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ABSTRACT 

 

EFFECT OF QUANTIZATION ON THE PERFORMANCE OF DEEP 

NETWORKS 

 

 

Kütükcü, Başar 

Master of Science, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

 

 

July 2020, 76 pages 

 

 

Deep neural networks performed greatly for many engineering problems in recent 

years.  However, power and memory hungry nature of deep learning algorithm 

prevents mobile devices to benefit from the success of deep neural networks. The 

increasing number of mobile devices creates a push to make deep network 

deployment possible for resource-constrained devices. Quantization is a solution for 

this problem. In this thesis, different quantization techniques and their effects on 

deep networks are examined. The techniques are benchmarked by their success and 

memory requirements. The effects of quantization are examined for different 

network architectures including shallow, overparameterized, deep, residual, efficient 

models. Architecture specific problems are observed and related solutions are 

proposed. Quantized models are compared with ground-up efficiently designed 

models. The advantages and disadvantages of each technique are examined. Standard 

and quantized convolution operations implemented in real systems ranging from low 

power embedded systems to powerful desktop computer systems. Computation time 

and memory requirements are examined in these real systems. 

Keywords: Deep Neural Networks, Quantization 
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ÖZ 

 

  

NİCELEMENİN DERİN AĞLARA ETKİSİ 

 

 

Kütükcü, Başar 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 

 

 

Temmuz 2020, 76 sayfa 

 

Derin sinir ağları son zamanlarda birçok mühendislik problemi için büyük başarı 

göstermiştir. Ancak derin öğrenme algoritmasının hesaplama gücü ve hafızaya çok 

fazla gereksinim duyması sebebiyle, sayısı gitgide artan kaynak kısıtlı mobil cihazlar 

derin sinir ağlarının bu başarısından yararlanamamaktadır. Niceleme bu soruna 

çözüm olabilecek yöntemlerden birisidir. Bu tez kapsamında, farklı niceleme 

teknikleri ve bu tekniklerin derin ağlara etkileri incelenmiştir. Bu tekniklerin başarısı 

ve hafıza gereksinimleri deneylerle incelenmiştir. Nicelemenin etkileri sığ, derin, 

aşırı parametreli, artık bağlantılı ve verimli modellerde incelenmiştir. Model 

mimarisine özel sorunlar gözlenmiş ve ilgili çözümler önerilmiştir. Nicelenmiş 

modeller ve baştan verimli tasarlanmış modeller karşılaştırılmıştır. Bu iki yöntemin 

avantajları ve dezavantajları incelenmiştir. Bunlara ek olarak standart ve nicelenmiş 

evrişim işlemi çeşitli sistemlerde gerçeklenmiştir. Bu çeşitli sistemler düşük güç 

tüketimli gömülü sistemlerden güçlü masaüstü bilgisayar sistemlerine uzanmaktadır. 

Hesaplama zamanı ve hafıza gereksinimleri deneyleri bu gerçek sistemlerde 

yapılmış ve sonuçları paylaşılmıştır. 

Anahtar Kelimeler: Derin Sinir Ağları, Niceleme 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Introduction 

Developments in deep learning research brought great success to many problems 

including image classification, image segmentation, natural language processing, 

recommender systems and many others. Specially in the image related tasks, deep 

learning techniques showed superior results to existing image processing techniques. 

However, this success comes with a cost. This cost is memory and computation 

power requirement of the deep learning models. Many companies and research 

institutes are increasing these requirements while trying to create better models. 

These models are being developed for achieving marginal results and therefore 

require more and more memory and computation power. On the other hand, the 

number of mobile devices is rapidly increasing every day. These resource-

constrained smart devices can benefit greatly from the success of deep learning; 

however, they are not capable to satisfy the memory and power requirements of deep 

learning models due to many constraints such as budget, space, power and heat. 

Therefore, there is a need to adjust power and memory requirements of deep learning 

models for resource constrained devices. 

Deep learning models should be adjusted to be more efficient in order to run on 

resource-constrained devices. There are currently couple of approaches to create 

efficient deep learning models. They can be categorized into two main approaches. 

First approach is to create efficient deep learning models ground up. This approach 

includes exhaustive state-space search of hyperparameters while monitoring size and 

accuracy trade-off. The results of this search are used to design efficient deep 
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learning models. These newly designed deep learning models include new efficient 

architectural units that separate them from existing computation heavy deep learning 

models. Some examples of these efficient architectural units are squeeze-expand 

operations [1], depthwise-pointwise convolution operations [2] and shuffle operation 

[3]. The second approach is to use methods, named quantization and pruning, on the 

weights of the deep learning models. The difference of this approach and the first 

one is that this approach does not try to create new models and architectural units. 

Instead it uses some methods on existing models to convert existing models to more 

efficient ones. The weights of a deep learning model and their multiplication 

operations make a model costly. This approach and their quantization/pruning 

methods focus on the weights to decrease the memory and computation cost of a 

deep learning model. The quantization method clusters the weights of a deep learning 

model into some cluster points. The pruning method completely eliminates the 

weights which are ineffective to the overall results of the deep learning model. Both 

of these methods eventually decrease the required memory space by the deep 

learning model. There are different ways to implement this approach by considering 

when and how these methods are used on the deep learning model. Some methods 

can be named as quantization/pruning aware training. In this methods, 

quantization/pruning is done continuously during training. This requires whole 

training process. Some other can be named as post quantization/pruning. In these 

methods quantization/pruning is done on a trained model. These methods are 

employed by many frameworks which repetitively quantize/prune the trained model 

and re-train it to recover the lost accuracy up to a point. 

1.2 Scope of Thesis 

In this thesis, certain quantization methods are selected, analyzed, experimented and 

benchmarked. The aim of the thesis is to investigate the effects of quantization on 

deep neural networks and suggest solutions to certain quantization problems. 



 

 

3 

The scope of this thesis is quantization aware training-based methods. However, the 

other quantization methods are also researched and explained in the literature review 

for the sake of completeness.  

Background information for neural networks and quantization is given. Historical 

development of neural networks and deep learning is explained briefly. The training 

algorithm of neural networks is explained considering its importance for 

quantization operations. Convolutional neural networks are explained since they are 

used in the experiments. Compression property of quantization is explained. Straight 

through estimators and the importance of full precision weights during training are 

explained since they are the key factors that enable quantization aware training of 

deep neural networks. Literature review of ground-up efficient models is given. 

Literature review of quantization aware training methods, post quantization and 

usage of reinforcement learning for quantization is given. 

Some methods in the quantization aware training are selected considering their 

success and similarities. They are explained in detail. They are implemented on 

different datasets and deep learning architectures. They are benchmarked on a simple 

dataset and architecture. They are implemented on relatively shallow and 

overparameterized model. Some hybrid methods are proposed for the weights and 

activation quantization methods. One of the hybrid methods has hardware friendly 

cluster points and a better accuracy than existing hardware friendly methods. They 

are compared with a ground-up efficient model with similar capacity. They are 

implemented on a deeper and more complex model. Using this model, they are 

compared with each other and a ground-up efficient model with similar capacity. 

Problems of quantization of deep and complex models are demonstrated. Various 

solutions to these problems are suggested. These solutions are implemented and 

shown to be effective. The reason of relatively low accuracy of weight and activation 

quantization of deep and complex models are shown and empirically proven. 

Moreover, a ground-up efficient model is also quantized and compared with its full 

precision version. 
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Full precision and quantized convolution operation are implemented for various 

systems. These systems include a very low power embedded system, an average 

embedded system and a powerful desktop computer. Therefore, the compression 

property of quantization is proven on real systems. The trade-offs of this simple 

implementation are investigated and explained. 

1.3 Outline of Thesis 

In Chapter 2, background information and literature review are given. In Chapter 3, 

quantization aware training-based methods are selected and explained. In Chapter 4, 

experimental results are given, certain problems of quantization are demonstrated, 

solutions to these problems are suggested. In Chapter 5, system implementation of 

quantized convolution operation is shown and experimented. 
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CHAPTER 2  

2 BACKGROUND AND LITERATURE REVIEW 

2.1 Background 

In this section, a fundamental information on neural networks and quantization is 

given. A brief history of neural networks and their evolving to today’s successful 

deep learning models are explained. The algorithm of training neural networks is 

explained since it is important for quantization algorithms. Convolutional neural 

networks are explained in detail as they are used in the experiments in this thesis. 

Fundamental information of compression in quantization is explained since it is used 

to evaluate and compare different quantization algorithms. The key points of training 

quantized deep neural networks are explained.  

2.1.1 Neural Networks 

2.1.1.1 Brief History 

Neural networks compose a branch of machine learning techniques. Even though 

neural networks are one of the most popular machine learning techniques nowadays, 

they are not proposed in the near past. The roots of today’s neural networks get to 

the perceptron [4] which is proposed in 1958. The perceptron is just a neuron which 

sums the weighted input features and applies a step function to that summation.  
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Figure 2.1. The illustration of the perceptron 

Later on, perceptron is proven to be uncapable of doing many things [5] such as 

representing non-linear functions like XOR. This caused a significant and rapid 

decline in neural network research at that time. Even though perceptron (or single 

layer perceptron) was not very capable, the multi-layer perceptron was much more 

capable. For example, a multi-layer perceptron with at least three layers can represent 

non-linear functions unlike single-layer perceptron. Multi-layer perceptron can be 

seen as a fundamental example of today’s shallow neural networks. 

Even though neural network research regained its momentum in 1980s, it could not 

achieve the today’s popularity until 2012. Because there were two things that prevent 

neural networks from unleashing their true potential. The first one was lack of data 

and the second one was lack of computing power. The problem of insufficient data 

was solved with the help of internet. The developing technologies of computer 

networking and internet allowed people from all around the world to upload data 

which was openly accessible to everybody. This data abundance was converted to 

training data for neural network with a certain effort. The problem of insufficient 

computing power was solved with the invention of graphics processing unit (GPU) 

and its general programming capability. The training of a neural network is a quite 

computing heavy procedure. However, neural networks have an advantage which is 

their availability to parallelization. Since GPU is developed for processing graphics, 

it is a powerhouse for single instruction multiple dataset (SIMD) procedures. Central 
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processing unit also can run parallel algorithms as many as its core number which is 

limited to a low number (typically 4-8). On the other hand, GPU can run massively 

parallel algorithms. In 2012, AlexNet [6] won ImageNet competition and ignited the 

today’s deep learning popularity. 

2.1.1.2 Training Neural Networks 

There are two stages in the process of training neural networks. One is forward pass 

and the other one is backward pass. During forward pass, some amount of data is fed 

into the input layer of a neural network. Each layer gets the previous layer’s output, 

process it, and outputs it for the next layer. The final layer outputs various number 

of values, depending on the task and architecture of the neural network. In supervised 

learning, there is a ground truth value for each of these output values for every input 

data. The aim of training is to adjust the parameters (weights) of the neural network 

so that it generates outputs which are close to the ground truth values as much as 

possible. Backward pass updates the parameters with a certain algorithm. But before 

backward pass starts, the error is calculated. The error is some kind of difference 

metric between outputs of the neural network and the ground truth values. The loss 

functions are used for calculating error. There are many different loss functions for 

different purposes. Once the appropriate loss function is selected, it is minimized 

during backward pass by an optimizer. There are also different optimizers such as 

stochastic gradient descent or Adam. The optimizer updates parameters while 

calculating gradients for weights starting from last layer to first layer. Gradients are 

scaled with a predefined value named learning rate. Then the scaled gradients are 

used to update the parameters. The learning rate is an important hyperparameter and 

choosing it effects the convergence of training greatly. 

The backpropagation algorithm is the most fundamental part of training feed forward 

neural networks. Consider the neural network in Figure 2.2 for the following 

explanation of backpropagation algorithm. The example neural network has 3 layers 

which are fully connected. Each arrow is associated with a weight. A neuron i in the 
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network sums all of its weighted inputs to come with neti. Then neti is fed into an 

activation function f(.) which results yi or zi depending on the neuron’s layer’s 

position. At the end of the network, z values are the predictions or outputs of the 

network and t values are the ground truth values of the related inputs. 

