

EFFECT OF QUANTIZATION ON THE PERFORMANCE OF DEEP

NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BAŞAR KÜTÜKCÜ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONIC ENGINEERING

JULY 2020

Approval of the thesis:

EFFECT OF QUANTIZATION ON THE PERFORMANCE OF DEEP

NETWORKS

submitted by BAŞAR KÜTÜKCÜ in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronic Engineering, Middle

East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy

Head of the Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar

Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. İlkay Ulusoy

Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar

Electrical and Electronics Engineering, METU

Prof. Dr. Aydın Alatan

Electrical and Electronics Engineering, METU

Prof. Dr. Cüneyt Fehmi Bazlamaçcı

Computer Engineering., İzmir Institute of Technology

Prof. Dr. Alptekin Temizel

Graduate School of Informatics, METU

Date: 20.07.2020

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Başar Kütükcü

Signature :

v

ABSTRACT

EFFECT OF QUANTIZATION ON THE PERFORMANCE OF DEEP

NETWORKS

Kütükcü, Başar

Master of Science, Electrical and Electronic Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

July 2020, 76 pages

Deep neural networks performed greatly for many engineering problems in recent

years. However, power and memory hungry nature of deep learning algorithm

prevents mobile devices to benefit from the success of deep neural networks. The

increasing number of mobile devices creates a push to make deep network

deployment possible for resource-constrained devices. Quantization is a solution for

this problem. In this thesis, different quantization techniques and their effects on

deep networks are examined. The techniques are benchmarked by their success and

memory requirements. The effects of quantization are examined for different

network architectures including shallow, overparameterized, deep, residual, efficient

models. Architecture specific problems are observed and related solutions are

proposed. Quantized models are compared with ground-up efficiently designed

models. The advantages and disadvantages of each technique are examined. Standard

and quantized convolution operations implemented in real systems ranging from low

power embedded systems to powerful desktop computer systems. Computation time

and memory requirements are examined in these real systems.

Keywords: Deep Neural Networks, Quantization

vi

ÖZ

NİCELEMENİN DERİN AĞLARA ETKİSİ

Kütükcü, Başar

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Temmuz 2020, 76 sayfa

Derin sinir ağları son zamanlarda birçok mühendislik problemi için büyük başarı

göstermiştir. Ancak derin öğrenme algoritmasının hesaplama gücü ve hafızaya çok

fazla gereksinim duyması sebebiyle, sayısı gitgide artan kaynak kısıtlı mobil cihazlar

derin sinir ağlarının bu başarısından yararlanamamaktadır. Niceleme bu soruna

çözüm olabilecek yöntemlerden birisidir. Bu tez kapsamında, farklı niceleme

teknikleri ve bu tekniklerin derin ağlara etkileri incelenmiştir. Bu tekniklerin başarısı

ve hafıza gereksinimleri deneylerle incelenmiştir. Nicelemenin etkileri sığ, derin,

aşırı parametreli, artık bağlantılı ve verimli modellerde incelenmiştir. Model

mimarisine özel sorunlar gözlenmiş ve ilgili çözümler önerilmiştir. Nicelenmiş

modeller ve baştan verimli tasarlanmış modeller karşılaştırılmıştır. Bu iki yöntemin

avantajları ve dezavantajları incelenmiştir. Bunlara ek olarak standart ve nicelenmiş

evrişim işlemi çeşitli sistemlerde gerçeklenmiştir. Bu çeşitli sistemler düşük güç

tüketimli gömülü sistemlerden güçlü masaüstü bilgisayar sistemlerine uzanmaktadır.

Hesaplama zamanı ve hafıza gereksinimleri deneyleri bu gerçek sistemlerde

yapılmış ve sonuçları paylaşılmıştır.

Anahtar Kelimeler: Derin Sinir Ağları, Niceleme

vii

To my family

viii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep and sincere gratitude to my

supervisor Prof. Dr. Gözde Bozdağı Akar. Her guidance and support were precious

to me for this thesis and my academic career.

I would like to thank Miray Karamehmetoğlu for always being there for me.

Lastly, I would like to thank my family, Esma Kütükcü, Ersin Kütükcü and Başak

Kütükcü for their endless support throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vi

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xiv

1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Scope of Thesis .. 2

1.3 Outline of Thesis .. 4

2 BACKGROUND AND LITERATURE REVIEW.. 5

2.1 Background .. 5

2.1.1 Neural Networks ... 5

2.1.1.1 Brief History .. 5

2.1.1.2 Training Neural Networks ... 7

2.1.1.3 Convolutional Neural Networks .. 11

2.1.2 Quantization .. 18

2.1.2.1 Compression .. 18

2.1.2.2 Straight Through Estimator ... 21

2.1.2.3 Full Precision Weights in Training .. 21

2.2 Literature Review ... 23

x

2.2.1 Efficient Models Ground Up ... 23

2.2.2 Quantization Based Approaches .. 24

2.2.2.1 Quantization Aware Training and Post Quantization 24

3 QUANTIZATION AWARE TRAINING BASED METHODS 31

3.1 BinaryConnect .. 31

3.2 Binarized Neural Networks .. 32

3.3 DoReFa-Net .. 33

3.4 Ternary Weight Networks .. 34

4 EXPERIMENTAL RESULTS .. 37

4.1 Framework and Libraries .. 37

4.2 Datasets ... 38

4.3 Results ... 39

4.3.1 A Simple Architecture and Dataset ... 40

4.3.2 VGG-7 Architecture .. 40

4.3.2.1 Methods Quantize Weights Only ... 41

4.3.2.2 Activation Quantization Along with Weight Quantization 43

4.3.2.3 Comparison with Ground-up Efficient Models 46

4.3.3 Quantization of Deep and Complex Models 47

4.3.3.1 Methods Quantize Weights Only ... 48

4.3.3.2 BinaryConnect Modifications for Deep and Complex Models .. 49

4.3.3.3 Activation and Weight Quantization .. 54

4.3.3.4 Activation Quantization ... 55

4.3.3.5 Comparison with Ground-Up Efficient Models 57

4.3.4 Quantizing Ground-up Efficient Models ... 58

xi

5 SYSTEM IMPLEMENTATION AND BENCHMARKING 59

5.1 Implementation Details .. 59

5.2 Benchmarking .. 62

5.2.1 ARM Cortex M4 ... 62

5.2.2 Quad-Core ARM A53 – Raspberry Pi 3 B+ 63

5.2.3 Intel Core i5-7300HQ – Desktop Computer 64

5.3 Comments ... 65

6 CONCLUSION AND FUTURE WORK .. 69

6.1 Conclusion .. 69

6.2 Future Work ... 70

REFERENCES .. 73

xii

LIST OF TABLES

TABLES

Table 4.1 Comparison of Quantization Methods on Simple Example 40

Table 4.2 Test accuracy comparison of weight quantizer methods 42

Table 4.3 The comparison of methods quantizing weights and activations 43

Table 4.4 Combinations of BNN and DRF ... 45

Table 4.5 Comparison of SqueezeNet and Quantized Models 47

Table 4.6 Test Accuracy Comparison of Weight Quantizer Methods on ResNet20

 ... 49

Table 4.7 Test Accuracy Comparison of Weight Quantizer Methods on ResNet32

 ... 49

Table 4.8 BC with not quantizing weighted residual connections 52

Table 4.9 BC without weighted residual connections ... 52

Table 4.10 Results of BC Solutions for Deep and Complex Models 54

Table 4.11 Weight and Activation Quantization of Deep and Complex Models 55

Table 4.12 Accuracies when only activations are quantized 56

Table 4.13 Comparison of SqueezeNet and Quantized ResNet Models 57

Table 4.14 Quantization of SqueezeNet .. 58

Table 5.1 Binary quantization timing results for ARM M4 63

Table 5.2 Ternary quantization timing results for ARM M4 63

Table 5.3 Binary quantization timing results for Raspberry Pi 3 B+ 64

Table 5.4 Ternary quantization timing results for Raspberry Pi 3 B+ 64

Table 5.5 Binary quantization timing results for Desktop Computer 65

Table 5.6 Ternary quantization timing results for Desktop Computer 65

Table 5.7 The effect of compiler optimization on computation time 66

xiii

LIST OF FIGURES

FIGURES

Figure 2.1. The illustration of the perceptron ... 6

Figure 2.2. Example neural network ... 8

Figure 2.3. Convolution operation .. 14

Figure 2.4. Pooling operations .. 17

Figure 2.5. Keras pre-trained models and their sizes .. 19

Figure 2.6. Compression example .. 20

Figure 2.7. Full precision weights (left) and quantized weights (right) 22

Figure 4.1. Validation set accuracies of Base, DRF-W, BC and TWN 41

Figure 4.2. Improvement of average accuracies of weight quantizers and base

model ... 42

Figure 4.3. Improvement of average accuracies of BNN and DRF with base model

 ... 44

Figure 4.4. Average accuracy comparison of weight quantization and

weight/activation quantization .. 45

Figure 4.5. Example implementation for hybrid models .. 46

Figure 4.6. The weight distributions of 3 layers from full precision and quantized

models ... 51

Figure 5.1. Base convolution algorithm .. 60

Figure 5.2. Quantized Convolution Algorithm ... 61

xiv

LIST OF ABBREVIATIONS

ABBREVIATIONS

BC BinaryConnect

BNN Binarized Neural Networks

DRF DoReFa-Net

DRF-W DoReFa-Net Weight Quantization

TWN Ternary Weight Networks

CNN Convolutional Neural Networks

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

Developments in deep learning research brought great success to many problems

including image classification, image segmentation, natural language processing,

recommender systems and many others. Specially in the image related tasks, deep

learning techniques showed superior results to existing image processing techniques.

However, this success comes with a cost. This cost is memory and computation

power requirement of the deep learning models. Many companies and research

institutes are increasing these requirements while trying to create better models.

These models are being developed for achieving marginal results and therefore

require more and more memory and computation power. On the other hand, the

number of mobile devices is rapidly increasing every day. These resource-

constrained smart devices can benefit greatly from the success of deep learning;

however, they are not capable to satisfy the memory and power requirements of deep

learning models due to many constraints such as budget, space, power and heat.

Therefore, there is a need to adjust power and memory requirements of deep learning

models for resource constrained devices.

Deep learning models should be adjusted to be more efficient in order to run on

resource-constrained devices. There are currently couple of approaches to create

efficient deep learning models. They can be categorized into two main approaches.

First approach is to create efficient deep learning models ground up. This approach

includes exhaustive state-space search of hyperparameters while monitoring size and

accuracy trade-off. The results of this search are used to design efficient deep

2

learning models. These newly designed deep learning models include new efficient

architectural units that separate them from existing computation heavy deep learning

models. Some examples of these efficient architectural units are squeeze-expand

operations [1], depthwise-pointwise convolution operations [2] and shuffle operation

[3]. The second approach is to use methods, named quantization and pruning, on the

weights of the deep learning models. The difference of this approach and the first

one is that this approach does not try to create new models and architectural units.

Instead it uses some methods on existing models to convert existing models to more

efficient ones. The weights of a deep learning model and their multiplication

operations make a model costly. This approach and their quantization/pruning

methods focus on the weights to decrease the memory and computation cost of a

deep learning model. The quantization method clusters the weights of a deep learning

model into some cluster points. The pruning method completely eliminates the

weights which are ineffective to the overall results of the deep learning model. Both

of these methods eventually decrease the required memory space by the deep

learning model. There are different ways to implement this approach by considering

when and how these methods are used on the deep learning model. Some methods

can be named as quantization/pruning aware training. In this methods,

quantization/pruning is done continuously during training. This requires whole

training process. Some other can be named as post quantization/pruning. In these

methods quantization/pruning is done on a trained model. These methods are

employed by many frameworks which repetitively quantize/prune the trained model

and re-train it to recover the lost accuracy up to a point.

1.2 Scope of Thesis

In this thesis, certain quantization methods are selected, analyzed, experimented and

benchmarked. The aim of the thesis is to investigate the effects of quantization on

deep neural networks and suggest solutions to certain quantization problems.

3

The scope of this thesis is quantization aware training-based methods. However, the

other quantization methods are also researched and explained in the literature review

for the sake of completeness.

