
IMPROVING DOCUMENT RANKING WITH QUERY EXPANSION BASED ON
BERT WORD EMBEDDINGS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DOĞUHAN YEKE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2020

Approval of the thesis:

IMPROVING DOCUMENT RANKING WITH QUERY EXPANSION BASED
ON BERT WORD EMBEDDINGS

submitted by DOĞUHAN YEKE in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering, METU

Assist. Prof. Dr. Gönenç Ercan
Computer Engineering, Hacettepe University

Date: 13.07.2020

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Doğuhan Yeke

Signature :

iv

ABSTRACT

IMPROVING DOCUMENT RANKING WITH QUERY EXPANSION BASED
ON BERT WORD EMBEDDINGS

Yeke, Doğuhan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Nihan Kesim Çiçekli

July 2020, 56 pages

In this thesis, we present a query expansion approach based on contextualized word

embeddings for improving document ranking performance. We employ Bidirectional

Encoder Representations from Transformers(BERT) word embeddings to expand the

original query with semantically similar terms. After deciding the best method for

extracting word embeddings from BERT, we extend our query with the best candi-

date terms. As our primary goal, we show how BERT performs over the Word2Vec

model, known as the most common procedure for representing terms in the vector

space. After that, by leveraging the relevance judgment list, we show positive contri-

butions of integrating tf-idf and term co-occurrence properties of terms to our query

expansion system. Our experiments demonstrate that BERT outperforms Word2Vec

in well-known evaluation metrics. In addition, we also conduct several experiments

that address the most popular issues in information retrieval systems.

Keywords: Query Expansion, BERT, Document Ranking, Relevance Feedback

v

ÖZ

BERT WORD EMBEDDİNGS’İ TEMEL ALAN SORGU GENİŞLETME İLE
BELGE SIRALAMASINI GELİŞTİRME

Yeke, Doğuhan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nihan Kesim Çiçekli

Temmuz 2020 , 56 sayfa

Bu tezde, belge sıralaması performansını iyileştirmek için bağlamsal kelime düğün-

lerine dayanan bir sorgu genişletme yaklaşımı sunuyoruz. Orijinal sorguyu anlam-

sal olarak benzer terimlerle genişletmek için Transformers (BERT) kelime düğün-

lerinden Çift Yönlü Enkoder Temsilleri kullanıyoruz. BERT’den kelime düğünlerini

çıkarmanın en iyi yöntemine karar verdikten sonra, sorgumuzu en iyi aday terimle-

riyle genişletiyoruz. Birincil hedefimiz olarak, BERT’nin vektör uzayındaki terimleri

temsil etmek için en yaygın prosedür olarak bilinen Word2Vec modeli üzerinde na-

sıl performans gösterdiğini gösteriyoruz. Bundan sonra, alaka düzeyi karar listesin-

den yararlanarak, terimlerin tf-idf ve terim birlikte ortaya çıkma özelliklerini sorgu

genişletme sistemimize entegre etmenin olumlu katkılarını gösteririz. Deneylerimiz,

BERT’nin iyi bilinen değerlendirme metriklerinde Word2Vec’ten daha iyi performans

gösterdiğini göstermektedir. Ayrıca, bilgi erişim sistemlerindeki en popüler sorunları

ele alan çeşitli deneyler de yapıyoruz.

vi

Anahtar Kelimeler: Sorgu Genişletme, BERT Modeli, Doküman Sıralama, Alaka Geri Bildirimi

vii

To my mother

viii

ACKNOWLEDGMENTS

First, I would like to express my respect and admiration to my supervisor Prof.Dr.

Nihan Kesim Çiçekli for her great guidance, positiveness and vision. This research

would have never been accomplished without her knowledge and support.

Second, I would like to thank professors in our department for their help in giving

advice and providing necessary technical stuff.

Finally, I would like to dedicate this thesis to my family for their love, courage and

unending support. I know their support will always be with me.

ix

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 4

1.2 Contributions and Novelties . 4

1.3 The Outline of the Thesis . 5

2 RELATED WORK . 7

2.1 Word Embeddings . 7

2.1.1 Word2Vec . 7

2.1.2 GloVe . 8

2.1.3 Relevance-based Embeddings 8

2.1.4 ELMo . 9

x

2.1.5 BERT . 9

2.2 Query Expansion Steps . 11

2.2.1 Data Sources . 12

2.2.2 Data Pre-processing and Term Extraction 13

2.2.3 Term Weights and Ranking 13

2.2.4 Term Selection . 14

2.2.5 Query Reformulation . 14

2.3 Relevance Feedback . 15

3 QUERY EXPANSION BASED ON BERT 17

3.1 Dataset . 18

3.2 Data preprocessing . 20

3.3 Extracting BERT Word Embeddings 21

3.4 Term Extraction . 24

3.5 Weighting and Ranking of Terms & Selection of Terms 25

3.6 Query Reformulation . 26

3.7 Comparison to Word2Vec model . 26

4 INTEGRATION WITH THE RELEVANCE FEEDBACK 29

4.1 Adapting Dynamic Weights . 30

4.1.1 Integration of Tf-Idf property 30

4.1.2 Integration of Term Co-occurrence property 30

4.1.3 Combination of Tf-idf and Term co-occurrence 31

4.2 Integrating the Pseudo-Relevance Feedback 32

4.3 Integrating the Explicit Feedback 32

xi

4.4 Query Expansion vs Document Expansion 33

5 EXPERIMENTS AND EVALUATIONS 37

5.1 Computational Resource . 38

5.2 Evaluation Metrics . 38

5.2.1 MAP . 39

5.2.2 P@k . 40

5.2.3 NDCG . 40

5.3 Anserini . 40

5.4 Experimental Results . 41

5.4.1 BERT vs Word2Vec . 41

5.4.2 One-to-One Association vs. One-to-Many Association 42

5.4.3 The Effect of Integration of Pseudo-Relevance Feedback . . . 43

5.4.4 The Effect of Integration of Relevance Judgments 45

5.4.5 Candidates from Title vs. Candidates from Body 46

5.4.6 Best Configuration . 48

6 CONCLUSION AND FUTURE WORK 51

REFERENCES . 53

xii

LIST OF TABLES

TABLES

Table 3.1 Sample topics from the dataset . 19

Table 3.2 Sample documents from the dataset (JSON format) 19

Table 3.3 Sample output/run format . 20

Table 3.4 Samples from the relevance judgment list of the dataset 20

Table 3.5 Samples from manually created dataset. Word1 and word2 are cho-

sen as similar words while word3 has different than others. 23

Table 3.6 BERT Word Embedding Scores. The score is calculated using sim-

ilarity between word1-word2 and word2-word3. They are averaged over

100 inputs. 24

Table 3.7 Pros and Cons of Each Method over Another One. 25

Table 3.8 Best candidate terms extracted by BERT in decreasing order of their

relevance score to the query. 27

Table 4.1 Best candidate terms extracted from titles using BERT in decreasing

order of their relevance score to the query. 34

Table 4.2 Best candidate terms extracted from document bodies using BERT,

decreasingly ordered by their relevance score to the query. 35

Table 5.1 Comparison between BERT and Word2Vec in query expansion system 41

xiii

Table 5.2 Comparison between one-to-one association and one-to-many asso-

ciation with different candidate size and term re-weighting. 42

Table 5.3 For the query, "Amazon rain forest", the candidate terms chosen by

each method. 43

Table 5.4 The effect of integrating the PRF to our system 45

Table 5.5 The effect of integrating the RJ to our system 46

Table 5.6 Comparison between the candidate terms chosen from titles versus

candidate terms chosen from document bodies. 48

Table 5.7 Results of different methods combined in one table 49

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Statistics of user behaviours in Excite search engine, adapted

from Spink et al. [34] . 2

Figure 1.2 Query size statistics for each country, adapted from Azad and

Deepak [3] . 3

Figure 2.1 BERT Transformer Layers in Base Model 10

Figure 2.2 General Query Expansion System, taken from Azad and Deepak [3] 11

Figure 3.1 Our Query Expansion System 18

Figure 3.2 Visualization of two methods that extract word embeddings from

BERT. 22

Figure 4.1 Number of Relevant Documents For Each Query In Relevance

Judgment . 33

Figure 5.1 Candidate size chosen from Titles vs Query ID 47

Figure 5.2 Candidate size chosen from Document Bodies vs Query ID . . . 47

xv

LIST OF ABBREVIATIONS

ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers

CBOW Continuous-Bag-of-Words

DTW Dynamic Term Weighting

ELMo Embeddings from Language Models

GloVe Global Vectors for Word Representation

JSON JavaScript Object Notation

MAP Mean Average Precision

NER Named Entity Recognition

NDCG Normalized Discounted Cumulative Gain

QE Query Expansion

PRF Pseudo-Relevance Feedback

RJ Relevance Judgment

SVD Singular Value Decomposition

TC Term Co-occurrence

Tf-Idf Term Frequency-Inverse Document Frequency

TREC Text Retrieval Conference

xvi

CHAPTER 1

INTRODUCTION

As the number of documents on the web continues to grow exponentially every

day [8], finding necessary documents for the users in a reasonable time becomes chal-

lenging more than ever. The search should be intelligent to understand the query’s

context correctly. In other words, the search should be fast and efficient to satisfy the

users’ information need [10]. When the user provides keywords to an information

retrieval system, it matches these keywords with the ones used for indexing the docu-

ments. Therefore, the query issued by the user directly affects the document ranking

performance. When the user provides non-ambiguous and topic-specific keywords

in their search, user satisfaction is met since the system can quickly return relevant

documents to the user. However, due to the nature of natural languages, the query

issued by the user can be ambiguous. In that case, returning the relevant documents

to the user’s information need becomes compelling.

The user needs additional tools for finding relevant documents. There is a detailed

study for investigating the user behaviors in the Excite search engine 1 [34]. The

analysis is comprehensively done on 200,000 users. Details about the behavior of the

users are shared in Figure 1.1. By looking at the statistics, we can observe that the

average query size written by the users on the web is approximately 2.4 words. As

another example, there is an essential finding for representing users’ behaviors in dif-

ferent countries [3]. According to the statistics shown in Figure 1.2, the average query

size issued by the users is generally one or two words. Therefore, finding the neces-

sary documents by only stating a few words in the vast corpus is challenging. Hence,

the user needs assistance from the search engines to reach the relevant documents.