 

Figure 2.2. Example neural network 

For this example, consider the cost function in (2-1).  

 𝐽(𝑤) =
1

2
(𝑡̅ − 𝑧̅)2 (2-1) 

The update rule of backpropagation algorithm is shown in (2-2). 𝑚 is the iteration 

number. 𝑤 is a particular weight that connects two neurons. 𝐽 is the cost function. 𝛼 

is the learning rate. The aim is finding ∆𝑤 and using it to update 𝑤𝑚 to 𝑤𝑚+1. 

 

𝑤𝑚+1 =  𝑤𝑚 +  ∆𝑤𝑚 

𝑤ℎ𝑒𝑟𝑒 ∆𝑤 =  −𝛼
𝜕𝐽

𝜕𝑤
  

(2-2) 
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The update with backpropagation algorithm on two weights, which are shown with 

red arrows in the network, is explained below. First, consider the 𝑤𝑘𝑗 which connects 

neuron j to neuron k. Since the learning rate is constant, backpropagation algorithm 

only needs to find the gradient as in (2-3). 

 
𝜕𝐽

𝜕𝑤𝑘𝑗
=  

𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
∗

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
    (2-3) 

The second term is simply equal to related previous neuron’s output as in (2-4). 

 
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
=  𝑦𝑗 (2-4) 

We define a special term for future references as in (2-5). 

 

𝑑𝑒𝑓𝑖𝑛𝑒 𝛿𝑘 ≜ −
𝜕𝐽

𝜕𝑛𝑒𝑡𝑘
 

= −
𝜕𝐽

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
 

= (𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘) 

 

(2-5) 

As a result, the gradient is found as in (2-6). 

 
𝜕𝐽

𝜕𝑤𝑘𝑗
= −𝛿𝑘 ∗  𝑦𝑗 (2-6) 

The resultant gradient is used to calculate ∆𝑤𝑘𝑗 as in (2-7). Every term in this 

equation is known during backward pass. Therefore, 𝑤𝑘𝑗 can be updated 

accordingly. 

 

∆𝑤𝑘𝑗 = −𝛼 ∗ (−𝛿𝑘 ∗  𝑦𝑗) 

= 𝛼 ∗ 𝛿𝑘 ∗ 𝑦𝑗  

= 𝛼 ∗ (𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘) ∗ 𝑦𝑗 

(2-7) 

The procedure for 𝑤𝑗𝑖 is a bit different. The gradient for 𝑤𝑗𝑖 is extended using chain 

rule as in (2-8). 
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𝜕𝐽

𝜕𝑤𝑗𝑖
=  

𝜕𝐽

𝜕𝑦𝑗
∗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
∗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
 (2-8) 

The first term can be extended as in (2-9). Note that we can see 𝛿𝑘 in the extended 

form. 𝛿𝑘 is actually backpropagated from the next layer. 

 

𝜕𝐽

𝜕𝑦𝑗
=

𝜕

𝜕𝑦𝑗
[
1

2
∑(𝑡𝑘 − 𝑧𝑘)2

𝑐

𝑘=1

] 

= − ∑(𝑡𝑘 − 𝑧𝑘) ∗
𝜕𝑧𝑘

𝜕𝑦𝑗

𝑐

𝑘=1

 

=  − ∑(𝑡𝑘 − 𝑧𝑘) ∗
𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
∗

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗

𝑐

𝑘=1

 

= − ∑(𝑡𝑘 − 𝑧𝑘) ∗ 𝑓′(𝑛𝑒𝑡𝑘) ∗ 𝑤𝑘𝑗

𝑐

𝑘=1

 

 

(2-9) 

The second and third term can be found as in (2-10). The second term is nothing but 

the derivative of the activation function. The third term is the output of the related 

previous neuron which turns out to be input for this particular example. However, it 

could have been the output of a neuron in another hidden layer. 

 

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
= 𝑓′(𝑛𝑒𝑡𝑗) 

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖   

(2-10) 

We can again define another special term for future references as in (2-11). 

 𝑑𝑒𝑓𝑖𝑛𝑒 𝛿𝑗 ≜ 𝑓′(𝑛𝑒𝑡𝑗) ∗ ∑ 𝑤𝑘𝑗 ∗ 𝛿𝑘

𝑐

𝑘=1

 (2-11) 

As a result, the gradient is found as in (2-12). 
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𝜕𝐽

𝜕𝑤𝑗𝑖
= 𝑥𝑖 ∗ 𝑓′(𝑛𝑒𝑡𝑗) ∗ (− ∑ 𝑤𝑘𝑗 ∗ 𝛿𝑘

𝑐

𝑘=1

) 

= 𝑥𝑖 ∗ (−𝛿𝑗) 

(2-12) 

The resultant gradient is used to calculate ∆𝑤𝑗𝑖 as in (2-13). All of the terms in this 

equation are known during the backpropagation as well. Therefore, 𝑤𝑗𝑖 can also be 

updated using the update rule during backward pass. 

 ∆𝑤𝑗𝑖 = 𝛼 ∗ 𝑥𝑖 ∗ 𝛿𝑗 (2-13) 

 

To update a weight in a layer, there is always a term needed from the next layer. This 

is the result of error calculation at the final layer. These terms are backpropagated 

starting from final layer to the first layer. The backpropagated terms are the special 

definitions that we made. Those special terms are 𝛿𝑘 and 𝛿𝑗. Note that 𝛿𝑘 is only used 

for backpropagation from output layer to a hidden layer. On the other hand, 𝛿𝑗 is 

used for hidden layer to hidden layer and hidden layer to input layer. 

A clear understanding of backpropagation algorithm is necessary for quantization 

research. Note that chain rule is extensively used in the backpropagation algorithm. 

This means every function that is used in the forward pass must be differentiable. 

However, the quantizer functions are not differentiable. Therefore, a workaround is 

required to train quantized neural networks with backpropagation algorithm. This 

workaround is explained in the following quantization background information. 

2.1.1.3 Convolutional Neural Networks 

There are many different types of deep neural networks. Every different deep neural 

network type has advantages and disadvantages. They have architectural differences 

which make them fit to certain tasks better than others. For example, recurrent neural 

networks and long short-term memory units (LSTMs) [7] are good for tasks with 

sequential data such as natural language processing (NLP) and speech recognition. 



 

 

12 

On the other hand, convolutional neural networks are good for tasks with visual data 

such as images. In this section, convolutional neural networks are explained in detail 

since image classification task with convolutional neural networks is used for the 

experiments in this thesis. 

There are couple of reasons of convolutional neural networks’ superior performance 

with image data compared to regular neural networks. First of all, they are scalable 

with image data. A regular neural network requires a weight for each pixel in the 

first layer of the network. The required amount of weights increases rapidly in the 

following layers. Therefore, total number of parameters become quite large. As a 

result, the model becomes inefficient for the task and it easily overfits the data due 

to huge number of parameters. On the other hand, convolutional neural networks 

employ filters which have various sizes independent from the size of the image. A 

filter is used by sweeping it on the image to calculate the next layer’s input. 

Therefore, a weight in a filter is re-used for multiple pixels, unlike regular neural 

networks. Secondly, the shapes of weights in convolutional neural networks are 

specifically designed for visual data. A regular neural network uses a weight for each 

pixel. The approach of regular neural network does not consider the shape and type 

of the data. It simply serializes the input data and acts to the data as a set of features. 

On the other hand, the filters of convolutional neural networks have a similar shape 

to images. For example, images have three dimensions, namely width, height and 

channels. Filters also have the same three dimensions and one more dimension which 

is named output channels. While the channel dimension is same for the input data 

and filters, the width and height of the filters are typically smaller than the width and 

height of the input data. The number of output channels determines the channel 

number of the output of convolution operation. This shape similarity causes better 

results for image related tasks in the deep neural networks. 

A typical convolutional neural network has three main layers. These layers are 

stacked to come up with deep convolutional neural networks. They are convolution 

layer, pooling layer and the fully connected layer. While there may be other type of 

layers, these three typically define the convolutional neural networks. 
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2.1.1.3.1 Convolution Layer 

In this layer, the convolution operation is applied to the input with the filters of the 

layer. The aim is to catch a certain local pattern in the image. In the earlier layers of 

the neural network, these patterns are low level features such as edges or rounded 

shapes. In the late layers of the neural network, these patterns become high level 

features such as eye or nose. The input is a 3D array with dimensions names width, 

height and channel. The output is also a 3D array with same dimension names since 

it is typically input to another convolution layer. The filter is a 4D array with 

dimension named input channel, width, height and output channel. The values of 

input channel and output channel of the filter must be same with channel values of 

the input and output, respectively. Elements of a simple convolution operation is 

illustrated in Figure 2.3.  
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Figure 2.3. Convolution operation 

In this simple example, the input has 3 channels each of them has 5x5 pixels. The 

filter has also 3 input channels, 2x2 weights for each input channel and 1 output 

channel. The filters are swept in their input, the matching cells are multiplied and the 
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results of 3 channels are accumulated in the related output cell. The calculation of 

two output cells are shown as examples in (2-14). 

 

𝑜0 = (𝑎0 ∗ 𝑖0 + 𝑎1 ∗ 𝑖1 + 𝑎2 ∗ 𝑖5 + 𝑎3 ∗ 𝑖6)

+ (𝑏0 ∗ 𝑗0 + 𝑏1 ∗ 𝑗1 + 𝑏2 ∗ 𝑗5 + 𝑏3 ∗ 𝑗6)

+ (𝑐0 ∗ 𝑘0 + 𝑐1 ∗ 𝑘1 + 𝑐2 ∗ 𝑘5 + 𝑐3 ∗ 𝑘6) 

𝑜9 = (𝑎0 ∗ 𝑖11 + 𝑎1 ∗ 𝑖12 + 𝑎2 ∗ 𝑖16 + 𝑎3 ∗ 𝑖17)

+ (𝑏0 ∗ 𝑗11 + 𝑏1 ∗ 𝑗12 + 𝑏2 ∗ 𝑗16 + 𝑏3 ∗ 𝑗17)

+ (𝑐0 ∗ 𝑘11 + 𝑐1 ∗ 𝑘12 + 𝑐2 ∗ 𝑘16 + 𝑐3 ∗ 𝑘17) 

(2-14) 

 

Note that the output channel number of the filters is 1. Therefore, there is only one 

output frame calculated. If the output channel number would be larger than 1, the 

same operation would be repeated with a different set of filters to calculate output 

channel number times output frames. 

One important point in the convolution operation is the output spatial sizes. While 

the input’s spatial size (width and height) is 5, it is decreased to 4 in the outputs. This 

is inevitable since the filters have also spatial sizes larger than 1. However, 

sometimes it is required to keep the spatial sizes same through convolution layers. 

In this case, the general solution is to apply padding with zero to the input. This is 

basically adding zero elements around the inputs. The required depth of padding 

changes with the filter size.  

Another important point in the convolution operation is the stride. Stride is the 

number that determines how to sweep the filters on the inputs. If it is 1 as in the 

example, the filters move one cell by one cell. If it would be 2, then the filters would 

move two cells by two cells. Increasing the stride results in decreased output spatial 

sizes. 

The output spatial size can be calculated with the formula in (2-15). In this formula, 

O is the output spatial size, I is the input spatial size, F is the filter spatial size, P is 

the padding depth, and S is the stride. 
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 𝑂 =
𝐼 − 𝐹 + 2𝑃

𝑆
+ 1 (2-15) 

 

2.1.1.3.2 Pooling Layer 

The aim of this layer is downsampling. While downsampling can be an easy task, 

making it useful to the task can be a bit tricky. This layer, like convolution layer, 

uses the fact that the data is visual. It focuses to locality of the features. It 

downsamples the data by forwarding the useful features to next layer while blocking 

the less important ones. One advantage of the pooling technique is that it does not 

use any parameters. Instead, it uses a heuristic to decide what to forward to next 

layer. The pooling operation works by sliding a window on the input, like 

convolution layer. At each step, a certain operation is applied to the cells within the 

window and just one cell is forwarded to the next layer. Therefore, the spatial size of 

the data decreases. The operation is applied to each channel separately. As a result, 

the data becomes denser in terms of information. 

