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ABSTRACT

INTEROPERABILITY BY MEANS OF CONFIGURABLE CONNECTORS

Kaya, Muhammed Çağrı

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Ali H. Doğru

May 2020, 109 pages

A configurable connector-based software development methodology for component-

based approaches is presented. This method involves the incorporation of variability

modeling capabilities into component modeling environments. The focus of this re-

search is on supporting technologies for the combination of parts that are not directly

compatible. In the scope of this research, firstly, proposals for the configurable con-

nector paradigm are put forth, that are, achieving interoperability among system com-

ponents by using existing connectors to increase reuse and customizing them through

simple user interfaces. This methodology is applied to the Live-Virtual-Constructive

simulation systems domain as a confıgurable gateway application between Data Dis-

tribution Service for Real-Time Systems (DDS) and High-Level Architecture (HLA)

standards. Finally, interoperability of different parties are investigated for Metrology

and the calibration industry, and an Industrial Internet of Things-based architecture is

established. Academic and industrial case studies have been conducted for proof of

concept. They show the practicality of the proposed approaches.

Keywords: component, connector, interoperability, software architecture, variability
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ÖZ

YAPILANDIRILABİLİR BAĞLAYICILAR ARACILIĞIYLA BİRLİKTE
ÇALIŞABİLİRLİK

Kaya, Muhammed Çağrı

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali H. Doğru

Mayıs 2020 , 109 sayfa

Bu tezde bileşen tabanlı yazılım geliştirme yaklaşımları için yapılandırılabilir bağla-

yıcı tabanlı bir yöntem sunulmaktadır. Araştırmanın odak noktası, doğrudan uyumlu

olmayan parçaların tümleştirilmesi için destekleyici teknolojilerin irdelenmesidir. Bu

kapsamda, sistem bileşenleri arasında birlikte çalışabilirlik sağlanırken var olan bağ-

layıcıları kullanmayı önceleyen ve yapılandırılmalarını basit kullanıcı arayüzleri yo-

luyla yapmayı kapsayan bir yaklaşım önerilmektedir. Bu yöntemle Canlı-Sanal-Yapısal

benzetim sistemleri alanında Gerçek Zamanlı Sistemler için Veri Dağıtım Hizmeti

(DDS) ve Yüksek Seviye Mimari (HLA) standartları arasında yapılandırılabilir bir ağ

geçidi geliştirilmiştir. Son olarak, Metroloji ve kalibrasyon alanında farklı paydaşların

birlikte çalışabilirliğini sağlamak için araştırmalar yapılmış ve Nesnelerin Endüstriyel

İnterneti (IIoT) tabanlı bir mimari oluşturulmuştur. Yapılan akademik ve endüstriyel

vaka çalışmaları önerilen yöntemlerin uygulanabilirliğini göstermektedir.

Anahtar Kelimeler: bağlayıcı, bileşen, birlikte çalışabilirlik, yazılım mimarisi
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CHAPTER 1

INTRODUCTION

Already existing software components or even systems can be utilized in the composi-

tion of a new application. Such composition can even be carried out over the Internet.

This is becoming a necessity for large-scale systems where developing them from

scratch is costly and time-consuming. Moreover, not necessarily only for large-scale

software, it is desirable to offer software development means for a targeted domain

based on drag-and-drop activities to decrease costs and speed up time-to-market [1].

However, once a domain getting mature with pre-created software, it is inevitable

to have components that are created for different purposes of usage, with different

technologies of implementation and communication styles. The cost of this kind of

development methodology is the burden of interoperability among system compo-

nents.

The heterogeneity and the need for interoperability are noticeable problems for het-

erogeneous and distributed systems [2], either for a large system that is composed of

different subsystems belonging to different areas of application, or a smaller system

with components from the same domain. Considering the Internet of Things (IoT) as

an example, the variety in the included units can easily be observed [3]. There is no

limit to the types and capabilities of units and their communication styles that can be

connected. Proposed solutions for this kind of problems include gateway technolo-

gies focusing on different levels of communication, such asapplicationor transport

[4, 5].

This thesis aims to provide interoperability solutions for component-based systems by

managing the variability of architectural connectors and evolve them into gateways

when possible. Besides, in a broader sense, other architectural solutions are also

1



investigated, focusing on the Industrial IoT (IIoT) domain.

The rest of this chapter clari�es the problem statement that the thesis aims to solve.

Then, the contributions of the thesis are explained. The chapter is concluded with the

outline of the thesis.

1.1 Motivation and Problem De�nition

Managing interactions among components of a complex system is a challenging prob-

lem. The burden of interoperability is considerable especially when the system com-

ponents are heterogeneous, such as in a smart city application [6]. This heterogene-

ity may be caused by using different subsystems in the composition of a large-scale

system: using components developed through different technologies, system compo-

nents belonging to different disciplines, etc. The well-knownseparation of concerns

principle should be considered to overcome heterogeneity and reduce the complexity

of developing software systems: All components or subsystems of the system should

focus on their functionality and carry minimum concern if not none, about communi-

cating with the rest of the system.

Developing all of the components of a domain, e.g., IoT, in a way that all of them have

a common means of communication, such as a generic communication protocol, is

not realistic and feasible. Thus, devices or components in a domain may have various

implementation technologies, characteristics, power and computation constraints, and

purposes of usage. Moreover, most of the systems in different application domains

that we are dealing with do not have a static but a dynamic nature. For example, new

components may be added and removed from the system at different stages.

Components should adapt their communication channels with interacting parties.

This brings the duty of multi-interaction management to the component. This sit-

uation increases complexity and decreases the reusability of both components and

connectors as the interaction logic is incorporated inside the communicating com-

ponents. Following the separation of concerns principle, components should carry

out their core functionality, and connectors should satisfy interaction needs. Thus a

requirement of a highly reusable and dynamic infrastructure arises.

2



The idea of handling communication issues by architectural connectors comes to play

to ease software development by ensuring the separation of concerns. Moreover, this

is an established idea in the literature with more than a two-decade-old history; an

early example of this kind of research is [7]. Most of the literature, however, focus

on the development of connectors [8, 9] rather than choosing one of the existing and

con�guring it for customization.

1.2 Contributions and Novelties

The main contribution of this dissertation is related with the incorporation of con�g-

urable connectors to component-based approaches. In its speci�cs, this involves the

incorporation of variability capability in the component-modeling approaches. Vari-

ability has already been practiced in Software Product Line Engineering. However, in

general terms, this research is about supporting technologies for the combination of

parts that are not directly compatible. Interoperability and adaptation are some associ-

ated concepts that are widely used. In other words, component connectors are forti�ed

with the ability to be con�gured through variability-modeling to adapt incompatible

components. This adaptation can serve the various dimensions of incompatibility and

even supports the coordination of the components in terms of their invocation control.

The main topic addressed in the article [10] is about the off-the-shelf connectors. The

topic introduces the need for such mechanisms that actually require proof of con-

cept at various levels: connectors are utilized for components of different granularity,

hence corresponding to different levels. Systems can be thought to be at the largest

granularity level. As the accompanying work concerning this level, the gateway work

[11] was developed. Here, platforms are adapted that can be considered as systems,

and from another perspective, even higher-level than systems because many systems

can be implemented on a platform. The con�gurable connector concept has been im-

plemented as a gateway application that governs the connectivity between two mid-

dleware platforms, namely DDS (Data Distribution Service for Real-Time Systems)

and HLA-RTI (High Level Architecture-Runtime Infrastructure).

In another aspect, the IIoT has been studied and reported in the related article [12].

3



As an IIoT-based architecture is proposed, this work can be assumed as comprising

different levels of granularity from the devices at the physical level to the systems at

the application level. Also, due to the popularity of IoT technologies, their speci�cs

serves a valid arena for adaptability research. Heterogeneity is especially reported

as a major problem in the IoT domain, hence suggesting this �eld as a very suitable

experimentation candidate.

As a summary, the three publications that were produced as the side-products of this

dissertation work can be classi�ed as the main idea and two related implementations.

The two implementations have targeted different levels for the purpose of covering

the extremes for the broad area of implementation alternatives.

