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ABSTRACT

PERFORMANCE COMPARISON OF MACHINE LEARNING METHODS
AND TRADITIONAL TIME SERIES METHODS FOR FORECASTING

Özdemir, Ozancan
M.S., Department of Statistics

Supervisor: Assoc. Prof. Dr. Ceylan Yozgatlıgil

August 2020, 147 pages

One of the main objectives of the time series analysis is forecasting, and for this pur-

pose both Machine Learning methods and statistical methods have been proposed in

the literature [1]. In this study, we use and compare some of these approaches in

time series modelling and forecasting. In addition to traditional forecasting meth-

ods for time series data set which are namely Naive Method, Seasonal Naive Method,

ARIMA, SARIMA, Exponential Smoothing, TBATS, Bayesian Exponential Smooth-

ing Models with Trend Modifications and STL Decomposition, the forecasts are also

obtained by using seven different machine learning methods. These methods are

Random Forest, Support Vector Regression, XGBoosting, Bayesian Neural Network,

Recurrent Neural Network, Long Short Term Memory Neural Network and Feed

Forward Neural Network. It is also known that time series generally contain both

linear and nonlinear patterns. In order to deal with this mixture data structure, a hy-

brid methodology which combines linear and nonlinear components was proposed

by Zhang. According to him, predicted values of a time series can be obtained by

summing both linear and nonlinear components [2]. In this study, hybrid models are
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constructed by using machine learning methods for nonlinear pattern and statistical

methods for linear pattern. Therefore, the forecasts are also obtained using hybrid

models. The data set selected proportionally from different time frequencies in M4

Competition is used in this study. After observing the results of studies, the perfor-

mance and impact of all methods are discussed. At the end of this discussion, most of

the best models are mainly selected from machine learning methods for forecasting

in this study. It is also seen that the forecasting performance of the model depends

on both time frequency and forecast horizon. Lastly, the study proves that the hybrid

approach is not always the best forecasting model for time series.

Keywords: Time series analysis, Forecast, Hybrid method, Machine Learning, M4

Competition
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ÖZ

GELENEKSEL ZAMAN SERİSİ YÖNTEMLERİ VE MAKİNE
ÖĞRENMESİ YÖNTEMLERİNİN ÖNGÖRÜ PERFORMANS

KARŞILAŞTIRMASI

Özdemir, Ozancan

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Doç. Dr. Ceylan Yozgatlıgil

Ağustos 2020 , 147 sayfa

Zaman serisi analizin en temel amaçlarından biri tahminleme yapmaktır. Literatürde

tahminleme için hem istatistiksel hem de makine öğrenmesi modellerinin kullanıldığı

ve önerildiği görülmektedir [1]. Bu çalışma, bu yaklaşımlardan bazılarının zaman se-

rilerinin modellenmesi ve tahminlenmesi yönünden karşılaştırmalarını içermektedir.

Naive, mevsimel naive, otoregresif tamamlanmış hareketli ortalama, mevsimsel oto-

regresif tamamlanmış hareketli ortalama,üstel düzleştirme, Bayesçi üstel düzleştirme,

TBATS ve STL modelleri gibi istatistiksel zaman serisi modellerine ek olarak, ras-

sal ormanlar, destek vektör makinesi, ekstrem gradyan arttırma, Bayesçi yapay sinir

ağları, tekrarlayan yapay sinir ağları, uzun kısa süreli bellek ve ileri beslemeli sinir

ağları modelleri de kullanılarak çalışmadaki zaman serileri tahminlenmiştir. Zaman

serileri genel yapılarında hem doğrusal hem doğrusal olmayan içerikleri barındırmak-

tadır. Bu yapıyla ilgilenmek için, Zhang bir hibrit yaklaşım önermiştir [2]. Bu yakla-

şıma göre, tahmin değerleri doğrusal ve doğrusal olmayan içeriklerin toplamından

elde edilecektir. Yukarıda sıralanan modellere ek olarak, doğrusal içerikler için is-
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tatistiksel ,doğrusal olmayan içerikler için de makine öğrenmesi modellerinin kul-

lanıldığı hibrit modeller de tahminleme için kullanılmıştır. Bu çalışmada kullanılan

veri seti M4 Yarışmasında kullanılan veri setinde yer alan farklı zaman frekanslarına

sahip serilerden sayılarına orantılı bir şekilde seçilerek oluşturulmuştur. Modelle-

rin uygulanmasından sonra, modellerin tahmin performansları karşılaştırılmıştır. Bu

karşılaştırma sonucunda, bu çalışmadaki en iyi tahmin performansına sahip model-

lerin çoğunlukla makine öğrenmesi metotları arasından seçildiği görülmüştür. Aynı

zamanda modellerin tahmin performansının tahminlenen serinin zaman frekansına

ve tahminin uzunluğuna bağlı olduğu görülmüştür. Son olarak, bu çalışma ile hib-

rit yaklaşımın zaman serileri için her zaman en iyi tahminleme metodu olmadığı

kantılanmıştır.

Anahtar Kelimeler: Zaman Serisi Analizi, Tahmin, Hibrit Method, Makine Öğrenmesi,

M4 Yarışması
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CHAPTER 1

INTRODUCTION

The prediction of the future has been very popular and attractive subject since the

major civilizations in the ancient world. In those times, people used divinations gen-

erated by the diviners to have an idea about the future. For example, the weather and

drought were predicted by diviners in both Eastern Han and Qing in early China [3].

In addition to this, there are some studies showing that there was a competition be-

tween diviners and physicians to produce the most accurate prediction about the fu-

ture in ancient Greek [3]. However, the ways of predicting future has been changed

and become more scientific in the time, especially after introduction of the notion of

a time series by Yule. In 1927, Yule stated the notion that a time series is a realization

of stochastic process [4]. Since then, many methods that use the past observations

to identify the underlying relationship have been developed, and thereby time series

forecasting and also forecasting accuracy naturally has gained popularity in the area

of forecasting.

The first nontrivial study about time series forecasting accuracy was conducted by

David Reid during his PhD at the University of Nottingham [5]. After this study, Box

and Jenkins introduced autoregressive integrated moving average (ARIMA) model in

1970, and accelerated the time series analysis and forecasting [6].

In 1975, the study of Newbold and Granger inspired by the study of Reid opened

a new door into the time series forecasting by starting the discussion about finding

the most accurate model for time series from different frequencies [5]. This study

inspired and encouraged many researchers to carry on studies which involve finding

the most accurate forecasting model for time series under different scenarios by using

several accuracy criteria to make a comparison between the models in the study.
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In the lights of this kind of studies, it was explored that the most of the statistical

time series models such as ARIMA suffer from producing inaccurate forecast values

for the series including nonlinear patterns since they were constructed based on the

linear assumptions. In this regard, several time series models for modelling nonlinear

patterns in the data were developed such as treshold autoregressive (TAR) model or

autoregressive conditional heteroscedastic (ARCH) model. However, it was seen that

these models could outperform only for some special nonlinear problems. They could

not give a sufficient forecasting performance for general nonlinear problems [7]. Due

to this problem, machine learning models have been suggested and started to be used

frequently in the field of time series forecasting since the introduction of back propa-

gation for neural network models because they are designed with ability of modelling

complex structures with the data [1].

Since then, there have been many studies that utilize machine learning models to im-

prove the accuracy of time series forecasting and compare the performance of models

with statistical models in terms of accuracy. However, it is seen that there are some

cases where both statistical and machine learning models are insufficient to produce

accurate future values for time series [2].

Zhang [2] says that it may be difficult to find the right forecasting technique for time

series since it is hard to know whether the series under the study comes from linear or

nonlinear process. Besides, he claims there are a few case where the series under the

study include only linear or nonlinear pattern. Lastly, he states the notion accepted

universally that there is no method which predicts the future accurately for every

situation.

Because of problems listed above, he suggested a hybrid approach which combines

both statistical and machine learning methods with the aim of capturing both linear

and nonlinear patterns in the series. After his study, the hybrid approach has taken

part in the comparison of being a model having high forecasting accuracy.

The increasing number of forecasting approaches and forecasters who aim to find

the most accurate model for time series has caused the organization of forecasting

competitions which enables forecasters to conduct large scale study and compare the

newly proposed model against the existing model for forecasting [5].
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One of the most famous competitions is Makridakis Competition, also known as the

M Competition. This competition has been organized by Spyros Makridakis who is a

professor at the University of Nicosia UNIC and his team since 1979. The most recent

M Competition whose results were announced is M4 Competition including more

series and methods compared to previous ones. Although there are 61 forecasting

methods in this competition, most of the methods are developed by the participants.

In the competition, both statistical and machine learning models whose success in ac-

curacy were proven before the competition, such as Bayesian exponential smoothing

with trend modification, recurrent neural network (RNN), long short term memory

(LSTM), were not considered. Besides, there was only one hybrid model being win-

ner in the competition, so it can be said that the competition also suffered from lack of

number of hybrid approaches. Lastly, the methods were applied to the original time

series. The forecasters did not consider the effect of transformation on the forecasting

accuracy.

The main motivation behind this study is to make up the shortages in M4 Competi-

tion explained above by using the same data. With this study, we aim to demonstrate

the functionality of different forecasting approaches that include statistical, machine

learning and hybrid approaches on the univariate time series from different time fre-

quencies. in terms of time series forecasting and forecasting accuracy, and contribute

the main purpose of M Competitions by stating empirical evidence utilizing to im-

prove the forecasting accuracy.

In this study, we consider eight statistical models including Naive Method, Seasonal

Naive Method, ARIMA, SARIMA, Exponential Smoothing, TBATS, Bayesian Expo-

nential Smoothing Models with Trend Modifications and STL Decomposition, seven

machine learning covering Support Vector Regression, Random Forest, XgBoost,

Feed Forward Neural Network, Bayesian Neural Network, Recurrent Neural Network

and Long Short Term Memory Neural Network and hybrid models which changes

based on individual performances of both statistical and machine learning models on

the series. The data set used in the study are obtained from 1000 series which are

selected out of 100000 time series in M4 Competition proportionally from each time

class, and forecasts are obtained from both original and transformed series by Box-

Cox transformation. The forecasting performance of the models are compared by
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accuracy measures which are symmetric mean absolute performance error (sMAPE),

mean absolute scaled error (MASE) and the arithmetic average of both measures. In

addition to this, the models in the study are also compared in terms of demanding

computational time in hours for forecasting. All of the analysis are conducted using

R Studio with version 1.3.959.

The study consists of five chapters. The following chapter has two sections. The first

section will give details about M Competitions, and the second section will review the

similar studies. In Chapter 3, the models used in the study will be explained theoret-

ically in three sections. In addition to this, both accuracy and performance measures

will be explained in Chapter 3. Chapter 4 shows the result of empirical analysis. In

this chapter, more details about the data set will be provided. Furthermore, the data

preprocessing techniques will be given in this chapter. Then, the results obtained from

both original and transformed series will be shown in six sections where each sections

correspond to each time class. The study ends with conclusions and suggestions for

the future work.
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CHAPTER 2

LITERATURE REVIEW

There are many studies carried out by researchers to improve the forecasting accu-

racy and find the most accurate forecasting approach. In this part of the study, some

of these studies will be summarized in two sections. First of all, M-Competitions

being the inspiration to this study will be explained. Then, some of the studies in-

volving the forecasting for the several areas included by M4-Competition dataset will

be mentioned.

2.1 M-Competitions

M-Competitions being short for Makridakis Competitions are the competitions which

has been held by Sypros Makridakis and his team with the aim of finding the way to

improve the forecasting accuracy by making a comparison between the forecasting

methods for years. There has been organized five M-competitions so far, and four of

them which are resulted will be explained chronologically.

2.1.1 M1-Competition

The first M-Competition was organized in 1982 as an extension of the study of

Makridakis and Hibbon in 1979 [8], which can be considered as ancestor of M-

Competitions [9]. The competitions had 1001 time series consisting of yearly, quar-

terly and monthly series from the areas of macro, micro, industry and demographic.

The forecasters produced 6 steps, 8 steps and 18 steps ahead forecasts for yearly,

quarterly and monthly series, respectively via several methods including not only in-
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dividual of statistical models such as naive model, versions of exponential smoothing

model, Bayesian forecasting model, Box-Jenkins Methodology, linear regression but

also both combination of the models and sophisticated models developed by forecast-

ers. The forecast results were compared with respect to five accuracy measures which

are Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), Average

Ranking (AR), Medians of Absolute Percentage Error (Md) and Percentage Better

(PB). At the end of this competition, the four main results were concluded. First of

all, statistically sophisticated models did not provide significantly better results com-

pared to simpler models. Also, it was observed that the ranking of the models varied

based on the accuracy measure considered. Then, it was seen that the combination

of the individual models were more accurate forecasting models when compared to

individual ones. Lastly, it was stated that the accuracy of the models changed with

respect to forecast horizons.

2.1.2 M2-Competition

The second M-Competition was organized in 1993 in cooperation with four com-

panies [10]. The main reason of organizing this competition was to stop the main

critique of M-Competition which was not allowing forecasters to include the addi-

tional information in the forecasting process that is done in real life forecasting. In

this competition, 29 monthly series including 23 series from the companies and 6

series from the macroeconomics were used by 5 forecasters. They used both simple

and well-known time series models including naive model, exponential smoothing,

ARMA and ARIMA models and models developed by themselves for 15 steps ahead

forecasts of the 29 series. The forecast results coming from the models were com-

pared in terms of MAPE. At the end, the competition showed that Dampen and Single

exponential smoothing models were surprisingly the most accurate models compared

to other models including more complex models. Another result of the competition

is that the combination of the exponential smoothing models showed a considerable

result and could be used when the forecaster had no idea for the appropriate smooth-

ing technique for the series. Also, it was stated that sophisticated or forecaster’s

own method seldomly produced better forecasts in comparison with simple models

or combination of the models. In addition to this results, the results obtained in the
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previous competition was also valid for M2-Competition.

2.1.3 M3 Competition

The third Makridakis Competition was held in 2000 with the aim of replicating and

extending previous M-Competitions [11]. The extension was done by increasing

number of series and including more methods and forecasters. The replication was

done by testing whether the four main conclusions obtained in the previous two com-

petition were still valid or not. The competition dataset included 3003 series con-

sisting of yearly, quarterly and monthly series mostly. In this study, not only statis-

tical models involving naive model, exponential smoothing model, theta model but

also Machine Learning model which is Artificial Neural Network for the first time.

Naive 2 model was determined as benchmark, and the forecast results were compared

with respect to five measures which are Symmetric Mean Absolute Percentage Error

(sMAPE), Average Ranking (AR), Percentage Better (PB), Median Symetric Abso-

lute Percentage Error (MSAPE) , Median Relative Absolute Error (MRAE). There-

fore, it was seen that Theta method which does not depend on strong statistical theory

and has easy implementation majorly outperformed the other models. In addition to

this final conclusion, the four main conclusions drawn from the previous competitions

were proven again.

2.1.4 M4 Competition

The M4 Competition, announced in November 2017, was started in January 2018 and

ended in May 2018 [12]. The main reason of organizing this competition was same as

the previous M-Competitions. In this competition, the extension of M-Competitions

was completed in three ways. Firstly, the number of series were increased, then ML

models were included. Lastly, prediction interval was estimated in addition to point

forecast. The competition presented 100000 series including even daily and hourly

series to forecasters and 61 models having a broad range from the simplest model to

hybrid model were applied on these series. The simple arithmetic average of Simple,

Holt and Damped exponential smoothing models were set as benchmark for point
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forecast. On the other hand, Naive 1 model was considered as benchmark for the

prediction interval. The performance of the models were compared sMAPE, MASE

and Overall Weighted Average (OWA). At the end of the competition, the hybrid

approach developed by Slavek Smyl extremly outperformed the other models [12].

The second best model was the combination of seven statistical methods and one

ML method. Both of these models also had the great performance for the prediction

intervals. In addition to this, it was found that the first seventeen accurate model

included the twelve models which were the combinations of mainly statistical models.

Lastly, it was stated that pure ML models had very poor performance. Most of pure

ML models in the competition were worser than the benchmarks.

2.1.5 M5 Competition

The fifth of Makridakis Competition was opened in March 2020 and ended in June

2020. The competition was run on Kaggle and presented a dataset having almost

100000 hierarchical daily series. The results of the competition has not been pub-

lished yet.

2.2 Related Studies

In this part, the several forecasting studies based on topics covered by M4-Competition

data set will be reviewed.

2.2.1 Macroeconomics and Microeconomics

Heaton et al. [13] carry on a study to make a decision whether models used to forecast

Western macroeconomics are appropriate to forecast Chinese macroeconomics. The

study involves 19 forecasting models including both the simplest time series mod-

els such as Naive Model and complex time series models such as Bayesian Vector

Autoregressive Model (BVAR) . They apply the models on the data set taken from

China’s National Bureau of Statistics (NBS) including monthly revision of Consumer

Price Index (CPI) month-on-month inflation rate, the Producer Price Index (PPI)
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year-on-year inflation rate, the year-on-year growth rate of industrial production (IP),

and the month-on-month growth rate of the production of electricity (EP), and com-

pare the results based on Standardized Mean Squared Error (SMSE). They state AR,

ARMA, VAR and BVAR models are superior to other models in the study.

Collin and Kies [14] propose Random Forest model for the forecasting of the uni-

variate daily microeconomic data. In the study, they collect daily store deposits from

1990 stores and applies large number of Machine Learning models including Elastic

Net, Partial Least Squares, Generalized Additive Model, Random Forest and Gradi-

ent Boosting with the optimal parameters for each series. The model performances

are compared by using Root Mean Square Errors (RMSE). As a result, they conclude

Random Forest is superior to other models for forecasting of microeconomic data.

Pavlov [15] suggests that Neural Networks (NN) and Support Vector Machines (SVM)

are appropriate models to forecast monthly inflation which is an important macroe-

conomic variable. In his study, he uses monthly inflation rate in Russia and applies

four models which are NN, SVM, Autoregression (AR) and Ridge Regression (RR).

Among the four models, AR and RR are used as benchmarks. At the end of his study,

he concludes that both ML models outperforms the benchmark models with respect

to Root Mean Square Error (RMSE).

2.2.2 Industry

Centeno and Marquex [16] conduct a study to estimate the negative effect of COVID-

19 on the earnings loss of the tourism industry. That’s why they use the data set

about monthly earnings loss of the tourism industry in Philippines taken from the

Webpage of Department of Tourism. The reason of selecting Philippines is that the

significant importance of tourism industry in the economy of Philippines. They apply

several Seasonal Autoregressive Integrated Moving Average (SARIMA) models on

the series and compare the results based on Akaike Information Criteria (AIC) and

Root Mean Square Error (RMSE). Then, they decide SARIMA (1, 1, 1)(1, 0, 1)12 is

the best model to forecast the monthly earning loss in the tourism industry because of

COVID-19.
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Azadeh et al. [17] applies an Artificial Neural Network (ANN) model based on multi-

layer perception (MLP) for forecasting of annual electricity consumption belongs to

high energy consumption industrial sectors including chemicals, basic metals and

non-metals minerals industries in Iran from 1979 to 2003. The forecast results ob-

tained by ANN is compared with the results produced by conventional regression

models with respect to Mean Absolute Error (MAE), Mean Square Error (MSE)

and Mean Absolute Percentage Error (MAPE).Therefore, they state that ANN model

based on MLP is superior to non-linear regression models for annual forecasting of

electricity consumption.

Chen and Wang [18] propose a hybrid SARIMA and SVM approach for the forecast-

ing of machinery industry. They consider the monthly series including the production

values for Taiwanese machinery industry in the study. First, they consider the individ-

ual performances of SVM and SARIMA models on the data set. Then, they include

the hybrid approach of both models where SARIMA is used for forecasting of the

linear part of the series, and SVM is used for forecasting of the non-linear part of the

series. The models are evaluated in terms of Normalized Mean Square Error (NMSE),

Mean Absolute Percetage Error (MAPE) and Correlation Coefficient (R). The exper-

imental results of the study reveals that the hybrid SVM and SARIMA model clearly

is more accurate model for forecasting of monthly machine industry in Taiwan.

2.2.3 Finance

Namin and Namin [19] compare the forecasting performance of Long Short Term

Memory (LSTM) and Autoregressive Integrated Moving Average (ARIMA) mod-

els on the monthly data set taken from Yahoo finance Website. The data set in-

cludes Nikkei 225 index (N225), NASDAQ composite index (IXIC), Hang Seng In-

dex (HIS), SP 500 commodity price index (GSPC), and Dow Jones industrial average

index (DJ) values. The subsets are divided into two sets where 70% of them are used

as training data and 30% of them are used as test data. The future values predicted

by both LSTM and ARIMA are compared with respect to Rooted Mean Square Error

(RMSE). Therefore, they state that LSTM clearly outperforms ARIMA in the fore-

casting of monthly financial time series data sets.
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Merh et al. [20] focus on developing and comparing two hybrid approaches includ-

ing ARIMA and ANN for the forecasting of Indian Stock Market dataset which is an

important topic in the field of finance. First of all, they develop an approach called

ARIMA-ANN by predicting future values using ARIMA, then modeling the residu-

als coming from the previous model using ANN. Then, they sum the results obtained

from both models. After this, they change the usage order of the models. The future

values are predicted by ANN, and residuals are modelled by ARIMA. At the end, this

approach is called ANN-ARIMA. The performance of both models are compared

using Average Absolute Error (AAE), Root Mean Square Error (RMSE), Mean Ab-

solute Percentage Error (MAPE), Mean Percent Square Error (MPSE). They show

that the hybrid approach of ANN-ARIMA mainly performs better than the approach

of ARIMA-ANN.

Cao and Tay [21] carry on a study involving financial forecasting using several Ma-

chine Learning models. In this study, they use SP 500 daily price index data set

and predict the future observations by Support Vector Machine (SVM) and Multi-

layer Perception (MLP) with Back Propagation (BP) . The accuracy of the models

are compared based on Normalised Mean Square Error (NMSE), Mean Absolute Er-

ror (MAE), Directional Symmetry (DS), Correct Up (CP) trend and Correct Down

(CD) trend. At the end of the study, they conclude that SVM performs better than

MLP, although it requires less number of parameters and demands shorter time to

train the model.

2.2.4 Demography

Sulaiman and Shukur [22] show that Recurrent Neural Network (RNN) and NN

approaches can be an efficient way for forecasting the size and growth of the popula-

tion which is the demographic variable. They decide to forecast the annual size and

growth of the world population using Poisson Regression, Logistic Regression and

RNN in this study. Then, they compare the results of the models based on MAPE and

conclude that RNN extremely outperform the other models.