The two pooling techniques are illustrated in Figure 2.4. In this simple example, the 

input is 1 channel 4 by 4 data. The pooling window size is 2 by 2. The shown results 

are for techniques named as maximum pooling and average pooling. As the names 

suggest, the procedures for both of them are straight-forward. In the maximum 

pooling, the values of the cells in the pooling window are compared and the one with 

maximum value is forwarded to the output. In the average pooling, the values of the 

cells in the pooling layer are averaged and the result is forwarded to the output. The 

stride concept in the convolution layer is also applicable in the pooling layer. 

Increasing the stride further reduces the spatial size of the outputs. 
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Figure 2.4. Pooling operations 

The output spatial size of the pooling layer is calculated using (2-16). 

 𝑂 =
𝐼 − 𝑊

𝑆
+ 1 (2-16) 

In this equation, O is the output spatial size. I is the input spatial size. W is the 

window size. S is the stride. 

2.1.1.3.3 Fully Connected Layer 

This layer is the fundamental part of the regular neural network as well. 

Convolutional neural networks use fully connected layers at the end of the neural 

network. Generally, the convolution and pooling layers decrease the spatial size and 

increase the channel number of data through neural network. Once the spatial size 

gets small enough and channel number gets large enough, the data is flattened. The 

flattening operation is basically converting 3D data to 1D data just by serializing. 

After flattening, depending on the architecture, one or more fully connected layers 

are used. Note that there are some convolutional neural network architectures that do 
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not use fully connected layers at all. Therefore, even though it is very common to 

use at least one fully connected layer in convolutional neural networks, it is not vital 

like other two layers. Some illustrations of fully connected layers can be seen in 

Figure 2.2. 

2.1.2 Quantization 

2.1.2.1 Compression 

One of the main goals of quantization is compression. Many state-of-the-art deep 

learning models have parameters that cost memory in the range of MBs. In Figure 

2.5, pre-trained models in Keras library [8] are shown with their sizes. The smallest 

required size is 14 MB for MobileNetV2. The largest required size is 549 MB for 

VGG-19. These models are impossible to store in on-chip memory of many 

embedded processors. The off-chip memory access can be too expensive for 

inference on top of the low processing power of embedded systems. Moreover, some 

embedded systems do not have the required off-chip capacity to store these models. 

Even if some embedded systems have the required off-chip memory capacity to store 

these models, they can benefit from compression by putting the whole model in their 

on-chip memory. 
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Figure 2.5. Keras pre-trained models and their sizes 

Compression with quantization is best described in Deep Compression [9]. The 

following formula from the paper calculates the compression rate of any quantized 

neural network. 

 𝑟 =
𝑛𝑏

𝑛 log2 𝑘 + 𝑘𝑏
 (2-17) 

 

In the formula, 𝑛 is number of connections, 𝑏 is the number of bits to represent each 

weight prior to quantization, and 𝑘 is the cluster number after the quantization 

process. One important point about 𝑘 is that it must be power of 2 because of the 

binary representation. For example, if 3 clusters will be used for a quantization, k is 

rounded to 4. Because, at least 2 bits are required to represent 3 clusters. 

In the process of quantization, the full precision weights are quantized to a number 

of cluster values. Then those cluster values are saved in a full precision array. Then 

each weight saves the index of that array instead of the actual cluster value. The term 

𝑛𝑏 represents the required total number of bits before quantization. log2 𝑘 represents 

the required number of bits to represent all of the indexes. 𝑘𝑏 represents the required 

number of bits to save the array of cluster values. Consider a hypothetical 3x3x3 
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filter for a convolutional layer. Quantization of this filter is illustrated in Figure 2.6. 

A simple linear quantization to 4 clusters is used. For this particular example, n is 

27, b is 32 and k is 4. When we use these values in the formula, the compression rate 

is calculated as 4.74. 

 

Figure 2.6. Compression example 

Note that this is a pretty simple filter with only 27 weight values. However, deep 

neural networks have parameters ranging from thousands to millions. Quantizing 

those deep neural networks simplify the formula (2-17). When 𝑛 goes to infinity, the 

term 𝑘𝑏 becomes negligible. Thus, the formula becomes simply the ratio of 𝑏 to 

log2 𝑘. Since the deep neural networks are almost always trained with 32-bit floating 

point precision (𝑏 = 32), the possible compression rates are 32x,16x,8x,4x and 2x 

depending on the cluster number (𝑘). These compression rates are true for 

homogeneous quantization, i.e. all layers are quantized to same number of clusters. 

If some kind of heterogeneous quantization is used, different compression rates can 

be achieved and still can be calculated using (2-17) by expanding related terms. 
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2.1.2.2 Straight Through Estimator 

Quantizer functions are the main algorithms of the quantization research. Since 

quantizer functions cluster full precision weights into some cluster points, they can 

be seen as some variants of the step function. As in the step function, the quantizer 

functions’ derivative is calculated as 0 at almost entire space. Therefore, quantizer 

functions block the gradient flow during backpropagation due to the chain rule, 

which prevents the model from learning its task. As a result, a workaround is required 

to work with backpropagation algorithm during quantization aware training. The 

most common method is to use straight-through estimators [10][11]. Straight-

through estimators basically replace a function’s derivative with a predefined 

function. Most of the time this predefined function is the identity function or slightly 

modified version of the identity function. The mathematical notation of forward pass 

and backward pass of a quantizer function f(x) with identity straight-through 

estimator can be seen as 

Forward pass 𝑦 = 𝑓(𝑥) 

(2-18) 

Backward pass 
𝜕𝐽

𝜕𝑥
=  

𝜕𝐽

𝜕𝑦
 

In this specific example, x is a full precision value which is mapped to one of the 

limited values of y, by using f(.) function. J denotes the cost function. During 

backward pass, the gradient of y is calculated with backpropagation algorithm. Then 

in this particular step during backward pass, straight-through estimator is used to 

equate the gradient of x to gradient of y, independent from the function f(.). 

 

2.1.2.3 Full Precision Weights in Training 

One of the most important rules of training quantized neural networks is keeping the 

full precision weights during training. This is required since gradient descent 
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methods work with very small updates. For a clear explanation, consider the figure 

below. 

Figure 2.7. Full precision weights (left) and quantized weights (right) 

In Figure 2.7, full precision weights and quantized weights of a layer is shown. A 

simple quantization technique is followed where negative values are quantized to -1 

and other values are quantized to 1. If the full precision weights were discarded after 

quantization, updates were done on quantized weights and the updated weights were 

quantized using the same technique, the distribution of quantized weights would 

never change. Because as mention previously, the gradient descent algorithm works 

with small update to converge. No update could flip one weight to other side. Even 

if the magnitudes of updates are increased with learning rate, the model could not 

converge. 

During forward propagation, full precision weights are first quantized, then 

quantized weights are used for the operation of the layer. So, the full precision 

weights are never directly used in the layer. The full precision weights are there to 

provide accurate quantized weights. In most of the methods, after layer operation is 

done, quantized weights are discarded. The quantized weights are not saved but 

instead they are created from the full precision weights using their quantization 

technique at every forward propagation. During backward propagation, updates are 

done to full precision weights. The quantization operation is bypassed since its 

derivative is zero. 
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As a result, the full precision weights are trained while quantized weights are used. 

At the end of the training full precision weights and quantization operation are 

discarded. The quantized weights are put in the place of full precision weights and 

the inference works as usual. 

2.2 Literature Review 

2.2.1 Efficient Models Ground Up 

In this branch of efficient deep learning research, analyzation of current knowledge 

and state-space search of hyper-parameters are used to come up with new efficient 

deep learning architectures.  

In [1] , an analysis of CNN architectures resulted in 3 strategies. The first one is to 

use 1x1 filters instead of 3x3 ones as much as possible. The second one is to keep 

the number of input channels to 3x3 filters as small as possible. The last one is to 

downsample in the network as late as possible. Using these strategies, a new 

convolution block, namely Fire module, is designed. Then new CNN architectures 

are built using the Fire module repetitively. The parameters of the CNN architectures 

with Fire modules are determined by a state-space search considering accuracy and 

model size. These CNN architectures achieved the same accuracy with AlexNet[6] 

with 50 times less number of parameters.  

In [2], standard convolution operation is separated into two new operations, namely 

depthwise convolution and pointwise convolution. These operations require a 

smaller number of parameters than standard convolutions while achieving almost as 

much as feature representation with standard convolutions. In a follow-up work [12], 

linear bottlenecks and inverted residuals are added to depthwise convolutions to 

create even more efficient models.  

In [3], a channel shuffle operation is applied after 1x1 group convolutions. The 

channel shuffle operation is followed by a depthwise convolution operation and 
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another group convolution. A shortcut path is also added to these four operations to 

create one ShuffleNet unit. These ShuffleNet units are used repetitively to create 

efficient deep learning models. 

2.2.2 Quantization Based Approaches 

2.2.2.1 Quantization Aware Training and Post Quantization 

In this branch deep learning models are trained while quantization is being 

considered.  In order to do that, quantizer functions are defined. These quantizer 

functions are applied on weights and activations. Quantization takes place during 

forward propagation most of the times. Some works quantize only weights, some 

works quantize only activations and some other works quantize both of them.  

In [13], the weights of neural networks are binarized. Therefore, the weights are 

constrained to the values of -1 and 1. Two different goals and their specific quantizer 

functions are proposed. Straight-through estimator is used for backpropagation in 

both of the quantizer functions. The first goal is to quantize the weights in order to 

create a smaller and more efficient model. The quantizer function for the first goal is 

sign(.) function. After training, the full precision weights are completely replaced 

with binary ones. The second goal is to use quantization for regularization purposes. 

A stochastic quantizer is proposed for this goal. After training, the full precision 

values are continued to be used. This work is followed by an extension [14] which 

quantizes the activations as well as weights. The activation quantization is done with 

sign(.) function and therefore, activations can have values of -1 and 1. Quantizing 

both weights and activations to the values of -1 and 1 brings a significant 

computation efficiency since the matrix multiplication can be replaced with a bitwise 

XNOR operation. This work proves this efficiency by writing an XNOR GPU kernel 

which is reported to be 5.3 faster than conventional unoptimized matrix 

multiplication kernel. Furthermore, this work also proposes a shift-based batch 

normalization method to accelerate training as well. 
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In [15], the weights are quantized with sign(.) function and then multiplied with a 

scaling factor. The scaling factor is determined by taking the average of absolute 

weight values of each filter. The activations are also quantized similarly, using 

sign(.) function and a scaling factor. Straight-through estimator is used for 

backpropagation of quantizer functions. They benchmarked neural networks by 

quantizing only the weights and quantizing both the weights and activations. They 

reported their results on ImageNet dataset. 

In [16], the weights, activations and gradients are quantized. All of the quantizer 

functions are used with straight-through estimator in backpropagation. Different 

levels of quantization are tried and benchmarked. For binary quantization, sign(.) 

function is used with a scaling factor. The scaling factor is determined by taking the 

average of absolute values of the weights in whole layer. For higher level of 

quantization, i.e. quantization requiring 2 bits or more, a linear quantizer function is 

defined with clipping. For activation quantization, a linear quantizer function is used. 

For gradient quantization, a stochastic quantizer function is defined. This function 

employs a noise factor which is reported to be necessary to compensate the potential 

bias introduced by quantization. 

In [17], the weights are clustered into three values, i.e. ternary values. Three cluster 

values require two bits to be represented distinctly. The quantizer function assigns 

the full precision values to these three cluster points.  The quantizer function works 

with a threshold value. If a full precision value is larger than the threshold, it is 

quantized to 1. If a full precision value is smaller than the negative of threshold, it is 

quantized to -1. All other values are quantized to 0. After quantization, a scaling 

factor is applied to quantized values. The scaling factor is determined by taking the 

average of absolute values of the full precision weights which are larger than the 

threshold. 

