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ABSTRACT

A STUDY OF THE DAY-AHEAD ENERGY MARKET AUCTIONS FROM A
MULTI-OBJECTIVE PERSPECTIVE

Ceyhan, Gökhan

Ph.D., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Banu Lokman

Co-Supervisor: Prof. Dr. Murat Köksalan

July 2020, 176 pages

In this study, we develop approaches for the market clearing problem in European

day-ahead electricity markets. We first present the surplus maximization problem and

extend it with pricing constraints that limit market loss or missed surplus associated

with paradoxically accepted and rejected bids. We develop a Benders decomposition

algorithm with price-based Benders infeasibility cuts to solve the problem. Our al-

gorithm outperforms the state-of-the-art Benders decomposition algorithms and the

primal-dual approach on practical-sized market instances. Then, we develop a multi-

objective formulation of the problem with market surplus, market loss and market

missed surplus objectives where the first one is to be maximized, and the last two are

to be minimized. We develop a cone-based search algorithm to solve three-objective

mixed-integer linear programming problems where at least one objective takes dis-

crete values, and apply the algorithm on the three-objective day-ahead electricity

market clearing problem. We examine the characteristics of the nondominated set

of the problem and derive insights for market operators related to the design of the

market rules.
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Keywords: Combinatorial auctions, day-ahead electricity market, electricity pricing,

multi-objective mixed-integer linear programming, Benders decomposition
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ÖZ

GÜN ÖNCESİ ENERJİ PİYASASI İHALELERİNİN ÇOK AMAÇLI BAKIŞ
AÇISI İLE İNCELENMESİ

Ceyhan, Gökhan

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Banu Lokman

Ortak Tez Yöneticisi: Prof. Dr. Murat Köksalan

Temmuz 2020 , 176 sayfa

Bu çalışmada, Avrupa Gün Öncesi Elektrik Piyasalarındaki piyasa takas problemi

için yaklaşımlar geliştirdik. İlk olarak piyasa fazlası ençoklama problemini sunuyor

ve problemi fiyatlandırma kısıtları altında inceliyoruz. Fiyatlandırma kısıtları, red-

dedilmesi gerekirken kabul edilen veya kabul edilmesi gerekirken reddedilen teklif-

ler sonucu ortaya çıkan piyasa zararı veya kaçırılan piyasa fazlasını sınırlandırmak

amacı ile kullanılmaktadır. Bu problem için fiyat tabanlı olursuzluk kesileri ile bir

Benders ayrıştırma algoritması geliştirdik. Geliştirdiğimiz algoritma, gerçek boyutlu

problem örneklerinde mevcut Benders ayrıştırma algoritmalarından ve asal-eşiz prob-

lem yaklaşımından daha iyi performans göstermektedir. Sonrasında, piyasa fazlası

ençoklama, piyasa zararı ve kaçırılan piyasa fazlası enazlama amaçları ile problemin

çok amaçlı formülasyonunu sunuyoruz. En az bir amaç fonksiyonunun kesikli değer-

ler aldığı üç amaçlı karışık tamsayı doğrusal programlama problemlerini için koni

tabanlı bir arama algoritması geliştirdik, ve bu algoritmayı gün öncesi elektrik piya-

sası takas problemi üzerinde uyguladık. Baskın noktalar kümesini inceledik ve piyasa
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işletmecisi için piyasa kurallarına yönelik çıkarımlar yaptık.

Anahtar Kelimeler: Kombinatoryal ihaleler, gün öncesi elektrik piyasası, elektrik fi-

yatlandırması, çok amaçlı karışık tamsayı doğrusal programlama, Benders ayrıştır-

ması
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CHAPTER 1

INTRODUCTION

In this thesis, we study a practical problem in day-ahead electricity market (DAM)

auctions. DAM auctions are held daily one day prior to the actual generation or

consumption of electricity to determine the electricity trade between the buyers and

the sellers of the market. Market players submit their bids for different hours of

the auctioned day and the market operator (MO) determines the winning bids and the

market clearing prices. The objective of MO is to maximize the total surplus resulting

from the trade between the market players while balancing the supply and demand of

electricity for each time period.

Different MOs may employ different pricing mechanisms to solve the market clearing

problem. In European DAMs, the common approach is to find the surplus maximizing

trade such that every bidder is exposed to the same market prices. The problem is a

mixed-integer linear program (MILP) or mixed-integer quadratic problem (MIQP)

depending on the type of bids allowed in the auction and contains partial market

equilibrium constraints as well as supply-demand balance constraints. Solving the

problem requires specially developed approaches to be able to generate optimal or

at least high quality solutions under strict time limits that MOs have to follow. The

occurrence of suboptimal solutions is not rare in practice. Although there is an on-

going progress in the literature towards more efficient solution methods, it seems that

more has to be done to be able to solve optimally the real-life problems of growing

size.

As we discuss the current studies on combinatorial auctions, and day-ahead electricity

markets in particular in the next chapter, it seems that there is no single best pricing

rule for combinatorial auctions. The nonconvexity of the winner determination prob-

1



lem prevents the auctioneer from having the best values at all desired outcomes. This

has caused auctioneers in different parts of the world to trade-off between the desired

auction outcomes in different ways.

Under the uniform pricing scheme employed by the European DAMs, the market

clearing prices at the surplus maximizing solution may not guarantee the market equi-

librium. Bidders may incur financial losses as a result of their accepted bids or they

may be exposed to missed surpluses due to their rejected bids when those bids are

favorable with respect to the market clearing prices. These side effects of surplus

maximization needs to be included in the market clearing algorithm. The current

market designs associate constraints that prevent the occurrence of exactly one of

the side effects to guarantee feasibility, but also may lead to very poor solutions in

terms of other criteria. Therefore, multi-objective modeling of this problem can re-

veal important insights about the characterization of the solutions that might be more

appealing for the market designers and operators.

In this thesis, we contribute to the literature in the following areas:

• We develop an efficient Benders decomposition algorithm to solve the surplus

maximization problem under pricing constraints. The existing methods to solve

the surplus maximization problem in European markets construct pricing con-

straints that ensure none of out-of-the-money bids is accepted. That is, the

model guarantees to yield market clearing prices under which each bidder does

not have any financial loss. Differently, the model developed for the market

clearing problem in Turkish market generates a solution such that there does

not exist any rejected in-the-money bids, hence total missed surplus is guaran-

teed to be zero. In this thesis, we define more general pricing constraints such

as setting upper bounds on the total loss or the total missed surplus associated

with the auction outcome. We develop price-based Benders infeasibility cuts

for the special cases. We show that the price-based cuts are stronger than the

no-good cuts used in the literature and improve the performance of the Benders

decomposition algorithm on the real-size problem instances substantially.

• We develop a criterion-space search algorithm to generate nondominated sets

of a class of three-objective MILPs. The three-objective MILP formulation of

2



the day-ahead market clearing problem that we present in Chapter 5 has the

property that the surplus maximization objective function takes discrete values

only. Hence, nondominated sets of the problem can only include points or edges

in parallel planes of feasible surplus values. Motivated by this problem and also

the consideration of similarly structured problems in other domains, we develop

a cone-based search algorithm (CBSA) to solve three-objective MILPs of this

class by exploiting the special structure. We generate problem instances by

following a common instance generation schema in the literature and show that

CBSA is able to generate the nondominated set and the set of efficient integer

variable vectors in finite number of steps. CBSA is one of the few studies that

aim to generate nondominated sets of three-objective MILPs and is the first one

that considers this special structure. We compare our algorithm to the state-

of-the-art bi-objective MILP (BOMILP) algorithms as well as multi-objective

integer programming (MOIP) algorithms and show that CBSA is competitive

to those algorithms although it is designed to solve a special case of three-

objective MILPs.

• We formulate a multi-objective day-ahead electricity market clearing problem.

There exist several criteria in day-ahead energy market clearing problem in ad-

dition to market surplus such as market loss, market missed surplus and maxi-

mum difference in the prices that two different players are settled for the same

unit energy. The smaller these amounts are the better for the market with re-

spect to the competition in the market, the fairness among the players and the

transparency of prices. The existing methods maximize total surplus by elim-

inating exactly one of the market loss or missed surplus and leaving another

unrestricted. However, the generated solutions may perform poorly in unre-

stricted criteria. In this thesis, we formulate a three-objective mixed-integer

linear program for the market clearing problem and analyze the nondominated

set with market surplus, market loss and missed surplus criteria. We apply

CBSA to generate the nondominated sets. We examine the degree of compro-

mise from the market surplus to improve the market loss and missed surplus at

different regions of the criterion space.

In Chapter 2, we provide the basics of the day-ahead electricity markets and examine
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the characteristics of the common market designs. Then, we present a review of

the literature in day-ahead electricity market pricing and multi-objective optimization

techniques.

In Chapter 3, we develop a Benders decomposition algorithm to solve the market

clearing problem in European day-ahead electricity markets (DAMs). The problem

is a large scale mixed-integer linear or quadratic program (depending on the types of

bids available in the market) and the problem needs to be solved in about 10 minutes

in order to implement the results within the tight time frame the market is operating

in.

Benders decomposition is the most studied solution approach for this problem in

the literature (Martin et al., 2014; Madani and Van Vyve, 2014, 2015; Madani and

Van Vyve, 2018; Euphemia, 2016). This is mainly because of the complexity of solv-

ing a compact formulation when there are hundreds or thousands of binary variables,

complex bid types and the equilibrium constraints that have to be satisfied. Ben-

ders decomposition algorithm reduces the complexity by solving simpler models and

introducing constraints (cuts) as necessary to enforce the feasibility of the original

model. However, the performances of the Benders decomposition algorithms are not

up to the task of solving the problem within the required time frame. This is mainly

due to the use of “no-good” cuts (Martin et al., 2014) that cause weak relaxation

bounds or locally-valid cuts that can only be used in the sub-trees (Madani and Van

Vyve, 2015; Madani and Van Vyve, 2018).

We develop a Benders decomposition algorithm based on price-based cuts that we

generate utilizing the market clearing prices associated with an integer solution. We

prove that the price-based cuts are valid and stronger than the “no-good” cuts. We test

the performance of our algorithm on practical-sized instances and show that our al-

gorithm is superior to the existing Benders decomposition algorithms and the primal-

dual approach. The improved performance implies substantial surplus increases in

European DAMs with millions of Euros of daily trade and provides an efficient algo-

rithm for MOs that operate under strict timelines. We also evaluate the performance

of our algorithm using two leading commercial mixed-integer programming solvers,

IBM ILOG Cplex and Gurobi. We show that our algorithm outperforms the compared
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algorithms in both cases, and performs best when Gurobi is employed as the solver.

We develop CBSA in Chapter 4. CBSA picks one of the discrete valued objectives

and generates nondominated points or edges in non-increasing order of their values

in the selected objective. The search space is projected to the two-dimensional fea-

sible criterion space and partitioned into cone-based convex search regions. CBSA

searches these regions to find the next nondominated point and solves a slice problem

to generate the nondominated edges if any. We show that CBSA terminated in fi-

nite number of iterations generating the nondominated set and all the efficient integer

vectors.

We test the performance of CBSA on BOMILPs and three-objective binary knapsack

problem instances as well as generated instances for TOMILPs. We show that CBSA

is competitive both to the state-of-the algorithms for BOMILPs (Boland et al., 2015;

Fattahi and Turkay, 2018; Soylu, 2018) and to the one of the best performing algo-

rithms to solve MOIPs (Kirlik and Sayın, 2014). We also extend the algorithm as

an approximation algorithm to generate a representative set with less computational

effort.

In Chapter 5, we present a multi-objective formulation of the European DAM clearing

problem and apply CBSA to solve the problem. We consider three objectives: surplus

maximization, loss minimization and missed surplus minimization. We show that a

feasible integer variable vector determines the market surplus, but alternative market

clearing may exist and lead to trade-offs between market loss and market missed

surplus. As a result, the nondominated set may include both points and edges in

parallel planes. We generate the nondominated sets of 20 instances from Turkish

DAM and examine the characteristics of the nondominated sets.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Day-ahead electricity markets have been at the core of the liberalized energy systems

as the deregulation of the sector has spread all over the world in last 30 years. The

aim of deregulation process has been claimed to build secure, reliable and low-cost

energy systems. To achieve those targets, privatization, market-based mechanisms

and competition was put forward as the key elements. The deregulation process has

led to vertical unbundling of state-owned large utility companies into single or multi-

ple companies at four main layers: generation, transmission, distribution and retail:

• Generation layer was opened to competition for private investment and state-

owned assets were privatized. Investment decisions and the resulting technol-

ogy mix was left to the hands of market-based incentives. A typical technol-

ogy mix combined capital-intensive nuclear and coal power plants having low

marginal costs, less capital-intensive natural gas power plants having higher

marginal costs and renewable energy generation assets like hydro, solar and

wind power plants.

• Transmission system operations were left to a single state-owned or regulated

private company due to its natural-monopoly characteristic. The system oper-

ator has to provide non-discriminatory access of all parties to the grid. In the

long term, it is supposed to make necessary transmission capacity expansion

investments. In the short term, it has to ensure that real-time electricity demand

can be satisfied in a reliable and efficient manner.

• Distribution systems exhibit local monopoly situation and operated by single

regulated private or state-owned company. Distribution companies have to pro-
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vide non-discriminatory access to end consumers and to small producers con-

nected to the distribution grids. They have to make necessary investments in the

region they operate. Distribution companies’ main operations include measur-

ing and recording of end-user electricity consumption, and transfer of the data

to retailer companies. The regulatory authority determines a tariff for each dis-

tribution region to cover the costs incurred by the distribution companies plus

a reasonable profit margin.

• Retail companies are the suppliers of end customers. If the retail layer is not

opened to competition, then the price of the electricity consumed by the end-

users is regulated and the regulatory authority determines the tariffs. Else, many

retail companies can compete in the market and consumers are free to choose

their suppliers.

The cost of consuming a unit energy in a particular geographical area includes elec-

tricity generation costs, transmission costs, distribution costs and retail operations

cost. A regulatory authority issues all the necessary regulatory framework to be able

to operate the whole system in an effective and efficient manner. It designs the mar-

ket structure and organizes the market places. A market structure defines the type of

agents, their functions and interactions with each other. Market places are where the

sellers and buyers of electricity come together and trade with each other.

Day-ahead electricity markets are organized market places for the wholesale of elec-

tricity for the next day. They are spot markets in the sense that physical delivery and

financial settlement is realized in a short period of time. Figure 2.1 exhibits the main

features of long and short term energy trade. Since spot market prices are generally

volatile, traders try to hedge their price risks by means of forward and future contracts

and determine their positions in the long term. As the contract time approaches, they

try to close their positions by participating to the short-term electricity markets like

day-ahead, intra-day and real-time electricity markets.

Day-ahead markets have prevailed in spot wholesale markets. Since thermal gener-

ators have constituted a significant part of the generation mix in many markets and

their operational constraints required advance planning, it has been necessary to give

the commitment decisions for those plants at least one day before the delivery day.
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Figure 2.1: Long term vs short-term electricity trade (Europex, 2017)

Those plants could generate power in a steady and continuous manner. Hence, the

main generation-consumption schedule is determined in day-ahead stage and minor

deviations from the plan are handled in intra-day and real-time markets. Those de-

viations are regarded as minor contingencies and the wholesale price of electricity is

based on the marginal cost resulted in the day-ahead markets. Although the growing

share of renewable energy generation, the uncertainty and the intermittency associ-

ated with them can disrupt day-ahead markets in the long-term, their current role is

still prominent.

2.1 Day-ahead electricity markets

Day-ahead electricity markets provide short-term physical trading possibilities for

energy traders. Traders have the obligation to realize their traded volume in the real

time. Otherwise, they incur penalty costs based on the real-time energy prices and

their imbalances. It is the main function of day-ahead markets to balance the electric-

ity supply and demand in the most efficient way at a short-time before the real-time
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balancing. This requires an effective market design which mostly covers the auction

design, bidding mechanisms and pricing rules.

There are two main day-ahead market designs across the world and we can categorize

them as pool-type and exchange-type:

• Pool-type: Participation of the generation units into the market is compulsory.

All generating units state their cost functions and operational constraints in a

detailed way like minimum up/down times, minimum and maximum generation

limits, start-up costs, no-load costs and variable costs. They can freely bid

on these cost items and are expected to be truthful bidders under an effective

auction design. On the other hand, demand function can be either elastic or

inelastic depending on the market. Given the demand function, independent

system operator (ISO) schedules the units in a way to minimize total electricity

generation cost. In this type of markets, physical constraints on the electricity

flow and voltage/frequency stability requirements of the transmission system

are included in the problem in detail. This cost minimization problem is called

security-constrained unit commitment and economic dispatch problem and US

regional markets is a good example for this type of day-ahead markets.

• Exchange-type: Electricity is more regarded as a commodity than an entity with

its specific physical properties. Market participation is not compulsory and the

participants can pool their assets and form portfolios. They bid in the auction

to buy or sell electricity not necessarily associated with a particular asset, but a

portfolio. Consumption units can also participate into the market and bid their

valuations of electricity consumption. Market participants can use multiple of

different types of energy bids which are assumed to include fixed costs and

operational constraints of the underlying assets. The market operator solves

market clearing problem and generates surplus maximizing energy trade. It is

then market participants’ problem to schedule their assets to realize their day-

ahead trade in the real-time. We see many examples of exchange-type markets

in the European countries.
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2.1.1 European day-ahead electricity markets

Norway and UK are the leading countries in Europe in deregulation of energy mar-

kets. Norway established its day-ahead electricity market in 1993, NordPool. From

then, the design of the Norway day-ahead market has dominated the other European

day-ahead markets.

The distinguishing feature of this market design is that the market participants self-

schedule their power generation assets according to their trading volumes in the en-

ergy and capacity markets. Their bids in the day-ahead market are not necessarily

associated with a particular unit among their power generation assets. By using the

set of available bid types in the market, the bidders form a portfolio of bids. This is

called portfolio-based bidding. In addition, not all the transmission network capac-

ity constraints are included into the market clearing problem in the day-ahead market,

except some critical transmission lines. The transmission system operator defines bid-

ding zones which are separated by those critical transmission lines. The configuration

of the bidding zones are to be determined such a way that the intra-zonal transmission

capacity constraints are non-binding for any possible production-consumption sched-

ule in the day-ahead stage. In case the inter-zonal transmission lines are congested,

the day-ahead market clearing prices are differentiated between the bidding zones in

addition to the market time unit.

2.1.2 US day-ahead electricity markets

A large part of the transmission system in the US is administered by the regional

transmission organizations (RTOs), as Pennsylvania-New Jersey-Maryland (PJM),

New York ISO (NYISO), New England ISO (ISO-NE), Midcontinent ISO (MISO),

Southwest Power Pool (SPP), Electricity Reliability Council of Texas (ERCOT), Cal-

ifornia ISO (CAISO). Independent system operators of RTOs provide grid services

to the users in a non-discriminatory way and operate the energy pools to generate a

least cost unit commitment and dispatch to satisfy the demand. The generating units

bid their cost functions and operational constraints to the ISO and the ISO solves

the security-constrained unit commitment and economic dispatch problem. The con-
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straints imposed by the transmission system on the electricity flow and transmission

losses are modelled in a granular way so that the cost of energy can be differentiated

between the the small nodes of the grid like buses. The approach is called nodal

pricing and the prices are referred as locational marginal prices (LMPs).

2.1.3 Turkish day-ahead electricity market

The Turkish day-ahead electricity market is an exchange-type market being operated

since 2011-2012. In 2001, the first electricity market law was issued and Turkish

electricity sector has undergone the deregulation process onward. The law enacted

the energy market regulatory authority (EMRA) to provide all the necessary regula-

tory frameworks throughout the deregulation process. The Turkish Electricity Trans-

mission Company (TEIAS) was founded as the grid operator company in the role of

system operator and was also put in charge of planning the day-ahead production/-

consumption schedule. In 2015, Energy Exchange Istanbul (EXIST), a public sector

undertaking, was established and given the market operator role. Since then, EX-

IST operates day-ahead and intra-day markets whereas TEIAS operates the real-time

market.

EXIST has to complete a list of tasks everyday and follows the timeline below in

doing so:

• (D-5, 12:30) Market participants submit their bids for the next day’s auction.

They can bid as early as 5 days before the delivery day, D. Bid submission

window closes at 12:30 on D-1.

• (12:30, 13:00) Bid verification and collateral check. EXIST calculates the

amount of financial guarantees to be given by each bidder to be allowed to

trade in the market.

• (13:00, 13:30) Market clearing window. The market clearing algorithm finds

the allocation and the market clearing prices. The results are announced at

13:30 as the preliminary market results.

• (13:30, 13:50) Collects objections to the preliminary market results.
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• (13:50, 14:00) Finalized market results are announced.

Day-ahead auction closes at 14:00 on D-1 if every step can be successfully com-

pleted. Otherwise, EXIST has the right to postpone gate closure times. After the

results are finalized, the market participants are supposed to schedule their assets and

nominate their production/consumption schedules. EXIST aggregates those sched-

ules and form the finalized day-ahead program which shows how much each unit

connected to the grid will generate or consume at each hour of the following day.

This program is continuously updated as trade occurs in the intra-day market. The

system operator, TEIAS, uses this program to conduct the electricity flow analysis

and may counter-trade in the real-time market to resolve real-time imbalances and

grid capacity violations.

2.2 Day-ahead market basics

Day-ahead electricity markets provide short-term physical trading possibilities for

energy traders. Traders have the obligation to realize their traded volume in the real

time. Otherwise, they incur penalty costs based on the real-time energy prices and

their imbalances. It is the main function of day-ahead markets to balance the elec-

tricity supply and demand in the most efficient way a short-time before the real-time

balancing. This requires an effective market design which mostly covers the auction

design, bidding mechanisms and pricing rules. Our study focuses on the pricing rules.

2.2.1 Players

The typical day-ahead market participants are producers, wholesalers, retailers and

large-industrial consumers. They bid in the market to sell their excess energy to the

market or buy energy from the market to meet the load of their customers. They

are assumed to be rational players acting individually and seeking to maximize their

profits resulting from their trading activities in the market.
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2.2.2 Auction

The day-ahead market operator conducts a daily auction to determine the trading

volumes to be delivered next day. The auction is done in a single-round and the bids

are anonymous. The day-ahead auctions are called double-sided when the demand

side is also allowed to participate in the market. Otherwise, the auction is called one-

sided where only supply bids are allowed and the demand function is constructed

by the system operator. The underlying product of the auction is one megawatt-

hour of energy to be delivered or consumed for a specific time period, and in some

markets, for a specific location. A unit energy in different time periods and at different

locations are considered different items so that the auction is a multi-item auction. The

time period is one hour in many markets and the definition of location can be as large

as a country or as small as a network bus. There are also some day-ahead markets

where reserve capacity products are auctioned simultaneously with energy products.

In our study, we only consider the energy products.

2.2.3 Bidding

The players reveal their valuations of energy via their bids. A simple bid consists

of unit energy price, the quantity and the time period the bid is offered. Each bid

can be associated with a portfolio or generation unit that changes according to the

underlying market design. In portfolio-based markets, players can submit multiple

bids of different types which are not required to be related with a specific generation

or consumption unit.

The technical complexities of power generation require the introduction of complex

bid types in energy markets. The generators with different technologies and fuel types

have different variable costs and operating principles. Thermal generators cannot

start generation instantaneously or be stopped immediately. They require some time

(hours) to be able to generate energy in a stable manner which may change based

on their initial state (e.g. warm-start, cold-start). They have ramping constraints

that allow only a limited amount of output change between sequential time periods.

Those generators are associated with high start-up costs that makes short period of
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commitment not economically feasible.

In U.S. markets like PJM (Pennsylvania-New Jersey-Maryland) day-ahead market,

each unit present a detailed information about variable costs at different output levels,

no-load costs (the generation cost at minimum output level), start-up costs, minimum

run time, maximum number of daily starts and maximum/minimum economical out-

put levels PJM (2017). The system operator takes into account all the cost parameters

and operational constraints into account when solving the unit commitment and eco-

nomical dispatch problem.

The European energy markets introduced block bids to handle the fixed-costs and

operational constraints of thermal power plants in addition to the hourly bids mostly

used by more flexible generation plants. An hourly bid can only be offered for a single

period and consists of a set of price-quantity pairs which are used to form a stepwise

function or a piecewise linear function in different markets. On the other hand, a

block bid includes a single price-quantity pair but can include multiple periods. It

can be either accepted at full quantity in every period offered or completely rejected.

The bidders are supposed to internalize the fixed-costs and operational constraints

associated with their plants to the price and quantity vectors. Binary nature of the

block bids prevent bidders from volume and price risk that may occur with partial

acceptance of the offered quantities.

In the past few years, new features are added to the block bids in order to better rep-

resent the bidders’ valuations and give some flexibility to the market operator in the

commitment decisions. In the European power exchanges like Nord Pool (operates

the markets in Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Denmark and

UK) and EPEX SPOT (operates the markets in Germany, Austria, France, UK, The

Netherlands, Belgium and Switzerland), block bids are allowed to include different

quantities for each period, profile block bids. They can be associated with a minimum

acceptance ratio (MAR) which indicates that if the auctioneer accepts that block bid,

then it must accept at least the quantity corresponding to the offered quantity multi-

plied by this ratio. The bidders can include a set of block bids in their portfolio and

present the condition that at most one of them can be accepted (exclusive block bids).

In addition, there can also be a tree-structured block bid set such that a child block
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bid can only be accepted if its parent block bid is accepted (linked block bids).

In Turkish day-ahead market and NordPool, there are also flexible bids for use of

market participants. Flexible bids are similar to block bids with the additional infor-

mation of time window that must be larger than the bid duration. The market operator

can accept the flexible bid at any consecutive subset of periods in the time-window

specified by the bidder.

In Iberian market (Spanish-Portuguese joint market) operated by OMIE (OMI-Polo

Español S.A.), the players submit what is called complex bids. A complex bid is a

series of several consecutive hourly bids, but includes many restrictions on the fea-

sible dispatch quantities for the associated generating unit. One of the restrictions

is the minimum income condition. The bidder specifies a monetary amount so that

any dispatch to be determined by the market operator must bring the bidder a revenue

greater than or equal to that. The Italian market operated by GME (Gestore dei Mer-

cati Energetici) also has its own specific bid type called PUN order. A PUN order is

a demand order and its distinguishing feature is that it must be evaluated based on the

national single price (“Prezzo Unico Nazionale” in Italian) instead of the locational

price of the zone it is offered for.

In Table 2.1, we give the list of bid types offered by different power exchanges in

Europe, NordPool (2017), EPEXSpot (2017), OMIE (2017), GME (2017), EXIST

(2017). In addition to the different bid types, power exchanges usually differ on

the restrictions of the bid parameters and the size of the portfolios. For example,

the maximum and minimum bid price limits, maximum allowable bid quantity and

the maximum number of bids per portfolio may change across the European power

exchanges.

2.2.4 Clearing

The day-ahead market trade must balance supply and demand bids so that if the fore-

casts are perfect and no contingencies occur, the real time system security can be

attained. The following definition is taken from Martin et al. (2014).

Definition 1. “The clearing condition of a commodity c is an equation that ensures
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Table 2.1: The bid types offered by different European power exchanges

Bid Types EXIST NordPool EPEXSpot OMIE GME

Hourly bid X X X X X

Block bid X X X

Profile block bid X X X

Block bid with MAR X

Linked block bids X X X

Exclusive block bids X X

Flexible bid X X

Complex bid X

PUN order X

that the number of bought units of commodity c is equal to the number of sold units

of commodity c”.

If the time unit of the market is one hour, than the market clearing problem contains

24 clearing conditions. In some European exchanges (NordPool and GME), supply-

demand balance is required for smaller geographical zones inside a country due to

the transmission capacity bottlenecks. In this case, clearing condition also includes

the energy inflow to the zone and outflow from the zone. The number of clearing

conditions becomes as many as the number of zones (generally a few) multiplied by

the number of periods. In U.S. markets, the transmission network is fully integrated

to the day-ahead market clearing problem so that the problem includes the clearing

conditions for each network bus, which can be in thousands.

2.2.5 Pricing

The auctioneer has to announce a price vector per unit of energy in order to remuner-

ate accepted supply bids and charge the accepted demand bids. The European target

model for the union of energy markets favors the use of uniform prices. The Capacity

Allocation and Congestion Management Network Code (EU Commission Regula-
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tion, 2015) states in Article 38 that “...uses the marginal pricing principle according

to which all accepted bids will have the same price per bidding zone per market time

unit.” In uniform pricing, the bidders pay or get paid an amount equal to the unit item

price multiplied by the traded quantity of the item. This means that the trade volume

of a bidder is a linear function of unit energy prices. In Martin et al. (2014), linear

and strict linear pricing is differentiated as follows:

Definition 2. Linear (uniform or non-discriminatory) pricing “Consider m distinct

commodities. A pricing schedule I : Rm → R is a map that returns the total amount

of money to be paid by a consumer depending on his consumption vector q ∈ Rm. The

schedule is called a linear pricing schedule if the map is linear, that is, I(q) = πTq.

In this case, π is called a linear price vector and πc is the price per unit for commodity

c. The definition is also applicable to producers if we use −qc consumption units to

model qc production units of commodity c”.

Definition 3. Strict linear pricing “A pricing schedule is a strict linear pricing sched-

ule if it is linear and the number of commodities m is equal to the number of clearing

conditions in the auction model. In the electricity market, the clearing conditions are

the flow conservation equations for each network node and time slot.”

Definition 4. Non-linear (non-uniform or discriminatory) pricing A pricing scheme

is called non-linear if more than one linear pricing schedule is used for a single

commodity.

The U.S. day-ahead markets deviate from linear pricing as the auctioneer pays addi-

tional money to the bidders for which the linear prices and the dispatch commands

are not optimal. This leads to non-uniform prices across the bidders since the average

price per unit of energy traded can be different for each bidder.

There are different applications for the determination of the price vector. The most

common approach is to set the price to the marginal cost of energy. In a market where

there are clearing conditions only for the time periods, the marginal cost of energy at

a period is the marginal power generation cost of the power plant producing the last

unit of energy cleared in that period. In case the prices are differentiated on space in

addition to time, the marginal price at period t and location l is the summation of the

marginal cost of power generation at period t, shadow price of transmission capacity
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to location l at period t and the price of marginal transmission loss of energy delivered

to location l and period t PJM State & Member Training Department (2013).

2.2.6 Market surplus

The objective of day-ahead market clearing problems is to maximize the total surplus

resulting from the trade between the bidders under the constraints associated with the

clearing conditions. The market surplus is equivalent to the difference between the

total amount of money offered by the bidders to buy as much as the cleared energy

and the total amount of money asked by the bidders to sell as much as the cleared

energy.

Let qp be the quantity vector traded by player p ∈ P in the day-ahead market and

let π be the market clearing price vector. Given a value function Vp : Rm → R for

player p, the surplus of player p is equal to Vp(qp) − I(qp) where Vp(qp) ≥ 0 for

consumers and Vp(qp) ≤ 0 for producers and the players are assumed to bid their

true value functions. Then, the market surplus is the summation of individual surplus

values of the players:

S(q) =
∑
p∈P

{
Vp(qp)− I(qp)

}
(2.1)

Since the clearing conditions ensure that
∑
p∈P

qp = 0 and
∑
p∈P

I(qp) = πT (
∑
p∈P

qp) =

0, Equation (2.1) can be reduced and the market surplus can be written as:

S(q) =
∑
p∈P

Vp(qp) (2.2)

2.2.7 Equilibrium

In order to achieve an efficient and fair allocation, the auctioneer needs to determine

the prices and the commitment/dispatch decisions such a way that each player must

be perfectly satisfied. That is, there should not be any better trade opportunity for any
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player under the current prices so that they do not want to deviate from the allocation

determined by the auctioneer.

Suppose that Sp(π, qp) be the surplus of player p under the price vector π and quan-

tity vector qp, Sp(π, qp) = Vp(qp)− I(qp). Let S∗p(π) be the maximum surplus that

the player p can achieve under the price vector π, S∗p(π) = max
qb∈Xp

{
Vp(qp)− I(qp)

}
whereXp represents the set of feasible quantity vectors that can be allocated to player

p. The market is said to be in equilibrium if the following conditions hold:

Sp(π, qp) = S∗p(π) ∀p ∈ P (2.3)

Since the bidders reveal their value functions by their bids in the auction, the equilib-

rium of the allocation can also be defined in terms of the accept/reject decisions on

the bids. We first need to make the following definitions:

Definition 5. (In-the-money bid) Given a market clearing price vector π, a bid with

price vector v and quantity vector q is in-the-money if (v − π)Tq > 0.

Definition 6. (At-the-money bid) Given a market clearing price vector π, a bid with

price vector v and quantity vector q is at-the-money if (v − π)Tq = 0.

Definition 7. (Out-of-the-money bid) Given a market clearing price vector π, a bid

with price vector v and quantity vector q is out-of-the-money if (v − π)Tq < 0.

Based on the definitions given above, the auction results achieve equilibrium if and

only if all the in-the-money bids are accepted and all the out-of-the-money bids are

rejected.

2.2.8 Uplift

When the market clearing problem is non-convex, there may not exist a price vector

π such that Sp(π, qp) = S∗p(π) ∀p ∈ P . The auctioneer cannot even guarantee

that Vp(qp) ≥ I(qp) for each player p ∈ P . The auctioneer accepts to pay as much

as S∗p(π) − Sp(π, qp) to player p which is called the uplift payment to player p,

20



Up(π, qp).

Up(π, qp) = S∗p(π)− Sp(π, qp) ∀p ∈ P (2.4)

In U.S. electricity markets, the system operator accepts to pay the full uplift Up(π, qp)

whereas in European markets the auctioneer does not pay any uplift Van Vyve (2011).

However, the auctioneer includes constraints into the surplus maximization problem

to guarantee that Sp(π, qp) ≥ 0 (Euphemia, 2016). We call these constraints as “no-

loss constraints”. No-loss constraints prevent any player p from being allocated a

quantity vector qp whose market value I(qp) exceeds the value assigned by player p,

Vp(qp). However, player p can still miss potential surplus that it could achieve, which

is equal to S∗p(π) − Sp(π, qp) : Sp(π, qp) ≥ 0. We call this amount as the missed

surplus by player p. On the contrary, the Turkish market operator includes constraints

that ensure zero missed surplus for each market player. In this case, any market player

can have negative surplus, loss, that is fully compensated by the market operator. That

is, market operator pays as much as Sp(π, qp) to player p if Sp(π, qp) < 0 (Energy

Exchange Istanbul, 2016).

2.2.9 Settlement

Settlement is the process of calculating the total payments to be made to each market

participant in return of their energy supply into the market and total receivables to be

taken from each market participant in return of their energy demand from the market.

In a uniform pricing scheme, the cash inflow and outflow cancel out each other so that

the market operator‘s financial status does not get affected from the auction results.

However, if uplift payments are to be made, then they generate a cash outflow for the

market operator and create the missing money problem.

2.2.10 Market efficiency

Market efficiency is a measure of the total value created in the market by trading the

associated commodity. Trade should occur between the seller agents with minimum
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valuations of the commodity and the buyer agents with maximum valuations. Com-

petition is one of the key drivers of market efficiency. On top of that, in organized

market places the auctioneer should ensure allocative efficiency. This can happen

only if the auction design is effective enough to incentivize the players to bid their

true valuations, incentive compatible, and the auctioneer can find the value maximiz-

ing allocations. These incentives must be high enough that the expected utility of

each bidder from truthfull bidding is always greater than or equal to the utility when

the valuation is misrepresented. Assuming that the former one holds, then an efficient

allocation is the one that maximizes the total value given the players’ bids.

Let Q∗ = [q1, q2, . . . , q|P |] be the allocation determined by the auctioneer. Then, Q∗

is efficient if the following holds:

Q∗ = argmax
q

∑
p∈P

Vp(qp) (2.5)

2.3 Literature review

In this section, we first review the studies on European DAM clearing problem, and

then the algorithms developed so far to solve multi-objective mixed-integer programs.