Contributions of this thesis research can be summarized as follows:

� A con�gurable connector based approach is proposed to provide interoperabil-

ity for component-based systems.

� Based on the proposed con�gurable connector approach, a DDS-HLA gateway

is developed and successfully deployed to an industrial application.

� An IIoT-based architecture is proposed, and its practicality is shown in the cal-

ibration domain to achieve interoperability in metrology applications.

1.3 The Outline of the Thesis

The rest of this thesis is constructed as follows:

� In Chapter 2, the con�gurable connector based methodology is explained. How

interoperability can be provided for components of different domains are shown

through academic case studies.

� Chapter 3 explains how the interoperability of LVC (Live-Virtual-Constructive)

simulation systems is achieved through a con�gurable gateway approach. The

gateway focuses on data interoperability between DDS and HLA. An industrial

case study and other academic work have been conducted to show the practi-

cality of the gateway approach.
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� In Chapter 4, interoperability among different stakeholders is demonstrated in

Metrology and the calibration domain. An IIoT based architecture is proposed

to help to establish standards and make basic services available for everyone in

the calibration industry. A “Scope of Accreditation” editor implementation is

adapted to the proposed architecture.

� Chapter 5 concludes the thesis with remarks and possible future work.
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CHAPTER 2

CONFIGURABLE CONNECTOR APPROACH

Solutions based on software components, especially for heterogeneous constituents

such as those pertaining to different disciplines suffer the interoperability burden.

Adaptor technologies have been introduced before, as a potential remedy and utilized

here through implementing them in component connectors. The main objective of

this research is to offer a consistent development environment that provides seamless

development especially for the component heterogeneity cases. A set of connectors

are introduced to a component-based development environment where a variability

model drives the con�guration mechanisms in the �ow of the application, compo-

nents, and connectors. The offered set of connectors are the enabling technology

incorporated through their selection and con�guration. As demonstrated through an

example in this chapter, academic experimentation revealed the practicality of the

approach. Required adaptation can be achieved in connectors as the appropriate con-

stituent, avoiding additional functional load on the domain components.1

2.1 Introduction

Different approaches have been offered to software developers that exploit the at-

tractive capabilities of components. In an ever growing world of demand, supplying

software on time within expected quality has always been problematic and a source

of motivation for software engineers to devise techniques for quickly developing de-

pendable software. Currently, it is possible to classify such efforts into two categories

as compositional [13] and generative [14]. Either venue aims to reduce human code

1 The study described in this chapter was published inJournal of Integrated Design and Process Sciencein
2018 [10].
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development which is known to be unpredictable and error-prone [15]. Components,

therefore, emerge as an inevitable resource to offer reuse in a structured way that by-

passes code writing. Of course, one should ignore the development of components

themselves which is a lot easier and more predictable than the development of huge

software-intensive systems. We assume the suf�cient existence of necessary software

components to support the desired level of production. We refer to a web-service

also as a component unless in a context that is dependent on the speci�c technology.

Between the two alternatives, generative techniques were experimented decades ago.

However, their formal speci�cation requirements and lack of powerful tools incapaci-

tated such early attempts. Model-driven approaches, however, attained an impressive

level of success today in the generative direction. Besides the existence of complete

model-driven processes, it can be observed that many different approaches are also in-

corporating some model-driven techniques. Meanwhile, this study capitalizes on the

other alternative that is compositional. Looking at the compositional techniques, it is

possible to see the building blocks offered in the forms of component or web-service

technologies at a satisfactory level of capability to enable software development by

integration. However, such integration often requires code writing, at least for the

`glue code'.

In this chapter, efforts for increasing reuse of software connectors are presented. The

main motivation is considering only bringing components and connectors together,

rather than developing the required modules. A development environment is proposed

that works based on the principles of the component-oriented approach. The goal is

adding connectors to the system through a drag and drop manner using a graphical

user interface (GUI). The necessary changes to adapt the connector to the system, in

other words, altering the reused connector for customization is done through the GUI

again using simple pop-up windows. Thus, the suggested development style may

prevent or at least reduce the need for the glue code.

Adaptation through connectors becomes especially important when a diversity con-

cerning the component domains is considered. Most of the software-intensive so-

lutions to new demands involve interdisciplinary collaboration, including the com-

ponents. Early statements concerning this phenomenon [16] indicate the consistent

development for interdisciplinary capabilities. Actually, a futuristic version of the
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concept manifests itself as transdisciplinary engineering [17]. Connectors could sup-

port the evolution from interdisciplinary to transdisciplinary development through

enabling the early and maturing attempts.

Some background information will be presented in the following section, on critical

constituents of compositional approaches. These constituents are mostly components

and connectors. Currently, components are commonly being used as important tech-

nologies. Recently connectors have also been emphasized besides the components.

Also, coordination is a related topic that has been addressed utilizing connectors and

will be introduced along with component-oriented representations such as COSEML.

A top-down strategy is emphasized for even coordination besides the structural de-

composition. Related work of the proposed methodology is presented. Then, an

example of the system development will be demonstrated after introducing the under-

lying methodology. Some remarks are provided in the discussion section before the

chapter is concluded.

2.2 Background

This section includes the introduction of notions that form the foundation for the sug-

gested approach. Mostly component related technologies and engineering approaches

that exploit them are involved.

2.2.1 Components

A component can be de�ned as an implemented building block for software devel-

opment. Components are used to yield a software system through composing from

pre-implemented blocks based on a composition protocol. They are independently

deployable. Meaning that the developers can use any components they desire without

having to worry about the obligation to use any other speci�c component. Interfaces

should accompany components to publish their provided, and sometimes required

services in order for a system to be synthesized and managed ef�ciently.

Originally introduced to the literature by Szyperski [18] the component technologies
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appeared as practical building blocks for software. Related capabilities were already

experimented using different approaches. For example, Dynamic Link Libraries of-

fered the capability to connect at run-time, for the units not included in the appli-

cation. This mechanism is reminiscent of the requirement for a component hence a

component-based system, that is the ability to integrate at run time. Even the earlier

concept of `virtual memory' management for programs that move in a piece of code

to the memory from secondary storage (and moving out some other to vacate space)

is also a distantly related mechanism.

The era corresponded to the maturing times for graphical user interfaces that sup-

ported event-based programs: the main loop would wait for mostly a mouse or a

keyboard event to activate some function connected to the associated screen ele-

ment. Although components are far more general software units than serving such

`windows-based' user interfaces or event-based program control, early component

protocols re�ected the requirements of that era. That is why the de�nition of a com-

ponent structure included events to subscribe and events to publish. These are in

addition to the �elds that a `class' would also declare such as properties and methods.

At �rst look, the components look just like objects, with the addition of event decla-

rations that could even be judged as methods with speci�c synchronization require-

ments – so, no big difference. Even though such declarations take place at different

locations: they are inside a class for objects, whereas they are inside additional units

that are called interfaces for components. However, the contribution does not lie in

the declaration structure. What makes a component useful is the hidden mechanisms

that implement compliance with the `component protocol'.

For ef�cient utilization of components, the protocol becomes very important. Soon,

common operating systems started to serve such protocols, almost including `mid-

dleware' layers in them. Today, common desktop environments include component

protocols that can communicate with components before their integration to an ap-

plication, and after their integration, during the operation to carry messages in either

direction.

Early component models allocated only published methods. The required �elds were

exclusive to events. Later models made room for required methods as well as pub-
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lished methods. Actually, a whole interface that included methods etc. could also

be declared as published or required. The interface concept became more established

with the components. Such improvements also have re�ected to object-oriented mod-

elling and got accommodated in, for example, UML 2.0 [19].

As our current infrastructures move towards more and more automated composition,

concepts such as late binding, polymorphism, and dynamic con�guration. gain more

importance. Sets of components for different domains continue to be offered as well

as component protocols or models. While speci�c capabilities are continuing to be

improved and added, fundamental design principles should be preserved with more

rigor – they include separation of concerns, cohesion etc. Meanwhile, improvement

in the utilization of components, (composition) has continued to be experienced. Less

and less code writing is on the agenda. In this research, connectors are emphasized

as the other important constituent of the composition.