In [18], the weights are clustered into three values. The quantizer functions assigns 

the full precision values to cluster values based on a threshold. The cluster values are 

zero, a positive cluster value and a negative cluster value. Positive and negative 
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cluster values are not symmetrical. These two cluster values are trainable. In other 

words, they are learnt during backpropagation to minimize the overall loss. This 

comes with a disadvantage which is the resultant ternary weights are not 

symmetrical. Asymmetrical weights are harder to implement in hardware for a 

possible acceleration. 

In [19], the weights of a pre-trained model are quantized using an incremental 

algorithm. The incremental algorithm is divided into three stages. These stages are 

names as weight partition, group-wise quantization and re-training. In the weight 

partition stage, the full precision weights (all of the weights at the start of the 

algorithm) are divided into two groups. In the group-wise quantization, one group is 

quantized to values which are either 0 or power of 2. Then, this group is frozen. In 

last stage, re-training, the other group (not quantized one) is re-trained to compensate 

the accuracy loss caused by the quantization of the first group. These three stages are 

repeated on the remaining full-precision weights. At every repetition, the number of 

full precision weights is decreased and eventually all of the weights are quantized to 

either 0 or power of 2. The cluster values are chosen specifically to be implemented 

by bit shift operations. Therefore, expensive multiplication operation can be replaced 

with bit shift operations. When bit width of 5 is used, the quantized models achieve 

accuracies which are similar to or better than full precision models’ accuracies. Also, 

state-of-the-art results are delivered with aggressive quantization levels which are 

experimented down to 2 bits. 

In [20], the 32-bit full precision weights are quantized to 8-bit integers. The proposed 

quantizer function is actually an affine mapping of 8-bit integers to 32-bit full 

precision weights. In order to do this mapping, two parameters are defined for the 

quantizer function. First one is called zero-point parameter which corresponds to 0 

in the domain of full precision weights. In other words, the affine mapping of zero-

point parameter (an 8-bit integer) is 0 which is represented with 32-bit floating 

points. The second parameter is scaling factor which is defined as the ratio of range 

of full precision weights to range of quantized weights. Considering these two 

parameters, the quantizer function becomes 
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 𝑤 = 𝑆 ∗ (𝑤𝑞 − 𝑧) (2-19) 

Where 𝑤, 𝑆, 𝑤𝑞 , 𝑧 represent full precision weights, scaling factor, quantized weights 

and zero-point parameter, respectively. This method is used as both post-

quantization method and quantization-aware training method. However, it is 

reported that when it is used as post-quantization method, small neural networks face 

with a large accuracy drop which may be compensated with re-training. The best 

results are achieved when it is used as quantization-aware training method. This 

method is realized with TensorFlow Lite. 

There is also another branch of research where a reinforcement learning agent is 

trained to automatically determine some hyperparameters related with quantization. 

The searched hyperparameters are mostly the level of quantization for each layer. In 

other words, the agent decides the bitwidth of the quantization for each layer. The 

reasoning behind using reinforcement learning framework for this task is that the 

state space is huge for deep neural networks. Even if the maximum bitwidth of 

quantization is limited to 8 for all layers, the state space becomes 8n where n is the 

number of layers. Therefore, the state space increases exponentially with the number 

of layers. 

In [21], a reinforcement learning framework is proposed to find the quantization 

level of the weights of deep neural networks. Special state representation and reward 

function are defined. The state representation includes information about the 

bitwidth of the quantized weights, memory access energy, multiply accumulate 

operations, quantized model’s accuracy and full precision model’s accuracy. The 

reward function gives the importance on preventing accuracy drop over 

compression. That results in a behavior where the agent compresses the deep neural 

network as long as the current action does not cause a significant accuracy drop. The 

actions of the agent are limited to choosing a bitwidth between 1 and 8. After the 

agent makes its action, the model is retrained and then the reward is calculated. 

Proximal policy optimization is used to train the agent. A simple linear quantization 
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technique is used for all layers. The weights are first clipped to the range of -1 and 

1, then linearly quantized depending on the chosen bitwidth. 

In [22], a hardware-aware reinforcement learning framework is proposed. The 

purpose is to find quantization levels of the layers in a deep neural network. The 

main contribution is that this work does not observe only the metrics of the neural 

network, but also gets feedback from simulator of hardware accelerators. Therefore, 

the agent quantizes the neural network considering both the properties of the neural 

network and the hardware accelerator which it will run on at the end. The observation 

state includes information on input-output channel sizes, kernel and stride sizes, 

input feature size, number of parameters and a separating indicator for depthwise 

convolution for convolutional layers. The same information for fully connected 

layers includes input-output hidden unit sizes, input feature size, number of 

parameters. A binary indicator and the previous action are also added to both of the 

layers’ state representations. All representations are normalized to the range [0,1]. A 

continuous action space is used. The agent outputs an action value between 0 and 1, 

then this value is rounded to an integer bitwidth value, typically between 2 and 8. 

The reward signal is simply the scaled difference of accuracies of quantized model 

and original model. In the framework, quantizing a layer is a step while quantizing 

all layers is an episode. After finishing an episode, a feedback signal of hardware 

constrains is received from the simulator of hardware accelerator. If the resulting 

model exceeds a hardware constraint, the bitwidths of layers are sequentially 

decreased until the constraint is satisfied.  Deep deterministic policy gradient is used 

for the agent. Given the bitwidth of a layer, a linear quantization function is used. 

In [23], a reinforcement learning is proposed to automatically prune neural networks. 

The goal is to reduce the number of parameters in a neural network using a trained 

agent. Unlike quantization works, the remaining parameters of the weights are 

represented full precision. The observation state includes index of the layer, input 

and output channels, height and width of the input, stride and size of the kernel, 

FLOP number, reduced FLOPs in previous layers and remaining FLOPs in next 

layers, previous action on current layer. All of the observation quantities are 
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normalized to the range 0 and 1. The agent outputs an action which is the 

compression rate which is a value between 0 and 1. This compression rate is 

calculated with two different way depending on the pruning method. For [9], 

compression rate is the ratio of number of zeros to number of all parameters. For 

channel pruning in [24], the compression rate is the ratio of the number of post-

pruning channels to the number of after pre-pruning channels. A maximum allowed 

compression rate is put to limit the actions of the agent. Deep deterministic policy 

gradient is used for the agent 
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CHAPTER 3  

3 QUANTIZATION AWARE TRAINING BASED METHODS 

We have analyzed the most successful and known selected methods from the 

literature and explained them in this chapter. There are couple of reasons why we 

chose these methods. Firstly, they are the most successful and known methods in 

their sub-category which is quantization-aware training. Secondly, they quantize 

weights during forward propagation. Lastly, their quantization heuristics are similar 

since all of them use full precision weights and their distribution to come with 

quantized weights. 

3.1 BinaryConnect 

BinaryConnect [13] is proposed to quantize weights into two cluster values -1 and 

1. In order to do this quantization, they applied the function below to the weights 

 𝑤𝑞 =  {
+1 𝑖𝑓 𝑤 ≥ 0,
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (3-1) 

Where 𝑤𝑞 denotes quantized weights and 𝑤 denotes the full precision weights. 

Furthermore, the weights are clipped to the interval [-1,1] right after the weight 

updates. This clipping is applied in order to fully utilize the quantizer function since 

if weights get much bigger than the range of quantized values, weight updates do not 

change anything. This quantizer function is used when the aim is to train a quantized 

neural network. Therefore, after the training is finished, the full precision weights 

are completely replaced with quantized weights. 

BinaryConnect proposed another quantizer function which has a different purpose 

than training a quantized neural network. This quantizer function’s aim is to 

regularize the neural network as in the Dropout [25] concept. It is a reasonable aim 
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since quantization adds noise to the weights as in Dropout. The used quantizer 

function is 

 𝑤𝑞 =  {
+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 =  𝜎(𝑤),
−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝.

 (3-2) 

Where 𝜎(. ) is the hard sigmoid function which can be formulated as  

 𝜎(𝑥) = max (0, min (1,
𝑥 + 1

2
)) (3-3) 

This stochastic quantizer function is used during training. However, the inference is 

done with full precision weights. As a result, the quantization is used only for 

regularization at training, just like Dropout. 

3.2 Binarized Neural Networks 

The work of Binarized Neural Networks [14] is an extension to BinaryConnect. The 

BinaryConnect’s quantizer function (3-1) and clipping concept is used for weights, 

without a change, in Binarized Neural Networks. The one significant addition to 

BinaryConnect is the quantization of activations. The same quantizer function (3-1) 

is used for activations as well. Even though same clipping concept is used with 

BinaryConnect, this work puts the clipping operation into straight-through estimator 

of the quantizer function as 

 
𝜕𝐶

𝜕𝑤𝑞
=  

𝜕𝐶

𝜕𝑤
 ∗ 1|𝑤| ≤1 (3-4) 

Here C is the cost function. The term 1|𝑤| ≤1 is equal to 1 if the absolute value of 𝑤 

is smaller than 1, and equals to 0 otherwise. Actually, this clipping behavior can be 

simply implemented using the hard tanh function below 

 𝑦 = 𝐻𝑡𝑎𝑛ℎ(𝑥) = max (−1, min(1, 𝑥)) (3-5) 

Since the derivates of horizontal lines will be 0, backward pass through hard tanh 

function will work as clipping during backpropagation. 
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Another important contribution in this paper is the usage of XNOR operation. Since 

both weights and activations are binarized, expensive multiplication operation can 

be completely avoided during forward propagation. Instead XNOR operation can be 

applied and set bits can be accumulated. In this work, related XNOR GPU kernel is 

implemented, benchmarked against unoptimized matrix multiplication and proven 

to be much faster. 

3.3 DoReFa-Net 

DoReFa-Net proposes methods to quantize weights, activations and gradients. 

Different quantizer functions are proposed for weights, considering the level of 

quantization which is basically the required number of bits to represent quantized 

values. For binary quantization, the proposed quantizer function is 

 𝑤𝑞 = 𝑠𝑖𝑔𝑛(𝑤) ∗ 𝐸(|𝑤|) (3-6) 

They also proposed another quantizer function which is used for quantizing 

activations. That quantizer function is 

 𝑦 =
1

2𝑘 − 1
∗ 𝑟𝑜𝑢𝑛𝑑((2𝑘 − 1) ∗ 𝑥) (3-7) 

This quantizer function is named as 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘. It is basically a linear quantizer 

that outputs a quantized value between 0 and 1. This 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 is also used for 

weight quantization when weights are quantized to 3 or more cluster values. In 

those cases, 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 is not directly used. It is used as 

 𝑤𝑞 = 2𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑘 (
tanh(𝑤)

2max (|tanh (𝑤)|)
+

1

2
) − 1 (3-8) 

The purpose of using tanh(.) is to clip input values to the range of -1 and 1. 
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3.4 Ternary Weight Networks 

TWNs cluster the weights into three values, one value is zero and the other two 

values are symmetrical with respect to zero. In order to quantize full precision 

weights, an optimization problem is defined as minimization of Euclidian distance 

between full precision weights and the scaled ternary weights as below. 

 𝑎∗, 𝑤𝑞
∗ =  arg min

𝑎,𝑊𝑡
𝐽(𝑎, 𝑤𝑞) = ||𝑤 −  𝑎𝑤𝑞||

2

 
(3-9) 

 𝑠. 𝑡.      𝑎 ≥ 0, 𝑤𝑞 𝜖 {−1, 0, 1} 

This optimization problem could be solved by taking derivatives of the cost function 

with respect to 𝑎 and 𝑤𝑞. However, one derivative would be dependent to the other 

parameter. This means we cannot find one deterministic solution for this problem 

using this way. Therefore, an approximated solution is proposed. A function is 

defined, as below, to find ternary values of weights using the corresponding full 

precision ones. 

 𝑤𝑞 = {

+1 , 𝑖𝑓 𝑤 > ∆

0 , 𝑖𝑓 |𝑤| ≤ ∆
−1 , 𝑖𝑓 𝑤 < −∆

 (3-10) 

Using this quantization equation and the expanded form of the cost function (3-11), 

We can come up with a new problem formulation as (3-12). 

