today’s liberalized electricity markets as well as a popular topic. The 

mitigation of the missing money problem in GEP studies requires paying attention 

to both GEP problem itself and the bilevel modeling structure. Therefore, in this 

section, the literature review is presented in terms of firstly the definition and 
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structure of GEP problem, and then bilevel models and the solution for mixed integer 

bilevel linear programming (MIBLP) problem. 

3.4.1 Definition and Structure of GEP Problem 

The GEP problem has been addressed in the literature since 1950s, but it is still 

taking attention of the researchers [78]. GEP studies mainly deal with determining 

the type, size and timing of generation technologies to be added to the system over a 

medium to long-term planning horizon while ensuring several constraints related to 

supply-demand balance, ancillary services requirements, policies as well as other 

technical constraints including investment, plant-related characteristics, fuel 

consumption and resource availability [79]. The GEP problem can be investigated 

from different aspects such as solving method, reliability, electricity market, 

uncertainty, time horizon, end effect, size reduction, recent developments, and 

coordination with transmission expansion planning (TEP) studies [80], [81], [82]. 

 Solving methods: They can be divided into two parts such as mathematical 

and heuristic optimization methods. The former one includes linear 

programming, mixed integer programming, iterative algorithm, bender’s 

decomposition, decision tree, dynamic programming, etc. whereas the latter 

one comprises of evolutionary programming, ant colony optimization, tabu 

search, genetic algorithms, expert system, etc. [80]. 

 Reliability: The issue of reliability can be included as a constraint in the 

optimization problem or it can directly be a part of objective function. The 

most commonly used metrics are LOLE, EENS, LOLP, etc. [80]. 

 Electricity market: From electricity market point of view, while in regulated 

systems the planning aims at minimizing total system costs, with the 

liberalization of electricity sector each market agent tries to maximize its own 

profit in deregulated systems [80]. 

 Uncertainty: Some generic uncertainties can be counted related to load, price, 

availability of system components, regulation, fuel availability, fuel cost, 
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new technologies and policies. The commonly used methods to deal with 

uncertainty are probabilistic methods, stochastic programming and robust 

optimization [80], [81]. 

 Time horizon: GEP studies can be classified as static and dynamic. In static 

GEP, the optimal expansion plan is formed for a single year at the end of the 

horizon, whereas in dynamic GEP, the years of the horizon are separately 

studied [80]. 

 End effect: The value of investments can be distorted by the fact that the 

planning horizon in GEP models is lower than the lifetime of power plants. 

There are a couple of methods that can alleviate this problem such as adding 

recovery values for the assets at the end of the horizon, running an extended 

simulation and annualizing the value of investments, the last of which is the 

most prevalent among others [81]. 

 Size reduction: For GEP models, there is the tradeoff for the detail of 

representation among short-term operational constraints and long-term 

investment decisions. If the GEP problem deals with the optimal site of 

investments, then network representation can be reduced. Also, time steps 

can be reduced by forming load levels by grouping similar ones and utilizing 

representative days [81]. Furthermore, in order to make the model with short-

term operational constraints more tractable, many types of power plants can 

be successfully grouped into categories by similar characteristics such as 

technology and fuel, which in turn results in dramatic space requirement 

reduction [83]. 

 Recent developments: Energy storage systems, demand response, integration 

of electric vehicles, evaluation of power and natural gas systems 

independence are becoming more critical as the integration level of 

renewables in the system as well as the effect of intermittency increases, and 

technological advancement in certain technologies are intensified [82]. 

 Coordination with TEP studies: With the development of computational 

capability, there has been a growing interest towards coordinated generation 
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and transmission expansion planning (GTEP) studies which co-optimize both 

problems and search for lower system costs compared to separate 

optimization approaches [80], [81]. 

In this thesis, the candidate GEP models utilize mixed integer programming among 

mathematical optimization methods. The criterion of reserve margin is adopted as a 

reliability metric. The size of the problem is reduced by grouping plants showing 

similar characteristics, without taking into account uncertainty and transmission 

network. In terms of time horizon, the dynamic GEP approach is used for a 20-year 

horizon with 5-year time steps. Among recent developments, energy storage systems 

are included in candidate facilities. Depending on the model type, the approaches of 

minimizing total costs and maximizing profit are utilized. In addition, considering 

the specific needs in this thesis, the minimization of total costs including the support 

need of existing plants is used, which ideally requires the utilization of the bilevel 

model structure as discussed in the next part. 

3.4.2 Bilevel Models and Solution for MIBLP 

Since in this thesis the focus is given to generators’ profit and decreasing the support 

need, the level of resulting MCP based on supply and demand dynamics in electricity 

markets is critical as it defines how much plants are utilized and how much they earn. 

The market clearing problem is itself an optimization problem. However, long-term 

planning models have other types objective functions such as maximization of profit 

and determining the corresponding optimal investment mix. This is within the 

concept of multilevel programming, and the structure with multiple decision makers 

and stages cannot be formulated as a single-level model. Instead, it is more suitable 

to use bilevel models with nested optimization problems [84], [85], [86].  

Bilevel optimization problem has a market clearing problem at the lower-level, and 

the investment decisions are taken at the upper-level [84]. This problem can be 

formulized as in (3.1): 
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max𝑓1(𝑥, 𝑦
∗, 𝜆∗) 

s.t. 𝑔1(𝑥, 𝑦
∗) ≤ 0 

 ℎ1(𝑥, 𝑦
∗) = 0 

𝑦∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑓2(𝑥, 𝑦) 

s.t. 𝑔2(𝑥, 𝑦) ≤ 0 

 ℎ2(𝑥, 𝑦) = 0  

 ℎ2−𝑆𝐷(𝑥, 𝑦) = 0 ∶  𝜆 

(3.1) 

 

The above formulation aims to maximize the profit of each candidate plant shown 

with function 𝑓1. The functions 𝑔 and ℎ represent the inequality and equality 

constraints related to investment and operation. The variable 𝑥 represents the 

investment decisions, 𝑦 represents the operation decisions, and 𝜆 represents the MCP 

for each operating condition. The upper-level constraints are related to investment 

decisions, and the optimal solution of the lower-level problem is utilized as shown 

by asterisk sign. The lower-level problem aims to minimize the operation cost for 

each operating condition as denoted by the function 𝑓2, and it treats the upper-level 

problem variables, 𝑥, as parameters. The optimal solution of the lower level problem 

is denoted by 𝑦∗, and the dual variable of supply-demand balance constraint is 𝜆.  

Including lower-level dual solutions, such as the amount of generation, MCP, etc. in 

the upper-level brings a couple of complications, especially when these are 

represented as a bilinear term in order to calculate the revenue of participants. Under 

some assumptions, the bilinear term can be linearized with the utilization of KKT 

conditions and the property of strong duality for the lower-level problem [84].  

Most of the solution methods are based on reformulating this problem as 

mathematical program with complementarity conditions in which lower-level 

problem is replaced by its necessary and sufficient optimality conditions [84]. 

However, in reality the lower-level market clearing problem has integer variables 

representing the operating, startup and shutdown states of plants with unit limitation. 

Those states should not be underestimated or omitted in order not to lose accuracy 
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in the solutions of GEP problem given that the traditional supply composition has 

been significantly changing, and new technologies are rapidly emerging. This 

problem structure is called as a MIBLP. Since KKT conditions aren’t applicable to 

mixed-integer programs, some other methods are used to handle this problem. 

As a general tendency in the literature, no integer decisions are taken in the lower-

level problem. Studies on MIBLP [87], [88], [89], [90] are few in number as 

mentioned in [85], [91]. The algorithms developed for this problem either heavily 

depend on branch-and-bound strategies based on weak relaxation or involve problem 

specific and challenging operations [91]. In [92], the computational challenges are 

counted as nonconvexity of feasible region, possible inaccessibility of optimal value, 

detecting unboundedness, and possible failure of relaxation to serve as an upper 

bound. 

In [89], the solution of MIBLP containing integers in both upper and lower level is 

called to be very difficult. The proposed method is based on the application of a 

reformulation and linearization scheme resulting in the convex hull representation of 

inner problems. However, large number of equations obtained as the number of 

integer variables exponentially increasing is reported as a major drawback. 

Based on the results on convex hull representation first stated in [93], the 

representation of operational flexibility in the GEP problem is studied in [94], 

through the convex relaxation of unit commitment (UC). The feasible set of each 

generating unit is replaced by its convex hull so that binary variables can be modeled 

as continuous and cost function of each unit is replaced by its convex envelope which 

in turn leads to a convex relaxation as tight as Lagrangian relaxation, and thus the 

resulting single-level problem can be integrated into the GEP problem as the 

operational model. The proposed method in [94] yields successful results and keeps 

tractability; however, the convex hull representation is valid only for the proposed 

problem, and it does not directly allow the integration of additional constraints unless 

rigorous proof of convex hull representation including those constraints is provided, 

but this is hard to achieve. 
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Due to the limitations counted previously, in this thesis, instead of formulating the 

problem as a MIBLP and putting significant effort to try to solve it with a novel 

approach, the problem is reformulated and solved by the standard GEP model having 

the objective function of minimizing the total costs, through an iterative process. 

Further details both on this topic and other GEP models along with discussions are 

presented in Section 5.2. 

 

 





 

 

61 

 

CHAPTER 4  

4 MEDIUM-TERM MODELING OF ELECTRICITY MARKET 

In this chapter, electricity market is modeled for the medium-term forecasing 

horizon. The main idea of the medium-term electricity market model is to increase 

the observability for the decision maker in terms of market conditions such as 

demand, supply, and price. The primary aim is to obtain electricity price forecasts 

which reflect the conditions in demand and supply. Also, obtaining electricity 

generation by fuel concurrently with electricity price forecasting is crucial to 

interpret the resulting price forecasts. One-hour time step is used in order to maintain 

the accountability of results. The model utilizes various scenarios on multiple 

parameters such as economic growth, temperature and hydro inflow; and then 

calculates the corresponding electricity price forecasts. In the end, the decision 

maker can recognize the possible ranges of electricity price for the period taken into 

consideration. In terms of time, the forecast range is typically 1 year; however, it is 

possible to extend this period up to several years.  

The chapter is organized according to the parts of the medium-term electricity market 

model. The modeling activity starts with electricity demand forecasting as presented 

in the first section. Medium-term electricity demand forecasting is studied with 

various approaches based on time horizon such as on daily and monthly level. In the 

second section, electricity supply modeling approach is described. In the third 

section, electricity price forecasting activity is fulfilled. The proposed methodology 

for electricity price forecasting is presented along with a special module dedicated 

for realistic utilization of storage hydropower plants. The chapter is concluded by 

the findings obtained as a result of electricty market modeling activity in medium 

term.   
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This chapter is prepared based on the author’s works [95], [22] and [96], which are 

published as a journal paper in IEEE Transactions on Power Systems in 2018, and 

as conference papers in 2017 IEEE PES Innovative Smart Grid Technologies 

Conference Europe (ISGT-Europe) and 2019 IEEE Milan PowerTech, respectively. 

4.1 Electricity Demand Modeling 

This section describes how electricity demand is modeled and forecasted to be used 

in other parts of the electricity market modeling methodology. Hourly electricity 

demand forecasting series are needed to provide input for electricity price forecasting 

model which would match supply and demand on hourly basis. Due to its direct 

effect on reserve capacity, electricity demand forecasting studies are closely linked 

with electricity price forecasting studies [97]. In this section, electricity demand 

forecasting is performed on both daily and monthly basis, which is to be split into 

hourly resolution by a profiling method. 

The section is composed of five parts. In the first part, the candidate explanatory 

variables are introduced from both daily and monthly time steps. The second part 

gives information about the candidate models which are multiple linear regression 

(MLR), generalized additive model (GAM), multivariate adaptive regression splines 

(MARS) and artificial neural networks (ANN). In the third part, daily electricity 

demand forecasting model is selected among the candidate models of MLR and 

GAM based on various performance metrics. In the fourth part, monthly electricity 

demand forecasting modeling process is introduced, and the final model is decided 

among the alternatives of MLR, GAM, MARS and ANN, again based on 

performance of each model. The last part discusses the studies on electricity demand 

modeling and summarizes the key findings.  
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4.1.1 Candidate Explanatory Variables 

In this part, the most frequently utilized explanatory variables are introduced and 

discussed from both daily and monthly time steps. 

According to [98], there are six main factors influencing electricity demand. These 

are related to economy, time, climate, randomness, price and geography. In the 

literature, for MTLF studies, the utilization of historical load data, gross domestic 

product (GDP), weather information and indicator variables representing time 

factors are common as presented in [13], [14], [16], [20] - [21], [25], [99]. 

In the process of searching for a proper demand forecasting model, it is found that in 

short term, weather conditions have the highest impact on results, while economic 

parameters are more effective in long term. Some of the most commonly used 

variables in demand forecasting studies are calendar variables such as month of year, 

day of week, hour of day and other categorical variables indicating holidays and 

daylight saving time; historical load, historical temperature and humidity, GDP and 

trend [27], [100], [17], [101]. 

Various climate variables can be used in order of decreasing importance starting 

from temperature, humidity, wind and precipitation being the last on the list [14]. 

Climate condition is one of the main determinants of electricity demand due to 

fluctuating heating and cooling needs across seasons as in the case of Turkey, 

situated in the northern hemisphere between latitudes 36-42° that corresponds to the 

middle climate zone. Considering this zone and the characteristic geographical 

position of Turkey, the continental climate is widely dominant, i.e. summers are 

generally dry and hot; winters are generally cold and snowy. Spring and fall seasons 

are generally neither hot nor cold with precipitation in varying amount depending on 

the region. In short, heating and cooling needs are lowest in spring and fall seasons, 

and highest in summer and winter seasons. This statement can be verified with Figure 

4.1, the scatter plot of daily mean temperature in Istanbul, versus the daily electricity 

demand of Turkey in the period of 2012-2015. It appears that throughout the year 
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the lowest demand occurs at temperatures around 18-20°C, where cooling and 

heating needs are at minimum. 

 

Figure 4.1. Relation between daily mean temperature in Istanbul and daily electricity 

demand in Turkey from 2012 to 2015 

As they are related to temperature, heating degree days (HDD) and cooling degree 

days (CDD) are the measures of the severity and duration of cold/hot weather, which 

quantify the heating/cooling requirement [99]. In addition to those variables, the 

usage of snow presence and cloud coverage in [102] for MTLF studies, and 

composite weather variables measuring discomfort such as temperature-humidity 

index and wind chill index in [13] for STLF studies, are reported. 

The time factors, as stated in [13], include month of year, day of week, and hour of 

day considering that there can be significant differences in consumption at various 

times of a year. Electricity demand is known to be strongly related to life activities. 

Electricity demand in weekdays are significantly higher than weekends, also 

difference among Saturdays and Sundays is remarkable. The effect of days of week 

as well as seasons of year are together represented by Figure 4.2. 
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Figure 4.2. Hourly electricity demand for four different weeks of four different 

seasons in 2015 

The candidate explanatory variables in this study do not contain any lagged values 

of dependent or independent variables, which helps maintaining interpretability of 

results and utilization of models in a longer time horizon. 

4.1.1.1 Candidate Explanatory Variables for Daily Electricity Demand 

Forecasting 

The proposed candidate explanatory variables for daily electricity demand 

forecasting are grouped under three categories as follows: 

 Category 1 – Economy: Industrial production index (IPI) 

 Category 2 – Weather: HDD of the country, CDD of the country 

 Category 3 – Time: Calendar variables, Holiday variables 

Category 1 – Economy: As mentioned previously, economy is the main determinant 

of electricity demand in long term. However, there is not any variable representing 

economy for a daily forecasting study. There are two candidates: One is GDP 

published on quarterly basis, and the other one is IPI published on monthly basis. 

The analysis for the quarterly GDP and 3-month averaged IPI shows that 1% change 
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in the GDP is related to 0.99% change in the IPI. Therefore, it is concluded that the 

IPI can represent the economy in this study and is preferable due to its monthly 

publication frequency. 

Category 2 – Weather: The data corresponding to five big cities (Istanbul, Ankara, 

Izmir, Antalya and Diyarbakir) in Turkey from five different climate regions are 

chosen. As proposed in [27], a different variable representing the HDD for Turkey 

(𝐻𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦) is derived from the HDD data of these cities in such a way that the 

contribution of each city is related to the amount of consumption of that city in winter 

season as shown in (4.1) - (4.2). In the first equation, 𝐻𝐷𝐷𝑖 and 𝑐𝑖 represent the HDD 

value and the coefficient for the city 𝑖. The second equation corresponds to the ratio 

of electricity consumption of city 𝑖 (𝑃𝑖) to the sum of electricity consumption of those 

cities in winter season. The 𝑐𝑖 values are found to be 0.45 (Istanbul), 0.11 (Ankara), 

0.18 (Izmir), 0.07 (Antalya) and 0.19 (Diyarbakir). 

𝐻𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦 =∑𝑐𝑖 𝑥 𝐻𝐷𝐷𝑖

5

𝑖=1

 (4.1) 

 

𝑐𝑖 =
𝑃𝑖
∑𝑃𝑖

 

 

(4.2) 

 

For CDD, the method is similar to the HDD case. The coefficients are determined as 

0.41 (Istanbul), 0.13 (Ankara), 0.19 (Izmir), 0.08 (Antalya) and 0.19 (Diyarbakir) 

based on the amount of consumption in summer. 

Category 3 – Time: The calendar variables are indicator variables representing days 

of week and seasons of year. As for holiday variables, in a calendar year, there are 

special days in which electricity consumption differs significantly owing to change 

in activity. These days can be counted as national and religious holidays. National 

holidays occur on the same day of every year, but the days differ for religious ones 

due to calendar effect. 
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In addition to those variables, a trend variable and the interaction terms between the 

IPI and calendar variables are added to the variable pool since the effect of industry 

on the electricity demand cannot be same across the days of the week. In the end, 

there are, in total, 23 variables in the variable pool. 

4.1.1.2 Candidate Explanatory Variables for Monthly Electricity Demand 

Forecasting 

For monthly electricity demand forecasting, 46 candidate variables are employed, 

which are divided into four categories as listed below: 

 Category 1 – Economy: Industrial Production Index – Overall (𝐼𝑃𝐼𝑇𝑜𝑡𝑎𝑙), 

Industrial Production Index – Manufacturing (𝐼𝑃𝐼𝑀𝑎𝑛𝑢) 

 Category 2 – Weather: HDD of a city, CDD of a city 

 Category 3 – Time: Adjusted number of working days in a month (Wday), 

Month of year 

 Category 4 – Demographics: Population (Pop), Number of households (NoH) 

Category 1 – Economy: There are two variables in this category, such as industrial 

production index (𝐼𝑃𝐼𝑇𝑜𝑡𝑎𝑙) and industrial production index – manufacturing 

(𝐼𝑃𝐼𝑀𝑎𝑛𝑢), as obtained from [3]. Since time factor will be represented by variables 

in another category, both are seasonally and calendar adjusted industrial production 

indices; the first one represents the total index, and the second one represents the 

manufacturing sector which comprises mainly of energy-intense industries.  

Category 2 – Weather: HDD and CDD values are again considered as the 

representatives of the weather category. These values for each city are published by 

[103]. Differently from the daily model, instead of deriving a single indicator 

representing for the whole country, these values are treated separately for each city. 

However, since there are 81 cities in Turkey, there would be 81 variables for HDD 

and CDD values each, and this number is considerably high compared to the other 

class of variables. Therefore, some of the cities are eliminated based on population. 
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According to [3], there are 20 cities over 1 million population. The HDD and CDD 

values for these cities with population threshold of 1 million are taken into 

consideration. 

Category 3 – Time: There are two variables in this category, such as month index 

and adjusted number of working days in a month called Wday. Wday variable 

represents the calendar effect in each year and month. The number of weekdays, 

Saturdays and Sundays in a month changes from year to year. This is valid for 

national and religious holidays. Both of the holidays coincide with different days of 

a week in every year. Religious holidays have a special case, and they occur at 

different dates in different years, resulting in a potentially troubling situation that 

must be considered in a medium-term study.   

In order to obtain a single variable that represents the effect of time on the electricity 

demand for each month, days other than weekdays must be adjusted and expressed 

in terms of a weekday. In this study, the adjustment coefficients are found to be as 

in Table 4.1. For example, in the row of Saturdays, the value is 0.96, indicating that 

the electricity demand on Saturdays realizes at a level that corresponds to 96% of the 

demand that occurs in a weekday, on average throughout the year. The remaining of 

the table can be interpreted similarly. Thanks to these coefficients, the adjusted 

number of working days can be calculated for each month. 

Table 4.1 Adjustment Coefficients for the Calculation of Wday 

Type of Day Coefficient Type of Day Coefficient 

Weekdays 1.00 National holidays 0.88 

Saturdays 0.96 New Year’s day 0.81 

Sundays 0.87 Religious holidays 0.69 

 

Category 4 – Population: In this category, there are two variables such as population 

and number of households as obtained from [3]. Population corresponds to the total 

number of people living in Turkey. The number of households corresponds to the 
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total number of houses. They are yearly indices and are not announced monthly. 

Since a monthly electricity demand forecasting study is of consideration, there is a 

need for monthly data. The monthly data, for past and future values, is generated by 

interpolating the values between two consecutive years. 

4.1.2 Candidate Models 

In this study, there are two candidate models for daily electricity demand forecasting, 

and four candidate models for monthly electricity demand forecasting. These are 

MLR and GAM for the daily model; MLR, GAM, MARS and ANN for the monthly 

model, as introduced below: 

Multiple Linear Regression (MLR): MLR model assumes that the output is linear in 

inputs. It is viewed as simple and has interpretability advantage while explaining 

how inputs affect output [104]. An MLR model has the form as shown in (4.3). 



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j

jjXXf
1

0)(   (4.3) 

 

In this equation, X𝑗’s are inputs, p represents the dimension and β𝑗’s are unknown 

coefficients which are generally estimated by least squares method.  

Generalized Additive Model (GAM): GAM provides an extension of linear models 

and makes them more flexible by allowing non-linear functions of each of the 

variables while maintaining additivity and retaining much of their interpretability 

[104], [105]. A GAM has the form as shown in (4.4). 
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In this equation, Y represents the response variable, 𝛼 represents the bias, X𝑗’s 

represent the predictors and f𝑗’s are unspecified smooth functions.  

Multivariate Adaptive Regression Splines (MARS): MARS, which is viewed as well 

suited to high-dimensional problems with large number of inputs, is an adaptive 

procedure for regression and uses expansions in piecewise linear basis functions 

[104]. A MARS model has the form as shown in (4.5). 



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M

m
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In this equation, f(X) represents the model, β0 represents the intercept or bias, h𝑚(𝑋) 

is a basis function or product of two or more basis functions, M is the effective 

number of parameters in the model, and β𝑚 represents coefficients of the 

corresponding basis functions. Coefficients are estimated by minimizing the residual 

sum-of-squares.  

Artificial Neural Network (ANN): It is a nonlinear black box process that is used to 

model the relationship among inputs and output by using an approach similar to how 

a biological brain responds. A simple NN model has the form shown in (4.6).  

𝑌 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (4.6) 

 

In this equation, 𝑛 is the number of inputs, 𝑤’s are the weights, f is the activation 

function, and Y is the output. There are several types of neural networks that can be 

characterized by activation function, network topology and training algorithm. 

Activation function is generally in the form of logistic sigmoid whereas linear, 

saturated linear, hyperbolic tangent and gaussian functions are the other alternatives. 

Network topology is about the number of layers, the number of nodes within each 

layer of network and the travel direction of information. In terms of training 
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algorithm, the most widely used one is backpropagation, which adjusts the 

connection weights by following a strategy of back-propagating errors [106].  