Background information for neural networks and quantization is given. Historical

development of neural networks and deep learning is explained briefly. The training

algorithm of neural networks is explained considering its importance for

quantization operations. Convolutional neural networks are explained since they are

used in the experiments. Compression property of quantization is explained. Straight

through estimators and the importance of full precision weights during training are

explained since they are the key factors that enable quantization aware training of

deep neural networks. Literature review of ground-up efficient models is given.

Literature review of quantization aware training methods, post quantization and

usage of reinforcement learning for quantization is given.

Some methods in the quantization aware training are selected considering their

success and similarities. They are explained in detail. They are implemented on

different datasets and deep learning architectures. They are benchmarked on a simple

dataset and architecture. They are implemented on relatively shallow and

overparameterized model. Some hybrid methods are proposed for the weights and

activation quantization methods. One of the hybrid methods has hardware friendly

cluster points and a better accuracy than existing hardware friendly methods. They

are compared with a ground-up efficient model with similar capacity. They are

implemented on a deeper and more complex model. Using this model, they are

compared with each other and a ground-up efficient model with similar capacity.

Problems of quantization of deep and complex models are demonstrated. Various

solutions to these problems are suggested. These solutions are implemented and

shown to be effective. The reason of relatively low accuracy of weight and activation

quantization of deep and complex models are shown and empirically proven.

Moreover, a ground-up efficient model is also quantized and compared with its full

precision version.

4

Full precision and quantized convolution operation are implemented for various

systems. These systems include a very low power embedded system, an average

embedded system and a powerful desktop computer. Therefore, the compression

property of quantization is proven on real systems. The trade-offs of this simple

implementation are investigated and explained.

1.3 Outline of Thesis

In Chapter 2, background information and literature review are given. In Chapter 3,

quantization aware training-based methods are selected and explained. In Chapter 4,

experimental results are given, certain problems of quantization are demonstrated,

solutions to these problems are suggested. In Chapter 5, system implementation of

quantized convolution operation is shown and experimented.

5

CHAPTER 2

2 BACKGROUND AND LITERATURE REVIEW

2.1 Background

In this section, a fundamental information on neural networks and quantization is

given. A brief history of neural networks and their evolving to today’s successful

deep learning models are explained. The algorithm of training neural networks is

explained since it is important for quantization algorithms. Convolutional neural

networks are explained in detail as they are used in the experiments in this thesis.

Fundamental information of compression in quantization is explained since it is used

to evaluate and compare different quantization algorithms. The key points of training

quantized deep neural networks are explained.

2.1.1 Neural Networks

2.1.1.1 Brief History

Neural networks compose a branch of machine learning techniques. Even though

neural networks are one of the most popular machine learning techniques nowadays,

they are not proposed in the near past. The roots of today’s neural networks get to

the perceptron [4] which is proposed in 1958. The perceptron is just a neuron which

sums the weighted input features and applies a step function to that summation.

6

Figure 2.1. The illustration of the perceptron

Later on, perceptron is proven to be uncapable of doing many things [5] such as

representing non-linear functions like XOR. This caused a significant and rapid

decline in neural network research at that time. Even though perceptron (or single

layer perceptron) was not very capable, the multi-layer perceptron was much more

capable. For example, a multi-layer perceptron with at least three layers can represent

non-linear functions unlike single-layer perceptron. Multi-layer perceptron can be

seen as a fundamental example of today’s shallow neural networks.

Even though neural network research regained its momentum in 1980s, it could not

achieve the today’s popularity until 2012. Because there were two things that prevent

neural networks from unleashing their true potential. The first one was lack of data

and the second one was lack of computing power. The problem of insufficient data

was solved with the help of internet. The developing technologies of computer

networking and internet allowed people from all around the world to upload data

which was openly accessible to everybody. This data abundance was converted to

training data for neural network with a certain effort. The problem of insufficient

computing power was solved with the invention of graphics processing unit (GPU)

and its general programming capability. The training of a neural network is a quite

computing heavy procedure. However, neural networks have an advantage which is

their availability to parallelization. Since GPU is developed for processing graphics,

it is a powerhouse for single instruction multiple dataset (SIMD) procedures. Central

7

processing unit also can run parallel algorithms as many as its core number which is

limited to a low number (typically 4-8). On the other hand, GPU can run massively

parallel algorithms. In 2012, AlexNet [6] won ImageNet competition and ignited the

today’s deep learning popularity.

2.1.1.2 Training Neural Networks

There are two stages in the process of training neural networks. One is forward pass

and the other one is backward pass. During forward pass, some amount of data is fed

into the input layer of a neural network. Each layer gets the previous layer’s output,

process it, and outputs it for the next layer. The final layer outputs various number

of values, depending on the task and architecture of the neural network. In supervised

learning, there is a ground truth value for each of these output values for every input

data. The aim of training is to adjust the parameters (weights) of the neural network

so that it generates outputs which are close to the ground truth values as much as

possible. Backward pass updates the parameters with a certain algorithm. But before

backward pass starts, the error is calculated. The error is some kind of difference

metric between outputs of the neural network and the ground truth values. The loss

functions are used for calculating error. There are many different loss functions for

different purposes. Once the appropriate loss function is selected, it is minimized

during backward pass by an optimizer. There are also different optimizers such as

stochastic gradient descent or Adam. The optimizer updates parameters while

calculating gradients for weights starting from last layer to first layer. Gradients are

scaled with a predefined value named learning rate. Then the scaled gradients are

used to update the parameters. The learning rate is an important hyperparameter and

choosing it effects the convergence of training greatly.

The backpropagation algorithm is the most fundamental part of training feed forward

neural networks. Consider the neural network in Figure 2.2 for the following

explanation of backpropagation algorithm. The example neural network has 3 layers

which are fully connected. Each arrow is associated with a weight. A neuron i in the

8

network sums all of its weighted inputs to come with neti. Then neti is fed into an

activation function f(.) which results yi or zi depending on the neuron’s layer’s

position. At the end of the network, z values are the predictions or outputs of the

network and t values are the ground truth values of the related inputs.

Figure 2.2. Example neural network

For this example, consider the cost function in (2-1).

 𝐽(𝑤) =
1

2
(𝑡̅ − 𝑧̅)2 (2-1)

The update rule of backpropagation algorithm is shown in (2-2). 𝑚 is the iteration

number. 𝑤 is a particular weight that connects two neurons. 𝐽 is the cost function. 𝛼

is the learning rate. The aim is finding ∆𝑤 and using it to update 𝑤𝑚 to 𝑤𝑚+1.

𝑤𝑚+1 = 𝑤𝑚 + ∆𝑤𝑚

𝑤ℎ𝑒𝑟𝑒 ∆𝑤 = −𝛼
𝜕𝐽

𝜕𝑤

(2-2)

9

The update with backpropagation algorithm on two weights, which are shown with

red arrows in the network, is explained below. First, consider the 𝑤𝑘𝑗 which connects

neuron j to neuron k. Since the learning rate is constant, backpropagation algorithm

only needs to find the gradient as in (2-3).

𝜕𝐽

𝜕𝑤𝑘𝑗
=

𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
∗

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 (2-3)

The second term is simply equal to related previous neuron’s output as in (2-4).

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝑦𝑗 (2-4)

We define a special term for future references as in (2-5).

𝑑𝑒𝑓𝑖𝑛𝑒 𝛿𝑘 ≜ −
𝜕𝐽

𝜕𝑛𝑒𝑡𝑘

= −
𝜕𝐽

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘

= (𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘)

(2-5)

As a result, the gradient is found as in (2-6).

𝜕𝐽

𝜕𝑤𝑘𝑗
= −𝛿𝑘 ∗ 𝑦𝑗 (2-6)

The resultant gradient is used to calculate ∆𝑤𝑘𝑗 as in (2-7). Every term in this

equation is known during backward pass. Therefore, 𝑤𝑘𝑗 can be updated

accordingly.

∆𝑤𝑘𝑗 = −𝛼 ∗ (−𝛿𝑘 ∗ 𝑦𝑗)

= 𝛼 ∗ 𝛿𝑘 ∗ 𝑦𝑗

= 𝛼 ∗ (𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘) ∗ 𝑦𝑗

(2-7)

The procedure for 𝑤𝑗𝑖 is a bit different. The gradient for 𝑤𝑗𝑖 is extended using chain

rule as in (2-8).

10

𝜕𝐽

𝜕𝑤𝑗𝑖
=

𝜕𝐽

𝜕𝑦𝑗
∗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
∗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
 (2-8)

The first term can be extended as in (2-9). Note that we can see 𝛿𝑘 in the extended

form. 𝛿𝑘 is actually backpropagated from the next layer.

𝜕𝐽

𝜕𝑦𝑗
=

𝜕

𝜕𝑦𝑗
[
1

2
∑(𝑡𝑘 − 𝑧𝑘)2

𝑐

𝑘=1

]

= − ∑(𝑡𝑘 − 𝑧𝑘) ∗
𝜕𝑧𝑘

𝜕𝑦𝑗

𝑐

𝑘=1

= − ∑(𝑡𝑘 − 𝑧𝑘) ∗
𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
∗

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗

𝑐

𝑘=1

= − ∑(𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘) ∗ 𝑤𝑘𝑗

𝑐

𝑘=1

(2-9)

The second and third term can be found as in (2-10). The second term is nothing but

the derivative of the activation function. The third term is the output of the related

previous neuron which turns out to be input for this particular example. However, it

could have been the output of a neuron in another hidden layer.

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
= 𝑓′(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖

(2-10)

We can again define another special term for future references as in (2-11).

 𝑑𝑒𝑓𝑖𝑛𝑒 𝛿𝑗 ≜ 𝑓′(𝑛𝑒𝑡𝑗) ∗ ∑ 𝑤𝑘𝑗 ∗ 𝛿𝑘

𝑐

𝑘=1

 (2-11)

As a result, the gradient is found as in (2-12).

11

𝜕𝐽

𝜕𝑤𝑗𝑖
= 𝑥𝑖 ∗ 𝑓′(𝑛𝑒𝑡𝑗) ∗ (− ∑ 𝑤𝑘𝑗 ∗ 𝛿𝑘

𝑐

𝑘=1

)

= 𝑥𝑖 ∗ (−𝛿𝑗)

(2-12)

The resultant gradient is used to calculate ∆𝑤𝑗𝑖 as in (2-13). All of the terms in this

equation are known during the backpropagation as well. Therefore, 𝑤𝑗𝑖 can also be

updated using the update rule during backward pass.

 ∆𝑤𝑗𝑖 = 𝛼 ∗ 𝑥𝑖 ∗ 𝛿𝑗 (2-13)

To update a weight in a layer, there is always a term needed from the next layer. This

is the result of error calculation at the final layer. These terms are backpropagated

starting from final layer to the first layer. The backpropagated terms are the special

definitions that we made. Those special terms are 𝛿𝑘 and 𝛿𝑗. Note that 𝛿𝑘 is only used

for backpropagation from output layer to a hidden layer. On the other hand, 𝛿𝑗 is

used for hidden layer to hidden layer and hidden layer to input layer.

A clear understanding of backpropagation algorithm is necessary for quantization

research. Note that chain rule is extensively used in the backpropagation algorithm.

This means every function that is used in the forward pass must be differentiable.

However, the quantizer functions are not differentiable. Therefore, a workaround is

required to train quantized neural networks with backpropagation algorithm. This

workaround is explained in the following quantization background information.

2.1.1.3 Convolutional Neural Networks

There are many different types of deep neural networks. Every different deep neural

network type has advantages and disadvantages. They have architectural differences

which make them fit to certain tasks better than others. For example, recurrent neural

networks and long short-term memory units (LSTMs) [7] are good for tasks with

sequential data such as natural language processing (NLP) and speech recognition.

12

On the other hand, convolutional neural networks are good for tasks with visual data

such as images. In this section, convolutional neural networks are explained in detail

since image classification task with convolutional neural networks is used for the

experiments in this thesis.

There are couple of reasons of convolutional neural networks’ superior performance

with image data compared to regular neural networks. First of all, they are scalable

with image data. A regular neural network requires a weight for each pixel in the

first layer of the network. The required amount of weights increases rapidly in the

following layers. Therefore, total number of parameters become quite large. As a

result, the model becomes inefficient for the task and it easily overfits the data due

to huge number of parameters. On the other hand, convolutional neural networks

employ filters which have various sizes independent from the size of the image. A

filter is used by sweeping it on the image to calculate the next layer’s input.