 𝐽(𝑎, 𝑤𝑞) =   𝑎2𝑤𝑞
𝑇𝑤𝑞  − 2𝑎𝑤𝑞

𝑇𝑤 + 𝑤𝑇𝑤 (3-11) 

 

 𝑎∗, ∆∗=  arg min
𝑎≥0,∆≥0

(|𝐼∆|𝑎2 − 2 (∑|𝑤𝑖|

𝑖𝜖𝐼∆

) 𝑎 + 𝑐) (3-12) 

 

In (3-12), |𝐼∆| is the number of weights bigger than ∆ and smaller than −∆. The term 

c is constant. Note that each term in (3-11) and (3-12) are equal in the same order, 
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when we use (3-10) in (3-11). From this point, given a particular ∆, we can find 

optimal 𝑎∆
∗  by taking derivative of (3-12) with respect to 𝑎.  

 𝑎∆
∗ =

1

|𝑰∆|
(∑|𝒘𝒊|

𝒊𝝐𝑰∆

) (3-13) 

Then we plug 𝑎∆
∗  in (3-12) to find ∆∗ which result in (3-14). We can solve (3-14) by 

making assumptions about the form of the distribution of 𝑤𝑖 values (full precision 

weights). The assumption of full precision weights to have normal distribution is 

actually well made since the weights are tend to have normal distribution after some 

training. Then, ∆∗ can be found by sweeping it between 0 and maximum absolute 

value of 𝑤𝑖 values. Considering normal and uniform distributions ∆∗ can be 

approximated as 0.7 ∗ 𝐸(|𝑤|). 

 ∆∗=  𝑎𝑟𝑔 max
∆>0

1

|𝑰∆|
(∑|𝒘𝒊|

𝒊𝝐𝑰∆

)

2

 (3-14) 
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CHAPTER 4  

4 EXPERIMENTAL RESULTS 

In this chapter, previously analyzed methods are implemented, benchmarked and 

compared with each other.  

4.1 Framework and Libraries 

There many frameworks and libraries that are developed for deep learning and neural 

networks. Throughout the short near history of deep learning, different frameworks 

became prominent at their time and left their spot to another one. In the earlier days 

of modern deep learning, the frameworks developed by universities were in use. 

Almost all of these frameworks lost their popularity and discontinued or merged into 

another framework. Even though there are still many active frameworks, two of them 

are dominant in the research and industry environments. They became the most 

prominent frameworks since they are developed and backed by large companies. 

These frameworks are PyTorch [26] and TensorFlow [27].  

PyTorch was released in 2016. Even though it was released one year after 

TensorFlow, it gained popularity very quickly. There are couple of reasons behind 

this rapid popularity increase. Firstly, it was easy to use since it did not require much 

on top of Python programming language, unlike TensorFlow. Secondly, it was using 

eager execution by default. Therefore, it was easier to write, run and debug a PyTorch 

code. It is developed and maintained by Facebook. 

TensorFlow was released in 2015. It became popular just after its release. In its 

earlier versions (1.x), it was working with graphs. First, the neural network 

architecture was defined as a graph. Layers were connected to each other in this 

graph. Then, a session was started to feed data to the input of the graph. The graph 
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was processing the data layer by layer. Then the output was taken from the output 

node of the graph. This workflow was inconvenient process compared to PyTorch. 

TensorFlow started to lose popularity after PyTorch Release. Then they released 

TensorFlow 2.0 where eager execution is introduced. TensorFlow also uses Keras 

[8] as its high level API. 

In this work, TensorFlow/Keras is used. Since quantization requires additional 

calculations in the layer, custom layers are coded. These custom layers are inherited 

from base Keras layers. The calculations of quantization on weights are done with 

TensorFlow library functions. 

4.2 Datasets 

In this section, the datasets which are used in the experiments are explained. Even 

though experiments are done to investigate the effects of quantization to deep neural 

networks, there is still a task of the neural networks. This task is chosen to be image 

classification. Therefore, the used datasets are image datasets with labels. 

The first dataset is MNIST [28]. It is a dataset of images of hand-written digits. The 

digits from 0 to 9 are present in the dataset. The images are grayscale which means 

they only have one channel. The spatial sizes of the images are 28 by 28 pixels. There 

are typically 60,000 images for training and 10,000 images for testing purposes.  

The second dataset is Cifar-10 [29]. It is a dataset of real-life color images of 10 

classes. The classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, 

and truck. Since the images are in color, they have 3 channels. The spatial sizes of 

the images are 32 by 32 pixels. There are typically 60,000 images for training and 

10,000 images for testing purposes. The images of classes are distributed evenly in 

the given training and testing images. 
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4.3 Results 

The methods, that fall into quantization aware training category, are implemented 

and compared in this section. To ensure fair comparison, same architecture and same 

hyperparameters are used. For meaningful comparison, the methods that quantize 

only the weights are compared with each other and the methods that quantize both 

the weights and activations are compared with each other. 

In this section, the selected methods are benchmarked on a simple dataset, MNIST, 

with a simple architecture, LeNet-5 [30]. Then the methods are benchmarked on 

Cifar-10 dataset with VGG-7. VGG-7 is a VGG-like architecture defined in [17]. 

Quantized VGG-7 architectures are also compared with a ground-up efficient model. 

Then, the methods are benchmarked on Cifar-10 dataset with ResNet20 and 

ResNet32 [31] to examine the success of quantized models on deep and complex 

architectures. Failures of weight quantization of deep and complex models are 

shown. Various solutions are proposed to overcome these failures. Proposed 

solutions are compared with each other. Relatively low accuracies of weight and 

activation quantization of deep and complex models are shown. The reasons behind 

these low accuracies are examined and shown. Quantized ResNet architectures are 

also compared with a ground-up efficient model. Lastly, a ground-up efficient model 

is quantized and compared with its base model. 

In the following sections, some abbreviations are used for the methods. BC denotes 

BinaryConnect [13], BNN denotes Binarized Neural Networks [14], DRF denotes 

DoReFa-Nets [16] , TWN denotes Ternary Weight Networks [17]. Moreover, a 

custom approach is developed using the DoReFa-Nets’ method. In this custom 

approach, weights are quantized using DRF method and activations are not 

quantized. This custom approach is named as DRF-W which denotes DoReFa-Nets-

Weights. Also, “Base” word is used to denote full precision models. Base models 

are not quantized and used for comparison purposes. 
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4.3.1 A Simple Architecture and Dataset 

In this section, a simple architecture and a simple dataset is used to compare 

quantization methods. The used architecture is LeNet-5 [30] and the used dataset it 

MNIST. The models are trained for 30 epochs with batch size of 128. Adam is used 

for optimizing the categorical cross entropy loss. The learning rate is started with 

0.001 and exponentially decayed down to 0.0001. 

Table 4.1 Comparison of Quantization Methods on Simple Example 

Models Accuracy (%) Compression 

Base 99.54 1x 

BC 99.50 32x 

BNN 99.00 32x 

DRF-W 99.43 32x 

DRF 99.18 32x 

TWN 99.51 16x 

 

The weight quantizer methods do not sacrifice accuracy while compressing the 

neural network significantly. However, the weight and activation quantizer methods 

experience an accuracy drop considering the task’s simplicity. These results suggest 

that the weight and activation quantizer methods might see significant accuracy 

drops in complex neural network architectures and datasets. 

4.3.2 VGG-7 Architecture 

The used architecture is VGG-7 defined in [17]. The hyperparameters are total 

trained epochs of 200 and batch size of 100. SGD with momentum of 0.9 is used as 

the optimizer. Learning rate is started at 0.1 and multiplied with 0.1 at epoch 80, 

120, 160. 
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4.3.2.1 Methods Quantize Weights Only 

In this section, BinaryConnect, Ternary Weight Networks and DoReFa-Net without 

activation quantization (named as DoReFa-W) methods are compared. Base model 

(full precision) is also added to see accuracy degradation. The used dataset is Cifar-

10. 

The improvement of validation set accuracies can be seen in Figure 4.1. It can be 

roughly seen that TWNs have the least degradation from accuracy among all. Even 

though a general idea can be extracted from this figure, more explanatory figures are 

still required. 

 

Figure 4.1. Validation set accuracies of Base, DRF-W, BC and TWN 

The best test accuracy comparison is made in Table 4.2 If TWNs are used, the cost 

of 16 times smaller model results in only 0.39% in accuracy. One important 

observation in this comparison is that BinaryConnect and DoReFa-W have almost 

the same accuracy. The only difference between the quantizer functions of 

BinaryConnect (3-1) and DoReFa-W (3-6) is a scaling factor which is the average 

value of the absolute values of the weight in the related layer. From the results of 
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this experiment, it can be said that scaling factor does not have a considerable effect 

on accuracy when weights are quantized to two values. 

Table 4.2 Test accuracy comparison of weight quantizer methods 

Methods Test Accuracy (%) Compression Rate 

Base 93.34 1x 

BC 92.32 32x 

DRF-W 92.29 32x 

TWN 92.95 16x 

 

Another important concept to consider is the convergence characteristics of the 

experimented methods. Even though Figure 4.1 gives some idea about this topic, the 

plot cannot be read clearly due to the oscillations in early epochs of the training. In 

order to overcome this problem, another plotting method is applied to the same data. 

Accuracy is averaged at each epoch from the start. For example, the first 3 accuracy 

values are averaged at epoch three. Plotting this processed accuracy data removes 

the oscillations and shows a better image in terms of convergence characteristics as 

in Figure 4.2. 

 

Figure 4.2. Improvement of average accuracies of weight quantizers and base 

model 
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Plotting average accuracy actually gives a great insight about convergence. It can be 

clearly seen that, as expected, base model has the best convergence characteristics 

since its average accuracy increases more rapidly than the quantized models. 

Interestingly, TWN and DRF-W shows very similar, almost identical, convergence 

characteristics. They start to differ after 50th epoch, which is obviously the result of 

the model’s capacity since while TWN converges to 92.95%, DRF-W converges to 

92.29%. Even though a small gap is formed between TWN and DRF-W after 50th 

epoch, average accuracy lines remain parallel. Even more interestingly, convergence 

characteristics of BC and DRF-W differ a lot. Both of the methods converge to a 

similar accuracy, at around 92.30%. However, Convergence of DRF-W is 

considerably faster than BC. Therefore, it can be said that a scaling factor leads to a 

faster convergence in binary quantizations. 

4.3.2.2 Activation Quantization Along with Weight Quantization 

In this section, the effects of activation quantization on models with quantized 

weights are examined. Two activation and weight quantizer methods are compared 

with each other and their weight-only quantizing versions. The methods are 

Binarized Neural Network and DoReFa-Net while their weight-only quantizing 

versions are BinaryConnect and DoReFa-W, respectively. DoReFa-Net proposes 

different levels of quantization for activations. For fair comparison, DoReFa-Net 

with binary activation quantization is chosen to be compared with Binarized Neural 

Network. 

Table 4.3 The comparison of methods quantizing weights and activations 

Method Accuracy (%) Compression Rate 

BNN 88.24 32x 

DRF 90.15 32x 
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The test accuracies of the trained models of BNN and DRF is given in Table 4.3 

DoReFa-Net has a better accuracy than BNN. Even though quantization levels of 

weights and activations are same for these methods, the quantizer functions are 

slightly different. The difference in weight quantizers is simply a scaling factor as in 

3-6. The activation quantizing levels are binary in this case. BNN quantizes the 

activations to the values of -1 and 1, while DoReFa-Net quantizes them to the values 

0 and 1. This difference in the activation quantizer functions creates this results since 

the only-weight quantizing versions, BC and DRF-W, have very similar test 

accuracies (Figure 4.2). 

Previously explained averaging accuracy method is applied to this case as well to 

examine convergence characteristics. Figure 4.3 clearly shows that DRF learns faster 

than BNN. 