4.1.3 Daily Electricity Demand Forecasting 

The schematic view of the daily electricity demand forecasting model with inputs 

and output is shown in Figure 4.3. Since the available daily average temperature data 

is more reliable than the hourly ones, instead of building up 24 different models for 

each hour of a day, a single daily demand forecasting model is preferred. The data 

used in this study belong to the period of 2007–2015. 

 

Figure 4.3. Daily electricity demand forecasting model with inputs and outputs 

In this study, only two of the non-black box, interpretable models that provide 

insights into the relationship between the demand and the corresponding driving 

factors [17] are considered such as MLR and GAM. Linear models are attributed as 

easy to define and interpret compared to the other types of models, but they have 

limitations in terms of forecasting accuracy [107]. Besides, they are criticized for not 

being able to explain the complex relations between the explanatory variables and 

the dependent variable [108]. In [107], it is stated that relaxing the linear assumption 

while preserving the interpretation ability is possible with a couple of approaches 

such as polynomial regression, step functions, spline fit, local regression and GAMs. 
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GAMs allow the use of the aforementioned methods in an additive manner, which 

enable using every explanatory variable with nonlinear fit and catching the points 

that the linear regression misses [107]. As it has advantages over linear regression, 

GAM is found superior as presented below, hence it is finally chosen for daily 

electricity demand forecasting. 

In order to make a selection among candidate explanatory variables, the best-subset 

selection algorithm in [109] is used to obtain the variables and corresponding 

coefficients for the MLR model with smallest in-sample prediction error. With the 

same class of variables, a GAM is created, and the performances of these two models 

are compared.  

For training, the data between the years of 2007–2014; for testing, the data for the 

year 2015 are used. For the linear model, the Adjusted R², Mallows’ Cp and BIC 

(Bayesian Information Criterion) are determined in order to detect the optimal 

number of variables in the model. The Adjusted R² and Mallows’ Cp criteria indicate 

a 16-variable model and the BIC criterion indicates a 12-variable model is the best 

one to choose. Since the Adjusted R² and Mallows’ Cp criteria agree, the 16-variable 

model is selected. The same variables are utilized to form the GAM. The MAPE 

(Mean Absolute Percentage Error), RMSE (Root Mean Square Error) and yearly 

APE (Absolute Percentage Error) criteria are used to evaluate the model performance 

as shown in Table 4.2. In terms of all criteria, the GAM provides improvement.  

Table 4.2 Comparison of Linear Model and GAM 

Model MAPE RMSE APE 

MLR 2.88% 25378 0.94% 

GAM 2.63% 23018 0.69% 

 

The resulting model equation and explanations of the variables that are found 

significant are shown in (4.7) and Table 4.3. In the equation, “s” represents the 

smoothing term, “I” represents the indicator variable. 
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𝑑𝑎𝑖𝑙𝑦𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠(𝐼𝑃𝐼) + 𝑠(𝐼𝑃𝐼𝑣1) + 𝑠(𝐼𝑃𝐼𝑣2)

+ 𝑠(𝐼𝑃𝐼𝑣3) + 𝑠(𝐻𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦) + 𝑠(𝐶𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦)

+ 𝐼(𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣1) + 𝐼(𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣2) + 𝐼(𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣3)

+ 𝐼(𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣4) + 𝐼(𝑊𝑜𝑟𝑘𝑑𝑎𝑦𝑣1) + 𝐼(𝑊𝑜𝑟𝑘𝑑𝑎𝑦𝑣2)

+ 𝐼(𝑆𝑒𝑎𝑠𝑜𝑛𝑣1) + 𝐼(𝑆𝑒𝑎𝑠𝑜𝑛𝑣2) + 𝐼(𝑆𝑒𝑎𝑠𝑜𝑛𝑣3) 

(4.7) 

 

Table 4.3 Variables Used in GAM 

Abbreviation Explanation 

𝐼𝑃𝐼 Industrial Production Index 

 

𝐼𝑃𝐼𝑣1, 𝐼𝑃𝐼𝑣2, 𝐼𝑃𝐼𝑣3 Interaction of IPI with indicator variables 

such as Monday (v1), national holiday 

(v2), religious holiday (v3)   

 

𝐶𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦, 𝐻𝐷𝐷𝑇𝑢𝑟𝑘𝑒𝑦 Cooling degree days and Heating degree 

days representing Turkey 

 

𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣1, 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣2, 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣3, 

𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑣4 

Indicator variables for holidays such as 

eve (v1), feast day (v2), Saturday (v3), 

Sunday (v4) 

 

𝑊𝑜𝑟𝑘𝑑𝑎𝑦𝑣1, 𝑊𝑜𝑟𝑘𝑑𝑎𝑦𝑣2 Indicator variables for workdays such as 

Monday (v1), Tuesday (v2) 

 

𝑆𝑒𝑎𝑠𝑜𝑛𝑣1, 𝑆𝑒𝑎𝑠𝑜𝑛𝑣2, 𝑆𝑒𝑎𝑠𝑜𝑛𝑣3 Indicator variables for seasons such as 

winter (v1), spring (v2), summer (v3) 

 

To derive multiple scenarios to address the uncertainty in demand, five different 

levels of GDP growth from 1% to 5%, and nine different temperature levels from the 

year 2007 to 2015 are utilized and there are, in total, 45 different demand forecast 

scenarios. The yearly results for the year 2016 are shown in Figure 4.4. Based on the 

model assumption, the electricity demand is expected to be between 269.5 and 284.1 

TWh, and the uncertainty is nearly 14.5 TWh. Nearly 3.0 TWh of this uncertainty is 

found to be related to the temperature scenarios and nearly 11.5 TWh of it is related 
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to the GDP growth scenarios. The electricity demand in 2016 is realized at around 

279 TWh [110], which is within the forecast range of the proposed method. 

 

Figure 4.4. Different scenarios for electricity demand for the year 2016 

The need for hourly resolution for the electricity demand is realized by the profiling 

method that splits daily demand into hourly demand. The process is represented in 

(4.8).  

𝑐𝑜𝑒𝑓𝑚,𝑑,ℎ = 𝑎𝑣𝑒(𝑑𝑒𝑚𝑎𝑛𝑑𝑦,𝑚,𝑑,ℎ/𝑑𝑒𝑚𝑎𝑛𝑑𝑦,𝑚,𝑑) 

𝑓𝑜𝑟 𝑦 = 2012, … , 2015;  𝑚 = 1,… ,12;  𝑑 = 1,… ,7;  ℎ = 1,… ,24 
(4.8) 

 

In (4.8), 𝑑𝑒𝑚𝑎𝑛𝑑𝑦,𝑚,𝑑,ℎ represents hourly electricity demand values for year “𝑦”, 

month “𝑚”, day “𝑑” and hour “ℎ”; 𝑑𝑒𝑚𝑎𝑛𝑑𝑦,𝑚,𝑑 represents daily electricity demand 

values for year “𝑦”, month “𝑚” and day “𝑑”. The coefficient shown as 𝑐𝑜𝑒𝑓𝑚,𝑑,ℎ 

corresponds to the averages of the ratios between the hourly electricity demand 

values and the corresponding daily electricity demand values, which will be used to 

obtain the future values of hourly electricity demand for the month 𝑚, day 𝑑 and 

hour h. Considering that there are 12 different months in a year, 7 different days in 

a week and 24 different hours in a day, there are in total 2016 hours showing different 
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pattern. This profile, which is represented in Figure 4.5, is applied to all 45 daily 

demand scenarios to obtain hourly demand series. The range of the resulting demand 

forecast series are exemplified in Figure 4.6, for only the first Monday of the forecast 

period, in order to show how much they differ. 

 

Figure 4.5. Coefficients for calculating hourly electricity demand 

 

Figure 4.6. Demand forecast range for a selected day of the year 2016 
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4.1.4 Monthly Electricity Demand Forecasting 

This part of the section focuses on MTLF with special attention to monthly electricity 

demand forecasts over 1-year forecast horizon. It differs from LTLF studies in terms 

of monthly precision, taking into account that LTLF generally provides results in 

yearly precision. The structure is shown in Figure 4.7. The data used in the monthly 

electricity demand forecasting study belong to the period of 2007–2016. 

 

Figure 4.7. Monthly electricity demand forecasting model with inputs and output 

As it has advantages over MLR, ANN and even GAM, a MARS model is found 

superior as presented below, and hence it is finally chosen for monthly electricity 

demand forecasting.  

The candidate models that are studied can be introduced as follows:  

Model 1 – Multivariate Adaptive Regression Splines (MARS): For MARS, the 

“earth” package in R is employed [111], which is used to fit the model to data. A 

good feature of “earth” package is that it automatically performs cross-validation and 

selects the best model among other possibilities. There are two different cases of the 

proposed MARS model. In Case 1, the degree is unspecified, i.e. the default value is 

1; and in Case 2, the degree is set to 2, i.e. the interaction terms are allowed. That 

logic is preferred in order to see the effect of interaction terms on the performance 
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more clearly. The number of terms and the number of predictor variables are selected 

based on GRSq (generalized R-squared) criterion which is an estimate of the 

predictive power of the model. The highest values for GRSq are obtained with 8-

predictor and 12-term model for Case 1, and 7-predictor and 12-term model for Case 

2. 

The resulting MARS models for Cases 1 and 2 are shown in (4.9) and (4.10), in 

which CityNameHDD corresponds to the HDD and CityNameCDD corresponds to the 

CDD of the specified city. Here, each function is piecewise linear with different knot 

values. Since MARS models for Cases 1 and 2 are in the same model family, the 

GCV (generalized cross-validation) criterion [33] can be used to compare the 

performance of these models. The GCV value for Case 1 is 120123, and that of Case 

2 is 90732. Therefore, it is concluded that the MARS model for Case 2 provides 

considerable improvement to the MARS model for Case 1, with the inclusion of the 

interaction term. 
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 (4.10) 

 

Model 2 – Multiple Linear Regression (MLR): For MLR, the “leaps” package in R 

is utilized for MLR analysis [109]. MLR enables to select the best linear models for 
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the given number of variables. The overall aim for using this package is to decide 

the number of variables in the linear regression model. In this process, k-fold cross-

validation approach is used.  

Reserving the data belonging to the year 2016 as test set, the remaining 108 

observations are used for k-fold cross-validation. For k-fold cross-validation, the 

data is partitioned into k different groups, and at each step, one selected group 

becomes the validation set whereas the remaining groups form the training set. At 

each of these steps, the training set is used to build the model, and the validation set 

is used to measure how well the model fits to unseen data. After k-steps, the overall 

value corresponding to cross-validation process is calculated, and the decision for 

the number of variables in the linear model is made based on cross-validation error.  

In order to have equal number of observations in each group, k value is selected as 

12, i.e. 12-fold cross-validation is applied. The elements are randomly partitioned 

into the folds. They are not recursive such that each observation is assigned to just 

one-fold, and the number of observations in each fold is equal. The same folds are 

also used for the cross-validation process for the selection of a GAM that will be 

introduced in the next title. 

Having the mean squared error (MSE) as the cross-validation error, the lowest 

amount of error occurs for an 8-variable model as seen in Figure 4.8.  

In the last step of the linear model selection, the best 8-variable model is searched 

with all the data excluding the test set. The resulting MLR model is represented in 

(4.11). 
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Figure 4.8. Mean of k-fold cross-validation errors for the number of variables in 

MLR 

Model 3 – Generalized Additive Model (GAM): For GAM, the “mgcv” package in R 

is used for GAM analysis [112]. The main function used from this package is the 

“gam” which is used to fit a generalized additive model to the data. The process of 

the search for the best GAM is complicated. Here, a more basic approach is applied. 

The cross-validation errors are checked, and the lowest error is for the models having 

5 to 10 variables. The idea is that the variables found from the best subsets for the 

linear regression in the previous step can be utilized to form GAMs. The variables 

obtained from 5 to 10 variable best subsets are used to form 6 different GAMs. Each 

predictor variable is selected to be inside the smoothing terms with unspecified 

degrees of freedom. The selection for the degrees of freedom is defined by the gam 

function inside the “mgcv” package. 

As in the case of linear regression model, k-fold cross-validation process is applied 

in order to be able to choose the best model among 6-variable ones. Here, k is 

selected as 12, and the same partitioned sets are used as in the previous section. 

Among the mean of k-fold cross-validation errors, that of a 6-variable model is the 

lowest as shown in Figure 4.9. The resulting GAM is shown in (4.12) in terms of 

smooth functions (𝑠) and their estimated degree of smoothness. 



 

 

80 

 

Figure 4.9. Mean of k-fold cross-validation errors for the number of variables in 

GAM 
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 (4.12) 

 

Model 4 – Artificial Neural Network (ANN): For ANN, the neural network toolbox 

in MATLAB is used and 15 different training algorithms available in this toolbox 

are considered. Also, different numbers of neurons from 5 to 20 are studied. The 

network performances are measured by the MSE metric. The algorithm based on 

Bayesian regularization with 16 neurons yields the lowest error, with a MSE of 

19706. Therefore, it is employed in the model assessment. 

The performance of the selected models from the MLR, GAM, MARS and ANN 

model families are tested with the test set which belongs to the year 2016, which is 

separated from the main data set at the beginning of the study.  

The overall test errors in terms of the MSE and MAPE are presented in Table 4.4. 

The GAM, MARS and ANN models provide improvements to the selected linear 

model. However, the improvement that the MARS model has provided is 

remarkable.  
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Table 4.4 Comparison of Test Errors 

Model MSE MAPE 

MLR 196978 1.25% 

GAM 131349 1.13% 

MARS 45288 0.84% 

ANN 127808 1.09% 

 

The monthly absolute percentage errors are shown in Figure 4.10. Here, it seems that 

the errors for the MARS model are mostly within 1%, with the exception of 

December which had been one of the coldest Decembers of all times in Turkey. For 

the other months, the significant improvement of the MARS model for months 

March, July and August can again be seen. It is concluded that the MARS model is 

able to capture some important points that the other considered models may 

overlook. Therefore, for medium-term forecasting of electricity demand on monthly 

basis, the MARS model can be selected.  

 

Figure 4.10. Monthly absolute percent errors by models 
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The results of monthly electricity demand forecasting can further be disaggregated 

into hourly time frame with the utilization of a similar profiling method described in 

the previous section.  

4.1.5 Discussion 

As for electricity demand modeling, two different time frames, such as daily and 

monthly, are considered in order to perform MTLF. Firstly, the daily electricity 

demand forecasting model has been studied with MLR and GAM, and it has been 

shown that GAM has superior performance as it is more capable of modeling the 

nonlinearities in electricity demand. Secondly, the monthly electricity demand 

forecasting model has been studied with an extended set of models such MARS, 

MLR, GAM and ANN, and it has been found out that the proposed MARS model 

outperforms its counterparts. The basis functions used in MARS, which can be in the 

form of a constant, multiple hinge functions as well as the multiplication of two hinge 

functions that enables interaction terms, seem to capture the nonlinearities, some of 

which may be missed by GAM and ANN.  

Even if the best linear regression model is selected, it may fail to make predictions 

as accurate as nonlinear methods. It is obvious that the variables that affect electricity 

demand have rather a nonlinear relationship with the response variable, and this 

prevents a linear model from performing well. However, the advantages of linear 

models should not be underestimated in that they are comparatively fast and easy to 

interpret in terms of the relation among the response variable and predictor variables.  

With the utilization of the GAM, it is experienced that more accurate electricity 

demand forecasting is possible. In this type of model, the effect of predictor variables 

is nonlinear, but the effect of each one is still in an additive fashion. Since the GAM 

is found to be superior to the linear model in terms of test error, the results are 

interpreted such that the effect of predictor variables on the response variable is quite 

likely to be nonlinear. 
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The ANN model provides slight improvement over MLR and GAM thanks to its 

advantages for modeling nonlinear relationships, but still its performance remains 

below MARS for the case of Turkey. 

Further improvements can be achieved by working more on details as presented in 

[96]. Considering that there can be numerous explanatory variables, there will be a 

need for dimension reduction techniques, such as feature selection, to be able to 

extract useful information from data. Whether any feature selection methods can 

reduce the number of features in the dataset and improve forecasting accuracy, as 

well as which feature selection method and forecasting algorithm pair yields the best 

performance for MTLF are investigated in [96]. It is shown that demand forecasting 

studies are still open for further improvement. With the utilization of proper feature 

selection methods, even an MLR model can yield performance similar to nonlinear 

models.  

Nevertheless, the improvements that have been shown in this thesis so far are found 

to be sufficient to move to the other parts of the electricity market modeling 

methodology, as a reasonable electricity demand forecast series can be obtained with 

the proposed daily and monthly models. 

4.2 Electricity Supply Modeling 

The aim of electricity supply modeling is to provide the necessary information for 

the formation of supply curves for each hour of the year. This information consists 

of availability factors of each market participant on hourly basis. Since this is a 

medium-term study reaching one year ahead, the supply side of electricity market is 

modeled based on scenarios, instead of directly forecasting hourly availability 

factors. The schematic view of electricity supply modeling used in this section is 

shown in Figure 4.11. 
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Figure 4.11. Electricity supply modeling with inputs and outputs 

In the day-ahead market, generation is offered on portfolio basis rather than power 

plant basis, i.e. if a market participant has several types of power plants in its 

portfolio, the combined generation of the portfolio is offered. However, since the 

amount of generation and generation cost are of critical importance, modeling supply 

on power plant basis is a reasonable option.  

As of the year 2016, there are 132 power plants over 100 MW, constituting 77% of 

the installed capacity in Turkey. These facilities can be evaluated separately, but 

forming the supply curve for each hour of the year by using information from those 

132 power plants prolongs the amount of time for the calculation of price forecast 

series. Therefore, without any loss of critical information, the number of market 

participants is limited as much as possible to keep the running time within reasonable 

margins, which enables studying numerous scenarios. In order to do so, 41 different 

market participants are defined based on fuel type and ownership, as shown in Table 

4.5. Renewable generation such as wind, solar, geothermal, biomass, run-of-river 

hydropower, as well as storage hydropower is modeled with respect to fuel type. 

Natural gas and hard coal power plants of private sector, with installed capacity over 

500 MW, are modeled based on both fuel type and ownership.  
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Table 4.5 List of Market Participants 

Resource Type Number of Market Participants 

Natural Gas (State, Private, Purchase-

Guaranteed) 

17 

Hard Coal-Asphaltite (Private) 8 

Lignite (State, Private, Purchase-

Guaranteed) 

5 

Wind, Geothermal, Biomass, Solar 4 

Peaker (Fuel-Oil, Diesel) 3 

Import, Export 2 

Run-of-River Type Hydropower 1 

Storage Hydropower 1 

 

The methodology for the calculation of hourly availability factors determined based 

on historical data are represented in Table 4.6. Each group except solar and peaker 

has different number of power plants sampled based on the availability of the data 

from the year 2007 to 2015. The weighted average availability factor for each hour 

within each group is calculated from the data grouped by similar 15-day periods. 

With this approach, the events affecting availability such as failure, maintenance, 

etc. are implicitly taken into consideration at calendar level. The expression “hourly” 

corresponds that the availability factor calculation considers hour of day, and the 

expression “daily” corresponds that it considers day of week. The expression 

“expected value” is used to underline that hourly availability factor for a participant 

is calculated by taking the mean of the data grouped by similar 15-day periods, hour 

of day and day of week. This process is equal to forming the probability density 

function of availability factors based on the historical data, and assuming that it is 

normally distributed, the expectation operation corresponds to getting the value at 

which the density function reaches its maximum. In order to create more scenarios, 

instead of taking the expected value, the first quartile and the third quartile values of 
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the probability density functions or other values based on various logic can be 

proposed. However, keeping the number of scenarios at a reasonable level requires 

this study to focus only on hydro inflow condition which is one of the biggest sources 

of uncertainty in the electricity supply side of Turkey. 

Table 4.6 Hourly Availability Factor Calculation Methodology 

Resource Type Methodology 

Wind Hourly average of the last 4 years 

Solar 15-day, hourly, theoretical approach 

Geothermal 15-day, daily, hourly, expected value 

Biomass 15-day, daily, hourly, expected value 

BO-BOT-TOOR 15-day, daily, hourly, expected value 

Run-of-River Type Hydropower 15-day, daily, hourly (3 Scenarios) 

Lignite-State 15-day, daily, hourly, expected value 

Lignite-Private 15-day, daily, hourly, expected value 

Hard Coal 15-day, daily, hourly, expected value 

Natural Gas-High Efficiency 15-day, maximum capacity factor 

Natural Gas-Other 15-day, maximum capacity factor 

Peaker 90% availability factor at all times 

Import and Export 15-day, daily, hourly, expected value 

 

For solar, theoretical availability factors are created based on the monthly solar 

radiation and the time between sunrise and sunset. For natural gas power plants, the 

maximum, not the expected values of availability factors are taken since they are not 

baseload power plants, and averaging operation can be misleading. The term “high 

efficiency” represents the power plants started in operation after the year 2009 and 

having an installed capacity over 500 MW. Since peaker power plants operate only 

in a small portion of the year, 90% availability is assumed to provide them the 

opportunity for operation whenever it is possible. 
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In Turkey, hydro inflow condition is volatile, i.e. the standard deviation from the 

long-term averages is fairly high. Therefore, this condition is handled by forming 

three scenarios for run-of-river hydro power plant availability factors, named as 

reference, wet (high) and dry (low). The methodology for determining the 

availability factors is represented in Figure 4.12. Within similar periods, the 

probability density functions in hourly resolution are calculated, and the availability 

factors that will make the value of the cumulative distribution function 0.2, 0.5 and 

0.8 are chosen as scenario values. A separate methodology is employed in order to 

determine the availability factors of storage hydropower plants as mentioned in the 

next section.  

 

Figure 4.12. Probability density function and three scenarios for 2nd half of 

December, Tuesday and hour 17 

The patterns of availability factors calculated for a lignite and a natural gas market 

participant are exemplified in Figure 4.13. For lignite, there are two valleys 

corresponding to spring and fall seasons. For natural gas, the valley occurs in spring 

season. These time periods include the effect of generator maintenance implicitly. 

Since the calculations are performed based on historical data, the utilization of this 
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methodology for future years requires caution considering the evolution of electricity 

generation capacity. 

 

Figure 4.13. Pattern of availability factors for selected market participants from 

lignite and natural gas 

4.3 Electricity Price Modeling 

This section describes how electricity price is modeled and forecasted in the 

medium-term horizon. Hourly electricity demand forecasts and hourly availability 

of market participants have been obtained in the previous sections. These are needed 

as input for the electricity price forecasting model which would match the supply 

and demand on hourly basis. The modeling activity is performed based on the data 

of the year 2016, and the results are also compared with the realizations for the years 

2014 and 2015. 

The section is composed of three parts. In the first part, the price forecasting 

methodology is proposed. The second part mentions the details of a module for the 

realistic utilization of storage hydropower plant generation. In the last part of this 
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section, the results are presented according to various scenarios on demand and 

supply. 

4.3.1 Proposed Methodology 

With the proposed methodology, the aim is to obtain electricity price forecast series 

and determine the possible ranges of electricity price in medium-term, rather than a 

single forecast. It is formed with a theoretical approach considering the uncertainties 

in demand and supply. 

The electricity price modeling in medium term depends on the intersection of the 

supply and demand curves at each hour of the forecast period. The demand is 

assumed to be inelastic, and the results of the demand forecasting model are to be 

directly used. The electricity supply obtained for each hour of the forecast period is 

ordered according to the corresponding generation cost of electricity and is assumed 

to be submitted as supply bids to the day-ahead market. In order not to violate the 

operation principles of thermal power plants, block bid option containing all 24 hours 

in a day is created for hard coal and natural gas fired power plants. 