Therefore, a weight in a filter is re-used for multiple pixels, unlike regular neural

networks. Secondly, the shapes of weights in convolutional neural networks are

specifically designed for visual data. A regular neural network uses a weight for each

pixel. The approach of regular neural network does not consider the shape and type

of the data. It simply serializes the input data and acts to the data as a set of features.

On the other hand, the filters of convolutional neural networks have a similar shape

to images. For example, images have three dimensions, namely width, height and

channels. Filters also have the same three dimensions and one more dimension which

is named output channels. While the channel dimension is same for the input data

and filters, the width and height of the filters are typically smaller than the width and

height of the input data. The number of output channels determines the channel

number of the output of convolution operation. This shape similarity causes better

results for image related tasks in the deep neural networks.

A typical convolutional neural network has three main layers. These layers are

stacked to come up with deep convolutional neural networks. They are convolution

layer, pooling layer and the fully connected layer. While there may be other type of

layers, these three typically define the convolutional neural networks.

13

2.1.1.3.1 Convolution Layer

In this layer, the convolution operation is applied to the input with the filters of the

layer. The aim is to catch a certain local pattern in the image. In the earlier layers of

the neural network, these patterns are low level features such as edges or rounded

shapes. In the late layers of the neural network, these patterns become high level

features such as eye or nose. The input is a 3D array with dimensions names width,

height and channel. The output is also a 3D array with same dimension names since

it is typically input to another convolution layer. The filter is a 4D array with

dimension named input channel, width, height and output channel. The values of

input channel and output channel of the filter must be same with channel values of

the input and output, respectively. Elements of a simple convolution operation is

illustrated in Figure 2.3.

14

Figure 2.3. Convolution operation

In this simple example, the input has 3 channels each of them has 5x5 pixels. The

filter has also 3 input channels, 2x2 weights for each input channel and 1 output

channel. The filters are swept in their input, the matching cells are multiplied and the

15

results of 3 channels are accumulated in the related output cell. The calculation of

two output cells are shown as examples in (2-14).

𝑜0 = (𝑎0 ∗ 𝑖0 + 𝑎1 ∗ 𝑖1 + 𝑎2 ∗ 𝑖5 + 𝑎3 ∗ 𝑖6)

+ (𝑏0 ∗ 𝑗0 + 𝑏1 ∗ 𝑗1 + 𝑏2 ∗ 𝑗5 + 𝑏3 ∗ 𝑗6)

+ (𝑐0 ∗ 𝑘0 + 𝑐1 ∗ 𝑘1 + 𝑐2 ∗ 𝑘5 + 𝑐3 ∗ 𝑘6)

𝑜9 = (𝑎0 ∗ 𝑖11 + 𝑎1 ∗ 𝑖12 + 𝑎2 ∗ 𝑖16 + 𝑎3 ∗ 𝑖17)

+ (𝑏0 ∗ 𝑗11 + 𝑏1 ∗ 𝑗12 + 𝑏2 ∗ 𝑗16 + 𝑏3 ∗ 𝑗17)

+ (𝑐0 ∗ 𝑘11 + 𝑐1 ∗ 𝑘12 + 𝑐2 ∗ 𝑘16 + 𝑐3 ∗ 𝑘17)

(2-14)

Note that the output channel number of the filters is 1. Therefore, there is only one

output frame calculated. If the output channel number would be larger than 1, the

same operation would be repeated with a different set of filters to calculate output

channel number times output frames.

One important point in the convolution operation is the output spatial sizes. While

the input’s spatial size (width and height) is 5, it is decreased to 4 in the outputs. This

is inevitable since the filters have also spatial sizes larger than 1. However,

sometimes it is required to keep the spatial sizes same through convolution layers.

In this case, the general solution is to apply padding with zero to the input. This is

basically adding zero elements around the inputs. The required depth of padding

changes with the filter size.

Another important point in the convolution operation is the stride. Stride is the

number that determines how to sweep the filters on the inputs. If it is 1 as in the

example, the filters move one cell by one cell. If it would be 2, then the filters would

move two cells by two cells. Increasing the stride results in decreased output spatial

sizes.

The output spatial size can be calculated with the formula in (2-15). In this formula,

O is the output spatial size, I is the input spatial size, F is the filter spatial size, P is

the padding depth, and S is the stride.

16

 𝑂 =
𝐼 − 𝐹 + 2𝑃

𝑆
+ 1 (2-15)

2.1.1.3.2 Pooling Layer

The aim of this layer is downsampling. While downsampling can be an easy task,

making it useful to the task can be a bit tricky. This layer, like convolution layer,

uses the fact that the data is visual. It focuses to locality of the features. It

downsamples the data by forwarding the useful features to next layer while blocking

the less important ones. One advantage of the pooling technique is that it does not

use any parameters. Instead, it uses a heuristic to decide what to forward to next

layer. The pooling operation works by sliding a window on the input, like

convolution layer. At each step, a certain operation is applied to the cells within the

window and just one cell is forwarded to the next layer. Therefore, the spatial size of

the data decreases. The operation is applied to each channel separately. As a result,

the data becomes denser in terms of information.

The two pooling techniques are illustrated in Figure 2.4. In this simple example, the

input is 1 channel 4 by 4 data. The pooling window size is 2 by 2. The shown results

are for techniques named as maximum pooling and average pooling. As the names

suggest, the procedures for both of them are straight-forward. In the maximum

pooling, the values of the cells in the pooling window are compared and the one with

maximum value is forwarded to the output. In the average pooling, the values of the

cells in the pooling layer are averaged and the result is forwarded to the output. The

stride concept in the convolution layer is also applicable in the pooling layer.

Increasing the stride further reduces the spatial size of the outputs.

17

Figure 2.4. Pooling operations

The output spatial size of the pooling layer is calculated using (2-16).

 𝑂 =
𝐼 − 𝑊

𝑆
+ 1 (2-16)

In this equation, O is the output spatial size. I is the input spatial size. W is the

window size. S is the stride.

2.1.1.3.3 Fully Connected Layer

This layer is the fundamental part of the regular neural network as well.

Convolutional neural networks use fully connected layers at the end of the neural

network. Generally, the convolution and pooling layers decrease the spatial size and

increase the channel number of data through neural network. Once the spatial size

gets small enough and channel number gets large enough, the data is flattened. The

flattening operation is basically converting 3D data to 1D data just by serializing.

After flattening, depending on the architecture, one or more fully connected layers

are used. Note that there are some convolutional neural network architectures that do

18

not use fully connected layers at all. Therefore, even though it is very common to

use at least one fully connected layer in convolutional neural networks, it is not vital

like other two layers. Some illustrations of fully connected layers can be seen in

Figure 2.2.

2.1.2 Quantization

2.1.2.1 Compression

One of the main goals of quantization is compression. Many state-of-the-art deep

learning models have parameters that cost memory in the range of MBs. In Figure

2.5, pre-trained models in Keras library [8] are shown with their sizes. The smallest

required size is 14 MB for MobileNetV2. The largest required size is 549 MB for

VGG-19. These models are impossible to store in on-chip memory of many

embedded processors. The off-chip memory access can be too expensive for

inference on top of the low processing power of embedded systems. Moreover, some

embedded systems do not have the required off-chip capacity to store these models.

Even if some embedded systems have the required off-chip memory capacity to store

these models, they can benefit from compression by putting the whole model in their

on-chip memory.

19

Figure 2.5. Keras pre-trained models and their sizes

Compression with quantization is best described in Deep Compression [9]. The

following formula from the paper calculates the compression rate of any quantized

neural network.

 𝑟 =
𝑛𝑏

𝑛 log2 𝑘 + 𝑘𝑏
 (2-17)

In the formula, 𝑛 is number of connections, 𝑏 is the number of bits to represent each

weight prior to quantization, and 𝑘 is the cluster number after the quantization

process. One important point about 𝑘 is that it must be power of 2 because of the

binary representation. For example, if 3 clusters will be used for a quantization, k is

rounded to 4. Because, at least 2 bits are required to represent 3 clusters.

In the process of quantization, the full precision weights are quantized to a number

of cluster values. Then those cluster values are saved in a full precision array. Then

each weight saves the index of that array instead of the actual cluster value. The term

𝑛𝑏 represents the required total number of bits before quantization. log2 𝑘 represents

the required number of bits to represent all of the indexes. 𝑘𝑏 represents the required

number of bits to save the array of cluster values. Consider a hypothetical 3x3x3

20

filter for a convolutional layer. Quantization of this filter is illustrated in Figure 2.6.

A simple linear quantization to 4 clusters is used. For this particular example, n is

27, b is 32 and k is 4. When we use these values in the formula, the compression rate

is calculated as 4.74.

Figure 2.6. Compression example

Note that this is a pretty simple filter with only 27 weight values. However, deep

neural networks have parameters ranging from thousands to millions. Quantizing

those deep neural networks simplify the formula (2-17). When 𝑛 goes to infinity, the

term 𝑘𝑏 becomes negligible. Thus, the formula becomes simply the ratio of 𝑏 to

log2 𝑘. Since the deep neural networks are almost always trained with 32-bit floating

point precision (𝑏 = 32), the possible compression rates are 32x,16x,8x,4x and 2x

depending on the cluster number (𝑘). These compression rates are true for

homogeneous quantization, i.e. all layers are quantized to same number of clusters.

If some kind of heterogeneous quantization is used, different compression rates can

be achieved and still can be calculated using (2-17) by expanding related terms.

21

2.1.2.2 Straight Through Estimator

Quantizer functions are the main algorithms of the quantization research. Since

quantizer functions cluster full precision weights into some cluster points, they can

be seen as some variants of the step function. As in the step function, the quantizer

functions’ derivative is calculated as 0 at almost entire space. Therefore, quantizer

functions block the gradient flow during backpropagation due to the chain rule,

which prevents the model from learning its task. As a result, a workaround is required

to work with backpropagation algorithm during quantization aware training. The

most common method is to use straight-through estimators [10][11]. Straight-

through estimators basically replace a function’s derivative with a predefined

function. Most of the time this predefined function is the identity function or slightly

modified version of the identity function. The mathematical notation of forward pass

and backward pass of a quantizer function f(x) with identity straight-through

estimator can be seen as

Forward pass 𝑦 = 𝑓(𝑥)

(2-18)

Backward pass
𝜕𝐽

𝜕𝑥
=

𝜕𝐽

𝜕𝑦

In this specific example, x is a full precision value which is mapped to one of the

limited values of y, by using f(.) function. J denotes the cost function. During

backward pass, the gradient of y is calculated with backpropagation algorithm. Then

in this particular step during backward pass, straight-through estimator is used to

equate the gradient of x to gradient of y, independent from the function f(.).

2.1.2.3 Full Precision Weights in Training

One of the most important rules of training quantized neural networks is keeping the

full precision weights during training. This is required since gradient descent

22

methods work with very small updates. For a clear explanation, consider the figure

below.

Figure 2.7. Full precision weights (left) and quantized weights (right)

In Figure 2.7, full precision weights and quantized weights of a layer is shown. A

simple quantization technique is followed where negative values are quantized to -1

and other values are quantized to 1. If the full precision weights were discarded after

quantization, updates were done on quantized weights and the updated weights were

quantized using the same technique, the distribution of quantized weights would

never change. Because as mention previously, the gradient descent algorithm works

with small update to converge. No update could flip one weight to other side. Even

if the magnitudes of updates are increased with learning rate, the model could not

converge.

During forward propagation, full precision weights are first quantized, then

quantized weights are used for the operation of the layer. So, the full precision

weights are never directly used in the layer. The full precision weights are there to

provide accurate quantized weights. In most of the methods, after layer operation is

done, quantized weights are discarded. The quantized weights are not saved but

instead they are created from the full precision weights using their quantization

technique at every forward propagation. During backward propagation, updates are

done to full precision weights. The quantization operation is bypassed since its

derivative is zero.

23

As a result, the full precision weights are trained while quantized weights are used.

At the end of the training full precision weights and quantization operation are

discarded. The quantized weights are put in the place of full precision weights and

the inference works as usual.