 

Figure 4.3. Improvement of average accuracies of BNN and DRF with base model 

Similarly, the same method is applied to compare the weight-only quantized models 

and fully quantized models in order to understand the effect of activation 

quantization to convergence. The results are in the plots in Figure 4.4. The results 

clearly show that quantizing activations make the models learn even slower than 

weight-only quantized models. 
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Figure 4.4. Average accuracy comparison of weight quantization and 

weight/activation quantization 

Since both of these methods are similar in terms of quantization level, their weight 

and activation quantizer functions are interchangeable. For example, a quantized 

model can be trained with BNN’s weight quantizer and DRF’s activation quantizer. 

Two hybrid models are created to investigate if there is a superior combination to 

natural proposed methods. The results are given in Table 4.4  

Table 4.4 Combinations of BNN and DRF 

Methods BNN-Act DRF-Act 

BNN-Weight 88.24 89.68 

DRF-Weight 88.52 90.15 

 

Activation quantizer of the BNN causes the largest degradation. It is clear to see that, 

BNN-Weight/DRF-Activation model performs better than original BNN model. 

BNNs have also an acceleration technique which employs XNOR function instead 

of multiplying since whole weights and activations are constrained to -1 and 1. This 

hybrid model actually does not lose this acceleration technique and proposes even 

better one. The hybrid model’s weights are constrained to -1 and 1, activations are 

constrained to 0 and 1. Therefore, these hybrid models can be implemented with only 
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two AND gates as in Figure 4.5. As a result, these hybrid models have a better 

accuracy and a smaller number of gates than BNNs. Furthermore, since there are 

only two parallel AND gates instead of one XNOR gate, they are also faster than 

BNNs. On the other hand, since the number of cluster points increases to 3, the 

required number of bits to store each value becomes 2 and compression rate 

decreases to 16x. 

 

Figure 4.5. Example implementation for hybrid models 

4.3.2.3 Comparison with Ground-up Efficient Models 

In this section, benchmarking and comparison of efficiently designed models and 

quantized models are made. In the SqueezeNet paper [1], multiple architectures are 

proposed. The proposed architectures include a vanilla one, the one with simple 

residual connection and the one with complex residual connection. For this section, 

we used vanilla SqueezeNet architecture and VGG-7 with quantized weights. 

The results are given in Table 4.5 VGG-7 is a basic architecture but heavy on the 

number of parameters side. Therefore, it requires 49.5MB for its weights even 

though it is not a very deep architecture. SqueezeNet is a relatively deeper 

architecture with its Fire Modules which are a bit more complex than the basic layers 

of VGG. SqueezeNet requires only 2.78MB to store its weights. SqueezeNet’s 

accuracy is considerably lower than the base VGG-7. However, it is completely 

acceptable due its very efficient size. This weakness of VGG-7 can be eliminated 
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with the quantization methods. TWN compresses the VGG-7 down to 3.09MB which 

is very close to SqueezeNet’s size. Furthermore, TWN’s model’s performance is still 

1.12% higher than the SqueezeNet’s performance. DRF-W and BC compress the 

VGG-7 even more, almost down to the half size of SqueezeNet, while achieving still 

better performance than SqueezeNet. 

Table 4.5 Comparison of SqueezeNet and Quantized Models 

Models Accuracy (%) 

Number of 

Parameters 

Required Space to Store the 

Weights (MB) 

SqueezeNet 91.83 727,626 2.78 

VGG-7 (Base) 93.34 12,976,266 49.5 

VGG-7 (BC) 92.32 12,976,266 1.55 

VGG-7 (DRF-W) 92.29 12,976,266 1.55 

VGG-7 (TWN) 92.95 12,976,266 3.09 

 

While these results support that quantization achieves smaller and better models than 

SqueezeNet, there are still overheads of deploying quantized models. Quantized 

models require special hardware to be used. On the other hand, SqueezeNet is ready 

after training and can run on all conventional hardware without an extra effort.  

4.3.3 Quantization of Deep and Complex Models 

In [20], it is claimed that aggressive quantization approaches, such as 1 and 2 bits, 

are experimented with overparameterized models such as VGG [32] or AlexNet [6]. 

According to this claim, since these models are designed to perform marginal results, 

they are not efficient and they already have much more parameters than required by 

their related tasks. Therefore, compressing these models by quantization is easy 

without a significant accuracy loss. However, it is raised that the real challenge 

remains to be quantizing efficiently designed models.  



 

 

48 

In this section two ResNet [31] models are quantized. ResNet architecture is chosen 

to address the previously mentioned problem. ResNets are deeper and more efficient 

models than VGG architectures. While ResNet-20 and ResNet-32 have around 273K 

and 468K parameters respectively, VGG-7 has around 12.982M parameters. 

Therefore, it can be said that ResNet architecture is a good choice for examining the 

success of quantization of models which are not overparameterized. 

The first and last layers of the models are not quantized. This is a very common 

practice since quantizing first and last layers of very deep models significantly 

decreases the accuracy. Therefore, the compression rates of the quantized models are 

given approximately.  

The hyperparameters are total trained epochs of 200 and batch size of 100. SGD 

with momentum of 0.9 is used as the optimizer. Learning rate is started at 0.1 and 

multiplied with 0.1 at epoch 80, 120, 160. 

4.3.3.1 Methods Quantize Weights Only 

Quantizing ResNet20 with the methods of TWN and DRF-W causes a small 

degradation in accuracy. The drop in accuracy becomes 0.28% and 1.9% with TWN 

and DRF-W respectively. On the other hand, the accuracy loss in BC becomes 8.98% 

which is certainly in the unacceptable range for this task, dataset and architecture. 

Some methods and/or modifications to make BC work with deep and complex 

models are discussed in the following section. 
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Table 4.6 Test Accuracy Comparison of Weight Quantizer Methods on ResNet20 

ResNet20 Accuracy (%) Compression 

Base 91.66 1x 

BC 82.68 ~32x 

DRF-W 89.76 ~32x 

TWN 91.38 ~16x 

 

The results for ResNet32 are similar to the ones for ResNet20 with the exception of 

BC method. Being deeper and having more parameters, full precision ResNet32 has 

already better accuracy than ResNet20. This superiority is applicable for TWN and 

DRF-W as well. In ResNet32, the accuracy degradation from TWN and DRF-W are 

0.81% and 1.78%. An interesting outcome of this experiment is that BC completely 

fails to learn with same hyperparameters and training techniques. The next section 

further examines this problem and suggests solutions. 

 

Table 4.7 Test Accuracy Comparison of Weight Quantizer Methods on ResNet32 

ResNet32 Accuracy (%) Compression 

Base 92.05 1x 

BC 10.00(Fail) ~32x 

DRF-W 90.27 ~32x 

TWN 91.24 ~16x 

 

4.3.3.2 BinaryConnect Modifications for Deep and Complex Models 

Before proposing solutions to this problem, the roots of the problem should be 

identified. The problem is related with architecture. However, the problem is not 

about the architecture’s deepness or complexity. It is about some of the residual 
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connections. In the original ResNet architecture [31], the spatial size is halved and 

number of channels is doubled at the start of every stack of ResNet layers. At these 

specific points, simple identity connections cannot be used since the dimension do 

not match. The original paper suggests two solutions for this problem. The first one 

is to use zero padding to match dimension. The second one is to use 1x1 

convolutional layers to match the dimensions. Our implementation uses the second 

approach. These 1x1 convolutional layers are the causes of the problem. Following 

figure shows the weights distributions of some layers to point out the roots of the 

problem. 
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Figure 4.6. The weight distributions of 3 layers from full precision and quantized 

models 

In Figure 4.6, the first column is from full precision model and the second column is 

from BC model. The first row is from an arbitrary layer at the middle of the model. 

The second and third rows are from residual connections. The weights from residual 

connections are quantized quite asymmetrically. This situation causes a very large 

disturbance at the end point of residual connection. Therefore, this disturbs the 

meaningful flow of the information. 
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One possible solution would be not quantizing these weighted residual connections 

just like the first and the last layer of deep neural networks. In Table 4.8 The results 

of this approach are shown. 

Table 4.8 BC with not quantizing weighted residual connections 

Model Accuracy (%) 

ResNet20-BC 89.60 

ResNet32-BC 90.65 

 

Another possible solution would be proposed by slightly modifying the architecture. 

The modification is completely eliminating these problematic residual connections. 

The residual connections which are identity functions are still used. However, the 

residual connections with 1x1 filters are simply deleted. The results of this approach 

are shown in Table 4.9 . 

Table 4.9 BC without weighted residual connections 

Model Accuracy (%) 

Modified ResNet20-BC 89.03 

Modified ResNet32-BC 91.11 

 

There can be other solutions by modifying some elements. As DRF-W method 

successfully quantizes deep and complex models with small degradation to accuracy, 

the solution of the BC method’s problem can be found in the comparison of DRF-W 

and BC methods. For this comparison, DRF-W is specially suggested since both 

DRF-W and BC are binary quantizers. Moreover, they both use the same 

quantization function (sign(.)), while DRF-W is the scaled version of the BC. The 

scaling factor of DRF-W is a floating-point value which is much less than 1, cluster 

point of the BC method. Considering the success of DRF-W, two modifications can 
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be suggested. Both of the modifications aim to scale the outputs of layers to a 

significantly smaller value. 

First modification is adding a scaling factor to BC just like DRF-W. This method 

also would be an alternative to DRF-W. Adding a scale factor discards the most 

important advantage of BC, which is completely eliminating the expensive 

multiplication operations. However, unlike DRF-W, if we can decide the exact value 

of the scaling factor, we can choose it to be a hardware friendly value. For example, 

choosing a value which is a power of 2 would enable bit shifting instead of 

multiplication. Note that this is a similar approach to [19] where weights are 

clustered to be power of two and different bit widths are experimented down to 

ternary quantization. They left out the binary quantization out of scope. By this way, 

the expensive multiplications can be avoided while having a floating-point scaling 

factor. 

The second modification changes the original architecture even less while achieving 

success. Since the aim is to scale the layers’ outputs to a smaller value, we can also 

modify the activation function. Previously, we were using ReLU function for 

activations. If we decrease the slope of the ReLU, we can successfully train BC with 

weights constrained to -1 and 1. The computational complexity of the activation 

function will increase since there will be multiplications. However, as in first 

method, we can choose the slope of ReLU so that we can benefit from bit shifting 

instead of expensive multiplications. 
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Table 4.10 Results of BC Solutions for Deep and Complex Models 

Method ResNet20(%) ResNet32(%) 

BC 82.68 10.00 

BC-1.1 89.33 90.67 

BC-1.2 89.71 90.90 

BC-2.1 88.03 87.69 

BC-2.2 88.31 87.83 

 

The results of the proposed modifications can be seen in Table 4.10 In BC-1.1 and 

BC-1.2, the weights are scaled with 0.1 and 0.125, respectively. In BC-2.1 and BC-

2.2, the ReLU activations are scaled with 0.1 and 0.125, respectively.  

Note that DRF-W accuracy is 90.27% for ResNet32 in Table 4.7 . The first suggested 

modification outperforms the DRF-W. The constant scaling factor for all layers is 

chosen 0.1 and 0.125 in BC-1.1 and BC-1.2, respectively. These models show better 

performance than DRF-W with a margin of 0.40% and 0.63%. These results clearly 

suggest that the mean of absolute values of full precision weights is not an optimal 

scaling factor for binary quantization. BC-1.2 has also hardware friendly scaling 

factor on top of the better performance compared to DRF-W. 