Unit generation cost of electricity is calculated with fuel price and efficiency 

information. The sales price of national natural gas company to eligible customers is 

taken as the natural gas price for power plants [113]. For hard coal power plants, 

international prices [114] are taken as reference. For O&M costs per MW, the 

average values of Europe and China are taken as reference [115] and distributed per 

MWh using the expected operating hours of these power plants. Plant efficiencies 

are estimated depending on the entry year of each facility. 

The generation of renewable energy sources, as well as that of purchase-guaranteed 

power plants such as BO, BOT and TOOR, is assumed be offered regardless of the 

market price, i.e. 0 $/MWh. Similarly, the generation of lignite power plants is 

assumed to be offered at a price of 0 $/MWh based on the price behavior of those 

power plants in the period of 2012-2015. Therefore, the generation cost of lignite 
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power plants is irrelevant for this part of the study. The price floor is 0 $/MWh, and 

the price cap is chosen as the maximum hourly price between the years 2013 and 

2015, which is approximately 225 $/MWh. 

Hourly electricity price forecasts are determined at the point at which supply and 

demand curves intersect as represented in Figure 4.14. This process is applied for all 

hours of the forecast period. The supply curve, or also known as the merit order 

curve, has the available generation information, sorted from the lowest to the highest 

bidding price and consists of 41 different step functions representing the price 

behavior of each market participant. A large amount of supply is offered to the 

market regardless of the market price, i.e. at 0 $/MWh, due to the considerable share 

of renewables, purchase-guaranteed and lignite power plants. Demand curve is 

assumed to be inelastic, and its value should be determined based on the electricity 

demand forecasting model results. 

 

Figure 4.14. Illustration of market clearing price formation for a particular hour 

In the above representation, the merit order curve has a dynamic behavior for storage 

hydropower plants, which is to be explained in detail in the next section. Also, the 

dynamic behavior is applicable to hard coal and natural gas fired power plant 

generation which are submitted in block format, but the latter type of power plants 
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has the ability to submit hourly bids at the same time thanks to their flexibility. The 

acceptance criteria for a block bid depends on the comparison of bid price and daily 

average price, hence this process requires a multiple-step operation. In the first step, 

only hourly bids of market participants are utilized to meet the forecasted demand 

for 24 hours of a day. If the price of the lowest block bid is lower than the daily 

average calculated price, the corresponding block bid is accepted, and new hourly 

prices are calculated based on the newly accepted block bid. In the next step, the 

same procedure is applied to the second lowest block bid. If any block bid is rejected, 

this procedure is terminated regardless of the remaining orders. Although this is not 

the exact way for the acceptance of the block bids in the Turkish case, this procedure 

is applied in the Nordic power market and preferred in this study due to its easier 

implementation. 

The electricity price forecasting model methodology can be summarized as in Figure 

4.15. The modeling part consists of three main functions. The main task of it is to 

determine which of the block bids are to be accepted on daily basis. This is returned 

by the daily block bid selection function, in which the block bid price of a market 

participant is compared to the daily average market price. Daily mean price is 

calculated by the daily mean price calculator function that calls the hourly price 

calculator function. As this is a multiple-step operation, in the first step no block bids 

are considered, i.e. hourly and daily prices are calculated based on only hourly bids. 

In further steps, the daily block bid selection function checks the feasibility of the 

lowest block bid price and continue operation until a bid is unfeasible or all bids are 

accepted. After the acceptance of block bids is specified for a particular day, it is 

trivial to calculate the hourly electricity price forecast and electricity generation 

forecast by market participant. 
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Figure 4.15. Electricity price forecasting model with inputs and outputs 

4.3.2 Realistic Utilization of Storage Hydropower Plants 

The proposed electricity price forecasting model tries to perform hourly forecasting 

of yearly electricity prices. The critical point is that it tries to optimize the generation 

of storage hydropower plants with an optimization procedure based on linear 

programming in order to reflect the bidirectional relationship between the market 

price and generation of those facilities. 

Based on the fact that storage hydropower plants have flexibility in operation to a 

certain degree, there is a nonlinear relation between the MCP and the amount of 

generation from storage hydropower plants. This flexibility must be considered to 

reflect more reasonable market prices. Since there are over 110 storage hydropower 

plants in Turkey for the year 2016, and each one has different characteristics in terms 

of water inflow, reservoir and operation; the optimization process proceeds for the 

cumulative amount of storage hydropower plant generation for simplicity. 

In order to solve this problem, the objective function is defined as in (4.13), 

𝑚𝑎𝑥∑𝑀𝐶𝑃𝑖 𝑥 𝐶𝐹𝑖

𝑁

𝑖=1

 (4.13) 
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where 𝑁 represents the total number of hours in a year, 𝑀𝐶𝑃𝑖 represents the 

calculated market price at hour 𝑖 and 𝐶𝐹𝑖 represents the capacity factor for 

cumulative storage hydropower plant generation at hour 𝑖. For the first iteration, the 

hourly market prices for the previous year are selected as initial values as a 

reasonable starting point. 

The constraints can be grouped by monthly, daily and hourly basis. They are 

deterministic and derived from the historical cumulative hourly storage hydropower 

plant capacity factors which are expected to represent the generation behavior. 

The monthly constraints are defined as shown in (4.14),  

1

𝑁𝑚
∑𝐶𝐹𝑚,𝑖

𝑁𝑚

𝑖=1

≤ 𝐻𝑀𝐶𝐹𝑚,𝑠, 𝑓𝑜𝑟 𝑚 = 1,2, … ,𝑀 (4.14) 

 

where 𝑀 represents the total number of months in a year, 𝑚 represents the month of 

the year, 𝑁𝑚 represents the total number of hours in the corresponding month, 𝐶𝐹𝑚,𝑖 

represents the capacity factor for cumulative storage hydropower plant generation at 

month 𝑚 and hour 𝑖, and 𝐻𝑀𝐶𝐹𝑚,𝑠 represents the historical monthly average 

capacity factor for month 𝑚 and scenario 𝑠. For the calculation of these averages, 

firstly, monthly average capacity factors are calculated, then monthly historical 

maximum and minimum values are discarded. For the remaining series the mean of 

the monthly averages is taken as the reference scenario, whereas two standard 

deviations from the mean are taken as wet and dry scenarios, based on the 

assumption that the aforementioned capacity factor series is normally distributed, 

and two standard deviations represent 95% confidence interval that is used to define 

the values for wet and dry scenarios. 

The daily constraints are defined as shown in (4.15) and (4.16), 

1

24
∑𝐶𝐹𝑑,𝑖

24

𝑖=1

≤ 𝐻𝐷𝐶𝐹𝑚,1−𝑑, 𝑓𝑜𝑟 𝑑 = 1,2, … , 𝐷 (4.15) 
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1

24
∑(𝐶𝐹𝑑,𝑖 + 𝐶𝐹𝑑+1,𝑖)

24

𝑖=1

 ≤ 𝐻𝐷𝐶𝐹𝑚,2−𝑑, 𝑓𝑜𝑟 𝑑 = 1,2, … , 𝐷 − 1 (4.16) 

 

where 𝐷 represents the total number of days in a year, 𝑑 represents the day of the 

year, 𝐶𝐹𝑑,𝑖 represents the capacity factor for cumulative storage hydropower plant 

generation at day 𝑑 and hour 𝑖, 𝐻𝐷𝐶𝐹𝑚,1−𝑑 represents the historical maximum daily 

capacity factor for month 𝑚 and 𝐻𝐷𝐶𝐹𝑚,2−𝑑 represents the historical maximum 

capacity factor for successive 2 days for month 𝑚. 

The hourly constraints can be classified into two. One is the minimum hourly 

operation requirement and the maximum reachable hourly capacity factor. The other 

one depends on differences in capacity factors for the successive 1, 2, and 3 hours. 

Hourly constraints of the first classification can be defined as shown in (4.17) and 

(4.18), 

𝐶𝐹𝑚,𝑖 ≥ 𝐻𝐻𝐶𝐹𝑚𝑖𝑛,𝑚,𝑠, 𝑓𝑜𝑟 𝑖 = 1,2, …𝑁𝑚;  𝑚 = 1,2, … ,𝑀 (4.17) 

𝐶𝐹𝑚,𝑖 ≤ 𝐻𝐻𝐶𝐹𝑚𝑎𝑥,𝑚,𝑠, 𝑓𝑜𝑟 𝑖 = 1,2, …𝑁𝑚;  𝑚 = 1,2, … ,𝑀 (4.18) 

 

where 𝐻𝐻𝐶𝐹𝑚𝑖𝑛,𝑚,𝑠 and 𝐻𝐻𝐶𝐹𝑚𝑎𝑥,𝑚,𝑠 represents the historical hourly minimum and 

maximum capacity factors for month 𝑚 and scenario 𝑠. For the calculation of these 

capacity factors, the historical hourly capacity factors for each month are sorted, and 

then for the minimum case the capacity factors that correspond to the lowest 5%, 

10% and 15% are selected for dry, reference and wet scenario, whereas, for the 

maximum case, the capacity factors that correspond to the highest 5%, 10% and 15% 

are selected for wet, reference and dry scenarios, respectively. 

The hourly constraints of the second classification are defined as in (4.19) - (4.24), 

| 𝐶𝐹𝑖+1 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑖𝑛𝑐,1−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+1 ≥  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 1 (4.19) 

| 𝐶𝐹𝑖+1 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑑𝑒𝑐,1−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+1 <  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 1 (4.20) 

| 𝐶𝐹𝑖+2 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑖𝑛𝑐,2−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+2 ≥  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 2 (4.21) 
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| 𝐶𝐹𝑖+2 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑑𝑒𝑐,2−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+2 <  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 2 (4.22) 

| 𝐶𝐹𝑖+3 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑖𝑛𝑐,3−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+3 ≥  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 3 (4.23) 

| 𝐶𝐹𝑖+3 −  𝐶𝐹𝑖| ≤ 𝐶𝐹𝐷𝑑𝑒𝑐,3−ℎ, 𝑓𝑜𝑟  𝐶𝐹𝑖+3 <  𝐶𝐹𝑖 & 𝑖 = 1,… ,𝑁 − 3 (4.24) 

 

where 𝐶𝐹𝐷𝑖𝑛𝑐,𝑡−ℎ and 𝐶𝐹𝐷𝑑𝑒𝑐,𝑡−ℎ for 𝑡 = 1,2,3 represents the maximum capacity 

factor deviation for the successive 𝑡 hours. For the calculation of 𝑡-hour deviations, 

both in the increment and decrement direction, the values are sorted, and then the 

value that corresponds to the highest 10% is selected. 

The methodology for the optimization procedure of storage hydropower plants is 

summarized below: 

 Step 1: An initial price vector is chosen with a length of 𝑁x1. Hourly prices 

of the previous year can be chosen as a reasonable initial point. 

 Step 2: The price vector defined in Step 1 is used for optimizing the revenue 

of storage hydropower plants within a 1-year period. The optimized 

generation values are stored in a vector with a length of 𝑁x1. 

 Step 3: Based on the optimized generation values in Step 2, the price 

forecasting model is run, and a new hourly price series is obtained. 

 Step 4: The hourly average value of prices obtained in the previous iterations 

from the price forecasting model is used to optimize the revenue of storage 

hydropower plants. 

 Step 5: Step 3 and Step 4 are repeated until a certain criterion such as the 

objective function value in successive iterations is below a threshold level. 

The iterations in the optimization process are summarized in Table 4.7. The amount 

of change in the yearly average price is high in three iterations, but starting from the 

4th iteration it is fairly limited and the yearly price oscillates between 45.9 and 47.0 

$/MWh, implying that it stays within certain ranges. The same comments are 

applicable to the objective function value. The proportional change is below 1% after 

the 5th iteration and below 0.05% after the 10th iteration. 
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Although both yearly price and objective value stay within certain limits, the 

monthly average price and hourly price show different patterns. As the number of 

iteration increases, prices can still be volatile, especially for the spring months in 

which hydro potential is high, as shown in Table 4.8. This implies that the solution 

for the problem is not unique and changes in each iteration, but the impact on the 

monthly and yearly average prices are limited as the iteration proceeds. 

Table 4.7 Summary of the Optimization Process 

Iteration 
MCP 

($/MWh) 
Change 

Obj. Func. 

Val. ($/MW) 
Change 

1 43.55  -174952  

2 42.60 -2.20% -155266 -11.25% 

3 46.54 9.26% -140089 -9.77% 

4 46.40 -0.30% -137013 -2.20% 

5 45.94 -0.99% -135915 -0.80% 

6 46.26 0.70% -135102 -0.60% 

7 46.77 1.09% -134864 -0.18% 

8 46.10 -1.42% -134943 0.06% 

9 46.38 0.60% -134758 -0.14% 

10 46.86 1.03% -134667 -0.07% 

11 46.83 -0.06% -134737 0.05% 

12 46.82 -0.02% -134780 0.03% 

13 46.36 -0.98% -134752 -0.02% 

14 46.67 0.67% -134679 -0.05% 

15 47.01 0.73% -134687 0.01% 

16 46.49 -1.10% -134712 0.02% 

17 46.76 0.58% -134676 -0.03% 

18 46.55 -0.44% -134697 0.02% 

19 46.76 0.44% -134660 -0.03% 

20 46.88 0.27% -134692 0.02% 
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Table 4.8 Maximum Absolute Monthly Average Price Deviation with respect to the 

Previous Iteration 

Iteration 2 3 4 5 6 7 8 9 10 11 

Jan -4.6% 8.4% 0.8% -0.9% -2.4% 4.1% -5.7% 2.4% 0.0% -0.2% 

Feb 7.9% 8.7% -0.5% -0.8% -0.2% 3.5% -3.7% 0.5% 0.5% 1.8% 

Mar 3.3% 13.7% 2.3% -0.6% 1.6% -0.9% 2.0% -2.4% 1.1% -0.1% 

Apr -1.5% 16.9% -4.4% -5.6% 4.9% 2.4% -3.1% 3.4% 1.4% 1.4% 

May -5.5% 16.3% -6.7% 0.5% 5.4% 2.3% -3.2% 2.4% 2.7% 1.1% 

Jun -3.3% 12.3% 0.2% -1.8% -0.3% 3.1% -0.1% -2.5% 2.6% -1.7% 

Jul -1.6% 8.3% 1.7% 0.5% -2.9% 1.2% -0.5% 1.2% 0.5% 0.5% 

Aug -5.9% 12.0% 3.8% 1.4% -2.9% 0.1% 0.7% -0.8% 1.7% -0.3% 

Sep 0.3% 3.1% 0.2% -1.3% 0.3% 0.9% -0.8% -1.7% 3.5% -0.9% 

Oct -3.6% 1.1% -3.4% -0.2% 2.2% -2.3% 2.0% -1.4% 1.7% -2.1% 

Nov -2.6% 6.1% 0.9% -3.6% 4.0% -1.7% -3.4% 4.9% -1.4% -1.2% 

Dec -6.5% 9.1% 0.5% -0.2% 0.6% 1.3% -1.5% 2.2% -1.3% 1.3% 

Avg. 3.9% 9.7% 2.1% 1.4% 2.3% 2.0% 2.2% 2.1% 1.5% 1.0% 

Iteration 12 13 14 15 16 17 18 19 20  

Jan 2.0% 0.7% -0.5% 1.3% -1.9% -0.4% -0.4% -0.5% -0.2%  

Feb -3.8% 1.1% -0.5% 2.7% -1.1% 2.0% 0.5% -3.9% 4.1%  

Mar 0.7% -1.8% 1.1% -0.7% -1.6% 2.3% -1.4% -0.8% 2.5%  

Apr -2.8% -0.3% -0.9% 5.0% -2.1% -0.6% -2.6% 4.3% -0.4%  

May -2.4% -0.4% 0.3% -1.6% -0.3% -0.6% -0.6% 4.0% 1.0%  

Jun 0.7% -2.6% 1.9% 0.7% 0.0% -1.7% 2.1% -1.6% 1.7%  

Jul 0.1% -5.1% 4.0% 2.4% -1.1% 0.7% -2.1% 3.4% -3.0%  

Aug 0.0% 1.3% -2.0% 0.2% 0.4% 0.0% -2.1% 2.2% 0.3%  

Sep 0.4% -1.4% 1.2% -0.4% -2.5% 2.6% -0.8% 0.5% -0.8%  

Oct 1.9% -0.4% 1.6% -0.9% -2.3% 1.5% 1.4% 1.3% -3.1%  

Nov 3.2% -2.9% 3.0% 0.6% -0.7% -0.2% 1.2% -2.0% 1.2%  

Dec -1.2% -0.1% -0.8% 0.3% -0.1% 1.3% -1.0% -0.1% 0.4%  

Avg. 1.6% 1.5% 1.5% 1.4% 1.2% 1.2% 1.3% 2.1% 1.6%  
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4.3.3 Medium-Term Price Forecasting Results and Evaluation 

The proposed model is run with the demands realized for the years 2014, 2015 and 

2016. The results with respect to the hydro inflow conditions and realizations are 

shown in Figure 4.16. It should be noted that in terms of hydropower generation, the 

years 2014 and 2015 are close to the dry and reference scenario, respectively, and 

the year 2016 is close to the reference scenario. The yearly average prices in 2014 

and 2015 are 77 and 52 $/MWh, respectively, and it is 46 $/MWh in 2016. When the 

simulation results and yearly realized prices are compared, the yearly absolute 

percentage errors are found to be below 3% as shown in Table 4.9.  

 

Figure 4.16. Simulation results for years 2014-2016 

 

Table 4.9 Price Forecasting Errors 

Year Yearly Absolute Percentage Error (APE) 

2014 2.8% 

2015 2.4% 

2016 1.9% 
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The differences can be explained by the deviations in supply scenarios from the 

realizations including the natural gas supply shortages which had occurred a couple 

of times in a year, affecting primarily natural gas fired power plants and causing the 

market prices to jump for a week or two. This is a situation that is not modeled in 

this study since it is considered as outlier but must be considered while evaluating 

the model accuracy. Another fact that should be considered is that there are only 

three scenarios for hydropower generation in this study, but this is just an 

approximation, and in reality, infinitely many scenarios can be generated. Also, the 

difference in the acceptance criteria for block bids can play a role. Last but not least, 

the hydro optimization procedure has the assumption that the cumulative amount of 

generation from storage hydropower is submitted based on the forecasted electricity 

prices and this approach includes the optimal behavior, but, in reality, hydropower 

plants are operated by different market participants, and their behaviors can be sub-

optimal at various times of the year. These factors together can surely have impact 

on the yearly average electricity price. However, in this study, their effect is found 

to be limited in overall. 

In Figure 4.16, only one demand forecast scenario is used for the year 2016. In order 

to reflect the impact of demand and hydro generation on yearly average price, 45 

demand scenarios and 3 hydro inflow scenarios are used, and the results are shown 

in Figure 4.17. The expected price range for reference, wet and dry scenarios are 

found to be between 41-46, 31-39 and 48-54 $/MWh, respectively, i.e. the overall 

range is 31-54 $/MWh, which corresponds to nearly 23 $/MWh uncertainty 

considering all scenarios. The level of 23 $/MWh uncertainty is nearly half of the 

realized electricity price in 2016. The 1% change in electricity demand corresponds 

to changes 2.2%, 4.2%, 2.3%; and 1 TWh change in electricity demand corresponds 

to changes 0.35, 0.53, 0.43 $/MWh in reference, wet and dry scenarios, respectively. 

These numbers can be interpreted as the impact of demand is highest in wet scenario 

and lowest in reference scenario. It should be noted that these consequences are valid 

only for the year 2016, and the same analysis should be performed for each year that 

is to be analyzed. 
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Figure 4.17. Yearly average price forecasts for the year 2016 

4.4 Conclusion for Medium-Term Modeling of Electricity Market 

In this chapter, an electricity market model considering supply and demand 

dynamics, and representing the Turkish electricity market under specific conditions 

is formed for medium-term forecasting activities. Hourly price forecasting for yearly 

price averages is performed, and scenarios for supply and demand sides are included 

such that price ranges are obtained rather than single point forecasts. 

For this purpose, three main components such as electricity demand modeling, 

electricity supply modeling and electricity price modeling including a special 

module to simulate the realistic utilization of storage hydropower generation are 

developed. This approach has a unique structure considering that it uses all of these 

models for the same purpose. 

The main findings from this chapter can be summarized as follows: 
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 In order to improve the accuracy of the electricity demand forecasts in the 

medium-term horizon up to 1 year and on daily basis, GAM is found to have 

superior performance compared to linear models as it has the improved 

capability to model the nonlinearities in demand.  

 In case of a need for the electricity demand forecasts over 1 year, it has been 

shown that the utilization of MARS model for monthly electricity demand 

forecasting has even more improved accuracy and yields a more stable 

performance. 

 An hourly availability factor calculation methodology based on historical 

data is proposed as a contribution to the existing literature which lacks of 

detailed representation.  

 Based on the proposed modeling approach for electricity price forecasting 

including a unique methodology that considers the realistic utilization of 

storage hydropower plants, it has been found that the average electricity price 

on yearly basis can be modeled with satisfactory accuracy. 

 Considering all the uncertainties affecting both supply and demand, 

electricity prices are formed in a wide range, corresponding to nearly half of 

the actual price.  

In the end, there is still room for improvement for the proposed approach. One of the 

improvements can be on the availability factors of thermal capacity. The availability 

factors obtained in the electricity supply modeling section imply that the 

maintenance schedule for thermal power plants is static, i.e. it does not depend on 

electricity price or reserve capacity in the system. A more dynamic maintenance plan 

structure is necessary in order to more realistically reflect the market conditions in 

the changing market environment and to obtain more realistic price forecasts. Also, 

the number of market participants can be increased such that the new structure better 

reflects the market conditions closer to the real operation. 
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CHAPTER 5  

5 LONG-TERM MODELING OF ELECTRICITY MARKET 

In this chapter, the previously proposed electricity market model structure for 

medium term is improved in order to perform modeling for the long-term horizon. 

The improvements include two new features such as generator maintenance 

scheduling (GMS) and generation expansion planning (GEP). Similar to the previous 

one, the main idea of the long-term electricity market model is to increase the 

observability for the decision maker in terms of the market conditions such as price, 

supply, and reserve capacity. The primary aim is to gain insight about the future 

electricity prices, their patterns, as well as to get prepared and take necessary 

measures by analyzing the results in detail. Also, in the improved structure, the 

electricity market clearing mechanism of the previous one remains unchanged, so 

that electricity generation by fuel is obtained concurrently with the electricity price 

forecasts, and 1-hour time step is preserved in order to maintain the accountability 

of results. The possible ways to benefit from the proposed modeling structure is 

exemplified over various cases for 20 years later from now. The analysis is 

performed only for the end year, which is 2040. However, the system conditions for 

any year can be simulated. In the end, the decision maker can rely on a reasonable 

modeling methodology to recognize how the electricity price can evolve based on a 

GEP scenario, what the degree of imbalances among supply and demand can be, and 

to what extent flexibility is needed in the changing market environment.  

This chapter is organized according to the parts of the long-term electricity market 

model. Since electricity demand is assumed to be exogenously given in the long-

term horizon, a separate section is not dedicated for electricity demand modeling. 

Instead, the chapter starts with the improvement provided by a GMS algorithm in 
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the first section. The details of the proposed GMS model structure are given, along 

with comparisons with the realization and elaborations for future. In the second 

section, a proper GEP model is searched in line with one of the most prevalent market 

problems such as the missing money problem. Three distinct modeling approach is 

presented, and their results are compared. In the third section, the electricity price 

forecasting activity for the long-term horizon is fulfilled. Since the same modeling 

routine is used as in medium term, instead of literature review or model description, 

the possible ways to utilize the proposed modeling approach over four cases based 

on the improvements achieved in the first and second sections are focused. The 

chapter is concluded by the findings obtained as a result of the electricity market 

modeling activity in long term.   