2.3.1 Day-ahead electricity market clearing problem

Day-ahead electricity market auctions are combinatorial in their nature. Therefore,

the literature on the combinatorial auctions is of interest for the study of day-ahead en-

ergy markets. Generally speaking, the day-ahead energy market auctions are single-

round, single-attribute, multi-item and multi-unit sealed-bid combinatorial auctions

where each single item is priced at a single uniform price and a bundle of items is

priced as the sum of the prices of individual items. In the context of day-ahead elec-

tricity market, an item is a unit energy to be generated or consumed at a particular

period of the day and, in some markets, at a particular location of the grid. The multi-

period bids like block bids bundle items from different time periods to handle the

nonconvex cost structure of thermal generating units.
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A review of pricing approaches in multi-item combinatorial auctions are examined in

Xia et al. (2004) under two classes: bundle pricing and individual item pricing. In

bundle pricing, a price for each bundle in the auction is calculated instead of price

per item. In case of individual pricing, a price for each item is calculated and price of

a bundle is determined as the sum of the prices of items the bundle comprises. The

authors argue the advantages and disadvantages of both approaches. Since market

clearing individual prices cannot be guaranteed in combinatorial auctions, Briskorn

et al. (2016) propose a non-linear anonymous pricing approach in which a set of price

vectors are calculated and announced to the market instead of a single price vector.

They define market clearing in terms of this set of price vectors and show that it exists.

Pekei and Rothkopf (2003) review different applications of combinatorial auctions

and emphasizes the complexity of winner determination problem and the cooperative

aspect of iterative combinatorial auctions. The authors state the desirable properties

of auctions as allocative efficiency, revenue maximization, low transaction costs, fair-

ness, failure freeness, and scalability. However, they argue that the complexity of

these auctions may require to trade-off between these desirable properties.

de Vries and Vohra (2003) present the state of the knowledge about the design of

combinatorial auctions and emphasizes the relation of auctions to the duality theory

of optimization problems. In the first part, the authors give an integer programming

formulation to achieve efficient allocation in a general single-unit, single-attribute and

multi-item combinatorial auctions. They note that the problem is an instance of the

Set Packing Problem (SPP) and further analyze the complexity of SPP.

In the second part, the authors distinguish between quantity-setting and price-setting

type auctions and interpret the price-setting auctions as primal-dual algorithms for

solving the winner determination problem. They examine the classical results of

duality to derive the properties that the prices must satisfy to produce an allocation

that solves the combinatorial auction problem. The authors interpret the exposure

problem in combinatorial auctions as the violation of complementary slackness and

note that any auction scheme that relies on prices for individual items alone will face

this problem. Additionally, they implement column generation idea in an auction

setting and assert that column generation subproblem can be viewed as the generation

23



of bundles by the bidders based on the value functions of the bidders and announced

item prices by the auctioneer.

In the last section of de Vries and Vohra (2003), the authors focus on the auction

mechanisms that give bidders incentive to reveal their valuations truthfully. They

point out that to achieve efficient outcome, the auctioneer needs true valuations of

the bidders but those are private information to bidders. However, they present the

mechanism of Vickrey-Clarke-Groves (VCG) scheme which is known to result in

efficient allocation since bidding true valuations are weakly dominant strategy for

the bidders. In addition to that, VCG mechanism also gives the maximum revenue

to the seller among the all the auctions that implement the efficient allocation. On

the other hand, Parkes et al. (2001) focus on the budget-deficiency problem of the

auctioneer in Vickrey pricing schemes due to the Vickrey payments. They propose a

pricing problem in which a distance function between the real payments and Vickrey

payments are minimized under the budget balance of the auctioneer and the individual

rationality of the bidders, that is all bidders have positive expected utility to participate

into the market.

In the context of day-ahead electricity markets, non-convex cost functions are defined

in order to represent complementarity relations between energy volumes in consecu-

tive time periods. For thermal power plants, there are significant start-up costs and it

requires a few hours to start-up or shut down a thermal power plant. So, as the number

of periods a thermal power plant is operating increases, the average energy price per

unit of energy is expected to decrease. In addition, there are additional constraints on

the periodic output levels of a thermal power plant when it is turned on.

For market participants to be able to model their operational constraints efficiently,

many day-ahead electricity markets have introduced complex bid types that led to a

non-convex problem to determine the optimal allocation of resources. Non-convexity

of the problem has brought both computational challenges to determine the winning

set and pricing challenges. Where the problem is convex, it is guaranteed that there

exist uniform prices that is compatible with the optimal allocation. On the other hand,

the existence of uniform market clearing prices that supports the optimal allocation

are not guaranteed once the problem is non-convex. The non-convexity is attributed

24



to the “lumpiness” of the day-ahead electricity markets and that lumpiness creates a

debate on the definition of the “right” price (Elmaghraby et al., 2004). One may have

to sacrifice from some desirable properties of an auction outcome in order to achieve

further in some other conflicting goals.

In the U.S. electricity markets, the independent system operator (ISO) first solves the

unit commitment and economic dispatch problem in order to minimize the cost of

satisfying a certain level of load. Afterwards, ISO needs to announce market clearing

prices that must give no incentive to the bidders to deviate from their determined

schedules. However, there may exist no such uniform prices. If any market participant

is able to get more revenue under the announced market clearing prices by changing

its allocation, then the ISO compensates the difference. These payments are called

uplift payments.

Gribik et al. (2007) examine the impact of alternative pricing models on the volatility

of prices and the total uplift payments. They study three pricing approaches: In their

“restricted” model, they fix the integer variables to their optimal values and solves the

problem again. This problem is convex and the optimal values of the dual variables

associated with the periodic supply demand balance are defined as the market clearing

prices. In the second model, “dispatchable model”, they just relax the integrality

constraints and solve the relaxed problem. They note that these pricing rules are

the common industry practices at the U.S. electricity markets (Current practice in

the European electricity markets including Turkey is to solve the restricted model).

Lastly, Gribik et al. (2007) propose the “convex-hull” pricing model which yields

uplift minimizing prices. In this model, lagrangean dual problem is solved to obtain

prices and the corresponding duality gap gives the minimum uplift. Herrero et al.

(2015) focuses on the long-term incentives of these pricing rules and evaluates the

restricted and dispatchable model by comparing the long-term market technology

mix under the prices generated by these approaches.

Liberopoulos and Andrianesis (2016) classify the existing pricing schemes under uni-

form pricing with external uplifts, zero-sum uplift pricing and revenue-adequate pric-

ing. In the first one, a uniform market price vector is calculated. The price may be the

marginal price or not and the bidders are compensated with uplifts if they incur loss at
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the allocation assigned to them (O’Neill et al., 2005; Gribik et al., 2007; Bjørndal and

Jörnsten, 2008). In zero-sum uplift pricing (Motto and Galiana, 2002; Galiana et al.,

2003; Liberopoulos and Andrianesis, 2016; Van Vyve, 2011), uplifts are determined

during the pricing by equating the total uplift paid by and the total uplift paid to the

bidders so that the market equilibrium is achieved and there does not occur an exter-

nal uplift. On the other hand, in revenue-adequate pricing, prices are determined in

such a way that they are enough to guarantee that all bidders get non-negative profits

and uplifts are not needed (Araoz and Jörnsten, 2011; Ruiz et al., 2012).

There are major differences in the pricing models of the U.S. and European day-

ahead markets as well as in their market structures, regulatory framework and the

modelling of transmission systems. Van Vyve (2011) focus on the pricing differences

and compares the properties of resulting auction outcomes. Although the uniform

pricing is prevalent in both markets, there are different restrictions applied on the

prices. In the U.S. model, the allocation problem and the pricing problem are solved

sequentially. Once the optimal allocation is found, the associated uniform prices and

uplift payments are calculated with the preferred pricing model discussed in Gribik

et al. (2007). The advantages of this model is that the allocation is welfare maximizing

and equilibrium is satisfied via the uplift payments. However, the uplift payments lead

to a missing money problem for the auctioneer since it has to pay to bidders more than

it receives. The author also points out that the uplift payments for the opportunity

costs of bidders may cause bidders not to bid truthfully and bid strategically.

Day-ahead market operators in European markets, on the other hand, refuse to pay

uplift to bidders and requires each market participant to be subject to exactly the same

prices. Equilibrium requirement is relaxed in these markets by allowing the rejection

of bids that need to be accepted at the announced prices. However, the reverse is

not acceptable since it may lead to financial losses for some bidders. Under these

requirements, they have to include pricing variables and constraints into the alloca-

tion problem in order to prevent the occurrence of losses. The resulting problem

becomes more difficult to solve and the optimal solution may not be welfare maxi-

mizing. Furthermore, the real instances show that the inclusion of constraints to reject

any “out-of-the money” bids may cause the rejection of low volume bids that are “too

in-the-money”. The advantage of this model is that the auctioneer always has a bud-
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get balance and the bidders are given incentives to bid truthfully since no other side

payment is in place.

An alternative pricing model proposed in Van Vyve (2011) merges good properties

of both models. The main idea is the integration of uplift mechanism into the pricing

problem and let the bidders with positive surplus compensate the loss of any bidder

if there exist any. The objective of the pricing problem is to minimize the maximum

uplift contribution of a bidder. Although the proposed model is desirable in terms of

the aspects listed above, the unit uplift payments and contributions may differ from

bidder to bidder that makes the resulting pricing scheme non-linear.

The Turkish day-ahead electricity market is very similar to the European counterparts

as the Scandinavian energy market design, NordPool, was the target design during the

liberalization of the Turkish electricity market. In Turkish day-ahead market pricing,

rejection of in-the-money bids are prevented in contrast to common European prac-

tice and the bidders incurring losses due to acceptance of out-of-the-money bids are

compensated with uplifts. The underlying motivation behind this design choice is to

eliminate the objections of market participants having in-the-money bids rejected. At

the same time, none of the bidders can be better off by changing its allocation so that

the equilibrium solution is achieved at the expense of sub-optimal allocation in terms

of total market surplus. Ceyhan et al. (2017) compares the Turkish pricing model with

the common European pricing model on some performance criteria that are of interest

to the market operator. They implement the models on the real Turkish market data

and report that the two pricing models may end up with very different market clearing

prices although they do not differ too much on the average. The results of the tests

reveal an important observation: The distribution of total market surplus among the

market participants can be significantly affected by the pricing design choice of the

market operator even if the total surplus of the market does not change considerably.

To solve the market clearing problem in European DAMs, one needs to develop ded-

icated solution methods as the off-the-shelf commercial solvers are not very effective

at solving the practical size problems in a limited amount of time. The complexity of

the problem for the European markets has been increasing with the number of mar-

kets being coupled. During the last few years, seven power exchanges operating the
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day-ahead markets of 23 countries have merged their bid sets and solving a single but

a much bigger size problem Euphemia (2016). That way, the capacity of the cross-

border transmission lines is utilized more efficiently. That also requires, however, to

devise more efficient solution methods.

The “no-loss” requirement in the auction outcomes necessitates the inclusion of price

variables which are actually the dual variables corresponding to the supply-demand

balance constraints in the European day-ahead electricity market coupling problem.

This leads to a primal-dual formulation and integration of non-linear complimentar-

ity constraints into the problem. The prevailing method to solve this problem is the

Benders decomposition method in which dual problem variables and complementar-

ity constraints are handled using the sub-problems. When an integer feasible solution

is found to the master problem (primal problem), a subproblem is solved to find the

corresponding market clearing prices and check if there is any bidder incurring any

loss. If losses occur, an infeasibility cut is added to the master problem to exclude

the generated solution. Martin et al. (2014), Madani and Van Vyve (2015), Euphemia

(2016), and Madani and Van Vyve (2018) present similar Benders decomposition

schemes for the problem. Martin et al. (2014) develops exact infeasibility cuts which

are further improved by Madani and Van Vyve (2015) to be only valid for the sub-tree

associated with the current node in the branch-and-bound tree. Martin et al. (2014)

also proposes heuristic cuts for which they report optimal or near-optimal solutions

in a small amount of time at the expense of no-guarantee for the optimal solution.

There are also attempts to solve directly the compact MIP formulation of the problem

by linearizing the non-linear complementarity constraints. Derinkuyu (2015), Cey-

han et al. (2017) and Derinkuyu et al. (2019) use big-M approach to linearize those

constraints whereas Madani and Van Vyve (2014) replaces complementary-slackness

constraints with strong-duality constraint. For the case where hourly bids are step-

wise functions, it results in an MILP. However, the existence of piecewise hourly bids

make the strong duality constraint quadratic and the resulting problem MIQCP. The

Turkish market operator, EXIST, solves the formulation (M3) in Ceyhan et al. (2017)

with additional preprocessing algorithms and meta-heuristics to supply an initial so-

lution to the mathematical programming solver Energy Exchange Istanbul (2016).
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We see that total surplus maximization, or cost minimization when the demand is

assumed to be not price-sensitive, is the main objective function to be considered

for this problem except a few studies. This is not surprising since any auction de-

sign is supposed to achieve economic efficiency which can be measured by the sur-

plus in the market assuming that the bidders bid their true valuations. However, De-

rinkuyu (2015) sets the objective function to average market clearing price minimiza-

tion claiming that high market clearing prices are politically undesirable. This kind

of objective function is highly debatable since the goal of markets must be to find the

most efficient outcome and prices must be just an information that markets signal to

buyers and sellers. However, it can be investigated that how much the surplus max-

imizing and price minimizing solutions differ by testing both models on some real

instances. Madani and Van Vyve (2014) conducts this kind of analysis for the oppor-

tunity cost minimization problem. They define the opportunity cost as the foregone

surplus associated with the rejected in-the-money bids based on the calculated market

clearing prices. Based on the ten real market instances of Central Western European

markets in 2011, they report that the trade-off between two criteria is often small and

surplus maximizing solution turned up to be the opportunity cost minimizing solution

as well for two instances out of ten.

2.3.2 Multi-objective mixed-integer linear programming

It was not too long ago that we had to resort to heuristics or approximation algo-

rithms to solve moderate-size MILPs from practice due to their computational com-

plexities. With the developments in optimization solvers and advances in processors,

much larger MILPs can be solved to optimality today. In recent years, large scale

multi-objective MILPs (MOMILPs) have also been addressed in practice to search

for preferred solutions of a decision maker (DM) considering their trade-offs between

objectives. In the existence of multiple objectives, it is rare to find a solution that is

best in all objectives. Rather, there are a set of meaningful nondominated points, each

outperforming any other solution in at least one objective.

Many approaches have been developed to solve multi-objective linear programming

problems (MOLPs), where all the objective functions and the constraints are linear.
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They differ from each other in aspects such as the characteristics of the solutions

searched for and the involvement of a DM in the search process. Many approaches

aim to generate a representative set of nondominated points or converge to points

preferred by a DM. A simple and common approach to generate nondominated points

is the weighted-sum that tries to capture the DM’s preferences by linearly aggregating

the objectives with positive weights. Alternatively, multiple nondominated points can

be generated by systematically changing the weights (Marler and Arora, 2010; Kim

and De Weck, 2006) without requiring an input from the DM.

Another commonly used method to solve MOLPs is goal programming (Charnes and

Cooper, 1977), where a goal is defined to be attained in each criterion. Then, the

a single objective optimization minimizes the deviations from the goals (penalties).

Ehrgott (2005) reviews different types of scalarization methods as well such as ε-

constraint method (Haimes et al., 1971), Benson’s method (Benson, 1978), reference

point methods (Zeleny, 2012), and direction-based methods (Korhonen and Walle-

nius, 1988).

Generating the nondominated set of large scale MOILPs is challenging due to com-

putational difficulties of solving integer programs repetitively. Earlier approaches ad-

dressed bi-objective problems (Ulungu et al., 1995; Ehrgott and Gandibleux, 2007).

More recently, researchers have been working on more than two objectives and many

efficient algorithms are available today (Przybylski et al., 2010a,b; Lokman and Kök-

salan, 2013; Ozlen et al., 2014; Kirlik and Sayın, 2014; Boland et al., 2016, 2017).

The algorithms developed in Lokman and Köksalan (2013), Ozlen et al. (2014), Kir-

lik and Sayın (2014), Klamroth et al. (2015), and Dächert et al. (2017) are applicable

to MOILPs with any number of objective functions. There are also implementations

of parallelized algorithms (see for example, Turgut et al., 2019). Due to the exten-

sive computational effort in generating the whole nondominated set, some recent ap-

proaches focus on generating representative subsets of the nondominated set (Sylva

and Crema, 2007; Masin and Bukchin, 2008; Ceyhan et al., 2019).

In the case of MOMILPs, the nondominated set includes facets as well as points

or edges. It is not straightforward to separate the regions dominated by such non-

dominated sets. The initial research in this area focused on generating the set of
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extreme supported nondominated points (Aneja and Nair, 1979; Przybylski et al.,

2010a; Özpeynirci and Köksalan, 2010; Alves and Costa, 2016). Assuming that all

objectives are of maximization type, each such point have the property of uniquely

maximizing some positively weighted sum of the objectives. Other studies that aim

to find the whole nondominated set for MOMILPs are restricted to the bi-objective

case (Mavrotas and Diakoulaki, 2005; Vincent et al., 2013; Belotti et al., 2013; Stid-

sen et al., 2014; Boland et al., 2015; Soylu and Yıldız, 2016; Soylu, 2018; Fattahi and

Turkay, 2018).

Our multi-objective day-ahead market clearing problem formulation in Chapter 5 is

a class of MOMILP with three objectives (TOMILP). Hence, we mostly focus on

the algorithms that are developed to generate nondominated sets of such problems.

Rasmi and Türkay (2019) presents the only existing approach aimed at finding the

nondominated facets for MOMILPs with more than two objectives. They develop a

two-stage algorithm that starts with finding the efficient integer vectors, and then gen-

erates the nondominated edges and facets associated with each such vector. However,

due to their construction, the generated facets are not guaranteed to be nondominated

as a whole; they may contain dominated regions as well.
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CHAPTER 3

SOLVING THE EUROPEAN DAY-AHEAD ELECTRICITY MARKET

CLEARING PROBLEM EFFICIENTLY WITH BENDERS

DECOMPOSITION

In this chapter, we develop a Benders decomposition algorithm to solve the mar-

ket clearing problem in European day-ahead electricity markets (DAMs). European

DAMs are spot markets that are organized to trade electricity between sellers and

buyers one day prior to the actual generation and consumption. Market participants

can submit combinations of different types of bids with different prices and quantities

for different periods of the delivery day. Market operators (MOs) solve the market

clearing problem, and find the surplus maximizing electricity trade and the market

clearing prices.

European MOs have undertaken a major market coupling process in the last decade

to create a single pan European DAM, called Single Day-Ahead Coupling (SDAC).

It was initiated by eight power exchanges and now accounts for 95% of the EU con-

sumption. The value of the daily traded electricity is around 200 million Euros on

average (NEMO Committee, 2020). The resulting problem is a large scale mixed-

integer linear or quadratic program (depending on the types of bids available in the

market) and the problem needs to be solved in about 10 minutes in order to implement

the results within the tight time frame the market is operating in.

Benders decomposition is the most studied solution approach for this problem in

the literature (Martin et al., 2014; Madani and Van Vyve, 2014, 2015; Madani and

Van Vyve, 2018; Euphemia, 2016). This is mainly because of the complexity of solv-

ing a compact formulation when there are hundreds or thousands of binary variables,

complex bid types and the equilibrium constraints that have to be satisfied. Ben-
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ders decomposition algorithm reduces the complexity by solving simpler models and

introducing constraints (cuts) as necessary to enforce the feasibility of the original

model. The performances of the Benders decomposition algorithms are not up to the

task of solving the problem within the required time frame. This is mainly due to

the use of “no-good” cuts (Martin et al., 2014) that cause weak relaxation bounds or

locally-valid cuts that can only be used in the sub-trees (Madani and Van Vyve, 2015;

Madani and Van Vyve, 2018). SDAC uses the Euphemia algorithm that associates

heuristic cuts with the aim of generating a high-quality solution within the time limit

(Euphemia, 2016).

We develop a Benders decomposition algorithm based on price-based cuts that we

generate utilizing the market clearing prices associated with an integer solution. We

prove that the price-based cuts are valid and stronger than the “no-good” cuts. We test

the performance of our algorithm on practical-sized instances and show that our al-

gorithm is superior to the existing Benders decomposition algorithms and the primal-

dual approach. The improved performance implies substantial surplus increases in

European DAMs with millions of Euros of daily trade and provides an efficient algo-

rithm for MOs that operate under strict timelines. We also evaluate the performance

of our algorithm using two leading commercial mixed-integer programming solvers,

IBM ILOG Cplex and Gurobi. We show that our algorithm outperforms the compared

algorithms in both cases, and performs best when Gurobi is employed as the solver.

In the next section, we examine the well-known surplus maximization problem and

elaborate on the properties of its linear relaxation. In Section 3.2, we present a primal-

dual formulation of the surplus maximization problem under pricing constraints. In

Section 3.3, we present a Benders decomposition algorithm to solve the surplus max-

imization problem under pricing constraints and develop strengthened Benders infea-

sibility cuts that are globally valid. In Section 3.4, we test the new cuts on practical-

sized problem instances. We discuss the extensions of our findings in Sections 3.5

and 3.6.
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3.1 Surplus maximization problem

In this section, we formulate the surplus maximization problem as a mixed-integer

program. We examine the linear relaxation of the model and investigate the econom-

ical properties of the optimal solution. We show that the optimal solution is also

the equilibrium solution for the linear case. We then elaborate on the mixed-integer

model and discuss the cases when the duality-gap is non-zero.

In the rest of the paper, we concentrate on hourly and (profile) block bids. These

are the most commonly-used bid types in the European day-ahead markets. Limiting

the analysis with these two bid types will simplify the expositions of formulations

and findings while capturing the essence of the auctions. Nevertheless, we show in

Section 3.6 that our findings are more general and are applicable in the presence of

the more sophisticated bid types and network-constrained markets.

3.1.1 Hourly bids

An hourly bid h is a price-quantity pair, (ph, qh). qh < 0 implies that the bidder is

willing to supply an amount |qh| to the market at a minimum price of ph. Similarly,

qh > 0 implies that the bidder is willing to buy an amount |qh| from the market at a

maximum price of ph. A bidder can specify a sequence of hourly bids in the increas-

ing order of the price for supply bids and decreasing order of the price for demand

bids. Such bids form step functions as shown in Figures 3.1 (x-axis shows absolute

supply quantities) and 3.2. The supply (demand) function indicates the amount of

energy the bidder is willing to sell (buy) at different market clearing prices.

In some markets (EPEXSpot, EXIST), the market operator accepts a piece-wise lin-

ear function instead of a step function. In this case, each hourly bid is defined by

two price values and a single quantity. In Figure 3.3, we show a piece-wise linear

supply function obtained from hourly bids in increasing order of prices. This func-

tion indicates the exact amounts of energy the bidder is willing to supply at different

market clearing prices. We initially restrict our discussions to hourly bids that are rep-

resented by step functions. We show in Section 3.6 that our findings are applicable to

piece-wise hourly bid functions as well.

35



Quantity

Price

•

•

•

(ph1 , qh1)

(ph2 , qh2)

(ph3 , qh3)

qh1

ph1
qh1 + qh2

ph2

qh1 + qh2 + qh3

ph3

Figure 3.1: A step function for hourly supply bids
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Figure 3.2: A step function for hourly demand bids
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Figure 3.3: A piece-wise linear function with supply hourly bids

Time periods

Quantity

qb,t1

qb,t2

qb,t3

qb,t4 qb,t5 qb,t6

qb,t7

qb,t8

1 2 3 4 5 6 7 8

•

•

•

• • •

•

•

Figure 3.4: The structure of a block bid

3.1.2 Block bids

Block bids are collections of single hourly bids offered for consecutive time periods.

For a block bid, a single price applies to all periods it is offered for. However, the

quantities for different periods need not be the same. A block bid needs to be either

accepted or rejected as a whole (at full quantity for each period). There is no partial

acceptance of a block bid in terms of quantity or the set of time periods. We show an

example of block bid in Figure 3.4.
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3.1.3 Problem formulation

We use the following sets, parameters, and decision variables in our problem formu-

lation:

• T : set of time periods

• H: set of hourly bids

• B: set of block bids

• ph, qh,t: price and quantity for time period t ∈ T , for an hourly bid h ∈ H

(qh,t = 0, ∀t ∈ T, t 6= t′ for a particular period t′)

• pb, qb,t: price and quantity for time period t ∈ T , for a block bid b ∈ B

• Tb: the set of time periods spanned by block bid b ∈ B, Tb ⊆ T (qb,t = 0,∀t /∈
Tb)

• xh: decision variable representing the accepted fraction of hourly bid h ∈ H ,

xh ∈ [0, 1]

• yb: decision variable for block bid b ∈ B, 1 if accepted, and 0 if rejected.

The market surplus can be calculated as follows:

SL(x,y) =
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
(3.1)

In Equation (3.1), quantities are negative (positive) for all supply (demand) bids.

Therefore, the right-hand side of the equation shows the difference between the total

value assigned by the buyers to the accepted demand bids and the total value assigned

by the sellers to the same quantity of accepted supply bids. The market surplus func-

tion is linear in x and y. We formulate the surplus-maximizing mixed-integer linear

program as:

(SMILP):

Max SL(x,y)

s.to.
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∑
h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T

xh ≤ 1 ∀h ∈ H

xh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

The first constraint balances the supply and demand in each period. The next two

inequalities force x variables to fractional values. The problem is a mixed-integer

program due to the binary variables, y. We next relax the integrality requirements of

y variables and investigate the properties of the optimal solution of the relaxed linear

problem.

3.1.4 Linear relaxation

In this section, we present the primal, (SMLP), and the dual, (D-SMLP), formula-

tions of the linear relaxation of (SMILP), and provide the complementary slackness

conditions.

(SMLP):

Max SL(x,y)

s.to. ∑
h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T [πt]

xh ≤ 1 ∀h ∈ H [sh]

yb ≤ 1 ∀b ∈ B [sb]

xh ≥ 0 ∀h ∈ H

yb ≥ 0 ∀b ∈ B

In (SMLP), we show the associated dual variable for each constraint in brackets. The

dual problem is:
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(D-SMLP):
Min

∑
h∈H

sh +
∑
b∈B

sb

s.to.

sh ≥
∑
t∈T

(ph − πt)qh,t ∀h ∈ H

sb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B

sh ≥ 0 ∀h ∈ H

sb ≥ 0 ∀b ∈ B

Based on the primal and dual problems, the following complementary slackness con-

ditions must hold at the optimal solution of (SMLP):

(CS-SMLP):
sh(1− xh) = 0 ∀h ∈ H

sb(1− yb) = 0 ∀b ∈ B

xh(sh −
∑
t∈T

(ph − πt)qh,t) = 0 ∀h ∈ H

yb(sb −
∑
t∈T

(pb − πt)qb,t) = 0 ∀b ∈ B

The optimality conditions of (SMLP) imply the market equilibrium since no player

can be better off by deviating from the quantities allocated to them under the market

clearing prices. We further elaborate on this below:

1. If an hourly bid is fully rejected, then it is not in-the-money.

x∗h = 0 =⇒
∑
t∈T

(ph − π∗t )qh,t ≤ 0 (3.2)

2. If an hourly bid is partially accepted, then it is at-the-money.

0 < x∗h < 1 =⇒
∑
t∈T

(ph − π∗t )qh,t = 0 (3.3)

3. If an hourly bid is fully accepted, then it is not out-of-the-money.

x∗h = 1 =⇒
∑
t∈T

(ph − π∗t )qh,t ≥ 0 (3.4)
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4. If an hourly bid is in-the-money, then it must be fully accepted.∑
t∈T

(ph − π∗t )qh,t > 0 =⇒ x∗h = 1 (3.5)

5. If an hourly bid is out-of-the-money, then it must be fully rejected.∑
t∈T

(ph − π∗t )qh,t < 0 =⇒ x∗h = 0 (3.6)

6. If a block bid is rejected, then it is not in-the-money.

y∗b = 0 =⇒
∑
t∈T

(pb − π∗t )qb,t ≤ 0 (3.7)

7. If a block bid is accepted, then it is not out-of-the-money.

y∗b = 1 =⇒
∑
t∈T

(pb − π∗t )qb,t ≥ 0 (3.8)

8. If a block bid is in-the-money, then it must be accepted.∑
t∈T

(pb − π∗t )qb,t > 0 =⇒ y∗b = 1 (3.9)

9. If a block bid is out-of-the-money, then it must be rejected.∑
t∈T

(pb − π∗t )qb,t < 0 =⇒ y∗b = 0 (3.10)

These properties ensure that each bidder has a non-negative surplus as a result of its

participation in the day-ahead market, guaranteeing that none of the accepted demand

bids is overvalued and none of the accepted supply bids is undervalued by the market

operator. Furthermore, none of the in-the-money bids are rejected, implying that there

are no missed potentials for additional surplus for any bidders.

3.1.5 Integer case

With the binary restrictions on y, the problem becomes mixed-integer program and

properties (3.7) - (3.10) may not hold at the optimal solution of (SMILP). Under a

marginal pricing scheme, we may first solve (SMILP). Afterwards, we may fix the

values of the binary variables obtained in (SMILP) and solve (SMLP). Then, the
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optimal dual variable vector π represents the market clearing price vector. However,

some in-the-money block bids may end up being rejected or some out-of-the-money

block bids may end up being accepted in this case. These bids are called paradoxi-

cally accepted or rejected bids (Martin et al., 2014).

Definition 8. Paradoxically accepted bid (PAB) Let q be the bid quantity vector, π∗

be the vector of market clearing prices, and p be the bid price vector. The bid is

paradoxically accepted if it is accepted and (p − π∗)Tq < 0. That is, the accepted

quantities of the bid generates negative surplus at the given market clearing prices.

Definition 9. Paradoxically rejected bid (PRB) Let q be the bid quantity vector, π∗

be the vector of market clearing prices, and p be the bid price vector. The bid is para-

doxically rejected if it is rejected and (p−π∗)Tq > 0. That is, the bid is rejected even

though its acceptance would generate positive surplus at the given market clearing

prices.

At the optimal solution of (SMILP), both PABs and PRBs may occur among the

block bids. The market clearing prices and the surplus maximizing quantities for

hourly bids are at equilibrium since the problem is convex once the block bid deci-

sions are fixed. The market operator may choose to compensate PABs by paying as

much as the associated loss and PRBs by paying as much as the missed surplus. The

total payments made by the market operator is called the uplift payments. Uplift pay-

ments create the missing money problem for the market operator since it pays more

to sellers and receives less from the buyers than accounted for by the solution.

Due to the uplift payments, the market operator deviates from uniform pricing since

different bidders may be settled with different energy prices for the same unit of

energy. Although this is not an issue in markets with non-uniform pricing schemes,

it creates an unfair energy pricing between market participants in markets that are

designed with a uniform pricing scheme.

Let Bpab and Bprb be the sets of PABs and PRBs, respectively. The total uplift pay-

ment for PABs becomes:

TUpab =
∑
b∈Bpab

(π∗ − pb)Tqb (3.11)
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Similarly, the total uplift payment for PRBs becomes:

TUprb =
∑
b∈Bprb

(pb − π∗)Tqb (3.12)

We next define and formulate the surplus maximization problem under constraints

that prevent or limit TUpab or TUprb.

3.2 Surplus maximization problem under pricing constraints

In this section, we give a primal-dual formulation of the surplus maximization prob-

lem with pricing variables, and define a generalized problem, (SMILP-GU), that sets

upper bounds on both TUpab and TUprb. We call these upper bounds as the pricing

constraints. The formulation can be used to enforce market design rules such as re-

jecting all out-of-the-money bids (as in the EU markets) or accepting all in-the-money

bids (as in the Turkish market). Similarly, it can be used to limit the total market loss

associated with the accepted out-of-the-money bids, TUpab, or to limit total opportu-

nity cost associated with the rejected in-the-money bids, TUprb.

We use the primal-dual formulation given by Madani and Van Vyve (2014). Let ȳ

be a given commitment vector for the set of block bids and (SMLP(ȳ)) be the linear

program obtained by setting y = ȳ. Let B0 and B1 be a partition of B such that

B0 = {b ∈ B : ȳb = 0} and B1 = {b ∈ B : ȳb = 1}. Consider the following linear

program:

(SMLP(ȳ)):

Max SL(x,y) =
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to. ∑

h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T [πt]

xh ≤ 1 ∀h ∈ H [sh]

yb ≤ 1 ∀b ∈ B [sb]
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− yb ≤ −1 ∀b ∈ B1 [lb]

yb ≤ 0 ∀b ∈ B0 [mb]

xh ≥ 0 ∀h ∈ H

yb ≥ 0 ∀b ∈ B

The dual of (SMLP(ȳ)) is:

(D-SMLP(ȳ)):

Min
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B1

lb

s.to.

sh ≥
∑
t∈T

(ph − πt)qh,t ∀h ∈ H

sb − lb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B1

sb +mb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B0

sh ≥ 0 ∀h ∈ H

sb, lb,mb ≥ 0 ∀b ∈ B

If (x∗, ȳ) is a feasible solution to (SMLP(ȳ)), then (D-SMLP(ȳ)) is also feasible.

Then, (x∗, ȳ) is an optimal solution to (SMLP(ȳ)) if it satisfies the following com-

plementary slackness constraints.

(CS-SMLP(ȳ)):

sh(1− x∗h) = 0 ∀h ∈ H

sb(1− ȳb) = 0 ∀b ∈ B

lb(1− ȳb) = 0 ∀b ∈ B1

mbȳb = 0 ∀b ∈ B0

x∗h(sh −
∑
t∈T

(ph − πt)qh,t) = 0 ∀h ∈ H

ȳb(sb − lb −
∑
t∈T

(pb − πt)qb,t) = 0 ∀b ∈ B1

ȳb(sb +mb −
∑
t∈T

(pb − πt)qb,t) = 0 ∀b ∈ B0
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The complementary slackness constraints ensure that lbmb = 0,∀b ∈ B. Madani

and Van Vyve (2014) show that lb and mb are upper bounds on the loss and missed

surplus of bid b, respectively. In addition, they replace the complementary slackness

constraints with the strong duality constraint and state the following mathematical

program with equilibrium constraints:

(E-SMILP):

Max
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to. ∑

h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T

xh ≤ 1 ∀h ∈ H

yb ≤ 1 ∀b ∈ B

sh ≥
∑
t∈T

(ph − πt)qh,t ∀h ∈ H

sb − lb +mb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B

mb ≤Mb(1− yb) ∀b ∈ B

lb ≤Mbyb ∀b ∈ B∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
≥
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb

xh, sh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

sb, lb,mb ≥ 0 ∀b ∈ B

In this model, the dual problem constraints associated with B1 and B0 are combined

and the property that lbmb = 0,∀b ∈ B is modeled by the big-M constraints whereMb

is an appropriate upper bound on the loss or missed surplus of a block bid b. Denoting

the maximum and the minimum allowable bid prices as pmax and pmin, respectively,

Mb ≥
∑
t∈T
|qb,t|(pmax − pmin) is an upper bound on the loss or missed surplus of a

block bid, and is a sufficiently large big-M value. We represent the feasible set of

(E-SMILP) by Ψ, and define the surplus maximization problem under generalized
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uplift limits by imposing bounds on both the total market loss and the total missed

profit:

(SMILP-GU):

Max
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to.

(x,y,π, s, l,m) ∈ Ψ∑
b∈B

lb ≤ TUpab ∀b ∈ B

∑
b∈B

mb ≤ TUprb ∀b ∈ B

(SMILP-GU) with TUpab = 0 and TUprb > M =
∑
b∈B

Mb corresponds to a special

case, (SMILP-NoPAB), which we define next. In this case, the market loss is pre-

vented by eliminating solutions with PABs and there is no binding constraint on the

market missed surplus. In order to prevent PABs, it is sufficient to add constraints

lb ≤ 0, ∀b ∈ B to (E-SMILP). We define this restricted model below:

(SMILP-NoPAB):

Max
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to.

