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Prof. Dr. Çağatay Candan
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Orhan Arıkan
Electrical and Electronics Engineering, Bilkent University

Prof. Dr. Çağatay Candan
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ABSTRACT

AN EFFICIENT METHOD FOR FUNDAMENTAL FREQUENCY
ESTIMATION OF PERIODIC SIGNALS WITH HARMONICS

Çelebi, Utku

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Çağatay Candan

August 2020, 100 pages

A computationally efficient method for the fundamental frequency estimation of a

group of harmonically related complex sinusoids is given. To this aim, an efficient

frequency estimation method for single tone complex sinusoids is adapted to the har-

monic frequency estimation problem. The main idea of the suggested Fast Fourier

Transform based method is the frequency estimation of individual complex sinusoids

after the removal of the interference due to other harmonics. After several iterations

of estimation and interference cancellation, the frequency estimates of each harmonic

component are fused to obtain the fundamental frequency estimate. In addition to

this, the model order selection, that is the estimation of the number of harmonics, is

also discussed. The proposed method is applied on the direction of arrival problem for

a single far-field source with harmonics. A theoretical study of the suggested scheme

and its verification by computer experiments are provided.

Keywords: Frequency estimation, Pitch frequency estimation, Fundamental frequency

estimation, Periodic signals.
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ÖZ

HARMONİK İŞARETLERİN HASSAS TEMEL FREKANS KESTİRİMİ
İÇİN DÜŞÜK İŞLEM YÜKLÜ BİR YÖNTEM

Çelebi, Utku

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Çağatay Candan

Ağustos 2020 , 100 sayfa

Harmonik ilişkili bir grup karmaşık sinüzoidin temel frekansının kestirimi için düşük

hesaplama yüküne sahip bir yöntem verilmektedir. Bu amaç doğrultusunda, tek tonlu

sinüzoidlerin frekans kestirimi problemi için geliştirilen bir yöntem harmonik du-

ruma uyarlanmaktadır. Önerilen Hızlı Fourier Dönüşümü tabanlı yöntemin ana fikri,

karmaşık sinüzoidlerin birbirleri üzerine girişimlerini ortadan kaldırarak, her bir kar-

maşık sinüzoidin frekansını ayrı ayrı kestirmek ve bu sonuçlarını birleştirerek temel

frekans kestirimi elde etmektir. Buna ek olarak, harmonik sayısının kestirimi proble-

mine de değinilmiştir. Önerilen yöntem, uzak alandaki kaynağın harmonikleri ile bir-

likte gözlemlendiği durumda, yön bulma problemi üzerinde uygulanmıştır. Önerilen

kestiricinin başarımı kuramsal olarak incelenmiş ve benzetim sonuçlarıyla doğrulan-

mıştır.

Anahtar Kelimeler: Frekans kestirim, Temel frekans kestirimi, Periyodik işaretler.
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CHAPTER 1

INTRODUCTION

The topic of this thesis is the fundamental frequency estimation of periodic signals

observed under additive white Gaussian noise. Frequency estimation problem is of

major concern in many applications such as spectrum estimation, radar signal pro-

cessing, direction of arrival estimation, speech processing and more [1]. The fre-

quency estimation problem can be posed either for the complex exponential signal

(Aej(ωn+φ)) or real-valued sinusoids (A cos(ωn + φ)). The complex exponential sig-

nals arise as the low-pass equivalent of band-pass signals and heavily utilized in radar

signal processing (Doppler frequency shift estimation), direction of arrival estimation

(spatial frequency estimation) and spectrum estimation problems. The real-valued

sinusoids can be considered as the time-domain samples of a periodic signal with-

out any downconversion operation. Real-valued sinusoids arise in speech/music pro-

cessing, underwater acoustics, instrumentation and measurement problems such as

analog-to-digital converter (ADC) testing, waveform generators etc. Although both

problems are similar, the frequency estimators for real-valued sinusoids are not, in

general, straightforward extensions of the ones for complex exponentials. In this

thesis, our focus is taking one more step in this line of research and examining the

fundamental frequency estimation of periodic signal with several harmonics. Our

goal is to develop frequency estimators for periodic signals which are efficient both

in the computational sense and also in the statistical sense, i.e. operating close to the

Cramer-Rao performance lower bound.

Before delving into the specifics of the problem, we would like to provide some gen-

eral information on topics related with estimation theory. Statistical signal processing

can be defined as the useful information retrieval from noisy observations. The input,
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that is the observed signal, is distorted by noise due to natural sources, such as the

thermal noise, or due to man-made sources. The noise term is stochastically mod-

elled; while the signal or parameter of interest can be non-random (deterministic) or

random. There are various approaches for both non-random parameter estimation or

random-parameter (Bayesian) estimation which differ from each other in computa-

tional complexity and estimation accuracy.

The maximum likelihood (ML) estimator is a well known non-random parameter

estimation method. ML estimator is known to be asymptotically efficient, i.e. asymp-

totically achieves the Cramer Rao Lower Bound (CRB). For the frequency estimation

problem, the ML estimator for the complex-exponential model is simply the peak

detector in the Discrete-Time Fourier Transform (DTFT) magnitude spectrum of the

input; when the input is assumed to be observed under white Gaussian noise [2]. In

practice, the DTFT samples are calculated by using the Discrete Fourier Transform

(DFT). For multiple sinusoidal sources with unknown frequencies, the frequency

estimation problem becomes a peak detection (the likelihood maxima) via a multi-

dimensional search. The complexity of a multi-dimensional search is exponentially

increasing in the number of dimensions and, in general, prohibitively complex. One

of major goals is to develop frequency estimators (spectrum estimators) with a good

performance at a reasonable complexity. ML estimators are generally considered as

the performance benchmark. Their efficient implementation or the development of

reduced complexity ML-like estimators is an ever-present goal of signal processing

applications. We also note that in spite of their benchmark status, but the optimality

of ML estimator is only asymptotically valid.

In addition to the ML estimator, there are several sub-spaced based methods which

try to make use of the auto-correlation matrix of the input for the spectrum estima-

tion. These methods decompose the signal into noise/signal space via eigenvalue

decomposition (EVD) or singular value decomposition (SVD). These methods are

sub-optimal; but computationally less demanding. A major drawback of these meth-

ods is their need of autocorrelation matrix; hence the problem of auto-correlation

matrix estimation arises for their usage. The most well known sub-space methods are

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) [3]

and MUSIC (Multiple Signal Classification) [4]. Their main advantage is their ability

2



to resolve multiple sources with a slight increase in computation complexity.

In recent years, computationally efficient frequency estimation methods are proposed

for single tone complex exponentials [5–14]. The performance of these estimators are

as good as MLE and their computation load is very low. These methods, also called

fine frequency estimation techniques, are based on the DFT domain representation

of the input signal and developing an invariant function to the nuisance parameters

of the problem, which are the amplitude and phase of the complex exponential for

the problem of interest [15]. The first stage of fine frequency estimators is the coarse

frequency estimation by finding the peak location over a coarse grid in the DTFT

spectra. Then, in the second stage, the fine frequency estimation is made by using

an invariant function. In the fine frequency estimation stage, two/three DFT samples

calculated in the first stage are used as the input of the invariant function. The main

computational burden of methods in this class is the DFT calculation in the first stage.

Hence, these estimators are considered to have very low implementation complexity.

The fine frequency estimation of the real-valued sinusoids, that is the development

of similar low complexity estimators, is a bit more complicated. A real-valued si-

nusoid is composed of two complex valued sinusoids (cos(ωn + φ) = (ej(ωn+φ) +

e−j(ωn+φ))/2) and in DFT domain, the interference of each complex exponential on

the other one complicates the problem. Fine frequency estimation methods are much

more abundant for the complex exponential case in the literature. To convert the real

valued frequency estimation problem to its complex exponential counterpart, some it-

erative interference cancellation procedures are developed [16, 17]. These procedures

are based on iteratively estimating the frequency and then removing the interference

term and repeating the frequency estimation with interference removed or reduced

input. This approach is also related to the RELAX algorithm [18] and can also be

applied when multiple complex sinusoids are observed.

In this thesis, the main topic is the frequency estimation of periodic signals with mul-

tiple harmonics. More specifically, the fundamental frequency estimation (also called

pitch estimation) of a group of harmonically related sinusoids is the main goal. Fun-

damental frequency estimation is used in many applications, e.g, tuning of the musical

instruments, classification and identifications of the audio based signals, separation of

3



the signals coming from different sources, transcription of the recorded music, etc. An

important reference on this topic is the book titled Multi-Pitch Estimation [19]. The

ML estimator with different implementations are available in the literature [20–22].

Methods based on the autocorrelation function of the input, filtering methods [23–25]

and subspace methods [26, 27] are proposed. The most well known subspace based

methods are MUSIC [28–30] and ESPRIT [31–33]. All of these methods require

computationally demanding operations such as grid search, autocorrelation matrix

estimation, eigenvalue value decomposition etc. Also, in recent studies, atomic norm

techniques [34–38] that utilize the sparsity of the superimposed sinusoidal signals are

proposed for the frequency estimation and the main goal is to get optimal frequency

estimates by resolving grid mismatch problem. Frequency estimation methods based

on the atomic norm optimization are also called gridless frequency estimation meth-

ods in the literature. These methods are in principle similar to the methods studied

in this thesis; yet, they require orders of magnitude (more than 100 folds) more com-

putation than the methods called as low-complexity methods in this thesis. Hence, in

this study, we don’t go into detail about atomic norm denoising concept, since this

topic is not the subject of this study. However, in Appendix B, brief discussion about

the computational complexity of atomic norm based methods together with one of

the successful fine frequency estimators (AM algorithm [8]) is given. Simply, in this

thesis work, our goal is to extend the low complexity fine frequency methods given

for the complex exponentials to the fundamental frequency estimation problem.

For the fundamental frequency estimation problem, a viable approach is using the suc-

cessive interference cancellation procedures along with conventional fine-frequency

estimators for the complex exponential signals. We follow this approach in this study,

that is the frequencies of harmonically related complex exponentials are estimated in-

dividually after successively eliminating the interference due to other harmonics. The

individual estimates are fused to get a final estimate. Also, the case when the number

of harmonics is not known a-priori is also examined through a model order estimation

formulation. Finally, an application of the fundamental frequency estimation to the

fundamental spatial frequency estimation is given within the context of direction of

arrival (DOA) estimation of periodic signals.
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1.1 The Outline of the Thesis

In Chapter 2, the system model is described and some preliminary information on sin-

gle tone frequency estimation with complex exponentials is given. In Section 2.4, the

motivation for the fine frequency estimation methods is explained and an analysis for

a well-known fine frequency estimation method in the literature, namely Aboutanios-

Mulgrew (AM) method, [8] is given.

In Chapter 3, the fundamental frequency estimation problem is studied. Joint esti-

mation of fundamental frequency and model order (total number of harmonics) is

discussed. In Section 3.5, the proposed method is given.

In Chapter 4, the proposed method is applied on the direction of arrival problem with

a uniform linear array. The problem is the angular localization of a single source with

harmonics in a multipath-free environment. The advantages of utilizing higher other

harmonics in the direction of arrival problem are studied.

In Chapter 5, the numerical comparisons of the proposed method with other methods

are given. The performance of the method with and without model order selection

(known model order) is investigated for different scenarios. Results for the directional

of arrival estimation application are given.

1.2 Contributions

The following are the publications related with the thesis study:

• U. Celebi and C. Candan, “A computationally efficient fine frequency estima-

tion method for harmonic signals” in 2020 28th Signal Processing and Com-

munications Applications Conference (SIU), pp. 1–4, 2020. [39]

• C. Candan and U. Çelebi, “Invariant function approach for gridless and non-

iterative maximum likelihood parameter estimation and its application to fre-

quency estimation of real-valued sinusoids” Elsevier Signal Processing (under

review), 2020. [15]
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In addition, the following is the list of analysis results on the AM method [8]:

• Section 2.5.1 Number of Iterations to Reach Cramer-Rao Bound,

• Section 2.5.2 Approximate MSE Lower Bound and Gross Error Analysis,

• Section 2.5.3 Asymptotic MSE Analysis at High SNR.

The analysis of AM method given in Sections 2.5.1, 2.5.2 and 2.5.3 are alternative

derivations of the results given in the AM paper [8, 16]. The final results of the pre-

sented derivations agree with earlier findings and they are easier to utilize.
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CHAPTER 2

FREQUENCY ESTIMATION OF COMPLEX EXPONENTIALS

This chapter presents the problem of frequency estimation for complex exponential

signals. The chapter is organized as follows: In Section 2.1, some preliminary def-

initions are given. In Section 2.2, the maximum likelihood estimator, which is the

benchmark estimator, for the problem is given. In Section 2.3, the Cramer-Rao lower

bound for the problem is given and some discussions on the limitations of the grid-

search based estimators is discussed. In Section 2.4, a class of low complexity estima-

tors, known as fine frequency estimators, are described. Finally, a theoretical analysis

of Aboutanios-Mulgrew (AM), a member of fine frequency estimators class, is given

in Section 2.5. Theoretical results given in this section are utilized in the next chapter

on the fundamental frequency estimation problem.

2.1 Preliminaries

A complex sinusoid signal of unknown amplitude, phase and frequency is observed

under white complex Gaussian noise:

r[n] = Aej(2πfn+φ) + w[n], n = {0, . . . , N − 1}. (2.1)

where N is number of samples, A and φ are the amplitude and the phase of the

complex sinusoid signal. The frequency variable f in equation (2.1) is the normalized

frequency defined in [0, 1) and can be expressed as f = (kp+δ)

N
in terms of N -point

DFT bins where kp is an integer in [0, N−1] and δ is a real number in (−0.5, 0.5). It is

assumed that noise w[n] is circularly symmetric white complex Gaussian distributed

noise with zero mean and σ2
w variance, w[n] ∼ CN (0, σ2

w). The signal-to-noise ratio

(SNR) is A2/σ2
w.
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Figure 2.1: Magnitude DTFT and DFT magnitude spectrum of the complex sinu-

soidal signal with frequency ω = 2π(kp+δ)

N
.

The N -point DFT of the input is,

R[k] =
N−1∑
n=0

r[n]e−
j2πkn
N ,

=Aejφ
1− ej2π(kp−k+δ)

1− ej 2πN (kp−k+δ)
+W [k],

=Aejφej
π
N

(kp−k+δ)(N−1) sin(π(kp − k + δ))

sin( π
N

(kp − k + δ))
+W [k],

(2.2)

where W [k] =
∑N−1

n=0 w[n]e−
j2πkn
N and k = 0, . . . , N − 1. In Figure 2.1, DTFT and

DFT magnitude spectrum of the complex sinusoidal signal with frequency 2π(kp+δ)

N

are shown. We know that N -point DFT of a signal corresponds to the sampled ver-

sion of its continuous DTFT spectra. As the DFT size N increases, the DFT spectra

approaches to the DTFT result. Also, when δ is equal to zero, the DFT samples are

all zero except the value at the DFT bin with the index k = kp. The statistical char-

acterization of the noise term after DFT operation, W [k], can be given as follows,
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E{W [l]W [m]} = E

{
N−1∑
n=0

(
e−

j2πln
N w[n]

)N−1∑
q=0

(
e−

j2πmq
N w[q]

)}
,

=
N−1∑
n=0

e−
j2π(l+m)n

N E{w2[n]} = 0.

(2.3)

E{W [l]W ∗[m]} = E

{
N−1∑
n=0

(
e−

j2πln
N w[n]

)N−1∑
q=0

(
e
j2πmq
N w∗[q]

)}
,

=
N−1∑
n=0

e−
j2π(l−m)n

N E{|w[n]|2},

= Nσ2
wδ[l −m].

(2.4)

where (l,m) are integers in the range of [0, N − 1]. We should note that E{w2[n]} =

E{a2 + 2jab− b2} = 0 where a is the real part and the b is the imaginary part of the

noise term ω[n]. It is important to note that after DFT operation the noise term keeps

its white Gaussian properties, that is W [k] ∼ CN (0, Nσ2
w); since DFT is a linear

operation, that is DFT operation can be represented with an unitary matrix SN×N and

SSH = NIN×N . In equation (2.4), the terms l,m can have non-integer values and

as long as their difference is an integer. Note that, when the difference l − m is a

non-zero integer, two random variables W [l] and W [m] are independent.