This chapter is prepared based on the author’s work [116] and [117], the first of 

which is published as a journal article in IET Generation, Transmission & 

Distribution in 2020, and the latter one is sent to Applied Energy in 2020. 

5.1 Extension of Medium-Term Electricity Supply Modeling to Long-Term 

by Incorporating Generator Maintenance Scheduling 

The objective of this section is to propose a dynamic GMS algorithm for long-term 

power sector forecasting and planning studies in which electricity price and the 

resulting supply composition are determined based on merit-order dispatch. The 

principle idea is to improve the static elecricity supply modeling of thermal power 

plants presented in the previous chapter and reflect the effect of a reasonable GMS 

plan which can help obtaining more realistic forecasts in longer horizons. The idea 

can also be stated as determining the most likely maintenance schedule considering 

the dynamics of the market, to be applied in future studies for long-term electricity 

price forecasting and supply planning in order to improve forecasting accuracy. The 

study addresses the needs of the central planner, not just the system operator, which 

deals with long-term planning studies. 
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Thorough availability calculations require the consideration of generator outages 

which can be in the forms of forced outages or planned maintenance. The forced 

outage term is considered as random and generally represented by a fixed parameter 

throughout the planning horizon. On the other hand, the unavailability period of a 

generator due to planned maintenance is a complex parameter. It is determined with 

the consensus of the system operator and market participants, which have completely 

distinct objectives, such that the former considers reliability while the latter considers 

profit or revenue. The determination of generator maintenance programs in a certain 

timeframe is generally referred as “generator maintenance scheduling” in the 

literature. 

The supply side of the system is more uncertain than ever due to increasing 

penetration of intermittent renewable resources, primarily wind, solar and run-of-

river type hydropower. Especially for countries in which renewable capacity has yet 

to saturated, the degree of uncertainty for the supply side will be even higher in the 

next 5 to 10-year period of time. This aspect makes planning and forecasting studies 

more challenging. 

This section consists of three main parts. The first part presents the proposed GMS 

methodology, the second part shows the results, and the findings of this section are 

summarized in the last part. The nomenclature can be followed from the “List of 

Symbols” part. 

5.1.1 Proposed Methodology 

This part presents the general concept regarding the GMS algorithm with an 

emphasis on the calculation of reserve capacity, definition of the scenarios for 

storage hydropower generation and formulation of the problem along with the 

constraints. While preparing the methodology, the fundamental concepts accepted 

by the majority of the literature are predicated. 
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It is expected that electricity supply modeling will be improved with the inclusion of 

a proper and basic GMS algorithm. Therefore, it is important to underline that the 

aim is not to utilize the best GMS algorithm and obtain the optimal result but to 

reflect the fundamental effects of GMS on available capacity calculation and solve 

the problem with an acceptable quality of solution in reasonable amount of time. 

The properties of the GMS algorithm are represented in Table 5.1.  

Table 5.1 Evaluation Criteria for the Proposed GMS Algorithm 

Evaluation Criterion Proposed GMS Algorithm 

Solution method Mathematical programming – Integer linear 

programming 

Objective function Leveling reserve margins (minimizing the 

maximum of reserves) 

Constraints Fundamental constraints such as supply and 

demand balance, reserve, duration. 

However, these are formulated on regional 

basis and with the inclusion storage 

hydropower plant flexibility. 

Time horizon Long-term (1 year) 

Unit of time period Weekly (52 decision variables) 

Targeted plant type Only thermal power plants 

 

The leveling reserve margins criterion is said to yield always less riskier solutions 

than those obtained by the optimization under other reliability criteria [64]. 

Therefore, this criterion is preferred in the GMS algorithm, with the objective 

function of minimizing the maximum of reserves in a 52-week horizon, i.e. utilizing 

integer linear programming technique. While the main objective is the leveling of 

reserves, in this case net reserve is implied, which is defined as the maximal power 
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that can be generated with the available generating units minus the estimated demand 

[56]. 

Minimizing the total cost is not an explicit objective of the GMS algorithm. 

However, it is included by implication since trying to level reliability tends to yield 

low generation costs and vice versa [55], [65]. 

The GMS algorithm presented in this work is performed on weekly basis for 1 year. 

It means that there are 52 decision variables indicating the maintenance state of a 

power plant, such as on and off. As such, in long-term forecasting and planning 

studies, this algorithm can be utilized on weekly basis for each of the years in the 

planning horizon, but each 52-week period is solved separately to decrease the 

computational burden. It is possible that the granularity of the existing time 

resolution, which is 1 week, can be extended to 1 month and narrowed down to 1 

day, depending on the user preferences and needs. 

Although the existence of hydropower plants is considered in the proposed GMS, 

only thermal power plant maintenances are scheduled. This can be evidenced from 

the fact that there is a particular hydro inflow pattern within a year, and low water 

inflow seasons are generally preferred for maintenance which in turn affect the daily 

average availability of those power plants only slightly. 

Differently from the existing literature, the proposed GMS approaches and models 

storage hydropower plants in two parts such as must-run generation and price or 

reserve-dependent generation based on scenarios derived according to historical 

data. A user-defined parameter is introduced as proposed in [64], but at this time to 

make a compromise between reliability and hydropower utilization. The structure of 

the GMS algorithm prevents the utilization of hydropower resources in place of 

deficient thermal capacity in maintenance. By compromising on hydro calculations 

by plant; hydropower plants are grouped as a single unit by an equivalent capacity, 

a certain amount of available energy and with generalized constraints to increase 

computational efficiency as proposed in [59], [65]. 
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5.1.1.1 Must-Run Renewable Electricity Generation Modeling and 

Calculation of Reserve Capacity 

The methodology for must-run electricity generation modeling and calculation of 

reserve capacity is represented in Figure 5.1.  

 

Figure 5.1. Summary of must-run renewable electricity generation modeling and 

calculation of weekly average reserve capacity 

Since intermittent renewable electricity generation is independent from MCP or 

system reserve, it can be modeled separately while calculating reserve capacity. For 

wind, solar and run-of-river type hydropower plants, hourly capacity factors for 8760 

hours in a year are modeled according to (5.1) - (5.3). The logic is based on random 

sampling from historical capacity factor set 𝐻𝐶𝐹 of resource 𝑟, with an attempt to 

take into account the uncertainty by generating a specified number of scenarios, e.g. 

the number of elements in random scenario set 𝑅𝑆 is chosen as 100 for this case. No 

correlation is assumed between run-of-river type hydropower and wind or solar, 

hence hydro scenario ℎ𝑠 – which are selected as low (referring to dry season), 

reference and high (referring to wet season) based on hydropower plant generation 

capability as proposed in [95] – does not affect wind and solar generation. The 

calculation of run-of-river hydropower plant generation differs in terms of the 

function 𝛼 via which the sampling region is specified according to the hydro scenario 

selection. The values that 𝛼 gives with respect to ℎ𝑠 are selected based on the 

cumulative distribution function of the historical data in the period of 2008-2018, 
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such that random selection on hourly basis is performed from the 1st quartile for low, 

from the interquartile range for reference and the 3rd quartile for high ℎ𝑠. 

𝐶𝐹
ℎ,𝑟

𝑟𝑠,ℎ𝑠 = 𝑠𝑚𝑝(𝐻𝐶𝐹ℎ,𝑤,𝑟), ∀ℎ, ℎ, 𝑤, 𝑟 ∈ 𝑊𝑁𝐷  (5.1) 

 

𝐶𝐹
ℎ,𝑟

𝑟𝑠,ℎ𝑠 = 𝑠𝑚𝑝(𝐻𝐶𝐹ℎ,𝑚,𝑟), ∀ℎ, ℎ,𝑚, 𝑟 ∈ 𝑆𝑂𝐿 (5.2) 

 

𝐶𝐹
ℎ,𝑟

𝑟𝑠,ℎ𝑠 = 𝑠𝑚𝑝 (𝑞𝑛𝑡(𝐻𝐶𝐹ℎ,𝑤,𝑟 , 𝛼(ℎ𝑠))) , ∀ℎ, ℎ, 𝑤, 𝑟 ∈ 𝑅𝑂𝑅  (5.3) 

 

The must-run renewable generation 𝑀𝑅𝐺 is calculated for the intermittent generation 

for all hours of a year according to (5.4). It is on regional basis in order to force the 

constraints regarding regional supply and demand balance. The regional generation 

is computed with the multiplication of the capacity factor, installed power and the 

value of the function 𝜙 which yields the capacity share of resource 𝑟 in region 𝑟𝑔. 

The capacity factors by regions are assumed to be constant. Availability scenario 𝑎𝑠, 

which can be labeled as low, reference or high, is used to determine how the must-

run generation by random scenarios is to be behaved such that the function 𝜃 operates 

as the minimum, average and maximum function, respectively. 

𝑀𝑅𝐺
ℎ,𝑟𝑔

𝑎𝑠,ℎ𝑠 = 𝜃𝑟𝑠(𝑎𝑠)( ∑ 𝐶𝐹
ℎ,𝑟

𝑟𝑠,ℎ𝑠

𝑟∈𝐼𝑁𝑇

∗ 𝐼𝐶ℎ,𝑟 ∗ 𝜙(𝑟, 𝑟𝑔)) , ∀ℎ, 𝑟𝑔 (5.4) 

 

The reserve capacity, or net reserve, by region and scenario is calculated, as stated 

in (5.5), at hourly time intervals by the subtraction of the thermal installed capacity 

from the residual demand which is stated as the demand 𝑃𝐷 minus the must run 

renewable generation 𝑀𝑅𝐺. Here, as in the case of the installed capacity, the overall 

demand is allocated to regions by the function 𝜓, the values of which represent the 

share of each region, and are determined according to the previous year’s realization. 
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Only one scenario is assumed for the demand, but possibly it can also take values 

according to various demand scenarios, which would result in increasing the number 

of scenario outputs. 

𝑁𝑅
ℎ,𝑟𝑔

𝑎𝑠,ℎ𝑠 = ∑ 𝐼𝐶ℎ,𝑟 ∗ 𝜙(𝑟, 𝑟𝑔)

𝑟∈𝑇𝐻𝑅

− [𝑃
ℎ
𝐷 ∗ 𝜓(𝑟𝑔) − 𝑀𝑅𝐺

ℎ,𝑟𝑔

𝑎𝑠,ℎ𝑠] , ∀ℎ, 𝑟𝑔 (5.5) 

 

The reserve capacity is filtered by a median filter with a step number 𝑀𝐹𝑆, which is 

useful to eliminate spikes due to significantly lower demand behavior at national 

holiday seasons. The filtered net reserve 𝐹𝑁𝑅 is calculated as in (5.6) on weekly and 

regional basis by availability and hydro scenarios. The choice of 𝑀𝐹𝑆 should be an 

odd number, and it is selected as low as possible, e.g. 3 in this thesis, to prevent the 

reserve capacity not to be unduly flattened. 

𝐹𝑁𝑅𝑤,𝑟𝑔
𝑎𝑠,ℎ𝑠 = 𝑚𝑒𝑑 (𝑎𝑣𝑒𝑤→ℎ̅ (𝑁𝑅ℎ̅,𝑟𝑔

𝑎𝑠,ℎ𝑠) ,𝑀𝐹𝑆) , ∀𝑤, ℎ̅, 𝑟𝑔 (5.6) 

 

The comparison of the overall weekly average 𝑁𝑅 and 𝐹𝑁𝑅 is represented by Figure 

5.2.  

 

Figure 5.2. Weekly average and filtered net reserve by availability scenarios such as 

reference (left), low (middle) and high (right) 
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If 𝐹𝑁𝑅 weren’t calculated and used as the reserve parameter, the selected GMS 

algorithm, which tries to level average weekly reserves across the forecast horizon, 

would select peak reserve weeks as the best available places for maintenance, which 

would be misleading. 𝐹𝑁𝑅 does not include the availability of storage hydropower 

plants due to the complexity such that their ability to generate electricity is limited 

and subject to specific constraints unlike thermal resources. 

5.1.1.2 Definition of Capacity Factor Levels and Scenarios for Storage 

Hydropower Generation 

The methodology for the definition of capacity factor levels and scenarios for storage 

hydropower generation is represented in Figure 5.3.  

 

Figure 5.3. Summary of definition of capacity factor levels and scenarios for storage 

hydropower plant generation 

As mentioned previously, instead of performing calculations for every storage 

hydropower plant, these units are grouped as a single one by an equivalent capacity, 

a certain amount of available energy and with generalized constraints to increase 

computational efficiency as proposed in [59], [65], [95]. For these type of power 

plants, there are applications of SDDP (stochastic dual dynamic programming) 

[118], which is widely utilized in the literature. With SDDP, each power plant can 
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be modeled individually with stochastic inflow modeling. However, in a long-term 

study aiming hourly time resolution, using SDDP would be inappropriate in terms 

of highly increased complexity and computation time, hence a simpler model for 

storage hydropower plant generation is preferred, and the scenarios for these are 

defined based on hourly historical capacity factor data. 

As compatible with the scenarios for run-of-river type hydropower, hydro scenarios 

for storage hydropower are determined as low, reference and high, based on the 

hourly capacity factor data in the period of 2008-2018. The same notation is used 

similar to run-of-river type hydropower in order to limit the number of scenarios as 

much as possible without loss of any valuable information and to represent the most 

probable scenario with reference as well as drawing a frame at the lower and upper 

boundaries based on historical instances of data as mentioned in [95]. In order to be 

able to represent the contribution of storage hydropower resources on reserve levels, 

three conditions are determined as to become constraints in the GMS problem later. 

These are weekly average, minimum and maximum capacity factor levels as 

represented in (5.7) - (5.9). (5.7) calculates the weekly average capacity factor by 

scenario. The first part of the equation calculates weekly averages from hourly 

historical data, and in the latter part the function 𝛿 calculates the standard deviation 

of the first part and operates according to the designated ℎ𝑠. If ℎ𝑠 is low or high, the 

second part is subtracted or added to the first term accordingly, and no operation is 

performed in case of reference ℎ𝑠. 

𝑊𝐶𝐹𝑤
𝑎𝑣𝑒,ℎ𝑠 = 𝑎𝑣𝑒𝑤→ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑟) + 𝛿(ℎ𝑠, 𝐻𝐶𝐹ℎ,𝑤,𝑟), ∀𝑤, ℎ, 𝑟 ∈ 𝑆𝑇𝑂 (5.7) 

 

(5.8) defines the minimum or must-run generation level for storage hydropower plant 

generation, and it has two parts. In the first part, for each week 𝑤, the minimum of 

hourly average capacity factors for the relevant ℎ𝑠 is calculated. The mapping from 

hydro scenarios to years means that only data of corresponding low, reference and 

high water-inflow years are to be used for the respective ℎ𝑠. The second part of the 

equation yields how much additional generation can be considered in the must-run 
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category. Firstly, the difference of average and minimum hourly capacity factors is 

computed on weekly basis, and the resulting levels are multiplied by the function 𝛽, 

which determines the additional storage hydropower plant generation base effect. 

This function takes values 0, 0.25 and 0.50 for low, medium and high-water inflow 

seasons in a year. 

𝑊𝐶𝐹𝑤
𝑚𝑖𝑛,ℎ𝑠 = 𝑚𝑖𝑛𝑤 (𝑎𝑣𝑒ℎ𝑠→𝑦,𝑤,ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑦,𝑟))

+ [𝑎𝑣𝑒𝑤 (𝑎𝑣𝑒ℎ𝑠→𝑦,𝑤,ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑦,𝑟))

− 𝑚𝑖𝑛𝑤 (𝑎𝑣𝑒ℎ𝑠→𝑦,𝑤,ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑦,𝑟))]

∗  𝛽(𝑤), ∀𝑤, ℎ, 𝑦, 𝑟 ∈ 𝑆𝑇𝑂 

(5.8) 

 

(5.9) determines the maximum level that weekly capacity factor can reach by ℎ𝑠. It 

is specified by an offset parameter 𝑁 upon the minimum level, which is calculated 

according to (5.10). This parameter is fixed for all possible ℎ𝑠. 

𝑊𝐶𝐹𝑤
𝑚𝑎𝑥,ℎ𝑠 = 𝑊𝐶𝐹𝑤

𝑚𝑖𝑛,ℎ𝑠 + 𝑁,∀𝑤, 𝑟 ∈ 𝑆𝑇𝑂 (5.9) 

 

𝑁 = 𝑎𝑣𝑒 [𝑚𝑎𝑥𝑤 (𝑎𝑣𝑒𝑤,ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑟))

− 𝑚𝑖𝑛𝑤 (𝑎𝑣𝑒𝑤,ℎ(𝐻𝐶𝐹ℎ,𝑤,𝑟))] , ∀𝑤, ℎ, 𝑟 ∈ 𝑆𝑇𝑂 

(5.10) 

 

The resulting weekly average, minimum and maximum capacity factor series by 

hydro scenarios reference, low and high are shown in Figure 5.4. In this figure, the 

straight lines are the expected capacity factor values while the dotted lines are the 

must-run levels and the dashed lines are the maximum levels that can be achieved in 

weekly terms, i.e. 168-hour averages. That is, the utilization of storage hydropower 

plants can be anywhere between minimum and maximum levels. However, as 

described in the next part, since this capacity should not be unduly used, e.g. 

excessive levels of capacity factors should not be reached in order to compansate the 
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capacity in maintenance, especially in winter and summer seasons when load is high, 

storage hydropower plant utilization becomes part of the objective function. 

 

Figure 5.4. Weekly average (straight), minimum (dotted) and maximum (dashed) 

capacity factor levels by storage hydropower plant generation scenarios such as 

reference (left), low (middle) and high (right) 

5.1.1.3 GMS Problem Formulation 

The GMS problem is formulated as a multi-objective optimization problem shown 

in (5.11). 

𝑚𝑖𝑛 {
𝑧
𝑣
} (5.11) 

 

The primary objective is defined as the leveling of the weekly average reserve 

capacity by minimizing the variable 𝑧, the maximum of weekly reserves. The second 

objective is minimizing the variable 𝑣, the maximum of weekly storage hydropower 

plant reserves. These two objectives together try the utilization of water resources in 

compatible with must-run generation level as much as possible through a parameter 

which is the amount that allows second objective function to degrade the first one. 
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The weighted sum method is applied as a part of multi-objective optimization 

problem. Here, since this is an integer problem, there is the risk for the solutions to 

be Pareto-dominated and not belonging to the optimal Pareto set [119], [120]. 

Nevertheless, considering that the aim in this thesis is not to find the best GMS result 

but to obtain a reasonable solution to be used in later stages, finding a solution that 

is close to optimality is evaluated to be acceptable. 

The constraints are defined through (5.12) - (5.21). (5.12) frames the initial and end 

point conditions for maintenance decision. (5.13) is the duration constraint, (5.14) 

guarantees the contiguity of maintenance states, and (5.15) relates the previous two 

constraints. (5.16) is the reformulation of the reserve capacity with the subtraction 

of the capacity decided to be in maintenance and addition of expected storage 

hydropower plant generation. (5.17) - (5.19) put minimum, maximum and yearly 

average capacity factor constraints for storage hydropower plant generation. (5.20) 

calculates the weekly average storage hydropower plant reserves. (5.21) forces the 

weekly capacity in maintenance by region, to be within predetermined safety 

margins, which are specified according to regional supply and demand balance. 

𝑥𝑤,𝑔 = 0, ∀𝑤 ∈ {0,53}, 𝑔 (5.12) 

 

∑𝑥𝑤,𝑔
𝑤

= 𝑁𝑀𝑔, ∀𝑤, 𝑔 (5.13) 

 

∑𝑦𝑤,𝑔
𝑤

= 1, ∀𝑤, 𝑔 (5.14) 

 

𝑥𝑤,𝑔 − 𝑥𝑤−1,𝑔 + 𝑦𝑤,𝑔 ≥ 0, ∀𝑤 ∈ {𝑊, 53}, 𝑔 (5.15) 
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𝑧 ≥∑𝐹𝑁𝑅𝑤,𝑟𝑔
𝑎𝑠,ℎ𝑠

𝑟𝑔

−∑𝐼𝐶𝑔 ∗ 𝑥𝑤,𝑔
𝑔

+∑𝑎𝑣𝑒𝑤→ℎ(𝐼𝐶ℎ,𝑟) ∗ 𝑢𝑤
ℎ𝑠

𝑤

, ∀𝑟𝑔,𝑤, 𝑔, ℎ, 𝑟 ∈ 𝑆𝑇𝑂 

(5.16) 

 

𝑢𝑤
ℎ𝑠 ≥ 𝑊𝐶𝐹𝑤

𝑚𝑖𝑛,ℎ𝑠, ∀𝑤 (5.17) 

 

𝑢𝑤
ℎ𝑠 ≤ 𝑊𝐶𝐹𝑤

𝑚𝑎𝑥,ℎ𝑠, ∀𝑤 (5.18) 

 

∑𝑢𝑤
ℎ𝑠

𝑤

=∑𝑊𝐶𝐹𝑤
𝑎𝑣𝑒,ℎ𝑠

𝑤

 (5.19) 

 

𝑣 ≥ 𝑊𝐶𝐹𝑤
𝑚𝑎𝑥,ℎ𝑠 − 𝑢𝑤

ℎ𝑠, ∀𝑤 (5.20) 

 

∑ 𝑥𝑤,𝑔 ∗ 𝐼𝐶𝑔
𝑟𝑔→𝑔

≤ 𝑀𝐶𝑤,𝑟𝑔
𝑚𝑎𝑥 , ∀𝑟𝑔,𝑤, 𝑔 (5.21) 

5.1.2 Results 

The presented algorithm is tested with the real data of the Turkish system. The year 

2018 is selected as the base year, and the future calculations are performed for the 

year 2028 in order to detect whether the expected average capacity to be maintenance 

by weeks changes considerably. The total installed capacity is 88.6 GW as of the end 

of 2018, with shares of 29% natural gas, 12% lignite and 10% hard coal. 32% of the 

capacity is hydropower of which 23% is storage and 9% is run-of-river hydropower. 

The remaining 17% belongs to the other types of renewable resources such as mostly 

wind and solar. 
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For simplification, the minimum capacity limit for thermal capacity to be in 

maintenance is determined as 10 MW. That is, the facilities under 10 MW are 

neglected. The amount of total maintenance capacity is 30 GW and 160 units in 2018, 

and with the addition of new thermal power plants according to the capacity 

projection, it would increase to 44 GW and 184 units. In terms of renewable 

resources, 10 GW wind and 20 GW solar capacity additions are assumed. The total 

electricity demand is fixed for all random scenarios, and it is around 304 TWh in 

2018. A demand increase of 3% per year is assumed until 2028, in line with the 

official electricity demand projections. 

The study is performed in R using Gurobi as solver with a PC of 2.60 GHz processor 

and 16 GB RAM. The number of decision variables and constraints is 17174 and 

9797, respectively, for the year 2018. The execution time, corresponding duality gap 

and mean absolute differences among resulting weekly average reserve capacity 

compared to the best available solution (Case III) are reported in Table 5.2. In 18 

seconds, the duality gap reduces to 0.50%. Considering that zero duality gap couldn’t 

be reached in 48 hours, the duality gap of 0.30% is selected as a threshold to 

terminate the execution and save the results with 0.76% difference compared to Case 

III which is the best among other cases. 

Table 5.2 Comparison of Results in terms of Time, Duality Gap and Mean Absolute 

Differences 

Cases Time Duality Gap (%) Mean Abs. Diff (%) 

I 18 sec 0.50 1.37 

II 3 min 0.30 0.76 

III 6 hours 0.14 - 

 

The results are presented in terms of comparison with the realization and the effects 

of hydro scenarios, capacity evolution and hydro optimization on maintenance 
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schedules. The comparison of GMS results by availability scenarios with the 

realization is shown in Figure 5.5.  