(x,y,π, s, l,m) ∈ Ψ

lb ≤ 0 ∀b ∈ B

(SMILP-NoPAB) is always feasible since the feasible set of (SMLP(ȳ)) for ȳ = 0

and l̄b ≤ 0,∀b ∈ B is non-empty. Let (x∗,y∗) be the optimal values of the primal

variables.

TUprb = min

{∑
b∈B

mb : (x,y,π, s, l,m) ∈ Ψ, lb ≤ 0,∀b ∈ B, (x,y) = (x∗,y∗)

}
is the minimum total missed surplus, and TUpab = 0 is the total loss. In Euro-

pean markets, the market operator does not pay uplift to PRBs and TUprb is regarded

as a foregone opportunity. In a similar manner, (SMILP-NoPRB) can be stated as

(SMILP-GU) with TUpab > M and TUprb = 0.
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3.3 Benders decomposition

Since the surplus maximization problem is easy to solve in the absence of the pricing

variables and constraints, Benders decomposition (Benders, 1962) has the potential

to perform well in solving (SMILP-GU). We define (SMILP) as the master prob-

lem and the problem of finding a market clearing price vector satisfying the pricing

constraints as the subproblem. A feasible solution to the master problem will also be

feasible to (SMILP-GU) if there exists a set of prices in the subproblem that satisfy

the hourly bid equilibrium and the uplift constraints. Otherwise, the solution cannot

be feasible for (SMILP-GU) and must be eliminated by adding an appropriate cut.

Every feasible solution of (SMILP-GU) should satisfy a valid cut, and the cut should

eliminate the solution identified as infeasible, at the minimum. We next present the

master problem (MP) and subproblems (SP):

(MP):

Max SL(x,y)

s.to. ∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb = 0 ∀t ∈ T

xh ≤ 1 ∀h ∈ H

xh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

Let Z be the set of feasible points of (SMILP), Ω be the set of feasible points of

(SMILP-GU), ρ ∈ P be the projection of ω ∈ Ω onto Z and (x̄, ȳ) ∈ Z be such that

x̄ is the optimal solution of (SMLP(ȳ)). For a given (x̄, ȳ), the solution of the linear

program (SP(x̄, ȳ)) reveals if feasible market clearing prices that satisfy the uplift

constraints associated with block bids and hourly bid equilibrium constraints exist.

(SP(x̄, ȳ)):

Min 0

s.to.
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sh +
∑
t∈T

πtqh,t ≥
∑
t∈T

phqh,t ∀h ∈ H [xdh]

sb − lb +
∑
t∈T

πtqb,t ≥
∑
t∈T

pbqb,t ∀b ∈ B1 [yd,1b ]

sb +mb +
∑
t∈T

πtqb,t ≥
∑
t∈T

pbqb,t ∀b ∈ B0 [yd,0b ]

−
∑
h∈H

sh −
∑
b∈B

sb +
∑
b∈B1

lb ≥ −SL(x̄, ȳ) [φ]

−
∑
b∈B1

lb ≥ −TUpab [α]

−
∑
b∈B0

mb ≥ −TUprb [β]

sh ≥ 0 ∀h ∈ H

sb, lb,mb ≥ 0 ∀b ∈ B

The variables in brackets show the dual variables associated with each constraint of

the subproblem. The dual problem is:

(DSP(x̄, ȳ)):

Max SL(xd,yd)− φSL(x̄, ȳ)− αTUpab − βTUprb

s.to.

xdh − φ ≤ 0 ∀h ∈ H

yd,1b − φ ≤ 0 ∀b ∈ B1

yd,0b − φ ≤ 0 ∀b ∈ B0

− yd,1b + φ− α ≤ 0 ∀b ∈ B1

yd,0b − β ≤ 0 ∀b ∈ B0∑
h∈H

qh,tx
d
h +

∑
b∈B1

qb,ty
d,1
b +

∑
b∈B0

qb,ty
d,0
b = 0 ∀t ∈ T

xdh, y
d,1
b , yd,0b , φ, α, β ≥ 0

where SL(xd,yd) =
∑
t∈T

{∑
h∈H

phqh,tx
d
h +

∑
b∈B1

pbqb,ty
d,1
b +

∑
b∈B0

pbqb,ty
d,0
b

}
, and yd =

(yd,1,yd,0). (DSP(x̄, ȳ)) is feasible since the trivial solution, xd = yd,1 = yd,0 = 0,

φ = α = β = 0. The optimal objective function value of this trivial solution is non-

negative. Hence, (SP(x̄, ȳ)) is infeasible if and only if (DSP(x̄, ȳ)) is unbounded.
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If (DSP(x̄, ȳ)) is unbounded, there exists feasible solutions, (x̄d, ȳd,1, ȳd,0, φ̄, ᾱ, β̄),

such that SL(x̄d, ȳd) − φ̄SL(x̄, ȳ) − ᾱTUpab − β̄TUprb > 0. For φ̄ > 0, d =

(x̄d, ȳd,1, ȳd,0, φ̄, ᾱ, β̄) is a direction of unboundedness. Then, (x̄, ȳ) ∈ Z has to

satisfy

SL(x̄, ȳ) ≥ 1

φ̄
SL(x̄d, ȳd)− ᾱ

φ̄
TUpab −

β̄

φ̄
TUprb (3.13)

if (x̄, ȳ) ∈ P . By setting φ = 1 and dropping the fixed term SL(x̄, ȳ) in the ob-

jective function, we can rewrite the dual subproblem as a bounded dual subproblem,

(BDSP(x̄, ȳ)), as follows:

(BDSP(x̄, ȳ)):

Max SL(xd,yd)− αTUpab − βTUprb

s.to.

xdh ≤ 1 ∀h ∈ H

yd,1b ≤ 1 ∀b ∈ B1

yd,0b ≤ 1 ∀b ∈ B0

α ≥ 1− yd,1b ∀b ∈ B1

β ≥ yd,0b ∀b ∈ B0∑
h∈H

qh,tx
d
h +

∑
b∈B1

qb,ty
d,1
b +

∑
b∈B0

qb,ty
d,0
b = 0 ∀t ∈ T

xdh, y
d,1
b , yd,0b , α, β ≥ 0

In this case, the objective function of (BDSP(x̄, ȳ)) is bounded from above and

there is no direction of unboundedness. If there exist (x̄d, ȳd,1, ȳd,0, ᾱ, β̄) such that

SL(x̄d, ȳd)− ᾱTUpab− β̄TUprb > SL(x̄, ȳ), then (DSP(x̄, ȳ)) becomes unbounded

in the direction d = (x̄d, ȳd,1, ȳd,0, 1, ᾱ, β̄). Otherwise, the problem cannot be un-

bounded for any other φ 6= 1 as well and we can conclude that (x̄, ȳ) ∈ P . Let

(xd∗(x̄, ȳ),yd∗(x̄, ȳ), α∗(x̄, ȳ), β∗(x̄, ȳ)) be an optimal solution to (BDSP(x̄, ȳ)).

We can rewrite equation (3.13) as:

SL(x̄, ȳ) ≥ SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ))− α∗(x̄, ȳ)TUpab − β∗(x̄, ȳ)TUprb (3.14)

Proposition 1. Let TUpab = TUprb = 0 and ω ∈ Ω. Then, ρ ∈ P is optimal to

(SMLP).
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Proof. Let (x̄, ȳ) = ρ ∈ P and consider (BDSP(x̄, ȳ)). Since TUpab = TUprb = 0,

α ≥ 1− yd,1b ,∀b ∈ B1 and β ≥ yd,0b , ∀b ∈ B0 constraints become redundant and can

be removed from the problem together with α and β variables. Then, (BDSP(x̄, ȳ)) is

equivalent to (SMLP). This implies that SL(x̄, ȳ) ≥ SL(x∗,y∗), ∀ρ = (x̄, ȳ) ∈ P ,

where (x∗,y∗) is the optimal solution of (SMLP).

Proposition 1 implies that the market operator can achieve equilibrium only when

the duality gap of (SMILP) is zero. Otherwise, there exist a positive market loss or

market missed surplus for the optimal allocation, and the optimal allocation is not

surplus maximizing.

For any (x̂, ŷ) ∈ Z such that ŷ = ȳ, SL(x̂, ŷ) = SL(x̄, ȳ) and the optimal objective

function value of (BDSP(x̄, ȳ)) is equal to that of (BDSP(x̂, ŷ)). Hence, if (x̄, ȳ) /∈
P the following inequality is valid for (SMILP-GU).∑

b∈B1

(1− yb) +
∑
b∈B0

yb ≥ 1 (3.15)

Inequality (3.15) ensures that for a feasible solution of (SMILP-GU), at least one of

the rejected block bids at ȳ must be accepted or at least one of the accepted block

bids at ȳ must be rejected. These so-called “no-good” cuts have been frequently used

in the literature for solving MILP problems, and Martin et al. (2014) and Madani

and Van Vyve (2015) also use these cuts in their proposed Benders decomposition

algorithms to solve (SMILP-NoPAB).

3.3.1 Solving (SMILP-NoPAB) problem

In this section, we examine a special case of (SMILP-GU) in which TUpab = 0 and

TUprb > M . At a feasible solution of this problem, there are no PABs so that every

bidder will be settled with the same unit energy price, the market clearing price.

Reconsidering (BDSP(x̄, ȳ)), let (xd∗(x̄, ȳ),yd∗(x̄, ȳ), α∗(x̄, ȳ), β∗(x̄, ȳ)) be an op-

timal solution to (BDSP(x̄, ȳ)). β∗(x̄, ȳ) = 0 when TUprb > M . As a result,

yd,0∗(x̄, ȳ) = 0. In addition, yd,1∗(x̄, ȳ) is not restricted by α∗(x̄, ȳ) since TUpab =

0. Using these properties, we can simplify (BDSP(x̄, ȳ)) as follows:
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(BDSP(x̄, ȳ)-NoPAB):

Max SL(xd,yd)

s.to.

xdh ≤ 1 ∀h ∈ H

yd,1b ≤ 1 ∀b ∈ B1

yd,0b = 0 ∀b ∈ B0∑
h∈H

qh,tx
d
h +

∑
b∈B1

qb,ty
d,1
b = 0 ∀t ∈ T

xdh, y
d,1
b ≥ 0

For (SMILP-NoPAB), SL(x̄, ȳ) ≤ SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ)) since (x̄, ȳ) ∈ Z is

a feasible solution to (BDSP(x̄, ȳ)-NoPAB). If (x̄, ȳ) ∈ P , then it must satisfy the

following: SL(x̄, ȳ) ≥ SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ)). This implies that SL(x̄, ȳ) =

SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ)), ∀(x̄, ȳ) ∈ P .

Inequality (3.15) is valid for (SMILP-NoPAB) as well. In Madani and Van Vyve

(2015), a strengthened version of inequality (3.15) is shown to be valid but only in

the sub-tree associated with the node solution (x̄, ȳ) of (MP). So, inequality (3.16)

can be added to each node of the sub-tree if solution (x̄, ȳ) is infeasible for (SMILP-

NoPAB). ∑
b∈B1

(1− yb) ≥ 1 (3.16)

It is possible to extend (3.16) into a globally valid inequality when the optimal ob-

jective function value of (BDSP(x̄, ȳ)-NoPAB) is larger than that of (SMILP). We

show this formally in the following proposition.

Proposition 2. Let (x∗,y∗) be an optimal solution to (SMILP). Given (x̄, ȳ) ∈ Z, if

SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ)) > SL(x∗,y∗), then
∑
b∈B1

(1 − yb) ≥ 1 is a valid inequality

for (SMILP-NoPAB).

Proof. Suppose (x′,y′) ∈ Z such that B1 ⊆ B′1 = {b ∈ B : y′b = 1}. Then, the op-

timal objective function value of (BDSP(x′,y′)-NoPAB) is at least as large as that of

(BDSP(x̄, ȳ)-NoPAB), SL(xd∗(x′,y′),yd∗(x′,y′)) ≥ SL(xd∗(x̄, ȳ),yd∗(x̄, ȳ)), and
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hence SL(xd∗(x′,y′),yd∗(x′,y′)) > SL(x∗,y∗). Due to the optimality of (x∗,y∗)

for (SMILP), SL(x∗,y∗) ≥ SL(x,y) for any (x,y) ∈ Z. Then, SL(x′,y′) <

SL(xd∗(x′,y′),yd∗(x′,y′)) and (x′,y′) /∈ P . Therefore, at least one accepted block

bid must be rejected in a feasible solution to P ,
∑
b∈B1

(1− yb) ≥ 1.

Since SL(x∗,y∗) ≥ SL(x,y) for any (x,y) ∈ Z due to the optimality of (x∗,y∗) for

(SMILP), SL(xd∗(x′,y′),yd∗(x′,y′)) > SL(x′,y′) and (x′,y′) /∈ P . Therefore,

at least one accepted block bid must be rejected in a feasible solution to P ,
∑
b∈B1

(1−

yb) ≥ 1.

Solving (SMILP) before solving (SMILP-NoPAB) and incorporating (3.16) as a

globally-valid inequality (when the condition in Proposition 2 holds) could be benefi-

cial if (SMILP) is an easy problem to solve. We next develop a strengthened version

of cut (3.15) and show that it is globally valid. We call these cuts as “price-based”

cuts.

LetBs andBd be the set of supply and demand block bids, respectively. Let indicator

variable δb,b̂ = 1 denote that the block bids b and b̂ have at least one common period,

and 0 otherwise. For each b̂, we add inequality (3.17), if it is a supply PAB, and

inequality (3.18), if it is a demand PAB, to (MP).

(1− yb̂) +
∑

b∈Bs:ȳb=1,δb,b̂=1

(1− yb) +
∑

b∈Bd:ȳb=0,δb,b̂=1

yb ≥ 1 (3.17)

(1− yb̂) +
∑

b∈Bs:ȳb=0,δb,b̂=1

yb +
∑

b∈Bd:ȳb=1,δb,b̂=1

(1− yb) ≥ 1 (3.18)

The idea here is that once we have a supply (demand) PAB at the new incumbent

solution obtained at a node of the master problem branch-and-bound tree, we must

either reject this bid or increase (decrease) the average market clearing price of the

periods for which this bid is offered. In order to increase (decrease) the average

market clearing price for those periods, we must either reject at least one accepted

supply (demand) block bid in one of those periods or accept at least one rejected

demand (supply) block bid in one of those periods. We show in Proposition 3 that

inequalities (3.17) are both valid and stronger than the “no-good” cuts. A similar
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proof can also be made for the demand PABs to prove the same for inequalities (3.18).

In order to assess if a block bid is a PAB or PRB, we need to find market clearing

prices corresponding to ȳ, by solving SMLP(ȳ) (the corresponding market clearing

price vector is the optimal value of the dual variable π).

Proposition 3. Inequalities (3.17) are valid for (SMILP-NoPAB) and stronger than

the “no-good” cuts.

Proof. Part 1. We first show that inequality (3.17) is a valid inequality for (SMILP-

NoPAB). Given (x̄, ȳ) ∈ Z andπ∗ be the corresponding market clearing price vector,

let b̂ ∈ B1 be a supply PAB, qb̂ < 0, l∗
b̂

= −
∑
t∈T

(pb̂ − π∗t )qb̂,t > 0. For ω′ ∈ Ω, y′

and l′ have to satisfy the complementary slackness constraints, l′b(1 − y′b), ∀b̂ ∈ B1.

There are two cases:

Case 1. If y′
b̂

= 0, (1− y′
b̂
) = 1 ≥ 1 satisfies inequality (3.17).

Case 2. If y′
b̂

= 1, l′
b̂

= 0 holds only if
∑
t∈T

(pb̂ − π′t)qb̂,t ≥ 0 >
∑
t∈T

(pb̂ − π∗t )qb̂,t.

That is,
∑
t∈T

π′tqb̂,t <
∑
t∈T

π∗t qb̂,t. This implies that there exists t̂ ∈ Tb̂ such that π′
t̂
> π∗

t̂

since qb̂,t ≤ 0,∀t ∈ T . Let Qy′,t̂ =
∑
b∈B

qb,t̂y
′
b and Qȳ,t̂ =

∑
binB

qb,t̂ȳb be the total

accepted block bid quantities in period t̂ ∈ T . Similarly, let Qx′,t̂ =
∑
h∈H

qh,t̂x
′
h and

Qx̄,t̂ =
∑
hinH

qh,t̂x̄b be the total accepted hourly bid quantities in period t̂ ∈ T . Since

Qy′,t̂ + Qx′,t̂ = 0 and Qȳ,t̂ + Qx̄,t̂ = 0, π′
t̂
> π∗

t̂
implies that Qx′,t̂ < Qx̄,t̂ due to

the hourly bid equilibrium constraints. Therefore, Qy′,t̂ > Qȳ,t̂. This can only be

achieved if either at least one accepted supply block bid covering period t̂ is rejected

or at least one rejected demand block bid covering period t̂ is accepted. That is,∑
b∈Bs:ȳb=1,δb,b̂=1

(1− yb) +
∑

b∈Bd:ȳb=0,δb,b̂=1

yb ≥ 1.

Either Case 1 or Case 2 must hold for every feasible solution of (SMILP-NoPAB).

This proves that inequality (3.17) is a valid inequality for (SMILP-NoPAB).

Part 2. We next show that inequality (3.17) is stronger than inequality (3.15). For

any y, the left-hand side of inequality (3.15) is at least as large as the left-hand side

of inequality (3.17). If y violates inequality (3.17), it also violates inequality (3.15).

However, the reverse is not true when none of the accepted supply bids at ȳ covering

a period in Tb̂ is rejected at y, or none of the rejected demand bids at ȳ covering a
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period in Tb̂ is accepted at y.

Proposition 4. Inequalities (3.18) are valid for (SMILP-NoPAB) and stronger than

the “no-good” cuts.

Proof. Proof is similar to that of Proposition 3.

3.4 Computational Results

In this section, we present the computational results for the approaches from the lit-

erature as well as our approach.. In particular, we evaluate the surplus maximization

problem with no PAB, (SMILP-NoPAB), employing:

1. Primal-dual formulation: PD

2. Benders decomposition with

(a) No-Good cut, cut (3.15), used in Martin et al. (2014): BD-NG

(b) Locally Valid cut, cut (3.16), used in Madani and Van Vyve (2015): BD-

LV

(c) Price-Based cuts we developed, cuts (3.17) and (3.18): BD-PB

We run our models using two leading commercial solvers available, IBM ILOG Cplex

and Gurobi to assess the impact of the mixed-integer programming solver on the

performance of the solution methods, if any. Our aim is to reveal the best-performing

solution approach to solve the DAM clearing problem with no-PAB constraints and

to investigate whether the performances of the approaches depend on the solver used.

We also compare the Benders decomposition using the price-based cuts we developed

with the available Benders decomposition algorithms in the literature for the problem

we address.

We run each solution approach on a test set of 20 instances generated based on the

real market data published by EXIST on the transparency platform (EXIST, 2016).

EXIST publishes the full set of hourly bids submitted to the auction daily. In order
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to create representative bids, we take 20 separate instances from different months of

2017 and 2018. In terms of block bids, EXIST only publishes total supply and total

demand volumes of block bids accepted and rejected on an hourly basis. To generate

the block bids for the selected days, we use market report EXIST (2018) and the

aggregate data to approximate the real block bid data as discussed below.

The yearly market statistics report, (EXIST, 2018), contains the daily average number

of supply and demand block bids in the auction as well as the share of the block bid

volume in the total volume. Additionally, there are market rules limiting the price,

the quantities, and the number of periods of the bids that can be submitted into the

auction (EXIST, 2017). We generate block bids for our experiments maintaining all

these properties. For each instance of our experiments, we generate 15,000 hourly

and 150 block bids that resemble the actual bids.

We programmed our solution approaches in Python 3.5 and used Python APIs of the

solvers to create the models and solve the instances. In the experiments, we used

IBM ILOG Cplex 12.8.0 and Gurobi 8.0.1. We conducted the tests on a MacBook

Pro with 2.6 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory with

a time limit of 600 seconds and 10−6 relative mip gap tolerance. In the Turkish DAM

instances, the average market surplus is around 5 × 108 Turkish liras. A solution

within 10−6 relative gap will have market surplus within 500 Turkish liras (less than

100 USD as of 2020) of the maximum surplus on average, which is an immaterial

amount within the context of this problem. In order to examine the impact of parallel

tree search on the performances of the approaches, we conducted tests with both sin-

gle and multi-thread (4 threads that were available in the computation environment)

settings of the solvers. We could have conducted experiments on multiple threads

only but some solver-method combinations do not work in this case and the compar-

isons would not have been comprehensive. For all the other parameters, we used the

default configurations of the corresponding solver.

We present the solution statuses of the problem instances in the tables using the fol-

lowing abbreviations:

• the number of cases an optimal solution (a feasible solution satisfying the rela-

tive gap tolerance) was found (Opt),
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• the number of cases an optimal solution could not be found but a feasible solu-

tion (that does not satisfy the relative gap tolerance) was found (Feas), and

• the number of cases a feasible solution could not be found within the time limit

(Inf ).

In our results to follow, we display average and maximum run times as well as the

relative gaps. Run time statistics are calculated only over the instances where the

solution status is Opt, and relative gap statistics are calculated only over the instances

where the solution status is Feas under both solvers.

We present the results of different approaches over 20 different instances of the sur-

plus maximization problem under no-PAB constraints (SMILP-NoPAB) using two

different solvers in Table 3.1. The first part of the table presents the results with sin-

gle thread (Th=1) execution of the solvers. When using the PD approach, we found

an optimal solution in 17 and 14 of the 20 instances with Cplex and Gurobi, respec-

tively. The 14 instances Gurobi solved to optimality turned out to be a subset of the

17 instances Cplex solved to optimality. Over those 14 instances, Cplex solved faster

than Gurobi both on average and in the worst case (Cplex solved another instance

to optimality in 446.56 seconds) and found higher quality solutions for the instances

neither solver could solve to optimality. Gurobi could not find a feasible solution

within the time limit for two of the instances, whereas Cplex found high quality fea-

sible solutions (with relative gaps below 15×10−6) for all three instances it could not

solve to optimality. In multi-thread (Th=4) execution of PD, the results are about the

same.

For the Benders decomposition-based approaches (BD-NG, BD-LV, and BD-PB) we

present in Table 3.1, there are differences in the implementations of the solvers due

to the differences in their interfaces. In Cplex, we solve the master problem and use a

LazyConstraintCallback to call the subproblem whenever an integer feasible solution

is found at a node of the search tree. Inside the callback function, we first solve the

subproblem and then add the corresponding cut(s) if the subproblem indicates that

the solution is not feasible for (SMILP-NoPAB). Otherwise, the solution becomes

the best candidate solution. Cplex automatically disables some problem reduction

routines when a lazy constraint callback is included. This is necessary since the
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Table 3.1: Performance results of the primal-dual and the Benders decomposition

approaches for (SMILP-NoPAB)

Th Appr Solver
Solution Run Time (secs) Relative Gap (×10−6)

Opt Feas Inf BOa Avg Max BFb Avg Max

1

PD
Cplex 17 3 0

14
20.30 108.66

2
10 11

Gurobi 14 4 2 76.67 341.86 18 24

BD-NG
Cplex 5 15 0

5
90.33 449.08

3
86 245

Gurobi 7 3 10 2.70 12.68 83 142

BD-LVc Cplex 11 9 0 11 60.42 254.61 9 11,320 27,893

BD-PB
Cplex 19 1 0

18
56.48 320.29

1
33 33

Gurobi 18 2 0 30.73 151.29 792 792

4

PD
Cplex 16 4 0

15
21.53 79.78

2
3 3

Gurobi 15 2 3 64.02 462.29 36 67

BD-NGd Gurobi 7 6 7 7 29.22 143.78 6 38 88

BD-PBd Gurobi 20 0 0 20 18.49 166.29 0 - -

[a] BO (Both Optimal): Number of instances both solvers solved to optimality (Opt status)
[b] BF (Both Feasible): Number of instances both solvers found a feasible solution but neither reached optimality (Feas

status)
[c] Gurobi results are not available as Gurobi MIPSOL callback API does not support adding local cuts.

[d] Cplex results are not available as Cplex disables parallel MIP search when there exist lazy constraint callbacks.

model is not complete without the lazy constraints and the problem reductions on

the incomplete model can cut off the true optimal solution. In addition, it defaults

to single thread in the existence of lazy constraint callbacks since Cplex does not

guarantee thread-safety of these types of callbacks. Hence, there is no straightforward

multi-thread implementation of Benders decomposition approaches with Cplex.

In Gurobi, we implement a MIPSOL callback to initiate the subproblem and add the

cuts when necessary. Since Gurobi Python API does not provide the capability to add

locally valid inequalities in a node of the branch-and-bound tree, we cannot present

test results of inequality (3.16) on the Gurobi solver. We set LazyConstraints=1 to

disable problem reductions.
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With BD-NG, the number of instances for which an optimal solution was found is

roughly the same for the two solvers. Gurobi was substantially faster than Cplex

in the 5 instances for which both solvers found an optimal solution. On another 3

instances where both solvers could only find feasible solutions, Gurobi was able to

find slightly higher quality solutions compared to Cplex. However, Gurobi could not

find a feasible solution in half of the instances. The quality of the solutions is rather

poor when we consider all 15 instances Cplex found only a feasible solution for. The

average and the maximum relative gaps are 1.74×10−3 and 1.13×10−2, respectively,

over these 15 instances.

We report only Cplex tests for BD-LV as Gurobi MIPSOL callback API does not

allow to add local cuts. Cplex found an optimal solution for 11 of the instances and

found a feasible solution for the remaining 9 instances. The solution quality is rather

poor for the 9 instances for which only a feasible solution could be generated.

With the BD-PB approach we developed, Cplex and Gurobi found an optimal solution

in 19 and 18 of the 20 instances, respectively. The quality of the feasible solution

Cplex found in the remaining instance was good with a relative gap of 33 × 10−6.

On the other hand, when we compare the solvers on 18 instances for which both

solvers found an optimal solution, Gurobi outperforms Cplex substantially in the run

time. Furthermore, when Gurobi is run with four threads, it solves all 20 instances to

optimality under 20 seconds on average and about 3 minutes at maximum.

Among the Benders decomposition approaches, we observe that BD-NG and BD-LV

do not perform as well as PD in finding an optimal solution within the imposed time

limit. However, BD-PB we developed outperforms all other approaches in terms of

all performance measures. We observe that Gurobi is much faster than Cplex when

Benders decomposition is implemented, whereas the performance is flipped when the

primal-dual algorithm is implemented, considering the problems solved to optimality

in all cases.

To put the relative gaps into perspective, recall that 10−6 corresponds to a little under

$100, on average, and the problem is solved daily. Based on this, the worst case per-

formance obtained with BD-LV represents a magnitude in the order of roughly 100×
27, 893 = $2, 789, 300. The average absolute gap of BD-LV is about $1,132,000

58



over the 9 problems for which it could find a feasible solution. The corresponding

values for BD-NG with Cplex are around $8,600 on average over the 3 problems and

$24,500 in the worst case. Similarly, for BD-NG with Gurobi and single-thread ex-

ecution, the average and maximum relative gap over the 3 problems correspond to

about $8,300 and $14,200.

In the computational tests presented above, the problem size represents the market

size of the Turkish DAM. In order to test the performance of the algorithms for larger

problem sizes, we create larger instances extrapolating the instances from the Turkish

DAM. In order to create instances that are similar to central-western European market

instances that have around 50,000 hourly bids and 600 block bids (used by Madani

and Van Vyve (2015)), we merged four instances of the Turkish DAM. We generated

10 large instances in such a way that any pair of large instances have half their bids

the same and the other half different.

In Table 3.2, we present the results of the created large instances for PD and BD-PB.

We did not test the performances of BD-NG and BD-LV on large-sized problem in-

stances as those performed poorly on the instances from the Turkish DAM. We run

the solvers with four threads, and hence, only Gurobi results are available for BD-PB.

Out of 10 instances, BD-PB was able to solve 8 instances to optimality compared to

6 instances by PD approach, with both solvers. Over the 5 instances solved to opti-

mality under all settings, BD-PB solved the instances in a fraction of the time of PD.

In addition to the average and maximum computational times, BD-PB outperforms

PD in every single instance that was solved to optimality by both approaches. The

remaining 3 instances solved to optimality by BD-PB took 152.40 seconds on aver-

age, and 441.11 seconds at maximum. The average and maximum relative gaps of

the four feasible solutions generated by PD are 2×10−6 and 4×10−6 with Cplex and

6 × 10−6 and 9 × 10−6 with Gurobi. Whereas the relative gaps for the two feasible

solutions generated by BD-PB are 2× 10−6 and 3× 10−6, respectively.

We observe from all results that BD-PB outperforms all other approaches both in

terms of solution quality and computational performance. Its computational perfor-

mance is a small fraction of its competitors, especially when solved using Gurobi.
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Table 3.2: Performance results of the primal-dual and the Benders decomposition

approaches for (SMILP-NoPAB) on large instance seta

Approach Solver
Solution Run Time (secs) Relative Gap (x 10−6)

Opt Feas Inf AOb Avg Max AFc Avg Max

PD
Cplex 6 4 0

5

96.82 239.03

1

6 6

Gurobi 6 4 0 85.10 160.54 2 2

BD-PBd Gurobi 8 2 0 11.51 49.61 3 3

[a] Executed with parallel MIP search utilizing 4 threads
[b] AO (All Optimal): Number of instances both solvers solved to optimality (Opt status)
[c] AF (All Feasible): Number of instances both solvers found a feasible solution but neither reached optimality (Feas

status)

[d] Cplex results are not available as Cplex disables parallel MIP search when there exist lazy constraint callbacks.

3.5 Surplus maximization problem with no PRB

Surplus maximization with no PRB is the current market rule in the Turkish market

(Energy Exchange Istanbul, 2016). The PABs are settled from the bid prices instead

of the marketing clearing prices through the uplift payments so that their “loss” is

fully compensated. This creates a missing money problem for the market operator,

but supports equilibrium in the market. There is no foregone opportunity for any

bidder and the allocation determined for each bidder is surplus maximizing for them

under the market clearing prices and the uplift payments.

We can generalize the Benders decomposition algorithm in order to solve (SMILP-

NoPRB). The basic combinatorial cuts of the form (3.15) are also valid for this prob-

lem as they only eliminate the current integer variable vector from the feasible space

of block bid decisions. We can rewrite the dual subproblem, (BDSP(x̄, ȳ)), for this

case as follows:

(BDSP(x̄, ȳ)-NoPRB):

Max SL(xd,yd)

s.to.

xdh ≤ 1 ∀h ∈ H
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yd,1b = 1 ∀b ∈ B1

yd,0b ≤ 1 ∀b ∈ B0∑
h∈H

qh,tx
d
h +

∑
b∈B1

qb,ty
d,1
b = 0 ∀t ∈ T

xdh, y
d,0
b ≥ 0

Suppose that (x̄, ȳ) /∈ P . In this case, one cannot get a feasible solution to (SMILP-

NoPRB) in a sub-tree of a (x̄, ȳ) unless at least one of the rejected block bids is

accepted in the new solution. Hence, cut (3.19) is a valid inequality in the subtree of

the node associated with (x̄, ȳ). ∑
b∈B0

yb ≥ 1 (3.19)

In addition, the following price-based cuts are valid for (SMILP-NoPRB). Once we

have a supply (demand) PRB, b̂, we must either accept this bid or decrease (increase)

the average market clearing price of the periods for which this bid is offered. In order

to decrease (increase) the average market clearing price for those periods, we must

either accept at least one rejected supply (demand) block bid or reject at least one

accepted demand (supply) block bid in one of those periods.

yb̂ +
∑

b∈Bs:ȳb=0,δb,b̂=1

yb +
∑

b∈Bd:ȳb=1,δb,b̂=1

(1− yb) ≥ 1 (3.20)

yb̂ +
∑

b∈Bs:ȳb=1,δb,b̂=1

(1− yb) +
∑

b∈Bd:ȳb=0,δb,b̂=1

yb ≥ 1 (3.21)

3.6 More sophisticated bid types and network constrained markets

In the previous sections, we concentrated on hourly and block bids in order to keep

the presentation simple. We now show that the Benders decomposition algorithm

with all the cuts reviewed in Section 3.3 is a valid approach to solve the European

DAM clearing problem under the existence of piece-wise linear hourly bids, linked

block bids, exclusive block bids and flexible bids. We also show that the algorithm

can solve the problem in the network constrained markets as well.
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If there are piece-wise linear hourly bids in the market, the market surplus function

becomes a quadratic function. Let p0
h and p1

h be the starting and ending prices, respec-

tively, for an hourly bid such that p1
h > p0

h for supply bids and p0
h > p1

h for demand

bids. Then, equation (3.22) gives the market surplus function:

SQ(x,y) =
∑
t∈T

{∑
h∈H

{
p0
hqh,txh + (p1

h − p0
h)qh,t

x2
h

2

}
+
∑
b∈B

pbqb,tyb

}
(3.22)

In this case, the surplus maximization problem is a mixed-integer quadratic program

(MIQP) instead of a mixed-integer linear program. Once the integrality requirements

are relaxed, strong duality still applies as the problem is still convex. Similarly,

BDSP(x,y) becomes an MIQP as well for any (x,y) ∈ Z. Essentially, nothing

changes apart from the type of the master and subproblem solved in the Benders

decomposition algorithm, and all the cuts are still valid. On the other hand, the

primal-dual formulation becomes a mixed integer quadratically-constrained program

(MIQCP) and can be solved by the available solvers only if the objective function and

constraints satisfy certain conditions. (IBM, 2020).

If block bid b̂ is linked to block bid b, then b̂ can only be accepted when b is accepted.

This can be modelled by adding yb̂− yb ≤ 0 to the constraint set for each such linked

block bid pair. Similarly, if E represents a set of exclusive block bids in the same

group, then we need to add
∑
b∈E

yb ≤ 1 to the model for each such exclusive block

bid group. A flexible bid can also be regarded as a set of exclusive block bids, e.g.,

creating as many single period block bids as the number of periods and adding a

constraint to ensure that at most one of them can be accepted. We can generalize

these constraints by assuming a constraint of the form:

∑
b∈B

abyb ≤ e (3.23)

Assuming there are m such constraints, ab ∈ Zm with entries ab,i ∈ {−1, 0, 1} , i =

1, . . . ,m, and e ∈ Zm≥0 where each entry is either 0 or 1, ei = {0, 1} ,∀i = 1, . . . ,m.

Following similar steps to those in Section 3.3 for the surplus maximization problem

with the additional constraint (3.23), we end up with the following bounded dual

subproblem for the no-PAB case:
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(BDSP(x̄, ȳ)-NoPAB):

Max SL(xd,yd)

s.to.

xdh ≤ 1 ∀h ∈ H

yd,1b ≤ 1 ∀b ∈ B1

yd,0b = 0 ∀b ∈ B0∑
b∈B1

aby
d,1
b ≤ e∑

h∈H

qh,tx
d
h +

∑
b∈B1

qb,ty
d,1
b = 0 ∀t ∈ T

xdh, y
d,1
b ≥ 0

In this case, (BDSP(x̄, ȳ)-NoPAB) has additional constraint
∑
b∈B1

aby
d,1
b ≤ e. All the

valid inequalities ((3.15), (3.16), (3.17), (3.18)) presented above are still valid.

European DAMs have undergone a coupling process in the last decade, with the inten-

tion of creating a single “pan-european” power market (Euphemia, 2016). To account

for the constraints imposed by the capacity of the transmission network elements on

the flow of electricity, European power exchanges have adopted the zonal-pricing

methodology. In this methodology, the capacity constraints for only a set of criti-

cal transmission lines are included in the DAM clearing problem. The transmission

system operator defines bidding zones that are separated by those critical transmis-

sion lines. The configuration of the bidding zones are to be determined such a way

that the intra-zonal transmission capacity constraints are non-binding for any possi-

ble production-consumption schedule in the day-ahead stage. In case the inter-zonal

transmission lines are congested, the DAM clearing prices may differ between the

bidding zones.