The expression in (2.3) isn’t the conventional representation of the second order char-

acteristic of the random variables. However, by using this expressions in (2.3) and

(2.4), we can show that real and imaginary parts of given random terms are indepen-

dent when the difference l −m is a non-zero integer. In [40], more detailed informa-

tion about the circularly symmetry properties of the vectors generated by the jointly

Gaussian random variables and the statistical properties of real and the imaginary

parts of these random variables are given. Simply, the following derivation results are

important while analyzing the MSE of the AM algorithm in Section 2.5.3.

E
{

Real {W [l]}Real {W [m]}
}

= E

{
W [l] +W ∗[l]

2

W [k] +W ∗[k]

2

}
,

=
N

2
σ2
wδ[l −m].

(2.5)
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E
{

Imag {W [l]} Imag {W [m]}
}

= E

{
W [l]−W ∗[l]

2j

W [k]−W ∗[k]

2j

}
,

=
N

2
σ2
wδ[l −m].

(2.6)

E
{

Real {W [l]} Imag {W [m]}
}

= E

{
W [l] +W ∗[l]

2

W [k]−W ∗[k]

2j

}
,

= 0.

(2.7)

2.2 Maximum Likelihood Estimation (MLE)

The main idea of MLE is to maximize the value of probability density function (pdf)

evaluated at the observation vector (the likelihood) over its non-random unknown

parameters, (see equation (2.1)). In this context, the parameters of the sinusoid are

considered as deterministic unknowns; hence, noise is the only random term. The

maximum likelihood estimate of non-random signal parameters is shown with vector

ψ̂ = [Â f̂ φ̂]T and ψ̂ maximizes the joint distribution function of observations, that

is p(r;ψ) for a given r. For white complex Gaussian noise case with zero mean and

σ2
w variance, the joint distribution function of observations in (2.1) can be given as,

p(r;ψ) =
1

(πσ2
w)N

exp

[
− 1

σ2
w

N−1∑
n=0

|r[n]− Aej(2πf+φ)|2
]
. (2.8)

and for the maximum likelihood estimation, simply, we can minimize

J(A, f, φ) =
N−1∑
n=0

|r[n]− Aej(2πf+φ)|2. (2.9)

It is well known that the maximum likelihood (ML) estimates of the parameters of

the complex sinusoid are [2],

f̂ =arg max
f

∣∣∣∣∣
N−1∑
n=0

r[n]e−j2πfn

∣∣∣∣∣
2

,

Â =
1

N

∣∣∣∣∣
N−1∑
n=0

r[n]e−j2πf̂n

∣∣∣∣∣
2

,

φ̂ = arctan
Imag(

∑N−1
n=0 r[n]e−j2πf̂n)

Real(
∑N−1

n=0 r[n]e−j2πf̂n)
.

(2.10)
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As can be seen from (2.10), the maximum likelihood frequency estimate is the peak

location of the DTFT spectra (see Figure 2.1) where f is a real number in the range

[0, 1) and estimates of amplitude and the phase follow from simple calculations given

the frequency estimate. Clearly, a poor frequency estimate affects the estimation

accuracy of other parameters. However the periodogram samples calculated via DFT

can be computationally demanding in some scenarios. Typically, M -point DFT is

required to achieve a frequency resolution of 1/M . This may lead to a dramatic

increase in the number of DFT points to reach the Cramer-Rao bound (CRB) at high

SNR. As an example, to achieve the accuracy of 1/(100×N), at least 100×N -point

DFT calculations are needed. We would like to remind that the achievable accuracy is

lower bounded by CRB and this bound can be utilized to set the search grid a-priori,

given the operational SNR.

Some specific DFT implementations such as the chirp z-transformation can be uti-

lized to reduce the DFT calculation complexity, [41, p.780-785]. Yet, even with chirp

z-transform implementation, the maximization takes place over a grid with granu-

larity and eventually suffers from high complexity as SNR increases. An alternative

to grid-search is the usage of Newton-Raphson type, that is the general purpose nu-

merical optimization routines for the likelihood maximization. In fact, the suggested

computationally efficient fine-frequency estimators in this thesis can be considered as

very specific implementation of Newton-Raphson type estimators for the frequency

estimation problem.

2.3 Cramer-Rao Bound (CRB)

The Cramer-Rao Bound (CRB) is a lower bound on the mean square error of an

unbiased estimate of a non-random parameter, [2]. It is derived by the calculation of

Fisher information matrix, followed by its inversion. The parameter vector is ψ =

[A f φ]T . The elements of the Fisher information matrix can be written as,

I[ψ]ij = −E
[
∂2 ln p(r;ψ)

∂ψi∂ψj

]
,

=
2

σ2
w

Real

[
N−1∑
n=0

(
∂Aej(2πfn+φ)

∂ψi

)∗
∂Aej(2πfn+φ)

∂ψj

]
,

(2.11)
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where ψi is the i’th element of the vector ψ and E(x) represents the expected value

of a random variable, x. The result in (2.11) is the simplified version of the Fisher

information matrix valid for the Gaussian case [2].

The Fisher information matrix for the frequency estimation problem can be explicitly

written as,

I[ψ] =
2

σ2
w


N 0 0

0 A2
∑N−1

0 (2πn)2 A2
∑N−1

0 2πn

0 A2
∑N−1

0 2πn NA2


, (2.12)

where A is the amplitude, f is the frequency and φ is the phase. As noted in [2, p.57],

upon the inversion of the Fisher information matrix, the 2nd row and 2nd column

entry becomes the CRB of the frequency estimates.

The Cramer Rao Lower Bounds (CRB) of these parameters are,

var(f̂) ≥I−1[ψ]22 =
6

(2π)2N(N2 − 1)SNR
,

var(Â) ≥I−1[ψ]11 =
σ2
w

2N
,

var(φ̂) ≥I−1[ψ]33 =
2N − 1

N(N + 1)SNR
.

(2.13)

Throughout the thesis work, the main parameter to be estimated is the frequency in

terms of DFT bin (kp + δ). More specifically, the frequency 2πf in (2.1) corresponds

to the radial frequency with the units of radians per sample. The variable f ∈ [0, 1)

is the normalized frequency. If the number of observations is given as N as in (2.1),

then f = (kp+δ)

N
and (kp + δ) ∈ [0, N) is the frequency in DFT bins.

To convert CRB to the unit of DFT bins, we need to multiply the expression in (2.13)

with N2. Therefore, the CRB of the frequency in terms of DFT bins can be written

as N2I−1[ψ]22 = 6N
(2π)2(N2−1)SNR .

Also, to compare the performance of the estimators, the root mean squared error

12
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Figure 2.2: RMSE vs SNR plot for MLE with frequency ω = 2π(20+0.3)
64

.

(RMSE) is estimated via Monte Carlo simulations as follows,

RMSE =

√√√√ 1

#trials

#trials∑
t=1

(true frequency− estimated-frequency-at-i’th-trial)2.

(2.14)

Here, true and estimated frequencies are also expressed in terms of DFT bins and

RMSE result is compared with the square root of the CRB expression
√

6N
(2π)2(N2−1)SNR .

Next, we focus on the relation between the MLE and CRB of the complex sinusoids.

The MLE results in (2.10) are asymptotically efficient which means the performance

of the estimator reaches the CRB when the number of samples N goes to infinity. In

Figure 2.2, performance of the ML estimator is presented with N = 64 samples for

the frequency of f = 20+0.3
64

. In this example, the DFT size for the MLE is 213 which

corresponds to the precision of the grid search, that is the resolution of the frequency

estimate, (4f = 1/213).

At low SNR region, there is little information due to strong noise, therefore detection

of the peak at the true DFT bin kp becomes more difficult. In this example (Fig-
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ure 2.2), the selected grid with 213 points in [0, 1) interval remains applicable until a

threshold SNR around 12 dB. However, it is clear that the grid spacing should be re-

duced as SNR increases to continue tracking the CRB. Otherwise, estimator faces an

error-floor due to poor grid spacing. However, from the viewpoint of computational

complexity, it may not be easy to increase the number of grid points. For example,

in Figure 2.2, CRB is equal to 3× 10−3 at around 25 dB SNR in terms of DFT bins.

To achieve the CRB, the grid spacing should be selected smaller than 3× 10−3. Let’s

choose the grid spacing as 3×10−3/2 and sinceN = 64, total number of grids needed

in this example is 64
3×10−3/2

= 42667. For higher SNR values, this number increases

dramatically. Knowing that the computational cost of the N ′-point FFT calculation

is in the order of N ′ log2N
′ (for the given example N ′ = 42667), computational

complexity of MLE increases significantly to achieve the CRB.

Let’s assume that the grid spacing is N/N ′ in terms of DFT bins, that is N ′-point

DFT is evaluated. If the true frequency value is at around the mid point of two con-

secutive DFT samples, we know that the frequency resolution of the ML estimator is

not enough to get an accurate estimate and bias term arises in the estimation. This

bias term can be written as,

bias2 = (δ′)2 =

(
kp + δ − floor

(
(kp + δ)

N ′

N

)
N

N ′

)2

. (2.15)

If N ′ = N , it is easy to see that the expression in (2.15) is δ2. For different numbers

of N ′, the difference between the true frequency and the DFT sample with the largest

magnitude is called δ′ and it can be calculated as in equation (2.15). Intuitively, if

N ′ > N , we can get a DFT sample closer to the true frequency and we get smaller

error floor (δ′ < δ).

Now, we know that for high SNR values, the performance of the MLE is restricted

by the frequency resolution. If the CRB value is as much as grid spacing, we take

the effect of the bias as negligible. Using this simple reasoning, we can write the

following relation to find a SNR threshold so that ML estimator performs optimal

(reaches CRB) without suffering from bias:

var(f̂N) =
6

(2π)2NSNRT

=
N2

(N ′)2
→ SNRT =

3(N ′)2

2π2N3
. (2.16)

Figures 2.3 and 2.4 illustrates the performance of MLE with N = 32 samples for the
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Figure 2.3: RMSE vs SNR plot for MLE with frequency ω = 2π(12+0.2465)
32

.

frequency of f = 12+0.2465
32

and N = 64 samples for the frequency of f = 21+0.1345
64

respectively. Theoretical bias error and SNR threshold are shown in these figures for

N ′ = 214. The simulation results verifies the derivations in (2.15) and (2.16).

These practical limitations of grid based maximization methods are the motivations

for the fine frequency estimation methods developed in the next section.

2.4 Fine Frequency Estimation Methods

As described in the previous section, the computational complexity of maximum like-

lihood estimator becomes an increasing burden at high SNR. Fine frequency estima-

tors described in this section present a solution to this problem. The main goal of

fine frequency estimators is to get an accurate frequency estimate closely tracking the

CRB without utilizing a dense grid.

The fine frequency estimators have two stages which are the coarse frequency esti-

mation stage and fine frequency estimation stage. First stage aims to detect kp ∈
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.

{0, . . . , N − 1}; while the second one estimates δ ∈ (−0.5, 0.5). The second stage

unknown δ is considered as the fine part of frequency f = kp+δ

N
.

2.4.1 Coarse Frequency Estimation Stage (First Stage)

The first stage uses N -point DFT of N -point input r[n] given in (2.2) for detection.

The coarse estimate on f , that is k̂p, is generated by locating the DFT bin (kp) with

the largest magnitude as shown in equation (2.17):

k̂p = arg max
kp

∣∣∣∣∣
N−1∑
n=0

r[n]e−j2π
kp
N
n

∣∣∣∣∣
2

. (2.17)

The success of the first stage is vital for the overall success of the method. An erro-

neous detection in the first step creates gross errors. A more detailed discussion of

gross error is given in Chapter 2.5.2.
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2.4.2 Fine Frequency Estimation Stage (Second Stage)

In the second stage, the fractional part of the frequency (δ) is estimated. For this

purpose, the DFT bin where the peak occurs (R[k̂p]) and its neighbours are used for

the estimation of δ. Several fine frequency estimation methods are available in the

literature for both real and complex valued sinusoids. These methods differ in the

number of DFT bins they utilize and the non-linear expression for the estimation of δ

in the fine frequency estimation stage.

The main interest of this section is the estimation of the fine frequency part in the

high SNR region. Hence, throughout this section, we assume that the first stage is

error free.

We describe two fine frequency estimation methods in the literature. The first one is

Jacobsen’s method after biased correction [6] and its expression is

δ̂1 =
tanπ/N

π/N
Real

{
R[kp − 1]−R[kp + 1]

2R[kp]−R[kp − 1]−R[kp + 1]

}
. (2.18)

We would like to remind that kp in (2.18) is an unknown of the problem. Here we

assume that the value of kp is correctly estimated in the first stage, that is k̂p = kp.

The ratio in the argument of the real part operator in (2.18) is a non-linear function

of the input due to division operation. In the absence of noise, the ratio is, trivially,

invariant to unknown amplitude and phase of complex exponential signal. Hence, the

right hand side of (2.18) depends only on δ in the absence of noise. This also explains

the labeling of the left hand side of the same equation. We call the functions of several

arguments with no dependency on some arguments as the invariant functions [15].

By using elementary mathematical manipulations, in the absence of noise, the expres-

sion in (2.18) can be simplified as [7],

δ̂1 = tan (πδ/N)
sin(2π/N)

2 sin2(π/N)
,

≈tan (πδ/N)

π/N
.

(2.19)

Another fine frequency estimator is developed by Aboutanios and Mulgrew (AM) [8]

and its expression is

δ̂2 =
1

2
Real

{
R[kp + 0.5] +R[kp − 0.5]

R[kp + 0.5]−R[kp − 0.5]

}
. (2.20)
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Ignoring the noise term on R[k], we can simplify the expression in (2.20) as follows:

δ̂2 =
1

2
Real


1+ej2πδ

1−ej
2π
N

(δ−0.5)
+ 1+ej2πδ

1−ej
2π
N

(δ+0.5)

1+ej2πδ

1−ej
2π
N

(δ−0.5)
− 1+ej2πδ

1−ej
2π
N

(δ+0.5)


=

1

2
Real

{
2− 2ej

2π
N
δ cos( π

N
)

−j2ej 2πN δ sin( π
N

)

}
,

=
1

2
Real

{
1

−jej 2πN δ sin( π
N

)
− j cot(

π

N
)

}
,

=
sin(2π

N
δ)

2 sin( π
N

)
≈

sin(2π
N
δ)

2π/N
.

(2.21)

Having only δ and N dependency in the final expression, as in (2.19) and (2.21), is

a requirement for fine frequency estimators. It is clear that this dependency is non-

linear. Note from (2.19) and (2.21) that both δ̂1 and δ̂2 are not equal true δ even in the

absence of noise. This results in a biased estimate at sufficiently high SNR conditions.

Equation (2.22) gives the bias of estimators δ̂1 and and δ̂2:

tan (πδ/N)

π/N
=δ+

1

3

( π
N

)2

δ3 +
2

15

( π
N

)4

δ5 + ...︸ ︷︷ ︸
bias term

sin (2πδ/N)

2π/N
=δ−1

6

(
2π

N

)2

δ3 +
1

120

(
2π

N

)4

δ5 + ...︸ ︷︷ ︸
bias term

(2.22)

The bias term can be negligible for high N or small δ; however, it is possible to

remove the bias by inverting the non-linear expression causing the bias. For the Ja-

cobsen estimator, the bias can be removed by using an inverse function [7] as fallows,

δ̂Final
1 =

tan−1(πδ̂1/N)

π/N
. (2.23)

In AM method [8], an iterative approach is proposed to reduce/remove the bias. The

parameter δ is estimated iteratively and after each iteration, by using the previous

result, new spectrum samples are calculated as shown in equation (2.24).

R
(i+1)
AM [k] =

N−1∑
n=0

Aej2π
kp+δ

N
n+φe−j2π

k+δ̂
(i)
2

N
n +W [k],

= Aejφ
1− ej2π(kp−k+δ−δ̂(i)2 )

1− ej 2πN (kp−k+δ−δ̂(i)2 )
+W [k].

(2.24)

18



Algorithm 1: AM method
Input : r[n]: N samples of noisy complex sinusoid

Output: ω̂ = 2π
N

(k̂p + δ̂) rad./sample

1 R[k] =fft(r[n], N) (N -point FFT calculation).

2 k̂p = arg max
1≤k<N

|R[k]|2 .