2.2.2 Connectors

Modern complex software systems are usually a collection of components. Han-

dling of interactions among these components can be hard to manage because of the

complexity of the systems. To �ght the complexity, the well-known principle of sep-

aration of concerns should be considered. A component should not carry information

about the rest of the system. Also, communication with its exterior should better be

assumed by external entities. This is where the connectors come to play.

Connectors were de�ned by Mehta et al. [20] as an architectural element that is re-

sponsible for the handling of the interactions among the components in a software

system. Connectors are classi�ed into four general classes according to services they

provide: communication, coordination, conversion and facilitation. Furthermore,

eight connector types are de�ned according to the way in which they realize their

roles in the interactions: procedure call, event, data access, linkage, stream, arbitra-

tor, adaptor and distributor. In this way, connectors can be identi�ed more effectively

in a complex system and can be differentiated from one another.
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2.2.3 Component-Based and Component-Oriented Software Engineering

Component-Based Software Engineering (CBSE) can be viewed as an approach that

supports the integration of components into applications. The spectrum can also in-

clude mechanisms that aid this objective: component search ability is nice to have as

well as the capability to build components. There can be mixed approaches allowing

for example object-oriented development that facilitates insertion of components into

the object-oriented models and eventually to the code. Component-Oriented Software

Engineering (COSE) on the other hand, does not address code-level development.

Other modeling notions such as objects are not retreated. Only component concept

is regarded throughout the lifecycle: in abstract representations for the earlier phases

and physical for the later phases.

COSE suggests a structural decomposition of the solution in terms of component

de�nitions. Referred to as packages, such de�nitions correspond to component ab-

stractions declared with the consideration in mind to match later with existing phys-

ical components. Comparable to the product engineering avenue of Software Prod-

uct Line (SPL) approaches, the emphasis is not in constructing the components –

rather, how to utilize existing components once an ordered product becomes the con-

cern. The methodology is based on iterations on the decomposition model, including

the abstractions and components until the `logical' levels of decomposition are com-

pletely matched with existing components.

So far, we have discussed a static model. The decomposition represents the struc-

ture completely. Even connections among the required and published methods of

various components can be depicted. However, a dynamic view indicating the acti-

vation order among these method connections (i.e. messages) is missing. This view

was introduced later [21] in the form of a collaboration diagram inspired by UML,

superimposed on the decomposition: Numbering was superimposed on the message

connections. Further, a textual modeling language [22] for COSE included process

�ow primitives to be listed inside packages. Although not centralized, now the pro-

cess model was represented as distributed among the packages of the system. This

language grew toward including variability in also connectors, after the work of Kaya

[23] that introduced variability to COSE.
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COSEML

Component-Oriented Software Engineering Modeling Language (COSEML) is a graph-

ical modeling language that is designed to take full advantage of COSE. It promotes

the build by integration paradigm rather than code writing from scratch. In COSEML,

design elements have their own graphical representations [24]. For instance, an inter-

face of a component can hold information about its properties, method-in and method-

out �elds. Graphical representation of an interface and its structure is shown in Figure

2.1. Method-in �elds contain the published methods of a component while method-

out �elds represent the methods to access the resources outside the component (re-

quired methods).

The language has evolved through the years. Originally it was designed as a tool

for hardware-software co-design inspired by the Abstract Design Paradigm [25]. The

initial version was introduced to support building software by integration, however

without component technologies being around yet. Therefore, the earlier versions

were more declarative to specify general purpose software units. Abstractions were

designated for their compliance with data, function, or control dimensions of design.

UML was not around either. Consistent usage and evolution accommodated widely

accepted concepts, as they emerged. Icons were adapted to their UML correspon-

dences where possible. With the proliferation of component technologies, the ap-

proach �nally was united with its enabling technologies. The whole idea would make

more sense if the well-established code could be coordinated by COSEML models,

to yield executing systems. Bottom-level notions were completely adapted to com-

ponents and interfaces. Over the years, only the structural element among the logical

level primitives, namely the `package' survived for use, shadowing the data, function,

and control. Finally, the language was supported by a component-compliant process

[26].
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Figure 2.1: Graphical representation of an interface of a component.

The evolution kept following the improvement in the compositional approaches. Web

services were added to the environment [27]. Later variability was added [28] as

inspired by the SPL practices. The explicit modeling of the software process was

improved to a mechanism that could mimic that of the SOA by including process

�ows [29]. Soon, connectors were reintroduced with serious roles to play [30]. The

�nal enhancements now offered the enabling technologies for reusable connectors to

complete the `structural' spectrum for build by integration.

2.2.4 Coordination

Coordination can be described as managing data �ow and exchanging control of the

system or a resource among components in a software system. There are approaches

that provide coordination through connectors. Also, some coordination languages are

presented and protocols are de�ned especially for SOA [31].

Mehta et al. [20] categorize coordination as a major role of connectors as they connect

interacting components in their research on connector classi�cation. Coordination

connectors are mainly responsible for conveying control among components accord-

ing to their de�nition. They declare procedure call, event, and arbitrator as examples

of coordination connector types.
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Arbab [32] proposes Reo for the composition of software components. Reo is de�ned

as a “channelbased exogenous coordination model”. By composing simpler channels,

complex coordinators can be built. Reo can be used as a `glue code' language to

compose software components or services to provide cooperative behaviour [33].

Linda [34] is proposed in the early 1980s as a coordination language. It is a com-

munication and coordination model for parallel processes that operate as an ordered

sequence. Another coordination language, Orc [35], is used for formal orchestration

modeling. Also, Coordination Behavioral Structure (CBS) is proposed to formalize

the service interactions and relationships [36].

The coordination concept is widespread in SOA literature. Papazoglou [37] describes

coordination as a function provided by a service aggregator that encompasses other

services to behave like a single composite service. This requires controlled execution

of the included services and supervision of the data�ow among them.

Web Services Coordination (WS-Coordination) was developed as a framework to pro-

vide a coordinator and a set of coordination protocols for distributed web services

[38]. WSAtomicTransaction [39] and WS-BusinessActivity [40] are covered in this

framework to support short-duration and long-duration activities, respectively. The

framework is extendable and can be used along with other protocols for web service

domains.

To be able to offer off-the-shelf connectors, a set of connectors that are capable of

serving any kind of connection needs should be available. This is not possible unless

offered in a classi�cation with a degree of modi�cation capability. Luckily [20] laid

out the fundamental expectations from connectors. Basically, a connection interme-

diates a function call. Functions are referred to as methods if they are members of an

object, a component, or a web-service. Also starting with object orientation, the calls

are supposedly carried by messages serving distributed requirements. Assuming the

duty of such a connection, a connector should know the calling party and the method

to call. On the other hand, a component should be system agnostic. In other words,

it is developed to be used in different systems. Therefore, components may not know

the exact names of the other components, the methods in them etc. yielding them

dependent on connectors or the glue code to work together in a system. If such infor-
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mation can be bound to the connectors during their con�guration, it will be possible

to use a small set of off-theshelf connectors constituting the only required connection

technology. Here, a connector is mounted between a pair of components, or one end

can be connected to the central process. It serves general purposes including the du-

ties stated in [20]. Also, recent studies [41, 3] incorporated variability management

in the connectors offering this `con�guration capability' as a systematic step in the

development.

Connectors provide necessary services while also performing the basic message trans-

fer duty. If the fundamental message mechanisms are taken for granted, the speci�c

task for the connectors can be simpli�ed as the adaptation. Actually, the categoriza-

tion study addresses two issues that are synchronization and adaptation, although the

former one can be thought of a kind of the latter. Messaging and synchronization have

been studied in various other platforms whereas adaptation gained special attention

since the introduction of components. An analytical study has been conducted by

Jololian and Tanik [42] that considers adaptation as the main concern in composition

and can be investigated in three dimensions that are data, function, and control. These

dimensions are very fundamental for computer science, accounting for the modeling

infrastructure for any kind of executable system [43].

Our abstraction of the connector duties includes coordination and adaptation. The cat-

egories and types of connectors de�ned in the work of Mehta et al. [20] can be viewed

in this scope. While higher-level aspects of coordination are left to the central process,

communication protocol level details are handled by the connectors. Sometimes the

adaptation could relate to coordination. Different synchronization styles may need to

be adapted. In this case, the coordination is the issue to be solved through an adap-

tation in the control dimension: the connector needs to provide a buffer to save the

answer until the requestor is ready to receive it.