Bravo and Coelho [23] carry on a study to determine the appropriate model for

forecasting monthly birth and death rate. They consider SARIMA, Holt Winter’s
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Seasonal Model and State Space (SS) Model since the demographic series gener-

ally include strong seasonality. The data under the study includes monthly birth and

death rate at both local and regional and provided by Statistics Portugal. The perfor-

mance of the models are evaluated and decided with the usage of MAPE. Therefore,

it is showed that SS outperforms other models in the forecasting of birth rate and

SARIMA is superior to other models for death rate forecasting.
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CHAPTER 3

METHODOLOGY

Forecasting is a statistical concept used in many areas to have an idea about the fu-

ture. Time series forecasting is a necessary part of the forecasting concept where the

past observations is considered to produce the future observations. Various statisti-

cal methods have been developed for this purpose and contributed to the forecasting

literature. Also, machine learning methods and their combinations with statistical

methods have been suggested for forecasting since the first implementation of Neural

Network models [1].

In this section, the forecasting methods used in this study are introduced. The sta-

tistical methods are Naive Method, Seasonal Naive Method, ARIMA, SARIMA, Ex-

ponential Smoothing, TBATS, Bayesian Exponential Smoothing Models with Trend

Modifications and STL Decomposition, respectively. The machine learning methods

are Support Vector Regression, Random Forest, XGBoost, Feed Forward Neural Net-

work, Bayesian Neural Network, Recurrent Neural Network and Long Short Term

Memory Neural Network. Lastly, the combination of statistical methods with ma-

chine learning methods are used for forecasting.

3.1 Simple Forecasting Methods

3.1.1 Naive Method

This method is one of the simple forecasting method in the literature. In this literature,

the last observation of the data is considered as the forecast values. The forecast
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equation of the model is given below.

ŷt+h|t = yt, (3.1)

where yt is the value of series at time t and h is the forecast horizon. This method is

also called random walk forecast and implemented by naive() function in R.

3.1.2 Seasonal Naive Method

This technique is similar to naive method. In this method, the forecast values are the

last value from the same season. That is,

ŷt+h|t = yt+h−m(k+1), (3.2)

where m denotes the seasonal period and k is the integer part of (h − 1)/m [24].

This model is implemented by using snaive() function in R.

3.2 Autoregressive Integrated Moving Average Model (ARIMA)

Making a statistical inference about time series data is not easy since each observation

in the series is considered as a random variable. In such case, an assumption is needed

to simplify the analysis, and this assumption is stationarity. If the time series has

constant mean, variance and autocorrelation over time, it is called stationary time

series.

The stationary time series yt can be expressed as a weighted linear combination of

current and past white noise terms et with zero mean and constant variance as follows

yt = et + ψ1et−1 + ψ2et−2 + · · · (3.3)

If there are finite number of weights having nonzero values, then the series can be
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reexpressed by changing notation as follows

yt = et − θ1et−1 − θ2et−2 − · · · − θqet−q (3.4)

This expression is known as moving average representation with order q denoted by

MA(q) and predicts the future values by using the linear combination of white noise

terms. This model was firstly used by Slutsky (1927) and Wold (1938) [25].

The MA models suffer from being nonuniqueness which results in irrelevant ques-

tions in the following steps [25]. To overcome this problem, the invertibility, another

important statistical concept for forecasting, was introduced by Granger and Ander-

sen in 1978 [26]. This concept provides the uniqueness of the model, and makes the

model ready to use for forecasting. If the series yt has invertibility property, it can be

respresented as follows

yt = ϕ1Yt−1 + ϕ2Yt−2 + ...+ ϕpyt−p + et (3.5)

where yt for i = 1, . . . , p are the observations in the series until time p. This represen-

tation is known as the autoregressive representation of order p denoted by AR(p) and

uses the past observations to predict the future values. The first study for this model

was conducted by Yule in 1928[25].

The series yt that can be expressed as a combination of moving average (MA) and

autoregressive (AR) representations is known as the Autoregressive Moving Average

Model with orders p and q denoted by ARMA(p, q) proposed by Box and Jenkins

on the strength of studies of Yule and Wold explained above [6]. The mathematical

expression of ARMA(p, q) model is given below

ẏt = ϕ1ẏt−1 + ϕ2ẏt−2 + · · ·+ ϕpẏt−p + et − θ1et−1 − θ2et−2 (3.6)

where ẏt = (yt − µ) is the series, et is independent and identically distributed white

noise term with zero mean and constant variance σ2. ϕ and θ are the autoregressive

and moving average parameters, respectively.
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Although this model is used many times for forecasting, the applicability of the model

is limited to only stationary data set. However, most of the time series in practice

are non stationary[27]. In this situation, Autoregressive Integrated Moving Average

Model with orders p, d, and q ARIMA(p, d, q) is proposed by Box and Jenkins[6].

In this model, I stands for integration which is the data preprocessing process used

for making series stationary. The equation of this model is given below.

ϕ(B)(1−B)dẎt = θ(B)ϵt (3.7)

where B is backshift operator which equals to BdẎt = Ẏt−d, d is dth difference

operator showing the number of difference taken to make the data stationary, ϵt is the

independent and identically distributed white noise term with zero mean and constant

variance σ2, ϕ(B) and θ(B) are the autoregressive and moving average polynomial

terms, respectively.

This approach has three steps which are model identification, parameter estimation

and diagnostic checking [2].

In model identification step, the data preprocessing operators including differencing

and transformations is applied to make the series stationary and stailized in variance.

Then, the autocorrelation and the partial autocorrelation structure of the series is used

to identify the appropriate ARIMA model.

After this step, nonlinear optimization techniques is used to estimate the model pa-

rameters by minimizing the error function.

In the last step, diagnostic checking, the assumptions about the model errors are

checked by using both visual tools and statistical tests. If any violations are detected,

the model is concluded as not adequate for the data. In this case, the process returns

to the first step and continues until obtaining the model that satisfied the diagnostics.

In order to construct ARIMA model in R, the steps above are conducted manually

or auto.arima function that selects the best model via AIC, AICc, or BIC is

used [28].
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3.3 Seasonal Autoregressive Integrated Moving Average Model (SARIMA)

Many time series show some form of cycling or seasonality which is the repeated

behaviors occurring over time period [28]. If the data has such a pattern, ARIMA

model tends to be failed. For this case, Seasonal Autoregressive Integrated Moving

Average Model SARIMA developed from ARIMA was proposed by Box and Jenkins

[6]. The model denoted by SARIMA(p, d, q)(P,D,Q)s is given below.

ϕ(B)Φ (Bs) (1−B)d (1−Bs)D Yt = θ(B)Θ (Bs) ϵt (3.8)

where s denotes the number of seasonal period, B and Bs are backshift operators,

D and d are difference operators showing the number of seasonal and nonseasonal

differences taken to make the data stationary, respectively. ϵt is the independent and

identically distributed white noise term with zero mean and constant variance σ2,

ϕ(B) and θ(B) are the ordinary autoregressive and moving average polynomial terms,

respectively. Lastly, Φ (Bs) and Θ(Bs) are the seasonal autoregressive and moving

average polynomial terms, respectively.

Since SARIMA(p, d, q)(P,D,Q)s model is developed from ARIMA, it consists of

three steps explained above. In order to fit SARIMA model in R, the steps are con-

ducted manually or auto.arima which is the automated algorithm based on mini-

mizing the selected information criteria is used.

3.4 Exponential Smoothing Method (ETS)

Exponential Smoothing is a forecasting technique introduced by Brown [29], Holt

[30] and Winters [31] in the late 1950s. The forecasts by this method are obtained

from the weighted average of the past observations where the weights downward ex-

ponentially over the observations getting older. While ARIMA models try to identify

the autocorrelation in the data, this method relies on the trend and seasonality in the

data [24]. This method is widely used in the time series forecasting due to its sim-

plicity, computational efficiency and accurate forecast performance [32].
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Types of the exponential smoothing method from the simplest to complicated are

detailed below, respectively.

3.4.1 Simple Exponential Smoothing

The method was proposed by Brown [29]. It is generally preferred for the short term

forecasting of the data with no trend and seasonality [33].

The forecast equation of the model is given below.

ŷt+1 = αyt + (1− α)ŷt (3.9)

where ŷt+1 is the forecast at time t+1, also known as smoothed value at time t, yt is

the current value of the series and ŷt the smoothed value at the previous time. α is the

smoothing parameter which takes on value between 0 and 1.

The equation 3.9 clearly shows that the forecast provided by SES is the weighted

average of the current value and the previous smoothed value.

3.4.2 Holt’s Exponential Smoothing

The method was designed for the forecasting of the data having trend component by

Holt [30]. The method is based on two equations, level and trend.

ŷt+h = ℓt + hbt (3.10)

ℓt = αyt + (1− α) (ℓt−1 + bt−1) (3.11)

bt = β∗ (ℓt − ℓt−1) + (1− β∗) bt−1 (3.12)

where h is the forecast horizon, ŷt+h is the h-step forecast values, ℓt is the estimated

level term at time t, bt is the estimated trend term at time t. α and β∗ are the smoothing

parameters whose values are between 0 and 1.
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The equation of lt shows that the level term is considered as weighted average of

the value at time t and and the one-step-ahead training forecast for time t. bt is the

weighted average of difference between level term at time t and t−1 and the estimated

trend term at the previous time [24]. Thus, the forecasts given by this method is the

sum of level term and trend term multiplied by forecast horizon.

3.4.3 Holt Winters Exponential Smoothing

This exponential smoothing method was introduced by Holt[30] and Winters[31] as

an extension of Holt’s Exponential Smoothing method for the use of forecasting of

the data having both trend and seasonality. Holt Winters method depends on three

equations which are level, trend and seasonality.

The model has two different versions due to the two types of seasonality pattern

which are additive and multiplicative. The additive HW model is used if the series

has additive seasonal pattern, and the multiplicative HW model is used if the series

exhibits multiplicative seasonal pattern.

3.4.3.1 Holt Winters Additive Method

As highlighted above, the method is used when the data under the study displays

additive seasonal behaviour. The equations related to the model are given below.

ŷt+h = lt + bth+ st−m+(k+1) (3.13)

where

Level: lt = α (yt − st−m) + (1− α) (lt−1 + bt−1)

Trend: bt = β∗ (lt − lt−1) + (1− β∗)bt−1

Seasonal: st = γ (yt − lt−1 − bt−1) + (1− γ)st−m

m is the seasonal period, h is the forecast horizon, ŷt+h is the h-step forecast values,

ℓt is the estimated level term at time t, bt is the estimated trend term at time t, st is

the seasonal component, k is an integer confirming the seasonal component m come
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from the last year of the sample [24]. α, β∗ and γ are the smoothing parameters whose

values are between 0 and 1.

3.4.3.2 Holt Winters Multiplicative Method

As highlighted above, the method is used when the data under the study displays

multiplicative seasonal behaviour. The equations related to the model are given below.

ŷt+h = (ℓt + hbt)st+h−m(k+1) (3.14)

where

Level: ℓt = α yt
st−m

+ (1− α)(ℓt−1 + bt−1)

Trend: bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1

Seasonal: st = γ yt
(ℓt−1+bt−1)

+ (1− γ)st−m

m is the seasonal period, h is the forecast horizon, ŷt+h is the h-step forecast values,

ℓt is the estimated level term at time t, bt is the estimated trend term at time t, st is

the seasonal component, k is an integer confirming the seasonal component m come

from the last year of the sample [24]. α, β∗ and γ are the smoothing parameters whose

values are between 0 and 1. It is seen that the seasonal component in this method is

different than the additive one. The difference is that the seasonal components are

multiplied or divided rather than addition or subtraction [34].

In 2003, Taylor [35] adapted this method for the series having multiple seasonality

such as hourly data and introduced the following Double Seasonal Holt Winters Ex-

ponential Smoothing methods.

yt = lt−1 + bt−1 + s
(1)
t + s

(2)
t + dt (3.15)

where

Level: lt = lt−1 + bt−1 + αdt

Trend: bt = bt−1 + β∗dt

First Seasonal Component:s(1)t = s
(1)
t−m1

+ γ1dt
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Second Seasonal Component:s(2)t = s
(2)
t−m2

+ γ2dt

lt and bt display the level and trend components of the series at time t, s(1)t and s(2)t are

the equations corresponding to the first and second seasonal components of the series,

respectively. m1 and m2 are the seasonal periods, dt is the error term known as white

noise having normal distribution, and α, β∗, γ1 and γ2 are the smoothing parameters

which are between 0 and 1.

ets function in forecast package developed by Hyndman et al. [36] is used to

implement the exponential smoothing methods. The function has three alternatives,

which are N stands for none, A stands for additive and M stands for multiplicative,

for error, trend and seasonal components. The parameter selection and model iden-

tification of the final model are made by the automated algorithm in the function

considering information criteria such as AIC, AICc, BIC [28].

3.5 Bayesian Exponential Smoothing Models with Trend Modifications

This method is proposed by Syml et al. [37] as a Bayesian extension of Exponen-

tial Smoothing methods for the time series forecasting. In this extended version, the

additional concepts are considering nonlinear trend including damped, linear and ex-

ponential patterns, assumption of the series having Student-t distribution, construct-

ing a model for the error components which makes the model heteroscedastic and

having an opportunity to use additional regressors being related to series under the

study in the model. As standing the name, the models in the method are Bayesian

models, and No-U-Turn sample (NUTS) being a version of Hamiltonian Monte Carlo

(HMC) algorithm is used to fit them [38]. Because of the used algorithm, the ex-

pected computational time of the method for a time series varies between two and

twenty minutes. If the process takes longer time, it can be considered as lack of fit of

the model.

The method performs well especially for the forecasting of the short series that has to

have positive values for implementation.
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The performance of the model was tested on M3-Competition data set including 3003

time series with different frequencies and stated that the model has the most accurate

forecast values compared to other techniques [37].

The model under this approach changes depending on the type of the series used.

3.5.1 LGT

This method can be defined as Bayesian extension of Holt’s Linear Method explained

in the previous part. LGT is an acronym for Local and Global Trend model and used

for the forecasting of the series with no seasonality. At the beginning of the forecast-

ing procedure, the time series observations are assumed Student-t distributions with

the parameters ν, ŷt+1 and σt+1

yt+1 ∼ Student (ν, ŷt+1, σt+1) (3.16)

where ν is the degrees of freedom, ŷt+1 is the forecast value at time t + 1 given that

all information in the data until time t, and σt+1 is the error term at time t+ 1.

After this assumption, the forecasting process of LGT model works by using the

following equations.

ŷt+1 = lt + γlρt + λbt (3.17)

where

lt+1 = αyt+1 + (1− α)lt

bt+1 = β∗ (lt+1 − lt) + (1− β∗)bt

σ̂t+1 = σŷτt+1 + ξ

lt and bt are the level and local trend of the series at time t. σ̂t+1 denotes the expected

error value at time t+1. γ is the global trend coefficient. ρ and λ are the power coeffi-

cient being between -0.5 and 1 and damping coefficient being between 0 and 1 of the

global trend components, respectively. α and β∗ are the smoothing parameters that

take on values between 0 and 1. σ is the error coefficient. τ is the power coefficient

of the error components with values between 0 and 1. Lastly, ξ denotes the minimum

value of error.
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The equations show that the forecasts in this approach are obtained via the summation

of the local level at time t denoted lt and global nonlinear trend γlρt and damped local

linear trend λbt [38].

3.5.2 SGT

The SGT stands for Seasonal and Global Trend and used for the forecasting of the se-

ries having seasonality [37]. It is considered as a Bayesian extension of Holt-Winters

Exponential Smoothing mentioned in the previous section. As same as LGT, the se-

ries is assumed Student-t distribution with the parameters ν, ŷt+1 and σt+1 in SGT.

yt+1 ∼ Student (ν, ŷt+1, σt+1) (3.18)

where ν is the degrees of freedom, ŷt+1 is the forecast value at time t + 1 given that

all information in the data until time t, and σt+1 is the error term at time t+ 1.

Then, we have

ŷt+1 = (lt + γlρt ) st+1 (3.19)

where

lt+1 = α yt+1

st+1
+ (1− α)lt

st+m+1 = ζ yt+1

lt+1
+ (1− ζ)st+1

σ̂t+1 = σŷτt+1 + ξ

lt and st are the level and seasonal trend of the series at time t. σ̂t+1 denotes the

expected error value at time t + 1. γ is the global trend coefficient. ρ is the power

coefficient being between -0.5 and 1. m is the seasonal period. α and ζ are the

smoothing parameters that take on values between 0 and 1 for level and seasonal

terms, respectively. σ is the error coefficient. τ is the power coefficient of the error

components with values between 0 and 1. Lastly, ξ denotes the minimum value of

error.

As seen, the mathematical concept in both LGT and SGT are similar to each other.

However, seasonal component st is included and used in the forecast equation as
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multiplication term in SGT. Also, the local trend term denoted by bt is dropped in this

approach.

3.5.3 S2GT

This method is designed for the series having double seasonality and can be defined as

a Bayesian extension of Taylor’s Double Seasonal Exponential Smoothing methods

defined in the previous section [38]. Like LGT and SGT, this method starts with an

assumption of observations having Student-t distribution with the parameters ν, ŷt+1

and σt+1.

yt+1 ∼ Student (ν, ŷt+1, σt+1) (3.20)

where ν is the degrees of freedom, ŷt+1 is the forecast value at time t + 1 given that

all information in the data until time t, and σt+1 is the error term at time t+ 1.

In this method compared to SGT, the second seasonal component wt is considered

and the equations are obtained.

ŷt+1 = (lt + γlρt ) st+1wt+1 (3.21)

where

lt+1 = α yt+1

st+1wt+1
+ (1− α)lt

st+m+1 = ζ yt+1

lt+1wt+1
+ (1− ζ)st+1

wt+d+1 = δ yt+1

lt+1st+1
+ (1− δ)wt+1 σ̂t+1 = σŷτt+1 + ξ

Most of the parameters and terms have same explanations as in SGT. The additional

terms are d denoting the seasonal period for the second seasonal component and δ

denoting the smoothing parameter of the second seasonal component.

The algorithms for this model given above is executed on R using rlgt function in

Rlgt package [37].
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3.6 TBATS

The well-known time series methods including ARIMA, ETS and State Space Mod-

els usually cannot handle the data having complex seasonal pattern such as multiple

seasonality, high seasonal frequency or non-integer seasonality for modelling and

forecasting easily.

To avoid such a problem, Livera et al. [39] developed and introduced a model which

can be defined as the generalization of exponential smoothing model for the data with

high frequency in 2011 [40]. The model is called BATS (ω, ϕ, p, q,m1,m2, . . . ,mV ).

The BATS model is an acronym for Box-Cox transformation, ARMA residuals, trend

and seasonal components [39]. Moreover, ω is Box-Cox parameter, ϕ is damping

parameter, p and q are ARMA orders. Lastly, m1,m2, . . . ,mV denote the seasonal

periods.

The BATS model applies Box-Cox transformation to the series yt to avoid nonsta-

tionarity in the variance. This implementation restricts the applicability of the model

only for the series with positive observations, but most of the time series in practice

contain positive observations [39].

The series with Box-Cox transformation is described by

y
(ω)
t =


yωt −1

ω
, ω ̸= 0

log yt, ω = 0
(3.22)

where ω is Box-Cox parameter as mentioned above. Then, the transformed series y(ω)t

can be extended as follows

y
(ω)
t = ℓt−1 + ϕbt−1 +

T∑
i=1

s
(i)
t−mi

+ dt

ℓt = ℓt−1 + ϕbt−1 + αdt

bt = (1− ϕ)b+ ϕbt−1 + βdt

s
(i)
t = s

(i)
t−mi

+ γidt

dt =

p∑
i=1

φidt−i +

q∑
i=1

θiεt−i + εt

(3.23)
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where lt denotes the local level in period t, b and bt represent long-run and short-run

trend, respectively. Furthermore, dt exhibits an ARMA(p,q) with the gaussian white

noise term ϵi having zero mean and constant variance σ2, and s(i)t demonstrates ith

seasonal component at time t. Lastly, the values of α, β and γi for i = 1, . . . , T are

the smoothing parameters in the concept of BATS.

Although the BATS model can handle multiple seasonality, it is unable to handle

non-integer seasonality [39]. For this reason, Livera at al. developed the trigonomet-

ric representation of ith seasonal component sit based on Fourier series and introduced

TBATS (ω, ϕ, p, q, {m1, k1} , {m2, k2} , . . . , {mV , kV }) where T stands for trigono-

metric representation of the seasonal component and remaining letters have the same

meaning as in the BATS model. Moreover, the parameters of the TBATS model are

the same as in the BATS model. The one additional parameter is ki representing the

number of harmonics for the seasonal component s(i)t .

The trigonometric representation of the seasonal component of s(i)t in the concept of

the TBATS is expressed by the following equations.

s
(i)
t =

∑ki
j=1 s

(i)
j,t

s
(i)
j,t = s

(i)
j,t−1 cosλ

(i)
j + s

∗(i)
j,t−1 sinλ

(i)
j + γ

(i)
1 dt

s
∗(i)
j,t = −sj,t−1 sinλ

(i)
j + s

∗(i)
j,t−1 cosλ

(i)
j + γ

(i)
2 dt

(3.24)

where γ(i)1 and γ(i)2 are the smoothing parameters and λ(i)j = 2πj/mi. Also, s(i)j,t and

s
∗(i)
j,t define the stochastic level of the ith seasonal component, and stochastic growth

of ith seasonal component, respectively.

In the concept of TBATS model, the best parameter values are selected among the

values obtained from the decomposition of the time series by Akaike information

criteria (AIC) [40].

TBATS model deals with typical nonlinear features occuring in the real time series

frequently and takes into account the autocorrelation structure of residuals [39]. The

most important advantage of this technique is that it can be used for the data having

high or non-integer seasonal frequency [40]. On the other hand, the most important

disadvantage of this model is working slowly when modelling long time series. In

26



order to implement this methods in R, tbats() function from forecast package

is used.

3.7 STL Decomposition

Time series data display various behaviours which are trend, seasonality and cycles.

It is generally useful to decompose a time series into its components that represents

those patterns individually.

For this purpose, a variety of decomposition techniques have been developed since

the first decomposition technique by Person (1919) [41].

The seasonal trend decomposition procedure based on loess (STL), [42] is one of the

decomposition techniques used for additive decomposition for the time series [41].

STL procedure decomposes time series of yt into three additive components of trend

Tt, seasonal St and remainder Rt.

Among these three components, trend component shows the variation at the low fre-

quency of the data. Then, seasonal component represents the variation at or near the

seasonal frequency of the data. Lastly, remainder component exhibits the remaining

variation in the data after removing both trend and seasonal component [42].

