

DETECTION OF PROBIOTIC MICROORGANISMS USING RT-PCR, AND
ISOLATION, IDENTIFICATION, PROBIOTIC PROPERTIES OF
LACTOBACILLUS SPECIES FROM KEFIR

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
MANAL SAMI EL SAYED HASSAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
BIOCHEMISTRY

SEPTEMBER 2020

Approval of the thesis:

**DETECTION OF PROBIOTIC MICROORGANISMS USING RT-PCR,
AND ISOLATION, IDENTIFICATION, PROBIOTIC PROPERTIES OF
LACTOBACILLUS SPECIES FROM KEFIR**

submitted by **MANAL SAMI EL SAYED HASSAN** in partial fulfillment of the requirements for the degree of **Doctor of Philosophy** in **Biochemistry, Middle East Technical University** by,

Prof. Dr. Halil Kalıpçilar
Dean, Graduate School of Natural and Applied Sciences _____

Assoc. Prof. Dr. Yeşim Soyer
Head of the Department, **Biochemistry** _____

Prof. Dr. G. Candan Gürakan Gültekin
Supervisor, **Food Engineering**, METU _____

Prof. Dr. Ayşe Gül Gözen
Co-Supervisor, **Biology**, METU _____

Examining Committee Members:

Prof. Dr. Alev Bayındırı
Food Engineering, METU _____

Prof. Dr. G.Candan Gurakan Gültekin
Food Engineering, METU _____

Prof. Dr Kamuran Ayhan
Food Engineering, Ankara University _____

Assoc. Prof. Dr. Yeşim Soyer
Food Engineering, METU _____

Assist. Prof. Dr. Aysun Cebeci
Materials Science and Nanotechnology Engineering,
Abdullah Gül University _____

Date:24.09.2020

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: MANAL SAMI EL SAYED HASSAN

Signature :

ABSTRACT

DETECTION OF PROBIOTIC MICROORGANISMS USING RT-PCR, AND ISOLATION, IDENTIFICATION, PROBIOTIC PROPERTIES OF *LACTOBACILLUS* SPECIES FROM KEFIR

Hassan, Manal Sami El Sayed

Doctor of Philosophy, Biochemistry

Supervisor: Prof. Dr. G. Candan Gürakan Gültekin

Co-Supervisor: Prof. Dr. Ayşe Gül Gözen

September 2020, 258 pages

Kefir is a dairy product rich in probiotics. In this study, a SYBR green-based real-time PCR (RT PCR) method was used for the detection of kefir probiotic strains. This assay allowed species-specific detection of *L. acidophilus*, *L. delbrueckii* subsp.*bulgaricus*, *L. kefiri*, *L. kefirano faciens*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *L. casei*, *L. paracasei*, *Streptococcus thermophilus* and *Saccharomyces cerevisiae*. This method was performed using DNA isolated directly from five different sources of kefir from Turkey and one milk product from Kyrgyzstan. Results of amplification and melting curve from real time PCR assay showed that *L. kefiri*, *L. kefirano faciens*, *L. casei*, and *L. paracasei* were the dominant bacteria in all kefir samples while *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus*, and *Saccharomyces cerevisiae* were detected in a few kefir samples. Based on microscopic examination and biochemical tests, 30 of 100 bacterial isolates were confirmed to belong to the genus *Lactobacillus*. It was also indicated that isolated *Lactobacillus* species from kefir samples have potential probiotic properties.

In addition, identification studies for the isolates from the kefir samples were also carried out. These isolates were identified by 16S rRNA sequencing BLAST analysis and alignment. BLAST results showed that 19 isolates had more than 97% similarity with *Lactobacillus paracasei* subsp. *tolerans* strain NBRC 15906, 5 isolates had more than 99% similarity with *Lactobacillus gallinarum* strain ATCC 33199, 2 isolates (k5-14 and k5-15) showed 99.21 and 98.71 % similarity of *Lactobacillus zae* respectively, and 2 isolates (K4-6a and K6-3a) displayed more than 99.22 % similarity with *Lactobacillus helveticus* strain NBRC 15019. In addition, 2 more isolates were also identified, K6-14 which was identical to *Lactobacillus rhamnosus* strain NBRC 3425 with 99.45% similarity and K2-3 which showed 98.27 % similarity to *Lactobacillus intestinalis* strain TH4. Sequence alignment using the Clustal omega program was useful for identification of some isolates.

Keywords: Kefir, *Lactobacillus*, real-time PCR , *L. kefiri*, *L. kefirano faciens*, *L. casei*, *L. paracasei*, *L. acidophilus*, *L. delbrueckii* subsp.*bulgaricus*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus*, *L. gallinarum*, *L. zae*, *L. helveticus*, *L. rhamnosus*, *L. intestinalis*, *Saccharomyces cerevisiae*, biochemical tests, 16 S rRNA sequencing analysis.

ÖZ

KEFİRDE PROBIOTIC MIKROORGANİZMALARIN RT-PCR İLE TESPİTİ VE *LACTOBACİLLUS* TÜRLERİNİN İZOLASYONU TANISI, PROBIOTIC ÖZELLİKLERİ

Hassan, Manal Sami El Sayed

Doktora, Biyokimya

Tez Yöneticisi: Prof. Dr. G. Candan Gürakan Gültekin

Ortak Tez Yöneticisi: Prof. Dr. Ayşe Gül Gözen

Eylül 2020, 258 sayfa

Kefir, probiyotik bakımından zengin bir süt ürünüdür. Bu çalışmada kefir probiyotik suşlarının saptanması için SYBR green bazlı gerçek zamanlı PZR metodu kullanılmıştır. Bu analiz, *L.acidophilus*, *L.delbrueckii subsp. bulgaricus*, *L. kefiri*, *L. kefirano faciens*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *L. casei*, *L. paracasei*, *Streptococcus thermophilus* ve *Saccharomyces cerevisiae* türlerine özgü tespite olanak sağlamıştır. Bu metot, Kırgızistan'daki bir süt ürününden ve Türkiye'deki beş farklı kefir kaynağından doğrudan izole edilen DNA'yi kullanarak gerçekleştirilmiştir. PZR testinden elde edilen amplifikasyon ve erime eğrisi sonuçları, tüm kefir örneklerinde *L. kefiri*, *L. kefirano faciens*, *L. casei* ve *L. paracasei*'nin dominant bakteri olurken; *L. acidophilus*, *L. delbrueckii subsp. bulgaricus*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus* ve *Saccharomyces cerevisiae*'nın birkaç kefir örneğinde tespit edildiğini göstermektedir. Mikroskopik inceleme ve biyokimyasal testlere göre, 100 bakteriyel isolattan 30'unun *Lactobacillus* cinsine ait olduğu doğrulanmıştır. Kefir örneklerinden izole edilen *Lactobacillus* türlerinin potansiyel probiyotik özelliklere sahip olduğu da gösterilmiştir.

Ayrıca, kefir örneklerinden elde edilen bu izolatların tanımlama çalışmaları yürütülmüştür. Bu izolatlar 16S rRNA sekanslama analizi ve hizalama ile tanımlanmıştır. BLAST sonuçları, 19 izolatın *Lactobacillus paracasei* subsp. tolerans suyu NBRC 15906 ile % 97'den fazla benzerlik gösterdiğini, 5 izolatın *Lactobacillus gallinarum* suyu ATCC 33199 ile % 99'dan fazla benzerlik gösterdiğini, 2 izolatın (k5-14 ve k5-15) *Lactobacillus zae* ile sırasıyla % 99.21 ve % 98.71 benzerlik gösterdiğini, ayrıca 2 izolatın (K4-6a ve K6-3a) *Lactobacillus helveticus* suyu NBRC 15019 ile % 99.22'den fazla benzerlik gösterdiğini ortaya koymuştur. Bununla birlikle, *Lactobacillus rhamnosus* suyu NBRC 3425 ile %99,45 benzerlik gösteren (K6-14) ve *Lactobacillus intestinalis* TH4 suyu ile %98,27 benzerlik gösteren K2-3 olmak üzere iki izolat daha tanımlanmıştır. Clustal omega programı ile karşılaştırmalı dizilim hizalama (sequence alignment), bazı izolatların tanısında yararlı olmuştur.

Anahtar Kelimeler: Kefir, *Lactobacillus*, gerçek zamanlı PZR, *L. kefiri*, *L. kefiransfaciens*, *L. casei*, *L. paracasei*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus*, *L. gallinarum*, *L. zae*, *L. helveticus*, *L. rhamnosus*, *L. intestinalis*, *Saccharomyces cerevisiae*, biyokimyasal testler, 16S rRNA sekans analizi.

*To my Parents, my husband, my brothers
and my sweet kids Hana & Ahmed*

ACKNOWLEDGMENTS

I would like to express my greatest thanks to my supervisor Prof. Dr. G. Candan Gürakan for her guidance, constructive criticism, comments, positive approach and patient insight throughout the research. Her friendly behaviour let me free to express myself through this work and proceed in my own way.

I would also like to express my gratitude to my co-supervisor Prof. Dr. Ayşe Gül Gözen for her invaluable advices, contributions and help. I should also mention my respect and thank for allocating her valuable time to my research.

I would also like to thank the members of examining committee; Prof. Dr Kamuran Ayhan (Thesis Follow up Committee Member), Prof. Dr. Alev Bayındırı (Thesis Follow up Committee Member), Assoc. Prof. Dr. Yeşim Soyer and Assist. Prof. Dr. Aysun Cebeci, for their scientific inputs, suggestions, supports and encouragements.

I would like to thank my lab mates Elnaz Monir, Ipek Aktuna, Sefa and Nasim for their help and great cooperation for having such a productive time in the laboratory.

Lastly, I would like to thank my family, my parents, my husband, my brothers and my lovely kids for their unconditional love and support. Words cannot express how grateful to my father, Sami and my mother, Bahia and my husband Mohamed for all of the sacrifices they have made for me over the years.

TABLE OF CONTENTS

ABSTRACT	v
ÖZ.....	vii
ACKNOWLEDGMENTS	x
TABLE OF CONTENTS.....	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xix
CHAPTERS	
1.INTRODUCTION	1
1.1 Kefir	1
1.1.1. Origin of Kefir	1
1.1.2. Kefir Grain	1
1.1.3 Chemicals Composition of the Kefir	3
1.1.4 Health Benefits of Kefir.....	4
1.2 Lactic Acid Bacteria (LAB).....	7
1.2.1 Taxonomical Classification of Lactic Acid Bacteria	7
1.2.2 Description Of Lactic Acid Bacteria.....	8
1.2.3 Lactic Acid Bacteria Benefiting Health....	9
1.3 Isolation And Identification Of Lactic Acid Bacteria.....	10
1.3.1 Phenotypic Identification	11
1.3.1.1 Morphological Methods.....	11
1.3.1.2 Physiological and Biochemical Tests.	11
1.3.2 Genotypic Identification...	14

1.3.2.1 The 16Sr RNA Gene Sequencing.....	13
1.3.2.2 BLAST Analysis...	15
1.4. Detection of Probiotic Bacteria in Kefir Using Real-Time PCR...	14
1.4.1 Real-time PCR (Species-Specific PCR).....	15
1.4.2. SYBR Green I method.....	17
1.5 Microbiota of Kefir...	18
1.5.1 <i>Lactobacillus casei</i>	20
1.5.2 <i>Lactobacillus paracasei</i>	20
1.5.3 <i>Lactobacillus plantarum</i>	24
1.5.4 <i>Lactobacillus acidophilus</i>	24
1.5.5 <i>Lactobacillus intestinalis</i>	25
1.5.6 <i>Streptococcus thermophilus</i>	25
1.5.7 <i>Saccharomyces cerevisiae</i>	25
1.5.8 <i>Lactobacillus helveticus</i>	26
1.5.9 <i>Lactobacillus gallinarum</i>	26
1.5.10 <i>Lactobacillus kefiri</i>	27
1.5.11 <i>Lactobacillus kefiranofaciens</i>	28
1.5.12 <i>Lactobacillus fermentum</i>	28
1.5.13 <i>Lactobacillus amylovorus</i>	28
1.5.14 <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i>	29
1.5.15 <i>Lactobacillus zaeae</i>	29
1.6 Probiotic of Lactic Acid Bacteria.....	29
1.7 Aim of the study.....	30
2. MATERIALS AND METHODS	33
2.1. Collection of samples.	33

2.2. Kefir Preparation From Kefir Grains.....	34
2.3. Real Time PCR Assay (RT PCR)	34
2.3.1 Selection the Primers of Real Time PCR.....	34
2.3.2 DNA Extraction for Real Time PCR	36
2.3.3 Detection of Different Bacteria and Yeast species in Kefir Using Real Time PCR	36
2.3.4 Preparation of Real time PCR Master Mix	36
2.3.4.1 Dispensing the Master Mix	37
2.3.4.2. Addition of Template DNA	37
2.3.5 Real Time PCR Analysis	38
2.4 Isolation of the Bacteria from Kefir Samples	38
2.4.1 Phenotypic identification of the Isolated Bacterial Strains	39
2.4.1.1 Gram staining.....	39
2.4.1.2 Catalase Test	39
2.5 Biochemical Characterization of the Isolated Bacterial Strains.....	39
2.5.1 pH Tolerance test	40
2.5.2 Temperature Tolerance Test	40
2.5.3 NaCl Tolerance Test	40
2.5.4 Phenol Tolerance Test.....	41
2.5.5 Lactose Utilization	41
2.5.6 The Protolytic Activity of Lactic Acid Bacteria	41
2.5.7 Bile Salt Hydrolase	42
2.5.8 Carbohydrates Fermentation Test.....	42
2.6 Genetic Characterization of Isolates	42
2.6.1 Extraction of Genomic DNA of LAB Isolates.....	43

2.6.1.1 DNA Binding Spin - Column activation	43
2.6.1.2 Bacterial Sample Preparation	43
2.6.1.3 DNA Isolation	43
2.6.2 Polymerase Chain Reaction(PCR).....	44
2.6.2.1 Amplification of 16S r RNA Gene	44
2.6.2.2 Separation the DNA Fragment Using Agarose Gel.....	45
2.6.2.3 DNA Purification from Agarose Gel.....	45
2.6.3 Sequencing of 16S r RNA Gene.....	45
2.6.4 Analysis of 16S r RNA Gene	46
2.6.5 Multiple Sequence Alignment (MSA).....	46
3.RESULTS AND DISSCUSSION	47
3.1. Experimental Strategy.....	47
3.2 Collection of Samples.....	53
3.3 Kefir Preparation	53
3.4 Detection of Probiotic Microorganisms Using Real Time PCR.....	53
3.5 Isolation of Lactic Acid Bacteria.....	80
3.6 Phenotypic Identification of Lactic Acid Bacteria	80
3.6.1 Colony Morphology	80
3.6.2 Microscopic Examination.....	83
3.6.3 Catalase Test.....	83
3.7 Biochemical Tests	85
3.7.1 pH Tolerance Test	85
3.7.2 NaCl Tolerance Test.....	86
3.7.3 Temperature Tolerance Test.....	88
3.7.4 Phenol Tolerance Test	90

3.7.5 Lactose Utilization	91
3.7.6 The Proteolytic Activity of Lactic Acid Bacteria	91
3.7.7 Bile Salt Tolerance (Deconjugation of Bile Salts).....	94
3.7.8 Carbohydrates Fermentation Test	96
3.8 16S rRNA Gene Sequencing of <i>Lactobacillus</i> Isolates	99
3.9 Multiple Sequence Alignment and Blast Analysis	100
4.CONCLUSION.....	121
REFERENCES.....	123
APPENDICES	
A. Real Time PCR Analysis	157
B. 16S rRNA ribosomal RNA Gene Partial Sequence	163
C. Blast Analysis of Partial 16S rRnA Gene of Kefir Isolates	193
CURRICULUM VITAE.....	257

LIST OF TABLES

TABLES

Table 1.1 Detection of LAB and yeast of kefir, kefir grains and dairy product using real time PCR	16
Table 1.2 Microbial population of kefir grains and beverages from different origins	22
Table 2.1 Origins of homemade kefir and milk samples.....	33
Table 2.2 The oligonucleotides primers	35
Table 2.3 real time PCR materials.....	37
Table 2.4 PCR mixture for 16S rRNA gene sequencing.....	44
Table 3.1 Detection the population of kefir samples using specific primers for real-time PCR	54
Table 3.2 Source of kefir and Colony morphology of isolates.....	81
Table 3.3 Gram staining and catalase test for kefir isolates	84
Table 3.4 The Tolerance of <i>lactobacillus</i> isolates to pH and NaCl salt.....	87
Table 3.5 Temperature, phenol tolerance and lactic acid production test	89
Table 3.6 Proteolytic activity and bile salt tolerance test	93
Table 3.7 Carbohydrates fermentation patterns of isolates	97
Table 3.8 Fermentation of sugars by <i>Lactobacillus</i> isolates and references	99
Table 3.9 BLAST analysis and alignment results for K2 isolates.....	101
Table 3.10 BLAST analysis and alignment results for K3 isolates.....	103
Table 3.11 BLAST analysis and alignment results for K4 isolates.....	104
Table 3.12 BLAST analysis and alignment results for K5 isolates.....	105
Table 3.13 BLAST analysis and alignment results for K6 isolates.....	106
Table 3.14 Results of one and two directions 16s rRNA sequencing and MSA...111	
Table 3.15 Summary for identification of isolates and references.....	116
Table 3.16 Shows the results of real time PCR and isolation of kefir isolates.....	118

LIST OF FIGURES

FIGURES

Figure 1.1 Kefir grains	2
Figure 1.2 SYBR Green I real time PCR technique.	17
Figure 1.3 Genomic based phylogenetic analysis of the <i>L. casei</i> group.....	22
Figure 1.4 Phylogenetic placement of <i>L.acidophilus</i> subgroup within the <i>Lactobacillus</i> genus.....	27
Figure 2.1 Real time PCR program.....	38
Figure 3.1 Experimental planing (section 1).Collection of kefir grains and preparation of kefir milk ..	48
Figure 3.2 Experimental planing (section 2). Determination the population in home made kefir samples.....	49
Figure 3.3 Experimental strategy (section 3). Isolation and microbiological and biochemical identification LAB.....	50
Figure 3.4 Biochemical tests applied in the study (section 4).	51
Figure 3.5 Experimental planing of the blast analysis.....	52
Figure 3.6 Amplification and melting curve for Kefir sample (K4) with <i>L. kefiri</i>	56
Figure 3.7 Amplification and melting curve for Kefir sample (K6) with <i>L.</i> <i>kefiranciens</i>	58
Figure 3.8 Amplification and melting curve for Kefir sample (K5) with <i>S.</i> <i>cerevisiae</i>	60
Figure 3.9a Amplification and melting curve for <i>L. acidophilus</i> in Kefir (K6).	62
Figure 3.9b Amplification and melting curve for <i>L. acidophilus</i> in Kefir (K2).	63
Figure 3.10 (a) Amplification and melting curve for Kefir (k1) with <i>L. plantarum</i>	65
Figure 3.10 (b) Amplification and melting curve for Kefir (k2) with <i>L.plantarum</i>	66
Figure 3.11 Amplification and melting curve for <i>L. casei</i> in all samples.....	68

Figure 3.12 Amplification and melting curve for <i>L. paracasei</i> in all samples.....	70
Figure 3.13(a) The amplification and melting curve of <i>L. delbrueckii</i> subsp. <i>bulgaricus</i> in K1.....	71
Figure 3.13(b) The amplification and melting curve of <i>L. delbrueckii</i> subsp. <i>bulgaricus</i>	72
Figure 3.14 (a) The amplification and melting curve of <i>L. amylovorus</i> in K4.....	73
Figure 3.15 The amplification and melting curve of <i>L. fermentum</i> in k4.....	75
Figure 3.16 The amplification and melting curve of <i>S. thermophilus</i> in k6.....	77
Figure 3.17 (a) Amplification curves of kefir sample (K5 and K6) with specific primers (<i>L. Kefiri</i> , <i>L. acidophilus</i> , <i>L. kefiransfaciens</i> , <i>L. fermentum</i> , <i>L.</i> <i>plantarum</i> , <i>L. delbrueckii</i> subsp. <i>bulgaricus</i> , <i>S. cerevisiae</i> , <i>S. thermophilus</i> and <i>L.</i> <i>sobris</i> \ <i>amylovorus</i>).	78
Figure 3.17 (b) Melting curves of kefir sample (K5 and K6) with specific primers (<i>L. Kefiri</i> , <i>L. acidophilus</i> , <i>L. delbrueckii</i> subsp. <i>bulgaricus</i> , <i>L. kefiransfaciens</i> , <i>L.</i> <i>fermentum</i> , <i>L. plantarum</i> , <i>S. cerevisiae</i> , <i>S. thermophilus</i> and <i>L.sobris</i> \ <i>amylovorus</i>	78
Figure 3.18 Gram staining.....	83
Figure 3.19 Proteolysis activity for <i>Lactobacillus</i> isolates	92
Figure 3.20 Bile salt hydrolase activity on solid MRS.....	96
Figure 3.21 Agarose gel electrophoresis of PCR	100
Figure 3.22 The alignment of the 16S rRNA gene of <i>Lactobacillus</i> isolate k6-3a with bases of <i>L. helveticus</i> and <i>L. gallinarum</i>	108
Figure 3.23 The alignment of the 16S rRNA gene of <i>Lactobacillus</i> isolate k2-3a with bases of <i>L. helveticus</i> , <i>L. intestinalis</i> and <i>L. gallinarum</i>	109
Figure 3.24 The alignment of the 16S rRNA gene of <i>Lactobacillus</i> isolate K5-14 with bases of <i>L. casei</i> , <i>L. paracasei</i> and <i>L. zae</i>	109
Figure 3.25 The alignment of the 16S rRNA gene of <i>Lactobacillus</i> isolate K6-14 with bases of <i>L. rhamnosus</i> , <i>L. paracasei</i> and <i>L. zae</i>	110
Figure 3.26 The alignment of the 16S rRNA gene of <i>Lactobacillus</i> isolate K5-15 with bases of <i>L. casei</i> , <i>L. paracasei</i> and <i>L. zae</i>	110

Figure 3.27 Phylogenetic tree of aligned 16S rRNA gene sequences for the known species	112
Figure 3.28 Phylogenetic tree of aligned 16S rRNA gene sequences for some isolates.....	112
Figure 3.29 Phylogenetic tree of aligned 16S rRNA gene sequences for K6-14 with related known species	112

LIST OF ABBREVIATIONS

ABBREVIATIONS

Ribosomal RNA: r RNA

Polymerase Chain Reaction : (PCR)

Lactic Acid Bacteria : (LAB)

Base Pair : (bp)

Real Time Polymerase Chain Reaction : (Real Time PCR)

Real Time PCR : (RT PCR)

Lactobacillus : (*L.*)

Saccharomyces: (S.)

Streptococcus: (*Str*)

Temperature : (Temp)

Melting Temperature: (Tm)

Multiple Sequence Alignment : (MSA)

Ataturk Orman çiftliği : (AOC)

De Man, Rogosa, and Sharp : (MRS)

Threshold Cycle : (CT)

Biological Resource Center,NITE : (NBRC)

American Type Culture Collection: (ATCC)

German Collection of Microorganisms and Cell Cultures : (DSM)

CHAPTER 1

INTRODUCTION

1.1 Kefir

1.1.1 Origin of Kefir

The name “Kefir” derived from Turkish source “keyif” means good pleasure. Kefir beverage consumed in Southwest Asia, Russia and Eastern Europe (Gaware et al., 2011). Wszołek et al (2006) has stated that, the common way of preparing kefir is an inoculation of grains into the milk. The starter culture used to produce kefir is small, gelatinous, yellowish, and irregularly shaped as explained by Witthuhn et al., 2005.

People living in the countries of the former Soviet Union have been using Kefir for its health benefits for a long time. Health experts in those countries always recommend the consumption of kefir. Prado et al (2015) underline many health benefits related to the drinking of this fermented milk and these health benefits are related to the existence of metabolic substances as organic acids and its microflora. Hospitals in the former Soviet Union used Kefir to treat cancer, digestive disorders, and even atherosclerosis and tuberculosis (Shavit, 2008).

1.1.2 Kefir Grains

During the preparation of kefir beverage, kefir grains use as fermentation starter by incubation with the milk. Kefir grains have an irregular surface, smooth, viscous, shiny and yellowish-white color as described by Magalhães et al (2011) and Rattray and O’Connel (2011). If wet kefir grains does not inoculate into fresh milk, will keep

activity for 8-10 days only, however, dried grains can keep their activity for about 12-18 months (O 'Brien, 2012).

Figure 1.1 Kefir grains (Otles and Cagindi, 2003)

Kefir grains represent a symbiotic relationship between lactobacilli and lactococci bacteria, acetic bacteria and yeasts. A complex microbial population of kefir grains consists of different species of bacteria and yeasts and also several species of filamentous molds (Sarkar et al., 2008; Wang et al., 2008).

Kefiran is the main polysaccharide of Kefir grains that is a complex structure containing equal amounts of glucose and galactose and is essentially generated by *L. kefiranofaciens*. Moreover, Kefiran may be used as a supplement in fermented products because it develops the viscosity properties of acidic milk gels. Also, kefiran can activate the characteristic of skim milk which promote the viscosity of Kefir milk (Prado et al., 2015). The milk of the most mammals as sheep, cow, and goat can be fermented by kefir grains and each one has different nutritional qualities and organoleptic properties. Kefir grains can ferment milk alternatives like coconut milk, soy milk, and rice milk (Gaware et al., 2011).

1.1.3 Chemicals Composition of Kefir

Sarkar (2007) has indicated that Kefir contains 89–90% moisture, 6.0% sugar, 3.0% protein, 0.7% ash, 0.2% lipid and 1% each of lactic acid with alcohol.

Puerari et al (2012) and Ahmed et al (2013) classified many secondary metabolites during fermentation as flavor, taste, and aroma forming compounds synthesized such as carbonyl substances (diacetyl, acetaldehyde, ethyl acetate, acetoin and ethanol), volatile and non volatile organic acids.

Farnworth (2005) found that lactic acid was the maximal concentration organic acid produced from lactose in milk. The quantities of ethanol and CO₂ synthesized depend on the conditions of production process. Depending on the species or strains present in the milk, the amounts and kind of flavor compounds formed by these strains vary and can affect the quality of the final beverage (Maurellio et al. 2001).

Acetone is a flavorless and odorless compound, it has a considerable effect on the flavor of kefir (Aghlara et al, 2009). Acetone produces from lactose and citrate metabolism and its formation depends on the strain. Some lactobacilli strains such as *L. helveticus* and some streptococci cultures such as *S. lactis* can produce acetone in low amounts (Beshkova et al., 2003).

Ethanol is synthesized from acetaldehyde, by alcohol dehydrogenase enzyme. Yeasts are the most ethanol maker according to Guzel-Seydim et al (2000). Two kinds of yeasts may be found in kefir: they are lactose and non lactose fermenting yeasts. The fermented product prepared by using non-lactose fermenting yeast. It has a stronger yeast flavor than the product obtained by lactose-fermenting yeast (Simova et al., 2002; Beshkova et al. 2003).

Carbon dioxide is produced via alcoholic fermentation and it gives the slight ebullition of kefir (Liu et al., 2002).

Acetic acid is a fatty acid that has been determined at low concentrations than 800 mg in kefir (Garrote et al., 2001). In spite of, Guzel-Seydim et al (2000) could not find any acetic acid in kefir. Magalhães et al (2011) detected low acetic acid ratios in kefir milk without any effect on the organoleptic properties of the beverage.

Formation of acetic acid needs different amino acids; for example, *S. diacetylactis* can make acetic acid from leucine, glycine, and alanine (Liu et al., 2002). Also, acetate can be produced from pyruvate in the presence or absence of oxygen. (Garrote et al., 2001).

Zubeyde et al., 2010 discussed the properties of kefir produced using different milk samples and types of fermentation culture. They concluded that starter culture type and storage duration affected the pH changes.

1.1.4 Health Benefits of Kefir

Kefir has many significant health benefits as physiological and therapeutic properties due to a wide diversity of metabolic bioactive substances produced during fermentation. The diversity of the microbial population also influences these health care (Leite et al., 2013). Kefir is known to contain enzymes, amino acids, mineral (magnesium, phosphorus, calcium), and vitamins (B12, B2, A, D, K) (Gaware et al., 2011).

- Heart health:

Kefir aids in caring the heart since it regulates the blood pressure and clears the blood vessels. Drinking kefir helps to clean the blood vessels and the blood pressure can be regulated (Gaware et al., 2011).

- Reduces the cholesterol levels:

Kefir aids in reducing high cholesterol levels. It is very beneficial for eliminating many cardiovascular diseases like heart attack (Shavit, 2008).

- Digestion:

Kefir enhances digestion, prevents constipation, regulates the bowel movements and cleaning the intestines.

- Brain-enhancement:

Kefir can develop the working of the brain and it is important for a healthy nervous system. It helps to fight the stress. The minerals in Kefir also improve the focus and the power of memory-retention of the brain (Gaware et al., 2011).

- Respiratory system:

Kefir plays an important part in the medication of asthma and bronchitis.

- Weight loss:

Kefir probiotics increase the body's metabolism leading to weight loss.

- Prevention against toxins:

Kefir can protect the human body from the toxic effects of radiation and other harmful pollutants and can enhance the immune function.

- The Lactose Intolerance:

Ahmed et al. (2013) highlight that some of the kefir's bacteria can break lactose down, kefir aids people who has lactase enzyme deficiency to digest lactose products.

- A Healthier Immune System:

Probiotics of kefir have stimulatory reactions on the immune system by increasing T-lymphocyte numbers and improving phagocytosis. Kefir produces bioactive peptides in the fermentation process which have an indirect effect on the immune system as mentioned by Shavit (2008).

- Antibiotic and antifungal properties:

Prado et al. (2015) overviewed that kefir has certain antifungal compounds that treat yeast infections like candidiasis and eczema. Moreover, Kefir microorganisms synthesize lactic acid, bactericides and antibiotics that help to kill pathogenic bacteria such as *Helicobacter*, *Salmonella*, *Shigella*, *Escherichia coli*, *Staphylococcus*, *Micrococcus luteus*, *Bacillus subtilis*, *Streptococcus pyrogens*, and *Listeria monocytogenes*.

- Anti-cancer agent:

Many studies summarized by Shavit (2008) have demonstrated that kefir has conservative effects against some types of cancer and reduce the size of tumors by inhibiting the growth of bacteria in the digestive system that convert procarcinogens into carcinogens.

- Anti-Diabetic:

Kefir has an important role in diabetics as it decreases the glucose concentration and control the regular sugar level in the blood (Shavit, 2008).

- Anti-inflammatory:

Kefir is useful in treating several disorders like gastritis, pancreatitis and other inflammatory diseases (Prado et al., 2015).

- Wound healing properties:

Hassan et al (2012) discussed that acetic acid, lactic acid, sugar compounds and other chemical compounds found in kefir were important factors for wound healing properties.

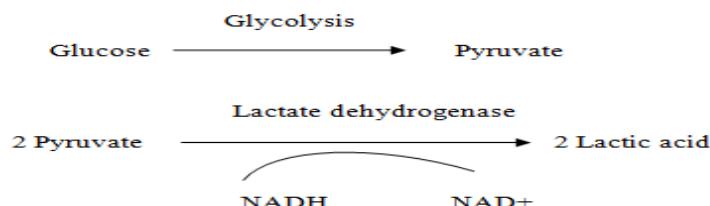
1.2 Lactic Acid Bacteria (LAB)

1.2.1 Taxonomical Classification of Lactic Acid Bacteria:

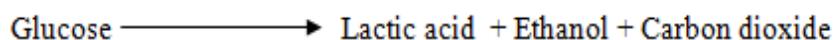
(LAB) include various bacterial species within the phylum fumicutes. The genera *Lactococcus*, *Lactosphaera*, *Leuconostoc*, *Lactobacillus*, *Milissococcus*, *Oenococcus*, *Pediococcus*, *Streptococcus*, *Enterococcus*, *Weissella* and *Vagococcus* are identified as lactic acid bacteria (Tadesse et al., 2005). Only few of them are dairy related. They are *Enterococcus*, *Lactococcus*, *Streptococcus*, *Pediococcus*, *Leuconostoc* and *Lactobabillus* (Axelsson, 1998)

Taxonomical classification of LAB depends on sequencing analysis for 16S ribosomal RNA (rRNA). It has detected that some classification created based on phenotypical characterization do not match with the phylogenetic relations. Molecular assays, mainly polymerase chain reaction (PCR) based techniques such as rep-PCR finger printing and pulse-field gel electrophoresis are remarked useful for probiotic strain differentiation, identification and discrimination (Gevers et al., 2001; Holzapfel et al., 2001).

Species-specific (real time PCR) was developed by Monique and Jan (2006) to detect and quantify different *Lactobacillus* species such as *L. casei*, *L. delbrueckii*, *L. rhamnosus*, *L. plantarum*, *L. reuteri*, *L. acidophilus*, *L. fermentum* and *L. paracasei* in breast-fed infants.


1.2.2 Description of Lactic Acid Bacteria

The LAB are common and prevalent in nature, rich in carbohydrates and contain protein breakdown products, vitamins, essential enzymes, antibacterial peptides, hydrogen peroxide and aromatic compounds, all of which contribute to probiotic properties (Leroy and de Vuyst, 2004). The LAB play a significant role in food fermentation that affects acidity, texture, and flavor of the end products in addition to many benefits on human health (Sun, 2010).


The LAB consist of a great group of rod, gram positive, catalase negative and aerotolerant bacteria. These bacteria yield lactic acid as the basic end products in sugar fermentation.

Regarding carbohydrate metabolism, they are classified into 2 major groups:

1. Homofermentative LAB

2. Heterofermentative LAB

Wessels et al (2004) reviewed the power of LAB to produce the chemicals substances of respiratory chains as cytochromes and porphyrins. Lactic acid bacteria can gain ATP only by sugar fermentation. They can survive under anaerobic

conditions easily, but also they can survive in the presence of oxygen by producing peroxidases.

1.2.3 Lactic Acid Bacteria Benefiting Health

LAB are considered a major class of probiotic bacteria (Collins et al., 1998; Schrezenmeir and de Vrese, 2001). Fuller (1989) defined the probiotic word as “a live microbial feed supplement which beneficially affects the host animal by improving its intestinal microbial action”. Also, Salminen et al (1999) suggested that probiotics are microorganisms that have a helpful effect on human health.

Many lactobacilli, lactococci and bifidobacteria are probiotic bacteria (Rolle, 2000; Tuohy et al., 2003). LAB have a significant part in prolongation the storage life and improving the safety of basic food products by producing bacteriocins that inhibit foodborne pathogens and spoilage microorganisms. They also have a beneficial effect on nutritional and sensory characteristics (Ravi et al., 2011).

LAB applied in probiotic construction, are obtained from the gastrointestinal tract and they are tested and identified with a history of safe use and non-pathogenic or antibiotic resistance (Stolarczyk, 2002). The capability of lactic acid bacteria to form lactic acid from lactose, it contributes to the effective treating of lactose intolerance. People are unable to digest lactose in milk due to the absence or dysfunction of the essential enzyme systems.

Besides, Jack (1995) investigated that LAB reduce the pH of the intestinal medium which eliminate the growth and survival of some organisms normally requiring high pH for their growth. Some LAB produce substances with a bacteriostatic effect such as H_2O_2 and bacteriocins thus preventing the development of pathogenic microorganisms as *E.coli*.

LAB represent an whole part of the gastrointestinal environment (Fernandes et al., 1987). The metabolism of probiotics depends on the fermentation mechanism. As well as other gut microflora, LAB ferments different types of substrateas lactose (Gibson and Fuller, 2000). Intestinal LAB have a beneficial function in the metabolism and detoxification of harmful components entering the body by producing antioxidants and bacteriocins (Salminen, 1990).

Granette et al (2001) and Cross (2002) found that LAB control intestinal disorders due to antibodies that enhance the immune response. LAB can eliminate harmful bacteria from adhesion to the intestinal epithelial cells or by secretion of antimicrobial compounds such as bacteriocins and some organic acids (Reid, 2001).

Boris et al (1998) explained vaginal LAB strains are capable of attaching or self-aggregating with pathogen by surface proteins or lipoproteins. Both may help to the ejection of pathogens from the vaginal mucous membrane.

1.3 Isolation and Identification of Lactic Acid Bacteria

LAB applied as starter substances in the food industry, and their dietary needs are very complicated. Hence, their predominant environments of being rich in sugars, having amino acids, vitamins and living in environments with week oxygen, their frequency in milk products create health benefits for the consumer and enhance the flavor, texture and the nutritional quality of the food products (Stiles and Holzapfel, 1997).

The current study deals with the isolation, studying probiotic properties and identification of lactobacilli from dairy products and kefir samples collected from different sources in Turkey and Kyrgyzstan. For identification species of bacteria,

both genotypic and phenotypic techniques were utilized to get accurate identifications.

1.3.1 Phenotypic Identification

Even if genetic identification methods are time saving and give very accurate results, phenotypic identification methods are very helpful especially in the differentiation at the genus level and decrease the number of isolates for genetic identification.

To determine LAB, phenotypic techniques, which incorporate morphological examinations and physiological and biochemical tests are generally applied.

1.3.1.1 Morphological Methods

Microscopic investigation is the initial criterion that provides data about the genus level and clarity of lactic acid bacteria. There are several staining tests to distinguish the bacterial cells as simple staining, endospore staining, capsule staining, acid fast staining and gram staining. The useful method for *Lactobacillus* identification is the Gram staining. According to Gram staining reaction, bacteria can be divided into Gram-positive and Gram-negative organisms. The LAB join to the Gram-positive, rod shape group. Round cells are named cocci, elongated rod cells are named bacilli and intermediary shape between cocci and bacilli are named cocobacilli (Garvie, 1984).

1.3.1.2 Physiological and Biochemical Tests

The rule of classification includes physiological and biochemical tests (Stiles and Holzapfel, 1997). LAB were known as catalase negative and cannot arrange the degradation of H_2O_2 to water and oxygen. The absence of catalase activity is demonstrated by the absence of O_2 production when cells are added to a drop of

diluted H₂O₂. This examination is one of the most helpful tests for the identification of LAB.

Examination of growth ability at several temperatures is beneficial for the recognition of LAB and other species. The optimal temperature for growth changes between genera from 15°C to 45°C.

The pH tolerance test is another test to characterize probiotic LAB, which are tolerant of the gastrointestinal medium, capable of adhering to the intestinal tissues, and compete with gastric pathogens. The ideal pH for lactic acid production differs between 5.0 and 7.0. Their ability to tolerate low acidic conditions gives them an advantage over other bacteria (Wood and Holzapfel, 1995).

Lactobacillus must have the proficiency to resist bile salts to survive through the intestinal tract and provide their therapeutic effect in the intestine of the host. Therefore, LAB strains need to be tolerant to low acidic environment and digestive enzymes. Also they could be able to grow when the concentration of bile salt is 0.3% (w/v).

Some *Lactobacillus* species can tolerate 6.5 % NaCl concentration. NaCl inhibits the growth and survival of some bacteria (Hoque et al., 2010)

Lactose utilization is one of the biochemical tests that is helpful to narrow the isolates number for the next biochemical tests and genetic identification (Klaenhammer and de Vos, 2011). The fermentation of lactose is called glycolysis or glycolytic pathway. Obligatory homo-fermentative LAB, that ferment lactose into lactic acid. The formation of lactic acid causes changes in the color of the phenol red indicator.

Generally, LAB can be defined as a facultative anaerobe that produces lactic acid as the basic final product from the fermentation of sugars. So, the structure of the final product is very essential for the discrimination of *Lactobacillus* species.

Hoier, (1992) and Suskovic et al (1997) demonstrated that phenols have a bacteriostatic property and are one of the toxic metabolites produced during the digestion process. They are produced from some aromatic amino acids of nutritional compounds and proteins that undergo deamination by gut bacteria. So, the ability of *Lactobacillus* to tolerate phenol is one of the vital properties for probiotic LAB.

LAB have many technological properties. Proteolytic activity is one of these properties and a very useful characteristic for lactic acid bacteria. Proteases are the enzymes that hydrolyze proteins and catalyze peptide synthesis (Ishtiaq Ahmed et al. 2010)

Casein→ peptone→ peptides→ amino acids

LAB are known by their potent need for basic growth factors as some peptides and amino acids. However, there are not sufficient amounts of amino acids and peptides in milk to help the growth of bacteria (Abu-Tarboush, 1996). Therefore, these microorganisms perform their proteolytic analysis, to digest casein as nitrogen source.

The reactions of proteolysis in milk improve the structure, nutritional quality of these products (El-Fattah, 2013). It has been discussed that proteolysis has significant effect in flavor and texture enhancing by the breakdown of proteins (Ávila et al., 2005).

1.3.2 Genotypic Identification

Traditional microbiological examinations for phenotypical descriptions are considered inappropriate as they have restrictions in differentiating great numbers of isolates with identical physiological descriptions. Various DNA-based methods have been used to solve this problem (Mohania et al., 2008). Genetic assays performed alone or in association with each other for determination of LAB provide more accurate results in 16S rRNA gene sequencing and species-specific PCR (Rosseti and Giraffa, 2005).

1.3.2.1 The 16S rRNA Gene Sequencing

Ribosomes have minor subunit (30S) and major subunit (50S) in prokaryotes. The minor subunit has 16S rRNA while the major subunit has two RNA molecules (23S and 5S) rRNA. Completely or partially sequencing of the 16S rRNA gene is commonly applied for the determination of LAB. Ribosomes consist of proteins combined with rRNAs. This gene is approximately 1500 base pairs (bp) long. It makes 16S rRNA sequencing assay is fast and cheap (Mizrahi-Man et al., 2013). (Sacchi et al., 2002) demonstrated that even if sequencing of the whole gene is occasionally necessary, partially sequencing of variable regions is mostly common for identification.

1.3.2.2 BLAST Analysis

BLAST represents for Basic Local Alignment Search Tool, presented by the (NCBI), aligns request sequences versus those found in a chosen target databank. It can be obtained from (NCBI) BLAST website (<http://blast.ncbi.nlm.nih.gov>). The BLAST analyses were achieved for aligned sequences of each DNA.

In conclusion, phenotypic methods should be applied with genotypic techniques for precise identification. For limiting the number of isolates and rapid identification of bacteria in kefir. The phenotypic methods such as catalase test, Gram staining, acid and bile salt tolerance, temperature, phenol test, proteolytic activity, and carbohydrates fermentation patterns can be employed for genus identification, following by a genotypic examinations as partially or completely (16S rRNA) sequencing. Multiple sequence alignments can perform with the Clustal Omega program submitted by The European Bioinformatics Institute.

1.4. Detection of Probiotic Bacteria in Kefir Using Real-Time PCR

1.4.1 Real-time PCR (Species-Specific PCR)

The real-time PCR method was performed because of its higher specificity and accuracy in the quantitative analysis (Higuchi et al., 1993). The real-time PCR method is faster to perform and contains fewer steps limiting cross-contamination than competitive PCR. In real-time PCR, dye molecules of fluorescent reporters attached to primers or double-stranded DNA binding dyes to hybridize with PCR products during the process of amplification.

The alteration in fluorescence throughout the PCR is determined by a device that integrates thermal cycling with dye. There is a relationship between the amount of initial DNA and the amount of PCR product at each cycle. (Lipsky et al., 2001; Bonfini et al., 2007). The small diversity in gene expression between samples can be detected by real time PCR (Wong and Medrano, 2005). In microbial studies, the real-time PCR technique is frequently used to detect abundance of bacterial groups or even a specific species in a bacterial community. Also, real time PCR used for detection microbial population in Kefir and milk samples as shown in Table 1.1

Real time PCR analyses were done to detect the different populations in kefir samples and SYBR Green I method was used. In that, the amount of fluorescence signals increases after certain PCR cycle and this cycle is named as “threshold cycle” or “Ct” value. To set the Ct values, the baseline needs to be adjust by the device’s software. To determine the threshold level, the amplification curves are presented in logarithmic mode (Ahmed et al., 2017).

Melting curve reaction is an estimation of dissociation mechanism of dsDNA during the increasing in temperature, draws the change in the fluorescence detected when double stranded DNA with integrated dye molecules separates into single-stranded DNA. The temperature that half of DNA is denatured, pointed to the melting temperature (Tm).

Table 1.1 Detection of lactic acid bacteria and yeast of kefir, kefir grains and dairy product using real time PCR.

Target	Source	References
<i>Lactobacillus/Lactococcus</i> spp., <i>Lactic acid bacteria</i> , <i>Acetic acid bacteria</i> , <i>Enterococcus</i> spp., <i>Streptococcus</i> spp., <i>Candida</i> spp <i>Saccharomyces</i> spp	Kefir Grain and Fermented Kefir Milk	Kim D. H et al., 2015a
<i>L. kefiranofaciens</i>	Kefir Grain and Kefir Milk	Kim D. H et al., 2015b
<i>L. kefiri</i>	kefir milk	Kim D. H et al., 2016
<i>L. helveticus</i>	Dairy products	Moser A. et al., 2017

<i>L. acidophilus</i>	Taiwan dairy products	Kao Y. T. et al., 2007
<i>L. delbreuckii</i>		
<i>L. casei</i>		

<i>L. acidophilus, L. brevis,</i>		
<i>L. delbrueckii</i> subsp. <i>bulgaricus</i> ,	yoghurt	Herbel R.S. et al.,
<i>L. helveticus, L. reuteri</i>		2013

1.4.2. SYBR Green I method

SYBR Green dye presents a simple and credible assay in real-time PCR. It binds to (dsDNA) and the strength of the fluorescent increases at each step of the real time PCR (Howell et al., 1999). However, SYPR green may detect any dsDNA as non-specific amplicons or primer dimers.

In this technique, melting analysis are performed to ensure the accurately of the real time PCR using SYBR Green dye. By increasing the temperature, the DNA product dissociates into a sdDNA that causes the release of SYBR Green lowering the fluorescent signal. Melting plots are determined as the relation between fluorescence emission against the temperature. A peak formation can be used for recognition of specific amplicon in the melting curve (Querci et al., 2010).

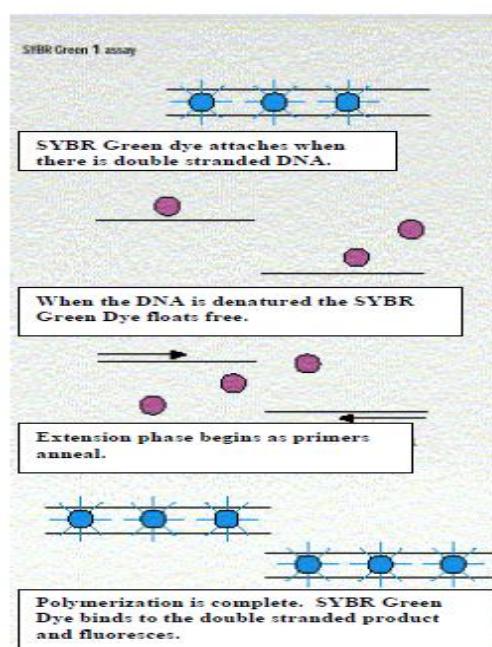


Figure 1.2 SYBR Green I real-time PCR assay (applied biosystems)

1.5 Microbiota of Kefir

Kefir grains consist of many microbial compositions like yeasts, lactic acid bacteria (LAB) and acetic acid bacteria. These microbial species are categorized into 4 groups: heterofermentative LAB, homofermentative LAB, non-lactose, and lactose assimilating yeasts (Prado et al., 2015).

Homofermentative LAB including *L. kefiranofaciens*, *L. delbrueckii* ssp. *bulgaricus*, *L. paracasei* ssp. *paracasei*, *L. acidophilus* and *L. plantarum* are predominant species. However, these species are detected at 20% level of total *Lactobacillus* in the final kefir product while the rest is the *L. kefiri* (Zanirati et al., 2015), heterofermentative LAB, combining *L. parakefiri*, *L. kefiri*, *L. brevis* and *L. fermentum* and strains of *L. lactis* (Leite et al., 2012; Leite et al., 2013).

The mixture of *lactococci*, *lactobacilli*, yeasts and acetic acid bacteria are adhere together by a protein-polysaccharide matrix (Antoniou and Dimitreli, 2008). Garrote et al (2001), Simova et al (2002), Zhou et al (2009) and Miguel et al., (2010) discussed that the predominate lactobacilli detected from kefir grains were *L. kefirgranum*, *L. kefiranofaciens*, *L. parakefiri*, *L. kefiri*, *L. delbrueckii*, *L. acidophilus*, *L. brevis*, *L. casei*, *L. paracasei*, *L. plantarum*, *L. fermentum*, *L. helveticus*.

Magalhães et al (2011) and Rattray and O'Connel (2011) outlined that LAB is primarily responsible for lactose production from lactic acid present in kefir beverage, which decreases pH and preserves milk. The other microbial population in kefir includes lactose fermenting yeasts that form ethanol with carbon dioxide. Also,

acetic acid bacteria and non lactose fermenting yeast have a role in the fermentation process.

Furthermore, over 23 different yeast species have been detected from grains of kefir and many fermented products of various regions. However, *S. unisporus*, *Candida kefyr* and *S. cerevisiae* are the predominant microorganisms (Witthuhn et al., 2004; Zanirati et al., 2015).

The grains swell in about 5.0 -7.0 % of their mass after fermentation process. The ratio of microorganisms in the grains varies in the final product during their growth in milk. There are different conditions for fermentation processes such as type of milk, fermentation temperature, fermentation time, grain and inoculum proportion and the distribution of microorganisms explained by (Rattray and O'Connel, 2011; Ray and Montet, 2017).

Gao et al (2012) and Altay et al (2013) conclude that the microbial population differs depends on the substrate, origin of kefir and the methods of culturing. Taiwan kefir, Russian kefir, Irish kefir and Turkish kefir composition varies from that of Tibetan kefir.

Yeasts and lactococci are present in the exterior layer of the kefir grain. However, more yeasts cells were found in the interior layer and the number of lactobacilli was much higher (Prado et al., 2015), then hypothesis proposed about grain formation mechanismis that *S. turicensis* and *L. kefiransfaciens* aggregate to small granules and *L. kefiri* and *Kluyveromyces marxianus* attach to the surface of these granules to form thin biofilms. Then the yeasts and *Lactobacillus* associate with the biofilm to form the kefir grains (Wang et al., 2012; Hamet et al., 2013). The survival of

microorganisms in kefir grains affects by the existence of each other, due to the symbiotic relationship between strains. (Farnworth and Mainville, 2008).

The microbial composition of kefir grains and kefir milk consists of several species of lactic acid bacteria, acetic acid bacteria and yeasts which promote a beneficial symbiotic relationship within a microbial environment (Farnworth, 2005). In addition to the variety of these microbial species is specified by the area of origin (Lin et al., 1999). Microbial population of Kefir grains and beverages from different origins can be shown in Table 1.2

1.5.1 *Lactobacillus casei*

L. casei, *L. paracasei*, and *L. rhamnosus* are closely related together, they are regarded as the *L. casei* group. Phylogenetic tree of these isolates shows in Figure 1.3. These strains have very homogeneous physiological characteristics and nutritional needs and survive under the same conditions. *L. casei* is rod, gram positive and facultatively heterofermentative (Salvetti et al., 2012). It is used in fermented dairy products as probiotics to enhance human health (Reid, 2015; Orlando et al., 2016). On the other hand, *L. casei* subsp. *pseudoplantarum* is one of the beneficial certified probiotics to treat the gastrointestinal diseases.

(Collins et al. 1989) demonstrated that according to 16S rRNA gene sequences many subspecies recognized as *L. casei* were reclassified to other species. *L. casei* subsp. *alactosus* and *L. casei* subsp. *pseudoplantarum* were renamed *L. paracasei* subsp. *paracasei*, and *L. casei* subsp. *tolerans* was reassigned to *L. paracasei* subsp. *tolerans*.

1.5.2 *Lactobacillus paracaei*

L. paracasei is rod-shaped, facultatively heterofermentative, and belongs to the phylogenetic group *L. casei*. It can grow between 10°C and 40°C but many strains can grow between 5°C and 45°C (Holzapfel and Wood, 2014). *L. paracasei* can be grown in the digestive tract of humans and in the fermented milk products. The metabolic end products during the growth from these energy sources are actually lactic acid, but ethanol, acetic acid also occur (Makras et al., 2005).

L. paracasei can produce substances with antioxidant activity, it can degrade superoxide anion and hydrogen peroxide. Also it has the ability to prevent free radicals (Ayeni et al., 2011).

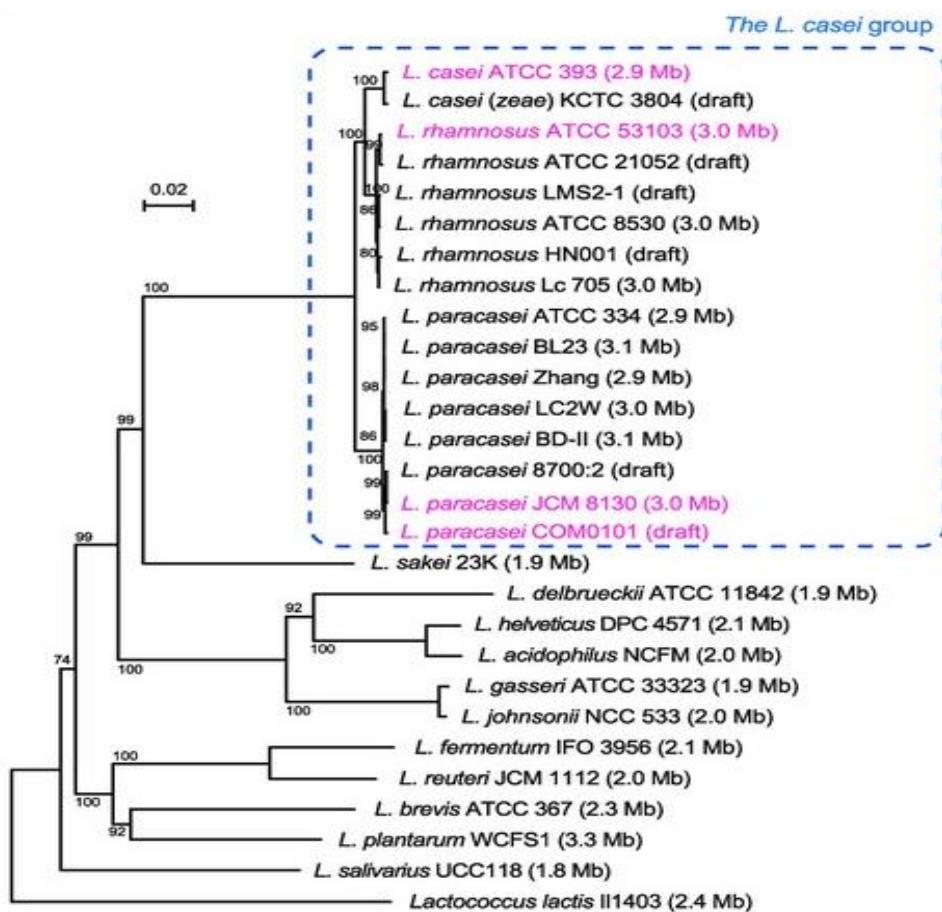


Figure 1.3 Genome-based phylogenetic analysis of the *L. casei* group (Toh H. et al., 2013).

Table 1.2 Microbial population of kefir grains and beverages from different origins.

Source	Country	Species isolated and identified	References
Kefir grains and milk	Argentina	<i>L. kefiransfaciens</i> , <i>L. plantarum</i> , <i>L. lactis</i> ssp. <i>lactis</i> , <i>Kluyveromyces marxianus</i> , <i>S. cerevisiae</i> , <i>L. kefiri</i> , <i>Acetobacter</i> sp., <i>L. parakefiri</i> , <i>L. paracasei</i>	Garrote et al., 2001; Hamet et al., 2013
Kefir grains and milk	Belgium	<i>L. kefiri</i> , <i>Lactococcus lactis</i> , <i>L. kefiransfaciens</i> , <i>Lactococcus cremoris</i> , <i>Kluyveromyces marxianus</i> , <i>Kazachastania khefir</i>	Korsak et al., 2015
Kefir grains and milk	Bulgaria	<i>L. brevis</i> , <i>L. helveticus</i> , <i>L. casei</i> ssp. <i>pseudo plantarum</i> , <i>L. delbrueckii</i> ssp. <i>bulgaricus</i> , <i>Str. thermophilus</i> , <i>S. cerevisiae</i> , <i>L. lactis</i>	Simova et al., 2002
Kefir grains	Brazil	<i>L. kefiri</i> , <i>Lactococcus lactis</i> , <i>L. paracasei</i> , <i>L. helveticus</i> , <i>L. crispatus</i> , <i>L. kefiransfaciens</i> , <i>S. cerevisiae</i> , <i>Leuconostoc</i> sp., <i>Streptococcus</i> sp., <i>Acetobacter</i> sp., <i>Bifidobacterium</i> sp., <i>L. amylovorus</i> , <i>L. parakefiri</i>	Leite et al., 2012; Zanirati et al., 2015
Kefir milk	Brazil	<i>L. paracasei</i> , <i>L. casei</i> , <i>L. kefiri</i> , <i>Lactococcus lactis</i> , <i>Kluyveromyces lactis</i> , <i>L. parabuchneri</i> , <i>kazachstania aerobia</i> , <i>S. cerevisiae</i> , <i>Lachancea meyersii</i>	Magalhaes et al., 2011

Kefir grains Taiwan *L. kefiranofaciens, L. kefiri, Leuconostoc mesenteroides, Saccharomyces turicensis, Lactococcus lactis* Chen et al., 2008; Wang et al., 2012

Table 1.2 Microbial population of kefir grains and beverages from different origins.
(continued)

Source	Country	Species isolated and identified	Reference
Kefir grains	Russia	<i>L. paracasei, L. casei, L. kefiri, L. kefiranofaciens, S. cerevisiae, L. lactis</i> ssp. <i>cermorisllactis</i>	Kotova et al., 2016
Kefir grains	Italy	<i>Bacillus</i> sp., <i>L. kefiranofaciens, Lactococcus lactis, Enterococcus</i> sp., <i>S. thermophilus</i>	Garofalo et al., 2015
Kefir grains	South Africa	<i>Lactococcus lactis, L. brevis, L. delbrueckii</i> ssp. <i>bulgaricus, L. plantarum, L. helveticus</i>	Witthuhn et al., 2004, 2005
Kefir grains	Turkey	<i>L. helveticus, L. kefiranofaciens, L. acidophilus, L. helveticus, L. amylovorus, L. gallinarum, Streptococcus thermophilus, Kluyveromyces marxianus</i>	Kok-Tas et al., 2012; Nalbantoglu et al., 2014
Kefir milk	Turkey	<i>Lactococcus lactis, Lactococcus cremoris, Streptococcus thermophilus, S. durans</i>	Yüksekdağ et al., 2004
Kefir milk and grains	Turkey	<i>Leuconostoc mesenteroides, L. kefiri, L. acidophilus, Streptococcus thermophilus, L. kefiranofaciens</i>	Guzel-Seydim et al., 2005; Kesmen and Kacmaz, 2011
Kefir milk	Turkey	<i>Leuconostoc mesenteroides, L. brevis, L. plantarum, S. cerevisiae, L. paracasei,</i>	Merih K. and Evrim Y.,

1.5.3 *Lactobacillus plantarum*

L. plantarum is one of the investigated probiotic microorganism used in the food industry (Sudhanshu et al., 2018). It is straight rods, found singly, paired or in chains, facultatively heterofermentative, grow at 15°C but not at 45°C and non-motile (Holzapfel and Wood, 2014). *L. plantarum* present in most of the foods that are lactic acid fermented and also found in the digestive tract of humans (Molin, 2008). *L. plantarum* can survive in the acidic stomach in humans at pH less than 4.0, so it is highly tolerant to low pH. *L. plantarum* can ferment many carbohydrates indicate that it can adapt to different environments. The microorganism can convert tannins into flavonoids and phenolic acids which has useful antioxidant properties (Molin, 2008).

L. plantarum can not synthesize certain vitamins and amino acids that are important for their growth. A study by Ma et al. (2016) demonstrated that *L. plantarum* needs six amino acids to ferment the milk. Besides, mineral salts had a stimulating effect on growth but were not essential. Since *L. plantarum* is vitamin auxotroph, it requires vitamins for growth from the milk (Ma et al., 2016).

1.5.4 *Lactobacillus acidophilus*

L. acidophilus is one of the most suggested probiotic organisms for dietary use (Shah, 2007). It is a gram positive, rod shape, non flagellated, non motile microorganism and intolerant to salt. Moreover, It is an anaerobic microorganism and contains mainly homofermentative lactobacilli, but some are facultative

heterofermentative (Hutkins, 2006). *L. acidophilus* is distributed in the gastrointestinal and perform an important function of the indigenous microflora of human. It helps in absorption of nutrients and digestion process. Also it aids treating lactose intolerance caused due to the deficiency of lactase enzyme.

1.5.5 *Lactobacillus intestinalis*

L. intestinalis is non spore forming rods, gram-positive bacteria and facultatively anaerobic rods. It has low G+C contents which is a factor that can differentiate this species from other homofermentative species (Fujisawa et al., 1990).

Lauer et al. (1980) found that *L. intestinalis* strain CNRZ 219 had a DNA homology group which did not show high similarity with any strain of *L. acidophilus* group.

1.5.6 *Streptococcus thermophilus*

Streptococcus thermophilus used in food fermentations. It has been used with *L. delbrueckii* subsp *bulgaricus* to make yogurt for long time. Moreover, *S. thermophilus* has also been applied in different industrial products such as fermented milk products and cheese. It helps to accelerate the acidification rate and enhance the flavor and texture quality of these dairy products. In addition to, *S. thermophilus* has different probiotic effects such as antioxidant activities and inhibition of specific pathogens (Adolfsson et al., 2004; Iyer et al., 2010).

1.5.7 *Saccharomyces cerevisiae*

Pilar et al (2018) proposed that many *Saccharomyces* yeast species have strains with probiotic potential. Also meire et al (2017) reported that *S. cerevisiae* has the ability

to digest nutrients, antagonism to pathogen, anti-oxidant effect, adhesion to epithelial cells.

S. cerevisiae is the most lactose-negative strain of the kefir yeast isolates. It promotes an alcoholic aroma along with a refreshing taste and improves the sensory qualities of the kefir beverage (O'Brien, 2012).

1.5.8 *Lactobacillus helveticus*

L. helveticus is a significant industrial organism and is mostly used in the fermentation of milk for manufacturing different kinds of cheese. Various studies found that *L. helveticus* has many probiotic characteristics such as the capability to adhere to the epithelial cells, survive gastrointestinal passage and inhibit pathogens. Also, *L. helveticus* could benefit the host by promoting the bioavailability of nutrients, eliminating allergens and other unuseful molecules from food and producing bioactive compounds (Valentina and Simone, 2012).

L. helveticus is a member of the *L. acidophilus* subgroup. It is hardly recognizable by physiological tests and biochemical tests from other closely related homofermentative lactobacilli such as *L. amylovorus*, *L. crispatus*, *L. acidophilus*, *L. gasseri*, *L. johnsonii* and *L. gallinarum* (Holzapfel and Wood, 1998). The Phylogenetic tree between these *Lactobacillus* species can shown in Figure 1.4.

1.5.9 *Lactobacillus gallinarum*

L. gallinarum is a rod-shaped microorganism, obligate homofermentative and it is tolerant to 4.0% sodium chloride. It is mainly found in dairy and non-dairy products with *L. helveticus* (Guan et al., 2003; Meroth et al., 2004; Moroni et al., 2011).

L. gallinarum, *L. acidophilus*, *L. johnsonii*, *L. crispatus*, *L. amylovorus* and *L. gasseri* are suggested as proper species in the *L. acidophilus* complex group (Klein

et al., 1998). *L. gallinarum* is not a significant species from a technological view and its potential existence in dairy products was considered (Van Hoorde et al., 2008; Bujnakova et al., 2012). Identification of *L. gallinarum* may become essential in the future, because of its antimicrobial properties.

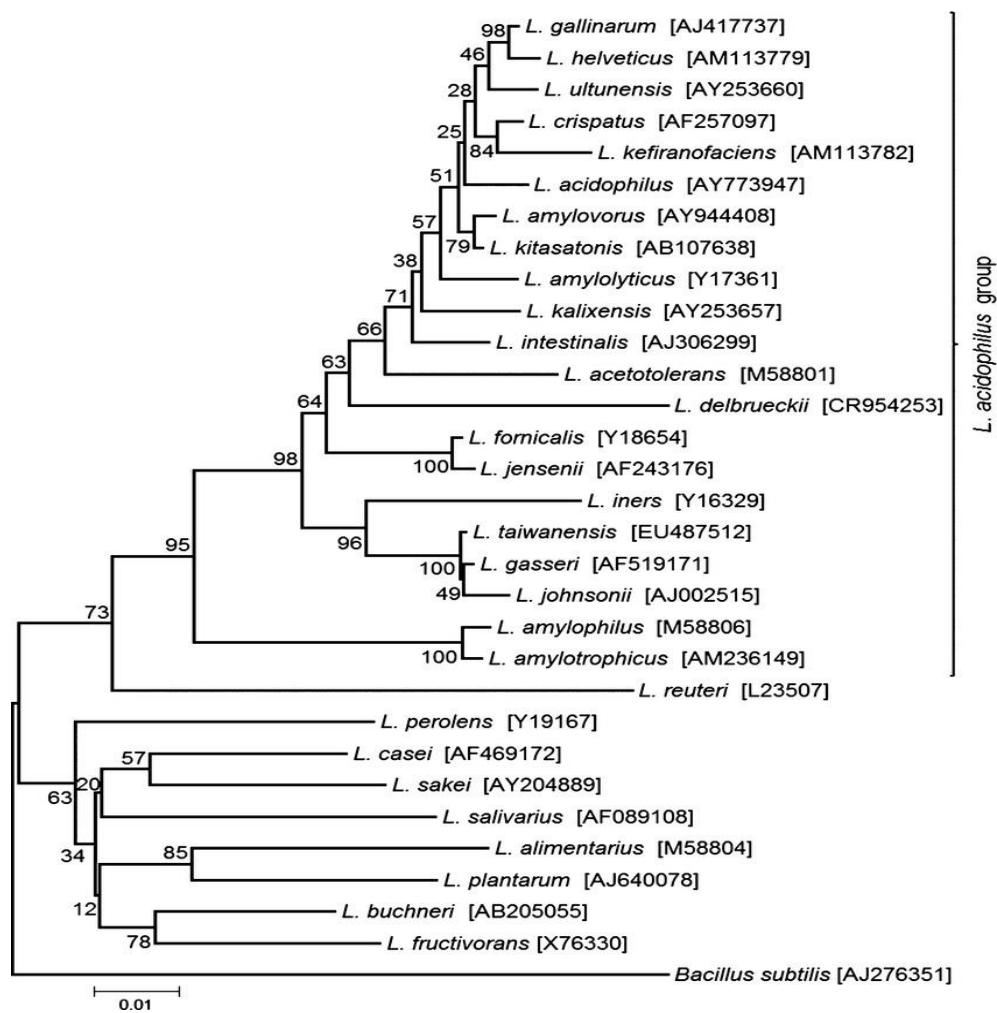


Figure 1.4 Phylogenetic placement of *L. acidophilus* subgroup with in the *Lactobacillus* genus (Matthew B, 2013).