3 Set δ̂(0) = 0.

4 for i = 0 : maximum iteration− 1

5 R
(i)
AM[k] =

∑N−1
n=0 r[n]e−j2π

k+δ̂(i)

N
n, k = k̂p ± 0.5.

6 δ̂(i+1) = 1
2

Real

{
R

(i)
AM[k̂p+0.5]+R

(i)
AM[k̂p−0.5]

R
(i)
AM[k̂p+0.5]−R(i)

AM[k̂p−0.5]

}
+ δ̂(i).

7 end for

8 Return ω̂ = 2π
N

(k̂p + δ̂)

Here δ̂(i)
2 is the δ estimate of AM method at i’th iteration and δ̂(0)

2 is the initial value

of δ. For the iterative bias reduction, the final expression in (2.21) can be rewritten

as,

δ̂
(i+1)
2 − δ̂(i)

2 =
sin(2π

N
(δ − δ̂(i)

2 ))

2 sin( π
N

)
. (2.25)

It can be seen that the argument of sine function in (2.25) contains the difference

of δ and its estimate at the ith iteration. Hence, the argument of sine function ap-

proaches zero as the iterations progress. This leads to the reduction/removal of bias

term in (2.22) which is clearly absent for δ = 0. With the bias removal iterations, AM

iterations become

δ̂
(i+1)
2 =

1

2
Real

{
R

(i)
AM[kp + 0.5] +R

(i)
AM[kp − 0.5]

R
(i)
AM[kp + 0.5]−R(i)

AM[kp − 0.5]

}
+ δ̂

(i)
2 , (General Case)

δ̂
(i+1)
2 =

sin(2π
N

(δ − δ̂(i)
2 ))

2 sin( π
N

)
+ δ̂

(i)
2 . (Noiseless Case)

(2.26)

An algorithm listing of AM method is given in Algorithm Table 1. In the latter parts

of this chapter, we also provide some analysis results on the AM method.

Figures 2.5 and 2.6 illustrates the performance of the fine frequency estimation meth-

ods mentioned in this section withN = 32 samples for the frequency of f = 15+0.2345
32

and N = 64 samples for the frequency of f = 38+0.3456
64

respectively. The algorithms
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Figure 2.5: Comparison of different fine frequency estimation methods with fre-

quency ω = 2π(15+0.2345)
32

.

in (2.18), (2.20), (2.23) and (2.26) are called respectively CC with bias, AM-1 itera-

tion, CC bias removed and AM-mult iterations in these figures. The curves labelled

as AM-mult iterations shows the performance of the AM estimator with multiple it-

erations. For AM-1 iteration and CC with bias, at high SNR, the error floor occurs

due to bias. The success of the bias removal operations are illustrated in curves la-

belled as CC bias removed and AM-mult iterations. AM-mult iterations has the best

performance and it is a nearly an optimal estimator with a low computational cost

(N = {32, 64} point FFT computation and basic mathematical operations in this

case). We utilize the AM method for the fundamental frequency estimation problem

in Chapter 3. We give a study of AM method in the next section to better understand

its performance.

2.5 Some Results on Aboutanios-Mulgrew Estimator

This section gives a theoretical analysis of Aboutanios-Mulgrew (AM) estimator [8].

First, by using the fixed point theorem [42], we investigate convergence properties

of AM estimator and the number of iterations needed to achieve a performance on

the order of CRB. After that, the gross error is defined to characterize the errors
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Figure 2.6: Comparison of different fine frequency estimation methods with fre-

quency ω = 2π(38+0.3456)
64

.

encountered at low SNR. Finally, we extend the analysis by characterizing the MSE

of the estimator at high SNR.

2.5.1 Number of Iterations to Reach Cramer-Rao Bound

In iterative computations, such as AM algorithm, the main approach is to use the

output of the previous iteration as the input of the next one. The iteration results can

be considered as the elements of a sequence xn in the form,

xn+1 = g(xn), n = 0, 1, 2, 3, . . . (2.27)

where x0 is the initial point and xn is the n’th iteration result. A fixed point, xf , of

a function g(x) is an element of its domain which is mapped to itself, i.e, g(xf ) =

xf . Existence of a fixed point and the convergence rate to the fixed point are both

theoretical and practical interests in all similar iterative schemes. To investigate the

convergence properties of the AM estimator, we use the Banach Fixed-Point theorem

which can be stated as follows [42]:

Theorem 1 If the function g(x) : S → S executes a contractive mapping with a

constant, λ ∈ [0, 1), the following results hold,
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1. A unique fixed point, xf ∈ S, exists such that

g(xf ) = xf . (2.28)

2. For any sequence, {xn} ⊆ S with any initial guess, x0 ∈ S, converges to xf such

that

xn+1 = g(xn)→ xf where n→∞. (2.29)

3. The valid bounds related to the distance between the iteration results and fixed

point are,

||xn − xf || ≤
λn

1− λ
||x0 − x1||,

||xn − xf || ≤
λ

1− λ
||xn−1 − xn||,

||xn − xf || ≤ λ||xn−1 − xf ||.

(2.30)

To determine whether a function or an operator is contractive, the following condition

should be satisfied,

||g(x)− g(y)|| ≤ λ||x− y|| x, y ∈ S and λ ∈ [0, 1). (2.31)

To show the convergence of AM iterations in the absence of noise, we will show

that the non-linear expression of the AM estimator in (2.26) is contractive. The

AM estimator relation from (2.26) can be considered as a mapping g(·) with g(δ̂) :

(−0.5, 0.5)→ (−0.5, 0.5) ,

δ̂(i+1) = g(δ̂(i)) =
sin(2π

N
(δ − δ̂(i)))

2 sin( π
N

)
+ δ̂(i), (2.32)

where δ is the true value and δ̂(i) is the estimated value of δ at i’th iteration. The

Taylor series expansion of the function g(δ̂) around the point δ is,

g(δ̂) ≈ δ + g′(δ)(δ̂ − δ) +
g′′(δ)

2
(δ̂ − δ)2 + h.o.t. (2.33)

where g′(δ) = −π
N sin(π/N)

+ 1, g′′(δ) = 0 and g′′′(δ) = 4π3

N3 sin(π/N)
.

From the expansion, we can see that the values of the higher order terms much more

smaller than the first term for large values of N . Hence, by ignoring the higher order

terms we get,

g(δ̂) ≈ δ + g′(δ)(δ̂ − δ), (2.34)
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and for any δ̂1, δ̂2 ∈ (−0.5, 0.5) values, we can write the expression,

g(δ̂1)− g(δ̂2) = g′(δ)(δ̂1 − δ̂2), (2.35)

where g′(δ) = −π
N sin(π/N)

+ 1.

If the term |g′(δ)| is in the range of [0, 1), then we can say that the function in (2.32)

is contradictive. The function g′(δ) depends only N . Figure 2.7 shows that g′(δ) =

b(N) is an increasing function and only by looking the boundaries, we can determine

the range of the possible values of g′(δ) for different values of N .

g′(δ)→ 0 N →∞,

g′(δ) = −π/2 + 1 = −0.5708 N = 2.
(2.36)

Also the derivative of the g′(δ) = b(N) is always greater than 0 when N ≥ 2.

b′(N) =
π

N2 sin(π/N)
− π2 cos(π/N)

N3 sin2(π/N)
,

=
π

N2 sin(π/N)

(
1− π cos(π/N)

N sin(π/N)

)
> 0,

(2.37)

Finally, the values of |g′(δ)| is in the required interval, that is |g′(δ)| ∈ (0, 0.5708] ⊂
[0, 1) so that g(δ̂) is a contractive function. Besides, it easy to see that δ is the fixed

point for the contractive function in (2.32). That proves that the AM algorithm con-

verges to a fixed point.

Next, we examine the convergence rate. By using the results in (2.32) and (2.34), we

have the following approximate relation,

δ̂(i+1) ≈ δ + g′(δ)(δ̂(i) − δ). (2.38)

Hence for large values of N , the convergence rate is

convergence rate ,
|δ̂(i+1) − δ|
|δ̂(i) − δ|

= |g′(δ)| = π

N sin(π/N)
− 1. (2.39)

We know that the mean square error of AM estimator is on the order of CRB at high

SNR. Hence, AM iterations can be repeated until the difference between the final

estimate δ̂ and the true δ value is on the order of square root of CRB in terms of DFT
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Figure 2.7: g′(δ) = b(N) vs N

bins (see Section 2.3). Since the convergence rate is given as |g′(δ)| = π
N sin(π/N)

− 1,

we can get the number of iterations to reach the CRB level as

|δ̂ − δ0||g′(δ)|n ≤
√

CRB. (2.40)

Here n is the number of iterations and δ0 is the initial point. We know δ is limited

to range of −0.5 to 0.5. For the worst case condition of |δ̂ − δ0| = 1, the maximum

number of iterations to reach CRB is

n(SNR) ≥ log
√

CRB
log |g′(δ)|

=
log
√

6N
(N2−1)(2π)2SNR

log
(

π
N sin(π/N)

− 1
) . (2.41)

In Figures 2.8 and 2.9, the performance of the AM is illustrated withN = 64 samples

for the frequency f = 20+0.4
64

and N = 32 samples for the frequency f = 20−0.4
32

,

respectively, for different number of iterations. In these figures, also SNR threshold

is presented by using the equation (2.41) for a given number of iterations. As can be

observed from the figures, the insufficient number of iterations causes an error floor

as the SNR increases. With the help of expression (2.41), it is possible to choose the

number of iterations to avoid error floor.
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Figure 2.8: AM algorithm simulation results for different iterations where N = 64

and f = 20+0.4
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: (a) 1 iteration, (b) 2 iterations, (c) 3 iterations.
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2.5.2 Approximate MSE lower bound and Gross Error Analysis

When the peak location in the coarse frequency estimation stage is detected at the

DFT bins whose indices are different from kp− 1, kp, kp + 1, that is two or more DFT

bins away from the true bin; a large error, what is called gross error, occurs. The fine

frequency estimation stage is of little use in the presence of gross errors. The gross

error problem is very similar to the error event for the non-coherent frequency shift

keying (FSK) detection. Detailed analysis and an upper bound for the gross error can

be found in [7]. In this part, we give an approximate lower bound on the gross error

and we analyze the effect of the different values of δ on the gross error.

When we calculate the DFT of the input signal in (2.1), the noise term at each DFT

bin is iid complex white Gaussian noise, shown as W [k], with zero mean and Nσ2
w

variance. It is important to remember that all DFT bins except the one with index kp

sample the zeros of periodic sinc function when δ = 0. Hence the bins with index

k 6= kp contain the linear combinations of noise; but do not carry any information

about signal of interest (see expression in (2.2)). Hence, the magnitude of DFT bin

with index kp is Rician distributed and the other DFT bins are Rayleigh distributed

random variables when δ = 0 (also see Figure 2.1):

Rician PDF: fric(x) =
2x

Nσ2
w

exp

(
−(x2 + A2N2)

Nσ2
w

)
I0

(
2Ax

σ2
w

)
Rayleigh PDF: fray(x) =

2x

Nσ2
w

exp

(
−x2

Nσ2
w

) (2.42)

Here I0 is the modified Bessel function of the first kind with order zero, A is the

magnitude, N is the number of samples and σ2
w is the noise variance. We calculate

the probability that Rkp , |R[kp]| is the largest value among all DFT bins. This

probability, P{Z , max{R0, . . . , RN−1} = Rkp} can be written as,

P{Z = Rkp} =

∫ ∞
∞

P{Z = x| Rkp = x}fric(x)dx (2.43)

where

P{Z = x| Rkp = x} =P{R0 < x, . . . , Rkp−1 < x,Rkp+1 < x, . . . , RN−1 < x|Rkp = x},

=P{R0 < x} . . . P{Rkp−1 < x}P{Rkp+1 < x} . . . P{RN−1 < x},

= (Fray(x))N−1 ,

(2.44)
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and Fray(x) = 1 − exp
(
−x2
Nσ2

w

)
is the cumulative distribution function (CDF) of

Rayleigh pdf. Finding a closed form solution of the equation (2.43) is a non-trivial

task; but it is possible to use the numerical integration routines of MATLAB to cal-

culate this probability. Specific for the δ = 0 case, P{Z , max{R0, . . . , RN−1} =

Rk; k 6= kp} can be written as

P{Z = Rk} =
1− P{Z = Rkp}

N − 1
, k 6= kp (δ = 0) (2.45)

since Rk 6=kp
k are iid random variables when δ = 0.

As mentioned earlier, if the detected bin in the first stage is two or more DFT bins

away from the true bin, kp, the fine frequency estimation is of little use/purpose. We

assume very low SNR operational conditions and assume that the estimate condi-

tioned on the gross error event as uniformly distributed in the gross error interval, as

shown below:

fgross(x) =


1

N−3
, 0 ≤ x ≤ kp − 1.5

0, kp − 1.5 < x < kp + 1.5

1
N−3

, kp + 1.5 ≤ x < N

(2.46)

With these assumptions, the the gross error probability is defined as 1 − p where

p = P{Z = Rkp−1} + P{Z = Rkp} + P{Z = Rkp+1}. Then an approximate lower

bound (due to several assumptions) can be given as:

ALB , (1− p)
∫ N

0

(x− kp)2fgross(x)dx+ p CRB (2.47)

where ALB refers to the short hand notation for the phrase approximate lower bound.

In Figures 2.10 and 2.11, for different δ values, we give the simulation results to

verify the theoretical gross error calculation for N = 64, kp = 15 and N = 32,

kp = 23; respectively. In these figures, for different SNR values the RMSE of the

AM algorithm and the
√

ALB given in (2.47) are shown. As we mentioned earlier,

the gross error is calculated for the δ = 0 case. The error expression we found can

be argued to be a lower bound on the gross error; since the best case is δ = 0 for

the detection of kp. In this case, all the power of the signal of interest is collected at

one single DFT bin. Hence, as |δ| increases, we have larger gross error terms at low

SNR and to attain CRB, there is a need for extra signal power. For different δ’s, this
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behaviour can be observed from Figures 2.10 and 2.11. Due to several assumptions

in the derivation, we interpret ALB as a practical lower bound for the MSE analysis

of AM method.
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Figure 2.10: AM algorithm simulation results and approximate lower bound for dif-

ferent δ values where N = 64 and kp = 15: (a) δ = 0, (b) δ = 0.2, (c) δ = 0.3, (d)

δ = 0.4.
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Figure 2.11: AM algorithm simulation results and approximate lower bound for dif-

ferent δ values where N = 32 and kp = 23: (a) δ = 0, (b) δ = 0.2, (c) δ = 0.3, (d)

δ = 0.4.
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2.5.3 Asymptotic MSE Analysis at high SNR

The We present MSE analysis of AM method at high SNR. This analysis is also called

fine error analysis in the literature. In equation (2.20), the invariant function of the

AM algorithm is given. By representing the DFT of complex sinusoidal signal and

the noise separately, the same relation can be written as,

Ratiow/n =
1

2
Real

{
R̃[kp + 0.5] + R̃[kp − 0.5] +W [kp + 0.5] +W [kp − 0.5]

R̃[kp + 0.5]− R̃[kp − 0.5] +W [kp + 0.5]−W [kp − 0.5]

}
(2.48)

where R̃[k] =
∑N−1

n=0 Ae
j(2πfn+φ)e−

j2πkn
N and W [k] =

∑N−1
n=0 w[n]e−

j2πkn
N . As men-

tioned in the previous sections, after several iterations, δ estimate approaches to its

true value, given that operational SNR is sufficiently high. This enable us to make

following approximations,

R̃[kp + 0.5] + R̃[kp − 0.5] = Aejφ(1 + ej2πδ̃)
2− 2ej

2π
N
δ̃ cos(π/N)

1− 2ej
2π
N
δ̃ cos(π/N) + ej

4π
N
δ̃
,

≈ 2Aejφ = S1.

(2.49)

R̃[kp + 0.5]− R̃[kp − 0.5] = Aejφ(1 + ej2πδ̃)
−2jej

2π
N
δ̃ sin(π/N)

1− 2ej
2π
N
δ̃ cos(π/N) + ej

4π
N
δ̃
,

≈ 2Aejφ
−j sin(π/N)

1− cos(π/N)
,

= −j2Aejφ cos(π/2N)

sin(π/2N)
= S2.

(2.50)

where δ̃ = δ− δ̂ ≈ 0. As mentioned in Section 2.1, W [kp + 0.5] and W [kp− 0.5] are

independent random variables with W [k] ∼ CN (0, Nσ2
w). Also, real and imaginary

parts of these random variables are independent with distribution N (0, N
2
σ2
w).