Therefore, every time series can be written as

yt = Tt + St +Rt t = 1, . . . , N. (3.25)

This decomposition procedure works by applying loess smoother that builds the lo-

cally weighted polynomial regression at each data point through the data sequen-

tially [41]. While doing this, it uses the parameters obtained from the eigenvalues

and frequency response analysis of the series [43].

STL decomposition is formed by two recursive procedures, inner and outer loops. In

each inner loop, seasonal component and trend component are updated by seasonal

smoothing and trend smoothing, respectively. At end of each inner loop, the remain-
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der component is obtained by using both seasonal and trend components estimated in

the inner loop [44].

The details for inner loop are given below.

Suppose that seasonal and trend components at kth iteration are denoted by S(k)
t and

T
(k)
t , respectively. Also, the inital value for T (k)

t is zero.

Step 1: Detrending

At (k + 1)th iteration, the detrended series is obtained by removing the trend compo-

nent T (k)
t from the series yt, i.e

yt − T
(k)
t (3.26)

Step 2: Sub-Cycle Smoothing

At this step, the subseries obtained at the previous step are smoothed by applying

loess smoother to obtain cycle-subseries, C(k+1)
t which is transitional seasonal series.

Step 3: Low Pass Filtering of Smoothed Cycle Subseries

First, low pass filtering and then loess regression is implemented to C(k+1)
t to deter-

mine ant remaining trend, L(k+1)
t .

Step 4: Detrending of Smoothed Cycle Subseries

The seasonal component S(k+1)
t is estimated by removing L(k+1)

t obtained at the pre-

vious step from the cycle-subseries C(k+1)
t . That is,

S
(k+1)
t = C

(k+1)
t − L

(k+1)
t (3.27)

Step 5: Deseasonalizing

The seasonally adjusted series is obtained by substracting S
(k+1)
t computed at the

fourth step from the original data, i.e

yt − S
(k+1)
t (3.28)

Step 6: Trend Smoothing

At the last step, a loess smoother is applied to the seasonally adjusted series coming

from the previous step to get the trend component T (k+1)
t .

Therefore, as given above, it is seen seasonal smoothing part of the inner loop is step
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2, 3 and 4. Trend smoothing part is step 6 [42].

At the end of the each inner loops, the remainder component R(k+1)
t is calculated by

using the following formula.

R
(k+1)
t = yt − S

(k+1)
t − T

(k+1)
t (3.29)

If any Rt values are considerably large, the corresponding weights are calculated.

Then, those weights are included in the next inner loop to reduce the effect of outlier

which is the result of the outer loop of the previous iteration [44].

STL procedure is frequently used for time series decomposition compared to other

methods since it has several advantages. As highlighted above, this procedure is

based on pure numerical methods and does not depend on any mathematical formula.

That’s why it is easy to apply this method to large number of the series [41]. Also, it

has capability of handling data with outliers and any type of seasonality addition to

quarterly and monthly data [24].

In order to carry out STL procedure in R, stl() function under stats package is

used.

3.8 Support Vector Machine

Support Vector Machine was proposed by Boser based on his study with Vapnik and

Guyon in the area of statistical learning where the aim is to minimize the expected

risk with respect to cost function in 1992 [45], [46].

The main work of SVM is to divide data into classes by finding a hyper plane with

the greatest margin which is the distance between hyper plane and the closest data

point on the each side. As understood from this definition, Support Vector Machine

was originally designed for the classification tasks. However, the algorithm of the

SVM was adapted to regression problems [47]. Since then, the SVM has been called

Support Vector Classification denoted SVC if the interested problem involves the

classification and called Support Vector Regression denoted SVR if the interested

problem involves regression [48].
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Time series forecasting can be considered as autoregressive in time. If so, SVR is

used for the forecasting task [49]. Thus, the concept of SVR is explained in this

section.

Support Vector Regression builds the model based on the given data and forecasts the

future observations using this trained model. The general form of the SVR is given

below [46].

f(x) = (w · Φ(x)) + b (3.30)

where x shows the input vector, w is the weight vector for the input vector, Φ is the

kernel function which will be explained later and b is the bias term.

Assume that a linear problem is discussed. If so, the SVR equation becomes

f(x) = (w · x) + b. (3.31)

In order to find the best hyper plane under this circumstance, the following cost func-

tion denoted by Q should be minimized.

Q =
1

2
∥w∥2 + C

N∑
i=1

Lε (xi, yi, f)

subject to


yi − wxi − b ≤ ε+ ξi

wxi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(3.32)

This cost function can be explained in three parts. In the first part of it, we have a

term that arranges the weight size. It also reduces the large weight which may give

rise to large variance. In the second part, the penalty function C is introduced. This

function imposes a penalty on the error terms being larger than ±ε via ε-insenstive

loss functon Lε for each training observations. These large error terms are called

slack variables and denoted by ξ and ξ∗ for the errors greater than ε and less than ε,

respectively. The last part of the equation shows the constraints determined by the

error term [49].

Minimizing the cost function Q given above is an optimization problem. This prob-

lem is solved by Quadratic Programming optimization depends on Lagrangian theory.
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During this optimization process, the model parameters w and b are also estimated

based on the given data. The weight vector w is obtained from the derivation of the

following equation

w =
N∑
i=1

(αi − α∗
i )xi (3.33)

where α and α∗ are the Lagrange multipliers corresponding to some training observa-

tions. Therefore, the problem is solved by using this formula in the equation (3.30).

Then, we have the following equation as a solution for unknown data point.

f(x) =
N∑
i=1

(αi − α∗
i ) · ⟨xi, x⟩+ b. (3.34)

In this solution, not all of the training points are used. Some of them have zero La-

grange multipliers. In other words, the same solutions are obtained even if these ob-

servations are dropped. The observations in the training set having nonzero Lagrange

multipliers are called the support vector and decide the shape of the solution [49].

If the observations have considerably large multipliers values, the process demands

more computation to find the final solution, and if they have considerably smaller

values, the process demands less computation to find the final solution.

As stated above, the SVR approach for the linear problem has been described up

to this point. For the problem which requires nonlinear optimization problem such

as time series prediction, a function that maps the data from input space into high

dimensional space, also called the feature space, making the relationship between

output and input variables linear is considered. Then, the following solution function

is obtained for the unknown data point in the nonlinear problem.

f(x) =
N∑
i=1

(αi − α∗
i ) ·K (xi, x) + b (3.35)

whereK denotes the kernel function Φ given in the equation (3.30). There are several

kernel functions used for this mapping process such as Linear, Sigmoid, Radial Basis

and Polynomial. The choice of Kernel function is one of the most important factor
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affecting accuracy of SVR [50]. Rüping stated [51] that Radial Basis Function shows

the best performance in the time series forecasting compared to other functions. The

formulation of Radial Basis Function is given below.

Φ(x) = K (xi, xj) = exp
(
−γ ∥xi − xj∥2

)
, γ > 0 (3.36)

where xi and xj are the data points and γ is the kernel parameter.

In this concept, the type of both penalize and kernel functions, the value of the pa-

rameter of kernel function, and ε should be set by the user, except the Lagrange

multipliers before the implementation. In R programming, the process is applied by

using svm() function in e1071 package. The parameter tuning is also done by

using tune() function in the same package [52].

3.9 Random Forests

Random forests, also called a random decision forest [53] is one of the most popular

and used ensemble learning algorithm in the field of data mining. The method was

proposed by Breiman in 1984 for the use in the classification or regression problem

like SVM [54].

It has also been used in the field of time series forecasting for various purposes in-

cluding weather forecasting, solar radiation forecasting, biostatistics etc. [55]. The

random forest algorithm was developed on the basis of two concepts, bootstrap ag-

gregating, also known as bagging introduced by Breiman, and randomly selection of

features in the data under study.

For a given data set with n observation and m features, the random subset with n′

is created by technique of sampling with replacement, known as bootstrapping, to

construct an individual decision tree at first. This is so-called bootstrapped sample.

The number of n′ is equal to n being the size of the original data, and one-thirds

of the size n′ is formed by the replicated observations [56]. During the resampling,

the observations that are not taken into the bootstrapped sample is called out-of-bag

(OOB) observations which has importance in terminating the algorithm [55].
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Then, p features out of m features are selected randomly at the each node of the tree

to make it decorrelated.The value of p is generally taken as
√
m for the classification

problem [57] andm/3 for the regression problem [58]. However, the choice of p does

not affect the performance of the method entirely [55].

Among the selected p features, the RF algorithm allows for using only one feature

which is selected via an impurity measure at each split in the tree. During this selec-

tion, although they are known as strong predictors, they are not taken into account by

(m− p)/m of the splits on the average. By this way, the other predictors are given a

chance to ensure the decorrelation [57].

After selection of the bootstrapped sample with size n′ and p features, Classification

and Regression tree (CART) without pruning is used to construct the individual tree

on this sample [56]. Then, this procedure is repeated B times, and the grown tree is

added to ensemble each time to make it grown. Then, the final decision is obtained

by aggregating the results of B trees. To do so, mean or median of the outputs is

calculated in the regression problem, or the majority rule is used for the classification

problem.

The approach that RF used not only ensures the stability of the model, but also im-

proves the accuracy. Moreover, it reduces variance and protects the model from over-

fitting problem [55].

The RF procedure explained above can be summarized as follows

1. For b = 1 · · ·B

• Draw a bootstrap sample with size n′ from the training data.

• Build a random forest tree Tb on the bootstrapped sample by replicating

the following steps until the tree Tb is grown.

– Select p predictors among m predictors randomly.

– Find the predictor that best split the node into two nodes.

2. To find the final decision, aggregate the outputs of the ensemble of the trees Tb

where b = 1 · · ·B. i.e,

For regression problem
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f(x) = 1
B

∑B
b=1 Tb(x)

For classification problem

f(x) = majority vote(Tb(x))B1

where f(x) is the predicted value, Tb(x) is the output obtained from tree Tb, B is

the number of trees. m and p are the total number of features and randomly selected

features, respectively.

In R programming, the process is applied by using randomForest() function in

randomForest package. The parameter tuning is also done by using tuneRF()

function in the same package [59].

3.10 Extreme Gradient Boosting (XGBoost)

Boosting is an ensemble learning algorithm proposed by Schapire in 1990 to pro-

duce accurate predictions using decision trees [60]. This technique aims to generate

a strong learner by combining a set of weak learners which are decision trees. In this

technique, the trees are grown sequentially and slowly [57]. In other words, infor-

mation obtained from the current tree is used to grow the next tree. Therefore, the

trees are not independent unlike bagging defined in the previous method, which is

Random Forests. Boosting algorithm has been used as a solution for both regression

and classification tasks since its first implementation in 1990.

Several learning algorithm based on the idea of boosting have been suggested in the

literature. Gradient Boosting, proposed by Friedman [61], is one of them. After this

technique, the boosting algorithm has started to be considered as a general modelling

algorithm regarded as an optimization algorithm using gradient descent method. As

stated, the algorithm builds models in the negative sense of partial derivative of loss

function using gradient descent approach [62]. This algorithm can also be seen as a

numerical optimization approach whose aim is to form an additive model minimizing

the loss function [63].

In GBM, the process starts with fitting a tree to the data, initially. Based on this initial

tree, predictions are procured and the residuals are obtained. Afterward, a new tree
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is fitted using the residuals and it is added into the previous fitted function. Then, the

updated residuals are created.

This procedure is running until the convergence is satisfied and the final decision is

made by averaging for the regression tasks and using majority rule for the classifica-

tion tasks.

In Gradient Boosting, the main focus is to repair the previous model by assigning

weights to the training observations. If the training observation has the largest error,

the more weight is assigned to this observation [64]. By this way, the algorithm is

both prevented from over fitting problem and produces more accurate results.

XGBoosting, which is short for Extreme Gradient Boosting, is another learning al-

gorithm introduced by Chen and Guestrin in 2016 [65]. The method involves some

modification on the Friedman’s Gradient Boosting algorithm. Due to these modifica-

tions, this approach can also be interpreted as an efficient and scalable application of

Friedman’s method [66].

According to Chen and Guestrin [65], XGBoosting can be described as an ensemble

of Classification and Regression Trees (CART). Thus, it is so-called Tree Boosting

[64]. The reason is that a single tree may not be adequate to obtain good results, so

it is probable to get good results by considering multiple trees. The final results are

obtained by summing each tree’s result. Therefore, the model can be written as

ŷi =
K∑
k=1

fk (xi) , fk ∈ F (3.37)

where K is the number of trees and fk denotes the function in the functional space F .

In order to find out the set of functions used in the model, the following objective

function consisting of two components, loss and regularization, is defined as follows

[67]

Obj =
n∑

i=1

l (yi, ŷi) +
K∑
k=1

Ω (fk) , fk ∈ F (3.38)

where l denotes the differentiable convex loss function measuring the difference be-

tween prediction ŷi and the real value yi, and Ω is the regularization term penalizing

the complexity of the model to prevent over fitting.
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This objective function cannot be optimized using traditional optimization methods

because the functions in the model behaves like parameters [67]. To minimize the

objective function, the addition of training functions are considered, then we have the

following equation as an objective function

Obj =
n∑

i=1

l
(
yi, ŷ

(t)
i

)
+

K∑
k=1

Ω (fk)

=
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft (xi)

)
+ ΣK

k=1Ω (fk) .

(3.39)

In order to simplify the optimization of the objective function, the two order of Taylor

polynomial is used in the previously defined function. Then, the optimization function

at tth iteration is defined

Obj(t) ≈
n∑

i=1

[
l
(
yi, ŷi

(t−1)
)
+ gift (xi) +

1

2
hif

2
t (xi)

]
+

K∑
k=1

Ω (fk) (3.40)

where gi = ∂ŷ(t−1)l
(
yi, ŷi

(t−1)
)

is the gradient and hi = ∂2
y(t−1)l

(
yi, ŷi

(t−1)
)

is the

hessian. Afterward, the objective function can be also rewritten by removing the

constant terms

Obj(t) ≈
n∑

i=1

[
gift (xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) . (3.41)

After this, the mapping q : Rd → {1, 2, . . . , T} is defined to map the input to the

index of the region. In addition to this, a vector ω, which represents the score of each

region, is defined. The function of ω is given below

ft(x) = ωq(x)

ω ∈ RT , q : Rd → {1, 2, . . . , T}
(3.42)

To calculate the regularization term in the objective function, the following equation

is concerned.

Ω(ft) =
1

2
λ

T∑
j=1

ω2
j + γT (3.43)

where λ and γ are the regularization parameters.

After applying some mathematical process on the objective function, the following

gain function used to score a leaf node during splitting is formed [68].

Gain =
1

2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ (3.44)
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where I = ILUIR. In this equation, the first three terms denotes the score on left,

right and original leaf, respectively [68] and γ is a regularization parameter as stated

previously.

Unlike Friedman’s Gradient Boosting, XGBoosting builds tree in a parallel way that

uses all of the CPU’s of the machine and this makes the algorithm faster [64]. Thus,

in addition to theoretical developments, this improvement is one of the key factor

behind the good performance of XGBoosting [68].

In R programming, the process is applied by using xgbar() function in the package

of forecastxgb [69].

3.11 Artificial Neural Network

The scientists have started to carry on some studies about the learning processing in

the human brain that can be described as a complex, nonlinear and parallel computer

since the early 1950s [43]. In the light of these studies, ANN was developed as

a mathematical model simulating the human neural biology to solve the nonlinear

problems. Since its first implementation, it has been used in the several areas and

gaining in popularity due to its characteristic properties.

The one of its significant properties is containing non-linearity in its structure. Thereby,

the ANN models are able to capture and model complex nonlinear problems. Also,

the ANN models can be described as universal approximators that approximate to

large class of target functions accurately [2]. They don’t require any modelling as-

sumptions. Instead, they are specified by the data under the study. On the other hand,

ANN models suffer from being time consuming since they require high level of mod-

elling complexity [43]. The general structure of ANN models is illustrated in Figure

3.1.
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Figure 3.1: The General Structure of ANN Models [70]

The ANN consists of three layers, input layer, hidden layer and output layer. The

input layer is the one where data is introduced to the network. In the hidden layer,

the information in the data are proceed. Lastly, the output layer denotes the predicted

value based on the given inputs [71].

As illustrated in Figure 3.1, the units called neuron in the layers are connected to each

other. These connection parameters are called weights used to capture the complex

structure in the data [27].

The working structure of ANN model is illustrated in Figure 3.2.

Figure 3.2: The Working Structure of ANN Model [70]
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The working structure of ANN has three steps which are multiplication, summation

and activation as shown in Figure 3.2. At the first step, the given inputs are multiplied

by the weights. Next, these weighted inputs are summed. Then, a bias term is added

to adjust the threshold of the transfer function known as an activation function. At

the final step, the summation of the weighted inputs and bias are transformed into the

final result by the activation function.

The mathematical formulation of this process is given below.

y(t) = F

(
m∑
i=0

wi(t) · xi(t) + b

)
(3.45)

where xi(t) is the input in discrete time twhere i goes from 0 tom, wi(t) is the weight

value in discrete time t, b is bias, F is an activation function, and yt is the output value

in discrete time t.

In this formulation, the most essential component for the ANN is the activation func-

tion denoted by F . It will characterize the mathematical form of the ANN and bring

nonlinearity into the network. The type of the activaiton funciton determines the suc-

cess of the model, and depends on the type of the problem. It is selected from the

following set of functions: set function, linear function, nonlinear function (sigmoid,

hyperbolic, relu, etc.) [70].

Among these functions, the sigmoid function that produces output in the range be-

tween 0 and 1 is a commonly used activation function in practice [72].

sig(x) =
1

1 + exp(−x)
. (3.46)

In addition to the activation function, training is another essential factor for the suc-

cess of the model. [71]. Back-propagation (BP) algorithm is the most commonly

used algorithm for the training process among several algorithms for this purpose.

In this algorithm, the weights are updated by the Gradient Descent Algorithm based

on the error values calculated by the difference between actual value and predicted

value. This process is repeated until convergence is achieved. In other words, the

algorithm runs until obtaining set of weights that minimizes the cost function such as
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SSE, MSE.

The ANNs can be categorized into two major class, dynamic and static. If the output

values are produced from the given input directly, the ANN is called a static network

such as Feed-forward Neural Network. If the output of the network are produced

from the current and previous input, output and hidden states, it is called a dynamic

network such as Recurrent Neural Network [73].

The information flows of Feed-forward Neural Network and Recurrent Neural Net-

work are shown in Figure 3.3.

Figure 3.3: The information flows of Feed-forward Neural Network and Recurrent

Neural Network [70]

In this study, both types of NNs are considered because capturing nonlinearity in

time series forecasting is an essential process to improve the accuracy. In time series

forecasting, the lagged values of the series is given to the network as inputs [71].

3.11.1 Feed-Forward Neural Network

As defined in the previous section, the network architecture is called the feed-forward

neural network if the outputs are produced by the inputs without feedback. In other

words, the inputs do not take any feedbacks coming from the outputs through the

networks, and the information in the data is transmitted in only one direction.

In feed-forward neural network, the number of layers, the choice of activation func-

tion and the number of connections between neurons are not restricted [70].
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The feed-forward neural networks can be categorized into two groups based on the

number of layers in their structure. These groups are single layer feed forward neural

networks and multi-layer feed forward neural networks.

The network architecture of single layer feed-forward neural network is illustrated in

Figure 3.4.

Figure 3.4: The Network Architecture of Single Layer Neural Network [70]

Although single layer feed forward neural network has two layers which are input

and output layers, the input layer is not taken into account because the computation

process does not occur in that layer. In this NNs, inputs are carried forward by the

weights, and output is produced by the neurons in the output layer [74]. This type of

NNs can solve only linear problems and it is very similar to AR models [70].

If a hidden layer is inserted between input layer and output layer, then the feed-

forward neural networks is able to capture the nonlinearity in the data. In this case,

the feed-forward neural networks is called the multi-layer feed forward neural net-

works. The architecure of multi-layer feed forward neural networks is represented in

Figure 3.5.
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Figure 3.5: The Network Architecture of Multi-Layer Neural Network [70]

Both types of NNs are generally used back-propagation algorithm to train the net-

work. However, the single hidden layer feed-forward neural networks is the most

widely used model for time series and forecasting [2].

The structures in Figure 3.4 and Figure 3.5 are called a fully connected neural network

because all of the neurons in the layer are connected to neurons in the next layer. If

some of connections between neurons are not established, then it is called a partially

connected neural networks.[74].

In R programming, the process is applied by using nnetar() function in forecast

package [36].

3.11.2 Recurrent Neural Network

Two properties of the feed-forward neural networks make them useless in the se-

quence learning. The first one is that the feed-forward neural networks require an

independence assumption between training and test data. If the points in the data

depends on each other such as time series data, this assumption is violated naturally

[75]. The second one is that the feed-forward neural networks try to make both input

and outputs a fixed length vector. Therefore, it becomes an inappropriate model for

the prediction in time series data [76].
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RNNs were developed particularly to process the information in the sequential data

or time series data because of these reasons. The network architecture of RNN is

illustrated in Figure 3.6.

Figure 3.6: The Network Architecture of Multi-Layer Neural Network [70]

The working structure of RNN is similar to the feed-forward neural network, but there

is one important difference which is the feedback loop. In feed-forward neural net-

work, the signals are transmitted forward from input to output. However, the signals

are transmitted both forward and backward in RNN structure [75]. This working pro-

cess creates internal connections between the hidden units. In addition to this, the

loops are introduced. These internal connections improve the capability of the usage

of the previous observations while making predictions. Each layer in an RNN has a

repetitive link with a delay associated with it.

Thus, the previous outputs are said to be stored in some form of "memory" and the

portion of the RNN that maintains a state at a given temporal interval is said to be

the "memory cell". These memory cells can also be modified to form other, more

complex cell types [76]. As opposed to its advantages in the sequential data, RNNs

suffer from vanishing of gradient when long term dependence exists.[75].

The method is implemented in R by using train() function with an argument rnn

from rnn package. [77]
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3.11.3 Long Short Term Memory

The standard recurrent neural networks suffer from the problem of failing to converge

to the optimum minima called vanishing of gradients when the problem in the study

involves the long term dependencies, as stated in the previous section. Long short

term memory was developed as a special type of RNN by Hochreiter and Schmidhu-

ber in 1997 with the motivation of solving this problem [78]. Since its first applica-

tion, the method has been improved by many people [79].

The standard RNNs have a structure consisting of series of repeated simple hidden

layers. As opposed to it, the hidden layers in LSTM are more complex. The recurrent

hidden layer in LSTM includes units called memory blocks that are able to remember

the value recorded in any time point in the data [80]. Also, each memory block

contains units called a gate which defines the working structure of LSTM. The gates

in the memory block are an input gate, an output gate and a forget gate. The memory

blocks also have a self-connected memory cells. The input gate controls activation

item entering the memory cell. The output gate knows which cell to activate for

filtering and passing to the next network. The forget gate helps the network to forget

past inputs and reset the storage unit. In addition, multiplier gates were carefully used

to allow memory cells to access and store information for long periods of time [75].