1.5.10 *Lactobacillus kefiri*

L. kefiri is a *Lactobacillus* strain, it has some antibiotic resistance, safe for human consumption and has anti-inflammatory properties (Drago et al., 2016).

(Kandler and Kunath, 1983) discussed several useful effects including toxin neutralization, antimicrobial activity, suppression of food borne pathogens, modulation of the immune response and elimination of hyper cholesterolemia have been detected by *L. kefiri*.

1.5.11 *Lactobacillus kefiranofaciens*

L. kefiranofaciens is one of the most extensively investigated species among kefir microbiota because of its functional properties and beneficial health effects as antitumor and anti-inflammatory activity (Ahmed et al., 2013; Chen 2012 and 2013).

L. kefiranofaciens isolated from the grains produce kefiran, it contains approximately equal amounts of glucose and galactose. Kefiran is used as a thickener, stabilizer to improve the quality and taste of kefir.

1.5.12 *Lactobacillus fermentum*

L. fermentum is a heterofermentative inhabitant of the digestive system and is often isolated from human biological samples (López-Huertas 2015). This species was previously declared for its various probiotic properties (Barreto et al., 2016). The consumption of *L. fermentum* and *L. amylovorus* modifies the microbial population exist in the gut and it provides certain metabolic effects influencing energy production and body fattiness (Dibaise et al., 2008). The results of Xiao et al (2011) indicate that *L. fermentum* has the ability to decrease cholesterol, tolerate acid and bile salt and inhibit pathogens.

1.5.13 *Lactobacillus amylovorus*

L. amylovorus presents features typical of homofermentative *Lactobacillus* species. It is an anaerobic, rod, Gram positive, nonmotile bacteria. It belongs to the *L. acidophilus* group according to taxonomic studies. It requires several vitamins for growth (Kant, 2011).

L. amylovorus is an plentiful *Lactobacillus* species survive in the intestines of piglets and it exhibits different probiotic properties such as antimicrobial efficiency versus gastric pathogenic microorganisms (Konstantinov et al., 2006, 2008; Roselli et al., 2007).

1.5.14 *Lactobacillus delbrueckii* subsp. *bulgaricus*

L. delbrueckii subsp. *bulgaricus* and *Streptococcus thermophilus* are thermophilic bacteria and they are highly adapted to grow on lactose and convert it into lactic acid. *L. bulgaricus* performs proteolytic activity that are useful in the protein rich substrate (Klaenhammer et al., 2008), because it has good adaptability to milk substrates and low pH values (Delley and Germont, 2002).

1.5.15 *Lactobacillus zae*

Lactobacillus casei group, which contains several probiotic bacteria, as the species *L. casei*, *L. paracasei*, *L. rhamnosus*, and *L. zae* (Collins et al., 1989).

A marked finding from (Tao et al., 2020) study, indicating that *L. zae* could effectively reduce diarrhoea in piglets. And the consumption of *L. zae* had effects on controlling expressions of genes related to inflammation and anti-oxidation, which can relieve the inflammatory response and improve intestinal health.

1.6 Probiotic Properties of Lactic Acid Bacteria

Lactic acid bacteria are isolated from different food products and they are used as probiotics, confer health benefits on the host when consumed in sufficient amounts (Quinto et al., 2014).

They are skilful in suppressing the growth of pathogenic organisms through various techniques such as attachment to epithelial cells, modification of the immune system and production of antimicrobial substances. They have the ability to grow and survive under various conditions (Palachum et al., 2018). The isolates should be able to tolerate low pH of gastric juice with resistance to bile salts. They also have some health benefits like antimicrobial actions, toxin reducing agents, and promoting immune system (Chiang and Pan, 2012; Berardi et al., 2013).

LAB enhance the balance of the microbial community in the intestine, allow protection against pathogen, and prevent or treat intestinal diseases (Gionchetti et al., 2000). These effects are performed by secretion of antimicrobial substances and competition with harmful bacteria (Fons et al., 2000). LAB have many technological skills such as proteolytic, lipolytic, acidification, texturizing, thickening coagulation, aroma production (Pitino et al., 2010).

1.7 The aim of the study

Kefir is a fermented milk beverage, weakly acidic and slightly alcoholic taste and has been a traditional beverage in Turkey. It is fermented by the reaction of probiotic strains that found in symbiotic associations in the kefir grains. Probiotic strains are microorganisms that are intended to have health benefits when consumed in a sufficient quantity. Probiotics are non-toxic, non-pathogenic and resistant to

pancreatic secretions and stomach acids such as bile and digestive enzymes and this property would be important in the small intestines for probiotics having to survive in high numbers.

Kefir is utilized by the fermentation of milk using kefir grains that have a complex microbial symbiosis of LAB, some yeasts and acetic acid bacteria. The interest in kefir consumption or probiotic strains is growing day after day because people become more conscious of its beneficial and medical effects. This growing desire for probiotics leads to the improvement in the food industry and finding new strains with probiotic properties that are favorable for kefir production.

The study aimed to characterize the probiotic properties of the LAB from five different Turkish kefir samples and one milk product from Kyrgyzstan. Turkish kefir was chosen for studying its strains since the microorganisms exist in kefir depend on the origin of kefir grains and differ from one country to another (Guzel S. 2005).

This study included mainly four parts. In the first part, four home-made kefir grain samples were collected from Ankara, Istanbul in Turkey and AOC, a commercial kefir sample and one milk product from Kyrgyzstan for comparison. Kefir milk was prepared from these kefir grains. In the second part, different LAB and yeasts were determined by real time PCR with specific primers. In the third part, lactic acid bacteria were isolated from five kefir and milk samples and the isolates were identified using microscopic and biochemical methods. The fourth part included the genotypic identification for 30 LAB isolates using the 16S rRNA method. In our study, we focused on isolation lactic acid bacteria, particularly lactobacilli since *Lactobacillus* species are among the most prevalent microorganisms found in kefir (Slattery C. et al ., 2019). Therefore, this study intended to have information about the genotypic variety of probiotics in the homemade kefir.

CHAPTER 2

MATERIALS AND METHODS

2.1 Collection of Samples

Homemade kefir grains were collected from Istanbul and Ankara in Turkey. In addition to these grains, one milk product sample (semi-solid) was kindly brought from Kyrgyzstan by Prof. Dr Kamuran Ayhan (Ankara University) and one commercially kefir sample was available from the manufacturer, Ataturk Orman Çiftliği (AOC), it was used for comparison of microbial populations with the homemade samples. The samples were collected and transported to our lab in the Food Engineering Department at the Middle East Technical University (METU). The origins of kefir and milk samples are given in Table 2.1.

Table 2.1 Origins of homemade kefir and milk samples

No	Sample name	Source	Origin
1	(K1)	Commercial kefir sample (AOC)	Turkey, Market
2	(K2)	Homemade kefir grains from Ankara	Beypazari
3	(K3)	Homemade kefir grains from Ankara	Malikoy
4	(K4)	*Milk product sample from Kyrgyzstan	Kyrgyzstan
5	(K5)	Homemade kefir grains from Istanbul	Çatalca
6	(K6)	Homemade kefir grains from Istanbul	Çerkezköy

*Semi-solid milk product

2.2 Kefir Preparation from Kefir Grains

Otles and Cagindi (2003) discussed the traditional method of producing kefir: The active kefir grains were transferred to pasteurized milk. The milk was covered, placed in warm conditions (30°C). After that, the milk was incubated until lightly thickened and aroma was pleasant. It takes 24 hours in room temperatures (25-30°C) or less than 24 hours at warmer temperature. After fermentation, the milk texture was changed, the grains were removed from the kefir beverage. The kefir grains were kept in a new batch of distilled water and were preserved at -20°C.

2.3 Real Time PCR Assay (RT PCR)

A real time PCR assay was performed to detect and determine the populations of kefir and milk product samples.

2.3.1 Selection of the Primers for Real-time PCR

In real-time PCR, species-specific primer pairs were used to detect different strains of the species *L. kefiri*, *L. casei*, *L. delbrueckii* subsp. *bulgaricus*, *L. kefiransfaciens*, *L. fermentum*, *L. plantarum*, *S. cerevisiae*, *S. thermophilus*, *L.sobris \amylovorus*, *L. acidophilus* and *L. paracasei* (Table 2.2).

Table 2.2 The oligonucleotides primers.

Strain	Sequence	References
1 <i>L. acidophilus</i>	For: CTTGACTCAGGCAATTGCTCGTGAAGGTAG Rev: CAACTTCTTAGATGCTGAAGAACAGCAG CTACG	Herbel (2013)
2 <i>L. kefiri</i>	For: 5'GGGAGATGCCATGTTGGT-3 Rev: 5'AAGCTTCGAAGTGCCTGTGA-3'	Kim et al., (2016)
3 <i>L. delbrueckii</i> subsp. <i>bulgaricus</i>	For: GAACTTGATGTTGAAGGGATGCAATTG Rev: GAGCGGCCTGTTGCACGATTTC(439-461)	Herbel (2013)
4 <i>L.</i> <i>kefiranofaciens</i>	For: 5CAGTTCGCATGAACAGCTTTAA-3 Rev: 5'-GCACCGCGGGTCCAT-3'	Dong et al., (2015)
5 <i>L. fermentum</i>	For: AAC CGA GAA CAC CGC GTT AT Rev: ACT TAA CCT TAC TGA TCG TAC ATC AGT CACA	Monique and Jan (2006)
6 <i>L. plantarum</i>	For: TGG ATC ACC TCC TTT CTA AGG AAT Rev: TGT TCT CGG TTT CAT TAT GAA AAA ATA	Monique and Jan (2006)
7 <i>L. sobrius</i> \ <i>amylovorus</i>	For: TTCTGCCTTTGGGATCAA Rev: CCTTGTATTCAAGTGGGTGA	Romain Marti et al., (2010)
8 <i>Streptococcus</i> <i>thermophilus</i>	For: GGTCCAAGAAGAAGTAATTGA Rev: GACCTTATACAAATCTGGTT	Abd El -Aziz et al., (2014)
9 <i>Saccharomyces</i> <i>cerevisiae</i>	For: ACATATGAAGTATGTTCTATATAACGGGTG Rev: TGGTGCTGGTGCAGATCTA	Abd El-Aziz et al., (2014)
10 <i>L. casei</i>	For: CTA TAA GTA AGC TTT GAT CCG GAG ATT Rev: CTT CCT GCG GGT ACT GAG ATG T	Monique and Jan (2006)
11 <i>L. paracasei</i>	For: ACATCAGTGTATTGCTGTCAGTGAATAC Rev: CCTGCGGGTACTGAGATGTTTC	Haarman and Knol (2006)

2.3.2 DNA Extraction for Real-Time PCR

The total DNA from the kefir and milk product samples were extracted using Poland EURX DNA purification kit following the manufacturer's procedures.

Two ml of the kefir and milk product samples were taken to a microcentrifuge tube and centrifuged to separate pellets. A pellet was taken, Res f E 750 μ l was added and mixed. 60 μ l Lyse FE with 10 μ l Proteinase K was added. Short vortex was used. The lysate was centrifuged for 5 min and 400 μ l supernatant was transferred to a new tube. 400 μ l PR buffer was added, vortexed for 5 seconds, and was incubated on ice for 5 min. 600 μ l of the supernatant was transferred to a new 2 ml microcentrifuge tube. 600 μ l Sol FE buffer and 600 μ l of 96-99% ethanol were added and mixed well. Centrifugation briefly was done after each step. 40 μ l of buffer FE was added to the spin column. 600 μ l of the supernatant was transferred to the spin column. 500 μ l Wash FEx buffer was added. 50-100 μ l of elution buffer was added. The spin-column collection tube was incubated for 5 min at room conditions. DNA was ready for further analysis.

2.3.3 Detection of Different Bacteria and Yeast Species in Kefir Using Real-Time PCR

Applied Biosystems 7500 Real-time PCR was used. ROX dye was the reference dye used to normalize fluorescent reporter signal.

2.3.4 Preparation of Real-Time PCR Master Mix

A master mix was used for real-time PCR reactions according to standard kit procedures (Table. 2.3).

Table 2.3 Real Time PCR materials

Reagent	Amount (μl)
DNA	2
Master mix (SYBR Green)	5
For. primer, Rev. primer	0.5
H ₂ O	17
Total amount	25

2.3.4.1 Dispensing the Master Mix:

Master Mix was distributed into the wells of a real-time PCR plate.

2.3.4.2 Addition of Template DNA

2 μl of DNA was added, containing the master mix and the tubes were covered with optical adhesive covers. Tubes were centrifuged before placing them into the thermocycler and real-time PCR was performed according to SYBR Green conditions. A control without template (primer control) was run in every set-up.

Program of SYBR Green real time PCR

Step 1: 50°C, 2 min

- 2: 95°C, 10 min (denaturation) 40 cycles
- 3: 95°C, 15 sec (annealing)
- 4: 60°C, 1 min (elongation)
- 5: (Dissociation step)

Melting plot analysis was measured directly by increasing temperature (65-95°C to determine the specificity of real time PCR reaction.

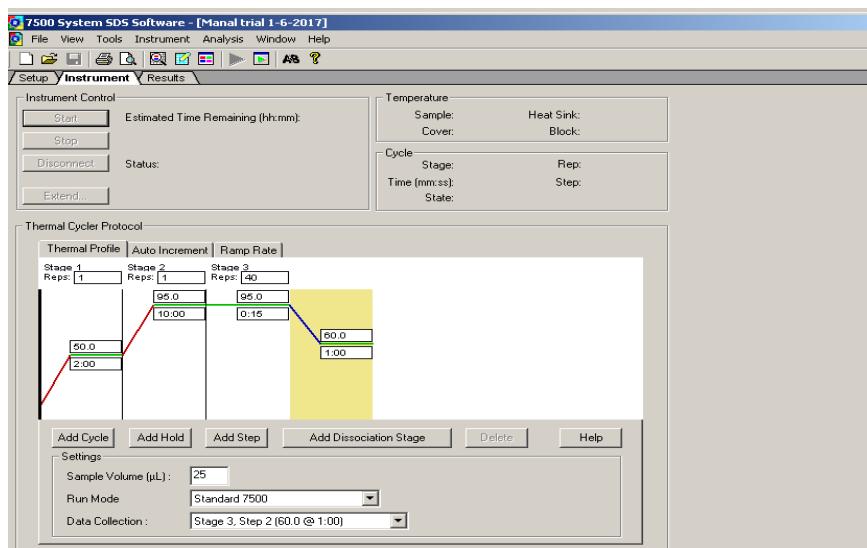


Figure 2.1 Real-time PCR program

2.3.5 Real-Time PCR Analysis

Each real-time PCR was repeated three times and the data were examined using the real-time PCR 7500 system for detection of gene expression. Threshold cycle (C_t) for each gene was determined. Amplification and melting curve were analyzed.

2.4 Isolation of the Lactic Acid Bacteria from Kefir Samples

Serial dilutions of kefir samples were done from 10⁻¹ up to 10⁻⁶. One milliliter of these dilutions was poured in plates of de Man, Rogosa, and Sharp (MRS) media agar (Oxoid, UK). They were incubated at 37°C for 48 -72 h anaerobically using a gas pack (Anaerocult C, Merck). After incubation, colonies were randomly picked up from each plate. The colonies that showed certain morphological differences in shape, color and size were supposed to be LAB. Streaking method was done for each colony and only a single colony was used to obtain pure cultures (Khalil and Anwar, 2016).

2.4.1 Phenotypic Identification of the Isolated Bacterial Strains

All of the pure isolates were tested for catalase reaction and Gram staining. Gram positive and catalase negative isolates were preserved in broth medium with 20% glycerol at -80°C for next studies.

2.4.1.1 Gram Staining

Gram color staining (Merck) was used for all isolated bacteria. A single colony was put on a clean slide, dry and then heat fixed. It was submerged with crystal violet solution, washed with distilled water after 1 minute and covered with iodine. After that it decolorized with ethyl alcohol and water. After that, safranin was used, washed again with water and dried. The slides observe under oil immersion (100X) (MacFaddin, 2000).

2.4.1.2 Catalase reaction

Few drops of hydrogen peroxide(3%) was added to bacterial culture. Bubbles formation indicated to catalase (+) and no bubble formation indicated to catalase (-) (MacFaddin, 2000).

2.5 Biochemical Characterization of the Isolated Bacterial Strains

Identification of the isolated bacteria as *Lactobacillus* species was done according to their cultural, morphological, physiological and biochemical tests by the methods as explained in Bergey's Manual of Bacteriology. The rod gram positive and negative catalase isolates were examined for their temperature, pH, bile salt, NaCl, and

phenol tolerance test. Also, lactose production, sugar fermentation, and proteolysis activity tests were performed. All experiments were replicated twice.

2.5.1 pH Tolerance Test

The isolated bacterial cultures were transferred into sterile MRS broth of different pH 2, 2.5, 3, 4, and 6 adjusted by 10 N HCl and 1N NaOH, incubated at 37°C for 48 h. Negative control was used. Results were recorded by observing the turbidity of the broth media after 48 h and no growth was observed in the control (Mannan et al., 2017).

2.5.2 Temperature Tolerance Test

The bacterial cultures were inoculated into sterile MRS broth and incubated in a different temperature at 25°C, 37°C, 40 or 45°C for 48h. Only media was used as a negative control. Results were detected by seeing the turbidity of the media after 48 h and no growth was seen in the control (Papamanoli et al., 2003).

2.5.3 NaCl Tolerance Test

MRS broth with 2%, 4%, or 6.5% NaCl concentrations was prepared, inoculated with 1% fresh culture of the bacteria, and incubated for 24- 48 hours. Only media was used as a negative control. Results were detected by observing turbidity after 48 h and no growth was seen in the control (Chakraborty and Bhowal, 2015; Mannan et al., 2017; Aarti et al., 2018).

2.5.4 Phenol Tolerance Test

MRS broth media containing 0.4% of phenol concentration was prepared for the detection of phenol tolerance. The broth was inoculated with bacterial culture and incubated at 37°C for 48 h. Results were confirmed by observing turbidity after 48 h and no growth was observed in the control (Chakraborty and Bhowal, 2015).

2.5.5 Lactose Utilization

The acid production by bacterial cultures was determined by observing the color changing of the medium. The sterilized medium was prepared as followed: 10g peptone, NaCl 15g, phenol red 0.018g, lactose 5g and 1L distilled water, inoculated with bacterial cultures, and kept at 37°C for 48 hours. Change of color to yellow indicates the formation of lactic acid (Pundir et al., 2013).

2.5.6 The Proteolytic Activity of Lactic Acid Bacteria

The proteolytic activity protocol was described by Phyu et al (2015) with modifications. All isolated bacterial cultures were examined for their ability of protease utilization on a skim milk agar plate (skim milk 2.8% , casein 0.5%, yeast extract 0.25%, dextrose 0.1% and agar 1.5%). The bacterial culture were used for agar-well diffusion assay. Wells of 5 mm in diameter were done on skim milk agar. To each of the wells, 25 μ l from each broth was added. After incubation, the diameter of clear zone was measured in mm (Phyu et al., 2015).

2.5.7 Bile Salt Hydrolase

Bile salt hydrolase activity of lactobacilli isolates was applied by agar plate assay. Agar plates of the MRS medium were prepared with 0.5% (w/v) of the taurodeoxycholic acid (TDCA) and glycolic acid (GCA). All plates were inoculated with an overnight culture by using a 10- μ L loop. Plates were placed in anaerobic conditions at 37°C for 48-72 h. Precipitated acid was observed around colonies detecting highly active strains within 48 h and bile salt hydrolysis was represented at two ways: The formation of precipitate around colonies or the production of granular white colonies (Mahrous, 2011).

2.5.8 Carbohydrate Fermentation Test

The sugar fermentation test was done using 1% (w/v) sugar in MRS broth medium. Different sugar substrates namely glucose, sucrose, maltose, mannitol, and lactose were applied in this test. Phenol red was used as an indicator. Durham's tube was put inversely in each of the broth test tubes. The media without inoculation was used as a negative control. Results were spotted by the color changing from red to yellow color and gas formation in durham's tube (Promot et al., 2018).

2.6 Genetic Characterization of Isolates

The bacterial isolates were identified by sequencing of specific regions of ribosomal DNA (16S rRNA gene). This procedure was performed in BM Laboratuvar Sistemleri in Ankara-Turkey.

2.6.1 Extraction of Genomic DNA of LAB Isolates

Eurx Gene Matrix Tissue and Bacterial DNA isolation kit (Poland) were used for DNA isolation of bacterial samples with the protocol in the link below:

<https://eurx.com.pl/docs/manuals/en/e3551.pdf>

2.6.1.1 DNA Binding Spin-Column Activation

30 µl of activation Buffer T was applied onto the DNA binding spin-column and kept until the lysate was transferred to the spin-column.

2.6.1.2 Bacterial Sample Preparation

The bacterial colony suspended in 300 µl buffer Lyse BG. 50 µl buffer BL and 2 µl RNase A were added to the cell suspension, and was incubated after that at 37°C for 15 min. 20 µl Proteinase K was added to the cell pellet. The sample was incubated at 56°C for 30 min. 350 µl buffer Sol T was added again and it was incubated at 56°C for 5 min and mixed for 15 sec.

2.6.1.3 DNA Isolation

The sample was centrifuged for 1 min at 12 000 x g. The spin-column was removed, discarded flow-through. 50 µl of Wash TX1 buffer was added and centrifuged for 1 min at 11 000 x g, 500 µl of TX2 buffer was added and centrifuged for 1 min to remove traces of Wash TX2 buffer. 50–150 µl of Elution buffer was added to elute bound DNA.

DNA was ready for further analysis. It was stored either at 2–8°C or -20°C. After DNA isolation, spectrophotometric estimation were performed on the Thermo

Scientific Nanodrop 2000 (USA) instrument to check the quantity and purity of the DNAs isolated.

2.6.2 Polymerase Chain Reaction (PCR)

2.6.2.1 Amplification of 16S rRNA Gene

PCR amplification was done using Taq DNA polymerase (Solis Biodyne [Estonia] FIREPol® DNA Polymerase enzyme). PCR amplification was done in a volume of 50 μ l reaction mixture prepared as seen in Table 2.4.

Gene regions targeted for species identification were amplified with the primers 27F - 1492R as universal primers. PCR programs included initial denaturation at 94°C for 3 min, denaturation 94°C for 45s, annealing 57°C for 60s, extension 72°C for 1 min (35 cycles) and final extension 72 °C for 5 min.

The temperature was decreased to 4°C and the PCR process was completed. One step PCR was achieved to amplify 1500 base target regions.

Table 2.4 PCR mixture for 16S rRNA gene sequencing.

Reagent	Amount
d H ₂ O	18.9
1.25 units Taq DNA polymerase	10 μ l
Template DNA	50 μ g
0.2 mM deoxynucleotide triphosphates	10 μ l
2.5 mM MgCl ₂	10 ml
DNA primer	0.1 μ l

2.6.2.2 Separating the DNA Fragment Using Agarose Gel

PCR products were measured qualitatively using 7% agarose gel electrophoresis at 120 V for 50 min. The amplicons were then removed from the gel.

2.6.3.2 DNA Purification from Agarose Gel

The PCR product was purified following the kit procedures using the purification enzyme "ExoSAP-IT™ PCR Product Cleanup Reagent" (Thermo Fisher Scientific, USA) for the single-band samples obtained.

5 μ L of PCR product was mixed with 2 μ L of ExoSAPIT™ reagent for a combined 7 μ L reaction volume. The mixture was incubated at 37°C for 15 minutes. After that, it was incubated at 80°C for 15 minutes to inactivate ExoSAP-IT™ reagent. Final PCR products were kept at -20°C until further study.

2.6.3 Sequencing of 16S rRNA Gene

For Sanger Sequencing samples, the ABI 3730XL Sanger sequencing device (Applied Biosystems, Foster City, CA) and BigDye Terminator v3.1 Cycle Sequencing Kit were used in the Macrogen Netherlands laboratory (Applied Biosystems, Foster City, CA). The forward and reverse readings obtained with the primers 27F-1492R were contigued to form a consensus sequence.

2.6.4 Analysis of 16S rRNA Gene

The full identification of the isolates were then gained by searching the produced nucleotide sequences of 16S rRNA genes in the database of the gene bank.

Finch TY version 1.4.0 (<https://digitalworldbiology.com/FinchTV>) was performed for seeing DNA sequence chromatograms. Analysis of the nucleotide sequences was done using online BLASTN (<https://blast.ncbi.nlm.nih.gov/Blast>).

2.6.5 Multiple Sequence Alignment (MSA)

Multiple sequence alignments and phylogenetic tree were performed with the Clustal Omega program (1.2.1) presented by The European Bioinformatics Institute at this link: <http://www.ebi.ac.uk/Tools/msa/clustalo/>.

CHAPTER 3

RESULTS AND DISCUSSION

3.1 Experimental Design

The current study includes four basic experimental sections: 1) collection of kefir grains and kefir milk preparation, 2) determination of the population in different homemade kefir samples by real-time PCR, 3) lactic acid bacteria isolation, and 4) identification of the isolates using 16S rRNA gene sequencing.

In the first section, four different homemade kefir grains were collected from Istanbul and Ankara in Turkey, one milk product from Kyrgyzstan, and one product of commercial kefir milk (AOC) from Turkey. Kefir milk was prepared from kefir grains as mentioned in Chapter 2.

Figure 3.1 demonstrates the flow chart of Section 1.

In the second section, real-time PCR technique was performed for the detection of LAB and yeast in kefir milk using specific primers. The flow chart of the experimental section 2 is seen in Figure 3.2

In the third section, 100 bacteria isolates were isolated from five different homemade kefir samples. Previously, they were identified using both microbiological and biochemical methods. Temperature tolerance, acid tolerance, bile salt tolerance, phenol tolerance, sugar fermentation, and proteolysis tests were carried out for the probiotic characterization of these isolates. The flow chart and the diagram of the section 3 is shown in Figure 3.3 and Figure 3.4

In the fourth section, 30 isolates were identified using molecular techniques. The 16S rRNA gene sequencing and BLAST analysis were carried out. The flow chart of

the section 4 is shown in Figure 3.5. In addition, the partial sequences of the 16S rRNA gene of kefir isolates were compared with the type strains of *Lactobacillus* to differentiate these closely related strains.

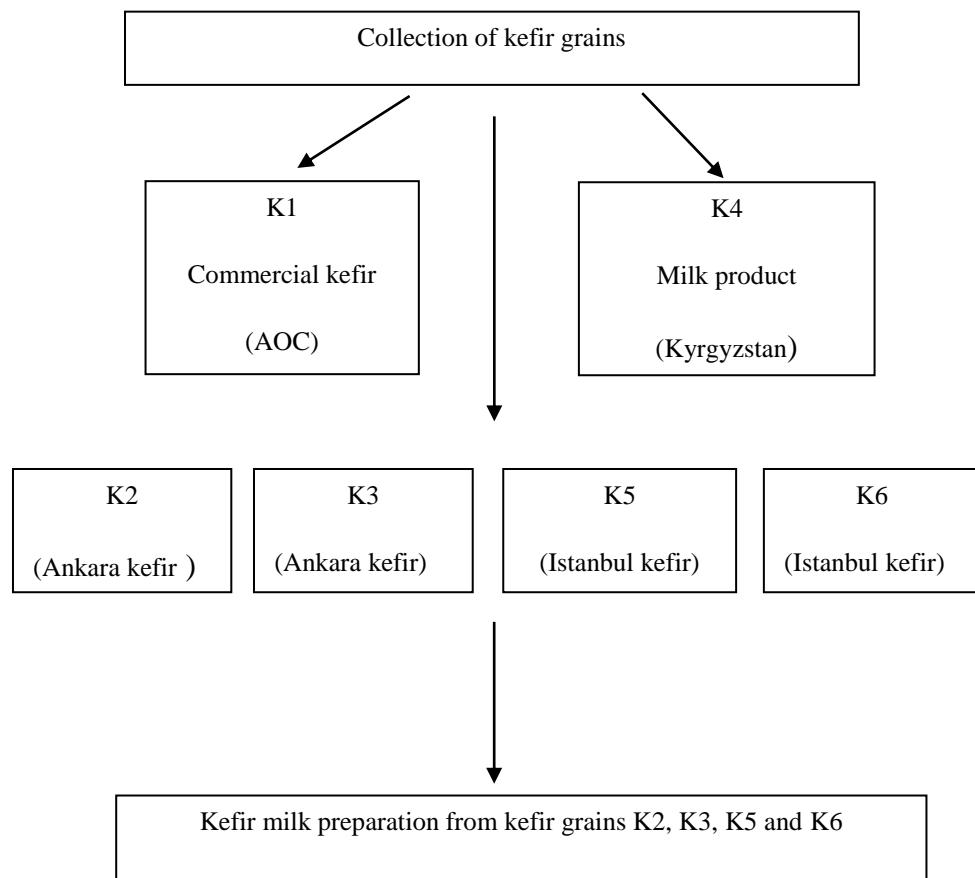


Figure 3.1 Experimental planing (Section 1); collections of kefir grains and preparation kefir milk.

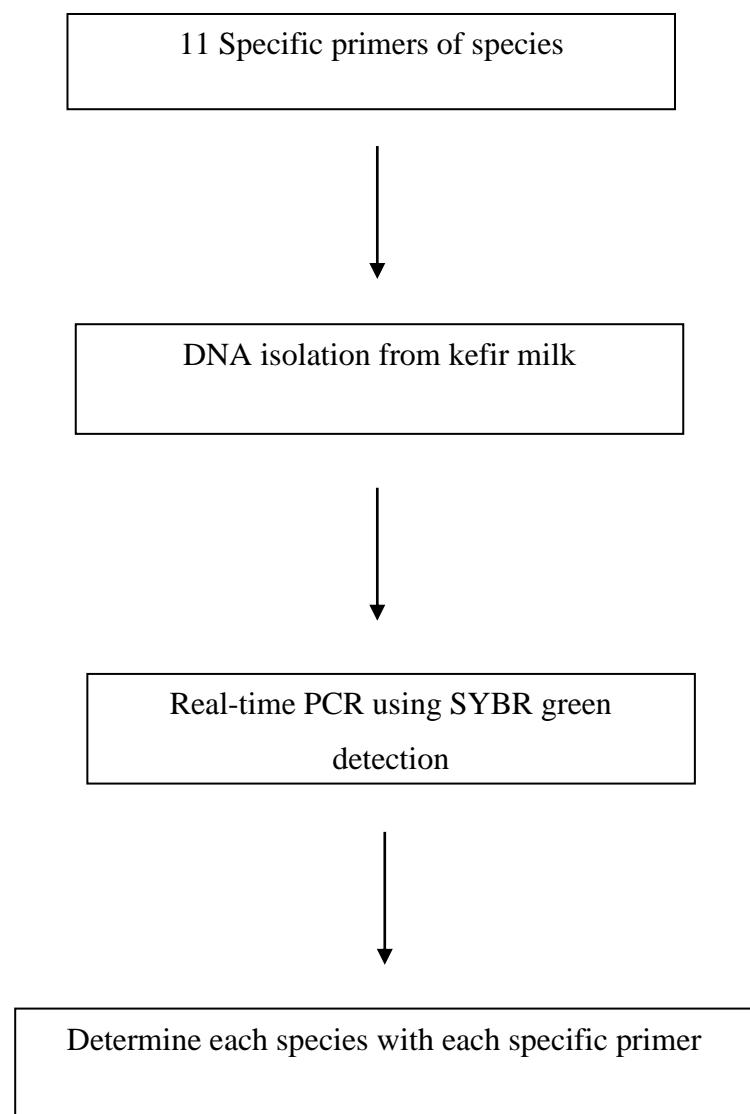


Figure 3.2 Experimental planning (Section 2); determination of the population in homemade kefir samples

Four homemade kefir samples and one kefir
commercial product

Isolation of LAB
(100 isolates)

Gram -, cocci, and catalase +
microorganisms were eliminated

Biochemical tests were performed
(30 LAB isolates selected for sequencing)

Figure 3.3 Experimental planning (Section 3); isolation and microbiological / biochemical identifications of LAB.

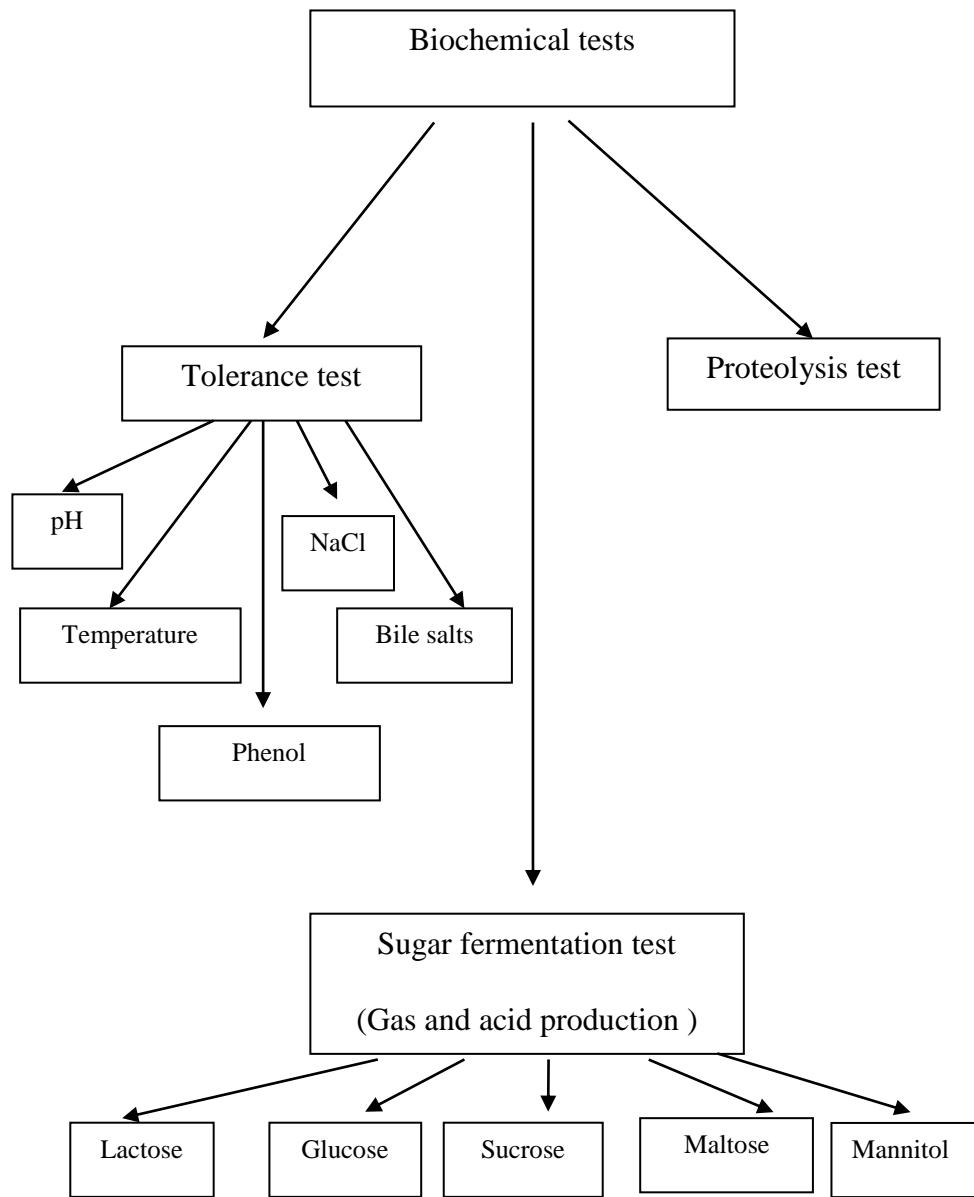


Figure 3.4 Biochemical tests performed in the study (Section 4)

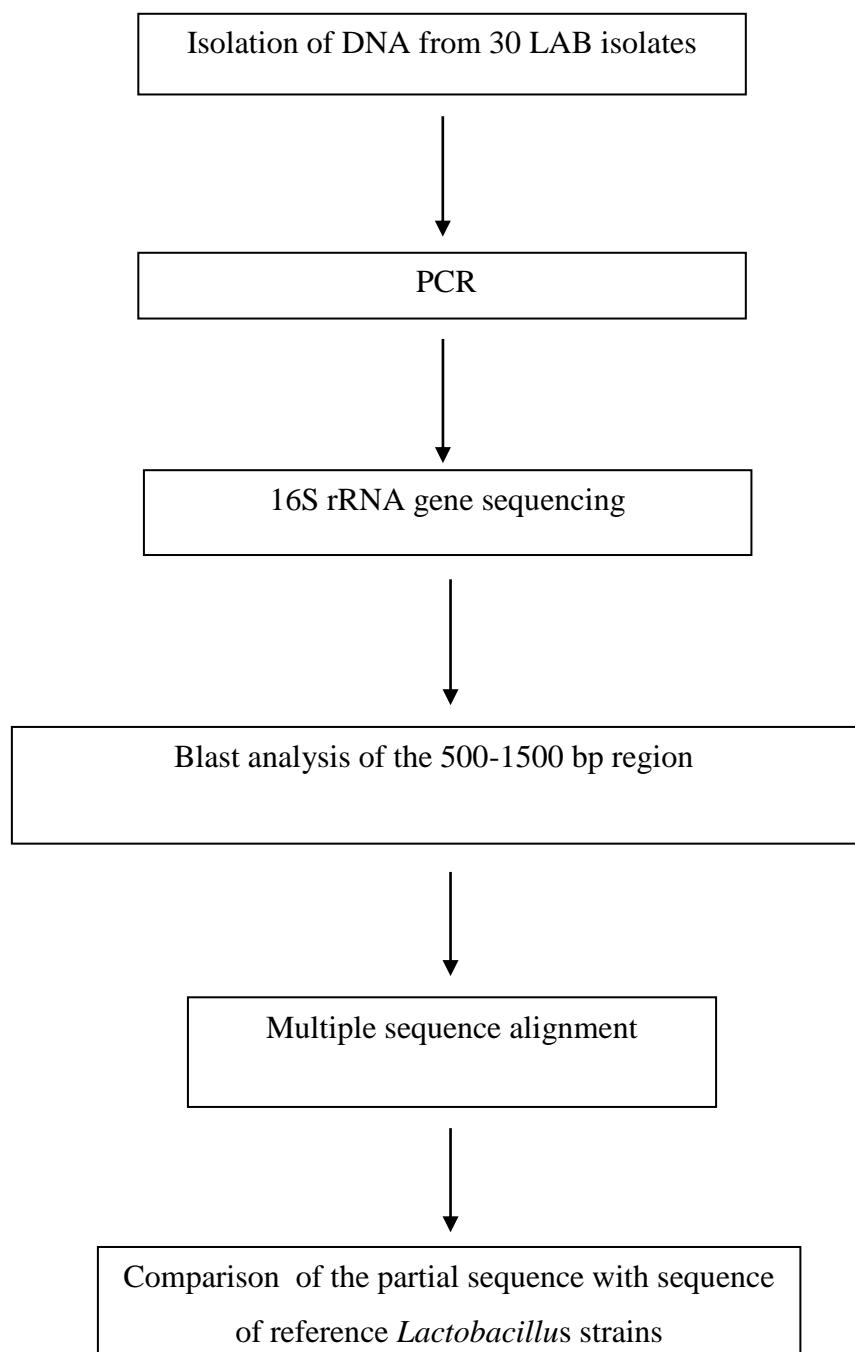


Figure 3.5 Experimental planning of the blast analysis

3.2 Collection of Samples

The grains of homemade kefir were brought from various regions of Ankara and Istanbul, Turkey. The milk product sample was collected from Kyrgyzstan. The samples were transferred to the Laboratory in the Food Microbiology Department at Middle East Technical University (METU) to be analyzed and studied. (Table 2.1)

3.3 Kefir Preparation

As mentioned before in the previous chapter, kefir was prepared from kefir grains by inoculating in pasteurized milk and incubating at 30°C for 24 hours followed by the separation of kefir milk from the grains. The kefir beverage were used for further analysis and the grains were stored at -20°C for the next usage.

3.4 Detection of Probiotic Microorganisms Using Real-Time PCR

Lactobacilli are difficult to detect and identify by traditional microbiological tests (Kao et al. 2007; Poltronieri et al. 2008). The real-time PCR assay is an accurate, rapid, time-saving, and powerful tool for monitoring specific microorganisms within 4 to 5 h (Park et al., 2009). This assay could be a useful tool for differentiating *Lactobacillus* species from other yeast and bacteria in kefir (Dopson et al., 2011).

In this study, the microbial composition of kefir was investigated by real-time PCR using SYBR green dye and specific primers for selected microorganisms (*L. kefiri*, *L. delbrueckii* subsp. *bulgaricus*, *L. acidophilus*, *L. kefiranciens*, *L. fermentum*, *L. plantarum*, *S. cerevisiae*, *S. thermophilus*, *L. sobris* *amylovorus*, *L. casei*, and *L. paracasei*). Most of the primers produced positive signals with DNA from the kefir and milk samples on the real-time PCR run.

L. kefiri, *L. casei*, *L. kefiranofaciens*, and *L. paracasei* were detected in all kefir samples. *L. acidophilus* was determined only in 5 kefir samples, *L. delbrueckii* subsp. *bulgaricus* was determined in 5 kefir samples, however, *L. fermentum*, *L. sobris amylovorus*, and *L. plantarum* were detected only in 2 samples, *S. cerevisiae* and *S. thermophilus* were found in 5 kefir samples. The results of detection using real-time PCR are presented in Table 3.1

Table 3.1 Detection the population of kefir samples using specific primers for real-time PCR.

No of kefir sample	Name	P1 <i>L. kefiri</i>	P2 <i>L. acidophilus</i>	P3 <i>L. delbrueckii</i> subsp <i>bulgaricus</i>	P4 <i>L. kefiranofaciens</i>	P5 <i>L. fermentum</i>	P6 <i>L. plantarum</i>	P7 <i>S. cerevisiae</i>	P8 <i>S. thermophilus</i>	P9 <i>L. sobris amylovorus</i>	P10 <i>L. casei</i>	P11 <i>L. paracasei</i>
1	K1	+	+	+	+	-	+	-	+	-	+	+
2	K2	+	+	+	+	-	+	+	-	-	+	+
3	K3	+	+	-	+	-	-	+	+	-	+	+
4	K4	+	+	+	+	+	-	+	+	+	+	+
5	K5	+	+	-	+	-	-	+	+	+	+	+
6	K6	+	-	+	+	+	-	+	+	-	+	+

In real-time PCR, DNA is measured after each cycle through fluorescent dyes, the fluorescent signal increases in the same ratio with the number of PCR products produced. The real-time PCR instrument produces an amplification curve and shows the fluorescent signals (ΔRn) against the cycle number. The threshold cycle (Ct) is

the fractional cycle number at which the fluorescence passes the threshold. There is a relation between Ct and the concentration of the target in the PCR reaction. The Ct value is inversely related to the starting amount of the target DNA as described by Heid et al (1996). In the current study, all strains generated Ct values ranging from 19 to 36 threshold cycles and unspecific signals developed were easily identifiable by melting curve analysis. Herbel et al (2013) found that all reference *Lactobacillus* strains and isolates from yogurt had Ct values ranging from 14 to 28 threshold cycles.

As the template amount decreases, the cycle number of the amplification increases. It is supposed that the real-time PCR is operating at high efficiency when the number of product doubles during each cycle.

The specificity of the reaction was checked by the melting curve analysis (Tm) in which the amplified PCR products were denatured and cooled to 5-10°C. The Tm depends on GC content (Edwards, 2004). The change in fluorescence to change in temperature ratio ($-\Delta F/\Delta T$) is plotted against temperature to get a clear melting curve.

Melting curves helped distinguish primer-dimers from specific PCR products and to confirm the amplified products. The primer dimers melt at lower temperatures than the amplicon (PCR products). Primer-dimers take place when two PCR primers join to each other instead of the target. Also, the presence of these primer-dimers may be related to the deficient primer annealing time or the unsuitable annealing temperature. According to the recent study, the Tm for *Lactobacillus* spp that was identified from kefir and milk samples using real-time PCR was between 78-85.5°C. The present results are similar to the results by Abdulamir et al (2010) in which the

melting curve for *Lactobacillus* spp. in six samples of fish and shrimp sauces had a peak at $T_m = 85.5^\circ\text{C}$.

Lactobacillus kefiri

In the current study, *L. kefiri* was successfully detected in all kefir milk samples in the real-time PCR assay. The same result was found in the previous study by Kim et al (2016). They easily utilized a real-time PCR assay to detect *L. kefiri* in the kefir milk for monitoring the quality of kefir probiotics. It is significant for kefiran production in the kefir grain structure. Kefiran has been supposed to be effective against a diversity of diseases (Kim et al., 2016).

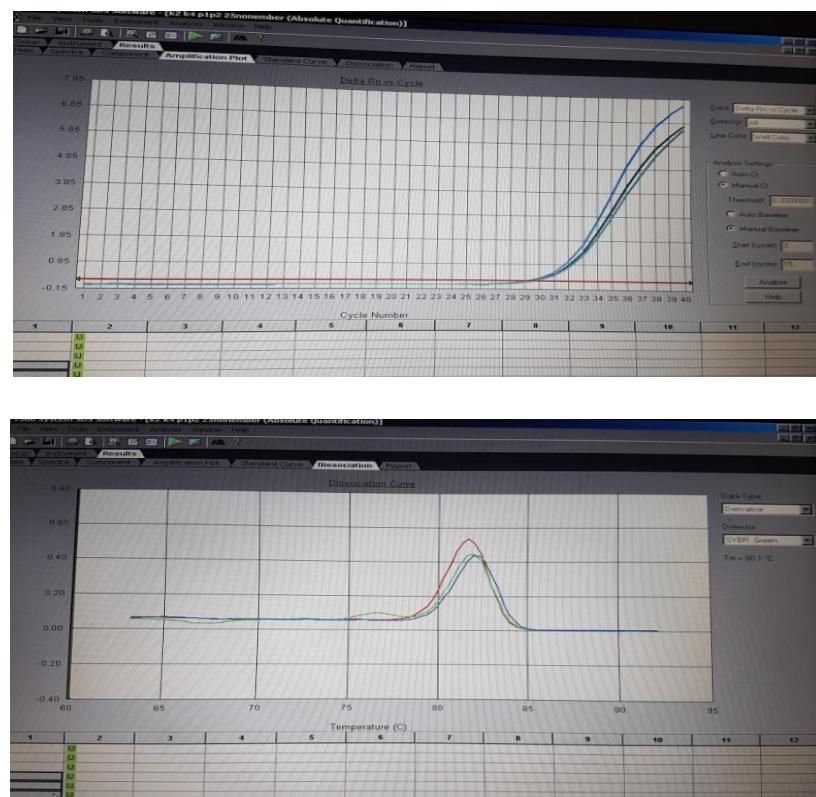


Figure 3.6 Amplification and melting curve for Kefir sample (K4) with *L. kefiri*.

L. kefiri was specified as a starter culture and determines one of the flavor properties of kefir beverages. The presence of *L. kefiri* in all samples in a recent study was demonstrated with real-time PCR analysis. Also, *L. kefiri* is presented as kefir and kefir grain constituents in, for example, Argentinean, Taiwanese, Turkish, Brazilian, and Canadian samples. These results were presented by Chen et al (2008), Miguel et al (2010) and Kesmen and Kacmaz (2011). It was shown in Figure 3.6 that the melting curve of *L. kefiri* in the K4 sample had Ct value started from 32 and a specific peak at $T_m = 82^\circ\text{C}$.

Lactobacillus kefiranofaciens

Chon et al (2013) studied that the level of *L. kefiranofaciens* was strongly correlated with the amount of kefiran produced in kefir so it is a key indicator bacterium of kefir milk. In this study, *L. kefiranofaciens* was detected by real-time PCR in all samples. These results are consistent with the reports in the literature (Kim et al., 2015b). They reported a real-time PCR primer and probe set for the fast detection of *L. kefiranofaciens* in kefir grain and kefir milk. In addition, our results are similar to the reports for isolation of *L. kefiranofaciens* in Italia, Argentina, Belgium, Brazil, China, and Taiwan from the kefir and kefir grains (Garrote et al., 2001; Chen et al., 2008; Magalhaes et al., 2011; Wang et al., 2012; Gao et al., 2013; Hamet et al., 2013; Korsak et al., 2015; Zanirati et al., 2015; Garofalo et al., 2015).

Kefiran is a polysaccharide produced by *L. kefiranofaciens*. The production of this polysaccharide is increased when *L. kefiranofaciens* survives with *S. cerevisiae* (Cheirsilp et al., 2003). This can be explained and was supported by our results that *L. kefiranofaciens* and *S. cerevisiae* in all kefir samples except commercial one, It may be to avoid gas production in the product during the marketing. In the current

study, the amplification curve had a Ct value at 19 and one peak of the melting curve was shown at 83 °C in K6 sample (Figure 3.7)

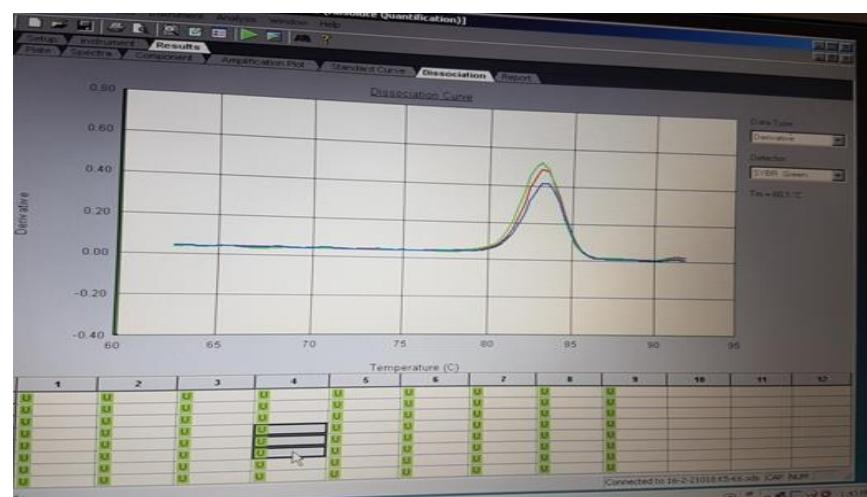
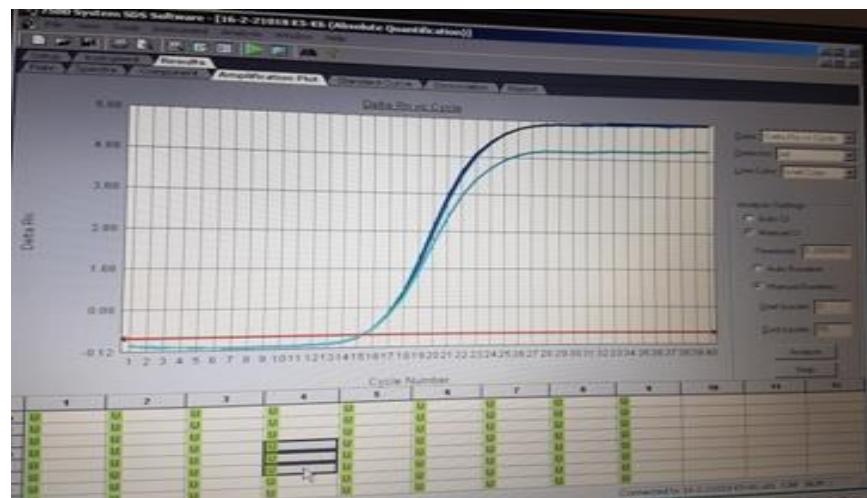
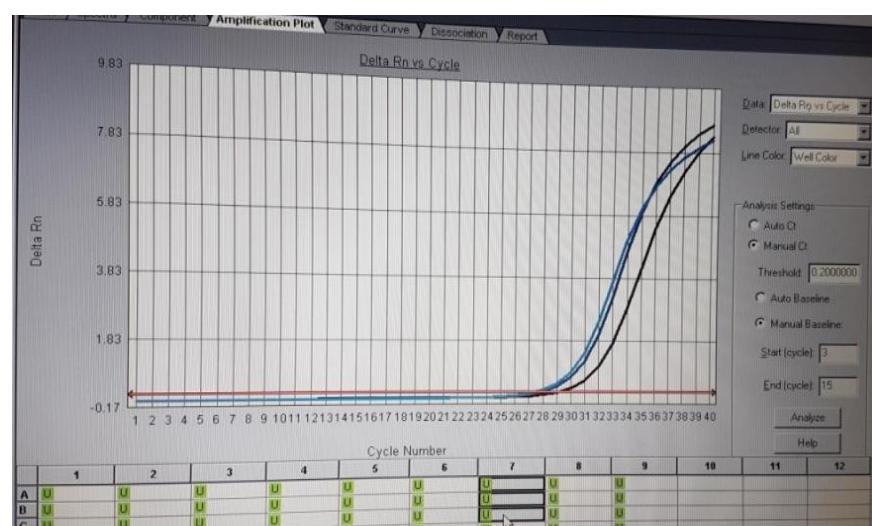



Figure 3.7 Amplification and melting curve for Kefir sample (K6) with *L. kefiranofaciens*.


Saccharomyces cerevisiae

DNA extracted from kefir and milk samples was examined by real-time PCR using *Saccharomyces cerevisiae* primers which yielded positive results for all samples except for K1 (commercial kefir product). It agrees with the results reported by Kim et al (2015a) that *Saccharomyces* spp was easily detected from kefir grains and fermented milk kefir using real-time PCR. *S. cerevisiae* was also identified in kefir beverages by Beshkova et al (2003) as the yeast species were able to produce alcohol. However, some *Lactobacillus* strains can also produce ethanol.

S. cerevisiae is an eukaryotic microorganism and a facultative anaerobe. It can use sugars to produce water and CO₂ gas in the presence of oxygen, or it can do fermentation in anaerobic conditions to produce ethanol and CO₂ gas (Berg et al., 2012). The absence of *S. cerevisiae* only in K1 (commercial kefir product) may be to avoid the production of gases from its growth in kefir milk. Onaran and Çufaoğlu (2017) observed that homemade kefir samples contained yeast more than the commercial samples. However, the addition of *Saccharomyces* spp. to the milk kefir culture enhances the quality of kefiran, explaining the cruciality of the symbiosis between the bacteria and yeast (Cheirsilp et al., 2003). Also, the yeasts are important for the microbiological properties and enhancement of the physical and chemical characteristics of the fermented product. According to Farnworth (2005), yeasts have an important role in the production of kefir with essential amino acids, vitamins, and produce metabolites that contribute to the flavor of kefir.

S. cerevisiae was found in kefir grains and kefir beverage of various origins such as Argentina, Bulgaria, Brazil and China (Simova et al., 2003; Hamet et al., 2013; Gao et al., 2013 and Zainirati et al., 2015). These findings indicated that Turkish homemade kefir samples of the present study are similar to other samples from different regions.

Figure 3.8 shows the amplification and melting curves for *S.cerevisiae* in sample K5, *S. cerevisiae* had a Ct value at 32 and a specific peak for the melting curve at 82°C.

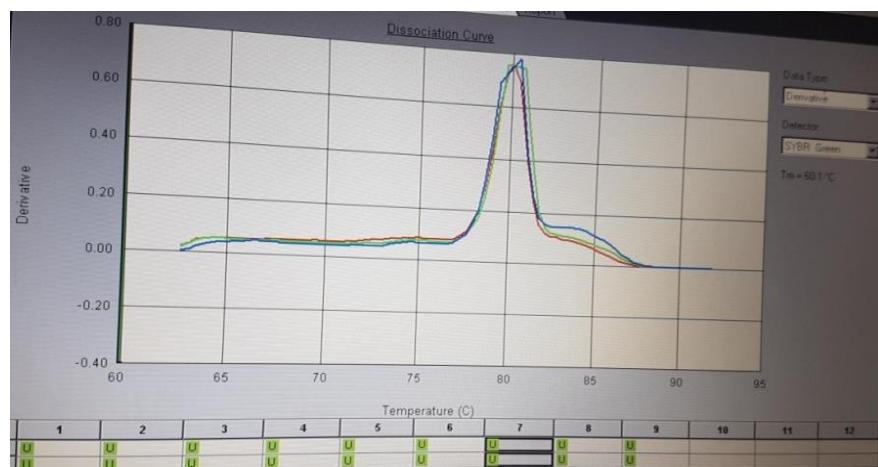
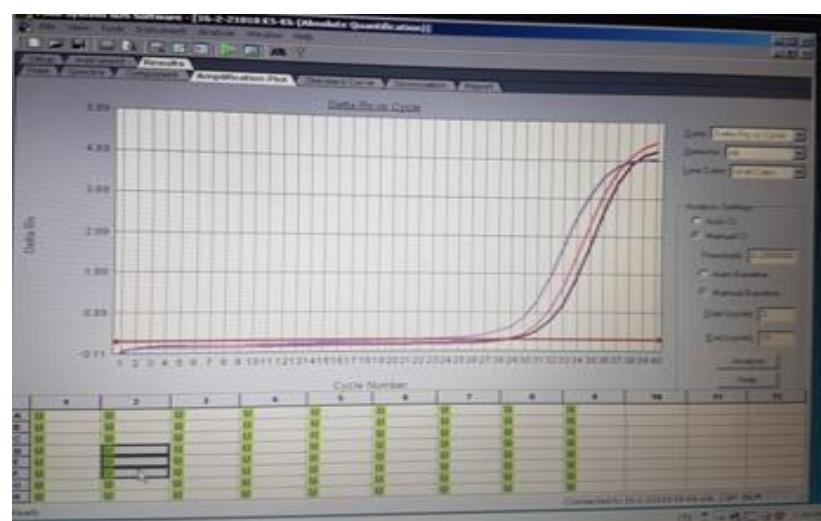


Figure 3.8 Amplification and melting curve for Kefir sample (K5) with *S. cerevisiae*.


Lactobacillus acidophilus

L. acidophilus is one of the significant species in kefir and it has a wide range of health benefits in cholesterol metabolism, antimicrobial activity, immune modulation, and tumor suppression.

Guzel S. et al (2005), Kesmen and Kacmaz (2011), Kok-Tas et al (2012) and Nalbantoglu et al (2014) reported that *L. acidophilus* was one of the probiotic species found in kefir grains and beverages in Turkey. These results were compatible with our results in which *L. acidophilus* was detected in 5 samples using a real-time PCR approach.

The melting curve analysis of *L. acidophilus* in K6 appears to be a case of primer dimers due to the presence of additional peaks at low temperature to the left of the peak for the amplified product at smaller Tm as shown in Figure 3.9 (a). It was considered as a negative result because of the presence of nonspecific products.

The melting curves for *L. acidophilus* had a Ct value at 30 and a specific peak for the melting curve at 83°C. Figure 3.9 (b) shows amplification and melting curves for *L. acidophilus* in K2.

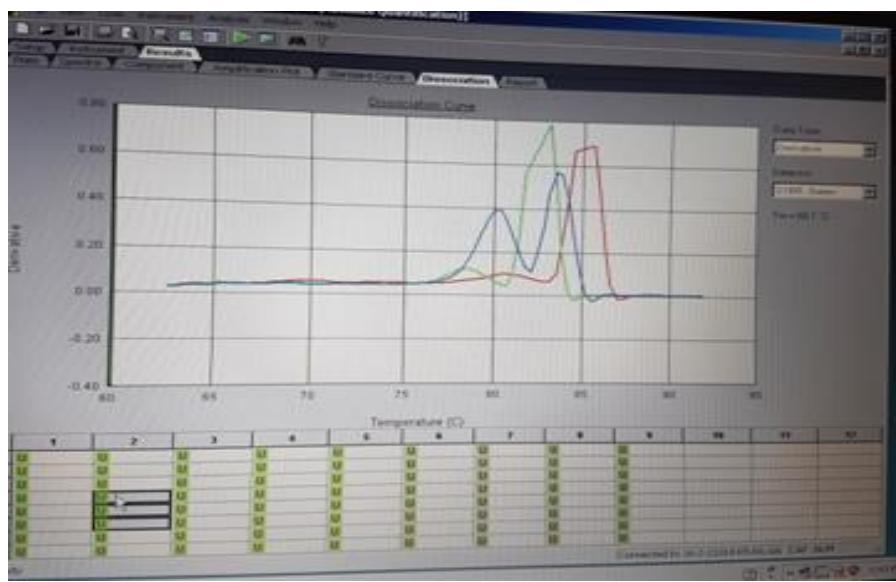



Figure 3.9 (a) Amplification and melting curve for *L. acidophilus* in Kefir (K6), case of primer dimer.

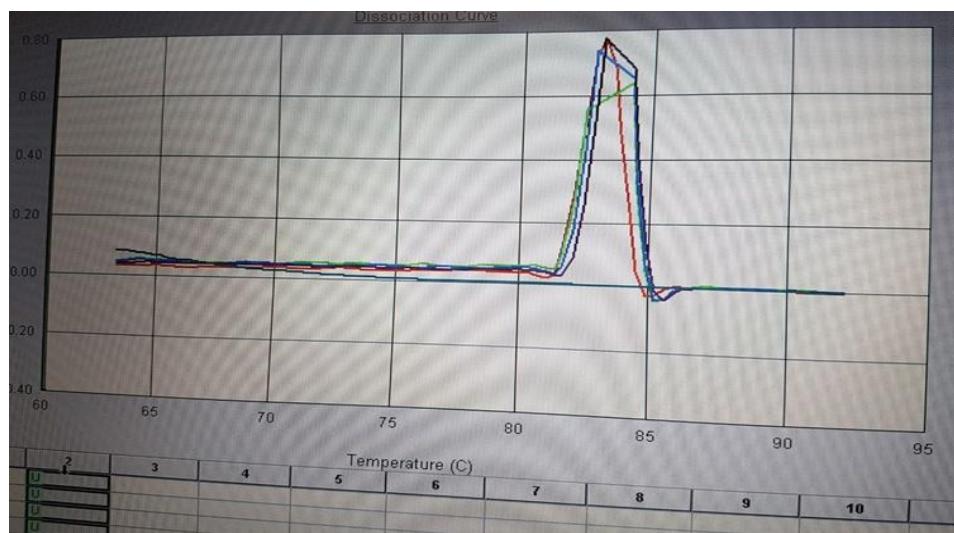
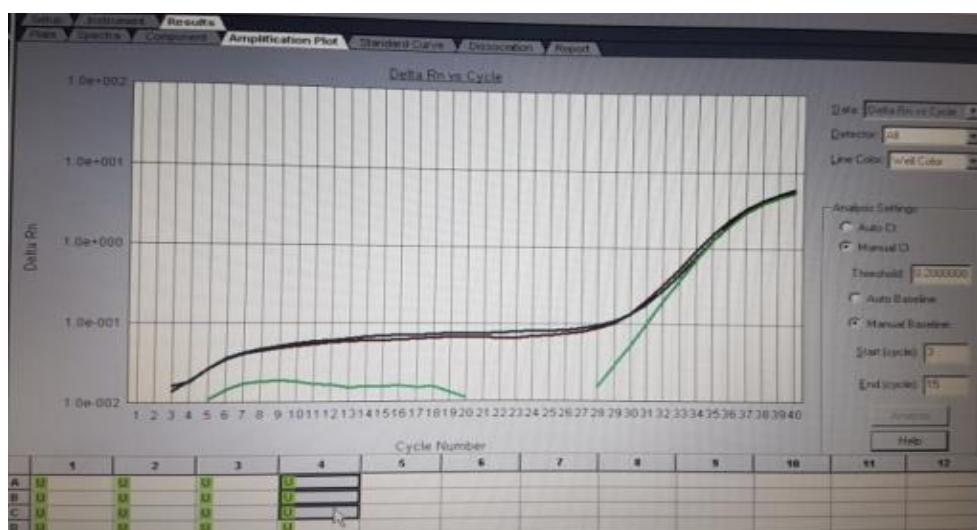


Figure 3.9 (b) Amplification and melting curves for *L. acidophilus* in K2.


Lactobacillus plantarum

L. plantarum was previously isolated from kefir of different origins such as Argentina, China, South Africa, and Turkey and it was characterized as a potential probiotic strain as discussed in the previous studies (Garrrote et al., 2001; Hamet et al., 2013; Gao et al., 2012 and 2013; Witthuhn et al., 2004; Merih and Evrim, 2015). In addition, De Montijo-Prieto (2015) found that *L. plantarum* isolated from kefir could increase resistance to intestinal infections through its immunomodulatory activity. The capability of *L. plantarum* to antagonize the cytotoxic effects of *E.coli* (Hugo et al., 2008) and Shiga2 toxin (Kakisu et al., 2013) were studied.

Kıvanç and Yapıçı (2016) found that *L. plantarum* was the dominant species and some species like *L. kefiranofaciens*, *L. kefir*, *L. kefirgranum*, and *L. parakefir* were not found in their study. These findings are inconsistent with our study because *L.*

plantarum was detected in commercial kefir (K1) and Ankara kefir (K2). However, *L. kefir*, *L. kefiranofaciens* were the most dominant species in kefir using real-time PCR and this can be explained by the difference in geographical origins of the kefir grains.

It was shown that the Ct value for *L. plantarum* in K1 and K2 was 31 and had a specific peak in the melting curve analysis at 78°C. In contrast, Herbel (2013) detected *L. plantarum* in a yoghurt sample at a melting temperature of about 84°C. The amplification and melting curve for *L. plantarum* in K1 and K2 can be seen in Figure 3.10(a,b).