1 http://www.excite.com

1

http://www.excite.com

Figure 1.1: Statistics of user behaviours in Excite search engine, adapted from Spink

et al. [34]

.

After observing these statistics, it is obvious that users need complementary systems

to reach the necessary documents. Most of the time, users may try to overcome this

problem by doing several searches or paraphrasing their query [13]. However, they do

not know the basic key terms to reach the relevant documents. Besides, leaving this

job to users decreases user satisfaction [10]. Therefore, there must be an automatic

system in search engines to solve this difficulty [7]. In order to solve this common

problem, the researchers created different techniques which are:

• Stemming

2

Figure 1.2: Query size statistics for each country, adapted from Azad and Deepak [3]

.

• Full-text Indexing

• Query Expansion

• Translation based model

Although each method has certain advantages and disadvantages, in this thesis, we

focus on the Query Expansion technique, which is seen as the most successful method

for solving the vocabulary mismatch problem among all the methods.

Query expansion is reformulating the query to improve document ranking perfor-

mance by adding new terms. However, finding the correct terms to expand the query

is a highly challenging task. Since the query size is inadequate and words can be

equivocal, comprehending the context of the query and intention of the user is near

impossible. For example, when the user enters a query "bank", retrieving the desired

documents for that specific user in the large size of the web is a perfect storm. The

word "bank" can be a financial organization or land alongside or sloping down to a

river or lake. We need to look for the word’s surroundings to learn the context of the

3

words. Therefore, in order to reformulate the query, query understanding is essential.

1.1 Motivation and Problem Definition

In this thesis, we focus on the vocabulary mismatch problem, which occurs when the

keywords issued by the users do not match with indexed terms. Query expansion sys-

tem bridges the gap between query terms and relevant documents. We aim to improve

the document ranking performance of search results by constructing a query expan-

sion system. We achieve this by employing Bidirectional Encoder Representations

from Transformers (BERT) [11] contextualized word embeddings for finding the best

candidate terms.

Our motivation is to use BERT for constructing word embeddings. Until today,

Word2Vec was the most popular model for representing word embeddings. In recent

days, however, deep learning models become prevalent in natural language process-

ing. Although BERT is successfully adapted in different studies, its usage in query

expansion has not been examined. In our query expansion system, we aim to use

BERT’s word embeddings on finding relevant terms. We also analyze the perfor-

mance of BERT over the Word2Vec model.

We compare our query expansion system with a recent work [2], which employs

Word2Vec [21] model instead of BERT. In this thesis, we set the same environment

and conduct several experiments to measure the BERT and Word2Vec model’s perfor-

mance difference. According to our findings, the BERT-based query expansion sys-

tem performs better compared to using Word2Vec static word embeddings. Besides,

integrating relevance judgment information to our system, we show the contributions

of using tf-idf and term co-occurrence in term weighting step. In the end, we share

the results of all methods that we discuss throughout the study.

1.2 Contributions and Novelties

This thesis contributes to the literature of query expansion systems from a few per-

spectives.

4

Our contributions are as follows:

• extracting word embedding representations from BERT stacked layers.

• showing BERT’s performance over the Word2Vec model on word embeddings.

• improving document ranking performance in the TREC 2018 Common Core

Track.

1.3 The Outline of the Thesis

The rest of this thesis organized as follows;

Chapter 2 summarizes the relevant literature on query expansion systems by exam-

ining different word embeddings models and query expansion techniques.

Chapter 3 shows our base work, which uses BERT in word embedding represen-

tation to construct a query expansion mechanism. We also provide the details of

extracting word embeddings from BERT in this chapter. Following that, we compare

the performance of BERT with Word2Vec model.

Chapter 4 represents our extended work, which integrates relevance judgments to

our system.

Chapter 5 states our experiments in comparing different methods. We present our

results on the TREC 2018 Common Core Track using different evaluation metrics.

Chapter 6 presents the conclusion of our work and reveals future work.

5

6

CHAPTER 2

RELATED WORK

The history of Query Expansion(QE) systems dates back to 1960s [20]. Since then,

the researchers’ quests to discover new methods in query expansion never slowed

down [3]. Different approaches have been proposed for semantical query expansion.

Among earlier attempts, the ontology-based approach is considered a successful ex-

ample of semantically extending the query [4]. In recent years, however, the query

expansion literature is mostly directed into word embedding techniques. In this chap-

ter, we first present the relevant literature on word embeddings by analyzing different

models. We also provide the steps of a generic query expansion system.

2.1 Word Embeddings

Word embedding is a way of representing the term in a continuous vector space [22].

If we had a small size of a dictionary, we could create a vector with the dictionary’s

size and allocate a unique index to represent that term. However, in almost all lan-

guages, the words in the dictionary are so many that words can not be represented

using a one-hot vector. Therefore, different models are created to represent words.

The most successful ones are Word2Vec [21], Glove [29], Relevance-based embed-

dings, ELMo [30] and BERT [11].

2.1.1 Word2Vec

In Word2Vec, there are two iteration-based models, Continuous-Bag-of-Words (CBOW)

and Skip-Gram for finding the vector representations [21]. While the former uses sur-

7

rounding words to estimate the meaning of the chosen word, the latter uses the center

word to estimate the surroundings of that word. These models inspired researchers

to create different studies [32, 12]. Recently, Word2Vec with CBOW and Skip-

Gram models opt for query expansion [2]. The findings show that word embedding

based query expansion shows promising results. Similarly, there is research that uses

the Word2Vec CBOW model and pseudo-relevance feedback methods in query ex-

pansion. Integrating the candidates using word embeddings with a pseudo-relevance

feedback technique, they get prospering results [18].

While Word2Vec is a learning-based algorithm, there is another popular algorithm for

representing words, which is the statistic-based GloVe algorithm.

2.1.2 GloVe

GloVe is an unsupervised learning approach to represent words in a vector space.

GloVe uses the statistics of word occurrences in the corpus in its training process.

In order to create vector spaces, GloVe [29] uses a co-occurrence matrix, which is a

word-document matrix.

Besides the use of GloVe in a named entity recognition and similar tasks, GloVe

is also successfully used in query expansion. A recent study in the query expan-

sion research demonstrates the effectiveness of GloVe for word similarity tasks [12].

However, GloVe has several disadvantages. GloVe is a little bit costly in terms of

space and time. In order to construct its co-occurrence matrix of all words, it should

allocate much storage. It also takes so much time to reconstruct the matrix when

the window size changes. Therefore, researchers keep finding more efficient mod-

els. After machine learning-based solutions(Word2Vec) and statistic-based solutions

(GloVe), some researchers directed the relevance-based embeddings.

2.1.3 Relevance-based Embeddings

Both Word2Vec and GloVe capture term proximity for creating word embeddings.

However, instead of using term proximity, adapting relevance can better establish

8

semantic similarity between words. There is a recent study that compares relevance-

based embeddings over Word2Vec and GloVe [38]. They constructed a simple neu-

ral network to construct word embeddings. According to their findings, relevance-

based embeddings can be good at representing words semantically. However, the

researchers started to construct a more complex neural network to represent word

embeddings better. The first attempt was ELMo [30].

2.1.4 ELMo

Since the demand for word embeddings increases, the researchers adapt deep contex-

tualized models to find these vectors. First, an Embeddings from Language Models

(ELMo) is created to get more context information about the input [30]. ELMo uses

bidirectional LSTMs and language modeling in its architecture. In ELMo’s language

modeling, the word is tried to be generated by using previous words. According to the

findings, ELMo’s word representations outperform the previous model dramatically.

With the creation of ELMo, new deep learning models have been released. Each new

model performs better than the previous one. So far, the most successful one is BERT.

2.1.5 BERT

After ELMo, BERT [11] and other models are formed. In ELMo, representation could

not take advantage of both the left and right contexts of a word simultaneously. BERT

differs from ELMo in the use of language modeling. In BERT, the masked language

is adapted, masking one word and predicting the word with its surroundings.

In BERT, there are two main approaches, fine-tuning approach, and feature-based

approach. The former has been studied widely, and different models have been pre-

sented in the literature. According to the ad hoc task, the researchers adopt different

models such as BERTforMaskedLM, BERTforNextSentencePrediction, BERTforSe-

quenceClassification 1. In this approach, according to the need, one classification

layer is added to the top of the pre-trained model. Then, the parameters are trained

for the task. In the latter, the features are extracted from the model to use them in a
1 https://huggingface.co/transformers/model_doc/bert.html

9

https://huggingface.co/transformers/model_doc/bert.html

Figure 2.1: BERT Transformer Layers in Base Model

task. In this approach, two types of pre-trained BERT models, BERT-Base and BERT-

Large, are used. Among these models, BERT-Large is more compute-intensive than

BERT-Base. However, BERT-Base is sufficient to see the power of BERT.

In the architecture of the BERT-Base-Uncased model, there are 12 layers shown in

Figure 2.1, and all these layers hold information about the word in the size of 768.

Therefore, while extracting the features of word, BERT uses different techniques

which are:

• Second-to-Last Hidden

• Last Hidden

• Weighted Sum Last Four Hidden

• Concat Last Four Hidden

• Weighted Sum All 12 Layers

Second-to-Last and Last Hidden methods use specific layers. Weighted Sum Last

Four Hidden and Weighted Sum All 12 Layers take the average of specific hidden

layers. Concat Last Four Hidden concatenates different parts of layers to represent the

vector space of words. According to their results, Concat Last Four Hidden Layers

10

shows the best performance on the Named Entity Recognition(NER) task. In their

study, they also note that these results can change depending on the task. Therefore,

to obtain the best method, one should try each method to see which method fits best

for their problem.

In the literature, BERT’s success is mostly based on its fine-tuning approach. BERT

has already state-of-art results in different ad hoc tasks such as question answer-

ing [37], classification of documents [1], text summarization [39] and passage rank-

ing [24]. Compared to these studies, far less attention has been paid to using BERT for

query expansion. Among studies conducted on BERT embeddings and query expan-

sion, there is a recent research [26]. However, different from our approach, they use

classic query expansion methods to generate better queries for BERT-based rankers,

not use BERT to expand the query. In this thesis, we show the success of BERT word

embeddings in the query expansion task.