By this working architecture, LSTM can reduce the effect of problem of vanishing

gradients and becomes an appropriate method for the problems involving long term

dependencies. The working architecture of LSTM is illustrated in Figure 3.7.
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Figure 3.7: The Working Architecture of LSTM [70]

The method is implemented in R by using train() function with an argument

lstm from rnn package [77].

3.11.4 Bayesian Regularized Neural Network

A Bayesian neural network was developed as a type of neural network applying

Bayesian approach in 1992 [81], [82]. Since then, the model has been applied in

many areas. The structure of BNN is similar to multi-layer feed-forward neural net-

work, but it uses Bayesian and regularization approaches in the networks [83].

In the model, the connection parameters of the networks called weights are consid-

ered as random variables and optimized according to Bayesian concept. This means

that a prior distribution is assigned to each weight. Thereby, the model is able to

produce smooth fits. Then, the posterior distributions of the weights are evaluated by

introducing the data to the network which helps the model in producing accurate fit.

Therefore, the BNNs can produce smooth and accurate fits due to usage of prior and

posterior distributions. The details about this working structure is detailed below.

The model minimizes the following objective function.

O = αED + (1− α)EW (3.47)

where ED is the sum of the square errors in the network outputs, EW is the sum of
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the squares of the weights, and α is the regularization parameter.

The general choice of prior distribution in BNN is the following normal density which

puts more weights on the smaller parameter values.

p(w) =

(
1− α

π

)L
2

e−(1−α)EW (3.48)

where L denotes the number of weights. Then, the posterior distribution is calculated

as follows.

p(w|D,α) = p(D|w, α)p(w|α)
p(D|α)

(3.49)

where D denotes the observed data. The probability density function of D can be

derived as follows by assuming normally distributed errors.

p(D|w, α) =
(α
π

)M
2
e−αED . (3.50)

If we put the prior distribution of the weights and probability density function of the

observed data in the posterior distribution equation, the posterior distribution of the

weights can be formulated as follows.

p(w|D,α) = c exp(−O) (3.51)

where O is objective function and c is normalizing constant.

In addition to weights, the regularization parameter denoted by α is also optimized

according to Bayesian approach in BNN via following function.

p(α|D) =
p(D|α)p(α)

p(D)
. (3.52)

In the optimization process of both weights and regularization parameter, The Nguyen

and Widrow algorithm is considered. This algorithm assigns initial weights to param-

eters and optimize them using Gauss-Newton algorithm [84].

The method is implemented in R by using brnn() function from brnn package

[85].
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3.12 Hybrid Methods

Most of the time in practice, the time series data contains complex structure like many

problems in the real-world. It means that the time series data usually exhibits linear

and nonlinear patterns. They occasionally consist of pure linear or pure nonlinear

structure. Because of this feature of the data, it is hard to understand the character-

istic of the data under study. This case causes that most of the unique time series

forecasting methods suggested as the best model cannot be universal because they

suffer from capturing data structure. For example, many popular statistical time se-

ries models including ARIMA and ETS produce the forecast values by using the lin-

ear combination of past observations and this results in lack of modelling nonlinear

component in the data. On the other hand, machine learning methods such as Neural

Network perform poorly for the linear problem. Therefore, using an hybrid approach

by combining both statistical and machine learning methods generates a model which

is able to model both linear and nonlinear structures in the data and becomes a good

and efficient alternative for forecasting.

According to Zhang[2], the time series consists of linear correlation structure and

nonlinear component.

yt = Lt +Nt (3.53)

whereLt andNt indicate linear and nonlinear components, respectively. Both of these

components are supposed to be estimated from the studied series. First, the statistical

model such as ARIMA, ETS or TBATS models the linear component. Then, the

model residuals including nonlinear pattern of the data is calculated by using the

following equation.

et = yt − L̂t (3.54)

where et is the model residuals at time t, yt is the actual value of the series at time

t, and L̂t is the estimated forecast value at time t. At this step, the linear model

may not be adequate, although no violence is seen in the residual analysis which
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cannot identify the nonlinear pattern in the data. To be able to catch the nonlinear

relationship, the model residuals are modelled by machine learning methods such as

Neural Networks.

et = f(et−1 . . . , et−n) + ϵt (3.55)

where f is the nonlinear function used by machine learning model and ϵt is the ran-

dom error.

At the end, the final forecast values are obtained by combining forecasts form the

linear model and forecasts of the residuals.

ŷt = L̂t + N̂t. (3.56)

In conclusion, this methodology has two steps. In the first step, the linear part of

the data is modelled by linear models like ARIMA, ETS. Then, machine learning

methods like NN is used to model the residuals of the linear model.

3.13 Performance Measures

3.13.1 Forecast Accuracy Measures

In the literature, there are several measures for comparing the forecasting perfor-

mance of the model. Among these measures, three accuracy measures are used in

this study.

3.13.1.1 Symmetric Mean Absolute Performance Error (sMAPE)

The symmetric mean absolute percentage error (sMAPE), developed by Makridakis

in 1993 [86], is the modified version of MAPE where the divisor is half of the sum of

the actual values and forecast values [87].
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sMAPE is defined as follows:

sMAPE =
2

h

n+h∑
t=n+1

|yt − ŷt|
|yt|+ |ŷt|

∗ 100(%) (3.57)

where yt is the value of time series at time t, ŷt is the forecast values, h is forecasting

horizons and n is the number of data points in the sample.

The model having smallest sMAPE is considered a better forecasting technique in the

comparison.

3.13.1.2 Mean Absolute Scaled Error (MASE)

In 2006, Hyndman et al. proposed a new measures for forecasting accuracy called

MASE [88].

This measure provides mean absolute error of forecast values which is divided by in

sample mean absolute error from naïve forecast method.

MASE is described as follows:

MASE =
1

h

∑n+h
t=n+1 |yt − ŷt|

1
n−m

∑n
t=m+1 |yt − yt−m|

(3.58)

where yt is the value of time series at time t, ŷt is the forecast values, h is forecasting

horizons,n is the number of data points in the sample and m is the time interval

between successive observations.

If MASE value is less than 1, it indicates the method results in smaller error than

naïve forecast method. If it is greater than 1, the reverse result can be concluded.

The aim of preference of this measure in M-Competition is to make a correction on

the problems arising from sMAPE and procure an alternative [12].

3.13.1.3 The Arithmetic Mean of sMAPE and MASE

In addition to two popular accuracy measures defined above, their arithmetic mean is

also considered as accuracy measure since it is hard to decide for best model when one
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model has the smallest sMAPE, but higher MASE compared to the other methods. In

order to calculate this suggested measure, we will use the following formula

The average of both measures is described as follows:

Avg =
(sMAPE/100) + (MASE)

2
(3.59)

3.13.2 Computational Time

The computational time required by each method expressed above is considered in

this study addition to three accuracy measures. To do so in R, sys.time() function

is used and times for each method is recorded in terms of hour.
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CHAPTER 4

ANALYSIS

In the analysis section, the selected series from the M4 competition data set containing

series with different time frequencies are forecasted via the models explained in the

Chapter 3. Then, the models are compared in terms of their forecast performance via

some performance measures detailed in the previous chapter. R Studio with version

1.3.959 is used for the implementation and comparison of the models.Therefore, the

analysis process are explained according to the following context in this part.

Firstly, the data sets used in the study is introduced. Then, data preprocessing tech-

niques applied is explained. After this, selected subsets of the series from each time

frequency are introduced using both visual and numerical ways. Then, the results

of empirical analysis for the series from each time frequency are represented in both

numerical and visual ways, seperately.

4.1 Data Introduction

In this study, the M4 competition data set, created by Makridakis on December 28th,

2017, is used. The main motivation behind this data set is to learn the ways of improv-

ing forecasting accuracy and using these ways in the theory and practice of the fore-

casting concept.The M4 competition data set has 100000 series consisting of yearly,

quarterly, monthly, weekly, daily and hourly series from several areas including mi-

cro, finance, macro, industry, demographic and other. The number of 100000 series

are taken from the database of the National Technical University of Athens (NTUA)

called ForeDeCK which includes 900000 time series randomly [12].
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The classification of number of the series in the data set according to their time inter-

val and domain is given in Table 4.1.

Table 4.1: Number of M4 series for each frequency and area

Time\Domain Micro Industry Macro Finance DG Other Total

Yearly 6538 3716 3903 6519 1088 1236 23000

Quarterly 6020 4637 5315 5305 1858 865 24000

Monthly 10975 10017 10016 10987 5728 277 48000

Weekly 112 6 41 164 24 12 359

Daily 1476 422 127 1559 10 633 4227

Hourly 0 0 0 0 0 414 414

Total 25121 18798 19402 24534 8708 3437 100000

As seen in Table 4.1, almost half of 100000 series are monthly series. The number of

monthly series is followed by quarterly series, yearly series, daily series, hourly and

weekly series, respectively. On the other hand, the domain of micro has the maximum

number of series among 100000 series, and it is followed by finance, macro, industry,

demographic and other in terms of number of series, respectively.

During the determination of the number of series in terms of time interval between

successive observations and domains for M4 Competition, their usage frequencies

and importance are considered. For example, monthly series are used more frequently

than yearly or quarterly series in the field of business that includes micro, industry,

macro and finance areas. In the same way, micro and financial series are more impor-

tant than demographic series for making the decision [12].

The data set is obtained from the GitHub repository of the competition [89]. It can be

also obtained from the web page of the competition and R package related to it.

In this study, since analysis of 100000 series requires a high computational demand

and takes a long time, 1000 series are randomly selected in terms of time interval with

respect to their corresponding proportion of the series. In this selection, the domain of

the series are not considered because the data set file used in the study did not include

the domain names.
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Also, time frequency and forecast horizon for each series in this study are same as

M4 Competition. For example, 6 forecast values are produced for yearly series whose

time frequency is equal to 1. The number of series from each time frequency with

their corresponding time frequency and forecast horizons are given in Table 4.2.

Table 4.2: Number of series used in the study with frequencies and forecast horizons

Time Interval Yearly Quarterly Monthly Weekly Daily Hourly Total

Number 230 240 480 4 42 4 1000

Frequency (f) 1 4 12 52 7 24

Horizon (h) 6 8 18 13 14 48

4.2 Data Preprocessing

There is an argument about the effect of the pre-processing on the forecast accuracy

in the literature of forecasting especially for machine learning models. Some of them

claims that the stationary must be achieved in both mean and variance while rest of

them claims that machine learning models are capable of modelling any pattern in the

data [1].

The pre-processing on the time series data can be applied in different ways such as

Box-Cox transformation or power transformation, removing trend and deseasonal-

ization. Among these ways, only Box-Cox transformation used to achive stationarity

in variance is considered in this study because both statistical and machine learning

methods and also hybrid approach, except ARIMA and SARIMA, are designed with

the capability of dealing with non-stationarity. Also, auto.arima function, which

is used to fit both ARIMA and SARIMA models, removes the trend in the data with-

out requiring any pre-processing. Therefore, the following alternatives of the series

are used in this study.

• Original Data: None of the pre-processing methods is applied on the series.

• Box-Cox Transformation: Box-Cox transformation is applied on the series

to assess the stationarity in variance. To do so, BoxCox function is used [36].
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In addition to this pre-processing stage, two additional techniques explained below

are used in this study.

• Min-Max Scaling: The series are scaled between 0 and 1 manually before the

application of RNN and LSTM since the network structure has non-linear acti-

vation function. Morever, the computational time becomes shorter, and speed

of the network learning becomes faster with this way [90]. On the other hand,

R functions for BNN and feed-forward neural network scale the data without

needing a manual scaling. The formulation of min-max scaling is given below.

y′t =
yt − ymin

ymax − ymin

(4.1)

where y′t is the scaled observation at time t, yt is the actual observation at time

t, ymin and ymax are the minimum and maximum observations of the series,

respectively.

• Time Delay Embedding: One of the main characteristic structure of the time

series is to have the autocorrelation structure among the observations. In other

words, the observations at time t depends on its past values. Although the sta-

tistical methods evaluate this property, most of the machine learning methods

such as SVM, RF cannot. In this case, the inclusion of past observations in

the model is the best solution to overcome this problem. The inclusion of the

historical information of the series in the analysis is called a Time Delay Em-

bedding [91]. The lag of the included past observations is determined based on

the idea aiming that capturing of the second seasonal lag. For example, the lag

of two years are considered in the yearly series as input data.

4.3 Model Implementation

Since 35080 models are constructed in this study, it is hard to explain the models

numerically such as giving the estimated parameter values or number of neurons in

the hidden layers. Instead, the general working principle of the functions used to

fit both statistical and ML methods will be expressed. The specific details about

54



the models will be given in the following section. Besides, the techniques applied

manually for the model implementation will be mentioned.

4.3.1 Statistical Models

Six statistical methods, which are NAIVE or sNAIVE, ARIMA, ETS, TBATS, LGT

or SGT and STL, are fitted to produce h steps ahead forecasts for the series. Among

these models, sNAIVE and STL are not fitted for the yearly series since these models

are not applicable for the yearly series which does not contain any seasonal compo-

nents. When the models are performed, only necessary arguments for the functions

used to fit the models are tuned. In other words, most of the models used in the study

are considered with their default versions.

4.3.1.1 ARIMA and SARIMA

ARIMA models are fitted for the yearly series by using auto.arima function from

forecast package as stated in the previous chapter. This function applies differ-

encing technique used to remove the stochastic trend if it exists, and makes the series

appropriate for the model suggestion. Then, it determines the order of AR and MA

components by the minimization of Bayesian Information Criterion which is used to

compare the quality of the models. The mathematical form of BIC is given below.

BIC = log(n)k − 2 log(L̂) (4.2)

where n is the length of the series, k is the number of parameters to be estimated

and L̂ is the maximum value of the likelihood function in which the observed data

is used. Then, it decides the best model and estimates its parameters via Maximum

Likelihood Estimation which is a statistical estimation technique based on minimizing

the likelihood that is the probability density calculated from the observed data.

SARIMA models are also fitted by auto.arima function. This function also ap-

plies the unit root tests for seasonal series and removes the seasonal unit root by tak-

ing seasonal differencing automatically, if it exists. Like determining regular AR and

55



MA orders, seasonal AR and MA orders are determined by minimizing BIC. Then,

the best model whose parameters are estimated by Maximum Likelihood Estimation

is selected via BIC.

4.3.1.2 ETS

ETS model is constructed via ets function as stated in the previous chapter. The

algorithm of the function is able to decide type of the ETS model, whether it is mul-

tiplicative or additive, automatically. Then, it decides the best model based on BIC

whose formulation given above, and estimates the parameters of the model using

Maximum Likelihood Estimation.

4.3.1.3 TBATS

TBATS model is fitted by tbats function. In this model, the orders of ARIMA

model are selected via Akaike Information Criteria (AIC). The function also uses

AIC to decide the best model. The mathematical form of AIC is given in the following

equation.

AIC = −2 log(L̂) + 2k, (4.3)

where k is the number of parameters to be estimated and L̂ is the maximum value of

the likelihood function in which the observed data is used.

4.3.1.4 LGT and SGT

LGT that stands for Local and Global Trend model is used to fit the forecast model

for the yearly series instead of SGT since yearly series do not contain any seasonal

components. The model is considered Bayesian extension of Holts Linear Method.

Therefore, the model parameters are estimated according to Bayesian approach. This

means that the prior distribution should be assigned to each parameter to be estimated.

The parameters can be seen in the mathematical form of the model given in Equation
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3.17. Therefore, the list of the default prior distributions of the parameters can be

summarized as follows.

• σ, γ and ξ: Cauchy distribution with 0 location value and the scale parameter

equals to ymax

200
, where ymax is the maximum value in the series.

• b: Normal distribution with mean 0 and standard deviation ymax

200
, where ymax is

the maximum value in the series.

• ϕ : Uniform distribution with bounds -1 and 1, respectively.

• α and β: Uniform distribution with bounds 0 and 1, respectively.

• ρ: Uniform distribution with bounds -0.5 and 1, respectively.

• ν: Uniform distribution with bounds 2 and 20, respectively.

• τ : Beta distribution with shape parameters α =1 and β =1.

The parameters are estimated via Monte Carlo Markov Chain simulations with 4

chains each with 5000 iterations, 2500 warm-ups that identifies the early stage of

the simulations where the sequences get closer to the mass of the distribution [92]

and 1 thin.

SGT, which stands for Seasonal and Global Trend, is used for the series including

seasonal components. This model is a Bayesian extension of Holt-Winters Exponen-

tial Smoothing as stated in the previous chapter. The working structure of the model

is similar to LGT, but more parameters are considered to be estimated compared to

LGT. The prior distributions of the additional parameters are listed below.

• ζ: Uniform distribution with bounds 0 and 1, respectively.

• st for t ≤ m: Normal distribution with mean 1 and standard deviation 0.3.

4.3.1.5 STL Decomposition

The STL decomposition is applied onto the series containing seasonal components.

The model is consturucted via stl function. In the model, the given series are de-
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composed into trend, seasonal and remainder components. Then, the seasonally ad-

justed series are created. After this, forecasts are obtained after the application of

ARIMA or ETS on the seasonally adjusted series and deseasonalizing using the sea-

sonal components belongs to the last year. In this study, only ETS which is the default

model in the function is applied on the seasonally adjusted series.

After constructing the models, the forecast values related to models are produced

by forecast function from forecast package. Then, sMAPE and MASE are

calculated using forecast values and test values for each series, and the average of

each performance metrics are calculated and presented as the final results.

4.3.2 Machine Learning Models

In this part, seven machine learning models which are SVM, RF, XGBoost, Feed-

forward neural network, RNN, LSTM and BNN are fit to produce h steps ahead

forecasts for the series in the study. As stated in the implementation of the statistical

models, models cannot be expressed numerically since the usage of large number of

series. Instead, the general application principles of them will be explained.

4.3.2.1 Support Vector Machine

SVM model is built using svm function from e1071 library. The radial basis func-

tion is used as kernel parameter for all series. Also, the type of SVM is determined as

eps-regression for all of the series. However, the cost parameter which can be defined

as a penalty term in SVM, and gamma parameter controlling the distance of influence

of a single training point are tuned for each series separately by using tune.svm.

The lag of the past values given as input to the model varies in accordance with the

frequency of the series. All of the past observations until capturing the second sea-

sonal lag for all type of series are given to the model as input variables. For example,

last two previous time points are used in the yearly series or last eight previous time

points are used in the quarterly series as input data. SVM model fits the model by

minimizing MSE for the given data.
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4.3.2.2 Random Forest

Random forest is fit via randomForest function. As detailed in the previous sub-

section, the given inputs data changes according to the time frequency of the series

under the study. However, the model makes a selection and takes the necesseary

inputs among given inputs. This selection is done for all of the series by tuneRF

function.

4.3.2.3 XGBoost

XGBoost model is developed using xgbar function. The function applies the row-

wise cross validation to identify the best number of rounds of the iterations for the

boosting algorithm by avoiding overfitting. Just as other machine learning methods,

the time delay embedding matrix is created and given to the XGBoost model as input

data.

4.3.2.4 Feed-Forward Neural Network

Feed-forward neural network model is conducted using nnetar function. The func-

tion fits a feed-forward neural network with single hidden layer. The number of nodes

in the hidden layer and the number of weights are determined by the function for each

series separately. The all previous lags including the second seasonal lag are intro-

duced to the network as inputs, and the network is trained for the given data by BP.

4.3.2.5 Recurrent Neural Network

Recurrent neural network is built via usage of rnn argument in the trainr function.

The past observations are given to the network as the other machine learning models.

Before building the model, both input and output series are scaled to have the values

between 0 and 1. In addition to this data preprocessing step, the function needs three

arguments which are number of hidden layer, learning rate and number of epoch.

All of these arguments are determined manually for each categories of the series by
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cross validation, respectively. The learning rate of the series are selected among the

sample containing 0.01, 0.05, and 0.1 which are the most commonly used weights.

The random sample is taken from each series, and then the model is trained for each

learning rate values. Then, the learning rate producing minimum error is used for

the analysis of the series. The same procedure is repeated for the selection of epoch

number and hidden layers. The interval for epoch number is from 1 to 3000, and the

interval for the hidden layers is from 1 to 30 for all series. After the determination of

the arguments, the model is trained by BP using the scaled inputs. Then, produced

arguments is transformed to original values by applying inverse min-max scaling.

4.3.2.6 Long Short Term Memory

Long Short Term Memory is built via usage of lstm argument in the trainr func-

tion. The model has same building process as Recurrent Neural Network which was

described in the previous section. The only difference is the use of lstm argument

as said before.

4.3.2.7 Bayesian Neural Network

BNN is constructed via brnn function. The function fits a two layer neural networks.

The historical observations whose number varies according to type of the series are

introduced to the network as inputs. The function scales the inputs and outputs auto-

matically while constructing the network. It assigns a normal distribution to weight

as prior distribution and optimize them via the Gauss-Newton algorithm. The model

trains the network using BP and use 1000 epoch numbers to train as default.

After fitting the models, the forecast values related to models are produced by using

predict function in R. Then, sMAPE and MASE are calculated in the way same

as statistical models.
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4.3.3 Hybrid Models

In this study, the following steps are followed to build the hybrid models. Firstly, all

of the statistical models except naive or seasonal naive are used in the modelling of

the linear component of the series. Secondly, machine learning models are performed,

and the corresponding accuracy and performance measures for each model are calcu-

lated. Then, the model outperforming others is selected to model the non-linear part

of the series. However, there are some cases in this study in which the second best

model that demands shorter time for forecasting compared the best one is selected, if

the best model requires more time for forecasting such as 14 days. After determining

the type of machine learning model used as the non-linear component of the hybrid

approach, it is used to construct the hybrid models by combining statistical models.

The hybrid models start with construction of the statistical model on the series. Then,

the residuals are calculated by taking the difference between actual value and the

fitted value. After this, selected ML model takes the residuals and models them. At

the end, both statistical model and ML model produce forecast values, and both of

the values are summed.

4.4 Empirical Analysis

In this part, the model performances for both original and transformed series are rep-

resented and compared in terms of sMAPE, MASE, the average of these two metrics

and their computational time. In addition to this, introductory level summary infor-

mation will be given for each series via both numerical and graphical ways.

As written before, any data pre-processing methods are considered in the analysis of

original series. However, the series are transformed via BoxCox function using λ

values produced by BoxCox.lambda that uses the Guerrero’s method where λ is

produced to minimize the coefficient of the variation [93] before applying the models

in the analysis of transformed series. Then, the inverse Box-Cox transformation is

applied on the forecast values obtained from transformed series via InvBoxCox,

and the final forecast values are produced.
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In the analysis of both original and transformed series, the forecast values for each

statistical model are produced by forecast function from forecast package.