As a result, with the de�nition of new connector structures, an important missing

link is substituted towards the realization of `build by integration' paradigm. The

central process can be de�ned in a graphical model. Existing components can be

connected to this process through con�guration-level input. Connectors will also be

needed to establish communication among components, and in some cases between
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a component and the central process. Components and connectors are also subject

to con�guration. Con�gurations will be derived via the variability modeling that is

superimposed on the process and component model views.

2.3 Related Work

Studies that point out the importance of interoperability among components from dif-

ferent disciplines exist in the literature. One of them is the work of Costin and East-

man [44]. They describe the need for interoperability for smart and sustainable urban

systems. They introduce a review including principles, methods, and requirements.

According to the authors, semantic web technologies are promising for achieving

interoperability. There are also efforts to achieve interoperability among the compo-

nents developed for the same discipline by different producers, which causes hetero-

geneity. For example, Emmer et al. [45] introduce an approach for interoperability

in the �eld of 3D measurement data management (MDM). There are diverse mea-

surement equipment and measurement software from different producers. Therefore,

MDM provides integration of information �ow through the use of neutral data for-

mats. They de�ne a measurement data interface for this purpose.

The idea of adapting the connectors instead of components in case of incompatibility

is proposed by Garlan [7]. This adaptation can be done by using higher-order connec-

tors, operators that take connectors as parameters and produce them as a result. The

aim is generating powerful and customized connectors by using existing ones.

Dashofy et al. [46] provide an approach for implementing connectors by using OTS

middleware. This work differs from the proposed approach in this paper: while their

concern is more related to implementing connectors, ours is to use them in a drag

and drop manner. Authors also present their ideas of off-the-shelf connectors and

middleware technologies in a different study [47]. They present their work in C2-

Style architectures.

Xillio [48] de�nes 'off-the-shelf' connectors for content migration from different

repositories. He also provides a middleware solution for content integration. The

system also allows the creation of new connectors through APIs (Application Pro-
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gramming Interface).

Perez et al. [49] propose a method called PRISMA that uses COTS in aspect-oriented

architectural models that are produced by Model-Driven Development (MDD) ap-

proach. They consider connectors as architectural elements that are responsible for

coordination among components. They claim that their connectors are reusable be-

cause they do not contain any reference to interacting components.

Spalazzese and Inverardi [8] describe the term `mediating connector' for the interop-

erability of heterogeneous components. They also de�ne `mediator patterns' targeting

the basic mismatches that probably occur during component interaction. In another

work, Inverardi et al. describes a synthesis of application-layer connectors [50]. In a

more recent study, the similar connector synthesis approach is used to address func-

tional and non-functional interoperability of networked systems [51].

There are also studies that focus on connector variability. Cetina et al. [52] offer the

Model-Based Recon�guration Engine (MoRE) that focuses on adaptation to changes

at runtime in the context of autonomic computing. Dynamic recon�guration of the

system elements is done by activation/deactivation of features on a feature model.

The approach hides how variability in the feature model is applied to the connectors.

This may make the management dif�cult for large-scale systems.

FX-MAN [53] extends the X-MAN component model [54] with feature models. FX-

MAN uses a logical architecture of the system as a tree of interacting components

along with the feature model. By using variation operators and family connectors,

product families can be constructed. However, the connector variability logic is hid-

den in the logical architecture which derives variations for connectors.

Finally, a literature survey conducted to outline the status of variability in component

models has demonstrated the weakness of such capability [55]. Moreover, the current

state seems to exclude the connector emphasis.

The connector related research is improving. Our approach leverages on its outcome

for exploitation towards `build by integration' that eliminates code-writing. Majority

of the work on connectors target at least partially, development of new connectors.
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2.4 Methodology

Off-the-shelf connectors for the component-oriented approach are presented in this

section. Then, the proposed software development approach is elaborated.

2.4.1 Off-the-shelf Connectors

Complying connectors, with the ambitious reusability objectives, can be an alterna-

tive to writing code for integration. They are also instrumental in completing the

spectrum of drag-and-drop activities for the composition of software. Figure 2.2 de-

picts a screen prototype for a tool where connectors can be selected and inserted in

the design, as well as components.

Figure 2.2: Tool bars for connectors and components for composition.

`Connectors' toolbar on the right-hand side of Figure 2.2 includes all of the connec-

tors which can be used in a speci�c domain. Also, these connectors are grouped under

eight classes to be identi�ed more effectively based on the roles that they can possibly

take in the system. Some pre-built and ready to use adaptor connectors are given for

the `e-Commerce' domain. The `e-POS' connector is responsible for the handling of

credit card transactions between two parties. Similarly, the `WireTransfer' connector
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can be used to manage direct money transfers among parties such as electronic funds

transfer (EFT). The `RegionSelector' connector allows a business to gain the ability

to differentiate their services based on different regions. The `LanguageTranslation'

connector can be used to manage translations for previously de�ned conditions or

events occurring at runtime.

Connectors readily include some methods to carry out their duties. Also, connectors

have the ability to be con�gured in case of a required customization. A prototype

screen for the interface that can be used to con�gure a connector is given in Figure

2.3.

Figure 2.3: Con�guration of a connector in the composition.

2.4.2 The Proposed Approach

Our aim in this research is to minimize, if not completely eliminate code writing. For

satisfying this objective, three domains in the modelling of any executable medium

can be identi�ed: the overall coordination expressed as a process model, a set of

components, and connection mechanisms. The motivation behind such an architec-

tural style owes itself to the observation about the success in the Service Oriented

Architecture (SOA) �eld. There, a de-facto two-level architecture is proposed that

is supported with effective tools, protocols, and technologies. This architecture in-

cludes a global process model at the top level and a set of operations at the bottom

level that implement the `activities' in the process model. Figure 2.4 presents a sim-

pli�ed example for money withdrawal scenario represented in this architecture. Al-
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though many developers do not exploit this infrastructure and they combine many

techniques in the production of their code, this infrastructure offers a very easy to use

and a settled method to developing distributed systems. A central control structure

that can be developed in the graphical tools is the process model that would order

all the invocations in the system comprising the �rst level in the architecture. The

outcome is an `executable' process model. Next, a collection of web services that

are connected to the activity nodes in the process model provide the necessary oper-

ations. Consequently, existing technologies support the two domains (process model

and components) satisfactorily. The last one of the three domains corresponds to

connections that serve two purposes: 1) adaptation among components; and 2) lower-

level coordination duties. Main coordination can be thought of being handled by

the central process model. This research introduces connector structures that abide

by this objective and offer the �nalizing of software development that avoids code

writing.

The model presented in Figure 2.4 corresponds to an executable system. To describe

its execution in a consistent form, a simpli�ed C language syntax is used for the code

provided in Listing 1 where the process model corresponds to the main program and

methods of the components correspond to functions. The main program corresponds

to the higher level in the two-level decomposition and the functions correspond to the

lower level. The bodies of the functions are not listed for brevity.

Figure 2.4: Money withdraw scenario in the SOA-inspired architecture.
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A brief description of the methodology for utilizing connectors in the ef�cient com-

position approach within a two-level decomposition architecture has been provided

in [22]. Here we are articulating more on the aspects that concern the plug-and-play

nature of the connectors. The whole process depends on the persuasion that no code

will be written but drag-and-drop operations will be supported with slot-based param-

eter instantiations to yield an executable system. That persuasion is materialized with

the trust on con�gurable connectors that will �ll in for the gaps and incompatibilities

among a central process and a set of components.

Table 2.1: Modeling the executable system in a simpli�ed C language representation.