The equation (2.51) shows the derivation of the theoretical variance under high SNR

assumption. It is important to note that the second order noise terms are ignored, that

is W 2
0.5−W 2

−0.5

S2
2

≈ 0 and (W0.5−W−0.5).2

S2
2

≈ 0, since they are negligible at high SNR.
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Ratiow/n =
1

2
Real

{
R̃0.5 + R̃−0.5 +W0.5 +W−0.5

R̃0.5 − R̃−0.5 +W0.5 −W−0.5

}
=

1

2
Real

{
S1 +W0.5 +W−0.5

S2 +W0.5 −W−0.5

}
=

1

2
Real

{
S1/S2 + (W0.5 +W−0.5)/S2

1 + (W0.5 −W−0.5])/S2

× (1− (W0.5 −W−0.5)/S2)

(1− (W0.5 −W−0.5)/S2)

}
≈1

2
Real

{
S1

S2

+
W0.5 +W−0.5

S2

− S1(W0.5 −W−0.5)

S2
2

}
=δ̃ +

1

2
Real

{
W0.5 +W−0.5

S2

− S1(W0.5 −W−0.5)

S2
2

}
=δ̃ +

S3

A
Real

{
je−jφ(W0.5 +W−0.5)

}
+
S4

A
Real

{
e−jφ(W0.5 −W−0.5)

}
=δ̃ +

(
S3 sin(φ) + S4 cos(φ)

A

)
Real {W0.5}

+

(
S3 sin(φ)− S4 cos(φ)

A

)
Real {W−0.5}

+

(
−S3 cos(φ) + S4 sin(φ)

A

)
Imag {W0.5}

+

(
−S3 cos(φ)− S4 sin(φ)

A

)
Imag {W−0.5}

(2.51)

In (2.51), we use the following short-hand notations: R̃p = R̃[kp + p], W [kp + p] =

Wp =
∑N−1

k=0 w[n]e−j
2π
N

(kp−k+δ−δ̂+p), S3 =
sin( π

2N
)

4 cos( π
2N

)
and S4 =

sin2( π
2N

)

4 cos2( π
2N

)
and these

random terms are independent (see equations (2.5), (2.6) and (2.7)).

The variance of the δ estimate is then the variance of random terms on the right hand

side of (2.51). The variance can be calculated as:

var(δ̂AM) =

(
2S2

3

A2
+

2S2
4

A2

)
Nσ2

w

2
=

(S2
3 + S2

4)N

SNR
,

=
(tan2( π

2N
) + tan4( π

2N
))N

16SNR
,

=
N tan2( π

2N
) sec2( π

2N
)

16SNR
,

≈ π2

64SNRN
=

c

A2
,

(2.52)

where c = σ2
wπ

2

64N
and we take tan( π

2N
) ≈ π

2N
, sec( π

2N
) ≈ 1 when N � 1 .

The ratio between the CRB and the theoretical variance of the AM estimator is 1.0147

(see 2.53). This analysis shows that the asymptotic MSE of AM estimator is about
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1.5 percent more than CRB:

var(δ̂AM)

CRB
=

π2

64SNRN
6N

(N2−1)(2π)2SNR

≈ 1.0147. (2.53)
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CHAPTER 3

FUNDAMENTAL FREQUENCY ESTIMATION OF PERIODIC SIGNAL

WITH HARMONICS

This chapter gives the details on the fundamental frequency estimation of periodic

signal with harmonics. In Section 3.1, the signal model is given. In Section 3.2, the

Cramer-Rao bound, its asymptotic version and hybrid Cramer-Rao bound are given.

In Section 3.3, the maximum likelihood estimator is derived. In Section 3.4, a dis-

cussion on the model order selection procedures is given. Finally, in Section 3.5,

the proposed method, which is based on the fine-frequency estimator of Aboutanios-

Mulgrew (AM) and a successive interference cancellation procedure, is given.

3.1 Signal Model

A group of harmonically related complex sinusoids, whose frequencies are integer

multiples of fundamental frequency ω0 = 2πf0, are observed under iid circularly

symmetric zero mean, complex white Gaussian noise w[n] with variance σ2
w:

r[n] =
L∑
l=1

Ale
j(ω0ln+φl) + w[n], n = {0, . . . , N − 1}. (3.1)

HereN is the number of samples,Al and φl are the amplitude and the phase of the l’th

harmonic. The number of harmonics is L. L is also called the model order. We make

the assumption that ω0 < 2π/L to avoid aliasing/ambiguity problem. The frequency

variable f0 is the normalized frequency defined in [0, 1/L) and can be expressed as

f0 = (kp+δ)

N
in terms ofN -point DFT bins. Here, kp is an integer in [0, N/L−1/2) and

δ is a real number in (−0.5, 0.5). The noise samples w[n] are iid complex Gaussian

distributed, w[n] ∼ CN (0, σ2
w). The pseudo signal-to-noise ratio (PSNR) definition
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specific for this problem is [19]:

PSNR =

∑L
l=1A

2
l l

2

σ2
w

. (3.2)

The observed samples in (3.1) can be represented as,

r[0]

r[1]

...

r[N − 1]


=



1 . . . 1

ejω0 . . . ejω0L

... . . . ...

ejω0(N−1) . . . ejω0L(N−1)


a + w, (3.3)

or in matrix-vector notation as

r = Za + w, (3.4)

where r ∈ CN×1 is the observation vector, Z ∈ CN×L is the Vandermonde matrix

in (3.3), a = [A1e
jφ1 A2e

jφ2 . . . ALe
jφL ]T is the vector of complex amplitudes and

w =
[
w[0] w[1] . . . w[N − 1]

]T is the noise vector. The autocorrelation matrix R of

r is,

R = ZE{aaH}ZH + σ2
wI. (3.5)

If the phase terms, {φ1, . . . , φL}, are statistically independent and uniformly dis-

tributed on the interval (−π, π], the expression in (3.5) can be written as

R =
L∑
l=1

A2
l e[l]e[l]H + σ2

wI, (3.6)

where e[l] = [1 ejω0l . . . ejω0l(N−1)]T .

Given a single snapshot vector r, the sample covariance matrix (the maximum like-

lihood estimate of the autocorrelation matrix for Gaussian vectors) can be expressed

as

R̂ =
1

N −M + 1

N−M∑
n=0

r̃[n]̃r[n]H , (3.7)

where r̃[n] =
[
r[n] r[n + 1] . . . r[n + M − 1]

]T and R̂ is a M ×M matrix . Note

that to obtain a non-singular R̂, M should be smaller than N
2

+ 1 and also to resolve

each harmonic component, M should be larger than the number of harmonics L.
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3.2 Cramer-Rao Bound (CRB)

The non-random unknown parameter vector is given asψ = [ω0 A1 φ1 A2 φ2 . . . Al φl]
T .

The expression in (3.8) shows the elements of Fisher information matrix (FIM) and

it is the simplified version of the Fisher information matrix for the Gaussian vectors

[2]:

I[ψ]ij = 2 Real

[
∂(Za)

∂ψi

H 1

σ2
w

∂(Za)

∂ψj

]
,

=
2

σ2
w

Real

[
N−1∑
m=0

∂(Za)[n,ψ])

∂ψi

∗∂(Za[n,ψ])

∂ψj

]
.

(3.8)

Here ψi is the i’th element of the vectorψ and Za[n,ψ] =
∑L

l=1Ale
j(ω0ln+φl). Hence,

we have

∂(Za[n,ψ])

∂ψ
=



jn
∑L

l=1 lAle
j(ω0ln+φl)

ej(ω01n+φ1)

jA1e
j(ω01n+φ1)

...

ej(ω0Ln+φL)

jALe
j(ω0Ln+φL)



. (3.9)

Assuming that ω0 is not close to 0 and N is large, FIM is approximately [43],

I[ψ] ≈ S =
2

σ2
w



γ 0 A2
11N(N−1)

2
. . . 0 A2

LL
N(N−1)

2

0 N 0 . . . 0 0

A2
11N(N−1)

2
0 A2

1N . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . N 0

A2
LL

N(N−1)
2

0 0 . . . 0 A2
LN


(2L+1)×(2L+1)

(3.10)

37



where γ =
∑L

l=lA
2
l l

2N(N−1)(2N−1)
6

. The matrix S is composed of the vector h, diag-

onal matrix D and a scalar γ which can be represented as:

S =

γ hH

h D

 . (3.11)

By using the matrix inversion lemma [1], the first element of the matrix S−1 can be

calculated as,

[S−1]11 = (γ − hHD−1h)−1. (3.12)

Finally, the asymptotic Cramer-Rao Lower Bound (ACRB) for large N [43] for the

fundamental frequency becomes,

var(ω̂0) ≥
[
I−1[ψ]

]
11
≈ 6σ2

w

N(N2 − 1)
∑L

l=1A
2
l l

2
. (3.13)

To convert this bound to the unit of N -point DFT bins, we scale the bound by N2

(2π)2
,

since f = 1↔ ω0 = 2π↔ N ’th DFT bin:

var(f̂0) ≥
[
I−1[ψ]

]
11
/(2π)2 ≈ 3σ2

w

2π2N(N2 − 1)
∑L

l=1 A
2
l l

2
,

var(f̂0N) ≥ N2
[
I−1[ψ]

]
11
/(2π)2 ≈ 3Nσ2

w

2π2(N2 − 1)
∑L

l=1 A
2
l l

2
.

(3.14)

In the presence of random nuisance parameters, whose values are of no interest, an

exact calculation of CRB is often difficult. Some simpler, alternative bounds are stud-

ied in [44] to avoid the complications due to the nuisance parameters. In our model,

the phase terms {φ1, . . . , φL} are considered as random nuisance parameters which

are statistically independent and uniformly distributed in the interval (−π, π]. The

Hybrid Cramer Rao Bound (HCRB) is one of the bounds, looser than exact Cramer-

Rao Bound (also called as posterior Cramer-Rao Bound) that can be used when nui-

sance parameters are present. To calculate HCRB, the expectation of the determin-

istic FIM matrix given by equation (3.8) is calculated with respect to the nuisance

parameters first and then the matrix is inverted. Since we have E{ejφl} = 0 and

E{ejφle−jφk} = δ[l − k] where k, l ∈ {1, . . . , L}; the expectation of each entry of

FIM matrix given in (3.8) is identical to the entries of the asymptotic FIM in (3.10).

Hence, the CRB for the non-random parameter setting as N → ∞ (ACRB) and
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HCRB with uniformly distributed phases are identical:

HCRB(ω̂0) =
[
(Eφ1,...,φL{[I[ψ]]})−1]

11
=
[
S−1[ψ]

]
11

=
6σ2

w

N(N2 − 1)
∑L

l=1A
2
l l

2
.

(3.15)

With the PSNR definition in (3.2), HCRB reduces to

HCRB(ω̂0) =
6

N(N2 − 1)PSNR
. (3.16)

3.3 Maximum Likelihood Estimation (MLE)

For the complex white Gaussian noise model, the joint distribution of observations in

(3.1) can be given as [19],

p(r;ψ) =
1

(πσ2
w)N

exp

[
− 1

σ2
w

(r− Za)H(r− Za)

]
, (3.17)

or more explicitly,

p(r;ψ) =
1

(πσ2
w)N

exp

− 1

σ2
w

N−1∑
n=0

∣∣∣∣∣r[n]−
L∑
l=1

Ale
j(ω0ln+φl)

∣∣∣∣∣
2
 . (3.18)

The maximum likelihood estimates (MLE) of the unknown parameters can be found

by minimizing negative of the log-likelihood function given below:

J(r,ψ) =
N−1∑
n=0

∣∣∣∣∣r[n]−
L∑
l=1

Ale
j(ω0ln+φl)

∣∣∣∣∣
2

,

=(r− Za)H(r− Za).

(3.19)

By minimizing (3.19) over the complex amplitude vector a, we get,

â = (ZHZ)−1ZHr, (3.20)

and inserting the estimate â into negative log-likelihood expression, we have

J ′(r, â, ω0) =(r− Zâ)H(r− Zâ),

=(r− Z(ZHZ)−1ZHr)H(r− Z(ZHZ)−1ZHr),

=rH(I− Z(ZHZ)−1ZH)H(I− Z(ZHZ)−1ZH)r,

=rH(P⊥Z)HP⊥Zr = rHP⊥Zr = ||P⊥Zr||22,

(3.21)
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where PZ = Z(ZHZ)−1ZH is the projection matrix to the range space of Z and

P⊥Z = I−Z(ZHZ)−1ZH is the projector to the orthogonal complement of range space

of Z. It is important to note that we make use of (P⊥Z)H = P⊥Z and (P⊥Z)2 = P⊥Z

in this calculation. To get the fundamental frequency estimation, we minimize the

expression in (3.21) or equivalently maximize ||PZr||22, as shown below:

ω̂0 = arg max
ω0

||PZr||22 = arg max
ω0

rHPZr,

= arg max
ω0

rHZ(ZHZ)−1ZHr ≈ arg max
ω0

||Z(ω0)r||22
N

,

= arg max
ω0

1

N

L∑
l=1

∣∣∣∣∣
N−1∑
n=0

r[n]e−jω0ln

∣∣∣∣∣
2

.

(3.22)

In (3.22), an asymptotic (N → ∞) approximation of ZHZ ≈ NI is used for sim-

plification. Hence, the asymptotic ML estimate is the frequency for which the sum

of the magnitude squares of the DTFT samples at the frequency and its harmonics is

maximized; that is the frequency for which the maximum total power is achieved.

As a side note, for the same problem, an estimate for noise variance estimate can be

given as,

σ̂2
w =

1

N
||r−PZr||22. (3.23)

By inserting the estimates in (3.17), we can write the log-likelihood expression as

ln p(r; ψ̂) = −N ln π −N ln σ̂2
w −N. (3.24)

In Appendix A, the specialization of the MUSIC and ESPRIT methods to the funda-

mental frequency estimation are described. The proposed method is compared with

MLE, MUSIC and ESPRIT methods in the numerical results chapter.

3.4 Model Order Selection

Model order selection refers to the detection of the total number of harmonics L

in the context of fundamental frequency estimation problem. To clarify the con-

cept, if L = 2, then the input is considered to be a periodic signal with a fun-

damental frequency ω0 and a single harmonic at the frequency 2ω0. For the same

input, if the model order L is mistakenly taken as 4, the fundamental frequency
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can be erroneously estimated as ω0/2; since the total signal power at the frequen-

cies {ω0/2, ω0, 3ω0/2, 2ω0} includes the total power at the true signal frequencies

{ω0, 2ω0}. An automated model order selection procedure enables the resolution of

such issues and also improves the low SNR performance of sub-optimal frequency es-

timators by disregarding the contributions of harmonics buried under noise due their

small valued amplitudes.

The Akaike information criterion (AIC) [45], the minimum description length crite-

rion (MDL) [46] and the MAP approach [47, 48] are examples of the most popular

model order selection criteria [49]. Basically, AIC and MDL minimize the following

expression to decide on model order:

J(l) = − ln p(r; ψ̂ML, L = l)︸ ︷︷ ︸
negative log-likelihood

+ γ(L = l)η︸ ︷︷ ︸
penalty term

. (3.25)

Here η is the penalty coefficient and the coefficient is equal to 1 for AIC and 0.5 lnN

for MDL. The coefficient γ is the total number of parameters in the signal model. In

our model, we have γ = 2L + 2 unknown parameters (L amplitudes, L phases, the

fundamental frequency and noise variance). Without any penalty terms, the maximum

likelihood approach and other classical methods suffer from over-fitting problem, (an

increase in the number of harmonics results in an increase in the log-likelihood value).

With the penalty term, the inclusion of additional unknown parameters (overfitting)

is penalized. In this study, we use MAP approach for model order selection. In MAP

approach, the selection of the most probable model is based on posterior probability

maximization where the posterior probability is written as p(L = l|r) and r is the

observation vector, l ∈ {1, . . . , Lmax} and Lmax is the maximum possible model

order:
L̂ = arg max

l
p(L = l|r)

= arg max
l

p(r|L = l)p(L = l)

p(r)
.