2.2 Literature Review

2.2.1 Efficient Models Ground Up

In this branch of efficient deep learning research, analyzation of current knowledge

and state-space search of hyper-parameters are used to come up with new efficient

deep learning architectures.

In [1] , an analysis of CNN architectures resulted in 3 strategies. The first one is to

use 1x1 filters instead of 3x3 ones as much as possible. The second one is to keep

the number of input channels to 3x3 filters as small as possible. The last one is to

downsample in the network as late as possible. Using these strategies, a new

convolution block, namely Fire module, is designed. Then new CNN architectures

are built using the Fire module repetitively. The parameters of the CNN architectures

with Fire modules are determined by a state-space search considering accuracy and

model size. These CNN architectures achieved the same accuracy with AlexNet[6]

with 50 times less number of parameters.

In [2], standard convolution operation is separated into two new operations, namely

depthwise convolution and pointwise convolution. These operations require a

smaller number of parameters than standard convolutions while achieving almost as

much as feature representation with standard convolutions. In a follow-up work [12],

linear bottlenecks and inverted residuals are added to depthwise convolutions to

create even more efficient models.

In [3], a channel shuffle operation is applied after 1x1 group convolutions. The

channel shuffle operation is followed by a depthwise convolution operation and

24

another group convolution. A shortcut path is also added to these four operations to

create one ShuffleNet unit. These ShuffleNet units are used repetitively to create

efficient deep learning models.

2.2.2 Quantization Based Approaches

2.2.2.1 Quantization Aware Training and Post Quantization

In this branch deep learning models are trained while quantization is being

considered. In order to do that, quantizer functions are defined. These quantizer

functions are applied on weights and activations. Quantization takes place during

forward propagation most of the times. Some works quantize only weights, some

works quantize only activations and some other works quantize both of them.

In [13], the weights of neural networks are binarized. Therefore, the weights are

constrained to the values of -1 and 1. Two different goals and their specific quantizer

functions are proposed. Straight-through estimator is used for backpropagation in

both of the quantizer functions. The first goal is to quantize the weights in order to

create a smaller and more efficient model. The quantizer function for the first goal is

sign(.) function. After training, the full precision weights are completely replaced

with binary ones. The second goal is to use quantization for regularization purposes.

A stochastic quantizer is proposed for this goal. After training, the full precision

values are continued to be used. This work is followed by an extension [14] which

quantizes the activations as well as weights. The activation quantization is done with

sign(.) function and therefore, activations can have values of -1 and 1. Quantizing

both weights and activations to the values of -1 and 1 brings a significant

computation efficiency since the matrix multiplication can be replaced with a bitwise

XNOR operation. This work proves this efficiency by writing an XNOR GPU kernel

which is reported to be 5.3 faster than conventional unoptimized matrix

multiplication kernel. Furthermore, this work also proposes a shift-based batch

normalization method to accelerate training as well.

25

In [15], the weights are quantized with sign(.) function and then multiplied with a

scaling factor. The scaling factor is determined by taking the average of absolute

weight values of each filter. The activations are also quantized similarly, using

sign(.) function and a scaling factor. Straight-through estimator is used for

backpropagation of quantizer functions. They benchmarked neural networks by

quantizing only the weights and quantizing both the weights and activations. They

reported their results on ImageNet dataset.

In [16], the weights, activations and gradients are quantized. All of the quantizer

functions are used with straight-through estimator in backpropagation. Different

levels of quantization are tried and benchmarked. For binary quantization, sign(.)

function is used with a scaling factor. The scaling factor is determined by taking the

average of absolute values of the weights in whole layer. For higher level of

quantization, i.e. quantization requiring 2 bits or more, a linear quantizer function is

defined with clipping. For activation quantization, a linear quantizer function is used.

For gradient quantization, a stochastic quantizer function is defined. This function

employs a noise factor which is reported to be necessary to compensate the potential

bias introduced by quantization.

In [17], the weights are clustered into three values, i.e. ternary values. Three cluster

values require two bits to be represented distinctly. The quantizer function assigns

the full precision values to these three cluster points. The quantizer function works

with a threshold value. If a full precision value is larger than the threshold, it is

quantized to 1. If a full precision value is smaller than the negative of threshold, it is

quantized to -1. All other values are quantized to 0. After quantization, a scaling

factor is applied to quantized values. The scaling factor is determined by taking the

average of absolute values of the full precision weights which are larger than the

threshold.

In [18], the weights are clustered into three values. The quantizer functions assigns

the full precision values to cluster values based on a threshold. The cluster values are

zero, a positive cluster value and a negative cluster value. Positive and negative

26

cluster values are not symmetrical. These two cluster values are trainable. In other

words, they are learnt during backpropagation to minimize the overall loss. This

comes with a disadvantage which is the resultant ternary weights are not

symmetrical. Asymmetrical weights are harder to implement in hardware for a

possible acceleration.

In [19], the weights of a pre-trained model are quantized using an incremental

algorithm. The incremental algorithm is divided into three stages. These stages are

names as weight partition, group-wise quantization and re-training. In the weight

partition stage, the full precision weights (all of the weights at the start of the

algorithm) are divided into two groups. In the group-wise quantization, one group is

quantized to values which are either 0 or power of 2. Then, this group is frozen. In

last stage, re-training, the other group (not quantized one) is re-trained to compensate

the accuracy loss caused by the quantization of the first group. These three stages are

repeated on the remaining full-precision weights. At every repetition, the number of

full precision weights is decreased and eventually all of the weights are quantized to

either 0 or power of 2. The cluster values are chosen specifically to be implemented

by bit shift operations. Therefore, expensive multiplication operation can be replaced

with bit shift operations. When bit width of 5 is used, the quantized models achieve

accuracies which are similar to or better than full precision models’ accuracies. Also,

state-of-the-art results are delivered with aggressive quantization levels which are

experimented down to 2 bits.

In [20], the 32-bit full precision weights are quantized to 8-bit integers. The proposed

quantizer function is actually an affine mapping of 8-bit integers to 32-bit full

precision weights. In order to do this mapping, two parameters are defined for the

quantizer function. First one is called zero-point parameter which corresponds to 0

in the domain of full precision weights. In other words, the affine mapping of zero-

point parameter (an 8-bit integer) is 0 which is represented with 32-bit floating

points. The second parameter is scaling factor which is defined as the ratio of range

of full precision weights to range of quantized weights. Considering these two

parameters, the quantizer function becomes

27

 𝑤 = 𝑆 ∗ (𝑤𝑞 − 𝑧) (2-19)

Where 𝑤, 𝑆, 𝑤𝑞 , 𝑧 represent full precision weights, scaling factor, quantized weights

and zero-point parameter, respectively. This method is used as both post-

quantization method and quantization-aware training method. However, it is

reported that when it is used as post-quantization method, small neural networks face

with a large accuracy drop which may be compensated with re-training. The best

results are achieved when it is used as quantization-aware training method. This

method is realized with TensorFlow Lite.

There is also another branch of research where a reinforcement learning agent is

trained to automatically determine some hyperparameters related with quantization.

The searched hyperparameters are mostly the level of quantization for each layer. In

other words, the agent decides the bitwidth of the quantization for each layer. The

reasoning behind using reinforcement learning framework for this task is that the

state space is huge for deep neural networks. Even if the maximum bitwidth of

quantization is limited to 8 for all layers, the state space becomes 8n where n is the

number of layers. Therefore, the state space increases exponentially with the number

of layers.

In [21], a reinforcement learning framework is proposed to find the quantization

level of the weights of deep neural networks. Special state representation and reward

function are defined. The state representation includes information about the

bitwidth of the quantized weights, memory access energy, multiply accumulate

operations, quantized model’s accuracy and full precision model’s accuracy. The

reward function gives the importance on preventing accuracy drop over

compression. That results in a behavior where the agent compresses the deep neural

network as long as the current action does not cause a significant accuracy drop. The

actions of the agent are limited to choosing a bitwidth between 1 and 8. After the

agent makes its action, the model is retrained and then the reward is calculated.

Proximal policy optimization is used to train the agent. A simple linear quantization

28

technique is used for all layers. The weights are first clipped to the range of -1 and

1, then linearly quantized depending on the chosen bitwidth.

In [22], a hardware-aware reinforcement learning framework is proposed. The

purpose is to find quantization levels of the layers in a deep neural network. The

main contribution is that this work does not observe only the metrics of the neural

network, but also gets feedback from simulator of hardware accelerators. Therefore,

the agent quantizes the neural network considering both the properties of the neural

network and the hardware accelerator which it will run on at the end. The observation

state includes information on input-output channel sizes, kernel and stride sizes,

input feature size, number of parameters and a separating indicator for depthwise

convolution for convolutional layers. The same information for fully connected

layers includes input-output hidden unit sizes, input feature size, number of

parameters. A binary indicator and the previous action are also added to both of the

layers’ state representations. All representations are normalized to the range [0,1]. A

continuous action space is used. The agent outputs an action value between 0 and 1,

then this value is rounded to an integer bitwidth value, typically between 2 and 8.

The reward signal is simply the scaled difference of accuracies of quantized model

and original model. In the framework, quantizing a layer is a step while quantizing

all layers is an episode. After finishing an episode, a feedback signal of hardware

constrains is received from the simulator of hardware accelerator. If the resulting

model exceeds a hardware constraint, the bitwidths of layers are sequentially

decreased until the constraint is satisfied. Deep deterministic policy gradient is used

for the agent. Given the bitwidth of a layer, a linear quantization function is used.

In [23], a reinforcement learning is proposed to automatically prune neural networks.

The goal is to reduce the number of parameters in a neural network using a trained

agent. Unlike quantization works, the remaining parameters of the weights are

represented full precision. The observation state includes index of the layer, input

and output channels, height and width of the input, stride and size of the kernel,

FLOP number, reduced FLOPs in previous layers and remaining FLOPs in next

layers, previous action on current layer. All of the observation quantities are

29

normalized to the range 0 and 1. The agent outputs an action which is the

compression rate which is a value between 0 and 1. This compression rate is

calculated with two different way depending on the pruning method. For [9],

compression rate is the ratio of number of zeros to number of all parameters. For

channel pruning in [24], the compression rate is the ratio of the number of post-

pruning channels to the number of after pre-pruning channels. A maximum allowed

compression rate is put to limit the actions of the agent. Deep deterministic policy

gradient is used for the agent

31

CHAPTER 3

3 QUANTIZATION AWARE TRAINING BASED METHODS

We have analyzed the most successful and known selected methods from the

literature and explained them in this chapter. There are couple of reasons why we

chose these methods. Firstly, they are the most successful and known methods in

their sub-category which is quantization-aware training. Secondly, they quantize

weights during forward propagation. Lastly, their quantization heuristics are similar

since all of them use full precision weights and their distribution to come with

quantized weights.

3.1 BinaryConnect

BinaryConnect [13] is proposed to quantize weights into two cluster values -1 and

1. In order to do this quantization, they applied the function below to the weights

 𝑤𝑞 = {
+1 𝑖𝑓 𝑤 ≥ 0,
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3-1)

Where 𝑤𝑞 denotes quantized weights and 𝑤 denotes the full precision weights.

Furthermore, the weights are clipped to the interval [-1,1] right after the weight

updates. This clipping is applied in order to fully utilize the quantizer function since

if weights get much bigger than the range of quantized values, weight updates do not

change anything. This quantizer function is used when the aim is to train a quantized

neural network. Therefore, after the training is finished, the full precision weights

are completely replaced with quantized weights.

BinaryConnect proposed another quantizer function which has a different purpose

than training a quantized neural network. This quantizer function’s aim is to

regularize the neural network as in the Dropout [25] concept. It is a reasonable aim

32

since quantization adds noise to the weights as in Dropout. The used quantizer

function is

 𝑤𝑞 = {
+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 = 𝜎(𝑤),
−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝.

 (3-2)

Where 𝜎(.) is the hard sigmoid function which can be formulated as

 𝜎(𝑥) = max (0, min (1,
𝑥 + 1

2
)) (3-3)

This stochastic quantizer function is used during training. However, the inference is

done with full precision weights. As a result, the quantization is used only for

regularization at training, just like Dropout.