1 / / Leve l 2 : A s e t o f f u n c t i o n s

2 getName ( ) . . . . . ;

3 ge tPassword ( ) . . . . . ;

4 R e t r i e v e R e c o r d ( AccountID ) . . . . . ;

5 getAmount ( ) . . . . . ;

6 d i s p o s e ( amount ) . . . . . ;

7 p r i n t R e p o r t ( r e p o r t ) . . . . . ;

8

9 / / Leve l 1 : Ordered i n v o c a t i o n o f t h e f u n c t i o n s

10 i n t main ( )

11 getName ( ) ; ge tPassword ( ) ; / / s e q u e n t i a l o r d e r

12 r e t r i e v e R e c o r d ( ) ; / / s e q u e n t i a l o r d e r

13 i f ( v e r i f i e d ) / / c o n d i t i o n a l o r d e r

14 amount = getAmount ( ) ; / / seq . i n s i d e cond . o r d e r

15 d i s p o s e ( amount ) ; ; / / seq . i n s i d e cond . o r d e r

16 e l s e / / c o n d i t i o n a l o r d e r

17 e r ro rMessage ( ) ;

18 p r i n t ( ) ;

19 ;

Figure 2.5 depicts the process model for the suggested software development ap-

proach. The process starts with the construction of a central control model. An
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executable process modelling tool will be instrumental in this step. There are con-

ventional executable engines for the Business Process Execution Language (BPEL)

that is graphical. Also, a more powerful modelling option is offered by the Business

Process Modelling Notation (BPMN) that is also supported by interpretive execution,

however not being as common.

The two-level hierarchy accommodates a single process model that is at the focus of

the execution: providing a central control analogous to a state machine that processes

the transitions of the whole system in a global, hence central state space. This corre-

sponds to a central control that excludes parallel or multithreaded execution modes.

However, this model can easily be adapted to its parallel versions by allocating more

than one processes that communicate. The BPMN or BPEL technologies are currently

capable of supporting such infrastructure. The discussed parallelism actually paves

the way for the implementation of distributed algorithms which are more powerful

than the central control model.

Figure 2.5: Connector supported two-level architecture-based composition.

Distributed or central, the main process is the important speci�cation of the exe-

cutable system, due to our top-down persuasion for development that supports the
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convergence of the design decisions better, to the �nal product. Top-down approaches

allow the holistic view to be kept within consideration throughout the development.

Otherwise, starting with the components and integrating the application by partial

ordering (partial process models) and combining such models to the global process

model(s) is also possible.

The activity boxes in a process model can be linked to the methods of existing com-

ponents for executing the duties speci�ed in the box. It is possible to execute parts of

the process model for prototyping purposes. It is not necessary therefore to complete

the whole process model before exercising with it.

Supporting the process model development with process decomposition, and espe-

cially offering a methodologic decomposition (hence, top-down de�nition) is also

studied in [56]. There, a little de�nition in any level of the architecture is con�rmed

with the corresponding de�nition in other levels of the architecture. Here, de�nition

means a decomposition step because any new module appears as a result of decompo-

sition. Actually, the referred work suggests a simultaneous de�nition (decomposition)

of the process model and the other models such as the set of components. This is like

considering one level at a time as in a breadth-�rst strategy. In either case, completing

the whole process �rst or only a small part of it before components are connected, we

suggest a top-down approach. The process model comes �rst as it is the centre of

execution.

Process can also be shaped through instantiation from a domain model. A generic pro-

cess model could exist complementing a domain model such as in SPL approaches.

SPL approaches also propagate the variability management concept within their prac-

tices and to some extent, export the idea to other approaches. Here, variability ca-

pability will result in the con�guration of a more generic process model to a speci�c

one, tailored for the current application. An example to instantiating a generic process

model can be given considering a multi-way branch that corresponds to a selection. In

an executable process model for an application, the branches all exist and at run time,

based on data values or decisions, one of the branches will be taken. However, during

the instantiation of a domain process model, the alternative paths that are marked as

variants for a variation point will be erased and excluded in the �nal product.
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An important expectation is the establishment of domain-speci�c development infras-

tructures, with developers who are familiar with their contents. Such mature domains,

that may currently be existing for the internal use of SPL incorporating organizations,

should be more commonplace. In that case, a match between the process model and

the components will be more successful. A better set of components to serve the

whole domain with known uses and descriptions provides leverage. Also, scenarios

that are experimented earlier to offer ordered set of activities to solve sub-problems

(as partial processes) will aid in more effective development of process models. Ac-

tivities de�ned at the process level, will match existing components with probably

a higher success rate. A similar pattern has been experienced in service orientation

where existing web-services that correspond to business functionalities have proven

desirable.

Development will continue with matching a component, actually a method in it, to

an activity in the process model. The component may go through con�guration be-

fore this connection. Variability speci�cations in the domain model will provide the

desired guidance, preferably with totally automated con�gurations.

Con�guring a component is not suf�cient for its execution-level match with the sys-

tem. Connectors are required to connect their interface slots to correct counterparts.

In the simpler case of connecting the central process to one component, one would

assume the process playing the client role whereas the component playing the server

role. For a speci�c method invocation, the required interface in the process model,

specifying a function it needs, should be connected to the published interface in the

component for the speci�c service. Usually, we cannot tamper with a component

except for some small modi�cation. It is possible that changing its method names

may not be allowed. Luckily the central process is ours, and it would include slots

to identify the component and its method so that it can send a message to the de-

sired target at run-time. In such cases of perfect matches, no need appears for a

connector. However, connectors do more than just name binding. Also, in the case

of component-to-component connections the existing method call from the requestor

(client) with a pre-de�ned function name, may require a name translation. Our con-

nectors have slots that record the expected method de�nitions for both the requesting

and the responding party's existing method names.
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2.5 Case Study: e-Commerce System

In order to demonstrate the proposed approach and its abilities, an e-commerce sys-

tem is designed in COSEML. The system consists of `Item', `Supplier', `Shopping-

Cart', `Order', `Delivery' and `Bank' components. Structural decomposition of the

system is given in Figure 2.6. All of the interactions among these components will

be handled through connectors. It should be recalled that the higher-level units corre-

spond to logical level declarations.

A connector is used to relay messages. Therefore, messages are declared in con-

nectors. We followed a convention in such name assignments that would indicate

the name of both the requester and the responder parties. There could be more than

one message contained in a connector. When a requestor interface performs a re-

quest through its `Method-out' slot from a related connector: the connector triggers

a connector message which starts with the received `Method-out' call. The activated

connector message, in turn, activates the `Method-in' of the responder interface. The

direction of the interaction is determined by a symbol attached before the connector

name. The `<' symbol shows that the direction of the �ow is from right to left, so the

interface given on the left would be the responder interface and the interface given

on the right would be the requester interface. The `>' symbol is used to represent the

reverse direction.

Figure 2.6: Structural decomposition of the e-commerce system.

The connector with the name OrderCreator:ShoppingCart_Order handles the inter-
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actions between the ShoppingCart and the Order components is shown in Figure

2.7 where the components are not shown to save space: only the connection related

units (their interfaces and a connector) are included. In this �gure, it is shown that

the orderItems_receiverOrder connector message is triggered through the orderItems

methodout of the ShoppingCart (requester) component. When the connector message

is triggered, it calls the receiveOrder method-in of the Order (responder) component.

Figure 2.7: Interactions between the interfaces of the ShoppingCart and the Order

components through the OrderCreator:ShoppingCart_Order connector.

In the e-commerce system, the communication among the `Order', the `Delivery' and

the `Bank' components are handled through the `ShipmentManager:Order_Delivery'

and the `e-POS:Order_Bank' connectors as it can be seen in Figure 2.8. When the

Order component receives an order through its `reveiveOrder' method, it interacts

with the Bank component through the `e-POS:Order_Bank' connector to charge the

customer with the `chargeCustomer' method. However, this money transfer inter-

action may require currency conversion that could consider a variety of currencies.

It is possible to have different currency expectations on both sides of this interac-

tion. Such differences can add up to structures where mapping from one big list

to another will be implemented. This choice for con�guration of the adaptation is

solved based on variability modeling, which will be explained soon below. When the

transaction is completed, the `Order' component interacts with the `Delivery' com-

ponent through the `ShipmentManager:Order_Delivery' connector with its `shipmen-

tRequest' method. This operation completes the purchase. Additionally, the Bank
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component has the ability to validate the payment method for security reasons if it

�nds necessary. This validation related interaction would also be performed through

the `e-POS:Order_Bank' connector. Also, the Order component has the functional-

ity to refund the customer if a customer returns the order with its `refundCustomer'

method.