(3.26)

By assuming that all models are equally probable, the selection criterion reduces to,

L̂ = arg max
l

p(r|L = l). (3.27)

As shown in [19], the model order selection via MAP method reduces to

L̂MAP = arg min
L

N ln σ̂2
w(L)︸ ︷︷ ︸

log-likelihood

+
3

2
lnN + L lnN︸ ︷︷ ︸

penalty term

,
(3.28)
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where noise variance estimate σ̂2
w is given in (3.24). We note that MAP based ap-

proach and MDL for the model order selection are identical for this problem; how-

ever, this is not the case in general.

3.5 Proposed Method

In this section, the proposed estimator is presented. As shown in (3.1), the harmonic

signal model can be considered as a superposition of multiple complex exponential

signals. For models involving superposition of signals, RELAX algorithm (successive

interference cancellation) is proposed in the literature [18]. With this method, the

problem reduces to the parameter estimation problem of a single complex exponential

signal provided that interference from other harmonics can be successfully cancelled.

The steps of RELAX algorithm for the case of L = 3 can be simply explained as

follows:

• Step (1): Obtain estimates f̂1 and Â1 by processing the input r[n]. Then, recon-

struct and subtract the estimated sinusoidal component with parameters f̂1 and

Â1 from r[n] and call the result r2[n].

• Step (2): Operate on r2[n] and obtain the estimates f̂2 and Â2. Then, reconstruct

and subtract the estimated sinusoidal component with parameters f̂2 and Â2

from r2[n] and call the result r3[n].

• Step (3): Operate on r3[n] and obtain estimates f̂3 and Â3.

In the successive interference cancellation schemes, the order of estimation plays an

important role. Generally speaking, the estimation order starts from the strongest

component in the superposition and moves towards the 2nd strongest and then to the

3rd strongest and so on. The goal is to reliably estimate and cancel each component

sequentially so that the parameters of the weakest component in the superposition can

be accurately estimated.

Different from this general set-up, the frequency parameters to be estimated in the

problem of interest are related via a harmonic relation. Hence, there exists a de-
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terministic constraint between non-random parameters to be estimated at each step

of successive cancellation algorithm. This simplifies the estimation and interference

cancellation procedures at each step.

Our goal is to extend the low complexity fine frequency methods given for the com-

plex exponentials to the fundamental frequency estimation problem. The proposed

method [39] estimates the frequencies of all harmonically related complex exponen-

tials individually, after successively eliminating the interference due to other har-

monics. Also, we make use of the deterministic relation between the frequencies of

harmonics and suggest a fusion step to combine the frequency estimates generated in

all steps of the method.

The proposed estimator is composed of two stages. The first stage obtains a coarse es-

timate, k̂pf . (The notation k̂pf denotes the coarse part of the fundamental frequency.)

First, N -point DFT of the input r[n] is calculated R[k] =
∑N−1

n=0 r[n]e−j
2π
N
kn and the

coarse frequency estimate is obtained by the maximum likelihood search, as in (3.22),

over a coarse grid with only N points:

k̂pf = arg max
1≤k≤bN/Lc

L∑
l=1

|R[kl]|2 . (3.29)

To increase the accuracy of the first stage, DFT size can be increased. For example,

4N -point DFT can be used. The performance increase in the first stage increases the

performance of the estimator especially at low SNR region.

The second stage has two parts. In the first part, the first stage result k̂pf is refined

by using the available information in the data about the fundamental component. The

refined frequency estimate is shown as ŝ1 = ω̂. In the second part, the frequency esti-

mates for higher order harmonics, that is {ŝ2, . . . , ŝL} are generated. Under noiseless

operation, the frequency estimates is to satisfy ŝk = kŝ1 for k = {1, . . . , L}. The

main difference between the first and second parts of the second stage is some oper-

ations (the complex amplitude estimation) are not repeated in the second part. The

parts are indicated as “Second Stage - First Part” and “Second Stage - Second Part”

in Algorithm Table 2.

In the second stage - first part, AM algorithm is applied to the DFT bin with index

k = k̂pf . More specifically, the variable k̂p in AM algorithm (see Algorithm Table 1)
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is set as k̂pf and the second stage of the AM algorithm is executed as it is. The

estimate produced by AM algorithm is also denoted as ŝ1.

Once an estimate for the fundamental frequency is available, the complex amplitude

vector a is estimated using the linear observation model in (3.3) via the least squares

solution:

â = (ZH(ŝ1)Z(ŝ1))−1ZH(ŝ1)r. (3.30)

Here Z is the Vandermonde matrix in (3.3).

Once an estimate for the fundamental frequency and the complex amplitudes are

available, it is possible to reconstruct each harmonic. We follow the successive inter-

ference cancellation approach and re-run the AM algorithm after the reconstruction

and cancellation of all harmonics except the fundamental one. The equation below

shows the cancellation all harmonics except k’th one from the input:

rk[n] = r[n]−
L∑

l=1,l 6=k

âle
j
ŝk
k
ln, n = {0, . . . , N − 1}. (3.31)

In the second stage - first part, the fundamental component is kept and all higher order

harmonics are cancelled by setting k = 1 in (3.31). The estimate ŝk in (3.31) is the

estimated frequency of the k’th harmonic. The steps of estimation-reconstruction-

cancellation are repeated to improve the estimates for a given number of iterations, as

shown in Algorithm Table 2.

The second stage - second part is almost identical to the earlier part. The main dif-

ferences are the frequency estimates correspond to the frequencies of higher order

harmonics which are shown as {ŝ2, . . . , ŝL} and the complex amplitude estimate vec-

tor is not calculated, that is the result in the first stage, given by (3.30), is used to save

computation. To apply the AM algorithm on the k’th harmonic, the spectrum sample

with the frequency kŝ1 ∈ [0, 2π) is the utilized as the initial estimate. More specifi-

cally, the AM algorithm parameter k̂p in Step 2 of AM method in Algorithm Table 1

is set as the index of the DFT bin closest to kŝ1, that is k̂p = round(kŝ1
N
2π

). Here

round(·) is the rounding operation to the closest integer and N
2π

factor is the unit con-

version factor from radian per sample to the N -point DFT bins. Also, the initial fine

frequency estimate δ̂(0), which is set as 0 in Step 3 of Algorithm Table 1, is set as the

decimal part of kŝ1 after the conversion to the units of DFT bins, δ̂(0) = kŝ1
N
2π
− k̂p.
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After the completion of the second stage, we have a total of L estimates for the loca-

tion of the fundamental and harmonic frequencies in the spectrum. Next, we combine

these estimates by taking into account the deterministic relation between true values

of harmonics, namely sk = k × ω0, k = {1, . . . , L}.

The estimation result for the k’th harmonic frequency can be represented as ŝk =

kω0 + nk where ω0 is the fundamental frequency and nk is the noise component

(estimation error) with zero mean and (2π
N

)2× π2σ2
w

64A2
kN

variance at high SNR conditions

(see (2.52)). As discussed in Section 2.1, the spectrum samples which are separated

by an integer number of DFT bins are independent random variables. If the separation

is of fractional bins than the spectrum samples are correlated. In spite of this fact,

we ignore the possible correlation between estimates and assume that the frequency

estimates are corrupted with a zero mean and known variance uncorrelated noise.

With this assumption, it is possible to use Best Linear Unbiased Estimator (BLUE)

[2] for the fusion of estimates:

ω̂0 =
mTK−1ŝ

mTK−1m
. (3.32)

Here m = [1 2 . . . L]T and K is the covariance matrix of vector ŝ = [ŝ1 ŝ2 . . . ŝL]T .

The covariance matrix K is a diagonal matrix, with the uncorrelated noise assump-

tion, and its k’th diagonal is the variance of noise for the k’th harmonic estimate

which is (2π
N

)2 × π2σ2
w

64A2
kN

= c/A2
k ∝ 1/A2

k according to the high SNR analysis given in

(2.52). By simple manipulation, we can express the final estimate as,

ω̂0 ,
A2

1ŝ1 + 2A2
2ŝ2 + ...+ LA2

LŝL
A2

1 + 22A2
2 + ...+ L2A2

L

. (3.33)

Here Ak is the true amplitude of the k’th harmonic which is an unknown. We suggest

to utilize the magnitude of the k’th complex amplitude estimate in (3.30) (|âk|) instead

of the true values (Ak) in the fusion operation.

The MSE of the fundamental frequency estimate after fusion can be given as:

var(2πf̂0) =var
(
A2

1ŝ1 + 2A2
2ŝ2 + ...+ LA2

LŝL
A2

1 + 22A2
2 + ...+ L2A2

L

)
,

=

A4
1c

A2
1

+
22A4

2c

A2
2

+ ...+
L2A4

Lc

A2
L

(A2
1 + 22A2

2 + ...+ L2A2
L)2

,

=
c× PSNR

PSNR2 =
π4

16PSNRN3
.

(3.34)
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The theoretical estimator variance is 1.0147 times bigger than ACRB in (3.13).

In Figure 3.1, the simulation results are given for different scenarios. The details of

scenarios are given in the figure label. The performance curve labelled as “Proposed

Method (fundamental only)” (red curve) represents the performance of the estimator

when the fusion rule is not implemented. Here the estimate ŝ1 is taken as the final

estimate. The blue curve labelled “Proposed Method (Fusion)” illustrates the perfor-

mance improvement provided by the fusion rule. For the SNR range given in this

figure, only 2 iterations are sufficient for the AM algorithm (see Section 2.5.1) and

for the harmonic cancellation stage, again 2 iterations are used. The figure shows

that RMSE of the proposed estimator is on the order of ACRB and the fusion rule

improves the performance significantly by utilizing the power of higher order har-

monics.

As a side note, we would like to mention that the method is described by considering

that the fundamental component is the strongest component of the periodic signal.

If this is not the case, the suggested method, as described, performs poorly. In such

cases, the initial frequency and the complex amplitude estimation should be done by

using the strongest harmonic component.

Figure 3.2 shows the effect of missing harmonics on the performance. The results

show that as long as two consecutive harmonics are present, the estimator works

properly. Figure 3.2(b) shows the case of A1 = A4 = 0, which is the case of missing

fundamental component. The numerical results chapter of this thesis also includes

several other comparisons.
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Algorithm 2: Proposed Method
Input : r[n]: N samples of noisy set of complex sinusoids having frequencies that are

multiples of the fundamental frequency.

Output: ω̂0 = 2π
N (k̂pf + δ̂) rad./sample

First Stage:

1 R[k] =fft(r[n], N) (N -point FFT calculation).

2 k̂pf = arg max
1≤k≤bN/Lc

∑L
l=1 |R[kl]|2 .

Second Stage - First Part:

3 for i = 1 : maximum iteration

4 Apply AM algorithm to the bin k̂p = k̂pf and get ŝ1 = ω̂. (see Algorithm 1)

5 Construct the matrix Z using the frequency estimate ŝ1 (use 3.4)

6 Estimate the complex amplitudes of the harmonics (use 3.30)

7 Reconstruct and subtract all harmonics expect the first one from r[n]. (use 3.31)

8 end for

9 return ŝ1 and the vector â

Second Stage - Second Part:

10 for k = 2 : L

11 for i = 1 : maximum iteration

12 Apply AM algorithm to the bin closest to kŝ1 and get ŝk = ω̂. (see Algorithm 1)

13 Reconstruct and subtract all harmonics expect the k’th one from r[n]. (use 3.31)

14 end for

15 return ŝk

16 end for

17 return [ŝ2 ... ŝL−1 ŝL]T

Fusion Operation:

18 Apply the fusion rule on the vector ŝ = [ŝ1 ŝ2 . . . ŝL−1 ŝL]T by using â. (use 3.33)

19 Return ω̂0 = 2π
N (k̂pf + δ̂)
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Figure 3.1: Performance of the Proposed Estimator: (a) f0 = 5+0.15
16

, L = 2 and

A1 = A2, (b) f0 = 8+0.22
32

, L = 3 and A1 = A2 = 2A3, (c) f0 = 12+0.33
64

, L = 4 and

A1 = A2 = 2A3 = 4A4, (d) f0 = 20+0.3
128

, L = 5 and A1 = A2 = 2A3 = 2A4 = 4A5.
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Figure 3.2: Performance of the Proposed Estimator: f0 = 12−0.3
64

and L = 4 (a)

A1 = A2 = A4 and A3 = 0, (b) A2 = A3 and A1 = A4 = 0, (c) A2 = A3 = A4 and

A1 = 0, (d) A1 = A3 = A4 and A2 = 0.
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CHAPTER 4

DIRECTION OF ARRIVAL ESTIMATION PROBLEM FOR PERIODIC

SIGNALS WITH HARMONICS

Direction of arrival estimation (DOA) is a problem of array signal processing with

applications in radar signal processing, wireless communication and several other ap-

plications involving tracking and localization of signal sources. Conventional DOA

estimation literature can be categorized into two based on the signal bandwidth as

narrowband and wideband DOA estimation. In this chapter, we study the DOA esti-

mation problem for a special class of signals which is the periodic signals with several

harmonics. The study is well suited for the DOA estimation of acoustic signals. As an

illustrative example, we may consider the problem of angular localization of a musi-

cian playing an instrument in a multipath-free environment. The incoming signal, say

the sound of a violin, in a short-time window can be considered as a sum of several

harmonics in relation with the physics of the instrument. The fundamental frequency,

typically, corresponds to the frequency of the note shown in the music sheets; but,

there are several higher harmonics generated by the instrument making the sound of

each instrument uniquely different from each other1. Results of this chapter are ap-

plicable to the angular localization of such sources. Similarly, in some underwater

applications, the signal of interest can be of periodic nature, such as the propeller

noise of vessels. The suggested method is also applicable for some underwater sig-

nal processing applications. The conventional approach for the detection and DOA

estimation of such signal sources is based on the strongest harmonic component. Dif-

ferent from the conventional approach, we examine the DOA estimation problem by

taking into account the harmonic structure of the signal.

1 You can get more information on the harmonic structure of string instruments from https://newt.
phys.unsw.edu.au/jw/strings.html.
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Figure 4.1: Uniform Linear Array Structure.

The direction of arrival estimation problem can be interpreted as the spatial frequency

estimation problem. Our main goal in this chapter is to apply the efficient frequency

estimation method given in earlier chapters to the spatial frequency estimation setting.

We consider uniform linear array (ULA) structure with M identical and omnidirec-

tional sensors and consider a single incoming periodic signal with several harmonics

originated in the far field region.

In this chapter, we first review the basics of array signal processing to clarify the

spatial frequency concept and then extend the discussion to the sources with several

harmonics. Some pre-processing methods and their effect on the harmonic structure

are discussed. Cramer-Rao bounds for the systems utilizing higher order harmonics

and conventional systems utilizing only the fundamental component are compared.

4.1 DOA Estimation with Uniform Linear Array: Monochromatic Wave

Uniform linear array (ULA) with M elements is an array of M equidistant sensors

placed on a line as shown in Figure 4.1. Each sensor receives the delayed version of

the incoming signal. For the configuration shown in Figure 4.1, the delay between two

consecutive sensors is d sin(θ)/c where d is the sensor spacing, c is the propagation

speed of the signal and θ is the angle of incoming wave measured from boresight. In

this section, we examine the case of monochromatic wave, that is the case of s(t) =

A(t) expjΩct whereA(t) is the complex amplitude which is considered to be constant,

A(t) ≈Mejφ, during the processing interval under the narrowband assumption.
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The signal received by the kth sensor can be expressed as

rk(t) = s(t− τk), k = {1, . . . ,M} (4.1)

where τk is the delay due to signal propagation from the emitter to the kth sensor. The

delay τk can be expressed as

τk = τ1 −
(k − 1)d sin(θ)

c
, k = {1, . . . ,M}. (4.2)

where τ1 is the delay from the emitter to the first sensor.

One can construct M × 1 dimensional snapshot vector r(t) by concatenating the

sensor outputs of the same time instant, as shown below:

r(t) =



r1(t)

r2(t)

...

rM (t)


=



s(t− τ1)

s(t− τ2)

...

s(t− τM )


= ejΩc(t−τ1)



A(t− τ1)

A(t− τ2)ejΩcd sin(θ)/c

...