2.2 Query Expansion Steps

In a query expansion system, there is a chain of actions, as shown in Figure 2.2. The

data pre-processing step applies the necessary filters to the raw data. After that, in the

term extraction step, the candidate terms are formed. We rank candidate terms in the

next step. In the term selection step, we decide the number of candidate terms chosen

for adding to the expanded query. In the last step, we assign the weight of all terms

in the expanded query.

Figure 2.2: General Query Expansion System, taken from Azad and Deepak [3]

.

11

2.2.1 Data Sources

The first step is to choose the candidate pool and data processing methods. Data pre-

processing methods may change depending on the candidate pool choice. There are

many ways to choose the data source, varying from adapting external resources to top

retrieved documents. Generally, these can be categorized as: documents, hand-built

data sources, external data sources, and hybrid data sources.

• Documents: The primary choice of data source adapted by the researchers is

to use documents in the corpus. In a query-document environment, choosing

the candidate terms that frequently appear in the documents seems logical. The

words in the documents may be well-representative for the relevant documents,

so adding these terms to the query can significantly increase the retrieval sys-

tem’s performance. There are successful implementations of this idea [6].

• Hand-Built Data Sources: The second method for the choice of a data source is

to create different mechanisms for hand-built sources. These textual resources

can be a dictionary, an ontology, a thesaurus, or Wikipedia. The researchers

investigated these resources to reveal meaningful information. WordNet [23] is

the most popular one among these sources. WordNet and other systems created

from human-made sources are used successfully by several researchers [19,

28, 35].

• External Data Sources: These categories involve all other resources apart from

the first two data source options. These can be web and user logs. The public

resource for user logs is AOL query log 2. This dataset is predominantly used

for personalization and adjustment from user session profiles.

• Hybrid Data Sources: Combining any combination of previous approaches can

create a hybrid data source. This data source choice is also successfully im-

plemented by different researchers [9]. Using different data sources certainly

brings a more significant impact and more successful results.

2 https://jeffhuang.com/search_query_logs.html

12

https://jeffhuang.com/search_query_logs.html

2.2.2 Data Pre-processing and Term Extraction

Data pre-processing involves the process of converting raw data to meaningful data,

data pre-processing. To prevent the system from "garbage-in, garbage-out", we need

a data pre-processing step. In the data pre-processing step, the most common ap-

proaches are:

• Removing stop words

• Removing rare terms

• Removing punctuation

• Making terms lower-cased

• Stemming terms

• Tokenization

The most common filtering of removing stop words, removing punctuation, making

terms lower-cased, and tokenization methods [2, 32]. However, the remaining filters

depend on the task. For example, while some studies remove rare words [2], some

studies do not apply this filtering to their data. In some studies, they see rare words

as valuable data since methods like tf-idf give more importance to rare words than

very repetitive words. For stemming, there are different algorithms, Porter [31] and

Krovetz [17]. Although Porter stemming is more popular, Krovetz algorithm is also

applied in some studies [32].

2.2.3 Term Weights and Ranking

After choosing the data source and carrying out the data pre-processing, candidate

terms are selected. At this step, the inputs are query and filtered texts from the pre-

vious step. As an output, the candidate terms and their relevance score to the query

appear. The methods for term weighting and ranking can be categorized [7] as fol-

lows:

13

• One-to-One Association: chooses the term that is related to at least one term in

the query.

• One-to-Many Association: chooses the term that is related to the whole query.

• Feature Distribution of Top-Ranked Documents: chooses top-weighted candi-

dates from the returned documents of the initial query.

• Query Language Modeling: chooses the term with the highest probability in a

statistical model done on queries.

The correlation between the terms are done with cosine similarity. Given two vector

representations of two words as A and B, the cosine similarity can be formulated as:

Cosine Similarity =
A.B

|A| * |B|
(2.1)

Where A.B shows the dot product of two vectors, and |A| and |B| are the magnitudes

of A and B, respectively.

2.2.4 Term Selection

Although there are many candidate terms after all previous steps, adding them to the

query is not realistic. Various studies are suggesting adding candidate terms ranging

from one-third of the query to a few hundred. There are different studies in the liter-

ature for showing the impact of adding the different sizes of candidate terms. There

is one study that shows that adding a small number of candidate terms generally per-

forms better than adding a large number of candidate terms [33]. The opposite of that,

another study shows that adding less than 20 candidate terms reduces the performance

of document ranking [27].

2.2.5 Query Reformulation

In the query reformulation step, there are different approaches. While some stud-

ies adapt constant weight for their candidate terms [2], some studies assign dynamic

14

weights to their terms. The dynamic weighting schema can depend on various prop-

erties, like using a number of co-occurrences of terms and the relations between

terms [15]. The typical approach in deciding the reformulation weights is to adapt

feedback documents. Although the first choice is to use explicit feedback, there are

various studies that adapt pseudo-relevant feedback. Using pseudo-relevant feedback

can bring several advantages in query reformulation step [33]. All these methods

show successful results in their domain.

2.3 Relevance Feedback

Relevance feedback is a technique of reforming the initial query by using feedback

information. There are three types of relevance feedback.

• Explicit Feedback: Assessors of the dataset give explicit feedback or relevance

judgment on the query results. It shows the relevance of the documents to each

query. In most of the datasets, including TREC 2018 Common Core Track, the

relevance judgments are shared 3.

• Implicit Feedback: Implicit feedback consists of user behaviors like dwelling

time, scrolling actions, and user’s choice of viewing the document. There are

significant studies to show and categorize these types of user actions [14, 16].

• Pseudo-Relevance Feedback: Pseudo-relevance feedback or blind feedback is

assuming the top-n returned pages from the initial query as relevant. By choos-

ing top-k candidate terms from these documents, the query can be extended

to perform better. Various studies use pseudo-relevance feedback in their sys-

tem [33].

3 https://trec.nist.gov/data/core2018.html

15

https://trec.nist.gov/data/core2018.html

16

CHAPTER 3

QUERY EXPANSION BASED ON BERT

Our approach is to use BERT contextualized word embeddings to expand the query

for better performance in document ranking. Instead of using no-context word em-

bedding models like Word2Vec, we try to employ BERT since BERT has already

proved itself as a successful model in different areas apart from its use in query ex-

pansion in the use of query expansion as we described in Chapter 2. Before starting

this research, we investigated many papers and understood that BERT has a good

understanding of the context in a sentence. BERT can extract meaningful informa-

tion from the words due to its bidirectional investigation of the surroundings of the

word. We first find ways to extract embeddings from BERT and do some experi-

ments on synonyms and antonyms. After these observations, we aim to use BERT

word embeddings for query expansion systems. For finding related words to add the

query, BERT is the proper choice for our purpose of improving document ranking

with a query expansion technique. Therefore, our work can be divided into two parts:

finding word embeddings from BERT and building a query expansion system with

different methods like tf-idf and word co-occurrence.

We have not come across any study on query expansion with BERT embeddings in

the literature; however, we found equivalent work that was carried out with Word2Vec

word embeddings. Word2Vec has been the dominant approach in word embeddings

so far, but being able to prove BERT success over Word2Vec would be exciting.

Therefore, we have tried to find a way to extract BERT contextualized word em-

beddings from BERT layers, which are mentioned in Chapter 2 in detail. Then, we

integrate BERT to our query expansion mechanism.

Before delving into the methods for extracting word embeddings from BERT, we

17

want first to present our architecture. In Figure 3.1, we show the visualization of

our query expansion system. BERT word embedding is included in the step of Term

Extraction, where we find related candidate terms from our filtered candidate pool.

After finding meaningful candidates by BERT, we sent these related candidates to

our system’s next steps. In the end, we want to achieve better document ranking

performance, so that we could say that BERT is good at finding related terms and

making a comparison with Word2Vec, which has been a standard approach for word

embeddings. For an equivalent word for this purpose, we found recent research that

makes a similar study with Word2Vec [2]. Like in this recent research, titles of TREC

topics will be served for queries in our study.

Figure 3.1: Our Query Expansion System

.

This chapter introduces the dataset that we used for our experiments. After introduc-

ing data, we explain each step of our chain of actions in query expansion. Last, in

this chapter, we also share our work for extracting word embeddings from BERT, so

at the end of this chapter, we can observe our system’s performance on our dataset by

giving the statistics of our results ranking.

3.1 Dataset

We tested our approach in TREC 2018 Common Core Track Track 1, which con-

sists of news articles from Washington Post. The dataset has 50 topics and 595037

documents.

In order to inform the reader about the dataset, we share some sample topics from
1 https://trec-core.github.io/2018/

18

https://trec-core.github.io/2018/

Table 3.1: Sample topics from the dataset

TopicID Topic

321 Women in Parliaments

336 Black Bear Attacks

341 Airport Security

347 Wildlife Extinction

350 Health and Computer Terminals

the dataset in Table 3.1. We use these topics as queries to find related documents.

While the first column represents the topic id that we will use in the output format,

the second column shows the topic itself.

Table 3.2: Sample documents from the dataset (JSON format)

Key Value

id 0c0dbf4b0150981e4bd04115084acb53

article_url https://www.washingtonpost.com/news/early-lead/wp/2016/12/07/...

title Tim Tebow to take some cuts with the big-league Mets in spring training

author Des Bieler

published_date 1481113857000

contents Mets general manager Sandy Alderson said Tuesday of ...

type blog

source The Washington Post

The documents given by organizers are in JSON format. This format helps us in

finding related parts quickly. We share some sample documents in Table 3.2. From

these key-value pairs, we only use the id (document identifier), title, and contents

(body of the document). Because of the restricted space, we had to cut the values of

the article URL and contents.

For submissions, we need to follow a policy shown in Table 3.3. Every contestant

needs to submit the same format to be evaluated by the community. In one sample

run, the first column represents the topic identifier, while the second column is nothing

but some identifier that will be used later by the community. The third column is the

19

Table 3.3: Sample output/run format

TopicID Q0 DocID Ranking Score Tag

321 Q0 6f01fc5c-a2b0-11e1-81b4-d0e4bf8c8fd8 1 6.04458652226206 metu-isl

321 Q0 4a7c2970fd9bf65fe09c7cf46df7b06d 2 5.973899841308594 metu-isl

321 Q0 9171debc316e5e2782e0d2404ca7d09d 3 5.973898887634277 metu-isl

document identifier. The fourth column is a score for showing relevance to the given

query. The last column is just an identifier for each group that attends. Since we work

under the METU-ISL lab, we chose that tag for indicating ourselves.