 

Figure 5.5. Weekly average capacity in maintenance by availability scenarios and 

realization in 2018 

The hydro scenario is assumed to be reference case and fixed. The differentiation 

across the availability scenarios seems to be limited, hence it is concluded that 

assuming the worst and best cases of availability for all weeks do not have a 

significant impact on the resulting weekly average capacity to be in maintenance. 

The general profiles of the GMS results and realization match each other, i.e. the 

majority of the maintenance occurs in spring season with additional considerable 

amounts in fall season, as well as approximately no maintenance in winter and 

summer seasons. Since this is a simplification of reality and does not include all 

information of the system and constraints, there can be differences such as; 

 in reality the rise and fall of maintenance capacity occurs later and earlier in 

spring season, respectively, 

 and the amount of maintenance capacity is higher in fall season. 

The first distinction can be improved by considering also various demand scenarios 

instead of assuming a fixed demand since the demand uncertainty is significant 

especially during season changes, i.e. from winter to spring and from spring to 
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summer. As such, taking into account demand scenarios that include winter-like 

weather conditions in early spring and summer-like weather conditions in late spring 

would surely increase the expected demand for those weeks, thereby would reduce 

the reserve capacity, the amount of capacity to be in maintenance and better 

approximate the conditions in reality. The second distinction can be corrected with 

the inclusion several constraints such as manpower and some unit specific ones. 

The effect of hydro scenarios on the GMS results is presented in Figure 5.6. In this 

case, the availability scenario is assumed to be reference case and fixed. The pattern 

of schedules does not change. However, across hydro scenarios, over 2000 MW 

capacity may need to be relocated for maintenance in order to sustain optimality. 

Therefore, reliable hydropower availability forecasts to define appropriate hydro 

scenarios can increase the reliability of the system. This is a more valuable evaluation 

from the view of system operator for medium-term planning. As soon as the newest 

information regarding the hydropower availability is obtained by the system 

operator, and it contradicts with the previous one, the system operator should make 

necessary adjustments in terms of the amount of capacity to be taken offline by 

cooperating with generator companies. Also, from the long-term planning 

perspective, it is possible to gain insight about at what level the margins for the 

amount of maintenance capacity by weeks, months and seasons will be. 

 

Figure 5.6. Weekly average capacity in maintenance by hydro scenarios in 2018 
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The effect of the capacity evolution from 2018 to 2028 is shown in Figure 5.7. The 

pattern of the maintenance schedules fairly changes although the majority of the 

capacity is taken offline in spring season. There are hardly any changes for winter 

season, but the most prominent difference is the maintenance capacity in summer 

season. The amount of that capacity can further increase with the evolution of 

demand such that the amount of demand growth across all seasons gets closer 

implying higher demand growth rates in spring. This is a finding supporting the 

inclusion of the generation maintenance effect in forecasting and planning studies. 

 

Figure 5.7. Comparison of weekly average maintenance capacity for reference hydro 

scenario in 2018 and 2028 

The effect of the hydro optimization procedure on the resulting maintenance 

schedules can be evaluated with Figure 5.8 - Figure 5.9. This procedure seems not 

to have a significant impact for the year 2018. However, the future electricity supply 

composition can change the issue such that without an optimization procedure, the 

capacity can be taken into maintenance in winter season with the additional 

utilization of storage hydropower plants, as can be seen in Figure 5.9, from week 45 

to 52 and from week 1 to 5. That means risking the water resources at winter season 

with the lowest expectation of water inflow throughout a year by utilizing storage 

hydropower plants more for compensating additional maintenance capacity, which 

is highly undesirable in terms of reliability point of view. In longer periods of time 
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horizon such as 20-year and 50-year, this finding can help better description of future 

system conditions while performing long-term forecasting and planning studies. 

 

Figure 5.8. Comparison of GMS results with and without utilization of hydro 

optimization procedure in 2018 

 

Figure 5.9. Comparison of GMS results with and without utilization of hydro 

optimization procedure in 2028 

The weekly average reserve capacity forecasts with and without GMS algorithm is 

shown in Figure 5.10. If the GMS algorithm is not used, and maintenance in 2028 is 

static, i.e. determined according to the maintenance calendar in 2018, the lowest 
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reserve weeks coincide with spring and autumn in which demand is lowest. This can 

also be followed from Figure 5.11. 

 

Figure 5.10. Weekly average reserve capacity forecasts with and without GMS 

algorithm in 2028 

 

Figure 5.11. Weekly average expected MCP with and without GMS algorithm in 

2028 

Figure 5.11 represents the weekly average expected MCP calculated according to the 

reserve-MCP relation given in Figure 2.11. Without GMS, the highest expected 

MCPs occur in spring and fall and the lowest ones occur in summer and winter. This 

is on the contrary of what happens in 2018 and quite unlikely given that the demand 
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is higher in summer and winter. Thanks to the GMS algorithm, the resulting dynamic 

GMS yields more evenly distribution of reserves as well as expected MCPs, in 

parallel with the assumption that the system operator and generators will logically 

follow their own objectives. 

5.1.3 Discussion 

In this section, a reasonable GMS algorithm is proposed for long-term power sector 

forecasting and planning studies to be utilized in the stage of available capacity 

calculation. It can also be used for the medium-term time horizon having at least 1-

year forecast period. Storage hydropower plants are modeled as must-run and price-

dependent generation in order to reflect their effect on GMS more realistically. 

The main contributions and revelations of this section are listed as follows: 

 For long-term forecasting and power sector planning studies that simulate the 

electricity market and yield detailed results in hourly resolution such as the 

electricity generation, price, supply and demand balance, etc., a reasonable 

GMS algorithm is designed to be taken into consideration while calculating 

available capacity by power plant, which is critical for the merit-order 

dispatch. 

 For storage hydropower plant-dominant power systems, the dynamics of 

storage hydropower plant generation capability, which can adjust its 

generation level according to MCP and also to reserve capacity, is included 

in the GMS algorithm, along with the inclusion of regional constraints on 

maintenance considering regional supply and demand balance. Storage 

hydropower plants are modeled as must-run and price-dependent generation, 

differently from the existing literature, in order to reflect their effect on GMS 

more realistically. 

 In long term, e.g. a 10-year period, the results indicate that the future 

expected profile of maintenance schedules is significantly different from that 
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of today. Therefore, it is advisable that the utilization of the proposed GMS 

method can provide a more qualified modeling structure and yield improved 

results in long-term power sector forecasting and planning studies, instead of 

neglecting or reflecting the maintenance effect through just a fixed 

maintenance parameter. 

 Three different hydropower capacity factor scenarios are determined 

according to water inflow characteristics that can vary across years. These 

are labelled as low, reference and high. The effect of those scenarios on 

maintenance scheduling is demonstrated. The variation among capacities to 

be taken into maintenance is significant, hence for medium-term operation, 

the most recent information regarding water inflow should be considered. 

This type of utilization of the GMS algorithm can also be beneficial to the 

system operator during or prior to the negotiation process for maintenance 

planning with generator companies. 

5.2 Generation Expansion Planning Considering Missing Money Problem 

The objective of this section is to find and apply a proper methodology for installed 

capacity forecasts to be utilized in the long-term utilization of the electricity market 

modeling methodology proposed in the thesis. While searching for a reasonable 

generation fleet of the future, this section investigates whether the missing money 

problem, which is a widespread phenomenon in today’s liberalized electricity 

markets, can be mitigated in GEP studies, and whether the conventional approach to 

GEP problem should be updated. 

Most of the electricity sector investments is in the field of power supply [121]. 

However, in mature wholesale electricity markets, the problem that thermal plant 

generators exposed to MCPs are getting less profitable or even unprofitable is 

becoming serious. With policies encouraging liberalization of electricity markets, 

renewable energy integration and competition, considerable amount of investments 



 

 

125 

were realized which resulted in weakened price signals based on short-term marginal 

cost pricing and reduced profitability of existing generators [122]. 

This problem in wholesale markets is in parallel with what has been called as the 

“revenue adequacy” or “missing money” problem which is of growing concern 

[123]. The missing money problem arises when price caps in wholesale markets is 

too low which results in prices below market clearing levels in scarcity conditions; 

or ancillary services like flexibility, ramp rates, frequency response etc. and 

balancing services are inadequately remunerated; or energy prices are inefficiently 

low which have been depressed by the expansion of subsidized intermittent 

generation and other subsidized investments [123], [124]. As a result, some of the 

plant investors are unable to recuperate their investment and other fixed costs. 

Recently, low energy prices are prevalent across many liberalized markets in both 

developing and developed countries thanks to decreasing hydrocarbon prices, 

massive amount of RES integration and stagnant demand [125], [126], [4]. 

In such an environment where the majority of plants without guarantees are 

struggling, and there is need for reliable system operation with adequate supply, this 

study investigates whether it is possible to mitigate the missing money problem in 

GEP to find balance from both investor’s and central planner’s view by reconsidering 

the GEP problem. To do so, firstly based on the central planner’s way of thinking, 

the standard GEP problem with ‘minimization of total system costs including 

investment and operation costs’, secondly the GEP problem with ‘maximization of 

generators’ profit’ as objective functions are presented and solved. Then, a third 

problem is created aiming to minimize the generator cost including both investment 

& operation cost and the support needed by existing plants to cover their investment 

and fixed costs at least in the debt repayment period while preserving a targeted level 

of reserve. Utilizing three different approaches, the following questions are 

addressed: 

 How much investment decisions differ across various objective functions 

such as minimization of investment & operation cost, maximization of 
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generators’ profit and minimization of generators’ cost including total 

support needed by existing plants? 

 Is it possible to fully eliminate the missing money in a GEP study? 

 Considering that there is significant interest for investing in renewable 

energy capacity, hence this new capacity is auctioned by the central planner, 

how much renewable capacity should be auctioned to mitigate the missing 

money problem? 

 Is it reasonable to expect the mitigation of the missing money problem in a 

GEP study? 

This section consists of three main parts. The first part is devoted to the description 

of models based on various objective functions and the description of technical data. 

The second part presents the results for all cases created based on profit margin of 

plants, age of generation fleet and demand forecast. In the last part, the findings of 

this section are summarized. The nomenclature can be followed from the “List of 

Symbols” part. 

5.2.1 Proposed Models and Assumptions 

Following the literature review process in Chapter 3, it is concluded that to address 

the specific needs in this study and answer the questions based on profitability and 

support need, an iterative procedure can be proposed considering the need for 

simplification as the previously mentioned MIBLP structure in Chapter 3 has its own 

limitations. This procedure aims to find a solution having an acceptable quality. In 

this respect, the models are introduced as follows: 

 Standard GEP model with UC constraints (Model I): It runs a GEP algorithm 

in line with the constraints used in a standard GEP study. The UC constraints 

are considered. It is analogous with central planners’ approach to minimize 

total investment and operation costs. The GEP approach in EST (Energy 

System Model for Turkey) [127], which is based on the mathematical 
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formulation of  PRIMES model [79] is a good example and used as basis for 

Model I. Model I can also be called as the conventional GEP model. 

 GEP model aiming generators’ profit maximization (Model II): It tries to 

maximize the profit of each candidate generator so that the feasible units are 

commissioned. An investment is realized if found feasible according to the 

MCPs in the operation period. This is analogous with investors’ approach. 

The investment (Model II-A) and operation (Model II-B) problems are 

decomposed and solved in an iterative process. Model II is used to validate 

Model I and reveal the possible differences among the results of those two 

models. Model II can also be called as a price-based GEP model. 

 GEP model aiming generators’ total cost minimization including support 

need (Model I-S): It tries to minimize the support needed by existing plants 

and investment & operation costs. Here, the term ‘support’ is used as 

synonymous to ‘incentive’ required for those unable to recuperate the capital 

cost of investments and aim to return at least the capital cost in payback 

period. It is analogous with central planners’ behavior aiming to prevent the 

decommissioning of young plants having already been in debt repayment 

period in the presence of moderate amount of demand growth and the 

approach to keep a reasonable amount of reserve for system safety. 

5.2.1.1 Formulation of Model I 

The objective function is the minimization of all investment and operation costs as 

in (5.22). The investment cost is represented by annualized capital cost. The 

operation costs include variable generation cost, fixed operation & maintenance cost, 

start-up cost, renewable energy curtailment cost, load shedding and reserve 

deficiency cost. All costs are discounted and expressed in base year monetary terms.  
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𝑚𝑖𝑛 ∑(1 + 𝛤)𝑇0−𝑡

𝑡

∗

{
 
 
 
 
 

 
 
 
 
 

∑𝐹𝑜,𝑡 ∗

[
 
 
 
 
 
 
 
 ∑(𝑝𝑔,𝑜,𝑡

𝐺 ∗ 𝐶𝑔,𝑡
𝑇𝑉)

𝑔

+ ∑ 𝑠𝑢𝑔,𝑜,𝑡 ∗ 𝐶𝑔,𝑡
𝑆𝑈

𝑔∈𝐺𝑢𝑙

+

∑ 𝑝𝑔,𝑜,𝑡
𝑅𝐸𝑆 ∗ 𝐶𝑔,𝑡

𝑅𝐸𝑆 +

𝑔∈𝐺𝑟𝑒

∑((𝑠𝑡𝑠,𝑜,𝑡
𝐶 + 𝑠𝑡𝑠,𝑜,𝑡

𝐷 ) ∗ 𝐶𝑠,𝑡
𝑇𝑉)

𝑠

+ 𝑝𝑜,𝑡
𝐿𝑆 ∗ 𝐶𝑜,𝑡

𝐿𝑆 +

𝑝𝑜,𝑡
𝑅𝑆 ∗ 𝐶𝑜,𝑡

𝑅𝑆 + ]
 
 
 
 
 
 
 
 

𝑜

+

 [ ∑ (𝑖𝑐𝑎,𝑡 ∗ (𝐶𝑎,𝑡
𝐴𝐶 ∗ 𝐼𝑎,𝑡 + 𝐶𝑎,𝑡

𝑂𝑀𝐹 ∗ 𝛬𝑎,𝑡))

𝑎∈𝐺∪𝑆

]
}
 
 
 
 
 

 
 
 
 
 

 

(5.22) 

 

The constraints of Model I are represented in Appendix A through (A.1) - (A.35). 

They are related to supply-demand balance, load shedding limit, capacity limit by 

fuels as well as generation limit, minimum stable generation limit, start up & shut 

down conditions, minimum uptime & downtime for power plants, and operational 

constraints of storage facilities. 

5.2.1.2 Formulation of Model II 

Model II has two components such as Model II-A (investment model) and Model II-

B (operation model). Model II-A takes investment decisions based on profit 

maximization of candidate plants and storage facilities as in (5.23). 

𝑚𝑎𝑥∑(1 + 𝛤)𝑇0−𝑡 ∗ (∑ 𝑚𝑔,𝑡
𝑃

𝑔∈𝐺𝐶

+∑𝑚𝑠,𝑡
𝑃

𝑠

)

𝑡

 (5.23) 

The definition of profit, revenue and cost are presented in (5.24) - (5.27). (5.24) 

shows the relation among profit, revenue and cost. Revenues for any facility depend 

on the expected MCP, expected operating hours and installed capacity (5.25). Costs 

for generators and storage facilities are differentiated by (5.26) and (5.27), the latter 

of which includes the MCP for charging hours as additional cost. 
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𝑚𝑎,𝑡
𝑃 = 𝑚𝑎,𝑡

𝑅 −𝑚𝑎,𝑡
𝐶 , ∀𝑎, 𝑡 (5.24) 

𝑚𝑎,𝑡
𝑅 = 𝐸𝑎,𝑡

𝑀𝐶𝑃 ∗ 𝐸𝑎,𝑡
𝑂𝑃𝐻 ∗ 𝑖𝑐𝑎,𝑡, ∀𝑎, 𝑡 (5.25) 

𝑚𝑔,𝑡
𝐶 = (𝐶𝑔,𝑡

𝐴𝐶 + 𝐶𝑔,𝑡
𝑂𝑀𝐹 + 𝐶𝑔,𝑡

𝑇𝑉 ∗ 𝐸𝑔,𝑡
𝑂𝑃𝐻) ∗ 𝑖𝑐𝑔,𝑡, ∀𝑔, 𝑡 (5.26) 

𝑚𝑠,𝑡
𝐶 = [𝐶𝑠,𝑡

𝐴𝐶 + 𝐶𝑠,𝑡
𝑂𝑀𝐹 + (𝐶𝑠,𝑡

𝑇𝑉 + 𝐸𝑠,𝑡
𝑀𝐶𝑃𝐶) ∗ 𝐸𝑠,𝑡

𝑂𝑃𝐻] ∗ 𝑖𝑐𝑠,𝑡, ∀𝑠, 𝑡 (5.27) 

 

The constraints related to investment such as (A.1) - (A.4), (A.23) and (A.25) - 

(A.35) are taken from Model I and inserted into Model II-A. 

At each iteration, Model II-A is updated based on the rules in (5.28) - (5.31). In order 

to limit possible oscillations between Model II-A and II-B, the change across 

iterations, 𝑖 and 𝑖 − 1, in terms of both the amount of capacity to be commissioned 

for plants without unit size limitation and storage facilities (5.28) and the number of 

units to be commissioned (5.29) are restricted. (5.30) tells that the change in the 

amount of capacity in (5.28) for the consecutive iterations is limited by the parameter 

𝛣𝑢𝑙𝑙. Similarly, the change in the number of units is limited to 1 (5.31). 

𝑝𝑔/𝑠,𝑡
𝐶 (𝑖)

= {
𝑝𝑔,𝑡
𝐶 (𝑖−1) + 𝛺 ∗ 𝐵𝑢𝑙𝑙, ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙𝑙, 𝑡

𝑝𝑠,𝑡
𝐶 (𝑖−1)

+ 𝛺 ∗ 𝐵𝑢𝑙𝑙, ∀𝑠, 𝑡
} (5.28) 

𝑖𝑢𝑔,𝑡
𝐶 (𝑖)

= 𝑖𝑢𝑔,𝑡
𝐶 (𝑖−1)

+ 𝛺 ∗ 𝐵𝑢𝑙, ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙, 𝑡 (5.29) 

where 𝛺 = {

1, 𝑖𝑓 𝑝𝑔,𝑡
𝐶 > 𝑝𝑔,𝑡

𝐶 (𝑖−1)

−1, 𝑖𝑓 𝑝𝑔,𝑡
𝐶 < 𝑝𝑔,𝑡

𝐶 (𝑖−1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} (5.30) 

and 𝛺 = {

1, 𝑖𝑓 𝑖𝑢𝑔,𝑡
𝐶 > 𝑖𝑢𝑔,𝑡

𝐶 (𝑖−1)

−1, 𝑖𝑓 𝑖𝑢𝑔,𝑡
𝐶 < 𝑖𝑢𝑔,𝑡

𝐶 (𝑖−1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

} (5.31) 

 

In Model II-B, operational decisions are determined for all facilities based on 

minimization of total operation costs (5.32). These costs are variable cost, start up 

cost, renewable energy and load shedding costs. 
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𝑚𝑖𝑛∑(1 + 𝛤)𝑇0−𝑡 ∗

{
 
 
 
 
 

 
 
 
 
 

∑𝐹𝑜,𝑡 ∗

[
 
 
 
 
 
 
 
 
 
 
 ∑(𝑝𝑔,𝑜,𝑡

𝐺 ∗ 𝐶𝑔,𝑡
𝑇𝑉)

𝑔

+

∑ 𝑠𝑢𝑔,𝑜,𝑡 ∗ 𝐶𝑔,𝑡
𝑆𝑈

𝑔∈𝐺𝑢𝑙

+

∑ (𝑝𝑔,𝑜,𝑡
𝑅𝐸𝑆 ∗ 𝐶𝑔,𝑡

𝑅𝐸𝑆)

𝑔∈𝐺𝑟𝑒

+

∑((𝑠𝑡𝑠,𝑜,𝑡
𝐶 + 𝑠𝑡𝑠,𝑜,𝑡

𝐷 ) ∗ 𝐶𝑠,𝑡
𝑇𝑉)

𝑠

+

𝑝𝑜,𝑡
𝐿𝑆 ∗ 𝐶𝑜,𝑡

𝐿𝑆 ]
 
 
 
 
 
 
 
 
 
 
 

𝑜

 }
 
 
 
 
 

 
 
 
 
 

𝑡

 (5.32) 

 

The operational constraints such as (A.5) - (A.22) are taken from Model I and 

inserted into Model II-B. 

After Model II-B runs, the model is updated at each iteration based on the rules in 

(5.33) - (5.36). In (5.33), the MCPs calculated in Model II-B are represented by 

𝑚𝑐𝑝𝑜,𝑡. In order to limit the amount of oscillations between consecutive iterations 𝑖 

and 𝑖 − 1, the recently calculated MCP is weighted by the parameter 𝐵, and the 

remaining part is weighted by the previously fed MCP’s to Model II-A. The expected 

MCPs for generation and discharging activities are calculated based on the 

generation and discharging pattern obtained from Model II-B (5.34). Similarly, the 

expected MCP for charging activity is calculated separately (5.35). The expected 

number of operating hours in a year is calculated in (5.36).  

𝑚𝑐𝑝𝑜,𝑡
(𝑖)
= 𝑚𝑐𝑝𝑜,𝑡

(𝑖−1)
∗ (1 − 𝐵) + 𝑚𝑐𝑝𝑜,𝑡 ∗ 𝐵, ∀𝑜, 𝑡 (5.33) 

𝐸𝑔/𝑠,𝑡
𝑀𝐶𝑃 (𝑖)

=

{
 
 

 
 ∑ 𝑝𝑔,𝑜,𝑡

𝐺
𝑜 ∗ 𝐹𝑜,𝑡 ∗ 𝑚𝑐𝑝𝑜,𝑡

(𝑖)

∑ 𝑝𝑔,𝑜,𝑡
𝐺

𝑜 ∗ 𝐹𝑜,𝑡
, ∀𝑔, 𝑡

∑ 𝑠𝑡𝑠,𝑜,𝑡
𝐷

𝑜 ∗ 𝐹𝑜,𝑡 ∗ 𝑚𝑐𝑝𝑜,𝑡
(𝑖)

∑ 𝑠𝑡𝑠,𝑜,𝑡
𝐷

𝑜 ∗ 𝐹𝑜,𝑡
, ∀𝑠, 𝑡

}
 
 

 
 

 (5.34) 

𝐸𝑠,𝑡
𝑀𝐶𝑃𝐶 (𝑖)

=
∑ 𝑠𝑡𝑠,𝑜,𝑡

𝐶
𝑜 ∗ 𝐹𝑜,𝑡 ∗ 𝑚𝑐𝑝𝑜,𝑡

(𝑖)

∑ 𝑠𝑡𝑠,𝑜,𝑡
𝐶

𝑜 ∗ 𝐹𝑜,𝑡
, ∀𝑠, 𝑡 (5.35) 
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𝐸𝑔/𝑠,𝑡
𝑂𝑃𝐻 (𝑖)

=

{
 
 

 
 
∑ 𝑝𝑔,𝑜,𝑡

𝐺
𝑜 ∗ 𝐹𝑜,𝑡

𝑖𝑐𝑔,𝑡 ∗ 8760
, ∀𝑔 ∈ 𝐺, 𝑡

∑ 𝑠𝑡𝑠,𝑜,𝑡
𝐷

𝑜 ∗ 𝐹𝑜,𝑡

𝑝𝑠,𝑡
𝐶,𝑎𝑙𝑙 ∗ 8760

, ∀𝑠, 𝑡
}
 
 

 
 

 
 

(5.36) 

 

If no investment decision is taken for any candidate plant or storage facility, the 

update of (5.34) - (5.35) is performed as shown in (5.37) - (5.39). In this case, the 

initially estimated expected operating hours are used instead of (5.36). The MCPs 

for generating and discharging hours are calculated based on the maximum of 𝑛 

hours (5.37), and those for charging are calculated based on the minimum of 𝑛 hours 

(5.38) in terms of the ranking of MCPs from highest to lowest at the iteration 𝑖. (5.39) 

would be used to determine the expected operating hours in a representative day if 

the respective capacity were required to operate. 