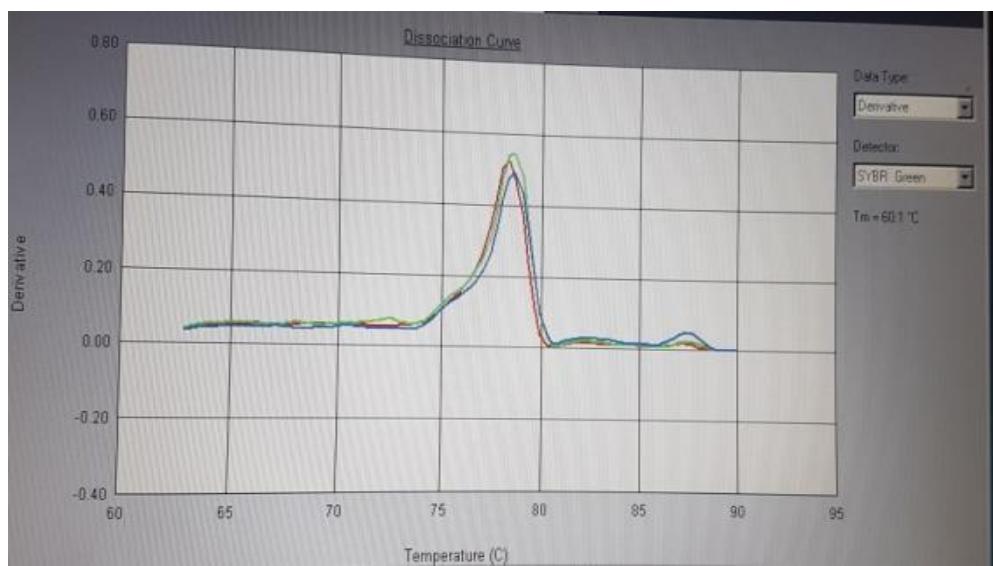
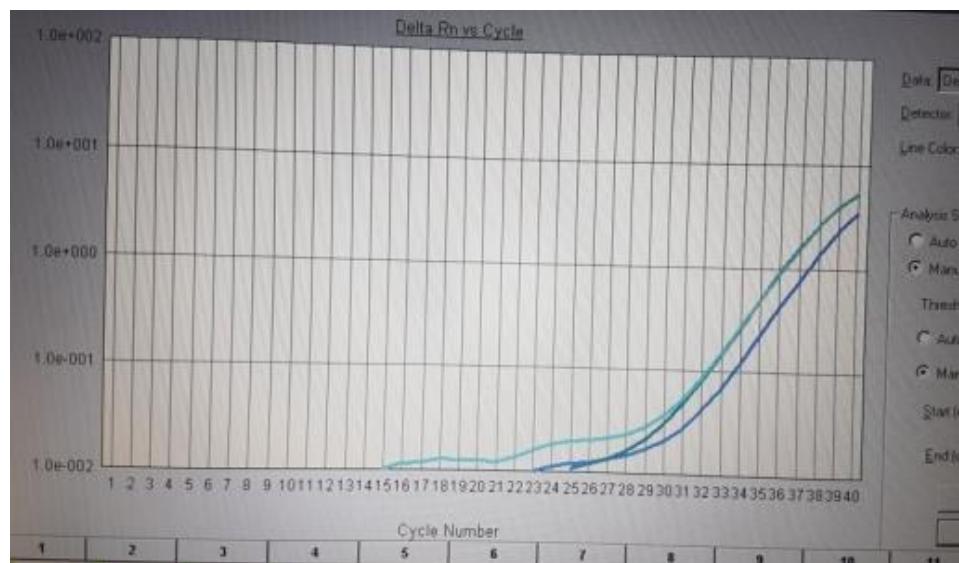



Figure 3.10 (a) Amplification and melting curve for Kefir (K1) with *L. plantarum*.

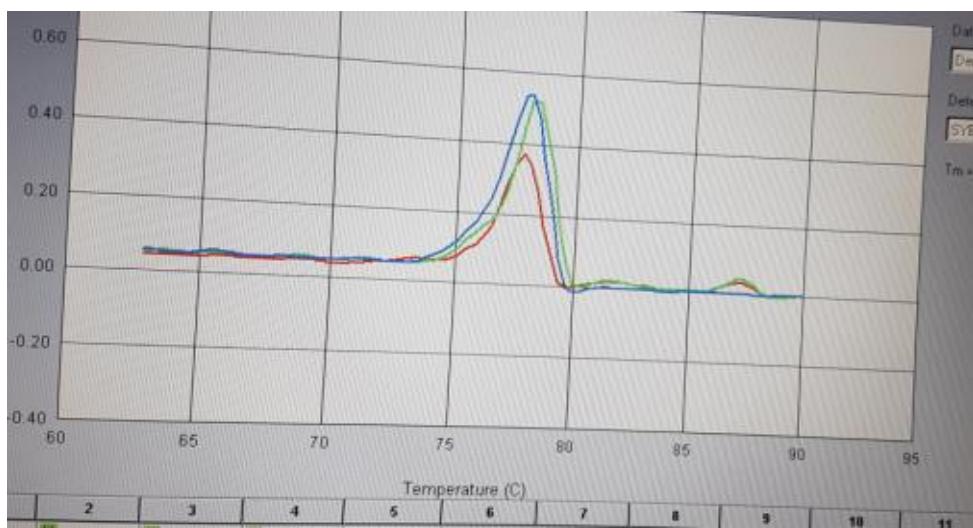


Figure 3.10 (b) Amplification and melting curve for Kefir (K2) with *L. plantarum*.

Lactobacillus casei

L. casei was one of the dominant homofermentative *Lactobacillus* species in the current study and it was found in all kefir samples from Turkey and milk sample from Kyrgyzstan. In addition, the presence of *L. casei* in kefir grains and beverage had been shown in samples from Russia, Argentina, Bulgaria, Brazil, China, and Turkey by previous reports (Garrote et al., 2001; Leite et al., 2012; Hamet et al., 2013; Zanirati et al., 2015; Magalhaes et al., 2011; Gao et al., 2012 and 2013a; Merih and Evrim, 2015; Kotova et al., 2016).

L. casei is used as probiotics for the production of fermented products due to its ability to form good amounts of lactic acid which can enhance the aroma and flavor of a product. In addition to its high bile salt and acidity tolerance and antimicrobial

effects, many beneficial health effects of *L. casei* strains have been studied such as accelerating cancer's cure duration, stimulating the immune system, and decreasing cholesterol levels (Somer et al., 2012).

As it can be seen in Figure 3.11, *L. casei* was recognized by real-time PCR and had a Ct value at 28 and its Tm value was located between 82°-85°C. Kao et al (2007) found that Tm of *L. casei* group including *L. casei* and *L. paracasei* were located at about 63.94 °C. Our results are in accordance with these results reported in the literature. The amplification and melting curve for *L. casei* in all samples can be seen in Figure 3.11.

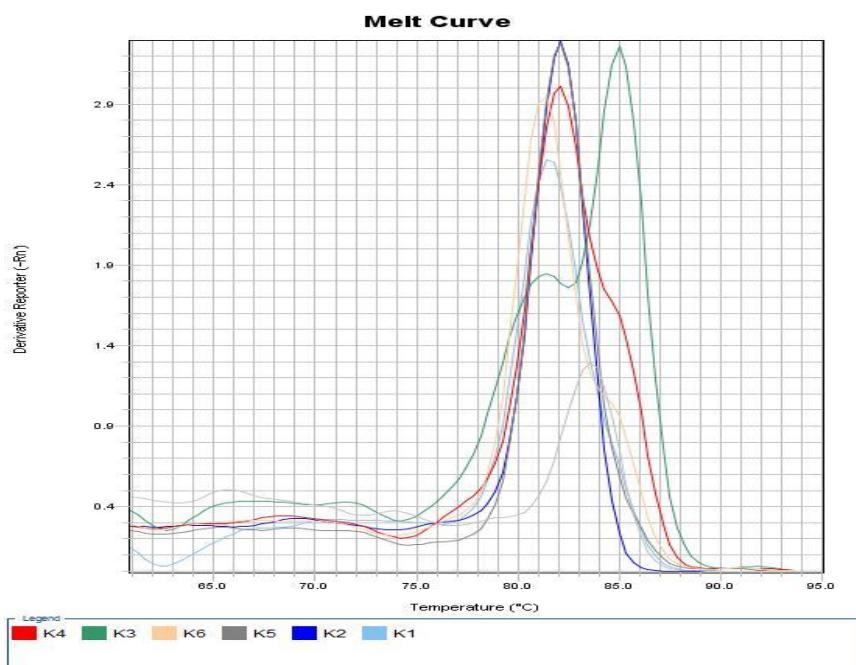


Figure 3.11 Amplification and melting curve for *L. casei* in all samples.

Lactobacillus paracasei

L. paracasei is a probiotic, useful at improving the intestinal environment, and produce lactic acid to improve the taste and aroma of dairy products (Xiao and Dong, 2003). They have an effective role in decreasing cholesterol and controlling blood pressure, elimination of gastric mucosal lesions, alleviation of allergies, and suppression of fat tissue growth (Chiang and Pan 2012). Also, Xue et al (2015) found that *L. paracasei* M7 prevents the adhesion of *Salmonella* to epithelial tissues. In a recent study, *L. paracasei* was displayed to be one of the most abundant bacterial strains in all samples. These are similar to the results announced by Magalhães et al (2011) that *L. paracasei* was one of the most abundant Brazilian kefir samples. Also, it was found in kefir grains and beverages of Russia, Argentina, Bulgaria, Brazil, China, and Turkey (Garrote et al., 2001; Leite et al., 2012; Hamet et al., 2013; Zanirati et al., 2015; Magalhaes et al., 2011; Gao et al., 2012 and 2013a; Merih and Evrim, 2015; Kotova et al., 2016).

L. paracasei had Ct values at 30 and peaks ranging from 78-85°C in the melting curve for all kefir samples. However, there were two peaks for K5 in the melting curve but it does not always indicate a primer dimer problem. Ahmed et al (2017) discussed that SYBR Green dye gives fluorescence signal when bound to double-stranded DNA (ds DNA). As the temperature increases, dsDNA denatures becoming ssDNA. This is supposed to be an intermediate phase that it is neither dsDNA nor ssDNA (two phases in which the DNA does not melt directly and the DNA melt). Mackey et al (1988) found in a limited investigation that the temperature (T_{max}) at which peak was greater was strongly correlated with the G + C content of the DNA. Additional reasons such as amplicon misalignment and secondary structure in the amplicon region are also possible. Thus, the appearance of double peaks during melting curve analysis does not always point to non specific amplification (Wittwer et al., 2009; Dwight et al., 2011). In the K5 case, both peaks appear at a high temperature which may refer to positive result for *L. paracasei* detection (Figure 3.12). In addition, the presence of *L. paracasei* in K5 has also been proven in the results section of isolation and identification.

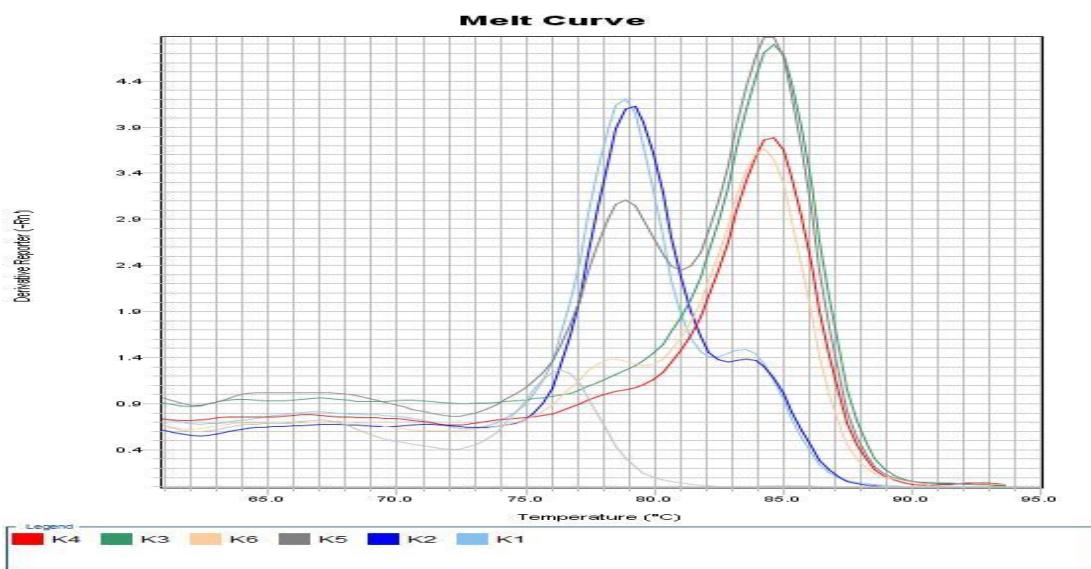
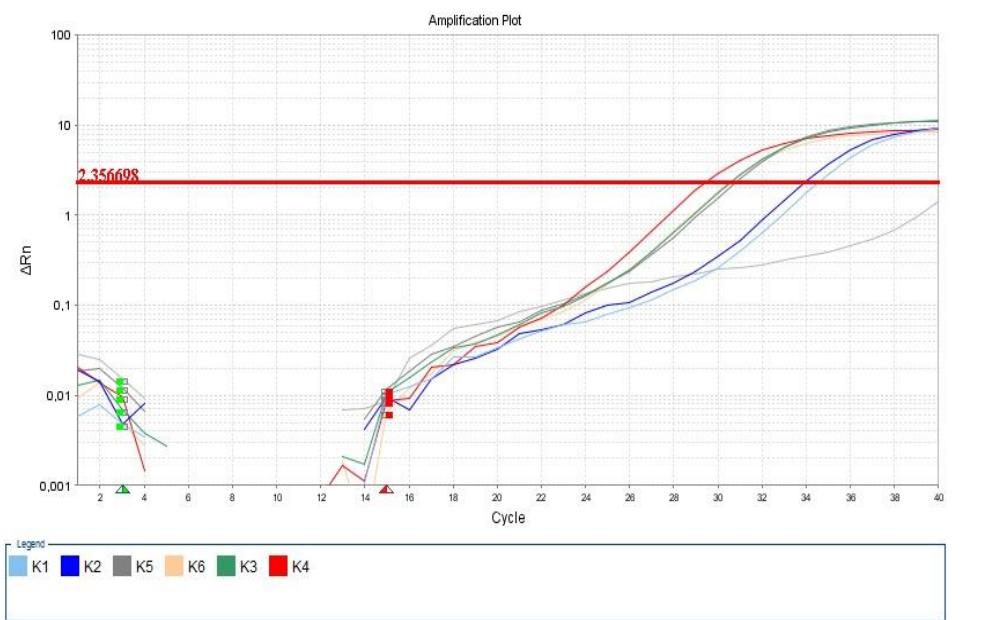



Figure 3.12 Amplification and melting curve for *L. paracasei* in all samples.

Lactobacillus delbrueckii subsp. *bulgaricus*

Simova et al (2002) identified *L. delbrueckii* subsp. *bulgaricus* from Bulgarian kefir grains and beverages. Also, Kao et al (2007) and Harbel et al (2013) detected *L.*

delbrueckii subsp. *bulgaricus* in milk and yoghurt samples using real-time PCR. Similar to our study, *L. delbrueckii* subsp.*bulgaricus* was found and detected in all kefir samples except K3 and K5 as their real-time PCR run did not yield an amplification or melting curve for *L. delbrueckii* subsp. *bulgaricus*.

Figure 3.13(a) shows Ct value at 27 and one peak appears at 85°C in the melting curve of *L. delbrueckii* subsp. *bulgaricus* in commercial Kefir.

As it can be shown from Figure 3.13(b), Tm for *L. delbrueckii* subsp. *bulgaricus* in the melting curve analysis of kefir samples ranged from 82°C to 85°C.

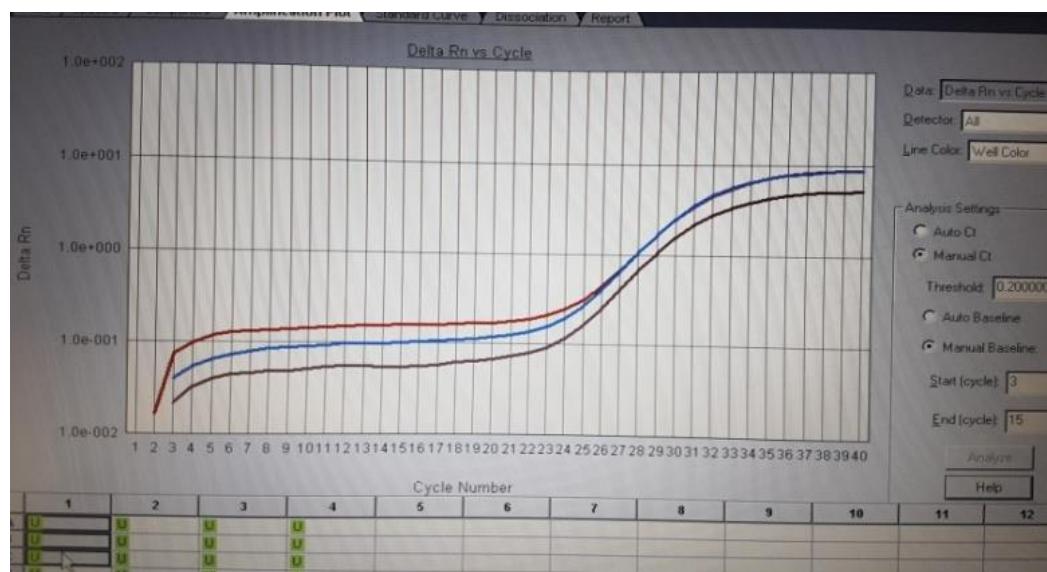


Figure 3.13a The amplification curve of *L. delbrueckii* subsp. *bulgaricus* in k1.

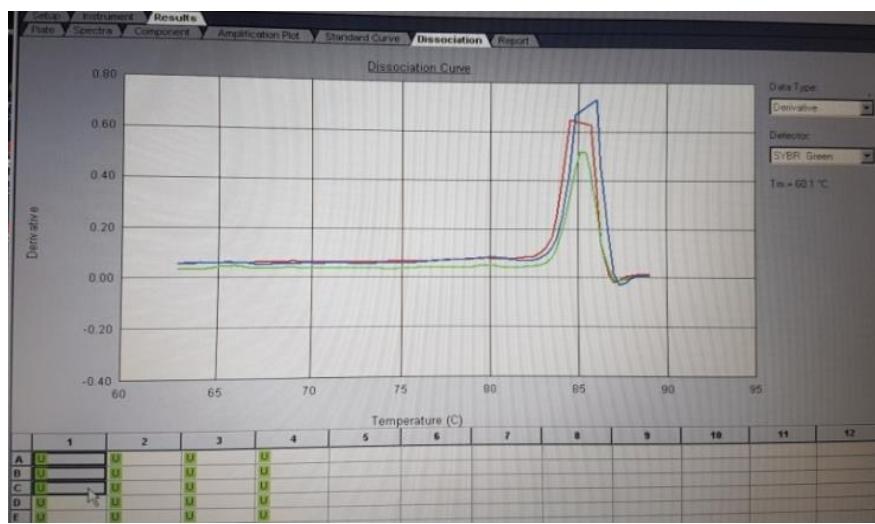


Figure 3.13b The melting curve of *L. delbrueckii* subsp. *bulgaricus* in k1.

Lactobacillus sobrius|amylovorus

Magalhaes et al (2011) and Nalbantoglu et al (2014) demonstrated the presence of *L. amylovorus* in Brazilian and Turkish kefir samples. In the current study, *L. sobrius|amylovorus* was detected in two kefir samples K4 and K5, using real-time PCR. The absence of this species in the commercial and other kefir samples may be due to the fact that some *L. amylovorus* strains form bacteriocins effective against some strains of the *Lactobacillus* such as *L. delbrueckii* subsp. *bulgaricus* (Gawhen and Bergmeyer, 1974).

As underlined by Laiño et al (2014), *L. amylovorus* CRL 887 is able to produce not only folates but also vitamins that it needs for its growth. The importance of using *L. amylovorus* in the food industry as phytase production (Sreeramulu et al., 1996), to reduce cholesterol level (Grill et al., 2000) and its production for antifungal compounds was also demonstrated (Ryan et al., 2011).

L. sobrius\amylovorus was detected in K4 and K5 with high Ct value of 38. This high Ct is indicative of very low amounts of target DNA or showing a state of contamination (Heid C. et al., 1996).

Tm for *L.sobrius\amylovorus* in the current study was 74-78°C. The amplification and melting curve of *L. amylovorus* in k4 can be shown in Figure 3.14.

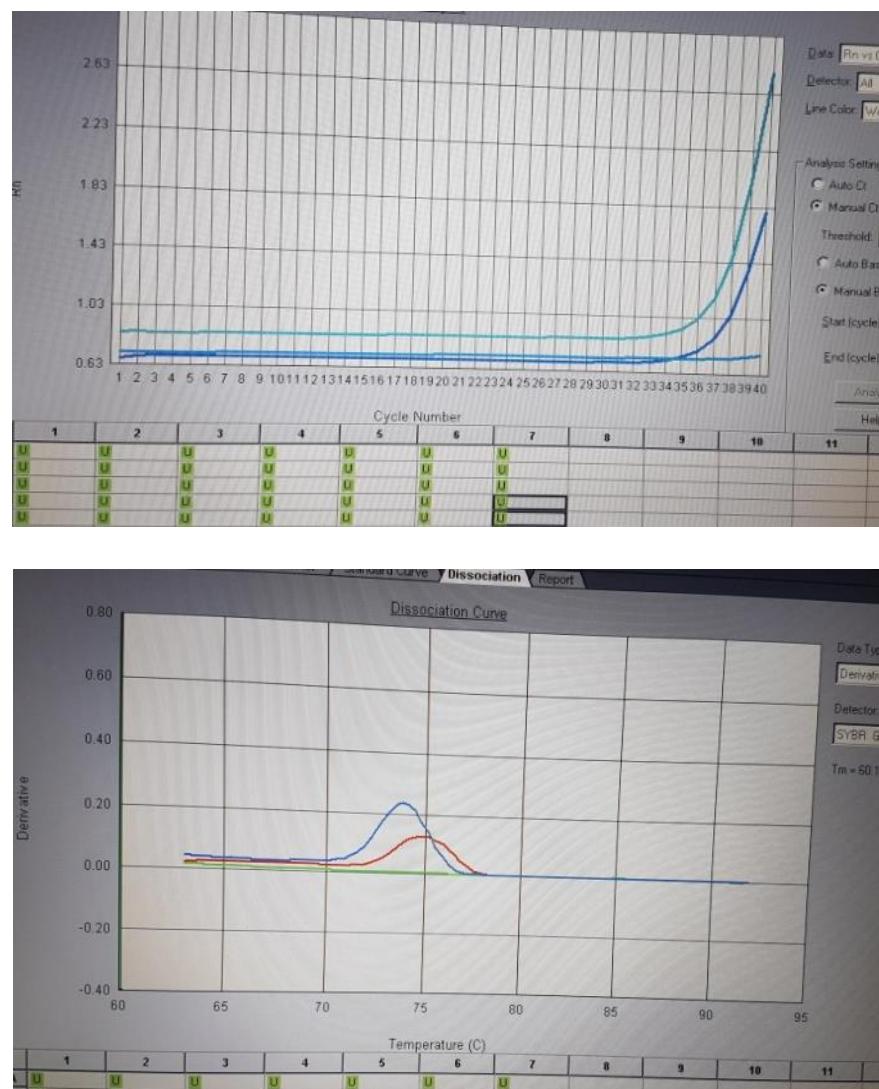


Figure 3.14 The amplification and melting curve of *L. amylovorus* in K4.

Lactobacillus fermentum

Witthuhn et al (2004, 2005) detected *L. fermentum* in South African kefir grains. In this study, *L. fermentum* was detected using real-time PCR in K4 and K6. It had a Ct value at 32 and peak at 82°C in the melting temperature. The amplification and melting curve for K4 can be seen in Figure 3.15. *L. fermentum* is obligately hetero-fermentative lactobacilli producing lactic, succinic, and acetic acids (Mikelsaar and Zilmer, 2009). *L. fermentum* has both antioxidative and antimicrobial properties (Kullisaar Z. 2016; Kumar et al., 2017). Antioxidant *L. fermentum* can lower the risk of some diseases due to the diversity of gut microbiota and colorectal cancer (Sepp et al., 2018).

Ukrainian homemade kefir beverage includes *Saccharomyces* spp. and bacteria such as *L. fermentum* almost 90% of the microbial association, with *Leuconostoc lactis*, and acetic bacteria *Acetobacter* (Vichko et al. 2013). In traditional kefirs produced from grains, some lactobacilli like the species of *L. delbrueckii* subsp. *bulgaricus* grow together with *L. fermentum* comprised up to 98.2% of the *Lactobacillus* population (Witthuhn et al., 2005).

In the current study, *L. fermentum* and *L. delbrueckii* subsp. *bulgaricus* were present together in kefir samples K4 and K6, which proves the high diversity of kefir microflora and indicates the effects of kefir microbiota on each other in the kefir environment.

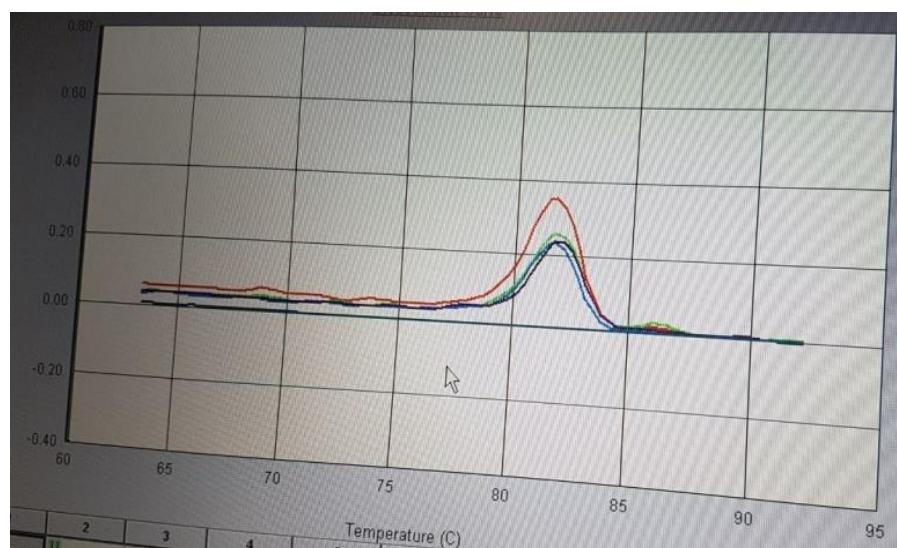
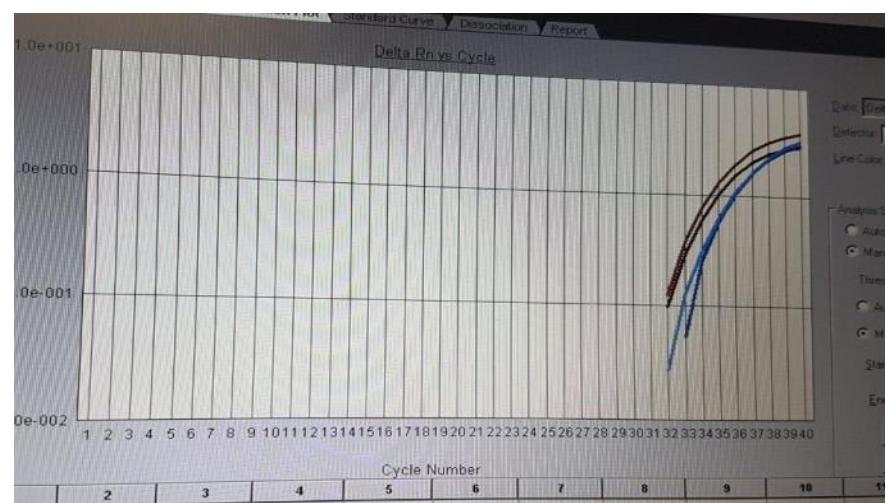



Figure 3.15 The amplification and melting curve of *L. fermentum* in K4.

Streptococcus thermophilus

Bulgarian, Brazilian, Turkish, and Tibetan kefir grains and beverages contain the probiotic *S. thermophilus*. It is used in food fermentation and many industrial dairy products. It can enhance the structure and aroma properties of these dairy products. Besides, *S. thermophilus* has various beneficial effects including antioxidant actions, modification of intestinal microbiota, and suppression of specific pathogens. (Adolfsson et al., 2004; Iyer et al., 2010).

Our findings showed the occurrence of *S. thermophilus* in all kefir samples except K2. It had a Ct value at 32 and melting temperature ranging from 84-87°C for K1, K5, and K6, but it was 73°C for K3 and K4. The amplification and melting curve for K5 can be seen in Figure 3.16.

As mentioned by Simova et al (2002), *Streptococcus lactis* and *Streptococcus thermophilus* were the dominant microflora in all kefir grains. These results differ from the results of Neve (1992) that they found a very rare presence of streptococci in the grain. In Turkish kefir, *Streptococcus thermophilus* were identified by Yüksekdağ et al (2004) and their results are similar to our results.

Laiño et al (2013) discussed an aggregation of *L. bulgaricus* and *S. thermophilus* to the commercial yoghurt and resulted in a twice as much increase in folate levels. In the present study, *L. bulgaricus* and *S. thermophilus* were found together in four kefir samples K1, K4, K5, and K6. It confirms the importance of the combination to improve the health benefits of kefir by increasing folate level.

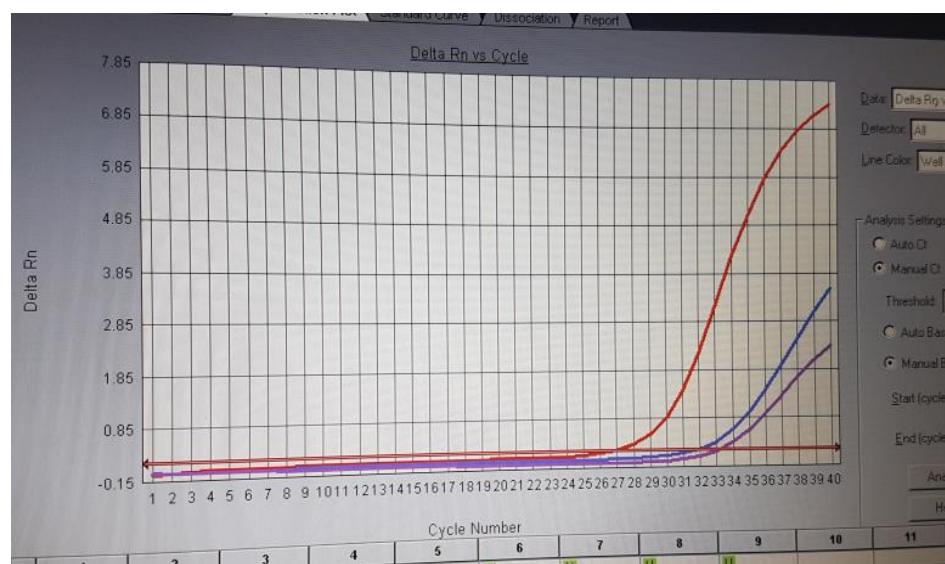


Figure 3.16 The amplification and melting curve of *S. thermophilus* in K6.

The amplification and melting curve of kefir 5 and 6 with specific primers (*L. kefiri*, *L. acidophilus*, *L. kefiranofaciens*, *L. delbrueckii* subsp. *bulgaricus*, *L. fermentum*, *L. plantarum*, *S. cerevisiae*, *S. thermophilus*, *L. sobris* *amylovorus*) were given in Figure 3.17(a and b).

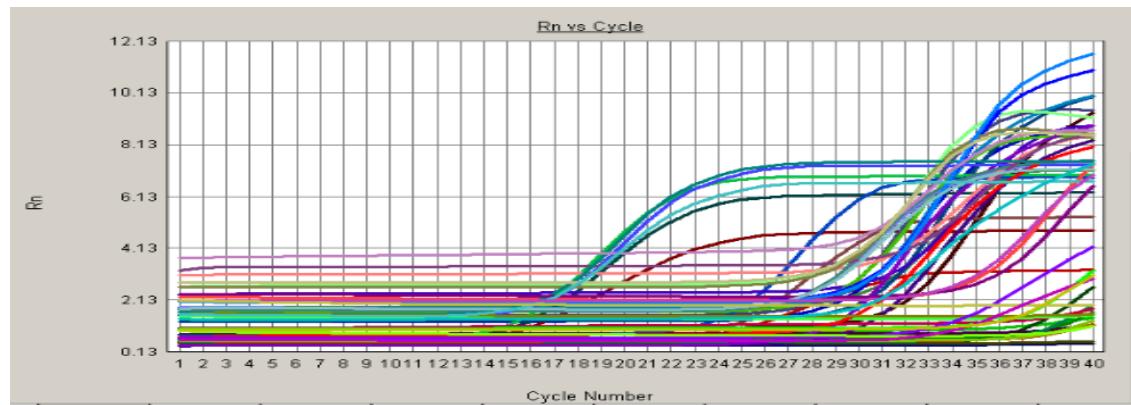


Figure 3.17 (a) Amplification curves of kefir sample (K5 and K6) with specific primers (*L. kefiri*, *L. acidophilus*, *L. kefiranofaciens*, *L. fermentum*, *L. plantarum*, *L. delbrueckii* subsp. *bulgaricus*, *S. cerevisiae*, *S. thermophilus* and *L. sobris* *amylovorus*).

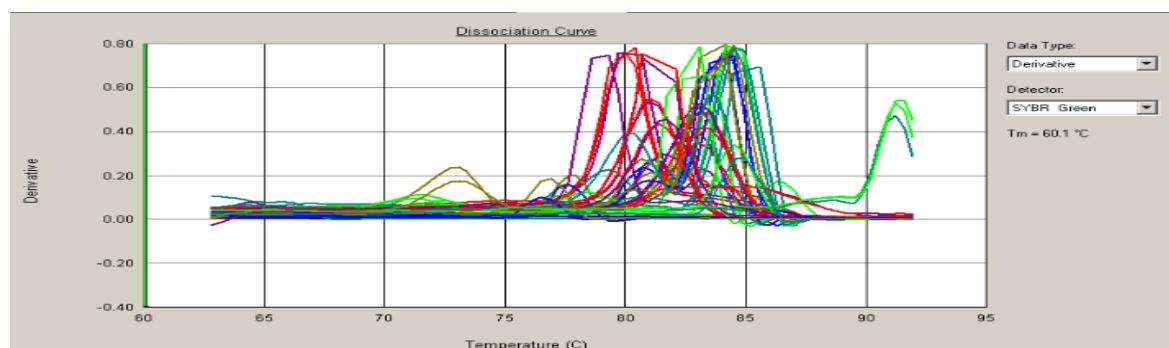


Figure 3.17 (b) Melting curves of kefir sample (K5 and K6) with specific primers (*L. kefiri*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. kefiranofaciens*, *L. fermentum*, *L. plantarum*, *S. cerevisiae*, *S. thermophilus*, and *L. sobris* *amylovorus*).

In this point, real-time PCR was a simple and accurate assay to successfully identify *L. kefiri*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. kefiranofaciens*, *L. fermentum*, *L. plantarum*, *S. cerevisiae*, *S. thermophilus*, *L. sobris* *amylovorus*, *L. casei* and *L. paracasei* in different kefir and milk samples. In addition, determination of the predominant species in all samples like *L. Kefir*, *L. kefiranofaciens*, *L. casei* and *L. paracasei* could be useful for monitoring the quality of kefir probiotics to produce our kefir in further studies.

Our recent study agreed with Herbel et al (2013) that used the same method successfully to identify *Lactobacillus* species by species-specific primers for *S. thermophilus*, *L. delbrueckii*, *L. casei*, *L. paracasei*, *L. rhamnosus*, *L. acidophilus*, and *L. johnsonii* in milk products. On the other hand, Kao et al (2007) explained that real-time PCR could detect *L. acidophilus* and *L. delbrueckii* by species-specific primers, but it could not be used to detect *L. casei*, *L. paracasei*, and *L. rhamnosus* of probiotic products in Taiwan, which is in agreement with our results. Using real-time PCR could easily identify *L. casei*, *L. paracasei* in our samples.

The microbial population of kefir is dependent on its source which can differ from origin to origin. Therefore, it is very important to make species-based identification of the microorganisms in kefir to determine the health benefits of the products.

It can be concluded from real-time PCR assay that our kefir and milk samples also have several important organisms as the other samples from other countries. In this study, one milk product sample from Kyrgyzstan (K4) was rich in probiotic *Lactobacillus* strains as well as kefir samples collected from Ankara and Istanbul. Besides, most of *Lactobacillus* strains detected in real-time PCR assay from our samples were similar to the microbial population of Argentinean, Taiwanese,

Turkish, Brazilian, and Chinese kefir grains and beverages (Garrote et al., 2001; Hamet et al., 2013, Chen et al., 2008; Wang et al., 2012; Kok-Tas et al., 2012; Nalbantoglu et al., 2014; Leite et al., 2012; Zanirati et al., 2015; Gao et al., 2012, 2013a).

All of the amplification and melting curves of real-time PCR for the kefir samples with 11 primers are given in the appendix chapter.

3.5 Isolation of Lactic Acid Bacteria

Lactobacillus species are among the most prevalent microorganisms found in kefir (Slattery et al., 2019). This analysis focuses on the isolation *Lactobacillus* strains from kefir and milk samples.

A total of 100 isolates were isolated from homemade kefir and milk product sample, subcultured on MRS medium, and incubated at 37°C for 48 hours under anaerobic condition. The purity of the isolates was examined by the streaking method. The pure colony was picked up and preserved with in a 20% glycerol solution at -20 and -80°C.

3.6 Phenotypic Identification of LAB

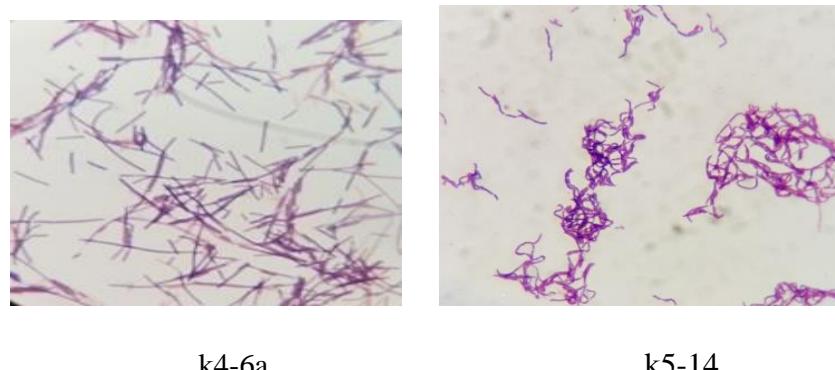
3.6.1 Colony Morphology

All of the isolates were identified based on the characteristic morphology and colony morphology of *Lactobacillus* strains was evaluated and the properties of the colony such as form, size, and color are shown in Table 3.2.

Colonies appeared creamy, white-colored, circular, and belonged to the genus *Lactobacillus*. They varied in size and for some marginal characteristics. These findings were similar to the characters of *Lactobacillus* strains isolated by Kandler and Weiss (2005).

Table 3.2 Sources of kefir and colony morphology of isolates.

No	Isolate name	Source of kefir	Form of colony	Color of colony	Size
1	K2-2a	Ankara	Circular, irregular	Creamy	Small
2	K2-3	Ankara	Circular, regular	Creamy	Small
3	K2-3a	Ankara	Circular, irregular	Creamy	Small
4	K2-4	Ankara	Circular, irregular	Creamy	Small
5	K2-4a	Ankara	Circular, irregular	Creamy	Small
6	K2-14	Ankara	Circular, irregular	Creamy	Small
7	K3-2a	Ankara (2)	Circular,regular	White	Large
8	K3-3a	Ankara (2)	Circular,irregular	Creamy	Small
9	K3-8b2	Ankara (2)	Circular,regular	Creamy	Small
10	K3-13b	Ankara (2)	Circular,regular	Creamy	Small
11	k3-20	Ankara (2)	Circular,regular	Creamy	Small
12	K3-20a	Ankara (2)	Circular,regular	Creamy	Small
13	K3-28	Ankara (2)	Circular,regular	Creamy	Small
14	K4-6a	Kyrgyzstan	Circular,regular	White	Large
15	k4-16	Kyrgyzstan	Circular,regular	Creamy	Small
16	K4-17	Kyrgyzstan	Circular,regular	Creamy	Small
17	K4-28	Kyrgyzstan	Circular,regular	Creamy	Small


Table 3.2 Sources of kefir and colony morphology of isolates (continued).

No	Isolate name	Source of kefir	Form of colony	Color of colony	Size
18	K5-3	Istanbul	Circular, regular	Creamy	Small
19	K5-3a	Istanbul	Circular, regular	White	Small
20	K5-5a	Istanbul	Circular, regular	Creamy	Small
21	K5-11	Istanbul	Circular, regular	White	Small
22	K5-14	Istanbul	Circular, regular	Creamy	Small
23	K5-15	Istanbul	Circular, regular	White	Small
24	K6-1	Istanbul (2)	Circular, regular	Creamy	Small
25	K6-3a	Istanbul (2)	Circular, regular	White	large
26	K6-6a	Istanbul (2)	Circular, regular	White	Small
27	K6-7	Istanbul (2)	Circular, regular	Creamy	Small
28	K6-9a	Istanbul (2)	Circular, regular	White	large
29	K6-12	Istanbul (2)	Circular, regular	Creamy	Small
30	K6-14	Istanbul (2)	Circular, regular	White	Large

Results are expressed as small for colony diameter 2 mm and large for colony diameter 2-5 mm.

3.6.2 Microscopic Examination

The isolates were subjected to Gram's staining and were evaluated under a light microscope. The results are shown in Table 3.3. Staining was used to distinguish the bacterial isolates depends on their cell wall properties. The strains stained purple color indicated that they were gram-positive, rod-shaped as single or in chain forms as seen in Figure 3.18. These results determined that the isolated bacteria could be identified as *Lactobacillus* species (Salvetti et al., 2012; Rao et al., 2015).

Figure 3.18 Gram staining

3.6.3 Catalase Test

This test is a diagnostic tests for the differentiation of bacteria. Since the isolates were gram-positive bacteria, they were examined for catalase activity. No bubble was noticed indicating catalase-negative and these bacteria could not degrade H_2O_2 to produce O_2 . It is recognized that *Lactobacillus* is catalase-negative.(Table 3.3)

Table 3.3 Gram staining and catalase test for kefir isolates.

Isolate No	Isolate name	Gram stain	Shape	Catalase test
1	K2-2a	+ ve	long rod & in chain	-ve
2	K2-3	+ ve	short rod ,single & in chain	-ve
3	K2-3a	+ ve	long rod &in chain	-ve
4	K2-4	+ ve	long rod & in chain	-ve
5	K2-4a	+ve	short rod &single	-ve
6	K2-14	+ ve	short rod &single	-ve
7	K3-2a	+ ve	short rod & single	-ve
8	K3-3a	+ ve	long rod & in chain	-ve
9	K3-8b2	+ ve	short rod &single	-ve
10	K3-13b	+ ve	short rod &single	-ve
11	k3-20	+ ve	short rod &single	-ve
12	K3-20a	+ ve	short rod &single	-ve
13	K3-28	+ ve	short rod &single	-ve
14	K4-6a	+ ve	long rod & in chain	-ve
15	k4-16	+ ve	short rod &single	-ve
16	K4-17	+ ve	short rod &single	-ve
17	K4-28	+ ve	short rod &single	-ve
18	K5-3	+ ve	short rod &single	-ve
19	K5-3a	+ ve	short rod &single	-ve
20	K5-5a	+ ve	short rod &single	-ve
21	K5-11	+ ve	short rod &single	-ve
22	K5-14	+ ve	short rod & in chain	-ve
23	K5-15	+ ve	short rod & in chain	-ve

Table 3.3 Gram staining and catalase test for kefir isolates (Continued).

Isolate No	Isolate name	Gram stain	Shape	Catalase test
24	K6-1	+ ve	short rod & single	-ve
25	K6-3a	+ ve	long rod & in chain	-ve
26	K6-6a	+ ve	short rod & in chain	-ve
27	K6-7	+ ve	short rod & single	-ve
28	K6-9a	+ ve	short rod & single	-ve
29	K6-12	+ ve	short rod & single	-ve
30	K6-14	+ ve	long rod & in chain	-ve

3.7 Biochemical Tests

Biochemical characteristics of LAB isolates were examined as follow.

3.7.1 pH Tolerance Test (Acid tolerans)

The resistance of the probiotic strains to low pH is one of the important criteria (Çakır 2003). They must pass through the extreme conditions of the stomach, at a pH lower than 0.1, to reach the small intestine (Chou and Weimer 1999; Çakır 2003). A single isolated colony was transferred into MRS broth at various pH values 2,2.5,3,4, and 6 and incubated at 37 °C for 24 h to observe the ability of the growth of *Lactobacillus* isolates (Table 3.4). From this experiment, isolated *Lactobacillus* showed that the optimum pH value for good growth was at pH 4.0 and 6.0, moderate growth at pH2.5 and 3.0 with no or less growth at pH 2.0. Therefore, it was demonstrated that the isolated *Lactobacillus* species were able to survive in stressful acidic and neutral conditions. Similar results were reported by Pyar and Peh (2014) who observed the turbidity for *Lactobacillus* growth in broth with different pH values arranging from 4.0 to 7.0. Hoque et al (2010) found that a major decrease in

the viability of strains was often noticed at \leq pH 2.0. Besides, *Lactobacillus* growth was detected at pH 2.5 to pH 8.5. These earlier results are similar to ones shown by our study.

Shivram and Vishwanath (2012) explained that the isolated *Lactobacillus* strains had potential to survive at pH 2.0 and 3.0. Srinu et al (2013) displayed that all the selected lactic acid bacterial strains as *L. plantarum* and *L. casei* survived in the tested acidic pH range (1.5, 2.0, 3.0 and 3.5).

3.7.2 NaCl Tolerance Test

Commonly, NaCl is an inhibitory substance that can suppress bacterial growth. In the current study, the NaCl tolerance test was applied at 2%, 4% and 6.5% NaCl concentrations. The results explained that all *Lactobacillus* spp. isolated from kefir were able to survive at 6.5% of NaCl and optimal growth was detected at 2- 4% of NaCl (Table 3.4). These results are similar to those by Hoque et al (2010) that the *Lactobacillus* spp isolated from yogurts could grow at 1-9 % of NaCl and optimal growth was detected at 1-5 % NaCl.

Forhad et al (2015) found that *Lactobacillus* species were able to survive at 1-6% NaCl concentration where as they could not grow at high NaCl concentrations. High salt tolerance is a useful property for an organism to be used as a probiotic. High osmotolerance would be an important character for LAB strains because when lactic acid production causes alkali to be pumped, and the free acid would be converted to its salt form. This causes an increase in osmotic pressure on bacterial cells. It would then affect their metabolism, water activity, enzyme activity, and physiology. The results for the pH and NaCl tolerance test are given in Table 3.4

Table 3.4 The tolerance of *Lactobacillus* isolates to pH and NaCl salt.

No	Isolate	NaCl tolerance			pH tolerance				
		name	2%	4%	6.5%	pH= 2	pH= 2.5	pH= 3	pH =4
1	K2-2a	++	++	+	-	-	+	++	++
2	K2-3	++	++	+	-	+	+	++	++
3	K2-3a	++	++	+	-	-	+	++	++
4	K2-4	++	++	+	-	+	+	++	++
5	K2-4a	++	++	+	-	+	+	++	++
6	K2-14	++	++	+	-	+	+	++	++
7	K3-2a	++	++	+	-	+	+	++	++
8	K3-3a	++	++	+	-	+	+	++	++
9	K3-8b2	++	++	+	-	+	+	++	++
10	K3-13b	++	++	+	-	+	+	++	++
11	K3-20	++	++	+	-	+	+	++	++
12	K3-20a	++	++	+	-	+	+	++	++
13	K3-28	++	++	+	-	+	+	++	++
14	K4-6a	++	++	+	-	+	+	+	++
15	K4-16	++	++	+	-	+	+	++	++
16	K4-17	++	++	+	-	+	+	++	++
17	K4-28	++	++	+	-	+	+	++	++
18	K5-3	++	++	+	-	+	+	++	++
19	K5-3a	++	++	+	-	+	+	++	++
20	K5-5a	++	++	+	-	+	+	++	++
21	K5-11	++	++	+	-	+	+	++	++
22	K5-14	++	++	+	-	+	+	++	++
23	K5-15	++	++	+	-	+	+	++	++

Table 3.4 The tolerance of *Lactobacillus* isolates to pH and NaCl salt (Continued).

No	Isolate name	NaCl tolerance			pH tolerance				
		2%	4%	6.5%	pH= 2	pH= 2.5	pH= 3	pH =4	pH=6
24	K6-1	++	++	+	-	+	+	++	++
25	K6-3a	++	++	+	-	+	+	++	++
26	K6-6a	++	++	+	-	+	+	++	++
27	K6-7	++	++	+	-	+	+	++	++
28	K6-9a	++	++	+	-	+	+	++	++
29	K6-12	++	++	+	-	+	+	++	++
30	K6-14	++	++	+	-	-	-	++	++

(++) good growth, (+) less growth, (-) No growth

3.7.3 Temperature Tolerance Test

Temperature is an essential factor which can affect bacterial growth and the reason for doing this test is to detect ability of the isolated cultures to survive within normal body temperature. In the current study, the isolates were screened for their capacity to tolerate different temperatures of 25, 37, 40, and 45°C (Table 3.5). According to the results, all of the isolates easily grow at 25, 37, and 40°C. These results are similar to those of Pundir et al (2013). However, some isolates could not grow at 45°C. According to Chakraborty and Bhowal (2015), the isolated *Lactobacillus* species were able to survive with in 30-50°C and the optimum temperature for maximum growth was 37°C. Also, Yavuzdurmaz (2007) showed that after 7 days of observation all of the *Lactobacillus* isolates survived at 45 °C, however, they could not grow at 10 °C and 15 °C. These results differ from our results.

Table 3.5 Temperature, phenol tolerance, and lactic acid production test.

No	Isolate name	Temperature tolerance				Phenol tolerance (0.4%)	Lactic acid production
		25°C	37°C	40°C	45°C		
1	K2-2a	+	++	+	+	+ve	+ve
2	K2-3	+	++	+	+	+ve	+ve
3	K2-3a	+	++	+	+	+ve	+ve
4	K2-4	+	++	+	-	+ve	+ve
5	K2-4a	++	++	+	-	+ve	+ve
6	K2-14	+	++	+	+	+ve	+ve
7	K3-2a	++	++	+	+	+ve	+ve
8	K3-3a	++	++	+	-	+ve	+ve
9	K3-8b2	++	++	+	-	+ve	+ve
10	K3-13b	++	++	+	-	+ve	+ve
11	K3-20	++	++	+	-	+ve	+ve
12	K3-20a	++	++	+	-	+ve	+ve
13	K3-28	+	++	+	+	+ve	+ve
14	K4-6a	+	++	+	+	+ve	+ve
15	K4-16	+	++	+	+	+ve	+ve
16	K4-17	+	++	+	+	+ve	+ve
17	K4-28	++	++	+	-	+ve	+ve
18	K5-3	++	++	+	-	+ve	+ve
19	K5-3a	++	++	+	-	+ve	+ve
20	K5-5a	++	++	+	-	+ve	+ve

Table 3.5 Temperature, phenol tolerance, and lactic acid production test (continued).

No	Isolate name	Temperature tolerance				Phenol tolerance (0.4%)	Lactic acid production
		25°C	37°C	40°C	45°C		
21	K5-11	++	++	+	-	+ve	+ve
22	K5-14	+	++	+	+	+ve	+ve
23	K5-15	+	++	+	+	+ve	+ve
24	K6-1	+	++	+	-	+ve	+ve
25	K6-3a	+	++	+	+	+ve	+ve
26	K6-6a	+	++	+	+	+ve	+ve
27	K6-7	+	++	+	-	+ve	+ve
28	K6-9a	+	++	+	-	+ve	+ve
29	K6-12	+	++	+	-	+ve	+ve
30	K6-14	+	++	+	+	+ve	+ve

(++) good growth, (+) less growth, (-) No growth

3.7.4 Phenol Tolerance Test

Probiotic strains survive low concentrations of inhibitory substances such as phenol since it is bacteriostatic. Certain aromatic amino acids originated from proteins would be deaminated in the gut by bacteria which cause the formation of phenols that have bacteriostatic effects (Suskovic et al., 1997).

As seen from Table 3.5, the isolated candidates were examined for their aptitude to tolerate the phenolic environment. A phenol tolerance test was performed in 0.4% of phenol concentration. It was observed that *Lactobacillus* isolated from kefir samples

could endure 0.4% phenol. These results have the similarities with results of Elizete and Carlos (2005) and Hoque et al (2010).

Vizoso Pinto et al (2006) found different ratios of sensitivity for 4 strains of *L. johnsonii* and 6 strains of *L. plantarum* against 0.4% phenol concentration while *L. plantarum* strains were less sensitive. Our results indicate a good tolerance of all tested strains towards phenol even if the growth in the presence of phenol is lower than the growth without phenol.

3.7.5 Lactose Utilization

The isolates were screened for their capacity to grow in medium supplemented with lactose. Change in color from red to yellow indicates the conversion of lactose to lactic acid and all the tested isolates can ferment lactose as shown in (Table 3.5).

Lactose utilization of isolated LAB was described by Ahmed and Kanwal (2004). This test detects the importance of probiotic bacteria for lactose-intolerant people who have a deficiency of enzyme galactosidase. When they use lactose-containing products, symptoms including cramps, diarrhoea, abdominal pain can happen. Most of the studies conclude that the addition of certain probiotics to milk products and kefir will help these people to ingest those products without having any symptoms (Scheinbach 1998; Fooks et al., 1999).

3.7.6 The Proteolytic Activity of LAB

Proteins and peptides are the basic structures and composed of 20 amino acids. Proteases are enzymes that stimulate the hydrolysis of peptide bonds in proteins and

polypeptide forming peptides and amino acids for bacterial growth (Christensen et al., 1999).

All of the isolated bacteria that gave positive results in the previous microscopic and biochemical tests belonged to the genus *Lactobacillus*. They were examined for their protease activity by screening on skim milk agar by agar-well diffusion method at 37°C after 48 h (Phyu et al., 2015). Proteolytic activity is a very essential characteristic of the LAB. It could be detected by measuring the diameter of the clear zone on skim milk agar. In the current study, the diameter of the clear zone confirmed that all isolates could hydrolyze casein by production of a protease enzyme. Similar results were noted by Atanasova et al (2014) and Phyu et al., (2015). However, they varied in the efficiency of casein hydrolysis. The strains K2-3, K2-14, K4-6a, K5-3, K5-3a, K5-14, K5-15, and K6-14 formed a large clear zone from 31 to 33 mm around the colonies. The strain K5-14 produced the largest visible zone. These results were demonstrated by quantitative determination of the proteolytic activity as shown in Table 3.6 and Figure 3.19.

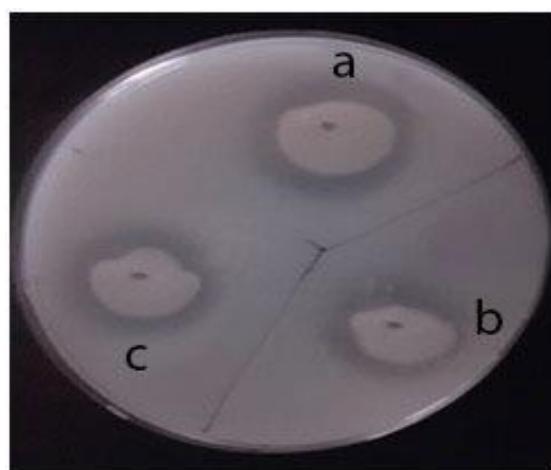


Figure 3.19 Proteolysis activity for *Lactobacillus* isolates.

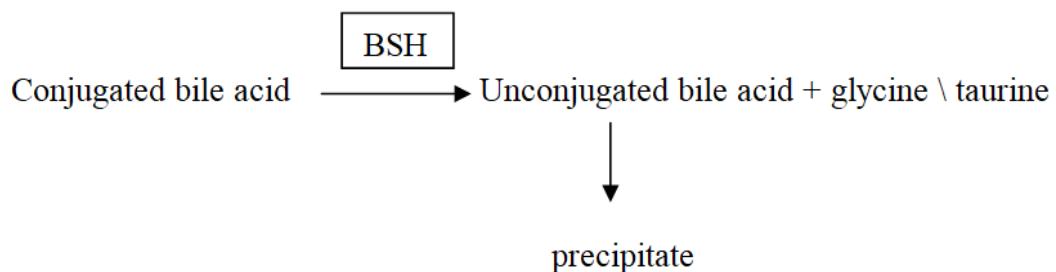
a (K6-14), b (K2-4a), c (K5-3)

Table 3.6 Proteolytic activity and bile salt tolerance test.

No	Isolate name	Bile salt tolerance test		Proteolysis (diameter of clear zone mm)
		Taurodeoxycholic acid 0.5% (w/v)	Glycocholic acid 0.5% (w/v)	
1	K2-2a	+	+	29
2	K2-3	++	+	34
3	K2-3a	+	+	28
4	K2-4	++	++	29
5	K2-4a	++	++	28
6	K2-14	++	++	33
7	K3-2a	+	+	25
8	K3-3a	+	+	28
9	K3-8b2	+	+	24
10	K3-13b	+	+	27
11	K3-20	++	++	23
12	K3-20a	+	+	21
13	K3-28	+	+	23
14	K4-6a	++	+	30
15	K4-16	+	+	25
16	K4-17	++	++	25
17	K4-28	++	+	20
18	K5-3	++	+	30
19	K5-3a	+	++	31
20	K5-5a	+	+	25
21	K5-11	+	+	30
22	K5-14	++	+	35
23	K5-15	+	+	33

Table 3.6 Proteolytic activity and bile salt tolerance test (continued).

No	Isolate name	Bile salt tolerance test		Proteolysis (diameter of clear zone mm)
		Taurodeoxycholic acid 0.5% (w/v)	Glycocholic acid 0.5% (w/v)	
24	K6-1	+	++	25
25	K6-3a	+	+	30
26	K6-6a	+	+	25
27	K6-7	+	+	29
28	K6-9a	+	+	23
29	K6-12	+	++	21
30	K6-14	++	+	32


(++) good growth, (+) less growth, (-) No growth

3.7.7 Bile Salt Tolerance Test

Bile salt is found in bile and secreted by liver cells to help in digestion. It can play a significant role in fat emulsification and cause segregation of the lipid bilayer, integral protein, and phospholipids of bacterial cell membranes resulting in a decrease in bacterial content and cell death (Burns et al., 2008).

The ability of LAB to survive in the small intestine and grow in the presence of bile salts is one of the most crucial properties to play their effective role as probiotics. In the small intestine, the bile salt concentration is about 0.2% to 0.3%, and it can increase up to 2% (w/v). It depends on the type and amount of the ingested food (Bakari et al., 2011). Bile resistance of some strains is related to the activity of bile

salt hydrolase enzyme which helps hydrolyze conjugated bile to decrease its toxic effect (Du Toit et al., 1998).

In a recent study, all *Lactobacillus* cultures were grown on bile salt-MRS agar plate containing 0.5% (w/v) taurodeoxycholic and glycholic acid. They produced free cholic acid with white precipitate around active colonies and spreaded into the medium. These results are in accordance with other work that checked the activity of bile salt hydrolase activity (BSH) for some probiotic lactobacilli and all tested strains gave BSH-positive (Ahn 2003; Begley 2006; Deshpande et al.,2014).

Results for bile salts tolerance test are seen in Table (3.6). Based on the result, these isolates may be beneficial for use as probiotic organisms because all the isolates can tolerate and grow in 0.5 % bile salt concentration. A concentration of 0.3% of bile salts is close nearly to the bile level of the gastrointestinal tract (Golden and Gorbach, 1992). The presence of the food matrix may also maintain the bacteria from the bile effect and leads to improving the bile resistance of the strains (Begley et al. 2005). The bile salt tolerance test of *Lactobacillus* colonies is demonstrated (Figure 3.20).

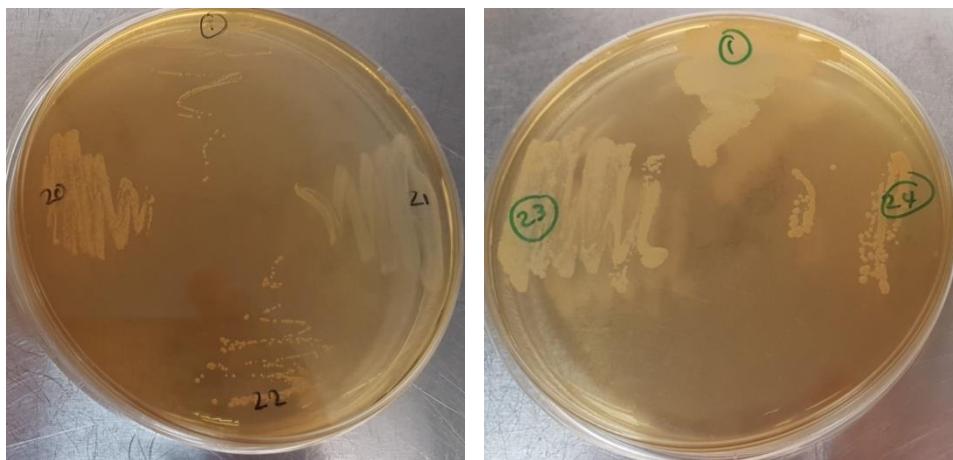


Figure 3.20 Bile salt hydrolase activity by lactobacilli on solid MRS. The greatest precipitations were by 1 (K2-4) , 21 (K4-17), and 23 (k3-13b)

The greatest precipitation for both bile salts was in the case of K2-4, k3-13b, and k4-17. According to Xanthopoulos et al (1997), the ability to tolerate bile salts varies a lot between the LAB species and among strains themselves. This is similar to the results in the recent study.

Leite (2015) tested 37 isolates by a plate assay for resistance to different bile concentrations ranging from 0.3 to 2% and 34 isolates were grown in 0.3%. These results are in accordance with the results of the recent study.

3.7.8 Carbohydrates Fermentation Test

The main task of the carbohydrate fermentation test is to examine the ability of bacteria to ferment different types of sugars. This test was done using 1% (w/v) sugar in MRS broth (sucrose, glucose, lactose, maltose, and mannitol). Phenol red broth base medium was prepared as an indicator to identify the bacteria according to their sugars fermentation. Table 3.7 shows that all the isolated bacteria fermented

sucrose, glucose, and lactose, but some isolates could not ferment mannitol and maltose. 8 of 30 isolates could ferment all types of sugars with gas production from glucose fermentation as K2-2a, K2-4, K3-2a, K3-20, K5-5a, K5-11, K6-3a and K6-14.

Gas production was detected in durhum tubes from glucose fermentation. Some isolates could not produce gas from glucose fermentation. Bogdan et al (2014) discovered that all the isolates belonging to *Lactobacillus paracasei* ssp *paracasei* strains could ferment ribose, galactose, glucose, fructose, mannose, lactose, mannitol, and maltose. Our *L. paracasei* isolates which were identified by 16 S rDNA sequencing showed similar results in a way that they fermented glucose, lactose, sucrose, maltose and mannitol.

Phyu and Aye (2015) also examined the ability of LAB isolated from various yogurts and fermented products to ferment sugars consisting dextrose, glucose, lactose, maltose, fructose, raffinose, galactose, and xylose.

Table 3.7 Carbohydrates fermentation patterns of isolates

Isolate No	Isolate name	Glucose		Sucrose		Lactose		Maltose		Mannitol	
		Acid	Gas	Acid	Acid	Acid	Acid	Acid	Acid	Acid	Acid
1	K2-2a	+	+	+	+	+	+	+	+	+	+
2	K2-3	+	-	+	+	+	+	+	+	+	+
3	K2-3a	+	-	+	+	+	+	+	+	-	
4	K2-4	+	+	+	+	+	+	+	+	+	
5	K2-4a	+	-	+	+	+	+	+	+	+	
6	K2-14	+	-	+	+	+	+	+	+	+	
7	K3-2a	+	+	+	+	+	+	+	+	+	+
8	K3-3a	+	-	+	+	+	+	+	+	+	+
9	K3-8b2	+	+	+	+	+	+	-		+	

10	K3-13b	+	-	+	+	-	-
----	--------	---	---	---	---	---	---

Table 3.7 Carbohydrates fermentation patterns of isolates (continued)

Isolate No	Isolate name	Glucose		Sucrose		Lactose		Maltose		Mannitol	
		Acid	Gas	Acid	Acid	Acid	Acid	Acid	Acid	Acid	Acid
11	K3-20	+	+	+	+	+	+	+	+	+	+
12	K3-20a	+	+	+	+	+	+	-	-	-	-
13	K3-28	+	+	+	+	+	+	-	-	+	
14	K4-6a	+	-	+	+	+	+	+	-	-	
15	K4-16	+	+	+	+	+	+	-	-	-	
16	K4-17	+	+	+	+	+	+	-	-	-	
17	K4-28	+	-	+	+	+	+	-	-	-	
18	K5-3	+	+	+	+	+	+	-	-	-	
19	K5-3a	+	+	+	+	+	+	-	-	-	
20	K5-5a	+	+	+	+	+	+	+	+	+	
21	K5-11	+	+	+	+	+	+	+	+	+	
22	K5-14	+	+	+	+	+	+	-	-	-	
23	K5-15	+	+	+	+	+	+	-	-	-	
24	K6-1	+	+	+	+	+	+	-	-	+	
25	K6-3a	+	+	+	+	+	+	+	+	+	
26	K6-6a	+	+	+	+	+	+	+	-	-	
27	K6-7	+	+	+	+	+	+	-	-	-	
28	K6-9a	+	+	+	+	+	+	-	-	-	
29	K6-12	+	+	+	+	+	+	-	-	-	
30	K6-14	+	+	+	+	+	+	+	+	+	

Mangalore (2015) used 22 different carbohydrates for identifying the LAB. They showed positive results for acid fermentation of different sugars such as glucose, sucrose, maltose, mannitol, and lactose. These results have some similarity with our results. Also, Khedid et al (2009) examined 12 isolates of *L. helveticus* which fermented glucose, lactose, and galactose, 45% fermented mannose, 38% of isolates used maltose, and only a few fermented trehalose. Table 3.8 shows fermentation of

different sugars by our *Lactobacillus* isolates and identification according to the sugar fermentation results of other studies.

Table 3.8 Fermentation of sugars by *Lactobacillus* isolates and references

Isolates	Fermented sugars	LAB	References
K2-2a, k2-3, k2-4, k2-4a, k2-14, k3-2a, k3-3a, k3-20 k5-5a, k5-11, k6-3a, k6-14	Glucose (acid formation), sucrose, lactose, maltose, mannitol	<i>L. casei</i>	Shafakatullah and Chandra 2015
		<i>L. plantarum</i> <i>L. paracasei</i>	Asmahan, A. (2011).
K2-2a, k2-4, k3-2a, k3-20, k5-5a, k5-11, k6-3a, k6-14	Glucose (acid and gas formation), sucrose, lactose, maltose, mannitol	<i>L. brevis</i>	Abdel-Rahman et al. 2011
K2-3, k2-4a, k2-14, k3-3a	Glucose (acid and no gas formation), sucrose, lactose, maltose, mannitol	<i>L. acidophilus</i>	Hassan et al., 2014
K2-3a, K4-6a, K6-6a	Glucose, sucrose, lactose, maltose	<i>L. mesenteroides</i>	Gebreselassie et al., 2016
K3-8b2, k3-28, k6-1	Glucose, sucrose, lactose, mannitol	<i>L. bulgaricus</i>	Askari M. et al., 2019
K3-13b, k3-20a, k4-16, k4-17, k4-28, k5-3, k5-3a, k5-14, k5-15, k6-7, k6-9a, k6-12	Glucose, sucrose, lactose	<i>L. brevis</i>	Gebreselassie et al., 2016

3.8 16S rRNA Gene Sequencing of *Lactobacillus* Isolates

There are some difficulties in the identification of LAB with phenotypic methods because strains of the same species can display phenotypic change (Drancourt et al., 2000). Therefore, it is essential to perform genotypic identification of the results after the phenotypic identification methods.

After the confirmation of the amplification of 500-1000 bp amplified region of 16S rRNA gene with gel electrophoresis, the PCR products were subjected to sequencing analysis. This procedure was done by BM Laboratuvar Sistemleri in Ankara, Turkey. Figure 3.21 shows the gel electrophoresis of genomic DNA extracted from *Lactobacillus* isolates.