The algorithm that is used to clear the European single DAM, Euphemia, embeds a

network model in which each bidding zone is a node and the nodes are connected to

each other via arcs. In the early days of the market coupling, the flow capacity on

each arc was determined, making sure that the energy imbalance in any node is equal

to the sum of the flows on the arcs connected to that node. This model is known as

the Available Transmission Capacity (ATC) model. This model totally ignored the
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physical laws of electricity flow, and was replaced by the Flow-Based model (FB)

that approximates the physical flow of electricity between the nodes better. In this

model, power transmission distribution factors (PTDFs) that disclose the marginal

energy change on an arc due to a unit energy exchange between two nodes are used.

These factors can take different values for different arcs associated with a node, in

contrast with the all-equal assumption of the ATC model. Nevertheless, both network

designs can be modelled as a set of linear constraints and can be embedded in the

surplus maximization problem as follows:

(SMILP-Multi-node):

Max SL(x,y)

s.to. ∑
h∈H

qh,n,txh +
∑
b∈B

qb,n,tyb + δn,t = 0 ∀n ∈ N,∀t ∈ T

∑
n∈N

σan,tδn,t ≤ Ca
t ∀a ∈ A,∀t ∈ T

xh ≤ 1 ∀h ∈ H

xh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

In this model, δn,t represents the net energy export of node n at time period t and σan,t
is the PTDF associated with node n, time period t, and arc a. The total energy flow

induced on arc a is calculated as
∑
n∈N

σan,tδn,t, and is restricted by arc capacity Ca
t .

The network capacity constraints presented above define a convex set and preserve

the convexity of the surplus maximization problem. Complementary slackness con-

straints can be satisfied by the net energy export variables for any given ȳ, similar

to the case of hourly bids, and therefore the net energy export values and the zonal

prices πn,t will be at equilibrium for any set of accepted block bids. For example,

under the ATC model, the price in the exporting node is at most as big as the price in

the importing node, and the prices of two nodes connected by an arc must be equal if

the arc capacity constraint is non-binding.
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The bounded dual subproblem will be very similar to (SMILP-Multi Node) and will

additionally include variable bounds imposed by ȳ found by the master problem.

Since the net energy export variables are continuous, there is nothing that invalidates

the Benders infeasibility cuts developed in Section 3.3. The primal-dual formulation

can also be easily adapted with the network constraints specified here. The problem

can be still formulated as an MILP.

3.7 Conclusions

In this chapter, we studied the market clearing problem in the exchange-type elec-

tricity market design, the preferred market mechanism by many European countries.

Although the surplus maximizing mixed-integer linear programming problem can

be solved efficiently by today’s most powerful solvers like Cplex and Gurobi, the

optimal solution may include some accepted block bids that bring negative profits,

paradoxically-accepted bids (PABs), to their bidders at the market prices. This im-

plies a non-equilibrium market outcome. To prevent solutions with PABs, the market

operator typically imposes additional constraints, settling for a lower total market

surplus. With the addition of such constraints, the computational burden increases

substantially.

We developed Benders infeasibility cuts that use the market clearing prices over the

periods of a PAB to find the set of block bid variables of which at least one needs to

be changed to eliminate the PAB. We call these price-based cuts and show that they

are stronger than the cuts proposed by Martin et al. (2014). The computational results

on practical-size instances from the Turkish DAM show that using price-based cuts

as the infeasibility cuts in the Benders decomposition algorithm outperform using the

no-good cuts of Martin et al. (2014) and the locally-valid cuts of Madani and Van

Vyve (2015). The improved Benders decomposition algorithm solved all instances to

optimality within about one minute when Gurobi solver was used. The tests on larger

instances also showed that the improved Benders decomposition algorithm not only

found feasible solutions for all instances but also solved more instances to optimality

in a fraction of time of the primal-dual approach.
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In practice, market operators operate under a time restriction to solve these problems

and to announce market clearing prices (typically around 10 minutes). The Benders

decomposition algorithm using price-based cuts appears to be the reasonable algo-

rithm to implement. As a matter of fact, the Benders decomposition algorithm with

heuristic cuts is used as the approach with the aim of finding high quality feasible so-

lutions for the European market coupling problem (Euphemia, 2016). Furthermore,

the Benders decomposition algorithm is the only practical approach in the existence

of piece-wise linear hourly bids that lead to a quadratic objective function. Such bids

are allowed in some of the markets such as Nord-Pool.

We also developed an improved Benders decomposition algorithm for the market

designs where no paradoxically-rejected bid (PRB) constraints replace no PAB con-

straints or when the market includes more sophisticated bid types and transmission

network constraints. We show that the price-based cuts are valid under all these mar-

ket designs. We believe that, implementing our improved Benders decomposition

approaches will improve the solution quality for the market clearing problems in the

exchange-type electricity market designs. We also believe that, these developments

will trigger new research in this area to further improve the results. We intend to

conduct further research and tests on the extensions we developed.
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CHAPTER 4

FINDING THE NONDOMINATED SET AND EFFICIENT INTEGER

VECTORS FOR A CLASS OF THREE OBJECTIVE MIXED-INTEGER

LINEAR PROGRAMS

In the existence of multiple objectives, it is rare to find a solution that is best in all

objectives. Rather, there are a set of meaningful nondominated points, each outper-

forming any other solution in at least one objective. Generating nondominated sets of

different classes of problems with multiple objectives has been an important research

area, both from theoretical and practical perspectives. Many authors address multi-

objective linear programs (MOLPs), where all objective functions and constraints are

linear. Some attempt to characterize nondominated sets of MOLPs (see Wiecek et al.,

2016, for a review).

Generating the nondominated sets of large scale multi-objective integer linear pro-

grams (MOILPs) is challenging due to computational difficulties of solving integer

programs repetitively. Several efficient algorithms are available (Lokman and Kök-

salan, 2013; Kirlik and Sayın, 2014; Klamroth et al., 2015; Dächert et al., 2017). Due

to the extensive computational effort in generating the whole nondominated set, some

recent approaches focus on generating representative subsets of the nondominated set

(Masin and Bukchin, 2008; Ceyhan et al., 2019).

In the case of multi-objective mixed-integer linear programs (MOMILPs), the non-

dominated set includes facets as well as points or edges. Previous research in this

area focused on generating the set of extreme supported nondominated points (see for

example, Przybylski et al., 2010a; Özpeynirci and Köksalan, 2010; Alves and Costa,

2016). Assuming that all objectives are of maximization type, each such point has

the property of uniquely maximizing some positive-weighted-sum of the objectives.
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Other studies that aim to find the whole nondominated set for MOMILPs are restricted

to the bi-objective case (Stidsen et al., 2014; Boland et al., 2015; Soylu, 2018; Fattahi

and Turkay, 2018).

To the best of our knowledge, Rasmi and Türkay (2019) is the only approach that

aims to find the nondominated facets for MOMILPs for more than two objectives.

They develop a two-stage algorithm that starts with finding the efficient integer vec-

tors, and then generates the nondominated edges and facets associated with each such

vector. However, by construction, the generated facets are not guaranteed to be non-

dominated; they may contain some dominated regions.

In this study, we consider a subclass of three-objective mixed-integer linear programs

(TOMILPs) that have at least one of the three objectives discrete-valued. This is a

more general version of the bi-objective mixed-binary linear programs (BOMBLPs)

studied by Stidsen et al. (2014) that have one real and one discrete-valued objective.

We were inspired by the multiple objective version of the day-ahead electricity mar-

ket clearing problem. In this problem, the surplus maximization objective can have

both discrete and continuous decision variables but has a unique value corresponding

to each fixed integer decision variable vector (O’Neill et al., 2005). For each sur-

plus value, there are, typically, alternative optimal market clearing prices that lead to

different allocations of costs among market participants.

Other problems where there is an objective to minimize a countable resource, such

as the number of facilities, vehicles, idle machines, uncovered demand points, tasks,

and there are relevant conflicting continuous-valued objectives based on the context

of the application have structures similar to that of the day-ahead electricity market

clearing problem. (see, e.g., Görmez et al. 2011, Daskin and Maass 2015, Kalita and

Datta 2017). Our problem is more general than Stidsen et al. (2014)’s in two aspects:

(i) it can handle up to three objectives, and (ii) none of the objectives is restricted to

integer variables only. All three objectives can include continuous variables so long

as at least one of the objectives has a discrete feasible set.

We can highlight our contributions in this chapter as follows:

1. We develop a criterion-space search algorithm that generates the exact nondom-
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inated set of the BOMILPs and a subset of TOMILPs.

2. The algorithm generates all efficient integer vectors if it is configured to do so.

3. We develop an open-source software that is available in a public repository

(Ceyhan, 2020).

4. We create a publicly available set of benchmark problems and demonstrate the

performance of our algorithm on these problems (also available in Ceyhan,

2020).

In the next section, we define our problem and study the characteristics of its non-

dominated set. In Section 4.2, we define the dominance relations between two sets

of points in the criterion space, and present theory and establish conditions on dom-

inance relations between sets. We develop a cone-based search algorithm using the

established conditions in Section 4.3. In Section 4.4, we present the implementa-

tion details and provide illustrative examples. In Section 4.5, we develop benchmark

problems and report our computational results. We give an extension of the algorithm

to approximate nondominated sets in Section 4.6 and make concluding remarks in

Section 4.7.

4.1 Problem definition

We present the following general MOMILP, and then define our problem as a sub-

class of MOMILP. We assume, without loss of generality, that all objectives are of

maximization type throughout the paper.

P : Max z(x) = (z1(x), z2(x), . . . , zm(x))

s.to. x ∈ P

xu ∈ R,∀u ∈ U

xv ∈ Z,∀v ∈ V

where zi(x) is a linear function of x denoting the ith objective, i = 1, 2, . . . ,m,

P ⊆ R|V|+|U| is a polyhedron, V is the index set of integer decision variables and U is

the index set of real-valued decision variables.
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We denote the feasible set withX ,X :=
{
x = (xc,xd) ∈ P : xc ∈ R|U|,xd ∈ Z|V|

}
,

the image of X in the objective space with Z ⊆ Rm, and the image of x ∈ X in the

objective space with z ∈ Z . We assume X is non-empty and Z is bounded.

• If V = ∅, P is an MOLP.

• If U = ∅, P is an MOILP.

• If xv ∈ {0, 1} ∀v ∈ V , P is a multi-objective mixed-binary linear program

(MOMBLP).

We define the following three subsets of Rm:

Rm
> := {u ∈ Rm : ui > 0,∀i = 1, 2, . . . ,m}

Rm
≥ := {u ∈ Rm : ui ≥ 0,∀i = 1, 2, . . . ,m,u 6= 0}

Rm
= := {u ∈ Rm : ui ≥ 0,∀i = 1, 2, . . . ,m}

Additionally, we define the following sets that represent the dominating or dominated

cones of point z ∈ Z:

� z> := {u ∈ Rm : u− z ∈ Rm
>}, the set of real-valued vectors that are larger

than z in each criterion

� z≥ :=
{
u ∈ Rm : u− z ∈ Rm

≥
}

, the set of real-valued vectors that are at least

as large as z in each criterion, and larger than z in at least one criterion

� z= :=
{
u ∈ Rm : u− z ∈ Rm

=

}
, the set of real-valued vectors that are at least

as large as z in each criterion

� z< := {u ∈ Rm : z − u ∈ Rm
>}, the set of real-valued vectors that are smaller

than z in each criterion

� z≤ :=
{
u ∈ Rm : z − u ∈ Rm

≥
}

, the set of real-valued vectors that are at most

as large as z in each criterion, and smaller than z in at least one criterion

� z5 :=
{
u ∈ Rm : z − u ∈ Rm

=

}
, the set of real-valued vectors that are at most

as large as z in each criterion
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Definition 10. z is a nondominated point and x is an efficient solution if z≥∩Z = ∅.

Definition 11. z is a weakly nondominated point and x is a weakly efficient solution

if z> ∩ Z = ∅.

In a multi-objective problem, the complete set or a subset of nondominated points is

of primary interest. The set of nondominated points, ZND, can be defined as follows:

ZND :=
{
z ∈ Z : z≥ ∩ Z = ∅

}
Similarly, the set of weakly nondominated points, ZWND, can be defined as

ZWND := {z ∈ Z : z> ∩ Z = ∅}

where ZND ⊆ ZWND.

Definition 12. If ∃λ ∈ Rm
>0 such that z∗ is an optimal solution of max

z∈Z
λz, then z∗

is a supported nondominated point. If z∗ is unique, then z∗ is an extreme supported

nondominated point.

Definition 13. zI ∈ Rm is the ideal point of Z such that zIi = max
z∈Z

zi,∀i =

1, 2, . . . ,m.

Given V 6= ∅, Y denotes the set of feasible integer vectors, Y :=
{
xd : (xc,xd) ∈ X

}
,

and the slice problem (Belotti et al., 2013; Soylu, 2018; Rasmi and Türkay, 2019) of

P corresponding to integer vector ȳ ∈ Y as P(ȳ):

P(ȳ) : Max z(x) = {z1(x), z2(x), . . . , zm(x)}

s.to. x ∈ X

xd = ȳ

P(ȳ) is an MOLP. The image set of feasible solutions of P(ȳ) in the objective

space is Z(ȳ) :=
{
z(x) : x ∈ X ,xd = ȳ

}
, and the nondominated set of P(ȳ) is

ZND(ȳ) :=
{
z ∈ Z(ȳ) : z≥ ∩ Z(ȳ) = ∅

}
. Note that Z(ȳ) is a polyhedron, and

ZND(ȳ) is connected (Naccache, 1978) and supported. To generate ZND(ȳ), one can

use one of the algorithms developed to find the nondominated set of an MOLP, such

as multi-objective simplex algorithm (Evans and Steuer, 1973; Rudloff et al., 2017),
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primal-dual simplex method (Ehrgott et al., 2007) or dichotomic search algorithm

(Aneja and Nair, 1979; Cohon, 2004).

Since X 6= ∅, there must exist some y ∈ Y : ZND ∩ ZND(y) 6= ∅. Let ZP
ND(y) =

ZND ∩ ZND(y), and ZP
WND(y) = ZWND ∩ ZND(y). We are particularly interested in

the integer vectors y for which ZP
ND(y) is not empty.

Definition 14. For y ∈ Y , y is an efficient integer vector if ZP
ND(y) 6= ∅, and weakly

efficient integer vector if ZP
WND(y) 6= ∅.

Let YE be the set of efficient vectors, YE :=
{
y ∈ Y : ZP

ND(y) 6= ∅
}

. Note that

both Y and YE ⊆ Y are finite sets. In the following proposition, we show that the

nondominated set of a MOMILP problem consists of the nondominated sets of the

slice problems of its efficient integer vectors.

Proposition 5. ZND =
⋃
y∈YE
ZP

ND(y).

Proof. ZND ⊆
⋃
y∈YE
ZP

ND(y) since ∃ȳ = x̄v ∈ YE : z̄ = z(x̄) ∈ ZP
ND(ȳ) for any

z̄ ∈ ZND.
⋃
y∈YE
ZP

ND(y) ⊆ ZND since
⋃
y∈YE
ZP

ND(y) =
⋃
y∈YE

(ZND(y) ∩ ZND) =( ⋃
y∈YE
ZND(y)

)
∩ ZND ⊆ ZND.

In the rest of the paper, we consider the special case of three-objective mixed-integer

programming problems (TOMILPs). Furthermore, we restrict our attention to the

case where the slice problems are bi-objective linear programs (BOLPs) that are ob-

tained by setting the third objective function to a specific feasible value. Let I be the

index set of objective functions and ȳ ∈ Y . For two distinct feasible points z′ and z′′

in Z(ȳ), we define the index set of objectives for which both points have the same

objective value as I=(ȳ), that is, I=(ȳ) :=
{
i ∈ I : ∀z, z′ ∈ Z(ȳ), zi = z

′
i, z 6= z

′}.

Let q ∈ I=(ȳ) and zq(ȳ) = zq,∀z ∈ Z(ȳ). Then, ZND(ȳ) can only include a single

point or a set of connected edges in the zq = zq(ȳ) plane as formalized with the next

corollary.

Proposition 6. If I=(ȳ) 6= ∅ for ȳ ∈ Y , then dim(Z(ȳ)) ≤ 2.
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Proof. Since Z(ȳ) ⊆ R3, dim(Z(ȳ)) + rank(M=) = 3, where M= is the set of

inequalities in the description of polyhedron Z(ȳ) that are satisfied at equality. Since

I=(ȳ) 6= ∅, ∃q ∈ I=(ȳ), and {zq = zq(ȳ)} ⊆ M=. Hence, rank(M=) ≥ 1, and

dim(Z(ȳ)) ≤ 2.

Let F ȳ,d be the d dimensional proper faces of Z(ȳ), d = 0, 1. Also, let F ȳ,dND be the

d dimensional nondominated faces of Z(ȳ), d = 0, 1, F ȳ,dND ⊆ F ȳ,d. As ZND(ȳ) =

F ȳ,0ND ∪ F ȳ,1ND , there can be two different cases for the nondominated set of the slice

problem P(ȳ):

• Case 1: F ȳ,1ND = ∅. There is no edge in the nondominated set. Then, the

nondominated set must be a singleton as ȳ is a feasible integer vector by as-

sumption and ZND(ȳ) is connected, ZND(ȳ) = F ȳ,0ND = {zȳ}.

• Case 2: F ȳ,1ND 6= ∅. The nondominated set consists of connected edges. In this

case, ∀F ∈ F ȳ,0ND , ∃F̂ ∈ F ȳ,1ND : F ⊆ F̂ . Hence, we can define ZND(ȳ) in terms

of the one-dimensional faces (edges) in F ȳ,1ND .

We next define I= :=
⋂̄
y∈Y

I=(ȳ). Given that I= 6= ∅, three cases are possible in terms

of the characteristics of the nondominated set:

Case 1: |I=| = 1. Suppose q = 3. Let ZND,q be the projection of ZND on the q axis

of the criterion space, ZND,q := {zq : z ∈ ZND}. Then, ZND,q ⊆ {zq(y),y ∈ Y},
and it is a discrete set of points. In Figure 4.1, we present an example for this case.

The polygons (since dim(Z(ȳ)) ≤ 2) in the planes parallel to z1 − z2 axes represent

the feasible regions of the slice problems, Z(ȳ) for some ȳ ∈ Y , and the dark edges

of those polygons show the corresponding nondominated sets of the slice problems,

ZND(ȳ) (if Z(ȳ) is a singleton, then ZND(ȳ) = Z(ȳ)). In Figure 4.1b, we show the

projection ofZND onto z1−z2 plane. Solid lines and point represent the nondominated

set, with thickness proportional to z3 value. The dashed line segment of the frontier

with the second highest z3 value is dominated by the frontier with the highest z3 value,

and hence is not part of the nondominated set.

Case 2: |I=| = 2. Although the problem is a TOMILP, the nondominated set consists

of only disconnected points. Suppose I= = {2, 3}. In Figure 4.2a, we show that the
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z1
z2

z3

•

(a) The slices in the criterion space

z1

z2

z3 = 0.5

•
z3 = 2

z3 = 3z3 = 4

(b) The projection of the nondominated set onto

z1 − z2 plane

Figure 4.1: The solutions for the slice problems in Case 1, |I=| = 1

feasible set of a slice problem is a line segment (since dim(Z(ȳ)) ≤ 1) perpendicular

to z2 − z3 plane (or, it can be either empty or a single point), and its nondominated

set is the point with maximum z1 value. In this case, the nondominated set is a

discrete set of points. Figure 4.2b illustrates the projection of the nondominated set

onto the z1 − z2 plane. Solid points represent nondominated points, with their radius

proportional to z3 value.

z1
z2

z3

••
•

•

•

+

+
+

+ +

(a) The slices in the criterion space

z1

z2

◦

◦

(b) The projection of the nondominated set onto

z1 − z2 plane

Figure 4.2: The solutions for the slice problems in Case 2, |I=| = 2

Case 3: |I=| = 3. In this case, the problem is a three-objective integer linear program

(TOILP). As we show in Figure 4.3, both the feasible set and the nondominated set

are discrete (since dim(Z(ȳ)) ≤ 0).
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(a) The slices in the criterion space

z1

z2

◦

◦

(b) The projection of the nondominated set onto

z1 − z2 plane

Figure 4.3: The solutions for the slice problems in Case 3, |I=| = 3

Among the above, the first case provides continuous trade-offs between two of the ob-

jectives at different parts of the criterion space as shown in Figure 4.1. The algorithms

that generate extreme supported points (Özpeynirci and Köksalan, 2010; Przybylski

et al., 2010a) do not provide this information. An algorithm that can also generate

the nondominated edges can empower the DM with the full set of efficient values of

the continuous decision variables. Although there are efficient algorithms developed

to solve the problems with a discrete nondominated set as in Case 2 and 3, it may

not be straightforward to identify a priori that the nondominated set of the problem is

discrete.

In the remainder of this chapter, we assume q = 3, without loss of generality. Let

Eȳ,k be the kth nondominated edge in ZND(ȳ), and zȳ,k,nw, zȳ,k,se be its north-west

and south-east extreme points such that zȳ,k,nw1 < zȳ,k,se1 and zȳ,k,nw2 > zȳ,k,se2 . Then,

Eȳ,k =
{
λzȳ,k,nw + (1− λ)zȳ,k,se, 0 ≤ λ ≤ 1

}
. Also, let gȳ,ku = hȳ,k be the sup-

porting hyperplane of Eȳ,k perpendicular to z1 − z2 plane, g3 = 0.

If there are n nondominated edges in ZND(ȳ), we index the edges such that zȳ,k,se =

zȳ,k+1,nw for 1 ≤ k < n. Let K(ȳ) := {1, 2, . . . , n} be the set of such indices.

Then, ZND(ȳ) =
{
Eȳ,k, k ∈ K(ȳ)

}
is the continuous nondominated frontier of the

slice problem of ȳ. In the following sections, we also make use of the north-west

extreme point, zȳ,nw = zȳ,1,nw, south-east extreme point, zȳ,se = zȳ,|K(y2)|,se, the
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ideal point, zȳ,ne where zȳ,nei = max
z∈Z(ȳ)

zi, i = 1, 2, 3, and the nadir point, zȳ,sw where

zȳ,swi = min
z∈ZND(ȳ)

zi, i = 1, 2, 3, of this frontier.

In the next section, we examine the dominance relations between the nondominated

sets of the slice problems through the set dominance rules and the models we develop.

4.2 Set dominance

In order to define dominance relations between different sets of points in the cri-

terion space, we first define sets: Z> :=
⋃
z∈Z
z>, Z≥ :=

⋃
z∈Z
z≥, Z= :=

⋃
z∈Z
z=,

Z< :=
⋃
z∈Z
z<, Z≤ :=

⋃
z∈Z
z≤ and Z5 :=

⋃
z∈Z
z5. We define the following dominance

relations of two sets relative to each other:

Definition 15. Z1 is nondominated relative to Z2 if Z1≥ ∩ Z2 = ∅.

Definition 16. Z1 is weakly nondominated relative to Z2 if Z1> ∩ Z2 = ∅.

Definition 17. Z1 is partially nondominated relative to Z2 if Z1 ∩ Z2≤ 6= Z1.

Definition 18. Z1 is dominated by Z2 if Z1 ∩ Z2≤ = Z1.

Definition 19. Z1 is strictly dominated by Z2 if Z1 ∩ Z2< = Z1.

Since we assume that |I=| ≥ 1, we compare points or edges against each other. If

we compare the nondominated sets of two different slice problems, we define the

efficiency of the related integer vectors as follows:

Definition 20. y1 ∈ Y is an efficient integer vector relative to y2 ∈ Y if ZND(y1) is

partially nondominated relative to ZND(y2).

Given y1,y2 ∈ Y , we first examine the case where z3(y1) 6= z3(y2). Without loss

of generality, we assume that z3(y1) > z3(y2) and consider the four cases below.

In each of these cases, ZND(y1) is nondominated relative to ZND(y2) and y1 is an

efficient integer vector relative to y2 since z3(y1) > z3(y2). In order to identify the

dominance status of ZND(y2) relative to ZND(y1), we consider the following linear

program once for each i = 1, 2:
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P(y1,y2, S, i) : Max zi

s.to. z ∈ Φ(y1,y2, S)

where Φ(y1,y2, S) = S∩ZND(y1)
5, S is a point ifZND(y2) is a singleton, otherwise

an edge of ZND(y2). By the following proposition, we show that ZND(y1)
5 is a

polyhedron, hence P(y1,y2, S, i) is a linear program.

Proposition 7. Let n be the number of edges in ZND(ȳ). Then, ZND(ȳ)5 is a polyhe-

dron defined by n+ 3 half-spaces.

Proof. If dim(ZND(ȳ)) = 1, let ZND(ȳ) = {zȳ}. Then, ZND(ȳ)5 is defined by the

intersection of the three half-spaces in R3,
{
u ∈ R3 : u1 ≤ zȳ1

}
,
{
u ∈ R3 : u2 ≤ zȳ2

}
and

{
u ∈ R3 : u3 ≤ zȳ3

}
. Else, let ZND(ȳ) =

{
Eȳ,k, k ∈ K(ȳ)

}
be the set of edges.

Then,

ZND(ȳ)5 =
{
u ∈ R3 : u3 ≤ z3(ȳ), u1 ≤ zȳ,se1 , u2 ≤ zȳ,nw2 , gȳ,ku ≤ hȳ,k,∀k ∈ K(ȳ)

}
.

If we let n = |K(ȳ)|, ZND(ȳ)5 is defined by the intersection of n+3 half-spaces and

it is a polyhedron.

Although this simple linear program can be solved as necessary, to determine the

status of ZND(y2) relative to ZND(y1) as discussed later, we will develop rules that

help extract the same information more efficiently for some of the cases. We will

implement the rules first (rule-based dominance test) and resort to models only for

those cases the rules are inconclusive (model-based dominance test).

For the below analyses, recall that y2 is an efficient integer vector relative to y1 if

ZND(y2) is at least partially nondominated relative to ZND(y1).

4.2.1 Case 1. Dominance between two points

Let ZND(y1) =
{
zy

1
}

and ZND(y2) =
{
zy

2
}

. S = zy
2 and either Φ(y1,y2, S) =

∅, in which case ZND(y2) is nondominated relative to ZND(y1), or Φ(y1,y2, S) =

zy
2 , in which case ZND(y2) is dominated by ZND(y1). The following rules specify

the necessary and sufficient conditions to determine the dominance of ZND(y2).
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Rule 1.1. If z1(y2) ≥ z1(y1) or z2(y2) ≥ z2(y1), then ZND(y2) is weakly nondomi-

nated relative to ZND(y1). ZND(y2) is nondominated relative to ZND(y1) if at least

one of the inequalities is strict.

Rule 1.2. If z1(y2) ≤ z1(y1) and z2(y2) ≤ z2(y1), then ZND(y2) is dominated by

ZND(y1).

4.2.2 Case 2. Dominance of a continuous frontier compared to a point

Let ZND(y1) =
{
zy

1
}

and ZND(y2) =
{
Ey

2,k, k ∈ K(y2)
}

. If Ey2,k is nondom-

inated relative to ZND(y1) ∀k ∈ K(y2), then ZND(y2) is nondominated relative to

ZND(y1). Else, if ∃k̂ such that Ey2,k̂ is partially nondominated relative to ZND(y1),

then ZND(y2) is partially nondominated relative to ZND(y1). If ZND(y2) is neither

nondominated, nor partially nondominated relative to ZND(y1), then it is dominated

by ZND(y1). If any of the following rules identify the dominance of an edge relative

to a point, we can do away with solving the corresponding model.

As z3(y1) > z3(y2) by assumption, we test Ey2,k with respect to z1 and z2 values

only. We define the following sets in the z1 − z2 plane that we use in the exposition

of the rules:

• NW := {u ∈ R2 : u1 ≤ z1(y1), u2 ≥ z2(y1)},

• ÑW := {u ∈ R2 : u1 < z1(y1), u2 > z2(y1)},

• NE = z1(y1)
=, ÑE = z1(y1)

>,

• SW = z1(y1)
5, S̃W = z1(y1)

<,

• SE := {u ∈ R2 : u1 ≥ z1(y1), u2 ≤ z2(y1)},

• S̃E := {u ∈ R2 : u1 > z1(y1), u2 < z2(y1)}.

Rule 2.1. If zy
2,k,nw, zy

2,k,se ∈ SW , then Ey
2,k is dominated by zy

1
. (See Figure

4.4a)

Rule 2.2. If zy
2,k,nw ∈ ÑW and zy

2,k,se ∈ SW , then [zy
2,k,nw, z∗) is a half-open
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•zy
2,k,nw

◦
zse,∗

◦
znw,∗

(d) [znw,∗, zse,∗] dominated by zy
1

Figure 4.4: Different cases displaying the dominance of an edge relative to a point

edge that is nondominated relative to zy
1
, where z∗ is the intersection point of Ey

2,k

and z2 = zy
1

2 line. (See Figure 4.4b)

Rule 2.3. If zy
2,k,nw ∈ SW and zy

2,k,se ∈ S̃E, then (z∗, zy
2,k,se] is a half-open edge

that is nondominated relative to zy
1
, where z∗ is the intersection point of Ey

2,k and

z1 = zy
1

1 line. (See Figure 4.4c)

Rule 2.4. If zy
2,k,nw ∈ ÑW , zy

2,k,se ∈ S̃E and gy
2,k(z − zy1) ≤ 0 for z ∈ Ey2,k,

then [zy
2,k,nw, znw,∗) and (zse,∗, zy

2,k,se] are the half-open edges that are nondomi-

nated relative to zy
1
, where znw,∗ and zse,∗ are the intersection points of z2 = zy

1

2

and z1 = zy
1

1 lines with Ey
2,k, respectively. (See Figure 4.4d)

Rule 2.5. If none of the above rules hold, then Ey
2,k is nondominated relative to

zy
1
.
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Before applying the above rules for each edge of the frontier, we can check if the

frontier is dominated by the point. We present the following proposition for this

purpose:

Proposition 8. ZND(y2) =
{
Ey

2,k, k ∈ K(y2)
}

is dominated byZND(y1) =
{
zy

1
}

if and only if zy
2,nw

2 ≤ zy
1

2 and zy
2,se

1 ≤ zy
1

1 .

Proof. (⇒) If ZND(y2) is dominated by ZND(y1), then Ey2,k is dominated by zy1 ,

∀k ∈ K(y2). If Ey2,k is dominated by zy1 , then Ey2,k ∈ zy1≤ and, hence, zy
2,nw

2 ≤
zy

1

2 , zy
2,se

1 ≤ zy
1

1 .

(⇐) Given that zy
2,k,se

1 ≤ zy
2,se

1 ≤ zy
1

1 and zy
2,k,nw

2 ≤ zy
2,nw

2 ≤ zy
1

2 for k ∈ K(y2),

we will show that Ey2,k is dominated by zy1 , ∀k ∈ K(y2). Let e be a point on

the edge Ey2,k, e = λzy
2,k,nw + (1 − λzy

2,k,se), 0 ≤ λ ≤ 1. Then, e1 ≤ zy
1

1

and e2 ≤ zy
1

2 , because zy
2,k,nw

1 ≤ zy
2,k,se

1 ≤ zy
1

1 and zy
2,k,se

2 ≤ zy
2,k,nw

2 ≤ zy
1

2 .

Since e3 < z3(y1), e is dominated by zy1 ,∀e ∈ Ey
2,k,∀k ∈ K(y2) and, hence,

ZND(y2) =
{
Ey

2,k, k ∈ K(y2)
}

is dominated by ZND(y1) =
{
zy

1
}

.

4.2.3 Case 3. Dominance of a point compared to a continuous frontier

Let ZND(y1) =
{
Ey

1,k, k ∈ K(y1)
}

and ZND(y2) =
{
zy

2
}

. If the condition in the

following proposition holds, then ZND(y2) is dominated by ZND(y1). Otherwise, it

is nondominated relative to ZND(y1).

Proposition 9. ZND(y2) =
{
zy

2
}

is dominated byZND(y1) =
{
Ey

1,k, k ∈ K(y1)
}

if and only if

1. zy
2

1 ≤ zy
1,se

1 ,

2. zy
2

2 ≤ zy
1,nw

2 , and

3. gy
1,kzy

2 ≤ hy
1,k,∀k ∈ K(y1).

Proof. Let R =
{
u ∈ R3 : u1 ≤ zy

1,se
1 , u2 ≤ zy

1,nw
2 , gy

1,ku ≤ hy
1,k,∀k ∈ K(y1)

}
.

Since z3(y2) < z3(y1), ZND(y1)
≤ ⊆ R.
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(⇒) If zy2 is dominated by ZND(y1), then zy2 ∩ ZND(y1)
≤

= zy
2 ∩ R = zy

2 and,

hence, zy2 ∈ R.

(⇐) Since zy
2

3 < z3(y1), if zy2 ∈ R, then zy2 ∈ ZND(y1)
≤.

4.2.4 Case 4. Dominance between two continuous frontiers

Let ZND(y1) =
{
Ey

1,k, k ∈ K(y1)
}

and ZND(y2) =
{
Ey

2,k, k ∈ K(y2)
}

. We first

analyze the case when an edge of ZND(y2), Ey2,k for some k ∈ K(y2), is dominated

by ZND(y1). In Figure 4.5, we illustrate different dominance relations between an

edge and a continuous frontier.

Proposition 10. Ey2,k ∈ ZND(y2) is dominated by ZND(y1) =
{
Ey

1,k, k ∈ K(y1)
}

if and only if both zy
2,k,nw and zy

2,k,se are dominated by ZND(y1).

Proof. (⇒) IfEy2,k is dominated byZND(y1) for k ∈ K(y2), then zy2,k,nw, zy2,k,se ∈
Ey

2,k ⊆ ZND(y1)
≤ and, hence, both zy2,k,nw and zy2,k,se are dominated by ZND(y1).

(⇐) If zy2,k,nw and zy2,k,se are dominated by ZND(y1), then zy2,k,nw, zy2,k,se ∈
ZND(y1)

≤. Since ZND(y1)
≤ is convex, Ey2,k ⊆ ZND(y1)

≤, and Ey2,k is dominated

by ZND(y1).

We can conclude whether ZND(y2) is dominated by ZND(y1) or not by applying

Proposition 10 to every edge in ZND(y2). ZND(y2) is dominated by ZND(y1) if

every edge of it is dominated by ZND(y1). We can also conclude that ZND(y2) is

nondominated relative to ZND(y1) if the following proposition applies:

Proposition 11. Let zy
1,ne be the ideal point of ZND(y1) and zy

2,sw be the nadir

point of ZND(y2). If zy
2,sw is nondominated relative to zy

1,ne, then ZND(y2) is non-

dominated relative to ZND(y1).

Proof. By definition, ZND(y1) ⊆ (zy
1,ne)5 and ZND(y2) ⊆ (zy

2,sw)=. If zy2,sw

is nondominated relative to zy1,ne, then (zy
2,sw)≥ ∩ zy1,ne = ∅ by Definition 15.

Since ZND(y1) ⊆ (zy
1,ne)5, (zy

2,sw)≥ ∩ ZND(y1) = ∅. Similarly, (ZND(y2))≥ ∩
ZND(y1) = ∅ since ZND(y2) ⊆ (zy

2,sw)=, and, in turn, ZND(y2)≥ ⊆ (zy
2,sw)≥.
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Then, ZND(y2) is nondominated relative toZND(y1) since (ZND(y2))≥∩ZND(y1) =

∅ by Definition 15.