A(t− τM )ej(M−1)Ωcd sin(θ)/c


. (4.3)

If the incoming signal is a narrowband signal, A(t − τk) ≈ A(t − τ1) for k =

{2, . . . ,M}; then the snapshot vector becomes

r(t) = A(t− τ1)ejΩc(t−τ1)



1

ejΩcd sin(θ)/c

...

ej(M−1)Ωcd sin(θ)/c


= s(t− τ1)



1

ejΩcd sin(θ)/c

...

ej(M−1)Ωcd sin(θ)/c


. (4.4)

The narrowband assumption requires the product of signal bandwidthW and the max-

imum signal propagation time across the elements of the array ∆T (the propagation

time across the diameter of the array) to be much smaller than 1, that isW ×∆T � 1

(∆T = (M − 1)d/c for ULA). In other words, with the narrowband assumption,

the amplitude A(t) of message bearing signal varies so slow that its variation over

the time-interval of signal propagation across the elements of the array can be ig-

nored. Equivalently, the diameter of the array can be considered to be so small that

the incoming wave is intercepted by the elements of the array almost simultaneously.
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By introducing the wavelength λ = c/fc where fc = Ωc/2π, and wavenumber k =

2π/λ, the snapshot vector can also be written as

r(t) = s(t− τ1)



1

ejkd sin θ

...

ej(M−1)kd sin θ


= r1(t)



1

ejkd sin θ

...

ej(M−1)kd sin θ


= r1(t)



1

ejω
s

...

ejω
s(M−1)


. (4.5)

Here ωs = kd sin(θ) is the spatial frequency. From (4.5), we note that the elements

of the snapshots vector r(t) are identical in magnitude, but differ in phase. The di-

rection of arrival estimation problem with this model corresponds to the estimation

of the phase progression over the elements of the snapshot vector. From (4.5), we see

that for ULA, the phase progression between two consecutive sensors (elements of

snapshot vector) is kd sin(θ) radians, that is kd sin(θ) radians per d meters measured

over the straight line that ULA is placed. We interpret the phase progression as a

spatial frequency of ωs = kd sin(θ). We adopt the notation of ωs to be compatible

with earlier discussions on the frequency estimation; in spite of the practice of using

wavenumber vector k notation for the same concept.

We note that to estimate DOA parameter θ uniquely, it is important not to have spa-

tial aliasing, i.e. the grating lobes in beamforming terminology. For this reason, the

spatial frequency should be in the range of [−π, π]. This requirement induce an ad-

ditional constraint on inter-element spacing of the antenna array. The inter element

spacing should be equal or smaller than λ/2, i.e d ≤ λ/2. When this condition is

satisfied, there is no ambiguity in the DOA estimation and the estimates are limited

to the interval [−90◦, 90◦].

4.2 DOA Estimation with Uniform Linear Array: Periodic Wave with Multiple

Harmonics

This section extends the earlier results for the monochromatic wave to general peri-

odic waves with harmonics. It is assumed that the incoming wave can be written in
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the following form:

s(t) =
L∑
l=1

αle
jlΩ0t. (4.6)

Here L is the total number of harmonics, Ω0 is the fundamental frequency in radians

per second and αl is the complex-valued Fourier series coefficient of the periodic

waveform.

The previous discussion given for the monochromatic wave can be considered as the

special case of s(t) in (4.6) for L = 1. Repeating the same arguments given for a

monochromatic wave for all harmonics l = {1, . . . , L}, we can extend the snapshot

vector expression in (4.4) and (4.5) to

r(t) =

L∑
l=1

αle
jlΩ0(t−τ1)



1

ejlΩ0d sin(θ)/c

...

ej(M−1)lΩ0d sin(θ)/c


=

L∑
l=1

αle
jlΩ0(t−τ1)



1

ejlω
s

...

ej(M−1)lωs


. (4.7)

Here ωs = kd sin(θ) is the fundamental spatial frequency. The main assumption in

this extension is the validity of narrowband approximation for all harmonics. It is

easy to see that if the narrowband assumption is satisfied for the K’th harmonic; it is

guaranteed to be satisfied for all harmonics with a smaller index k < K. Hence, it is

sufficient to check the narrowband assumption for the harmonic component with the

maximum frequency to verify the assumption.

In many applications, to increase the estimation accuracy, several snapshot vectors

are collected, {r(t1), r(t2), . . . , r(tN)}. Typically, the set of snapshots are first tem-

porally processed in order to increase the operational SNR. The temporal process-

ing for the maximum SNR improvement under white noise conditions is known to

be the matched filtering operation. The matched filtering operation for signal s(t)

given in (4.6) corresponds to Fourier transformation and this operation can be imple-

mented via a temporal-DFT operation. Considering (4.7), let’s assume that N snap-

shot vectors are generated by uniformly sampling operation, that is r[n] = r(nTs) for

n = {1, . . . , N} where Ts is the sampling period. Taking the Fourier transform in the

temporal direction, that is taking the Fourier transform of N samples of collected by
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each sensor and concatenating the Fourier transform outputs at the frequency ω, we

get:

DTFTN{r[n]}(ω) =

L∑
l=1

αlDTFTN{ejlΩ0(nTs−τ1)}(ω)



1

ejlω
s

...

ej(M−1)lωs


. (4.8)

Here, DTFTN{·}(Ω), with some abuse of notation, denotes the discrete-time Fourier

transform of N -point input evaluated at the spectrum sample ω. If we examine the

extreme cases, for N = 1, that is for a single snapshot vector, (4.8) is identical

to (4.7). As N →∞, DTFTN{ejlΩ0(nTs)}(ω) approaches 2πδ(ω− lΩ0Ts). Hence, as

N →∞; we have

lim
N→∞

DTFTN{r[n]}(ω) = 2π

L∑
l=1

αle
−jlΩ0τ1δ(ω − lΩ0Ts)



1

ejlω
s

...

ej(M−1)lωs


. (4.9)

The case of N →∞ shows that harmonics can be isolated after DTFT operation, that

is one and at most one term of the summation in (4.9) is non-zero, by the temporal

Fourier transform operation as N →∞.

In this study, we assume that a total of N snapshots are made available and as a pre-

processing operation, a temporal DTFT over N snapshots are calculated as in (4.8).

We interpret the DTFT output given in (4.8) evaluated at ω = ω0
∆
= Ω0Ts, given

below,

DTFTN{r[n]}(ω0) =

L∑
l=1

Al



1

ejlω
s

...

ej(M−1)lωs


(4.10)

as the input to the spatial frequency estimation algorithm to be described next. Here
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Figure 4.2: Reduction factor of second, third and fourth harmonics (ω0 = 2π/200).

Al = αl
N

DTFTN{ejlΩ0(nTs−τ1)}(ω0) = αl
N
e−jlΩ0τ1DTFTN{ejlω0n}(ω0) is the complex

amplitude of l’th harmonic after pre-processing.

To study the effect of suggested preprocessing operation, we introduce a reduction

factor definition for the pre-processign operation:

Reduction Factorl(ω0, N) ,

∣∣∣∣Alαl
∣∣∣∣ =

1

N

∣∣∣∣1− ejω0N(l−1)

1− ejω0(l−1)

∣∣∣∣ =
1

N

∣∣∣∣sin(ω0N(l − 1)/2)

sin (ω0(l − 1)) /2

∣∣∣∣ .
(4.11)

The reduction factor can be interpreted as the magnitude ratio of harmonics in spatial

(Al) and temporal dimensions (αl). It can be easily verified that Al/αl = 1, that is,

the fundamental component is not attenuated by pre-processing.

Figure 4.2 shows the reduction factor for a time-domain signal whose fundamental

period is 200 samples, (ω0 = Ω0Ts = 2π/200). The x-axis of this figure indicates

the ratio of number of samples at the pre-processing stage (N) to the fundamental

period of the signal, which is 200 samples in this case. To better explain, if N = 100

samples are combined in the pre-processing stage; this combination corresponds to

the x-axis point of 0.5 in Figure 4.2. We can observe from Figure 4.2 that, for this

case, the third harmonic completely vanishes after pre-processing; while the second
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harmonic is reduced by a factor of ≈ 0.64. Hence, with a relatively low number

of snapshots at the pre-processing stage, say observation time to fundamental period

ratio is less than 0.2, the spatial frequency estimation problem becomes a fundamental

frequency estimation with possibly significant harmonic amplitudes. We note that the

reduction factor definition in (4.11) is a variable of ω0 and N for a given harmonic

order l. When ω0 � 1, the reduction factor is not strong function of ω0. Hence, if

the time-domain signal is sampled such that its fundamental period is hundreds of

samples after sampling; the reduction factor values for this signal are almost identical

to ones given in Figure 4.2.

4.3 Direction of Arrival Estimation for Periodic Signals

In Section 4.2, the direction of arrival estimation of periodic signals is studied and it

has been shown that the problem of direction of arrival, after a pre-processing stage,

reduces to a fundamental frequency estimation problem. The expression in (4.10)

shows the pre-processing output in the absence of noise. In the presence of noise,

we can follow the same steps and get the following expression for the pre-processing

output,

rDTFT[m] =
L∑
l=1

Ale
j(ωslm+φl) + w[m], m = {0, . . . ,M − 1}. (4.12)

Here M is the number of sensors, L is the total number of harmonics, rDTFT[m] is the

m’th element of the pre-processing output vector DTFTN{r[n]}(ω0) given in (4.10).

The variable m denotes the sensor index and ωs = kd sin θ is the spatial frequency

to be estimated, since the pre-processing operation is a linear operation, the Gaussian

noise at the input of the pre-processing block remains Gaussian distributed at the out-

put of the block. The term indicated with w[m] in (4.12) shows the resultant additive

Gaussian noise after pre-processing. Noise is assumed to be circularly symmetric

complex Gaussian distributed with zero mean and variance σ2
w, as before.

It can be seen from (4.12) that the problem of spatial frequency estimation is identi-

cal to the fundamental frequency estimation that has been previously studied in ear-

lier chapters. Hence, we suggest applying the method given in Section 3.5 for the

estimation of ωs. Once, ωs is estimated as ω̂s; the DOA estimate is generated via
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θ̂ = sin−1(ω̂s/(kd)) which reduces to θ̂ = sin−1(ω̂s/π) for ULA with d = λ/2. The

CRB for θ̂ can be easily calculated from the CRB of ω̂s,

var(ω̂s) ≥
6σ2

w

M(M2 − 1)
∑L

l=1 A
2
l l

2
, (4.13)

via CRB(g(x)) = CRB(x)( ∂g
∂x

)2 relation from [2], by taking g(x) = 2πd sin(x)/λ as

var(θ̂) ≥ 6σ2
wλ

2

(2π)2d2M(M2 − 1) cos(θ)2
∑L

l=1 A
2
l l

2
(radian2).

(4.14)

In Figure 4.3, the square root of CRB is shown with respect to PSNR for different

angles and total number of sensors. As expected, the CRB values are smaller for se-

tups with higher number of sensors (M ) and when the target is located closer to the

boresight. It should be remembered that the 3 dB beamwidth of ULA is λ
Md cos θ

radi-

ans for a target located at the angle θ. The denominator term in the 3 dB beamwidth

expression, that isMd cos θ, corresponds to the extend of the aperture when projected

towards the direction of incoming wave. In Figure 4.4, the ratio of root CRB to 3 dB

beamwidth is shown. The normalization operation removes the dependency of the

target angle on CRB and it can be seen that an accuracy on order of 1/100’th of 3 dB

beamwidth is possible beyond 10 dB PSNR value.

Conventional DOA estimation systems do not take into account the signal power in

higher harmonics. For communication/localization systems in radio-frequency (RF)

bands, the transmitted spectrum can be indeed very narrowband. In many cases, the

center-frequency and the instantaneous bandwidth ratio can be on the order of tens

or more. For such systems, the information bearing signal can be considered as a

monochromatic wave and conventional DOA estimation approaches are essentially

developed for this setup. We note that the CRB expression for the conventional sys-

tems with no harmonics is the special case of (4.14) for A2 = A3 = . . . = AL = 0.

For underwater and free-space acoustic applications, the power in the harmonics can

be significant in some applications. Figure 4.5 gives a CRB comparison of systems

using only fundamental component and all available harmonics. For illustration sim-

plicity, we consider the case of L = 3 harmonics and take A1 = 1 and A2, A3 as

free variables are in the range [0, 1]. For a DOA system utilizing only the fundamen-

tal frequency, the sum in the denominator of the CRB expression in (4.14) becomes
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(d = λ/2).

∑L
l=1A

2
l l

2 = 1. While for a DOA system, utilizing all three harmonics, we have

1 + 4A2
2 + 9A2

3. Hence, a conventional system utilizing only the power in the funda-

mental frequency requires 10 log10(1 + 4A2
2 + 9A2

3) dB more power to reach the CRB

of system using all three harmonics. Figure 4.5 shows the additional power (in dB)

for the conventional system to reach the CRB of system using all three harmonics.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, the simulation results of the proposed estimator are provided in com-

parison with some conventional methods. MLE in (3.21), MUSIC and ESPRIT (see

Appendices A.1 and A.2) methods are selected to represent the conventional meth-

ods. In these simulation results, HCRB/ACRB is illustrated as a lower bound on the

performance (see Section 3.2). Comparisons are given in three sets. In the first set,

a performance comparison is given for the basic version of the suggested method

without model order selection. In the second set, the effect of model order selection

is examined. In the third set, a performance comparison for the spatial frequency

estimation problem, that is the direction of arrival estimation problem, is given.

Before giving the details on the performance comparisons, we would like to briefly

mention the computational complexity of methods in comparison. In Table 5.1, the

computation time of the MATLAB implementation of algorithms is given for PSNR

of 20 dB and N = 64 via averaging over 10000 realizations. We are providing

this table to give an idea about the complexity of the suggested method. It can be

seen that the suggested method requires 4 to 10 times less central processing unit

(CPU) time than other methods. Of course, the CPU times can change depending on

the implementation; but it should be evident that, also considering the steps of the

suggested method, the suggested method is as efficient as, if not much more efficient,

other methods in comparison.

We should note that while producing the simulation results in MATLAB, it is handy to

implement proposed method and the MLE by using a matrix for multiple realizations

without using a ’for loop’, since MATLAB has convenient functions that enables to

apply same operation on each row or each column of a matrix such as ’fft’ function.
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Table 5.1: Computation Time

N = 64 Proposed Method MLE MUSIC ESPRIT

L = 3 0.0017 sec 0.013 sec 0.0125 sec 0.012 sec

L = 4 0.0022 sec 0.016 sec 0.0135 sec 0.012 sec

L = 5 0.0028 sec 0.020 sec 0.0140 sec 0.012 sec

However, in MUSIC and ESPRIT, we need to make covariance matrix estimation and

eigenvalue decomposition for each realization separately and it is not easy to utilize

matrix notation on MATLAB while implementing aforementioned subspace based

methods. While generating Table 5.1, matrix implementation is not used to have fair

computation time comparison. However, the RMSE vs. PSNR curves of MLE and

proposed method presented at following sections are generated by forming a matrix

contains each realization for a given PSNR. On the other hand, every operation in

MUSIC and ESPRIT is done separately for each realization and this makes the CPU

time required for MUSIC and ESPRIT far more larger.

We would like to reiterate that the main purpose of this study is to provide a simple

method for the fundamental frequency estimation problem working as good as, or

almost as good as more complicated methods in the literature. Table 5.1 is given to

provide some evidence to the complexity aspect of this goal.

5.1 Performance Comparison Without Model Order Selection

In Figures 5.1 and 5.2 give the performance comparison for different number of har-

monics and harmonic amplitudes. A total of 8 cases are shown and a performance

comparison is given in terms of RMSE vs. PSNR sketches. In these comparisons,

the number of samples and the fundamental frequency are selected as N = 64 and

f0 = 10+0.2
64

, respectively.

The main differences between the scenarios are the number of harmonics (L) and the
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combination of the harmonic amplitudes (A1, . . . , AL) as presented in the figure la-

bels. It should be noted that Al denotes the magnitude of the lth harmonic. The phase

of harmonics are taken as independent identically distributed (iid) uniform random

variables distributed in [0, 2π) at each Monte Carlo run.

We know that the gap between the ACRB and the DFT based methods (the proposed

method and MLE) is slightly affected by the number of samples. Besides, the fun-

damental frequency is not a major parameter that impacts the performance of DFT

based methods if the harmonics are resolvable. Hence, simulation results for differ-

ent N and f0 values are similar to the ones given in this section.