4.3.3.3 Activation and Weight Quantization 

The experiments show that the weight quantization techniques can work with deep, 

complex and fairly parameterized models like ResNet20 and ResNet32 as well as 

over parameterized models like VGG-7. However, the same success cannot be 

achieved when both of the weights and activations are quantized. 
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Table 4.11 Weight and Activation Quantization of Deep and Complex Models 

 VGG-7 ResNet20 ResNet32 

Base 93.34 91.66 92.05 

BNN 88.24 77.88 68.23 

DRF 90.15 78.43 69.99 

 

A certain pattern can be seen in Table 4.11 Accuracy degradation is not related with 

number of parameters. The accuracy degradation is related with the deepness of the 

model. More specifically, the accuracy degradation increases with the increasing 

number of used activation layers in the model. The only weight quantization does 

not harm the accuracy this much since the weights are trained such that they can 

work with quantization. In only weight quantization, the errors are calculated with 

the quantized weights’ outputs and the backpropagation algorithm updates the 

weights accordingly. However, the activations do not have such adaptation 

mechanism. They do not have any parameters to be trained. Moreover, since straight 

through estimators are used for activations during backpropagation, the error 

introduced by quantization of activations cannot be compensated with 

backpropagation updates. In other words, the activation quantization is invisible to 

backpropagation algorithm. Therefore, increasing the quantized activation layers in 

a model accumulates the introduced error and therefore significantly harms the 

accuracy. The following section presents empirical proof of accuracy degradation 

caused by activation quantization. 

 

4.3.3.4 Activation Quantization 

Some experiments are conducted to prove that quantizing activations is the real 

reason of severe accuracy drop in deep neural networks. In these experiments, 

weights are not quantized and trained with full precision. However, activations are 
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quantized. A deep neural network with full precision weights and quantized 

activations has no advantage at all. The only aim is to show that quantizing 

activations are the real root of accuracy drop in quantized deep neural networks. The 

results are shown in Table 4.12.  

Table 4.12 Accuracies when only activations are quantized 

Method VGG-7 ResNet20 ResNet32 

BNN-Act 90.28 81.35 78.00 

DRF-Act 91.85 82.12 77.35 

 

In Table 4.12, BNN-Act and DRF-Act are the activation quantization techniques 

which are proposed in [14] and [16], respectively. DRF-Act is expected to perform 

better than BNN-Act, considering the previous results. DRF-Act indeed shows a 

superior performance for VGG-7 and ResNet20. However, BNN-Act performs better 

than DRF-Act for ResNet32. The accuracy loss increases from the lowest points at 

VGG-7 to the highest point at ResNet32. During this increase, DRF-Act is affected 

more seriously than BNN-Act. As a result, BNN-Act becomes the better performer 

at the highest accuracy loss point which is ResNet32. The accuracy losses for the 

deep ResNet models are quite high. The accuracies of ResNet20 and ResNet32 drop 

at least 9.54% and 14.7% compared to base model. On the other hand, VGG-7 does 

not experience such dramatic accuracy loss when its activations are quantized using 

the same method. VGG-7 has only 7 activation layers that are quantized while 

ResNet20 and ResNet32 have 19 and 31 activation layers, respectively. The accuracy 

loss is proportional with number of quantized activation layers. These high accuracy 

drops are not observed when only the weights are quantized. However, when both of 

the weights and activations are quantized, the combined accuracy loss is even higher. 

This high combined accuracy loss is mostly due to the activation quantization as 

suggested with this section’s experiments. 
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4.3.3.5 Comparison with Ground-Up Efficient Models 

Previously, Quantized VGG-7 models are compared with SqueezeNet in terms of 

accuracy, number of parameters and required storage space. In this section, similar 

comparison is made for ResNet models. Since ResNet architecture includes 

residual connections, SqueezeNet with simple bypass is built and trained for fair 

comparison. 

Table 4.13 Comparison of SqueezeNet and Quantized ResNet Models 

Models Accuracy (%) 

Number of 

Parameters 

Required Space to Store the 

Weights (MB) 

SqueezeNet (with 

bypass) 
92.43 727,626 2.78 

ResNet20 Base 91.66 271,690 1.04 

ResNet20 BC-1.2 89.71 271,690 0.032 

ResNet20 DRF-W 89.05 271,690 0.032 

ResNet20 TWN 90.71 271,690 0.065 

ResNet32 Base 92.05 465,674 1.78 

ResNet32 BC-1.2 90.90 465,674 0.055 

ResNet32 DRF-W 90.27 465,674 0.055 

ResNet32 TWN 91.24 465,674 0.110 

 

The ResNet architectures are already efficient in terms of size. Therefore, 

compressing it even further results in required spaces in the range of KBs. For 

example, binary quantizations of ResNet20 require only 32KB of space which can 

fit into many embedded processors’ L1 caches.  



 

 

58 

4.3.4 Quantizing Ground-up Efficient Models 

Even though ResNet architectures are very efficient compared to VGG-like 

architectures, they are not designed to be efficient. They are designed to perform at 

marginal levels. On the other hand, SqueezeNet architecture’s main aim is to be 

efficient. Therefore, quantizing SqueezeNet architecture would lead to further 

efficient architectures. In this section, quantization of SqueezeNet is examined. 

Table 4.14 Quantization of SqueezeNet 

Method Accuracy (%) 

Required Space to 

Store the Weights (MB) 

SqueezeNet 91.83 2.78 

SqueezeNet-BC 90.07 0.087 

SqueezeNet-DRF-W 90.11 0.087 

SqueezeNet-TWN 90.62 0.174 

SqueezeNet (Simple Bypass)  92.43 2.78 

SqueezeNet (Simple Bypass)-BC 90.47 0.087 

SqueezeNet (Simple Bypass)-DRF-W 90.06 0.087 

SqueezeNet (Simple Bypass)-TWN 91.24 0.174 

 

Using residual connections, i.e. simple bypasses, is a common practice in deep neural 

networks. Using residual connections almost always results in better accuracies than 

simple feed-forwards versions. This is observed in SqueezeNet as well. In Table 4.14 

full precision SqueezeNet with simple bypass has better accuracy than full precision 

SqueezeNet with a margin of 0.6%. This superiority is conserved in their TWN 

quantized version as well. TWN quantized versions have 0.62% accuracy difference 

which is a very similar value to the difference between full precision networks’ 

accuracies. However, one interesting observation is that SqueezeNet with DRF-W 

quantization is better than its counterpart with simple bypass. 
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CHAPTER 5  

5 SYSTEM IMPLEMENTATION AND BENCHMARKING 

In this section, a convolutional layer is implemented for various systems in order to 

realize and benchmark quantization theory. The aim is not to code a fast convolution 

operation. Therefore, the implemented convlution operation is not computationally 

efficient. The operation has many loops and expensive operators such as modulo. 

Moreover, there is no effort to ease the compiler’s job for enabling any possible 

SIMD instructions. The aim is to code a memory efficient convolution operation and 

prove that quantized convolution kernels can work on real systems. Therefore, there 

is a observable memory efficiency (not only theoretical). Another aim is to give 

benchmarking results for different devices ranging from very low power embedded 

processors to powerful desktop computer processors. 

5.1 Implementation Details 

A base convolution operation and the quantized version of it are implemented. In 

both of the algorithms, spatial representation is flattened in inputs, filters and outputs. 

For example, the inputs and outputs have the common representation as channel 

number x spatial width x spatial height. The inputs and outputs are reshaped to 

channel number x (spatial width * spatial height). Similarly, the filters originally 

have input channel number x output channel number x spatial width x spatial height. 

The filters are also reshaped to input channel number x output channel number x 

(spatial width * spatial height). The base convolution algorithm is shown in Figure 

5.1.  
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Figure 5.1. Base convolution algorithm 

The quantized convolution algorithm is implemented by following the idea which is 

explained in 2.1.2.1. The method is summarized with Figure 2.6. The quantized 

convolution algorithm (Figure 5.2) is very similar to the base algorithm. The 

difference is basically that quantized algorithm requires an indirect memory access 

in order to load the actual filter value. They only differ at the calculation step at lines 

20-23 in quantized convolution algorithm on top of the two additional parameters 

that quantized algorithm requires. These parameters and lines are explained in detail 

below. 

Parameter q: This value represents the number of indexes stored in a byte. If the 

binary quantization is used, the required bitwidth is only 1 and therefore a byte can 

store 8 filter indexes. If the ternary quantization is used, 4 filter indexes can be stored 

in a byte. 

Parameter qMask: As the name suggests, this parameter is used for masking. If the 

binary quantization is used, only least significant bit is required and therefore this 
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parameter is set to 0x01. If ternary quantization is used, least significant two bits are 

required and this parameter is set to 0x03. 

Line 20-21: Since the smallest memory read operation can read 1 byte, the filter 

value indexes are saved in an unsigned char array. This requires couple of additional 

operation to extract the index of a particular filter element. These operations are 

dividing, shifting and masking. The iterator j is divided by parameter q to find the 

byte that stores the current filter index. Then this value is shifted by bitwidth times j 

mod 8 (calculated at line 20 and stored in sft) to find the position of the current filter 

index in the byte. Lastly, the resultant value is masked to get rid of unrelated values 

and extract the exact filter index. 

 

Figure 5.2. Quantized Convolution Algorithm 
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Line 22: The found filter index is used to extract the full precision filter value from 

the related short float array. Then this filter value is multiplied with its corresponding 

input value. 

Line 23: The result of the multiplication is accumulated in the related output field. 

5.2 Benchmarking 

Three different systems are used to benchmark the quantized and normal convolution 

operations. The first system represents the low power and cheap embedded devices. 

Tiva C TM4C123G development board from Texas Instrument is used. This board 

works on ARM Cortex M4 processor. The second system represents a more powerful 

segment of embedded devices. Raspberry Pi 3 B+ is used. This embedded computer 

works on ARM A53 and Linux based Raspbian operating system. The last system is 

a desktop computer and used for comparison purposes. It works on Intel Core i5-

7300HQ and Windows 10. 

Three different settings are experimented for all of the systems. These settings are 

experimented with base (full-precision) and quantized filters. The settings are as 

following. The input planes consist of 3 channels and 16 by 16 size. No padding is 

used to protect the width and height of the input. Output planes consist of 8 channels. 

Size of the output planes become 14x14, 13x13, 12x12 for filters 3x3, 4x4, 5x5, 

respectively. Memory reduction is calculated using (2-17). The increase in 

computation time for quantized filters is also reported. 

5.2.1 ARM Cortex M4 

Tiva C TM4C123G is a low-end development board which is capable of doing many 

simple things. It has 80MHz 32-bit ARM Cortex M4 processor. It has 256KB Flash, 

32KB SRAM and 2KB EEPROM on-chip memory. The following experiments use 

32KB SRAM memory for input-output planes and filters. The flash memory is not 
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suitable for this task since it is slower than SRAM and it has relatively low number 

of life-cycle compared to SRAM. The TI v20.2.0.LTS compiler is used. The results 

are given in Table 5.1 Table 5.1 Table 5.1 Table 5.1 Table 5.1  

Table 5.1 Binary quantization timing results for ARM M4 

Filter Size Base (ms) 

Quantized-Binary 

(ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 179.054 232.56 27.87 1.30 

4x4 263.888 352.611 29.54 1.34 

5x5 345.365 467.619 30.38 1.35 

 

Table 5.2 Ternary quantization timing results for ARM M4 

Filter Size Base (ms) 

Quantized-

Ternary (ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 179.054 237.264 12.34 1.32 

4x4 263.888 356.667 13.71 1.35 

5x5 345.365 471.075 14.46 1.36 

 

5.2.2 Quad-Core ARM A53 – Raspberry Pi 3 B+ 

The raspberry pi is a small computer that succeeded to be very widely used 

worldwide. Its 3rd version model B+ is used in this section’s experiments. Raspberry 

pi 3 B+ employs 64-bit quad-core ARM A53 which is working with 1.4GHz. It can 

run many operating systems. In our case, Raspbian OS is used. Raspberry pi 3 B+ 

has 1GB LPDDR2 SDRAM. The gcc v8.1.0 compiler is used. The results are given 

in Table 5.3  
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Table 5.3 Binary quantization timing results for Raspberry Pi 3 B+ 

Filter Size Base (ms) 

Quantized-Binary 

(ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 5.01 6.65 27.87 1.33 

4x4 7.54 9.95 29.54 1.32 

5x5 9.47 13.41 30.38 1.42 

 

Table 5.4 Ternary quantization timing results for Raspberry Pi 3 B+ 

Filter Size Base (ms) 

Quantized-

Ternary (ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 5.01 6.89 12.34 1.38 

4x4 7.54 9.99 13.71 1.33 

5x5 9.47 13.22 14.46 1.40 

 

Since this system runs on an operating system, Raspbian OS, the given timing 

values are found by averaging 100 consecutive runs of the algorithm.  