In case ZND(y2) cannot be labeled by means of the above propositions, we apply the

model-based dominance test stated in Algorithm 1.
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•
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Figure 4.5: Different dominance relations between an edge and a continuous frontier

Until this point in this section, we assumed that z3(y2) < z3(y1) while presenting the

dominance relations between the nondominated sets of two slice problems. In case of

z3(y1) = z3(y2) for y1,y2 ∈ Y , y1 is not guaranteed to be an efficient integer vector
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Algorithm 1 Model-based dominance test between two continuous frontiers

Let ZND(y1) =
{
Ey

1,k, k ∈ K(y1)
}

and ZND(y2) =
{
Ey

2,k, k ∈ K(y2)
}

.

Also, let knd and kd be the number of edges of ZND(y2) nondominated relative

to ZND(y1) and dominated by ZND(y1), respectively. Initially, knd = kd =

0.

for k ∈ K(y2) do

Let S = Ey
2,k and solve P(y2, S,y1, 1).

if P(y2, S,y1, 1) is infeasible then

Ey
2,k is nondominated relative to ZND(y1) (see Figure 4.5a), knd = knd + 1.

else

Solve P(y2, S,y1, 2). Let zi,∗ be the optimal solution of P(y2, S,y1, i),

i ∈ {1, 2}.
if z1,∗ = zy

2,k,se and z2,∗ = zy
2,k,nw then

Ey
2,k is dominated by ZND(y1) (see Figure 4.5b), kd = kd + 1.

else if z1,∗ = zy
2,k,se then

[zy
2,k,nw, z2,∗) is nondominated relative to ZND(y1) (see Figure 4.5c).

else if z2,∗ = zy
2,k,nw then

(z1,∗, zy
2,k,se] is nondominated relative to ZND(y1) (see Figure 4.5d).

else

[zy
2,k,nw, z2,∗) and (z1,∗, zy

2,k,se] are nondominated relative to ZND(y1).

end if

end if

end for

if knd = |K(y2)| then

ZND(y2) is nondominated relative to ZND(y1).

else if kd = |K(y2)| then

ZND(y2) is dominated by ZND(y1).

else

ZND(y2) is partially nondominated relative to ZND(y1).

end if
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relative to y2. Hence, we also need to check if ZND(y1) is dominated by ZND(y2),

and, if it is not, to find the nondominated subsets of it.

In the next section, we present our algorithm to find ZND. The algorithm generates

efficient integer vectors y1,y2, . . . ,yn in non-increasing order of z3 values, z3(yj) ≥
z3(yj+1). It uses the dominance tests presented in this section to conclude whether

ZND(yj) ⊆ ZND, or to eliminate the subsets of ZND(yj) dominated by ZND(yk), k >

j, where z3(yj) = z3(yk).

4.3 A cone-based search algorithm

As ZND may include disconnected edges (closed, half-open, open) as well as points,

it is a non-convex set, and hence it is difficult to separate it from the dominated region

in the criterion space. The dimension of the feasible criterion space of any slice

problem of P is at most two and this feasible criterion space is a subset of a plane

parallel to the z1 and z2 axes. Let z1,2 ∈ R2 be the projection of z ∈ R3 on the

z1 − z2 plane. Similarly, let Z1,2 be the projection of Z on the z1 − z2 plane, Z1,2 :=

{(z1, z2) : z ∈ Z}. We develop an iterative algorithm that sequentially finds weakly

nondominated points or edges in the non-increasing order of z3 values and partitions

Z1,2 into smaller search regions that include the rest of the nondominated frontier. At

each iteration, we select a search region, solve the slice problem in that region and

update the search regions and the nondominated set. The algorithm stops when none

of the search regions includes any nondominated points or edges.

4.3.1 Search region

Without loss of generality, we assume that Z1,2 is in the non-negative quadrant,

Z1,2 ∈ R2
≥. We partition the non-negative quadrant into convex cones and search

within each cone for nondominated points or edges. Each cone containing a weakly

nondominated point or edge is further partitioned into child cones and the dominated

regions in the parent cone are eliminated from the child cones.

We illustrate the search region definition in Figure 4.6. The dashed lines represent the
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boundary of the dominated space. In Figure 4.6a, search regionRj is separated from

the dominated space by means of cone Cj and edge E j . A lower bound vector, lj , is

also active in defining the search region in Figure 4.6b. We formally define search

regions and their components next.

Let R be the set of search regions and J denote the index set of regions in R. We

denote Rj ∈ R as the jth search region, Rj ⊆ R2
≥,∀j ∈ J . We represent Rj by the

tuple (Cj, E j, lj) as demonstrated in Figure 4.6, where:

• Cj ⊆ R2
≥ is the enclosing convex cone of Rj , Rj ⊆ Cj , such that Cj :=

{z : z = µ0rj,0 + µ1rj,1, µ0, µ1 ≥ 0} where rj,0 and rj,1 are its extreme rays.

Each search region is enclosed by exactly one convex cone and int(Cj) ∩
int(Ck) = ∅, for k 6= j. Let α(r) be the acute angle of ray r with the unit

vector (1, 0). Then, α(rj,0) > α(rj,1).

• E j is the edge of the search region Rj with a non-empty interior. Each search

region has at most one such edge in its boundary (E j does not exist in the

definition of Rj if Rj can be characterized by a lower bound vector). If E j

exist, and ej,0 and ej,1 are the two extreme points of E j such that ej,01 < ej,11 ,

then rj,0 and rj,1 pass through ej,0 and ej,1, respectively.

• lj = (lj1, l
j
2) is the lower bound vector of Rj , where lj1 and lj2 are the lower

bounds on z1 and z2, respectively. A lower bound vector does not exist for Rj

if Cj and E j are sufficient to separateRj from the dominated space.

We define the jth search region as Rj :=
{
u ∈ R2 : u ∈ Cj ∩ (E j)= ∩ (lj)=

}
. We

next show thatRj is a polyhedron.

Proposition 12. Rj is a polyhedron in R2
≥0 and is the intersection of at most 5 half-

spaces.

Proof. We will show thatRj is the intersection of n ≤ 5 half-spaces, S1,S2, . . . ,S5,
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Figure 4.6: Illustration of a search region and its components

and it will suffice to prove thatRj is a polyhedron. These half-spaces are

S1 =
{
u ∈ R2

≥0 : tan(α(rj,0))× u1 ≥ u2

}
,

S2 =
{
u ∈ R2

≥0 : tan(α(rj,1))× u1 ≤ u2

}
,

S3 =
{
u ∈ R2

≥0 : uTgj ≥ 0
}
,

S4 =
{
u ∈ R2

≥0 : u1 ≥ lj1
}
,

S5 =
{
u ∈ R2

≥0 : u2 ≥ lj2
}
,

where gj is the gradient vector of E j . The enclosing convex cone of the region is

Cj = S1∩S2. If E j and lj does not exist, then n = 2. Otherwise, Cj∩(E j)= = Cj∩S3

since ej,0 and ej,1 are on the extreme rays rj,0 and rj,1 of the cone, respectively. If lj

does not exist, then n = 3. Otherwise, by definition, (lj)= = S4 ∩ S5 and n = 5.

Then, Rj =
{
u ∈ R2 : u ∈ Cj ∩ (E j)= ∩ (lj)=

}
=

⋂
k=1,...,5

Sk. Rj is a polyhedron in

R2
≥0 defined by the intersection of n ≤ 5 half spaces in R2

≥0.

Throughout the search, we maintain a set of search regions and guarantee that none

of them include points that are strictly dominated by the previously generated non-

dominated points or edges. This is achieved by searching the regions that are not

dominated by lj or E j . In addition, nondominated points or edges that have not been

identified yet must exist in some of the current search regions. Hence, we are able to

separate the dominated regions from the feasible criterion space throughout the iter-
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ations of the algorithm. We represent the boundary between Rj and the dominated

space, ZD, as Bj = Rj ∩ ZD. We will use Bj to identify which of the weakly

nondominated points inRj may be nondominated.

4.3.2 Search problem

To search for a nondominated point that has a projection onRj , we solve the follow-

ing problem:
Pj : lexmax (z3(x), z1(x), z2(x))

s.to. x ∈ X

H(xd,yt) ≥ 1,∀yt ∈ Y tj
(z1(x), z2(x)) ∈ Rj

where H(xd,yt) is the Hamming distance (Hamming, 1950) between xd and yt ∈
Y tj , and Y tj is the set of previously generated integer vectors with the nondominated

set of their slice problems having intersection with Bj . Restricting the Hamming

distance between xd and yt to be at least one, we eliminate the integer vectors in

Y tj from the feasible set of Pj . The constraints of type H(xd,yt) ≥ 1 are called

tabu constraints (Fischetti and Lodi, 2003) or no-good constraints (Hooker, 2011).

Stidsen et al. (2014) uses tabu constraints to make integer fathoming in their branch

and bound algorithm to solve a class of BOMILP.

The tabu constraints support the exact nature of the algorithm. Pj either produces a

new integer vector inRj ⊆ Cj (if any) or is infeasible. When the algorithm completes

searching all regions, it reveals all efficient integer vectors as well as all nondominated

points and edges.

The hamming distance of an integer decision variable vector, xd to an integer vector

y, H(xd,y), can be computed as H(xv,y) =
∑
v∈V
|xdv − yv|. Fischetti et al. (2005)

linearizes it for binary vectors as follows:

H(xd,y) =
∑

v∈V:yv=0

xdv +
∑

v∈V:yv=1

(1− xdv)

For a general integer vector xd where lv ≤ xdv ≤ uv, v ∈ V , Soylu (2018) presents

a linear inequality system that requires an additional binary variable and two linear
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constraints for each integer variable xdv, v ∈ V such that lv < xdv < uv.

H(xd,y) =
∑

v∈V:yv=lv

(xdv − lv) +
∑

v∈V:yv=uv

(uv − xdv) +
∑

v∈V:lv<yv<uv

(xd,+v + xd,−v )

xdv − xd,+v + xd,−v = yv

xd,+v ≤ (uv − lv)βv

xd,−v ≤ (uv − lv)(1− βv)

xd,+v , xd,−v ≥ 0, βv ∈ {0, 1}

The objective function of Pj lexicographically uses the objectives in the order of z3,

z1, and z2. That is, the model is used to maximize z3, and first z1, then z2 are used to

break ties, without sacrificing from the achievements of preceding objective(s). Pj

is an MILP since Rj is a polyhedron, and the tabu constraints are modeled as linear

constraints with binary variables.

We denote the set of points that have not yet proven to be nondominated as Z̃ND

and the integer vectors corresponding to these points as ỸE. Let yn be the integer

vector for which we solve the slice problem at iteration n. We next show that, at each

iteration feasible search regions exist, we guarantee to find a new weakly efficient

integer vector.

4.3.3 Search region selection and update

At iteration n, we maintain a set of feasible search regions, Rj , and candidate points

zj , zj1,2 ∈ Rj . For region j, zj is found by solving Pj , and it is nondominated

relative to the other feasible points in the region. Let yj be the integer vector of zj .

We select search region j∗ that contains the point that has the maximum z3 value,

j∗ = argmax
j∈J

zj3. We break ties in favor of the point and the region with the higher z1

value first and higher z2 value next. Denoting zn = zj
∗ and yn = yj

∗ , we show that

zn is a weakly nondominated point of P and establish the condition required for zn

to be nondominated.

Proposition 13. zn = zj
∗

is a weakly nondominated point and yn = yj
∗

is a weakly

efficient integer vector. If zj
∗

is not a boundary point, zj
∗
/∈ Bj∗ , then zn is a

nondominated point and yn is an efficient integer vector.
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Proof. For the first iteration, n = j = 1, z1 is a nondominated point since Z1,2 ⊆
R1 = R2

≥, and Y t1 = ∅. For n > 1, let Zn−1
D ⊆ Z be the feasible objective space

dominated by the points and edges generated by the algorithm in previous iterations.

The search region definition and the tabu constraints added to exclude the previously

generated integer vectors in Y tj∗ guarantees that zj∗ is a weakly nondominated point

relative to any point generated in a previous iteration m, m < n. At iteration n, zn

is selected in such a way that zn3 ≥ zm3 for m ≥ n, and @zm, zm 6= zn : zm3 =

zn3 , z
m
1 ≥ zn1 , zm2 ≥ zn2 . That is, zn will be nondominated relative to any point to

be generated after iteration n. Therefore, zn is a weakly nondominated point and yn

is a weakly efficient integer vector. Furthermore, when zj∗ /∈ Bj∗ , it is guaranteed

that zj∗ is a nondominated point relative to any point generated in a previous iteration

m, m < n. Since, zj∗ is already nondominated relative to zm for m > n, zn is a

nondominated point and yn is an efficient integer vector.

After generating the integer vector yj∗ at iteration n, we next generate the nondomi-

nated set of the slice problem of yj∗ , P(yj
∗
). While solving slice problem P(yj

∗
),

we also include the constraint z1,2(x) ∈ Rj∗ to only generate the nondominated sub-

set of the slice problem that resides in the current search region. This simplifies the

search region update procedure as we do not have to update the adjacent cones that

can include a part of the nondominated set of the slice problem, and also prevents gen-

erating points in the dominated region. We define the slice problem of yj in region

Rj , P(yj,Rj), as follows:

P(yj,Rj) : Max z(x) = {z3(x), z1(x), z2(x)}

s.to. x ∈ X

xd = yj

z1,2(x) ∈ Rj

Let ZND(yj,Rj) be the nondominated set of P(yj ,Rj). We know that ∀z ∈
Z(yj), z3 = z3(yj), and dim(Z(yj)) ≤ 2. Therefore, we solve P(yj,Rj) as a

BOLP, and use the dichotomic search algorithm (Aneja and Nair, 1979) to gener-

ate ZND(yj,Rj). Since the selected point in the region, zj , is already a point of

ZND(yj), ZND(yj,Rj) ∩ ZND(yj) 6= ∅. In the following proposition, we show that

ZND(yj,Rj) is a subset of ZND(yj).

89



Proposition 14. If there exists z ∈ ZND(yj) such that z1,2 ∈ Rj , thenZND(yj,Rj) ⊆
ZND(yj).

Proof. If ZND(yj) is a singleton, then ZND(yj,Rj) ⊆ ZND(yj) as ZND(yj,Rj) ∩
ZND(yj) = z. Else, let Z̃(yj,Rj) := {z ∈ Z(yj) : z1,2 ∈ Rj} and Z̃ND(yj,Rj) :=

{z ∈ ZND(yj) : z1,2 ∈ Rj}. We need to show that:

1. Z̃ND(yj,Rj) ⊆ ZND(yj,Rj)

2. ZND(yj,Rj) ⊆ Z̃ND(yj,Rj)

Proof of (1): For any z̄ ∈ Z̃ND(yj,Rj), there does not exist ẑ ∈ Z(yj) such that

z̄ ∈ (ẑ)≤. Then, there does not exist ẑ ∈ Z(yj,Rj) such that z̄ ∈ (ẑ)≤. Hence,

z̄ ∈ ZND(yj,Rj), and Z̃ND(yj,Rj) ⊆ ZND(yj,Rj).

Proof of (2): We use the fact that the nondominated set of a multi-objective linear pro-

gram is connected and supported. By assumption, there exists z ∈ ZND(yj) such that

z1,2 ∈ Rj . Let z̄ ∈ Z̃ND(yj,Rj). Suppose that z̄l is the extreme supported nondomi-

nated point of ZND(yj) being left adjacent to z̄. Then, [z̄l, z̄] is a nondominated edge

of ZND(yj). If z̄l1,2 ∈ Rj , then [z̄l, z̄] ⊆ ZND(yj,Rj) and [z̄l, z̄] ⊆ Z̃ND(yj,Rj).

We can let z̄ = z̄l and continue in the same manner as long as the left adjacent

extreme supported nondominated point is in the considered search region. All the

visited edges are in both ZND(yj,Rj) and Z̃ND(yj,Rj).

If z̄l1,2 /∈ Rj , then ∃z∗ ∈ [z̄l, z̄] such that z∗1,2 is a boundary point of Rj . Then,

z∗ is an extreme supported nondominated point in ZND(yj,Rj), and there does not

exist any nondominated point in ZND(yj,Rj) being left adjacent to it. Therefore,

[z∗, z̄] ⊆ ZND(yj,Rj), and also [z∗, z̄] ⊆ Z̃ND(yj,Rj) as [z∗, z̄] ⊆ ZND(yj). A

similar procedure can be followed for any extreme supported nondominated point in

ZND(yj,Rj) being right adjacent to z̄.

We showed that every edge of ZND(yj,Rj) is also an edge of Z̃ND(yj,Rj). This

implies that ZND(yj,Rj) ⊆ Z̃ND(yj,Rj).

Having generated ZND(yj,Rj) for j = j∗, the next step is to exclude the dominated

space byZND(yj,Rj) from the search regions in R. We do this by updating the lower
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lj1, ∀j ∈ Jrj∗

(b) After the update and the partitioning ofRj∗

Figure 4.7: Illustration of the lower bound update procedure

bound vectors of the search regions. Let zj∗,I be the ideal point of ZND(yj
∗
,Rj∗),

and J lj∗ :=
{
j ∈ J : α(rj,1) ≥ α(rj

∗,0)
}

and Jrj∗ :=
{
j ∈ J : α(rj,0) ≤ α(rj

∗,1)
}

be

the index set of cones on the left and right hand-side of Cj∗ , respectively. Note that

zj
∗,I ∈ Rj∗ , and zj

∗,I
3 ≥ z3, z ∈ Rj, j ∈ J .

For each j ∈ J lj∗ , if lj2 < z
j∗,I
2 , then we update lj2 = zj

∗,I
2 . Similarly, for each j ∈ Jrj∗ ,

if lj1 < z
j∗,I
1 , then we update lj1 = zj

∗,I
1 . We illustrate the update procedure in Figure

4.7. After updating the lower bound vectors of the search regions, if there exists k

such that zk1,2 /∈ Rk (that is zk is revealed to be dominated after the update), then

we solve Pk again with the updated lower bound vector. This situation is depicted in

Figure 4.7b, where the search problem must be solved again for the right-most cone

as it turns out that the candidate point in that cone is dominated by ZND(yj
∗
,Rj∗) as

shown by the following two propositions:

Proposition 15. For zk ∈ Rk : k ∈ J lj∗ , if zk2 < zj
∗,I

2 , then zk is dominated by

ZND(yj
∗
,Rj∗).

Proof. Let rj∗ and rk be the rays originating from (0, 0) and passing through zj∗,I

and zk, respectively. Since k ∈ J lj∗ , α(rk) ≥ α(rj
∗
). If zk2 < zj

∗,I
2 , then zk1 < zj

∗,I
1

as tan(α(rk)) ≥ tan(α(rj
∗
)), zk2 = zk1 tan(α(rk)), and zj

∗,I
2 = zj

∗,I
1 tan(α(rj

∗
)). We

also know that zj
∗,I

3 ≥ zk3 due to the selection of zj∗ . Then, zk is dominated by zj∗,I ,
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and hence, dominated by ZND(yj
∗
,Rj∗).

Proposition 16. For zk ∈ Rk : k ∈ Jrj∗ , if zk1 < zj
∗,I

1 , then zk is dominated by

ZND(yj
∗
,Rj∗).

Proof. Let rj∗ and rk be the rays originating from (0, 0) and passing through zj∗ and

zk, respectively. Since k ∈ Jrj∗ , α(rk) ≤ α(rj
∗
). If zk1 < zj

∗

1 , then zk2 < zj
∗

2 as

tan(α(rk)) ≤ tan(α(rj
∗
)), zk2 = zk2 tan(α(rk)) and zj

∗,I
2 = zj

∗,I
1 tan(α(rj

∗
)). We

also know that zj
∗

3 ≥ zk3 due to the selection of zj∗ . Then, zk is dominated by zj∗,I ,

and hence, dominated by ZND(yj
∗
,Rj∗).

The last step is to partition Rj∗ into smaller child regions to eliminate the dominated

region in Rj∗ . Let Rj∗

k , k ∈ Jj∗ be the kth child search region of Rj∗ . We update

R = R \ Rj∗ ∪
{
Rj∗

k , k ∈ Jj∗
}

and add H(xd,yj
∗
) ≥ 1 constraint to each search

problem Pk, k ∈ Jj∗ . We also update J = J \ j∗∪Jj∗ . In the next iteration, we only

solve Pk, for k ∈ Jj∗ as the other search regions have not been modified and already

contain their candidate points.

We illustrate how we partition R1 = R2
≥ after the generation of ZND(y1,R1) in

Figure 4.8. We partition R1 into e + 2 search regions and update R = R \ R1 ∪
{R2, . . . ,Re+3}, where e is the number of edges in ZND(y1,R1). Figure 4.8a shows

the case where ZND(y1,R1) = {z1}. The ray passing through z1 partitions the

parent cone C1 to child cones C2 and C3. The region dominated by ZND(y1,R1) is

eliminated and two new search regions are defined, R2 = (C2, _, (_, l22)) and R3 =

(C3, _, (l31, _)).

If ZND(y1,R1) is a single edge, thenR1 is partitioned as shown in Figure 4.8b. Rays

r2,1 = r3,0 and r3,1 = r4,0 pass through e3,0 and e3,1, and partition C1 into three child

cones C2, C3 and C4. The new search regions are defined as R2 = (C2, _, (_, l22)),

R3 = (C3, E3, _) and R4 = (C4, _, (l41, _)). If ZND(y1,R1) includes multiple edges,

then there would be more child search regions as depicted in Figure 4.8c.

We should also note that if Pj finds a point on the boundary of Rj and if the non-

dominated set of the associated slice problem is only that point, then we do not need

to partitionRj . It is sufficient to add the corresponding tabu-constraint to Pj . In this
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case, the set of child search regions ofRj is itself.
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∼
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R3
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l22
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(b) single edge

z1
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r2,1 = r3,0

r3,1 = r4,0

r4,1 = r5,0

• E3

•
E4

•

∼

∼

∼

R2 R3

R4

R5

l22

l51

(c) multiple edges

Figure 4.8: Partitioning ofR1 for different cases of ZND(y1,R1)

4.3.4 Update of the nondominated set

In this section, we present our nondominated set update procedure. Proposition 13

indicates that we find at least one weakly nondominated point, zn, (if any) at iteration

n > 1 (z1 is nondominated), and we find a subset of the nondominated set of the

corresponding slice problem, ZND(yn,Rj∗), in region Rj∗ where zn was found. We

know that ZND(yn,Rj∗) is a weakly nondominated set since its points have the high-
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est z3 value in the feasible criterion space not dominated by the previously generated

points. We first check the current weakly nondominated set, if it is non-empty, to

eliminate the ones that are dominated by ZND(yn,Rj∗), or to move the ones that are

proved to be nondominated to the set of nondominated points. There are two cases to

consider:

Case 1. If zn3 < zn−1
3 , then ZND = ZND ∪ ZWND, YE = YE ∪ YWE and ZWND =

YWE = ∅.

Case 2. If zn3 = zn−1
3 and ZWND 6= ∅, then we need to conduct the dominance tests of

Section 4.2 between ZND(yn,Rj∗) and each element of ZWND. Based on the domi-

nance test results, we eliminate the dominated ones, move the nondominated ones to

ZND and their corresponding integer vectors to YE, and update ZWND and YWE. A

subset S of ZWND is proved to be nondominated only if min
z∈S

z1 > max
z∈ZND(yn,Rj∗ )

z1 as

z1(x) is assumed to be the objective function with the second highest priority in the

lexicographic maximization of the search problems after z3(x).

As the last step, we addZND(yn,Rj∗) and yn to the weakly nondominated set,ZWND,

and to the weakly efficient integer vectors set, YWE, respectively, if ZND(yn,Rj∗) ∩
Bj∗ = ∅. Otherwise, we first eliminate every point ẑ in ZND(yn,Rj∗) such that

ẑ1,2 ∈ Bj∗ , and then update ZWND and YWE if the remaining set is non-empty.

4.3.5 The algorithm

We present the pseudo-code of the algorithm as Algorithm 2. The algorithm consists

of four main steps:

1. Generate a candidate point for each region.

2. Determine the next integer vector and the region for the slice problem. Then,

solve the slice problem and update the lower bounds of the search regions.

3. Update the nondominated set.

4. Partition the selected search region.

94



The algorithm terminates and produces the nondominated set when there are no

search regions left. Throughout the iterations, the algorithm maintains the nondom-

inated and weakly nondominated sets, and moves the weakly nondominated points

and edges to the nondominated set as soon as the nondominance is proved.

With the next two propositions, we prove that the algorithm is exact and it terminates

in a finite number of iterations.

Proposition 17. If R = ∅, ZND is the nondominated set and YE is the set of efficient

integer vectors of P .

Proof. Let ZnND ⊆ ZND and ZnWND ⊆ ZWND be the nondominated set and weakly

nondominated set at iteration n. Also, let S =
⋃
j∈J
Rj and Sd ⊆ Z1,2 be dominated

by the points in (ZnND ∪ ZnWND)1,2. Initially, Z1,2 ⊆ S and Sd = ∅. At each itera-

tion, ((ZND(yn,Rj∗))1,2)≤, which does not include any nondominated point, is sepa-

rated from S and added to the dominated search region, Sd∪ ((ZND(yn,Rj∗))1,2)≤.

Hence, @z ∈ ZND \ ZnND such that z1,2 ∈ Sd, and if ∃z ∈ ZND \ ZnND, then

z1,2 ∈ S . If R = ∅ and hence S = ∅, then ZND \ ZnND = ∅, and ZND =

ZnND. Since ((ZND(yn,Rj∗))1,2)≤ is separated from the search region instead of

((ZND(yn,Rj∗))1,2)5, the algorithm allows generation of all efficient integer vectors

corresponding to the same nondominated point. Therefore, YE is the set of efficient

integer vectors of P .

Proposition 18. The algorithm terminates in a finite number of iterations.

Proof. Let YR
E ⊆ YE be the set of efficient integer vectors that can be found in the

set of finitely many search regions R. Initially, YR
E = YE. By Proposition 17, given

ye ∈ YR
E , ∃Re ⊆ R such that ye is a feasible integer vector for some Pk,Rk ∈ Re.

The number of times ye is generated is bounded by |Re| since each search region

containing ye is partitioned into child search regions and ye is eliminated from the

feasible set of each child search region by the addition of the corresponding tabu-

constraint. That is, each efficient integer vector is eliminated from the feasible search

space in a finite number of iterations. Since YE is finite, Algorithm 2 terminates in a

finite number of iterations with R = YR
E = ∅.
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Algorithm 2 Cone-based search algorithm (CBSA)
n = 1, ZND = ZWND = YE = YWE = ∅, J = {1} ,R1 = (R2

≥, _, _),R =

{R1}

while R 6= ∅ do

/*************** Search the regions ***************/

for j ∈ J do

If Rj does not have a candidate point, solve Pj . If Pj is infeasible, J =

J \ {j} and R = R \ {Rj}. Otherwise, zj is the candidate point in Rj , and

yj is the corresponding integer vector.

end for

if R = ∅ then

ZND = ZND ∪ ZWND, YE = YE ∪ YWE

break

end if

/***** Select the next integer vector, solve the slice problem and update the

search space *****/

j∗ = arglexmax
j∈J

zj , yn = yj
∗ . Solve P(yn,Rj∗) and find ZND(yn,Rj∗).

for j ∈ J \ {j∗} do

Update lj .

if zj /∈ Rj after the update then

Solve Pj and update yj . If Pj is infeasible, J = J \ {j}, R = R \ {Rj}.
end if

end for

/************ Update the nondominated set ****************/

if n > 1 and z3(yn) < z3(yn−1) then

ZND = ZND ∪ ZWND, YE = YE ∪ YWE, ZWND = YWE = ∅
else

Eliminate the subset of ZWND dominated by ZND(yn,Rj∗), and update YWE.

end if

ZWND = ZWND ∪ ZND(yn,Rj∗), YWE = YWE ∪ {yn}.
/********** Partition the selected cone *************/

PartitionRj∗ and update J = J ∪Jj∗ \ {j∗}, R = R ∪{Rj : j ∈ Jj∗} \
{
Rj∗
}

.

Add H(xd,yn) to each Pj, j ∈ Jj∗ .
end while
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4.3.6 Example 1.

Consider the following simple problem.

P : Max z(x) = {z1, z2, z3}

s.to.

x1 + x2 + x3 ≤ 2

z1 = x1

z2 = x2

z3 = x3

x1, x2, x3 ∈ R≥

x3 ∈ Z

Since one of the objectives, z3 = x3 is restricted to integer values, our algorithm can

generate the nondominated set as well as all efficient integer vectors. We demonstrate

our algorithm’s progress below:

Iteration 1: R = {R1}, where R1 = (R≥, _, _), j∗ = 1, y1 = (x3) = 2, z1 =

(0, 0, 2). The slice problem P(y1,R1) yields the nondominated set, ZND(y1,R1),

as a singleton, the point previously found in R1. Hence ZWND = {(0, 0, 2)}, YWE =

{(2)}. Since the nondominated frontier is a singleton, and the point is the boundary

point of R1, only a single child problem P2 is created with region R2 = R1 (see

Figure 4.9a). We add the tabu-contraint |x3 − 2| ≥ 1 to P2.

Iteration 2: R = {R2}, where R2 = (R≥, _, _), j∗ = 2, y2 = (x3) = 1, z2 =

(1, 0, 1). The slice problem yields the nondominated edge [(0, 1, 1), (1, 0, 1)]. As

z2
3 < z1

3 , ZND = {(0, 0, 2)}, YE = {(2)}, ZWND = {[(0, 1, 1), (1, 0, 1)]} ,YWE =

{(1)}. As the extreme points of the generated edge is on the boundary of the search

region, only a single child search problem P3 is created with region R3 (see Figure

4.9b). We add the tabu-contraint |x3 − 1| ≥ 1 to P3.

Iteration 3: R = {R3}, R3 = (R≥, E3, _), j∗ = 3, y3 = (x3) = 0, z3 = (2, 0, 0).

The slice problem has the nondominated edge [(0, 2, 0), (2, 0, 0)]. As z3
3 < z2

3 , ZND =

{(0, 0, 2), [(0, 1, 1), (1, 0, 1)]}, YE = {(2), (1)}, ZWND = {[(0, 2, 0), (2, 0, 0)]}, and
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YWE = {(0)}. As the extreme points of the generated edge is on the boundary of the

search region, only a single child search problem P3 is created with region R4 (see

Figure 4.9c). We add the tabu-contraint |x3 − 0| ≥ 1 to P4.

Iteration 4: R = {R4}, where R4 = (R≥, E4, _). Since P4 is infeasible, R = ∅,
and the algorithm terminates with a single disconnected nondominated point, two

nondominated edges, and three efficient integer vectors, that is,

ZND = {(0, 0, 2), [(0, 1, 1), (1, 0, 1)], [(0, 2, 0), (2, 0, 0)]}

and YE = {(2), (1), (0)}. We illustrate the nondominated set in Figure 4.9d.

z1

z2

•
z1 = (0, 0, 2)

∼

R2

(a) Search regions at the end of Iteration 1

z1

z2

E3

•
z2 = (1, 0, 1)

∼

R3

(b) Search regions at the end of Iteration 2

z1

z2

E4

•
z3 = (2, 0, 0)

∼R4

(c) Search regions at the end of Iteration 3

z1

z2

z3

•z1

E3

••

E4

•
•

(d) The nondominated set

Figure 4.9: Illustration of the search regions for Example 1
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4.3.7 Example 2.

Lets consider a three-objective MILP with a feasible criterion space as depicted in

Figure 4.10. In this problem, Y = {y1,y3,y3,y4},

• Z(y1) = conv(Z1), Z1 = {z1,k, k = 1, . . . , 5}, z1,1 = (1, 1, 4), z1,2 =

(1, 5, 4), z1,3 = (2, 4, 4), z1,4 = (3, 2, 4), z1,5 = (3, 1, 4),

• Z(y2) = Z2 = {z2,1}, z2,1 = (1.5, 3, 3),

• Z(y3) = conv(Z3), Z3 = {z3,k, k = 1, . . . , 4}, z3,1 = (2, 0, 2), z3,2 =

(2, 3, 2), z3,3 = (5, 2, 2), z3,4 = (5, 0, 2),

• Z(y4) = conv(Z4), Z4 = {z4,k, k = 1, . . . , 3}, z4,1 = (0, 3, 0), z4,2 =

(1.5, 1.5, 0), z4,3 = (0, 0, 0).

z1

z2

z3

y1
◦
y2

y3

y4

◦

z1

z2

1 2 3 4 5

1

2

3

4

5

y1

◦
y2

y3

y4

Figure 4.10: The feasible criterion space of the problem in Example 2

Iteration 1: The algorithm finds z1 = z1,1 = (3, 2, 4) and y1 = y1. We solve P(y1)

and obtain the set ZND(y1) = {[z1,2, z1,3], [z1,3, z1,4]}. We update YWE and ZWND

as YWE = {y1}, ZWND = ZND(y1). The search region is updated as in Figure 4.11a.

Since ZND(y1) dominates Z(y2) and Z(y4), they are eliminated from the updated

search region. In addition, y1 is eliminated from R1 and R2 with the addition of the

corresponding tabu-constraint in the problems P1 and P2.

Iteration 2: We solve P1,P2, and P3. P1 is infeasible, and therefore we can
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eliminateR1 from the search region, R = R \R1. Both P2 and P3 yields the same

integer vector, y3, but find different points of ZND(y3). Since there is a tie in terms

of their z3 values, the algorithm picks the point with a higher value in z1, which is

z3,3 = (5, 2, 2) in R3. Then, z2 = z3,3, y2 = y3, and we solve P(y2,R3). We

find ZND(y2,R3) and update the search region R2 since a part of it is dominated

by ZND(y2,R3). Since z3(y2) < z3(y1), ZND = ZND(y1), YE = {y1}, ZWND =

ZND(y2,R3), and YWE = {y2}. R3 is partitioned to its child search regions R4 and

R5. y2 is eliminated from R4 and R5 with the addition of the corresponding tabu-

constraint in the problems P4 and P5. The new search region is illustrated in Figure

4.11b.

Iteration 3: We solve P4 and P5. Both problems are infeasible and therefore we

can eliminate R4 and R5 from the search region, R = R \ {R4,R5}. R2 is the

only feasible search region, and y3 is a feasible integer vector in R2. Then, z3 =

(3.65, 2.45, 2), y3 = y3, and we solve P(y3,R2) to find ZND(y3,R2) so that we are

able to obtain ZND(y3) = ZND(y3,R2)∪ZND(y3,R3). Since point (2.6, 2.8, 2) is in

B2 and hence dominated by edge [(2, 4, 4), (3, 2, 4)], we do not add it to the weakly

nondominated set, ZWND = ZWND ∪ZND(y3,R2) \ {(2.6, 2.8, 2)}. R2 is partitioned

to its child search regions R6 and R7. y3 is eliminated from R6 and R7 with the

addition of the corresponding tabu-constraint in the problems P6 and P7. The new

search region is illustrated in Figure 4.11c.

Iteration 4: In the final iteration, both P6 and P7 is infeasible, and R = ∅. We

update ZND = ZND ∪ ZWND and YE = YE ∪ YWE. Since R = ∅, the algorithm

terminates with YE = {y1,y3}, and

ZND = {[(1, 5, 4), (2, 4, 4)], [(2, 4, 4), (3, 2, 4)], ((2.6, 2.8, 2), (5, 2, 2)]} .

4.4 Implementation

In this section, we provide some details regarding the implementation of the algorithm

and develop it further to improve its computational performance.

We implement the algorithm in Python 3.5.2, and use Gurobi 8.0.1 to solve the search

100



z1

z2

1 2 3 4 5

1

2

3

4

5
R1

R2

R3

• z1

(a) Search region update after ZND(y
1)

z1

z2

1 2 3 4 5

1

2

3

4

5

R2

R4

R5

• z2

(b) Search region update after ZND(y
2,R3)

z1

z2

1 2 3 4 5

1

2

3

4

5

R6

R7

•
z3

(c) Search region update after ZND(y
3,R2)

z1

z2

1 2 3 4 5

1

2

3

4

5
y1

y3

(d) The projection of ZND on z1 − z2

Figure 4.11: The evolution of the search space for the problem in Example 2

problems and conduct model-based dominance tests. To reduce the memory require-

ments of the algorithm, we maintain a single search and slice problem and keep updat-

ing it with the associated constraints of the search region before solving the problem,

rather than creating a Gurobi model object for each search or slice problem. Gurobi

8.0.1 allows specifying multiple objectives, and setting priorities, weights and toler-

ances on each objective. In our search problems, we implement lexicographic max-

imization by assigning appropriate priorities to the three objectives. On the other

hand, while solving the two-objective slice problem by the dichotomic search, we

assign the same priority to both objectives and modify their weights to accommodate
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for the objective to be maximized to generate the next extreme supported point.