Examining Figures 5.1 and 5.2, DFT based methods are superior than sub-space

methods at low PSNR. It is known that subspace based methods are sub-optimal and it

is not easy to utilize the harmonic relation between the sinusoidal components to esti-

mate fundamental frequency, since noise subspace eigenvectors (G) in MUSIC does

not guarantee whether the fundamental frequency and its harmonics are orthogonal to

noise space especially at low PSNR. In a similar way, ESPRIT suffers from this prob-

lem while estimating the signal subspace eigenvectors. As observed from the Figures

5.1(a), 5.1(b) and 5.1(c), when the magnitude of the sinusoidal component which has

the fundamental frequency (A1e
j(ω0n+φ1)) is greater or at least equal to largest har-

monic amplitude (A1 ≥ max{A2, A3, . . . AL}), performance of the subspace meth-

ods are better when we compare their performances with remaining 5 cases. However,

it is easier to make use of harmonic relation for DFT based estimators, that is MLE

and the proposed estimator.

For DFT based methods, the PSNR value which estimator starts to track the ACRB

differs for different scenarios. There are two reasons. First reason is the poor power

distribution among sinusoidal components. Remember that PSNR is defined as PSNR =∑L
l=1 A

2
l l

2

σ2
w

. However, the coarse frequency estimation stage relies on basically maxi-

mizing the relation,
∑L

l=1A
2
l (see 3.22). Hence, for a fixed PSNR, as the distribution

of power among harmonics changes, the cases with fewer harmonics or the cases with

majority power located at low indexed harmonic components helps the operation of

first stage that maximizes
∑L

l=1 A
2
l . Hence, if the majority of total power is distributed

to low ordered harmonics, the estimators track ACRB at lower PSNR values. We can
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examine the simulation results in Figure 5.1(a) with Figures 5.1(b) and 5.2(a) to see

this effect. In numerical results presented in Figures 5.1(a) and Figure 5.1(b), the

total number of harmonics are equal to 2 and 3, respectively. We can see that having

a third harmonic component causes poorer detection of the fundamental frequency

at coarse search and this results in starting to track ACRB at a higher PSNR value

(Figure 5.1(a) at 2 dB PSNR and Figure 5.1(b) at 4 dB PSNR). When we compare

the results in Figure 5.1(a) and 5.2(a), the amplitudes are A1 = 2A2 and 5A1 = A2,

respectively. Even if the number of harmonics are the same, having the strongest si-

nusoidal component at the fundamental frequency improves the performance of the

proposed estimator at low SNR region. For these two cases, the required PSNR values

to track the ACRB are 2 dB and 15 dB, respectively.

The second effect on the tracking PSNR value can be explained by a case example

given in Figures 5.2(b) and 5.2(c) (respectively, harmonic amplitude relations are

5A1 = A2 = A3 and 5A1 = 5A2 = A3). In Figure 5.2(c), the third frequency

component (A3e
j(ω03n+φ1)) has the greatest magnitude and at low PSNR, first two

frequency components remain hidden under noise level. This causes two possible set

of frequency sets which are (ω0, 2ω0, 3ω0) and (3ω0, 6ω0, 9ω0). However, In Figure

5.2(b), magnitudes of second and third frequencies increase together as the PSNR

increases and the ambiguity disappears sooner. This results in late tracking of ACRB,

that is at a higher PSNR value for the case illustrated in Figure 5.2(c) (Figure 5.2(b)

tracking starts at 7 dB PSNR and Figure 5.2(c) at 16 dB PSNR).

The same result can be observed by comparing the results in Figures 5.2(c) and 5.2(d)

with magnitude relations 5A1 = 5A2 = A3 and 5A1 = 5A2 = A3 = A4 . Even if

there is a one extra harmonic term in Figure 5.2(d), having two strong sinusoidal

components improves the detection performance at low PSNR and respectively, at

PSNR values 16 dB and 11 dB, RMSE’s for these two cases are on the order of

ACRB.
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Figure 5.1: RMSE comparison of the proposed method with other methods where

f0 = 10+0.2
64

: (a) L = 2 and A1 = 2A2, (b) L = 3 and A1 = 2A2 = 4A3, (c) L = 4

and A1 = A2 = A3 = A4, (d) L = 3 and A1 = 10A2 = A3.
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Figure 5.2: RMSE comparison of the proposed method with other methods where

f0 = 10+0.2
64

: (a) L = 2 and 5A1 = A2, (b) L = 3 and 5A1 = A2 = A3, (c) L = 3 and

5A1 = 5A2 = A3, (d) L = 4 and 5A1 = 5A2 = A3 = A4.
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5.2 Performance Comparison With Model Order Selection

In this section, the performance of the suggested method is compared with the con-

ventional methods when model order, the total number of harmonics L, is also esti-

mated from data in additional to the frequency. Results given in Chapter 5.1 assume

a fixed model order of L which is the true value for the total number of harmonics.

Different from earlier study, we assume that L is also an unknown of the problem in

this section.

To examine the effect of model order comparison, MDL, HMUSIC and ESTER model

selection rules are implemented for respectively DFT-based estimators (MLE and pro-

posed method), MUSIC and ESPRIT. These model order selection rules are discussed

in Section 3.4, Appendices A.1 and A.2 respectively. We would like to underline that

the model order selection not only generalizes the application range of an algorithm;

but can also improve the performance of sub-optimal detectors. As illustrated later, in

same scenarios, it is possible achieve better performance by using a different model

order than the true model order for some estimators at low SNR conditions. When all

harmonics are at a similar power, the information on frequency value can be said to

be equally distributed among harmonics. Yet, enforcing the utilization of a harmonic

with a little information value, due to low harmonic amplitude, in the estimation

process without a proper precaution can lead to poor results. Model order selection

enables to use lower model orders at low SNR operational conditions for sub-optimal

estimators. Hence, the information in higher order harmonics can be neglected if the

information is not very much distinguishable from the noise. We underline that this

effect is strictly limited to sub-optimal estimator such as proposed detector, MUSIC

and ESPRIT at low SNR operational conditions. An optimal estimator is to utilize

any information, however it is noisy, in the estimation process in a correct manner.

Unfortunately, the theory of non-random parameter estimation involves only asymp-

totically optimal results; hence even MLE, which is considered as the benchmark

estimator, at low SNR can be positively affected with the model order selection.

Figures 5.3, 5.4, 5.5 and 5.6, give numerical results of the comparisons. In each of

these figures, the top sub-figure, labelled as (a), is the performance results with the

model order selection; and the bottom sub-figure, labelled as (b), is for a fixed model

69



order of L. In these four figures, we have 4 different cases and on purpose, low

power harmonics exist to observe the performance improvement of the model order

selection. All numerical experiment parameters are given in respective figure labels.

In all figures, we observe that performance of subspace based methods are positively

affected in a dramatic way by the model order selection, since at low PSNR, the noise

and signal subspace estimates can get rid of unnecessary (low information bearing)

dimensions which are kept under fixed model order operation. Besides, in MLE and

proposed method, the main problem is the poor performance of coarse search. For

example, in the case illustrated in Figure 5.3, we have two sinusoidal components

which are the fundamental frequency and the first harmonic. The magnitude of the

harmonic component is so small that it has no significant contribution to the perfor-

mance up to PSNR = 15 dB. By wrongly choosing the model order as L = 1 at

low PSNR, the low powered harmonic is essentially ignored. When fixed model or-

der condition, that is L = 2, is enforced; the coarse search results in two possible

frequency sets, in general: (ω0, 2ω0) and (ω0/2, ω0) and selecting the coarse search

result as ω0/2 results in irrecoverable error (gross error). However, by using MAP,

only one sinusoidal component (fundamental frequency) is selected and other compo-

nent is essentially ignored. This leads to a better performance at low SNR. Hence, the

model order selection does not only generalize the application range of the suggested

method, but also improves its low SNR performance in some cases.
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Figure 5.3: RMSE comparison of the proposed method with other methods where

f0 = 8+0.4
32

, L = 2 and A1 = 5A2: (a) model order selection is made, (b) model order

is given.
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Figure 5.4: RMSE comparison of the proposed method with other methods where

f0 = 15+0.3
64

, L = 3 and A1 = 2A2 = 10
3
A3: (a) model order selection is made, (b)

model order is given.
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Figure 5.5: RMSE comparison of the proposed method with other methods where

f0 = 18+0.2
64

, L = 3 and A1 = 5A2 = 10A3: (a) model order selection is made, (b)

model order is given.
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Figure 5.6: RMSE comparison of the proposed method with other methods where

f0 = 10+0.26736
128

, L = 4 and A1 = 2A2 = 10
3
A3 = 10A4: (a) model order selection is

made, (b) model order is given.
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5.3 Performance Comparison for Spatial Frequency Estimation

We present the performance comparison of the proposed method with the conven-

tional methods that estimate DOA from the fundamental component. The methods

labeled as “MLE (fundamental only)” and “AM (fundamental only)” show the per-

formance of the maximum likelihood and the AM methods, respectively, under the

assumption that the input is composed of only fundamental component, i.e. free of

harmonics. Hence, the conventional methods operate in mismatch conditions in the

presence of harmonics. Neglecting the harmonic components has two important im-

pacts. The first one is the interference generated by the ignored harmonics over the

fundamental component. The second one is the reduction in PSNR due to not harness-

ing the available signal power in harmonics. As expected, the first impact becomes

important at high PSNR; while the other becomes important at low PSNR. The nu-

merical comparisons in this section aims to study these effects for different operating

conditions.

Figure 5.7 gives the results of a comparison with M = 64 sensors for the target angle

of 20 degrees. In this comparison, the harmonic amplitudes are related according to

A1 = 2A2 = 4A3. In 4-6 dB PSNR range of Figure 5.7, the gap between conventional

methods and ACRB is large due to the neglected power in harmonic components.

This loss is about 4 dB in this example. At high PSNR, the interference of harmonics

on the fundamental frequency results in an error floor. In other words, as PSNR

increases the interference due to higher order harmonic results in an estimator bias

for the conventional methods. This is due to the mismatch of operational conditions

and conventional estimator assumptions.

In Figure 5.7, two versions of the proposed method are shown. The proposed method

without model order selection (MOS) takes the model order (total number of har-

monics) as the true model, which is 3 in this example. The other method, called the

proposed method with model order selection, estimates the model order in addition to

the DOA. In the high PSNR region of Figure 5.7, the proposed method without model

order selection (blue curve) tracks the ACRB better than other methods. With this

method, the interference cancellation and harnessing all available power in harmon-

ics yield improved performance. However, at low PSNR, enforcing the model order
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Figure 5.7: Performance comparison of proposed method with conventional methods

where ωs = π sin(20◦) = 2π 10.9446
64

, L = 3 and A1 = 2A2 = 4A3.

as 3 generates spurious fits to the noisy data and the performance of the suggested

method becomes poorer than the conventional ones utilizing only the fundamental

component. On the other hand, the proposed method with model order selection

also selects the model order as 1 (fundamental only) at very low PSNR values and

successfully incorporates additional harmonics into estimation procedure as PSNR

increases. Hence, the suggested method with its successful model order estimation

yields a better performance at all SNR values.

We would like to remind that the antenna spacing of d = λ/2 does not create any

grating lobes or angle ambiguities in beamforming. Here λ corresponds to the wave-

length of the propagating wave. For the periodic waves with harmonics, we assume

that the antenna spacing of d = λ/2 is set for the wavelength corresponding to the

fundamental harmonic. Hence, the spatial frequencies of higher order harmonics can

be folded or aliased. Yet, the folding of spatial frequencies does not create an am-

biguity on the final estimate due to the presence of ambiguity-free estimation for the

fundamental component. Higher-order harmonics can be considered to refine the es-

timate generated unambiguously from the fundamental component.
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Figures 5.8 and 5.9 show the cases for the target angle of 50 and −60 degrees, re-

spectively, where the frequency folding/aliasing occurs. To illustrate the ambiguity

removal in these figures, if the peak location of coarse search (first stage) is at the

25’th bin, then the second harmonic should be at the 50’th bin and the third harmonic

should be at the 75’th bin. If M = 64, that is there are only 64 bins; the third har-

monic is folded to the 11’th bin, since 75 ≡ 11 mod 64. Hence, a sufficiently accurate

estimate of the fundamental spatial frequency, generated by the first stage of the sug-

gested method, correctly resolves the ambiguities for higher order harmonics. Then,

by successfully fusing the DOA estimates generated from each harmonic after inter-

ference cancellation; an estimator closely tracking the performance bound for a wide

range of SNR values can be constructed.
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Figure 5.8: Performance comparison of proposed method with conventional methods

under spatial aliasing for DOA estimate where ωs = π sin(50◦) = 2π 24.5134
64

, L =

3 and A1 = 2A2 = 4A3: (a) DFT and DTFT spectra of the observed signal, (b)

Performance comparison.

78



0 /4 /2 3 /4 5 /4 3 /2 7 /4

Frequency ( )

0

0.2

0.4

0.6

0.8

1

S
ig

n
a
l 
M

a
g
n
it
u
d
e

 
0

 s

 2
0

 s

 3
0

 s

DTFT

DFT

(a)

-5 0 5 10 15 20 25

PSNR (dB)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
M

S
E

 (
d
e
g
re

e
s
)

M = 64, Target angle = -60°

Proposed Method without MOS

Proposed Method with MOS

MLE (fundamental only)

AM (fundamental only)

ACRB

Theoretical Calculation

4 6

10
-1

17 17.05 17.1

(b)

Figure 5.9: Performance comparison of proposed method with conventional methods

under spatial aliasing for DOA estimate where ωs = π sin(−60◦) = 2π 36.2872
64

, L =

3 and A1 = 2A2 = 4A3: (a) DFT and DTFT spectra of the observed signal, (b)

Performance comparison.
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CHAPTER 6

CONCLUSION

This thesis studies the problem of fundamental frequency estimation of a periodic

signal with multiple harmonics. A computationally efficient method for the solution

is given. The method is shown to track the Cramer-Rao bound with a SNR penalty of

10 log10(1.02) = 0.086 dB in the high SNR region. The suggested method is based

on a similarly efficient fine-frequency estimation method, both in computational and

statistical sense, known as the Aboutanios-Mulgrew (AM) method. AM method is

given for the frequency estimation of single tone complex exponential signals. For

the problem of interest, AM method is utilized to estimate the frequency of each

harmonic in the framework of successive interference cancellation. The suggested

method is also applied to a direction of arrival estimation (DOA) problem.

The literature on the fundamental frequency estimation is rich and several well known

spectrum estimation methods, such as MUSIC and ESPRIT, have already been ex-

tended to this problem [19]. This thesis study can be considered as the extension

of the fine-frequency estimation methods [5–14] to the same problem. Here, we use

the AM method in the estimation of harmonic frequencies; any other fine-frequency

estimators can also be utilized.

As we mentioned in Section 5.2, the model order selection improves the performance

of the given algorithms dramatically at low SNR. However, for high SNR, this opera-

tion doesn’t improve the performance and only increases the computation. Hence, as

a future work, a fused technique can be developed, that is at low SNR, model order

selection is implemented to increase the performance and at high SNR, if the model

order is given, we don’t need any model order selection. In this approach, the main

problems are the specification of the low and high SNR values and the boundary of
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these regions. In [50], sinusoid detection in course frequency estimation stage and

the model order selection are performed after calculation of a threshold. The DFT

samples with sufficiently high magnitudes which are larger than the threshold are

considered as candidates for the frequency of interest and this threshold is calculated

so that a fixed probability of false alarm is provided (Neymann–Pearson criterion).

The necessity of the noise variance estimation is the main concern in this approach.

However, this concept can be a starting point for the mentioned fusion technique for

model order estimation. Also, the penalty term of the MAP approach derived in [19]

can gives us an idea for the specification of the undesired harmonics in the course

frequency estimation stage.

The proposed method is a computationally efficient method. However, as the number

of harmonics increases, the number of ’for loops’ increases linearly to get an individ-

ual estimate of each harmonic (see Algorithm Table 2). The possible improvement of

the proposed method is the joint estimation of the frequencies of all harmonics in a

single ’for loop’. For this purpose, the successive interference calculation procedure

should be updated accordingly. Also, when the multiple periodic signals with har-

monics are observed, the multiple fundamental frequency estimation problem for all

periodic signals can be a possible extension of this study. For this purpose, the coarse

frequency estimation step should be updated. The harmonic summation strategy over

a coarse grid given in (3.29) can be modified to get rough fundamental frequency esti-

mates of each periodic signal, that is instead of only taking the maximum summation

result in (3.29), for example, the second and third maximum summation results can

be taken as the rough fundamental frequency estimates of second and third periodic

signal. In addition to this, the interference cancellation should be implemented care-

fully by taking into account the adverse situations, such as overlapping harmonics of

different periodic signals.