In addition to forecast function, the forecast values of machine learning models

are obtained via predict based on the model. Since hybrid models contain both

statistical and machine learning models, the forecast values for each hybrid model

are obtained by using both forecast and predict functions used for statistical

and machine learning models, respectively.

After obtaining forecast values for the models in the study, sMAPE and MASE are

calculated using both forecast values and test values for each series. In addition to

them, the average of both sMAPE and MASE are calculated. Lastly, the computa-

tional time in hour used for forecasting by each model is recorded and represented as

written above.

4.4.1 Yearly Series Analysis

As mentioned in the introduction part of this chapter, 230 yearly series are randomly

selected among 23000 yearly series being part of the M4 competition data set. The

time interval between successive observations known as time frequency is considered

as 1 for yearly series and 6 steps ahead forecast values are produced for all of the 230

series. In Figure 4.1, the time series plot of four series randomly selected among 230

series are drawn.

Figure 4.1 shows that all of the series are not stationary in mean. The first two series

contain some ups and downs, but last two series show an increasing trend.

The maximum and the minimum lengths of the yearly series used in the study are 13

and 222, respectively. The corresponding frequencies for the maximum and minimum

lengths are 3 and 1, respectively. Moreover, the mode of the length of the yearly

series in the study is 40 appearing 37 times. Besides, there are 12 series whose length

frequency is 1.

The analysis of the yearly series are divided into original series and transformed se-

ries. For both cases, the time frequency is considered as 1, and 6 steps ahead forecast

values are produced as given in the previous section.
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Figure 4.1: The Time Series Plots of Subset of Yearly Series

4.4.1.1 Original Yearly Series Analysis

In this section, 6 steps ahead forecasting performance of the models on the origi-

nal yearly series will be presented with the corresponding accuracy and performance

measures. Besides, some specific details about the models will be given.

Statistical Models: Five statistical methods which are naive, ARIMA, ETS, TBATS

and LGT are fitted to produce 6 steps ahead forecasts for the yearly series. STL de-

composition is not fitted since the concept of the model is not applicable for the

yearly series which does not contain any seasonal components. The principles which

are followed in the construction of the models are given in the previous chapter.

The performance of the models calculated in the way expressed above are represented

in Table 4.3.

63



Table 4.3: The Forecasting Performance of Statistical Methods for Original Yearly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

NAIVE 16.499 3.802 1.983 0.001

ARIMA 16.298 3.467 1.819 0.004

ETS 16.468 3.611 1.888 0.006

TBATS 16.057 3.501 1.830 0.033

LGT 15.131 3.169 1.660 3.303

Table 4.3 shows that the LGT outperforms the other statistical methods in terms of

sMAPE and MASE. In terms of sMAPE, TBATS is the second successful model for

the six steps ahead forecast of the yearly series compared to others. However, ARIMA

is the second successful model compared to others in terms of MASE. That’s why it

is better to compare the model by considering average of these two measures to solve

this contradiction. According to average of both measures, LGT outperforms the

other models, and it is followed by ARIMA, TBATS, ETS and NAIVE. NAIVE has

the lowest forecasting accuracy in terms of all accuracy measures.

As opposed to its best performance, LGT needs more computation time for fore-

casting compared to other models. On the other hand, naive model having the most

inaccurate forecast values demands the shortest time among all of the statistical mod-

els.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, feed-forward neural network, RNN, LSTM and BNN are fit to

produce six steps ahead forecasts for the yearly series. As stated before, the lag of

last two years observations are used as input variables in the training process of the

models for yearly series. Moreover, the learning rate of the selected rates for RNN

and LSTM are 0.05 and 0.1, respectively. Both of the models have 17 hidden layers,

and use 1000 epoch for training. The performance of the models are represented in

Table 4.4.
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Table 4.4: The Forecasting Performance of Machine Learning Methods for Original

Yearly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 15.018 3.271 1.710 0.030

RF 19.229 4.516 2.354 0.003

XGBoost 17.905 3.937 2.058 0.026

NNETAR 22.997 5.192 2.711 0.003

RNN 5.482 1.159 0.607 0.826

LSTM 8.008 1.885 0.982 1.520

BNN 12.089 2.495 1.308 0.002

Table 4.4 shows that the RNN clearly outperforms the other ML models in terms of all

accuracy measures. Additionaly, LSTM can be stated as the second superior model

for the forecasting of original yearly series based on all accuracy measures. On the

other hand, feed-forward neural network called NNETAR shows the worst forecasting

performance compared to the other methods in terms of all accuracy measures. In

addition to NNETAR, RF model gives insufficient forecasting accuracy among all

machine learning for the six steps ahead forecasting of the original yearly series.

In addition to comparison of the models in the accuracy measures, the models are

compared based on their computational time used for forecasting. LSTM takes the

longest time in hour to produce the forecast values. After this, RNN being the superior

model needs the second longest time to predict the future values for yearly series. On

the other hand, the shortest time in hour belongs to the BNN. Besides, RF considered

as one of the insufficient forecasting model produces the forecast values in shorter

time compared to other machine learning models except BNN.

Therefore, RNN is the best ML models to produce the six steps ahead forecasts com-

pared to other ML models in the study, selected to model the residuals coming from

the statistical models in the hybrid models.
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Hybrid Models: In this part, all statistical models except naive model are combined

with RNN with learning rate 0.05, 1000 epoch and 17 hidden numbers to construct

the hybrid models. The six steps ahead forecasts performance of the hybrid models

are given in Table 4.5.

Table 4.5: The Forecasting Performance of Hybrid Methods for Original Yearly Se-

ries

Method sMAPE (%) MASE Avg. Computation Time (Hour)

ARIMA-RNN 8.465 1.799 0.942 0.650

ETS-RNN 8.227 1.848 0.965 0.649

TBATS-RNN 8.441 1.785 0.935 0.756

LGT-RNN 6.476 1.363 0.741 3.939

As shown in Table 4.5, a hybrid LGT and RNN clearly outperforms the other hybrid

models in terms of all accuracy measures. Besides, a hybrid ETS and RNN is the

second successful model for the six steps ahead forecast of the yearly series compared

to others in terms of sMAPE. However, a hybrid TBATS and RNN can be seen as the

second successful model for the six steps ahead forecast of the yearly series compared

to others based on MASE. A hybrid TBATS and RNN is also superior to both a hybrid

ETS and RNN and a hybrid ARIMA and RNN with respect to the average of both

sMAPE and MASE.

In the comparison of the models in terms of computational time, a hybrid LGT and

RNN giving the most accurate forecast values among all hybrid model takes the

longest time in hour to produce the forecast values while the shortest time in hour

belongs to the ETS-RNN being superior model in terms of sMAPE

Therefore, LGT-RNN is the best hybrid approach to produce the six steps ahead fore-

casts compared to other hybrid models used for the yearly series. However, the model

cannot be concluded as the better than best machine learning model.

Result: It can be said that the RNN shows the best performance for the six steps

ahead forecasts of the original yearly series. The second forecasting model having
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high forecasting accuracy is the hybrid of LGT and RNN. On the other hand, feed-

forward neural network and RF models produce the most inaccurate forecasting val-

ues for original yearly series. It can be also stated that the averages of the performance

measures of the all hybrid models are smaller than the averages of both statistical and

machine learning models, although any of the hybrid models show the best forecast-

ing performance.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.2, Figure 4.3 and Figure 4.4 represent box plot of

each measure drawn by using the error values obtained from each model for the each

yearly series in the analysis.

Figure 4.2: sMAPE Performance of All Methods for Original Yearly Series

Figure 4.3: MASE Performance of All Methods for Original Yearly Series
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Figure 4.4: The Average of sMAPE and MASE of All Methods for Original Yearly

Series

Figure 4.2, 4.3 and 4.4 show that feed-forward neural network, RF and naive model

have more variations and higher error values compared to other models. On the other

hand, RNN and the hybrid models being more accurate than the other models have

less variation and lower error values on the average.Lastly, it can be said that some

models have error values that can be investigated as outlier observations that violates

the model performances.

4.4.1.2 Transformed Yearly Series Analysis

In this section, the six steps ahead forecasting performance of the models on the trans-

formed series will be presented with the corresponding accuracy and performance

measures. Besides, the details about the models will be given. The application of the

models on the transformed series are same as the original ones. The transformation

process of the series is explained in Section 4.4.

Statistical Models: Five statistical methods which are naive, ARIMA, ETS, TBATS

and LGT are fitted to produce 6 steps ahead forecasts for the yearly series. STL is not

fitted since the model is not applicable for the yearly series which does not contain

any seasonal components as stated in the previous section. The values of forecast-

ing accuracy measures of the models for transformed yearly series are represented in

Table 4.6.
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Table 4.6: The Forecasting Performance of Statistical Methods for Transformed

Yearly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

NAIVE 32.900 3.802 2.065 0.001

ARIMA 17.826 4.428 2.303 0.004

ETS 17.232 4.286 2.229 0.001

TBATS 17.155 4.877 2.524 0.025

LGT 20.578 7.831 4.018 3.291

Table 4.6 shows that TBATS outperforms the other statistical models models for the

six steps ahead forecast of the yearly series compared to others after applying Box-

Cox transformation according to sMAPE. On the other hand, naive model has the

best MASE value compared to other models interestingly. Naive model can be also

considered as the model showing the best forecasting performance in terms of arith-

metic average of sMAPE and MASE. As opposed to its successful performance on

the original series, LGT shows the worst forecasting performance if it is applied on

the transformed yearly series.

LGT reporting the poorest forecasting accuracy based on two criteria needs the longest

time to predict the future values of yearly series with Box-Cox transformation among

all statistical methods. In addition to best performance, naive method requires the

shortest time in hour to produce the forecasts.

Machine Learning Models: In this part, seven machine learning models which

are SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are

fit to produce six steps ahead forecasts for the yearly series The learning rate of the

selected rates for RNN and LSTM are 0.05 and 0.1, respectively. Both of the models

has 17 hidden layers and uses 1000 epoch for training. The accuracy measures for the

models are shown in Table 4.7.
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Table 4.7: The Forecasting Performance of Machine Learning Methods for Trans-

formed Yearly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 13.651 2.856 1.496 0.028

RF 19.711 4.629 2.413 0.003

XGBoost 19.809 4.477 2.338 0.0185

NNETAR 23.860 7.686 3.962 0.0031

RNN 5.575 1.196 0.626 0.7517

LSTM 7.629 1.836 0.956 1.515

BNN 11.751 2.359 1.238 0.002

As seen in Table 4.7 shows that the RNN clearly outperforms the other ML models

in terms of all accuracy measures. LSTM can be stated as the second successful

forecasting model model for the six steps ahead forecast of the transformed yearly

series compared to others based on all criteria. On the other hand, feed-forward neural

network shows the worst forecasting performance compared to the other methods in

terms of all accuracy measures. After this model, XGBoost and RF models produce

the most inaccurate forecast values for transformed yearly series.

The comparison of models in terms of computational time shows that LSTM takes

the longest time in hour to produce the forecast values while the shortest time in hour

belongs to the BNN.

Therefore, RNN is the best ML models to produce the six steps ahead forecasts com-

pared to other ML models in the study, selected to model the residuals coming from

the statistical models in the hybrid models.

Hybrid Models: In this part, all statistical models except naive model are combined

with RNN with learning rate 0.05, 1000 epoch and 17 hidden numbers to construct

the hybrid models. The six steps ahead forecasts performance of the hybrid models

applied on the transformed are given in Table 4.8.
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Table 4.8: The Forecasting Performance of Hybrid Methods for Transformed Yearly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

ARIMA-RNN 9.256 1.928 1.010 0.590

ETS-RNN 8.676 1.824 0.955 0.657

TBATS-RNN 9.208 1.960 1.026 0.654

LGT-RNN 9.256 2.036 1.065 4.521

Table 4.8 shows that a hybrid ETS and RNN clearly outperforms the other hybrid

models in terms of all accuracy measures. In terms of sMAPE, a hybrid TBATS and

RNN is the second successful model for the six steps ahead forecast of the yearly

series compared to others. However, a hybrid ARIMA and RNN is the second suc-

cessful model for the six steps ahead forecast of the yearly series compared to others

in terms of not only MASE but also the average of both sMAPE and MASE. On the

other hand, it is seen that a hybrid LGT and RNN reports the worst accuracy values

based on all criterias. Besides, the hybrid ARIMA and RNN reported as the second

superior model based on MASE and the average can be considered as unsuccessful

forecasting model together with the hybrid LGT and RNN with respect to sMAPE.

In the comparison of compuational time, the hybrid LGT and RNN demands the

longest time in hour to produce the forecast values while the shortest time in hour

belongs to the hybrid ARIMA and RNN.

Therefore, ETS-RNN is the best hybrid approach to produce the six steps ahead fore-

casts compared to other hybrid models used for the transformed yearly series. How-

ever, the model cannot be concluded as the best forecasting model for transformed

yearly series.

Result: It is seen that RNN gives best forecasting accuracy among all models for the

six steps ahead forecasts. After RNN, LSTM can be stated as the second forecasting

model producing accurate forecasts. On the other hand, naive and feed- forward

neural network models give the lowest forecasting accuracy values, respectively. It is
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also shown that the averages of the performance measures of the all hybrid models are

smaller than the averages of both statistical and machine learning models, although

any of the hybrid models show the best forecasting performance.

In addition to this comparison based on numerical values, the accuracy performance

of the models are compared visually. The box plot of accuracy values drawn using

error values produced by each model are represented in the following Figure 4.5,

Figure 4.6 and Figure 4.7, respectively.

Figure 4.5: sMAPE Performance of All Models for Transformed Yearly Series

Figure 4.6: MASE Performance of All Models for Transformed Yearly Series
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Figure 4.7: The Average Performances of All Models for Transformed Yearly Series

As displayed in Figure 4.5, 4.6 and 4.7, the most inaccurate models such as feed-

forward neural network, naive model, RF and LGT have more variations and higher

error values on the average compared to other models. On the other hand, RNN,

LSTM and the hybrid models which can be classified as more accurate models have

lower variations and error values on the average in terms of accuracy measures.

Lastly, the figures represents that all models have error values that can be detected

as outlier observations which violates the model performances.

In addition to this, the transformation results in increasing in the error measures for

statistical models and hybrid models. However, it does not have a considerable effect

on the performance of ML models.

4.4.2 Quarterly Series Analysis

240 quarterly series selected from M4 competition data set are used to compare the

forecasting performance of the models in the study. The time interval between suc-

cessive observations known as time frequency is considered as 4 for quarterly series

and 8 steps ahead forecast values are produced for all of the 240 series. In Figure 4.8,

the time series plot of four series randomly selected among 240 series are drawn.
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Figure 4.8: The Time Series Plots of Subset of Quarterly Series

As seen in Figure 4.8, all series are nonstationary. Also, all series show the increasing

pattern except for the third one. They give us some clues about suffering unit root

problems in their time series plots. Moreover, seasonal patterns can be observed from

the graph, especially in the plot of the last series.

The maximum and the minimum length of the quarterly series used in the study are

21 and 279, respectively. The series having minimum and maximum length appears

in the study once, separately. Moreover, the mode of the length of the quarterly series

in the study is 114 appearing 12 times.

The quarterly series are analyzed in two different sections, original series and trans-

formed series. For both cases, the time frequency is used as 4, and 8 steps ahead

forecast values are produced as given in the previous section.

4.4.2.1 Original Quarterly Series Analysis

In this section, 8 steps ahead forecasting performance of the models on the quarterly

original series are presented with the corresponding accuracy and performance mea-

sures. Besides, some specific details about the models are given.
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Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce eight steps ahead forecast values for the

quarterly series. Since the series have the seasonal cycles in their structure, STL is

included in the study of quarterly series differently from the analysis of yearly series.

The general details for the construction of the models are given in the section of model

implementation.

The forecasting performance of the statistical models for original quarterly series are

shown in Table 4.9

Table 4.9: The Forecasting Performance of Statistical Methods for Original Quarterly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 13.753 1.659 0.898 0.001

SARIMA 10.612 1.093 0.599 0.017

ETS 9.834 1.065 0.581 0.011

TBATS 10.053 1.058 0.579 0.113

SGT 10.341 1.070 0.587 16.435

STL 13.845 1.053 0.596 0.004

Table 4.9 shows that the performance of the most of the models are close to each

other and that’s why it is hard to suggest a model being successful in forecasting.

Exponential smoothing model known as ETS outperforms the other statistical meth-

ods in terms of sMAPE. On the other side, STL performs the best eight steps ahead

forecasts performance compared to other methods according to MASE. However, the

average of both sMAPE and MASE suggests TBATS has the best performance rather

than STL and ETS on the average. The similar situation is also valid for determining

the model producing inaccurate forecast values. Although STL gives the lowest fore-

casting accuracy in terms of sMAPE, seasonal naive model has the worst eight steps

ahead forecasts performance among all statistical methods according to both MASE

and the average of MASE and sMAPE.

In terms of computational time demanding to predict the forecasts for 240 quarterly

series, SGT has the longest time period in hours since it uses MCMC algorithm to es-
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timate the model parameters. Seasonal naive is the model that produces the forecasts

in shorter time period when compared to other statistical models.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, feed-forward neural network, RNN, LSTM and BNN are fit to

produce eight steps ahead forecasts for the quarterly series. The past observations

until the second seasonal lag which is eight are used as input data to train the models

for the quarterly series. Since the general structure of the models are given above,

only specific details about RNN and LSTM will be given in this part. Both of the

models train their network structure with leaning rate 0.05, 2000 epoch and 28 hidden

layers. The eight steps ahead forecasts performance of the machine learning models

are described in Table 4.10

Table 4.10: The Forecasting Performance of Machine Learning Methods for Original

Quarterly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 11.054 1.438 0.774 0.058

RF 11.434 1.476 0.795 0.008

XGBoost 13.391 1.568 0.851 0.053

NNETAR 14.458 1.686 0.915 0.001

RNN 7.066 0.823 0.447 11.302

LSTM 7.846 0.843 0.461 49.208

BNN 9.207 0.918 0.505 0.002

Table 4.10 shows that the RNN clearly outperforms the other ML models in terms of

all accuracy measures. In addition, it is easily seen that LSTM is the second success-

ful model for the eight steps ahead forecasts of the quarterly series with respect to all

measures. On the other hand, feed-forward neural network shows the worst forecast-

ing performance compared to the other methods in terms of all accuracy measures.

XGBoost model also give lowest accuracy values for original quarterly series right

after NNETAR.
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In addition to comparision in the accuracy values, the computational time of the mod-

els shows that LSTM needs more than two days to produce the forecast values for the

quarterly series. However, BNN produces the forecasts for 240 series in the shortest

time period compared to other models.

Therefore, RNN is regarded as the machine learning model showing the best eight

steps ahead forecasts performance for the quarterly series among all of the ML models

in the study. Due to its performance, RNN with related model parameters are used

as non-linear component of the hybrid models that will be explained in the following

section.

Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with RNN with learning rate 0.05, 2000 epoch and 28 hidden numbers to

construct the hybrid models. The performance of eight steps ahead forecasts perfor-

mance of the hybrid models are given in Table 4.11. The models have 17 hidden

layers and use 1000 epoch for training.

Table 4.11: The Forecasting Performance of Hybrid Methods for Original Quarterly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-RNN 8.377 0.817 0.450 18.469

ETS-RNN 7.075 0.708 0.389 18.805

TBATS-RNN 7.442 0.737 0.406 19.261

SGT-RNN 7.443 0.679 0.377 38.112

STL-RNN 6.476 0.637 0.351 16.289

Table 4.11 shows that hybrid approach using STL and RNN clearly outperforms the

other hybrid models on the basis of all of the accuracy measures. The performance of

this model is followed by TBATS-RNN hybrid model in terms of sMAPE and SGT-

RNN in terms of MASE and the average of both measures. The worst performance

among the hybrid approaches belongs to SARIMA-RNN approach on the basis of

three accuracy measures.
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In the comparison of the model in terms of their computational requirements, the

hybrid SGT and RNN demands more computational time in hours in comparison

with other models, while the hybrid STL and RNN needs the shortest time period in

hours to produce the eight steps ahead forecasts for the quarterly series in addition to

its best performance.

In conclusion, a hybrid STL and RNN model shows the best performance among the

all hybrid approaches applied on the quarterly series according to accuracy measures

and computational time. Different than yearly series, the one of the hybrid model

which is the hybrid STL decomposition and RNN is concluded as the best forecasting

model in the analysis of original quarterly series.

Result: It can be said that the hybrid approach STL and RNN has the lowest error

values compared to all models in the study. The second model having highest forecast

accuracy is also a hybrid model which is the hybrid model ETS and RNN in this

analysis. On the other hand, feed- forward neural network and XGBoost models

produce the most inaccurate forecasting values for original quarterly series. Lastly,

we can state that the hybrid models show the best forecasting performance, and they

outperform the both statistical and machine learning models on the average.

The visual comparison of the models are illustrated in Figures 4.9, 4.10 and 4.11.

These figures show box plot for each model drawn by error values calculated using

forecast values and test data set.

Figure 4.9: sMAPE Performance of All Models for Original Quarterly Series
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Figure 4.10: MASE Performance of All Models for Original Quarterly Series

Figure 4.11: The Average Performances of All Models for Original Quarterly Series

Figures 4.9, 4.10 and 4.11 show that feed-forward neural network, XGBoost and

naive models, which are the model having lower forecasting accuracy compared to

other models, have more variations and higher error values different than the other

models in the study. On the other hand, hybrid models particularly the hybrid STL

decomposition and RNN have less variations and lower error values on the average

compared to other models in the study. Finally, all models have outlier error values

which have a negative effect on the model performances.

4.4.2.2 Transformed Quarterly Series Analysis

In this section, the eight steps ahead forecasting performance of the models on the

transformed quarterly series will be presented with their corresponding accuracy and
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performance measure values. Besides, the details about the models will be given. The

application of the models on the transformed series are same as the original ones. The

transformation process of the series is explained in Section 4.4.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce eight steps ahead forecasts for the quar-

terly series. The forecasting performances of the statistical methods on the trans-

formed quarterly series is summarized in Table 4.12

Table 4.12: The Forecasting Performance of Statistical Methods for Transformed

Quarterly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 13.753 1.659 0.666 0.001

SARIMA 10.956 1.222 0.643 0.003

ETS 10.853 1.177 0.612 0.002

TBATS 10.348 1.119 0.611 0.173

SGT 13.963 2.115 0.898 34.416

STL 13.834 1.180 0.659 0.001

Table 4.12 states that TBATS outperforms the other statistical models for eight steps

ahead forecast of the quarterly series transformed by Box-Cox in regards to all ac-

curacy measures. The performance of TBATS is followed by exponential smoothing

method on the basis of all accuracy measures. On the other hand, the worst fore-

casting performances in the statistical models arises from SGT because of having

convergence problem raised by usage of default model. In addition to SGT, seasonal

naive model can be reported as a model producing inaccurate forecast values based

on MASE and the arithmetic average of both sMAPE and MASE.