While testing for the equality of two values, we use a relative error term of γ = 10−6.

That is, we assume two values x and y are equal if |x − y| ≤ γmax {|x|, |y|}. This

is in compliance with our choice of feasibility tolerance of 10−6 in Gurobi models.

We also use the same error value as the MIP relative gap parameter, and the stopping

criterion for the dichotomic search while solving the slice problem.

We conduct additional iterations of dichotomic search in the two-dimensional feasible

criterion space characterized by two nondominated points z1 and z2 (z1
1 > z2

1) pro-

vided thatwTz∗ > (1+β)wTz1, z∗ is the currently generated point,wTz1 = wTz2,

w1 = z2
2 − z1

2 , w2 = z1
1 − z2

1 , and β > 0. The magnitude of β directly impacts the

quality of the representation of the true nondominated frontier. The smaller values of

β improves the approximations of the nondominated set at the expense of increased

computational effort, due to additional steps in the dichotomic search and the in-

creased number of search regions leading to more MILP problems to be solved.

Our algorithm can also handle bi-objective problems with a simple adjustment. In

this case, we create an additional artificial objective function consisting of a single

artificial variable to transform the problem into a three-objective problem. We set the

lower and upper bounds of the artificial variable to zero. Assigning the highest prior-

ity to the artificial objective in the lexicographic maximization fixes z3(x) = 0 for any

feasible solution x of the problem and the algorithm works with the remaining two

objectives. We next develop procedures to improve the computational performance

of the algorithm.

4.4.1 Solving super search problems

After solving the slice problem in the selected search region, we partition the search

region into child search regions to exclude the regions dominated by the nondom-

inated set of the slice problem. In case the search region does not include further

candidate points, all the child search problems will be infeasible. But, to prove this,

we need to solve as many search problems as the number of child search regions. To

improve on this requirement, we consider a super search problem with the hope to
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detect infeasibility without having to search each child region. We solve the super

search problem whenever the frontier consists of multiple edges.

Let ZND(yj
∗
,Rj∗) = {E1, E2, . . . , En} be the set of edges in the nondominated set

of the slice problem, S =
⋃

k=1,2,...,n

Rk be the union of the respective child search

regions defined by these edges, Rk ⊆ Rj∗ , ∀k = 1, 2, . . . , n, and znw, zse be the

north-west and south-east extreme points of the frontier, respectively. We create edge

Ẽ = [znw, zse] and cone C̃ with its extreme rays passing through znw and zse. Then,

we define a search region R̃ = (C̃, Ẽ , _) and the associated search problem, P̃ ,

adding to it the tabu-constraint that eliminates yj∗ . We illustrate the super search

region associated with the super search problem in Figure 4.12. We show that Pk is

infeasible for k = 1, 2, . . . , n and we can removeRk, k = 1, 2, . . . , n from the search

space if P̃ is infeasible by the following proposition:

Proposition 19. If P̃ is infeasible, then Pk is also infeasible for k = 1, 2, . . . , n.

Proof. Since ZND(yj
∗
,Rj∗) is an MOLP, the set of edges, {E1, E2, . . . , En}, is con-

nected and supported. Therefore, S ⊆ R̃ ⊆ (Ẽ)= and if P̃ is infeasible, then Pk is

also infeasible for k = 1, 2, . . . , n.

z1

z2

•znw

• zse

∼

Ẽ

R̃

Figure 4.12: Illustration of super search region definition

If S does not include any feasible solution, we are able to prove infeasibility by only

solving the super search problem instead of five child search problems. We should
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also note that solving the super search problem does not necessarily require solving

an additional MILP problem. In case P̃ is feasible, the solution may still be useful

if the generated point is in one of the child search regions. Then, we can use that

solution as if we had solved that child search problem.

Alternatively, one can define a smaller super search region by considering only a

subset of the edges in the frontier that are adjacent to each other, or a larger super

search region by also including the left-most or right-most child search regions in

case the extreme points of the frontier are not at the boundaries of the search region

Rj∗ . The trade-off is that the larger the super search region is, the lower the chances

are of finding the super search problem infeasible (even though some or all of the child

problems could be infeasible), but the higher the number of child search regions that

can be dropped from the search space when the super search problem is infeasible.

Another alternative is to define a search problem such that R̃ = S. Although the super

search region is identical to the union of the child search regions, the search region

becomes non-convex, in this case. To handle this, we can use disjunction constraints

by integrating a set of additional binary variables. We did not follow this approach in

order not to introduce additional binary variables into the search problem.

4.4.2 Search region coupling

During the execution of the algorithm, the child search regions are created, and the

lower bound vectors are updated. The lower bound update procedure poses an op-

portunity to couple multiple adjacent search regions into a single, and larger search

region, and consolidate multiple searches into a single one. We couple all adjacent

search regions that form a convex search region when coupled.

In Figure 4.13a, there are several search regions on both sides of the selected region

Rj∗ . All but one of those search regions share lower bound produced by the lower

bound update procedure in their respective cones. The three shaded search regions

to the left of Rj∗ can be coupled into a single search region, R̂1. Similarly, the five

shaded search regions to the right ofRj∗ can be coupled into the larger search region,

R̂2.
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Figure 4.13: Illustration of search region coupling

In Figure 4.13b, we illustrate the necessary and sufficient conditions for region cou-

pling. Two adjacent search regions, Rl and Rr, can be coupled only if they contain

a common point ẑ on their boundaries with the dominated region, ZD. That is, there

exist ẑ such that ẑ = Rl ∩ Rr ∩ ZD. Another necessary condition is that the union

of the search regions must form a convex set. Let gl and gr be the normal vectors

to the boundary lines of Rl and Rr respectively, and R̃ = Rl ∪ Rr. R̃ is convex if

m(gl) ≤ m(gr), where m(.) is the slope of the normal vector. In other words, R̃ is

convex if and only if the boundaries ofRl orRl form an obtuse angle at ẑ.

While coupling two search regions, we also consider the candidate solutions to the

corresponding search problems if any. If both search problems have candidate solu-

tions, the better one is set as the candidate solution of the coupled search problem.

Otherwise, the coupled search problem needs to be resolved to determine the next

candidate point.

4.4.3 Further search region elimination: bi-objective problem

When solving a bi-objective problem, we know that zn3 = zn−1
3 and zn1 ≤ zn−1

1 for

n > 1. Hence, if zj∗ is the candidate point of search regionRj∗ , @z : z1 > zj
∗

1 , z1,2 ∈
Rk, k ∈ Jrj∗ . By Proposition 16, this implies that there cannot be any nondominated
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point in the search regions to the right (where z1 > zj
∗

1 ) of the selected search region

Rj∗ , and those search regions can be eliminated from the search space.

4.5 Computational study

We perform the computational experiments to compare our cone-based search algo-

rithm (CBSA) with the available algorithms on three different problem sets:

• Bi-objective mixed-binary programming problems (BOMBLPs): We use

the instances created by Boland et al. (2015) based on the instance generation

scheme of Mavrotas and Diakoulaki (1998). Some other recent studies on bi-

objective mixed-integer programs such as Soylu (2018) and Fattahi and Turkay

(2018) employ this instance set as well. We denote the subclasses as Cm indi-

cating that there are m constraints in the subclass. We use m = 20, 40, 80, 160,

and 320 and there are five instances in each subclass. In each instance, there are

m/2 binary and m/2 continuous variables. The constraint and objective func-

tion coefficients are generated from uniform distributions with different ranges

for the variable type in the constraints and the objective ranges.

• Three-objective mixed-integer linear programming problems (TOMILPs):

Extending the instance generation scheme of Mavrotas and Diakoulaki (1998),

we create an additional objective function that has only binary variables. We

denote these problem subclasses as O3-Cm-Ik. O3 denotes that there are 3

objectives and Ik denotes that only k of the objectives are made up of binary

variables only. We experiment with k = 1 and 2. We also experiment with a

case where we replace the binary variables with general integer variables. We

denote these subclasses as O3-Cm-I1-Int. For each subclass we generate five

instances and use m = 20, 40, and 80.

• Three-objective knapsack problems (TOKPs): We use the 0/1 single dimen-

sional knapsack problem instances from Kirlik and Sayın (2014). We test with

10 randomly generated instances from problems with 10, 20, 30, 40, 50, and

100 items.
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We implemented CBSA in Python 3.5.2, and used Gurobi 8.0.1 as the mathemati-

cal programming solver. We run CBSA on MacBook Pro 2.6 GHz Dual-Core Intel

Core i5 processor and 8 GB 1600 MHz DDR3 memory. We use the tolerances and

improvements of CBSA as discussed in Section 4.4 throughout our experiments. We

report the run time statistics in seconds. In the model statistics, a model refers to the

lexicographic optimization problem where an MILP is solved as many as the number

of objective functions.

We present results on the performance of CBSA on TOMILPs, where one of the ob-

jectives has a discrete feasible set in Table 4.1. The first three columns of the table

present the instance, the number of models solved, and the number of iterations con-

ducted. Then, the next three columns show the number of nondominated edges, dis-

connected nondominated points and efficient integer vectors, respectively, generated

for the problem instance. Next, we report the total run time as well as its distribution

among the search problems, slice problems, and the model-based dominance tests.

Table 4.1 shows that the nondominated sets of the instances mostly consist of edges.

The number of models to solve is affected by the number of edges as the search

region including a subset of the nondominated edges is partitioned into child search

regions as many as the number of edges. There are 4.59, 8.42 and 15.78 edges on

average per efficient integer vector, and CBSA solves 6.44, 10.75 and 23.89 models

per efficient integer vector for m = 20, 40 and 80, respectively. The number of

models per nondominated edge is similar in all problems and average to 1.51. Most

of the computational effort is spent in solving the MILPs corresponding to the search

problems. The linear programs solved in the slice problems and the model-based

dominance tests consume a limited amount of the overall computational effort.

For our next test, we remove the binary constraints on the integer variables and repeat

the experiments in order to see the effect of binary restrictions on the nondominated

set and the computational performance of the algorithm. We report the results in Table

4.2 for m = 20 and 40. When the instances include general integer variables, the

number of nondominated edges and the efficient integer vectors increase on average,

and CBSA needs to solve more models to generate those compared to the binary case.

To investigate the performance of CBSA on discrete nondominated sets, we also con-
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Table 4.1: Results for CBSA on TOMILPs for 3O-Cm-I1

m Instance Iterations Models
Nondominated Set Run Time (secs)

Edges Points |YE| Total Search Slice Dominance

20

1 11 52 44 1 10 1.34 0.90 0.23 0.00

2 69 207 148 1 22 6.48 5.05 0.88 0.07

3 34 143 115 0 32 4.81 4.04 0.47 0.00

4 48 172 123 0 23 5.70 4.74 0.59 0.02

5 36 154 88 1 26 6.01 5.31 0.39 0.01

Average 39.6 145.6 103.6 0.6 22.6 4.87 4.01 0.51 0.02

40

1 274 1206 860 4 131 180.76 173.33 4.39 0.34

2 121 550 408 0 56 53.87 50.52 2.00 0.18

3 203 767 617 3 80 71.71 66.77 3.01 0.30

4 262 1424 1251 2 99 210.14 199.35 5.50 0.89

5 235 923 678 7 87 115.83 109.28 3.77 0.40

Average 219 974 762.8 3.2 90.6 126.46 119.85 3.73 0.42

80

1 6561 21962 14129 74 1221 14246.79 13198.66 127.95 587.54

2 10220 35141 23859 51 1271 35686.72 31615.48 220.92 3061.26

3 20138 70210 46586 204 2493 67197.79 54246.37 435.92 10227.82

4 13378 42379 27542 68 1410 32105.22 27111.17 267.5 3830.67

5 6330 25093 16561 126 1760 13922.61 13042.72 139.53 341.07

Average 11325.4 38957 25735.4 104.6 1631 32631.83 27842.88 238.36 3609.67

ducted tests for the case of two objective functions having discrete feasible value sets.

As discussed in Section 4.1, the nondominated sets of the problem instances gener-

ated under this setting are discrete. We present the results in Table 4.3. There are

no nondominated edges as expected, and hence CBSA does not have to solve slice

problems. In addition, there are no LPs solved in dominance tests as a weakly non-

dominated but dominated point can be detected by simple comparisons if there exist

any such point. The number of models solved per efficient integer vector is 1.90, 2.01

and 2.03 on average for m = 20, 40, and 80 respectively. For m = 80, there are more

efficient integer vectors compared to the continuous case although it is similar when

m = 20 and 40. This might be because of the increased density of the nondominated

set as the problem size increases, and the smaller hypervolumes dominated by the

nondominated points compared to nondominated edges.

Even though we designed CBSA is order to solve a special class of TOMILPs, we
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Table 4.2: Results for CBSA on TOMILPs for 3O-Cm-I1-Int

m Instance Iterations Models
Nondominated Set Run Time (secs)

Edges Points |YE|b Total Search Slice Dominance

20

1 32 158 111 0 25 16.99 16.17 0.38 0.01

2 76 249 164 1 29 47.43 45.89 0.74 0.06

3 48 212 146 0 47 32.96 31.51 0.51 0.00

4 87 306 215 0 41 51.26 49.89 0.84 0.02

5 101 338 186 3 49 99.48 97.6 0.86 0.06

Average 68.8 252.6 164.4 0.8 38.2 49.62 48.21 0.67 0.03

40

1 1428 7371 4213 19 533 1500.64 1449.59 17.83 0.01

2 78 405 296 0 61 17.53 15.75 1.26 0.00

3 20 94 87 1 20 4.08 3.42 0.41 0.00

4 312 2684 1979 6 223 285.08 273.61 7.20 0.01

5 41 294 243 2 39 16.81 15.53 0.94 0.00

Average 375.8 2169.6 1363.6 5.6 175.2 364.83 351.58 5.53 0.01

[b] We disabled the search for alternative efficient integer vectors since the extra variables and constraints that have to be added to model the

tabu-constraints increase the complexity of the models solved substantially.

showed that it can be used to solve bi-objective problems. To test its performance

on bi-objective problems, we conduct experiments to compare CBSA to the per-

formances of the solvers that have been developed for these problems. We use the

BOMBLP instances from Boland et al. (2015), and compare our results to those of

their triangle splitting algorithm (TSA), as well as the results of search-and-remove

(SR) algorithm in Soylu (2018) and one-directional search (ODS) algorithm in Fat-

tahi and Turkay (2018) on these instances. We report the average number of non-

dominated edges generated by each algorithm (except for SR as the authors did not

report this information) as well as the average number of models solved to generate

the nondominated set. We do not include the run time statistics in the comparison as

the computational environments and the mathematical programming solvers used are

different. The number of models solved is representative of the computational effort

since the complexity of the models solved by each algorithm is similar and almost all

the computational effort is spent in solving the models.

In Soylu (2018), the performance of SR algorithm is compared with the TSA’s, hence

we assume that SR algorithm generates nondominated edges as many as TSA. TSA
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Table 4.3: Results for CBSA on TOMILPs for 3O-Cm-I2

m Instance Iterations Models
Nondominated Set Run Time (secs)

Points |YE| Total Search

20

1 10 18 10 10 0.42 0.25

2 23 43 23 23 1.11 0.90

3 32 61 32 32 1.37 1.21

4 24 47 24 24 1.28 1.06

5 26 50 26 26 1.54 1.36

Average 23 43.8 23 23 1.14 0.96

40

1 148 291 144 144 36.25 35.72

2 62 124 62 62 9.02 8.76

3 91 179 90 90 12.67 12.26

4 110 212 104 104 21.77 21.2

5 90 178 89 89 15.67 15.36

Average 100.2 196.8 97.8 97.8 19.08 18.66

80a

1 1000 2020 995 995 3552.6 3543.28

2 1000 2008 990 990 2839.04 2830.15

3 1000 2012 988 988 2962.35 2953.83

4 1000 2013 997 997 2285.35 2276.48

5 1000 2016 986 986 2195.25 2186.24

Average 1000 2013.8 991.2 991.2 2766.92 2758.00

[a] We put an upper limit of 1000 iterations while running CBSA for m = 80.

outperforms SR in the largest problems although SR performs better in the small to

mid-size problems. In Fattahi and Turkay (2018), the authors test sensitivity of ODS

with respect to ξ and µ parameters by which they control the approximation quality

of the generated set with respect to the true nondominated set. We report the ODS

results corresponding to ξ = 10−5 and µ = 10−4 as they are the suggested values

by the authors to achieve a good balance between the approximation quality and the

computational effort. ODS solves less models per edge compared to TSA at different

levels of approximation quality.
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In CBSA, we control the approximation quality with β parameter in the dichotomic

search that is used to terminate the search in the regions characterized by the adjacent

extreme supported points. We experimented with different values of this parameter

and selected β = 3 × 10−6 that leads to nondominated sets having slightly better

approximation quality than those generated by ODS.

In Table 4.4, we report the number of edges generated and the number of models

solved by each algorithm as well as the number of models solved per nondominated

edge (M/E) generated on average. CBSA is able to generate more nondominated

edges by solving less number of models than ODS as well as the other algorithms

except problem m = 320. For m = 320, CBSA generates a better quality nondom-

inated set but at the expense of solving more models than ODS. CBSA solves 1.72

models per edge on average compared to 1.60 models solved by ODS for m = 320.

Table 4.4: Results for CBSA on BOMILP instances in comparison to the state-of-the-

art algorithms

m
CBSAa ODSb TSAc SRd

Edges Models M/E Edges Models M/E Edges Models M/E Models M/E

20 37.8 31.6 0.84 34.8 58.2 1.67 44.2 133.2 3.01 104.2 2.36

40 164.8 116.2 0.71 149.4 195 1.31 183.2 428.6 2.34 298.4 1.63

80 679.2 525.4 0.77 650.2 804.6 1.24 744.2 1609.6 2.16 968.6 1.30

160 1402.4 1746.8 1.25 1301.6 1782.4 1.37 1397.4 2839.6 2.03 3071.2 2.20

320 2670.8 4589.2 1.72 2374 3803.2 1.60 3055.8 5388.2 1.76 10152.2 3.32

[a] We set β = 3×10−6 for CBSA runs. It took 0.77, 4.79, 47.99, 380.09 and 5850.23 seconds on average for CBSA to solve instances

with m = 20, 40, 80, 160 and 320, respectively. In addition, CBSA found 10, 19, 49.6, 122.6 and 412 efficient integer vectors

on average for m = 20, 40, 80, 160 and 320, and 0.6 and 3.6 isolated nondominated points on average for m = 160 and 320,

respectively.
[b] ξ = 10−5 and µ = 10−4 for ODS runs.
[c] The number of edges after post-processing step are 33.2, 119.6, 285.4, 351.6, 449.8 for m = 20, 40, 80, 160 and 320, respectively.

TSA does not generate a minimal representation of the nondominated frontier, and the authors develop a post-processing algorithm

to convert the representation generated by the algorithm into a minimal representation.

[d] We assume that SR algorithm generates the same number of edges as generated by TSA since the authors do not generate the

corresponding edge statistics and they compare their algorithm with TSA.

We compare CBSA and ODS in terms of their computational efficiency to approx-

imate the nondominated sets of m = 320 instances at different levels of represen-

tation quality. Fattahi and Turkay (2018) present computational results with ξ ∈
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{10−3, 3× 10−4, 10−4, 3× 10−5, 10−5, 3× 10−6, 10−6}, where lower values of ξ im-

plies better representation quality. Similarly, we run CBSA for m = 320 with

β ∈ {10−3, 3× 10−5, 10−5, 10−6, 10−7}. In Figure 4.14, we plot the average num-

ber of nondominated edges generated and the average number of models solved by

both algorithms for the instances with m = 320 at different ξ and β values of ODS

and CBSA, respectively. CBSA is nondominated relative to ODS at all β values ex-

perimented with. However, ODS points with ξ = 10−3 and 3 × 10−4 are dominated

by CBSA with β = 10−3.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

Number of nondominated edges (in 104)

N
um

be
ro

fm
od

el
s

so
lv

ed
(i

n
10

4
)

ODS
CBSA

Figure 4.14: Comparison of CBSA and ODS under different parameter settings of the

algorithms (Points dominate their north-west region.)

In Table 4.5, we report the performance of CBSA on TOKP instances in comparison

to KS algorithm (Kirlik and Sayın, 2014). KS algorithm is one of the best performing

algorithms to solve multi-objective integer programs (MOIPs) (Dächert and Klam-

roth, 2015). It is the best algorithm in terms of the number of models solved among

the studies that report empirical test results. Since most of the computational effort

is spent in solving the single objective problems in combinatorial optimization prob-

lems, we compare KS and CBSA in terms of the number of single objective models

solved. We report the average number of nondominated points in the instances and

the average number of models solved by each algorithm. Furthermore, we present the

average run time in seconds spent by CBSA and the ratio of time spent in solving the

models with respect to the total algorithm execution time.
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In terms of the number of models, both algorithms perform similarly (CBSA solved

slightly more models on average). Dächert and Klamroth (2015) shows that 2|ZN |−1

is an upper bound on the number of models to solve in three-objective integer pro-

grams by ε−constraint scalarization, where |ZN | is the number of nondominated

points. The number of models solved by CBSA is within this upper bound for all

problem sizes except the 30 item instances where there is a slight difference. CBSA

solves 1.97 models on average to generate the nondominated set. Except the small-

sized problem instances with 10 items, most of the computation time of CBSA is

spent in solving these models. The run time per model is independent of the al-

gorithm as we observed that the complexity of the model does not change over the

iterations in CBSA. On the other hand, Dächert and Klamroth (2015) reports that al-

though KS solves the least number of models among the state-of-the-art algorithms,

it performs poorly in terms of CPU time as it scans every search region twice in each

iteration. They show that their algorithm, Algorithm-2 (EC), and OBS (Ozlen et al.,

2014) outperforms KS in terms of CPU times. In this respect, CBSA is very compet-

itive since its management of the search regions is very efficient and scales very well

with the size of the nondominated set.

Table 4.5: Results for CBSA on TOKP instances in comparison to KS

Items Nd points
KS CBSAa

Models Models Run Time (seconds) Model Run Time (%)

10 9.80 18.60 18.40 0.53 61%

20 38.00 74.80 75.30 3.56 93%

30 115.80 230.00 232.00 23.26 98%

40 311.20 617.20 621.10 84.43 98%

50 444.20 878.90 886.90 131.37 98%

100 5849.10 11536.20 11568.10 4728.17 97%

[a] We disabled the search for alternative efficient integer vectors in CBSA since KS does not aim to find them.

CBSA differs from the current state-of-the-art algorithms developed to solve MOIPs

in the way that it partitions the feasible criterion space. CBSA uses cones to de-

fine search regions instead of rectangles or regional lower bounds used in the pre-

vious algorithms. Furthermore, CBSA is able to identify all efficient solutions as it

uses tabu-constraints to eliminate the generated solutions instead of shifting the lower
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bounds of the search regions in the criterion space by an error term to eliminate the

dominated space. KS and the other competitive algorithms for MOIPs do not have

this capability. In Table 4.6, we report the number of efficient solutions for instances

with 10 items that are slightly modified to create alternative efficient solutions. In

those instances, there are two efficient solutions on average per nondominated point.

The number of models solved per nondominated point, 3.58 on average, increases as

generating alternative efficient solutions requires additional models to solve.

Table 4.6: Results for CBSA on modified TOKP instances with 10 items

Instance Nd points Eff Solutions Models Run Time (secs)

1 11 27 48 0.87

2 16 26 47 1.21

3 7 17 36 0.81

4 7 7 11 0.28

5 14 32 60 2.15

6 8 20 36 0.85

7 10 20 35 0.85

8 5 7 13 0.32

9 4 4 6 0.22

10 8 16 30 0.82

Average 9 17.6 32.2 0.84

The source code of the algorithm and all the instances used in our computational

study are available in Ceyhan (2020).

4.6 Approximating the nondominated frontier

CBSA is an exact algorithm in the sense that it generates the nondominated point set

and all efficient integer vectors. However, generating the nondominated set can be

computationally expensive when the nondominated set is large and the single objec-

tive problem is a difficult MILP. It is possible to use CBSA to generate an approx-

imate nondominated set with less computational effort. We use a variant of binary

ε−indicator measure defined in Zitzler et al. (2003) to guarantee a certain level of

representation of the nondominated set with the generated approximation. For a max-

imization type problem, we restate the binary ε−indicator measure as follows:
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Definition 21. A criterion vector z1 ∈ Z is said to ε−dominate another criterion

vector z2 ∈ Z , written as z1 �ε z2, if (1 + ε)z1
i ≥ z2

i , ∀i = 1, . . . ,m for a given

ε ≥ 0.

Based on the binary ε−dominance definition given above, we define ε−dominance

between an approximation set and the nondominated set as follows:

Definition 22. An approximation set ZA ε−dominates the nondominated set ZND,

ZA �ε ZND, if ∃ẑ ∈ ZA such that ẑ �ε z for all z ∈ ZND.

The ε−indicator value for approximation set ZA, Iε(A), is the minimum ε ∈ R value

such thatZA ε−dominates the nondominated setZND. For any approximation setZA,

Iε(A) ≥ 0.

Let fε : Z → Rm, fε(z) = εz. We define an ε−neighborhood, ε > 1, around

S ⊆ Z , Nε(S), such that Nε(S) = {fε(z) : z ∈ S}5 \ S. By construction, S �ε
Nε(S). We generate an approximation set ZεND by restricting CBSA not to search

Nε(ZND(yn,Rj∗)) at each iteration n, where ZND(yn,Rj∗) is the subset of the non-

dominated set of the slice problem associated with integer vector yn at iteration n.

We construct these neighborhoods by applying fε on ZND(yn,Rj∗) while separating

the dominated space by ZND(yn,Rj∗) from the search space. We next show that ZεND

ε−dominates ZND.

Proposition 20. Given ε ≥ 0, ZεND �ε ZND.

Proof. Let Sn be the set of points generated by CBSA as candidate nondominated

points at iteration n, Sn ⊆ Z (For n = 1, Sn ⊆ ZWND), andNε(Sn) be the neighbor-

hood of Sn that is eliminated from the search space. Also, let ZND(Nε(Sn)) be the

subset ofZND in this neighborhood that will not be searched by CBSA.ZND(Nε(Sn))

is ε−dominated by Sn. Since ZεND �0 Sn, ZεND �ε ZND(Nε(Sn)) for any itera-

tion n. If we let Z̃ND be the union of the nondominated points in all the restricted

neighborhoods, then ZεND �ε Z̃ND. The nondominated points not in the restricted

neighborhoods will be generated by CBSA. That is, if ZND \ Z̃ND is non-empty, then

(ZND \ Z̃ND) ⊆ ZεND. Therefore, ZεND �ε ZND.
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We denote this version of CBSA as CBSA-ε. We test CBSA-ε with ε = 10−5, 10−4,

10−3, 10−2, and 10−1 on 30-C80-I1 instances, and report the results in Table 4.7.

The last three columns represent the corresponding figures relative to the case when

ε = 10−5. For ε = 10−3, CBSA-ε generates around 23×103 edges by solving 32×103

models in 5118.55 seconds on average. By assuming ZεND ≈ ZND for ε = 10−5, any

nondominated edge will be ε−dominated, ε = 10−3, by a set of edges being less then

60% of the nondominated set in size and generated with up to 60% less computational

effort.

Table 4.7: Results for εCBSA on 30-C80-I1 instances

ε Edges Models Run Time (secs)
Percentage (%)

Edges Models Run Time (secs)

10−5 40025.0 64523.8 12230.88 - - -

10−4 30065.2 42686.8 7211.41 75.12 66.16 58.96

10−3 23077.4 32007.6 5118.55 57.66 49.61 41.85

10−2 8159.2 10001.4 1329.98 20.39 15.50 10.87

10−1 636.8 612.8 81.36 1.59 0.95 0.67

4.7 Conclusions

In this chapter, we present a new criterion space search algorithm to solve a class of

three-objective mixed-integer linear programs, TOMILPs, where at least one of the

objectives take discrete values. We develop a novel search space partitioning scheme

that utilizes convex cones and the already generated edges to create polyhedral search

regions in the two-dimensional projection of the feasible criterion space. Our cone-

based search algorithm, CBSA, finds a weakly nondominated point at each iteration in

the worst case, and generates the nondominated set and the set of all efficient integer

vectors.

We test CBSA on randomly generated instances of TOMILPs as well as on three-

objective 0/1 knapsack problems, TOKPs, and bi-objective mixed-binary linear pro-

grams, BOMBLPs. We present results for different special cases of TOMILPs such
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as (i) when all integer variables are binary, (ii) when all integer variables are general

integer variables, and (iii) when there are two objectives that take discrete values.

We compare the results of CBSA on BOMBLP instances to that of ODS (Fattahi and

Turkay, 2018), TSA (Boland et al., 2015) and SR (Soylu, 2018). CBSA outperforms

TSA and SR in terms of the number of MILPs solved to generate the nondominated

set. CBSA also outperforms ODS at all experimented problem sizes except the largest

one, where CBSA results for different levels of representation quality are nondomi-

nated relative to ODS and dominates ODS for high-level approximations.

On the TOKP instances we experimented, CBSA solves nearly the same number of

models with KS (Kirlik and Sayın, 2014). The majority of the computation time of

CBSA is spent for solving the search problems (above 97% for medium to large prob-

lem sizes). That is, CBSA does not suffer from increasing computational overhead

due to search region management, whereas KS is reported to perform poor in terms of

CPU time due to significant amounts of time spent in the management of the search

regions for large problems (Dächert and Klamroth, 2015). CBSA can also find all

efficient solutions to three-objective integer programs if it is configured to do so.

We also present an extension of CBSA, CBSA-ε, to generate ε-dominating approxi-

mations of the nondominated set with smaller computation effort. The generalization

of our search space partitioning scheme to more than three objectives awaits further

research.
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CHAPTER 5

MULTI-OBJECTIVE DAY-AHEAD ENERGY MARKET CLEARING

PROBLEM

In this chapter, we study the DAM clearing problem under multiple objectives. We

first examine the surplus-maximizing solutions of the problem in terms of some aux-

iliary measures that we use to assess the degree of market disequilibrium, such as

market loss, missed surplus, number of PABs, number of PRBs, and the differences

in the implicit prices perceived by the market participants. We then elaborate on

the common market designs in European DAMs that eliminate some of the elements

of market disequilibrium, and show their inadequacy regarding to resolving market

disequilibrium.

We develop a multi-objective formulation of the market clearing problem. We use

market surplus, market loss, and missed surplus as three main objectives of MOs,

where the market surplus is to be maximized and the market loss and missed surplus

are to be minimized. We employ the cone-based search algorithm, CBSA, which

we present in Chapter 4 to find the nondominated set and the set of efficient binary

decision variable vectors. We present the conditions for the existence of continuous

trade-off regions in the market loss and missed surplus criteria and develop methods

to find those.

In our multi-objective formulation, we use the surplus maximization problem under

the pricing constraints that we develop in Chapter 3. CBSA updates the problem with

the associated constraints of the search regions that are created in a systematical man-

ner during the execution of the algorithm. We test the algorithm with the instances

we generate preserving the characteristics of the Turkish DAM and report the results.
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5.1 Literature Review

Many existing studies and the applications developed for the European DAM clearing

problem use surplus maximization as the single objective. Some of them also asso-

ciate additional constraints to eliminate either PABs or PRBs (Martin et al., 2014;

Madani and Van Vyve, 2015; Yörükoğlu et al., 2018; Derinkuyu et al., 2019; Energy

Exchange Istanbul, 2016; Euphemia, 2016).

Multi-objective approaches for the DAM clearing problem is scarce. Yörükoglu

(2015) studies the European DAM clearing problem as a bi-objective problem, where

the number of PRBs are reduced in an iterative manner while maximizing the total

surplus at each step. Madani et al. (2016) considers minimizing the opportunity cost

due to the rejection of PRBs and compares the surplus-maximizing and opportunity-

cost-minimizing solutions. Derinkuyu (2015) develops a model to minimize the av-

erage market clearing prices under the constraints to prevent both PABs and PRBs

although the problem may be infeasible in many cases.

To the best of our knowledge, our study is the first study that addresses more than two

objectives for the European DAM clearing problem. We develop a multi-objective

formulation and characterize the trade-offs between market loss, missed surplus, and

market surplus. These tradeoffs provide valuable insights to develop alternative mar-

ket designs.

In the next section, we revisit the surplus maximization problem and examine the

properties of the surplus-maximizing solutions.

5.2 Surplus maximization problem and the market disequilibrium

In this section, we restate the surplus-maximizing mixed-integer linear program given

in Chapter 3 and discuss the market disequilibrium that occurs when there are PABs

or PRBs. We first provide the associated sets, parameters, and decision variables:

• T : set of time periods

• H: set of hourly bids
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• B: set of block bids

• ph, qh,t: price and quantity for time period t ∈ T , for an hourly bid h ∈ H

(qh,t = 0, ∀t ∈ T, t 6= t′ for a particular period t′)

• pb, qb,t: price and quantity for time period t ∈ T , for a block bid b ∈ B

• Tb: the set of time periods spanned by block bid b ∈ B, Tb ⊆ T (qb,t = 0,∀t /∈
Tb)

• xh: decision variable representing the accepted fraction of hourly bid h ∈ H ,

xh ∈ [0, 1]

• yb: decision variable for block bid b ∈ B, 1 if accepted, and 0 if rejected.

The quantities are negative for supply bids (qh,t, qb,t < 0) and positive for demand

bids (qh,t, qb,t > 0). Then, the surplus-maximizing mixed-integer linear program,

(SMILP), is stated as follows:

(SMILP):

Max
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to. ∑

h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T

xh ≤ 1 ∀h ∈ H

xh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

The first constraint balances the supply and the demand in each period. The next two

inequalities force x variables to fractional values. Binary variable constraints for the

block bids prevent their partial acceptance.

Let (x∗,y∗) be an optimal solution of (SMILP) and s(x∗,y∗) be the correspond-

ing market surplus. Under marginal pricing scheme, we solve the restricted surplus

maximization linear program, (SMLP(y∗)), by fixing the binary variable vector to

the surplus-maximizing block bid decisions, y = y∗. Then, the optimal value of the
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dual variable associated with the supply-demand balance constraint for period t, π∗t ,

represents the market clearing price for period t ∈ T .

The optimality conditions of (SMLP(y∗)) imply equilibrium for the hourly bids.

However, some block bids might be over or undervalued at the market clearing prices,

π∗. A block bid b is PAB if it generates a negative surplus at the market clearing

prices, sb(π∗) =
∑
t∈Tb

(pb − π∗t )qb,t < 0, but accepted, and PRB if it implies a positive

surplus at the market clearing prices, sb(π∗) =
∑
t∈Tb

(pb − π∗t )qb,t > 0, but rejected.