Figure 3.21 Agarose gel electrophoreses of PCR products using 27F - 1492R as universal primers and the marker is the 100 bp DNA. 1(K3-8b2), 2(K6-7), 3(K4-16), 4(K5-3), 5(K3-13b), 6(K4-28), 7(K6-12), 8(K3-20a), 9(K2-4), 10(K3-28), 11(K2-3), 12(K5-11), 13(K3-20a), 14(K4-17), 15(K6-14),16(K5-15),17(K2-14).

3.9 BLAST Analysis and Multiple Sequence Alignment

Thirty isolates from 5 samples of kefir and milk samples (K2, K3, K4, K5, and K6) were identified using 16S rRNA gene sequencing. Partial 16S rRNA was obtained after sequencing, recovered in FASTA format, and subjected for BLAST search in The National Center for Biotechnology Information Gen Bank (NCBI). The partial 16S rRNA sequences in the FASTA format are shown in the appendix.

BLAST result identified 22 of 30 isolates as *L. paracasei* subsp. *tolerans* strain NBRC 15906, 7 isolates were *L. gallinarum* strain ATCC 33199 and one isolate was *L. helveticus* strain NBRC 15019. The percent identity between the 22 isolates and *L. paracasei* subsp. *tolerans* strain NBRC 15906 is in range of 97% -100%.

The BLAST analysis results of all isolates are shown in Table (3.9), (3.10), (3.11), (3.12) and (3.13).

Table 3.9 BLAST analysis and alignment results for K2 (Ankara kefir) isolates

No	Query	Reference strain	Accession number	Identification percentage %
			(Sequence ID)	
1		<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.22
	K2-2a	<i>L. helveticus</i> strain NBRC 15019	NR_1137191.1	99.05
		<i>L. acidophilus</i> strain NBRC 13951	NR_113638.1	97.93
2		<i>L. intestinalis</i> strain TH4	NR_117071.1	98.27
	*K2-3	<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.19
		<i>L. helveticus</i> strain NBRC 15019	NR_1137191.1	99.01
3		<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.45
	K2-3a	<i>L. helveticus</i> strain NBRC 15019	NR_1137191.1	99.36
		<i>L. acidophilus</i> strain NBRC 13951	NR_113618.1	98.08
4	K2-4	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_041054.1	99.67
		<i>L. zeae</i> strain RIA 482	NR_037122.1	98.69
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.60

(*isolates identified by alignment using the Clustal omega program)

Table 3.9 BLAST analysis and alignment results for K2 (Ankara kefir) isolates (continued)

No	Query strain	Reference strain	Accession number	Identification
			(Sequence ID)	percentage %
5	K2-4a	<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.05
		<i>L. helveticus</i> strain NBRC 15019	NR_113719.1	99.87
		<i>L. crispatus</i> strain DSM 20584	NR_119274.1	98.30
		<i>L. amylovorus</i> DSM 20531	NR_117064.1	98.20
6	K2-14	<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.43
		<i>L. helveticus</i> strain NBRC 15019	NR_113719.1	99.24
		<i>L. crispatus</i> strain DSM 20584	NR_119274.1	98.67

Table 3.10 BLAST analysis and alignment results for K3 (Ankara kefir) isolates

No	Query strain	Reference strain	Accession number	Identification
			(Sequence ID)	percentage %
7	K3-2a	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_041054.1	99.73
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.64
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.55
8	K3-3a	<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.19
		<i>L. helveticus</i> strain NBRC 15019	NR_113719.1	99.01
		<i>L. acidophilus</i> strain NBRC 13951	NR_113638.1	89.20

Table 3.10 BLAST analysis and alignment results for K3 (Ankara kefir) isolates (continued)

No	Query strain	Reference strain	Accession number	Identification
			(Sequence ID)	percentage %
9	K3-8b2	<i>L. paracasei</i> subsp. <i>tolerans</i> strain	NR_041054.1	99.51
		NBRC 15906		
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.52
		<i>L. casei</i> strain NBRC15883	NR_113333.1	98.44
		<i>L. rhamnosus</i> strain NBRC 3425	NR 113332	98.25
10	K3-13b	<i>L. paracasei</i> subsp. <i>tolerans</i> strain	NR_041054.1	99.23
		NBRC 15906	NR_037122.1	98.44
		<i>L. zae</i> strain RIA 482	NR_113333.1	98.35
		<i>L. casei</i> strain NBRC 15883	NR 113332.1	98.34
		<i>L. rhamnosus</i> strain NBRC 3425		
11	K3-20	<i>L. paracasei</i> subsp. <i>tolerans</i> strain	NR_113337.1	99.80
		NBRC 15889		
		<i>L. zae</i> strain RIA 482	NR_037122.1	99.69
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.69
		<i>L. rhamnosus</i> strain NBRC 3425	NR 113332	99.69
12	K3-20a	<i>L. paracasei</i> subsp. <i>tolerans</i> strain	NR_041054.1	99.75
		NBRC 15906		
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.86
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.74
		<i>L. rhamnosus</i> strain NBRC 3425	NR 113332.1	98.36

Table 3.10 BLAST analysis and alignment results for K3 (Ankara kefir) isolates (continued)

No	Query strain	Reference strain	Accession number	Identification
			(Sequence ID)	percentage %
13	K3- 28	<i>L. paracasei</i> subsp. <i>tolerans</i>	NR_041054.1	99.92
		strain NBRC 15906		
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.91
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.82
		<i>L. rhamnosus</i> strain NBRC 3425	NR 113332.1	98.49

Table 3.11 BLAST analysis and alignment results for K4 (Kyrgyzstan) isolates

No	Query strain	Reference strain	Accession number	Identification
			(Sequence ID)	percentage %
14	K4-6a	<i>L. helveticus</i> NBRC 15019	NR_113719.1	99.66
		<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.66
		<i>L. acidophilus</i> strain NBRC 13951	NR_113638.1	98.37
15	K4-16	<i>L. paracasei</i> strain ATCC 25302	NR_117987	99.73
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.98
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.65
16	K4-17	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15889	NR_113337.1	99.81
		<i>L. zae</i> strain RIA 482	NR_037122.1	99.72
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.72
17	K4-28	<i>L. paracasei</i> strain NBRC 15906	NR_041054.1	99.50
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.49
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.41

Table 3.12 BLAST analysis and alignment results for K5 (Istanbul kefir) isolates

No	Query strain	Reference strain	Accession number (Sequence ID)	Identification percentage %
18	K5-3	<i>L. paracasei</i> strain NBRC 15906	NR_041054.1	99.43
		<i>L. zeae</i> strain RIA 482	NR_037122.1	98.45
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.37
		<i>L. rhamnosus</i> strain NBRC 3425	NR_113332.1	98.05
19	K5-3a	<i>L. paracasei</i> strain NBRC 15889	NR_113337.1	99.75
		<i>L. zeae</i> strain RIA 482	NR_037122.1	99.00
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.92
		<i>L. rhamnosus</i> strain NBRC 3425	NR_113332.1	98.59
20	K5-5a	<i>L. paracasei</i> strain NBRC158889	NR_113337.1	99.91
		<i>L. zeae</i> strain RIA 482	NR_037122.1	99.09
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.00
		<i>L. rhamnosus</i> strain NBRC 3425	NR_113332.1	98.54
21	K5-11	<i>L. paracasei</i> strain NBRC 15889	NR_113337.1	99.65
		<i>L. zeae</i> strain RIA 482	NR_037122.1	99.47
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.47
		<i>L. rhamnosus</i> strain NBRC 3425	NR_113332.1	99.47
22	*K5-14	<i>L. zeae</i> strain RIA 482	NR_037122.1	99.21
		<i>L. paracasei</i> strain NBRC 15889	NR_113337.1	99.30
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.21
23	*K5-15	<i>L. zeae</i> strain RIA 482	NR_037122.1	98.71
		<i>L. paracasei</i> strain NBRC 15889	NR_113337.1	98.79
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.71

(*isolates identified by alignment using the Clustal omega program)

Table 3.13 BLAST analysis and alignment results for K6 (Istanbul kefir) isolates

No	Query strain	Reference strain	Accession number (Sequence ID)	Identification percentage %
24	K6-1	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_041054.1	97.08
		<i>L. zae</i> strain RIA 482	NR_037122.1	96.06
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	95.96
25	*K6-3a	<i>L. helveticus</i> strain NBRC 15019	NR_113719.1	99.22
		<i>L. gallinarum</i> strain ATCC 33199	NR_042111.1	99.39
		<i>L. acidophilus</i> strain NBRC 13951	NR_113638.1	98.09
26	K6-6a	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_0410541.1	99.52
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.45
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.36
27	K6-7	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_0410541.1	99.42
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.44
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	98.36
28	K6-9a	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_0410541.1	99.98
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.04
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	97.96

Table 3.13 BLAST analysis and alignment results for K6 (Istanbul kefir) isolates (continued)

No	Query strain	Reference strain	Accession number (Sequence ID)	Identification percentage %
29	K6-12	<i>L. paracasei</i> subsp. <i>tolerans</i> strain ATCC 25302	NR_117987.1	99.25 98.41
		<i>L. zae</i> strain RIA 482	NR_037122.1	98.23
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	
30	*K6-14	<i>L. rhamnosus</i> strain NBRC 3425	NR_113332.1	99.45
		<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	NR_0410541.1	99.54
		<i>L. zae</i> strain RIA 482	NR_037122.1	99.45
		<i>L. casei</i> strain NBRC 15883	NR_113333.1	99.45

(*isolates identified by alignment using the Clustal omega program)

Phylogenetic relationship of all isolated microorganisms was analyzed with other partial 16S rRNA sequences of similar microorganisms that exist in the gene bank database. The sequences of closely related *Lactobacillus* sp. were matched under Multiple Sequence Alignment (MSA) using the Clustal Omega program to identify the differences in DNA base sequences. The identical nucleotides for a given position were marked with * (asterisk). The output data is shown in the Appendix.

This method suffers from the difficulties during identification methods especially for strains of the same species. Performing the 16S rRNA sequencing in one direction is acceptable for species identification, however it is not successful on differentiation at the strain level.

The MSA was performed after the BLAST analysis to all isolates because of the high similarity between them. This alignment was useful to differentiate some

isolates as (K2-3, K5-14, K5-15, K6-3a, and K6-14). Finally, after performing BLAST and MSA, it was found that 19 out of 30 isolates had 97-100% similarity under the group of *L. paracasei* sp. and closely related to identified organism *L. paracasei* subsp. *tolerans* strain NBRC 15906. Five isolates had homology with *L. gallinarum* strain ATCC 33199, two isolates were identified according to alignment as *L. helveticus* strain NBRC 15019, two isolates were closely related to *L. zeae* strain RIA 482, one isolate had homology to *L. intestinalis* strain TH4 while the last one isolate was identified as *L. rhamnosus* strain NBRC 3425.

Multiple Sequence Alignment was successfully used to compare between k6-3a, *L. helveticus* strain NBRC 15019, and *L. gallinarum* strain ATCC 33199. k6-3a has indicated highest similarity to *L. gallinarum* strain ATCC 33199 using Blast analysis. However, it was closely related to *L. helveticus* sequence using Clustal Omega program as shown in Figure 3.22

L.helvet k6-3a L.gallin	<pre>CATCGGAAACTGTTTTCTTGAGTGCAGAACAGGAGACTGGAA TCCATGTGTAGCGGTG CATCGGAAACTGTTTTCTTGAGTGCAGAACAGGAGACTGGAA TCCATGTGTAGCGGTG CATCGGAAACTGTTTTCTTGAGTGCAGAACAGGAGACTGGAAACTCCATGTGTAGCGGTG *****</pre>
L.helvet k6-3a L.gallin	<pre>GAATGCGTAGATATATGGAAAGAACACCACTGGCGAAGGCGACTCTCTGGCTGCAACTGA GAATGCGTAGATATATGGAAAGAACACCACTGGCGAAGGCGACTCTCTGGCTGCAACTGA GAATGCGTAGATATATGGAAAGAACACCACTGGCGAAGGCGCTCTGGCTGCAACTGA *****</pre>

Figure 3.22 The alignment of the 16S rRNA gene of *Lactobacillus* isolate k6-3a with bases of *L. helveticus* and *L. gallinarum*.

The MSA identification of k6-3a as *L. helveticus* was confirmed by 2 ways 16s rRNA sequencing (Table 3. 14)

In addition, k2-3 isolate was aligned with the sequences of *L. gallinarum* strain ATCC 33199 adapted from NCIB blast by using Clustal Omega program. K2-3 is

similar to *L. intestinalis* more than *L. gallinarum* and *L. helveticus* by Multiple Sequence Alignment as seen in Figure 3.23

Figure 3.23. The alignment of the 16S rRNA gene of k2-3 isolate with bases of *L. helveticus*, *L. intestinalis*, and *L. gallinarum*.

MSA was also used to compare isolate K5-14, *L. casei*, *L. paracasei* and *L. zaeae*. It was useful to find single nucleotide match between K5-14 and *L. zaeae* (Figure 3.24)

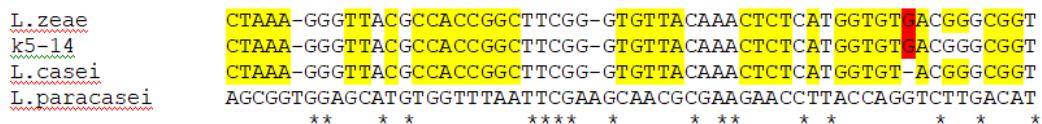


Figure 3.24 The alignment of the 16S rRNA gene of K5-14 isolate with bases of *L. zaeae*, *L. casei*, and *L. paracasei*.

MSA was also performed to compare K6-14, *L. paracasei*, *L. zaeae* and *L. rhamnosus*. One more nucleotide similarity was observed between k6-14 and *L. rhamnosus*. However, low similarity was obtained with all species (Figure 3.25). Therefore, this isolate could be a closely related new species.

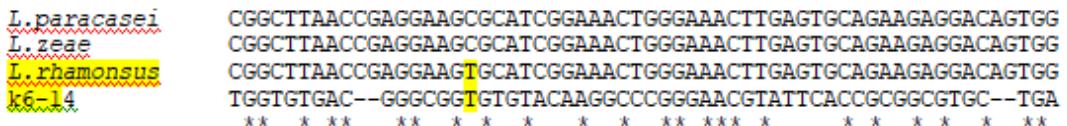


Figure 3.25 The alignment of the 16S rRNA gene of K6-14 isolate with bases of *L. zeae*, *L. rhamnosus* and *L. paracasei*.

MSA of K5-15, *L. casei*, *L. paracasei* and *L. ziae* has shown that K5-15 was closely related to *L. ziae* with 3 nucleotides while similarity with 2 nucleotides was observed with *L. paracasei*. As shown in Figure 3.26.

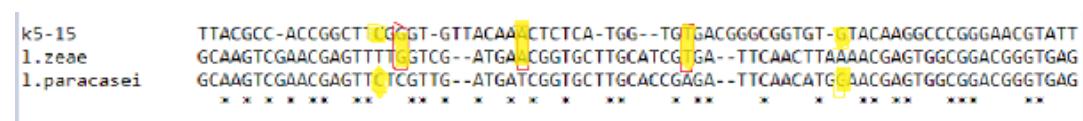


Figure 3.26 The alignment of the 16S rRNA gene of K5-15 isolate with bases of *L. zae*, *L. casei*, and *L. paracasei*.

Thus, allignment for K5-15 isolate gave controversial result. This problem was solved with 2 ways sequencing which allowed identification of this isolate as *L. paracasei* (Table 3.14).

Some isolates were selected for two-directions sequencing of 16s rRNA as shown in Table 3.14.

Table 3.14 Results of one and two directions 16S rRNA sequencing and MSA

Isolate name	One direction of 16S rRNA sequencing	Multiple Sequence Alignment (MSA)	two directions of 16S rRNA sequencing
K2-3	<i>L. gallinarum</i>	<i>L. intestinalis</i>	<i>L. gallinarum</i>
K5-14	<i>L. paracasei</i>	<i>L. zeae</i>	<i>L. paracasei</i>
K5-15	<i>L. paracasei</i>	<i>L. zeae</i> and\or <i>L. paracasei</i>	<i>L. paracasei</i>
K6-3a	<i>L. gallinarum</i>	<i>L. helveticus</i>	<i>L. helveticus</i>
K6-14	<i>L. paracasei</i>	<i>L. rhamnosus</i>	<i>L. paracasei</i>

It is highly difficult to differentiate closely related species of *Lactobacillus*. In our study, K2-3, K5-14, K5-15 and K6-14 were identified by 16S rRNA sequencing in both one and two directions. On the other hand, K6-3a resulted in identification as same species by MSA and sequencing in two directions. Meanwhile, MSA for K5-15 indicated an ambiguous result in between two similar species of *L. zeae* and *L. paracasei* whereas sequencing in two directions resulted in one of these species, *L. paracasei*. These results demonstrated that MSA could also provide reliable results in identification of some species.

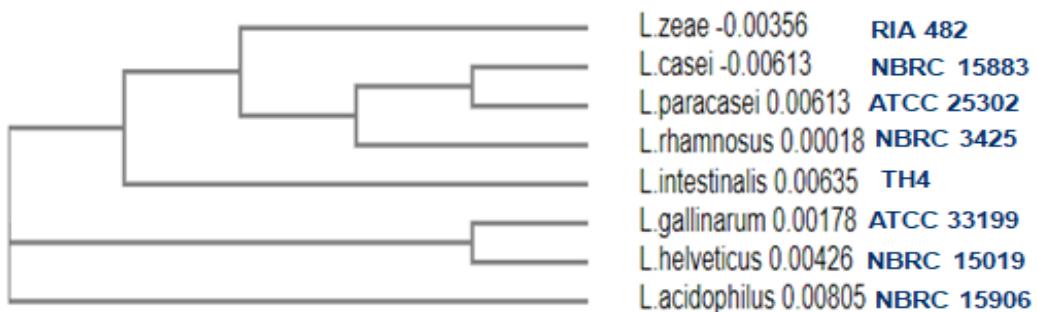


Figure 3.27 Phylogenetic tree of aligned 16S rRNA gene sequences for the known species.

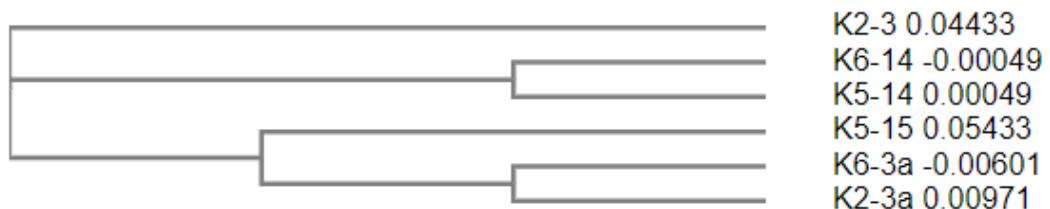


Figure 3.28 Phylogenetic tree of aligned 16S rRNA gene sequences for some isolates.

Figure 3.29 Phylogenetic tree of aligned 16S rRNA gene sequences for K6-14 with related known species.

In fact, It is also hard to differentiate *L. paracasei* subsp. *tolerans* strain NBRC 15906, *L. casei* strain NBRC 15883, and *L. zae* strain RIA 482 strains since they are closely related. Salvetti et al (2012) and Huang et al (2018) demonstrated that *L. casei*, *L. paracasei*, and *L. rhamnosus* comprise the *L. casei* group and these strains are closely related in the phenotypic and genotypic properties. Also, there are difficulties in identifying these species by the most used genotypic assay of 16S rRNA gene sequencing. That was the reason for controversial taxonomic status and nomenclature of this group. Furthermore, Desai (2006) presented that *L. casei*, *L. paracasei*, *L. zae*, and *L. rhamnosus* form a taxonomic group and had difficulty to differentiate from each other using traditional methods.

16S rRNA gene sequences in many *Lactobacillus* species are too similar to be easily distinguished. In particular, closely related species within the *L. acidophilus* group (*L. acidophilus*, *L. gallinarum*, and *L. helveticus*), the *L. casei* group (*L. casei*, *L. paracasei*, and *L. rhamnosus*), the *L. plantarum* group (*L. plantarum*, *L. paraplanitarum*, and *L. pentosus*), and the *L. sakei* group (*L. sakei*, *L. curvatus*, and *L. graminis*) are hard to identify by 16S rRNA gene sequences. (Hung C., 2017 and 2018).

Based on 16S rRNA gene sequences, many subspecies previously known as *L. casei* were reassigned into the other species. *L. casei* subsp. *alactosus* and *L. casei* subsp. *pseudoplanitarum* were rearranged to *L. paracasei* subsp. *paracasei*, and *L. casei* subsp. *tolerans* was renamed as *L. paracasei* subsp. *tolerans* (Collins et al. 1989). This may be explain the presence of many isolates of *L. paracasei* isolated from kefir samples using partial 16S rRNA gene sequencing.

Kao et al (2007) outlined that both *L. paracasei* and *L. rhamnosus* were organized in the *L. casei* group and their 16S rRNA sequence has 98% similarity so it is difficult to differentiate them by conventional PCR procedure. Also, it was investigated that

the classification of *L. paracasei* group (including *L. casei*, *L. paracasei* and *L. zae*) were regarded as members of the same group according to 16S rRNA gene sequencing.

Skerman et al (1980) demonstrated that all *L. casei* strains in their study were identified as *L. paracasei* or *L. casei* by the result of 16S rRNA sequencing.

According to Stackebrandt and Goebel (1994), the strains presenting homology of at least 97% might be identified as the same species. In our work, BLAST results of the most isolates showed 99% or higher percentage of identity with both *L. paracasei*, *L. casei*, *L. zae*, and *L. rhamnosus*. The same was happening between *L. helveticus*, *L. gallinarum*, *L. crispatus*, and *L. amylovorus*. Fujisawa et al (1990) and Klein et al (1998) classified the species *L. acidophilus*, *L. crispatus*, *L. gallinarum*, *L. gasseri*, *L. amylovorus*, and *L. johnsonii* within the *L. acidophilus/L. delbrueckii* group.

(Kim et al., 2020) accomplished a genomic analysis of *L. helveticus* and *L. gallinarum* and the result proved that *L. gallinarum* strain containing a unique gene of *L. helveticus*). This result confirmed the similarity between *L. helveticus* and *L. gallinarum* in our results of 16S rRNA sequencing.

The results of different identification methods are often ambiguous, due to the close genetic relationship between species of *L. acidophilus* group and *L. casei* group, So the development of a suitable method to identify these bacteria is necessary. Yu et al (2012) have demonstrated a strategy using elongation factor (*tuf* gene), heat shock protein gene and phenylalanyl-tRNA synthase to discriminate the closely related species in *L. acidophilus* group, *L. casei* group and *L. plantarum* group.

The present results demonstrate that *L. paracasei* subsp. *tolerans* strain NBRC 15906 was the predominant species in Turkish and Kyrgyzstan samples and are in line with the study of Magalhães et al (2011) that *L. paracasei* was the most

abundant bacterium in the Brazilian kefir sample. *L. paracasei* was also isolated and identified from Turkish, Russian, Brazilian, and Argentinian kefir samples (Merih and Evrim, 2015; Kotova et al., 2016; Magallhaes et al., 2011; Zanirati et al., 2015; Garrote et al., 2001). These results confirmed the similarity between Turkish kefir beverage with kefir samples from other regions. (Table 3.15)

L. gallinarum strain ATCC 33199 was the predominant species in K2 kefir from Ankara. Four isolates (K2-2a), (K2-3a), (K2-4a), and (K2-14) were identified as *L. gallinarum* from K2 and one isolate from K3 (K3-3a) was identified as *L. gallinarum*. These results have some similarities with results of Kok-Tas et al (2012) and Nalbantoglu et al (2014) that detected *L. gallinarum* in Turkish kefir grains.

From Taiwanese, Bulgarian, Brazilian, South African, and Turkish kefir grains and beverages, *L. helveticus* were isolated and identified (Chin et al., 1999; Simova et al., 2002; Leite et al., 2012; Zanirati et al., 2015; Witthuhn et al., 2004, 2005; Kok-Tas et al., 2012; Nalbantoglu et al., 2014). This is in good agreement with our findings for isolation of *L. helveticus* from (K4-6a) Kyrgyzstan milk product and (K6-3a) from Istanbul kefir sample.

Table 3.16 shows a summary for the results of real-time PCR and results of identification by 16S rRNA sequencing. *L. paracasei* was significant positive as predominant probiotic bacteria in kefir with both assays. In the recent study, *L. paracasei* was isolated and identified from all kefir samples and also it was detected using real-time PCR in all samples including the commercial one, Turkish homemade kefir samples, and Kyrgyzstan milk product. However, *L. kefiri* and *L. kefiransfaciens* were predominant in real-time PCR in kefir samples, but our investigations could not obtain any of them from the *Lactobacillus* isolation.

Table 3.15 Summary for identification of isolates and references

Isolates	Reference strain	Identification percentage %	Similar kefir samples	References
K2-4, K3-2a, K3-8b2, K3-13b, K3-20, K3-20a, K3-28, K4-16, K4-17, K4-28, K5-3, K5-3a, K5-5a, K5-11, K6-1, K6-6a, K6-7, K6-9a, and K6-12	<i>L. paracasei</i> subsp. <i>tolerans</i> strain NBRC 15906	79.08-99.91%	Brazilian, Turkish, Russian, Argentinian	Merih and Evrim, 2015; Kotova et al., 2016; Magallhaes et al., 2011; Zanirati et al., 2015; Garrote et al., 2001
K2-2a, K2-3a, K2-4a, K2-14, K3-3a	<i>L. gallinarum</i> strain ATCC 33199	99.19-99.45%	dairy products	Tamime A Y. et al, 1005
*K2-3	<i>L. intestinalis</i> strain TH4	98.27%	-	-
K4-6a, *K6-3a	<i>L. helveticus</i> strain NBRC 15019	99.23-99.66%	Bulgarian Brazilian South African Turkish	Simova et al., 2002 Leite et al., 2012; Zanirati et al., 2015 Withuhn et al., 2004, 2005 Kok-Tas et al., 2012; Nalbantoglu et al., 2014
*K5-14, *K5-15	<i>L. zae</i> strain RIA 482	99.21-99.71	-	-
*K6-14	<i>L. rhamnosus</i> strain NBRC 3425	99.45%	Dairy products	Wouters et al. (2002)

Some differences were found between the variety of *Lactobacillus* species detected using real-time PCR and isolates identification according to 16S rRNA sequencing. These differences are related to the high sensitivity and accuracy of real-time PCR for detecting very minute amounts of bacterial cells which can not be isolated by traditional cultivation methods (Mark et al., 2005).

In the present study, The microbial population of kefir and milk product samples was detected, this proved that our samples had great variety in probiotic microorganisms.

Homemade kefir from Ankara (K2) had *L. kefiri*, *L. kefiranofaciens*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. casei*, *L. paracasei*, *Saccharomyces cerevisiae*, *L. Plantarum*, *L. gallinarium* and *L. ziae*. The K2 is more rich in probiotic strains than K3 from Ankara since *L. delbrueckii* subsp. *bulgaricus*, *L. ziae*, and *L. plantarum* were not detected in K3 .

Table 3.16 shows the results of real time PCR and isolation of kefir isolates

Lactobacillus isolates	K1 (AOC)		K2 (Ankara kefir)		K3 (Ankara kefir)		K4 (Kyrgyzstan)		K5 (Istanbul kefir)		K6 (Istanbul kefir)	
	RT. PCR	RT. PCR	Isolation	RT. PCR	Isolation	RT. PCR	Isolation	RT. PCR	Isolation	RT. PCR	Isolation	RT. PCR
1 <i>L. acidophilus</i> (<i>L. gallinarium</i>)	+	+	+	+	+	+	-	+	-	-	-	-
			(k2-2a) (k2-3a)		(k3-3a)							
			(k2-4a) (k2-14)		(<i>L. gallinarium</i>)							
2 <i>L. casei</i>	+	+	-	+	-	+	-	+	-	+	-	-
3 <i>L. paracasei</i>	+	+	+	+	+	+	+	+	+	+	+	+
			(k2-4)		(k3-2a) (k3-8b2)		(k4-16)		(k5-3) (k5-3a)		(k6-1) (k6-6a)	
					(k3-13b) (k3-20)		(k4-17)		(k5-5a)		(k6-7) (k6-9a)	
					(k3-20a) (k3-28)		(k4-28)		(k5-11)		(k6-12)	
4 <i>L. delbrueckii</i> subsp. <i>bulgaricus</i>	+	+	-	-	-	+	-	+	-	+	-	-
5 <i>L. kefiri</i>	+	+	-	+	-	+	-	+	-	+	-	-
6 <i>L. kefirinofaciens</i>	+	+	-	+	-	+	-	+	-	+	-	-
7 <i>L. fermentum</i>	-	-	-	-	-	+	-	-	-	+	-	-
8 <i>L. plantarum</i>	+	+	-	-	-	-	-	-	-	-	-	-
9 <i>S. cerevisiae</i>	-	+	-	+	-	+	-	+	-	+	-	-
10 <i>S. thermophilus</i>	+	-	-	+	-	+	-	+	-	+	-	-
11 <i>L. sobris</i> <i>amylovorus</i>	-	-	-	-	-	+	-	+	-	-	-	-
12 <i>L. helveticus</i>	NT	NT	-	NT	-	NT	+	NT	-	NT	+	(k6-3a)
13 <i>L. intestinalis</i>	NT	NT	+	NT	-	NT	-	NT	-	NT	-	
			(K2-3)									
14 <i>L. zeae</i>	NT	NT	-	NT	-	NT	-	NT	+	NT	-	
									(k5-14)			
									(k5-15)			
15 <i>L. rhamnosus</i>	NT	NT	-	NT	-	NT	-	NT	-	NT	+	(k6-14)

+, detected and/or isolated, -, not detected |or not isolated; NT, not tested

Milk sample from Kyrgyzstan (K4) was the richest sample of bacteria and yeast using real-time PCR, even than the commercial one. It was composed of *L. kefiri*, *L. kefirano faciens*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. casei*, *L. paracasei*, *Saccharomyces cerevisiae*, *Streptococcus thermophilus*, *L. amylovorus*, *L. fermentum*, and *L. helveticus*.

Homemade kefir from Istanbul (K5) had *L. kefiri*, *L. kefirano faciens*, *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. casei*, *L. paracasei*, *Saccharomyces cerevisiae*, *Streptococcus thermophilus*, *L. amylovorus*, and *L. intestinalis*.

In addition, the kefir sample from Istanbul (K6) was the only sample that lacked *L. acidophilus* using real-time PCR assay. However, it had *L. kefiri*, *L. kefirano faciens*, *L. delbrueckii* subsp. *bulgaricus*, *L. casei*, *L. paracasei*, *Saccharomyces cerevisiae*, *Streptococcus thermophilus*, *L. fermentum*, *L. helveticus*, and *L. rhamnosus*.

The microbial population in our samples had significant similarity with the microbial population of other kefir samples from Turkey, China, Brazil, Bulgaria, Taiwan, and Argentine as shown in Chapter 1 (Table1.1).

All of these probiotic strains might have beneficial roles in reducing cholesterol, improving digestion, enhancing the immune system, and cancer prevention. (Shavit 2008; Chiang and Pan, 2012; Berardi et al., 2013). Therefore, the most investigations are focused on lactobacilli for the isolation, selection, identification, and development of new strains with desired properties.

CHAPTER 4

CONCLUSION

Kefir is a fermented milk product, produced by kefir grains. It has always been traditionally consumed in Turkey. Kefir is rich in probiotics of LAB, acetic acid bacteria, and yeasts. These LAB play an important role in the kefir production, in addition to some benefits for human health. Therefore, in this study, four samples of Kefir grains were collected from different regions in Turkey and Kefir beverage was prepared from them for detection and isolation of probiotics. In addition, one milk product from Kyrgyzstan and one commercial kefir product (AOC) were used for the detection and identification of the kefir population.

In the first part of the study, a SYBR green based real-time PCR assay (real-time PCR) was performed for detection of kefir probiotic bacteria and a yeast with specific primers for the species *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. kefiri*, *L. kefiranciens*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus*, *Saccharomyces cerevisiae*, *L. casei* and *L. paracasei* using DNA directly isolated from kefir sources. The results of real time PCR were summarized according to the amplification and melting curves. *L. kefiri*, *L. kefiranciens*, *L. casei*, and *L. paracasei* were detected in all kefir samples. In addition to the presence of *L. acidophilus*, *L. delbrueckii* subsp. *bulgaricus*, *L. fermentum*, *L. plantarum*, *L. amylovorus*, *Streptococcus thermophilus*, and *Saccharomyces cerevisiae* in some kefir samples. The predominance of some lactic acid bacteria and yeast in homemade kefir supports the importance of these probiotics in commercial kefir production.

In the second part of the current study, LAB were isolated from kefir samples. Isolates were identified using microscopic and biochemical identification methods as

temperature, pH, bile salt, NaCl, and phenol tolerance tests. Also, lactose production, sugar fermentation, and proteolysis activity tests were performed.

All the kefir isolates showed resistance to acid, temperature, phenol, and bile salts in addition to their proteolytic activity.

L. acidophilus group and *L. casei* group isolates are difficult to differentiate. However, thirty bacterial isolates were identified by partial 16S rRNA sequencing (one or two ways) and the results of sequencing were determined by BLAST analysis and Multiple Sequence Alignment.

All isolates were identified according to sequencing and alignment. It was determined that 19 isolates were *L. paracasei* subsp. *tolerans* strain NBRC 15906, 5 isolates were *L. gallinarum* strain ATCC 33199, two were *L. helveticus* strain NBRC 15019, two were *L. zae* strain RIA 482, one was *L. intestinalis* strain TH4 and one was *L. rhamnosus* strain NBRC 3425.

As a result, it was concluded that real-time PCR is an accurate method for detection of the kefir population and there are many probiotic bacteria in examined kefir samples with good probiotic properties and proteolytic activity. The identified isolates in this study, have potential to be used for the production of kefir.

Further studies are required to select some of these dominant probiotics with specific benefits from kefir to produce lyophilized kefir.

REFERENCES

Aarti, C., Khusro, A., Varghese, R., Arasu, M. V., Agastian, P., Al-Dhabi, N.A., Ilavenil, S. and Choi, K. C. (2018). "In vitro investigation on probiotic, anti-candida, and antibiofilm properties of *Lactobacillus pentosus* strain LAP1". *Arch. oral. biol.*, 89: 99-106.

Abdel Aziz. M Shadia. (2014) . "Strategies Inhibition and Dispersal: Biofilm B" *Biotechnology SAJ* 1 (1) :105

Abdel-Rahman M.A., Tashiro Y., Zendo T., Hanada K., Shibata K. And Sonomoto K. (2011) "Efficient homofermentative L-(+)- lactic acid production from xylose by a novel lactic acid bacterium *Enterococcus mundtii*" *QU 25*. *Applied and Environmental Microbiology*, 77: 1892–5

Abd El-Fattah A.M. Sally Samir Sakr, Samia Mahmoud El-Dieb & Hany Abdel Satar Elkashef (2017) "Bioactive peptides with ACE-I and antioxidant activity produced from milk proteolysis" *International Journal of Food Properties*, 20:12

Abdulamir A. S., Yoke T., Nordin N. and Abu Bakar F. (2010) "Detection and quantification of probiotic bacteria using optimized DNA extraction, traditional and real-time PCR methods in complex microbial communities" *African Journal of Biotechnology* Vol. 9 (10), pp. 1481-1492

Abu-Tarboush, H. M. (1996). "Comparison of associative growth and proteolyticactivity of yoghurt starters in whole milk from camels andcows". *Journal of Dairy Science*, 79, 366 -371.

Adolfsson, O.; Meydani, S.N.; Russell, R.M. (2004) " Yogurt and gut function". *Am. J. Clin. Nutr.*, 80, 245–256.

Adriana, P., & Socaciu, C. (2008). "Probiotic activity of mixed cultures of kefir's lactobacilli and non-lactose fermenting yeasts". Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca - Agriculture, 65(2), 329–334.

Aghlara, & et al. (2009). "Characterization of headspace volatile flavor compounds formed during kefir production" Application of solid phase Microextraction. International Journal of Food Properties, 12(4), 808–818.

Ahmed, F. E., Gouda, M. M., Hussein, L. A., Ahmed, N. C., Vos, P. W., & Mohammad, M. A. (2017). "Role of melt curve analysis in interpretation of nutrigenomics" MicroRNA expression data. Cancer Genomics and Proteomics, 14(6), 469–481.

Ahmed, T. and Kanwal, R. "Biochemical characteristics of lactic acid producing bacteria and preparation of camel milk cheese by using starter culture" Pakistan Vet. J. 2004; 24:87-91.

Ahmed, Z., Y. Wang, N. Anjum, A. Ahmad, and S. T. Khan. 2013. "Characterization of exopolysaccharide produced by Lactobacillus kefirnofaciens ZW3 isolated from Tibet kefir" Part II. Food Hydrofoil. 30:343-350.

Ahmed Z, Wang Y, Ahmad A, et al. (2013) "Kefir and health: a contemporary perspective". Crit Rev Food Sci Nutr 53, 422–434.(13)

Ahn, Y. T., G. B. Kim, K. S. Lim, Y. J. Baek, and H. U. Kim, (2003) "Deconjugation of bile salts by Lactobacillus acidophilus isolates," International Dairy Journal, vol. 13, no. 4, pp. 303–311.,

Altay, F., Karbancioglu- Güler, F., Daskaya- Dikmen, C., and Heperkan, D. (2013)."A review on traditional Turkish fermented non-alcoholic beverages:

microbiota, fermentation process and quality characteristics". Int. J .Food Microbiol. 167, 44–56

Antoniou, K. D., G., T., & G. Dimitreli, G. T. and. (2008). "Effect of Starter Culture, Milk Fat and Storage Time on the Rheological Behaviour of Kefir".

Askari Zakariah M., Ratmawati Malaka, Amran Laga, and Ambo Ako (2019) "Isolation and Identification of Lactic Acid Bacteria from Dangke a White Soft Traditional Cheese from Enrekang Regency" . International Journal of Recent Technology and Engineering ISSN: 2277-3878, (8)2.

Asmahan, A.A. (2011). "Isolation and Identification of Lactic acid bacteria isolated from traditional drinking yoghurt in Khartoum State, Sudan". Current research in bacteriology. 4(1): 16-22.

Atanasova, J., Moncheva, P. and Ivanova, I. (2014). "Proteolytic and antimicrobial activity of lactic acid bacteria grown in goat milk". Biotechnol Biotechnol Equip. 28, 1073-1078.

Ávila, M.; Garde, S.; Medina, M.; Nuñez, M.(2005) . "Effect of milk inoculation with bacteriocin-producing lactic acid bacteria on a Lactobacillus helveticus adjunct cheese culture". J. Food Prot. 68, 1026–1033

Axelsson ,L. Lactic acid Bacteria (1998) "Classification and Physiology in lactic acid Bacteria, Microbiology and functional Aspects "(Marcel Dekker Inc ,NEW YORK, pp.1-7.

Ayeni F A , B Sánchez, BA Adeniyi, G Clara, A Margolles, P Ruas-Madiedo. (2011). "Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine". International Journal of Food Microbiology 147 (2), 97-104

Bakar, F. A., Nordin, N., Yoke, T. S., & Abdulamir, A. S. (2010). "Detection and quantification of probiotic bacteria using optimized DNA extraction , traditional and real-time PCR methods in complex microbial communities". African Journal of Biotechnology, 9(10), 1481–1492.

Bakari D, Tatsadjieu NL, Mbawala A, Mbofung CM. (2011). "Assessment of physiological properties of some lactic acid bacteria isolated from the intestine of chickens use as probiotics and antimicrobial agents against enteropathogenic bacteria". Innov Rom Food Biotechnol 8: 33–40.

Barreto C, Ngom-Bru C, Genevaz A, Fournier C, Moine D, Kassam M, et al. (2016). "Genome sequence of *Lactobacillus fermentum* strain NCC2970 (CNCM I-5068)". Genome Announc. 4: e 01254- e 01216.

Begley, M., Gahan, C.G.M. and Hill, C. (2005). "The interaction between bacteria and bile". FEMS Microbiology Reviews 29: 625-651.

Begley M., Hill C., Gahan C.G.M. (2006): "Bile salt hydrolase activity in probiotics". Applied and Environmental Microbiology, 72: 1729–1738

Berardi, C. W., Solovey, E. T., and Cummings, M. L. (2013). "Investigating the efficacy of network visualizations for intelligence tasks," in Proceedings of the IEEE International Conference on Intelligence and Security Informatics, (Seattle, WA), 278–283.

Berg, R.D. (1995). "Bacterial translocation from the gastrointestinal tract". Trends Microbiol.3, 139-154.

Berg, J.M., Tymoczko, J.L., and Stryer, L. (2012). Biochemistry, 7th edition. W. H. Freeman and Company, New York, NY.

Beshkova D, Simova ED, Simov ZI, Frengova GI, Spasov Z N (2002) "Pure cultures for making kefir". Food Microbiol 19:537-544.

Beshkova, D.; Simova, E.D.; Frengova, G.I.; Simov, Z.i.; Dimitrov, Z.H.P. (2003). "Production of volatile aroma compounds by kefir starter cultures". International Dairy Journal, v.13, p.529-535

Bogdan N. , Ovidiu T. , Mihai N. , Mihaela T. , Mirela H. , Ionela M. (2014) "Identification of probiotic strains from human milk in breastfed infants with respiratory infections". Food technology Vol. xviii , no. 2

Bonfini, L., W. Moens, E. Ben, M. Querci, B. Aygun, P. Corbisier, D. Morisset, J. Zel, and G. Van den Eede. (2007). "Analytes and related PCR primers used for GMO detection and quantification". JRC Sci. Technol. Rep. EUR 23059 EN. 1-51.

Boris, S., J.E. Suárez, F. Vázquez, Barbés. (1998). "Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens". Infect. Immun. 66, 1985- 1989

Bujnakova D, Kmet V (2012). "Functional properties of *Lactobacillus* strains isolated from dairy products". Folia Microbiol 57:263–267

Burns P, Patrignani P, Serrazanetti D, Vinderola GC, Reinheimer JA, Lanciotti R, Guerzoni ME. (2008). "Probiotic Crescenza Cheese containing *Lactobacillus casei* and *Lactobacillus acidophilus* manufactured with high-pressure homogenized milk". J Dairy Sci, 91 (2) 500-512.

Çarasi P, Racedo SM, Jacquot C, et al. (2015). "Impact of kefir derived *Lactobacillus* kefiri on the mucosal immune response and gut microbiota". Journal of Immunology Research;2015:361604.

Çakır, İ. (2003). "Determination of some probiotic properties on Lactobacilli and Bifidobacteria". Ankara University Thesis of Ph.D.

Chakraborty, A., & Bhowal, J. (2015). "Original Research Article Isolation , Identification and Analysis of Probiotic Properties of *Lactobacillus Spp.* from Selected Regional Dairy Product ". *Int.J.Curr.Microbiol.App.Sci*, 4(6), 621–628.

Chen, Y. P., and M. J. Chen. (2013). "Effects of *Lactobacillus kefiranofaciens* M1 isolated from kefir grains on germ-free mice". *PLoS One* 8:e78789.

Chen, Y. P., P. J. Hsiao, W. S. Hong, T. Y. Dai. and M. J. Chen. (2012). "Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo". *J. Dairy Sci.* 95:63-74.

Chen X, Wu RN, Meng H, Zhang HP.(2008)." Review on the mechanism of acid tolerance of lactic acid bacteria". *China Dairy Ind*; 3: 30-34.

Cheirsilp B, Shimizu H, Shioya S .(2003). Enhanced kefiran production by mixed culture of *Lactobacillus kefiranofaciens* and *Saccharomyces cerevisiae*". *J. Biotechnol* 100:43-53.

Chiang, S.S. and Pan, T.M. (2012). "Beneficial effects of *Lactobacillus paracasei* subsp. *paracasei* NTU 101 and its fermented products". *Appl. Microbiol. Biotechnol.* 93, 903-916.

Chin Wen, L., HsiaoLing, C., & JeRuei, L. (1999). "Identification and characterization of lactic acid bacteria and yeasts isolated from kefir grains in Taiwan". *Australian Journal of Dairy Technology*, 54(1), 14-18.

Chou, L.S and Weimer, B. (1999). "Isolation and characterization of acid and bile tolerant isolates from strains of *Lactobacillus acidophilus*". *Journal of Dairy Science* 82:23- 31.

Chon, J. W., H. S. Kim, K. Y. Song, D. H. Kim, H. S. Kim, J. H. Yim, D. Choi, D. G. Hwang, Y. G. Kim, S. K. Lee, and K. H. Seo. (2013). "Functional

characteristics of kefir as a fermented dairy product "a review. Korean J. Dairy Sci. Techno!. 31:99-108

Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) "Peptidases and amino acid catabolism in lactic acid bacteria". Antonie Van Leeuwenhoek, 76:217-246.

Christian A. Heid, Junko Stevens, Kenneth J. Livak, and P. Mickey Williams. "Real Time Quantitative PCR".(1996) . Cold spring Harbor laboratory press.

Collins ,M.D.,Phillips ,B.A., and Zanoni,P.(1989). "Deoxyribonucleic acid homology studies of *Lactobacillus casei*, *Lactobacillus paracasei* sp. nov ., subsp.*paracasei* and subsp. *tolerans* ,and *Lactobacillus rhamnosus* sp .nov., comb .nov" .Int. J. Syst.Bacteriol. 39 :105-108.

Collins, J.K., G. Thornton, G.O. Sullivan. (1998). "Selection of probiotic strains for human applications". Int. Dairy J. 8, 487-490.

Cross, M.L. (2002). "Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens". FEMS Immunol. Med. Microbiol. 34, 245-253.

Da Cruz Pedrozo Miguel, M. G., P. Gomes Cardoso, L. de Assis Lago, and R. F. Schwan.(2010). "Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods". Food Res. Int. 43:1523–1528

Delley, M and Germont, JE (2002). "Differentiation of *Lactobacillus helveticus*, *Lactobacillus delbrueckii* subsp *bulgaricus*, subsp *lactis* and subsp *delbrueckii* using physiological and genetic tools and reclassification of some strains from the ATCC collection". Syst. Appl. Microbiol., 25: 228-231.

De Montijo-Prieto, S., Moreno, E., Bergillos-Meca, , Lasserrot, A., Ruiz-López, M.D., Ruiz-Bravo, A., Jiménez-Valera, M.A. (2015) "Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with *Yersinia enterocolitica* O9 and modulates immunity in mice". Res. Microbiol. 166(8) pp. 626–32

Deshpande K.G, C.B. Dolas, and N.S. Chavan. (2014) " Investigation of tolerance of *Lactobacillus casei* to the presence of acids, bile salts and Deconjugation of bile salts". Int. J.Curr. Microbiol. App.Sci 3 (7) 600 - 612

Desai. A. R, N. P. Shah, and I. B. Powell. (2006). "Discrimination of Dairy Industry Isolates of the *Lactobacillus casei* Group" . J. Dairy Sci. 89:3345–3351

De Vuyst, L. and P. Neysens (2005). "Biodiversity and identification of sourdough lactic acid bacteria". Food Microbiol., 24(2): 120-127

DiBaise, J. K., Zhang, H., Crowell, M., Krajmalnik-Brown, R., Decker, G. A., & Ritmann, B. E. (2008). "Gut microbiota and its possible relationship with obesity". Mayo Clinic Proceedings, 83,460–469

Dicks LMT, Du Plessis EM, Dellaglio F, Lauer E. (1996). "Reclassification of *Lactobacillus casei* subsp. *casei* ATCC 393 and *Lactobacillus rhamnosus* ATCC 15820 as *Lactobacillus zaeae* nom. rev., designation of ATCC 334 as the neotype of *L. casei* subsp. *casei*, and rejection of the name *Lactobacillus paracasei*". Int J Syst Bacteriol; 46: 337–40.

Dobson, A., O. O'Sullivan, P. D. Cotter, P. Ross, and C. Hill. (2011). "High-through put sequence-based analysis of the bacterial composition of kefir and an associated kefir grain". FEMS Microbiol. Lett. 320: 56-62.

DONG-Hyeon Kim ; JUNG-Whan Chon; HONG Seok Kim; JIN Hyeok Yim; HYUNSOOK KIM; KUN-Ho S. (2015) "Rapid Detection of Lactobacillus

kefiranofaciens in Kefir Grain and Kefir Milk Using newly developed Real time PCR" . J Food Prot (2015) 78 (4): 855–858.

Drago L, De Grandi R, De Vecchi E, (2016)." Antibiotic susceptibility profile of a new *Lactobacillus kefiri* strain". Journal of Global Antimicrobial Resistance.4:74–5.

Drancourt M., Claude Bollet, Antoine Carlioz. (2000). "16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates". Journal of Clinical Microbiology 38(10):3623-30

Du Toit, M., Franz, C., Schillinger, U., Warles, B. and Holzapfel, W. (1998). "Characterization and selection of probiotic lactobacilli for a preliminary mini pigfeeding trial and their effect on serum cholesterol level, faeces moisture contents". International Journal of Food Microbiology 40: 93-104.

Dwight Z, Palais R, Wittwer CT (2011) "uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application". Bioinformatics, 27, 1019–1020.

Edward K, Logan J, and Saunders N.(2004)." Real time PCR : an Essential Guide. Norfolk, UK ": Horizon Bioscience.

Ehrmann, M. A., and Vogel, R. F. (2005). "Molecular taxonomy and genetics of sourdough lactic acid bacteria". Trends in Food Science and Technology. 16: 31-42.

Elizete D.F.R.P. and Carlos R. S. (2005). "Biochemical characterization and identification of probiotic Lactobacillus for swine ". B. CEPPA, Curitiba, 23: 299-310

Farnworth ER (2005) "Kefir - a complex probiotic" .Food Sci Technol Bull Functional Foods2:1-17

Farnworth ER, Mainville I (2008). "Kefir –A Fermented Milk Product". Handbook of Fermented .Functional Foods (2 ed). CRC Press Taylor & Francis Group, Boca Raton, London, New York, p. 89-127

Fernandes, C.F., Shahani, K.M. and Amer, M.A. (1987) . "Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products". FEMS Microbiol Rev46, 343–356.

Fijałkowska M. , Sebastian Przemieniecki W. , Cezary Purwin, .(2020). " The effect of an additive containing three Lactobacillus species on the fermentation pattern and microbiological status of silage". J Sci Food Agric 2020; 100: 1174–1184

Fons M. , Ana Gomez, Tuomo Karjalainen (2000). " Mechanisms of Colonisation and Colonisation Resistance of the Digestive Tract" . Microbial Ecology in Health and Disease, 12:2, 240-246.

Fooks, L. J., Fuller, R., and Gibson G. R. (1999) . "Prebiotics probiotics and human gut microbiology" . International Dairy Journal.1999; 9:53-61.

Forhad M. H. , S.M. Khaledur Rahman1, Md. Shahedur Rahman, Forhad Karim Saikot1 and Krishno Chandra Biswas.(2015)." Probiotic Properties Analysis of Isolated Lactic Acid Bacteria from Buffalo Milk". Vol. 7 No. 1: 5

Fuller, R. (1989). "A review: Probiotics in man and animals". J. Appl. Bact. 66, 365-378.

Fujisawa, T., K., Benno, Y., & Mitsuoka, A. N. D. T. (1990). "Lactobacillus intestinalis (ex Hemme 1974) Isolated from the Intestines of Mice and Rats". 302–304.

Fujisawa T, Benno Y, Yaeshima T, Mitsuoka T (1992) "Taxonomic study of the *Lactobacillus acidophilus* group, with recognition of *Lactobacillus gallinarum* sp. nov. and *Lactobacillus johnsonii* sp.nov. and synonymy of *Lactobacillus acidophilus* groupA3 with the type strain of *Lactobacillus amylovorus*". Int J Syst Bacteriol 42:487–491

Gandhi, D.N., Patel, R.S., Wadhwa, B.K., Bansal, N., Kaur, M. and Kumar, G. (2000). "Effect of agro-based by-products on production of lactic acid in whey permeate medium". J. Food Sci. Technol., 37, 292-295.

Gao,J.,Gu,F.,Abdella,N.H.,Ruan,H.,andHe,G.(2012)." Investigationon culturable microflora in Tibetan kefir grains from different areas of China". J. FoodSci. 77, 425–433.

Gao, J.,Gu, F.,He,J., Xiao, J.,C hen, Q., Ruan, H.,et al.(2013a)." Metagenome analysis of bacterial diversity in Tibetan kefir grains". Eur. FoodRes.Technol. 236,549–556.

Gao,J.,Gu,F., Ruan,H.,Chen, Q., He,J.,andHe,G. (2013b) ." Induction of apoptosis of gastric cancer cells SGC 7901invitro by a cell-free fraction of Tibetan kefir". Int. DairyJ. 30, 14–18.

Garofalo,C.,Osimani, A., Milanović, V., Aquilanti, L., De Filippis, F., Stellato,G. (2015)." Bacteria and yeast microbiota in milk kefir grains from different Italian regions". Food Microbiol. 49, 123–133.

Garrote, G.L., Abraham, A.G. and De Antoni, G.L. (2001). "Chemical and microbiological characterisation of kefir grains". J Dairy Res 68, 639–652

Garvie, E. I. (1984). "Separation of species of the genus Leuconostoc and differentiation of the leuconostocs from other lactic acid bacteria". Methods Microbiol. 16:147

Gaware, V., K., K., Dolas, R., Somwanshi, S., & Nikam, V. (2011). "THE MAGIC OF KEFIR" : A REVIEW Pharmacology online 1 : 376-386 .

Gawhen K ,Bergmeyer, H. U. & BERNT, E. (1974). "UV-assay with pyruvate and NADH. In Methods of Enzymatic Analysis" BERGMEYER, H.U., vol. 2, pp. 574–579.

Gebreselassie, N., Abay, F., & Beyene, F. (2016). Biochemical and molecular identification and characterization of lactic acid bacteria and yeasts isolated from Ethiopian naturally fermented buttermilk. Journal of Food Science and Technology, 53(1), 184-196

Gevers, D., G. Huys, J. Swings. (2001). "Applicability of rep-PCR fingerprinting for identification of Lactobacillus species". FEMS Microbiol. Lett. 205, 31-36.

Gibson, G.R., R. Fuller. (2000). "Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and probiotics for human use". J. Nutr. 130, 391S- 395S.

Gionchetti P, Rizzello F, Venturi A et al (2000) ."Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis :a double blind , placebo- controlled trial". Gastroenterology 119:305-309

Girum Tadesse, Eden Ephraim and Mogessie Ashenafr. (2011). "Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamitta traditional Ethiopian fermented beverages, on some food - borne pathogens and effect of growth medium on the inhibitory activity". International Journal of Food Safety, 5: 13 - 20.

Golden B.R. and S.L.Gorbach (1992). "Probiotics for humans In :Fuller, R(Ed), Probiotics" , The scientific Basis ,Chapman and Hall ,London ,335-376.

Guan LL, Hagen KE, Tannock GW, Korver DR, Fasenko GM, Allison GE (2003) "Detection and identification of *Lactobacillus* species in crops of broilers of different ages by using PCR denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis". *Appl Environ Microbiol* 69:6750–6757

Guzel-Seydim, Z. B., A. C. Seydim, and A. K. Greene. (2000). "Organic acids and volatile flavor components evolved during refrigerated storage of kefir". *J. Dairy Sci.* 83:275–277

Guzel-Seydim Z, Wyffels JT, Seydim AC, Greene AK (2005). "Turkish kefir and kefir grains: microbial enumeration and electron microscopic observation". *Int J Dairy Technol* 58:25-29

Granette, C., H. Müller-Alouf, D. Goudercourt, M.-C. Geoffroy, M. Turnier, A. Mercenier. (2001). "Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant *Lactobacillus plantarum*. *Infect*". *Immun.* 69, 1547-1553.

Grill, J.P., Cayuela, C., Antoine, J.M., Schneider, F., (2000). "Effects of *Lactobacillus amylovorus* and *Bifidobacterium breve* on cholesterol". *Lett. Appl. Microbiol.* 31, 154–156.

Haarman M.and Jan Knol. (2006). "Quantitative Real-Time PCR Analysis of Fecal *Lactobacillus* Species in Infants Receiving a Prebiotic Infant Formula". *Applied and environmental microbiology* vol. 72, No. 4p. 2359–2365.

Hamet, M.F., Londero,A., Medrano, M., Vercammen, E.,VanHoorde, K., Garrote, G.L.,(2013)."Application of culture-dependent and culture- independent methods forthe identification of *Lactobacillus kefiranofaciens* in microbial consortia present in kefir grains" *FoodMicrobiol.* 36, 327–334.

Hassan, F.H., Golnar, R., Mohammad, R.F., Mitra, M. and Mitra, S. (2012). "Evaluation of wound healing activities of kefir products". Elsevier. 38, 719-723

Hassan P, Peh KK. (2014). "Characterization and identification of *Lactobacillus acidophilus* using biolog rapid identification system". International Journal of Pharmacy and Pharmaceutical Sciences 6, 189-193.

Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. (1996). "Real time quantitative PCR". Genome Res 6, 986-994.

Herbel R. Stefan, Vahjen Wilfried, Wieler Lothar H and Guenther Sebastian; (2013) "Timely Approaches to Identify Probiotic Species of the Genus Lactobacillus. Gut Pathogens" 5(1).

Higuchi, R., Fockler, C., Dollinger, G., Watson R., Kinetic (1993)."PCR analysis: Real-time monitoring of DNA amplification reactions" Biotechnology, 11: 1026–1030 .

Hoier, E., (1992). "Use of probiotic starter cultures in dairy products". In: The 25th Annual Convention, Australian Institute of Food ScienceTechnology, Sydney, Australia

Holzapfel WH, Wood BJB (1998). "The genera of lactic acid bacteria". Blackie Academic and Professional, London

Holzapfel, W.H., P. Haberer, R. Geisen, J. Björkroth, U. Schillinger. (2001). "Taxonomy and important features of probiotic microorganisms in food nutrition". Am. J. Clin. Nutr. 73, 365S-373S.

Holzapfel, W.H. (2006). "Introduction to Prebiotics and Probiotics. In: Probiotics in Food Safety and Human health", Eds. I. Goktepe, V.K. Juneja ve M. Ahmedna, Taylor and Francis Group, CRC Press Boca Raton, 1-35.

Holzapfel , W. H. & Wood, B. J., (2014). "Lactic Acid Bacteria: Biodiversity and Taxonomy". Chichester: John Wiley & Sons.

Howell, W. M., Jobs, M., Gyllensten U., Brookes, A. J., (1999) ."Dynamic allele-specific hybridization, a new method for scoring single nucleotide polymorphisms", Nat. Biotechnol., 17: 87–88 .

Hoque M. Z., Akter F., Hossain M.K., Rahman M.S.M., Mbillah M. and ISLAMK. M. D.(2010)." Isolation, identification and analysis of probiotic properties of *Lactobacillus* Spp. from selective regional yogurts".World J. Dairy and Food Sci., 5(1): 39-46.

Huang CH, Liou JS, Huang L, Watanabe K.(2017). "Developing novel species-specific DNA markers for PCR-based species identification of the *Lactobacillus sakei* group". Lett Appl Microbiol.;66:138 –44.

Huang CH, Huang L. (2018). "Rapid species- and subspecies-specific level classification and identification of *Lactobacillus casei* group members using MALDI Biotype combined with Clin Pro Tools". J Dairy Sci.;101:979 –91.

Hugo, A., Kakisu, E., De Antoni, G., and Perez, P. (2008). "Lactobacilli antagonize biological effects of enterohaemorrhagic *Escherichia coli* in vitro". Lett. Appl. Microbiol. 46, 613–619.

Hujanen M. ,Y.Y.Linko (1996) ."Effect of temperature and various nitrogen sources on L(+)lactic acid production by *Lactobacillus casei*". Applied and Microbiology and Technology, Volume 45, Issue 3, pp 307–313.

Hutkins R. (2006). "Cultured dairy products". Microbiology and Technology of Fermented Foods, Blackwell Publishing, Ames, Iowa .Pages 107–114

Idris, A., & Suzana, W. (2006). "Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple

waste using immobilized *Lactobacillus delbrueckii*". Progress Biochemistry 41(5):1117-1123

Ishtiaq ahmed et al.,(2010). "Optimization of media and environmental conditions for alkaline protease production using *Bacillus subtilis* in submerged fermentation process". IJAVMS. Vol.4,issue 4,105-113.

Iyer, R., Thomas, S.K., Kapila, S., Mani, J., Singh, R., (2010). "Probiotic properties of folate producing *Streptococcus thermophilus* strains". Food Res. Int. 43, 103–110.

Iyer, R.; Tomar, S.K.; Maheswari, T.U.; Singh, R. (2010) "*Streptococcus thermophilus* strains: Multifunctional lactic acid bacteria". Int. Dairy J. 20, 133–141.

Jack RW, Tagg JR, Ray B (1995) "Bacteriocins of Gram -positive bacteria" Microbiol Rev 59:171-200.

Kakisu, E., Abraham, A.G., Tironi Farinati, C., Ibarra, C. and De Antoni, G.L. (2013) "*Lactobacillus plantarum* isolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin from *Escherichia coli* O157" H7. J Dairy Res 80, 64–71

Kao Y-T, Liu Y-S, Shyu Y-T (2007). "Identification of *Lactobacillus* spp. in probiotic products by real-time PCR and melting curve analysis". Food Res Int 40:71–79. doi

Kandler, O., & Kunath, P. (1983). "*Lactobacillus kefir* sp.nov, a component of the microflora of Kefir". Systematic and Applied Microbiology, 4, 286e294.

Kandler, O., & Weiss, N. (2005). "Genus *Lactobacillus*". In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, J. G. Holt (Eds.), Bergey's Manual of Systematic Bacteriology (vol. 2, pp. 1209 – 1234).

Kant, R., L. Paulin, E. Alatalo, W. M. de Vos, and A. Palva. (2011). "Genome Sequence of *Lactobacillus amylovorus* GRL1112". *J. Bacteriol.* 193:789–790.

Kesmen Z, Kacmaz N.(2011)." Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture- independent methods". *J Food Sci*; 76: 276-83.

Khalil, M. I., & Anwar, M. N. (2016). "Isolation, Identification and Characterization of Lactic Acid Bacteria from Milk and Yoghurts". *Research & Reviews: Journal of Food and Dairy Technology*, 4(3), 17–26.

Khedid, K., Faid, M., Mokhtari, A., Soulaymani, A., & Zinedine, A. (2009). "Characterization of lactic acid bacteria isolated from the one humped camel milk produced in Morocco". *Microbiological Research*, 164(1), 81–91.

Kim, D. H. Chon J. W. , Kim H., Kim H. S. , Choi D. Hwang D. G. and Seo K. H. (2015)a . "Detection and enumeration of lactic acid bacteria ,acetic acid bacteria and yeast in kefir grain and milk using quantitative real -time PCR. *Journal of Food Safety*" ISSN 1745-4565

Kim D. H. ; Chon J. W. ; Kim H. S. ; YIM J. H. ; Kim H. S. ; Seo K. H. (2015)b. "Rapid Detection of *Lactobacillus kefiranofaciens* in Kefir Grain and Kefir Milk Using Newly Developed Real-Time PCR ". *J Food Prot.* 78 (4): 855–858.

Kim, D. H., Kang, I. B., Jeong, D., Kim, H., Kim, H. S., Lee, S. K., Seo, K. H. (2016). "Development of rapid and highly specific TaqMan probe-based real-time PCR assay for the identification and enumeration of *Lactobacillus kefiri* in kefir milk". *International Dairy Journal*, 61, 18–21.

Kim E., Seung-Min Yang , Bora Lim, Si Hong Park , Bryna Rackerby and Hae-Yeong Kim .(2020). "Design of PCR assays to specifically detect and identify

37 Lactobacillus species in a single 96 well plate " Kim et al. BMC Microbiology 20:96

Kıvanç, M., & Yapıçı, E. (2016). "Kefir as a Probiotic Dairy Beverage: Determination Lactic Acid Bacteria and Yeast". ETP International Journal of Food Engineering, 1(1), 55–60.

Klein G, Park A, Bonaparte C, Reuter G (1998). "Taxonomy and physiology of probiotic lactic acid bacteria". Int J Food Microbiol 41:105–125

Klaenhammer, T; Altermann, E; Pfeiler, E; Buck, BL; Goh, YJ; O'Flaherty, S; Barrangou, R and Duong, T (2008). "Functional genomics of probiotic lactobacilli". J. Clin. Gastroenterol., 42: 160-161.

Klaenhammer T.R. and de Vos W.M. (2011). "An incredible scientific journey. The evolutionary tale of the lactic acid bacteria". In: Ledeboer A, Hugenholtz J, Kok J, Konings W, Wouters J (ed.) The 10th LAB symposium. Thirty years of research on lactic acid bacteria. 24 Media Labs,pp. 1-11.

Kok-Tas,T., Ekinci, F.Y.,and Guzele Seydim, Z. B. (2012)." Identification of microbial flora in kefir grains produced in Turkey using PCR". Int. J. Dairy Technol. 65, 126–131.

Kondyli, E., Katsiari, M.C., Masouras, T., and Voutsinas, L.P. (2002). "Free fatty acids and volatile compounds of low-fat feta-type cheese made with a commercial adjunct culture". Food Chemistry 79: 199–205

Konstantinov, S. R., et al. (2006). "Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets". Int. J. Syst. Evol. Microbiol. 56:29–32.

Konstantinov, S. R., et al. (2008). "Feeding of *Lactobacillus sobrius* reduces *Escherichia coli* F4 levels in the gut and promotes growth of infected piglets". FEMS Microbiol. Ecol. 66:599–607

Korsak N. B. Taminiau, M. Leclercq, C. Nezer, S. Crevecoeur, C. Ferauche, E. Detry, V. Delcenserie, and G. Daube. (2014). "Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments". *J. Dairy Sci.* 98:3684–3689

Kotova I.B, T.A. Cherdynseva, and A.I. Netrusov.(2016). "Russian Kefir Grains" Microbial Composition 6 and Its Changes during Production.

Kullisaar, T., Zilmer, K., Salum, T., Rehema, A., & Zilmer, M. (2016). "The use of probiotic *L. fermentum* ME-3 containing Reg'Activ Cholesterol supplement for 4 weeks has a positive influence on blood lipoprotein profiles and inflammatory cytokines" An open-label preliminary study. *Nutrition Journal*, 15(1), 93

Kumar and Chordia. (2017) "Role of Microbes in Human Health". *Appli Microbiol* Volume 3 • Issue 2 ISSN:2471-9315

Laiño, J.E., Juarez del Valle, M., Savoy de Giori, G., LeBlanc, J.G., (2013). "Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria". *LWT Food Sci. Technol.* 54, 1–5

Laiño, J. E., Juarez del Valle, M., Savoy de Giori, G., & LeBlanc, J. G. J. (2014). "Applicability of a *Lactobacillus amylovorus* strain as co-culture for natural folate bio-enrichment of fermented milk". *International Journal of Food Microbiology*, 191, 10–16.

Lauer, E., C. Helming, and O. Kandler. (1980) "Heterogeneity of the species *Lactobacillus acidophilus* (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation". *Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe C* 1:15&168.

Le Blanc, J.G., Laiño, J.E., Juarez del Vale, M., Vannini, V., van Sinderen, D., Taranto, M.P., de Valdez, G.F., Savoy de Giori, G., Sesma, F., (2011). "B-group vitamin production by lactic acid bacteria—current knowledge and potential applications". *J. Appl. Microbiol.* 111, 1297–1309.

Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, Delgado S (2012) "Assessment of the microbial diversity of Brazilian kefir grains by PCR DGGE and pyro sequencing analysis". *FoodMicrobiol*, 31, 215–221.

Leite, A. M. de Oliveira et al . (2013)" Microbiological, technological and therapeutic properties of kefir" A natural probiotic beverage. *Brazilian Journal of Microbiology*, 44(2), 341–349.

Leite A. M. O., Miguel, R. S. Peixoto,§ P. Ruas-Madiedo, V. M. F. Paschoalin, 1 B. Mayo, and S. Delgado.(2015)" Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains" *J. Dairy Sci.* 98:3622–3632.

Leroy F. and Luc De Vuyst (2004). "Lactic acid bacteria as functional starter cultures for the food fermentation industry". *Trends in Food Science and Technology*, 15: 67-68.

Lipsky, R. H., Mazzanti, C. M., Rudolph, J. G., Xu, K., Vyas, G., Bozak, D., Radel, M. Q., Goldman, D., (2001). "DNA Melting analysis for detection of single nucleotide polymorphisms", *Clinical Chemistry*, 47: 635-644.

Lin CW, Chen HL, Liu JR (1999) "Identification and characterization of lactic acid bacteria and yeasts isolated from kefir grains in Taiwann". *Aust Journal of Dairy Tech* 54:14-18.

Liu, S.Q. (2002). "Malolactic fermentation in wine - beyond deacidification". *J. Appl. Microbiol.* 92: 589-601

Liutkevicius, A., & Sarkinas, A. (2004). "Studies on the growth conditions and composition of kefir grains – as a food and forage biomass". *Veterinarija ir Zootechnika*, 25, 64–70

López-Huertas E. (2015). "Safety and efficacy of human breast milk *Lactobacillus fermentum* CECT 5716". A mini-review of studies with infant formulae. *Benef. Microbes* 6: 219-224

Ma, Chenjie. et al., (2016). "Determination of the essential nutrients required for milk fermentation by *Lactobacillus plantarum*". *LWT - Food Science and Technology*, 01, Volume 65, pp. 884-889

MacFaddin, J.F. (2000). "Biochemical Tests for Identification of Medical Bacteria". 3rd ed. Philadelphia: Lippincott Williams and Wilkins. USA. pp. 363-367.

Mackey B. , Susane. Parsons,' Christopher A. Miles and Robert J. Owen. (1988) "The Relationship between the Base Composition of Bacterial DNA and Its Intracellular Melting Temperature As Determined by Differential Scanning Calorimetry" . *Journal of General Microbiology*, 134, 1185-1195.

Magalhães, K. T., de Melo Pereira, G. V., Campos, C. R., Dragone, G., & Schwan, R. F. (2011). "Brazilian kefir: Structure, microbial communities and chemical composition". *Brazilian Journal of Microbiology*, 42(2), 693–702.

Mahrous, H. (2011). "Probiotics Bacteria from Egyptian Infants cause Cholesterol Removal in Media and Survive in Yoghurt". *Food and Nutrition Sciences*, 02(02), 150–155.

Makras, L., Van Acker, G. & De Vuyst, L., (2005). "*Lactobacillus paracasei* subsp. *paracasei* 8700:2 Degrades Inulin-Type Fructans Exhibiting Different Degrees

of Polymerization". Applied and Environmental Microbiology, 11, 71(11), pp. 6531-6537.

Mangalore, S. N. (2015). "Biocompatibility study of *Lactobacillus casei* isolated from cucumber and evaluation of probiotic effects in the human gut". Vol. 1 ISSN: - 2349-2724

Mannan, S. J., Rezwan, R., Rahman, M. S., & Begum, K. (2017). "Isolation and Biochemical Characterization of *Lactobacillus* species from Yogurt and Cheese samples in Dhaka Metropolitan Area". Bangladesh Pharmaceutical Journal, 20(1), 27-33.

Marco Toscano, Roberta De Grandi, Enzo Grossi and Lorenzo Drago. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System .2017 Front. Microbiol., volume 8.

Mark A. Valasek and Joyce J. Repa. (2005)." The power of real-time PCR "Physiol Educ 29: 151-159

Maurellio .G.Moio l., Moschetti G., Piompino p., addeo ,F and Coppola S.(2001) . "Characterization of lactic acid bacteria strains on the basis of neutral volatile compounds produced in whey". Journal Of Applied Microbiology .90 :928 - 942

Matthew Bull. , Sue Plummer , Julian Marchesi & Eshwar . (2013). "The life history of *Lactobacillus acidophilus* as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success". FEMS Microbiol Lett 349 77-87

Meire dos Santos F., Karoline M. Soares, Wendell Wagner C. A. , Jose Ant onio C. , Maria Taciana Holanda C. Ana Lúcia F. (2017). "Saccharomyces cerevisiae from Brazilian kefir-fermented milk: An in vitro evaluation of probiotic properties". P. Microbia; pathogenesis . Volume 110, Pages 670-677

Merih Kivanç & Evrim Yapıcı. (2015). "Kefir as a Probiotic Dairy Beverage: Determination Lactic Acid Bacteria and Yeast" . International Journal of Food Engineering Vol. 1, No. 1

Mereth CB, Hammes WP, Hertel C (2004). "Characterisation of the microbiota of rice sourdoughs and description of *L. spicheri* sp. nov." *Syst Appl Microbiol* 27:151–159 21.

Miguel, M.G.d.C.P., Cardoso, P.G., Lago, L.d.A. and Schwan, R.F. (2010). "Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods". *Food Res Int* 43, 1523–1528.

Mikelsaar, M., & Zilmer, M. (2009). "Lactobacillus fermentum ME-3 an antimicrobial and anti-oxidative probiotic". *Microb. Ecol. Health Dis*, 21, 1-27.

Mizrahi-Man O, Davenport ER, Gilad Y (2013). "Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads" Evaluation of Effective Study Designs. *PLoS ONE* 8(1)

Mohania, D., R. Nagpal, M. Kumar, A. Bhardwaj, M. Yadav, S. Jain, F. Marotta, V. Sing, O. Parkash, and H. Yadav. (2008). "Molecular approaches for identification and characterization of lactic acid bacteria". *J. Dig. Dis.* 9:190–198 enzymatischen Analyse, 3. Aufl, Bd II. Verlag Chemic, Weinheim, S 1538-1541.

Molin, Göran. (2008). "Lactobacillus plantarum: the role in foods and in human health". Farnworth, E.R (ed.). *Handbook of Fermented Functional Foods*. CRC Press. 353-393.

Monique Haarman and Jan Knol. (2006) ."Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula" Applied and Environmental Microbiology, p. 2359–2365.

Moroni AV, Arendt EK, Bello FD (2011). "Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs". Food Microbiol 28:497–502

Moser, A., Berthoud, H., Eugster, E., Meile, L., and Irmler, S. (2017a). "Detection and enumeration of *Lactobacillus helveticus* in dairy products". Int. Dairy J. 68, 52–59

Motaghi M, Mazaheri M, Moazami N, Farkhondeh A, Fooladi MH, Goltapeh EM. .(1997) "Short Communication: Kefir production in Iran". World J Microbiol Biotechnol. 13(5):579–81.

Nalbantoglu,U., Cakar,A., Dogan,H., Abaci,N., Ustek,D., Sayood,K., (2014). "Metagenomic analysis of the microbial community in kefir grains". Food Microbiol. 41, 42–51.

Nakamura, L. K. (1981). "*Lactobacillus amylovorus*, a new starch hydrolyzing species from cattle waste-corn fermentations". Int. J. Syst. Bacteriol. 31:56–63.

Nannu Shafakatullah and M. Chandra. (2015). " Biocompatibility study of *Lactobacillus casei* isolated from cucumber and evaluartion of probiotic effects in the human gut". IJCBS research paper vol. 1 (12) 2349–2724

Neve H. (1992). "analysis of kefir grain starter cultures by scanning electron microscopy". Milchwissenschaft 47: 275 – 278.

O 'Brien, K. V. (2012). "The Effect of Frozen Storage on the Survival of Probiotic". Journal of Dairy Science Volume 99, Issue 9, September 2016, Pages 7043-7048

Onaran, B., & Çufaoğlu, G. (2017). "Comparison of microbial population of household and commercial kefirs in Ankara , Turkey". 88(1), 52–58.

Orlando, A., Linsalata, M., and Russo, F. (2016). "Antiproliferative effects on colon adenocarcinoma cells induced by co-administration of vitamin K1 and *Lactobacillus rhamnosus GG*". Int. J. Oncol. 48, 2629–2638.

Otles S. and Cagindi O. (2003). "Kefir :A probiotic diary –composition , nutritional and therapeutic aspects" . journal of nutrition. pp. 54–59.

Palachum, W., Chisti, Y., Choorit, W., (2018). "In-vitro assessment of probiotic potential of *Lactobacillus plantarum* WU-P19 isolated from a traditional fermented herb". Annals of Microbiology 68(2): 79- 91.

Papamanoli E., N Tzanetakis , E Litopoulou- Tzanetaki , P Kotzekidou."(2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties". 65(2):859-67.

Park, E. J., H. W. Chang, K. H. Kim, Y. D. Nam, S. W. Roh, and J. W. Bae. (2009). "Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi". J. Microbiol. 47: 682-685.

Pilar Fernandez-Pachecoa, María Arévalo-Villenaa, Antonio Bevilacquab, Maria Rosaria Corbob, Ana Briones Pérez (2018). "Probiotic characteristics in *Saccharomyces cerevisiae* strains: Properties for application in food industries" . Food science and technology 97. 332-340.

Pitino et al. (2010). "Survival of *Lactobacillus rhamnosus* strains in the upper gastrointestinal tract". Food Microbiology 27:1121–1127 .

Phyu, H., Oo, Z., and Aye, K. N. (2015). "Screening on Proteolytic Activity of Lactic Acid". Advances in Science Engineering and Technology, (5), 34–37.

Poltronieri P, D'Urso OF, Blaiotta G, Morea M (2008). "DNA arrays and membrane hybridization methods for screening of six *Lactobacillus* species common in food products". *Food Anal Methods* 1:171–180

Prasad, J., Gill, H., Smart, J., and Gopal, P.K. (1998). "Selection and Characterization of *Lactobacillus* and *Bifidobacterium* strains for use as probiotic". *International Dairy Journal* 8:993-1002.

Prado, M. R., Blandón, L. M., Vandenberghe, L. P. S., Rodrigues, C., Castro, G. R., Thomaz-Soccol, V., & Soccol, C. R. (2015). "Milk kefir: Composition, microbial cultures, biological activities, and related products". *Frontiers in Microbiology*, 6(OCT), 1–10.

Promot, s. k., kamel, w., rahman, s. s., hossain, m. m. and choudhary, n. (2018) "Biotechnol production using vegetables peaks medium and the effective role of cellulolytic bacterial (*Bacillus subtilis*) pre-treatment". *versus*, 7:27.

Pundir, R. K., Rana, S., Kashyap, N., & Kaur, A. (2013). "Probiotic potential of lactic acid bacteria isolated from food samples An in vitro study". *Journal of Applied Pharmaceutical Science*, 3(3), 85–93.

Puerari, C., Magalhães, K.T., and Schwan, R.F. (2012). "New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis ". *Food Research International* 48: 634–640.

Pyar, H., & Peh, K. K. (2014). "Characterization and identification of *Lactobacillus acidophilus* using biolog rapid identification system". *International Journal of Pharmacy and Pharmaceutical Sciences*, 6(1), 189–193.

Querci, M., Van den Bulcke, M., Zel, J., Van den Eede, G., Broll, H. (2010). "New approaches in GMO detection" *Anal Bioanal Chem.*, 396:1991–2002.

Rao P., K., Chennappa, G., Suraj, U., Nagaraja, H., Charith Raj, A. P., and Sreenivasa, M. Y. (2015). "Probiotic potential of *Lactobacillus* strains isolated from sorghum-based traditional fermented food". *Probiotics Antimicrob. Proteins* 7, 146–156.

Rattray FP, O'Connell MJ (2011). "Fermented Milks Kefir" In:Fukay, J. W. (ed.), Encyclopedia of Dairy Sciences (2th ed).Academic Press , San Diego, USA, p.518-524.

Ravi V, Prabhu M and Subramanyam D (2011). "Isolation of Bacteriocin Producing Bacteria from Mango Pulp and its Antimicrobial Activity". *J Microbiol Biotech Res.* 1: 54-63

Ray, R. C., & Montet, D. (2017). "Kefir and koumiss origin , Health Benefits and current status of knowledge". *Fermented Foods: Part II: Technological Interventions*, 1–513.

Reid, G. (2001). "Probiotic agents to protect the urogenital tract against infection". *Am. J.Clin. Nutr.* 73, 437S-443S.

Reid Gregor .(2015) "The growth potential for dairy probiotics". *International Dairy Journal* 49.16-22.

Remacle C, Reusens B. (2004) "Functional foods, ageing and degenerative disease". Cambridge UK: Woodhead Publishing for Technology & Engineering.

Rolfe, R.D. (2000). "The role of probiotic cultures in the control of gastrointestinal health". *J. Nutr.* 130, 396S-402S

Romain Marti, Patrick Dabert, Christine Ziebal, and Anne-Marie Pourcher. (2010) . "Evaluation of *Lactobacillus sobrius/L. amylovorus* as a New Microbial Marker of Pig Manure". *Applied and environmental microbiology*, p. 1456–1461.

Roselli, M., et al. (2007). "The novel porcine *Lactobacillus sobrius* strain protects intestinal cells from enterotoxigenic *Escherichia coli* K88 infection and prevents membrane barrier damage". *J. Nutr.* 137: 2709–2716

Rossetti, L. and Giraffa, G. (2005). "Rapid identification of dairy lactic acid bacteria by M13-generated RAPD-PCR fingerprint databases". *Journal of Microbiological Methods* 63:135-144

Ryan, L.A., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P., Arendt, E.K., (2011). "*Lactobacillus amylovorus* DSM19280 as a novel food-grade antifungal agent for bakery products". *Int. J. Food Microbiol.* 146, 276–283.

Sacchi,C.T., Whitney, A.M, Mayer, L. Whitney, A. M, Mayer, L. W., Morey , R., Steigerwalt, A., Boras, A., Weyant, R. S.,and Popovic,T. (2002). "Sequencing of 16S rRNA gene:a rapid tool for identification of *Bacillus anthracis* " *Emerging infectious diseases.* 8:1117-1123.

Salvetti, E., Torriani, S., and Felis, G. E. (2012). "The genus *Lactobacillus*: a taxonomic update". *Probiotics Antimicrob. Proteins* 4, 217–226

Sameh Ali G., Rehab Mahmoud Abd El-Baky, Abo Bakr F A. and Gamal F. Mahmoud G. (2016). "In vitro evaluation of probiotic potential of five lactic acid bacteria and their antimicrobial activity against some enteric and food-borne pathogens". *African Journal of Microbiology Research* Vol. 10(12), pp. 400-409.

Sarkar, S. (2007). "Potential of kefir as a dietetic beverage—A review". *British Journal of Nutrition*, 109, 280–290

Sarkar, S. (2008)" Biotechnological innovations in kefir production: a review". *British Food Journal* 110, 283- 295

Schrezenmeir, J. and de Vrese, M. (2001). "Probiotics, prebiotics, and synbiotics- approaching a definition". Am. J. Clin. Nutr. 73, 361S-364S.

Salminen, S. (1990). "The role of intestinal microbiota in preserving intestinal integrity and health eith reference to lactic acid bacteria and med 22, 42.

Salminen, S., A. Ouwehand, Y. Benno, Y.K. Lee. (1999). "Probiotics: how should they be defined? "Trends Food Sci. Techn. 10, 107-110

Savage D C., S. G. Lundeen and L. T. O'Connor,(1995). "Mechanisms by which Indigenous Microorganisms Colonise Epithelial Surfaces as a Reservoir of the Luminal Microflora in the Gastrointestinal Tract "Microecology Terminology, Vol. 21, pp. 27-36.

Sepp, E., Smidt, I., Štšepetova, J., Rööp, T., Hütt, P., Rätsep, M., & Mikelsaar, M. (2018). "The effect of *Lactobacillus fermentum* ME-3 on the intestinal microbiota and urine polyamines content: A double-blind placebo-controlled pilot trial". Journal of Functional Foods, (48)430–438.

Severijnen, R., Naber, T., Tolboom, J., & Bongaerts, G. (2005). "The role of heterolactic lactobacilli in diarrhoea of short small bowel patients". Microbial Ecology in Health and Disease, 17(2), 88–93.

Scheinbach, S. (1998). "Probiotics: functionality and commercial status". Biotech Adv 16, 581–608.

Shah NP (2007) "Functional cultures and health benefits". Int Dairy J 17: 1262–1277.

Shafakatullah N, Chandra M. (2015). "Isolation of lactic acid bacteria from Allium cepa var.aggregatum and study of their probiotic properties". International Journal of Pharma Sciences and Research 6, 749-757.

Shavit, E. (2008). "Renewed interest in kefir, the ancient elixir of longevity". *Fungi*, 1(2)

Shivram, P. L. and P.P. Vishwanath, (2012). "Assessment of probiotic potential of *Lactobacillus* sp. isolated from cheese and preparation of probiotic ice-cream". *IJRAP*, 3 (4): 532 – 536.

Simova, E., Beshkova, D., Angelov, A., Hristozova, T., Frengova, G., & Spasov, Z. (2002). "Lactic acid bacteria and yeasts in kefir grains and kefir made from them". *Journal of Industrial Microbiology and Biotechnology*, 28(1), 1–6.

Skerman, V. B. D., McGowan, V., & Sneath, P. H. A. (1980). "Approved lists of bacterial names". *International Journal of Systematic Bacteriology*, 30, 225–420.

Slattery C. , Paul D. Cotter and Paul W. O .Toole. (2019). "Analysis of Health Benefits Conferred by *Lactobacillus* Species from Kefir" . *Nutrients* 11, 1252

Sömer V. F., AkpinarD. , Başyigit Kılıç G. (2012). "The effects of *Lactobacillus casei* on health and it is usage in food industry" . *GIDA* 37 (3): 165-172

Sudhanshu S. Behera, Ramesh C. Ray , and Nevijo Zdolec (2018) . "*Lactobacillus plantarum* with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods" . BioMed Research International, Article ID 9361614, 18 pages

Sun, Z. L. et al., (2010). "Identification and characterization of the Dominant Lactic Acid Bacteria Isolated from Traditional Fermented Milk in Mongolia". *Folia Microbiology*, pp. 55(3) 270-276.

Suskovic, J., Brkic, B., Matosic, S. and Maric, V. (1997). "*Lactobacillus acidophilus* M92 as potential probiotic strain". *Milchwissenschaft*. 52, 430-435.

Srinu. B., T. Madhava Rao, P. V. Mallikarjuna Reddy and K. Kondal Reddy, (2013). "Evaluation of different lactic acid bacterial strains for probiotic characteristics". Veterinary World, EISSN, 6: 785- 788.

Sreeramulu G., D.S. Srinivasa, K. Nand and R. Joseph. (1996). "*Lactobacillus amylovorus* as a phytase producer in submerged culture". Letters in Applied Microbiology, 23, 385-388

Stackebrandt, E. & Goebel, B. M. (1994). "Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology". Int J Syst Bacteriol 44, 846– 849.

Stolarczyk A, Socha P, Socha R (2002) "Probiotics and prebiotics in the prevention and treatment of diseases in children". Terapia 116: 39-42

Tadesse, G., Ephraim, E., & Ashenafi, M. (2005). "Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some foodborne". Journal of Food Safety, 5(5), 13–20.

Tambekar, D.H. and Bhutada, S.A. (2010) "An evaluation of probiotic potential of *Lactobacillus* sp. from milk of domestic animals and commercial available probiotic preparations in prevention of enteric bacterial infections". Recent Research in Science and Technology. 2: 82-88.

Tao Wu, Yutao Shi, Yanyan Zhang et al. (2020) "Beneficial Effects of *Lactobacillus zeae* on the Gut Health of Piglets Challenged with Enterotoxigenic Escherichia Coli", PREPRINT (Version 1) available at Research Square.

Toh H, Oshima K, Nakano A, Takahata M, Murakami M, et al. (2013). "Genomic Adaptation of the *Lactobacillus casei* Group". PLoS ONE 8(10).

Tuohy, K.M., H.M. Probert, C.W. Smejkal, G.R. Gibson. (2003). "Review: Using probiotics and prebiotics to improve gut health". *Drug Discov. Today* 8, 692-700.

Valentina T. and Simone Guglielmetti. (2012) "Health-promoting properties of *Lactobacillus helveticus*". Division of Food Microbiology and Bioprocesses, Department of Food Environmental and Nutritional Sciences

VASILEAN, I., SEGAL, R. and VASILE, A. (2011). "Obtaining fermented dairy products with the yogurt culture" *Food Technology* 35, 92–99.

Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K., and Swings, J. (1996). "Polyphasic taxonomy, a consensus approach to bacterial systematics". *Microbiology Reviews*. 60: 407-438.

Van Hoorde K, Verstraete T, Vandamme P, Huys G (2008) "Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses". *Food Microbiol* 25:929–935

Vichko O, Chervetsova V, Novikov V (2013) "Microbiological characteristics of sour-milk feed supplements and their influence on intestinal micro-biocenosis of piglets". *Res J Pharm Biol Chem Sci* 4:1404–1410

Vizoso Pinto, M.G., Franz, C.M.A.P., Schillinger, U., Holzapfel, W., (2006). "*Lactobacillus* spp. With in vitro probiotic properties from human faeces and traditional fermented products". *Int. J. Food Microbiol.* 109, 205–214.

Wang, S. Y., Chen, H. C., Liu, J. R., Lin, Y. C., & Chen, M. J. (2008). "Identification of yeasts and evaluation of their distribution in Taiwanese kefir and viili starters". *Journal of Dairy Science*, 91(10), 3798–3805.

Wang,S.Y.,Chen, K. N., Lo,Y.M.,Chiang, M. L., Chen, H. C., Liu, J. R., et al. (2012) "Investigation of microorganisms involved in biosynthesis of the kefir grain". *Food Microbiol.* 32, 274–285

Wessels, S., Axelsson, L., Bech Hansen, E., De Vuyst, L., Laulund, S., Lihteenmiki, L., Lindgren, S., Mollet, B., Salminen, S., and von Wright, A. (2004). "The lactic acid bacteria, the food chain, and their regulation". *Trends in Food Science and Technology.* 15: 498-505.

Witthuhn RC, Schoeman T, Britz TJ. (2004). "Characterization of the microbial population at different stages of kefir production and kefir grain mass cultivation". *Int Dairy J*, 15: 383-389

Witthuhn, R. C., Schoeman, T., & Britz, T. J. (2005). "Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation". *International Dairy Journal*, 15(4), 383–389.

Wittwer C.T .(2009). "High-resolution DNA melting analysis: Advancements and limitations". *Hum Mutat* 30: 857-859.

Wood BJB, Holzapfel WH (1995). "The Genera of lactic acid bacteria" Blackie Academic & Professional, Glasgow, vol. 2.

Wong, M. L., & Medrano, J. F. (2005). "Real-time PCR for mRNA quantitation". *Biotechniques*, 39, 1, 75-85.

Wszolek M., Kupiec-Teahan B., Skov Guldager H. and Tamime A.Y. (2006). "Production of Kefir, Koumiss and Other Related Products". In A. Y. Tamime (Ed.), *Fermented Milks* (pp. 174-216). Ayr, UK: Blackwell Science.

Wyder, M.T., Bachmann, H.P. and Puhan, Z. (1999). "Role of selected yeasts in cheese ripening: An evaluation in foil wrapped Raclette cheese". *Lebensmittel-Wissenschaft & Technologie* (32)333–343.

Xanthopoulos V, Litopoulou-Tzanetaki E, Tzanetakis N. (1997). "Lactic acid bacteria". Caen Presses Universitaires de Canada.

Xiao, L.L., Dong, M.S., (2003). "Screening and cholesterol-degrading activity of *Lactobacillus casei* KM-16". China Dairy Industry 31, 7–10.

Xiao Qun Zeng . Dao Dong Pan . Pei Dong Zhou (2011). "Functional Characteristics of *Lactobacillus fermentum* F1". Curr Microbiol (2011) 62:27–31

Xue C, Zhang L, Fan R, Wang S, Li H, Luo X, Liu W, Song W (2015) "Protective action of S-layer proteins from *Lactobacillus paracasei* M7 against *Salmonella* infection and mediated inhibition of *Salmonella*-induced apoptosis". Eur Food Res Technol 240:923– 929.

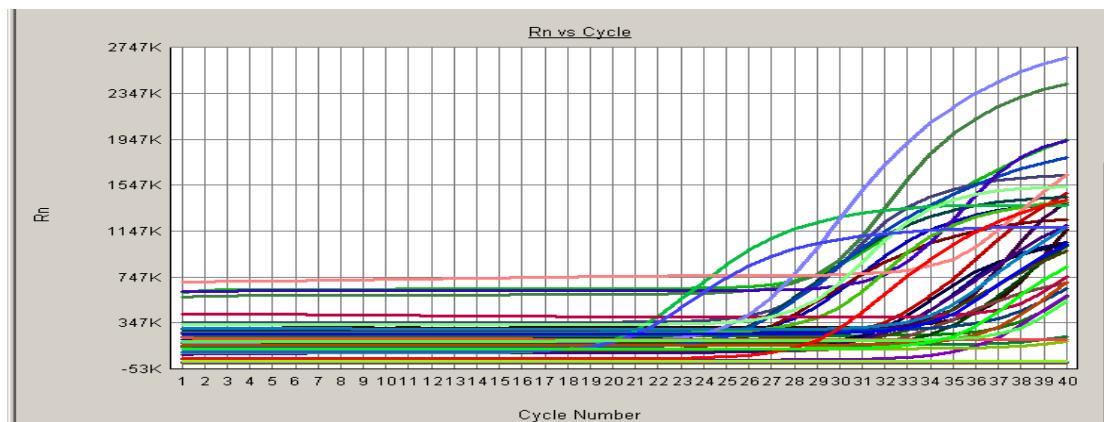
Yüksekdağ, Z. N., Beyatlı, Y., & Aslim, B. (2004). "Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic". LWT-Food Science and Technology, 37(6), 663-667.

Yavuzdurmaz H. (2007). "Isolation, Characterization, Determination Of Probiotic Properties Of Lactic Acid Bacteria From Human Milk", School Of Engineering And Sciences Of İzmir Institute Of Technology Thesis Of Master of Science. (October).

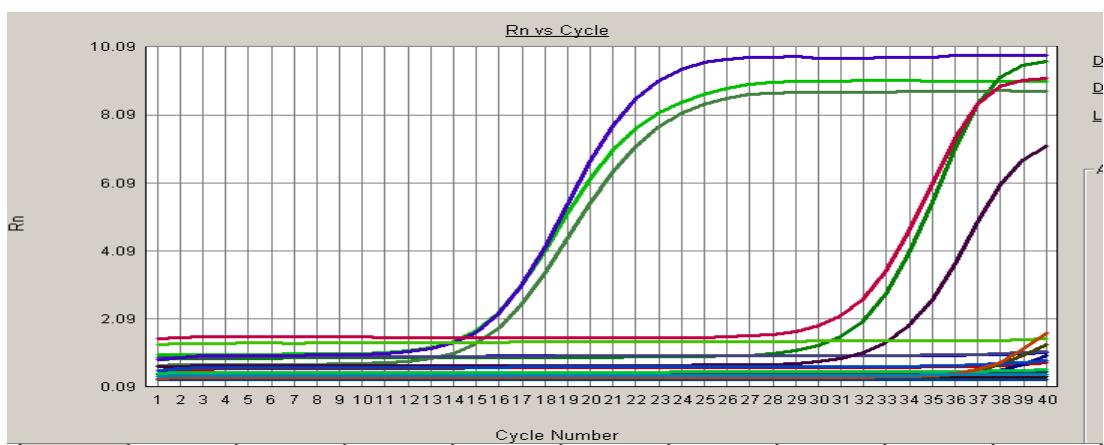
Yu, J., Z. Sun, W. Liu, Q. Bao, J. Zhang, and H. Zhang. (2012)." Phylogenetic study of *Lactobacillus acidophilus* group, *L. casei* group and *L. plantarum* group based on partial hsp60, pheS and tuf gene sequences". Eur. Food Res. Technol. 234:927–934.

Yuwono, S.D. and Kokugan, T. (2008). "Study of the Effects of Temperature and pH on Lactic Acid Production from Fresh Cassava Roots in Tofu Liquid Waste by *Streptococcus bovis*". Biochemical Engineering Journal, 40, 175-183.

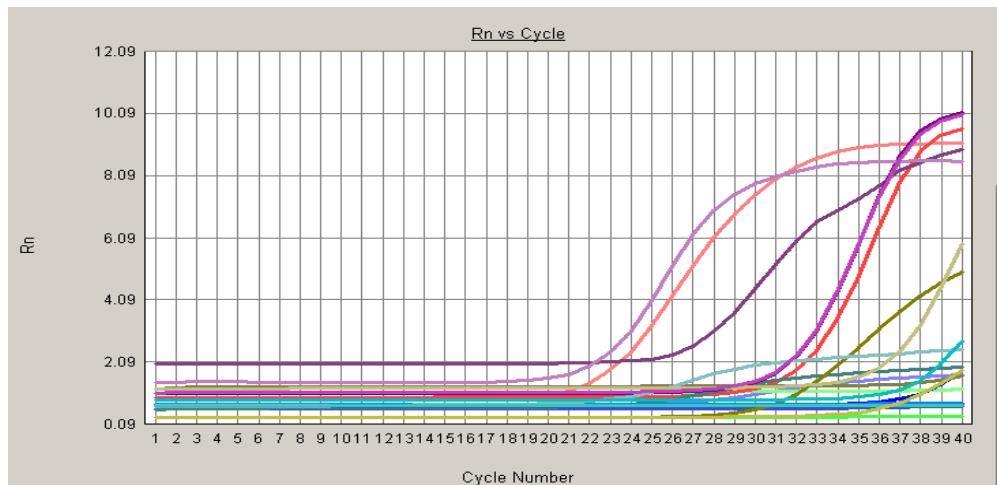
Zanirati, D.F., Abatemarco, M., Cicco Sandesb, S.H., Nicolia, J.R., Nunes, A.C., and Neumann, E. (2015). "Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures". *Anarobe* 32, 70–76.

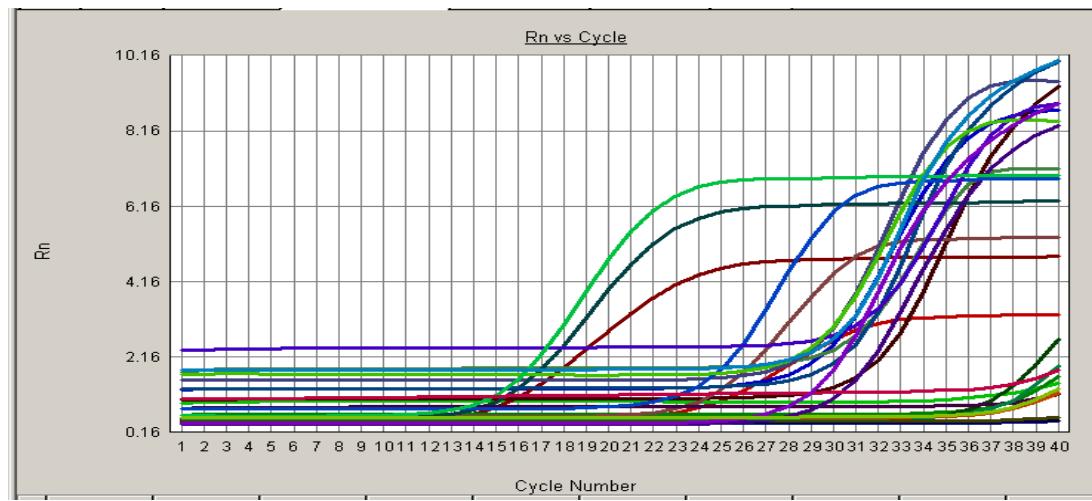

Zhou, J., X. Liu, H. Jiang, and M. Dong. (2009). "Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis". *Food Microbiol.* 26:770-775

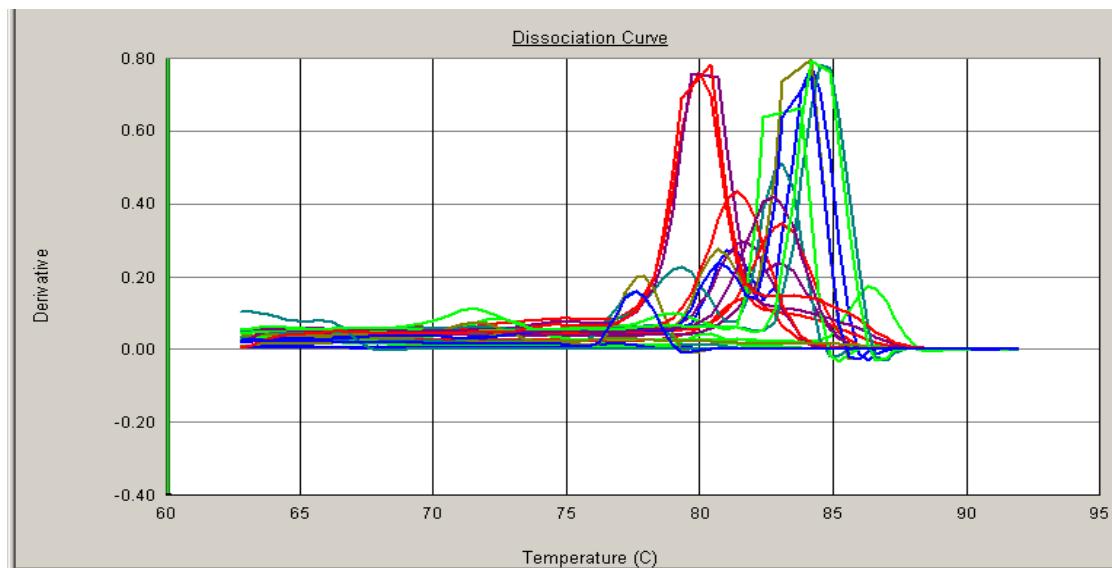
Zubeyde, O., Aynur, K., & Lutfu, C. M. (2010). "Effects of Different Milk Types and Starter Cultures on Kefir" *Gida*, 35(3), 177–182.


APPENDICES

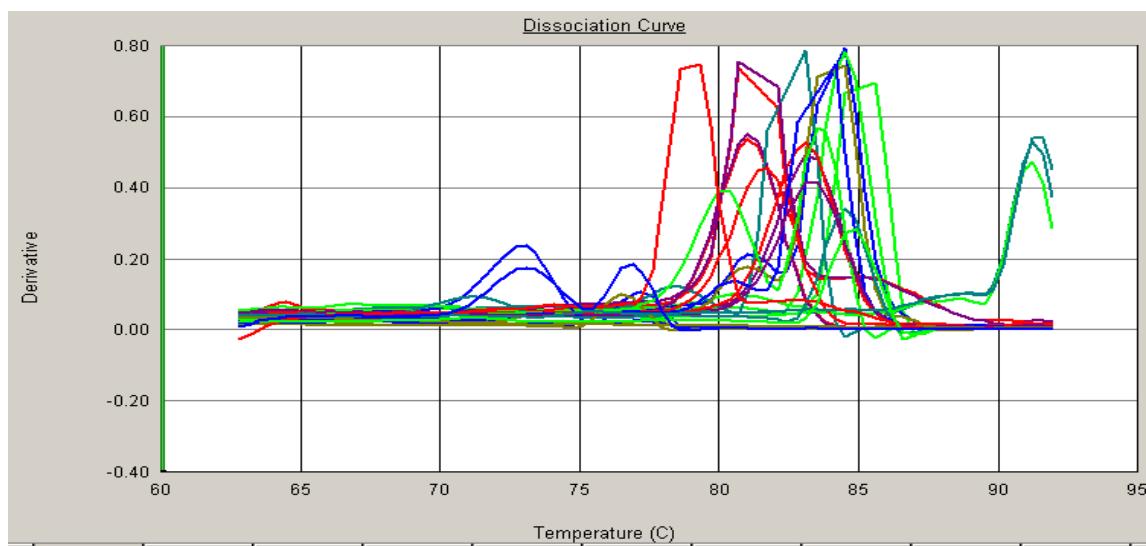
APPENDIX A. Real Time PCR Results


A.1 Amplification curves of kefir sample K1, K2 DNA isolate with specific primers (*L. Kefiri* , *L. acidophilus* ,*L. delbrueckii subsp. bulgaricus* ,*L. kefiransfaciens* ,*L. fermentum* ,*L. plantarum* ,*S. cerevisiae* ,*S. thermophilus* ,*L. sobris* *amylovorus*

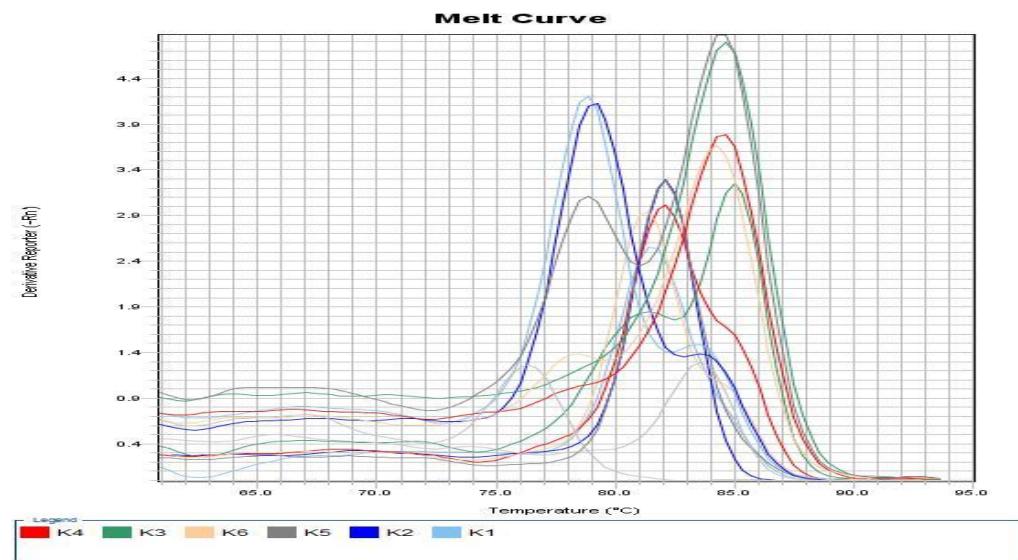

A.2 Amplification curves of kefir sample k3 DNA isolate with specific primers (*L. delbrueckii subsp. bulgaricus* ,*L. kefiransfaciens* ,*L. fermentum* ,*L. plantarum* ,*S. cerevisiae* ,*S. thermophilus* ,*L. sobris* *amylovorus*)

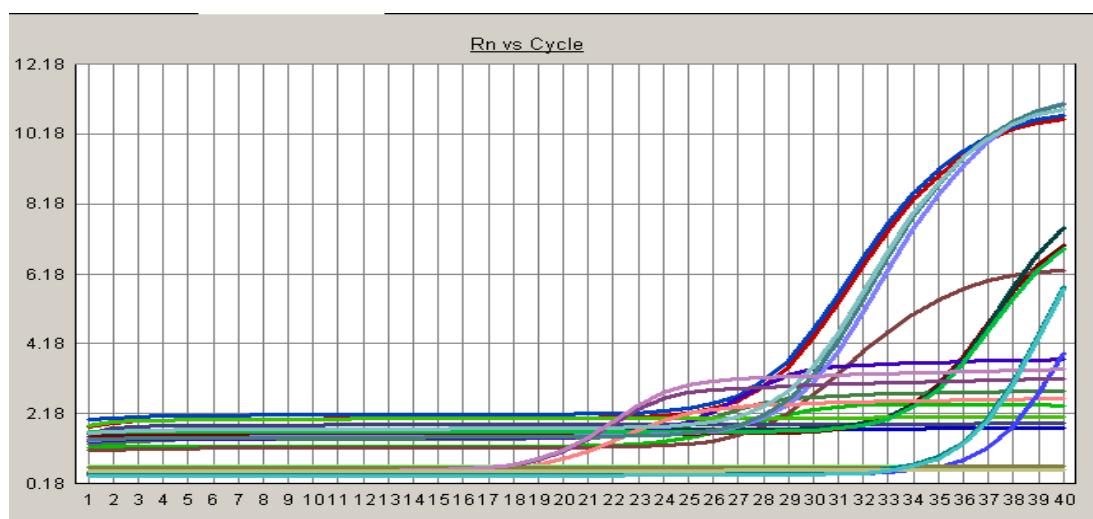

A.3 Amplification curves of kefir sample k4 DNA isolate with specific primers (*L. delbrueckii* subsp. *bulgaricus* , *L. kefiransaciens*, *L. fermentum* , *L. plantarum* , *S. cerevisiae* , *S. thermophilus* , *L. sobris* *amylovorus*)

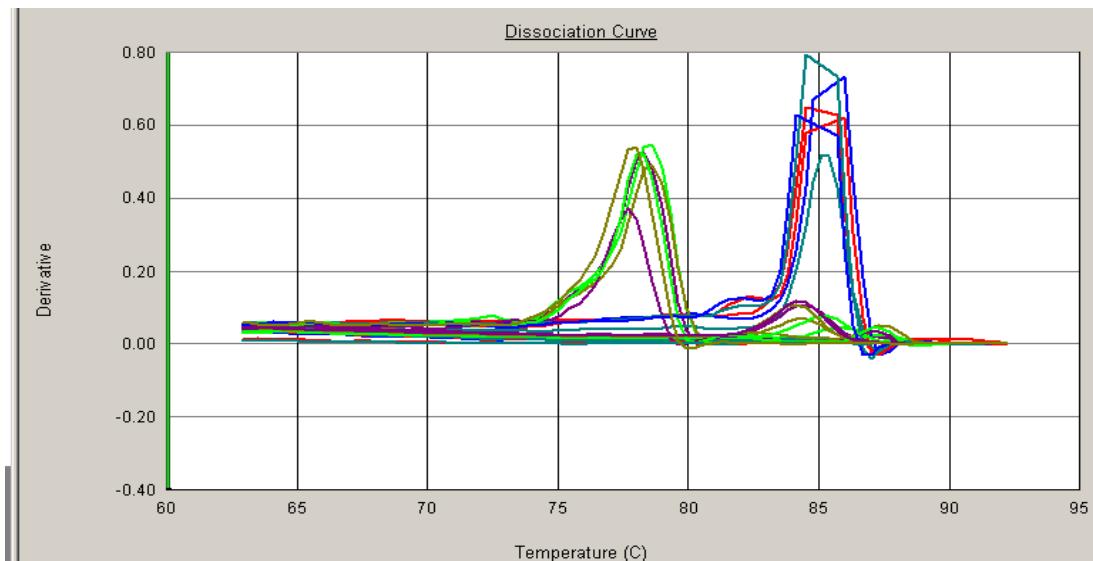
A.4 Amplification curves of kefir sample K5 DNA isolate with specific primers (*L. Kefiri* , *L. acidophilus* , *L. delbrueckii* subsp. *bulgaricus* , *L. kefiransaciens*, *L. fermentum* , *L. plantarum* , *S. cerevisiae* , *S. thermophilus* , *L. sobris* *amylovorus*)


Melting curves of kefir sample (K5 and K6) DNA isolate with specific primers (*L. Kefiri* , *L. acidophilus* , *L.delbrueckii subsp. bulgaricus* , *L. kefiranofaciens* , *L. fermentum* , *L. plantarum* , *S. cerevisiae* , *S. thermophilus* , *L.sobris \amylovorus*

A.5 Amplification curves of kefir sample K6 DNA isolate with specific primers (*L. Kefiri* , *L.acidophilus* ,*L.delbrueckii subsp. bulgaricus* ,*L.kefiranofaciens* ,*L.fermentum* , *L.plantarum* , *S.cerevisiae* , *S.thermophilus* ,*L.sobris \amylovorus*


Melting curves of kefir sample K6 DNA isolate with specific primers (*L. Kefiri* , *L.acidophilus*, *L.delbrueckii* subsp. *bulgaricus* ,*L.kefiransfaciens*, *L.fermentum* , *L.plantarum* , *S.cerevisiae* , *S.thermophilus* ,*L.sobris* *amylovorus*


A.6 Amplification curves of kefir sample K1,K2 ,K3 , K4 ,K5, K6 DNA isolate with specific primers (*L. casei* and *L. paracasei*)


Melting curves of kefir sample K1,K2 ,K3 , K4 ,K5, K6 DNA isolate with specific primers (*L. casei* and *L. paracasei*)

A.7 Amplification curves of kefir sample K1 and K2 DNA isolate with specific primers (*L. delbrueckii* subsp. *bulgaricus* ,*L. kefiranofaciens*, *L. fermentum* , *L. plantarum*)

Melting curves of kefir sample K1 and K2 DNA isolate with specific primers (*L. delbrueckii subsp. bulgaricus* ,*L. kefiranofaciens*, *L. fermentum* , *L. plantarum*)

APPENDIX B

B. 16 S ribosomal RNA gene partial sequence

B.1 16 S ribosomal RNA gene partial sequence for k2-2a

CGAGCGAGCAGAACCGAGATTACTCGTAATGACGCTGGGACGCGAGCGG
CGGATGGGTGAGTAACACGTGGGAACCTGCCCATAGTCTAGGATACCACTTGA
AACAGGTGCTAATACCGATAATAAAGCAGATCGATGATCAGTTATAAAAGGC
GGCGTAAGCTGTCGCTATGGGATGGCCCGCGGTGCATTAGCTAGTTGTAAGGTA
ACGGCTTACCAAGGCAATGATGCATAGCCGAGTTGAGAGACTGAACGCCACATT
GGGACTGAGACACGCCAAACTCCTACGGGAGGCAGCAGTAGGAAATCTCCAC
AATGGACGCAAGTCTGATGGAGCAACGCCCGTGAGTGAAGAAGGTTTCGGATC
GTAAAGCTCTGTTGGTGAAGAAGGATAGAGGTAGTAACTGGCCTTATTGAC
GGTAATCAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGGTAATACGT
AGGTGGCAAGCGTTGCCGATTATTGGCGTAAAGCGAGCGCAGGCCGAAGAA
TAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAATTGCATCGGAAACTGTTT
TCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGGAATCGTAGA
TATATGGAAGAACACCAAGTGGCGAACGGCGCTCTGGTCTGCAACTGACGCTGAG
GCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAA
ACGATGAGTGCTAAGTGTGGAGGTTCCGCCTCTCAGTGCAGCTAACGCAT
TAAGCACTCCGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACG
GGGGCCCGACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACGCGAAGAAC
TTACCAGGTCTGACATCTAGTGCATCCTAACAGAGATTAGGAGTTCCCTCGGGGA
CGCTAACAGGTGGTGCATGGCTGTCAGCTCGTGTGAGATGTTGGGTTA
AGTCCCGCAACGAGCGAACCCCTATTATTAGTGCAGCATTAAAGTTGGGCACTC
TAATGAGACTGCCGGGGACAAACCGGAGGAAGGGGGGATGACGCCAACCTT
GCCCTATGACCAGGGCAACC

B.2 16 S ribosomal RNA gene partial sequence for k2-3

GGCTCCTTCCGAAGGTTAGGCCACCGGCTTGGCATTGCAGACTCCATGG
TGTGACGGCGGTGTACAAGGCCGGAACGTATTCACCGCGCGTTCT
GATCCGCGATTACTAGCGATTCCAGCTCGTGCAGTCAGTTGCAGACTGC
AGTCCGAAC TGAGAACAGCTTCAGAGATTGCGCTTCGCAGGCTCGCT
TCTCGTTGACTGCCATTGTAGCACGTGTAGCCAGGTATAAGGGCA
TGATGACTTGACGTCATCCCCACCTCCTCCGGTTGTCACCGCAGTCTCA
TTAGAGTGCCAACCTAACGCTGGCAACTAATAATAAGGGTTGCGCTCGTT
GCAGGGACTAACCAACATCTCACGACACGAGCTGACGACAGCCATGCACC
ACCTGTCTAGCGTCCCCGAAGGAACTCCTAACCTCTAGGATGGCACTAG
ATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCACATGCT
CCACCGCTTGTGCGGGCCCCGTCAATTCTTGAGTTAACCTTGCAGGTC
GTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTGAGAGGGCG
AAACCTCCAACACTTAGCACTCATCGTTACGGCATGGACTACCAGGGTA
TCTAACCTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTGCAGACC
AGAGAGCCGCCCTCGCCACTGGTGTCTTCATATATCTACGCATTCCACCG
CTACACATGGAGTCCACTCTCCTCTGCACACTCAAGAAAAACAGTTCCG
ATGCAATTCTCGGTTAACGCCAGGGCTTCACATCAGACTTATTCTCCGC
CTGCGCTCGCTTACGCCAATAATCCGGACAACGCTGCCACCTACGTAT
TACCGCGGCTGCTGGCACGTATTAGCCGTGACTTCTGGTTGATTACCGTC
AAATAAAGGCCAGTTACTACCTCTACCTTCACCAACAAACAGAGCTTAA
CGATCCAAAACCTCTTCACTCAGGCGGCGTTGCTCCATCAAACATTGCGTCC
ATTGTGGAAGATTCCCTACTGCTGCCCT

B.3 16 S ribosomal RNA gene partial sequence for k2-3a

ACCTGCAAGTCGAGCGAGCAGAACCGAGATTACTTCGTAATGACGCT
GGGGACGCGAGCGCGGATGGGTGAGTAACACAGTGGGAACCTGCCCAT
AGTCTAGGATACCACCTGGAAACAGGTGCTAATACCGATAATAAAGCAGA
TCGCATGATCAGCTTATAAAAGGCAGCGTAAGCTGTCGCTATGGGATGCC
CCCGGGTGCATTAGCTAGTTGTAAGGTAACGGCTTACCAAGGCAATGATG
CATAGCCGAGTTGAGAGACTGAACGCCACATTGGGACTGAGACACGCC
AAACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTC
TGATGGAGCAACGCCCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCTCT
GTTGTTGGTGAAGAAGGATAGAGGTAGTAACTGGCCTTATTGACGGTAA
TCAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCCGTAATACGTA
GGTGGCAAGCGTTCCGGATTATTGGCGTAAAGCGAGCGCAGGCGAA
GAATAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAATTGCATCGGAA
ACTGTTTCTTGAGTGCAGAACAGAGGAGAGTGGAACTCCATGTGTAGCGGT
GGAATGCGTAGATATGGAAGAACACCAGTGGCGAAGGCGCTCTGGT
CTGCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATA
CCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTGGAGGTTCC
GCCTCTCAGTGCAGCTAACGCTAACGCTAACGCACTCCGCTGGGAGTACGA
CCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCGCACAAGCGGTGG
AGCATGTGGTTAATTGAAAGCAACGCGAACGAAACCTTACCAAGGTCTTGACA
TCTAGTGCCATCTAACAGAGATTAGGAGTTCCCTCGGGACGCTAACGACAG
GTGGTGCATGGCTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCG
CAACGAGCGCAACCCTATTATTAGTGTGCCAGCATTAAAGTGGGACTCTAA
TGAGACTGCCGGTGACAAACCGGAGGAAGGGGG

B.4 16 S ribosomal RNA gene partial sequence for k2-4

ATGCAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAA
CATGGAACGAGTGGCGGACGGGTGAGTAACACACGTGGTAACCTGCCCTAA
GTGGGGATAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
CGCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCC
GCGCGTATTAGCTAGTTGGTGAGGTAAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGTGTGACGGTATCC
TGTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGCCGGCGTACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGTTT
TTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAA
CTGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGGTGTCTGGTC
TGTAACGTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTCAGTGCCCGAGCTAACGCTTAAGCATTCCGCCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGA
GCATGTGGTTAATTGAAGCAACGCGAACGAAACCTTACCAAGGTCTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTAGCTGTCGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCTTATGACTAGTTGCCAGCATTTAGTTGGGACTCTAGT
AAGACTGCCGGTACAAACCGGAGGAAGGTGGGATGACGTCAAATCATC
ATGCCCTTATGACCTGGCTACCACGTGCTACATGGATGGTACAACGAGT
TGCGAGACCGCGAGGTCAAGCTAACCTAAAGCCTTCCAGTTGGACTGT
AGGCTGCACTCGCCTACCCAAATCGGAATCCCTAGTA

B.5 16 S ribosomal RNA gene partial sequence for k2-4a

GGCTCCTTCCCGAAGGTTAGGCCACCGGCTTGGCATTGCAGACTCCATG
GTGTGACGGCGGTGTACAAGGCCGGAACGTATTCACCGCGCGTTC
TGATCCGCGATTACTAGCGATTCCAGCTCGTGCAGTCGAGTTGCAGACTGC
AGTCCGAACGTAGAGAACAGCTTCAGAGATTGCTGCCTCGCAGGCTCGCT
TCTCGTTGACTGCCATTGTAGCACGTGTAGCCAGGTATAAGGGCA
TGATGACTTGACGTCATCCCCACCTCCTCCGGTTGTCACCGCAGTCTCA
TTAGAGTGCCAACCTAACGCTGGCAACTAATAATAAGGGTTGCCTCGTT
GCAGGACTAACCAACATCTCACGACACGAGCTGACGACAGCCATGCACC
ACCTGTCTAGCGTCCCCGAAGGAACTCCTAACCTCTAGGATGGCACTAG
ATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCACATGCT
CCACCGCTTGTGCAGGCCCCGTCAATTCTTGAGTTCAACCTGCAGGTC
GTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTGAGAGGG
AAACCTCCAACACTAGCACTACGTTACGGCATGGACTACCAGGGTA
TCTAACCTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTGCAGACC
AGAGAGCCGCCCTCGCCACTGGTGTCTCCATATATCTACGCATTCCACCG
CTACACATGGAGTTCCACTCTCCTCTGCACTCAAGAAAAACAGTTCCG
ATGCAATTCTCGGTTAACCGAGGGCTTCACATCAGACTATTCTCCGC
CTGCGCTCGCTTACGCCAATAATCCGGACAACGCTGCCACCTACGTAT
TACCGCGGCTGCTGGCACGTATTAGCCGTGACTTTCTGGTTGATTACCGTC
AAATAAAGGCCAGTTACTACCTCTACCTCTCCAAACAACAAAACCTTAC
AATCCAAAAAACCTCTTCACTCAGGCGGCGTTGCTCCCTCAAACCTGCGTCC
ATTGGGGAAAAATTCCCTACTGCTT

B.6 16 S ribosomal RNA gene partial sequence for k2-14

GGCTCCTTCCCGAAGGTTAGGCCACCGGCTTGGCATTGCAGACTCCATG
GTGTGACGGCGGTGTACAAGGCCGGAACGTATTACCGCGCGTTC
TGATCCGCGATTACTAGCGATTCCAGCTCGTGCAGTCGAGTTGCAGACTGC
AGTCCGAACGTAGAGAACAGCTTCAGAGATTGCGCTTCGAGGCTCGCT
TCTCGTTGACTGCCATTGTAGCACGTGTAGCCAGGTATAAGGGCA
TGATGACTTGACGTCATCCCCACCTCCTCCGGTTGTCACCGGAGTCTCA
TTAGAGTGCCAACCTAACGCTGGCAACTAATAATAAGGGTTGCGCTCGTT
GCGGGACTAACCAACATCTCACGACACGAGCTGACGACAGCCATGCACC
ACCTGTCTAGCGTCCCCGAAGGAACTCCTAACCTCTAGGATGGCACTAG
ATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCACATGCT
CCACCGCTTGTGCGGGCCCCGTCAATTCTTGAGTTAACCTTGCCTGCGTC
GTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTGAGAGGGCG
AAACCTCCAACACTTAGCACTCATCGTTACGGCATGGACTACCAGGGTA
TCTAACCTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTGCAGACC
AGAGAGCCGCCCTCGCCACTGGTGTCTCCATATATCTACGCATTCCACCG
CTACACATGGAGTCCACTCTCCTCTGCACACTCAAGAAAAACAGTTCCG
ATGCAATTCTCGGTTAACGCCAGGGCTTCACATCAGACTTATTCTCCGC
CTGCGCTCGCTTACGCCAATAATCCGGACAACGCTGCCACCTACGTAT
TACCGCGGCTGCTGGCACGTATTAGCCGTGACTTCTGGTTGATTACCGTC
AAATAAAGGCCAGTTACTACCTCTACCTTACCAACAACAAAGCTTTA
CGATCCGAAAACCTTCTTCACTCACGCCGGTGTCCATCAAACCTGCGTC
CATGGGAAGATTCCCTACTGCAC

B.7 16 S ribosomal RNA gene partial sequence for K3-2a

ACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGA
GTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATA
ACATTTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTC
TTGGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTAT
TAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGATGATACGTAGCCGAAC
TGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACTCCTACG
GGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTGATGGAGCA
ACGCCCGTGTGAGTGAAGAAGGCTTCGGGCGTAAAACCTCTGTTGGAG
AAGAATGGTCGGCAGAGTAACCTGTCGGCGTGACGGTATCCAACCAGAA
AGCCACGGCTAACTACGTGCCAGCAGCCCGGTAAACGTAGGTGGCAAGC
GTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGGTTTTAAGTCTG
ATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAACTGGAAACT
TGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTA
GATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGCTGTAACTGA
CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCTGGTAGT
CCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGT
GCCGCAGCTAACGCATTAAGCATTCCGCCTGGGAGTACGACCGCAAGGTT
GAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGAGCATGTGGT
TTAATTGAAAGCAACCGAAGAACCTTACCAAGGTCTGACATCTTGATCA
CCTGAGAGATCAGGTTCCCTCGGGGAAATGACAGGTGGTGCATGG
TTGTCGTAGCTCGTGTCTGAAATGTTGGGTTAAGTCCCGAACGAGCGCA
ACCCTTATGACTAGTTGCCAGCATTTAGTTGGCACTTAGTAAGACGGCCG
GTGACAAACCGGAGGAAGGGGGGGATGACGTCGG

B.8 16 S ribosomal RNA gene partial sequence for k3-3a

GAGTTGATCCTGGATCAGAGAAGACCAACAAAGTTACCTCAGAAATGACG
CTGGGGACCGCGAGCGGCGGATGGGTGAGTAACACACGTGGGGAACCTGCC
ATAGTCTAGGATACCACTGGAAACAGGTGCTAATACCGGATAATAAGCA
GATCGCATGATCAGCTTATAAAAGGCAGCGTAAGCTGTCGCTATGGGATGG
CCCCCGGGTGCATTAGCTAGTTGTAAGGTAACGGCTTACCAAGGCAATGA
TGCATAGCCGAGTTGAGAGACTGAACGGCCACATTGGGACTGAGACACGGC
CCAAACTCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAG
TCTGATGGAGCAACGCCCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCT
CTGTTGTTGGTGAAGAAGGATAGAGGTAGTAACTGGCCTTATTGACGGT
AATCAACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCCGGTAATACG
TAGGTGGCAAGCGTTGTCCGGATTATTGGCGTAAAGCGAGCGCAGGCGG
AAGAATAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAATTGCATCGG
AAACTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCG
GTGGAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCGGCTCTCG
GTCTGCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGA
TACCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTGGAGGTTT
CCGCCTCTCAGTGCTGCAGCTAACGCTTAAGCACTCCGCTGGGAGTAC
GACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGT
GGAGCATGTGGTTAATTGAAGCAACGCGAAGAACCTTACCAAGGTCTGA
CATCTAGTGCCATCCTAACAGAGATTAGGAGTTCTCTCGGGACGCTAACGAC
AGGTGGTGCATGGCTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCC
CGCAACGAGCGCAACCCTATTATTAGTGTGCCAGCATTAAAGTGGGACTCT
AATGAGACTGCCGGTGACAAACCGGAGGAAAGGGGGGATGACGTCAAGT
CATCCGGCCCC

B.9 16 S ribosomal RNA gene partial sequence for k3-8b2

TGCAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAAC
ATGGAACGAGTGGCGGACGGGTGAGTAACACACGTGGGTAACCTGCCCTTAAG
TGGGGGATAAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCC
GCATGGTTCTTGGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCC
GCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATGCCACATTGGGACTGAGACACGGCCCAA
ACTCCTACGGGAGGCAGCAGTAGGAACTCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGGCGTAAAGTCTGT
TGTGGAGAAGAATGGTGGCAGAGTAACGTGTTGCCGGCGTACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGGTT
TTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATTGGAAA
CTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCGGCTGTCTGGTC
TGTAACGTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTTCAGTGCCCGAGCTAACGCTTAAGCATTCCGCCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGCACAAGCGGTGGA
GCATGTGGTTAATTGAAAGCAACGCGAACGAAACCTTACCAAGGTCTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCTTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGT
AAGACTGCCGGTACAACCGGAGGAAGGTGGGATGACGTCAATCATCAT
GCCCTTATGACCTGGCTACCACGTGCTACATGGATGGTACACGAGTTGC
GAGACGCGAGGTCAAGCTAACCTAAAGCCTTCCAGTTGGCTGTAGGCT
GCACCCCTAACAAATCGGA

B.10 16 S ribosomal RNA gene partial sequence for k3-13b

AGTGTCTCGTTGATGATCGGTGCTGCACCGAGATTCAACATGGAACGAGT
GGCGGACGGGTGAGTAACACACGTGGTAACCTGCCCTTAAGTGGGGGATAAC
ATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTT
GGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTATT
GCTAGTTGGTGAGGTAATGGCTACCAAGGCGATGATACGTAGCCGAAC
AGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAACTCCTACGGG
AGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGATGGAGCAAC
GCCCGTGAGTGAAGAAGGCTTCGGGTGACGGTATCCAACCAGAAAG
GAATGGTCGGCAGAGTAACTGTTGCCGGCGTACGGTATCGAAGCGT
CCACGGCTAACTACGTGCCAGCAGCCCGTAATACGTAGGTGGCAAGCGT
TATCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGTTTTAAGTCTGAT
GTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAACTGGAAACTTG
AGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGA
TATATGGAAGAACACCAAGTGGCGAAGGCGCTGCTGGTCTGTAACGTACG
CTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCC
ATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGC
CGCAGCTAACGCATTAAGCATTCCGCCTGGGAGTACGACCGCAAGGTTGA
AACTCAAAGGAATTGACGGGGCCCGACAAGCGTGGAGCATGTGGTTA
ATTGCAAGCAACCGAAGAACCTTACCAAGGTCTTGACATCTTGATCACCT
GAGAGATCAGGTTCCCCTCGGGGGCAAAATGACAGGTGGTGCATGGTTG
TCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCGCAACGAGCGCAAC
CCTTATGACTAGTTGCCAGCATTAGTTGGGGCACTCTAGTAAGAACTGCCG
GGTGACAAACCGGAAGGAAGGTGGGGATGACGTCCAAATCCTCTGCC
CCTTAGGAACCTGGGCTAACCAACCGTGCTAACAAAGGAAAGGGTAAAA

B11. 16 S ribosomal RNA gene partial sequence for k3-20

GCTCGCTCCCTAAAAGGGTTACGCCACCGGCTCGGGTGTACAAACTCTCA
TGGTGTGACGGCGGTGTACAAGGCCGGAACGTATTCACCGCGCGT
GCTGATCCCGATTACTAGCGATTCCGACTCGTAGGCGAGTTGCAGCCT
ACAGTCCGAACTGAGAATGGCTTAAGAGATTAGCTGACCTCGCGGTCTC
GCAACTCGTGTACCATCCATTGTAGCACGTGTAGCCCAGGTATAAGG
GGCATGATGATTGACGTCATCCCCACCTTCCTCCGGTTGTCACCGGCAGT
CTTACTAGAGTGCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCT
CGTTGCGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATG
CACCACTGTCATTTGCCCGAAGGGAAACCTGATCTCAGGTGATCA
AAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCAC
ATGCTCCACCCTGTGCGGGCCCCGTCAATTCTTGAGTTCAACCTTG
CGGTCGTACTCCCCAGGCGGAATGCTTAATGCGTTAGCTGCGGCACTGAAG
GGCGGAAACCCCTCCAACACCTAGCATTGCTTACGGCATGGACTACCA
GGGTATCTAATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC
AGACCAGACAGCCGCCCTCGCCACTGGTGTCTCCATATCTACGCATT
CACCGCTACACATGGAGTCCACTGTCCTCTGCACTCAAGTTCCCAGT
TTCCGATGCGCTCCTCGGTTAAGCCGAGGGTTCACATCAGACTTAAAAAA
ACCGCCTGCGCTCGCTTACGCCAATAAATCCGGATAACGCTGCCACCTA
CATATTACCGCGGCTGCTGGCACGTAATTAGCCGTGGCTTCTGGTTGGATA
CCGTCACGCCAACAAACAATCA

B.12 16 S ribosomal RNA gene partial sequence for k3-20a

GAGTGTCTCGGTGATGATCGGTGCTTGCACCGAGATTCAACATGGGAACGA
GTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATA
ACATTTGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTC
TTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCCGCGCGTAT
TAGCTAGTTGGTGGAGTAATGGCTCACCAAGGCATGATACGTAGCCGAAC
TGAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAACTCCTACG
GGAGGCAGCAGTAGGAACTTCCACAATGGACGCAAGTCTGATGGAGCA
ACGCCCGTGAGTGAAGAAGGCTTCGGCTGTAACACTCTGTTGGAG
AAGAATGGTCGGCAGAGTAACCTGTCAGCAGCCGGTAATACGTAGGTGGCAAGC
AGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAGGTGGCAAGC
GTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGCGTTTTAAGTCTG
ATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAACTGGAAACT
TGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTA
GATATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGA
CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCCTGGTAGT
CCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAT

B.13 16 S ribosomal RNA gene partial sequence for k3-28

TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAA
CATGGAACGAGTGGCGGACGGGTGAGTAACACACGTGGTAACCTGCCCTAA
GTGGGGATAAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
CGCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCC
GCGGCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTAGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGGTGACGGTATCC
TGTGGAGAAGAACGGTGGCAGAGTAACGTGTTGCCGGCGTGACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGGTT
TTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAA
CTGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATGGAAAGAACACCAGTGGCGAAGGCGGCTGTCTGGTC
TGTAACGTACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTTCAGTGCCCGAGCTAACGCATTAAGCATTCCGCCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGCACAAGCGGTGGA
GCATGTGGTTAACCGAACGCGAACGAAACCTTACCAAGGTCTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGAACCCCTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGT
AAGACTGCCGGTACAAACCGGAGGAAGGTGGGATGACGTCAAATCATC
ATGCCCTTATGACCTGGCTACCACGTGCTACATGGATGGTACAACGAGT
TGCAGACCCGAGGTCAAGCTAACCTTAAGCCATTCCAATTGGATGTAGG
CTGAAC

