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ABSTRACT 

 

 

THE EVOLUTION OF MATHEMATICAL PRACTICES IN A SEVENTH-GRADE 

CLASSROOM: ANALYZING STUDENTS’ DEVELOPMENT OF 

PROPORTIONAL REASONING 

 

 

Ayan Civak, Rukiye 

Ph.D., Department of Elementary Education 

Supervisor: Prof. Dr. Mine Işıksal Bostan 

Co-Supervisor: Assoc. Prof. Dr. Michelle Stephan 

 

April 2020, 466 pages 

 

 

The first purpose of this study is to develop, test, and revise a Classroom Hypothetical 

Learning Trajectory and related instructional sequence for teaching proportional 

reasoning in seventh-grade. The second purpose is to explain students’ communal ways 

of reasoning with informal tools and how this reasoning evolves over time to reasoning 



 v 

with formal tools in line with a Realistic Mathematics Education perspective. The third 

purpose is to document students’ collective development of mathematical ideas and 

concepts related to proportional reasoning (i.e., documenting mathematical practices). 

To those ends, an instructional sequence developed in the United States by Stephan and 

colleagues was tested and revised in two subsequent design experiments in two years 

with a design-based research perspective. Data were collected from an experienced 

middle school mathematics teacher’s two seventh-grade classrooms in two years in a 

public school in Altındağ District of Ankara. The videotapes of the classroom 

implementation in the second experiment, which lasted six weeks, were analyzed by an 

adaptation of Toulmin’s argumentation model (Classroom Mathematical Practices 

Analysis). Findings showed that the instructional sequence has extensive potential in 

supporting a classroom community’s proportional reasoning in increasingly 

sophisticated ways. In particular, it revealed that the classroom community started to 

make sense of proportional situations by reasoning with pictures and ratio tables 

(informal tools), and this reasoning evolved to reasoning with the symbolic 

representations of ratio and proportion (formal tools). Lastly, it presented that five 

mathematical practices were established in the classroom. 

 

 

Keywords: Classroom Mathematical Practices, Proportional Reasoning, Realistic 

Mathematics Education, Design Research, Hypothetical Learning Trajectories 
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ÖZ 

 

 

BİR YEDİNCİ SINIFTA MATEMATİKSEL UYGULAMALARIN GELİŞİMİ: 

ÖĞRENCİLERİN ORANTISAL AKIL YÜRÜTMELERİNİN GELİŞİMİNİN 

İNCELENMESİ 

 

 

Ayan Civak, Rukiye 

Doktora, İlköğretim Bölümü 

Tez Yöneticisi: Prof. Dr. Mine Işıksal Bostan 

Ortak Tez Yöneticisi: Doç. Dr. Michelle Stephan 

 

Nisan 2020, 466 sayfa 

 

 

Bu çalışmanın birinci amacı, yedinci sınıfta orantısal akıl yürütmenin öğretilmesi için bir 

varsayıma dayalı öğrenme rotası ve ilgili etkinlik dizisinin geliştirilmesi, test edilmesi ve 

düzenlenmesidir. Çalışmanın ikinci amacı öğrencilerin informel ve formel araçlarla 

ortaklaşa akıl yürütmelerinin ve bu akıl yürütmenin Gerçekçi Matematik Eğitimi 

perspektifi doğrultusunda formel araçlarla akıl yürütmeye doğru gelişiminin 
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açıklanmasıdır. Üçüncü amaç ise, öğrencilerin orantısal akıl yürütmeye yönelik fikir ve 

kavramların ortaklaşa gelişiminin ortaya konulmasıdır (sınıf içi matematiksel 

uygulamalar analizi). Bu amaçlar doğrultusunda, Amerika Birleşik Devletleri’nde 

Stephan ve arkadaşları tarafından geliştirilen etkinlik dizisi Tasarı Tabanlı Araştırma 

perspektifiyle iki yıl içerisinde ardışık iki tasarı deneyinde test edilmiş ve düzenlenmiştir. 