3.2 Binarized Neural Networks

The work of Binarized Neural Networks [14] is an extension to BinaryConnect. The

BinaryConnect’s quantizer function (3-1) and clipping concept is used for weights,

without a change, in Binarized Neural Networks. The one significant addition to

BinaryConnect is the quantization of activations. The same quantizer function (3-1)

is used for activations as well. Even though same clipping concept is used with

BinaryConnect, this work puts the clipping operation into straight-through estimator

of the quantizer function as

𝜕𝐶

𝜕𝑤𝑞
=

𝜕𝐶

𝜕𝑤
 ∗ 1|𝑤| ≤1 (3-4)

Here C is the cost function. The term 1|𝑤| ≤1 is equal to 1 if the absolute value of 𝑤

is smaller than 1, and equals to 0 otherwise. Actually, this clipping behavior can be

simply implemented using the hard tanh function below

 𝑦 = 𝐻𝑡𝑎𝑛ℎ(𝑥) = max (−1, min(1, 𝑥)) (3-5)

Since the derivates of horizontal lines will be 0, backward pass through hard tanh

function will work as clipping during backpropagation.

33

Another important contribution in this paper is the usage of XNOR operation. Since

both weights and activations are binarized, expensive multiplication operation can

be completely avoided during forward propagation. Instead XNOR operation can be

applied and set bits can be accumulated. In this work, related XNOR GPU kernel is

implemented, benchmarked against unoptimized matrix multiplication and proven

to be much faster.

3.3 DoReFa-Net

DoReFa-Net proposes methods to quantize weights, activations and gradients.

Different quantizer functions are proposed for weights, considering the level of

quantization which is basically the required number of bits to represent quantized

values. For binary quantization, the proposed quantizer function is

 𝑤𝑞 = 𝑠𝑖𝑔𝑛(𝑤) ∗ 𝐸(|𝑤|) (3-6)

They also proposed another quantizer function which is used for quantizing

activations. That quantizer function is

 𝑦 =
1

2𝑘 − 1
∗ 𝑟𝑜𝑢𝑛𝑑((2𝑘 − 1) ∗ 𝑥) (3-7)

This quantizer function is named as 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘. It is basically a linear quantizer

that outputs a quantized value between 0 and 1. This 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 is also used for

weight quantization when weights are quantized to 3 or more cluster values. In

those cases, 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 is not directly used. It is used as

 𝑤𝑞 = 2𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 (
tanh(𝑤)

2max (|tanh (𝑤)|)
+

1

2
) − 1 (3-8)

The purpose of using tanh(.) is to clip input values to the range of -1 and 1.

34

3.4 Ternary Weight Networks

TWNs cluster the weights into three values, one value is zero and the other two

values are symmetrical with respect to zero. In order to quantize full precision

weights, an optimization problem is defined as minimization of Euclidian distance

between full precision weights and the scaled ternary weights as below.

 𝑎∗, 𝑤𝑞
∗ = arg min

𝑎,𝑊𝑡
𝐽(𝑎, 𝑤𝑞) = ||𝑤 − 𝑎𝑤𝑞||

2

(3-9)

 𝑠. 𝑡. 𝑎 ≥ 0, 𝑤𝑞 𝜖 {−1, 0, 1}

This optimization problem could be solved by taking derivatives of the cost function

with respect to 𝑎 and 𝑤𝑞. However, one derivative would be dependent to the other

parameter. This means we cannot find one deterministic solution for this problem

using this way. Therefore, an approximated solution is proposed. A function is

defined, as below, to find ternary values of weights using the corresponding full

precision ones.

 𝑤𝑞 = {

+1 , 𝑖𝑓 𝑤 > ∆

0 , 𝑖𝑓 |𝑤| ≤ ∆
−1 , 𝑖𝑓 𝑤 < −∆

 (3-10)

Using this quantization equation and the expanded form of the cost function (3-11),

We can come up with a new problem formulation as (3-12).

 𝐽(𝑎, 𝑤𝑞) = 𝑎2𝑤𝑞
𝑇𝑤𝑞 − 2𝑎𝑤𝑞

𝑇𝑤 + 𝑤𝑇𝑤 (3-11)

 𝑎∗, ∆∗= arg min
𝑎≥0,∆≥0

(|𝐼∆|𝑎2 − 2 (∑|𝑤𝑖|

𝑖𝜖𝐼∆

) 𝑎 + 𝑐) (3-12)

In (3-12), |𝐼∆| is the number of weights bigger than ∆ and smaller than −∆. The term

c is constant. Note that each term in (3-11) and (3-12) are equal in the same order,

35

when we use (3-10) in (3-11). From this point, given a particular ∆, we can find

optimal 𝑎∆
∗ by taking derivative of (3-12) with respect to 𝑎.

 𝑎∆
∗ =

1

|𝑰∆|
(∑|𝒘𝒊|

𝒊𝝐𝑰∆

) (3-13)

Then we plug 𝑎∆
∗ in (3-12) to find ∆∗ which result in (3-14). We can solve (3-14) by

making assumptions about the form of the distribution of 𝑤𝑖 values (full precision

weights). The assumption of full precision weights to have normal distribution is

actually well made since the weights are tend to have normal distribution after some

training. Then, ∆∗ can be found by sweeping it between 0 and maximum absolute

value of 𝑤𝑖 values. Considering normal and uniform distributions ∆∗ can be

approximated as 0.7 ∗ 𝐸(|𝑤|).

 ∆∗= 𝑎𝑟𝑔 max
∆>0

1

|𝑰∆|
(∑|𝒘𝒊|

𝒊𝝐𝑰∆

)

2

 (3-14)

37

CHAPTER 4

4 EXPERIMENTAL RESULTS

In this chapter, previously analyzed methods are implemented, benchmarked and

compared with each other.

4.1 Framework and Libraries

There many frameworks and libraries that are developed for deep learning and neural

networks. Throughout the short near history of deep learning, different frameworks

became prominent at their time and left their spot to another one. In the earlier days

of modern deep learning, the frameworks developed by universities were in use.

Almost all of these frameworks lost their popularity and discontinued or merged into

another framework. Even though there are still many active frameworks, two of them

are dominant in the research and industry environments. They became the most

prominent frameworks since they are developed and backed by large companies.

These frameworks are PyTorch [26] and TensorFlow [27].

PyTorch was released in 2016. Even though it was released one year after

TensorFlow, it gained popularity very quickly. There are couple of reasons behind

this rapid popularity increase. Firstly, it was easy to use since it did not require much

on top of Python programming language, unlike TensorFlow. Secondly, it was using

eager execution by default. Therefore, it was easier to write, run and debug a PyTorch

code. It is developed and maintained by Facebook.

TensorFlow was released in 2015. It became popular just after its release. In its

earlier versions (1.x), it was working with graphs. First, the neural network

architecture was defined as a graph. Layers were connected to each other in this

graph. Then, a session was started to feed data to the input of the graph. The graph

38

was processing the data layer by layer. Then the output was taken from the output

node of the graph. This workflow was inconvenient process compared to PyTorch.

TensorFlow started to lose popularity after PyTorch Release. Then they released

TensorFlow 2.0 where eager execution is introduced. TensorFlow also uses Keras

[8] as its high level API.

In this work, TensorFlow/Keras is used. Since quantization requires additional

calculations in the layer, custom layers are coded. These custom layers are inherited

from base Keras layers. The calculations of quantization on weights are done with

TensorFlow library functions.

4.2 Datasets

In this section, the datasets which are used in the experiments are explained. Even

though experiments are done to investigate the effects of quantization to deep neural

networks, there is still a task of the neural networks. This task is chosen to be image

classification. Therefore, the used datasets are image datasets with labels.

The first dataset is MNIST [28]. It is a dataset of images of hand-written digits. The

digits from 0 to 9 are present in the dataset. The images are grayscale which means

they only have one channel. The spatial sizes of the images are 28 by 28 pixels. There

are typically 60,000 images for training and 10,000 images for testing purposes.

The second dataset is Cifar-10 [29]. It is a dataset of real-life color images of 10

classes. The classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

and truck. Since the images are in color, they have 3 channels. The spatial sizes of

the images are 32 by 32 pixels. There are typically 60,000 images for training and

10,000 images for testing purposes. The images of classes are distributed evenly in

the given training and testing images.

39

4.3 Results

The methods, that fall into quantization aware training category, are implemented

and compared in this section. To ensure fair comparison, same architecture and same

hyperparameters are used. For meaningful comparison, the methods that quantize

only the weights are compared with each other and the methods that quantize both

the weights and activations are compared with each other.

In this section, the selected methods are benchmarked on a simple dataset, MNIST,

with a simple architecture, LeNet-5 [30]. Then the methods are benchmarked on

Cifar-10 dataset with VGG-7. VGG-7 is a VGG-like architecture defined in [17].

Quantized VGG-7 architectures are also compared with a ground-up efficient model.

Then, the methods are benchmarked on Cifar-10 dataset with ResNet20 and

ResNet32 [31] to examine the success of quantized models on deep and complex

architectures. Failures of weight quantization of deep and complex models are

shown. Various solutions are proposed to overcome these failures. Proposed

solutions are compared with each other. Relatively low accuracies of weight and

activation quantization of deep and complex models are shown. The reasons behind

these low accuracies are examined and shown. Quantized ResNet architectures are

also compared with a ground-up efficient model. Lastly, a ground-up efficient model

is quantized and compared with its base model.

In the following sections, some abbreviations are used for the methods. BC denotes

BinaryConnect [13], BNN denotes Binarized Neural Networks [14], DRF denotes

DoReFa-Nets [16] , TWN denotes Ternary Weight Networks [17]. Moreover, a

custom approach is developed using the DoReFa-Nets’ method. In this custom

approach, weights are quantized using DRF method and activations are not

quantized. This custom approach is named as DRF-W which denotes DoReFa-Nets-

Weights. Also, “Base” word is used to denote full precision models. Base models

are not quantized and used for comparison purposes.

40

4.3.1 A Simple Architecture and Dataset

In this section, a simple architecture and a simple dataset is used to compare

quantization methods. The used architecture is LeNet-5 [30] and the used dataset it

MNIST. The models are trained for 30 epochs with batch size of 128. Adam is used

for optimizing the categorical cross entropy loss. The learning rate is started with

0.001 and exponentially decayed down to 0.0001.

Table 4.1 Comparison of Quantization Methods on Simple Example

Models Accuracy (%) Compression

Base 99.54 1x

BC 99.50 32x

BNN 99.00 32x

DRF-W 99.43 32x

DRF 99.18 32x

TWN 99.51 16x

The weight quantizer methods do not sacrifice accuracy while compressing the

neural network significantly. However, the weight and activation quantizer methods

experience an accuracy drop considering the task’s simplicity. These results suggest

that the weight and activation quantizer methods might see significant accuracy

drops in complex neural network architectures and datasets.

4.3.2 VGG-7 Architecture

The used architecture is VGG-7 defined in [17]. The hyperparameters are total

trained epochs of 200 and batch size of 100. SGD with momentum of 0.9 is used as

the optimizer. Learning rate is started at 0.1 and multiplied with 0.1 at epoch 80,

120, 160.

41

4.3.2.1 Methods Quantize Weights Only

In this section, BinaryConnect, Ternary Weight Networks and DoReFa-Net without

activation quantization (named as DoReFa-W) methods are compared. Base model

(full precision) is also added to see accuracy degradation. The used dataset is Cifar-

10.

The improvement of validation set accuracies can be seen in Figure 4.1. It can be

roughly seen that TWNs have the least degradation from accuracy among all. Even

though a general idea can be extracted from this figure, more explanatory figures are

still required.

Figure 4.1. Validation set accuracies of Base, DRF-W, BC and TWN

The best test accuracy comparison is made in Table 4.2 If TWNs are used, the cost

of 16 times smaller model results in only 0.39% in accuracy. One important

observation in this comparison is that BinaryConnect and DoReFa-W have almost

the same accuracy. The only difference between the quantizer functions of

BinaryConnect (3-1) and DoReFa-W (3-6) is a scaling factor which is the average

value of the absolute values of the weight in the related layer. From the results of

42

this experiment, it can be said that scaling factor does not have a considerable effect

on accuracy when weights are quantized to two values.