B.14 16 S ribosomal RNA gene partial sequence for k4-6a

TGCAAGTCGAGCGAGCAGAACCGACAGCAGATTACTCGGTAATGACGCTGGG
GACGCGAGCGCGGATGGGTGAGTAACACGTGGGGACCTGCCCATAGT
CTGGGATACCACTGGAAACAGGTGCTAATACCGGATAAGAAAGCAGATCG
CATGATCAGCTTATAAAAGGCGGCGTAAGCTGTCGCTATGGGATGGCCCCG
CGGTGCATTAGCTAGTTGTAAGGTAACGGCTTACCAAGGCAATGATGCAT
AGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGCCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCTCTGT
TGTGGTGAAGAAGGATAGAGGCAGTAACTGGCCTTATTGACGGTAATC
AACCAAGAAAGTCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAGG
TGGCAAGCGTTGCCGGATTATTGGCGTAAAGCGAGCGCAGGCGGAAGA
ATAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAACTGCATCGAAC
TGTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGG
AATGCGTAGATATGGAAAGAACACCAGTGGCGAAGGCGACTCTCTGGTCT
GCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTGGAGGTTCCG
CCTCTCAGTGCAGCTAACGCATTAAGCACTCCGCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCGCACAAGCGGTGGA
GCATGTGGTTAATTGAAGCAACGCGAACGAAACCTTACCAAGGTCTTGACAT
CTAGTGCCATCCTAACAGAGATTAGGAGTTCCCTGGGACGCTAACAGACAGG
TGGTGCATGGCTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCCTGTTATTAGTGTGCCAGCATTAAGTGGGACTCTAAT
GAAACTGCCGGTACAAACCGGAGGAAGGTGGGATGACGTCAAGTCATC
AGCCCCCTAGGACCTGGCTACCCGTGCTACATGGAAAGTACACCGGAA
GCGAGCCTGG

B.15 16 S ribosomal RNA gene partial sequence for k4-16

GCTTGCACCGAGATTCAACATGGAACCGAGTGGCGGACGGGTGAGTAACAC
GTGGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAGATGCTAAT
ACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCGTAAGC
TATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGC
TCACCAAGGCGATGATACGTAGCCGAAC TGAGAGGTTGATCGGCCACATTG
GGACTGAGACACGGCCAAACTCCTACGGGAGGCAGCAGTAGGAAATCTTC
CACAATGGACGCAAGTCTGATGGAGCAACGCCCGTGAGTGAAGAAGGCT
TTCGGGTCGTAAA ACTCTGTTGGAGAAGAATGGTCGGCAGAGTAACTG
TTGCCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAG
CAGCCGCGGTAAACGTAGGTGGCAAGCGTTATCCGGATTATTGGCGTA
AAGCGAGCGCAGCGGTTTTAAGTCTGATGTGAAAGCCCTCGGCTAAC
CGAGGAAGCGCATCGGAAACTGGAAACTTGAGTGCAGAAGAGGACAGTG
GAACCTCCATGTGTAGCGGTGAAATCGTAGATATGGAAGAACACCACTG
GCGAAGGCGGCTGTCTGGCTGTAACTGACGCTGAGGCTCGAAAGCATGGG
TAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAATGC
TAGGTGTTGGAGGGTTCCGCCCTTCATTGCCGCATAACTAACGCATAAGCGT
TCCACCTGGCGGTTTC

B 16 . 16 S ribosomal RNA gene partial sequence for k4-17

GCTCGCTCCCTAAAGGGTTACGCCACCGGCTCGGGTGTACAAACTCTCAT
GGTGTACGGGCGGTGTACAAGGCCGGAACGTATTACCGCGCGCTG
CTGATCCGCGATTACTAGCGATTCCGACTCGTAGGCGAGTTGCAGCCTA
CAGTCGAACGTGAGAATGGCTTAAGAGATTAGCTTGACCTCGCGGTCTCG
CAAACCGTTGTACCATCCATTGTAGCACGTGTAGCCCAGGTACAAAGGG
GCATGATGATTGACGTACCCCCACCTCCCTCCGGTTGTCACCGGCAGTC
TTACTAGAGTGCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCTC
GTTGGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGC
ACCACCTGTCATTGCCCCGAAGGGAAACCTGATCTCTCAGGTGATCA
AAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTTCGAATTAAACCAC
ATGCTCCACCGCTGTGCGGGCCCCGTCAATTCTTGAGTTAACCTTG
CGGTCGTACTCCCCAGGCAGGAATGCTTAATGCGTTAGCTGCGGCAGTCAG
GGCGGAAACCCCTCCAACACCTAGCATTACGTTACGGCATGGACTACCA
GGGTATCTAATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC
AGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATT
CACCGCTACACATGGAGTCCACTGTCCTCTGCACTCAAGTTCCCAGT
TTCCGATGCGCTTCCTCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAA
ACCGCCTGCGCTCGCTTACGCCAATAATCCGGATAACGCTTGCACCTA
CGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTCTGGTTGGATA
CCGTCACGCCGGCAACAGTTACTCTGCCGACCATTCTCTCCAACAAACAGA
GTTTACGACCCGAAAGCCTCTTCACGCCGTTGCTCCATCAAACATT
GCGTCCATTGGGGATG

B17. 16 S ribosomal RNA gene partial sequence for k4-28

GCAGTCGACGAGTTCTCGTGATGATCGGTGCTTGCACCGAGATTCAACAT
GGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTAACGTG
GGGGATAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGC
ATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGC
GGCGTATTAGCTAGTTGGTGGAGGTAATGGCTCACCAAGGCGATGATACGTA
GCCGAACGTGAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAAC
TCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGAT
GGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGCTGACGGTATCCAA
CCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAGGTG
GCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGTTTTT
AAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATCGGAAACTG
GGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAA
ATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGCTGTCTGGTCTG
TAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCC
TGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCC
CTTCAGTGCCCGAGCTAACGCTAACGATTAGCATTCCGCCCTGGGGAGTACGACCG
CAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGAGC
ATGTGGTTAATCGAAGCAACCGAAGAACCTTACCAAGGTCTGACATCTT
TTGATCACCTGAGAGATCAGGTTCCCCTCGGGGGAAAATGACAGGTGG
TGCATGGTTGTCGTCAAGCTCGTGTGAGATGTTGGTTAAGTCCCGAAC
GAGCGCAACCCCTATGACTAGTGTCCAGCATTTAGTGGCACTCTAGTAA
GACTGCCGGTGACAAACCGGAGGAAGGGGGGATGACGTCAAATCATCAT
GCCCTTATGACTGGGCTACCCACGTGCCACAATGGATGGTACAACCA
AGTTGCCAGAACCGCCGAGGTCAAGCTAATCTCTTAA

B.18 16 S ribosomal RNA gene partial sequence for k5-3

TGCAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAAC
ATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAG
TGGGGATAAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
GCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCC
GCGCGTATTAGCTAGTTGGTGAGGTAAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGTGTAAAGCT
TGTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGCCGGCGTACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGTT
TTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAA
CTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGGTGTCTGGTC
TGTAACGTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTCAGTGCCCGAGCTAACGCTTAAGCATTCCGCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGA
GCATGTGGTTAATTGAAGCAACGCGAACGAAACCTTACCAAGGTCTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTAGCTGTCGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCTTATGACTAGTTGCCAGCATTTAGTTGGCACTCTAGT
AAGACTGCCGGTACAAACCGGAGGAAGGTGGGATGACGTCAATCATCAT
GCCCTTATGACCTGGCTACCACGTGCTACATGGATGGTACACGAGTTGC
GAGACCCCAGGTCTAGCTAACCTTAAGCCTTCCAGTTGGACGTAGGCTG
CACTCCCTACCAAGTCGGATCGCAGTATCCGGATCAC

B.19 16 S ribosomal RNA gene partial sequence for k5-3a

GCCTAATACATGCAAGTCGAACGAGTTCTGTTGATGATCGGTGCTGCACC
GAGATTCAACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTAAC
CTGCCCTTAAGTGGGGATAACATTGGAAACAGATGCTAATACCGCATAG
ATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTT
GGATGGACCCCGCGCGTATTAGCTAGTTGGTGAGGTAACGGCTACCAAGG
CGATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGA
CACGGCCCAAACCTCCTACGGGAGGCAGCAGTAGGGAATCTCCACAATGGA
CGCAAGTCTGATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGGTCGT
AAAACCTCTGTTGGAGAAGAATGGTCGGCAGAGTAACCTGTTGTCGGCGT
GACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCCGGT
AATACGTAGGTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGC
AGGCGGTTTTAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAAGCG
CATCGGAAACTGGAAACTTGAGTGCAGAACAGAGGACAGTGGAACTCCATG
TGTAGCGGTGAAATGCGTAGATATGGAAGAACACCAGTGGCGAAGGCG
GCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAAC
GGATTAGATAACCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTG
GAGGGTTCCGCCCTTCAGTGCCCGAGCTAACGCATTAAGCATTCCGCCTGG
GGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGCAC
AACCGGTGGAGCATGTGGTTAATTGAAGCAACCGAAGAACCTTACCAAG
GTCTGACATCTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAA
AATGACAGGTGGTCATGGTTGTCGTCAGCTCGTGTGAGATGTTGGGTT
AAGTCCCGCAACGAGCGAACCCCTATGACTAGTTGCCAGCATTAGTTGG
GCACTCTAGTAAGACTGCCGGTACAAACCGGAGGAAGGTGGGATGACG
TCAAATATCATGCCCTTATGACCTGGCTACCCCGTGCTACAATGGAGG
GACAACGAGTTGCAGACCGGGAGTCAAGCTAATCTTAAGGCCTTTAGT
TCGGACTGGAGGGTGGAACTGGC

B.20 16 S ribosomal RNA gene partial sequence for k5-5a

TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAA
CATGGAACGAGTGGCGGACGGGTGAGTAACACACGTGGTAACCTGCCCTAA
GTGGGGATAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
CGCATGGTTCTTGGCTGAAAGATGGCGTAAGCTATCGCTTTGGATGGACCC
GCGCGTATTAGCTAGTTGGTGAGGTAAACGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGTGTGACGGTATCC
TGTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGTCGGCGTACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCCGGTAAACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGTTT
TTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAA
CTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGGCTGTCTGGTC
TGTAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTTCAGTGCCCGAGCTAACGCATTAAGCATTCCGCCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGA
GCATGTGGTTAATTGAAAGCAACGCGAAGAACCTTACCAAGGTCTTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCCTATGACTAGTTGAC

B.21 16 S ribosomal RNA gene partial sequence for k5-11

GGCTCGCTCCCTAAAGGGTTACGCCACCGGCTCGGGTGTACAAACTCTCA
TGGTGTGACGGCGGTGTACAAGGCCGGAACGTATTCACCGCGCGT
GCTGATCCCGATTACTAGCGATTCCGACTTCGTGTAGCGAGTTGCAGCCT
ACAGTCCGAAC TGAGAATGGCTTAAGAGATTAGCTTGACCTCGCGGTCTC
GCAACTCGTGTACCATCCATTGTAGCACGTGTAGCCCAGGTACATAAGG
GGCATGATGATTGACGTCATCCCCACCTTCCTCCGGTTGTCACCGGCAGT
CTTACTAGAGTGCCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCT
CGTTGCGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATG
CACCACTGTCATTTGCCCGAAGGGAAACCTGATCTCAGGTGATCA
AAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCAC
ATGCTCCACCCTGTGCGGGCCCCGTCAATTCTTGAGTTCAACCTTG
CGGTCGTACTCCCCAGGCGGAATGCTTAATGCGTTAGCTGCGGCACTGAAG
GGCGGAAACCCCTCCAACACCTAGCATTACGTTACGGCATGGACTACCA
GGGTATCTAATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC
AGACCAGACAGCCGCCCTCGCCACTGGTGTCTCCATATCTACGCATT
CACCGCTACACATGGAGTCCACTGTCCTCTGCACTCAAGTTCCCAGT
TTCCGATGCGCTCCTCGGTTAAGCCGAGGGTTTCACATCAGACTTAAAAAA
ACCGCCTGCGCTCGCTTACGCCAATAAATCCGGATAACGCTGCCACCTA
CGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTCTGGTTGGATA
CCGTCACGCCGGAACAGTTACTCTGCCGACCATTCTCTCCAACAAACAGA
GTTTACGACCCGAAAGCCTCTTCACTCAGGCGCGTTGCTCCATCAAAC
TGCCTCCATTGTGGAAGATTCCCTACTGCTGCCTCCGTAGGAATTGGGCC
GGGTCTCATTCCTAACGTGGCAATCAACCTCAATTGGCTACGTATCACC
GCCTTGGTGAACCCTTACCTCCCCACCAAGCTAAACCCCCGGGTTCCATCC
AAAGCGATAACTTACCCCTTCTTACCCAC

B.22 16 S ribosomal RNA gene partial sequence for k5-14

GCTCGCTCCCTAAAGGGTTACGCCACCGGCTCGGGTGTACAAACTCTCAT
GGTGTACGGGCGGTGTACAAGGCCGGAACGTATTACCGCGCGCTG
CTGATCCCGATTACTAGCGATTCCGACTCGTAGGCGAGTTGCAGCCTA
CAGTCGAACGTGAGAATGGCTTAAGAGATTAGCTTGACCTCGCGGTCTCG
CAAACCGTTGTACCATCCATTGTAGCACGTGTAGCCCAGGTACAAAGGG
GCATGATGATTGACGTACCCCCACCTCCCTCCGGTTGTCACCGGCAGTC
TTACTAGAGTGCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCTC
GTTGGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGC
ACCACCTGTCATTTGCCCGAAGGGAAACCTGATCTCTCAGGTGATCA
AAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTTCGAATTAAACCAC
ATGCTCCACCGCTGTGCGGGCCCCGTCAATTCTTGAGTTAACCTTG
CGGTCGTACTCCCCAGGCAGGAATGCTTAATGCGTTAGCTGCGGCACTGAAG
GGCGGAAACCCCTCCAACACCTAGCATTACGTTACGGCATGGACTACCA
GGGTATCTAATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC
AGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATT
CACCGCTACACATGGAGTCCACTGTCCTCTGCACTCAAGTTCCCAGT
TTCCGATGCGCTTCCTCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAA
ACCGCCTGCGCTCGCTTACGCCAATAATCCGGATAACGCTTGCACCTA
CGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTCTGGTTGGATA
CCGTCACGCCGGAACAGTTACTCTGCCGACCATTCTCTCCAACAAACAGA
GTTTACAACCCCAAAGCCTTCTCACTCAGGCCGGTGTGCTCCATCAAAC
TGCGTCCATTGTGGAAGAATCCCTACTGCTGCCTCCGTAGGATTGGGCCG
GGTCCCACTCCCAAGGGGCCAATCAACCTCCCAGTTCGCG

B.23 16 S ribosomal RNA gene partial sequence for k5-15

GGCTCGCTCCCTAAAAGGGTTACGCCACCGGCTCGGGTGTACAAACTCTC
ATGGTGTGACGGCGGTGTACAAGGCCGGAACGTATTCACCGCGCG
TGCTGATCCGCGATTACTAGCGATTCCGACTCGTAGGCGAGTTGCAGCC
TACAGTCCGAAGTGGCTTAAGAGATTAGCTGACCTCGCGGTCT
CGCAACTCGTTGTACCATCCATTGTAGCACGTGTAGCCCAGGTATAAG
GGGCATGATGATTGACGTACCCCCACCTTCCTCCGGTTGTCACCGGCAG
TCTTACTAGAGTGCCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCC
TCGTTGCGGGACTTAACCAACATCTCACGACACGAGCTGACGACAACC
GCACCACTGTCATTTGCCCGAAGGGAAACCTGATCTCAGGTGATC
AAAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTCGAATTAAACCA
CATGCTCCACCGCTGTGCGGGCCCCGTCATTGAGTTCAACCTT
GCGGTCGTACTCCCCAGGCGGAATGCTTAATGCGTTAGCTGCGGCACTGAA
GGCGGAAACCCCTCCAACACCTAGCATTGCTTACGGCATGGACTACC
AGGGTATCTAATCCTGTTCGTACCCATGCTTCGAGCCTCAGCGTCAGTTA
CAGACCAGACAGCCGCCTCGCCACTGGTGTCTCCATATATCTACGCATT
TCACCGCTACACATGGAGTTCCACTGTCCTTCTGCACTCAAGTTCCCAG
TTCCGATGCGCTCCTCGGTTAAGCCGAGGGCTTCACATCAGACTAAAAA
AACCGCCTGCGCTCGCTTACGCCAATAAATCCGGATAACGCTGCCACCT
ACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTCTGGTTGGAT
ACCGTCACGCCAACAGTTACTCTGCCGACCATTCTCTCCAACAAACAG
AGTTTACGACCCGAAAGCCTTCTCACTCAGGCCGTTGCTCCATCAGAC
TTGCGTCCATTGTGGAAGATTCCCTACTGCTGCCTCCCTAAGAATTGGGC
CGTGTCTCAGTCCCAATGTGGCCGATCAACCTCTCAATTGGCTACATATCA
TCCCTTGGTAACCCCTACCTCCCCACTAGCTTAAACCCCCGGGCTCC
AAAAGGAATGCTTACGCCCTTTACCCAAAAACATGGCGGTTCTGGATT
TTGCGGTTAACCTTTCCAAGTTATCCCCCTAGGGGG

B.24 16 S ribosomal RNA gene partial sequence for k6-1

GCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAAC
ATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAG
TGGGGATAAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
GCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCC
GCGGCGTATTAGCTAGTTGGTGAGGTAAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGTGTAAAGCTGT
TGTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGCCGGCGTACGGTATCC
AACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGTT
TTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAA
CTGGGAAACTTGAGTGCAGAAGAACAGACTGGAACTCCATGTGTAGCGGT
AAATGCGTAGATATGGAAGAACACCAAGTGGCGAAAGCGGCTGTCTGGTC
TGTAACGTACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTCAATGCCCGAGCTAACGCTTAAGCATTCCGCTGGGAGTACGAC
CGCCAGGTTGAAACTCAAAGGAATTGACGGGGCCCCACAACCGGTGGA
GCATGTGGTTAATTCAAGCAACCCGAGAAACCTTACCAAGGGCTGACTTCT
TTGATCACCTGAAAAATCAGGTTCCCCTCGGGGGAAAATGACAGGGG
GGGCATGGTTGTCCTCCACCCCGTCCGGGAAATTGGGTTAATTCCCCCAC
CAAGGCAACCCTTAACAAATTGCCGCCATTATTGGGCCCTTTAAAAAA
TGCCGGGAAAACCGAGGAAGGGGGGTAAAGTCAAAATCCTGGCCCC
TTAACCGGGGTACCCCGTCCACTGGAGGGAAACCAAGTTGGGAAC
CGGGGTAAGCTAATTCTTAAGGCCTTCCCTTGGGAGGGGGGGCAC
CCCCCTCCAAAACGGAAATCTGGTAATTGGAAAAAACCCCCGGGGAA
AATTCCCCG

B.25 16 S ribosomal RNA gene partial sequence for k6-3a

TGCAAGTCGAGCGAGCAGAACCGACAGATTACTCGGTAAATGACGCTGGG
GACGCGAGCGCGGGATGGGTGAGTAACACGTGGGGAACCTGCCCATAGT
CTAGGATACCACTGGAAACAGGTGCTAATACCGGATAATAAAGCAGATCG
CATGATCAGCTTATAAAAGGCAGCGTAAGCTGTCGTATGGATGGCCCCG
CGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAATGATGCAT
AGCCGAGTTGAGAGACTGAACGCCACATTGGGACTGAGACACGGCCCAA
ACTCCTACGGGAGGCAGCAGTAGGAACTCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCTCTGT
TGTGGTGAAGAAGGATAGAGGTAGTAACTGGCCTTATTGACGGTAATC
AACCAGAAAGTCACGGCTAACTACGTGCCAGCAGCCCGTAATACGTAGG
TGGCAAGCGTTGCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGAAGA
ATAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAATTGCATCGGAAAC
TGTTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTGG
AATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCCGCTCTGGTCT
GCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTGGAGGTTCCG
CCTCTCAGTGCTGCAGCTAACGCATTAAGCACTCCGCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCGCACAAGCGGTGGA
GCATGTGGTTAATTGAAAGCAACGCGAACGAAACCTTACCAAGGTCTGACAT
CTAGTGCCATCCTAACGAGATTAGGAGTTCCCTCGGGACGCTAACGACAGG
TGGTGCATGGCTGTCGTCAAGCTCGTGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCTTATTATTAGTGGCCAGCATTAAGTGGCACTCTAAC
GAGACTGCCGGTGACAAACCGGAGGAAGGGGGGATGACCTCAAGCATCA
TGCCCCCTT

B.26 16 S ribosomal RNA gene partial sequence for k6-6a

TCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAACATGGA
ACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGG
GATAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATG
GTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCCGCGGC
GTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGCGATGATACGTAGCC
GAACGTAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACTCC
TACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGA
GCAACGCCCGTGAGTGAAGAAGGCTTCGGGTGACGGTATCCAACCA
GAGAAGAATGGTCGGCAGAGTAACTGTTGCCGGTGACGGTATCCAACCA
GAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAGGTGGCA
AGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGTTTTAAG
TCTGATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATCGAAACTGGGA
AACTTGAGTGCAGAAGAGGGACAGTGGAACTCCATGTGTAGCGGTGAAATGC
GTAGATATATGGAAGAACACCAGTGGCGAAGGCGCTGCTGGTCTGTAAC
TGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCGTGGT
AGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTTC
AGTGCCCGAGCTAACGCATTAAGCATTCCGCCTGGGAGTACGACCGCAAG
GTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGAGCATGT
GGTTAATTGAAAGCAACGCGAAGAACCTTACCAAGGTCTGACATTTGA
TCACCTGAAAGATCAGGTTCCCCTCGGGGGCAAATGACAGGGGGTGCAT
GGTGCCGTCAGCCCAGGGCAGGAGAGTTGGGTTAAGTCCTGAAGT

B.27 16 S ribosomal RNA gene partial sequence for k6-7

GCAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAACA
TGGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGT
GGGGATAAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCG
CATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCCGC
GGCGTATTAGCTAGTTGGTGGAGGTAATGGCTCACCAAGGCGATGATACGTA
GCCGAAC TGAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAAC
TCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT
GGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGCTGACGGTATCCAA
CCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAGGTG
GCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCAGGTTTTT
AAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAAACTG
GGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAA
ATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGCTGTCTGGTCTG
TAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCC
TGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCC
CTTCAGTGCCCGAGCTAACGCTTAAGCATTCCGCCCTGGGGAGTACGACCG
CAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGAGC
ATGTGGTTAATTGAAAGCAACCGAAGAACCTTACCAAGGTCTGACATCTT
TTGATCACCTGAGAGATCAGGTTCCCCTCGGGGGAAAATGACAGGTGG
TGCATGGTTGTCGTCA GCTCGTGTGAGATGTTGGTTAAGTCCCGAAC
GAGCGCAACCCTATGACTAGTTGCCAGCATTAGTTGGGCACTCTAGTAA
GACTGCCGGTGACAACCGGAGGAAGGTGGGATGACGTCAATCATCATGCC
CC

B.28 16 S ribosomal RNA gene partial sequence for k6-9a

TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTGCACCGAGATTCAA
CATGGAACGAGTGGCGGACGGGTGAGTAACACACGTGGTAACCTGCCCTAA
GTGGGGATAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAAC
CGCATGGTTCTGGCTGAAAGATGGCGTAAGCTATCGCTTGGATGGACCC
GCGCGTATTAGCTAGTTGGTGAGGTAAATGGCTACCAAGGCGATGATACG
TAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAA
ACTCCTACGGGAGGCAGCAGTAGGAAATCTCCACAATGGACGCAAGTCTG
ATGGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGTGTGACGGTATCC
TGTTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGCCGGCGTACGGTATCC
AACCAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG
GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGCGTTT
TTTAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCATCGAAA
CTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTG
AAATGCGTAGATATGGAAGAACACCAAGTGGCGAAGGCGGTGTCTGGTC
TGTAACGTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAC
CCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCG
CCCTCAGTGCCCGAGCTAACGCTTAAGCATTCCGCCTGGGAGTACGAC
CGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCGGTGGA
GCATGTGGTTAATTGAAGCAACGCGAAGAACCTTACCAAGGTCTGACAT
CTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGG
TGGTGCATGGTTGTCGTAGCTGTCGTGAGATGTTGGGTTAAGTCCCGC
AACGAGCGCAACCCTATGACTAGTTGCCAGCATTAGTTGGGACTCTAGT
AAGACTGCCGGTGACAACCGGAAGGAAGGTGGGATGACGTCAAATCATC
ATGCCCTTATGACCTGG

B.29 16 S ribosomal RNA gene partial sequence for k6-12

TGCTTGCACCGAGATTCAACATGGGAACGAGTGGCGGACGGGTGAGTAACA
CGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAGATGCTAA
TACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCGTAAG
CTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAACG
GCTCACCAAGGCGATGATACGTAGCCGAAC TGAGAGGTTGATCGGCCACAT
TGGGACTGAGACACGGCCAAACTCCTACGGGAGGCAGCAGTAGGGAATC
TTCCACAATGGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAAGAAG
GCTTCGGGTCGTAAAACTCTGTTGGAGAAGAATGGTCGGCAGAGTAA
CTGTTGTCGGCGTGACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGC
CAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTATTGGGC
GTAAAGCGAGCGCAGGCGGTTTTAAGTCTGATGTGAAAGCCCTCGGCTT
AACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACA
GTGGAACTCCATGTGTAGCGGTGAAATCGTAGATATATGGAAGAACACCA
GTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCAT
GGGTAGCGAACAGGATTAGATACCGCTGGTAGTCCATGCCGTAAACGATGAA
TGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGAGCTAACGCATTAAG
CATTCCGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACG
GGGGCCCGACAAGCGGTGGAGCATGTGGTTAATTGAAGCAACGCGAA
GAACCTTACCAAGGTCTGACATCTTGATCACCTGAGAGATCAGGTTCCC
CTTCGGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTAGCTCGTGTGCGT
GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTATGACTAGTTG

B.30 16 S ribosomal RNA gene partial sequence for k6-14

GGCTCGCTCCCTAAAGGGTTACGCCACCGGCTCGGTGTTACAAACTCTA
TGGTGTGACGGGCGGTGTACAAGGCCGGAACGTATTACCGCGGCGT
GCTGATCCGCGATTACTAGCGATTCCGACTCGTAGGCGAGTTGCAGCCT
ACAGTCCGAACTGAGAATGGCTTAAGAGAGATTAGCTTGACCTCGCGGTCTC
GCAACTCGTTGATCCATTGTAGCACGTGTAGCCCAGGTATAAGG
GGCATGATGATTGACGTACCCCCACCTCCTCCGGTTGTCACCGGCAGT
CTTACTAGAGTGCCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCT
CGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATG
CACCACTGTCATTGCCCCGAAGGGAAACCTGATCTCAGGTGATCA
AAAGATGTCAAGACCTGGTAAGGTTCTCGCGTTGCTTCGAATTAAACCAC
ATGCTCCACCGCTTGTGCGGGCCCCGTCAATTCTTGAGTTCAACCTTG
CGGTCGTACTCCCCAGGCGGAATGCTTAATGCGTTAGCTGCGGCACTGAAG
GGCGGAAACCCCTCCAACACCTAGCATTGTTACGGCATGGACTACCA
GGGTATCTAACCTGTTGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC
AGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATT
CACCGCTACACATGGAGTCCACTGTCCTCTGCACTCAAGTTCCAGT
TTCCGATGCGCTCCTCGGTTAACGCCAGGGCTTCACATCAGACTTAAAAAA
ACCGCCTGCGCTCGCTTACGCCAATAATCCGGATAACGCTTGCACCTA
CGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTCTGGTTGGATA
CCGTCACGCCGGCAACAGTTACTCTGCCGACCATTCTCTCCACAACAAAAT
TTTACGACCCGAAAGCCTT

APPENDIX C

C. BLAST ANALYSIS OF PARTIAL 16S rRNA GENE OF KEFIR ISOLATES

C.1 Blast analysis and alignment results for k2-2a

Sequences producing significant alignments		Download	Manage Columns		Show 100	?		
	Description		GenBank	Graphics	Distance tree of results			
			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	2089	2089	100%	0.0	99.22%	NR_042111.1	
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence	2089	2089	100%	0.0	99.22%	NR_113261.1	
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	2089	2089	100%	0.0	99.22%	NR_117061.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence	2078	2078	100%	0.0	99.05%	NR_113719.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	2078	2078	100%	0.0	99.05%	NR_117060.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	2078	2078	100%	0.0	99.05%	NR_042439.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain NBRC 13951 16S ribosomal RNA, partial sequence	2006	2006	100%	0.0	97.93%	NR_113638.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain VPI 6032 16S ribosomal RNA, partial sequence	2006	2006	100%	0.0	97.93%	NR_117062.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain JCM 1132 16S ribosomal RNA, partial sequence	2006	2006	100%	0.0	97.93%	NR_117812.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain BCRC10695 16S ribosomal RNA, partial sequence	2006	2006	100%	0.0	97.93%	NR_043182.1	

Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence

Sequence ID: [NR_042111.1](#) Length: 1546 Number of Matches: 1

Range 1: 45 to 1202		GenBank	Graphics	▼ Next Match	▲ Previous Match
Score 2089 bits(1131)	Expect 0.0	Identities 1149/1158(99%)	Gaps 0/1158(0%)	Strand Plus/Plus	
Query 1	CGAGCGAGCAGAACCGAGCAGATTTACTTCGGTAATGACGCTGGGGACCGCGAGCGGGAT			60	
Sbjct 45	CGAGCGAGCAGAACCGAGCAGATTTACTTCGGTAATGACGCTGGGGACCGCGAGCGGGAT			104	
Query 61	GGGTGAGTAACACGTGGGGAACCTGCCCCATAGTCTAGGATACCACCTTGAAACAGGTGC			120	
Sbjct 105	GGGTGAGTAACACGTGGGGAACCTGCCCCATAGTCTGGGATACCACCTTGAAACAGGTGC			164	
Query 121	TAATACCGGATAATAAGCAGATCGCATGATCAGCTTATAAAAGGCGGCTAACGCTGTGCG			180	
Sbjct 165	TAATACCGGATAAAGAACGAGATCGCATGATCAGCTTATAAAAGGCGGCTAACGCTGTGCG			224	
Query 181	CTATGGGATGGCCCCCGGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAAT			240	
Sbjct 225	CTATGGGATGGCCCCCGGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAAT			284	
Query 241	GATGCATAGCCGAGTTGAGAGACTGAACGCCACATTGGACTGAGACACGCCAAACT			300	
Sbjct 285	GATGCATAGCCGAGTTGAGAGACTGATCGGCCACATTGGACTGAGACACGCCAAACT			344	
Query 301	CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGAGAACGC			360	
Sbjct 345	CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGAGAACGC			404	
Query 361	CGCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAGGATAGAG			420	
Sbjct 405	CGCGTGAGTGAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAGGATAGAG			464	
Query 421	GTAGTAACGGCTTATTTGACGGTAATCAACCGAGAAAGTCACGGCTAACACGTGCCA			480	
Sbjct 465	GTAGTAACGGCTTATTTGACGGTAATCAACCGAGAAAGTCACGGCTAACACGTGCCA			524	

Sbjct	465	GTAGTAACTGGCCTTATTGACGGTAATCAACCAGAAAGTCACGGCTAAGTACGTGCCA	524
Query	481	GCAGCCGGTAATACGTAGGGCAAGCGTTGTCCGGATTATTGGCGTAAAGCGAGC	540
Sbjct	525	GCAGCCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTATTGGCGTAAAGCGAGC	584
Query	541	GCAGGGGAAGAATAAGTCTGATGTGAAAGCCCTGGCTAACGAGGAATTGCATCGGA	600
Sbjct	585	GCAGGGGAAGAATAAGTCTGATGTGAAAGCCCTGGCTAACGAGGAATTGCATCGGA	644
Query	601	AACTGTTTTCTTGAGTGCAGAAGAGGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCG	660
Sbjct	645	AACTGTTTTCTTGAGTGCAGAAGAGGGAGAGTGGAACTCCATGTGTAGCGGTGGAATGCG	704
Query	661	TAGATATATGGAAGAACACCAGTGGCGAAGGGCGCTCTGGTCTGCAACTGACGCTGAG	720
Sbjct	705	TAGATATATGGAAGAACACCAGTGGCGAAGGGCGCTCTGGTCTGCAACTGACGCTGAG	764
Query	721	GCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCTGGTAGTCATGCCGTAAACGAT	780
Sbjct	765	GCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCTGGTAGTCATGCCGTAAACGAT	824
Query	781	GAGTGCTAAGTGTGGGAGGTTCCGCCTCTCAGTGCTGCAGCTAACGCATTAAGCACTC	840
Sbjct	825	GAGTGCTAAGTGTGGGAGGTTCCGCCTCTCAGTGCTGCAGCTAACGCATTAAGCACTC	884
Query	841	CGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGCACAAG	900
Sbjct	885	CGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGCACAAG	944
Query	901	CGGTGGAGCATGTGGTTAATTGAAAGCAACCGCAAGAACCTTACCAAGGTCTTGACATCT	960
Sbjct	945	CGGTGGAGCATGTGGTTAATTGAAAGCAACCGCAAGAACCTTACCAAGGTCTTGACATCT	1004
Query	961	AGTGCCATCTAACAGAGATTAGGAGTTCCCTCGGGGACGCTAACGACAGGTGGTCATGGC	1020
Sbjct	1005	AGTGCCATCTAACAGAGATTAGGAGTTCCCTCGGGGACGCTAACGACAGGTGGTCATGGC	1064
Query	1021	TGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGCAACCCCTTATT	1080
Sbjct	1065	TGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGCAACCCCTTATT	1124
Query	1021	TGTCGTAGCTCGTGTGAGATGTTGGGTTAACGAGCGCAACCCCTTATT	1080
Sbjct	1065	TGTCGTAGCTCGTGTGAGATGTTGGGTTAACGAGCGCAACCCCTTATT	1124
Query	1081	ATTAGTTGCCAGCATTAAGTTGGCACTCTAACGAGACTGCCGGGACAAACCGGAGGAA	1140
Sbjct	1125	ATTAGTTGCCAGCATTAAGTTGGCACTCTAACGAGACTGCCGGTACAAACCGGAGGAA	1184
Query	1141	ggggggggATGACGCCAAG	1158
Sbjct	1185	GGTGGGGATGACGTCAAG	1202

C.2 Blast analysis and alignment results for k2-3

<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	2006	2006	99%	0.0	99.19%	NR_042111.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence	2006	2006	99%	0.0	99.19%	NR_113261.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	2006	2006	99%	0.0	99.19%	NR_117061.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence	1995	1995	99%	0.0	99.01%	NR_113719.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1995	1995	99%	0.0	99.01%	NR_117060.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1995	1995	99%	0.0	99.01%	NR_042439.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1962	1962	99%	0.0	98.47%	NR_119274.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1962	1962	99%	0.0	98.47%	NR_117063.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain ATCC 33820 16S ribosomal RNA, partial sequence	1962	1962	99%	0.0	98.47%	NR_041800.1
<input checked="" type="checkbox"/>	Lactobacillus amylovorus DSM 20531 16S ribosomal RNA, partial sequence	1956	1956	99%	0.0	98.38%	NR_117064.1
<input checked="" type="checkbox"/>	Lactobacillus amylovorus DSM 20531 16S ribosomal RNA, partial sequence	1956	1956	99%	0.0	98.38%	NR_043287.1
<input checked="" type="checkbox"/>	Lactobacillus ultunensis strain CCUG 48460 16S ribosomal RNA, partial sequence	1951	1951	99%	0.0	98.29%	NR_117065.1
<input checked="" type="checkbox"/>	Lactobacillus kitasatensis strain JCM 1039 16S ribosomal RNA, partial sequence	1951	1951	99%	0.0	98.29%	NR_024813.1
<input checked="" type="checkbox"/>	Lactobacillus ultunensis strain Kx146C1 16S ribosomal RNA, partial sequence	1945	1945	99%	0.0	98.20%	NR_042802.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain NBRC 13951 16S ribosomal RNA, partial sequence	1940	1940	99%	0.0	98.11%	NR_113638.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain VPI 6032 16S ribosomal RNA, partial sequence	1940	1940	99%	0.0	98.11%	NR_117062.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain JCM 1132 16S ribosomal RNA, partial sequence	1940	1940	99%	0.0	98.11%	NR_117812.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain BCRC10695 16S ribosomal RNA, partial sequence	1940	1940	99%	0.0	98.11%	NR_043182.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1936	1936	99%	0.0	98.03%	NR_114722.1
<input checked="" type="checkbox"/>	Lactobacillus intestinalis strain TH4 16S ribosomal RNA, partial sequence	1925	1925	98%	0.0	98.27%	NR_117071.1

Alignment

Lactobacillus intestinalis strain TH4 16S ribosomal RNA, partial sequence

Sequence ID: [NR_117071.1](#) Length: 1448 Number of Matches: 1

Range 1: 261 to 1360 [GenBank](#) [Graphics](#)

▼ [Next Match](#) ▲ [Pr](#)

Score 1925 bits(1042)	Expect 0.0	Identities 1081/1100(98%)	Gaps 1/1100(0%)	Strand Plus/Minus
Query 14	GGTTAGGCCACCGGCTTGGCATTGCAGACTTCCATGGTGTGACGGGCGGTGTGTACAA		73	
Sbjct 1360	GGTTAGGCCACCGGCTTGGCATTGCAGACTTCCATGGTGTGACGGGCGGTGTGTACAA		1301	
Query 74	GGCCCAGGGAAACGTATTCAACCGCGGCGTTCTGATCCCGCATTACTAGCGATTCCAGCTCG		133	
Sbjct 1300	GGCCCAGGGAAACGTATTCAACCGCGGCGTGTGATCCCGCATTACTAGCGATTCCAGCTCG		1241	
Query 134	TGCAGTCGAGTTGCAGACTGCAGTCCGAACCTGAGAACAGCTTCAGAGAGATTGGCTTGCCT		193	
Sbjct 1240	TGCAGTCGAGTTGCAGACTGCAGTCCGAACCTGAGAACAGCTTAAGAGAGATTGGCTTGCCT		1181	
Query 194	TCGCAGGCTCGCTTCTCGTTGACTGCCATTGAGCACGTGTAGCCCAGGTCTAGCTCATTAAG		253	
Sbjct 1180	TCGCAGGCTCGCTTCTCGTTGACTGCCATTGAGCACGTGTAGCCCAGGTCTAGCTCATTAAG		1121	
Query 254	GGGCATGATGACTTGACGTACATCCCCACCTTCCCGTTGTACCGGCAGTCTCATTA		313	
Sbjct 1120	GGGCATGATGACTTGACGTACATCCCCACCTTCCCGTTGTACCGGCAGTCTCATTA		1061	
Query 314	GAGTGCCCAACTTAATGCTGGCAACTAATAAAAGGGTTGCGCTCGTTGCGGGACTTAAC		373	
Sbjct 1060	GAGTGCCCAACTTAATGCTGGCAACTAATAAAAGGGTTGCGCTCGTTGCGGGACTTAAC		1001	
Query 374	CCAACATCTACGACACGAGCTGACGACAGCCATGCACCCACCTGCTTAGCGTCCCCGAA		433	
Sbjct 1000	CCAACATCTACGACACGAGCTGACGACAGCCATGCACCCACCTGCTTAGCGTCCCCGAA		941	
Query 434	GGGAACTCCTAATCTCTTAGGATGGCACTAGATGTCAGACCTGGTAAGGTTCTTCGCGT		493	
Sbjct 940	GGGAACTCCTAATCTCTTAGGATGGCACTAGATGTCAGACCTGGTAAGGTTCTTCGCGT		881	

Sbjct	940	GGGAACCTCCTAATCTCTTGGATGGCACTAGATGTCAGACCTGGTAAGGTTCTTCGCGT	881
Query	494	TGCTTCGAATTAAACCACTGCTCCACCGCTTGTGCGGGCCCCGTCATTCTTGGAGT	553
Sbjct	880	TGCTTCGAATTAAACCACTGCTCCACCGCTTGTGCGGGCCCCGTCATTCTTGGAGT	821
Query	554	TTCAACCTTGCCTCGTACTCCCCAGGCGGAGTCTTAATGCGTTAGCTGCAGCACTGAG	613
Sbjct	820	TTCAACCTTGCCTCGTACTCCCCAGGCGGAGTCTTAATGCGTTAGCTGCAGCACTGAG	761
Query	614	AGGCAGAAACCTCCCAACACTTAGCACTCATGTTACGGCATGGACTACCAGGGTATCT	673
Sbjct	760	AGGCAGAAACCTCCCAACACTTAGCACTCATGTTACGGCATGGACTACCAGGGTATCT	701
Query	674	AATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTGCAGACCAAGAGAGCCGCC	733
Sbjct	700	AATCCTGTTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTACAGACCAAGAGAGCCGCC	641
Query	734	TTGCCACTGGTGTCTTCATATATCTACGATTCCACCGCTACACATGGAGTTCCACT	793
Sbjct	640	TTGCCACTGGTGTCTTCATATATCTACGATTCCACCGCTACACATGGAGTTCCACT	581
Query	794	CTCCCTCTCTGCACTCAAGAAAAACAGTTCCGATGCAATTCTCGGTTAAGCCGAGGGC	853
Sbjct	580	CTCCCTCTCTGCACTCAAGAAAACAGTTCCGATGCAATTCTCGGTTAAGCCGGGGGC	521
Query	854	TTTCACATCAGACTTATTCTTCGCTGCGCTCGCTTACGCCAATAAAATCCGGACAAAC	913
Sbjct	520	TTTCACATCAGACTTATTCTTCGCTGCGCTCGCTTACGCCAATAAAATCCGGACAAAC	461
Query	914	GCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTATTAGCGTGACTTCTGGTTG	973
Sbjct	460	GCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCGTGACTTCTGGTTG	401
Query	974	ATTACCGTCAAATAAGGCCAGTTACTACCTCTATCCTTCTCACCAACAAACAGAGCTTT	1033
Sbjct	400	ATTACCGTCAAATAAGGCCAGTTACTACCTCTATCCTTCTCACCAACAAACAGAGCTTT	341
Query	1034	ACGATCC-AAAACCTTCTTCACTCAGGCGGCTTGTCCATCAAACATTGCGTCCATTGTG	1092
Sbjct	340	ACGATCCGAAAACCTTCTTCACTCAGGCGGCTTGTCCATCAAACATTGCGTCCATTGTG	281
Query	1093	GAAGATTCCCTACTGCTGCC	1112
Sbjct	280	GAAGATTCCCTACTGCTGCC	261

C.3 Blast analysis and alignment results for k2-3a

Sequences producing significant alignments							Download	Manage Columns	Show	100	?
		Description	Max Score	Total Cover	Query E value	Per. Ident	GenBank Graphics Distance tree of results				
<input checked="" type="checkbox"/>		Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1982	1982	100%	0.0	99.45%	NR_042111.1			
<input checked="" type="checkbox"/>		Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence	1982	1982	100%	0.0	99.45%	NR_113261.1			
<input checked="" type="checkbox"/>		Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1982	1982	100%	0.0	99.45%	NR_117061.1			
<input checked="" type="checkbox"/>		Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence	1977	1977	100%	0.0	99.36%	NR_113719.1			
<input checked="" type="checkbox"/>		Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1977	1977	100%	0.0	99.36%	NR_117060.1			
<input checked="" type="checkbox"/>		Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1977	1977	100%	0.0	99.36%	NR_042439.1			
<input checked="" type="checkbox"/>		Lactobacillus acidophilus strain NBRC 13951 16S ribosomal RNA, partial sequence	1899	1899	100%	0.0	98.08%	NR_113638.1			
<input checked="" type="checkbox"/>		Lactobacillus acidophilus strain VPI 6032 16S ribosomal RNA, partial sequence	1899	1899	100%	0.0	98.08%	NR_117062.1			

Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence

Sequence ID: [NR_042111.1](#) Length: 1546 Number of Matches: 1

Range 1: 38 to 1128 [GenBank](#) [Graphics](#)

[▼ Next Match](#) [▲ Previous Match](#)

Score 1982 bits(1073)	Expect 0.0	Identities 1085/1091(99%)	Gaps 0/1091(0%)	Strand Plus/Plus
Query 1	TGCAAGTCGAGCGAGCAGAACCGAGATTACTTCGGTAATGACGCTGGGGACGCGAGC	60		
Sbjct 38	TGCAAGTCGAGCGAGCAGAACCGAGATTACTTCGGTAATGACGCTGGGGACGCGAGC	97		
Query 61	GGCGGATGGGTGAGTAACACGTGGGGAACCTGCCCATAGTCTAGGATACCACTTGGAAA	120		
Sbjct 98	GGCGGATGGGTGAGTAACACGTGGGGAACCTGCCCATAGTCTGGGATACCACTTGGAAA	157		
Query 121	CAGGTGCTAATACCGGATAATAAAGCAGATCGCATGATCAGCTTATAAAAGGCGCGTAA	180		
Sbjct 158	CAGGTGCTAATACCGGATAAGAAAGCAGATCGCATGATCAGCTTATAAAAGGCGCGTAA	217		
Query 181	GCTGTCGCTATGGGATGGCCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCA	240		
Sbjct 218	GCTGTCGCTATGGGATGGCCCGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCA	277		
Query 241	AGGCAATGATGCATAGCCGAGTTGAGAGACTGAAACGCCACATTGGACTGAGACACGGC	300		
Sbjct 278	AGGCAATGATGCATAGCCGAGTTGAGAGACTGATGGCCACATTGGACTGAGACACGGC	337		
Query 301	CCAAACTCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGATGGA	360		
Sbjct 338	CCAAACTCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGATGGA	397		
Query 361	GCAACGCCCGTGAAGTAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAG	420		
Sbjct 398	GCAACGCCCGTGAAGTAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAG	457		
Query 421	GATAGAGGTAGTAACTGGCTTTATTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	480		
Sbjct 458	GATAGAGGTAGTAACTGGCTTTATTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	517		
Query 481	CGTGCCAGCAGCCGCGGTAAACGTAGGTGGCAAGCGTTGTCCGGATTATTGGCGTAA	540		
Sbjct 518	CGTGCCAGCAGCCGCGGTAAACGTAGGTGGCAAGCGTTGTCCGGATTATTGGCGTAA	577		

Query	541	AGCGAGCGCAGGCAGGAAGAATAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAATTG	600
Sbjct	578	AGCGAGCGCAGGCAGGAAGAATAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAACTG	637
Query	601	CATCGGAAACTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTG	660
Sbjct	638	CATCGGAAACTGTTTCTTGAGTGCAGAAGAGGAGAGTGGAACTCCATGTGTAGCGGTG	697
Query	661	GAATGCGTAGATATATGGAAGAACACCAAGTGGCAAGGCAGCTCTGGCTTGCAACTGA	720
Sbjct	698	GAATGCGTAGATATATGGAAGAACACCAAGTGGCAAGGCAGCTCTGGCTTGCAACTGA	757
Query	721	CGCTGAGGCTGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGT	780
Sbjct	758	CGCTGAGGCTGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGT	817
Query	781	AAACGATGAGTCTAAGTGTGGAGGTTCCGCTCTCAGTGCTCAGCTAACGCATTA	840
Sbjct	818	AAACGATGAGTCTAAGTGTGGAGGTTCCGCTCTCAGTGCTCAGCTAACGCATTA	877
Query	841	AGCACTCCGCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCC	900
Sbjct	878	AGCACTCCGCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCC	937
Query	901	GCACAAGCGGTGGAGCATGTGGTTAATTCGAAGCAACGCGAAGAACCTTACCAAGGTCTT	960
Sbjct	938	GCACAAGCGGTGGAGCATGTGGTTAATTCGAAGCAACGCGAAGAACCTTACCAAGGTCTT	997
Query	961	GACATCTAGTGCATCCTAACAGAGATTAGGAGTCCCTCGGGGACGCTAACGACAGGTGGT	1020
Sbjct	998	GACATCTAGTGCATCCTAACAGAGATTAGGAGTCCCTCGGGGACGCTAACGACAGGTGGT	1057
Query	1021	GCATGGCTGTCGTAGCTCGTGTGAGATGTGGGTTAACGCCCCAACGAGCGAAC	1080
Sbjct	1058	GCATGGCTGTCGTAGCTCGTGTGAGATGTGGGTTAACGCCCCAACGAGCGAAC	1117
Query	1081	CCTTATTATTAA 1091	
Sbjct	1118	CCTTGTATTAA 1128	

C.4 Blast analysis and alignment results for k2-4

Sequences producing significant alignments							Download	Manage Columns	Show 100	?
		Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence		2222	2222	100%	0.0	99.67%	NR_041054.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence		2222	2222	100%	0.0	99.67%	NR_025880.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15899 16S ribosomal RNA, partial sequence		2218	2218	100%	0.0	99.59%	NR_113337.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence		2209	2209	99%	0.0	99.59%	NR_117987.1		
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence		2158	2158	100%	0.0	98.69%	NR_037122.1		
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence		2154	2154	100%	0.0	98.60%	NR_113333.1		
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence		2152	2152	100%	0.0	98.60%	NR_041893.1		
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence		2143	2143	100%	0.0	98.44%	NR_115534.1		
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence		2128	2128	100%	0.0	98.27%	NR_113332.1		

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partialSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1

See 1 more title(s) ▾

Range 1: 29 to 1245 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#)

Score 2222 bits(1203)	Expect 0.0	Identities 1213/1217(99%)	Gaps 3/1217(0%)	Strand Plus/Plus
Query 1	TGC-AGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAACG		59	
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAACG		88	
Query 60	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG		119	
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG		148	
Query 120	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG		179	
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG		208	
Query 180	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTCA		239	
Sbjct 209	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTCA		268	
Query 240	CCAAGGGCATGATACGTAGCGGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACAC		299	
Sbjct 269	CCAAGGGCATGATACGTAGCGGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACAC		328	
Query 300	GGCCCAAACCTCACGGGAGGCAGCAGTAGGGAACTTCCACAATGGACGCAAGTCTGAT		359	
Sbjct 329	GGCCCAAACCTCACGGGAGGCAGTAGGGAACTTCCACAATGGACGCAAGTCTGAT		388	
Query 360	GGAGCAACGCCGCGTGAGTGAAGAAGGCTTCGGGTCGAAACCTCTGTTGGAGAAG		419	
Sbjct 389	GGAGCAACGCCGCGTGAGTGAAGAAGGCTTCGGGTCGAAACCTCTGTTGGAGAAG		448	
Query 420	AATGGTCGGCAGAGTAACGTGTTGCCCGCGTGAACGGTATCCAACCAAGAACGCCACGGCTAA		479	
Sbjct 449	AATGGTCGGCAGAGTAACGTGTTGCCCGCGTGAACGGTATCCAACCAAGAACGCCACGGCTAA		508	
Query 480	CTACGTGCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCG		539	
Sbjct 509	CTACGTGCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGCG		568	
Query 540	TAAAGCGAGCGCAGGGGGTTTTAAAGTCTGATGTGAAAGCCCTCGGTTAACCGAGGAA		599	
Sbjct 569	TAAAGCGAGCGCAGGGGGTTTTAAAGTCTGATGTGAAAGCCCTCGGTTAACCGAGGAA		628	
Query 600	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGGACAGTGGAACTCCATGTGAGCG		659	
Sbjct 629	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGGACAGTGGAACTCCATGTGAGCG		688	
Query 660	GTGAAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGGGGCTGCTGGCTGTAAC		719	
Sbjct 689	GTGAAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGGGGCTGCTGGCTGTAAC		748	
Query 720	TGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCCCTGGTAGTCCATGC		779	
Sbjct 749	TGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCCCTGGTAGTCCATGC		808	

Query	780	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCCGCAGCTAACGCA	839
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCCGCAGCTAACGCA	868
Query	840	TTAACGATTCGCCCTGGGAGTACGACCGCAAGGTTAAACTCAAAGGAATTGACGGGGG	899
Sbjct	869	TTAACGATTCGCCCTGGGAGTACGACCGCAAGGTTAAACTCAAAGGAATTGACGGGGG	928
Query	900	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAGCAACCGCAAGAACCTTACCAAGGT	959
Sbjct	929	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAGCAACCGCAAGAACCTTACCAAGGT	988
Query	960	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCCCTCGGGGGCAAAATGACAGGT	1019
Sbjct	989	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCCCTCGGGGGCAAAATGACAGGT	1048
Query	1020	GGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCCACGAGCGC	1079
Sbjct	1049	GGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCCACGAGCGC	1108
Query	1080	AACCCTTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTACAA	1139
Sbjct	1109	AACCCTTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTACAA	1168
Query	1140	ACCGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTGGCTAC-CAC	1198
Sbjct	1169	ACCGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTGGCTACACAC	1228
Query	1199	GTGCTACA-TGGATGGT	1214
Sbjct	1229	GTGCTACAATGGATGGT	1245

C.5 Blast analysis and alignment results for k2-4a

Sequences producing significant alignments		Download	Manage Columns		Show 100	?
	Description		GenBank	Graphics	Distance tree of results	
<input checked="" type="checkbox"/>	select all 100 sequences selected					
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1897	1897	100%	0.0	99.05% NR_042111.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence	1897	1897	100%	0.0	99.05% NR_113281.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1897	1897	100%	0.0	99.05% NR_117081.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence	1886	1886	100%	0.0	98.87% NR_113719.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1886	1886	100%	0.0	98.87% NR_117080.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1886	1886	100%	0.0	98.87% NR_042439.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1853	1853	100%	0.0	98.30% NR_119274.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1853	1853	100%	0.0	98.30% NR_117063.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain ATCC 33820 16S ribosomal RNA, partial sequence	1853	1853	100%	0.0	98.30% NR_041800.1
<input checked="" type="checkbox"/>	Lactobacillus amylovorus DSM 20531 16S ribosomal RNA, partial sequence	1847	1847	100%	0.0	98.20% NR_117064.1
<input checked="" type="checkbox"/>	Lactobacillus amylovorus DSM 20531 16S ribosomal RNA, partial sequence	1847	1847	100%	0.0	98.20% NR_042074.1

Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequenceSequence ID: [NR_042111.1](#) Length: 1546 Number of Matches: 1Range 1: 410 to 1467 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 1897 bits(1027)	Expect 0.0	Identities 1048/1058(99%)	Gaps 1/1058(0%)	Strand Plus/Minus
Query 1	GGCTCCTTCCGAAGGTTAGGCCACCGGCTTGGGATTGCAGACTTCATGGTGTGACG	60		
Sbjct 1467	GGCTCCTTCCGAAGGTTAGGCCACCGGCTTGGGATTGCAGACTTCATGGTGTGACG	1408		
Query 61	GGCGGTGTACAAGGCCGGGAACGTATTACCGCGGCGTCTGATCCGCATTACTAG	120		
Sbjct 1407	GGCGGTGTACAAGGCCGGGAACGTATTACCGCGGCGTGTGATCCGCATTACTAG	1348		
Query 121	CGATTCCAGCTTGTGCAGTCGAGTTGCAGACTGCAGTCCGAACTGAGAACAGCTTCAG	180		
Sbjct 1347	CGATTCCAGCTTGTGCAGTCGAGTTGCAGACTGCAGTCCGAACTGAGAACAGCTTCAG	1288		
Query 181	AGATTCGTTGCCCTCGCAGGCTCGCTTCGTTGACTGCCATTGAGCACGTGTGTA	240		
Sbjct 1287	AGATTCGTTGCCCTCGCAGGCTCGCTTCGTTGACTGCCATTGAGCACGTGTGTA	1228		
Query 241	GCCCAGGTATAAGGGGATGACTTGACGTATCCCCACCTTCTCCGGTTGTCAC	300		
Sbjct 1227	GCCCAGGTATAAGGGGATGACTTGACGTATCCCCACCTTCTCCGGTTGTCAC	1168		
Query 301	CGGCAGTCTATTAGAGTGCCAACCTTAATGCTGGCAACTAATAAGGGTTGCGCTCG	360		
Sbjct 1167	CGGCAGTCTATTAGAGTGCCAACCTTAATGCTGGCAACTAATAAGGGTTGCGCTCG	1108		
Query 361	TTGCGGGACTTAACCCACATCTACGACACGAGCTGACGACAGCCATGCACCCACCTGTC	420		
Sbjct 1107	TTGCGGGACTTAACCCACATCTACGACACGAGCTGACGACAGCCATGCACCCACCTGTC	1048		
Query 421	TTAGCGTCCCCGAAGGAACTCTTAATCTCTTAGGATGGCACTAGATGTCAAGACCTGGT	480		
Sbjct 1047	TTAGCGTCCCCGAAGGAACTCTTAATCTCTTAGGATGGCACTAGATGTCAAGACCTGGT	988		
Query 481	AAGGTTCTCGCGTTGCTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCCGT	540		
Sbjct 987	AAGGTTCTCGCGTTGCTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCCGT	928		
Query 541	CAATTCTTGAGTTCAACCTTGCCTCGTACTCCCCAGGCGGAGTGTAAATGCGTTA	600		
Sbjct 927	CAATTCTTGAGTTCAACCTTGCCTCGTACTCCCCAGGCGGAGTGTAAATGCGTTA	868		
Query 601	GCTGCAGCACTGAGAGGCGGAAACCTCCAAACACTTAGCACTCATCGTTACGGCATGGA	660		
Sbjct 867	GCTGCAGCACTGAGAGGCGGAAACCTCCAAACACTTAGCACTCATCGTTACGGCATGGA	888		
Query 661	CTACCAGGGTATCTAATCTGTTGCTACCCATGCTTCTGAGCCTCAGCGTCAGTTGAG	720		
Sbjct 807	CTACCAGGGTATCTAATCTGTTGCTACCCATGCTTCTGAGCCTCAGCGTCAGTTGAG	748		
Query 721	ACCAGAGAGCCGCTTGCCTGGTGTCTCCATATATCTACGCATTCCACCGCTACA	780		
Sbjct 747	ACCAGAGAGCCGCTTGCCTGGTGTCTCCATATATCTACGCATTCCACCGCTACA	688		

Query 781	CATGGAGTTCACTCTCCTCTGCAC	CAAGAAAAACAGTTCCGATGCAATTCTCG	840
Sbjct 687	CATGGAGTTCACTCTCCTCTGCAC	CAAGAAAAACAGTTCCGATGCAATTCTCG	628
Query 841	GTTAAGCCGAGGGCTTCACATCAGACTTATTCTTCCGCC	TGCCTCGCTTACGCCAA	900
Sbjct 627	GTTAAGCCGAGGGCTTCACATCAGACTTATTCTTCCGCC	TGCCTCGCTTACGCCAA	568
Query 901	TAAATCCGGACAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTATTAGCCG	960	
Sbjct 567	TAAATCCGGACAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTATTAGCCG	508	
Query 961	TGACTTTCTGGTTGATTACCGTCAAATAAAGGCCAGTTACCTCTATCTTCTTC-CC	1019	
Sbjct 507	TGACTTTCTGGTTGATTACCGTCAAATAAAGGCCAGTTACCTCTATCTTCTTCACC	448	
Query 1020	AACAAACAAAACTTTACAATCCAAAAACCTTCTTCACTC	1057	
Sbjct 447	AACAAACAGAGCTTACGATCCGAAAAACCTTCTTCACTC	410	

C.6 Blast analysis and alignment results for k2-14

Sequences producing significant alignments		Download	Manage Columns		Show 100	?	
			GenBank	Graphics	Distance tree of results		
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1905	1905	100%	0.0	99.43%	NR_042111.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence	1905	1905	100%	0.0	99.43%	NR_113261.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence	1905	1905	100%	0.0	99.43%	NR_117081.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence	1893	1893	100%	0.0	99.24%	NR_113719.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1893	1893	100%	0.0	99.24%	NR_117080.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence	1893	1893	100%	0.0	99.24%	NR_042439.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1880	1880	100%	0.0	98.67%	NR_119274.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain DSM 20584 16S ribosomal RNA, partial sequence	1880	1880	100%	0.0	98.67%	NR_117083.1
<input checked="" type="checkbox"/>	Lactobacillus crispatus strain ATCC 33820 16S ribosomal RNA, partial sequence	1880	1880	100%	0.0	98.67%	NR_041800.1
<input checked="" type="checkbox"/>	Lactobacillus amylovorus DSM 20531 16S ribosomal RNA, partial sequence	1855	1855	100%	0.0	98.57%	NR_117084.1

Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence

Sequence ID: [NR_042111.1](#) Length: 1546 Number of Matches: 1

Range 1: 419 to 1467 [GenBank](#) [Graphics](#)

▼ [Next Match](#) ▲ [Previous Match](#)

Score 1905 bits(1031)	Expect 0.0	Identities 1043/1049(99%)	Gaps 0/1049(0%)	Strand Plus/Minus
Query 1	GGCTCCTCCCGAAGGTTAGGCCACCGGCTTGGGATTGCAGACTTCCATGGTGTGACG	68		
Sbjct 1467	GGCTCCTCCCGAAGGTTAGGCCACCGGCTTGGGATTGCAGACTTCCATGGTGTGACG	1408		
Query 61	GGCGGTGTGTACAAGGCCCGGGAACGTATTACCGCGGCCTCTGATCCCGATTACTAG	128		
Sbjct 1407	GGCGGTGTGTACAAGGCCCGGGAACGTATTACCGCGGCCTCTGATCCCGATTACTAG	1348		
Query 121	CGATTCCAGCTTGTGAGTCGAGTGCAGACTGCAGTCCGAACGTAGAACAGCTTCAG	180		
Sbjct 1347	CGATTCCAGCTTGTGAGTCGAGTGCAGACTGCAGTCCGAACGTAGAACAGCTTCAG	1288		
Query 181	AGATTCGCTTGCCTTCGAGGCTCGCTTCGTTGACTGCCATTGAGCACGTGTGA	240		
Sbjct 1287	AGATTCGCTTGCCTTCGAGGCTCGCTTCGTTGACTGCCATTGAGCACGTGTGA	1228		
Query 241	GCCCAGGTATAAGGGGATGACTGACGTATCCCCACCTTCCCTCCGGTTTCAC	300		
Sbjct 1227	GCCCAGGTATAAGGGGATGACTGACGTATCCCCACCTTCCCTCCGGTTTCAC	1168		
Query 301	CGGCAGTCTCATAGAGTGCCAACTTAATGCTGGCAACTAAATAAGGGTTGCGCTCG	360		
Sbjct 1167	CGGCAGTCTCATAGAGTGCCAACTTAATGCTGGCAACTAAACAAGGGTTGCGCTCG	1108		
Query 361	TTGCGGGACTTAACCCACATCTCACGACACGAGCTGACGACAGCCATGCACCACCTGTC	420		
Sbjct 1107	TTGCGGGACTTAACCCACATCTCACGACACGAGCTGACGACAGCCATGCACCACCTGTC	1048		
Query 421	TTAGCGTCCCGAAGGGAACTCTAACTCTTAGGATGGCACTAGATGTCAAGACCTGGT	480		
Sbjct 1047	TTAGCGTCCCGAAGGGAACTCTAACTCTTAGGATGGCACTAGATGTCAAGACCTGGT	988		
Query 481	AAGGTTCTCGCGTTGCTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCCGT	540		
Sbjct 987	AAGGTTCTCGCGTTGCTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCCGT	928		
Query 541	CAATTCCCTTGAGTTCAACCTTGCCTCGTACTCCCCAGGGGGAGTGCTTAATGCGTTA	600		
Sbjct 927	CAATTCCCTTGAGTTCAACCTTGCCTCGTACTCCCCAGGGGGAGTGCTTAATGCGTTA	868		
Query 601	GCTGCAGCACTGAGAGGGGAAACCTCCAACACTTAGCACTCATGTTACGGCATGGA	660		
Sbjct 867	GCTGCAGCACTGAGAGGGGAAACCTCCAACACTTAGCACTCATGTTACGGCATGGA	808		
Query 661	CTACCAGGGTATCTAACCTGTTCGTACCCATGCTTCGAGCCTCAGCGTCAGTGCAG	720		
Sbjct 807	CTACCAGGGTATCTAACCTGTTCGTACCCATGCTTCGAGCCTCAGCGTCAGTGCAG	748		
Query 721	ACCAGAGAGCGCCCTCGCCACTGGTGTCTTCCATATATCTACGATTCCACCGCTACA	780		
Sbjct 747	ACCAGAGAGCGCCCTCGCCACTGGTGTCTTCCATATATCTACGATTCCACCGCTACA	688		

```

Query 781 CATGGAGTTCCACTCTCCTCTTCTGCACTCAAGAAAAACAGTTCCGATGCAATTCTCG 848
Sbjct 687 CATGGAGTTCCACTCTCCTCTTCTGCACTCAAGAAAAACAGTTCCGATGCAATTCTCG 628
Query 841 GTTAAGCCGAGGGCTTCACATCAGACTTATTCTCCGCTGCGCTCGCTTACGCCAA 900
Sbjct 627 GTTAAGCCGAGGGCTTCACATCAGACTTATTCTCCGCTGCGCTCGCTTACGCCAA 568
Query 901 TAAATCCGGACAACGCTGCCACCTACGTATTACCGCGGCTGCTGGCACGTATTAGCCG 960
Sbjct 567 TAAATCCGGACAACGCTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCG 508
Query 961 TGACTTTCTGGTTGATTACCGTCAAATAAAGGCCAGTTACTACCTCTATCCTTCTTCACC 1020
Sbjct 507 TGACTTTCTGGTTGATTACCGTCAAATAAAGGCCAGTTACTACCTCTATCCTTCTTCACC 448
Query 1021 AACAAACAAAGCTTACGATCCGAAACCT 1049
Sbjct 447 AACAAACAGAGCTTACGATCCGAAACCT 419

```

C.7 Blast analysis and alignment results for k3-2a

Sequences producing significant alignments						
		Manage Columns				
<input checked="" type="checkbox"/> select all 100 sequences selected		GenBank Graphics Distance tree of results				
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence	2021	2021	100%	0.0	99.73% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	2021	2021	100%	0.0	99.73% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2017	2017	100%	0.0	99.64% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2015	2015	100%	0.0	99.64% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zae strain RIA 482 16S ribosomal RNA, partial sequence	1966	1966	100%	0.0	98.64% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1953	1953	100%	0.0	98.55% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1949	1949	100%	0.0	98.55% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1941	1941	100%	0.0	98.37% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence	1927	1927	100%	0.0	98.19% NR_113332.1
		1000	1000	100%	0.0	99.99% NR_442000.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence

Sequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1

[See 1 more title\(s\) ▾](#)

Range 1: 39 to 1141 [GenBank](#) [Graphics](#)

[▼ Next Match](#) [▲ Previous Match](#)