Table 3.4: Samples from the relevance judgment list of the dataset

TopicID Identifier DocID Relevance-Score

830 0 fe1e8ffac1b3b0fa77c78a496ff3ee88 2

830 0 ff0619123a4eaf0f7d41958836388a47 0

830 0 ff86307f72f48a8fff383406f16a1a54 2

The relevance judgment is also shared. This judgment list shows the relevance of

1000 documents for each query. While some of these documents are relevant to the

topics (indicated as non-zero numbers), some are not (indicated as 0), as shown in

Table 3.4. We use this judgment list to give weights to candidates in Chapter 4.

For indexing the dataset and retrieval process, we use Anserini 2 tool. After giving

details about the dataset, we now present our data pre-processing steps applied to this

dataset.

3.2 Data preprocessing

We start by tokenizing our dataset by splitting according to space. After tokenizing

the sentences from the dataset, we remove stop words using nltk module 3 since they

do not reveal any meaningful information for our query expansion system. Next,

we remove the words that appear less than five times. This method is prevalent in
2 https://github.com/castorini/anserini
3 https://www.nltk.org

20

https://github.com/castorini/anserini
https://www.nltk.org

different research. This step is probably taken because rare words do not improve

performance, or the computation resource can not handle so much data. As a next

step, we used Porter stemming 4 to convert candidate terms to their base form. Be-

cause if we add these candidate terms with the same base form with any query term,

then we could not achieve information diversity. If we do not remove them, we only

have duplicates of some of the query terms. Therefore, we need to filter those candi-

date terms. For example, if we have "connect" in our sample query, we do not want

to add "connected", "connection", or "connecting". Although they are very familiar

terms, the meaning is just the same. As the last step, we lowercased all terms.

3.3 Extracting BERT Word Embeddings

In query expansion systems, the most important and challenging part is to find con-

textually similar terms to the query. After pre-processing, we want to employ BERT

for finding word embeddings. In addition to methods applied by BERT mentioned in

Chapter 2, we formed additional methods to find the best word embedding extractor

from BERT’s hidden states. These methods are as follows:

• First Layer Only

• First Four Layers

• First Six Layers

• Last Six Layers

• CLS Token

• Concat First Two

• Concat First Four

• Concat Last Two

• Concat All Layers
4 https://tartarus.org/martin/PorterStemmer/

21

https://tartarus.org/martin/PorterStemmer/

Figure 3.2: Visualization of two methods that extract word embeddings from BERT.

We can categorize these additional methods as using some layers, using special token

CLS, or concatenating some layers among 12 layers. Adding these methods, we have

14 methods as total. Concat of First Two Layers and Weighted Sum of The Last 2

layers are visualized in Figure 3.2 as an example.

In order to find the best method among these, we created a test environment. Our

premise is that the best method should give a high score to relevant terms and assign

a low score to non-relevant terms. Given three terms (where the first two are semanti-

cally similar, and the third has a different meaning than the first two terms), we expect

to see high cosine similarity score for the first two, and a low score for non-similar

terms. For example, here is one sample: "virus", "pathogen", "plane". In this exam-

ple, the first two are related to the epidemic; the third has no close relation with the

epidemic. Similar to this example, we created 100 test inputs. We share some of the

samples in Table 3.5.

After creating our test environment, we have created a scenario to test how one ex-

tractor can understand similar terms and assign a high score. This extractor should

22

Table 3.5: Samples from manually created dataset. Word1 and word2 are chosen as

similar words while word3 has different than others.

Word1 Word2 Word3

end finish consume

obtain get yellow

look see sail

tiny small sea

hate dislike year

also distinguish non-similar terms and assign a low score. To formulate, let Score12
represents the cosine similarity between term1 and term2 and Score23 represents the

cosine similarity between term2 and term3 (Score13 can also be used as an alternative

for Score23). Our aim is to maximize the difference between Score12 and Score23.

Besides, Score12 should be close to one, whereas Score23 should be close to zero

since we use cosine similarity score between terms. These three properties can be

formulated in the Terms Similarity Score (TSS) as follows:

TSS = (Score12 � Score23) + Score12 + (1� Score23) (3.1)

By taking the average TSS of all inputs, we measure the TSS performance for each

method. We share our results in Table 3.6. First Layer Only gives the best score,

whereas the CLS token gives the worst result. There were some thoughts that [CLS]

token can represent the word like it represents the sentences. However, we observed

that it might not be the case in word embeddings. Besides, Concat First Two has

almost the same score as First Layer Only, so it can also be used in finding word

embeddings. We also observe that the first layers are generally better representatives

than the last layers. This is the case in both the method of summing layers and the

method of concatenating the layers. Considering these observations, we use First

Layer Only as our BERT word embedding extractor to extract word embeddings from

terms.

We also wonder how BERT behaves with the words that do not appear in BERT’s vo-

23

Table 3.6: BERT Word Embedding Scores. The score is calculated using similarity

between word1-word2 and word2-word3. They are averaged over 100 inputs.

Method Calculated Score

First Layer Only 0.4967

First Four Layers 0.4876

First Six Layers 0.4793

Last Six Layers 0.4513

Last Four Layers 0.4474

Last Two Layers 0.4402

Last Layer Only 0.4516

All Layers 0.4686

CLS Token 0.3629

Concat First Two 0.4912

Concat First Four 0.4798

Concat Last Four 0.4445

Concat Last Two 0.4378

Concat All Layers 0.4610

cabulary list, namely out-of-vocabulary(OoV) words. For OoV words, BERT adapts

the WordPiece model in which its subwords represent one OoV word. Since BERT

vocabulary has only 30000 fixed words, finding all the related words in the language

is impossible. For representing the OoV words, we take an average of subword rep-

resentations of the word. According to our observations, BERT also performs well in

OoV word representations.

After finding the best word embedding extractor from BERT, we continue to follow

the remaining step in the query expansion system, the term extraction step.

3.4 Term Extraction

There are two possible places to extract candidate terms for our query expansion

system. While the first one chooses the candidate terms from titles, the second is

24

choosing candidate terms from the document body. Both methods have advantages

and disadvantages over each other, as shown in Table 3.7. The first factor is compu-

tational power. The former offers fewer candidate terms, which lightens the compu-

tational power, while the latter offers many candidate terms. The second factor is the

ability to be used in data-driven approaches like Machine Learning and Deep Learn-

ing applications. Since the latter offers much data, it is more adaptable for different

models. The risk of deceiving BERT and choosing the wrong word as a candidate

is high in the latter one. As a fourth factor, since the title has dense information for

representing the document, words chosen from titles can be more suitable. Regarding

all these factors, we adapt using candidates chosen from titles.

Table 3.7: Pros and Cons of Each Method over Another One.

From Titles Factor From Bodies

Remarkably less Computational Power Hard to handle using one machine

Few data Tendency to be used in Machine Learning Applications Suitable

Low Risk of Choosing Wrong Word High

Suitable Dense Information Sparse information

3.5 Weighting and Ranking of Terms & Selection of Terms

Having decided to use candidate terms from titles, we find top n candidate terms for

query expansion. Therefore, we need to decide the way of using the relationship

between the query and candidate terms. This relationship was categorized into four

methods [7], which we explain in Chapter 2. However, we used only two of them:

one-to-one association and one-to-many association. Therefore, when we process the

candidate terms, we follow these two strategies. On the one hand, we find the best

candidate terms for each term in the query in the one-to-one association. On the other

hand, we find the best candidates for the whole query in a one-to-many association.

There are different consequences of using either of these two methods. To investigate

the differences, we adapted each method and conducted our experiments with each

method. There are different parameters to measure their performance. For example,

we need to decide the number of candidate terms to be added to the original query.

Regarding these kinds of parameters, we conducted different experiments to observe

25

the effect of each method. According to our findings, these two methods show nearly

the same performance when we set the number of candidates the same as the number

of query terms. After observing this, we expand the number of candidate terms. We

believed that more candidates could better reveal the performance of each method.

Since the average size of the queries in the dataset is approximately three, adding only

three terms from each method can not show their actual performance. Hence, we set

the number of candidate terms twice as the size of the query and then conducted the

experiments. With these settings, we realized that one-to-one association gives better

performance over one-to-many association. There can be different ideas to explain

this performance difference. We share ours in Chapter 5. We also put some of these

experiments to show the differences in performance in Table 5.7, so that the effect of

each method can be investigated deeply.

3.6 Query Reformulation

In the study of query expansion with Word2Vec [2], for query reformulation step,

they assigned the original query weight as one while fixing the candidate term weight

as 0.5. This says that while original query terms contribute to the extended query

equally between them, the candidate terms can contribute the extended query as half

weight of the original query terms. We think this weighting schema can be reasonable

because extended query terms should not exceed the weight of the original query term.

This policy can be seen as assigning constant weight for terms. However, there are

more intelligent ways to assign more meaningful values to terms. We consider this

approach, which is choosing dynamic weights for candidates in Chapter 4. We also

conduct several experiments to show the difference between each policy in Chapter 5.

3.7 Comparison to Word2Vec model

After all steps, we extracted top-50 candidate terms for each query. In order to share

some of the best candidate terms and their relevance scores to the given query, we

present an example in Table 3.8. In this example, we share the top 8 candidate terms

for the query of "social media and teen suicide". In one-to-many association, we share

26

the top candidate terms which are best associated with the whole query. In one-to-one

association, we represent the "based on" column to show the query term that has the

closest meaning with the candidate term.

By looking at the table, we can say that the candidate terms are semantically related

to the query. Therefore, we can say that the results obtained when adding these can-

didate terms to the query may find the relevant documents better. By conducting

this experiment, we also observe the result of our primary research goal in this the-

sis, which is observing the performance difference between BERT and Word2Vec.

According to our observations, BERT performs slightly better than Word2Vec. We

leave all interesting results and comments on the performance difference to Chapter 5,

where we conduct various experiments.

Table 3.8: Best candidate terms extracted by BERT in decreasing order of their rele-

vance score to the query.