Figure 2.8: Interactions between the interfaces of Order-Delivery and Order-Bank

Components through connectors.

The interaction involving the `charge customer' request and the `�nalize transac-

tion' service is exploited in this example to illustrate the variability related devel-

opment steps. The `Order' and the `Bank' components are assumed to be manu-

factured for a �xed money currency. This is a typical simple example where some

adaptation is required. Since connectors are the chosen media for adaptation, the

`e-POS:Order_Bank' connector will assume such responsibility.

The adaptation corresponding to matching different currencies forms a good exam-

ple for variability: the options for converting currency offer a wide choice area for

different currencies. A short list is presented in this example.

Where to implement the variability is another issue. A connector housing only one

message could be selected for the mentioned interaction. However, assuming a com-

mon usage for such a domain-speci�c connector, we suggested this `Order_Bank'

connector to include the three messages that are expected to be used in most of the

order-to-bank connections. The message connecting the `charge customer' request
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to the `�nalize transaction' is where such a currency conversion is needed. That is

why the mentioned variability is embedded in this method. Recalling that the con-

nectors have methods declared once per message connection, this `charge customer'

to `�nalize transaction' message has its own operation. Any connector capability is

potentially possible to be coded in this operation. Here, the operation will conduct

the adaptation, that will be for currency conversion and that will be con�gurable. The

con�guration is how the variability is resolved. Also, coding a capability is a domain

engineering activity assumed completed before.

Figure 2.9 illustrates a screen design corresponding to the con�guration of the `Or-

der_Bank' connector. Once an instance of this connector (e-POS) is selected for mod-

i�cation such as through a double click or a right click on it, the developer should be

able to pick a method for its con�guration. In this case, the �rst method `chargeCus-

tomer_�nalizeTransaction' is selected and variability management offers the avail-

able conversion options at the design-time.

Figure 2.9: Resolving the variability on currency conversion through connector con-

�guration.

Actually, the con�guration was conducted due to the variability speci�cations that is

part of earlier speci�cation activities than development. A feature model [57] could

be developed for the domain, that is used for specialization into separate feature mod-
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els for each product. Such specialization is conducted through resolving the variabil-

ity. Although it is possible to model variability in a feature model, it is preferred to

complement a feature model with a separate variability model. Such a separation is

necessary for huge models. Excerpts from a feature model and a variability model are

represented in Figure 2.10. The variability modeling representation complies with the

Orthogonal Variability Model [58] approach.

Figure 2.10: Excerpts from domain feature model and variability model.

2.6 Discussion

New connector structures are proposed to support development by integration, to be

used with component technologies. Although these connectors are �exible to be used

in any kind of composition frameworks, also a central process-driven architecture

is promoted. Inspired by the success in the utilization of SOA based technologies,

this approach suggests a two-level architecture where the ordering of operations is

speci�ed in a process model and the activities in this model are conducted by exist-

ing components or web services. This is analogous to a main program that uses the

control structures (such as if, switch and loops), to execute the �ow which includes

only function calls inside these structures. Whereas the algorithmic computations

are dispatched to a set of functions that are called by the main program. This view

suggests the modelling of a system in those two levels, ignoring nested function call

mechanisms and hierarchical organization of the process model. The `ignoring' key-

word is important here, meaning they are not categorically ruled out. However, the
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main model should emphasize a two-level hierarchy. As a result, the vast experience

gathered in SOA can be leveraged. The process model can be developed by experi-

enced developers who know the component library and also similar solutions devised

before. Supported with the existence of many components/web-services at different

granularities and preferably handling business requirements directly, such two-level

decomposition would yield a very ef�cient development process.

Exceptions will always be with us: more levels in the decomposition can be intro-

duced where necessary. That may be due to a new problem that has not been coded

before requiring the construction of subassemblies that are not available in the form of

directly available components. Anyway, �exibility is usually desired. However, sim-

pler architectures as recommended here will prove more effective in the production

of software intensive systems. This will be possible as the development environments

mature rendering the saturation of the domains with components.

Connectors seem to be assuming partially the responsibilities of a middleware. This

is not one of the objectives of this study. For practical purposes, even connectors

may need to be implemented through component technologies (as components) and

they would also consult to a middleware for connectivity. The idea is to provide a

complete set of assets for development through con�guration and integration. Any

systematic tool or support is welcome. Anyway, there is a potential for connectors to

mimic a middleware partially and hence provide some independence from them.

The proposed connector approach is an opportunity for the interaction of components

from various disciplines. In the e-Commerce case study producers, suppliers, delivery

departments and banks are meant to represent different domains. Incorporated pro-

cesses are required to be handled by capabilities residing in more than one discipline.

The communication with the third-parties that are out of discipline, can be handled

with the help of connectors. Reusing existing connectors and customizing them for

different applications reduce the cost of system development.
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2.7 Conclusions

An approach for effectively incorporating connectors in system development is pre-

sented. Domain speci�c environments are assumed for a default functionality served

by a set of present connector types. Those functionalities are not usually ready for

use, allowing room for �nalization. Through variability modelling those expected

capabilities for a domain are offered in our `domain model'.

Product speci�c integration effort is supported by partially expected capabilities that

shape into the domain models in terms of variability. Final tailoring is conducted

through variability resolution. Although variability is supported to be speci�ed at

other times, mostly design time con�guration is incorporated.

Our experimentation with example designs has demonstrated the usability of the ap-

proach. Validation for the approach, however, suffers some serious drawbacks: A

real world development environment with its commercially developed requirements

and matured software assets and tools is not easy to acquire and then, to use. Such

items need to be arti�cially generated for use in proof-of-concept studies. Although

the overall feasibility of the approach can be demonstrated through arti�cial envi-

ronments, ef�ciency of validation may critically depend on the �delity of the assets.

Following an expectation for the near future, such frameworks should appear and,

mature in time for more ef�cient development support.
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CHAPTER 3

LIVE-VIRTUAL-CONSTRUCTIVE INTEROPERABILITY THROUGH THE

DDS-HLA GATEWAY

Software systems need to be more complex and large-scale to keep up with growing

user expectations with ever-increasing technological improvements. Building these

systems from scratch is costly and time-consuming; thus, the importance of reuse

and interoperability is increasing. Employing more than one subsystem to yield a

more complex system in Live-Virtual-Constructive (LVC) simulation systems is fre-

quently seen. These subsystems may have different implementations and designs. In

such multi-architecture LVC environments, gateways are promising solutions to ad-

dress interoperability issues. In this chapter, a gateway-based solution is proposed

to achieve LVC interoperability with a particular focus on two standard middleware,

viz., Data Distribution Service for Real-Time Systems (DDS) and High-Level Ar-

chitecture (HLA) for distributed simulation. The gateway is capable of providing

two-way data transfer between DDS and HLA. The design of the gateway adheres

to the idea of con�gurable connectors, which allow users to generate a customized

gateway. The gateway is capable of converting primitive and structured data-types

between DDS and HLA. These conversions are speci�ed by users resulting in dif-

ferent con�gurations of the gateway. The gateway can also be adapted to another

con�guration at runtime. The applicability of the gateway is shown in academic and

industrial case studies.1

1 The study described in this chapter is currently under submission for publication.
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3.1 Introduction

As systems are getting more sophisticated and grow in size, the need for reusing exist-

ing software and combining heterogeneous subsystems into a bigger system becomes

a necessity. This case is usual for LVC simulation systems, where different kinds of

systems that have unique architectures are operated together. Thus, the interoperabil-

ity of multi-architecture LVC simulation systems is an open problem.

LVC Architecture Roadmap (LVCAR) was initiated to examine major simulation ar-

chitectures from different perspectives to increase interoperability in multi-architecture

simulation systems. The main goal is to reduce development time and costs and im-

prove quality [59]. The development of gateway and bridges to provide interoperabil-

ity solutions for LVC simulation systems take place in the core efforts of the LVCAR

study. Developing gateways speci�c to a system is an issue preventing reuse of it

for another system [60]. Con�guring a pre-built gateway for a new system would

improve interoperability efforts for multi-architecture systems.