Possible extensions of this study can be the tracking of “periodic” signals with time-

varying Fourier series coefficients. This is a highly practical problem of music signal

processing, since tones generated by the instruments attenuate in time, overlap with

other tones etc. An almost identical problem arises in underwater acoustics. More

specifically, the problem of tracking ships or underwater vehicles based on the noise

generated by their propellers, that is the passive ranging, direction of arrival and track-
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ing problems, can be studied within this context. Another possible extension of this

study can be the frequency estimation under non-uniform sampling. In radar signal

processing, non-uniform sampling methods are of interest to handle the blind speed

problem and to avoid jamming. An efficient method for this problem can be consid-

ered as a possible future work of this study.
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APPENDIX A

SUBSPACE METHODS FOR FUNDAMENTAL FREQUENCY

ESTIMATION

Subspace methods decompose the observation space into signal and noise spaces.

Signal and noise spaces are derived upon the processing of the auto-correlation ma-

trix of the input. The most well known subspace methods are MUSIC and ESPRIT for

the frequency estimation, [1]. The main advantage of subspace methods is their ap-

plication to multiple source/signal problems does not require any more computational

resources than a single source/signal problem. On the other hand, the maximum like-

lihood method suffers from the multi-dimensional search problem when more than

one source is present. Even though the subspace methods are computationally less

demanding for multi-source problems, they are sub-optimal and require an accurate

estimate of the input auto-correlation matrix. In this section, we present some sub-

space methods for the fundamental frequency estimation problem and also discuss

the model order estimation procedures in relation with these methods.

A.1 MUSIC Method

Multiple Signal Classification (MUSIC) [4] relies on the noise subspace estimate. For

a single snapshot vector, the subspace decomposition can be done with the autocor-

relation matrix estimation as in (3.7), followed by its eigenvalue decomposition. The

resultant eigenvectors can be represented as U = [u1,u2, . . . uM ] where ul is the

eigenvector that corresponds to the l’th eigenvalue value λl. We assume that eigen-

values are sorted in descending order. With the prior information on the total number

91



of harmonics (L), the MUSIC algorithm reduces to

ω̂0 = arg max
ω0

1

||ZH(ω0)G||F
, (A.1)

where the matrix G = [uL+1,uL+1, . . .uM ] is the noise subspace matrix and || · ||F
is the Frobenius norm. The matrix G is formed by the eigenvectors corresponding to

the smallest eigenvalues, {λL+1, λL+2, . . . , λM}.

By using the Cauchy-Schwarz inequality, the normalization term can be added to

the cost function in (A.1) so that the number of harmonics and the fundamental fre-

quency can be estimated jointly. The harmonically constrained MUSIC (HMUSIC

[29]) method can be written as follows,

[ω̂0, L̂] = arg max
ω0,L

LM(M − L)

||ZH(ω0, L)G(L)||2F
, (A.2)

where,

||ZH(ω0)G||2F ≤ ||ZH(ω0)||2F ||G||2F = LM(M − L). (A.3)

and Z is M × L Vandermonde matrix.

It is important to note that it is possible to implement MUSIC algorithm without a

grid search via what is called the root-MUSIC method. In article [30], a comparison

of MUSIC and root-MUSIC is given and MUSIC algorithm is shown to outperform

the root-MUSIC.

A.2 ESPRIT Method

ESPRIT stands for the Estimation of Signal Parameters via Rotational Invariance

Technique. In the literature, there are several variations of the ESPRIT [3]. The

common steps of these variations are signal subspace estimation, generation of an

invariant equation by using a symmetry in the signal model and the solution of the

invariant equation for the frequency estimation.

Differently from MUSIC, ESPRIT operates with the signal subspace. The eigenvec-

tors of the estimated autocorrelation matrix which have L most significant eigenval-

ues form the signal subspace matrix S = [u1,u2, . . .uL]. The relation between signal

subspace matrix and Vandermonde matrix Z defined in (3.4) can be represented as
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S = ZB. We know that range space of Vandermonde and signal subspace matrix

are same and the matrix B is uniquely determined when L ≤ M . By using the shift

invariance property of the matrix Z, we have the relation Z = ZD where Z and Z are

respectively generated by removing the first and last row of the Vandemonde matrix

Z and D = [ejω0 ejω02 . . . ejω0L]T . By simple mathematical manipulations, we can

get S = SD′ where D′ = B−1DB. The matrix D′ can be estimated as (SHS)−1SHS

and its eigenvalues give the frequency estimates, [ejω̂0 ejω̂02 . . . ejω̂0L].

The ESTER [32] method is one of the model order estimation methods developed for

ESPRIT. The method can be expressed as follows:

L̂ =arg min
L

||S(L)− S(L)D′||22

=arg min
L

||S(L)− S(L)[SH(L)S(L)]−1SH(L)S(L)||22.
(A.4)

SAMOS [33] is another ESPRIT based model order estimation technique:

L̂ =arg min
L

1

L

2L∑
i=L+1

γi. (A.5)

Here {γi}2L
i=1 are singular values of the matrix [S(L) S(L)] sorted in the descending

order.

In article [32], a performance comparison of ESTER and SAMOS is given. Even

though, a similar performance for two methods is expected; it has been observed

that ESTER allows a wider range of candidate orders. It has been also noted that

ESTER is much more efficient to implement. In another study, it has been claimed

that for the fundamental frequency estimation problem ESPRIT outperforms MUSIC

at high SNR; but, MUSIC performs better at low SNR [31]. A detailed performance

comparison of these methods is given in the numerical results chapter of this thesis.
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APPENDIX B

ATOMIC NORM DENOISING

In this study, the main concern is the frequency estimation of periodic signals. In

recent works, atomic norm techniques [34–38] that utilize the sparsity of the super-

imposed sinusoidal signals are proposed for the frequency estimation and the main

goal is to get optimal frequency estimates by resolving grid mismatch problem. These

gridless methods can super-resolve the close frequencies and the number of sinusoidal

components slightly increases the computational complexity. In these methods, after

denoising the noisy observed signal (y = x + w) with atomic norm optimization,

the gridless frequency estimation techniques, such as Prony’s method [51] and and

its variations [3, 4, 52], are applied on the denoised signal (x̂) to get a frequency es-

timate. Also, the concept of dual problem and the dual norm of the atomic norm are

valuable tools for the determining the frequencies [34]. In [53–56], more detailed

information about the sparse representation, atomic norm and other related topics can

be obtained.

The fine frequency estimation methods and the atomic norm based techniques are two

branches of frequency estimation literature with similar goals. However, a compari-

son of these approaches are not available in the literature. In this part of the study, we

present performance comparison of these two approaches with a simple scenario.

B.1 Atomic Norm Denoising with Alternating Direction Method of Multipliers

(ADMM)

In [34, 35], the method of Alternating Direction Method of Multipliers (ADMM) is

provided to solve the semi-definite program for the atomic norm denoising problem,
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since ADMM is known as a reasonably fast method for solving the semi-definite

programs [57]. The atomic denoising problem can be expressed with the following

semi-definite program,

minimizet,u,x,Z
1
2
‖x− y‖2

2 + τ
2

(t+ u1) , (B.1)

subject to Z =

 T (u) x

xH t

 and Z � 0.

Here y = x + w is the noisy observed signal, x is the signal of interest vector with

length N . The mapping T (u) : CN → CN×N creates a Hermitian Toeplitz matrix out

of its input vector u. For the solution of this semidefinite program, [35] provides a

efficient algorithm based upon the ADMM and dualize the equality constraint via an

Augmented Lagrangian:

Lρ(t,u,x,Z,Λ) =
1

2
‖x− y‖2

2 +
τ

2
(t+ u1)

+

〈
Λ,Z−

 T (u) x

xH t


〉

+
ρ

2

∥∥∥∥∥∥∥∥∥Z−
 T (u) x

xH t


∥∥∥∥∥∥∥∥∥

2

F

.
(B.2)

The update steps of ADMM for line spectral estimation [35]:(
tl+1,ul+1,xl+1

)
← arg min

t,u,x
Lρ
(
t,u,x,Zl,Λl

)
,

Zl+1 ← arg min
Z≥0
Lρ
(
tl+1,ul+1,xl+1,Z,Λl

)
,

Λl+1 ← Λl + ρ

Zl+1 −

 T
(
ul+1

)
xl+1

(xl+1)H tl+1


 .

(B.3)

The updates with respect to t,x, and u can be computed in closed form:

tl+1 = Z l
n+1,n+1 +

(
Λl
n+1,n+1 −

τ

2

)
/ρ,

xl+1 =
1

2ρ+ 1

(
y + 2ρzl1 + 2λl1

)
,

ul+1 = W

(
T ∗
(
Zl

0 + Λl
0/ρ
)
− τ

2ρ
e1

)
.

(B.4)

Here the mapping T ∗ : CN×N → CN is the adjoint of the mapping T , that is by

summing the elements of main diagonal and the off-diagonals of the input matrix
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which is assumed as Hermitian Toeplitz matrix, the vector with length N is taken as

an output and W is the normalization diagonal matrix with entries;

Wii =


1
N

, i = 1,

1
2(N−i+1)

, i > 1,

(B.5)

and the partitions are given as follows:

Zl =

 Zl
0 zl1

(zl1)H Z l
n+1,n+1

 and Λl =

 Λl
0 λl1

(λl1)H Λl
n+1,n+1

 . (B.6)

The Z update is simply the projection onto the positive definite cone;

Zl+1 := arg min
Z�0

∥∥∥∥∥∥∥∥∥Z−
 T

(
ul+1

)
xl+1

(xl+1)H tl+1

+ Λl/ρ

∥∥∥∥∥∥∥∥∥
2

F

. (B.7)

Projecting a matrix Z onto the positive definite cone is accomplished by forming an

eigenvalue decomposition of Z and setting all negative eigenvalues to zero.

To summarize, the update for (t,u,x) requires averaging the diagonals of a matrix

(which is equivalent to projecting a matrix onto the space of Toeplitz matrices), and

hence operations that are O(N). The update for Z requires projecting onto the pos-

itive definite cone and O (N3) operations. The update for Λ is simply addition of

symmetric matrices. These steps are taken exactly from the article in [35] and the

MATLAB code is given in Section B.3. In the MATLAB implementation, we have

a correction in one of the steps of the ADMM implementation given in [35]. Af-

ter checking the derivation steps, we have corrected the normalization matrix W as

follows:

Wii =


1
N

, i = 1,

1
N−i+1

, i > 1.

(B.8)

After denoising operation with ADMM algorithm, the Prony’s method is applied on

the denoised signal (x̂) for the frequency estimation and MATLAB implementation

is given in Section B.3.
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Figure B.1: RMSE and SNR plots for AM and ADMM with Prony’s Method with

frequency ω = 2π(5+0.2345)
16

.

B.2 Numerical Result

In Figure B.1, performance comparison of the AM algorithm with atomic norm based

method given in Section B.1. In this comparison, we have only one sinusoidal com-

ponent and the number of samples and the frequency are selected as N = 16 and

f = 2π(5+0.2345)
16

, respectively and for the ADMM method, 10000 iterations are used.

Also, RMSE’s are calculated over 1000 realizations. The performance of the atomic

norm based method is inferior than AM method in this scenario. However, it is possi-

ble to increase the performance by using more successful frequency estimator meth-

ods instead of Prony’s method and in this study, we are not interested in performance

comparison. The main interest is the computational load of ADMM algorithm. Here,

we compare the computation time of two methods on a simple problem to give an

idea about their computation load.

In ADMM algorithm, at each iteration, an eigenvalue decomposition is required and

the determining the number of iterations required for the denoising operation is not
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a simple task. In AM algorithm, we know that 2-3 iterations are sufficient to reach

CRB for large SNR range (see Section 2.5.1), but in ADMM algorithm, we need lots

of iterations and the number of iterations is more than 100 iterations in general. In

MATLAB, for one realization, computation time of the AM algorithm is 7×10−5 sec-

onds with the settings given for Figure B.1 and the computation time of the ADMM

algorithm for only one iteration is 3 × 10−4 seconds and, for example, with 100 it-

erations, the computation time is around 3 × 10−2 seconds. Simply, the required

CPU time for a single estimate generation is on the order of 1000 times more for

atomic norm based methods in comparison to the AM method. However, we should

note that in the atomic norm based methods, localizing the frequencies using the dual

problem [34, 35] is an important concept which makes the model order selection in-

significant and provides super-resolution of the close frequencies. Also, when the

multiple sinusoidal signals are observed, in AM algorithm, we need to apply succes-

sive interference cancellation procedures to get individual frequency estimates of the

sources. However, atomic norm based methods are proposed for such scenarios and it

is possible to obtain frequencies with slight increase in computation. Yet, the eigen-

value value decomposition is a costly operation and it takes place in each iteration of

ADMM based solvers which need lots of iterations.

B.3 MATLAB Implementation

MATLAB implementation of atomic norm denoising with ADMM for frequency es-

timation is given in Section B.1 [35].
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function freqest_Atomic_Prony_ = frequency_est_Atomic_norm(y,SNR,maxiter,L) 

%frequency_est = frequency_est_Atomic_norm(y,SNR,maxiter) 

% 

% Returns the frequency estimates for L complex sinusoidal  

% signals observed under AWGN. 

% 

% Implements the method given in 

%      "Near Minimax Line Spectral Estimation 

%                   APPENDIX A 

%   Alternating Direction Method of Multipliers For AST" 

% Authors of the article are Gongguo Tang, Badri Narayan Bhaskar  

%                 and Benjamin Recht. 

% The given ADMM algorithm given in APPENDIX A implemented by  

% Cagatay Candan and Utku Çelebi. 

% 

% Inputs: 

%     y:    N x 1 matrix where each column contains an observation 

%              vector of N samples 

%     maxiter: maximum number of iterations for ADMM algorithm 

%     SNR: Signal to noise ratio given for the calculation of  

%          accelerated convergence rate (tau) 

%     L : number of signals 

% Output: 

%     freqest_Atomic_Prony: L estimated frequencies with the unit of  

%                           N-point DFT bins, i.e. a real number in [0,N]  

%                           where N is number of samples 

%                            

%                 To convert est_fused to radian per samples, use 

%                             omega  = 2*pi/N*freqest_Atomic_Prony; 

%August 2020 

N = length(y); 

tau = 2*sqrt(N*log(N))*sqrt(1/SNR); 

rho = 2;  

u = [1; zeros(N-1,1)]; 

t = 1; x = y; 

Z = eye(N+1); Lambda = eye(N+1); 

%dum = N:-1:1; dum(1) = 2*N; W = diag(1/2./dum); % in Appendix A 

 dum = N:-1:1; dum(1) = N  ; W = diag(1./dum);   % Appendix A correction 

% ADMM algorithm for atomic norm denoising 

for iter = 1:maxiter 

    tnew = Z(end,end) + (Lambda(end,end) - tau/2)/rho; 

    xnew = 1/(2*rho+1)*(y + 2*rho*Z(1:end-1,end) + 2*Lambda(1:end-1,end)); 

    unew = W*(Tadj( Z(1:end-1,1:end-1) + Lambda(1:end-1,1:end-1)/rho )... 

           - tau/2/rho*[1;zeros(N-1,1)]); 

     

    dum1 = [toeplitz(unew) xnew; xnew' tnew]; dum = dum1 - Lambda/rho; 

    [eigvec,eigval]=eig(dum); 

    eigval = real(diag(eigval)); %ignore imaginary part 

    eigval(eigval<0) = 0; 

    Znew = eigvec*diag(eigval)*eigvec'; 

     

    Lambdanew = Lambda + rho*(Znew - dum1); 

    Z = Znew; Lambda = Lambdanew;     

end; 

% Estimation of L frequencies with Prony's method 

[Num,Den]=prony(x,L-1,L); q = roots(Den);  

% Frequencies in terms of N-Point DFT bins 

freqest_Atomic_Prony = mod(angle(q)*180/pi,360)/360*N; 

freqest_Atomic_Prony = sort(freqest_Atomic_Prony,'ascend').'; 

%% 

function out = Tadj(A) 

N = size(A,1); 

out = zeros(N,1); 

for ind=1:N, 

    out(ind) = sum(diag(A,ind-1)); 

end; 
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