Query: "social media and teen suicide"

One-to-Many Association One-to-One Association

Candidate Score Candidate Score Based on

andi 0.34652 prank 0.90266 teen

societal 0.33030 protege 0.89315 teen

teenage 0.32880 societal 0.88624 social

teeny 0.32850 lifestyle 0.84747 social

televisions 0.32525 broadcasting 0.85894 media

socialite 0.32317 culture 0.84452 media

adolescent 0.32196 murder 0.86507 suicide

genders 0.32030 burial 0.84378 suicide

27

28

CHAPTER 4

INTEGRATION WITH THE RELEVANCE FEEDBACK

In Chapter 3, we used all the documents in the corpus as our data source to find can-

didate terms and considered titles of TREC topics as queries. We extracted candidate

terms from the titles of the documents. We tried to find the relevant documents by

assigning constant weights for the terms in our extended query. These weights are

1.0 for the original query terms and 0.5 for each of the candidate terms. After trying

different sizes of candidate terms, we observed that our approach outperforms the

work done with Word2Vec model[2]. The results are promising because Word2Vec

word embeddings were seen as a cornerstone for creating vector representation of the

words. After observing the success of BERT word embeddings, we turn our attention

to assigning weights of candidate terms. We need to find a different way of setting

weights of candidate terms. In this chapter, we aim to see that a better ranking of

candidates improves document ranking.

In intelligent query expansion systems, not all candidates should have the same query

weight in the extended query. While some candidates may have a less positive im-

pact on finding relevant documents, some candidates may better indicate relevant

documents. To assign weights and ranks to the candidate terms, we need to find a

way to weigh the candidate terms according to their relevance. As we mentioned in

Chapter 2, several studies use relevance feedback. Therefore, we use two different

relevance feedback methods, which are and pseudo-relevance feedback and explicit

feedback. The methods used in these two feedback are the same, so we will talk about

these methods under a common roof. The specific details of each method and results

will be discussed in separate sections.

29

4.1 Adapting Dynamic Weights

The use of relevance feedback brings two main advantages. The first advantage is to

score candidate terms better. To achieve this, we adopt some of the Query Expansion

(QE) techniques, tf-idf and term co-occurrence. Since we have relevance feedback,

we can employ these methods so that we can weight candidate terms dynamically

rather than assigning constant weight.

4.1.1 Integration of Tf-Idf property

The use of tf-idf score can bring great improvements. Tf-idf scores of candidate terms

can help us finding the terms that represent relevant documents better so that we can

increase the weight of a high tf-idf scored candidate term in the expanded query. The

tf-idf formula that we use in our experiments as follows:

Tf-Idf(c) =
tfc
dfc

(4.1)

where tfc and dfc shows the term frequency and document of frequency of candidate

c, respectively.

4.1.2 Integration of Term Co-occurrence property

In applying terms co-occurrence, we exploit the relationship between query terms and

candidates from relevance feedback. We increase the candidate’s weight if it occurs

a lot with any query term in the relevant documents. Term co-occurrence property

helps us show the documents that have both the candidate term and query term. If

we spot that there are so many documents, we can understand that the candidate term

is more important for the query. The formula that we employ for calculating term

co-occurrence score of each candidate is as follows:

Term Co-occurrence(c) =
dnc^t

dnt
(4.2)

30

where dnc^t is the number of relevant documents that contain both candidate c and

any query term t from the query, and dnt is the number of relevant documents that

contain any query term t from the query.

4.1.3 Combination of Tf-idf and Term co-occurrence

We used each of these two scores which are tf-idf and term co-occurrence in our

experiments. We also combined them to get a score for each candidate term by aver-

aging the scores from the two methods. Given a candidate term c and any term t from

the query, we formulate the dynamic term weight (DTW) as follows:

DTW (c) =
1

2
(
tfc
dfc

+
dnc^t

dnt
) (4.3)

In the query reformulation step, since we use the calculated score for each candidate

term, we do not want candidates’ scores to exceed the original queries’ scores. We

assign the scores of original query terms as 1. Therefore, we need to adjust the scores

of candidate terms not to exceed 1. We want to range their score from 0.0 to 1.0.

Hence, when DTW exceeds 1.0 due to the high tf-idf score, we reduce DTW to 1.0

in order not to exceed the weights of terms in the original query. Since the term

co-occurrence score is the probability score, we do not need to adjust that.

After choosing the top 50 candidates using BERT embeddings, we assign the DTW

score to each candidate as a term weight in the extended query. Using these weights,

we conducted several experiments. We did various experiments using only tf-idf

scores, only term co-occurrence scores, and DTW scores. We observe that using both

tf-idf and term co-occurrence increased the ranking of documents substantially when

used together and even individually. Therefore, we can say that dynamic weights

increase performance significantly compared to using fixed weight for all candidate

terms. The effect of assigning dynamic weights rather than predefined constant term

weight is discussed in detail in Section 5. We also share each of the significant results

in Table 5.7. To give an example for showing the candidate terms, we represented

the candidate terms for a sample query in Table 4.1 and Table 4.2.

31

4.2 Integrating the Pseudo-Relevance Feedback

In situations, when there is no explicit feedback given with the dataset, pseudo-

relevance feedback can be a good choice to create the "pseudo" relevant documents.

In pseudo-relevance feedback, the relevant documents are formed by retrieving the

first-n results returned by the initial query from the search engine. Assuming these

documents as relevant, candidate terms are extracted from these documents.

To conduct this experiment, we first direct the queries to the retrieval system. After

taking the first 50 documents for each query, we extract candidate terms. In calcu-

lating the DTW score shown in Equation 4.3 for each candidate term, we use these

documents as our relevance documents. Then, choosing the different sizes of candi-

date terms, we experiment with different scenarios. Regarding the several successful

studies that we present in Chapter 2, we expect to see some significant improvements

compared to our base method in Chapter 3. According to our results, the improve-

ments have noticeable effects on the results. The scores taken from this methodology

and the related comments are shared in detail in Chapter 5.

4.3 Integrating the Explicit Feedback

When the explicit feedback (relevance judgment) is available with the dataset, using

the documents in this explicit feedback as a data source looks like a better idea. Since

the documents in this feedback are judged by humans, they should have a closer

meaning to the query. Therefore, it should theoretically give better results compared

to using pseudo-relevance feedback.

To do this experiment, we first take all relevant documents for each query. To compare

the relevant document size with pseudo-relevant document size, we share the statistics

of relevant documents in Figure 4.1. Then, we extract the candidate terms from these

documents for each query. After applying the data pre-processing step, only filtered

candidate terms remain. Having been calculated DTW scores for each candidate term

using relevant documents, we choose the best candidate terms. Adapting various

candidate size in term selection step, we conduct several experiments. At this point,

32

Figure 4.1: Number of Relevant Documents For Each Query In Relevance Judgment

we can say that this methodology gives the best results compared to our base work

and pseudo-relevance feedback approach. The results observed in this methodology,

including the best score that we found among our experiments, are represented in

Chapter 5.

4.4 Query Expansion vs Document Expansion

The second advantage of using relevance feedback is reducing the number of doc-

uments in which we search. When we have fewer documents, we can investigate

another option for choosing the candidate pool. For the candidate pool, we only

considered titles of the documents in Chapter 3. We have wondered whether choos-

ing candidates’ terms directly from documents can give better results than choosing

terms from titles of documents only. This comparison is also known as query expan-

sion versus document expansion in the literature. This research issue has already been

examined considerably in different studies. According to these studies, it can be said

that document expansion is not promising compared to query expansion [5, 36]. We

also want to experiment with the performance difference of this comparison. As we

33

Table 4.1: Best candidate terms extracted from titles using BERT in decreasing order

of their relevance score to the query.

Query: "social media and teen suicide"

One-to-Many Association One-to-One Association

Candidate Score Candidate Score Based on

bullying 1.00 facebook 0.45790 social

killed 0.58547 life 0.45736 social

student 0.50014 online 0.42712 media

family 0.44761 video 0.35006 media

life 0.4438 boy 0.64671 teen

death 0.43561 girl 0.56099 teen

online 0.42650 child 0.53594 teen

people 0.41817 bullying 1.00 suicide

police 0.38391 killed 0.59047 suicide

schools 0.37970 death 0.43811 suicide

did in extracting candidate terms from titles, this time, we extracted candidate terms

from documents. For making comparisons between them in our experiments and be-

ing able to show the results, we added a Title/Body column in Table 5.7. We share the

results in detail in Chapter 5. Our findings approve the existing work showing that

expansion from titles outperforms expansion from document bodies. The comments

and details of each method are shared in Chapter 5.

In this chapter, we represented adapting relevance judgments for conducting several

experiments. The first time we need this feedback was the time we assign constant

weights to the candidate terms. We believed that not all the candidate terms should

have the same weight in the expanded query and the same importance for finding rele-

vant documents. Therefore, we employed two well-known properties of QE systems,

which are tf-idf and term co-occurrence. We observed significant improvements in

the results. Hence, we can say that we can apply for the work in this thesis anywhere

when there are some relevant documents. We share our intention to use this system in

another research topic, which is personalization in Chapter 6. As a second advantage

34

Table 4.2: Best candidate terms extracted from document bodies using BERT, de-

creasingly ordered by their relevance score to the query.

Query: "social media and teen suicide"

One-to-Many Association One-to-One Association

Candidate Score Candidate Score Based on

sexual 0.27685 people 0.42692 social

tragic 0.26276 community 0.29026 social

polices 0.26 internet 0.45785 media

teenage 0.25102 video 0.35006 media

internets 0.195 boy 0.64671 teen

youth 0.14996 girl 0.56099 teen

womens 0.105 child 0.53594 teen

terrorist 0.10480 killed 0.59047 suicide

crime 0.095 death 0.43811 suicide

criminal 0.09 tragic 0.26568 suicide

of using relevance judgments, we reduced the number of documents that we look at.

In the first part in Chapter 3, we could do our experiments using only the titles of

the documents since there is a considerable amount of documents and for each docu-

ment, thousands of words as candidate terms in the document body. However, in this

chapter, we have fewer documents, which are only relevant documents to the query.

Therefore, we point out an essential issue in NLP, which is the performance differ-

ence between query expansion and document expansion. We show that document

expansion underperforms. There could be several reasons for this, and we discuss

this and other details in the next chapter.