𝐸𝑎,𝑡
𝑀𝐶𝑃 (𝑖)

=
∑ 𝑚𝑎𝑥𝐸𝑎,𝑑,𝑡

𝑂𝑃𝐻(𝑚𝑐𝑝𝑜,𝑡
(𝑖)
) ∗ 𝐹𝑑,𝑡𝑑

∑ 𝐹𝑑,𝑡𝑑
, ∀𝑎 ∈ 𝐺𝐶 ∪ 𝑆, 𝑡 (5.37) 

𝐸𝑠,𝑡
𝑀𝐶𝑃𝐶 (𝑖)

=
∑ 𝑚𝑖𝑛𝐸𝑎,𝑑,𝑡

𝑂𝑃𝐻(𝑚𝑐𝑝𝑜,𝑡
(𝑖)
) ∗ 𝐹𝑑,𝑡𝑑

∑ 𝐹𝑑,𝑡𝑑
, ∀𝑠, 𝑡 (5.38) 

where 𝐸𝑎,𝑑,𝑡
𝑂𝑃𝐻 = {

𝐸𝑎,𝑡
𝑂𝑃𝐻

8760
∗ 24, 𝑖𝑓𝑎 ∉ 𝐺𝐶,𝑟𝑒𝑜𝑟 𝑎 ∈ 𝑆

24, 𝑖𝑓 𝑎 ∈ 𝐺𝐶,𝑟𝑒 
} (5.39) 

 

To summarize all critical points of Model II, the schematic view is presented in 

Figure 5.12. 
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Figure 5.12. Schematic view of Model II 
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5.2.1.3 Formulation of Model I-S 

Ideally, the third model in this study should be designed to minimize the support 

needed by all existing and candidate facilities by utilizing the similar iterative 

structure of Model II. The objective function is shown in (5.40). In case there will be 

no support need for candidate power plants and storage facilities, and there is need 

for new capacity investment in order to comply with the reserve margin, the most 

profitable ones are prioritized with the inclusion of profit variable multiplied by a 

small weight parameter 𝛩, which makes it a multi-objective optimization problem. 

Support is defined as in (5.41) in which revenue and support need should be at least 

equal to total costs in debt repayment period which is characterized by the parameter 

𝐼𝑎,𝑡. However, with this structure, it is not possible to commission new investments 

unless the reserve margin reduces below a threshold level. Also, the connection 

between the support need and total operation & investment cost will be completely 

lost which is not sensible from overall system planning point of view. 

𝑚𝑖𝑛∑(1 + 𝛤)𝑇0−𝑡

𝑡

∗ [(∑𝑚𝑔,𝑡
𝑆

𝑔

+∑𝑚𝑠,𝑡
𝑆

𝑠

) − (∑𝑚𝑔,𝑡
𝑃

𝑔

+∑𝑚𝑠,𝑡
𝑃

𝑠

) ∗ 𝛩] 

(5.40) 

∑(1 + 𝛤)𝑇0−𝑡 ∗ (𝑚𝑎,𝑡
𝑆 +𝑚𝑎,𝑡

𝑅 −𝑚𝑎,𝑡
𝐶 )

𝑡

∗ 𝐼𝑎,𝑡 ≥ 0, ∀𝑎 (5.41) 

 

Obviously, the above model should be formulated in a MIBLP model structure. 

However, due to the difficulties to solve a MIBLP having integer variables in the 

lower-level problem as in this case, as a third model (Model I-S), Model I is modified 

to be iterated through a series of predefined total capacity which is inserted as 

constraint in Model I. At each iteration, for the respective total capacity constraint, 

optimal decisions are taken based on the minimization of total investment & 

operation cost. Also, the support needed by existing facilities is calculated and saved. 
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In the end, generators’ total costs can be found including the total investment & 

operation cost and support needed. The lowest of these is the optimal one, taken as 

the result of Model I-S. The support need for candidate facilities are not included as 

their costs have already been considered in the objective function, hence the 

inclusion of this term would result in double counting and would be misleading. The 

schematic view of Model I-S is presented in Figure 5.13. 

 

Figure 5.13. Schematic view of Model I-S 
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5.2.1.4 General Assumptions and Technical Data 

The assumptions are taken based on instances in the literature and expert view as 

follows: 

 Electricity demand is inelastic, i.e. consumers do not change their 

consumption level with respect to price [84], [128]. 

 Plants showing similar characteristics are grouped in order to reduce the 

problem size [83]. 

 Cost of generation is linear [84]. 

 Market participants bid their marginal cost to the market. 

 Plants are dispatched starting from lowest generation costs to highest. 

 There is perfect competition. All participants are price-takers. They do not 

affect the price by changing generation [84], [128]. 

 MCP is calculated according to UC and economic dispatch decisions in each 

model. The marginal cost (in some cases plus a reasonable profit margin 𝛫) 

of the most expensive operating plant is the MCP for the corresponding hour. 

 For the operation of thermal plants due to operational constraints, which is 

also related to the objective of minimization of total operation costs, for hours 

at which the MCP is lower than the marginal cost of the thermal plants, those 

are assumed to be remunerated by their own marginal price (in some cases 

plus a reasonable profit margin 𝛫) as this logic tries to imitate the block bid 

behavior in day-ahead markets. 

The technical data used in this study are summarized in Table 5.3. They are prepared 

based on IEA data and a survey filled by expert view based on the power sector 

investments in Turkey. 

The line 9 represents the nuclear plant under construction that is expected to be in 

operation starting from the 3rd time period.  



 

 

136 

The lines 10-26 and 27-30 represent the candidate plants and storage facilities that 

can be commissioned at the corresponding time 𝑇0. The step size of time periods is 

5 years, meaning that the 5th time period represents the year 2040. The columns 𝑇0 

and 𝑇1 represent the commissioning and decommissioning time of facilities 

according to technical lifetime as shown in the column 𝛬𝑎,𝑡.  

The column 𝐼𝑎,𝑡 is the time period that a facility is to recuperate its investment cost 

(debt repayment period). It is also used to annualize the investment cost 𝐶𝑎,𝑡
𝐼𝑁𝑉 to 

obtain yearly payments with 5% discount rate. The investment costs are based on 

estimation for Turkey. The reduction in costs is reflected on future technologies. 

The column 𝐼𝐶𝑔
𝑚𝑎𝑥/𝐼𝐶𝑎,𝑡

𝑚𝑎𝑥 represents either the overall capacity of plants for the ones 

without unit limitation or the unit capacity for the ones with unit limitation. The 

number of units is shown in the column 𝑈𝑔
𝑚𝑎𝑥/𝑈𝑔,𝑡

𝑚𝑎𝑥. For existing plants, those 

represent the numbers in operation, and for candidate ones they indicate the 

maximum possible number. The amount of unit capacity is squeezed to 50 MW per 

unit in order to limit the amount of possible oscillations in Model II.  

The expected operating hours 𝐸𝑎,𝑡
𝑂𝑃𝐻 show how many hours a facility is expected to 

operate in a year at full capacity equivalent.  

The minimum stable generation ratios for thermal plants and efficiencies are shown 

in the columns 𝑀𝑆𝐺𝑅𝑔 and 𝐸𝐹𝐹𝑎.  

The total variable cost 𝐶𝑎,𝑡
𝑇𝑉 of a plant is calculated according to fuel cost, efficiency 

and other variable costs. The fuel costs are assumed in line with the fuel prices in 

Turkey as of 2019, and they are assumed to be fixed in the forecast horizon. Those 

are 30 $/ton for lignite (having 2000 kcal/kg calorific value), 270 $/1000Sm3 for 

natural gas, 1.3 $c/kWh for nuclear. The load shedding cost and reserve deficiency 

cost are assumed to be 20000 and 10000 $/MWh, respectively. 
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The total coal capacity that can be commissioned is limited to 10000 MW. For other 

resources, the maximum capacity is limited by the column based on either capacity 

(9th column) or unit (10th column) for candidate facilities. 

Table 5.3 Technical Data of Facilities 

 

No Name

(M
$

/M
W

)

(k
$

/M
W

)

(M
W

)

(h
o
u

rs
)

  
  
  
  
  
  
  
  
  

(%
)

  
  
  
  
  
  
  
(%

)

($
/M

W
h

)

1 COAL -2 5 4 8 1.00 32.5 500 37 6,570 70 33 33.8

2 GAS_CCGT_1 -2 4 3 7 0.70 22.5 400 33 4,380 40 55 53.7

3 GAS_CCGT_2 0 6 3 7 0.70 22.5 400 33 4,380 40 59 50.2

4 GAS_OCGT -3 2 2 6 0.43 20.0 300 10 438 20 33 87.8

5 HYDRO -4 10 5 15 1.20 55.0 30,000 2,716 2.5

6 WIND 0 4 3 5 0.80 38.0 7,500 2,917 2.5

7 SOLAR 0 4 3 5 0.70 14.0 6,000 1,752 2.5

8 GEOTHERMAL 0 5 4 6 2.60 52.5 2,500 7,008 2.5

9 NUCLEAR_2030 3 12 6 10 3.80 145.0 1,200 4 8,059 85 33 6.4

10 LIGNITE_2030 3 10 4 8 1.00 32.5 50 80 6,570 60 41 27.7

11 LIGNITE_2035 4 11 4 8 1.00 32.5 50 80 6,570 60 42 27.1

12 LIGNITE_2040 5 12 4 8 1.00 32.5 50 80 6,570 60 42 27.1

13 GAS_CCGT_2030 3 9 3 7 0.63 22.5 50 140 4,818 30 62 47.9

14 GAS_CCGT_2035 4 10 3 7 0.60 22.5 50 140 5,037 30 63 47.2

15 GAS_CCGT_2040 5 11 3 7 0.57 22.5 50 140 5,256 30 64 46.5

16 GAS_OCGT_2040 5 10 2 6 0.35 20.0 50 100 438 20 36 80.7

17 WIND_2025 2 6 3 5 0.76 38.0 10,000 2,917 2.5

18 WIND_2030 3 7 3 5 0.72 38.0 15,000 2,917 2.5

19 WIND_2035 4 8 3 5 0.69 38.0 15,000 2,917 2.5

20 WIND_2040 5 9 3 5 0.65 38.0 15,000 2,917 2.5

21 SOLAR_2025 2 6 3 5 0.67 14.0 10,000 1,752 2.5

22 SOLAR_2030 3 7 3 5 0.63 14.0 15,000 1,752 2.5

23 SOLAR_2035 4 8 3 5 0.60 14.0 15,000 1,752 2.5

24 SOLAR_2040 5 9 3 5 0.57 14.0 15,000 1,752 2.5

25 NUCLEAR_2035 4 13 6 10 3.80 145.0 50 192 8,059 85 33 6.4

26 NUCLEAR_2040 5 14 6 10 3.80 145.0 50 192 8,059 85 33 6.4

27 STORAGE_2025 2 4 1 3 0.93 10.0 10,000 2,190 90 2.5

28 STORAGE_2030 3 5 1 3 0.71 10.0 10,000 2,190 90 2.5

29 STORAGE_2035 4 6 1 3 0.55 10.0 10,000 2,190 90 2.5

30 STORAGE_2040 5 7 1 3 0.42 10.0 10,000 2,190 90 2.5
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5.2.2 Results 

There are 12 cases studied based on the level of price bids of market participants, 

maturity of generation fleet and demand forecast. These are represented by the 

notation ‘Case x.y.z’ where; 

 ‘x’ can be ‘A’ or ‘B’ where ‘A’ represents the case where market participants 

submit their exact marginal costs to the market and ‘B’ represents the case 

where they submit a price based on their marginal costs and a reasonable 

profit margin 𝛫, 

 ‘y’ can be ‘1’ or ‘2’ where ‘1’ denotes to a young and ‘2’ denotes to a mature 

generation fleet, 

 ‘z’ can be ‘I’, ‘II’ or ‘III’ by which reference, saturated and lower demand 

evolution are represented, respectively. 

Normally, in a competitive market, all market participants are expected to submit 

their true marginal costs to the market, and in this case the profit margin is zero. 

However, since the number of market participants is reduced in order to maintain the 

tractability of models in a reasonable amount of time, some of the market participants 

like gas fired plants are always marginal, making impossible to recuperate their costs. 

Therefore, in addition to Case A, Case B is created and the level of profit margin is 

selected, without being too high or low, as 10%. 

The composition of generation fleet is inspired from that in Turkey. There are two 

cases envisaged for generation fleet. In the first one, all plants are assumed to be in 

the first year of their operation, their debt repayment has just been started, and there 

will be no decommissioning in the forecast horizon. This is a fictitious case in which 

the aim is to measure the extent of support that can be needed by existing generators. 

In the second one, the age of plants is assumed to be as given in Table 5.3 as well as 

the remaining time period of debt repayment.  

The demand is represented by three scenarios such as reference, saturated and lower 

as in Figure 5.14.  
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Figure 5.14. Electricity demand evolution by representative hour 

In Figure 5.14, ‘t1’ represents the initial year which is the year 2020, and the step 

size is 5 years, meaning ‘t5’ represents the year 2040. ‘o’ is the representative hour 

or operating condition in each year, ranging from 1 to 24, implying that only one 

representative day is considered. The pattern of the load curve belonging to the year 

2019 is adjusted according to the demand in 2020. The pattern of the load curve is 

assumed to be similar for all time periods. The reference is based on the official 

demand forecast announced for Turkey, corresponding to nearly 3.5% per year 

increase. The second one assumes that after the time period ‘t3’, the demand will be 

saturated and will not increase further in future years considering the tendency to use 

energy more efficiently. In the last one, the assumption in the previous one is 

extended further with %1/yr demand decrease after the time period ‘t3’. 

5.2.2.1 Test Case 

This case study is primarily used to test the user-defined parameters in Model II. 

Model II is studied with 17 scenarios over 500 iterations each, in which the 

parameters 𝐵, 𝐵𝑢𝑙𝑙, initial 𝑀𝐶𝑃s and profit margin 𝛫 differ. The convergence 

characteristics of the main scenario (M2-0) are represented in Figure 5.15 to show 

that main indicators of Model II converge to a solution region, not to an exact 
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solution; however, oscillations are limited. The top-left figure shows the evolution 

of the objective function values of Model II-A (objval1) and Model II-B (objval2), 

as well as the amount of support needed by existing plants (SupportE) and candidate 

plants & storage facilities (SupportC&S). The top-right figure shows the level of new 

capacity investments by resources. The bottom-left and bottom-right ones show the 

evolution of minimum hourly reserve and MCP. The iterative nature of Model II 

prevents reaching an exact solution; however, this is not necessary considering the 

results of Model II are evaluated to be reliable as will be discussed in the next part, 

and the main purpose is the mitigation of the missing money problem. 

 

Figure 5.15. Results of Model II with scenario 0 over 500 iterations 

The results of each scenario are shown in Table 5.4. The results from M2-0 to M2-

12 are similar in terms of investment cost, operation cost, long-term average MCP, 

minimum reserve margin and capacities to be commissioned. Therefore, it is 

concluded that the selection of the parameters such as  𝐵, 𝐵𝑢𝑙𝑙 and initial 𝑀𝐶𝑃s does 
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not have significant impact on the final results. The tests for other cases, which are 

not represented here in detail as in Table 5.5, also validates this conclusion.  

Table 5.4 Results of Model II by Scenarios 

 

Sce. B B
ull

Initial 

MCP
K

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

M2-0 0.50 200 50 0% 89 36 1025 78 14 20008 85 0.2 46.4 81 0.0% 9.2%

M2-1 0.10 200 50 0% 154 10 997 108 42 20015 103 0.4 46.3 92 0.0% 9.2%

M2-2 0.20 200 50 0% 82 41 1006 76 43 20016 79 0.4 46.3 81 0.0% 9.2%

M2-3 0.80 200 50 0% 83 51 1018 79 14 19979 81 0.2 46.3 81 0.0% 9.2%

M2-4 0.90 200 50 0% 87 143 969 78 18 19976 83 0.5 46.2 81 0.0% 9.2%

M2-5 0.50 50 50 0% 321 62 1010 297 7 20012 302 0.3 46.3 300 0.0% 9.2%

M2-6 0.50 100 50 0% 165 49 1004 150 7 20012 153 0.3 46.3 151 0.0% 9.2%

M2-7 0.50 400 50 0% 86 40 938 77 135 20014 80 0.3 46.1 81 0.5% 9.2%

M2-8 0.50 500 50 0% 84 48 987 82 36 20047 82 0.3 46.2 81 0.0% 9.2%

M2-9 0.50 200 40 0% 89 36 1025 78 14 20008 85 0.2 46.4 81 0.0% 9.2%

M2-10 0.50 200 45 0% 89 36 1025 78 14 20008 85 0.2 46.4 81 0.0% 9.2%

M2-11 0.50 200 55 0% 89 36 1025 78 14 20008 85 0.2 46.4 81 0.0% 9.2%

M2-12 0.50 200 60 0% 89 36 1025 78 14 20008 85 0.2 46.4 81 0.0% 9.2%

M2-13 0.50 200 50 5% 92 256 1393 87 57 19987 76 1.1 48.2 81 0.0% 9.2%

M2-14 0.50 200 50 10% 90 175 1798 81 53 19876 83 0.3 50.3 86 0.0% 9.2%

M2-15 0.50 200 50 15% 98 116 1971 92 53 19709 90 1.0 51.9 83 0.1% 9.2%

M2-16 0.50 200 50 20% 82 593 2352 102 96 19702 117 2.1 53.7 106 0.1% 9.2%

Sce. B B
ull

Initial 

MCP
K

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

Cnvg. 

iter

Cnvg 

range

Cnvg. 

mean

M2-0 0.50 200 50 0% 81 400 74000 81 0 10000 76 0 55000 79 400 9000

M2-1 0.10 200 50 0% 108 1200 73992 81 0 10000 76 0 55000 108 1200 8992

M2-2 0.20 200 50 0% 84 1200 74016 81 0 10000 76 0 55000 84 1200 9016

M2-3 0.80 200 50 0% 81 400 74000 81 0 10000 76 0 55000 78 400 9000

M2-4 0.90 200 50 0% 84 400 74000 83 0 10000 76 0 55000 84 400 9000

M2-5 0.50 50 50 0% 299 200 73900 81 0 10000 301 0 55000 301 200 8900

M2-6 0.50 100 50 0% 152 200 73900 81 0 10000 151 0 55000 152 200 8900

M2-7 0.50 400 50 0% 77 2000 74200 81 0 10000 38 1200 55000 72 800 9200

M2-8 0.50 500 50 0% 82 1000 73500 81 0 10000 31 0 55000 82 1000 8500

M2-9 0.50 200 40 0% 81 400 74000 81 0 10000 76 0 55000 79 400 9000

M2-10 0.50 200 45 0% 81 400 74000 81 0 10000 76 0 55000 79 400 9000

M2-11 0.50 200 55 0% 81 400 74000 81 0 10000 76 0 55000 79 400 9000

M2-12 0.50 200 60 0% 81 400 74000 81 0 10000 76 0 55000 79 400 9000

M2-13 0.50 200 50 5% 87 800 74200 81 0 10000 76 0 55000 87 800 9200

M2-14 0.50 200 50 10% 84 800 76600 81 0 10000 76 0 55000 84 800 11600

M2-15 0.50 200 50 15% 92 850 78625 81 0 10000 76 0 55000 92 800 13600

M2-16 0.50 200 50 20% 124 1600 78988 81 0 10000 76 0 55000 124 1600 13956

Total capacity 

investments (MW)

Coal capacity 

investments (MW)

Wind capacity 

investments (MW)

Solar capacity 

investments (MW)

Objective value - 

model II-A (10^6 $)

Objective value - 

model II-B (10^6 $)

Long-Term Average 

MCP ($/MWh)

Minimum reserve 

margin
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For the next part in which the results for all models will be compared, the parameters 

used for M2-0 such as 0.50 for 𝐵, 200 MW for 𝐵𝑢𝑙𝑙, 50 $/MWh for initial MCP, are 

selected as basis for Model II. As the profit margin 𝛫 increases from M2-13 to M2-

16, the long-term average MCP increases as expected, and this makes new 

investments more profitable, which in turn results in new capacity commissioning 

and higher investment cost. As mentioned previously, the cases are divided into two 

groups according to profit margin, which cannot be exactly known, such as 0% and 

10%. 

As for Model I-S, the only user-defined parameter is the total capacity series. For 

Case A.1.I, the optimal level of new capacity for Model I slightly over 74000 MW, 

hence, a series starting from 0 to 74000 MW incremented by 200 MW step size is 

formed. The lowest cost for generators including the support needed by existing 

plants is obtained to be 26200 MW as shown in Table 5.5. The costs and amount of 

support for each 200 MW increment is shown in Figure 5.16.  

 

Figure 5.16. Pattern of costs & amount of support for Model I-S, Cases A.1.I & B.1.I 
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With more capacity, the total investment & operation cost reduces as can be seen 

from the straight black line. The amount of support needed by existing plants is 

shown with dotted lines for profit margin 0% and 10%, and with more capacity the 

amount of support need increases and then stabilizes beyond a certain level. The 

dashed lines are the summation of investment & operation cost and the amount of 

support needed for respective scenarios. The lowest point of the generator cost with 

0% profit corresponds to the capacity at 26200 MW and that with 10% profit at 

61000 MW. It is concluded that the inclusion of support need with various levels of 

profit margin leads to minimum cost at different levels of new capacity. The amount 

of support needed by candidate plants and storage facilities is not represented as it is 

negligibly small compared to that of existing plants. 

5.2.2.2 All Cases 

All cases are run via Model I, Model II and Model I-S in R using Gurobi as solver. 

The results are shown in Table 5.5. The light grey background color indicates that 

the cost given by the respective model is lowest, and the dark grey one indicates that 

it is highest among the respective cases. As such, the following can be deduced: 

Model I with the objective of minimizing investment & operation costs always yields 

the lowest cost. In all cases except Case A.2.I and Case B.2.I of which belong to 

mature generation fleet with reference demand evolution, Model II yields similar 

investment and operation costs to those of Model I, and the differences are below 

0.11%. The costs in Model I are always lower than those in Model II, which is 

expected considering the iterative nature of Model II, and Model II converges to a 

solution region, not an exact solution. The proximity of solutions among Models I 

and II in terms of not only total investment and operation cost, but also MCP, 

minimum reserve margin, new capacity and its distribution with respect to resources 

indicates that the operation of Model II can be evaluated to be reliable.   
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The operation costs are more decisive for the total of investment & operation costs 

such that the results having the least operation costs also have the least total 

investment & operation cost. For the selected level of 5% discount rate, this finding 

signifies that investments with lower operation costs are more favorable in such a 

long-term optimization problem.  

The results with the least support for existing facilities also yield the highest 

operation costs. This is sensible considering that the less the support needed by 

existing facilities the more they generate electricity and make profit which in turn 

makes fossil fuel plants operate and in the end increases the operation costs.  

The total cost of generators including the total investment & operation cost and 

support needed by existing facilities is lowest for Model I-S, as expected. The results 

based on this objective have the downside of higher MCP and consequently higher 

payments by consumers.  