In terms of computational requirements, SGT takes the longest time compared to

other models. The shortest time period to obtain the forecasts for the series is needed

by seasonal naive model.
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Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, feed-forward neural network, RNN, LSTM and BNN are fit

to produce eight steps ahead forecasts using the transformed quarterly series. The

parameters of RNN and LSTM are same as the ones applied on the original quarterly

series. The forecasting performance of the ML methods are represented in Table 4.13.

Table 4.13: The Forecasting Performance of Machine Learning Methods for Trans-

formed Quarterly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 10.721 1.434 0.771 0.055

RF 11.382 1.482 0.798 0.007

XGBoost 16.035 2.148 1.154 0.024

NNETAR 14.631 1.669 0.908 0.009

RNN 7.029 0.831 0.451 14.862

LSTM 7.356 0.820 0.446 40.269

BNN 8.233 0.873 0.478 0.002

Table 4.13 shows that the RNN clearly outperforms the other ML models in terms of

both sMAPE, and the model is followed by LSTM. However, LSTM takes the place

of RNN on the basis of MASE and the arithmetic average of sMAPE and MASE,

and followed by RNN. On other hand, XGBoost shows the worst forecasting per-

formance compared to the other methods in terms of all accuracy measures. After

XGBoost model, NNETAR can be concluded as the model having insufficient fore-

cast performance compared to other ML models.

According to the computational time for forecasting, LSTM needs the longest time

period in hours to produce the forecast values for the quarterly series, while BNN

produces the forecasts for 240 series in the shortest time period in hours. Although

LSTM has the best forecasting performance on the average, RNN is used in the con-

struction of the hybrid approach because of longest time of LSTM. The reason of

selecting RNN is to become the second successful model and have accuracy measure

values being very close to LSTM. It also requires shorter time period compared to
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LSTM.

Therefore, LSTM is regarded as the machine learning model showing the best eight

steps ahead forecasts performance for the quarterly series among all of the ML mod-

els in the study. However, RNN with related model parameters are used as non-linear

component of the hybrid models that will be explained in the following section be-

cause of high computational requirements of LSTM.

Hybrid Models: In this part, all statistical models except naive model are combined

with RNN with learning rate 0.05, 2000 epoch and 28 hidden numbers to construct the

hybrid models. The forecasting performance of hybrid methods for the transformed

quarterly series are represented in Table 4.14.

Table 4.14: The Forecasting Performance of Hybrid Methods for Transformed Quar-

terly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-RNN 7.998 0.834 0.457 18.815

ETS-RNN 7.447 0.746 0.410 18.987

TBATS-RNN 9.506 1.011 0.553 19.886

SGT-RNN 11.572 1.564 0.840 105.432

STL-RNN 6.774 0.649 0.359 18.947

As seen in Table 4.14, a hybrid model STL decomposition and RNN clearly out-

performs the other hybrid models on the basis of all of the accuracy measures. The

performance of this model is followed by the hybrid model ETS and RNN hybrid

model in terms of all measures. The worst performance among the hybrid approaches

belongs to the hybrid model SGT and RNN according to sMAPE, MASE and their

equally weighted average. A hybrid model TBATS and RNN can be also concluded

as the forecasting model with lowest forecasting accuracy among all hybrid models

right after a hybrid model SGT and RNN.

In the comparison of the models in regards to their computational requirements, the

hybrid model SGT and RNN demands more computational time in hours in compari-
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son with other models, the shortest time period to produce eight steps ahead forecast

values belongs to the hybrid model SARIMA and RNN. However, the hybrid model

STL decomposition and RNN showing the best forecasting performance has a com-

putational time which is very close to the shortest one.

In conclusion, a hybrid STL and RNN model shows the best performance among

the all hybrid approaches applied on the transformed quarterly series according to

forecast performance measures. Different than yearly series, the one of the hybrid

models which is the hybrid STL decomposition and RNN is concluded as the best

forecasting model in the analysis of transformed quarterly series.

Result: It can be said that the hybrid approach STL and RNN has the lowest error

values compared to all models in the study. The second model having highest fore-

cast accuracy is also a hybrid model which is the hybrid model ETS and RNN in this

analysis. On the other hand, feed-forward neural network and XGBoost models pro-

duce the most inaccurate forecasting values for transformed quarterly series. Lastly,

we can state that the hybrid models show the best forecasting performance, and they

outperform the both statistical and machine learning models on the average.

The distribution of the accuracy measure regarding to models in the study are illus-

trated via box plot in Figures 4.12, 4.13 and 4.14.

Figure 4.12: sMAPE Performances of All Models for Transformed Quarterly Series
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Figure 4.13: MASE Performances of All Models for Transformed Quarterly Series

Figure 4.14: The Average Performances of All Models for Transformed Quarterly

Series

Figures 4.12, 4.13 and 4.14 display that the models having lowest forecasting accu-

racy such as SGT, XGBoost and NNETAR represents the higher variability and error

values on the average compared to other models. On the other hand, hybrid models

particularly the hybrid STL decomposition and RNN have less variations and lower

error values on the average compared to other models in the study. Finally, all models

have outlier error values which have a negative effect on the model performances.

Lastly, it is also observed that the error values for statistical models and hybrid models

increase after Box-Cox transformation. However, the similar conclusion cannot be

made for the ML models.
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4.4.3 Monthly Series Analysis

In this study, 480 monthly series selected from M4 competition data set are used and

the forecast performance of the models included in the study are compared using

these selected series. The time interval between successive observations known as

time frequency is considered as 12 for monthly series and 18 steps ahead forecast

values are produced for all of the 480 series. In Figure 4.15, the time series plot of

four series randomly selected among 480 series are drawn.

Figure 4.15: The Time Series Plots of Subset of Monthly Series

As seen in Figure 4.15, all series can be interpreted as nonstationary. They may have

unit root problems. Also, all series show the increasing pattern with seasonal cycles.

Lastly, it can be said that there is a time shift in the plot of the last series.

The maximum and the minimum lengths of the monthly series used in the study are

43 and 918, respectively. The frequencies of both minimum and maximum length of

the series are 1 and 2, respectively. Moreover, the mode of the length of the quarterly

series in the study is 306 whose appearance in the study is 61.

The analysis of the monthly series are divided into two groups, original series and

transformed series. For both cases, the time frequency is used as 12, and 18 steps

ahead forecast values are produced as given in the previous section.
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4.4.3.1 Original Monthly Series Analysis

In this section, 18 steps ahead forecasting performance of the models on the monthly

original series will be presented with the corresponding accuracy and performance

measures. Besides, the details about the models will be given.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL decomposition are fitted to produce six steps ahead forecasts

for the original monthly series. Since the series have the seasonal cycles in their

structure, STL is included in the study of quarterly series differently from the analysis

of yearly series. The general details for the construction of the models are given in

the section of model implementation.

The forecasting performance of the statistical methods for the original monthly series

are represented in Table 4.15

Table 4.15: The Forecasting Performance of Statistical Methods for Original Monthly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 15.581 1.241 0.690 0.007

SARIMA 13.221 0.912 0.528 0.222

ETS 12.851 0.900 0.517 0.153

TBATS 12.758 0.890 0.512 1.026

SGT 12.132 0.872 0.496 65.937

STL 15.586 0.912 0.533 0.004

As shown in Table 4.15, Bayesian exponential smoothing model called SGT has the

best eighteen steps ahead forecasts performance shows according to all accuracy mea-

sures when compared to other statistical models. The second successful model in

forecasting of the monthly series is TBATS in terms of all accuracy measures. On the

other hand, the worst eighteen steps ahead forecasts performance is shown by sea-

sonal naive model on the basis of all accuracy measures. STL decomposition can be

also considered as one of the statistical model producing inadequate forecast values
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based on all accuracy values.

According to the computational time producing the forecasts for 480 monthly series,

SGT has the longest time period in hours since it uses MCMC algorithm to estimate

the model parameters. Seasonal naive is the model that produces the forecasts in

shorter time period when compared to other statistical models.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, feed-forward neural network, RNN, LSTM and BNN are fit to

produce eighteen steps ahead forecasts for the monthly series. The past observations

until the second seasonal lag which is twenty-four are included to the model as input

data in the training process of the ML models. Since the general structure of the

models are expressed before, only specific details about RNN and LSTM will be

given in this part. RNN uses learning rate 0.05, 1956 epoch and 30 hidden layers,

while LSTM uses the same learning rate with 1398 epoch and 28 hidden layers to

train the network structure. The eighteen steps ahead forecasts performance of the

machine learning methods are summarized in Table 4.16

Table 4.16: The Forecasting Performance of Machine Learning Methods for Original

Monthly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 13.374 1.526 0.829 0.554

RF 11.398 1.227 0.671 0.356

XGBoost 15.322 1.677 0.915 0.113

NNETAR 17.983 2.359 1.269 0.265

RNN 9.208 0.845 0.468 231.360

LSTM 10.968 1.037 0.573 73.600

BNN 10.987 0.909 0.509 0.018

Table 4.16 shows that the RNN clearly outperforms the other ML models in terms of

all accuracy measures. LSTM performs the second best performance in reference to

sMAPE, but BNN takes the place of LSTM according to MASE and the arithmetic
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average of sMAPE and MASE. On the other hand, feed-forward neural network and

XGBoost models can be reported as the models having the worst forecasting perfor-

mance compared to the other methods in terms of all accuracy measures, respectively.

In accordance with computational time, RNN requires almost ten days to produce

eighteen steps ahead forecast values for monthly series, although it produces the most

accurate forecast values compared to other models. The shortest time period to pro-

duce the forecast values is required by BNN. In conclusion, RNN is considered as the

machine learning model producing the most accurate forecast values and demanding

the longest time. On the other hand, BNN can be evaluated as the model that produces

very accurate forecast values in a very short time period compared to other models

in the study. Due to performing a considerable forecasting performance in very short

time, BNN is preffered as the nonlinear component of hybrid approaches instead of

RNN.

Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with BNN as defined in the previous section. The performance of eighteen

steps ahead forecasts performance of the hybrid methods are given in Table 4.17.

Table 4.17: The Forecasting Performance of Hybrid Methods for Original Monthly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 13.988 0.967 0.553 0.038

ETS-BNN 12.989 0.907 0.518 0.139

TBATS-BNN 13.205 0.918 0.525 0.474

SGT-BNN 14.500 0.999 0.572 61.800

STL-BNN 13.067 0.872 0.501 0.025

Table 4.17 shows that performance of the hybrid approaches used in forecasting of

the monthly series are very close to each other and hence the name of the best model

varies based on the type of the accuracy measures. According to sMAPE, a hybrid

model ETS and BNN shows the best forecasting performance. However, a hybrid
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model STL decomposition and BNN can be considered the model producing the most

accurate forecast values for the monthly series based on MASE and the arithmetic

average of sMAPE and MASE compared to other hybrid approaches. On the other

hand, the worst forecast results among the hybrid models is performed by the model

uses Bayesian exponential smoothing called SGT and BNN. In addition to the hybrid

model SGT and BNN, the hybrid model SARIMA and BNN performs insufficient

forecasting performance compared to other hybrid models in the study.

In the comparison of the models in terms of their computational requirements, SGT-

BNN demands more computational time in hours in comparison with other models

in addition to its worst performance. The hybrid model demanding the shortest time

period in the forecasting of monthly series is the hybrid model STL decomposition

and BNN which is the best hybrid approach according to two measures.

In conclusion, a hybrid model using STL and BNN shows the best performance

among the all hybrid approaches applied on 480 monthly series according to accu-

racy measures and computational time. However, the model cannot be concluded as

the best forecasting model for original monthly series.

Result: In the analysis of monthly series without transformation, it said that the

best forecasting performance is shown by RNN model that uses 0.05 learning rate,

1956 epoch and 30 hidden layers. However, the model uses the longest time for the

forecasting compared to all models used for the monthly series. The hybrid model

STL decomposition and BNN can be considered as the second model giving the best

forecasting accuracy in the study and the model demands one of the shortest time

period to produce the future values of the monthly series. On the other hand, feed-

forward neural network and XGBoost have the worst eighteen steps ahead forecasting

performances compared to other models including the seasonal navie which is the

simplest model in the study. As seen in the previous analysis, the hybrid approaches

outperform the both statistical and machine learning models on the average. The best

hybrid model using STL and BNN shows the very close forecasting performance to

the best model.

In addition to this, the accuracy performance of the models are compared visually.
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The following Figure 4.16, Figure 4.17 and Figure 4.18 represent box plot of the

each measure drawn by using the error values obtained from each model for the each

monthly series in the analysis.

Figure 4.16: sMAPE Performances of All Models for Original Monthly Series

Figure 4.17: MASE Performances of All Models for Original Monthly Series
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Figure 4.18: The Average Performances of All Models for Original Monthly Series

Figures 4.16, 4.17 and 4.18 represent feed-forward and XGBoost which are the worst

forecasting models have more variability and higher error values on the average. On

the other hand, the less variability and lower error values are performed by models

including best ML models and hybrid models. Lastly, it can be said that all models

produces error values that can be investigated as outlier observations that violates the

model performances.

4.4.3.2 Transformed Monthly Series Analysis

In this section, the eighteen steps ahead forecasting performance of the models on

the transformed monthly series will be presented with their corresponding accuracy

and performance measure values. Besides, the details about the models will be given.

The application of the models on the transformed series are same as the original ones.

The transformation process of the series is explained in Section 4.4.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS SGT and STL are fitted to produce eighteen steps ahead forecasts for monthly

series. The forecasts performances of the statistical models on the transformed monthly

series is summarized in Table 4.18.
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Table 4.18: The Forecasting Performance of Statistical Methods for Transformed

Monthly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 15.558 1.241 0.698 0.005

SARIMA 13.338 1.209 0.671 0.150

ETS 13.245 1.057 0.595 0.125

TBATS 12.950 0.941 0.535 0.471

SGT 13.716 1.749 0.943 201.130

STL 15.588 0.998 0.577 0.011

As summarized in Table 4.18, TBATS is identified as the statistical model that shows

the best eighteen steps ahead forecasting performance compared to other models. The

model showing the second best forecasting performance changes based on the accu-

racy measures. According to sMAPE, exponential smoothing model abbreviated as

ETS takes the second rank in the success rating of the models, while STL decom-

posion is placed on the second rank according to MASE and the average of sMAPE

and MASE. On the other hand, the worst eighteen steps ahead forecast performance

is shown by Bayesian exponential smoothing model called SGT in terms of all mea-

sures. After this model, seasonal naive model reports insufficient forecast values for

transformed monthly series.

In the comparison of the models with respect to their computational time, SGT show-

ing the worst forecasting performance among statistical models demands the longest

time period. The shortest time period for forecasting of the monthly series is de-

manded by seasonal naive model which can be described as the simplest forecasting

model in the study.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are fit to

produce eight steps ahead forecasts using the transformed quarterly series. The pa-

rameters of RNN and LSTM are same as the ones applied on the original monthly

series. The eighteen steps ahead forecasting performance of the ML models are rep-
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resented in Table 4.19.

Table 4.19: The Forecasting Performance of Machine Learning Methods for Trans-

formed Monthly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 13.397 1.000 0.569 0.473

RF 11.474 0.861 0.488 0.089

XGBoost 16.537 1.497 0.831 0.155

NNETAR 17.967 1.449 0.815 0.227

RNN 9.111 0.682 0.386 231.549

LSTM 11.000 0.829 0.469 499.920

BNN 10.786 0.647 0.378 0.017

Table 4.19 shows that the RNN clearly has the best forecasting performance compared

to other ML models in terms of sMAPE. However, both MASE and the average of

measures indicates that BNN is the superior forecasting model among all ML models

for transformed monthly series. On the other hand, the worst performance of the

eighteen steps ahead forecasts belongs to feed-forward neural network. XGBoost

model is also considered as ML models producing inaccurate forecast values.

According to the computational time, LSTM needs the longest time period in hours

to produce the forecast values for the monthly series with Box-Cox transformation.

On the other hand BNN being the superior model based on two criteria produces the

forecast values for monthly series in the shortest time period.

Therefore, BNN produces the most accurate forecast values according to two criteria

and needs the shortest time period for forecasting compared to other models. Hence it

can be considered as the best ML model for transformed monthly series forecasting.

Due to having a considerable forecasting performance in very short time, BNN is

preffered as the nonlinear component of hybrid approaches for the forecasting of

transformed monthly series.
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Hybrid Models: In this part, all statistical models except seasonal naive model

are combined with BNN as defined in the previous section to make eighteen steps

ahead forecasts for the monthly series. The performance of the hybrid models for

transformed monthly are given in Table 4.20.

Table 4.20: The Forecasting Performance of Hybrid Methods for Transformed

Monthly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 14.319 1.169 0.656 0.039

ETS-BNN 13.553 2.338 1.237 0.167

TBATS-BNN 13.014 0.927 0.529 0.904

SGT-BNN 14.806 1.743 0.946 203.028

STL-BNN 13.029 0.951 0.541 0.027

As displayed in Table 4.20, the performance of the hybrid approaches used in fore-

casting of the monthly series with Box-Cox transformation are very close to each

other. However, a hybrid model TBATS and BNN shows the best forecasting perfor-

mance compared to other hybrid models used for the monthly series. Also, a hybrid

model STL decomposition and BNN has the second best forecasting performance

based on all accuracy measures among all hybrid models used for the monthly se-

ries. On the other hand, the model name showing the worst forecasting performances

changes based on the accuracy measure. According to sMAPE, a hybrid model con-

structed with SGT and BNN has the worst performance, but a hybrid model with

ETS and BNN shows the poorest forecasting performance regarding to MASE and

average.

In the comparison of the model in terms of their computational requirements, SGT-

BNN demands more computational time in hours in comparison with other models

in addition to showing one of the worst performance. The hybrid model demanding

the shortest time period in the forecasting of monthly series is STL-BNN which is the

second best hybrid approach according to accuacy measures.

In conclusion, a hybrid model using TBATS and BNN shows the best performance

among the all hybrid approaches applied on 480 transformed monthly series accord-
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ing to accuracy measures. However, the model cannot be concluded as the best fore-

casting model for transformed monthly series.

Result: In the analysis of monthly series with transformation, it said that the best

forecasting performance is shown by BNN demanding the shortest time period to

produce the forecasts compared to most of the models. RNN also gives the second

highest forecasting accuracy, but the model needs one of the longest time period to

make a forecast. On the other hand, feed-forward neural network and XGBoost have

the worst eighteen steps ahead forecasting performances compared to other models

including the seasonal naive which is the simplest model in the study. As opposed

to previous studies, the hybrid approach doest not outperform the both statistical and

machine learning models on the average. The ML methods can be stated as the most

accurate forecasting model for transformed monthly series on the average compared

to both statistical and hybrid models.

In addition to this, the accuracy performance of the models are compared visually.

The following Figure 4.19, Figure 4.20 and Figure 4.21 represent box plot of the

each measure drawn by using the error values obtained from each model for the each

monthly series in the analysis.

Figure 4.19: sMAPE Performances of All Models for Transformed Monthly Series
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Figure 4.20: MASE Performances of All Models for Transformed Monthly Series

Figure 4.21: The Average Performances of All Models for Transformed Monthly

Series

Figures 4.19, 4.20 and 4.21 represent feed-forward and XGBoost which are the worst

forecasting models have more variability and higher error values on the average. On

the other hand, the less variability and lower error values are performed by models

including best ML models and hybrid models. Moreover, it can be said that all models

produces error values that can be investigated as outlier observations that violates the

model performances.

Lastly, it cannot be observed a remarkable effect of Box-Cox transformation on the

performance of the all methods.

96



4.4.4 Weekly Series Analysis

In this study, 4 weekly series selected from M4 competition data set are used and the

forecast performance of the models included in the study are compared using these

selected series. The time interval between successive observations known as time

frequency is considered as 52 for weekly series and 13 steps ahead forecast values

are produced for all of the 4 series. In Figure 4.22, the time series plots of the four

weekly series used in the study are represented.

Figure 4.22: The Time Series Plots of Subset of Weekly Series

As seen in Figure 4.22, all series can be interpreted as nonstationary. Also, all series

show the decreasing pattern with seasonal cycles except for the last one. Lastly, it can

be said that there is a time shift in the plot of the second series.

The length of the four weekly series analyzed in this study are 379, 1017, 1602, 2284.

Therefore, the minimum and maximum lengths of the weekly series used in the study

are 379 and 2284, respectively.

The analysis of the weekly series are divided into two groups, original series and

transformed series. For both cases, the time frequency is used as 52, and 13 steps

ahead forecast values are produced as stated above.
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4.4.4.1 Original Weekly Series Analysis

In this section, 13 steps ahead forecasting performance of the models on the weekly

original series are presented with the corresponding accuracy and performance mea-

sures. Besides, some specific details about the models are given.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce six steps ahead forecasts for the quarterly

series. The forecasting performance of the statistical methods for the original weekly

series are represented in Table 4.21

Table 4.21: The Forecasting Performance of Statistical Methods for Original Weekly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 6.684 0.593 0.330 0.001

SARIMA 3.534 0.285 0.160 0.481

ETS 8.418 0.441 0.263 0.001

TBATS 4.232 0.302 0.172 0.011

SGT 4.181 0.323 0.182 3.987

STL 6.827 0.514 0.291 0.001

As summarized in Table 4.21, SARIMA has the best thirteen steps ahead forecasts

performance shows according to all accuracy measures when compared to other sta-

tistical models. The second best model in forecasting of the weekly series changes

based on the accuracy measures. According to sMAPE, Bayesian exponential smooth-

ing model called SGT is the second best statistical model for the forecasting of the

weekly series. However, TBATS can be considered as the second best statistical

model for the forecast of weekly series with respect to both MAPE and the arithmetic

average of both sMAPE and MASE. On the other hand, the worst thirteen steps ahead

forecasts performance is shown by seasonal naive model on the basis of all accuracy

measures. After this model, ETS gives inaccurate forecast values for original weekly

series since the function of the model cannot deal with the seasonality which is greater
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than 24.