35

36

CHAPTER 5

EXPERIMENTS AND EVALUATIONS

In this chapter, we show the experimental results of all the methods mentioned in

the previous chapters. We present comparisons and performance differences between

some basic methods. In the end, we represent our final table, which summarizes the

main points of each experiment. Before diving into the details of the comparisons,

we share our computational environment in which we did all the experiments. In

our opinion, sharing our environment is vital since it encourages the researchers to

reproduce the results of some specific method that they focus on. In recent years,

the reproducibility has especially been important more than ever. We also plan to

integrate Docker 1 to our experiment results so that any researcher can reproduce the

experiments or improve parts of our work in seconds. We next present the evaluation

metrics that we use to observe the performance differences between different meth-

ods. We choose the most popular metrics so that any academician who works on

TREC 2018 Common Core Track can easily compare their results with ours.

We present all experiments that we conducted to measure the performance of different

methods that we represent in the previous chapters. Using the metrics that we stated

in the previous section, we compare some of the notable methods. In the first experi-

ment, we measure the performance of word embeddings from BERT over Word2Vec

word embeddings, which is our primary research goal. The performance of BERT

has already shown with different studies that we indicated in Chapter 2. However,

to the best of our knowledge, the success of BERT on word embeddings and its per-

formance comparison with the Word2Vec model on a real dataset was not examined

before. Therefore, we believe that the result of this comparison is quite impressive.

After that, we focus on different query expansion techniques. We give comparisons
1 https://www.docker.com

37

https://www.docker.com

on some controversial topics like using one-to-one association or one-to-many asso-

ciation in extracting terms. Results can vary in other models since this comparison

is made using the BERT model. Next, we point out the contribution of the relevance

feedback to our query expansion system. Following that, we share the performance

comparison between the candidates from titles and the candidates from the document

bodies. As the last point, we share our best result by combining all positive points

from previous experiments.

5.1 Computational Resource

We conduct our research on a computer that we can easily make use of parallelization.

The main properties of the server provided by our department are:

• 128GB of memory size

• 64 cores

• AMD Opteron (tm) Processor as CPU model

Some of the experiments are conducted in a short time. However, when we are dealing

with all the corpus in some experiments, we need to wait longer to see the results.

To solve that, we used Python processes and Ray library 2. Despite these, some

experiments still take some considerable time.

5.2 Evaluation Metrics

Evaluation metrics in information retrieval systems are used to evaluate how well the

method performs on a given dataset. While there are two different types of evaluation

categories, we use offline evaluation metrics. There are a lot of different metrics in

offline evaluation systems. To name a few, we can say Precision, Recall, F-score,

average precision, precision at K, mean average precision(MAP), and normalized

discounted cumulative gain(NDCG). To evaluate our methods with the most popular
2 https://github.com/ray-project/ray

38

metrics, we tried to use widely employed ones. We also want to evaluate our methods

from a different perspective. While some metric system uses precision, some other

focus on recall. In order to observe all these criteria, we use MAP, P at K, and NDCG.

5.2.1 MAP

Precision and recall metrics are generally used on the whole-list of documents. While

the former focuses on relevant items from retrieved items, the latter pays attention to

retrieved relevant items from relevant items.

Precision =
#(relevant items retrieved)

#(retrieved items)
(5.1)

Recall =
#(relevant items retrieved)

#(relevant items)
(5.2)

By employing recall and precision rates, we can draw a precision-recall curve. Using

the area under the curve, we can employ both precision and recall to calculate a com-

bined metric, average precision. Given precision P and n as the number of retrieved

documents, AP can be formulated as:

AP =
1

rk
⇤

nX

i=1

P (i) ⇤R(i) (5.3)

where rk represents the number of relevant documents and recall R is a pairwise

function, which is 1 when the returned document is relevant, otherwise 0.

Similarly, MAP is calculated as an average value of average precision value for each

query. Given the Q as the query set, MAP can be formulated as follows:

MAP =
1

|Q|

|Q|X

i=1

AP (i) (5.4)

MAP is seen as one of the most potent indicators for dataset evaluation. It is widely

used in information retrieval systems.

39

5.2.2 P@k

For today’s information retrieval systems, using MAP loses its attention and impor-

tance. In today’s search engines, the user only cares about the first page, which in-

cludes just ten documents, not all the relevant documents. Most of the time, the user

does not turn to the second page. Therefore, evaluation metrics are focused on the

fixed-level precision values, like precision at k. The most popular one is P at 10. We

integrate this metric to our evaluation system.

5.2.3 NDCG

Discounted Cumulative Gain uses the relevance of the documents. The premise is

that the documents which have a higher relevance score should be listed at the top of

the page. If not, there should be some penalty to the score. It is defined as follows:

DCGl =
lX

i=1

reli
log2(i+ 1)

(5.5)

where l shows rank location of the document.

The purpose of NDCG is that more relevant documents appearing lower in the search

result should be penalized. This is achieved by dividing the relevance score by the

logarithmic value of the position of one individual result. We also adopt this standard

metric in our evaluation system.

5.3 Anserini

Lucene 3 has been the dominant approach for indexing the documents for years. How-

ever, due to the lack of support for the evaluation of standard test collections, the re-

searchers started creating different platforms. To close this gap, Anserini 4 is created.

Following that, to bridge the gap between the projects written in Python and Anserini,

Pyserini is created. For indexing the documents and retrieving them, Pyserini 5 offers
3 https://lucene.apache.org
4 https://github.com/castorini/anserini
5 https://github.com/castorini/pyserini/

40

https://lucene.apache.org
https://github.com/castorini/anserini
https://github.com/castorini/pyserini/

Table 5.1: Comparison between BERT and Word2Vec in query expansion system

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

JARIR-sg-re(Best) Title One-to-Many Query Size 0.5 0.2040 0.3700 0.4861
BERT Title One-to-One Query Size 0.5 0.2049 0.3720 0.4696

BERT Title One-to-Many Query Size 0.5 0.2101 0.3700 0.4793

Standard BM25 - - - - 0.2495 0.4580 0.5375

an excellent interface to academicians. Its proper documentation and simple inter-

face ease the job of researchers. In addition to that, the steps for indexing various

accessible datasets are already explained in their documentation.

5.4 Experimental Results

5.4.1 BERT vs Word2Vec

We first investigate whether BERT outperforms Word2Vec in extracting accurate

word embeddings. Using the same experimental environment with the recent work [2],

we observe that the query expansion system with BERT performs better than Word2Vec

in MAP and P@10 metrics. We obtain better performance with two different settings

shown in Table 5.1. While one-to-one association gives better results in P@k, the one-

to-many association produces better results in MAP. Regarding the success of BERT

in MAP and P@k, we can say that word embeddings extracted from BERT can be a

better choice to represent the words. Therefore, they can be more accurate in finding

the best candidate terms than Word2Vec word embeddings. It should also be noted

that in the recent work [2], they trained their model on TREC Washington Post Cor-

pus before extracting the candidate terms. However, in our case, we only used BERT

pretrained base model that was never trained on this dataset before. At this point, we

can say that the BERT pretrained model’s contextualized embeddings are compara-

ble with no-context embeddings like Word2Vec word embeddings in representing the

words. However, we also notice that both models underperform the standard BM25

score.

In all previous prospering works, the model should be trained on the corpus to get

41

meaningful representations of the words. However, in our case, the model that we

used was pre-trained on the union of Google BookCorpus and Wikipedia. By using

this pre-trained model on a real dataset, observing its success over trained models

is worth taking attention. Regarding the success of transfer learning in Computer

Vision (CV), this success of pre-trained models like BERT in NLP shows its potential

for incoming projects.

5.4.2 One-to-One Association vs. One-to-Many Association

The next point we analyze is comparing the performance of candidate extraction

methods: one-to-one association and one-to-many association. In one-to-one asso-

ciation, the expanded term, which is highly correlated to at least one query term, is

chosen. In one-to-many association, however, the chosen candidate term should be

correlated to the whole query. It is a crucial decision to be taken to choose the can-

didate terms. Therefore, in order to observe their performance in detail, we conduct

several experiments by changing the candidate size, as shown in Table 5.2.

Table 5.2: Comparison between one-to-one association and one-to-many association

with different candidate size and term re-weighting.

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

BERT Title One-to-One Query Size 1.0 - 0.5 0.2049 0.3720 0.4696

BERT Title One-to-Many Query Size 1.0 - 0.5 0.2101 0.3700 0.4793

BERT Title One-to-One 2 * Query Size 1.0 - 0.5 0.1876 0.3420 0.4418

BERT Title One-to-Many 2 * Query Size 1.0 - 0.5 0.1776 0.3180 0.4442

BERT Title One-to-One 2 * Query Size 0.8 - 0.2 0.2253 0.3960 0.4954
BERT Title One-to-Many 2 * Query Size 0.8 - 0.2 0.2169 0.3920 0.4895

When we set the candidate size to the query size, we see that each method’s perfor-

mance is nearly the same. This is expected since the size of query terms is approxi-

mately three, we can not precisely observe their performance. Therefore, in order to

see more reliable results, we increased the number of candidates. When we add more

candidates (in the number of 2 * Query Size) to measure each technique’s effect, we

have expected that one-to-many association would outperform one-to-one association

since only one word is not enough to represent the query. However, we are surprised

by the results. According to our findings, one-to-one association performs better. It

42

is also the case when we change the weights of the terms. We can interpret these by

saying that BERT already adds context information to its candidates, so each term

is context-aware. So far, this was the exact opposite that one-to-many association

generally outperformed one-to-one association in previous studies. In that case, al-

though words are trained on the corpus with a window mechanism, words can not

learn the context. On the contrary, BERT’s bidirectional way of analyzing the words

adds context information to the candidate terms. Therefore, for us, this is an exciting

result.

At this point, we also want to share one interesting point to show the weakness of

one-to-one association. Although one-to-one performs better than one-to-many in

most cases, there is also a compelling edge case that one-to-one association under-

performs one-to-many association. To exemplify, for the query "Amazon rain forest",

"Amazon" has chosen its closest candidate as "Facebook", though "Facebook" is not

related to the original query, "Amazon rain forest". However, this is only special to

this kind of example. This example occurs in cases where there are private names

like company name or person’s name. To handle these cases, there may be different

mechanisms. However, in general, one-to-one association is more suitable for query

expansion techniques in contextualized embeddings. The details of example can be

examined from Table 5.3.

Table 5.3: For the query, "Amazon rain forest", the candidate terms chosen by each

method.