Combining real-time systems and simulation systems into a bigger one is a known

solution. The interoperability of these two kinds of systems in LVC simulation and

large-scale cyber-physical systems is crucial [61]. Using real-time systems and sim-

ulation systems in a combination decreases production costs, especially in the de-

fense industry [62]. Thanks to their advantageous combination, DDS and HLA are

frequently used together. Since their application areas differ, various solutions are

developed for the interoperability of these two middleware standards. While some

solutions have a single interface serving as a combination of both architectures [63],

some distributed simulation systems use DDS as a communication infrastructure for

its considerable quality of service (QoS) capabilities [64, 65].

The work presented in this chapter is efforts through supporting LVC interoperability.

DDS-HLA gateway is developed to help using these two architectures in the same sys-

tem. The initial need for DDS-HLA interoperability arises from an industrial project

that is a DDS-based avionic system development platform, namely HAVESIS [66].

This DDS-based system is intended to cooperate with an HLA-based tactical simu-

lation system. An architectural connector-based gateway is developed as a solution.
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Figure 3.1: Overall structure of the DDS-HLA gateway.

In software architecture, connectors are the elements where communication concerns

are handled. Accordingly, the proposed gateway handles the data transfer and con-

version tasks between DDS-based and HLA-based systems without modifying their

original structures. In our solution, we assume that the HLA-based system does not

use time management. Alternatively, it is assumed that the simulation system uses

physical time, as it is the case in the DDS-based system.

The gateway is conceptually composed of three main components: agateway partic-

ipant, agateway federate, and adata converter, as shown in Figure 3.1. The gateway

participant and the gateway federate establish the communication with DDS and HLA

systems. The data converter contains a shared data area that has primitive and struc-

tured data type declarations, and functions to transfer and convert data between DDS

and HLA. The data converter is the con�gurable part of the gateway to allow cus-

tomization [3]. Thus, only necessary data types, data structures, and related functions

are included in the gateway. The con�guration of the gateway can be done both at

compile time and runtime.

The whole work done on the DDS-HLA gateway can be summarized as follows:

� Previous work: The prototype of the gateway was developed and integrated

into an industrial project [11]. Besides providing two-way communication be-

tween DDS and HLA, this version was also allowing the con�guration of prim-

itive data type conversions.

� In this chapter;
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– The gateway is adapted to be con�gured dynamically.

– The gateway is enhanced to support the transfer and conversion of struc-

tured data types.

– More tests are conducted and use cases are provided to show the usability

of the gateway with its updated features.

The tests, including an industrial case study, show the applicability of our gateway

approach. Although other research provides DDS-HLA interoperability methods in

the literature, our approach differs in terms of con�gurability. Runtime adaptability

is also a plus since DDS and HLA environments themselves are usually prone to

unexpected changes during execution.

The rest of the chapter includes required background information that covers brief in-

formation about DDS, HLA, and dynamic adaptation. The related work is discussed,

including LVC interoperability, DDS-HLA interoperability in a comprehensive way,

and interoperability of different middleware technologies. Then, the DDS-HLA Gate-

way is elaborated: its design, con�guration mechanism, and operation details are pre-

sented. Afterward, case studies are provided that include an industrial application,

other possible use case scenarios, and tests. The chapter is concluded after a discus-

sion section that contains some remarks.

3.2 Background

The necessary background information is provided in this section. Brief information

about DDS and HLA is given. Moreover, dynamic adaptability is mentioned.

3.2.1 Data Distribution Service

Object Management Group (OMG) recommended DDS [67] as a publish-subscribe

based standard for data sharing of large-scale systems to provide anonymous and

decoupled communication. The communication can be asynchronous and also real-

time. DDS has QoS policies for non-functional parameters, including data availabil-

ity, data delivery, and data timeliness.
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The distributed environment provided by DDS is through Global Data Space (GDS).

Publishers and subscribers can join and leave GDS at any time of the execution. They

are discovered dynamically by GDS. Because GDS has a fully distributed nature,

there is no single point of failure. As a powerful tool with the features mentioned

above, DDS is used for reliable and ef�cient data transmission and sharing in various

areas of application such as the Internet of Things (IoT) �nance, smart cities, air

traf�c control [68].

3.2.2 High-Level Architecture

HLA is a distributed simulation architecture framework composed of independent,

potentially reusable, loosely coupled components that allow a complex simulation

system to be decomposed [69]. The main goal is the reuse of simulation components.

Therefore, the coupling of components should be decreased, especially in terms of

communication dependencies. Runtime Infrastructure (RTI) is the mediator that pro-

vides services for simulation components, as a middleware.

A federate is a simulation application conforming to the HLA standards. A federation

is a simulation environment that is composed of federates. Federates communicate to

RTI using the standard services and interfaces to participate in the distributed simu-

lation and exchange data [70]. HLA is widely used in the defense industry. Besides,

it has many applications in civilian life, including space, aeronautics, air traf�c man-

agement, production, disaster recovery, and transportation systems.

3.2.3 Dynamic Adaptation

Dynamically adaptable systems allow changes in their structure or behavior at run-

time without stopping the whole system [71]. Changing conditions or requirements

necessitate system recon�guration. Then, recon�guration is performed to keep the

system functional, or provide a better functionality under the new circumstances

[72]. These changes may also target non-functional parameters to improve them. Dy-

namically adaptable systems are in many �elds, including IoT, ambient intelligence

(AmI), robotics, machine learning, as well as distributed simulation systems [73, 74].
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Dynamically adaptable systems are usually self-adaptive. These systems con�gure

themselves without human interaction by monitoring changes in their operating envi-

ronment [75].

One of our previous works is about the runtime adaptability of AmI systems. We

describe how a component-oriented AmI system reacts to changing conditions at run-

time in [76]. Runtime adaptability is performed by a runtime con�gurator based on

an ontology-based mechanism.

3.3 Related Work

Related work is categorized into three titles: LVC interoperability, DDS-HLA inter-

operability, and the interoperability of other multi-architecture systems.

3.3.1 LVC Interoperability

LVCAR initiative resulted in notable �ndings for interoperability. In LVCAR imple-

mentation, bridges and gateways are investigated to offer the LVC user community

better alternatives to discover, select, and con�gure [77].

In the LVCAR �nal report [59], architectural boundaries of interoperability are de-

�ned, and recommendations are put forward. Moreover, Coolahan and Allen present

the results they obtain after applying recommendations of LVCAR [60]. They show

remarkable �ndings of the development of multi-architecture simulation systems.

In [77] and [78], authors present LVCAR enhancements for selecting and using gate-

ways. Gateway selection technologies and its process to select a convenient gateway

are handled in [77]. Gateway Mapping Language (GML) is introduced in [78] as a

formal language to specify required translations in a multi-architecture system. The

language provides the format to document the required translations for stakeholders,

and it helps to ensure agreement on them. Another formal language, Gateway Con-

�guration Language (GCL), is also introduced in the same work. GCL is used to

specify common gateway con�guration parameters and some additional features. By

using GCL, gateway parameters can be documented independently from the gateway
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implementation. The documented information with the help of GML and GCL can

be used in the future for other gateway implementations.

As Hodson and Hill also declare, the need for interoperability is caused by the de-

mand for reuse [79]. Developing simulation systems from scratch is costly, especially

if they are complex. Also, again in [79], authors explain the differences in the de�-

nitions of the terms gateway and bridge. Bridges are used to provide interoperability

for different versions of the same architecture. However, gateways are utilized for

connecting different architectures.

Although they are not targeting the defense industry directly and categorizing their

work as a solution for an LVC training system, Ardila et al. [80] present an archi-

tecture that allows interoperability for joint real and virtual training in emergency

management. They extend MPEG-V standard and develop a middleware, namely

interconnection gateway, to provide interoperability for various applications.

3.3.2 DDS-HLA Interoperability

DDS-HLA interoperability approaches in the literature differ in terms of the meth-

ods used [81]. Some approaches use a combination of both architectures as infras-

tructures, aiming for a merge method abstracted from the characteristics of both ar-

chitectures. Another common use is to use DDS as a communication infrastructure

for HLA. In addition, there are models that provide interoperability with a gateway.

In the gateway approaches, interoperability is achieved without interfering with the

structure of the DDS-based and the HLA-based system. Consequently, DDS-HLA

interoperability approaches can be categorized into three groups: the fusion model,

the transport layer replacement model, and the gateway model.