Table 4.2 Test accuracy comparison of weight quantizer methods

Methods Test Accuracy (%) Compression Rate

Base 93.34 1x

BC 92.32 32x

DRF-W 92.29 32x

TWN 92.95 16x

Another important concept to consider is the convergence characteristics of the

experimented methods. Even though Figure 4.1 gives some idea about this topic, the

plot cannot be read clearly due to the oscillations in early epochs of the training. In

order to overcome this problem, another plotting method is applied to the same data.

Accuracy is averaged at each epoch from the start. For example, the first 3 accuracy

values are averaged at epoch three. Plotting this processed accuracy data removes

the oscillations and shows a better image in terms of convergence characteristics as

in Figure 4.2.

Figure 4.2. Improvement of average accuracies of weight quantizers and base

model

43

Plotting average accuracy actually gives a great insight about convergence. It can be

clearly seen that, as expected, base model has the best convergence characteristics

since its average accuracy increases more rapidly than the quantized models.

Interestingly, TWN and DRF-W shows very similar, almost identical, convergence

characteristics. They start to differ after 50th epoch, which is obviously the result of

the model’s capacity since while TWN converges to 92.95%, DRF-W converges to

92.29%. Even though a small gap is formed between TWN and DRF-W after 50th

epoch, average accuracy lines remain parallel. Even more interestingly, convergence

characteristics of BC and DRF-W differ a lot. Both of the methods converge to a

similar accuracy, at around 92.30%. However, Convergence of DRF-W is

considerably faster than BC. Therefore, it can be said that a scaling factor leads to a

faster convergence in binary quantizations.

4.3.2.2 Activation Quantization Along with Weight Quantization

In this section, the effects of activation quantization on models with quantized

weights are examined. Two activation and weight quantizer methods are compared

with each other and their weight-only quantizing versions. The methods are

Binarized Neural Network and DoReFa-Net while their weight-only quantizing

versions are BinaryConnect and DoReFa-W, respectively. DoReFa-Net proposes

different levels of quantization for activations. For fair comparison, DoReFa-Net

with binary activation quantization is chosen to be compared with Binarized Neural

Network.

Table 4.3 The comparison of methods quantizing weights and activations

Method Accuracy (%) Compression Rate

BNN 88.24 32x

DRF 90.15 32x

44

The test accuracies of the trained models of BNN and DRF is given in Table 4.3

DoReFa-Net has a better accuracy than BNN. Even though quantization levels of

weights and activations are same for these methods, the quantizer functions are

slightly different. The difference in weight quantizers is simply a scaling factor as in

3-6. The activation quantizing levels are binary in this case. BNN quantizes the

activations to the values of -1 and 1, while DoReFa-Net quantizes them to the values

0 and 1. This difference in the activation quantizer functions creates this results since

the only-weight quantizing versions, BC and DRF-W, have very similar test

accuracies (Figure 4.2).

Previously explained averaging accuracy method is applied to this case as well to

examine convergence characteristics. Figure 4.3 clearly shows that DRF learns faster

than BNN.

Figure 4.3. Improvement of average accuracies of BNN and DRF with base model

Similarly, the same method is applied to compare the weight-only quantized models

and fully quantized models in order to understand the effect of activation

quantization to convergence. The results are in the plots in Figure 4.4. The results

clearly show that quantizing activations make the models learn even slower than

weight-only quantized models.

45

Figure 4.4. Average accuracy comparison of weight quantization and

weight/activation quantization

Since both of these methods are similar in terms of quantization level, their weight

and activation quantizer functions are interchangeable. For example, a quantized

model can be trained with BNN’s weight quantizer and DRF’s activation quantizer.

Two hybrid models are created to investigate if there is a superior combination to

natural proposed methods. The results are given in Table 4.4

Table 4.4 Combinations of BNN and DRF

Methods BNN-Act DRF-Act

BNN-Weight 88.24 89.68

DRF-Weight 88.52 90.15

Activation quantizer of the BNN causes the largest degradation. It is clear to see that,

BNN-Weight/DRF-Activation model performs better than original BNN model.

BNNs have also an acceleration technique which employs XNOR function instead

of multiplying since whole weights and activations are constrained to -1 and 1. This

hybrid model actually does not lose this acceleration technique and proposes even

better one. The hybrid model’s weights are constrained to -1 and 1, activations are

constrained to 0 and 1. Therefore, these hybrid models can be implemented with only

46

two AND gates as in Figure 4.5. As a result, these hybrid models have a better

accuracy and a smaller number of gates than BNNs. Furthermore, since there are

only two parallel AND gates instead of one XNOR gate, they are also faster than

BNNs. On the other hand, since the number of cluster points increases to 3, the

required number of bits to store each value becomes 2 and compression rate

decreases to 16x.

Figure 4.5. Example implementation for hybrid models

4.3.2.3 Comparison with Ground-up Efficient Models

In this section, benchmarking and comparison of efficiently designed models and

quantized models are made. In the SqueezeNet paper [1], multiple architectures are

proposed. The proposed architectures include a vanilla one, the one with simple

residual connection and the one with complex residual connection. For this section,

we used vanilla SqueezeNet architecture and VGG-7 with quantized weights.

The results are given in Table 4.5 VGG-7 is a basic architecture but heavy on the

number of parameters side. Therefore, it requires 49.5MB for its weights even

though it is not a very deep architecture. SqueezeNet is a relatively deeper

architecture with its Fire Modules which are a bit more complex than the basic layers

of VGG. SqueezeNet requires only 2.78MB to store its weights. SqueezeNet’s

accuracy is considerably lower than the base VGG-7. However, it is completely

acceptable due its very efficient size. This weakness of VGG-7 can be eliminated

47

with the quantization methods. TWN compresses the VGG-7 down to 3.09MB which

is very close to SqueezeNet’s size. Furthermore, TWN’s model’s performance is still

1.12% higher than the SqueezeNet’s performance. DRF-W and BC compress the

VGG-7 even more, almost down to the half size of SqueezeNet, while achieving still

better performance than SqueezeNet.

Table 4.5 Comparison of SqueezeNet and Quantized Models

Models Accuracy (%)

Number of

Parameters

Required Space to Store the

Weights (MB)

SqueezeNet 91.83 727,626 2.78

VGG-7 (Base) 93.34 12,976,266 49.5

VGG-7 (BC) 92.32 12,976,266 1.55

VGG-7 (DRF-W) 92.29 12,976,266 1.55

VGG-7 (TWN) 92.95 12,976,266 3.09

While these results support that quantization achieves smaller and better models than

SqueezeNet, there are still overheads of deploying quantized models. Quantized

models require special hardware to be used. On the other hand, SqueezeNet is ready

after training and can run on all conventional hardware without an extra effort.

4.3.3 Quantization of Deep and Complex Models

In [20], it is claimed that aggressive quantization approaches, such as 1 and 2 bits,

are experimented with overparameterized models such as VGG [32] or AlexNet [6].

According to this claim, since these models are designed to perform marginal results,

they are not efficient and they already have much more parameters than required by

their related tasks. Therefore, compressing these models by quantization is easy

without a significant accuracy loss. However, it is raised that the real challenge

remains to be quantizing efficiently designed models.

48

In this section two ResNet [31] models are quantized. ResNet architecture is chosen

to address the previously mentioned problem. ResNets are deeper and more efficient

models than VGG architectures. While ResNet-20 and ResNet-32 have around 273K

and 468K parameters respectively, VGG-7 has around 12.982M parameters.

Therefore, it can be said that ResNet architecture is a good choice for examining the

success of quantization of models which are not overparameterized.

The first and last layers of the models are not quantized. This is a very common

practice since quantizing first and last layers of very deep models significantly

decreases the accuracy. Therefore, the compression rates of the quantized models are

given approximately.

The hyperparameters are total trained epochs of 200 and batch size of 100. SGD

with momentum of 0.9 is used as the optimizer. Learning rate is started at 0.1 and

multiplied with 0.1 at epoch 80, 120, 160.

4.3.3.1 Methods Quantize Weights Only

Quantizing ResNet20 with the methods of TWN and DRF-W causes a small

degradation in accuracy. The drop in accuracy becomes 0.28% and 1.9% with TWN

and DRF-W respectively. On the other hand, the accuracy loss in BC becomes 8.98%

which is certainly in the unacceptable range for this task, dataset and architecture.

Some methods and/or modifications to make BC work with deep and complex

models are discussed in the following section.

49

Table 4.6 Test Accuracy Comparison of Weight Quantizer Methods on ResNet20

ResNet20 Accuracy (%) Compression

Base 91.66 1x

BC 82.68 ~32x

DRF-W 89.76 ~32x

TWN 91.38 ~16x

The results for ResNet32 are similar to the ones for ResNet20 with the exception of

BC method. Being deeper and having more parameters, full precision ResNet32 has

already better accuracy than ResNet20. This superiority is applicable for TWN and

DRF-W as well. In ResNet32, the accuracy degradation from TWN and DRF-W are

0.81% and 1.78%. An interesting outcome of this experiment is that BC completely

fails to learn with same hyperparameters and training techniques. The next section

further examines this problem and suggests solutions.

Table 4.7 Test Accuracy Comparison of Weight Quantizer Methods on ResNet32

ResNet32 Accuracy (%) Compression

Base 92.05 1x

BC 10.00(Fail) ~32x

DRF-W 90.27 ~32x

TWN 91.24 ~16x

4.3.3.2 BinaryConnect Modifications for Deep and Complex Models

Before proposing solutions to this problem, the roots of the problem should be

identified. The problem is related with architecture. However, the problem is not

about the architecture’s deepness or complexity. It is about some of the residual

50

connections. In the original ResNet architecture [31], the spatial size is halved and

number of channels is doubled at the start of every stack of ResNet layers. At these

specific points, simple identity connections cannot be used since the dimension do

not match. The original paper suggests two solutions for this problem. The first one

is to use zero padding to match dimension. The second one is to use 1x1

convolutional layers to match the dimensions. Our implementation uses the second

approach. These 1x1 convolutional layers are the causes of the problem. Following

figure shows the weights distributions of some layers to point out the roots of the

problem.

51

Figure 4.6. The weight distributions of 3 layers from full precision and quantized

models

In Figure 4.6, the first column is from full precision model and the second column is

from BC model. The first row is from an arbitrary layer at the middle of the model.

The second and third rows are from residual connections. The weights from residual

connections are quantized quite asymmetrically. This situation causes a very large

disturbance at the end point of residual connection. Therefore, this disturbs the

meaningful flow of the information.

52

One possible solution would be not quantizing these weighted residual connections

just like the first and the last layer of deep neural networks. In Table 4.8 The results

of this approach are shown.

Table 4.8 BC with not quantizing weighted residual connections

Model Accuracy (%)

ResNet20-BC 89.60

ResNet32-BC 90.65

Another possible solution would be proposed by slightly modifying the architecture.

The modification is completely eliminating these problematic residual connections.

The residual connections which are identity functions are still used. However, the

residual connections with 1x1 filters are simply deleted. The results of this approach

are shown in Table 4.9 .

Table 4.9 BC without weighted residual connections

Model Accuracy (%)

Modified ResNet20-BC 89.03

Modified ResNet32-BC 91.11

There can be other solutions by modifying some elements. As DRF-W method

successfully quantizes deep and complex models with small degradation to accuracy,

the solution of the BC method’s problem can be found in the comparison of DRF-W

and BC methods. For this comparison, DRF-W is specially suggested since both

DRF-W and BC are binary quantizers. Moreover, they both use the same

quantization function (sign(.)), while DRF-W is the scaled version of the BC. The

scaling factor of DRF-W is a floating-point value which is much less than 1, cluster

point of the BC method. Considering the success of DRF-W, two modifications can

53

be suggested. Both of the modifications aim to scale the outputs of layers to a

significantly smaller value.

First modification is adding a scaling factor to BC just like DRF-W. This method

also would be an alternative to DRF-W. Adding a scale factor discards the most

important advantage of BC, which is completely eliminating the expensive

multiplication operations. However, unlike DRF-W, if we can decide the exact value

of the scaling factor, we can choose it to be a hardware friendly value. For example,

choosing a value which is a power of 2 would enable bit shifting instead of

multiplication. Note that this is a similar approach to [19] where weights are

clustered to be power of two and different bit widths are experimented down to

ternary quantization. They left out the binary quantization out of scope. By this way,

the expensive multiplications can be avoided while having a floating-point scaling

factor.