According to the computational time, SGT, which is the second best model in terms

sMAPE, has the longest time period in hours since it uses MCMC algorithm to es-

timate the model parameters. Seasonal naive model proven as the worst statistical

model demands the shortest time period to produce the forecasts when compared to

other statistical models.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are fit to

produce thirteen steps ahead forecasts for the weekly series. The past observations

until the second seasonal lag which is a hundered and four are included to the model

as input data in the training process of the ML models. Since the general structure

of the models are expressed before, only specific details about RNN and LSTM will

be given in this part. RNN uses learning rate 0.01, 2998 epoch and 18 hidden layers,

while LSTM uses learning rate 0.05, 1680 epoch and 13 hidden layers to train the

network structure. The thirteen steps ahead forecasts performance of the machine

learning models for the weekly series are summarized in Table 4.22

Table 4.22: The Forecasting Performance of Machine Learning Methods for Original

Weekly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 4.069 0.259 0.150 0.160

RF 2.198 0.178 0.100 0.070

XGBoost 3.179 0.270 0.151 0.037

NNETAR 5.598 0.545 0.301 0.948

RNN 6.184 0.327 0.194 52.776

LSTM 3.506 0.229 0.132 185.292

BNN 2.56 0.176 0.101 0.003
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Table 4.22 reveals that Random Forest and BNN has very close forecasting perfor-

mance and outperform the other models. According to sMAPE, RF has the best

performance, but BNN produces the most accurate forecast values rather than other

models with respect to MASE. However, RF can be considered as the best forecast-

ing model on the basis of the arithmetic average of sMAPE and MASE. On the other

hand, the similar situation is valid for the model having the worst forecasting per-

formance. RNN can be evaluated as the model having the poorest forecast values in

terms of sMAPE, but feed-forward neural network has the worst thirteen steps ahead

forecasting performance in terms of not only MASE, but also the average of sMAPE

and MASE.

With reference to computational time, it can be stated that LSTM demands the longest

time period to produce the forecast values for the weekly series in the study. The

shortest time period to produce the forecast values is required by BNN.

Consequently, RF is considered as the machine learning model producing the most

accurate forecast values for the weekly series in this study. In addition to its best

performance, since it takes shorter time to make a forecasting compared to most of

the ML models in the study, it is preferred to be used as nonlinear component of the

hybrid approach.

Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with RF as defined in the previous section. The performance of thirteen

steps ahead forecasts performance of the hybrid models for weekly series are given

in Table 4.23.
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Table 4.23: The Forecasting Performance of Hybrid Methods for Original Weekly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-RF 3.476 0.293 0.169 0.682

ETS-RF 8.416 0.441 0.262 0.050

TBATS-RF 4.082 0.309 0.175 0.041

SGT-RF 10.305 0.549 0.326 3.313

STL-RF 7.188 0.382 0.227 0.060

Table 4.23 represents a hybrid model SARIMA and RF which are the best statistical

and ML models outperforms the other hybrid model for weekly series forecasting.

Additionally, a hybrid model TBATS and RF shows a forecasting performance which

is close to best model in terms of all accuracy measures. On the other hand, a hybrid

model SGT and RF performs the poorest forecasts among both hybrid and other mod-

els in the study because of suffering from achieving convergence of default model.

Also, a hybrid model STL decomposition and RF produces inaccurate forecast values

with respect to all criteria.

In the comparison of the models with respect to their computational requirements,

SGT-RF demands more computational time in hours in comparison with other models

in addition to its worst performance. The hybrid model demanding the shortest time

period in the forecasting of weekly series is TBATS-RF proven as the second best

hybrid approach for weekly series in this study.

In conclusion, a hybrid model using SARIMA and RF shows the best performance

among the all hybrid approaches for weekly series according to accuracy measures.

However, the model cannot be concluded as the better than best machine learning

model.

Result: In the analysis of weekly series without transformation, it can be said that

the best forecasting performance is shown by RF model producing the future values

in the shorter time period unlike the most of the models. In addition to RF, it is made
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an inference that BNN has the second best forecasting performance for weekly series.

On the other hand, seasonal naive model and the hybrid approach of SGT and RF have

the worst thirteen steps ahead forecasting performances compared to other models

in the study. Unlike the other types of series expressed above, the best forecasting

performance is displayed by ML models compared to hybrid approach and statistical

models. In fact, the best hybrid approach gives lower forecasting performance than

most of the ML models.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.23, Figure 4.24 and Figure 4.25 represent box plot

of the each measure drawn by using the error values obtained from each model for

the each weekly series in the analysis.

Figure 4.23: sMAPE Performances of All Models for Original Weekly Series

Figure 4.24: MASE Performances of All Models for Original Weekly Series
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Figure 4.25: The Average Performances of All Models for Original Weekly Series

Figure 4.23, 4.24 and 4.25 display the models having the poor forecasting perfor-

mance such as the hybrid SGT and RF, ETS and sNAIVE have more variability and

higher error values compared to other values on the average. On the other hand, it

is seen that the best forecasting models for weekly series such as RF and BNN have

lower variability and error values compared to other models on the average. Lastly,

it can be said that some models have error values that can be investigated as outlier

observations that violates the model performances.

4.4.4.2 Transformed Weekly Series Analysis

In this section, the thirteen steps ahead forecasting performance of the models on the

transformed weekly series will be presented with their corresponding accuracy and

performance measure values. Besides, the details about the models will be given.

The application of the models on the transformed series are same as the original ones.

The transformation process of the series is explained in Section 4.4.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS SGT and STL are fitted to produce thirteen steps ahead forecasts for weekly

series. The forecasts performances of the statistical models on the transformed weekly

series is summarized in Table 4.24.
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Table 4.24: The Forecasting Performance of Statistical Methods for Transformed

Weekly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 6.684 0.593 0.330 0.002

SARIMA 3.419 0.282 0.158 0.599

ETS 5.392 0.361 0.207 0.001

TBATS 4.259 0.333 0.188 0.253

SGT 4.863 0.349 0.199 16.476

STL 6.804 0.327 0.198 0.007

As summarized in Table 4.24, SARIMA has the best thirteen steps ahead forecasts

performance shows according to all accuracy measures when compared to other sta-

tistical models. The second best model in forecasting of the weekly series changes

based on the accuracy measures. According to sMAPE, TBATS is the second best

statistical model for the forecasting of the weekly series with transformation, while

STL can be considered as the second best statistical model for the forecast of weekly

series with respect to MAPE. However, TBATS can also be considered as the sec-

ond best forecasting model according to the arithmetic average of both sMAPE and

MASE. On the other hand, the name of the model producing the poorest results de-

pends on the type of the performance measure. The values of sMAPE show that STL

decomposition has the poorest perfomance inspite of its success in MASE value, but

seasonal naive model has the worst thirteen steps forecasting performance accord-

ing to MASE and the arithmetic average of both sMAPE and MASE. Seasonal naive

model is also the second worst model in terms of sMAPE.

According to the computational time, SGT has the longest time period in hours since

it uses MCMC algorithm to estimate the model parameters. ETS considered as the

one of the insufficient statistical model for weekly series demands the shortest time

period to produce the forecasts when compared to other statistical models.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, feed-forward neural network, RNN, LSTM and BNN are fit to
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produce eight steps ahead forecasts using the transformed quarterly series. The pa-

rameters of RNN and LSTM are same as the ones applied on the original weekly

series. The thirteen steps ahead forecasting performance of the ML models are repre-

sented in Table 4.25.

Table 4.25: The Forecasting Performance of Machine Learning Methods for Trans-

formed Weekly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 4.025 0.268 0.154 0.203

RF 2.832 0.200 0.114 0.031

XGBoost 6.116 0.405 0.233 0.032

NNETAR 6.845 0.650 0.359 1.078

RNN 3.846 0.244 0.141 134.904

LSTM 4.615 0.264 0.155 146.904

BNN 3.660 0.213 0.125 0.004

Table 4.25 reveals that Random Forest clearly outperforms other ML models in the

study. Also, it is seen that BNN is the another method displaying excellent fore-

casting performance which is close to best one according to all accuracy measures.

On the other hand, it is directly said the feed-forward neural network and XGBoost

models perform the worst thirteen steps ahead forecasting performance in terms of all

accuracy measures.

According to the computational time, it can be stated that LSTM demands the longest

time period to produce the forecast values for the weekly series in the study. The

shortest time period to produce the forecast values is required by BNN which is the

second best forecasting model for weekly series among the ML models.

Consequently, RF is considered as the machine learning model producing the most

accurate forecast values for the weekly series in this study. In addition to its best

performance, since it takes shorter time to make a forecasting compared to most of

the ML models in the study, it is preferred to be used as nonlinear component of the

hybrid approach.
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Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with RF as defined in the previous section to make thirteen steps ahead

forecasts for the weekly series. The performance of the hybrid models are given in

Table 4.26.

Table 4.26: The Forecasting Performance of Hybrid Methods for Transformed

Weekly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-RF 4.3656 0.316 0.179 0.032

ETS-RF 4.3724 0.324 0.184 0.023

TBATS-RF 4.0853 0.329 0.185 0.044

SGT-RF 5.4183 0.408 0.231 17.874

STL-RF 4.5601 0.295 0.170 0.037

Table 4.26 shows that performance of the hybrid approaches used in forecasting of the

weekly series with Box-Cox transformation are very close to each other. That’s why

the best model changes with respect to accuracy measures. The values of sMAPE

show that a hybrid model TBATS and RF has the lowest sMAPE value which indi-

cates that the model is the best, while MASE and the average of both measures show

that a hybrid model including STL decomposition and RF outperforms the other hy-

brid models for weekly series in the study. However, this situation is not valid for

detecting the model displaying the worst thirteen steps ahead forecast performance

for the weekly series. It is obvious that a hybrid model SGT and RF is the worst

hybrid approach for weekly series with transformation. In addition to this, the hy-

brid model TBATS and RF gives insufficient forecasting accuracy with respect to

both MASE and the average of sMAPE and MASE in spite of its success in terms of

sMAPE.

In the comparison of the models in terms of their computational requirements, the

hybrid model SGT and RF demands more computational time in hours in comparison

with other models in addition to its worst performance. The hybrid model demanding

the shortest time period in the forecasting of weekly series is the hybrid model ETS

and RF in this study.

106



Therefore, it is said that the hybrid approach of STL and RF is the best hybrid model

for the forecasting of weekly series with transformation among all hybrid models

considered in the study. However, the model cannot be concluded as the better than

best machine learning model.

Result: In the analysis of weekly series with Box-Cox transformation, it said that

the best forecasting performance is shown by RF model producing the future values in

the shorter time period unlike the most of the models. In addition to RF, it is made an

inference that BNN has the second best forecasting performance for the transformed

weekly series. On the other hand, seasonal naive model and feed-forward neural net-

work have the worst thirteen steps ahead forecasting performances compared to other

models in the study. Like original weekly series, the best forecasting performance

is displayed by ML models compared to hybrid approach and statistical models for

transformed weekly series. In fact, the best hybrid approach has lower forecasting

accuracy than most of the ML models.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.26, Figure 4.27 and Figure 4.28 represent box plot

of the each measure drawn by using the error values obtained from each model for

the each weekly series in the analysis.

Figure 4.26: sMAPE Performances of All Models for Transformed Weekly Series
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Figure 4.27: MASE Performances of All Models for Transformed Weekly Series

Figure 4.28: The Average Performances of All Models for Transformed Weekly Se-

ries

Figures 4.26, Figure 4.27 and Figure 4.28 display the models having the poor forecast-

ing performance such as feed-forward neural network called NNETAR and sNAIVE

have more variability and error values compared to other values on the average. On

the other hand, it is seen that the best forecasting models for weekly series such as

RF and BNN have lower variability and error values compared to other models on

the average. Lastly, it can be said that some models have error values that can be

investigated as outlier observations that violates the model performances.

In addition to this, it can be said that Box-Cox transformation results in better fore-

casting performance for some models such as a hybrid model SGT and RNN, but

it has a negative effect on the forecasting performance of the some models such as

XGBoost.
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4.4.5 Daily Series Analysis

In this section, the analysis of 42 daily series randomly selected from M4 Competition

will be explained. The time interval between successive observations known as time

frequency is considered as 7 for daily series as determined in M4 Competition, and 14

steps ahead forecast values are produced for all series. In Figure 4.29, the time series

plots of the four randomly selected daily series used in the study are represented.

Figure 4.29: The Time Series Plots of Subset of Daily Series

As seen in Figure 4.29, all selected series have seasonal cycles. They also show both

increasing and decreasing trend over time. Besides, they represent time shift in the

plots.

In this study, the length of daily series vary between 175 and 4197 being the minimum

and maximum lengths of the series. Besides, the maximum length of the series is also

mode of length of the all series.

The analysis of the daily series are divided into two groups, original series and trans-

formed series. For both cases, the time frequency is used as 7, and 14 steps ahead

forecast values are produced as given above.
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4.4.5.1 Original Daily Series Analysis

In this section, 14 steps ahead forecasting performance of the models on the daily

original series are presented with the corresponding accuracy and performance mea-

sures. Besides, some specific details about the models are given.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce fourteen steps ahead forecasts for the

daily series. The forecasting performance of the models for the original hourly series

are represented in Table 4.27.

Table 4.27: The Forecasting Performance of Statistical Methods for Original Daily

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 3.321 1.434 0.734 0.003

SARIMA 2.605 1.020 0.523 0.005

ETS 2.598 1.023 0.525 0.041

TBATS 2.631 1.046 0.536 0.126

SGT 2.609 1.044 0.535 36.094

STL 3.399 1.035 0.534 0.023

In Table 4.27, it can be seen that ETS model is superior to other on the basis of

sMAPE, but SARIMA model produces the best forecast values according to MASE.

The superior performance of SARIMA is also summarized by the arithmetic average

of sMAPE and MASE. The statistical model that produces the poorest forecast also

changes based on the accuracy measure. STL decompostion can be seen as the statis-

tical model having the worst forecasting performance by sMAPE. However, seasonal

naive model clearly produces the insufficient forecasts for original daily series accord-

ing to MASE and the arithmetic average of sMAPE and MASE. The naive model is

shown as the second worst statistical model for forecasting by sMAPE among six

statistical models.

As expected because of its previous performances, the statistical model that demands
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the longest time to make forecasts for daily series is SGT, while the shortest time is

used by seasonal naive model having the insufficient accuracy values.

Machine Learning Models: In this part, seven machine learning models which

are SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are

considered in forecasting of the original daily series. The past observations until the

second seasonal lag which is fourteen are included to the model as input data in the

training process of the ML models. Since the general structure of the models are

expressed before, only specific details about RNN and LSTM will be given in this

part. RNN uses learning rate 0.1, 1979 epoch and 21 hidden layers, while LSTM uses

0.05 learning rate with 848 epoch and 30 hidden layers to train the network structure.

The forecasting performance of the machine learning models for the daily series are

represented in Table 4.28

Table 4.28: The Forecasting Performance of Machine Learning Methods for Original

Daily Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 1.165 0.549 0.280 2.440

RF 1.248 0.632 0.322 0.172

XGBoost 2.937 1.286 0.658 0.121

NNETAR 3.148 1.439 0.735 0.099

RNN 0.930 0.435 0.222 442.632

LSTM 1.397 0.599 0.306 386.016

BNN 0.897 0.403 0.206 0.007

Table 4.28 shows that BNN is clearly the best ML model for forecasting of original

daily series in terms of all accuracy measures. The second superior ML models for

original daily series can be stated as RNN based on all accuracy measures. On the

other hand, the worst forecast values in terms of accuracy measures is performed by

feed-forward neural network written as NNETAR. After this model, XGBoost has the

second insufficient forecasting performance among ML models.

Although RNN has the second superior ML models, it needs the longest time period
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to predict the future values for the daily series. However, BNN produces the forecast

values in the shortest time period, and has the best performance.

Therefore, BNN is used in the construction of hybrid models due to being the most

successful model in terms of all accuracy measures and computational time.

Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with BNN as defined in the previous section in the construction of hybrid

models. The forecasting performance of the hybrid models for the original daily

series are summarized in Table 4.29.

Table 4.29: The Forecasting Performance of Hybrid Methods for Original Daily Se-

ries

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 2.171 0.945 0.483 0.008

ETS-BNN 2.167 0.945 0.483 0.048

TBATS-BNN 2.282 1.009 0.516 0.126

SGT-BNN 2.171 0.952 0.487 18.301

STL-BNN 1.669 0.786 0.402 0.017

As represented in Table 4.29, a hybrid STL and BNN clearly outperforms the other

hybrid models in forecasting of daily series in terms of all accuracy measures. Also,

it can be stated that a hybrid ETS and BNN having a slightly better performance than

a hybrid SARIMA and BNN is the second superior model. On the other hand, the

most inaccurate forecast values among all hybrid models are performed by a hybrid

TBATS and BNN. The second worst hybrid approach can be considered as a hybrid

SGT and BNN in terms of all accuracy measures.

In the comparison of the model in terms of their computational requirements, the

hybrid SGT and BNN demands more computational time in hours in comparison

with other models as expected. The hybrid model demanding the shortest time period

in the forecasting of the daily series is SARIMA and BNN.
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Therefore, it is seen that a hybrid STL and BNN model is the most superior hybrid

models compared to other hybrid models in addition to demanding the second shortest

time for forecasting.

Result: The analysis of original daily series shows that the most accurate forecast

values are produced by BNN which demands shorter time period compared to most

of the models in the study. After BNN, it is stated that RNN is superior to the reman-

ing models for forecasting of original daily series. On the other hand, sNAIVE and

feed-forward neural network give the worst predicting accuracy, respectively. The

XGBoost is another model having the poor forecast accuracy for daily original series.

If the forecasting performances of the models are analyzed in terms of the class of the

models, ML models give better predicting accuracy compared to other models on the

average.

In addition to this numerical comparison, the accuracy performances of the models

are compared visually. The following Figure 4.30, Figure 4.31 and Figure 4.32 repre-

sent box plot of the each measure drawn by using the error values obtained from each

model for the each daily series in the analysis.

Figure 4.30: sMAPE Performances of All Models for Original Daily Series
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Figure 4.31: MASE Performances of All Models for Original Daily Series

Figure 4.32: The Average Performances of All Models for Original Daily Series

As seen in Figure 4.30, Figure 4.31 and Figure 4.32, statistical models, which are

the class of model having the poorest forecasting performance, have more variability

than both ML and hybrid models. The figures show that naive model has the highest

error value among all models. Besides, the success of ML models in forecasting

of daily series can be observed from the figures above. It can be also seen that the

hybrid models described as combination of statistical models with BNN being the

most successful model have less variability compared to statistical models due to

success of BNN in the forecasting. Lastly, it can be said that some models have

error values that can be investigated as outlier observations that violates the model

performances.
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4.4.5.2 Transformed Daily Series Analysis

In this section, the fourteen steps ahead forecasting performance of the models on

the transformed daily series will be presented with their corresponding accuracy and

performance measure values. Besides, the details about the models are given. The

application of the models on the transformed series are same as the original ones. The

transformation process of the series is explained in Section 4.4.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce six steps ahead forecasts for the hourly

series.

After constructing the models, the forecast values related to models are produced by

forecast function. Then, sMAPE and MASE are calculated using forecast values

and test values for each series, and then the arithmetic average of each performance

measures are calculated and presented as the final results. The forecasting perfor-

mance of the models for the original daily series are represented in Table 4.30.

Table 4.30: The Forecasting Performance of Statistical Methods for Transformed

Daily Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 2.849 1.301 0.665 0.003

SARIMA 2.314 1.042 0.533 0.006

ETS 3.760 1.436 0.737 0.058

TBATS 2.470 1.097 0.561 0.155

SGT 2.477 1.094 0.559 145.320

STL 2.883 1.037 0.533 0.033

According to results in Table 4.30, it is hard to suggest a single model that is clearly

outperforms the other statistical model for transformed daily series forecasting in

terms of all accuracy measures. The sMAPE values show SARIMA gives the best

forecasting accuracy among all statistical models. However, STL decomposition is

superior to other models based on MASE. Interestingly, the both of the models have
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the best forecasting accuracy for transformed daily series with respect to the aver-

age of both sMAPE and MASE. On the other hand, the similar situtation is not valid

for the model having the lowest forecasting accuracy values. All metrics clearly in-

dicates that ETS gives the lowest forecasting accuracy among all statistical models.

After ETS, seasonal naive model can be considered as the forecasting model having

insufficient forecasting accuracy.

In the comparison of the models in terms of computational time, SGT model needs

the longest time as we expected. The shortest time for the forecasting is used by

seasonal naive model. Additionaly, SARIMA being most successful model in terms

of sMAPE has the second shortest time period among all statistical models.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are fit

to produce forty eight steps ahead forecasts using the transformed daily series. The

parameters of RNN and LSTM are same as the ones applied on the original series.

The forecasting performance of the ML models are represented in Table 4.31.

Table 4.31: The Forecasting Performance of Machine Learning Methods for Trans-

formed Daily Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 1.294 0.617 0.315 0.037

RF 1.237 0.627 0.319 0.189

XGBoost 3.325 1.724 0.879 0.026

NNETAR 3.145 1.493 0.762 0.099

RNN 0.943 0.449 0.229 450.532

LSTM 1.588 0.652 0.334 388.012

BNN 0.899 0.403 0.206 0.006

Table 4.31 shows that BNN is superior to other models in terms of forecasting ac-

curacy. Also, it can be seen RNN outperforms other ML models except BNN. On

the other hand, XGBoost gives the worst forecasting accuracy for transformed daily
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series among all ML models. After this model, it can be easily reported feed-forward

neural network called NNETAR performed the second insufficient forecasting perfor-

mance for transformed daily series.

As seen in the previous analysis, RNN demands the longest time for fourteen steps

ahead forecasting. The second longest time for forecasting of transformed daily series

is needed by LSTM. On the other hand, the shortest time where fourteen steps ahead

forecasting performed is used by BNN being superior to all ML models in the study.

Therefore, BNN is used in building hybrid models because it is model having best

forecasting accuracy and needing the shortest time period for producing forecasts.

Hybrid Models: In this part, all statistical models except seasonal naive model

are combined with BNN in the construction of the hybrid models for the forecasting

of Box-Cox transformed daily series. The performance of the hybrid models are

reported in Table 4.32.

Table 4.32: The Forecasting Performance of Hybrid Methods for Transformed Daily

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 2.089 0.780 0.400 0.007

ETS-BNN 2.180 0.802 0.412 0.061

TBATS-BNN 2.263 0.836 0.429 0.156

SGT-BNN 2.251 0.815 0.433 297.828

STL-BNN 1.467 0.571 0.293 0.013

As observed in Table 4.32, a hybrid STL decomposition and BNN outperforms all

hybrid models for forecasting of transformed daily series. It can be also seen that

the second best forecasting accuracy is achieved by a hybrid SARIMA and BNN. On

the other hand, a hybrid model with TBATS and BNN shows the worst forecasting

performance compared to other hybrid models for transformed daily series. After

this, a hybrid model with SGT and BNN performs the second poorest forecasts among

hybrid models in the study.
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In the comparison of the model in terms of their computational requirements, the

hybrid approach of SGT and BNN demands more computational time in hours in

comparison with other models in addition to have one of the worst performances. The

hybrid model demanding the shortest time period in the forecasting of daily series is

STL decomposition and BNN proven as the best hybrid approach for transformed

daily series in this study.