LetBpab andBprb be the sets of PABs and PRBs, respectively. In order to compensate

for negative surpluses that occur for the bidders of PABs, the MO valuates PABs at

their bid prices instead of the market clearing prices. In turn, the MO faces a missing

money problem since the amount paid to sellers exceed the amount received from the

buyers. We denote the total of this amount as market loss, l(π∗), and calculate it as:

l(π∗) =
∑
b∈Bpab

lb(π
∗) =

∑
b∈Bpab

∑
t∈Tb

(π∗t − pb)qb,t (5.1)

In the European DAMs, PRBs are not compensated for. Bidders of PRBs miss the

potential surplus they could have gained at the market clearing prices. Missed surplus

for PRB b,mb, is equal to the implied surplus at the market clearing prices,mb(π
∗) =

sb(π
∗) =

∑
t∈Tb

(pb − π∗t )qb. Then, the market missed surplus, m(π∗), becomes:

m(π∗) =
∑
b∈Bprb

mb(π
∗) =

∑
b∈Bprb

∑
t∈Tb

(pb − π∗t )qb,t (5.2)

PABs and PRBs are accounted for by different prices than the actual market clearing

prices. PAB b is valuated at its own price pb, deviating from the quantity-weighted

average market clearing price over the periods in Tb by δb(π∗) = |pb −
∑
t∈Tb

π∗t
qb,t
Qb
|,

where Qb =
∑
t∈Tb

qb,t. Similarly, the difference in the price accounted for the bidder of

PRB b and the average market clearing price over the periods in Tb is δb(π∗). Then,

we define the market price gap, δ(π∗), as the maximum of those values:

δ(π∗) = max
b∈Bpab∪Bprb

δb(π
∗) (5.3)
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Figure 5.1: The aggregate market supply and demand functions constructed from the

hourly bids given in Example 3

In case PABs or PRBs occur at the market clearing prices associated with the surplus-

maximizing solution, the surplus-maximizing solution cannot establish market equi-

librium. There may not exist even a feasible solution that satisfy the market equilib-

rium conditions. The following example illustrates such a case:

Example 3. Let the set of hourly bids consist of a single demand bid h0 with

(ph0 , qh0) = (50, 50) and five supply bids, (ph1 , qh1) = (10,−10), (ph2 , qh2) =

(20,−10), (ph3 , qh3) = (30,−10), (ph4 , qh4) = (40,−10) and (ph5 , qh5) = (50,−10).

Let there also be three block bids, b1, b2 and b3, where (pb1 , qb1) = (10,−10),

(pb2 , qb2) = (37,−10) and (pb3 , qb3) = (29,−50).

We show the aggregate market supply and the demand functions constructed from the

hourly bids in Figure 5.1. In Table 5.1, we enumerate all feasible block bid decision

vectors and report the associated market clearing price(s), number of PABs and PRBs,

market surplus, market loss, missed surplus, and price gap. Ignoring the block bids,

the intersection point(s) of the aggregate supply and demand functions determine the

market clearing price(s). In case of rejecting all block bids (solution s5 in Table 5.1),

the market clearing price is 50. Accepting a supply block bid shifts the aggregate

supply function to the right on the quantity axis by the quantity of the accepted block

bid. For example, in solution s1, b1 and b2 are accepted and bring a total supply of 20
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Figure 5.2: The aggregate market supply and demand functions for solution s1 in

Table 5.1

units. As shown in Figure 5.2, the aggregate supply and demand functions intersect in

the interval between 30 and 40, implying alternative optimal market clearing prices.

In fact, there exist alternative market clearing prices for all solutions except s5.

In Table 5.1, the solutions are sorted in the non-increasing order of their surplus val-

ues. The surplus-maximizing solution is s1. Assuming that the MO checks for alter-

native market clearing prices, if the minimum market clearing price is selected, then

there is a PAB and a PRB. However, the MO could also choose the maximum market

clearing price and prevent PABs. This, in turn, would increase m(π∗) to 550 and

δ(π∗) to 11.

We next report similar measures of market disequilibrium for the 20 instances we

generated by representing the characteristics of the bids in the Turkish DAM. In each

instance, there are approximately 15,000 hourly and 150 block bids. Hourly bids

are actual bids from selected days in years 2017 and 2018 (EXIST, 2016), and the

block bids are generated randomly by reproducing the characteristics of the bid sets

in the Turkish DAM. In Table 5.2, we present the number of PABs and PRBs, and the

corresponding market loss and missed surplus, respectively, for each instance. We

also report the average and the maximum price gaps for PABs and PRBs.
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Table 5.1: Market surplus, loss, missed surplus and price gap values for the feasible

block bid decisions in Example 3

Sol y1 y2 y3 π π∗ PAB PRB s(π∗) l(π∗) m(π∗) δ(π∗)

s1 1 1 0 [30, 40]
30 1 1 1430 70 50 7

40 0 1 1430 0 550 11

s2 1 0 0 [40, 50]
40 0 2 1400 0 580 11

50 0 2 1400 0 1180 21

s3 0 1 0 [40, 50]
40 0 2 1130 0 850 30

50 0 2 1130 0 1450 40

s4 0 0 1 [0, 10]
0 1 0 1050 1450 0 29

10 1 0 1050 950 0 19

s5 0 0 0 50 50 0 3 1000 0 1580 40

Among the 20 instances, there is only one instance (Instance 16) where the market

is in equilibrium at the surplus maximizing solution. There are no PABs or PRBs

for that instance. There are 3 more instances where there are no PABs, but there is at

least one PRB in 19 of the 20 instances. The maximum market loss occurs in Instance

10 and Instance 6 has the highest number of PABs. Instance 12 has 8 PRBs and the

highest missed surplus. The maximum price gap occurs in Instance 1 with 15.25

Turkish liras where the average market clearing price for the experimented instances

is 151.86 Turkish liras.

5.3 European DAM clearing in practice

European energy legislation favors uniform pricing in DAMs (EU Commission Reg-

ulation, 2015), and does not allow financial settlement of the traded amounts at prices

different from the market clearing prices. European MOs have to eliminate the solu-

tions with PABs in order to prevent bidders’ losses that may occur due to the use of a

single price vector. To eliminate PABs, the dual variables of the surplus maximization

problem, such as market clearing prices and the surpluses, have to be integrated into
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Table 5.2: Results for the market disequilibrium with optimal (SMILP) solutions

Ins
PAB PRB

|Bpab| l(π∗)a Avg δb(π∗) Max δb(π∗) |Bprb| m(π∗)a Avg δb(π∗) Max δb(π∗)

1 0 0.00 0.00 0.00 7 135.34 5.73 15.25

2 4 15.46 1.17 1.94 5 13.15 1.32 4.01

3 2 0.76 1.56 2.75 5 17.52 1.54 2.38

4 2 23.16 4.46 5.09 5 15.92 2.44 5.54

5 3 5.32 1.61 3.08 8 64.98 3.50 4.29

6 8 45.43 1.23 2.29 1 3.32 1.89 1.89

7 2 86.50 8.08 13.87 2 4.45 1.12 1.80

8 2 17.87 1.20 1.72 5 38.98 3.62 5.12

9 0 0.00 0.00 0.00 2 10.92 1.59 1.80

10 4 129.84 5.78 10.51 2 36.94 4.53 7.45

11 4 23.40 1.63 2.74 1 30.49 3.19 3.19

12 1 8.99 3.32 3.32 8 263.25 8.61 14.92

13 2 1.65 1.33 1.33 4 2.46 0.60 0.60

14 1 8.48 2.12 2.12 3 25.79 3.82 5.23

15 5 24.19 1.67 2.88 2 2.94 0.18 0.18

16 0 0.00 0.00 0.00 0 0.00 0.00 0.00

17 4 9.52 2.82 9.65 6 92.21 4.92 11.30

18 0 0.00 0.00 0.00 1 20.39 5.37 5.37

19 1 0.17 0.13 0.13 5 5.65 0.56 1.33

20 2 1.53 0.76 1.40 5 38.56 2.07 2.49

[a] Displayed in thousand Turkish liras. The average market surplus of 20 instances is 5.37× 108 Turkish liras.

the primal problem. The resulting model becomes a primal-dual model with partial

equilibrium constraints. We present below the primal-dual model that we develop in

Section 3.2.

(E-SMILP):

Max
∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
s.to. ∑

h∈H

qh,txh +
∑
b∈B

qb,tyb = 0 ∀t ∈ T
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xh ≤ 1 ∀h ∈ H

yb ≤ 1 ∀b ∈ B

sh ≥
∑
t∈T

(ph − πt)qh,t ∀h ∈ H

sb − lb +mb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B

mb ≤Mb(1− yb) ∀b ∈ B

lb ≤Mbyb ∀b ∈ B∑
t∈T

{∑
h∈H

phqh,txh +
∑
b∈B

pbqb,tyb

}
≥
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb

xh, sh ≥ 0 ∀h ∈ H

yb ∈ {0, 1} ∀b ∈ B

sb, lb,mb ≥ 0 ∀b ∈ B

In this model, sh and sb denote the surplus corresponding to hourly bid h ∈ H and

block bid b ∈ B, respectively. lb and mb represent upper bounds on the market loss

and the missed surplus associated with block bid b. Loss and missed surplus variables

are not defined for the hourly bids as the equilibrium conditions are enforced for them.

However, lb and mb variables relax the equilibrium conditions for block bids making

the partial equilibrium a feasible solution. Mb is an appropriate upper bound on the

loss or missed surplus of a block bid b. Denoting the maximum and the minimum

allowable bid prices as pmax and pmin, respectively, Mb ≥
∑
t∈T
|qb,t|(pmax − pmin) is

an upper bound on the loss or missed surplus of a block bid, and is a sufficiently

large big-M value. The last constraint is the strong-duality constraint that ensures the

feasible hourly bid decisions are surplus-maximizing when the block bid decisions

are fixed, and it is a binding constraint for all feasible solutions. We represent the

feasible set of (E-SMILP) by Ψ, and define the surplus maximization problem with

no PAB next:

(SMILP-NoPAB):

Max
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb

s.to.
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(x,y,π, s, l,m) ∈ Ψ

l ≤ 0

We use the dual objective function for (SMILP-NoPAB) instead of the primal objec-

tive function used in (E-SMILP). They are equivalent due to the strong-duality con-

straint in the constraint set. Solution s1 in Table 5.1 is feasible for (SMILP-NoPAB)

with market clearing prices in the range [37, 40]. It is a coincidence that the surplus-

maximizing solution has feasible market clearing prices for (SMILP-NoPAB). How-

ever, elimination of PAB causes an increase in the missed surplus value and the price

gap of b3.

Turkish MO adopts a different pricing rule than the rest of its European counterparts.

In Turkish DAM, PRBs are eliminated, whereas PABs are allowed (Energy Exchange

Istanbul, 2016). The MO of the Turkish DAM, EXIST, compensates the losses of

those bidders having a PAB. This is achieved by solving a similar model, (SMLP-

NoPRB), to prevent PABs while maximizing the surplus:

(SMILP-NoPRB):

Max
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb

s.to.

(x,y,π, s, l,m) ∈ Ψ

m ≤ 0

The optimal solution of (SMLP-NoPRB) for the problem given in Example 3 is s4.

The MO has to sacrifice from the market surplus as much as 380 units to eliminate

PRBs. In addition, the market loss and price gap increase dramatically in this case.

There are alternative optimal market clearing prices, and the results are the worst if

the generated market clearing price is at minimum.

In Table 5.3, we present the results for the optimal solutions of (SMILP-NoPAB) and

(SMILP-NoPRB) by subtracting the corresponding values of optimal (SMILP) so-

lutions. For (SMILP-NoPAB), we report the changes in the market surplus, number

of PRBs, missed surplus, and market price gap. Similarly for (SMILP-NoPRB), we
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report the changes in the market surplus, number of PABs, loss, and market price gap.

Table 5.3: Results for market disequilibrium with (SMILP-NoPAB) and (SMILP-NoPRB)

solutions in comparison to (SMILP) solution

Ins
(SMILP-NoPAB) (SMILP-NoPRB)

s(π∗)a |Bprb| m(π∗)a Max δb(π∗) s(π∗)a |Bpab| l(π∗)a Max δb(π∗)

1 0.00 0 0.00 0.00 -3.25 6 169.00 31.84

2 -4.10 2 9.95 4.10 -10.02 4 14.96 4.12

3 -1.14 1 13.75 0.22 -6.84 6 34.34 7.43

4 -20.27 2 45.31 9.70 -27.43 6 29.28 6.81

5 -12.72 4 53.75 20.13 -4.99 7 78.01 11.29

6 -13.54 3 34.22 5.41 -4.41 -1 -6.64 89.39

7 -28.87 3 75.95 13.73 -7.42 1 8.26 20.53

8 -2.52 2 4.31 0.38 -5.20 3 37.45 14.97

9 0.00 0 0.00 0.00 -3.71 2 11.54 3.64

10 -29.95 5 101.71 14.99 -48.23 1 -36.64 11.84

11 -5.61 2 -8.47 -0.78 -12.13 2 14.61 8.47

12 -17.87 3 34.31 18.02 -10.30 6 98.94 12.95

13 -1.16 1 1.19 20.95 -1.26 1 1.37 25.60

14 -15.55 7 92.73 5.59 -36.70 5 50.02 30.05

15 -22.50 1 39.92 8.26 -8.21 1 6.66 46.12

16 0.00 0 0.00 0.00 0.00 0 0.00 0.00

17 -9.59 4 37.90 11.29 -7.42 4 57.89 69.28

18 -0.38 3 17.30 1.86 -6.44 5 127.57 12.71

19 -11.04 3 98.36 7.60 -2.98 3 7.70 19.16

20 -3.94 5 72.01 7.94 -7.81 4 33.05 59.31

avg -10.04 2.55 36.21 7.47 -10.74 3.3 36.87 24.27

max -29.95b 7 101.71 20.95 -48.23b 7 169.00 89.39

std 9.80 1.85 35.80 7.10 12.37 2.34 49.23 24.10

[a] Displayed in thousand Turkish liras. The average market surplus of 20 instances is 5.37× 108 Turkish liras.

[b] Maximum denotes the negative of maximum decrease in market surplus.

Based on the results in Table 5.3, the relatively small changes in the market surplus for

both (SMILP-NoPAB) and (SMILP-NoPRB) imply that there exist solutions with
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near optimal market surplus that have either only PABs or only PRBs. However, the

optimal solutions of (SMILP-NoPAB) and (SMILP-NoPRB) show a strong trade-

off between market loss and missed surplus. While eliminating PABs (PRBs), the

market missed surplus (loss) increase by more than 36×103 Turkish liras on average,

and more than 105 (1.69 × 105) Turkish liras in the worst case. In addition, no PRB

constraints lead to extreme price gaps in the PABs.

The two models adopted in the European DAMS, (SMILP-NoPAB) and (SMILP-

NoPRB), correspond to only two extreme practices to resolve the market disequilib-

rium. Our computational results show that these extreme solutions perform poorly

in terms of the relevant criteria they have not accounted for. There may exist other

solutions providing more desirable compromises between the market surplus, market

loss, and missed surplus. In the following sections, we investigate such solutions.

5.4 Multi-objective market clearing problem

In the previous section, we discussed that MOs need to handle multiple conflicting

objectives. It is not possible to achieve market equilibrium in many cases, and the

MOs have to relax some of the equilibrium conditions. The pricing rules in practice

do not aim for compromise solutions, instead, they choose one of the two extreme

solutions. However, it turns out that such solutions perform poorly considering other

criteria relevant for the MOs. In order to investigate the extent of possible trade-offs

between the feasible solutions of the problem, we formulate a multi-objective version

of the DAM clearing problem.

We consider the following multi-objective market clearing problem, (MOMCP):

(MOMCP):

Max z(ψ) = (z1,−z2,−z3)

s.to.

z1 =
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb

z2 =
∑
b∈B

lb
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z3 =
∑
b∈B

mb

ψ = (x,y,π, s, l,m) ∈ Ψ

where ψ ∈ Ψ is a feasible solution for (E-SMILP), z = z(ψ) = (z1,−z2,−z3) ∈ Z
represents the image of ψ in the three-dimensional feasible objective space of market

surplus, z1 = z1(ψ), market loss, z2 = z2(ψ), and market missed surplus, z3 =

z3(ψ). We next define some special solutions for our problem:

Definition 23. ψk ∈ Ψ is an efficient solution if @ ψj ∈ Ψ such that z1(ψj) ≥
z1(ψk), zi(ψj) ≤ zi(ψ

k) for i = 2, 3, and z1(ψj) > z1(ψk) or zi(ψj) < zi(ψ
k) for

at least one i = 2, 3. If ψk is efficient, then zk = z(ψk) is said to be nondominated.

On the other hand, if there exists such ψj , then ψk is said to be inefficient and zk is

said to be dominated.

Definition 24. ψk ∈ Ψ is a weakly efficient solution if @ ψj ∈ Ψ such that z1(ψj) >

z1(ψk), zi(ψj) < zi(ψ
k) for i = 2, 3. If ψk is weakly efficient, then zk = z(ψk) is

said to be weakly nondominated. On the other hand, if there exists such ψj , then ψk

is said to be strictly inefficient and zk is said to be strictly dominated.

Definition 25. Nondominated point zk = z(ψk) is an extreme nondominated point if

∃w ∈ R3
>0 such that ψk = argmax

ψ∈Ψ
wz(ψ) is the unique optimal solution.

Let ZND ⊆ Z be the set of nondominated points for (MOMCP), and Y be the set of

feasible block bid decisions. We first investigate the properties of the slice problems

(Belotti et al., 2013), that are three-objective linear programs with fixed integer (bi-

nary) variables. For a given block bid decision vector ȳ ∈ Y , the corresponding slice

problem, (MOMCP(ȳ)), is defined as:

(MOMCP(ȳ)):

Max z(ψ) = (z1,−z2,−z3)

s.to.

z1 =
∑
h∈H

sh +
∑
b∈B

sb −
∑
b∈B

lb
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z2 =
∑
b∈B

lb

z3 =
∑
b∈B

mb

ψ = (x,y,π, s, l,m) ∈ Ψ

y = ȳ

Let Z(ȳ) ⊆ Z and ZND(ȳ) ⊆ Z(ȳ) be the feasible objective space and the nondom-

inated set of (MOMCP(ȳ)), respectively. ȳ ∈ Y is an efficient block bid decision

vector if ZND(ȳ)∩ZND 6= ∅. We denote the set of efficient block bid decision vectors

with YE ⊆ Y .

We next analyze the properties of the feasible solutions for (MOMCP(ȳ)), Ψ(ȳ). We

first present the complementary slackness conditions for SMLP(ȳ), (CS-SMLP(ȳ)),

that are satisfied by each ψ ∈ Ψ(ȳ):

(CS-SMLP(ȳ)):

s∗h(1− x∗h) = 0 ∀h ∈ H

s∗b(1− ȳb) = 0 ∀b ∈ B

m∗b ȳb = 0 ∀b ∈ B0

l∗b (1− ȳb) = 0 ∀b ∈ B1

x∗h(s
∗
h −

∑
t∈T

(ph − π∗t )qh,t) = 0 ∀h ∈ H

ȳb(s
∗
b +m∗b −

∑
t∈T

(pb − π∗t )qb,t) = 0 ∀b ∈ B0

ȳb(s
∗
b − l∗b −

∑
t∈T

(pb − π∗t )qb,t) = 0 ∀b ∈ B1

B0 and B1 denote the set of rejected and accepted block bids, respectively. x∗h is the

optimal value of xh for h ∈ H , and π∗t is the optimal market clearing price for period

t ∈ T of SMLP(ȳ). The following proposition shows that the market surplus is fixed

for a block bid decision vector, and hence it takes discrete values in Z and ZND.

Proposition 21. For any ȳ ∈ Y and z1, z2 ∈ Z(ȳ), z1
1 = z2

1 .
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Proof. The constraint set of MOMCP(ȳ) includes the strong-duality constraint as-

sociated with the surplus maximization linear program for a given ȳ, (SMILP(ȳ)).

Let s∗ be the optimal objective value of (SMILP(ȳ)). Then, z1 = s∗ for any z ∈
Z(ȳ).

There might exist multiple feasible market clearing price vectors for (MOMCP(ȳ))

for some ȳ ∈ Y . Let Π∗(ȳ) be the set of alternative market clearing price vectors

in the slice problem corresponding to ȳ. We first analyze the case when Π∗(ȳ) is a

singleton. We show in Proposition 22 that ZND is a finite set consisting of isolated

nondominated points when there is a unique market clearing price for each block bid

decision vector.

Proposition 22. If Π∗(ȳ) is a singleton, then |ZND(ȳ)| = 1 and ZND is a finite

discrete set.

Proof. By Proposition 21, the market surplus is constant for ȳ. Let π∗ be the market

clearing price. Then, s∗b − l∗b =
∑
t∈T

(pb − π∗t )qb,t, ∀b ∈ B1, and s∗b = l∗b = 0, ∀b ∈ B0.

In an efficient solution, if
∑
t∈T

(pb−π∗t )qb,t ≥ 0, then l∗b = 0. Else, l∗b =
∑
t∈T

(π∗t −pb)qb,t.

Similarly, m∗b = max

{
0,
∑
t∈T

(pb − π∗t )qb,t
}

, ∀b ∈ B0 for an efficient solutionψ ∈ Ψ.

This proves that π∗ uniquely determines the market loss and missed surplus. Hence,

ZND(ȳ) is a singleton. Since Y is a finite set and ZND(ȳ) is a singleton for each

ȳ ∈ Y , ZND is a finite discrete set.

We next investigate the conditions that lead to alternative market clearing prices.

Then, we characterize the nondominated sets of the slice problems in terms of the

market clearing prices.

5.4.1 Alternative surplus-maximizing market clearing prices

Given ȳ ∈ Y , let Qt(ȳ) =
∑
b∈B

ȳbqb,t. We reconsider the restricted surplus maximiza-

tion linear program in Section 3.2 by excluding the constant value
∑
b∈B

∑
t∈T

pbqb,tȳb

from the objective function:
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(SMLP(ȳ)):

Max
∑
h∈H

∑
t∈T

phqh,txh

s.to.
∑
h∈H

qh,txh = −Qt(ȳ) ∀t ∈ T [πt]

xh ≤ 1 ∀h ∈ H [sh]

xh ≥ 0 ∀h ∈ H

Since an hourly bid is offered for a single period (it is zero in all other periods), we can

decompose (SMLP(ȳ)) into |T | single period problems. Let Ht be the set of hourly

bids offered for period t ∈ T . The single period restricted surplus maximization

linear program can be written as:

(SMLP(ȳ, t)):

Max
∑
h∈Ht

phqh,txh

s.to.
∑
h∈Ht

qh,txh = −Qt(ȳ) [πt]

xh ≤ 1 ∀h ∈ Ht [sh]

xh ≥ 0 ∀h ∈ Ht

The dual restricted surplus maximization linear program for period t ∈ T is:

(D-SMLP(ȳ, t)):

Min
∑
h∈Ht

sh −Qt(ȳ)πt

s.to. sh ≥ (ph − πt)qh,t ∀h ∈ Ht

sh ≥ 0 ∀h ∈ Ht

Since at least one of the constraints of (D-SMLP(ȳ, t)) is binding for each hourly

bid at an optimal solution, s∗h = max {0, qh,t(ph − π∗t )} holds for each h ∈ H . Let

sh(πt) = max {0, qh,t(ph − πt)}. Then, sh(πt) is a non-increasing piece-wise linear

function of πt for a demand bid (qh,t > 0) and a non-decreasing piece-wise linear

function of πt for a supply bid (qh,t < 0). Letting pmint and pmaxt represent the lower
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and upper limits for πt, respectively, sh(πt) is depicted in Figures 5.3 and 5.4 for

demand and supply bids, respectively.

πt

sh(πt)

pmint

0

qh,t(ph − pmint )

ph pmaxt

−qh,t

Figure 5.3: sh(πt) for a demand hourly bid, qh,t > 0

πt

sh(πt)

pmint

0

qh,t(ph − pmaxt )

ph pmaxt

−qh,t

Figure 5.4: sh(πt) for a supply hourly bid, qh,t < 0

Let SHt(ȳ, πt) =
∑
h∈Ht

sh(πt) − Qt(ȳ)πt. Then, the optimal objective function value

of (D-SMLP(ȳ, t)) can be found by solving the following problem:

min
πt∈[pmin

t ,pmax
t ]

SHt(ȳ, πt) = min
πt∈[pmin

t ,pmax
t ]

{∑
h∈Ht

max {0, qh,t(ph − πt)} −Qt(ȳ)πt

}
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We can rewrite SHt(ȳ, πt) as:

SHt(ȳ, πt) =
∑

h∈Ht,qh,t>0,ph>πt

[qh,t(ph − pmint )− (πt − pmint )qh,t]+

∑
h∈Ht,qh,t<0,ph<π

qh,t(ph − πt)−Qt(ȳ)πt

=
∑

h∈Ht,qh,t>0,ph>πt

qh,t(ph − πt)+

∑
h∈Ht,qh,t<0,ph<πt

qh,t(ph − πt)−Qt(ȳ)πt

Let S ′Ht
(ȳ, π̂t) be the subderivative of SHt(ȳ, πt) with respect to πt at point π̂t. Note

that SHt(ȳ, πt) is differentiable at any point πt ∈ (pmint , pmaxt ) : πt 6= ph,∀h ∈ Ht.

Then,

S ′Ht
(ȳ, π̂t) =

∑
h∈Ht,qh,t>0,ph>π̂t

−qh,t +
∑

h∈Ht,qh,t<0,ph<π̂t

−qh,t − Qt(ȳ)

for any π̂t where it is differentiable. As S ′Ht
(ȳ, πt) is a non-decreasing function of πt

(since the number of demand hourly bids with ph > π̂t is non-increasing and the num-

ber of supply hourly bids with ph < π̂t is non-decreasing as πt increases), SHt(ȳ, πt)

is a convex piece-wise linear function of πt. Let ∂SHt(ȳ, π̂t) be the set of subgradients

of SHt(ȳ, πt) at point π̂t. Then, π∗t = {πt ∈ [pmint , pmaxt ] : 0 ∈ ∂SHt(ȳ, πt)} gives the

set of optimal market clearing prices. In Figure 5.5, we illustrate the characteristics

of SHt(ȳ, πt).

πt

SHt(ȳ, πt)

pmint
ph1 ph2 ph3 ph4 pmaxt

Figure 5.5: Illustration of SHt(ȳ, πt) with unique optimal market clearing prices,

π∗t = ph3
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In Figure 5.6, the set of optimal market clearing prices is in the interval [ph2 , ph3 ]. This

case occurs when the aggregate supply and demand functions intersect at a vertical

line as shown in Figure 5.2.

πt

SHt(ȳ, πt)

pmint
ph1 ph2 ph3 ph4 pmaxt

Figure 5.6: Illustration of SHt(ȳ, πt) when there are multiple optimal market clearing

prices, π∗t = [ph2 , ph3 ]

Let Π∗t (ȳ) denote the set of alternative optimal market clearing prices for period t ∈ T
and ȳ ∈ Y such that Π∗t (ȳ) = [πlt(ȳ), πut (ȳ)]. To find πlt(ȳ) and πut (ȳ), we minimize

and maximize the market clearing price problem, (P(ȳ, t)), respectively:

(P(ȳ, t)):

Min (Max) πt

s.to.

sh ≥ (ph − πt)qh,t ∀h ∈ Ht∑
h∈Ht

sh −Qt(ȳ)πt = S∗Ht
(ȳ)

sh ≥ 0 ∀h ∈ Ht

where S∗Ht
(ȳ) is the optimal objective value of (D-SMLP(ȳ, t)).

5.4.2 Characterizing the nondominated edges

For a fixed block bid decision vector, alternative surplus-maximizing market clearing

prices may generate feasible trade-offs between market loss and missed surpluses.
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Such trade-offs may be nondominated.

Let lb(π∗, ȳ) and mb(π
∗, ȳ) be the market loss and missed surplus, respectively, as-

sociated with block bid b ∈ B, π∗ ∈ Π∗(ȳ), and ȳ ∈ Y . Also let π∗b be the quantity-

weighted average market clearing price for block bid b, π∗b =
∑
t∈Tb

π∗t
qb,t
Qb

. Note that

lb(π
∗, ȳ) is zero for each rejected block bid b ∈ B0. Similarly, mb(π

∗, ȳ) is zero

for each accepted block bid b ∈ B1. We next consider the form of the market loss

function for demand block bids, Bd, and supply block bids, Bs:

Case 1. Suppose ȳb = 1 and b ∈ Bd. Then,

lb(π
∗, ȳ) =


0 if π∗b ≤ pb∑
t∈T

(π∗t − pb)qb,t if π∗b > pb (PAB)
(5.4)

Case 2. Suppose ȳb = 1 and b ∈ Bs. Then,

lb(π
∗, ȳ) =


0 if π∗b ≥ pb∑
t∈T

(π∗t − pb)qb,t if π∗b < pb (PAB)
(5.5)

We express the total market loss, z2, as a function of π∗, and investigate its change

with respect to π∗t for any t ∈ T . We partition z2 into the loss of supply block

bids, zs2, and the loss of demand block bids, zd2 . Let zs2(π∗, ȳ) =
∑
b∈Bs

lb(π
∗, ȳ) and

zd2(π∗, ȳ) =
∑
b∈Bd

lb(π
∗, ȳ). We illustrate zs2(π∗, ȳ) and zd2(π∗, ȳ) as a function of π∗t

for t ∈ T in Figures 5.7 and 5.8, respectively.

π∗t

zs2(π∗, ȳ)

πlt(ȳ) πut (ȳ)

zs,l2 (ȳ)

zs,u2 (ȳ)

Figure 5.7: Illustration of zs2(π∗, ȳ) with respect to π∗t
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In Figure 5.7, zs,l2 (ȳ) and zs,u2 (ȳ) represent lower and upper bounds on zs2(π∗, ȳ) with

respect to π∗t ∈ Π∗t (ȳ), respectively. zs2(π∗, ȳ) is a nonincreasing piecewise linear

convex function of π∗t since the total number of supply PABs and the associated total

absolute quantity are nonincreasing in π∗t .

Similarly, we show that zd2(π∗, ȳ) is a nondecreasing piecewise linear convex func-

tion of π∗t . In Figure 5.8, zd,l2 (ȳ) and zd,u2 (ȳ) represent lower and upper bounds on

zd2(π∗, ȳ) for π∗t ∈ Π∗t (ȳ), respectively. zd2(π∗, ȳ) is a nondecreasing piecewise lin-

ear convex function of π∗t since the total number of demand PABs and the associated

total absolute quantity are nondecreasing in π∗t .

π∗t

zd2(π∗, ȳ)

πlt(ȳ) πut (ȳ)

zd,l2 (ȳ)

zd,u2 (ȳ)

Figure 5.8: Illustration of zd2(π∗, ȳ) with respect to π∗t

Since both zs2(π∗, ȳ) and zd2(π∗, ȳ) are convex functions of π∗t , z2(π∗, ȳ) = zs2(π∗, ȳ)+

zd2(π∗, ȳ) is also a convex function of π∗t .

We next analyze the market missed surplus, z3(π∗, ȳ), as a function of the market

clearing price, π∗ ∈ Π∗(ȳ), and investigate its change with respect to π∗t ∈ Π∗t (ȳ) for

t ∈ T .

Case 1. Suppose ȳb = 0 and b ∈ Bd. Then,

mb(π
∗, ȳ) =


0 if π∗b ≥ pb∑
t∈T

(pb − π∗t )qb,t if π∗b < pb (PRB)
(5.6)
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Case 2. Suppose ȳb = 0 and b ∈ Bs. Then,

mb(π
∗, ȳ) =


0 if π∗b ≤ pb∑
t∈T

(pb − π∗t )qb,t if π∗b > pb (PRB)
(5.7)

We partition z3 into missed surplus by supply block bids, zs3, and missed surplus

by demand block bids, zd3 . Then, zs3(π∗, ȳ) =
∑
b∈Bs

mb(π
∗, ȳ) and zd3(π∗, ȳ) =∑

b∈Bd

mb(π
∗, ȳ). We illustrate zs3(π∗, ȳ) and zd3(π∗, ȳ) as a function of π∗t for t ∈ T

in Figures 5.9 and 5.10, respectively.

π∗t

zs3(π∗, ȳ)

πlt(ȳ) πut (ȳ)

zs,l3 (ȳ)

zs,l3 (ȳ)

Figure 5.9: Illustration of zs3(π∗, ȳ) with respect to π∗t

In Figure 5.9, zs,l3 (ȳ) and zs,u3 (ȳ) represent lower and upper bounds on zs3(π∗, ȳ) with

respect to π∗t ∈ Π∗t (ȳ), respectively. zs3(π∗, ȳ) is a nondecreasing piecewise linear

convex function of π∗t since the total number of supply PRBs and the associated total

absolute quantity are nondecreasing in π∗t .

π∗t

zd3(π∗, ȳ)

πlt(ȳ) πut (ȳ)

zd,l3 (ȳ)

zd,u3 (ȳ)

Figure 5.10: Illustration of zd3(π∗, ȳ) with respect to π∗t
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Similarly, we show that zd3(π∗, ȳ) is a nonincreasing piecewise linear convex func-

tion of π∗t . In Figure 5.10, zd,l3 (ȳ) and zd,u3 (ȳ) represent lower and upper bounds on

zd3(π∗, ȳ) with respect to π∗t ∈ Π∗t (ȳ), respectively. zd3(π∗, ȳ) is a nonincreasing

piecewise linear convex function of π∗t since the total number of demand PRBs and

the associated total absolute quantity are nonincreasing in π∗t .

Since both zs3(π∗, ȳ) and zd3(π∗, ȳ) are convex functions of π∗t , z3(π∗, ȳ) = zs3(π∗, ȳ)+

zd3(π∗, ȳ) is also a convex function of π∗t .

Based on the above characterizations of z2(π∗, ȳ) and z3(π∗, ȳ) with respect to π∗t
for t ∈ T where alternative market clearing prices exist, the trade-offs between them

could provide valuable insights. Assume z2(π∗, ȳ) and z3(π∗, ȳ) are as shown in

Figure 5.11a. The derivatives of both functions, glr, g
m
r in intervals r = 1, . . . , 4

respectively, are specified on the corresponding line segments. For this example,

there exist market clearing prices where both functions have the derivatives with the

same sign (for r = 1 and 4) as well as with opposite signs (for r = 2 and 3). The

corresponding values of z2(π∗, ȳ) and z3(π∗, ȳ) in z2− z3 plane are shown in Figure

5.11b.

Given that alternative surplus-maximizing market clearing prices exist for a single

period in slice problem (MOMCP(ȳ)), the dark edges in Figure 5.11b show ZND(ȳ).

The market clearing prices in intervals r = 2 and 3 are efficient for slice problem

(MOMCP(ȳ)).

The nondominated frontier of problem (MOMCP(ȳ)) exhibits increasing marginal

cost as we need to sacrifice more from one objective to further decrease another. The

rate of decrease in one of the functions decreases as the rate of increase in the other

function increases due to the convexity of market loss and missed surplus as a function

of market clearing prices.

In Figure 5.12, we display the nondominated set of (MOMCP) for the bid set given

in Example 3. In this problem, we assume there is a single period and there are alter-

native surplus-maximizing market clearing prices for all feasible block bid decision

vectors except for s5. However, efficient trade-offs between the market loss, l(π∗),

and the market missed surplus, m(π∗), exist only for ȳ = (1, 1, 0) associated with
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π∗t

z2(π∗, ȳ)

π∗t

z3(π∗, ȳ)

πlt(ȳ) p1 p2 p3 πut (ȳ)

gl1

gl2
gl3

gl4

gm1

gm2

gm3

gm4

(a) z2(π∗, ȳ) and z3(π
∗, ȳ)

z2(π∗, ȳ)

z3(π∗, ȳ)

•
πlt(ȳ)

•
p1

•p2

• p3

•
πut (ȳ)

(b) Trade-offs

Figure 5.11: Trade-offs between z2(π∗, ȳ) and z3(π∗, ȳ) as π∗t changes

solution s1. Hence, ZND is discrete except for the region corresponding to s1. We

illustrate ZND(ȳ) in the z2 − z3 plane for each ȳ ∈ Y (solid points and dark edges

are the nondominated points and edges of the slice problems, respectively). The non-

dominated sets of the slice problems corresponding to s2, s3, and s5 are dominated

by point (1430, 0, 400) in solution s1. The nondominated set consists of an edge from

ZND((1, 1, 0)) and the single nondominated point of ZND((0, 0, 1)).
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(e) s5 with z1 = 1000
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•
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• •
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(f) The nondominated set

Figure 5.12: The nondominated set and the nondominated sets of slice problems for

Example 3

We next characterize the efficient market clearing prices and the nondominated edges

for a slice problem. We drop ȳ from the notation in the remaining of this section since

we present the following results in the context of a slice problem.
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5.4.2.1 Case 1. A single period with alternative surplus-maximizing market

clearing prices

Let ta ∈ T be the single period where there exist alternative surplus-maximizing

market clearing prices. Let Bpab(Π
∗, ta) be the set of block bids that span period

ta and become a PAB at one of the market clearing price vectors, Bpab(Π
∗, ta) =

{b ∈ B : ta ∈ Tb, lb(π∗) > 0,π∗ ∈ Π∗}. Then, the set of possible change points (the

points defining the intervals in a piecewise linear function) for the loss function is

P l(Π∗, ta) = {π∗ta ∈ Π∗ta : lb(π
∗) = 0, b ∈ Bpab(Π

∗, ta)}. In a similar manner, we

define Bprb(Π
∗, ta) = {b ∈ B : ta ∈ Tb,mb(π

∗) > 0,π∗ ∈ Π∗}, and Pm(Π∗, ta) =

{π∗ta ∈ Π∗ta : mb(π
∗) = 0, b ∈ Bprb(Π

∗, ta)}.