The level of payment by consumers is the main determinant of the total combined 

cost of generators and consumers. The higher the consumers pay the higher the cost 

occurs for generators and consumers in total, or vice versa. This finding signifies that 

total cost is minimized when MCP is minimized. Therefore, the attempts to decrease 

the support level lead to higher MCP and result in suboptimal solutions. 

The support needed by existing facilities cannot be eliminated but for Cases A.1 can 

be reduced by 30-35% from 7.6-7.9 to 4.9-5.5 billion $. The downside of minimizing 

the total support is the increasing operation cost by 3.5-5.5 billion $ and MCP with 

decreased level of new investments. The choice of fuel type for new investments 

drastically changes for Case A.1.I as ~10 GW nuclear capacity with higher LCOE is 

invested, and wind investments with lower LCOE fall to ~3 GW for Model I-S which 

is suboptimal for investors. Besides, beyond 20-year horizon, significantly higher 

operation costs are not preferable.
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Table 5.5 Comparison of Results for All Cases 

 

Results Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S

Investment and operation cost (10
6
 $) 26218 26234 28044 22718 22733 23482 21954 21979 22676 26834 29717 26878 23040 23064 23045 22258 22282 22322

Investment cost (10
6
 $) 6443 6226 2668 4625 4600 1672 3997 3859 1154 7245 6803 7228 5121 4908 4948 4393 4194 3875

Operation cost (10
6
 $) 19775 20008 25375 18093 18133 21809 17957 18120 21521 19589 22915 19650 17918 18156 18098 17865 18087 18447

Support needed by existing facilities (10
6
 $) 7622 7142 4968 7923 7430 5367 7900 7378 5519 2468 2232 2350 2519 2446 2463 2570 2444 2403

Total cost of generators (10
6
 $) 33840 33377 33011 30642 30163 28848 29854 29357 28195 29302 31950 29229 25558 25510 25509 24828 24725 24725

Payment by consumers (10
6
 $) 46916 48086 52331 42044 42795 47115 41098 42023 45701 45972 49355 47525 41898 42636 42505 40435 41881 42319

Combined cost of generators & consumers (10
6
 $) 80756 81463 85342 72686 72958 75963 70953 71381 73895 75274 81305 76754 67456 68146 68014 65263 66606 67044

Average MCP ($/MWh) 45.3 46.4 50.6 43.2 44.0 49.6 42.6 43.9 48.9 44.3 47.6 45.6 42.6 43.7 43.8 41.7 43.8 44.9

Minimum hourly reserve margin at 5th period 9.4% 9.2% 3.0% 29.8% 29.0% 10.1% 38.0% 34.9% 8.1% 3.0% -1.8% 3.0% 10.4% 6.8% 8.0% 12.2% 8.6% 5.4%

Total capacity investments (MW) 74539 74000 26200 37832 39650 9800 29320 28481 6600 91715 88270 77000 54652 50275 49000 40468 36675 27000

Coal (MW) 10000 10000 10000 1850 50 0 1750 117 0 10000 10000 10000 200 75 2150 150 75 3700

Wind (MW) 55000 55000 2805 35765 39600 9796 26946 28364 6600 55000 55000 55000 52680 50200 45837 38949 36600 23265

Solar (MW) 9376 9000 0 0 0 0 0 0 0 14791 15600 688 804 0 627 506 0 35

Gas (MW) 0 0 0 0 0 0 0 0 0 4750 2045 0 0 0 0 0 0 0

Nuclear (MW) 0 0 9600 0 0 0 0 0 0 4800 2645 9300 0 0 0 0 0 0

Storage (MW) 163 0 3795 217 0 4 624 0 0 2374 2980 2012 968 0 386 863 0 0

Expected generation by new investments (TWh/y) 242.6 241.9 151.3 116.5 115.8 28.6 90.1 83.5 19.3 311.5 283.7 302.3 156.4 146.9 148.9 115.5 107.3 92.2

Results Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S Model I Model II Model I-S

Investment and operation cost (10
6
 $) 26218 26239 26295 22718 22729 22947 21954 21969 22303 26834 29240 26878 23040 23053 23045 22258 22273 22322

Investment cost (10
6
 $) 6443 6362 6001 4625 4737 3400 3997 4172 2087 7245 7092 7228 5121 5020 4948 4393 4361 3875

Operation cost (10
6
 $) 19775 19876 20294 18093 17992 19547 17957 17798 20216 19589 22149 19650 17918 18033 18098 17865 17912 18447

Support needed by existing facilities (10
6
 $) 5026 4812 4507 5273 5610 4355 5374 5553 4698 1704 1539 1571 1757 1855 1693 1810 1844 1626

Total cost of generators (10
6
 $) 31244 31051 30803 27991 28339 27302 27328 27522 27001 28537 30780 28449 24796 24908 24739 24068 24117 23948

Payment by consumers (10
6
 $) 51608 52187 53058 46249 45319 49609 45208 42026 49050 50570 53136 52278 46087 45312 46756 44479 44616 46551

Combined cost of generators & consumers (10
6
 $) 82852 83238 83860 74240 73657 76911 72536 69548 76051 79107 83916 80727 70884 70220 71495 68546 68733 70499

Average MCP ($/MWh) 49.8 50.3 51.0 47.5 46.1 51.6 46.8 46.3 52.3 48.7 51.2 50.2 46.9 46.0 48.1 45.8 46.1 49.4

Minimum hourly reserve margin at 5th period 9.4% 9.2% 6.8% 29.8% 31.6% 22.4% 38.0% 39.0% 14.2% 3.0% -1.6% 3.0% 10.4% 8.7% 8.0% 12.2% 10.5% 5.4%

Total capacity investments (MW) 74539 76600 61000 37832 39425 23200 29320 30910 12600 91715 88065 77000 54652 49025 49000 40468 35690 27000

Coal (MW) 10000 10000 10000 1850 3025 4200 1750 2506 2600 10000 10000 10000 200 3025 2150 150 2642 3700

Wind (MW) 55000 55000 49604 35765 36400 18990 26946 28390 10000 55000 55000 55000 52680 46000 45837 38949 33048 23265

Solar (MW) 9376 11600 1396 0 0 0 0 14 0 14791 14852 688 804 0 627 506 0 35

Gas (MW) 0 0 0 0 0 0 0 0 0 4750 3013 0 0 0 0 0 0 0

Nuclear (MW) 0 0 0 0 0 0 0 0 0 4800 5100 9300 0 0 0 0 0 0

Storage (MW) 163 0 0 217 0 10 624 0 0 2374 100 2012 968 0 386 863 0 0

Expected generation by new investments (TWh/y) 242.6 246.5 212.8 116.5 126.1 83.0 90.1 99.3 46.3 311.5 306.5 302.3 156.4 154.1 148.9 115.5 113.8 92.2

Case A: MCP Exactly Equal to Marginal Cost of Last Generator in Merit Order

Case A.1: Young Electricity Generation Fleet Case A.2: Mature Electricity Generation Fleet

Case A.1.I: Reference Demand Case A.1.II: Saturated Demand Case A.1.III: Lower Demand Case A.2.I: Reference Demand Case A.2.II: Saturated Demand Case A.2.III: Lower Demand

Case B: MCP Equal to Marginal Cost of Last Generator in Merit Order plus a Reasonable Profit

Case B.1: Young Electricity Generation Fleet Case B.2: Mature Electricity Generation Fleet

Case B.1.I: Reference Demand Case B.1.II: Saturated Demand Case B.1.III: Lower Demand Case B.2.I: Reference Demand Case B.2.II: Saturated Demand Case B.2.III: Lower Demand
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The support needed by existing facilities is reduced by up to 34% from Case A to B 

as they are making more profit. For Case A.2 and B.2, the reduction in the support 

needed by existing facilities is quite limited as less investment and higher MCP 

couldn’t affect the level of support as followed from Model I-S. The generators 

having lower expected operating hours need more profit. However, higher MCP 

triggers new capacity investments. For the levels of demand and composition of 

supply in this study, it is not possible to fully eliminate the support needed by existing 

facilities. Any attempt to decrease this cost by influencing the supply composition 

and MCP yields significantly higher combined costs of generators and consumers. 

The differences among the long-term average MCPs obtained in Model I and II are 

below 3.4 $/MWh, with Model II having slightly higher prices and less reserve for 

Case A. The profit maximization objective of Model II forces new investments to be 

strictly profitable which in turn rejects a small part of investments found feasible in 

Model I. For Case B, there are three instances (Case B.1.II, B.1.III and B.2.II) where 

the total cost and MCP are lowest for Model II. The increased level of MCP thanks 

to the profit margin of generators attracts more investments for these cases in which 

the MCP is stabilized at around 46 $/MWh. 

For two instances (Case A.2.I & B.2.I) in which the demand is highest, the reserve 

margin becomes negative for Model II. This can be explained by the level of MCP 

which is unable to attract more investments aside from fully utilized wind and coal 

capacity. However, more investments are commissioned to comply with the 3% 

minimum reserve margin rule embedded in Model I. It signifies that those additional 

investments are not profitable, thus may need to be subsidized by special 

mechanisms. The level of new storage investments is low (below 1000 MW) except 

for cases with reference demand (Case A.2.I and B.2.I), and they are mostly seen in 

Model I. Although those investments are not profitable from investor point of view, 

the total benefit that they provide to the system can be higher than their cost, 

implying that support mechanisms may be necessary for their promotion depending 

on the revenues that can be obtained in the ancillary services market. For the cases 
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with reference demand, the amount of storage investments is highest with the total 

capacity surpassing 2000 MW.  

The amount of solar capacity is low except for the cases with reference demand (Case 

A.2.I and Case B.2.I). Despite having the lowest investment cost, lower utilization 

factor compared to wind and fossil fuel generation as well as the effect of significant 

MCP decline due to the operation of those facilities only within daytime seem to 

limit their capacity. Exposing solar energy to MCP might not be profitable from 

investor point of view unless the primary purpose of the solar investments is to meet 

self-consumption, or the commissioning of fossil fuel capacity is restricted due to 

environmental concerns. Otherwise, they would still be in need of support 

mechanisms under the assumptions in this study. 

The important points from results of the modeling activity presented in this section 

can be summarized as follows: 

 Investment decision characteristics are similar for Model I and Model II. The 

differences occur especially for storage investments, showing that even in 

small capacities, storage facilities can provide benefit beyond their cost. 

However, since they are generally not profitable, they may need subsidy. The 

results obtained from support minimization-oriented Model I-S are 

completely different from their counterparts, and in most cases indicate 

significantly lower amount of capacity expansion. Despite yielding the 

lowest generation cost, those are unfavorable given that with the inclusion of 

consumer payment, overall costs are getting much higher with increasing 

level of MCP.  

 The least generation cost obtained by Model I-S can considerably reduce the 

amount of the support needed by existing facilities. However, even with a 

mature generation fleet, it is not possible to fully eliminate the support need. 

 Since the support minimization-oriented results lead to overall costs at an 

undesired level, the determination of intermittent renewable capacity should 

not be based on this motivation. Even with saturated and lower demand 
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evolution, the optimal level of wind capacity commissioning can be in the 

range of 30000-40000 MW in the next 20 years. For the cases considered, 

wind capacity does not need any support mechanism, but the situation is not 

the same for solar. In short, massive amount of renewable capacity 

integration is possible from economic point of view. However, additional 

studies regarding impacts on grid can surely be needed. 

5.2.3 Discussion 

In this section, in order to utilize a more reasonable GEP model in line with changing 

market needs, three GEP models are studied, and the research is focused on whether 

it is needed to change the conventional structure of GEP modeling. It is found out 

that any attempt to mitigate the missing money problem in a GEP study would yield 

higher operation costs, MCPs and combined costs of generators and consumers. 

Therefore, if the services of any facilities, which are unable to recuperate their fixed 

costs, are needed for the sake of the system, the energy market should not be even 

indirectly influenced. Instead, special support schemes should be resorted. 

The investment decisions of Model I and Model II are similar. The capacity of 

storage facilities is found to be as one of the major differences among these two 

models. Based on the results, it can be concluded that either model can be chosen 

depending on the needs. If all new investments are required to be profitable, Model 

II can be preferred. If the capacity expansion is studied from the central planner’s 

point of view, Model I is more preferable thanks to its easier implementation. 

Another option can be a combined utilization such that, given storage investments 

are not generally preferred in Model II as they are not found to be profitable, Model 

I can be utilized with storage investment options disabled. This is the preferred 

option in the next section. 

Based on its findings, the contributions of this section are stated as follows: 
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 The main contribution of this research is on the findings revealed with the 

combination of models and cases. Many liberalized electricity markets have 

been facing similar problems. In the end, it is revealed that GEP studies 

should not try to mitigate the missing money problem, but the plants of which 

operation is needed for the sake of the system should be supported via 

specialized mechanisms. The conventional modeling approach with total cost 

minimization yields sensible results in terms of new investments, but the 

investment choices proposed by this approach can make the situation 

financially worse for existing plants. The research direction is unique given 

that the missing money problem has not yet been addressed together with 

GEP problems in this context in the literature. 

 A new objective function such as the minimization of the support needed by 

existing plants and new constraints within this context are created. Although 

those are unable to be utilized successfully in the MIBLP model, Model I-S 

which is a variation of Model I is used in order to overcome the problems 

posed by the bilevel model structure.  

 An alternative model (Model II) aiming the profit maximization of candidate 

facilities is developed of which operation is based directly on MCP while a 

specific module is dedicated for the calculation of market price. In the 

literature, there are instances in which profit maximization is used as the 

objective function. However, those do not include a dynamic procedure for 

the determination of MCP or MCP is proportionately indexed to the 

difference between electricity demand and installed capacity. In this study, 

an alternative approach is proposed so as to include MCP in the objective 

function, and in the end it can directly be identified which candidate facilities 

are profitable for investment instead of pure cost minimization view. With 

this model, it is possible to compare the differences of investment decisions 

between the cost minimization and the profit maximization point of view. 
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5.3 Long-Term Price Forecasting Results and Evaluation 

Following the improvement of supply modeling by a proper generator maintenance 

scheduling algorithm and the utilization of a proper generation expansion planning 

model, the next step is to combine these two stages and calculate relevant indicators 

such as MCP and reserve capacity in the long term. The aim of this section is to 

exemplify possible ways to utilize the long-term electricity market model based on 

various cases and to present corresponding results.  

The methodology for long-term electricity price forecasting is the same as that of 

medium-term, as it has already been shown that the modeling approach yields 

satisfactory results. The forecasting horizon is considered to be 20 years, i.e. from 

the year 2020 to 2040. The results are only elaborated for the end year of the forecast 

horizon, i.e. the year 2040, for simplicity. 

This part of the thesis is presented over various cases. In total, there are four cases 

considered according to the capacity decisions and selection of hourly capacity 

factors for wind power plants. Here, hourly wind capacity factors are given special 

attention due to high amount of wind capacity commissioning as obtained in the 

previous section. Another critical point is about the wind capacity factors calculated 

in the electricity supply modeling in Chapter 4. Those are calculated according to the 

historical realizations. However, this calculation based on multiple years causes the 

wind capacity factors to stay at its seasonal averages for all hours of the year. This 

corresponds to the expected value, but its realization throughout a year would be 

unrealistic in terms of volatility. This aspect has not been a concern in medium-term 

modeling given today’s wind installed capacity is far below than what is expected in 

20-year time. This aspect is illustrated in Figure 5.17. The realization for a selected 

year frequently diverges from its seasonal averages, which is studied through two 

cases.  
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Figure 5.17. Average wind capacity factors and comparison with realization 

According to the information above, the cases are defined as shown below. Here, the 

notations ‘1’ and ‘2’ are used to differentiate between capacity expansion scenarios, 

whereas the notations ‘A’ and ‘B’ used to show the difference among scenarios for 

wind capacity factors. 

 Case A.1: Capacities calculated based on the GEP model,  

 Case A.2: Manually inserted wind and solar capacity targets, and leaving the 

rest of the capacity decisions to the GEP model, 

 Case B.1: Capacities calculated based on the GEP model, and as for hourly 

wind capacity factors the real data of the year 2018 is preferred, 

 Case B.2: Manually inserted wind and solar capacity targets, and leaving the 

rest of the capacity decisions to the GEP model, and as for hourly wind 

capacity factors the real data of the year 2018 is preferred. 

This section consists of three main parts. In the first part, the capacity decisions and 

relevant assumptions are given. In the second part, the proposed GMS algorithm is 

applied for two capacity expansion scenarios. The third part presents the long-term 

results and touches upon some critical aspects for the future. 
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5.3.1 Capacity Decisions 

In long-term price forecasting, the first step is to decide on what the future capacity 

by fuel will be. The assumptions presented in Section 5.2.1.4 is still valid including 

the candidate generation facilities, the amount of capacity to be commissioned by 

fuel and at least hourly 3% reserve requirement. The electricity generation fleet is 

assumed to be mature, and facilities are decommissioned after their lifetime expires. 

The reference demand scenario is taken as reference for electricity demand 

evolution. The only exception is about storage facilities. The inclusion of a storage 

facility in the electricity generation fleet requires significant modification in 

electricity price modeling. A dedicated methodology similar to storage hydropower 

plant utilization will be necessary. Considering that the amount of capacity decided 

by the GEP models is limited as shown in Section 5.2, the effect of storage facilities 

is neglected in this part of the thesis.  

The structure of the GEP models used for Cases 1 and 2 is the same. The only 

difference is that apart from 55000 MW wind capacity, 55000 MW solar capacity is 

enforced in Case 2 based on the motivation for utilizing renewable energy resources. 

The level of those capacities is inspired from Germany based on nearly 110000 MW 

wind and solar installed capacity in Germany as of the year 2020, as well as the 

electricity demand of Turkey in 2040 is assumed to be around 600 TWh which is 

similar to the demand level of Germany in the period of 2000-2020. The demand for 

the year 2040 is disaggregated in hourly terms based on the profile of the year 2018. 

The capacities for Cases 1 and 2 are presented in Table 5.6. Despite the fact that the 

electricity demand is the same for those cases, the difference among total capacity 

can be evaluated as high. It can be thought that the reason for that difference is due 

to imposing 55000 MW solar PV capacity. However, in Case 2, around 21000 MW 

coal and gas capacity combined is decided internally by the GEP model. Another 

issue that is worth mentioning is that the coal capacity represents the total of hard 

coal and lignite. No additional hard coal capacity is assumed, that is, the level of hard 
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coal installed capacity is 9100 MW, and the rest of the coal capacity belongs to 

lignite. 

Table 5.6 Capacities by Cases for the Year 2040 

Year Case 1 (MW) Case 2 (MW) 

Nuclear 6000 4800 

Coal 28600 27700 

Gas 21900 25200 

Hydro 30000 30000 

Wind 55000 55000 

Solar 21178 55000 

Other RES 2500 2500 

Total 165178 200200 

5.3.2 Maintenance Decisions and Supply Modeling 

According to the capacity decisions, the maintenance periods are determined by 

utilizing the methodology presented in Section 5.1. The pattern of resulting 

maintenance decisions is presented in Figure 5.18.  

 

Figure 5.18. Maintenance decisions by cases for 2040 and comparison with 2018 
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The actual data for the year 2018 is included in this figure for comparison purpose. 

Despite the fact that the pattern of these schedules is similar, it is important to note 

that the maintenance plans are spread in a wider range of weeks until the beginning 

of July.  

The size of units with respect to fuel is taken as 1200 MW for nuclear, 500 MW for 

hard coal, 300 MW for lignite and gas. Since the maintenance scheduling algorithm 

is applied only on thermal capacity, it means that the algorithm runs for 161 units for 

Case 1 and 168 units for Case 2. The time limit of 3 minutes is applied in order to 

reach a reasonable maintenance pattern in a reasonable amount of time, based on the 

finding in Table 5.2.  

As a dynamic maintenance scheduling algorithm is utilized in long term, the 

approach for supply modeling presented in Section 4.2 is no longer valid for 

obtaining the available generation capacity of thermal power plants. However, the 

availabilities of renewable power plants are still defined by the supply modeling as 

in Section 4.2. 

5.3.3 Results 

In this part, the results are presented firstly for the cases based on hourly historical 

wind capacity factors, and secondly for wind capacity factors of the year 2018. 

5.3.3.1 Results for Cases A.1 and A.2 

The average MCP obtained from the price model and GEP for the year 2040 is shown 

in Figure 5.19. The forecasts are similar for Case A.1. However, there is a significant 

8 $/MWh difference for Case A.2, with the commissioning of more solar capacity. 

Considering the price forecasts obtained from GEP are based only on the 

representative day of the year 2040, the utilization of the price model signifies the 

requirement and benefits to analyze the results in detail. 
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Figure 5.19. Yearly average MCP for Cases A.1 and A.2 

The average MCP on hourly basis as calculated from the price model is shown in 

Figure 5.20. The pattern of average MCP is similar for Case A.1 and the realization 

in the year 2018. However, the addition of more solar capacity causes daytime prices 

to fall below 10 $/MWh.  

 

Figure 5.20. Hourly average MCP for Cases A.1 and A.2 and comparison with 2018 

Further examination can be performed by analyzing the MCP on monthly and hourly 

basis. The corresponding representation is shown in Figure 5.21. The lines belonging 

to Case A.1 is similar to the profile that is experienced in today’s electricity market 

conditions. The lower prices in August is remarkable, but it should be noted that it 
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occurs due to the effect of the long festival period in 2018 as the demand is 

disaggregated with the load profile of 2018 for the year 2040. As for Case A.2, except 

January and December, the average prices at noon reduces to 0 $/MWh for every 

month. The standard deviations of hourly prices are 13 and 20 $/MWh for Cases A.1 

and A.2, respectively, stressing the effect of volatility stemming from high solar 

capacity. The details show that the number of hours with 0 $/MWh MCP is 609 for 

Case A.1 and 1896 for Case A.2, which corresponds to a remarkable 22% of the 

hours in whole year.  

Since the number of hours with 0 $/MWh prices are significantly high, it implies 

curtailment from renewable energy resources in order to match electricity demand. 

The pattern of curtailment from wind and solar on hourly basis in shown in Figure 

5.22. Whereas it is only 0.6 TWh for Case A.1, it increases to 8.5 TWh for Case A.2, 

corresponding to nearly 1.5% of total electricity demand in 2040. On hourly basis, 

there is a requirement to curtail over 20000 MW generation. The curtailment-

duration curve for the worst 3000 hours is plotted as in Figure 5.23. It can be 

followed that there are 124 hours with over 10000 MW and 661 hours with over 

5000 MW wind and solar curtailment.  

Moreover, one can calculate electricity generation based on hourly results from the 

electricity price model as shown in Table 5.7. The increase in solar capacity displaces 

fossil fuel generation as it reaches nearly 15% in Case A.2 where the intermittent 

renewable share approaches to 40%. The observations for these cases require either 

the reconsideration of the solar capacity targeted in Case A.2 or significantly 

upgrading the flexibility of the system based on developments in storage 

technologies. 
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Figure 5.21. Hourly and monthly average MCP for Cases A.1 and A.2 
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Figure 5.22. Curtailment of wind and solar generation for Cases A.1 and A.2  

 

 

Figure 5.23. Curtailment-duration curve for Case A.2  
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Table 5.7 Generation by Fuels and Cases for the Year 2040 

Fuel Case A.1 (TWh) Shares Case A.2 (TWh) Shares 

Fossil Fuels 317.4 52.6% 271.5 45.0% 

Hydro 82.9 13.7% 79.7 13.2% 

Wind 154.2 25.6% 151.7 25.1% 

Solar 35.7 5.9% 87.5 14.5% 

Other RES 13.3 2.2% 13.1 2.2% 

Total 603.5 100% 603.5 100% 

 

Lastly, hourly minimum and average reserves are investigated with Figure 5.24. The 

hourly minimum reserve is calculated to be around 3300 MW for both cases, in 

December for Case A.1 and in June for Case A.2. From the hourly average reserves, 

it can be claimed that the new investments are not unjustifiable given that the reserve 

margin is around 4%. The hourly average reserve of 17400 MW for Case A.1 and 

24400 MW for Case A.2 both signify the reduced utilization factors for fossil fuel 

plants. 