In conclusion, a hybrid model using STL decomposition and BNN shows the best

performance among the all hybrid approaches for daily series according to accuracy

measures.However, the model cannot be concluded as the best forecasting model for

transformed yearly series.

Result: In the analysis of daily series with Box-Cox transformation, it is reported

that BNN produces the best forecasting accuracy in the one of the shortest time pe-

riod among all models. In addition to BNN, the accuracy measures reveal that RNN

has the second best forecasting performance for the transformed daily series. On the

other hand, ETS and XGBoost produce the most inaccurate forecasting values for

transformed daily series. In addition to them, feed-forward neural network has con-

siderably insufficient forecasting performance for transformed daily series. The study

shows that the best forecasting performance is displayed by ML models compared to

hybrid approach and statistical models. In fact, the best hybrid approach has lower

forecasting accuracy than most of the ML models.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.26, Figure 4.27 and Figure 4.28 represent box plot

of the each measure drawn by using the error values obtained from each model for

the each daily series in the analysis.
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Figure 4.33: sMAPE Performances of All Models for Transformed Daily Series

Figure 4.34: MASE Performances of All Models for Transformed Daily Series

Figure 4.35: The Average Performances of All Models for Transformed Daily Series

As visualized in Figure 4.33, Figure 4.34 and Figure 4.35, the models having the

poor forecasting performance such as sNAIVE, XGBoost and feed-forward neural
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network called NNETAR have more variability and higher error values compared to

other values on the average. On the other hand, it is seen that the best forecasting

models for daily series like BNN and RNN have lower variability and error values

compared to other models on the average. Lastly, it can be said that some models

have error values that can be investigated as outlier observations that violates the

model performances. In addition to this, it can be observed that the error values of

both statistical and hybrid models decrease after Box-Cox transformation, but there

is an increment in the error values for ML models after the transformation.

4.4.6 Hourly Series Analysis

In this study, 4 hourly series randomly selected from M4 competition data set are

used and the forecast performance of the models included in the study are compared

using these selected series. The time interval between successive observations known

as time frequency is considered as 24 for hourly series and 48 steps ahead forecast

values are produced for all of the 4 series. In Figure 4.36, the time series plots of the

four hourly series used in the study are represented.

Figure 4.36: The Time Series Plots of Subset of Hourly Series

As seen in Figure 4.36, all of the hourly series have considerable seasonal cycles.

Also, we have some series having increasing trend or time shift in their structure.

In this study, the length of three hourly series are 700, so they have the minimum
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length in the hourly series used in the study. There is only one series having the

maximum length which is 960 in the study.

The analysis of the hourly series are divided into two groups, original series and

transformed series. For both cases, the time frequency is used as 24, and 48 steps

ahead forecast values are produced as stated above.

4.4.6.1 Original Hourly Series Analysis

In this section, 48 steps ahead forecasting performance of the models on the hourly

original series are presented with the corresponding accuracy and performance mea-

sures. Besides, the details about the models are given.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS, SGT and STL are fitted to produce six steps ahead forecasts for the hourly

series. The forecasting performance of the models for the original hourly series are

represented in Table 4.33.

Table 4.33: The Forecasting Performance of Statistical Methods for Original Hourly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 7.639 1.219 0.648 0.001

SARIMA 6.097 0.822 0.441 0.092

ETS 7.146 1.111 0.591 0.006

TBATS 5.719 0.841 0.449 0.026

SGT 8.461 0.981 0.533 2.171

STL 8.117 1.104 0.593 0.002

As summarized in Table 4.33, the model displaying the best forty eight steps ahead

forecasting performance varies based on the accuracy measure values. If the val-

ues of sMAPE is considered, it is said TBATS has the best statistical model for the

forecasting of the original hourly series. However, it is seen that seasonal SARIMA

model displays the best forecasting performance among all statistical models used in
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the study according to both MASE and the arithmetic average of sMAPE and MASE.

On the other hand, the similar situation is valid for determining the statistical model

having producing the poorest forecast values. Bayesian exponential smoothing called

SGT can be concluded as the worst statistical model in the forecasting of hourly se-

ries according to sMAPE. However, the other two measures show that seasonal naive

model is the worst statistical model in the forecasting of the original hourly series in

this study. Seasonal naive model is also the second worst statistical model according

to both MASE and the average of sMAPE and MASE.

In addition to comparison in terms of accuracy measures, the models are compared

with respect to their computational time as done in the previous analysis. It is clearly

seen that SGT demands the longest time period in spite of displaying one of the

worst performance among the statistical models. On the other hand, the shortest time

period for forecasting hourly series is used by seasonal naive which can be concluded

as the model with the poorest forecasting performance on the basis of MASE and the

average of sMAPE and MASE.

Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are fit to

produce thirteen steps ahead forecasts for the hourly series. The past observations

until the second seasonal lag which is forty eight are included to the model as input

data in the training process of the ML models. Since the general structure of the

models are expressed before, only specific details about RNN and LSTM will be

given in this part. RNN uses learning rate 0.1, 942 epoch and 25 hidden layers,

while LSTM uses same learning rate with 350 epoch and 14 hidden layers to train the

network structure. The forty eight steps ahead forecasts performance of the machine

learning models for the hourly series are summarized in Table 4.34.
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Table 4.34: The Forecasting Performance of Machine Learning Methods for Original

Hourly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 4.710 0.761 0.404 0.041

RF 3.168 0.471 0.251 0.008

XGBoost 7.389 0.986 0.530 0.009

NNETAR 7.608 0.994 0.301 0.035

RNN 5.623 2.095 1.076 5.649

LSTM 16.295 6.663 3.413 9.949

BNN 2.912 0.352 0.191 0.001

Table 4.34 displays BNN outperforms other ML methods for the forecasting of the

hourly series in this study. Also, RF can be considered as the second best ML models

for hourly series forecasting on the basis of all accuracy measures. On the other

hand, it is directly seen that LSTM displays the worst forecasting performance for

hourly series among all ML models evaluated in the study. The main reason of this

performance is raising from insufficient number of epoch used to train the network.

The same reason may be valid for RNN which gives one of the lowest forecasting

accuracy in spite of its perfomance in the previous analysis.

According to the computational time, it can be stated that LSTM demands the longest

time period to produce the forecast values for the hourly series in the study, in addition

to it has the poorest performance. The shortest time period to produce the forecast

values is required by BNN which is the best ML models for forty steps ahead forecasts

of the hourly series.

Therefore, BNN is considered as the machine learning model producing the most

accurate forecast values for the hourly series in this study. In addition to its best

performance, since it demands the shortest time to make a forecasting compared to

all of the ML models in the study, it is preferred to be used as nonlinear component

of the hybrid approach.
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Hybrid Models: In this part, all statistical models except seasonal naive model are

combined with BNN as defined in the previous section in the construction of hybrid

models. The performance of forty eight steps ahead forecasts performance of the

hybrid models for hourly series are given in Table 4.35.

Table 4.35: The Forecasting Performance of Hybrid Methods for Original Hourly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 6.069 0.803 0.432 0.097

ETS-BNN 7.056 1.193 0.632 0.007

TBATS-BNN 6.085 0.967 0.514 0.024

SGT-BNN 8.355 2.866 1.475 2.048

STL-BNN 4.609 0.913 0.479 0.001

Table 4.35 represents the best hybrid approach for the forecasting of hourly series

changes based on the accuracy measures. The sMAPE indicates that a hybrid model

using STL decomposition and BNN has the best forty eight steps ahead forecasting

performance. However, a hybrid model using seasonal SARIMA and BNN which

are the best statistical and ML models outperforms the other hybrid model for hourly

series forecasting according to MASE and the equally weighted average of MASE

and sMAPE. On the other hand, a hybrid model including SGT and BNN performs

the poorest forecasts among both hybrid and other models in the study because of

suffering from achieving convergence of default model of SGT.

In the comparison of the model in terms of their computational requirements, the

hybrid approach of SGT and BNN demands more computational time in hours in

comparison with other models in addition to its worst performance. The hybrid model

demanding the shortest time period in the forecasting of hourly series is seasonal

SARIMA and BNN proven as the best hybrid approach for hourly series in this study.

In conclusion, a hybrid model using seasonal SARIMA and BNN shows the best

performance among the all hybrid approaches for hourly series according to accuracy

measures. However, the model cannot be concluded as the better than best machine
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learning model.

Result: In the analysis of original hourly series, it can be said that the best forecast-

ing performance is shown by BNN model demanding one of the shortest time to make

a forecasting compared to the most of the models in the study. In addition to BNN, it

is made an inference that RF has the second best forecasting performance for hourly

series. On the other hand, LSTM and the hybrid approach of SGT and BNN have

the worst forty eight steps ahead forecasting performances compared to other models

in the study. Unlike the other types of series expressed above, the best forecasting

performance is displayed by statistical models compared to hybrid approach and ML

models on the average, although it does not contain the best model.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.37, Figure 4.38 and Figure 4.39 represent box plot

of the each measure drawn by using the error values obtained from each model for

the each hourly series in the analysis.

Figure 4.37: sMAPE Performances of All Models for Original Hourly Series
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Figure 4.38: MASE Performances of All Models for Original Hourly Series

Figure 4.39: The Average Performances of All Models for Original Hourly Series

Figure 4.37, Figure 4.38 and Figure 4.39 display the models having the poor forecast-

ing performance such as LSTM, NNETAR, SGT-BNN, XGBoost and sNAIVE have

more variability and error values compared to other values on the average. On the

other hand, it is seen that the best forecasting models for hourly series such as RF and

BNN have lower variability and error values compared to other models on the aver-

age. Lastly, it can be said that some models have error values that can be investigated

as outlier observations that violates the model performances.

4.4.6.2 Transformed Hourly Series Analysis

In this section, the forty eight steps ahead forecasting performance of the models on

the transformed hourly series are presented with their corresponding accuracy and
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performance measure values. Besides, the details about the models are given. The

application of the models on the transformed series are same as the original ones. The

transformation process of the series is explained in Section 4.4.

Statistical Models: Six statistical methods which are sNAIVE, SARIMA, ETS,

TBATS SGT and STL are fitted to make a forecasting for the the hourly series. The

forecasts performances of the statistical models on the transformed hourly series is

displayed in Table 4.36.

Table 4.36: The Forecasting Performance of Statistical Methods for Transformed

Hourly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

sNAIVE 7.639 1.219 0.648 0.002

SARIMA 5.845 0.768 0.413 0.071

ETS 9.968 1.277 0.688 0.006

TBATS 5.598 0.735 0.395 0.028

SGT 11.049 1.293 0.702 7.549

STL 8.384 0.985 0.535 0.001

As displayed in Table 4.36, the most successful statistical model for the forecasting of

hourly series with Box-Cox transformation is indicated as TBATS depending on all of

the accuracy measures. After TBATS, seasonal SARIMA is considered as the second

best model for the forecasting of the hourly series. On the other hand, it is directly

seen that Bayesian exponential smoothing known as SGT has the worst forecasting

performance among all statistical models in terms of all accuracy measures. In addi-

tion to SGT, exponential smoothing model denoted by ETS is the second unsuccessful

statistical model for hourly series forecasting in this study.

According to the computational time, SGT which is the worst statistical model has

the longest time period in hours since it uses MCMC algorithm to estimate the model

parameters. On the contrary, STL decomposition demands the shortest time period to

make the forecasts for the hourly series when compared to other statistical models.
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Machine Learning Models: In this part, seven machine learning models which are

SVM, RF, XGBoost, Feed-forward neural network, RNN, LSTM and BNN are fit to

produce forty eight steps ahead forecasts using the transformed hourly series. The

parameters of RNN and LSTM are same as the ones applied on the original series.

The forecasting performance of the ML models are represented in Table 4.37.

Table 4.37: The Forecasting Performance of Machine Learning Methods for Trans-

formed Hourly Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SVM 3.966 0.478 0.359 0.037

RF 3.398 0.483 0.259 0.008

XGBoost 9.342 1.408 0.751 0.006

NNETAR 7.589 0.967 0.522 0.047

RNN 5.646 2.106 1.082 7.623

LSTM 18.854 7.134 3.661 13.442

BNN 3.402 0.395 0.215 0.001

As seen in Table 4.37, the situation seen in the determination of the best statistical

model for the forecasting of the transformed hourly series is seen for ML models.

Random forest can be considered as the most successful ML models for forty eight

steps ahead forecasts of the hourly series with Box-Cox transformation on the basis of

sMAPE. However, BNN is clearly most successful ML models according to MASE

and the average of sMAPE and MASE. On the other hand, it is directly said LSTM

displays the worst forecasting performance for the hourly series. The second ML

models producing inaccurate forecast values is XGBoost in terms of all accuracy

measures.

According to the computational time, it can be stated that LSTM demands the longest

time period to produce the forecast values for the hourly series in the study in addition

to its worst performance. The shortest time period to produce the forecast values

is required by BNN which is the best forecasting model for hourly series among

the ML models. Consequently, BNN is considered as the machine learning model

producing the most accurate forecast values for the transformed hourly series in this
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study. In addition to its best performance, since it demands the shortest time to make a

forecasting compared to all ML models in the study, it is used as nonlinear component

of the hybrid approach.

Hybrid Models: In this part, all statistical models except seasonal naive model

are combined with BNN in the construction of the hybrid models for the forecasting

of Box-Cox transformed hourly series. The performance of the hybrid models are

summarized in Table 4.38.

Table 4.38: The Forecasting Performance of Hybrid Methods for Transformed Hourly

Series

Method sMAPE (%) MASE Avg. Computation Time (Hour)

SARIMA-BNN 17.716 8.155 4.166 0.002

ETS-BNN 11.217 1.266 0.689 0.006

TBATS-BNN 5.752 0.749 0.403 0.030

SGT-BNN 8.197 2.065 1.073 7.732

STL-BNN 3.991 0.573 0.302 0.001

Table 4.38 shows the best hybrid approach for the forecasting of transformed hourly

series is obviously a hybrid approach using STL decomposition and BNN in terms of

all accuracy measures. A hybrid model using TBATS and BNN can be considered as

the second best hybrid approach for the forecasting of hourly series on the basis of

all measures. On the other hand, a hybrid model with seasonal SARIMA and BNN

shows the worst forecasting performance compared to other hybrid models and other

models. After this, a hybrid model with SGT and BNN performs the second poorest

forecasts among hybrid models in the study.

In the comparison of the model in terms of their computational requirements, the

hybrid approach of SGT and BNN demands more computational time in hours in

comparison with other models in addition to have one of the worst performances.

The hybrid model demanding the shortest time period in the forecasting of hourly

series is STL decomposition and BNN proven as the best hybrid approach for hourly
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series in this study.

In conclusion, a hybrid model using STL decomposition and BNN shows the best

performance among the all hybrid approaches for hourly series according to accuracy

measures. However, the model cannot be concluded as the better than best machine

learning model.

Result: In the analysis of hourly series with Box-Cox transformation, it said that the

best forecasting performance is shown by BNN producing the most accurate future

values in the shorter time period unlike the most of the models. On the other hand, a

hybrid approach of seasonal SARIMA and BNN performs the worst forty eight steps

ahead forecasting performances compared to other models in the study. Unlike the

other types of series expressed above, the best forecasting performance is displayed

by ML models compared to hybrid approach and statistical models.

In addition to this comparison, the accuracy performance of the models are compared

visually. The following Figure 4.40, Figure 4.41 and Figure 4.42 represent box plot

of the each measure drawn by using the error values obtained from each model for

the each hourly series in the analysis.

Figure 4.40: sMAPE Performances of All Models for Transformed Hourly Series
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Figure 4.41: MASE Performances of All Models for Transformed Hourly Series

Figure 4.42: The Average Performances of All Models for Transformed Hourly Series

Figure 4.40, Figure 4.41 and Figure 4.42 display the models having the poor forecast-

ing performance such as LSTM and the hybrid approach of seasonal SARIMA and

BNN have more variability and error values compared to other values on the average.

On the other hand, it is seen that the best forecasting models for hourly series such

as RF and BNN have lower variability and error values compared to other models on

the average. Besides, it can be said that some models have error values that can be

investigated as outlier observations that violates the model performances.

Finally, it is seen that Box-Cox transformation results in increment in the error values

of the most of the models including all of three methods in spite of making the error

values of the some models fall.
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CHAPTER 5

CONCLUSION AND FUTURE STUDIES

Forecasting is a concept that has been progressed for thousands of years due to the

sense of wondering future of people. The ways of predicting future which started

with divinations has evolved and earned academic respectability over time, especially

after the introduction of a time series notion defining as a realization of stochastic

process by Yule. After this introduction, not only time series forecasting, but also

time series forecasting with high accuracy have become an active research area and

developed a great number of methods aiming to achieve high forecasting accuracy

such as machine learning and hybrid models in addition to statistical ones. The reason

is that the accuracy of time series is a key concept for many decision process. As a

consequence, there has been a large number of studies for improving the accuracy of

forecasting model and suggesting new algorithms for it [2].

In this thesis, we focus on the forecasting accuracy of a wide range of forecasting

models from several categories on the univariate time series having different time

frequency. Besides, we try to observe the effect of Box-Cox transformation used for

achieving stationarity in variance on forecast accuracy. Not only forecasting accuracy

but also computational time demanding for predicting future values of the models are

compared in this study.

We implement six statistical models involving naive, ARIMA, ETS, TBATS, Bayesian

exponential smoothing model with trend modifitications and STL decomposition,

seven machine learning models including SVM, RF, XGBoosting, feed-forward neu-

ral network, RNN, LSTM, BNN, and five hybrid models built by combination of

ARIMA, ETS, TBATS and Bayesian exponential smoothing model with trend modi-

fitications and STL decomposition models with a machine learning model having the
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highest forecasting accuracy for studied time class. sMAPE, MASE and their arith-

metic average are selected to compare the forecasting performances of models in the

study. In addition to this, time period demanding by each model for forecasting is

recorded in hours and used to compare the models. All numerical analysis in this

study are done by R Studio with version 1.3.959.

In this thesis, some of similar studies are introduced at first. Then, theoretical back-

grounds of the models listed above are explained in details. Finally, the models are

implemented on the both original and transformed univariate time series from six time

classes which are yearly, quarterly, monthly, weekly, daily and hourly. After this, the

forecasting performance of the models are presented in both numerical and visual

ways for each time classes, separately.

The study shows that the model having the highest forecasting accuracy varies based

on series under the study. In other words, it cannot be suggested a single model being

superior to other in this study. Although we cannot suggest a single model in this

study, some remarkable conclusions are obtained.

First of all, it is seen that the forecasting performance of the model depends on both

time frequency and forecast horizons as concluded in M Competitions. For example,

Bayesian exponential smoothing model is superior to other statistical models for pre-

dicting the future values of yearly series. However, the model starts to produce worser

accuracy values while time frequency is increasing. Another example that supports

this conclusion is displayed by SARIMA. Although the model cannot be one of the

best in quarterly or monthly series, there is an increase in the accuracy of SARIMA

for series having higher time frequency.

Secondly, it is proven that some of the models whose success was announced in fore-

casting before such as Bayesian exponential smoothing, XGBoosting and LSTM are

not as good as researchers said in forecasting. SGT and XGBoosting are proven sev-

eral times as the model having one of the lowest forecasting accuracy in the previous

chapter. In addition to this, feed-forward neural network proven successful in some

of the previous studies shows one of the insufficient forecasting performance in the

study. The main reason behind their failures is some computational problems. For

example, SGT model suffers from convergence problem in some cases and hence it
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produces inaccurate forecast values or LSTM may produce inaccurate forecast val-

ues for some series due to insufficient number of epoch number caused by lack of

representation of selected sample for parameter tuning.

The third conclusion is about hybrid models. Although the success of hybrid approach

in time series forecasting is proven by many of previous studies, the hybrid model is

selected rarely as the model having the highest forecasting frequency in this study.

However, it is seen that the hybrid approach makes progress in time series forecasting

accuracy when compared to statistical models and some machine learning models. It

also provides decreasing in the variability of the statistical models by modelling their

residuals with ML models.

Furthermore, the study shows that the performance of ML model improves when the

frequency of the series increases. For example, BNN gives one of the inadequate fore-

casting accuracies for yearly series, but the performance of the model considerably

increases for the series having more time frequency.

Moreover, it is stated that spending more time forecasting does not provide more fore-

casting accuracy. In previous chapter, it is showed that some models which demand

the longest computational time period for forecasting such as SGT, LSTM can give

worser predicting accuracy. On the contrary, some models such as BNN or RF outper-

forms other models in spite of demanding less time period for time series forecasting.

As seen in Table 5.1 and Table 5.2, Box-Cox transformation, which makes series

stationary in terms of variability, cannot reduce the error rate of the most of the models

which is calculated using future values. However, it can be also said that Box-Cox

transformation decreases the variability of the error measure when compared to error

measures obtained from original series. Besides, it is seen that the transformation

mostly does not change the name of the model whose success proven in the original

series, although it extends the forecasting time of the models for most case due to

requiring both transformation and back transformation process. Therefore, it can be

concluded that the forecast models give better results without the transformation in

the shorter time period.

Lastly, both Table 5.1 and Table 5.2 show that the model having highest forecasting
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accuracy for the series under the study are mainly selected from machine learning

models, and the model having the worst forecasting performance generally becomes

naive model. For example, RNN has the highest forecasting accuracy for yearly series

or BNN gives the best forecasting accuracy for most type of the series. As a conse-

quence, this study can state that machine learning models especially BNN and RNN

have better forecasting performance than both statistical models and hybrid models

regardless of type of the time series.

For future studies, a better model identification process for ARIMA models instead

of using auto.arima can be considered in hope to ARIMA results. Also, dif-

ferent models whose success in time series forecasting proven by studies such as

Light Gradient Boosting, Convolutional Neural Networks can be added. Besides,

hybrid approaches where ML models are combined with best statistical models can

be added and hence the effect of model choice on the forecasting accuracy will be

explored. In addition to real data, the forecasting performances of the series can be

compared on the simulated time series. Also, the models can be implemented with

parameters tuned for each series, separately and thereby some convergence or lack of

training problems can be protected. Furthermore, a more efficient parameter search

ways should be preferred for some models in the study such as LSTM. In addition to

them, supercomputers can be used instead of normal computers to reduce the com-

putational time for some models. Lastly, we can determine a benchmark to make a

better comparison among the models.
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