We next consider the following set of prices: P (Π∗, ta) = P l(Π∗, ta) ∪ Pm(Π∗, ta) ∪{
πlta , π

u
ta

}
. Assuming n such prices, we order the prices from the lowest to the highest

such that p(i) ∈ P (Π∗, ta) denotes the ith lowest price, i = 1, 2, . . . , n, p(1) = πlta and

p(n) = πuta . Note that n ≥ 2 by the assumption of alternative market clearing prices.

Let gl,t
a

i be the derivative of market loss with respect to the market clearing price in

period ta and interval i = 1, 2, . . . , n− 1, gl,t
a

i = z′2(p(i) + ε), where ε > 0 is a small

constant. Similarly, let gm,t
a

i be the derivative of market missed surplus with respect

to the market clearing price in interval i = 1, 2, . . . , n − 1, gm,t
a

i = z′3(p(i) + ε). We

can calculate gl,t
a

i and gm,t
a

i as follows:

gl,t
a

i =
∑

b∈Bpab(Π∗,ta,i)

qb,ta ,

gm,t
a

i =
∑

b∈Bprb(Π∗,ta,i)

qb,ta ,

where Bpab(Π
∗, ta, i) =

{
b ∈ Bpab(Π

∗, ta) : ta ∈ Tb, lb(π∗) > 0, π∗ta ∈ [p(i), p(i+1)]
}

and Bprb(Π
∗, ta, i) =

{
b ∈ Bpab(Π

∗, ta) : ta ∈ Tb,mb(π
∗) > 0, π∗ta ∈ [p(i), p(i+1)]

}
.

We next define πe,lta and πe,lta that denote the minimum and the maximum market clear-

ing price for period ta, respectively, in an efficient solution of the slice problem:

πe,lta = min
i=1,2,...,n−1

{
p(i) ∈ P (Π∗, ta) : gl,t

a

i gm,t
a

i < 0 ∨ gl,t
a

i = gm,t
a

i = 0
}

πe,uta = max
i=2,...,n

{
p(i) ∈ P (Π∗, ta) : gl,t

a

i−1g
m,ta

i−1 < 0 ∨ gl,t
a

i−1 = gm,t
a

i−1 = 0
}

144



Proposition 23. Given that alternative market clearing prices exist only for a single

period ta ∈ T , an efficient solution for the slice problem must have a market clearing

price πe ∈ Π∗ such that πeta ∈ [πe,lta , π
e,u
ta ].

Proof. Let ψk = (xk,yk,πk, sk, lk,mk) be an efficient solution of (MOMCP(yk))

and Π∗ta be the set of surplus-maximizing market clearing prices for the slice problem

in period ta, πk ∈ Π∗, with a non-empty interior. Suppose that πkta /∈ [πe,lta , π
e,u
ta ]. Let

πkta ∈ (p(̄i), p(̄i+1)) for p(̄i), p(̄i+1) ∈ P (Π∗, ta). Then, gl,t
a

ī
gm,t

a

ī
≥ 0 with at least one

of the terms being non-zero by definition of [πe,lta , π
e,u
ta ].

Case 1: gl,t
a

ī
, gm,t

a

ī
≥ 0. For a sufficiently small ε > 0, let πj ∈ [p(̄i), p(̄i+1)] such

that πjt = πkt − ε for t = ta and πjt = πkt for t 6= ta. Then, z2(πj ,yk) ≤ z2(πk,yk)

and z3(πj ,yk) ≤ z3(πk,yk), where at least one of the inequalities is strict. Since,

z1(πj ,yk) = z1(πk,yk), ψj dominates ψk and ψk cannot be an efficient solution.

Case 2: gl,t
a

ī
, gm,t

a

ī
≤ 0. For a sufficiently small ε > 0, let πj ∈ [p(̄i), p(̄i+1)] such

that πjt = πkt + ε for t = ta and πjt = πkt for t 6= ta. Then, z2(πj ,yk) ≤ z2(πk,yk)

and z3(πj ,yk) ≤ z3(πk,yk), where at least one of the inequalities is strict. Since,

z1(πj ,yk) = z1(πk,yk), ψj dominates ψk and ψk cannot be an efficient solution.

Since Case 1 and Case 2 cannot hold for an efficient solution ψk, πkta ∈ [πe,lta , π
e,u
ta ].

As we show above, the market clearing price for period ta lies in the price range

[πe,lta , π
e,u
ta ] in all efficient solutions. We call πe ∈ Π∗ as an efficient price vector for

the considered slice problem, if πeta ∈ [πe,lta , π
e,u
ta ], and [πe,lta , π

e,u
ta ] as the efficient price

range for period ta ∈ T .

Let z = (z2(πe), z3(πe)) be the corresponding nondominated point for efficient price

πe, πeta ∈ [πe,lta , π
e,u
ta ], where z2(πe) and z3(πe) are the associated market loss and

missed surplus, respectively. Let πe,l = πe ∈ Π∗ : πeta = πe,lta and πe,u = πe ∈ Π∗ :

πeta = πe,uta . Representing market loss and missed surplus on abscissa and ordinate,

respectively, zl = (z2(πe,l), z3(πe,l)) and zu = (z2(πe,u), z3(πe,u)) are the north-

west (south-east) and south-east (north-west) extreme nondominated points, respec-

tively, if z2(πe,l) < z2(πe,u) (z2(πe,l) > z2(πe,u)). Additionally, we define P e
ta =
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P (Π∗, ta)∩ (πe,lta , π
e,u
ta ) as the set of prices in the efficient price range at which deriva-

tives of market loss or missed surplus functions change. Assuming m such prices, let

P e
ta =

{
p(j1), p(j2), . . . , p(jm)

}
. We next show that zk = (z2(π), z3(π)), πkta = p(jk),

k = 1, 2, . . . ,m are extreme nondominated points.

Proposition 24. ZEND =
{
zk,∀p(jk) ∈ P e

ta

}
∪
{
zl, zu

}
is the set of extreme non-

dominated points for the slice problem.

Proof. Note that zl and zm are defined by the lower and upper limits of the ef-

ficient price range, respectively, and they are extreme nondominated points. Let

gk = (|gm,t
a

k |, |gl,t
a

k |) be the absolute gradient vector for the kth interval in the ef-

ficient price range, k = 1, 2, . . . ,m + 1. Consider weight vector wk = (gk + gk+1)

for k = 1, 2, . . . ,m. Then, pjk = argminπ∈Π∗:πta∈[πe,l
ta ,π

e,u
ta ]

{
wkz, z = z(π)

}
is

the unique optimal solution and, hence, zk is an extreme nondominated point for

k = 1, 2, . . . ,m.

Let Π1
ta = (πl,eta , p(j1)), Πm+1

ta = (p(jm), π
u,e
ta ), and Πk

ta = (p(jk), p(jk+1)) for k =

1, 2, . . . ,m − 1. Consider weight vector wk = gk for k = 1, 2, . . . ,m + 1. Then,

Πk
ta = argminπ∈Π∗:πta∈[πe,l

ta ,π
e,u
ta ]

{
wkz, z = z(π)

}
is the set of alternative optimal

market clearing prices and, hence, the corresponding nondominated points are not

extreme nondominated points.

5.4.2.2 Case 2. Multiple periods with alternative surplus-maximizing market

clearing prices

In the previous section, we examined the case where alternative market clearing prices

exist in a single period. We showed that efficient market clearing prices exist in a

closed interval where either the market loss and missed surplus functions change in

opposite directions or they both stay the same. In this section, we consider the case

where alternative market clearing prices exist in multiple periods.

Let [πlt, π
u
t ] ∈ R be the set of surplus-maximizing market clearing prices in period

t ∈ T in a slice problem. The set of alternative market clearing price vectors, Π∗, is a

hyper-rectangle in R|T | such that πt ∈ [πlt, π
u
t ] for t ∈ T . We consider the following

bi-objective market clearing price problem, BOMCP:
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(BOMCP):

Min z(π) = (z2(π), z3(π))

s.to.

mb ≥
∑
t∈T

(pb − πt)qb,t ∀b ∈ B0

lb ≥
∑
t∈T

(πt − pb)qb,t ∀b ∈ B1

πt − πlt ≥ 0 ∀t ∈ T

πt − πut ≤ 0 ∀t ∈ T

mb ≥ 0 ∀b ∈ B0

lb ≥ 0 ∀b ∈ B1

(BOMCP) is a bi-objective linear program. We employ dichotomic search (DS) al-

gorithm (Aneja and Nair, 1979) to find the set of extreme supported nondominated

points of (BOMCP). Let abscissa and ordinate represent z2(π) and z3(π), respec-

tively. We first generate the north-west (zNW ) and south-east (zSE) extreme non-

dominated points. To generate the north-west extreme nondominated point, we first

minimize z2(π), then minimize z3(π) by restricting z2(π) ≤ z∗2(π). For the south-

east extreme nondominated point, we first minimize z3(π), then minimize z2(π) by

restricting z3(π) ≤ z∗3(π).

If zNW = zSE, then there is a single nondominated point. Otherwise, let Z̃END be the

set of extreme nondominated points generated so far and z(i) ∈ Z̃END be the extreme

nondominated point with the ith-best value in z2 among the generated points. Initially,

z(1) = zNW and z(2) = zSE. To check if there exist zj ∈ ZEND such that z(1)
2 < zj2 <

z
(2)
2 , we minimize a weighted-sum objective function z(π) = w2z2(π) + w3z3(π),

where w2 = z
(1)
3 − z

(2)
3 and w3 = z

(2)
2 − z

(1)
2 . We denote the corresponding problem

as (W-BOMCP). If such zj is the nondominated point associated with the optimal

solution of (W-BOMCP), then z(2) = zj and z(3) = z(2).

Let L be the set of nondominated point pairs to consider for (W-BOMCP). The fol-

lowing DS algorithm generatesZEND. Then, the set of nondominated edges, ZNE, are

defined by each pair of adjacent extreme nondominated points. If there are n extreme

nondominated points, n = |ZEND|, then ZNE =
{

[z(i), z(i+1)], i = 1, 2, . . . , n− 1
}

.
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Algorithm 3 Dichotomic search (DS) algorithm (Aneja and Nair, 1979)

Z̃END =
{
z(1), z(2)

}
, L =

{
(z(1), z(2))

}
while L 6= ∅ do

Select (z(i), z(k)) ∈ L, L = L \
{

(z(i), z(k))
}

Solve (W-BOMCP) with w2 = z
(i)
3 − z

(k)
3 , w3 = z

(k)
2 − z

(i)
2 . Let z∗ be the

generated point.

if z(i)
2 < z∗2 < z

(k)
2 then

k = k + 1 and k′ = k′ + 1 for zk′ ∈ Z̃NDE, k′ > k

zj = z∗, j = i+ 1

L = L ∪
{

(z(i), z(j)), (z(j), z(k))
}

Z̃END = Z̃END ∪
{
z(j)
}

end if

end while

5.4.3 Generating the nondominated set

In the previous section, we present methods to generate the nondominated set of

(MOMCP(ȳ)), ZND(ȳ), for some ȳ ∈ Y . To generate ZND, we employ the cone-

based search algorithm (CBSA) that we develop in Chapter 4. CBSA selects the

market surplus objective as the primary objective since the market surplus is constant

whereas market loss and missed surplus objectives may exhibit continuous tradeoffs

when there are alternative surplus-maximizing market clearing prices for a block bid

decision vector. CBSA iteratively finds the nondominated points or edges in non-

increasing order of their market surplus. CBSA maintains a set of polyhedral search

regions that are mutually exclusive and collectively exhaustive of the feasible objec-

tive space that may contain further nondominated points or edges.

Over all feasible search regions, CBSA selects the point with the maximum surplus

value and solves the slice problem for the corresponding block bid decision vector of

the point. If there are ties, then the market loss and missed surplus objectives are used

as the first and the second tie-breakers, respectively, where the smaller is the better.

The slice problem is solved for that block bid decision vector in the corresponding

search region. If the nondominated set of the slice problem is a single point, then it

is added to the nondominated set provided that it is not on the boundary between the
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search region and the dominated region.

If the nondominated set of the slice problem includes edges, then the edges are weakly

nondominated and stored in a separate list. If the maximum market surplus value in

the next iteration is less than the current market surplus, then the edges are nondomi-

nated. Else, the edges are checked for dominance by the rules and the model presented

in Section 4.2. The dominated edges or the dominated segments of the edges are elim-

inated and the rest is added to the nondominated set. Lastly, the regions dominated

by the nondominated set of the slice problem are separated from the search space by

means of convex cones defined by the extreme points of the nondominated set of the

slice problem solved.

5.5 Computational study

In this section, we present the results of our computational experiments regarding the

generation of the nondominated sets for instances representative of the Turkish DAM.

We use the same 20 instances in Chapter 3 and conduct the following experiments:

1. Investigate the alternative surplus maximizing market clearing prices: For each

instance, we generate a set of feasible block bid decision vectors and find the

minimum and maximum surplus maximizing market clearing price (to reveal if

it is possible to have multiple efficient solutions) for each period of the problem

and for each block bid decision vector.

2. Generate the nondominated set of (MOMCP): Employing CBSA, we generate

the nondominated set for each instance and report statistics summarizing the

characteristics of the nondominated sets.

3. Analyze the impact of the bid structure on the nondominated sets: We modify

the bid sets of the instances to analyze the associated changes in the charac-

teristics of the nondominated sets. Specifically, we eliminate hourly bids and

employ only block bids in order to capture cases with rich occurrences of non-

dominated edges.

We implement the tests with Python 3.7, employing Gurobi 9 as the single-objective
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mathematical programming solver for the CBSA algorithm. We conduct the tests on

a workstation with Windows Server 2012 R2 operating system, Intel(R) Xeon(R) E5

1.90 GHz CPU and 32 GB RAM.

In our first set of experiments, we find the block bid decision vectors associated with

the best n solutions of (SMILP), ȳ(1), . . . , ȳ(n), and solve (P(ȳ, t)) twice to find the

maximum and minimum market clearing prices for each t ∈ T and ȳ(j), j = 1, . . . , n.

We calculate the number of solutions where the maximum market clearing price is

larger than the minimum for at least one period. We also calculate the maximum

differences for such periods.

For n = 100, there exist alternative market clearing prices in 6 of the 20 instances

(30%). Among those 6 instances, there are 26 block bid decision vectors, on average,

that lead to alternative market clearing price vectors. We observe alternative market

clearing price ranges of up to 7.00 Turkish liras and 3.20 Turkish liras, on average.

We generate the nondominated set of (MOMCP) for each instance employing CBSA

on the 20 instances. In CBSA, we disable the search for alternative efficient integer

vectors. We set α = 10−5 and β = 10−6 that control the error in the representation of

the true nondominated points and edges by the generated ones by CBSA, respectively.

Additionally, we use a MIP relative gap of 10−6 and 600 seconds time limit for the

single objective optimization runs conducted by CBSA.

In Table 5.4, we present the results for the generated nondominated sets and the asso-

ciated computational efforts spent by CBSA on each instance. We display the results

in the following order: number of iterations conducted by CBSA, where each itera-

tion results with a nondominated point or weakly nondominated edges, the number

of nondominated points and edges (if any), the number of efficient integer vectors

(block bid decision vectors), the total number of models solved, and the total run time

in seconds spent by CBSA.

Based on the results in Table 5.4, the number of nondominated points for (MOMCP)

is scarce. In addition, there are no nondominated edges within the tolerances set

for CBSA. On average, CBSA solves about 4 models in 30 mins to generate 2.65

nondominated points. When we associate the number of nondominated points with
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the properties of the surplus maximizing solutions reported in Table 5.2, we observe

that the instances with fewer number of points correspond to those where the surplus

maximizing solution has small market loss and missed surplus. In Instance 16, there

is a single nondominated point that is the ideal point.

Table 5.4: Results for the nondominated set of (MOMCP) with the original in-

stances

Instance # of Iterations
Nondominated Seta CBSAb

# of Points |YE| # of MILPsb Run Time (secs)

1 7 7 7 11 506.73

2 2 2 2 3 801.69

3 2 2 2 3 1814.85

4 3 3 3 4 3293.12

5 5 5 5 8 3950.64

6 3 3 3 4 2063.93

7 2 2 2 3 2409.22

8 2 2 2 3 583.83

9 2 2 2 3 28.33

10 3 3 3 4 2744.27

11 4 4 4 7 8431.01

12 4 4 4 6 1830.09

13 1 1 1 1 10.16

14 1 1 1 1 992.41

15 2 2 2 3 288.18

16 1 1 1 1 3.24

17 3 3 3 4 1436.75

18 3 3 3 5 3611.4

19 1 1 1 1 6.72

20 2 2 2 3 811.05

avg 2.65 2.65 2.65 3.9 1780.88

max 7 7 7 11 8431.01

[a] The generated nondominated sets do not include any edges.
[b] Represents the computational effort spent by CBSA while generating the nondominated set.

[c] An MILP corresponds to solving lexicographically with three objectives.

In Figure 5.13, we present the nondominated sets of the four instances for which the
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highest number of nondominated points are generated. On the abscissa, we display

the surplus gaps of the points corresponding to the difference between the market

surplus of the considered nondominated point and the maximum market surplus. On

ordinate, we plot the corresponding missed surplus and the market loss values (in

negative amounts) in the upper and lower figures, respectively. The label below each

point indicates the order of the corresponding point with respect to its surplus gap.

Based on the instances displayed in Figure 5.13, we analyze the tradeoffs with respect

to the surplus maximizing point, Point (1). In Instance 1, the surplus maximizing

point has a large missed surplus. It can be improved substantially with a small in-

crease in surplus gap and without worsening market loss if Point (5) is selected. The

surplus maximizing point has a high market loss in Instance 5. It can be improved

substantially with a small increase in surplus gap if Point (3) is selected. In this case,

the missed surplus improves substantially. In Instance 11, it is also possible to im-

prove missed surplus by a large amount with a small increase in surplus gap, without

worsening market loss (Point (4)). Differently from the previous instances, improving

market loss costs a substantial increase in missed surplus in Instance 12.

In Table 5.5, we investigate the tradeoffs between the surplus maximizing solution and

the other nondominated points generated by CBSA. We first report the characteristics

of the surplus maximizing solutions in terms of market loss and missed surplus. We

consider the values smaller than 104 Turkish liras as small, the values between 104

and 105 as moderate, and the values larger than 105 as large. Then, we describe the

typical tradeoffs observed in the three criteria with respect to the surplus maximizing

solution. Single, double, and triple up (down) arrows represent small, moderate, and

large increases (decreases) for the associated criterion, respectively. ↔ represents no

change. We also check if any of the models (SMILP-NoPAB) and (SMILP-NoPRB)

is able to capture such tradeoffs as well. Lastly, we categorize instances with respect

to the characteristics of the tradeoffs observed.

Category A represents instances where the surplus maximizing solution performs

well in all criteria. Hence, there is a single best solution for the market clearing prob-

lem. In Category B instances, market loss or missed surplus can be improved sub-

stantially in exchange for a small decrease in surplus, without compromising from the
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other criterion. Tradeoffs show increasing marginal return in market loss with respect

to missed surplus in Category C instances. Similarly, Category D instances charac-

terize the tradeoffs exhibiting increasing marginal return in missed surplus with re-

spect to market loss, and Category E instances are associated with constant marginal

return. Lastly, Category F instances characterize tradeoffs with decreasing marginal

return in market loss with respect to missed surplus.

Although the ideal instance for the market clearing problem would be a Category A

instance, occurrences of such cases are not common. In other situations, nondomi-

nated points with characteristics as in categories B, C, and D instances may be de-

sirable by the MOs, especially Category B. Neither (SMILP-NoPAB) nor (SMILP-

NoPRB) have been able to capture such tradeoffs in our experiments.
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(d) Instance 12

Figure 5.13: Examples of nondominated sets generated by CBSA
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Table 5.5: Characteristics of the nondominated points generated for the original instances

Instance
Surplus maximizing solutiona Tradeoffsb Current designsc

Categoryd

Loss Missed surplus Surplus Loss Missed surplus SMILP-NoPAB SMILP-NoPRB

1 - Large ↓ ↔ ↓ ↓ ↓ x x B

2 Moderate Moderate ↓ ↓ ↓ ↑ X x C

3 Small Moderate ↓ ↑ ↓ ↓ x X D

4 Moderate Moderate ↓ ↓ ↓ ↑ ↑ x x E

5 Large Moderate ↓ ↓ ↓ ↓ ↓ ↓ x x B

6 Moderate Small ↓ ↓ ↓ ↔ x x B

7 Moderate Small ↓ ↓ ↓ ↓ ↑ ↑ X x E

8 Moderate Moderate ↓ ↑ ↑ ↓ ↓ x X E

9 Small Moderate ↓ ↑ ↓ x x E

10 Large Moderate ↓ ↓ ↓ ↓ ↓ ↓ x x B

11 Moderate Moderate ↓ ↔ ↓ ↓ x x B

12 Moderate Small ↓ ↓ ↓ ↑ ↑ ↑ X x F

13 Small Small - - - X X A

14 Small Moderate - - - x x A

15 Moderate Small ↓ ↓ ↓ ↑ ↑ X x E

16 - - - - - X X A

17 Small Moderate ↓ ↑ ↑ ↓ ↓ x X E

18 - Moderate ↓ ↓ ↑ ↑ ↓ ↓ x x E

19 Small Small - - - x X A

20 Small Moderate ↓ ↑ ↑ ↓ ↓ x X E

[a] Null entries (-) represent zero values.
[b] Single, double, and triple up (down) arrows represent small (≤ 104), moderate (104 < . ≤ 105), and large (> 105) increases (decreases), respectively. ↔ represents

no change. Null entries (-) imply that there is a single nondominated point.
[c] An instance is marked with (X) if the corresponding model is able to generate a nondominated point with the described tradeoffs, else with (x).

[d] A: Surplus maximizing solution performs well in all criteria. B: Market loss or missed surplus can be improved substantially in exchange for a small decrease in

surplus, without compromising from the other criterion. C: Tradeoffs exhibit increasing marginal return in market loss with respect to missed surplus. D: Tradeoffs

exhibit increasing marginal return in missed surplus with respect to market loss. E: Tradeoffs exhibit constant marginal return in both market loss and missed surplus

F: Tradeoffs exhibit decreasing marginal return in market loss with respect to missed surplus.

In Table 5.6, we present the corresponding results when we restrict the problem to

only the block bids in the instances. When there are no hourly bids, the problem

becomes a pure binary program. Since the equilibrium constraints of hourly bids that

restrict the market clearing prices into narrow ranges are not part of the problem in

this case, the chances of having alternative market clearing prices and the range of

those prices increase. This, in turn, leads to the existence of nondominated edges in

such instances. In our experiments, CBSA finds 22.5 and 1.6 nondominated edges

and points on average, respectively. There are 2.56 nondominated edges generated

per efficient block bid decision vector, on average.
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Table 5.6: Results for the nondominated set of (MOMCP) with block bids only

Instance # of Iterations
Nondominated Set CBSAa

# of Edges # of Points |YE| # of MILPsb Run Time (secs)

1 21 38 2 12 70 794.56

2 37 37 6 16 77 1313.87

3 1 7 0 1 2 583.69

4 24 37 2 13 65 565.44

5 9 16 2 3 27 357.56

6 3 2 1 3 6 147.03

7 49 59 3 24 123 1268.74

8 38 50 1 29 101 1833.09

9 3 10 0 3 15 1211.24

10 18 25 2 12 53 740.48

11 18 30 1 8 53 1108.72

12 17 26 3 8 50 297.58

13 11 15 1 6 28 551.28

14 7 13 1 5 22 382.35

15 8 17 0 5 28 580.44

16 7 12 1 6 24 533.77

17 7 17 2 5 24 806.62

18 3 8 0 2 11 347.42

19 6 12 2 5 20 103.55

20 15 19 2 10 37 528.73

avg 15.1 22.5 1.6 8.8 41.8 702.81

max 49 59 6 29 123 1833.09

[a] Represents the computational effort spent by CBSA while generating the nondominated set.

[a] An MILP corresponds to solving lexicographically with three objectives.

In Figures 5.14 and 5.15, we display the nondominated set for two of the instances,

Instances 7 and 8, when we only include the block bids in the problem. We plot

the projection of all nondominated edges in Instance 7 with respect to market loss

and missed surplus in Figure 5.14a. Existence of long and connected edges imply

existence of alternative market clearing prices in wide ranges. In Figures 5.14b and

5.14c, we plot the missed surplus and market loss with respect to the surplus gap,

respectively. A vertical line in Figure 5.14b (Figure 5.14c) represents the projected

missed surplus (market loss) of a nondominated edge.

In Instance 7, we observe that decreasing market loss below 0.05× 106 Turkish liras

causes a substantial increase in the missed surplus above 30 × 106 Turkish liras. A

similar behavior is also observed for missed surplus as well. The marginal cost of
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improving market loss (missed surplus) at its lower spectrum is very large in terms of

missed surplus (market loss). On the other hand, there exist many compromise solu-

tions around the “knee” point of the frontier (where a small sacrifice in one objective

brings a big gain in the other) that can be more preferable for the MOs.

In Instance 8, the surplus maximizing solution has a relatively large market loss as

we show in Figure 5.15. It can be decreased to its minimum either allowing for a sub-

stantial decrease in market surplus (as much as 0.5× 106 Turkish liras) or settling for

a substantial amount of missed surplus (as much as 30× 106 Turkish liras). However,

“good” compromise solutions also exist for Instance 8. It is possible to achieve low

market loss and missed surplus values allowing for only a small decrease in market

surplus.
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Figure 5.14: Visualization of the nondominated set for Instance 7
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Figure 5.15: Visualization of the nondominated set for Instance 8

5.6 Application of the findings in practice

In the previous section, we generated the nondominated sets of the multi-objective

DAM clearing problems and analyzed the properties of those sets. In a practical

setting, the procedure to obtain a solution for the market clearing problem and the

properties of that solution have to be determined apriori and made public for market

participants. In a multi-objective problem setting, the MO needs to define a set of

conditions that needs to be satisfied by the selected nondominated point and the effi-

cient solution to be announced as the auction result. In addition, the conditions should

be strict enough to adequately represent the properties of the announced solutions to

the market.
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The problem is a difficult one to solve even for a single objective when there are

bounds on market loss or missed surplus. Due to the restricted time available for

MOs to announce a solution for the problem (around 10 mins), it may be impractical

to generate all nondominated points and then select one of them. Based on the insights

we obtain in the previous section, we propose a set of conditions and a procedure

below that can be applied by MOs to find a solution for the problem that satisfy these

conditions provided that sufficient time exists.

Properties of the selected solution:

• The selected solution should be nondominated, that is there does not exist any

other solution that performs at least as good as the selected solution in market

surplus, loss and missed surplus, and outperforms the selected solution in at

least one of these criteria.

• Let z∗s , z∗l and z∗m represent the market surplus, loss and missed surplus of the

selected solution. Then, there does not exist any other feasible solution that

can improve the market loss and missed surplus of the selected solution by

at least max
{
αrell z∗l , α

abs
l

}
and max

{
αrelm z∗m, α

abs
m

}
, respectively, and having

a market surplus at most min
{
βrelz∗s , β

abs
}

worse than that of the selected

solution, where αrell , αabsl , αrelm , αabsm , βrel and βabs to be determined by the MO.

A procedure to obtain a solution satisfying the above properties:

1. Find the nondominated point with the maximum surplus value. Set this solution

as the selected solution.

2. Set lower bounds on the objectives:

zs ≥ z∗s −min
{
βrelz∗s , β

abs
}

zl ≥ z∗l + max
{
αrell z∗l , α

abs
l

}
zm ≥ z∗m + max

{
αrelm z∗m, α

abs
m

}
3. Repeat Steps 1 and 2 as long as a new solution is found or the time limit is

reached.
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5.7 Conclusions

In this chapter, we study the surplus maximization problem, (SMILP), with a multi-

objective perspective. We analyze the surplus maximizing solutions in terms of their

associated market loss and the missed surplus that occur due to PABs and PRBs, if

any. We then examine the surplus maximization problem under no-PAB, (SMILP-

NoPAB), and no-PRB constraints, (SMILP-NoPRB), which are the models used by

the European MOs in their market clearing activities. Based on our experiments with

the 20 instances representative of the Turkish DAM, the surplus maximizing solutions

for (SMILP-NoPAB) lead to substantial amounts of missed surplus in many cases.

Similarly, the surplus maximizing solutions for (SMILP-NoPRB) may lead to sub-

stantial amounts of market loss. We show that this results from increasing marginal

cost of improving one of the objectives further.

The above two cases, that is, zero market loss but large missed surplus in case of

(SMILP-NoPAB) and zero missed surplus but large market loss in case of (SMILP-

NoPRB) may not be desirable by MOs. To explore for more desirable solutions, we

develop a multi-objective market clearing problem, (MOMCP), considering three ob-

jectives: maximizing market surplus and minimizing market loss and missed surplus.

We investigate the existence of “good” compromise solutions with a small decrease

in market surplus and also with small amounts of market loss and missed surplus.

We show that the nondominated set of (MOMCP) is discrete if alternative market

clearing prices do not exist for the surplus maximization problem in the slice prob-

lems. We identify the conditions for the existence of alternative market clearing prices

and develop a model to find the maximum and minimum market clearing prices. If

alternative market clearing prices exist only for a single period, then we characterize

the efficient range of market clearing prices in that period and derive the correspond-

ing nondominated frontier of the slice problem. If alternative market clearing prices

occur in multiple periods, then we consider a bi-objective linear program with market

loss and missed surplus as a function of the market clearing price vector and apply

a dichotomic search algorithm to generate the extreme nondominated points of the

slice problem.
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We use our cone-based search algorithm (CBSA) to generate the nondominated set of

(MOMCP) for each of the 20 instances. We observe different tradeoff characteristics

especially between the market loss and missed surplus. We categorize these tradeoffs

based on their similarity. In the four Category A instances, the surplus maximizing so-

lution performs well in the other objectives as well leading to a single nondominated

point. However, there exist moderate (above 104 Turkish liras) to large (above 105

Turkish liras) amounts of market loss or missed surplus in surplus maximizing non-

dominated point in the five Category B instances and there exist other nondominated

points that can improve at least one of the market loss or missed surplus substantially

in exchange for a small decrease in market surplus, without compromising from the

other objective. In the two Category C and D instances, it is possible to improve mar-

ket loss or missed surplus at a higher rate than the degradation in the compromised

objective, leading to increasing marginal returns. In the eight instances of Category

E and one instance of Category F, tradeoffs show constant and decreasing marginal

returns, respectively.

We also experimented with instances including only block bids in order to analyze

the nondominated sets that include edges. Since there exist many hourly bids (around

15,000) in the original instances, the hourly bid equilibrium constraints restrict the

market clearing prices into narrow intervals and decrease the chances of observing

alternative market clearing prices. By restricting the bid sets to only block bids and

studying such a combinatorial auction, we observe 22.5 nondominated edges on av-

erage. In the market loss and missed surplus objectives, we similarly observe “good”

compromise solutions with small market loss, missed surplus, and surplus gap. How-

ever, further decreasing market loss (missed surplus) towards its minimum sharply

increases missed surplus (market loss). Therefore, (SMILP-NoPAB) and (SMILP-

NoPRB) type solutions perform much worse in such combinatorial auction settings.

As a future research, we would like to examine the characteristics of the efficient

solutions in addition to the nondominated points. We also plan to extend our exper-

iments with instances including other types of bids used in the European DAMs. It

awaits further research to derive new pricing methodologies for the MOs based on the

insights we have from the characteristics of the nondominated sets.
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CHAPTER 6

CONCLUSIONS

We study the market clearing problem in the exchange-type day-ahead electricity

market design, the market mechanism implemented by many European countries.

Although the surplus maximizing mixed-integer linear programming problem can be

solved efficiently by today’s powerful solvers like Cplex and Gurobi, the optimal solu-

tion may include some accepted block bids that bring negative profits, paradoxically-

accepted bids (PABs), to their bidders at the market prices. This implies a non-

equilibrium market outcome. To prevent solutions with PABs, the market operator

typically imposes additional constraints, settling for a lower total market surplus. This

increases the computational burden substantially.

In Chapter 3, we develop Benders infeasibility cuts that use the market clearing prices

over the periods of a PAB to find the set of block bid variables, of which at least one

needs to be changed to eliminate the PAB. We call these price-based cuts and show

that they are stronger than the cuts proposed by Martin et al. (2014). The compu-

tational results on practical-size instances representative of the Turkish DAM show

that using price-based cuts as the infeasibility cuts in the Benders decomposition al-

gorithm outperforms both using the no-good cuts of Martin et al. (2014) and the

locally-valid cuts of Madani and Van Vyve (2015). The improved Benders decom-

position algorithm solved all instances to optimality within about one minute when

Gurobi solver was used. The tests on larger instances also showed that the improved

Benders decomposition algorithm not only found feasible solutions for all instances

but also solved more instances to optimality in a fraction of time of the primal-dual

approach.

We next study a multi-objective formulation of the European DAM clearing problem.

163



We develop a criterion-space search algorithm in order to generate its nondominated

set that includes edges as well as isolated points. To the best of or knowledge, there

is no available algorithm that can solve this class of problems.

In Chapter 4, we present a new criterion-space search algorithm to solve a class of

three-objective mixed-integer linear programs, TOMILPs, where at least one of the

objectives take discrete values. We develop a novel search space partitioning scheme

that utilizes convex cones and the already generated edges to create polyhedral search

regions in the two-dimensional projection of the feasible criterion space. Our cone-

based search algorithm, CBSA, finds a weakly nondominated point at each iteration in

the worst case, and generates the nondominated set and the set of all efficient integer

vectors. We test CBSA on randomly generated instances of TOMILPs as well as on

three-objective 0/1 knapsack problems, TOKPs, and bi-objective mixed-binary linear

programs, BOMBLPs. We present results for different special cases of TOMILPs

such as (i) when all integer variables are binary, (ii) when all integer variables are

general integer variables, and (iii) when there are two objectives that take discrete

values. Our experiments reveal that CBSA can efficiently solve the special class

of TOMILPs. Furthermore, CBSA performance is very competitive with the state-

of-the-art algorithms designed specifically for bi-objective problems or pure integer

problems.

In Chapter 5, we present a multi-objective version of the market clearing problem,

(MOMCP), and apply CBSA to generate its nondominated set for the instances repre-

sentative of the Turkish DAM bids. We study the characteristics of the nondominated

sets and derive insights for the MOs. In particular, we show that good compromise

solutions may exist in many cases that may be more desired for the MOs compared

to the extreme solutions generated with the current practices. As a future study, we

would like to transform these insights to practical approaches to be used in the Euro-

pean DAM auctions.
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