Original Query: "Amazon rain forest"

Method Generated Candidate Terms

One-to-One Expansion Method "Facebook" + "snow" + "wildlife"

One-to-Many Expansion Method "Climate" + "Brazilian" + "change"

5.4.3 The Effect of Integration of Pseudo-Relevance Feedback

We observe that all previous models that we have constructed so far underperform

standard BM25 baseline. There are several reasons for this performance weakness.

The first one is the number of candidates. When we use all corpus, the number of

43

candidate terms after all data preprocessing is 30926. Regarding this considerable

amount of possible candidate terms, the risk of choosing the wrong candidate term

increases. In order to solve this problem, we need to reduce that number to a reason-

able amount. The second reason for this performance weakness is that all query terms

have the same weight in the expanded query. This makes the query more fragile to be

affected by bad candidate terms. Instead, we need dynamic weights for each candi-

date terms. The candidate terms should be weighted in expanded query within their

relevance to the query.

The first idea is to integrate pseudo-relevance feedback (PRF) to our system. Choos-

ing the relevant documents from PRF brings two main advantages. The first one is

to narrow down the set of candidate terms. It reduces the number of candidate terms,

so the election occurs from "pseudo" relevant documents rather than all documents,

which reduces the risk of choosing a non-relevant term. After adapting PRF, for each

query, we have 50 documents to search for. Comparing these numbers with the first

part of the experiments, the number of candidate terms is remarkably fewer. Besides

lessening the number of candidates, adapting PRF brings the second and most impor-

tant insight. We can employ the properties of the terms that appear in the relevant

documents. If we choose the terms and order them with their distinctiveness, we

can get better candidate terms. To discriminate against the relevant documents from

non-relevant ones, we can use tf-idf and term co-occurrence scores of the candidate

terms. These scores are unique to each term; they also show their relevance to the

relevant documents. Therefore, by using the DTW score, an average of tf-idf, and

term co-occurrence scores as weights in the expanded query, we can achieve dynamic

weighting of candidate terms.

We conducted several experiments, as shown in Table 5.4. In the first row, we give

the standard BM25 baseline score on this dataset. Trying different candidate size,

we get several results. Besides using DTW, we also observe the performance of tf-

idf and term co-occurrence(TC) individually. According to our observations, DTW

gives better than using tf-idf and TC alone. To conclude, we observe considerable

improvements over BERT model that we did in the previous section. Although this

approach outperforms the standard BM25 baseline, it is still worse than the stan-

dard BM25+RM3 baseline where RM3 states the standard query expansion method.

44

Therefore, we still continue to search for different ways.

Table 5.4: The effect of integrating the PRF to our system

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

Standard BM25 - - - - 0.2495 0.4580 0.5375

BERT + PRF + DTW Title One-to-Many Query Size Dynamic 0.2390 0.4500 0.5117

BERT + PRF + DTW Title One-to-One Query Size Dynamic 0.2460 0.4460 0.5198

BERT + PRF + Tf-Idf Title One-to-One Top40 Dynamic 0.2649 0.4540 0.5376

BERT + PRF + TC Title One-to-One Top40 Dynamic 0.2586 0.4500 0.5279

BERT + PRF + DTW Title One-to-One Top40 Dynamic 0.2686 0.4540 0.5409

BERT + PRF + DTW Title One-to-One Top35 Dynamic 0.2693 0.4540 0.5425
Standard BM25 + RM3 - - - - 0.3135 0.5120 0.5889

5.4.4 The Effect of Integration of Relevance Judgments

To score better than BM25+RM3, we look for other relevance feedback, relevance

judgment (RJ). In our dataset, there is a list of relevant and non-relevant documents

for each query. Like using PRF, adapting RJ also lessens the number of candidate

terms. The average number of candidate terms for each query is 312 when we choose

from titles. On the other hand, that number is 7098 when we choose from document

bodies. Comparing these numbers with our base work, the number of candidate terms

is significantly fewer.

We tested the effect of using RJ and dynamic weighting using tf-idf and term co-

occurrence (TC) scores. All experiments by changing the number of candidates,

which can be examined in Table 5.5. When we make a term weighting dynamic

using tf-idf rather than some constant value, the system’s ranking improved dramat-

ically. This performance rise is something we expected since not all terms have the

same contribution to the query. Compared to tf-idf, term co-occurrence (TC) shows a

smaller improvement. In TC, we observe significant increases in MAP. After observ-

ing these two scores, we also give the performance of DTW. It is important to note

that a tf-idf based and DTW approach starts to outperform BM25+RM3, which is the

standard score in the literature.

45

Table 5.5: The effect of integrating the RJ to our system

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

Standard BM25 + RM3 - - - - 0.3135 0.5120 0.5889

BERT + RJ Body One-to-One Query Size 0.5 0.2198 0.4060 0.4954

BERT + RJ Title One-to-One Query Size 0.5 0.2563 0.4580 0.5383

BERT + RJ Title One-to-Many Query Size 0.5 0.2521 0.4300 0.5375

BERT + RJ + Tf-Idf Title One-to-One Query Size Dynamic 0.3185 0.5560 0.5978
BERT + RJ + TC Title One-to-One Query Size Dynamic 0.3081 0.5060 0.5875

BERT + RJ + DTW Title One-to-One Query Size Dynamic 0.3174 0.5340 0.5893

5.4.5 Candidates from Title vs. Candidates from Body

Next, we do some more experiments to see the performance comparison between can-

didate terms from the titles or candidate terms from document bodies. Since we adapt

RJ, the number of documents decreased to a reasonable number. Previously, we only

extracted the candidate terms from the title of the documents. Now, we can extract

candidate terms from document bodies. This comparison can also be associated with

the comparison between query expansion versus document expansion. In document

expansion, we extend the query from the terms of document bodies. As we examined

in Chapter 2, there is an interesting study of document expansion, in which they try

to guess the queries that the document can answer to [25]. In addition to that, there

are several studies which compare the query expansion and document expansion. We

also want to investigate this research topic in our study.

We extracted candidate terms from relevant documents for each query. The statistics

of the number of relevant candidate terms chosen from titles and document bodies

are represented respectively in Figure 5.1 and Figure 5.2. As it can be seen, the

average candidate size is approximately 300 in title candidates, while it is nearly

7500 in document body candidates. Therefore, the possibility of choosing wrong

terms increases in document body candidates.

We conducted different experiments to observe the results by changing the settings

of various methods like query size and term weighting strategy. We observe that the

candidates from the titles performed better than the candidates from the document

bodies in all experiments. The explanation for this performance difference could be

that titles represent its documents as a summary. In other words, titles offer more

46

Figure 5.1: Candidate size chosen from Titles vs Query ID

Figure 5.2: Candidate size chosen from Document Bodies vs Query ID

meaningful candidates since they are the essence of the document. The experiments

for this comparison can be seen in Table 5.6.

47

Table 5.6: Comparison between the candidate terms chosen from titles versus candi-

date terms chosen from document bodies.

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

BERT + RJ Body One-to-One Query Size 0.5 0.2198 0.4060 0.4954

BERT + RJ Title One-to-One Query Size 0.5 0.2563 0.4580 0.5383

BERT + RJ + DTW Body One-to-One 2 * Query Size Dynamic 0.2905 0.5060 0.5675

BERT + RJ + DTW Title One-to-One 2 * Query Size Dynamic 0.3335 0.5420 0.6046

In our opinion, document expansion methodology is more suitable for data-driven

approaches like deep learning models due to its colossal size. On the other hand,

query expansion methodology is more suitable for algorithmic approaches like graph

traversal. For example, locating candidate terms and query terms in the graph nodes

and traversing the graph, we can find meaningful terms from the graph. Therefore,

this comparison needs more research to observe their performance difference. We

discuss the potential improvements to this thesis in Chapter 6.

5.4.6 Best Configuration

As a final remark, we want to point out the best combination of methods. From pre-

vious experiments, we concatenate some of the important observations and form the

final table. The highest performance (BERT+RJ+DTW) is achieved using titles in

choosing data sources, one-to-one association, and dynamic re-weighting. We con-

ducted several experiments in the term selection step. With a varying size of candidate

terms, we get the highest result when the candidate terms are chosen from the top 20.

The complete results can be seen in Table 5.7. To the best of our knowledge, the best

score listed in the table is the highest score that we have observed in this dataset.

48

Table 5.7: Results of different methods combined in one table

TREC 2018 Common Core Track

Methodology Title/Body One-to-One/One-to-Many Term Selection Term Re-weighting MAP P@10 NDCG

JARIR-sg-re(Best) Title One-to-Many Query Size 0.5 0.2040 0.3700 0.4861
BERT Title One-to-One Query Size 0.5 0.2049 0.3720 0.4696

BERT Title One-to-Many Query Size 0.5 0.2101 0.3700 0.4793

BERT Title One-to-One 2 * Query Size 0.5 0.1876 0.3420 0.4418

BERT Title One-to-Many 2 * Query Size 0.5 0.1776 0.3180 0.4442

Standard BM25 - - - - 0.2495 0.4580 0.5375

BERT + PRF + DTW Title One-to-Many Query Size Dynamic 0.2390 0.4500 0.5117

BERT + PRF + DTW Title One-to-One Top35 Dynamic 0.2693 0.4540 0.5425

Standard BM25 + RM3 - - - - 0.3135 0.5120 0.5889

BERT + RJ Body One-to-One Query Size 0.5 0.2198 0.4060 0.4954

BERT + RJ Title One-to-One Query Size 0.5 0.2563 0.4580 0.5383

BERT + RJ Title One-to-Many Query Size 0.5 0.2521 0.4300 0.5375

BERT + RJ + Tf-Idf Title One-to-One Query Size Dynamic 0.3185 0.5560 0.5978

BERT + RJ + TC Title One-to-One Query Size Dynamic 0.3081 0.5060 0.5875

BERT + RJ + DTW Title One-to-One Query Size Dynamic 0.3174 0.5340 0.5893

BERT + RJ + DTW Body One-to-One 2 * Query Size Dynamic 0.2905 0.5060 0.5675

BERT + RJ + DTW Title One-to-One 2 * Query Size Dynamic 0.3335 0.5420 0.6046

BERT + RJ + DTW Title One-to-One Top 20 Dynamic 0.4028 0.6540 0.6639

49

50

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we demonstrated the use of BERT in query expansion to find similar

terms to the query. To extract word embeddings from BERT, we applied different

methods and compared their performance on a manually created dataset. According

to the results, we chose the best word embedding extractor from BERT and used First

Layer’s embeddings in representing the word in vector space.