5.2.3 Intel Core i5-7300HQ – Desktop Computer 

This system is experimented and benchmarked for comparison purposes only. A 

desktop computer typically does not need quantization since there is usually enough 

computing power and memory. This system runs on Intel Core i5-7300HQ at 2.50 

GHz and Windows 10. It has 8GB RAM. The gcc v8.1.0 compiler is used. The results 

are given in Table 5.5  
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Table 5.5 Binary quantization timing results for Desktop Computer 

Filter Size Base (ms) 

Quantized-Binary 

(ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 0.416 0.676 27.87 1.62 

4x4 0.552 0.922 29.54 1.67 

5x5 0.711 1.238 30.38 1.74 

 

Table 5.6 Ternary quantization timing results for Desktop Computer 

Filter Size Base (ms) 

Quantized-

Ternary (ms) 

Memory 

reduction 

Computation 

Time Increase 

3x3 0.416 0.640 12.34 1.54 

4x4 0.552 0.978 13.71 1.77 

5x5 0.711 1.216 14.46 1.71 

 

Since this system runs on an operating system, Windows 10 OS, the given timing 

values are found by averaging 100 consecutive runs of the algorithm.  

5.3 Comments 

As explained previously, the ideal compression rate is 32x. The case gets to ideal as 

the number of connections (or filters) increases. Therefore, the memory reduction 

increases while the filter size increases. While the memory required by filters 

decreases 29x on average, the computation time is also increased drastically. This 

implementation and setting can be acceptable where a system has critically low 

memory.  

Quantization can make possible to run neural network inference on these systems. 

ARM Cortex M4 system has 32KB of SRAM memory which is not enough to store 
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most of deep learning models. However, this simple implementation allows low-end 

embedded systems to store and run small deep learning models.  

This implementation of quantized convolution operation does not aim to be efficient 

and fast. However, a faster implementation would still suffer from some significant 

degree of increased computation time due to indirect memory access in the quantized 

convolution operation. Therefore, quantized neural networks are best and fully 

utilized with custom hardware designs. However, faster computation times can be 

still achieved with the optimization of the compilers. The effect of the compiler 

optimization on computation times for 3x3 filter case can be seen in Table 5.7  

Table 5.7 The effect of compiler optimization on computation time 

System Base 

Base 

(-O3) Quantized 

Quantize

d (-O3) 

Base 

reduction 

Quantized 

Reduction 

Arm Cortex M4 179.054 74.82 232.56 140.54 2.39 1.65 

Raspberry Pi 3 B+ 5.01 2.06 6.65 4.09 2.43 1.63 

Desktop Computer 0.416 0.180 0.676 0.341 2.31 1.98 

 

The compiler optimization can speed up the base convolution algorithm by around 

2.40 times. However, the same optimization settings cannot show the same success 

for quantized convolution algorithm. The compiler optimization can speed up the 

quantized convolution algorithm by only a factor between 1.63 and 1.98. As 

explained in Figure 5.2, there are extra shifts, divisions, bitwise operations, and 

memory accesses in the quantized convolution algorithms. These operations limit 

the capabilities of the compiler. As a result, the compiler has a reduced effect on the 

quantized convolution compared the base algorithm. 

No manual optimization is done for the quantized convolution operation. Since the 

quantization allows us to work with low precision numbers with only 1 or 2 bits, we 

can highly benefit from bitwise operations. Moreover, since we can run bitwise 

operations on 32 bits register, we can actually parallelize 32 operations with binary 

quantized weights. This parallelization can be implemented efficiently for each 
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computer architecture. ARM NEON instructions can be used for many ARM CPUs. 

Intel CPUs can also implement largely parallel bitwise operations using their AVX 

instructions. Even though sometimes manual effort may be required to implement 

these operations, specialized compilers of these architectures can detect and 

implement bitwise operations. 

The implementations in this section are single thread applications. However, the 

quantized neural networks can benefit from multi-threading as well. Multi-core 

CPUs are common even in cheap embedded systems. Implementing bitwise 

operations with multiple threads can increase the parallelization and therefore the 

computing speed. 
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CHAPTER 6  

6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we have investigated the effects of quantization on deep neural 

networks. 

First, the selected methods are implemented on LeNet-5 architecture with MNIST 

dataset. Since MNIST dataset is way too simple, it is expected to achieve success 

with all of the methods. However, there was a noticeable accuracy loss in weights 

and activation quantization methods compared to only weights quantization 

methods. In the following experiments, weights and activation quantization methods 

are compared with each other and only weights quantization methods are compared 

with each other.  

The selected methods are implemented on VGG-7 with Cifar-10 dataset. Methods’ 

accuracies and convergence characteristic are examined. We showed that quantizing 

models such as VGG-7 does not sacrifice much accuracy while providing significant 

compression. Quantization techniques with full precision cluster points converge 

faster compared to techniques with low precision cluster points such as -1 and 1. 

Hybrid methods for weights and activation quantization are proposed. One of the 

hybrid methods has a hardware friendly cluster points and a better accuracy 

compared to existing hardware friendly methods. The quantization methods are 

compared with ground-up efficient models in terms of accuracy and required size. It 

is shown that quantizing large models can end up with smaller size and better 

accuracy than ground-up efficient models. 

The selected methods are implemented on ResNet models with Cifar-10 dataset. It 

is shown that weight quantization methods with full precision cluster points work 
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well with ResNet architecture. One binary quantization method is failed in ResNet 

models which are deep and complex. The reasons behind these failures are examined. 

The reason is found to be asymmetrical quantization of weighted residual 

connections and its disturbance to the information flow. Solutions are proposed for 

this problem. The proposed solutions are implemented and proven to be successful. 

First approach of solutions focused on residual connections. In this approach, the 

weighted residual connections are not quantized or used. The second approach 

focused on scaling the layers’ outputs. In this approach, weights or activations are 

scaled with constants. These solutions also showed that mean of the absolute weights 

is not an optimal scaling factor for binary quantization. Moreover, it is observed that 

the accuracy loss of weight and activation quantization methods are high in deep 

models. The reasons behind this accuracy losses are examined and showed with 

empirical proofs. Quantized ResNet models are also compared with a ground-up 

efficient model with residual connections. 

A ground-up efficient model is also quantized and results are shown. Different 

versions of the ground-up efficient model are quantized. These versions include 

simple model with only core layers of a convolutional neural network and a complex 

model with residual connection on top of core layers. 

Lastly, the convolution operation and its quantized version are implemented on 

various systems. These systems include a severely resource constrained embedded 

system, an average embedded system with an operating system and a powerful 

desktop computer. Comparisons and benchmarks of quantized operations are done 

in these systems. It is found that weight quantization methods can offer ~32x or ~16x 

compression with a cost of ~1.3x computation time increase. 

6.2 Future Work 

Even though it is possible to implement quantized neural networks on existing CPU 

systems, it only unleashes the half of the potential of the quantized neural networks. 
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We can achieve compression with CPU implementation on quantized neural 

networks. However, we cannot decrease computation time. In order to decrease 

computation time, a custom implementation of the quantized neural networks on 

FPGAs are required. The FPGA implementation and its optimization are left to a 

future work. 

Moreover, the quantization techniques include a lot of manual effort to determine 

hyperparameters. Different methods could be used for different layers in the same 

architecture. Even though there are existing works that determine quantization 

bitwidths automatically, they are not integrated with quantization techniques. The 

hyperparameter search of quantization could be automatized as a future work. 

 

  



 

 

72 

 

  



 

 

73 

REFERENCES 

 

[1] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. 

Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters 

and <0.5MB model size,” pp. 1–13, 2016. 

[2] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks 

for Mobile Vision Applications,” 2017. 

[3] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient 

Convolutional Neural Network for Mobile Devices,” Proc. IEEE Comput. 

Soc. Conf. Comput. Vis. Pattern Recognit., pp. 6848–6856, 2018, doi: 

10.1109/CVPR.2018.00716. 

[4] F. Rosenblatt, “The perceptron: A probabilistic model for information 

storage and organization in the brain,” Psychol. Rev., 1958, doi: 

10.1037/h0042519. 

[5] E. Hunt, M. Minsky, and S. Papert, “Perceptrons,” Am. J. Psychol., 1971, 

doi: 10.2307/1420478. 

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with 

deep convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 2, 

pp. 1097–1105, 2012. 

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural 

Comput., 1997, doi: 10.1162/neco.1997.9.8.1735. 

[8] F. Chollet, “Keras Documentation,” Keras.Io, 2015. . 

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep 

neural networks with pruning, trained quantization and Huffman coding,” 

4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., pp. 1–14, 

2016. 



 

 

74 

[10] G. E. Hinton, “Neural networks for machine learning. Coursera, video 

lectures,” 2012. . 

[11] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating 

Gradients Through Stochastic Neurons for Conditional Computation,” pp. 

1–12, 2013. 

[12] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, 

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE 

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018, 

doi: 10.1109/CVPR.2018.00474. 

[13] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training Deep 

Neural Networks with binary weights during propagations,” pp. 1–9, Nov. 

2015. 

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, 

“Binarized Neural Networks: Training Deep Neural Networks with Weights 

and Activations Constrained to +1 or -1,” 2016. 

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-net: 

Imagenet classification using binary convolutional neural networks,” Lect. 

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 9908 LNCS, pp. 525–542, 2016, doi: 10.1007/978-3-

319-46493-0_32. 

[16] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: 

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth 

Gradients,” vol. 1, no. 1, pp. 1–13, 2016. 

[17] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” no. Nips, 2016. 

[18] C. Zhu, H. Mao, S. Han, and W. J. Dally, “Trained ternary quantization,” 5th 

Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–10, 2019. 

[19] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network 



 

 

75 

quantization: Towards lossless cnns with low-precision weights,” 5th Int. 

Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–14, 2019. 

[20] B. Jacob et al., “Quantization and Training of Neural Networks for Efficient 

Integer-Arithmetic-Only Inference,” Proc. IEEE Comput. Soc. Conf. 

Comput. Vis. Pattern Recognit., pp. 2704–2713, 2018, doi: 

10.1109/CVPR.2018.00286. 

[21] A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh, S. Gao, 

and H. Esmaeilzadeh, “ReLeQ: An Automatic Reinforcement Learning 

Approach for Deep Quantization of Neural Networks,” 2018. 

[22] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware 

automated quantization with mixed precision,” Proc. IEEE Comput. Soc. 

Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 8604–8612, 2019, 

doi: 10.1109/CVPR.2019.00881. 

[23] Y. He, J. Lin, Z. Liu, H. Wang, L. J. Li, and S. Han, “AMC: AutoML for 

model compression and acceleration on mobile devices,” Lect. Notes 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 11211 LNCS, pp. 815–832, 2018, doi: 10.1007/978-3-

030-01234-2_48. 

[24] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and 

connections for efficient neural networks,” Adv. Neural Inf. Process. Syst., 

vol. 2015-Janua, pp. 1135–1143, 2015. 

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 

Salakhutdinov, “Dropout: A simple way to prevent neural networks from 

overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014. 

[26] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep 

Learning Library,” no. NeurIPS, 2019. 

[27] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” 



 

 

76 

in Proceedings of the 12th USENIX Symposium on Operating Systems 

Design and Implementation, OSDI 2016, 2016. 

[28] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” AT&T Labs 

[Online]. Available http//yann. lecun. com/exdb/mnist, 2010. 

[29] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-100 

datasets,” https://www.cs.toronto.edu/~kriz/cifar.html, 2009. . 

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning 

applied to document recognition,” Proc. IEEE, 1998, doi: 10.1109/5.726791. 

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition,” Dec. 2015. 

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for 

large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - 

Conf. Track Proc., pp. 1–14, 2015. 

 