The second modification changes the original architecture even less while achieving

success. Since the aim is to scale the layers’ outputs to a smaller value, we can also

modify the activation function. Previously, we were using ReLU function for

activations. If we decrease the slope of the ReLU, we can successfully train BC with

weights constrained to -1 and 1. The computational complexity of the activation

function will increase since there will be multiplications. However, as in first

method, we can choose the slope of ReLU so that we can benefit from bit shifting

instead of expensive multiplications.

54

Table 4.10 Results of BC Solutions for Deep and Complex Models

Method ResNet20(%) ResNet32(%)

BC 82.68 10.00

BC-1.1 89.33 90.67

BC-1.2 89.71 90.90

BC-2.1 88.03 87.69

BC-2.2 88.31 87.83

The results of the proposed modifications can be seen in Table 4.10 In BC-1.1 and

BC-1.2, the weights are scaled with 0.1 and 0.125, respectively. In BC-2.1 and BC-

2.2, the ReLU activations are scaled with 0.1 and 0.125, respectively.

Note that DRF-W accuracy is 90.27% for ResNet32 in Table 4.7 . The first suggested

modification outperforms the DRF-W. The constant scaling factor for all layers is

chosen 0.1 and 0.125 in BC-1.1 and BC-1.2, respectively. These models show better

performance than DRF-W with a margin of 0.40% and 0.63%. These results clearly

suggest that the mean of absolute values of full precision weights is not an optimal

scaling factor for binary quantization. BC-1.2 has also hardware friendly scaling

factor on top of the better performance compared to DRF-W.

4.3.3.3 Activation and Weight Quantization

The experiments show that the weight quantization techniques can work with deep,

complex and fairly parameterized models like ResNet20 and ResNet32 as well as

over parameterized models like VGG-7. However, the same success cannot be

achieved when both of the weights and activations are quantized.

55

Table 4.11 Weight and Activation Quantization of Deep and Complex Models

 VGG-7 ResNet20 ResNet32

Base 93.34 91.66 92.05

BNN 88.24 77.88 68.23

DRF 90.15 78.43 69.99

A certain pattern can be seen in Table 4.11 Accuracy degradation is not related with

number of parameters. The accuracy degradation is related with the deepness of the

model. More specifically, the accuracy degradation increases with the increasing

number of used activation layers in the model. The only weight quantization does

not harm the accuracy this much since the weights are trained such that they can

work with quantization. In only weight quantization, the errors are calculated with

the quantized weights’ outputs and the backpropagation algorithm updates the

weights accordingly. However, the activations do not have such adaptation

mechanism. They do not have any parameters to be trained. Moreover, since straight

through estimators are used for activations during backpropagation, the error

introduced by quantization of activations cannot be compensated with

backpropagation updates. In other words, the activation quantization is invisible to

backpropagation algorithm. Therefore, increasing the quantized activation layers in

a model accumulates the introduced error and therefore significantly harms the

accuracy. The following section presents empirical proof of accuracy degradation

caused by activation quantization.

4.3.3.4 Activation Quantization

Some experiments are conducted to prove that quantizing activations is the real

reason of severe accuracy drop in deep neural networks. In these experiments,

weights are not quantized and trained with full precision. However, activations are

56

quantized. A deep neural network with full precision weights and quantized

activations has no advantage at all. The only aim is to show that quantizing

activations are the real root of accuracy drop in quantized deep neural networks. The

results are shown in Table 4.12.

Table 4.12 Accuracies when only activations are quantized

Method VGG-7 ResNet20 ResNet32

BNN-Act 90.28 81.35 78.00

DRF-Act 91.85 82.12 77.35

In Table 4.12, BNN-Act and DRF-Act are the activation quantization techniques

which are proposed in [14] and [16], respectively. DRF-Act is expected to perform

better than BNN-Act, considering the previous results. DRF-Act indeed shows a

superior performance for VGG-7 and ResNet20. However, BNN-Act performs better

than DRF-Act for ResNet32. The accuracy loss increases from the lowest points at

VGG-7 to the highest point at ResNet32. During this increase, DRF-Act is affected

more seriously than BNN-Act. As a result, BNN-Act becomes the better performer

at the highest accuracy loss point which is ResNet32. The accuracy losses for the

deep ResNet models are quite high. The accuracies of ResNet20 and ResNet32 drop

at least 9.54% and 14.7% compared to base model. On the other hand, VGG-7 does

not experience such dramatic accuracy loss when its activations are quantized using

the same method. VGG-7 has only 7 activation layers that are quantized while

ResNet20 and ResNet32 have 19 and 31 activation layers, respectively. The accuracy

loss is proportional with number of quantized activation layers. These high accuracy

drops are not observed when only the weights are quantized. However, when both of

the weights and activations are quantized, the combined accuracy loss is even higher.

This high combined accuracy loss is mostly due to the activation quantization as

suggested with this section’s experiments.

57

4.3.3.5 Comparison with Ground-Up Efficient Models

Previously, Quantized VGG-7 models are compared with SqueezeNet in terms of

accuracy, number of parameters and required storage space. In this section, similar

comparison is made for ResNet models. Since ResNet architecture includes

residual connections, SqueezeNet with simple bypass is built and trained for fair

comparison.

Table 4.13 Comparison of SqueezeNet and Quantized ResNet Models

Models Accuracy (%)

Number of

Parameters

Required Space to Store the

Weights (MB)

SqueezeNet (with

bypass)
92.43 727,626 2.78

ResNet20 Base 91.66 271,690 1.04

ResNet20 BC-1.2 89.71 271,690 0.032

ResNet20 DRF-W 89.05 271,690 0.032

ResNet20 TWN 90.71 271,690 0.065

ResNet32 Base 92.05 465,674 1.78

ResNet32 BC-1.2 90.90 465,674 0.055

ResNet32 DRF-W 90.27 465,674 0.055

ResNet32 TWN 91.24 465,674 0.110

The ResNet architectures are already efficient in terms of size. Therefore,

compressing it even further results in required spaces in the range of KBs. For

example, binary quantizations of ResNet20 require only 32KB of space which can

fit into many embedded processors’ L1 caches.

58

4.3.4 Quantizing Ground-up Efficient Models

Even though ResNet architectures are very efficient compared to VGG-like

architectures, they are not designed to be efficient. They are designed to perform at

marginal levels. On the other hand, SqueezeNet architecture’s main aim is to be

efficient. Therefore, quantizing SqueezeNet architecture would lead to further

efficient architectures. In this section, quantization of SqueezeNet is examined.

Table 4.14 Quantization of SqueezeNet

Method Accuracy (%)

Required Space to

Store the Weights (MB)

SqueezeNet 91.83 2.78

SqueezeNet-BC 90.07 0.087

SqueezeNet-DRF-W 90.11 0.087

SqueezeNet-TWN 90.62 0.174

SqueezeNet (Simple Bypass) 92.43 2.78

SqueezeNet (Simple Bypass)-BC 90.47 0.087

SqueezeNet (Simple Bypass)-DRF-W 90.06 0.087

SqueezeNet (Simple Bypass)-TWN 91.24 0.174

Using residual connections, i.e. simple bypasses, is a common practice in deep neural

networks. Using residual connections almost always results in better accuracies than

simple feed-forwards versions. This is observed in SqueezeNet as well. In Table 4.14

full precision SqueezeNet with simple bypass has better accuracy than full precision

SqueezeNet with a margin of 0.6%. This superiority is conserved in their TWN

quantized version as well. TWN quantized versions have 0.62% accuracy difference

which is a very similar value to the difference between full precision networks’

accuracies. However, one interesting observation is that SqueezeNet with DRF-W

quantization is better than its counterpart with simple bypass.

59

CHAPTER 5

5 SYSTEM IMPLEMENTATION AND BENCHMARKING

In this section, a convolutional layer is implemented for various systems in order to

realize and benchmark quantization theory. The aim is not to code a fast convolution

operation. Therefore, the implemented convlution operation is not computationally

efficient. The operation has many loops and expensive operators such as modulo.

Moreover, there is no effort to ease the compiler’s job for enabling any possible

SIMD instructions. The aim is to code a memory efficient convolution operation and

prove that quantized convolution kernels can work on real systems. Therefore, there

is a observable memory efficiency (not only theoretical). Another aim is to give

benchmarking results for different devices ranging from very low power embedded

processors to powerful desktop computer processors.

5.1 Implementation Details

A base convolution operation and the quantized version of it are implemented. In

both of the algorithms, spatial representation is flattened in inputs, filters and outputs.

For example, the inputs and outputs have the common representation as channel

number x spatial width x spatial height. The inputs and outputs are reshaped to

channel number x (spatial width * spatial height). Similarly, the filters originally

have input channel number x output channel number x spatial width x spatial height.

The filters are also reshaped to input channel number x output channel number x

(spatial width * spatial height). The base convolution algorithm is shown in Figure

5.1.

60

Figure 5.1. Base convolution algorithm

The quantized convolution algorithm is implemented by following the idea which is

explained in 2.1.2.1. The method is summarized with Figure 2.6. The quantized

convolution algorithm (Figure 5.2) is very similar to the base algorithm. The

difference is basically that quantized algorithm requires an indirect memory access

in order to load the actual filter value. They only differ at the calculation step at lines

20-23 in quantized convolution algorithm on top of the two additional parameters

that quantized algorithm requires. These parameters and lines are explained in detail

below.

Parameter q: This value represents the number of indexes stored in a byte. If the

binary quantization is used, the required bitwidth is only 1 and therefore a byte can

store 8 filter indexes. If the ternary quantization is used, 4 filter indexes can be stored

in a byte.

Parameter qMask: As the name suggests, this parameter is used for masking. If the

binary quantization is used, only least significant bit is required and therefore this

61

parameter is set to 0x01. If ternary quantization is used, least significant two bits are

required and this parameter is set to 0x03.

Line 20-21: Since the smallest memory read operation can read 1 byte, the filter

value indexes are saved in an unsigned char array. This requires couple of additional

operation to extract the index of a particular filter element. These operations are

dividing, shifting and masking. The iterator j is divided by parameter q to find the

byte that stores the current filter index. Then this value is shifted by bitwidth times j

mod 8 (calculated at line 20 and stored in sft) to find the position of the current filter

index in the byte. Lastly, the resultant value is masked to get rid of unrelated values

and extract the exact filter index.

Figure 5.2. Quantized Convolution Algorithm

62

Line 22: The found filter index is used to extract the full precision filter value from

the related short float array. Then this filter value is multiplied with its corresponding

input value.

Line 23: The result of the multiplication is accumulated in the related output field.

5.2 Benchmarking

Three different systems are used to benchmark the quantized and normal convolution

operations. The first system represents the low power and cheap embedded devices.

Tiva C TM4C123G development board from Texas Instrument is used. This board

works on ARM Cortex M4 processor. The second system represents a more powerful

segment of embedded devices. Raspberry Pi 3 B+ is used. This embedded computer

works on ARM A53 and Linux based Raspbian operating system. The last system is

a desktop computer and used for comparison purposes. It works on Intel Core i5-

7300HQ and Windows 10.

Three different settings are experimented for all of the systems. These settings are

experimented with base (full-precision) and quantized filters. The settings are as

following. The input planes consist of 3 channels and 16 by 16 size. No padding is

used to protect the width and height of the input. Output planes consist of 8 channels.

Size of the output planes become 14x14, 13x13, 12x12 for filters 3x3, 4x4, 5x5,

respectively. Memory reduction is calculated using (2-17). The increase in

computation time for quantized filters is also reported.