First, we focused on our primary research goal and compared BERT performance on

representing words with the Word2Vec model, one of the well-known models for rep-

resenting terms in vector space. To compare our study with a recent work[2], we used

the same dataset, TREC 2018 Common Core Track, and the same test environment.

We observed their performance with three different evaluation metrics, MAP and P

at k, and NDCG. By looking at the results of various experiments, we conclude that

BERT contextualized embeddings are better used in query expansion than Word2Vec

word embeddings.

Moreover, we adapted relevance feedback information to rank the terms more accu-

rately. In Chapter 3, we were only choosing the candidate terms and assigning them

the same constant weight in the expanded query. However, this approach is not so

accurate because not all candidate terms should have the same relevancy to the query.

Adapting relevance feedback to query expansion provided us with two main advan-

tages. The first one was reducing the size of the data source. Since we have a fewer

amount of documents to inspect, we could also use document bodies from which we

can select the candidate terms. We studied using both titles and document bodies

as a resource for query expansion. We observed that expanding from title is highly

preferable over expanding from document body. The second advantage of using rel-

51

evance feedback is to adapt tf-idf and term co-occurrence scores to query expansion

techniques. Using tf-idf and term co-occurrence scores bring the advantage of using

dynamic weights instead of constant values. We showed their contributions using dif-

ferent evaluation metrics in Table 5.7. As the last point, we also represent our best

configuration, which is achieved by using the top 20 candidates. To the best of our

knowledge, this is the best score done in the dataset.

As future work, we want to use the findings in this thesis to develop new ideas for

using BERT in personalized search. Like news document ranking in this study, we

can adapt user query logs to offer a personalized search environment to each user

separately. Since each clicked URL on the web is also a document, we do not need

to change our architecture. To offer a personalized search, we can create user profiles

by using titles and bodies of user-clicked URLs. In place of relevance feedback in-

formation in this thesis, the session information and query logs can be used because

we can refer that the user is interested in that page if he clicks an URL after seeing

all the results. We plan to conduct this experiment on the AOL dataset 1, which offers

millions of queries and click URLs.

In addition to a personalized search environment, we also want to revise our method

in extracting the word embeddings. Enlarging a manual dataset and using deep learn-

ing models may give better indicators to show the best technique to extract word

embeddings from BERT. We also want to integrate Docker to our project since repro-

ducibility is essential more than ever in today’s research. Apart from these, we can

train our BERT model on the dataset to get more meaningful word representations.

Finally, in our opinion, there are various ways of researching this topic. We plan to

do each of them in our future projects.

1 https://jeffhuang.com/search_query_logs.html

52

https://jeffhuang.com/search_query_logs.html

REFERENCES

[1] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin. Docbert:

Bert for document classification. arXiv preprint arXiv:1904.08398, 2019.

[2] Billel Aklouche, Ibrahim Bounhas, and Yahya Slimani. Query expansion based

on nlp and word embeddings. In TREC, 2018.

[3] Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques

for information retrieval: A survey. Information Processing & Management,

56(5):1698–1735, 2019.

[4] Jagdev Bhogal, Andrew MacFarlane, and Peter Smith. A review of ontology

based query expansion. Information processing & management, 43(4):866–886,

2007.

[5] Bodo Billerbeck and Justin Zobel. Document expansion versus query expan-

sion for ad-hoc retrieval. In Proceedings of the 10th Australasian Document

Computing Symposium, pages 34–41. Citeseer, 2005.

[6] Claudio Carpineto, Renato De Mori, Giovanni Romano, and Brigitte Bigi. An

information-theoretic approach to automatic query expansion. ACM Transac-

tions on Information Systems (TOIS), 19(1):1–27, 2001.

[7] Claudio Carpineto and Giovanni Romano. A survey of automatic query ex-

pansion in information retrieval. Acm Computing Surveys (CSUR), 44(1):1–50,

2012.

[8] Kerry G Coffman and Andrew M Odlyzko. Growth of the internet. In Optical

fiber telecommunications IV-B, pages 17–56. Elsevier, 2002.

[9] Kevyn Collins-Thompson and Jamie Callan. Query expansion using random

walk models. In Proceedings of the 14th ACM international conference on In-

formation and knowledge management, pages 704–711, 2005.

53

[10] Ovidiu Dan and Brian D Davison. Measuring and predicting search engine

users’ satisfaction. ACM Computing Surveys (CSUR), 49(1):1–35, 2016.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[12] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with

locally-trained word embeddings. arXiv preprint arXiv:1605.07891, 2016.

[13] Annegret M Gross. Search engine behavior and satisfaction of arab students

from a user perspective. Int. J. Comput. Linguist. Res., 5(3):85–98, 2014.

[14] Bernard J Jansen and Michael D McNeese. Evaluating the effectiveness of and

patterns of interactions with automated searching assistance. Journal of the

American Society for Information Science and Technology, 56(14):1480–1503,

2005.

[15] Susan Jones, Mike Gatford, Steve Robertson, Micheline Hancock-Beaulieu, Ju-

dith Secker, and Steve Walker. Interactive thesaurus navigation: intelligence

rules ok? Journal of the American Society for Information Science, 46(1):52–

59, 1995.

[16] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference:

a bibliography. In Acm Sigir Forum, volume 37, pages 18–28. ACM New York,

NY, USA, 2003.

[17] Robert Krovetz. Viewing morphology as an inference process. Artificial intelli-

gence, 118(1-2):277–294, 2000.

[18] Saar Kuzi, Anna Shtok, and Oren Kurland. Query expansion using word em-

beddings. In Proceedings of the 25th ACM international on conference on in-

formation and knowledge management, pages 1929–1932, 2016.

[19] Yinghao Li, Wing Pong Robert Luk, Kei Shiu Edward Ho, and Fu Lai Korris

Chung. Improving weak ad-hoc queries using wikipedia asexternal corpus. In

Proceedings of the 30th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 797–798, 2007.

54

[20] Melvin Earl Maron and John Larry Kuhns. On relevance, probabilistic indexing

and information retrieval. Journal of the ACM (JACM), 7(3):216–244, 1960.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-

tion of word representations in vector space. arXiv preprint arXiv:1301.3781,

2013.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems, pages 3111–3119, 2013.

[23] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and

Katherine J Miller. Introduction to wordnet: An on-line lexical database. Inter-

national journal of lexicography, 3(4):235–244, 1990.

[24] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv

preprint arXiv:1901.04085, 2019.

[25] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document

expansion by query prediction. arXiv preprint arXiv:1904.08375, 2019.

[26] Ramith Padaki, Zhuyun Dai, and Jamie Callan. Rethinking query expansion for

bert reranking. In Proceedings of the 42nd European Conference on Informa-

tion Retrieval (ECIR 2020).

[27] Jiaul H Paik, Dipasree Pal, and Swapan K Parui. Incremental blind feedback:

An effective approach to automatic query expansion. ACM Transactions on

Asian Language Information Processing (TALIP), 13(3):1–22, 2014.

[28] Dipasree Pal, Mandar Mitra, and Kalyankumar Datta. Improving query expan-

sion using wordnet. Journal of the Association for Information Science and

Technology, 65(12):2469–2478, 2014.

[29] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP), pages 1532–

1543, 2014.

55

[30] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word repre-

sentations. arXiv preprint arXiv:1802.05365, 2018.

[31] Martin F Porter et al. An algorithm for suffix stripping. Program, 14(3):130–

137, 1980.

[32] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. Using word

embeddings for automatic query expansion. arXiv preprint arXiv:1606.07608,

2016.

[33] Gerard Salton and Chris Buckley. Improving retrieval performance by relevance

feedback. Journal of the American society for information science, 41(4):288–

297, 1990.

[34] Amanda Spink, Dietmar Wolfram, Major BJ Jansen, and Tefko Saracevic.

Searching the web: The public and their queries. Journal of the American soci-

ety for information science and technology, 52(3):226–234, 2001.

[35] Ellen M Voorhees. Query expansion using lexical-semantic relations. In SI-

GIR’94, pages 61–69. Springer, 1994.

[36] Xing Wei and W Bruce Croft. Modeling term associations for ad-hoc retrieval

performance within language modeling framework. In European Conference on

Information Retrieval, pages 52–63. Springer, 2007.

[37] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming

Li, and Jimmy Lin. End-to-end open-domain question answering with bert-

serini. arXiv preprint arXiv:1902.01718, 2019.

[38] Hamed Zamani and W Bruce Croft. Relevance-based word embedding. In

Proceedings of the 40th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 505–514, 2017.

[39] Haoyu Zhang, Yeyun Gong, Yu Yan, Nan Duan, Jianjun Xu, Ji Wang, Ming

Gong, and Ming Zhou. Pretraining-based natural language generation for text

summarization. arXiv preprint arXiv:1902.09243, 2019.

56

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Contributions and Novelties
	The Outline of the Thesis

	RELATED WORK
	Word Embeddings
	Word2Vec
	GloVe
	Relevance-based Embeddings
	ELMo
	BERT

	Query Expansion Steps
	Data Sources
	Data Pre-processing and Term Extraction
	Term Weights and Ranking
	Term Selection
	Query Reformulation

	Relevance Feedback

	QUERY EXPANSION BASED ON BERT
	Dataset
	Data preprocessing
	Extracting BERT Word Embeddings
	Term Extraction
	Weighting and Ranking of Terms & Selection of Terms
	Query Reformulation
	Comparison to Word2Vec model

	 INTEGRATION WITH THE RELEVANCE FEEDBACK
	Adapting Dynamic Weights
	Integration of Tf-Idf property
	Integration of Term Co-occurrence property
	Combination of Tf-idf and Term co-occurrence

	Integrating the Pseudo-Relevance Feedback
	Integrating the Explicit Feedback
	Query Expansion vs Document Expansion

	EXPERIMENTS AND EVALUATIONS
	Computational Resource
	Evaluation Metrics
	MAP
	P@k
	NDCG

	Anserini
	Experimental Results
	BERT vs Word2Vec
	One-to-One Association vs. One-to-Many Association
	The Effect of Integration of Pseudo-Relevance Feedback
	The Effect of Integration of Relevance Judgments
	Candidates from Title vs. Candidates from Body
	Best Configuration

	CONCLUSION AND FUTURE WORK
	REFERENCES