 

Figure 5.24. Monthly minimum reserve capacity for Cases A.1 and A.2  
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5.3.3.2 Results for Cases B.1 and B.2 

Similar to Figure 5.19, the average MCP is obtained from the price model and GEP 

for the year 2040 as shown in Figure 5.25. The differences are marginal, i.e. from 

Case A.1 to Case B.1 it reduces by 2 $/MWh and from Case A.2 to Case B.2 it 

increases by 2 $/MWh.  

 

Figure 5.25. Yearly average MCP for Cases B.1 and B.2 

Similar to Figure 5.21, the MCP is analyzed on monthly and hourly basis in Figure 

5.26. One of the most striking differences among these figures is the price spikes 

observed in the evenings for several months. The high average prices at those hours 

imply that the generation is insufficient to meet the demand. The standard deviation 

of hourly prices are calculated as 26 $/MWh for both cases, indicating that the 

volatility of prices increases compared 13 and 20 $/MWh deviation in Case A.1 and 

Case A.2. Also, similar to Case A.2, there are still steep valleys in price patterns of 

daytime. It signals that there might still be a need for curtailment in daytime. When 

all hours are examined, it is revealed that the number of hours with 0 $/MWh MCP 

is 1241 and 2008 for Case B.1 and Case B.2, both up from 690 and 1896 in the 

previous cases. 

Similar to Figure 5.22, the pattern of curtailment from wind and solar on hourly basis 

is investigated with Figure 5.27. The amount of curtailment from wind and solar 
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reaches 3.0 and 9.5 TWh, both up from 0.6 and 8.5 TWh in previous cases. On hourly 

basis, there is a requirement to curtail up to 25000 MW generation. The curtailment-

duration curve for the worst 1000 hours is plotted for Cases B.2 and A.2 as in Figure 

5.28. It can be seen that with the utilization of more volatile wind capacity factors 

closer to reality, the curtailment requirement becomes slightly intensified. 

 

Figure 5.26. Hourly and monthly average MCP for Cases B.1 and B.2  
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Figure 5.27. Curtailment of wind and solar generation for Cases B.1 and B.2  

 

Figure 5.28. Curtailment-duration curve for Cases B.2 and A.2  
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The share of intermittent resources in total electricity generation for Case B.2 is 

examined in Figure 5.29.  The number of hours with share over 90% reaches 248, up 

from 101 in Case A.2. Likewise, there are 3690 hours with share over 50%, up from 

2727 hours in Case 2. It fluctuates significantly in a wide range from 10% to 90%. 

 

Figure 5.29. Share of intermittent resources for Case B.2  

The price spikes observed in the evenings as in Figure 5.26 is further investigated 

with Figure 5.30, showing the number of hours with MCP hitting the price cap. It is 

found that there are 131 and 79 hours with maximum MCP for Cases B.1 and B.2, 

respectively. 

 

Figure 5.30. Number of hours with MCP hitting the price cap for Cases B.1 and B.2  
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The previous finding indicates that the number of hours with insufficient reserves is 

also 131 and 79 hours. In detailed analysis, it is found out that the amount of shortage 

in generation reaches 7200 and 5200 MW for Cases B.1 and B.2 as shown in Figure 

5.31. The average yearly reserve is 18400 and 25300 MW, found to be similar to the 

previous cases. When electricity generation by power plant is examined for Case 

B.2, it is revealed that the most efficient natural gas power plant operates at 38% 

capacity factor whereas the least efficient one operates at just 1%. This observation 

signifies the importance of resorting to flexibility options in the system instead of 

new generation capacity considering that some of the power plants have 

unreasonably low capacity factor. 

 

Figure 5.31. Monthly minimum reserve capacity for Cases B.1 and B.2  

Instead of averages, the preference of hourly wind capacity factors from a single year 

such as 2018 has indicated that there are more severe system conditions that needs 

to be managed in terms of minimum reserve capacity, number of hours hitting price 

and floor, wind and solar generation curtailment. The proposed long-term electricity 

market modeling methodology helps to detect these conditions in detail. By changing 
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can be searched.  
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5.4 Conclusion for Long-Term Modeling of Electricity Market 

In this chapter, the electricity market is modeled in long term with additions over the 

previously proposed modeling approach for medium term. The medium-term model 

is enriched with two additional features such as GMS and GEP, which are necessary 

to perform a realistic and reasonable modeling in the long-term horizon. 

The proposed GMS model is used to obtain more dynamic availability factors for 

thermal generators considering the evolution of the electricity generation fleet. 

Similarly, a proper GEP model that is compatible with today’s market environment 

is searched. In the end, depending on the needs, two various GEP models or a 

combination of both are proposed. With the utilization of the GMS and GEP models, 

several cases are studied in the long-term horizon, via the price forecasting model. 

These cases along with the results and emphasized problems are some examples to 

show how the proposed modeling methodology can be used in long-term forecasting 

studies.  

The main findings from this chapter can be summarized as follows: 

 GMS plans can significantly change by hydro scenarios, and the future 

capacity composition is able to change the pattern of GMS profile. 

 The proposed GMS algorithm is an improvement of electricity supply 

modeling and can be utilized in long-term hourly price forecasting studies. It 

provides value both from medium to long-term studies that need more 

precision, at the stage where supply is calculated or various supply scenarios 

are generated on hourly basis, and in systems which now or in the future are 

expected to include significant share of storage hydropower or renewable 

power plants. In overall, dynamic GMS algorithms, in which generator 

maintenance decisions are influenced by total system reserves, are 

recommendable instead of static ones that employ fixed parameters for 

reflecting generator maintenance effect. 
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 Three various GEP practices and their results indicate that any attempt to 

mitigate today’s missing money problem in a GEP study would yield higher 

operation costs, MCPs and combined costs of generators and consumers. 

Therefore, this practice should not be preferred in a long-term modeling 

horizon. 

 The conventional GEP approach is still practical for the central planner. If all 

investments are needed to be profitable, the conventional and market based 

GEP approaches can be utilized in a combined manner.  

 The proposed market model can be used in various ways for long-term 

practices. As an example, for Turkey, with an increasing amount of 

intermittent renewable resources similar to Germany, a significant amount of 

renewable generation curtailment becomes necessary, as well as the system 

can experience conditions of huge amount of average reserve capacity and 

insufficient generation to meet the demand for the same year. The analysis 

proves that in such a case the central planner should either look for 

opportunities to increase system flexibility with new emerging technologies 

or revise its long-term targets. 
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CHAPTER 6  

6 CONCLUSION 

This thesis proposes a novel electricity market modeling methodology for medium 

and long-term horizon. It is specifically designed for Turkey, but with the proposed 

structure, it can be used in any liberalized electricity market.  

The modeling activity in the medium-term horizon consists of electricity demand, 

supply and price modeling parts. With electricity demand and supply modeling, 

hourly electricity demand and availability series with respect to market participants 

are obtained. Then, electricity price is forecasted on hourly basis for a 1-year horizon. 

Several scenarios based on the uncertainties affecting demand and supply are run on 

the model. With relevant inputs, the model is able to simulate the market conditions 

for any year. After the operability of the model is shown for the medium-term 

horizon, the modeling approach is improved with two additional features for long 

term. The first one is the inclusion of a GMS model to make the electricity supply 

model dynamic and to obtain more realistic supply series in the changing market 

environment, and the second one is the inclusion of a reasonable GEP algorithm that 

can define the size and fuel of future generation capacity. Following the addition of 

those models in the modeling structure, a representative example for a 20-year 

horizon is studied to show the possible ways to benefit from such a modeling 

methodology. Thanks to the capability of the methodology to model in hourly time 

step, results can be obtained in hourly resolution, and detailed analysis can be 

performed. The main contributions of this thesis can be counted as follows: 

 Electricity demand forecasting accuracy is improved with the models based 

on GAM and MARS which are capable of modeling the nonlinearities in 

electricity demand. 
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 A new hourly availability factor calculation methodology is proposed based 

on historical data, to be utilized in price forecasting. 

 A unique iterative scheme between storage hydropower generation and 

electricity market price is proposed for the price forecasting stage, with test 

results having satisfactory accuracy. Using various demand and supply 

scenarios, it is revealed that electricity price can be realized in a wide range, 

nearly corresponding to the half of the electricity market price. 

 A GMS model is included in the electricity market modeling methodology to 

improve forecasting capability. It is shown that the inclusion of a proper 

GMS model can be useful for the long-term utilization of the electricity 

market modeling methodology, given that today’s GMS plan can 

significantly change according to capacity evolution.  

 The missing money problem in today’s electricity markets is addressed 

together with the GEP problem. A conventional GEP model, an alternative 

price-based GEP model, and a reformulation of the conventional GEP model 

is comparatively used. It is discovered and proposed that the missing money 

problem should not be tackled in GEP, as otherwise total system costs 

significantly increase. Two GEP models based on conventional approach and 

price-based approach or the combination of both are proposed to determine 

the future electricity generation fleet.  

 In the end, the electricity market modeling methodology can be used to 

analyze future market conditions and unique observations can be made.  

In the future, the modeling methodology can be designed in such a way to be able to 

represent the capability of storage technologies at the price forecasting stage. 

Considering the electricity generation fleet evolution towards intermittent renewable 

resources, market conditions will need to be analyzed to enable as much renewable 

capacity as possible. By properly upgrading this modeling methodology, it can be 

used to determine the flexibility requirements more accurately. 
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APPENDICES 

A. Constraints of Model I 

In this part, the constraints of Model I described in Section 5.2.1 are given. 

The capacity constraints for candidate generators without unit size limitation and 

storage facilities are shown in (A.1) - (A.4). Since candidate facilities are represented 

by the possible commissioning year such as “resource_year” as in Table 5.3, they 

can only be commissioned at the designated year. 

𝑝𝑔,𝑡
𝐶 ≤ 𝐼𝐶𝑔,𝑡

𝑚𝑎𝑥 , ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙𝑙, 𝑡 ∈ 𝑇0,𝑔 (A.1) 

𝑝𝑔,𝑡
𝐶 = 0, ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙𝑙, 𝑡 ∉ 𝑇0,𝑔 (A.2) 

𝑝𝑠,𝑡
𝐶 ≤ 𝐼𝐶𝑠,𝑡

𝑚𝑎𝑥 , ∀𝑠, 𝑡 ∈ 𝑇0,𝑠 (A.3) 

𝑝𝑠,𝑡
𝐶 = 0, ∀𝑠, 𝑡 ∉ 𝑇0,𝑠 (A.4) 

 

The supply-demand balance for each hour of the forecast period is represented in 

(A.5). The amount of generation and discharging of storage facilities must exactly 

be equal to the summation of demand, load shedding and charging of storage 

facilities at each hour. 

∑𝑝𝑔,𝑜,𝑡
𝐺

𝑔

+∑𝑠𝑡𝑠,𝑜,𝑡
𝐷

𝑠

= 𝑃𝑜,𝑡
𝐷 + 𝑝𝑜,𝑡

𝐿𝑆 +∑𝑠𝑡𝑠,𝑜,𝑡
𝐶

𝑠

, ∀𝑜, 𝑡 (A.5) 

 

The generation limit for existing and candidate power plants without unit size 

limitation is expressed as in (A.6) - (A.9). For a power plant that is not a renewable 

one, the hourly electricity generation is restricted by the availability factor at the 

corresponding hour. For a renewable power plant, the expression is amended by the 

inclusion of possible renewable energy curtailment. 

𝑝𝑔,𝑜,𝑡
𝐺 ≤ 𝑖𝑐𝑔,𝑡 ∗ 𝐴𝐹𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺

𝐸,𝑢𝑙𝑙, 𝑔 ∉ 𝐺𝐸,𝑟𝑒 , 𝑜, 𝑡 (A.6) 
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𝑝𝑔,𝑜,𝑡
𝐺 ≤ 𝑖𝑐𝑔,𝑡 ∗ 𝐴𝐹𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺

𝐶,𝑢𝑙𝑙; 𝑔 ∉ 𝐺𝐶,𝑟𝑒 , 𝑜, 𝑡 (A.7) 

𝑝𝑔,𝑜,𝑡
𝐺 + 𝑝𝑔,𝑜,𝑡

𝑅𝐸𝑆 = 𝑖𝑐𝑔,𝑡 ∗ 𝐴𝐹𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺
𝐸,𝑟𝑒 , 𝑜, 𝑡 (A.8) 

𝑝𝑔,𝑜,𝑡
𝐺 + 𝑝𝑔,𝑜,𝑡

𝑅𝐸𝑆 = 𝑖𝑐𝑔,𝑡 ∗ 𝐴𝐹𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺
𝐶,𝑟𝑒, 𝑜, 𝑡 (A.9) 

 

The load shedding limit is shown in (A.10). The amount of load shedding cannot 

surpass the electricity demand at any hour. 

𝑝𝑜,𝑡
𝐿𝑆 ≤ 𝑃𝑜,𝑡

𝐷 , ∀𝑜, 𝑡 (A.10) 

 

The minimum stable generation limit for existing and candidate power plants with 

unit size limitation is represented by (A.11). If any unit is operating, it must at least 

operate at its technically minimum level. 

𝑝𝑔,𝑜,𝑡
𝐺 ≥ 𝑜𝑢𝑔,𝑜,𝑡 ∗ 𝐼𝐶𝑔

𝑚𝑎𝑥 ∗ 𝑀𝑆𝐺𝑅𝑔 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝑢𝑙 , 𝑜, 𝑡 (A.11) 

 

The generation limit for existing and candidate power plants with unit size limitation 

is shown in (A.12). This is similar to (A.6) - (A.9) but only expressed in terms of 

unit characteristics. 

𝑝𝑔,𝑜,𝑡
𝐺 ≤ 𝑜𝑢𝑔,𝑜,𝑡 ∗ 𝐼𝐶𝑔

𝑚𝑎𝑥 ∗ 𝐴𝐹𝑔,𝑜,𝑡 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝑢𝑙 , 𝑜, 𝑡 (A.12) 

 

The startup condition for existing and candidate power plants with unit size 

limitation is represented by (A.13). The change in the number of operating units must 

exactly be equal to the difference between started up and shut down unit at the 

corresponding hour. 

𝑜𝑢𝑔,𝑜,𝑡 − 𝑜𝑢𝑔,𝑜,𝑡−1 = 𝑠𝑢𝑔,𝑜,𝑡 − 𝑠𝑑𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺
𝑢𝑙 , 𝑜, 𝑡 (A.13) 
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The startup and shutdown condition for existing and candidate power plants with 

unit size limitation expressed as (A.14). The number of start ups and shut downs 

cannot exceed the number of installed units for any hour. 

𝑖𝑢𝑔,𝑡 ≥ 𝑠𝑢𝑔,𝑜,𝑡 + 𝑠𝑑𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺
𝑢𝑙 , 𝑜, 𝑡 (A.14) 

 

The link between operating and installed units of existing and candidate power plants 

with unit size limitation is shown in (A.15). The number of operating units can at 

most be equal to that of installed units. 

𝑖𝑢𝑔,𝑡 ≥ 𝑜𝑢𝑔,𝑜,𝑡, ∀𝑔 ∈ 𝐺
𝑢𝑙 , 𝑜, 𝑡 (A.15) 

 

The minimum uptime and downtime limits for existing and candidate power plants 

with unit size limitation are formulated as in (A.16) - (A.17). They are composed of 

two parts in order to represent the continuity of a representative day after the last 

hour. 

𝑜𝑢𝑔,𝑜,𝑡 ≥ ∑ 𝑠𝑢𝑔,𝑜′,𝑡
𝑜′ 

𝑖𝑓(𝑜′≤𝑜)

(𝑜≤𝑜′+𝑇𝑔
𝑢𝑝
)

+ ∑ 𝑠𝑢𝑔,𝑜′,𝑡
𝑜′ 

𝑖𝑓(𝑜′>𝑜)

(24−𝑜′+𝑜≤𝑇𝑔
𝑢𝑝
)

, ∀𝑔 ∈ 𝐺𝑢𝑙 , 𝑜, 𝑡 

(A.16) 

𝑖𝑢𝑔,𝑡 − 𝑜𝑢𝑔,𝑜,𝑡 ≥ ∑ 𝑠𝑑𝑔,𝑜′,𝑡
𝑜′ 

𝑖𝑓(𝑜′≤𝑜)

(𝑜≤𝑜′+𝑇𝑔
𝑑𝑜𝑤𝑛)

+ ∑ 𝑠𝑑𝑔,𝑜′,𝑡
𝑜′ 

𝑖𝑓(𝑜′>𝑜)

(24−𝑜′+𝑜≤𝑇𝑔
𝑑𝑜𝑤𝑛)

, ∀𝑔

∈ 𝐺𝑢𝑙 , 𝑜, 𝑡 

(A.17) 

 

The operational constraints related to storage facilities are formulated as in (A.18) - 

(A.22). The amount of charging is restricted by the installed capacity and heat rate 

(A.18), and similarly that of discharging is restricted only by the installed capacity 

(A.19). On daily basis, the amount of charging and discharging must be balanced 

(A.20). The cumulative amount of discharging in any representative day must be less 
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than or at most equal to that of charging until the corresponding hour (A.21). The 

ability to store energy is limited by the maximum hours of continuous operation 

(A.22). 

𝑠𝑡𝑠,𝑜,𝑡
𝐶 ≤ 𝑖𝑐𝑠,𝑡 ∗ 𝐻𝑇𝑅𝑠,𝑡, ∀𝑠, 𝑜, 𝑡 (A.18) 

𝑠𝑡𝑠,𝑜,𝑡
𝐷 ≤ 𝑖𝑐𝑠,𝑡, ∀𝑠, 𝑜, 𝑡 (A.19) 

∑(𝑠𝑡𝑠,𝑜,𝑡
𝐷 ∗ 𝐻𝑇𝑅𝑠,𝑡)

𝑜

=∑𝑠𝑡𝑠,𝑜,𝑡
𝐶

𝑜

, ∀𝑠, 𝑡 (A.20) 

∑ 𝑠𝑡𝑠,𝑜′,𝑡
𝐷

𝑜′≤𝑜

≤ ∑
𝑠𝑡𝑠,𝑜′,𝑡
𝐶

𝐻𝑇𝑅𝑠,𝑡
𝑜′≤𝑜

, ∀𝑠, 𝑜, 𝑡 (A.21) 

∑ (
𝑠𝑡𝑠,𝑜′,𝑡
𝐶

𝐻𝑇𝑅𝑠,𝑡
− 𝑠𝑡𝑠,𝑜′,𝑡

𝐷 )

𝑜′≤𝑜

≤ 𝑖𝑐𝑠,𝑡 ∗ 𝐻𝑠
𝑚𝑎𝑥 , ∀𝑠, 𝑜, 𝑡 (A.22) 

 

The capacity limits for each power plant type by resources is represented by (A.23). 

It is used to limit the amount of coal, nuclear, wind and solar capacity at any year, as 

permitted by the user. 

∑ 𝑖𝑐𝑔,𝑡 ≤ 𝐼𝐶𝑟,𝑡
𝑚𝑎𝑥,

𝑔∈𝐺𝑟

∀𝑟 ∈ {𝑐𝑜𝑎𝑙, 𝑛𝑢𝑐𝑙𝑒𝑎𝑟, 𝑤𝑖𝑛𝑑, 𝑠𝑜𝑙𝑎𝑟}, 𝑡 (A.23) 

 

The hourly minimum reserve constraint is shown in (A.24). The difference between 

available capacity and total electricity generation must be greater than the minimum 

desired level of reserve. This is formulated as a soft constraint in order to allow for 

reserve deficiency depending on economics. 

∑(𝑖𝑐𝑔,𝑡 ∗ 𝐴𝐹𝑔,𝑜,𝑡 − 𝑝𝑔,𝑜,𝑡
𝐺 )

𝑔

+ 𝑝𝑜,𝑡
𝑅𝑆 ≥ 𝑃𝑜,𝑡

𝐷 ∗ 𝑆𝐻𝑜,𝑡
𝑅 , ∀𝑜, 𝑡 (A.24) 

 

The auxiliary equalities and inequalities for power plants and storage facilities are 

expressed by (A.25) - (A.35). (A.25) - (A.26) are similar to (A.1) - (A.4), and they 

are used to limit the number of units based on what is allowed by the used at the 
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corresponding year. (A.27) is for representing the cumulative number of 

commissioned units for candidate power plants, and (A.28) is the same one for 

existing power plants with unit size limitation. (A.29) - (A.30) shows the cumulative 

amount of capacity for candidate power plants with unit size limitation and storage 

facilities. (A.31) - (A.35) are presented here in order to express the total installed 

capacity for all types of facilities, with the same notation in order to simplify the 

reading of this study. 

𝑖𝑢𝑔,𝑡
𝐶 ≤ 𝑈𝑔,𝑡

𝑚𝑎𝑥 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝐶,𝑢𝑙, 𝑜, 𝑡 (A.25) 

𝑖𝑢𝑔,𝑡
𝐶 = 0, ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙 , 𝑜, 𝑡 ∉ 𝑇0𝑔 (A.26) 

𝑖𝑢𝑔,𝑡
𝐶,𝑎𝑙𝑙 = 𝑖𝑢𝑔,𝑡 = ∑ 𝑖𝑢𝑔,𝑡′

𝑡′≤𝑡

∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝐶,𝑢𝑙, 𝑜, 𝑡 (A.27) 

𝑖𝑢𝑔,𝑡 = 𝑈𝑔
𝑚𝑎𝑥 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺

𝐸,𝑢𝑙, 𝑜, 𝑡 (A.28) 

𝑝𝑔,𝑡
𝐶,𝑎𝑙𝑙 =∑𝑝𝑔,𝑡′

𝐶

𝑡′≤𝑡

∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝐶,𝑢𝑙𝑙, 𝑜, 𝑡 (A.29) 

𝑝𝑠,𝑡
𝐶,𝑎𝑙𝑙 = ∑𝑝𝑠,𝑡′

𝐶

𝑡′≤𝑡

∗ 𝛬𝑠,𝑡, ∀𝑠, 𝑜, 𝑡 (A.30) 

𝑖𝑐𝑔,𝑡 = 𝐼𝐶𝑔
𝑚𝑎𝑥 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺

𝐸,𝑢𝑙𝑙, 𝑡 (A.31) 

𝑖𝑐𝑔,𝑡 = 𝑝𝑔,𝑡
𝐶,𝑎𝑙𝑙 , ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙𝑙, 𝑡 (A.32) 

𝑖𝑐𝑔,𝑡 = 𝑝𝑠,𝑡
𝐶,𝑎𝑙𝑙, ∀𝑠, 𝑡 (A.33) 

𝑖𝑐𝑔,𝑡 = 𝑈𝑔
𝑚𝑎𝑥 ∗ 𝐼𝐶𝑔

𝑚𝑎𝑥 ∗ 𝛬𝑔,𝑡, ∀𝑔 ∈ 𝐺
𝐸,𝑢𝑙 , 𝑡 (A.34) 

𝑖𝑐𝑔,𝑡 = 𝑈𝑔
𝑚𝑎𝑥 ∗ 𝑖𝑢𝑔,𝑡

𝐶,𝑎𝑙𝑙, ∀𝑔 ∈ 𝐺𝐶,𝑢𝑙, 𝑡 (A.35) 
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