3.3.2.1 Fusion Model

In the fusion model, an abstracted access model from both interfaces is obtained

with an additional layer built on top of the DDS and HLA interfaces. The main

purpose of this model is to isolate the interfaces of DDS and HLA compatible systems
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from interoperability problems by combining them with minimum effort in the later

stages. When this model is preferred for the integration of existing systems, it requires

changes in the interface implementations.

An example application of this approach is NCWare [82], which is a software ab-

straction layer that provides interoperability for DDS and HLA by combining their

standards. As a real-time networking middleware, it uni�es DDS and HLA standards

through a single API (Application Programming Interface).

3.3.2.2 Transport Layer Replacement Model

In the transport layer replacement model, DDS is employed in the transport layer,

and HLA is used in an upper layer [64, 83]. Generally, DDS is the wire protocol

of an HLA-based system. Thus, the broad range of QoS capabilities of DDS can

be used while preserving HLA's inter-simulation high-level architectural properties.

The resulting interface in the �nal system is HLA-compliant, and DDS acts as a

communication infrastructure. In this regard, this solution can be categorized as a

solution to increase the capabilities of inter-simulation middleware and a spectrum

extension rather than strictly an interoperability solution.

HLA-DDS wrapper proposed by Park and Min [83] is an example of the transport

layer replacement approach. In this method, the transport layer of an HLA-based

distributed simulation system is replaced with DDS, and APIs of HLA and DDS are

combined. The HLA-DDS wrapper is compatible with the HLA standard interface.

Thus, the proposed solution supports network-controlled distributed simulation sys-

tems and allows preserving of existing HLA-based distributed simulation systems.

3.3.2.3 Gateway Model

The gateway model ensures the resulting system to exhibit the characteristics of both

DDS and HLA, unlike the fusion and transport layer replacement approaches. In

this approach, the �nal system should transfer the functionality directed from DDS to

HLA as an HLA compliant federate, and from HLA to DDS as a DDS compliant
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participant. Oh et al. [62], achieves DDS-HLA interoperability by an ontology-

supported gateway solution. Their approach can serve for different systems that are

based on DDS, HLA, and also DIS (Distributed Interactive Simulation).

Park and Min introduce HLA-DDS bridging component in [84] that can be cate-

gorized as a counterpart for a gateway. The bridging component uses DDS-based

physical systems on HLA-based distributed simulations. It is located between a DDS

participant, and HLA federates of the system and provides two-way communication.

The component presents itself to the HLA-based system as a federate, and to the

DDS-based system as a participant. The bridging component consists of three parts:

an inner HLA federate, a data mapping object, and an inner DDS participant. Inner-

federate and inner-participant receive data from the HLA federation and the DDS

domain, respectively, and send data to the other side through the data mapping part.

Our gateway approach has a similar architectural design as the HLA-DDS bridging

component, and they both aim to achieve DDS-HLA interoperability. The proposed

solution in this study allows dynamic con�guration capability through the deployment

of different con�gurations at various execution stages, including runtime. Moreover,

our work contains initial efforts for guiding the development of the gateway through

variability models, as explained in Section 3.6.

3.3.3 Interoperability of Other Multi-Architecture Systems

This section includes similar interoperability approaches in other multi-architecture

systems, not necessarily in LVC or between DDS and HLA. In [85], authors investi-

gate solutions to combine DDS and ARINC-653 standards. A combination of these

standards would be a remedy to interoperability needs in mission-critical and safety-

critical partitioned systems, such as avionics. In this sense, different integration ar-

chitectures are offered. Analysis of the integration of DDS and ARINC-653 is also

provided in the same study. In another DDS-based approach [86], authors present

their framework that provides interoperability solutions for real-time heterogeneous

participants to interact dynamically in dynamic distributed architectures.

Middleware technologies are helping to integrate various heterogeneous components,
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such as sensors and actuators, in robotics. However, using only one middleware tech-

nology may not be suf�cient to provide all the required functionalities in an appli-

cation. Therefore, many applications need more than one framework. Authors in

[87] suggest a solution for interoperability between two standard robotics middle-

ware. Their approach is based on the idea of using the existing code for an applica-

tion while avoiding writing code for the cooperation of the two middlewares. Users

provide speci�cations for the communication needs between the middlewares as a

con�guration �le, then the necessary code for bridging is generated; this is a similar

method to our gateway con�guration approach.

3.4 DDS-HLA Gateway

This section tackles the DDS-HLA gateway in detail: design decisions of the gateway,

the con�guration ability, and execution details are provided.

3.4.1 Design Decisions for the Gateway

Architectural connectors inspire the design of the DDS-HLA gateway. Instead of be-

ing placed between two components, it links up two different systems.The gateway

aims to establish a two-way connection between the distributed applications running

on two different middleware. The application concept corresponds to the domain

application on the DDS side and the federation on the HLA side. Simulation com-

ponents that take part in the federation are called federates, and the members of the

domain application are known as participants. As the same as the domain applica-

tion, it is assumed that the federation is running in real-time. Therefore, the time

management services offered by the RTI are not used.

The gateway is composed of three conceptual parts: Gateway Participant, Data Con-

verter, and Gateway Federate. Figure 3.1 illustrates the general design of the gateway.

The gateway is implemented in a multi-threaded manner where these three abstract

parts are scattered into threads. In the current implementation, OpenSplice is used as a

DDS middleware software; Portico [88] or OpenRTI [89] is preferred as an HLA/RTI

middleware implementation. Qt [90] libraries are used to realize the multi-threaded
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design. The implementation language is C++.

The gateway component, in Figure 3.1, appears as a participant to the DDS side

(through “Gateway Participant”), and as a federate to the HLA/RTI side (through

“Gateway Federate”). Therefore, the gateway must join the domain as a DDS par-

ticipant, and the federation as a federate, and communication is conducted through

Gateway Participant and Gateway Federate. In Data Converter, the shared data area

contains the data type and structure de�nitions and declarations in which the commu-

nication data is recorded, and the functions used to perform read/write operations and

type conversions on the data.

In the gateway design, two-way traf�c that may occur during data transmission is

taken into account. Messages that are sent from the DDS domain and the HLA feder-

ation may not be in a speci�c number and order. For this reason, the gateway should

be listening to both sides continuously and be able to transmit data in both directions.

Thus, a multi-threaded design is preferred for the gateway.

The detailed design of the gateway is depicted in Figure 3.2. The multi-threaded

model is composed of four threads where two of them for Gateway Participant (1, 4),

and two of them for Gateway Federate (2, 3):

(1) Inner DDS Subscriber: Receives messages from the DDS domain.

(2) Inner HLA Publisher: Sends messages to the HLA federation.

(3) Inner HLA Subscriber: Receives messages from the HLA federation.

(4) Inner DDS Publisher: Sends messages to the DDS domain.

These four sub-components of the gateway are allowed to access to the shared data

area. When subscribers receive data from the system that they are listening to, they

write this data to the corresponding locations in the shared data area and notify the

publisher-side of their type. Publishers read the data from the shared data area and

send it to the system that they are registered.

In the gateway design, all data types and structures are de�ned in a bi-directional

manner to prevent congestion. This mechanism applies to all primitive and structured
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Figure 3.2: Detailed design of the DDS-HLA gateway.

(such as arrays, lists) types of data transmitted between the DDS domain and the HLA

federation. Therefore, there is no waiting to write the incoming data to the shared data

area while transmitting data at the same time. The data transmission functions con-

duct data transfer in the shared data area. These functions are used to read and write

data from the DDS and HLA compatible variables and structures. Moreover, they

are utilized in inter-thread communication.When type conversion is needed before

transferring the data, data conversion functions are used. These functions accept the

source type as an argument and return the target type after the conversion.

3.4.2 Con�guration of the Gateway Component

Data types of DDS and HLA may differ even if they are of the same type essentially.

For example, one side of the communication may use short integers while the other

side uses long integers. Moreover, users may deliberately want to transfer data to the

other side in a different format. For this reason, the gateway component is equipped

with con�gurability. The con�guration takes place in accordance with the data map-
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