Score 2021 bits(1094)	Expect 0.0	Identities 1100/1103(99%)	Gaps 0/1103(0%)	Strand Plus/Plus
Query 1	ACGAGTTCTCGTTGATCGGTGCTTGACCGAGATTCAACATGGAACCGAGTGGCGGAC	60		
Sbjct 39	ACGAGTTCTCGTTGATCGGTGCTTGACCGAGATTCAACATGGAACCGAGTGGCGGAC	98		
Query 61	GGGTGAGTAACACCGTGGGTAACCTGCCCTTAAGTGGGGGATAACATTGGAAACAGATGC	120		
Sbjct 99	GGGTGAGTAACACCGTGGGTAACCTGCCCTTAAGTGGGGGATAACATTGGAAACAGATGC	158		
Query 121	TAATACCGCATAGATCCAAGAACCGCATGGTCTTGGCTGAAAGATGGCTAAGCTATCG	180		
Sbjct 159	TAATACCGCATAGATCCAAGAACCGCATGGTCTTGGCTGAAAGATGGCTAAGCTATCG	218		
Query 181	CTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGCAT	240		
Sbjct 219	CTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGCAT	278		
Query 241	GATACGTAGCCGAACCTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACT	300		
Sbjct 279	GATACGTAGCCGAACCTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACT	338		
Query 301	CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGAGCAACGC	360		
Sbjct 339	CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGAGCAACGC	398		
Query 361	CGCGTGAGTGAAGAAGGCTTCGGGTCGAAAAACTCTGTTGGAGAAGAATGGTCGGC	420		
Sbjct 399	CGCGTGAGTGAAGAAGGCTTCGGGTCGAAAAACTCTGTTGGAGAAGAATGGTCGGC	458		
Query 421	AGAGTAACCTGTTGCCGGCGTGACGGTATCCAACCAAGAAAGCCACGGCTAACTACGTGCCA	480		
Sbjct 459	AGAGTAACCTGTTGCCGGCGTGACGGTATCCAACCAAGAAAGCCACGGCTAACTACGTGCCA	518		
Query 481	GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTATTGGGCGTAAAGCGAGC	540		
Sbjct 519	GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTATTGGGCGTAAAGCGAGC	578		
Query 541	GCAGGGCGTTTTTAAGTCTGATGTGAAAGGCCCTCGGCTTAACCGAGGAAGCGCATCGGA	600		
Sbjct 579	GCAGGGCGTTTTTAAGTCTGATGTGAAAGGCCCTCGGCTTAACCGAGGAAGCGCATCGGA	638		
Query 601	AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCG	660		
Sbjct 639	AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCG	698		
Query 661	TAGATATATGGAAGAACACCAAGTGGCGAAGGCGGCTGTCTGGCTGTAACTGACGCTGAG	720		
Sbjct 699	TAGATATATGGAAGAACACCAAGTGGCGAAGGCGGCTGTCTGGCTGTAACTGACGCTGAG	758		

```

Query 721 GCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGAT 780
Sbjct 759 GCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGAT 818
Query 781 GAATGCTAGGTGTTGGAGGGTTCCGGCCCTTCAGTGCGCAGCTAACGCATTAAGCATTC 840
Sbjct 819 GAATGCTAGGTGTTGGAGGGTTCCGGCCCTTCAGTGCGCAGCTAACGCATTAAGCATTC 878
Query 841 CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGACAAG 900
Sbjct 879 CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGACAAG 938
Query 901 CGGTGGAGCATGTGGTTAATTGAAAGCAACGCAGAACCTTACCAAGGTCTTGACATCT 960
Sbjct 939 CGGTGGAGCATGTGGTTAATTGAAAGCAACGCAGAACCTTACCAAGGTCTTGACATCT 998
Query 961 TTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGTGGTGATGGT 1020
Sbjct 999 TTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGTGGTGATGGT 1058
Query 1021 TGTCGTCACTCGTGTCTGAAATGTTGGTTAAGTCCCACGAGCGCAACCCCTATG 1080
Sbjct 1059 TGTCGTCACTCGTGTCTGAGATGTTGGTTAAGTCCCACGAGCGCAACCCCTATG 1118
Query 1081 ACTAGTTGCCAGCATTTAGTTGG 1103
Sbjct 1119 ACTAGTTGCCAGCATTTAGTTGG 1141

```

C.8 Blast analysis and alignment results for k3-3a

Sequences producing significant alignments		Download	Manage Columns		Show 100	?		
			GenBank	Graphics	Distance tree of results			
<input checked="" type="checkbox"/>	select all 100 sequences selected							
	Description		Max Score	Total Score	Query Cover	E value		
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence		2008	2008	99%	0.0	99.19%	NR_042111.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence		2008	2008	99%	0.0	99.19%	NR_113261.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence		2008	2008	99%	0.0	99.19%	NR_117081.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence		1997	1997	99%	0.0	99.01%	NR_113719.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence		1997	1997	99%	0.0	99.01%	NR_117080.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence		1997	1997	99%	0.0	99.01%	NR_042439.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain NBRC 13851 16S ribosomal RNA, partial sequence		1945	1945	99%	0.0	98.20%	NR_113838.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain VPI 8032 16S ribosomal RNA, partial sequence		1945	1945	99%	0.0	98.20%	NR_117062.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain JCM 1132 16S ribosomal RNA, partial sequence		1945	1945	99%	0.0	98.20%	NR_117812.1

Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequenceSequence ID: [NR_042111.1](#) Length: 1546 Number of Matches: 1Range 1: 77 to 1191 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2008 bits(1087)	Expect 0.0	Identities 1106/1115(99%)	Gaps 1/1115(0%)	Strand Plus/Plus
Query 4	AATGACGCTGGGGACGCGAGCGCGGATGGGTGAGTAACACGTGGGGAAACCTGCCCAT	63		
Sbjct 77	AATGACGCTGGGGACGCGAGCGCGGATGGGTGAGTAACACGTGGGGAAACCTGCCCAT	136		
Query 64	GTCTAGGATAACCACTGGAAAACAGGTGCTAATACCGATAATAAAGCAGATCGCATGATC	123		
Sbjct 137	GTCTGGATAACCACTGGAAAACAGGTGCTAATACCGATAAGAAAGCAGATCGCATGATC	196		
Query 124	AGCTTATAAAAGCGCGTAAGCTGTCGCTATGGGATGGCCCCGCGGTGCATTAGCTAGT	183		
Sbjct 197	AGCTTATAAAAGCGCGTAAGCTGTCGCTATGGGATGGCCCCGCGGTGCATTAGCTAGT	256		
Query 184	TGGTAAGGTAACGGCTTACCAAGGCAATGATGCATAGCCGAGTTGAGAGACTGAACGCC	243		
Sbjct 257	TGGTAAGGTAACGGCTTACCAAGGCAATGATGCATAGCCGAGTTGAGAGACTGATGCC	316		
Query 244	ACATTGGGACTGAGACACGGCCCAAACCTCCTACGGGAGGCAGCAGTAGGAAATCTCCAC	303		
Sbjct 317	ACATTGGGACTGAGACACGGCCCAAACCTCCTACGGGAGGCAGCAGTAGGAAATCTCCAC	376		
Query 304	AATGGACCGAAGTCTGATGGAGCAACCGCGCTGAGTGAAGAAGGTTTCGGATCGTAAA	363		
Sbjct 377	AATGGACCGAAGTCTGATGGAGCAACCGCGCTGAGTGAAGAAGGTTTCGGATCGTAAA	436		
Query 364	GCTCTGTTGGTGAAGAAGGATAGAGGTAGTAACCTGGCTTATTGACGTTAACCAA	423		
Sbjct 437	GCTCTGTTGGTGAAGAAGGATAGAGGTAGTAACCTGGCTTATTGACGTTAACCAA	496		
Query 424	CCAGAAAAGTCACGGCTAACCTACGTGCCAGCAGCGCGTAATACGTAAGGTGGCAAGCGTT	483		
Sbjct 497	CCAGAAAAGTCACGGCTAACCTACGTGCCAGCAGCGCGTAATACGTAAGGTGGCAAGCGTT	556		
Query 484	GTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCAGGAGAATAAGTCTGATGTGAAAGCC	543		
Sbjct 557	GTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCAGGAGAATAAGTCTGATGTGAAAGCC	616		
Query 544	CTCGGCTTAACCGAGGAATTGCATCGGAAACTGTTTTCTTGAGTGCAAGAAGAGGAGAGT	603		
Sbjct 617	CTCGGCTTAACCGAGGAATTGCATCGGAAACTGTTTTCTTGAGTGCAAGAAGAGGAGAGT	676		
Query 684	GGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAAGAACCCAGTGGCGAAGGC	663		
Sbjct 677	GGAACTCCATGTGTAGCGGTGGAATGCGTAGATATATGGAAAGAACCCAGTGGCGAAGGC	736		
Query 664	GGCTCTCTGGCTGCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGA	723		
Sbjct 737	GGCTCTCTGGCTGCAACTGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGA	796		
Query 724	TACCCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTTGGGAGGTTCCGCCTCTC	783		
Sbjct 797	TACCCCTGGTAGTCCATGCCGTAAACGATGAGTGCTAAGTGTTGGGAGGTTCCGCCTCTC	856		

Query	784	AGT GCT CGAC TAA CGC ATTA AGC ACT CC GCT TGG GAG TAC GAC CC GCA AGG TT GAA ACT	843
Sbjct	857	AGT GCT CGAC TAA CGC ATTA AGC ACT CC GCT TGG GAG TAC GAC CC GCA AGG TT GAA ACT	916
Query	844	CAA AGG AAT TGA CGGG GGG CCG CAC AAG CGG TGG AGG AT GT GG TT AA TT CGA AGC AAC G	983
Sbjct	917	CAA AGG AAT TGA CGGG GGG CCG CAC AAG CGG TGG AGG AT GT GG TT AA TT CGA AGC AAC G	976
Query	984	CGA AGA ACCT TAC CAG GTCT TGA C ATCT AGT GCA TCT AAG AGA GATT AGG AG AT TT C T T C	963
Sbjct	977	CGA AGA ACCT TAC CAG GTCT TGA C ATCT AGT GCA TCT AAG AGA GATT AGG AG AT TT C C T T C	1036
Query	964	GGGG AC GCT AAG ACAG GTGG TGC AT GG CT GT CGT CAG CT CGT GT CGT GAG AT GT TGG GTT	1023
Sbjct	1037	GGGG AC GCT AAG ACAG GTGG TGC AT GG CT GT CGT CAG CT CGT GT CGT GAG AT GT TGG GTT	1096
Query	1024	AAG TCC CGA CAC GAG CGC AACC CT TATT ATT AGT TGC CAG CATT AAG TT GGG CACT CTAA	1083
Sbjct	1097	AAG TCC CGA CAC GAG CGC AACC CT TGT TATT AGT TGC CAG CATT AAG TT GGG CACT CTAA	1156
Query	1084	TGAG ACT TGC CGG TGA CAA ACC CGG AGG AAAG -GGGG	1117
Sbjct	1157	TGAG ACT TGC CGG TGA CAA ACC CGG AGG AAAG TGGGG	1191

C.9 Blast analysis and alignment results for k3-8b2

Sequences producing significant alignments				Download	Manage Columns	Show	100	?	
<input checked="" type="checkbox"/> select all 100 sequences selected				GenBank		Graphics	Distance tree of results		
	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. <i>tolerans</i> strain NBRC 15906 16S ribosomal RNA, partial sequence			2209	2209	100%	0.0	99.51%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence			2209	2209	100%	0.0	99.51%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15899 16S ribosomal RNA, partial sequence			2206	2206	100%	0.0	99.42%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence			2196	2196	99%	0.0	99.42%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zae strain RIA 482 16S ribosomal RNA, partial sequence			2145	2145	100%	0.0	98.52%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence			2141	2141	100%	0.0	98.44%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. <i>casei</i> ATCC 393 16S ribosomal RNA, partial sequence			2139	2139	100%	0.0	98.44%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. <i>casei</i> ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence			2130	2130	100%	0.0	98.28%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence			2115	2115	100%	0.0	98.11%	NR_113332.1
				2113	2113	100%	0.0	97.93%	NR_113330.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequenceSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)Range 1: 29 to 1245 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2209 bits(1196)	Expect 0.0	Identities 1211/1217(99%)	Gaps 5/1217(0%)	Strand Plus/Plus
Query 1	TGC-AGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACG	59		
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACG	88		
Query 60	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG	119		
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG	148		
Query 128	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTCTGGCTGAAAGATGGCG	179		
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTCTGGCTGAAAGATGGCG	208		
Query 188	TAAGCTATCGTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAAATGGCTCA	239		
Sbjct 209	TAAGCTATCGTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAAATGGCTCA	268		
Query 248	CCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACAC	299		
Sbjct 269	CCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGACAC	328		
Query 308	GGCCCAAACCTTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT	359		
Sbjct 329	GGCCCAAACCTTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT	388		
Query 368	GGAGCAACGCCCGCTGAGTGAAGAAGGCTTCGGGTCGTAAAACCTCTGTTGGAGAAG	419		
Sbjct 389	GGAGCAACGCCCGCTGAGTGAAGAAGGCTTCGGGTCGTAAAACCTCTGTTGGAGAAG	448		
Query 428	AATGGTCGGCAGAGTAACCTGTTGCCGGCTGACGGTATCCAACCAAGAACGGCACGGCTAA	479		
Sbjct 449	AATGGTCGGCAGAGTAACCTGTTGCCGGCTGACGGTATCCAACCAAGAACGGCACGGCTAA	508		
Query 488	CTACGTGCCAGCAGCCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGCG	539		
Sbjct 509	CTACGTGCCAGCAGCCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGCG	568		
Query 548	TAAAGCGAGCGCAGGCGGTTTTAAGCTGATGTGAAAGCCTCGGCTTAACCGAGGAA	599		
Sbjct 569	TAAAGCGAGCGCAGGCGGTTTTAAGCTGATGTGAAAGCCTCGGCTTAACCGAGGAA	628		
Query 608	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTAGCG	659		
Sbjct 629	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTAGCG	688		
Query 668	GTGAAATCGTAGATATGGAAAGAACCCAGTGGCGAAGGCGGCTGTCGGCTGTAAC	719		
Sbjct 689	GTGAAATCGTAGATATGGAAAGAACCCAGTGGCGAAGGCGGCTGTCGGCTGTAAC	748		

Query	728	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	779
Sbjct	749	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	808
Query	788	CGTAAACGATGAATGCTAGGGTTGGAGGGTTCCGCCCTTCAGTGCCGCAGCTAACGCA	839
Sbjct	809	CGTAAACGATGAATGCTAGGGTTGGAGGGTTCCGCCCTTCAGTGCCGCAGCTAACGCA	868
Query	848	TTAACGATTCCGCCTGGGGAGTACGACCGAACGGTTGAAACTCAAAGGAATTGACGGGG	899
Sbjct	869	TTAACGATTCCGCCTGGGGAGTACGACCGAACGGTTGAAACTCAAAGGAATTGACGGGG	928
Query	908	CCCGCACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACGCGAACCTTACCAAGGT	959
Sbjct	929	CCCGCACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACGCGAACCTTACCAAGGT	988
Query	968	CTTGACATCTTGTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAAATGACAGGT	1019
Sbjct	989	CTTGACATCTTGTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAAATGACAGGT	1048
Query	1020	GTTGATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCACGAGCGC	1079
Sbjct	1049	GTTGATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCCACGAGCGC	1108
Query	1080	AACCCATTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGTGAC-A	1138
Sbjct	1109	AACCCATTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGTGACAA	1168
Query	1139	ACCGGAGGAAGGTGGGATGACGTC-AATCATCATGCCCTTATGACCTGGGCTAC-CAC	1196
Sbjct	1169	ACCGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTGGGCTACACAC	1228
Query	1197	GTGCTACA-TGGATGGT	1212
Sbjct	1229	GTGCTACAATGGATGGT	1245

C.10 Blast analysis and alignment results for k3-13b

Sequences producing significant alignments		Download	Manage Columns		Show 100	?	
			GenBank	Graphics	Distance tree of results		
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15905 16S ribosomal RNA, partial sequence	2091	2091	100%	0.0	99.23%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	2091	2091	100%	0.0	99.23%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2087	2087	100%	0.0	99.14%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2085	2085	100%	0.0	99.14%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 492 16S ribosomal RNA, partial sequence	2028	2028	99%	0.0	98.44%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	2025	2025	99%	0.0	98.35%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	2023	2023	99%	0.0	98.36%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	2013	2013	99%	0.0	98.18%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	2002	2002	98%	0.0	98.34%	NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence

Sequence ID: NR_041054.1 Length: 1497 Number of Matches: 1

See 1 more title(s) ▾

Range 1: 42 to 1196 GenBank Graphics

▼ Next Match ▲ Previous Match

Score 2091 bits(1132)	Expect 0.0	Identities 1154/1163(99%)	Gaps 8/1163(0%)	Strand Plus/Plus
Query 1	AGTGTCTCGTTGATGATCGGTGCTTGACCGAGATTCAACATGGAACGAGTGGCGGACGG	60		
Sbjct 42	AGT-TCTCGTTGATGATCGGTGCTTGACCGAGATTCAACATGGAACGAGTGGCGGACGG	100		
Query 61	GTGAGTAACACGTGGGTAACCTGCCCTAACCTGGGCTAACATTTGGAACAGATGCTA	120		
Sbjct 101	GTGAGTAACACGTGGGTAACCTGCCCTAACCTGGGCTAACATTTGGAACAGATGCTA	160		
Query 121	ATACCGCATAGATCCAAGAACCGCATGGTCTGGCTGAAAGATGGCTAACATCGCT	180		
Sbjct 161	ATACCGCATAGATCCAAGAACCGCATGGTCTGGCTGAAAGATGGCTAACATCGCT	220		
Query 181	TTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGGTAATGGCTACCAAGGCATGA	240		
Sbjct 221	TTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGGTAATGGCTACCAAGGCATGA	280		
Query 241	TACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACTCC	300		
Sbjct 281	TACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCAAACTCC	340		
Query 301	TACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCG	360		
Sbjct 341	TACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCG	400		
Query 361	CGTAGAGTAAGAAAGGCTTCGGGTCGAAACACTCTGTTGGAGAAAGAATGGCTGGCAG	420		
Sbjct 401	CGTAGAGTAAGAAAGGCTTCGGGTCGAAACACTCTGTTGGAGAAAGAATGGCTGGCAG	460		
Query 421	AGTAACCTGTCGGCGTGA CGGTATCCAACCAAGAACGGCACGGCTAACACGGCAGC	480		
Sbjct 461	AGTAACCTGTCGGCGTGA CGGTATCCAACCAAGAACGGCACGGCTAACACGGCAGC	520		
Query 481	AGCCGCGGTAATACGTAGGTTGGCAAGCGTTACCGGATTATGGGCTAAAGCGAGCGC	540		
Sbjct 521	AGCCGCGGTAATACGTAGGTTGGCAAGCGTTACCGGATTATGGGCTAAAGCGAGCGC	580		
Query 541	AGGCGGTTTTAAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATCGAAA	600		
Sbjct 581	AGGCGGTTTTAAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATCGAAA	640		
Query 601	CTGGAAAACCTTGAGTGCAGAACAGGAGACAGTGGAACTCCATGTTAGCGGTGAAATGCGTA	660		
Sbjct 641	CTGGAAAACCTTGAGTGCAGAACAGGAGACAGTGGAACTCCATGTTAGCGGTGAAATGCGTA	700		
Query 661	GATATATGGAAGAACACCGAGTGGCGAACGGCGCTGCTGGCTGTAACGTACGCTGAGGC	720		
Sbjct 701	GATATATGGAAGAACACCGAGTGGCGAACGGCGCTGCTGGCTGTAACGTACGCTGAGGC	760		

Query	721	TCGAAAGCATGGTAGCGAACAGGATTAGATACCTGGTAGTCCATGCCGTAAACGATGA	780
Sbjct	761	TCGAAAGCATGGTAGCGAACAGGATTAGATACCTGGTAGTCCATGCCGTAAACGATGA	820
Query	781	ATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCCGAGCTAACGCATTAAGCATTCCG	840
Sbjct	821	ATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCCGAGCTAACGCATTAAGCATTCCG	880
Query	841	CCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCG	900
Sbjct	881	CCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCCGACAAGCG	940
Query	901	GTGGAGCATGTGGTTAATTCAAGCAACGCGAAGAACCTTACCAAGGTCTTGACATCTT	960
Sbjct	941	GTGGAGCATGTGGTTAATTCAAGCAACGCGAAGAACCTTACCAAGGTCTTGACATCTT	1000
Query	961	TGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAATGACAGGTGGTCATGGTTG	1020
Sbjct	1001	TGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAATGACAGGTGGTCATGGTTG	1060
Query	1021	TCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCATTGAC	1080
Sbjct	1061	TCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCATTGAC	1120
Query	1081	TAGTTGCCAGCATTTAGTTGGGGCACTCTAGTAAGAACTGCCGGGTGACAAACCGGGAAAG	1140
Sbjct	1121	TAGTTGCCAGCATTTAGTT-GGGCACTCTAGTAAGA-CTGCCGG-TGACAAACCGG-A-G	1175
Query	1141	GAAGGTGGGGATGACGTCCAAA	1163
Sbjct	1176	GAAGGTGGGG-ATGACGTC-AAA	1196

C.11 Blast analysis and alignment results for k3-20

Sequences producing significant alignments		Download	Manage Columns		Show	100	?
			GenBank	Graphics	Distance tree of results		
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	1794	1794	100%	0.0	99.80%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1794	1794	100%	0.0	99.80%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1794	1794	100%	0.0	99.80%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 492 16S ribosomal RNA, partial sequence	1790	1790	100%	0.0	99.89%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1788	1788	100%	0.0	99.89%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	1788	1788	100%	0.0	99.89%	NR_113332.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1788	1788	100%	0.0	99.89%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1788	1788	100%	0.0	99.89%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence	1784	1784	100%	0.0	99.59%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain JCM 1136 16S ribosomal RNA, partial sequence	1784	1784	100%	0.0	99.59%	NR_043408.1

Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequenceSequence ID: [NR_113337.1](#) Length: 1495 Number of Matches: 1Range 1: 487 to 1463 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Prev](#)

Score 1794 bits(971)	Expect 0.0	Identities 975/977(99%)	Gaps 0/977(0%)	Strand Plus/Minus
Query 1	GCTCGCTCCCTAAAAGGGTTACGCCACCGGTTGGGTGTTACAAACTCTCATGGGTGTA			60
Sbjct 1463	GCTCGCTCCCTAAAAGGGTTACGCCACCGGTTGGGTGTTACAAACTCTCATGGGTGTA			1404
Query 61	CGGGCGGTGTGACAAGGCCGGAAACGTATTACCCGGCGTGTGATCCCGGATTACT			128
Sbjct 1403	CGGGCGGTGTGACAAGGCCGGAAACGTATTACCCGGCGTGTGATCCCGGATTACT			1344
Query 121	AGCGATTCCGACTTCGTAGGCGAGTTGCAGCCTACAGTCGAACGTGAGAATGGCTTTA			188
Sbjct 1343	AGCGATTCCGACTTCGTAGGCGAGTTGCAGCCTACAGTCGAACGTGAGAATGGCTTTA			1284
Query 181	AGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGTG			248
Sbjct 1283	AGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGTG			1224
Query 241	TAGCCCAGGTATAAGGGCATGATGATTGACGTATCCCCACCTTCTCCGGTTGTC			308
Sbjct 1223	TAGCCCAGGTATAAGGGCATGATGATTGACGTATCCCCACCTTCTCCGGTTGTC			1164
Query 301	ACCGGCAGTCTTACTAGAGTGCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCT			368
Sbjct 1163	ACCGGCAGTCTTACTAGAGTGCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGCGCT			1104
Query 361	CGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCAACACCTG			428
Sbjct 1103	CGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCAACACCTG			1844
Query 421	TCATTTGCCCGAAGGGAAACCTGATCTCAGGTGATCAAAGATGTCAGAACCTG			488
Sbjct 1043	TCATTTGCCCGAAGGGAAACCTGATCTCAGGTGATCAAAGATGTCAGAACCTG			984
Query 481	GTAAGGTTCTCGCGTTGCTTCGAATTAAACCATGCTCCACCGCTTGTGCGGGCCCC			548
Sbjct 983	GTAAGGTTCTCGCGTTGCTTCGAATTAAACCATGCTCCACCGCTTGTGCGGGCCCC			924
Query 541	GTCAATTCTTTGAGTTCAACCTTGCCTCGTACTCCCCAGGGAAATGCTTAATGCGT			608
Sbjct 923	GTCAATTCTTTGAGTTCAACCTTGCCTCGTACTCCCCAGGGAAATGCTTAATGCGT			864
Query 601	TAGCTGCGGCACTGAAGGGCGGAAACCTCCAACACCTAGCATTCTCGTTACGGCATG			668
Sbjct 863	TAGCTGCGGCACTGAAGGGCGGAAACCTCCAACACCTAGCATTCTCGTTACGGCATG			884
Query 661	GACTACCAAGGGTATCTAACTCTGTTGCTGACCCATGCTTTCGAGGCTCAGCGTCAGTTAC			728
Sbjct 803	GACTACCAAGGGTATCTAACTCTGTTGCTGACCCATGCTTTCGAGGCTCAGCGTCAGTTAC			744
Query 721	AGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATTACCGCTA			788
Sbjct 743	AGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATTACCGCTA			684

```

Query 781 CACATGGAGTCCACTGTCCCTCTGCACCTCAAGTTCCCAGTTCCGATGCGCTTCCT 848
Sbjct 683 CACATGGAGTCCACTGTCCCTCTGCACCTCAAGTTCCCAGTTCCGATGCGCTTCCT 624

Query 841 CGGTTAACCGGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC 980
Sbjct 623 CGGTTAACCGGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC 564

Query 901 AATAAAATCCGGATAACGCTTGCCACCTACATATTACCGCGGCTGCTGGCACGTAATTAGC 968
Sbjct 563 AATAAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAAGTTAGC 584

Query 961 CGTGGCTTTCTGGTTGG 977
Sbjct 503 CGTGGCTTTCTGGTTGG 487

```

C.12 Blast analysis and alignment results for k3-20 a

Sequences producing significant alignments							Download	Manage Columns	Show 100	?
							GenBank	Graphics	Distance tree of results	
	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession	
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence			1450	1450	100%	0.0	99.75%	NR_041054.1	
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence			1450	1450	100%	0.0	99.75%	NR_025880.1	
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence			1447	1447	100%	0.0	99.82%	NR_113337.1	
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence			1445	1445	100%	0.0	99.82%	NR_117987.1	
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA482 16S ribosomal RNA, partial sequence			1411	1411	100%	0.0	98.88%	NR_037122.1	
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence			1410	1410	100%	0.0	98.74%	NR_113333.1	
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence			1408	1408	100%	0.0	98.74%	NR_041093.1	
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence			1399	1399	100%	0.0	98.49%	NR_115534.1	
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence			1389	1389	100%	0.0	98.38%	NR_113332.1	

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence

Sequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1

[See 1 more title\(s\) ▾](#)

Range 1: 60 to 850 [GenBank](#) [Graphics](#)

[▼ Next Match](#) [▲ Previous Match](#)

Score 1450 bits(785)	Expect 0.0	Identities 790/792(99%)	Gaps 1/792(0%)	Strand Plus/Plus	
Query 1	GTGCTTGACCGAGATTCAACATGGGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTA	60			
Sbjct 60	GTGCTTGACCGAGATTCAACAT-GGAACGAGTGGCGGACGGGTGAGTAACACGTGGGTA	118			
Query 61	ACCTGCCCTTAAGTGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAG	120			
Sbjct 119	ACCTGCCCTTAAGTGGGGATAACATTTGGAAACAGATGCTAATACCGCATAGATCCAAG	178			
Query 121	AACCGCATGGTCTTGGCTGAAAGATGGCTAACGATGGCTTGGATGGACCCGGC	180			
Sbjct 179	AACCGCATGGTCTTGGCTGAAAGATGGCTAACGATGGCTTGGATGGACCCGGC	238			
Query 181	GTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGGCATGATACGTAGCCGAACTGAGA	240			
Sbjct 239	GTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGGGCATGATACGTAGCCGAACTGAGA	298			
Query 241	GGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACCTCTACGGGAGGCAGCAGTAG	300			
Sbjct 299	GGTTGATCGGCCACATTGGGACTGAGACACGGCCCAAACCTCTACGGGAGGCAGCAGTAG	358			
Query 301	GGAATCTCCACAAATGGACGCAAGTCTGATGGAGCAACGCCCGGTGAGTGAAAGAAGGCTT	360			
Sbjct 359	GGAATCTCCACAAATGGACGCAAGTCTGATGGAGCAACGCCCGGTGAGTGAAAGAAGGCTT	418			
Query 361	TCGGGTCGTAAAACTCTGTTGGAGAAGAATGGTCGGCAGAGTAACCTGTTGCCCGGT	420			
Sbjct 419	TCGGGTCGTAAAACTCTGTTGGAGAAGAATGGTCGGCAGAGTAACCTGTTGCCCGGT	478			
Query 421	GACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG	480			
Sbjct 479	GACGGTATCCAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGGTAATACGTAG	538			
Query 481	GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGGCGTTTTTAAGTCT	540			
Sbjct 539	GTGGCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCGCAGGGCGTTTTTAAGTCT	598			
Query 541	GATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATGGAAAAGTGGAAACTTGAGTGCA	600			
Sbjct 599	GATGTGAAAGCCCTCGGCTAACCGAGGAAGCGCATGGAAAAGTGGAAACTTGAGTGCA	658			
Query 601	GAAGAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCGTAGATATATGGAAAGAACACC	660			
Sbjct 659	GAAGAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCGTAGATATATGGAAAGAACACC	718			
Query 661	AGTGGCGAAGGGGGCTGTCTGGTCTGTAACGTACGCTGAGGGCTGAAAGCATGGTAGCG	720			
Sbjct 719	AGTGGCGAAGGGGGCTGTCTGGTCTGTAACGTACGCTGAGGGCTGAAAGCATGGTAGCG	778			
Query 721	AACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGG	780			
Sbjct 779	AACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGG	838			
Query 781	TTCCGCCCTTC 792				
Sbjct 839	TTCCGCCCTTC 850				

C.13 Blast analysis and alignment results for k3-28

Sequences producing significant alignments						
		Manage Columns				
<input checked="" type="checkbox"/> select all 100 sequences selected		GenBank Graphics Distance tree of results				
	Description	Max Score	Total Score	Query Cover	E value	Par. Ident
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence	2191	2191	100%	0.0	99.92% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	2191	2191	100%	0.0	99.92% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2187	2187	100%	0.0	99.83% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2178	2178	100%	0.0	99.75% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zae strain RIA 482 16S ribosomal RNA, partial sequence	2126	2126	100%	0.0	98.91% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	2122	2122	100%	0.0	98.82% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	2119	2119	100%	0.0	98.82% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	2111	2111	100%	0.0	98.86% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence	2097	2097	100%	0.0	98.49% NR_113332.1
		2000	2000	100%	0.0	98.32% NR_113331.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequenceSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)Range 1: 35 to 1223 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2191 bits(1186)	Expect 0.0	Identities 1188/1189(99%)	Gaps 0/1189(0%)	Strand Plus/Plus
Query 1	TCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACGAGTGGC	60		
Sbjct 35	TCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACGAGTGGC	94		
Query 61	GGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTTGGAAACAG	120		
Sbjct 95	GGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTTGGAAACAG	154		
Query 121	ATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCTAACG	180		
Sbjct 155	ATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCTAACG	214		
Query 181	ATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGTAATGGCTACCAAGG	240		
Sbjct 215	ATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGTAATGGCTACCAAGG	274		
Query 241	CGATGATACGTAGCCGAACGTAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCA	300		
Sbjct 275	CGATGATACGTAGCCGAACGTAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCA	334		
Query 301	AACTCCTACGGGAGGCAGCAGTAGGGAAATCTTCCACAAATGGACGCAAGTCTGATGGAGCA	360		
Sbjct 335	AACTCCTACGGGAGGCAGCAGTAGGGAAATCTTCCACAAATGGACGCAAGTCTGATGGAGCA	394		
Query 361	ACGCCGCGTGAGTGAAAGAAGGCTTCGGGTCGAAAAACTCTGTTGGAGAAGAATGGT	420		
Sbjct 395	ACGCCGCGTGAGTGAAAGAAGGCTTCGGGTCGAAAAACTCTGTTGGAGAAGAATGGT	454		
Query 421	CGGCAGAGTAACTGTTGCCGGCGTGACGGTATCCAACCAAGAAAGCCACGGCTAACTACGT	480		
Sbjct 455	CGGCAGAGTAACTGTTGCCGGCGTGACGGTATCCAACCAAGAAAGCCACGGCTAACTACGT	514		
Query 481	GCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGATTATTGGCGTAAAGC	540		
Sbjct 515	GCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGATTATTGGCGTAAAGC	574		
Query 541	GAGCGCAGGGGGTTTTAAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCAT	600		
Sbjct 575	GAGCGCAGGGGGTTTTAAAGTCTGATGTGAAAGCCCTCGGCTTAACCGAGGAAGCGCAT	634		
Query 601	CGGAAACTGGGAAACTTGAGTCAGAAAGAGGACAGTGGAACTCCATGTAGCGGTGAAA	660		
Sbjct 635	CGGAAACTGGGAAACTTGAGTCAGAAAGAGGACAGTGGAACTCCATGTAGCGGTGAAA	694		
Query 661	TGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCAGCTGTCTGGCTGTAACGTACGC	720		
Sbjct 695	TGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCAGCTGTCTGGCTGTAACGTACGC	754		

Query	721	TGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAA	780
Sbjct	755	TGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAA	814
Query	781	CGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCAGCTAACGCATTAAGC	840
Sbjct	815	CGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCAGCTAACGCATTAAGC	874
Query	841	ATTCCGCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCGCA	900
Sbjct	875	ATTCCGCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCGCA	934
Query	901	CAAGCGGTGGAGCATGTGGTTAACCGAACGCGAAGAACCTTACCAAGGCTTGAC	960
Sbjct	935	CAAGCGGTGGAGCATGTGGTTAACCGAACGCGAAGAACCTTACCAAGGCTTGAC	994
Query	961	ATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAAATGACAGGTGGTGCA	1020
Sbjct	995	ATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAAAATGACAGGTGGTGCA	1054
Query	1021	TGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCGCAACGAGCGCAACCT	1080
Sbjct	1055	TGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCGCAACGAGCGCAACCT	1114
Query	1081	TATGACTAGTTGCCAGCATTTAGTTGGGACTCTAGTAAGACTGCCGTGACAAACCGGA	1140
Sbjct	1115	TATGACTAGTTGCCAGCATTTAGTTGGGACTCTAGTAAGACTGCCGTGACAAACCGGA	1174
Query	1141	GGAAGGTGGGGATGACGTCAAATCATCATGCCCTTATGACCTGGCTA	1189
Sbjct	1175	GGAAGGTGGGGATGACGTCAAATCATCATGCCCTTATGACCTGGCTA	1223

C.14 Blast analysis and alignment results for k4-6a

Sequences producing significant alignments		Download	Manage Columns		Show 100	?		
<input checked="" type="checkbox"/> <input type="checkbox"/> select all 100 sequences selected			GenBank	Graphics	Distance tree of results			
	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_113719.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_042111.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_113281.1
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_117081.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_117080.1
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence		2137	2137	100%	0.0	99.86%	NR_042439.1
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain NBRC 13961 16S ribosomal RNA, partial sequence		2054	2054	100%	0.0	98.37%	NR_113838.1

k4-6a helveticus l.gallinarium	CATCGGAAACTGTTTCTTGAGTGCAGAAGAGGGAGGTGGAACCTCCATGTGTAGCGGTG CATCGGAAACTGTTTCTTGAGTGCAGAAGAGGGAGGTGGAATTCCATGTGTAGCGGTG CATCGGAAACTGTTTCTTGAGTGCAGAAGAGGGAGGTGGAACCTCCATGTGTAGCGGTG *****
k4-6a helveticus l.gallinarium	GAATGCGTAGATATATGGAAGAACACCACTGGCGAAGGCAGACTCTCTGGTCTGCAACTGA GAATGCGTAGATATATGGAAGAACACCACTGGCGAAGGCAGACTCTCTGGTCTGCAACTGA GAATGCGTAGATATATGGAAGAACACCACTGGCGAAGGCAGACTCTCTGGTCTGCAACTGA *****
k4-6a helveticus l.gallinarium	CGCTGAGGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGT CGCTGAGGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGT CGCTGAGGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGT *****
k4-6a helveticus l.gallinarium	AAACGATGAGTGCTAAGTGTGGGAGGTTCCGCCTCTCAGTGCTGCAGCTAACGCATTA AAACGATGAGTGCTAAGTGTGGGAGGTTCCGCCTCTCAGTGCTGCAGCTAACGCATTA AAACGATGAGTGCTAAGTGTGGGAGGTTCCGCCTCTCAGTGCTGCAGCTAACGCATTA *****

Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequenceSequence ID: [NR_113719.1](#) Length: 1487 Number of Matches: 1Range 1: 28 to 1196 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2137 bits(1157)	Expect 0.0	Identities 1165/1169(99%)	Gaps 0/1169(0%)	Strand Plus/Plus
Query 1	TGCAAGTCGAGCGAGCAGAACCCAGCAGATTACTTCGGTAATGACGCTGGGACGCGAGC	68		
Sbjct 28	TGCAAGTCGAGCGAGCAGAACCCAGCAGATTACTTCGGTAATGACGCTGGGACGCGAGC	87		
Query 61	GGCGGATGGGTGAGTAACACGTGGGGAACCTGCCCCATAGCTGGGATACCACTTGGAAA	120		
Sbjct 88	GGCGGATGGGTGAGTAACACGTGGGGAACCTGCCCCATAGCTGGGATACCACTTGGAAA	147		
Query 121	CAGGTGCTAATACCGGATAAGAACGAGATCGCATGATCAGCTTATAAAAGCGGCCGTAA	180		
Sbjct 148	CAGGTGCTAATACCGGATAAGAACGAGATCGCATGATCAGCTTATAAAAGCGGCCGTAA	207		
Query 181	GCTGTCGCTATGGATGGCCCCGGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCA	240		
Sbjct 208	GCTGTCGCTATGGATGGCCCCGGCGGTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCA	267		
Query 241	AGGCAATGATGCA TAGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGC	300		
Sbjct 268	AGGCAATGATGCA TAGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGC	327		
Query 301	CCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGA	360		
Sbjct 328	CCAAACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGATGGA	387		
Query 361	GCAACGCCCGCTGAGTGAAGAACGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAACG	420		
Sbjct 388	GCAACGCCCGCTGAGTGAAGAACGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAACG	447		
Query 421	GATAGAGGGCAGTAACTGGCTTTATTTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	480		
Sbjct 448	GATAGAGGGCAGTAACTGGCTTTATTTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	507		
Query 481	CGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTGTCGGATTATGGCGTAA	540		
Sbjct 508	CGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTGTCGGATTATGGCGTAA	567		
Query 541	AGCGAGCGCAGGCCGAAAGATAAGCTGATGTGAAAGCCCTCGGCTTAACCGAGGAACG	600		
Sbjct 568	AGCGAGCGCAGGCCGAAAGATAAGCTGATGTGAAAGCCCTCGGCTTAACCGAGGAACG	627		
Query 601	CATCGGAAACTGTTTCTTGAGTCAGAAAGAGGAGAGTGGAACTCCATGTGTAGCGGTG	660		
Sbjct 628	CATCGGAAACTGTTTCTTGAGTCAGAAAGAGGAGAGTGGAACTCCATGTGTAGCGGTG	687		
Query 661	GAATGCGTAGATATGGAAAGAACACCAAGTGGCAAGGCAGCTCTGGCTGCAACTGA	720		
Sbjct 688	GAATGCGTAGATATGGAAAGAACACCAAGTGGCAAGGCAGCTCTGGCTGCAACTGA	747		
Query 721	CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCCCTGGTAGTCCATGCCGT	780		
Sbjct 748	CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCCCTGGTAGTCCATGCCGT	807		

```

Query 781 AAACGATGAGTGCTAAGTGTGAGGTTCCGCCTCTCAGTGCAGCTAACGCATTA 840
Sbjct 808 AAACGATGAGTGCTAAGTGTGAGGTTCCGCCTCTCAGTGCAGCTAACGCATTA 867
Query 841 AGCACTCCGCCTGGGGAGTACGACCGCAAGGTTAAACTCAAAGGAATTGACGGGGCCC 900
Sbjct 868 AGCACTCCGCCTGGGGAGTACGACCGCAAGGTTAAACTCAAAGGAATTGACGGGGCCC 927
Query 901 GCACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACGCGAAGAACCTTACCAAGGTCTT 960
Sbjct 928 GCACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACGCGAAGAACCTTACCAAGGTCTT 987
Query 961 GACATCTAGTGCATCCTAAGAGATTAGGAGTCCCTCGGGGACGCTAACGACAGGTGGT 1020
Sbjct 988 GACATCTAGTGCATCCTAAGAGATTAGGAGTCCCTCGGGGACGCTAACGACAGGTGGT 1047
Query 1021 GCATGGCTGTCGTCAAGCTCGTGTGAGATGTTGGTTAAGTCCCACGAGCGAAC 1080
Sbjct 1048 GCATGGCTGTCGTCAAGCTCGTGTGAGATGTTGGTTAAGTCCCACGAGCGAAC 1107
Query 1081 CCTTGTATTAGTTGCCAGCATTAAGTTGGGCACTCTAATGAAACTGCCGGTACAAACC 1140
Sbjct 1108 CCTTGTATTAGTTGCCAGCATTAAGTTGGGCACTCTAATGAGACTGCCGGTATAAAC 1167
Query 1141 GGAGGAAGGTGGGGATGACGTCAAGTCAT 1169
Sbjct 1168 GGAGGAAGGTGGGGATGACGTCAAGTCAT 1196

```

C.15 Blast analysis and alignment results for k4-16

Sequences producing significant alignments		Download	Manage Columns		Show 100	?	
			GenBank	Graphics	Distance tree of results		
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence	1447	1447	100%	0.0	99.87%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1447	1447	100%	0.0	99.87%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	1443	1443	100%	0.0	99.75%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1441	1441	100%	0.0	99.75%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence	1408	1408	100%	0.0	98.98%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1408	1408	100%	0.0	98.85%	NR_113333.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence

Sequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1

See 1 more title(s) ▾

Range 1: 62 to 847 [GenBank](#) [Graphics](#)

▼ [Next Match](#) ▲ [Previous Match](#)

Score 1447 bits(783)	Expect 0.0	Identities 785/786(99%)	Gaps 0/786(0%)	Strand Plus/Plus
Query 1	GCTTGACCGAGATTCAACATGGAACCGAGTGGCGGACGGGTGAGTAACACGTGGTAACC			68
Sbjct 62	GCTTGACCGAGATTCAACATGGAACCGAGTGGCGGACGGGTGAGTAACACGTGGTAACC			121
Query 61	TGCCCTTAAGTGGGGATAAACATTGGAAAACAGATGCTAAATACCGCATAGATCCAAGAAC			128
Sbjct 122	TGCCCTTAAGTGGGGATAAACATTGGAAAACAGATGCTAAATACCGCATAGATCCAAGAAC			181
Query 121	CGCATGGTTCTTGGCTGAAAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTA			188
Sbjct 182	CGCATGGTTCTTGGCTGAAAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTA			241
Query 181	TTAGCTAGTTGGTGGAGGTAATGGCTACCAAGGCATGATACGTAGCCGAACGTGAGAGGT			248
Sbjct 242	TTAGCTAGTTGGTGGAGGTAATGGCTACCAAGGCATGATACGTAGCCGAACGTGAGAGGT			301
Query 241	TGATCGGGCACATTGGGACTGAGACACGGGAAACACTCTACGGGAGGCAGCAGTAGGGAA			308
Sbjct 302	TGATCGGGCACATTGGGACTGAGACACGGGAAACACTCTACGGGAGGCAGCAGTAGGGAA			361
Query 301	ATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCCGTGAAGTGAAGAAGGCTTTCG			368
Sbjct 362	ATCTTCCACAATGGACGCAAGTCTGATGGAGCAACGCCCGTGAAGTGAAGAAGGCTTTCG			421
Query 361	GGTCGTAACACTCTGTTGGAGAAGAATGGCTGGCAAGAGTAACGTGTTGCCGGCTGAC			428
Sbjct 422	GGTCGTAACACTCTGTTGGAGAAGAATGGCTGGCAAGAGTAACGTGTTGCCGGCTGAC			481
Query 421	GGTATCCAACCAGAAAGCCACGGCTAACACGTGCCAGCAGCCCGGTAATACGTAGGTG			488
Sbjct 482	GGTATCCAACCAGAAAGCCACGGCTAACACGTGCCAGCAGCCCGGTAATACGTAGGTG			541
Query 481	GCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCCAGGGCGTTTTAAAGTCTGAT			548
Sbjct 542	GCAAGCGTTATCCGGATTATTGGCGTAAAGCGAGCCAGGGCGTTTTAAAGTCTGAT			601
Query 541	GTGAAAGGCCCTCGCTAACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAAGTGCAGAA			608
Sbjct 602	GTGAAAGGCCCTCGCTAACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAAGTGCAGAA			661
Query 601	GAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCGTAGATATATGGAAGAACACCAAGT			668
Sbjct 662	GAGGACAGTGGAACTCCATGTGAGCGGTGAAATGCGTAGATATATGGAAGAACACCAAGT			721
Query 661	GGCGAAGGCCCTGCTGGCTGTAACGTACGCGTGAGGCGTCAAGACATGGGTAGCGAAC			728
Sbjct 722	GGCGAAGGCCCTGCTGGCTGTAACGTACGCGTGAGGCGTCAAGACATGGGTAGCGAAC			781
Query 721	AGGATTAGATAACCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTT			788
Sbjct 782	AGGATTAGATAACCTGGTAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTT			841
Query 781	CCGCC 786			
Sbjct 842	CCGCC 847			

C.16 Blast analysis and alignment results for k4-17

Sequences producing significant alignments						
		Manage Columns				
<input checked="" type="checkbox"/> select all 100 sequences selected		GenBank Graphics Distance tree of results				
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15899 16S ribosomal RNA, partial sequence	1936	1936	100%	0.0	99.81% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1936	1936	100%	0.0	99.81% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1936	1936	100%	0.0	99.81% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 492 16S ribosomal RNA, partial sequence	1932	1932	100%	0.0	99.72% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1930	1930	100%	0.0	99.72% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	1930	1930	100%	0.0	99.72% NR_113332.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. <i>casei</i> ATCC 393 16S ribosomal RNA, partial sequence	1930	1930	100%	0.0	99.72% NR_041893.1

Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequenceSequence ID: [NR_113337.1](#) Length: 1495 Number of Matches: 1Range 1: 409 to 1463 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 1936 bits(1048)	Expect 0.0	Identities 1053/1055(99%)	Gaps 1/1055(0%)	Strand Plus/Minus
Query 1	GCTCGCTCCCT-AAAAGGGTTACGCCACCGGCTTCGGGTGTTACAAACTCTCATGGTGTGA		59	
Sbjct 1463	GCTCGCTCCCTAAAAGGGTTACGCCACCGGCTTCGGGTGTTACAAACTCTCATGGTGTGA		1404	
Query 60	CGGGCGGTGTTACAAGGCCCGGAACGTATTACCGCGGCGTGTGATCCGCATTACT		119	
Sbjct 1403	CGGGCGGTGTTACAAGGCCCGGAACGTATTACCGCGGCGTGTGATCCGCATTACT		1344	
Query 120	AGCGATTCCGACTTCGTGAGGCGAGTTGCAAGCCTACAGTCGAACGTGAGAATGGCTTTA		179	
Sbjct 1343	AGCGATTCCGACTTCGTGAGGCGAGTTGCAAGCCTACAGTCGAACGTGAGAATGGCTTTA		1284	
Query 180	AGAGATTAGCTTGACCTCGGGTCTCGCAACTCGTTGTAACCATCCATTGAGCACGTGTG		239	
Sbjct 1283	AGAGATTAGCTTGACCTCGGGTCTCGCAACTCGTTGTAACCATCCATTGAGCACGTGTG		1224	
Query 240	TAGCCCAGGTCTAAAGGGGATGATGATTGACGTATCCCCACCTTCCTCCGGTTTGT		299	
Sbjct 1223	TAGCCCAGGTCTAAAGGGGATGATGATTGACGTATCCCCACCTTCCTCCGGTTTGT		1164	
Query 300	ACCGGCAGTCTTAAGAGGTGCCCACAAATGCTGGCAACTAGTCATAAGGGTTGCCT		359	
Sbjct 1163	ACCGGCAGTCTTAAGAGGTGCCCACAAATGCTGGCAACTAGTCATAAGGGTTGCCT		1104	
Query 360	CGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACCACTG		419	
Sbjct 1103	CGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACCACTG		1044	
Query 420	TCATTTGCCCCGAAGGGGAAACCTGATCTCTCAGGTGATCAAAAGATGTCAGACCTG		479	
Sbjct 1043	TCATTTGCCCCGAAGGGGAAACCTGATCTCTCAGGTGATCAAAAGATGTCAGACCTG		984	
Query 480	GTAAGGTTCTCGCGTTGCTCGAATTAAACCATGCTCCACCGTTGCGGGCCCC		539	
Sbjct 983	GTAAGGTTCTCGCGTTGCTCGAATTAAACCATGCTCCACCGTTGCGGGCCCC		924	
Query 540	GTCATTCCCTTGAGTTAACCTTGCCTCGTACTCCCCAGGGCGGAATGCTTAATGCGT		599	
Sbjct 923	GTCATTCCCTTGAGTTAACCTTGCCTCGTACTCCCCAGGGCGGAATGCTTAATGCGT		864	
Query 600	TAGCTGCAGGCACTGAAGGGCGGAAACCTCCAACACCTAGCATTCTCGTTACGGCATG		659	
Sbjct 863	TAGCTGCAGGCACTGAAGGGCGGAAACCTCCAACACCTAGCATTCTCGTTACGGCATG		804	
Query 660	GACTACCAAGGGTATCTAACTCTGTTGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC		719	
Sbjct 803	GACTACCAAGGGTATCTAACTCTGTTGCTACCCATGCTTCGAGCCTCAGCGTCAGTTAC		744	
Query 720	AGACCAGACAGCCGCTTCGCCACTGGTGTCTTCATATATCTACGCATTCAACCGCTA		779	
Sbjct 743	AGACCAGACAGCCGCTTCGCCACTGGTGTCTTCATATATCTACGCATTCAACCGCTA		684	

Query	788	CACATGGAGTTCCACTGTCTCTTCTGCACTCAAGTTCCCAGTTCCGATGCGCTTCCT	839
Sbjct	683	CACATGGAGTTCCACTGTCTCTTCTGCACTCAAGTTCCCAGTTCCGATGCGCTTCCT	624
Query	848	CGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	899
Sbjct	623	CGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	564
Query	908	AATAAAATCCGGATAACGGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGC	959
Sbjct	563	AATAAAATCCGGATAACGGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGC	584
Query	968	CGTGGCTTCTGGTTGGATACCGTCACGCCGGCAACAGTTACTCTGCCGACCATTCTCT	1019
Sbjct	503	CGTGGCTTCTGGTTGGATACCGTCACGCCGGCAACAGTTACTCTGCCGACCATTCTCT	444
Query	1020	CCAACACAGAGTTTACGACCCGAAAGCCTTCTT	1054
Sbjct	443	CCAACACAGAGTTTACGACCCGAAAGCCTTCTT	409

C.17 Blast analysis and alignment results for k4-28

Sequences producing significant alignments							Download	Manage Columns	Show	100	?
<input checked="" type="checkbox"/> select all 100 sequences selected							GenBank		Graphics		Distance tree of results
	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession		
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence			2172	2172	100%	0.0	99.50%	NR_041054.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence			2172	2172	100%	0.0	99.50%	NR_025880.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence			2170	2170	99%	0.0	99.58%	NR_117987.1		
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence			2169	2169	100%	0.0	99.41%	NR_113337.1		
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence			2108	2108	100%	0.0	98.49%	NR_037122.1		
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence			2104	2104	100%	0.0	98.41%	NR_113333.1		

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence

Sequence ID: NR_041054.1 Length: 1497 Number of Matches: 1

[See 1 more title\(s\) ▾](#)

Range 1: 29 to 1223 [GenBank](#) [Graphics](#)

▼ [Next Match](#) ▲ [Previous Match](#)

Score 2172 bits(1176)	Expect 0.0	Identities 1189/1195(99%)	Gaps 2/1195(0%)	Strand Plus/Plus
Query 1	TGC-AGTCG-ACGAGTTCTCGTTGATCGGTGCTTCGACCGAGATTCAACATGGAACG			58
Sbjct 29	TGCAAGTCAACGAGTTCTCGTTGATCGGTGCTTCGACCGAGATTCAACATGGAACG			88
Query 59	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTAACGTGGGCTTAAAGTGGG			118
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTAACGTGGGCTTAAAGTGGG			148
Query 119	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG			178
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG			288
Query 179	TAAGCTATCGCTTTGGATGGACCCGGCGTATTAGCTAGTTGGTGAAGGTAATGGCTCA			238
Sbjct 209	TAAGCTATCGCTTTGGATGGACCCGGCGTATTAGCTAGTTGGTGAAGGTAATGGCTCA			268
Query 239	CCAAGGGCATGATACGTAGCCGAACTGAGAGGGTGTACCGGCCACATTGGGACTGAGACAC			298
Sbjct 269	CCAAGGGCATGATACGTAGCCGAACTGAGAGGGTGTACCGGCCACATTGGGACTGAGACAC			328
Query 299	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGAT			358
Sbjct 329	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGAT			388
Query 359	GGAGCAACGCCCGTGAAGTGAAGAAGGCTTCGGGTCGTTAAACTCTGTTGGAGAAG			418
Sbjct 389	GGAGCAACGCCCGTGAAGTGAAGAAGGCTTCGGGTCGTTAAACTCTGTTGGAGAAG			448
Query 419	AATGGTCGGCAGAGTAACTGTTGCCCGCGTACGGTATCCAACCAAGAACGCCAGGCTAA			478
Sbjct 449	AATGGTCGGCAGAGTAACTGTTGCCCGCGTACGGTATCCAACCAAGAACGCCAGGCTAA			508
Query 479	CTACGTGCCAGCAGCCCGGTAATCGTAGGTGGCAAGCGTTACCGGATTTTGGCG			538
Sbjct 509	CTACGTGCCAGCAGCCCGGTAATCGTAGGTGGCAAGCGTTACCGGATTTTGGCG			568
Query 539	TAAAGCGAGCGCAGGCCGGTTAAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAA			598
Sbjct 569	TAAAGCGAGCGCAGGCCGGTTAAAGTCTGATGTGAAAGCCCTCGGCTAACCGAGGAA			628
Query 599	GCGCATGGAAAAGTGGAAAAGTGGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCG			658
Sbjct 629	GCGCATGGAAAAGTGGAAAAGTGGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCG			688
Query 659	GTGAAAATGCGTAGATATGGAAGAACCCAGTGGCGAAGGCGCTGTCTGGCTGTAAC			718
Sbjct 689	GTGAAAATGCGTAGATATGGAAGAACCCAGTGGCGAAGGCGCTGTCTGGCTGTAAC			748

Query	719	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	778
Sbjct	749	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	808
Query	779	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGCAGCTAACGCA	838
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGCAGCTAACGCA	868
Query	839	TTAACGCATTCCGCCCTGGGGAGTACGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGG	898
Sbjct	869	TTAACGCATTCCGCCCTGGGGAGTACGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGG	928
Query	899	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGG	958
Sbjct	929	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGCAAGGAAACCTTACCAAGGT	988
Query	959	CTTGACATTTGATCACCTGAGAGATCAGGTTTCCCTCGGGGGCAAAATGACAGGT	1018
Sbjct	989	CTTGACATTTGATCACCTGAGAGATCAGGTTTCCCTCGGGGGCAAAATGACAGGT	1048
Query	1019	GGTGATGGTTGTCGTCAGCTCGTGTGAGATGTTGGTTAAGTCCGCAACGAGC	1078
Sbjct	1049	GGTGATGGTTGTCGTCAGCTCGTGTGAGATGTTGGTTAAGTCCGCAACGAGC	1108
Query	1079	AACCCATTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTGACAA	1138
Sbjct	1109	AACCCATTATGACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTGACAA	1168
Query	1139	ACCGGAGGAAggggggATGACGTCAAATCATGCCCCTTATGACTGGGGCTA	1193
Sbjct	1169	ACCGGAGGAAAGGTGGGATGACGTCAAATCATGCCCCTTATGACCTGGGCTA	1223

C.18 Blast analysis and alignment results for k5-3

Sequences producing significant alignments		Download	Manage Columns		Show 100	?		
	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 18908 16S ribosomal RNA, partial sequence		2224	2224	100%	0.0	99.43%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence		2224	2224	100%	0.0	99.43%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence		2220	2220	100%	0.0	99.35%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence		2211	2211	99%	0.0	99.35%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence		2159	2159	100%	0.0	98.45%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence		2156	2156	100%	0.0	98.37%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence		2152	2152	100%	0.0	98.37%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence		2145	2145	100%	0.0	98.21%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence		2130	2130	100%	0.0	98.05%	NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial seqSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)Range 1: 29 to 1256 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous ▲](#)

Score 2224 bits(1204)	Expect 0.0	Identities 1221/1228(99%)	Gaps 6/1228(0%)	Strand Plus/Plus
Query 1	TGC -AGTCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACG	59		
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACG	88		
Query 60	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG	119		
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGG	148		
Query 120	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG	179		
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGGCG	208		
Query 180	TAAGCTATCGTTTGGATGGACCCGCGCGTATTAGCTAGTGGGTGAGGTAATGGCTCA	239		
Sbjct 209	TAAGCTATCGTTTGGATGGACCCGCGCGTATTAGCTAGTGGGTGAGGTAATGGCTCA	268		
Query 240	CCAAGGCGATGACGTAGCGAAGCTGAGAGGTTGATCGGCCACATTGGACTGAGACAC	299		
Sbjct 269	CCAAGGCGATGACGTAGCGAAGCTGAGAGGTTGATCGGCCACATTGGACTGAGACAC	328		
Query 300	GGCCCAAACCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT	359		
Sbjct 329	GGCCCAAACCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT	388		
Query 360	GGAGCAACGCCCGCGTGAAGTGAAAGAAGGTTTGGGTCGTAAGAACTCTGTTGGAGAAG	419		
Sbjct 389	GGAGCAACGCCCGCGTGAAGTGAAAGAAGGTTTGGGTCGTAAGAACTCTGTTGGAGAAG	448		
Query 420	AATGGTCGGCAGAGTAACCTGTTGCCGGCGTACGGGTATCCAACCAGAAAAGCCACGGCTAA	479		
Sbjct 449	AATGGTCGGCAGAGTAACCTGTTGCCGGCGTACGGGTATCCAACCAGAAAAGCCACGGCTAA	508		
Query 480	CTACGTGCCAGCAGCCCGGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGCG	539		
Sbjct 509	CTACGTGCCAGCAGCCCGGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGCG	568		
Query 540	TAAAGCGAGCGCAGGGGGTTTTAAGTCTGATGTGAAAGGCCCTGGCTTAACCGAGGAA	599		
Sbjct 569	TAAAGCGAGCGCAGGGGGTTTTAAGTCTGATGTGAAAGGCCCTGGCTTAACCGAGGAA	628		
Query 600	GCGCATCGGAAACTGGGAACTTGGAGTGCGAGAAGGGACAGTGGAACCTCCATGTAGCG	659		
Sbjct 629	GCGCATCGGAAACTGGGAACTTGGAGTGCGAGAAGGGACAGTGGAACCTCCATGTAGCG	688		
Query 660	GTGAAATGCGTAGATATATGGAAGAACCCAGTGGCGAAGGGGGCTGCTGGCTGTAAC	719		
Sbjct 689	GTGAAATGCGTAGATATATGGAAGAACCCAGTGGCGAAGGGGGCTGCTGGCTGTAAC	748		

Query	728	TGACGCTGAGGGCTGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGC	779
Sbjct	749	TGACGCTGAGGGCTGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGC	808
Query	780	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGCAGCTAACGCA	839
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGCAGCTAACGCA	868
Query	840	TTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGG	899
Sbjct	869	TTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGG	928
Query	900	CCCGCACAAGGGTGGAGCATGTGGTTAATCGAACGCAACCGCAAGAACCTTACCAAGGT	959
Sbjct	929	CCCGCACAAGGGTGGAGCATGTGGTTAATCGAACGCAACCGCAAGAACCTTACCAAGGT	988
Query	960	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGT	1019
Sbjct	989	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGT	1048
Query	1020	GGTGCATGGTTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGGC	1079
Sbjct	1049	GGTGCATGGTTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGGC	1108
Query	1080	AACCCTTATGACTAGTTGCCAGCATTTAGTTGGCACTCTAGTAAGACTGCCGTGACAA	1139
Sbjct	1109	AACCCTTATGACTAGTTGCCAGCATTTAGTTGGCACTCTAGTAAGACTGCCGTGACAA	1168
Query	1140	ACCGGAGGAAGGTGGG-ATGACGTC-AATCATCATGCCCTTATGACCTGGCTAC-CAC	1196
Sbjct	1169	ACCGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTGGCTACACAC	1228
Query	1197	GTGCTACA-TGGATGGTACA-CGAGTTG	1222
Sbjct	1229	GTGCTACAATGGATGGTACAACGAGTTG	1256

C.19 Blast analysis and alignment results for k5-3 a

Sequences producing significant alignments		Download	Manage Columns		Show	100	?	
	Description		GenBank	Graphics	Distance tree of results			
			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence		2206	2206	100%	0.0	99.75%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence		2204	2204	100%	0.0	99.75%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R004 16S ribosomal RNA gene, partial sequence		2204	2204	100%	0.0	99.75%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence		2191	2191	99%	0.0	99.67%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zae strain RIA 482 16S ribosomal RNA, partial sequence		2156	2156	100%	0.0	99.00%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 16883 16S ribosomal RNA, partial sequence		2152	2152	100%	0.0	98.92%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence		2150	2150	100%	0.0	98.92%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence		2141	2141	100%	0.0	98.75%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence		2128	2128	100%	0.0	98.59%	NR_113332.1

Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequenceSequence ID: [NR_113337.1](#) Length: 1495 Number of Matches: 1Range 1: 19 to 1221 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2206 bits(1194)	Expect 0.0	Identities 1200/1203(99%)	Gaps 1/1203(0%)	Strand Plus/Plus
Query 1	GCCTAATACATCGAACGAGTTCTTGTGATGATCGGTGCTTGACCCGAGATTCA	60		
Sbjct 19	GCCTAATACATCGAACGAGTTCTTGTGATGATCGGTGCTTGACCCGAGATTCA	78		
Query 61	ACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGA	120		
Sbjct 79	ACATGGAACGAGTGGCGGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGA	138		
Query 121	TAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTG	180		
Sbjct 139	TAACATTGGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTG	198		
Query 181	AAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGG	240		
Sbjct 199	AAAGATGGCGTAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGG	258		
Query 241	TAACGGCTACCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATGGCCACATTGGG	300		
Sbjct 259	TAANGGCTACCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATGGCCACATTGGG	318		
Query 301	ACTGAGACACGGCCAAACTCCACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACG	360		
Sbjct 319	ACTGAGACACGGCCAAACTCCACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACG	378		
Query 361	CAAGTCTGATGGAGCAACGCCCGTGAGTGAAGAACGGCTTCGGGTGTAACACTCTGTT	420		
Sbjct 379	CAAGTCTGATGGAGCAACGCCCGTGAGTGAAGAACGGCTTCGGGTGTAACACTCTGTT	438		
Query 421	GTTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGTCGGCGTGACGGTATCCAACCAAGAAG	480		
Sbjct 439	GTTGGAGAAGAATGGTCGGCAGAGTAACGTGTTGTCGGCGTGACGGTATCCAACCAAGAAG	498		
Query 481	CCACGGCTAACTACGTGCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGAT	540		
Sbjct 499	CCACGGCTAACTACGTGCCAGCAGCCGCGTAATACGTAGGTGGCAAGCGTTATCCGGAT	558		
Query 541	TTATTGGCGTAAAGCGAGCGCAGGCCGGTTTTTAAGTCTGATGTGAAAGCCCTCGGCTT	600		
Sbjct 559	TTATTGGCGTAAAGCGAGCGCAGGCCGGTTTTTAAGTCTGATGTGAAAGCCCTCGGCTT	618		
Query 601	AACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAACGGGACAGTGGAACTCC	660		
Sbjct 619	AACCGAGGAAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAACGGGACAGTGGAACTCC	678		
Query 661	ATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGCGGCTGTCT	720		
Sbjct 679	ATGTGTAGCGGTAAAATGCGTAGATATATGGAAGAACACCAAGTGGCGAAGGC GGCTGTCT	738		
Query 721	GGTCTGTAACGTACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCTGG	780		
Sbjct 739	GGTCTGTAACGTACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCCTGG	798		

```

Query 781 TAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGC 848
Sbjct 799 TAGTCCATGCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGC 858
Query 841 AGCTAACGCATTAAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAA 900
Sbjct 859 AGCTAACGCATTAAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAA 918
Query 901 TTGACGGGGGCCCGACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGGAAGAAC 960
Sbjct 919 TTGACGGGGGCCCGACAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGGAAGAAC 978
Query 961 CTTACCAGGTCTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAA 1020
Sbjct 979 CTTACCAGGTCTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGCAA 1038
Query 1021 AATGACAGGTGGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCC 1080
Sbjct 1039 AATGACAGGTGGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCC 1098
Query 1081 CAACGAGCGCAACCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTG 1140
Sbjct 1099 CAACGAGCGCAACCTTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTG 1158
Query 1141 CCGGTGACAAACGGAGGAAGGTGGGATGACGTCAAAT-ATCATGCCCTTATGACCTG 1199
Sbjct 1159 CCGGTGACAAACGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTG 1218
Query 1200 GGC 1202
Sbjct 1219 GGC 1221

```

C.20 Blast analysis and alignment results for k5-5 a

Sequences producing significant alignments		Download	Manage Columns		Show 100	?	
			GenBank	Graphics	Distance tree of results		
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2025	2025	100%	0.0	99.91%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence	2023	2023	100%	0.0	99.91%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	2023	2023	100%	0.0	99.91%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2017	2017	100%	0.0	99.82%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence	1973	1973	100%	0.0	99.09%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 16883 16S ribosomal RNA, partial sequence	1971	1971	100%	0.0	99.00%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1987	1987	100%	0.0	99.00%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1980	1980	100%	0.0	98.82%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	1940	1940	100%	0.0	98.54%	NR_113332.1

Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequenceSequence ID: [NR_113337.1](#) Length: 1495 Number of Matches: 1Range 1: 29 to 1126 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2025 bits(1096)	Expect 0.0	Identities 1097/1098(99%)	Gaps 0/1098(0%)	Strand Plus/Plus
Query 1	TGCAAGTCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACG	60		
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATCGGTGCTTGACCCGAGATTCAACATGGAACG	88		
Query 61	AGTGGCGGACGGGTGAGTAACACGTTGGTAACCTGCCCTAACGGGGATAACATTGG	128		
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTTGGTAACCTGCCCTAACGGGGATAACATTGG	148		
Query 121	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG	188		
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG	208		
Query 181	TAAGCTATCGCTTGGATGGACCCCGCGCGTATTAGCTAGTTGGTGAGGTAACGGCTCA	248		
Sbjct 209	TAAGCTATCGCTTGGATGGACCCCGCGCGTATTAGCTAGTTGGTGAGGTAANGCTCA	268		
Query 241	CCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGACTGAGACAC	308		
Sbjct 269	CCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGACTGAGACAC	328		
Query 301	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAACTCTCCACAAATGGACGCAAGTCTGAT	368		
Sbjct 329	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAACTCTCCACAAATGGACGCAAGTCTGAT	388		
Query 361	GGAGCAACGCCCGTGAAGTGAAGAAGGTTTGGGCGTAAACTCTGTTGGAGAAG	428		
Sbjct 389	GGAGCAACGCCCGTGAAGTGAAGAAGGTTTGGGCGTAAACTCTGTTGGAGAAG	448		
Query 421	AATGGTCGGCAGAGTAACGTGTTGTCGGCGTACGGTATCCAACCAGAAAGCCACGGCTAA	488		
Sbjct 449	AATGGTCGGCAGAGTAACGTGTTGTCGGCGTACGGTATCCAACCAGAAAGCCACGGCTAA	508		
Query 481	CTACGTGCCAGCAGCCGGTAATACGTAGGTTGCAAGCGTTATCCGGATTATTGGGCG	548		
Sbjct 509	CTACGTGCCAGCAGCCGGTAATACGTAGGTTGCAAGCGTTATCCGGATTATTGGGCG	568		
Query 541	TAAAGCGAGCGCAGCGGTTTTAAGTCTGATGTGAAAGCCCTGGCTAACCGAGGAA	608		
Sbjct 569	TAAAGCGAGCGCAGCGGTTTTAAGTCTGATGTGAAAGCCCTGGCTAACCGAGGAA	628		
Query 601	GCGCATGGAAACTGGAAACTTGAGTCAGAAGAGGGACAGTGGAACTCCATGTGAGCG	668		
Sbjct 629	GCGCATGGAAACTGGAAACTTGAGTCAGAAGAGGGACAGTGGAACTCCATGTGAGCG	688		
Query 661	GTGAAATGCGTAGATATATGGAGAACACCAAGTGGCGAAGGGCGCTGCTGGCTGTAAC	728		
Sbjct 689	GTGAAATGCGTAGATATATGGAGAACACCAAGTGGCGAAGGGCGCTGCTGGCTGTAAC	748		
Query 721	TGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	788		
Sbjct 749	TGACGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	808		

Query	781	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTCAGTGCCGCAGCTAACGCA	840
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTCAGTGCCGCAGCTAACGCA	868
Query	841	TTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTGAAACTCAAAGGAATTGACGGGGG	900
Sbjct	869	TTAAGCATTCCGCCTGGGGAGTACGACCGCAAGGTGAAACTCAAAGGAATTGACGGGGG	928
Query	901	CCCGCACAAGCGGTGGAGCATGTGGTTAATTCAAGCAACCGCGAAGAACCTTACCAAGGT	960
Sbjct	929	CCCGCACAAGCGGTGGAGCATGTGGTTAATTCAAGCAACCGCGAAGAACCTTACCAAGGT	988
Query	961	CTTGACATCTTTGATCACCTGAGAGATCAGGTTTCCCTTCGGGGGCAAATGACAGGT	1020
Sbjct	989	CTTGACATCTTTGATCACCTGAGAGATCAGGTTTCCCTTCGGGGGCAAATGACAGGT	1048
Query	1021	GGTGCATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCGCAACGAGCGC	1080
Sbjct	1049	GGTGCATGGTTGTCGTAGCTCGTGTGAGATGTTGGGTTAAGTCCGCAACGAGCGC	1108
Query	1081	AACCCATTATGACTAGTTG	1098
Sbjct	1109	AACCCATTATGACTAGTTG	1126

C.21 Blast analysis and alignment results for k5-11

Sequences producing significant alignments						
		Download		Manage Columns		
				GenBank	Graphics	Distance tree of results
		Max Score	Total Score	Query Cover	E value	Per. Ident
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2071	2071	100%	0.0	99.56% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA, gene, partial sequence	2071	2071	100%	0.0	99.56% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2089	2089	99%	0.0	99.56% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zaei strain RIA 482 16S ribosomal RNA, partial sequence	2087	2087	100%	0.0	99.47% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	2085	2085	100%	0.0	99.47% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence	2085	2085	100%	0.0	99.47% NR_113332.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	2085	2085	100%	0.0	99.47% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 16908 16S ribosomal RNA, partial sequence	2081	2081	100%	0.0	99.39% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	2080	2080	100%	0.0	99.38% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain JCM 1136 16S ribosomal RNA, partial sequence	2052	2052	100%	0.0	99.21% NR_043408.1

Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequenceSequence ID: [NR_113337.1](#) Length: 1495 Number of Matches: 1Range 1: 328 to 1464 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Prev](#)

Score 2071 bits(1121)	Expect 0.0	Identities 1132/1137(99%)	Gaps 1/1137(0%)	Strand Plus/Minus
Query 1	GGCTCGCTCCCTAAA-GGGTTACGCCACCGGGCTTCGGGTGTTACAAACTCTCATGGTGTG	59		
Sbjct 1464	GGCTCGCTCCCTAAAAGGGTTACGCCACCGGGCTTCGGGTGTTACAAACTCTCATGGTGTG	1405		
Query 60	ACGGGGCGGTGTGTTACAAGGCCCCGGAAACGTATTCCACCGCGGCGTGTGATCCCGGATTAC	119		
Sbjct 1404	ACGGGGCGGTGTGTTACAAGGCCCCGGAAACGTATTCCACCGCGGCGTGTGATCCCGGATTAC	1345		
Query 120	TAGCGATTCCGACTTCGTGTAGGCAGTTGCAGCCTACAGTCGAACGTGAGAATGGCTTT	179		
Sbjct 1344	TAGCGATTCCGACTTCGTGTAGGCAGTTGCAGCCTACAGTCGAACGTGAGAATGGCTTT	1285		
Query 180	AAAGAGATTAGCTTGACCTCGCGGTCGCACACTCGTTGACCATCCATTGAGCACGTGT	239		
Sbjct 1284	AAAGAGATTAGCTTGACCTCGCGGTCGCACACTCGTTGACCATCCATTGAGCACGTGT	1225		
Query 240	GTAGCCCAGGTCTAAGGGGCATGATGATTGACGTACATCCCCACCTTCCCTCGGTTGT	299		
Sbjct 1224	GTAGCCCAGGTCTAAGGGGCATGATGATTGACGTACATCCCCACCTTCCCTCGGTTGT	1165		
Query 300	CACCGGCAGTCTTACTAGAGTGCCTAAATGCTGGCAACTAGTCATAAGGGTTGC	359		
Sbjct 1164	CACCGGCAGTCTTACTAGAGTGCCTAAATGCTGGCAACTAGTCATAAGGGTTGC	1105		
Query 360	TCGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACCACT	419		
Sbjct 1104	TCGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACCACT	1045		
Query 420	GTCATTTGCCCGAAGGGGAAACCTGATCTCAGGTGATCAAAGATGTCAGACACCT	479		
Sbjct 1044	GTCATTTGCCCGAAGGGGAAACCTGATCTCAGGTGATCAAAGATGTCAGACACCT	985		
Query 480	GGTAAGGTTCTCGCGTTGCTTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCC	539		
Sbjct 984	GGTAAGGTTCTCGCGTTGCTTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCCC	925		
Query 540	CGTCAATTCTTGTAGTTCAACCTTGCCTCGTACTCCCCAGGCGGAATGCTTAATGC	599		
Sbjct 924	CGTCAATTCTTGTAGTTCAACCTTGCCTCGTACTCCCCAGGCGGAATGCTTAATGC	865		
Query 600	TTAGCTCGGGCACTGAAGGGCGAAACCTCCAAACACCTAGCATTCTACGGCAT	659		
Sbjct 864	TTAGCTCGGGCACTGAAGGGCGAAACCTCCAAACACCTAGCATTCTACGGCAT	805		
Query 660	GGACTACCAGGGTATCTAATCTGTTCGCTACCCATGCTTCTGAGCCTCAGCGTCAGTTA	719		
Sbjct 804	GGACTACCAGGGTATCTAATCTGTTCGCTACCCATGCTTCTGAGCCTCAGCGTCAGTTA	745		
Query 720	CAGACCCAGACAGCCGCCCTCGCCACTGGTGTCTTCCATATATCTACGCATTCCACCGCT	779		
Sbjct 744	CAGACCCAGACAGCCGCCCTCGCCACTGGTGTCTTCCATATATCTACGCATTCCACCGCT	685		

Query	788	ACACATGGAGTCCACTGTCTCTTCGACTCAAGTTCCAGTTCCGATGCGCTTC	839
Sbjct	684	ACACATGGAGTCCACTGTCTCTTCGACTCAAGTTCCAGTTCCGATGCGCTTC	625
Query	848	TCGGTTAACCGGAGGGCTTCACTCAGACTTAAAAAACGCCGCTGCGCTCGCTTACGCC	899
Sbjct	624	TCGGTTAACCGGAGGGCTTCACTCAGACTTAAAAAACGCCGCTGCGCTCGCTTACGCC	565
Query	908	CAATAAATCCGGATAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG	959
Sbjct	564	CAATAAATCCGGATAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG	505
Query	968	CCGTGGCTTCTGGTTGGATACCGTCACGCCGGCAACAGTTACTCTGCCGACCATCTTC	1819
Sbjct	504	CCGTGGCTTCTGGTTGGATACCGTCACGCCGGCAACAGTTACTCTGCCGACCATCTTC	445
Query	1020	TCCAAACAAACAGAGTTTACGACCCGAAAGCCTTCACTCAGCGGGCTGCTCCATCA	1879
Sbjct	444	TCCAAACAAACAGAGTTTACGACCCGAAAGCCTTCACTCAGCGGGCTGCTCCATCA	385
Query	1088	AACTTGCCTCCATTGGAAAGATTCCCTACTGCTGCCCTCCGTTAGGAATTGGGCCG	1136
Sbjct	384	AACTTGCCTCCATTGGAAAGATTCCCTACTGCTGCCCTCCGTTAGGAATTGGGCCG	328

C.22 Blast analysis and alignment results for k5-14

Sequences producing significant alignments							Download	Manage Columns	Show	100	?
<input checked="" type="checkbox"/> select all 100 sequences selected							GenBank		Graphics		Distance tree of results
	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession		
<input checked="" type="checkbox"/>	Lactobacillus paracasei	strain	NBRC 15889	16S ribosomal RNA, partial sequence	2050	2050	100%	0.0	99.30%	NR_113337.1	
<input checked="" type="checkbox"/>	Lactobacillus paracasei	strain	R094	16S ribosomal RNA gene, partial sequence	2050	2050	100%	0.0	99.30%	NR_025880.1	
<input checked="" type="checkbox"/>	Lactobacillus paracasei	strain	ATCC 25302	16S ribosomal RNA, partial sequence	2049	2049	99%	0.0	99.29%	NR_117987.1	
<input checked="" type="checkbox"/>	Lactobacillus zeei	strain	RIA 482	16S ribosomal RNA, partial sequence	2047	2047	100%	0.0	99.21%	NR_037122.1	
<input checked="" type="checkbox"/>	Lactobacillus casei	strain	NBRC 15883	16S ribosomal RNA, partial sequence	2045	2045	100%	0.0	99.21%	NR_113333.1	
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus	strain	NBRC 3426	16S ribosomal RNA, partial sequence	2045	2045	100%	0.0	99.21%	NR_113332.1	

1.zeae	GCGGCGTGCCTAATACATGCAAGTCAACGAGTT	TTG	GTGATGAACGGTCTGCATCG
1.paracasei	GCGGCGTGCCTAATACATGCAAGTCAACGAGTT	CTCGT	TATGATCGGTCTGCACCG
k5-14	--GGCTCGCTCCCTAAAGGGT TACGCCACGGCT	TCG	GGTG-TTACAAA
	***	***	***

Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequenceSequence ID: [NR_037122.1](#) Length: 1522 Number of Matches: 1Range 1: 330 to 1464 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#)

Score 2047 bits(1108)	Expect 0.0	Identities 1126/1135(99%)	Gaps 2/1135(0%)	Strand Plus/Minus
Query 1	GGCTCGCTCCCTAAA	GGGTTACGCCACCGGCTTCGGGTGTTACAAACTCTCATGGTGTG	59	
Sbjct 1464				59
Query 60	ACGGGCGGTGTGTTACAAGGCCGGAAACGTATT	CACCGCGGCGTGTGATCCGCATTAC	119	
Sbjct 1404				119
Query 128	TAGCGATTCCGACTTCGTGAGGCGAGTTGAGCTTACAGTCCGAACTGAGAAATGGCTTT	179		
Sbjct 1344				179
Query 180	AAGAGATTAGCTTGACCTCGCGGCTCGCAACTCGTTGACCATCCATTGAGCACGTGT	239		
Sbjct 1284				239
Query 248	GTAGCCCAGGTCTAAAGGGGATGATGATTTGACGTACCCCCACCTTCCTCCGGTTGT	299		
Sbjct 1224				299
Query 300	CACCGGCAGTCTTAAGAGTGCCTAAACATCTCACGACACGAGCTGACGACAACCATGCACCC	359		
Sbjct 1164				359
Query 360	TCGTTGCGGGACTTAACCCACATCTCACGACACGAGCTGACGACAACCATGCACCC	419		
Sbjct 1104				419
Query 420	GTCATTTGCCCCCGAAGGGGAAACCTGATCTCTCAGGTGATCAAAGATGTCAAGACCT	479		
Sbjct 1044				479
Query 480	GGTAAGGTTCTCGCGTTGCTCGAATTAAACCATGCTCCACCGCTTGTGCGGGCCCC	539		
Sbjct 984				539
Query 540	CGTCAATTCTTGAAGTTCAACCTTGCCTCGTACTCCCCAGGGGAAATGCTTAATGCG	599		
Sbjct 924				599
Query 600	TTAGCTGCGGCACTGAAGGGCGGAAACCTCCAACACCTAGCATTGATCGTTACGGCAT	659		
Sbjct 864				659
Query 660	GGACTACCAAGGGTATCTAATCTGTTGCTACCCATGCTTCGAGCCTCAGCGTCAGTTA	719		
Sbjct 804				719
Query 720	CAGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATACGCATTCACCGCT	779		
Sbjct 744				779

Query	780	ACACATGGAGTCCACTGTCCCTTCTGCACTCAAGTTCCAGTTCCGATGCGTTCC	839
Sbjct	684	ACACATGGAGTCCACTGTCCCTTCTGCACTCAAGTTCCAGTTCCGATGCGTTCC	625
Query	848	TCGGTTAAGCCGAGGGCTTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	899
Sbjct	624	TCGGTTAAGCCGAGGGCTTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	565
Query	900	CAATAATCCGGATAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG	959
Sbjct	564	CAATAATCCGGATAACGCTTGCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAG	505
Query	960	CCGTGGCTTCTGGTTGGATAACCGTCACGCCGGCAACAGTTACTCTGCCGACCATCTTC	1019
Sbjct	584	CCGTGGCTTCTGGTTGGATAACCGTCACGCCGGCAACAGTTACTCTGCCGACCATCTTC	445
Query	1020	TCCAACAACAGAGTTTACAACCCCCAAAGCCTTCTTCACTCAGGCGGCGTGTCCCATCA	1079
Sbjct	444	TCCAACAACAGAGTTTACGACCCGAAAGCCTTCTTCACTCACGCCGGTGTCCCATCA	385
Query	1080	AACTTGCCTCCATTGTGGAAAGAATCCCTACTGCTGCCTCCGTAGGA-TTTGGC	1133
Sbjct	384	GAACGGTCCATTGTGGAAAGATCCCTACTGCTGCCTCCGTAGGAGTTGGC	330

C.23 Blast analysis and alignment results for k5-15

Sequences producing significant alignments									
		Download		Manage Columns		Show 100			
				GenBank	Graphics	Distance tree of results			
<input checked="" type="checkbox"/> Select all 100 sequences selected									
		Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence			2202	2202	100%	0.0	98.79%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence			2200	2200	100%	0.0	98.79%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence			2198	2198	99%	0.0	98.79%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zae strain RIA 482 16S ribosomal RNA, partial sequence			2198	2198	100%	0.0	98.71%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence			2194	2194	100%	0.0	98.71%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence			2194	2194	100%	0.0	98.71%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence			2193	2193	100%	0.0	98.71%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence			2191	2191	100%	0.0	98.63%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence			2189	2189	100%	0.0	98.63%	NR_113332.1

k5-15	TTACGCC-ACCGGCT
1.zeae	
1.paracasei	GCAAGTCGAACGAGTTTTCGTTG-ATGATCGGTGCTGCACCGAGA- TTCAACATGAAACGAGTGGCGACGGGTGAG

Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequenceSequence ID: [NR_037122.1](#) Length: 1522 Number of Matches: 1Range 1: 228 to 1464 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2196 bits(1189)	Expect 0.0	Identities 1221/1237(99%)	Gaps 2/1237(0%)	Strand Plus/Minus
Query 1	GGCTCGCTCCCTAAAAGGGTTACGCCACCGGCCCTCGGGTGTACAAACTCTCATGGTGTG	68		
Sbjct 1464	GGCTCGCTCCCTAAAAGGGTTACGCCACCGGCCCTCGGGTGTACAAACTCTCATGGTGTG	1405		
Query 61	ACGGGGCGGTGTGTACAAGGCCCCGGAACGTATTCAACCGCGCGTGTGATCCCGATTAC	120		
Sbjct 1484	ACGGGGCGGTGTGTACAAGGCCCCGGAACGTATTCAACCGCGCGTGTGATCCCGATTAC	1345		
Query 121	TAGCGATTCCGACTTCGTGTAGGCAGTTGCAGCTACAGTCCGAACTGAGAATGGCTTT	180		
Sbjct 1344	TAGCGATTCCGACTTCGTGTAGGCAGTTGCAGCTACAGTCCGAACTGAGAATGGCTTT	1285		
Query 181	AAGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGT	240		
Sbjct 1284	AAGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGT	1225		
Query 241	GTAGCCCAGGTCTAAAGGGCATGATGATTGACGTCACTCCACCTCCCGTTGT	300		
Sbjct 1224	GTAGCCCAGGTCTAAAGGGCATGATGATTGACGTCACTCCACCTCCCGTTGT	1165		
Query 301	CACCGGCAGTCTTACTAGAGTCCCCAACTAAATGCTGGCAACTAGTCATAAGGGTTGC	360		
Sbjct 1164	CACCGGCAGTCTTACTAGAGTCCCCAACTRAATGCTGGCAACTAGTCATAAGGGTTGC	1105		
Query 361	TCGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACACCT	420		
Sbjct 1104	TCGTTGCGGGACTTAACCCAAACATCTCACGACACGAGCTGACGACAACCATGCACACCT	1045		
Query 421	GTCATTTGCCCGAAGGGGAAACCTGATCTCAGGTGATCATAAGGATGCAAGACCT	480		
Sbjct 1044	GTCATTTGCCCGAAGGGGAAACCTGATCTCAGGTGATCATAAGGATGCAAGACCT	985		
Query 481	GGTAAGGTTCTCGCGTTGCTTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCC	540		
Sbjct 984	GGTAAGGTTCTCGCGTTGCTTCGAATTAAACACATGCTCCACCGCTTGTGCGGGCCC	925		
Query 541	CGTCAATTCTTGTAGTTCAACCTTGCCTCGTACTCCCAAGGCGGAATGCTTAATGCG	600		
Sbjct 924	CGTCAATTCTTGTAGTTCAACCTTGCCTCGTACTCCCAAGGCGGAATGCTTAATGCG	865		
Query 601	TTAGCTGCCGCACTGAAGGGCGGAAACCCCTCCAAACACCTAGCATTCTCATCGTTACGGCAT	660		
Sbjct 864	TTAGCTGCCGCACTGAAGGGCGGAAACCCCTCCAAACACCTAGCATTCTCATCGTTACGGCAT	805		
Query 661	GGACTACCAGGGTATCTAATCTGTTCGCTACCCATGCTTCGAGCTCAGCGTCAGTTA	720		
Sbjct 804	GGACTACCAGGGTATCTAATCTGTTCGCTACCCATGCTTCGAGCTCAGCGTCAGTTA	745		
Query 721	CAGACCCAGACAGCCGCCCTCGCCACTGGTGTCTTCCATATATCTACGCATTACCGCT	780		
Sbjct 744	CAGACCCAGACAGCCGCCCTCGCCACTGGTGTCTTCCATATATCTACGCATTACCGCT	685		

Query	781	ACACATGGAGTCCACTGTCCCTCTGCACCTCAAGTTCCAGTTCCGATGCGCTTCC	840
Sbjct	684	ACACATGGAGTCCACTGTCCCTCTGCACCTCAAGTTCCAGTTCCGATGCGCTTCC	625
Query	841	TCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACGCCCTGCCTCGCTTACGCC	900
Sbjct	624	TCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACGCCCTGCCTCGCTTACGCC	565
Query	901	CAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGCTGCTGGCACGTAGTTAG	960
Sbjct	564	CAATAAATCCGGATAACGCTTGCCACCTACGTATTACCGCGCTGCTGGCACGTAGTTAG	505
Query	961	CCGTGGCTTCTGGTTGGATACCGTCACGCCGACAACAGTTACTCTGCCGACCATTCTC	1020
Sbjct	504	CCGTGGCTTCTGGTTGGATACCGTCACGCCGACAACAGTTACTCTGCCGACCATTCTC	445
Query	1021	TCCAACAACAGAGTTTACGACCCGAAAGCCTTCTCACTCAGCGCGCTGCTCCATCA	1080
Sbjct	444	TCCAACAACAGAGTTTACGACCCGAAAGCCTTCTCACTCAGCGCGCTGCTCCATCA	385
Query	1081	GACTTGCCTCATTGTGGAAGATTCCCTACTGCTGCCCTCCCTAAAGAATTGGGGCGTGT	1140
Sbjct	384	GACTTGCCTCATTGTGGAAGATTCCCTACTGCTGCCCTCCCTAGGAGTTGGGGCGTGT	325
Query	1141	CTCAGTCCCAATGTGGCCGATCAACCTCTCAATTGGCTACATATCATCCCCTTGGTGAA	1200
Sbjct	324	CTCAGTCCCAATGTGGCCGATCAACCTCTCAGTCGGCTACGTATCATGCCCTGGTGAG	265
Query	1201	CCCTTACCTCCCCA-CTAGCTAAACCCC-CGGGTCC	1235
Sbjct	264	CCGTTACCTACCAACTAGCTAATACGCCGCCGGTCC	228

C.24 Blast analysis and alignment results for k6-1

Sequences producing significant alignments		Download	Manage Columns		Show 100	?
			GenBank	Graphics	Distance tree of results	
<input checked="" type="checkbox"/>	select all 100 sequences selected					
	Description		Max Score	Total Score	Query Cover	E value
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15905 16S ribosomal RNA, partial sequence	1832	1832	99%	0.0	97.06% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1832	1832	99%	0.0	97.06% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	1829	1829	99%	0.0	96.97% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1816	1816	99%	0.0	96.79% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence	1772	1772	99%	0.0	96.06% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1770	1770	99%	0.0	95.96% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1766	1766	99%	0.0	95.97% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1759	1759	99%	0.0	95.78% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence	1738	1738	99%	0.0	95.50% NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)[Range 1: 27 to 1115](#) [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#)

Score 1832 bits(992)	Expect 0.0	Identities 1058/1090(97%)	Gaps 4/1090(0%)	Strand Plus/Plus
Query 1	CATGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAA	60		
Sbjct 27	CATGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAA	86		
Query 61	CGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGATAACATT	120		
Sbjct 87	CGAGTGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGGATAACATT	146		
Query 121	GGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGG	180		
Sbjct 147	GGAAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTTGGCTGAAAGATGG	206		
Query 181	CGTAAGCTATCGTTTGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCT	240		
Sbjct 207	CGTAAGCTATCGTTTGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCT	266		
Query 241	CACCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGAC	300		
Sbjct 267	CACCAAGGCATGATACGTAGCCGAACGTGAGAGGTTGATCGGCCACATTGGGACTGAGAC	326		
Query 301	ACGGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTG	360		
Sbjct 327	ACGGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTG	386		
Query 361	ATGGAGCAACGCCCGTGAAGAAGGCTTCCGGGTCGTAAACACTCTGTTGGAGA	420		
Sbjct 387	ATGGAGCAACGCCCGTGAAGAAGGCTTCCGGGTCGTAAACACTCTGTTGGAGA	446		
Query 421	AGAATGGTCGGCAGAGTAACCTGTTGCCGGCGTACGGTATCCAACCAAGAACGCCACGGCT	480		
Sbjct 447	AGAATGGTCGGCAGAGTAACCTGTTGCCGGCGTACGGTATCCAACCAAGAACGCCACGGCT	506		
Query 481	AACTACGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTATCGGATTTATTGGG	540		
Sbjct 507	AACTACGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTATCGGATTTATTGGG	566		
Query 541	CGTAAAGCGAGCGCAGGCCGGTTTTAAGTCTGATGTGAAAGCCTCGGCTTAACCGAGG	600		
Sbjct 567	CGTAAAGCGAGCGCAGGCCGGTTTTAAGTCTGATGTGAAAGCCTCGGCTTAACCGAGG	626		
Query 601	AAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAACAGACAGTGGAACTCCATGTGTAG	660		
Sbjct 627	AAGCGCATCGGAAACTGGGAAACTTGAGTGCAGAACAGACAGTGGAACTCCATGTGTAG	686		
Query 661	CGGTGAAATGCGTAGATATGGAAAGAACACCGATGGCGAAAGCGGCTGTCTGGCTGTA	720		
Sbjct 687	CGGTGAAATGCGTAGATATGGAAAGAACACCGATGGCGAAGCGGCTGTCTGGCTGTA	746		

Query	721	ACTGACGGCTGAGGCTGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCAT	780
Sbjct	747	ACTGACGGCTGAGGCTGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCAT	886
Query	781	GCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAATGCCGCAGCTAACG	840
Sbjct	807	GCCGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAAGTGCCGCAGCTAACG	866
Query	841	CATTAAGCATTCCGCCTGGGGAGTACGACCGCAGGGTGAAGACTCAAAGGAATTGACGGG	900
Sbjct	867	CATTAAGCATTCCGCCTGGGGAGTACGACCGCAGGGTGAAGACTCAAAGGAATTGACGGG	926
Query	901	GGCCCCCACAAACCGGTGGAGCATGTGGTTTAATTCAAGCAACCCGAGAACCTTACCAAG	959
Sbjct	927	GGCCCGCACAAAGCGGTGGAGCATGTGGTTTAATTCAAGCAACCGCAAGAACCTTACCAAG	986
Query	960	GGCTTGACTTTTTGATCACCTGAAAAATCAGGTTCCCTCGGGGGCAAAATGACAG	1019
Sbjct	987	GTCTTGACATTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAG	1046
Query	1020	ggggggCATGGTTGTCTCCACCCCGTCCGGGAAT-TTGGGTTAATTCCCCCACCAAG	1078
Sbjct	1047	GTGGTGCATGGTTGTCGTAGCTGTGTC-GTGAGATGTTGGGTTAAGTCCGCAACGAG	1105
Query	1079	-GCAACCCCTT 1087	
Sbjct	1106	CGCAACCCCTT 1115	

C.25 Blast analysis and alignment results for k6-3a

Sequences producing significant alignments							Download	Manage Columns	Show 100	?
							GenBank	Graphics	Distance tree of results	
	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession	
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence			1766	1766	100%	0.0	99.49%	NR_042111.1	
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain JCM 2011 16S ribosomal RNA, partial sequence			1766	1766	100%	0.0	99.49%	NR_113261.1	
<input checked="" type="checkbox"/>	Lactobacillus gallinarum strain ATCC 33199 16S ribosomal RNA, partial sequence			1766	1766	100%	0.0	99.49%	NR_117081.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus strain NBRCC 15019 16S ribosomal RNA, partial sequence			1760	1760	100%	0.0	99.38%	NR_113719.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence			1760	1760	100%	0.0	99.38%	NR_117080.1	
<input checked="" type="checkbox"/>	Lactobacillus helveticus DSM 20075 = CGMCC 1.1877 16S ribosomal RNA, partial sequence			1760	1760	100%	0.0	99.38%	NR_042439.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain NBRCC 13951 16S ribosomal RNA, partial sequence			1716	1716	100%	0.0	98.56%	NR_113638.1	
<input checked="" type="checkbox"/>	Lactobacillus acidophilus strain VPI 6032 16S ribosomal RNA, partial sequence			1716	1716	100%	0.0	98.56%	NR_117082.1	

<i>l. helvaticum</i> <i>k6-3a</i> <i>l. gallinarium</i>	CATCGGAAACTGTTTCTTGAAGTCAGAAAGAGGAGTGGAACTCCATGTGTAGCGGTG CATCGGAAACTGTTTCTTGAAGTCAGAAAGAGGAGTGGAACTCCATGTGTAGCGGTG CATCGGAAACTGTTTCTTGAAGTCAGAAAGAGGAGTGGAACTCCATGTGTAGCGGTG *****
<i>l. hevatum</i> <i>k6-3a</i> <i>l. gallinarium</i>	GAATGCGTAGATATATGGAAAGAACACCAAGTGGCGAAGGCGACTCTCTGGTCTGCAACTGGA GAATGCGTAGATATATGGAAAGAACACCAAGTGGCGAAGGCGACTCTCTGGTCTGCAACTGGA GAATGCGTAGATATATGGAAAGAACACCAAGTGGCGAAGGCGGCTCTCTGGTCTGCAACTGGA *****

Lactobacillus helveticus strain NBRC 15019 16S ribosomal RNA, partial sequenceSequence ID: [NR_113719.1](#) Length: 1487 Number of Matches: 1Range 1: 28 to 1181 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2080 bits(1126)	Expect 0.0	Identities 1145/1154(99%)	Gaps 1/1154(0%)	Strand Plus/Plus
Query 1	TGCAAGTCGAGCGAGCAGAACAGCAGATTACTTCGGTAATGACGCTGGGGACCGAGC	60		
Sbjct 28	TGCAAGTCGAGCGAGCAGAACAGCAGATTACTTCGGTAATGACGCTGGGGACCGAGC	87		
Query 61	GGCGGATGGGTGAGTAACACGTTGGGGAAACCTGGCCCATAGTCTAGGATACCACTGGAAA	120		
Sbjct 88	GGCGGATGGGTGAGTAACACGTTGGGGAAACCTGGCCCATAGTCTGGGATACCACTGGAAA	147		
Query 121	CAGGTGCTAATACCGATAATAAAGCAGATCGCATGATCAGCTTATAAAAGGGCGCGTAA	180		
Sbjct 148	CAGGTGCTAATACCGATAAAAGAAGCAGATCGCATGATCAGCTTATAAAAGGGCGCGTAA	207		
Query 181	GCTGTCGCTATGGGATGGCCCCCGGGTGCATTAGCTAGTTGGTAAGGTAAACGGCTTACCA	240		
Sbjct 208	GCTGTCGCTATGGGATGGCCCCCGGGTGCATTAGCTAGTTGGTAAGGTAAACGGCTTACCA	267		
Query 241	AGGCAATGATGCATAGCCGAGTTGAGAGACTGAACGGCCACATTGGGACTGAGACACGGC	300		
Sbjct 268	AGGCAATGATGCATAGCCGAGTTGAGAGACTGATCGGCCACATTGGGACTGAGACACGGC	327		
Query 301	CCAAACTCCTACCGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGA	360		
Sbjct 328	CCAAACTCCTACCGGGAGGCAGCAGTAGGGAATCTTCCACAATGGACGCAAGTCTGATGGA	387		
Query 361	GCAACGCCGCGTAGGTGAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAG	420		
Sbjct 388	GCAACGCCGCGTAGGTGAAGAAGGTTTCGGATCGTAAAGCTCTGTTGGTGAAGAAG	447		
Query 421	GATAGAGGTAGTAACCTGGCTTTTTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	480		
Sbjct 448	GATAGAGGTAGTAACCTGGCTTTTTGACGGTAATCAACCAAGAAAGTCACGGCTAACTA	507		
Query 481	CGTGCAGCAGCCGCGGTAAACGTTAGGTGGCAAGCGTTGTCGGATTATTGGCGTAA	540		
Sbjct 508	CGTGCAGCAGCCGCGGTAAACGTTAGGTGGCAAGCGTTGTCGGATTATTGGCGTAA	567		
Query 541	AGCGAGCGCAGGCCGAAGAAATAAGCTGTGTAAGGCCCTCGCTTAACCGAGGAATTG	600		
Sbjct 568	AGCGAGCGCAGGCCGAAGAAATAAGCTGTGTAAGGCCCTCGCTTAACCGAGGAATTG	627		
Query 601	CATCGGAAACTGTTTTCTTGAGTCAGAAGAGGGAGGTGGAACTCCATGTGTAGCGGTG	660		
Sbjct 628	CATCGGAAACTGTTTTCTTGAGTCAGAAGAGGGAGGTGGAACTCCATGTGTAGCGGTG	687		
Query 661	GAATCGTAGATATGGAAAGAACACCAAGTGGCAAGGCCCTCTGGCTGCAACTGA	720		
Sbjct 688	GAATCGTAGATATGGAAAGAACACCAAGTGGCAAGGCCACTCTGGCTGCAACTGA	747		
Query 721	CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCCGGTAGTCATGCCGT	780		
Sbjct 748	CGCTGAGGCTCGAAAGCATGGTAGCGAACAGGATTAGATACCCGGTAGTCATGCCGT	807		

Query	781	AAACGATGAGTGCTAAGTGTGGGAGGTTCCGCCCTCTCAGTGCTGCAGCTAACGCATTA	840
Sbjct	808	AAACGATGAGTGCTAAGTGTGGGAGGTTCCGCCCTCTCAGTGCTGCAGCTAACGCATTA	867
Query	841	AGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCC	900
Sbjct	868	AGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGCCC	927
Query	901	GCACAAGCGGTGGAGCATGTGGTTAATTGAGAACCGCAACCGGAAGAACCTTACCAAGGTCTT	960
Sbjct	928	GCACAAGCGGTGGAGCATGTGGTTAATTGAGAACCGCAACCGGAAGAACCTTACCAAGGTCTT	987
Query	961	GACATCTAGTGCCATCCTAAGAGAGATTAGGAGTTCCCTTCGGGGACGCTAACGACAGGTGGT	1020
Sbjct	988	GACATCTAGTGCCATCCTAAGAGAGATTAGGAGTTCCCTTCGGGGACGCTAACGACAGGTGGT	1047
Query	1021	GCATGGCTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGAAC	1080
Sbjct	1048	GCATGGCTGTCGTCAGCTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGAAC	1107
Query	1081	CCTTATTATTAGTTGCCAGCATTAAGTTGGGACTCTAATGAGACTGCCGGTACAAACC	1140
Sbjct	1108	CCTTGTATTAGTTGCCAGCATTAAGTTGGGACTCTAATGAGACTGCCGGTACAAACC	1167
Query	1141	GGAGGAAGG-GGGG	1153
Sbjct	1168	GGAGGAAGGTTGGGG	1181

Alignment

C.26 Blast analysis and alignment results for k6-6a

Sequences producing significant alignments		Download	Manage Columns	Show 100	?
<input checked="" type="checkbox"/> select all 100 sequences selected		GenBank Graphics Distance tree of results			
	Description	Max Score	Total Score	Query Cover	E value
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence	1881	1881	99%	0.0 99.52% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1881	1881	99%	0.0 99.52% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	1877	1877	99%	0.0 99.42% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1889	1889	99%	0.0 99.32% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence	1820	1820	99%	0.0 98.45% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 16883 16S ribosomal RNA, partial sequence	1818	1818	99%	0.0 98.38% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1816	1816	99%	0.0 98.38% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1807	1807	99%	0.0 98.18% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	1786	1786	99%	0.0 97.87% NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequenceSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)Range 1: 35 to 1068 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 1881 bits(1018)	Expect 0.0	Identities 1029/1034(99%)	Gaps 1/1034(0%)	Strand Plus/Plus
Query 1	TCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGC	68		
Sbjct 35	TCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACGAGTGGC	94		
Query 61	GGACGGGTGAGTAAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAG	120		
Sbjct 95	GGACGGGTGAGTAAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAG	154		
Query 121	ATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCTAACGCT	180		
Sbjct 155	ATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCTAACGCT	214		
Query 181	ATCGCTTTGGATGGACCCGCCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGG	240		
Sbjct 215	ATCGCTTTGGATGGACCCGCCGTATTAGCTAGTTGGTGAGGTAATGGCTACCAAGG	274		
Query 241	CGATGATACTGAGCCGAACTGAGAGGGTGTACCGGCCACATTGGGACTGAGACACGGCCA	300		
Sbjct 275	CGATGATACTGAGCCGAACTGAGAGGGTGTACCGGCCACATTGGGACTGAGACACGGCCA	334		
Query 301	AACCTCTACGGGAGGCAGCAGTAGGGAAATCTTCACAATGGACGCAAGTCTGATGGAGCA	360		
Sbjct 335	AACCTCTACGGGAGGCAGCAGTAGGGAAATCTTCACAATGGACGCAAGTCTGATGGAGCA	394		
Query 361	ACGCCCGGTGAGTGAAGAAGGCTTCGGGTCGTAAAACCTGTTGGAGAAGAATGGT	420		
Sbjct 395	ACGCCCGGTGAGTGAAGAAGGCTTCGGGTCGTAAAACCTGTTGGAGAAGAATGGT	454		
Query 421	CGGCAGAGTAACCTGTTGCCGGGTGACGGTATCCAACCAAGAACGCCACGGCTAACTACGT	480		
Sbjct 455	CGGCAGAGTAACCTGTTGCCGGGTGACGGTATCCAACCAAGAACGCCACGGCTAACTACGT	514		
Query 481	GCCAGCAGCCGGTAATACGTAGGTGGCAAGCGTTACCGGATTTTGGCGTAAAGC	540		
Sbjct 515	GCCAGCAGCCGGTAATACGTAGGTGGCAAGCGTTACCGGATTTTGGCGTAAAGC	574		
Query 541	GAGCGCAGGGGTTTTAAGTCTGATGTGAAAGCCCTGGCTTAACCGAGGAAGCGCAT	600		
Sbjct 575	GAGCGCAGGGGTTTTAAGTCTGATGTGAAAGCCCTGGCTTAACCGAGGAAGCGCAT	634		
Query 601	CGGAAACTGGGAAACTTGAGTGCAGAACAGGAGAGCTGGAACTCCATGTGTAGCGGTGAAA	660		
Sbjct 635	CGGAAACTGGGAAACTTGAGTGCAGAACAGGAGAGCTGGAACTCCATGTGTAGCGGTGAAA	694		
Query 661	TGCGTAGATATGGAAAGAACCCAGTGGCGAAGGCGGCTGCTGGCTGTAACGTACGC	720		
Sbjct 695	TGCGTAGATATGGAAAGAACCCAGTGGCGAAGGCGGCTGCTGGCTGTAACGTACGC	754		

Query	721	TGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAA	780
Sbjct	755	TGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAA	814
Query	781	CGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGAGCTAACGCATTAAGC	840
Sbjct	815	CGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGAGCTAACGCATTAAGC	874
Query	841	ATTCGGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGCA	900
Sbjct	875	ATTCGGCCTGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCGCA	934
Query	901	CAAGCGGTGGAGCATGTGGTTAATTCGAAGCAACGCGAAGAACCTTACCAAGGTCTTGAC	960
Sbjct	935	CAAGCGGTGGAGCATGTGGTTAATTCGAAGCAACGCGAAGAACCTTACCAAGGTCTTGAC	994
Query	961	ATCTTTGATCACCTGAAAGATCAGGTTCCCTCGGGGGC-AAATGACAGGGGGTGCA	1019
Sbjct	995	ATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGTGGTGCA	1054
Query	1020	TGGTTGCCGTCAAGC	1033
Sbjct	1055	TGGTTGTCGTCAAGC	1068

C. 27 Blast analysis and alignment results for k6-7

Sequences producing significant alignments		Download	Manage Columns		Show 100	?
	Description		GenBank	Graphics	Distance tree of results	
<input checked="" type="checkbox"/>	select all 100 sequences selected					
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence	2204	2204	100%	0.0	99.42% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	2204	2204	100%	0.0	99.42% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	2200	2200	100%	0.0	99.34% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	2191	2191	99%	0.0	99.34% NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zaeae strain RIA 482 16S ribosomal RNA, partial sequence	2139	2139	100%	0.0	98.44% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	2135	2135	100%	0.0	98.38% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	2132	2132	100%	0.0	98.38% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	2124	2124	100%	0.0	98.19% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence	2109	2109	100%	0.0	98.03% NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial seqSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)**Range 1: 29 to 1245** [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#) [M](#)

Score 2204 bits(1193)	Expect 0.0	Identities 1210/1217(99%)	Gaps 6/1217(0%)	Strand Plus/Plus
Query 1	TGC-AGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACG 59			
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGCACCGAGATTCAACATGGAACG 88			
Query 60	AGTGGCGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTGG 119			
Sbjct 89	AGTGGCGACGGGTGAGTAACACGTGGTAACCTGCCCTTAAGTGGGGATAACATTGG 148			
Query 128	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTCTTGGCTGAAAGATGGCG 179			
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTCTTGGCTGAAAGATGGCG 288			
Query 188	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGTAATGGCTCA 239			
Sbjct 209	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTAGGTAATGGCTCA 268			
Query 248	CCAAGGCATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGACTGAGACAC 299			
Sbjct 269	CCAAGGCATGATACGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGACTGAGACAC 328			
Query 308	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAAATCTTCCACAATGGACGCAAGTCTGAT 359			
Sbjct 329	GGCCCAAACCTCTACGGGAGGCAGCAGTAGGGAAATCTTCCACAATGGACGCAAGTCTGAT 388			
Query 368	GGAGCAACGCCCGTGAAGTAAGAAGGCTTCGGGTCGTAACCTCTGTTGGAGAAG 419			
Sbjct 389	GGAGCAACGCCCGTGAAGTAAGAAGGCTTCGGGTCGTAACCTCTGTTGGAGAAG 448			
Query 428	AATGGTCGGCAGAGTAACGTGTTGCCGGCGTAGCGGTATCCAACCAAGAACGCCACGGCTAA 479			
Sbjct 449	AATGGTCGGCAGAGTAACGTGTTGCCGGCGTAGCGGTATCCAACCAAGAACGCCACGGCTAA 508			
Query 488	CTACGTGCCAGCAGCCCGCGTAACGTAGGTGGCAAGCGTTACCGGATTATTGGCG 539			
Sbjct 509	CTACGTGCCAGCAGCCCGCGTAACGTAGGTGGCAAGCGTTACCGGATTATTGGCG 568			
Query 548	TAAAGCGAGCGCAGCGGTTTTAAGTCTGATGTGAAAGCCCTGGCTTAACCGAGGAA 599			
Sbjct 569	TAAAGCGAGCGCAGCGGTTTTAAGTCTGATGTGAAAGCCCTGGCTTAACCGAGGAA 628			
Query 608	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCG 659			
Sbjct 629	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCG 688			
Query 668	GTGAAAATGCGTAGATATATGGAAGAACCCAGTGGCGAAGGCAGCTGCTGGCTGTAAAC 719			
Sbjct 689	GTGAAAATGCGTAGATATATGGAAGAACCCAGTGGCGAAGGCAGCTGCTGGCTGTAAAC 748			

Query	728	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	779
Sbjct	749	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATAACCTGGTAGTCATGC	808
Query	780	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGAGCTAACGCA	839
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCCGAGCTAACGCA	868
Query	848	TTAACGATTCCGCCTGGGAGTACGACCGCAAGGTGAAACTCAAAGGAATTGACGGGG	899
Sbjct	869	TTAACGATTCCGCCTGGGAGTACGACCGCAAGGTGAAACTCAAAGGAATTGACGGGG	928
Query	900	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGGAAGAACCTTACAGGT	959
Sbjct	929	CCCGCACAAAGCGGTGGAGCATGTGGTTAATTGAAAGCAACCGGAAGAACCTTACAGGT	988
Query	968	CTTGACATCTTGTACCTGAGAGATCAGGTTCCCTTCGGGGCAAAATGACAGGT	1019
Sbjct	989	CTTGACATCTTGTACCTGAGAGATCAGGTTCCCTTCGGGGCAAAATGACAGGT	1048
Query	1020	GGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGC	1079
Sbjct	1049	GGTGCATGGTTGTCGTCACTCGTGTGAGATGTTGGGTTAAGTCCCGAACGAGCGC	1108
Query	1080	AACCCCTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGAC-A	1138
Sbjct	1189	AACCCCTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGACAA	1168
Query	1139	ACCGGAGGAAGGTGGGATGACGTC-AATCATCATGCCCTTATGACC-GGGCTAC-CAC	1195
Sbjct	1169	ACCGGAGGAAGGTGGGATGACGTCAAATCATCATGCCCTTATGACCTGGGTACACAC	1228
Query	1196	GTGCTACA-TGGATGGT	1211
Sbjct	1229	GTGCTACAATGGATGGT	1245

C.28 Blast analysis and alignment results for k6-9a

Sequences producing significant alignments		Download	Manage Columns		Show	100	?	
			GenBank	Graphics	Distance tree of results			
<input checked="" type="checkbox"/> select all	100 sequences selected							
	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15908 16S ribosomal RNA, partial sequence		2274	2274	100%	0.0	98.98%	NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence		2274	2274	100%	0.0	98.98%	NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence		2270	2270	100%	0.0	98.90%	NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence		2257	2257	100%	0.0	98.75%	NR_117987.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence		2209	2209	100%	0.0	98.04%	NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence		2206	2206	100%	0.0	97.98%	NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence		2204	2204	100%	0.0	97.98%	NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence		2194	2194	100%	0.0	97.80%	NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3426 16S ribosomal RNA, partial sequence		2180	2180	100%	0.0	97.65%	NR_113332.1

Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial seSequence ID: [NR_041054.1](#) Length: 1497 Number of Matches: 1[See 1 more title\(s\) ▾](#)Range 1: 29 to 1301 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#)

Score 2274 bits(1231)	Expect 0.0	Identities 1261/1274(99%)	Gaps 7/1274(0%)	Strand Plus/Plus
Query 1	TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAACG	60		
Sbjct 29	TGCAAGTCGAACGAGTTCTCGTTGATGATCGGTGCTTGACCCGAGATTCAACATGGAACG	88		
Query 61	AGTGGCGGACGGGTGAGTAACACGTTGGTAACCTGCCCTTAAGTGGGGATAACATTGG	120		
Sbjct 89	AGTGGCGGACGGGTGAGTAACACGTTGGTAACCTGCCCTTAAGTGGGGATAACATTGG	148		
Query 121	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG	180		
Sbjct 149	AAACAGATGCTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCG	208		
Query 181	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTCA	240		
Sbjct 209	TAAGCTATCGCTTTGGATGGACCCGCGCGTATTAGCTAGTTGGTGAGGTAATGGCTCA	268		
Query 241	CCAAGGGCGATGATACTGAGCCGAACGAGGTTGATCGGCCACATTGGACTGAGACAC	300		
Sbjct 269	CCAAGGGCGATGATACTGAGCCGAACGAGGTTGATCGGCCACATTGGACTGAGACAC	328		
Query 301	GGCCCCAAACTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGAT	360		
Sbjct 329	GGCCCCAAACTCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAATGGACGCAAGTCTGAT	388		
Query 361	GGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGGTGAAAGCTCTGGTTGGAGAAG	420		
Sbjct 389	GGAGCAACGCCCGTGAGTGAAGAAGGCTTCGGGTGAAAGCTCTGGTTGGAGAAG	448		
Query 421	AATGGTCGGCAGAGTACTGTTGCCCGCGTACGGTATCCAACCAAGAACGCCACGGCTAA	480		
Sbjct 449	AATGGTCGGCAGAGTACTGTTGCCCGCGTACGGTATCCAACCAAGAACGCCACGGCTAA	508		
Query 481	CTACGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTATCGGATTATTGGCG	540		
Sbjct 509	CTACGTGCCAGCAGCCCGGTAATACGTAGGTGGCAAGCGTTATCGGATTATTGGCG	568		
Query 541	TAAAGCGAGCGCAGGCCGTTTTAAAGCTGATGTGAAAGCCCTCGGCTAACCGAGGAA	600		
Sbjct 569	TAAAGCGAGCGCAGGCCGTTTTAAAGCTGATGTGAAAGCCCTCGGCTAACCGAGGAA	628		
Query 601	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAACAGGAGACAGTGGAACTCCATGTGAGCG	660		
Sbjct 629	GCGCATCGGAAACTGGGAAACTTGAGTGCAGAACAGGAGACAGTGGAACTCCATGTGAGCG	688		
Query 661	GTGAAATGCGTAGATATGGAAAGAACACCAAGTGGCGAAGGGCGCTGCTGGCTGTAAC	720		
Sbjct 689	GTGAAATGCGTAGATATGGAAAGAACACCAAGTGGCGAAGGGCGCTGCTGGCTGTAAC	748		

Query	721	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGGTAGTCCATGC	780
Sbjct	749	TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGATTAGATACCCGGTAGTCCATGC	808
Query	781	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCAGCTAACGCA	840
Sbjct	809	CGTAAACGATGAATGCTAGGTGTTGGAGGGTTCCGCCCTCAGTGCAGCTAACGCA	868
Query	841	TTAAGCATTCCGCCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGG	900
Sbjct	869	TTAAGCATTCCGCCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGG	928
Query	901	CCCGCACAAGCGGTGGAGCATGTGGTTAATTCAAGAACCGCAAGAACCTTACCAAGGT	960
Sbjct	929	CCCGCACAAGCGGTGGAGCATGTGGTTAATTCAAGAACCGCAAGAACCTTACCAAGGT	988
Query	961	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGT	1020
Sbjct	989	CTTGACATCTTTGATCACCTGAGAGATCAGGTTCCCTCGGGGGCAAAATGACAGGT	1048
Query	1021	GGTGCATGGTTGTCGTCAGCTCGTGTGGTAGAGATGTTGGGTTAAGTCCGCAACGAGCG	1080
Sbjct	1049	GGTGCATGGTTGTCGTCAGCTCGTGTGGTAGAGATGTTGGGTTAAGTCCGCAACGAGCG	1108
Query	1081	AACCCCTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGACAA	1140
Sbjct	1109	AACCCCTATGACTAGTTGCCAGCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTGACAA	1168
Query	1141	-CCGGAAAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTATGACCTGGGCTAC-CA	1198
Sbjct	1169	ACCGG-AGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTATGACCTGGGCTACACA	1227
Query	1199	CGTGCTAC-ATGGATGGTACACCAA-TTGCAAAACCGCGAGGTC-AGCTAATCTCTTAAA	1255
Sbjct	1228	CGTGCTACAATGGATGGTACAAACGAGTTGCGAGAACCGCGAGGTCAGCTAAATCTCTTAAA	1287
Query	1256	GCCTTTC-CAGTTC 1268	
Sbjct	1288	GCCTTTC-CAGTTC 1301	

C.29 Blast analysis and alignment results for k6-12

Sequences producing significant alignments		Download	Manage Columns		Show 100	?	
			GenBank	Graphics	Distance tree of results		
<input checked="" type="checkbox"/>	select all 100 sequences selected						
	Description		Max Score	Total Score	Query Cover	E value	
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence		2145	2145	100%	0.0	99.25% NR_117887.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence		2141	2141	100%	0.0	99.16% NR_113337.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. <i>tolerans</i> strain NBRC 15906 16S ribosomal RNA, partial sequence		2139	2139	100%	0.0	99.16% NR_041054.1
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence		2139	2139	100%	0.0	99.16% NR_025880.1
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence		2091	2091	100%	0.0	98.41% NR_037122.1
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence		2087	2087	100%	0.0	98.32% NR_113333.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. <i>casei</i> ATCC 393 16S ribosomal RNA, partial sequence		2085	2085	100%	0.0	98.32% NR_041893.1
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. <i>casei</i> ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence		2078	2078	100%	0.0	98.16% NR_115534.1
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence		2060	2060	98%	0.0	98.47% NR_113332.1

Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequenceSequence ID: [NR_117987.1](#) Length: 1441 Number of Matches: 1Range 1: 18 to 1201 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous Match](#)

Score 2145 bits(1161)	Expect 0.0	Identities 1184/1193(99%)	Gaps 9/1193(0%)	Strand Plus/Plus
Query 1	CGAGTTCTCGTTGATGATCGGTGTTGCACCGAGATTCAACATGGAAACGAGTGGCGGA	60		
Sbjct 18	CGAG-TTCTCGTTGATGATCGGTGTTGCACCGAGATTCAACAT-GGAACGAGTGGCGGA	75		
Query 61	CGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAGATG	120		
Sbjct 76	CGGGTGAGTAACACGTGGGTAACCTGCCCTTAAGTGGGGATAACATTGGAAACAGATG	135		
Query 121	CTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCTAACGCTATC	180		
Sbjct 136	CTAATACCGCATAGATCCAAGAACCGCATGGTTCTGGCTGAAAGATGGCTAACGCTATC	195		
Query 181	GCTTTGGATGGACCCCGCGCGTATTAGCTAGTTGGTGAGGTAAACGGCTACCAAGGCAG	240		
Sbjct 196	GCTTTGGATGGACCCCGCGCGTATTAGCTAGTTGGTGAGGTAAACGGCTACCAAGGCAG	255		
Query 241	TGATACGTAGCCGAACGTAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAAC	300		
Sbjct 256	TGATACGTAGCCGAACGTAGAGGTTGATCGGCCACATTGGACTGAGACACGGCCAAAC	315		
Query 301	TCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACG	360		
Sbjct 316	TCCTACGGGAGGCAGCAGTAGGAAATCTTCCACAATGGACGCAAGTCTGATGGAGCAACG	375		
Query 361	CCCGGTGAGTGAAGAACGGCTTCGGGTCGAAACCTCTGTTGGAGAAGAACGGCTGG	420		
Sbjct 376	CCCGGTGAGTGAAGAACGGCTTCGGGTCGAAACCTCTGTTGGAGAAGAACGGCTGG	435		
Query 421	CAGAGTAACCTGTTGTCGGCGTGACGGTATCCAACCAAGAACGGCTAACACGTGCC	480		
Sbjct 436	CAGAGTAACCTGTTGTCGGCGTGACGGTATCCAACCAAGAACGGCTAACACGTGCC	495		
Query 481	AGCAGCCGGGTAATACGTAGGTGGCAAGCGTTATCGGATTATTGGCGTAAAGCGAG	540		
Sbjct 496	AGCAGCCGGGTAATACGTAGGTGGCAAGCGTTATCGGATTATTGGCGTAAAGCGAG	555		
Query 541	CGCAGGGGGTTTTAAAGTCTGATGTAAGAACGCCCTGGCTTAACCGAGGAAGCGCATCGG	600		
Sbjct 556	CGCAGGGGGTTTTAAAGTCTGATGTAAGAACGCCCTGGCTTAACCGAGGAAGCGCATCGG	615		
Query 601	AAACTGGGAAACTTGAGTGCAGAACCGAGTGGGAAGGGCGCTGTTGTAACGTGCTGA	660		
Sbjct 616	AAACTGGGAAACTTGAGTGCAGAACCGAGTGGGAACCTGTTGTAACGTGCTGA	675		
Query 661	GTAGATATGGAAAGAACACCAAGTGGGAAGGGCGCTGTTGTTGTAACGTGCTGA	720		
Sbjct 676	GTAGATATGGAAAGAACACCAAGTGGGAAGGGCGCTGTTGTTGTAACGTGCTGA	735		
Query 721	GGCTGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGA	780		
Sbjct 736	GGCTGAAAGCATGGTAGCGAACAGGATTAGATAACCTGGTAGTCCATGCCGTAAACGA	795		

Query	781	TGAATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCGCAGCTAACGCATTAAGCATT	848
Sbjct	796	TGAATGCTAGGTGTTGGAGGGTTCCGCCCTTCAGTGCGCAGCTAACGCATTAAGCATT	855
Query	841	CCGCTGGGGAGTACGACCGCAAGGGTGAACACTAAAGGAATTGACGGGGGCCGACAA	980
Sbjct	856	CCGCTGGGGAGTACGACCGCAAGGGTGAACACTAAAGGAATTGACGGGGGCCGACAA	915
Query	901	GCGGTGGAGCATGTGGTTAACTCGAACCGCAAGAACCTTACAGGTCTTGACATC	968
Sbjct	916	GCGGTGGAGCATGTGGTTAACTCGAACCGCAAGAACCTTACAGGTCTTGACATC	975
Query	961	TTTGATCACCTGAGAGATCAGGTTCCCTTCGGGGCAAAATGACAGGTGGTCATGG	1828
Sbjct	976	TTTGATCACCTGAGAGATCAGGTTCCCTTCGGGGCAAAATGACAGGTGGTCATGG	1835
Query	1021	TTGTCGTCAGCTCGTGTGAGATGTTGGGTTAACGACCGAACGGCAACCCCTTAT	1888
Sbjct	1036	TTGTCGTCAGCTCGTGTGAGATGTTGGGTTAACGACCGAACGGCAACCCCTTAT	1095
Query	1081	GACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTGACAAACCCGGAG	1148
Sbjct	1096	GACTAGTTGCCAGCATTAGTTGGCACTCTAGTAAGACTGCCGGTGACAAACCCGGAG	1153
Query	1141	GAAGGTGGGGATGAACGTAAATCATCATGCCCTTATGAACCTGGGCTA	1193
Sbjct	1154	GAAGGTGGGG-ATG-ACGTAAATCATCATGCCCTTATGAACCTGGGCTA	1281

C.30 Blast analysis and alignment results for k6-14

Sequences producing significant alignments							Download	Manage Columns	Show	100	?
<input checked="" type="checkbox"/> select all	100 sequences selected				GenBank	Graphics	Distance tree of results				
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession				
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain NBRC 15889 16S ribosomal RNA, partial sequence	1993	1993	100%	0.0	99.54%	NR_113337.1				
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain R094 16S ribosomal RNA gene, partial sequence	1993	1993	100%	0.0	99.54%	NR_025880.1				
<input checked="" type="checkbox"/>	Lactobacillus paracasei strain ATCC 25302 16S ribosomal RNA, partial sequence	1991	1991	99%	0.0	99.54%	NR_117987.1				
<input checked="" type="checkbox"/>	Lactobacillus zeae strain RIA 482 16S ribosomal RNA, partial sequence	1989	1989	100%	0.0	99.45%	NR_037122.1				
<input checked="" type="checkbox"/>	Lactobacillus casei strain NBRC 15883 16S ribosomal RNA, partial sequence	1988	1988	100%	0.0	99.45%	NR_113333.1				
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequence	1988	1988	100%	0.0	99.45%	NR_113332.1				
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 16S ribosomal RNA, partial sequence	1988	1988	100%	0.0	99.45%	NR_041893.1				
<input checked="" type="checkbox"/>	Lactobacillus casei subsp. casei ATCC 393 strain JCM 1134 16S ribosomal RNA, partial sequence	1988	1988	100%	0.0	99.45%	NR_115534.1				
<input checked="" type="checkbox"/>	Lactobacillus paracasei subsp. tolerans strain NBRC 15906 16S ribosomal RNA, partial sequence	1984	1984	100%	0.0	99.38%	NR_041054.1				
<input checked="" type="checkbox"/>	Lactobacillus rhamnosus strain JCM 1138 16S ribosomal RNA, partial sequence	1980	1980	100%	0.0	99.27%	NR_043408.1				

<i>L. paracasei</i>	CGGCTTAACCGAGGAAGCGCATGGAAACTGGGAACTTGAGTCAGAAGAGGACAGTGG
<i>L. zeae</i>	CGGCTTAACCGAGGAAGCGCATGGAAACTGGGAACTTGAGTCAGAAGAGGACAGTGG
<i>L. rhamonus</i>	CGGCTTAACCGAGGAAGTGCATGGAAACTTGAGTCAGAAGAGGACAGTGG
<i>k6-14</i>	TGGTGTGAC--GGGCGGTGTGTACAAGGCCGGAACGTATTACCGCGGGCGTGC--TGA

Lactobacillus rhamnosus strain NBRC 3425 16S ribosomal RNA, partial sequenceSequence ID: [NR_113332.1](#) Length: 1495 Number of Matches: 1Range 1: 370 to 1464 [GenBank](#) [Graphics](#)[▼ Next Match](#) [▲ Previous](#)

Score 1988 bits(1076)	Expect 0.0	Identities 1089/1095(99%)	Gaps 2/1095(0%)	Strand Plus/Minus
Query 1	GGCTCGCTCCCTAAA-GGGTTACGCCACCGCGCTTCGGGTGTTACAAACTCTCATGGTGTG			59
Sbjct 1464	GGCTCGCTCCCTAAAAGGGTTACGCCACCGCGCTTCGGGTGTTACAAACTCTCATGGTGTG			1405
Query 60	ACGGGGCGGTGTGACAAGGCCGGGAAACGTATTCAACCGCGCGTGTGATCCGCGATTAC			119
Sbjct 1484	ACGGGGCGGTGTGACAAGGCCGGGAAACGTATTCAACCGCGCGTGTGATCCGCGATTAC			1345
Query 128	TAGCGATTCCGACTTCGTGTAGGCAGTTGAGCCTACAGTCCGAACTGAGAATGGCTTT			179
Sbjct 1344	TAGCGATTCCGACTTCGTGTAGGCAGTTGAGCCTACAGTCCGAACTGAGAATGGCTTT			1285
Query 188	AAGAGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGT			239
Sbjct 1284	AAGAGAGATTAGCTTGACCTCGCGGTCTCGCAACTCGTTGACCATCCATTGAGCACGTGT			1225
Query 248	GTAGCCCAGGTCTATAAGGGGATGATGATTTGACGTATCCCCACCTTCCTCCGGTTGT			299
Sbjct 1224	GTAGCCCAGGTCTATAAGGGGATGATGATTTGACGTATCCCCACCTTCCTCCGGTTGT			1165
Query 308	CACCGGCAGTCTTACTAGAGTGCCTAAACTAAATGCTGGCAACTAGTCATAAGGGTTGC			359
Sbjct 1164	CACCGGCAGTCTTACTAGAGTGCCTAAACTAAATGCTGGCAACTAGTCATAAGGGTTGC			1105
Query 368	TCGTTGCGGGACTTAACCCACATCTCACGACACGAGCTGACGACAACCATGCACCACCT			419
Sbjct 1104	TCGTTGCGGGACTTAACCCACATCTCACGACACGAGCTGACGACAACCATGCACCACCT			1845
Query 428	GTCATTTGCCCGGAAGGGGAAACCTGATCTCAGGTGATCAAAAGATGTCAGACCT			479
Sbjct 1044	GTCATTTGCCCGGAAGGGGAAACCTGATCTCAGGTGATCAAAAGATGTCAGACCT			985
Query 488	GGTAAGGTTCTCGCGTTGCTCGAATTAAACCATGCTCCACCGCTTGTGCGGGCCCC			539
Sbjct 984	GGTAAGGTTCTCGCGTTGCTCGAATTAAACCATGCTCCACCGCTTGTGCGGGCCCC			925
Query 548	CGTCAATTCCCTTGAGTTCAACCTTGCCTCGTACTCCCCAGCGGAATGCTTAATGCG			599
Sbjct 924	CGTCAATTCCCTTGAGTTCAACCTTGCCTCGTACTCCCCAGCGGAATGCTTAATGCG			865
Query 608	TTAGCTGGGCACTGAAGGGCGAAACCTTCAACACCTAGCATTCTCATCGTTACGGCAT			659
Sbjct 864	TTAGCTGGGCACTGAAGGGCGAAACCTTCAACACCTAGCATTCTCATCGTTACGGCAT			805
Query 668	GGACTACCAGGGTATCTAATCTGTTCGTACCCATGCTTCGAGCCTCAGCGTCAGTTA			719
Sbjct 884	GGACTACCAGGGTATCTAATCTGTTCGTACCCATGCTTCGAGCCTCAGCGTCAGTTA			745
Query 728	CAGACCAGACAGCCGCTTCCACTGGTGTCTTCCATATATCTACGCATTCACCGCT			779
Sbjct 744	CAGACCAGACAGCCGCTTCCACTGGTGTCTTCCATATATCTACGCATTCACCGCT			685

Query	600	TTAGCTGCAGCACTGAAGGGCGGAAACCCCTCCAACACCTAGCATTATCGTTACGGCAT	659
Sbjct	864	TTAGCTGCAGCACTGAAGGGCGGAAACCCCTCCAACACCTAGCATTATCGTTACGGCAT	805
Query	660	GGACTACCAGGGTATCTAATCCTGTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTA	719
Sbjct	804	GGACTACCAGGGTATCTAATCCTGTCGCTACCCATGCTTCGAGCCTCAGCGTCAGTTA	745
Query	720	CAGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATTACCGCT	779
Sbjct	744	CAGACCAGACAGCCGCTTCGCCACTGGTGTCTCCATATATCTACGCATTACCGCT	685
Query	780	ACACATGGAGTCCACTGTCCTCTCTGCACTCAAGTTCCAGTTCCGATGCGCTTCC	839
Sbjct	684	ACACATGGAGTCCACTGTCCTCTCTGCACTCAAGTTCCAGTTCCGATGCACTTCC	625
Query	840	TCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	899
Sbjct	624	TCGGTTAAGCCGAGGGCTTCACATCAGACTTAAAAAACCGCCTGCGCTCGCTTACGCC	565
Query	900	CAATAAATCCGGATAACGCTTGGCACCTACGTATTACCGGGCTGCTGGCACGTAGTTAG	959
Sbjct	564	CAATAAATCCGGATAACGCTTGGCACCTACGTATTACCGGGCTGCTGGCACGTAGTTAG	585
Query	960	CCGTGGCTTCTGGTGGATACCGTACGCCGGCAACAGTTACTCTGCCGACCATCTTC	1019
Sbjct	504	CCGTGGCTTCTGGTGGATACCGTACGCCGGCAACAGTTACTCTGCCGACCATCTTC	445
Query	1020	TCCA-CAACAAAATTTACGACCCGAAAGCCTCTTCACTCACGCCGGCTGCTCCATCA	1078
Sbjct	444	TCCAACAAACAGAGTTTACGACCCGAAAGCCTCTTCACTCACGCCGGCTGCTCCATCA	385
Query	1079	GACTTGCCTCCATTG 1093	
Sbjct	384	GACTTGCCTCCATTG 370	

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Hassan, Manal

Nationality: Egyptian

Date and Place of Birth: 15 March 1983, Egypt

Marital Status: Married

Phone: +90 5350718060

Email: manal.hassan@metu.edu.tr

EDUCATION

Degree	Institution	Year of Graduation
MS	Egypt, Zagazig University, Faculty of Science Department of Food Microbiology.	2008
BS	Egypt, Zagazig University, Faculty of Science, Department of Food Microbiology.	2003
High School	Zagazig secondary High School ,Egypt.	1999

WORK EXPERIENCE

Year	Place	Enrollment
2003-2008	Egypt, Zagazig University	Research Assistant

FOREIGN LANGUAGES

Advanced English

PUBLICATIONS

-Eman Y. Tohamy and Manal S. El said. 2007. Detoxification of aflatoxin B1 by certain microorganisms. Egyptian journal of biotechnology.

HOBBIES

Computer technologies, Tennis, Travel, Reading.