5.2.1 ARM Cortex M4

Tiva C TM4C123G is a low-end development board which is capable of doing many

simple things. It has 80MHz 32-bit ARM Cortex M4 processor. It has 256KB Flash,

32KB SRAM and 2KB EEPROM on-chip memory. The following experiments use

32KB SRAM memory for input-output planes and filters. The flash memory is not

63

suitable for this task since it is slower than SRAM and it has relatively low number

of life-cycle compared to SRAM. The TI v20.2.0.LTS compiler is used. The results

are given in Table 5.1 Table 5.1 Table 5.1 Table 5.1 Table 5.1

Table 5.1 Binary quantization timing results for ARM M4

Filter Size Base (ms)

Quantized-Binary

(ms)

Memory

reduction

Computation

Time Increase

3x3 179.054 232.56 27.87 1.30

4x4 263.888 352.611 29.54 1.34

5x5 345.365 467.619 30.38 1.35

Table 5.2 Ternary quantization timing results for ARM M4

Filter Size Base (ms)

Quantized-

Ternary (ms)

Memory

reduction

Computation

Time Increase

3x3 179.054 237.264 12.34 1.32

4x4 263.888 356.667 13.71 1.35

5x5 345.365 471.075 14.46 1.36

5.2.2 Quad-Core ARM A53 – Raspberry Pi 3 B+

The raspberry pi is a small computer that succeeded to be very widely used

worldwide. Its 3rd version model B+ is used in this section’s experiments. Raspberry

pi 3 B+ employs 64-bit quad-core ARM A53 which is working with 1.4GHz. It can

run many operating systems. In our case, Raspbian OS is used. Raspberry pi 3 B+

has 1GB LPDDR2 SDRAM. The gcc v8.1.0 compiler is used. The results are given

in Table 5.3

64

Table 5.3 Binary quantization timing results for Raspberry Pi 3 B+

Filter Size Base (ms)

Quantized-Binary

(ms)

Memory

reduction

Computation

Time Increase

3x3 5.01 6.65 27.87 1.33

4x4 7.54 9.95 29.54 1.32

5x5 9.47 13.41 30.38 1.42

Table 5.4 Ternary quantization timing results for Raspberry Pi 3 B+

Filter Size Base (ms)

Quantized-

Ternary (ms)

Memory

reduction

Computation

Time Increase

3x3 5.01 6.89 12.34 1.38

4x4 7.54 9.99 13.71 1.33

5x5 9.47 13.22 14.46 1.40

Since this system runs on an operating system, Raspbian OS, the given timing

values are found by averaging 100 consecutive runs of the algorithm.

5.2.3 Intel Core i5-7300HQ – Desktop Computer

This system is experimented and benchmarked for comparison purposes only. A

desktop computer typically does not need quantization since there is usually enough

computing power and memory. This system runs on Intel Core i5-7300HQ at 2.50

GHz and Windows 10. It has 8GB RAM. The gcc v8.1.0 compiler is used. The results

are given in Table 5.5

65

Table 5.5 Binary quantization timing results for Desktop Computer

Filter Size Base (ms)

Quantized-Binary

(ms)

Memory

reduction

Computation

Time Increase

3x3 0.416 0.676 27.87 1.62

4x4 0.552 0.922 29.54 1.67

5x5 0.711 1.238 30.38 1.74

Table 5.6 Ternary quantization timing results for Desktop Computer

Filter Size Base (ms)

Quantized-

Ternary (ms)

Memory

reduction

Computation

Time Increase

3x3 0.416 0.640 12.34 1.54

4x4 0.552 0.978 13.71 1.77

5x5 0.711 1.216 14.46 1.71

Since this system runs on an operating system, Windows 10 OS, the given timing

values are found by averaging 100 consecutive runs of the algorithm.

5.3 Comments

As explained previously, the ideal compression rate is 32x. The case gets to ideal as

the number of connections (or filters) increases. Therefore, the memory reduction

increases while the filter size increases. While the memory required by filters

decreases 29x on average, the computation time is also increased drastically. This

implementation and setting can be acceptable where a system has critically low

memory.

Quantization can make possible to run neural network inference on these systems.

ARM Cortex M4 system has 32KB of SRAM memory which is not enough to store

66

most of deep learning models. However, this simple implementation allows low-end

embedded systems to store and run small deep learning models.

This implementation of quantized convolution operation does not aim to be efficient

and fast. However, a faster implementation would still suffer from some significant

degree of increased computation time due to indirect memory access in the quantized

convolution operation. Therefore, quantized neural networks are best and fully

utilized with custom hardware designs. However, faster computation times can be

still achieved with the optimization of the compilers. The effect of the compiler

optimization on computation times for 3x3 filter case can be seen in Table 5.7

Table 5.7 The effect of compiler optimization on computation time

System Base

Base

(-O3) Quantized

Quantize

d (-O3)

Base

reduction

Quantized

Reduction

Arm Cortex M4 179.054 74.82 232.56 140.54 2.39 1.65

Raspberry Pi 3 B+ 5.01 2.06 6.65 4.09 2.43 1.63

Desktop Computer 0.416 0.180 0.676 0.341 2.31 1.98

The compiler optimization can speed up the base convolution algorithm by around

2.40 times. However, the same optimization settings cannot show the same success

for quantized convolution algorithm. The compiler optimization can speed up the

quantized convolution algorithm by only a factor between 1.63 and 1.98. As

explained in Figure 5.2, there are extra shifts, divisions, bitwise operations, and

memory accesses in the quantized convolution algorithms. These operations limit

the capabilities of the compiler. As a result, the compiler has a reduced effect on the

quantized convolution compared the base algorithm.

No manual optimization is done for the quantized convolution operation. Since the

quantization allows us to work with low precision numbers with only 1 or 2 bits, we

can highly benefit from bitwise operations. Moreover, since we can run bitwise

operations on 32 bits register, we can actually parallelize 32 operations with binary

quantized weights. This parallelization can be implemented efficiently for each

67

computer architecture. ARM NEON instructions can be used for many ARM CPUs.

Intel CPUs can also implement largely parallel bitwise operations using their AVX

instructions. Even though sometimes manual effort may be required to implement

these operations, specialized compilers of these architectures can detect and

implement bitwise operations.

The implementations in this section are single thread applications. However, the

quantized neural networks can benefit from multi-threading as well. Multi-core

CPUs are common even in cheap embedded systems. Implementing bitwise

operations with multiple threads can increase the parallelization and therefore the

computing speed.

69

CHAPTER 6

6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we have investigated the effects of quantization on deep neural

networks.

First, the selected methods are implemented on LeNet-5 architecture with MNIST

dataset. Since MNIST dataset is way too simple, it is expected to achieve success

with all of the methods. However, there was a noticeable accuracy loss in weights

and activation quantization methods compared to only weights quantization

methods. In the following experiments, weights and activation quantization methods

are compared with each other and only weights quantization methods are compared

with each other.

The selected methods are implemented on VGG-7 with Cifar-10 dataset. Methods’

accuracies and convergence characteristic are examined. We showed that quantizing

models such as VGG-7 does not sacrifice much accuracy while providing significant

compression. Quantization techniques with full precision cluster points converge

faster compared to techniques with low precision cluster points such as -1 and 1.

Hybrid methods for weights and activation quantization are proposed. One of the

hybrid methods has a hardware friendly cluster points and a better accuracy

compared to existing hardware friendly methods. The quantization methods are

compared with ground-up efficient models in terms of accuracy and required size. It

is shown that quantizing large models can end up with smaller size and better

accuracy than ground-up efficient models.

The selected methods are implemented on ResNet models with Cifar-10 dataset. It

is shown that weight quantization methods with full precision cluster points work

70

well with ResNet architecture. One binary quantization method is failed in ResNet

models which are deep and complex. The reasons behind these failures are examined.

The reason is found to be asymmetrical quantization of weighted residual

connections and its disturbance to the information flow. Solutions are proposed for

this problem. The proposed solutions are implemented and proven to be successful.

First approach of solutions focused on residual connections. In this approach, the

weighted residual connections are not quantized or used. The second approach

focused on scaling the layers’ outputs. In this approach, weights or activations are

scaled with constants. These solutions also showed that mean of the absolute weights

is not an optimal scaling factor for binary quantization. Moreover, it is observed that

the accuracy loss of weight and activation quantization methods are high in deep

models. The reasons behind this accuracy losses are examined and showed with

empirical proofs. Quantized ResNet models are also compared with a ground-up

efficient model with residual connections.

A ground-up efficient model is also quantized and results are shown. Different

versions of the ground-up efficient model are quantized. These versions include

simple model with only core layers of a convolutional neural network and a complex

model with residual connection on top of core layers.

Lastly, the convolution operation and its quantized version are implemented on

various systems. These systems include a severely resource constrained embedded

system, an average embedded system with an operating system and a powerful

desktop computer. Comparisons and benchmarks of quantized operations are done

in these systems. It is found that weight quantization methods can offer ~32x or ~16x

compression with a cost of ~1.3x computation time increase.

6.2 Future Work

Even though it is possible to implement quantized neural networks on existing CPU

systems, it only unleashes the half of the potential of the quantized neural networks.

71

We can achieve compression with CPU implementation on quantized neural

networks. However, we cannot decrease computation time. In order to decrease

computation time, a custom implementation of the quantized neural networks on

FPGAs are required. The FPGA implementation and its optimization are left to a

future work.

Moreover, the quantization techniques include a lot of manual effort to determine

hyperparameters. Different methods could be used for different layers in the same

architecture. Even though there are existing works that determine quantization

bitwidths automatically, they are not integrated with quantization techniques. The

hyperparameter search of quantization could be automatized as a future work.

72

73

REFERENCES

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.

Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and <0.5MB model size,” pp. 1–13, 2016.

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications,” 2017.

[3] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices,” Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6848–6856, 2018, doi:

10.1109/CVPR.2018.00716.

[4] F. Rosenblatt, “The perceptron: A probabilistic model for information

storage and organization in the brain,” Psychol. Rev., 1958, doi:

10.1037/h0042519.

[5] E. Hunt, M. Minsky, and S. Papert, “Perceptrons,” Am. J. Psychol., 1971,

doi: 10.2307/1420478.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 2,

pp. 1097–1105, 2012.

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Comput., 1997, doi: 10.1162/neco.1997.9.8.1735.

[8] F. Chollet, “Keras Documentation,” Keras.Io, 2015. .

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and Huffman coding,”

4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., pp. 1–14,

2016.

74

[10] G. E. Hinton, “Neural networks for machine learning. Coursera, video

lectures,” 2012. .

[11] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation,” pp.

1–12, 2013.

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018,

doi: 10.1109/CVPR.2018.00474.

[13] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training Deep

Neural Networks with binary weights during propagations,” pp. 1–9, Nov.

2015.

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized Neural Networks: Training Deep Neural Networks with Weights

and Activations Constrained to +1 or -1,” 2016.

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-net:

Imagenet classification using binary convolutional neural networks,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9908 LNCS, pp. 525–542, 2016, doi: 10.1007/978-3-

319-46493-0_32.

[16] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net:

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth

Gradients,” vol. 1, no. 1, pp. 1–13, 2016.

[17] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” no. Nips, 2016.

[18] C. Zhu, H. Mao, S. Han, and W. J. Dally, “Trained ternary quantization,” 5th

Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–10, 2019.

[19] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network

75

quantization: Towards lossless cnns with low-precision weights,” 5th Int.

Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–14, 2019.

[20] B. Jacob et al., “Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., pp. 2704–2713, 2018, doi:

10.1109/CVPR.2018.00286.

[21] A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh, S. Gao,

and H. Esmaeilzadeh, “ReLeQ: An Automatic Reinforcement Learning

Approach for Deep Quantization of Neural Networks,” 2018.

[22] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware

automated quantization with mixed precision,” Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 8604–8612, 2019,

doi: 10.1109/CVPR.2019.00881.

[23] Y. He, J. Lin, Z. Liu, H. Wang, L. J. Li, and S. Han, “AMC: AutoML for

model compression and acceleration on mobile devices,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 11211 LNCS, pp. 815–832, 2018, doi: 10.1007/978-3-

030-01234-2_48.

[24] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and

connections for efficient neural networks,” Adv. Neural Inf. Process. Syst.,

vol. 2015-Janua, pp. 1135–1143, 2015.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: A simple way to prevent neural networks from

overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[26] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” no. NeurIPS, 2019.

[27] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”

76

in Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2016, 2016.

[28] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” AT&T Labs

[Online]. Available http//yann. lecun. com/exdb/mnist, 2010.

[29] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-100

datasets,” https://www.cs.toronto.edu/~kriz/cifar.html, 2009. .

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE, 1998, doi: 10.1109/5.726791.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Dec. 2015.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 -

Conf. Track Proc., pp. 1–14, 2015.