Çalışmanın verileri, Ankara’nın Altındağ ilçesinde bir devlet okulunda görev yapan 

deneyimli bir ortaokul matematik öğretmeninin iki yedinci sınıfında iki yıl içerisinde 

toplanmıştır. İkinci tasarı deneyinde altı haftalık sürede gerçekleşen sınıf içi 

uygulamanın video kayıtları Toulmin’in argümantasyon modelinin Stephan ve 

Rasmussen tarafından uyarlanan analiz yöntemi ile analiz edilmiştir (sınıf içi 

matematiksel uygulamalar analizi). Sınıf içi matematiksel uygulamalar analizine yönelik 

bulgular, en genelde, geliştirilen etkinlik dizisinin bir sınıfın orantısal akıl yürütme 

becerilerinin basitten karmaşığa doğru ilerleyen bir biçimde geliştirilmesinde önemli 

derecede potansiyele sahip olduğunu göstermiştir. Özelde ise, öğrencilerin resimler ve 

oran tablolarıyla (informel araçlar) orantısal durumları anlamlandırmaya başladıkları ve 

bu durumun süreç içerisinde oran ve orantının sembolik gösterimleriyle (formel araçlar) 

akıl yürütmeye doğru geliştiğini göstermiştir. Son olarak, çalışmanın bulgularına göre 

sınıf içerisinde etkinlik dizisinin uygulanması süresince beş matematiksel uygulamanın 

ortaya konduğunu göstermiştir.  

 

 

Anahtar Kelimeler: Sınıf içi Matematiksel Uygulamalar, Orantısal Akıl Yürütme, 

Gerçekçi Matematik Eğitimi, Tasarı Araştırması, Varsayıma Dayalı Öğrenme Rotaları 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Ross (1998) stresses the importance of teaching students mathematical reasoning with 

the following: “The foundation of mathematics is reasoning…If reasoning ability is not 

developed in the student, then mathematics simply becomes a matter of following a set 

of procedures and mimicking examples without thought as to why they make sense” (p. 

254). The term reasoning itself is defined as “the line of thought, the way of thinking, 

adopted to produce assertions and reach conclusions” (Lithner, 2000, p. 166). Therefore, 

reasoning, in particular mathematical reasoning, is an essential skill that needs to be 

developed in students in order to ensure meaningful learning and communicating that 

learning.  

Proportional reasoning is a type of mathematical reasoning (Cramer & Post, 1993a, 

1993b; English, 2004) that entails an understanding of covariation and multiplicative 

comparisons (Lesh, Post, & Behr, 1988). In general terms, proportional reasoning is 

referred to as reasoning and making inferences about the essential structural relationships 

in situations that can be represented by a proportion (i.e., 
𝑎

𝑏
 = 

𝑐

𝑑
). In particular, it involves 

“detecting, expressing, analyzing, explaining, and providing evidence in support of 

assertions about proportional relationships” through a thoughtful and sense-making 

approach (Lamon, 2007, p. 647). It is also a term that refers to “reasoning in a system of 
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two variables between which there exists a linear functional relationship” (Karplus, 

Pulos, & Stage, 1983, p. 219).  

Proportional reasoning lies at the heart of many mathematical structures, especially those 

included in the primary and middle school mathematics curricula (Lesh et al., 1988). 

These include rational numbers, fractions, scaling, basic algebra, geometry, probability 

and statistics, and measurement (Beswick, 2011; Empson, 1999; Greenes & Fendell, 

2000; Lamon, 1995, 1999; Lesh et al., 1988). It is also essential in the development of 

higher-level geometry and calculus concepts such as functions, vectors, and trigonometry 

(Karplus et al., 1983; Lamon, 1995, 2007; Lesh et al., 1988; Vergnaud, 1988). In 

addition, proportional reasoning is inherent in many of the foundational concepts in 

science, geography, and daily life (Cramer & Post, 1993a; Hart, 1988; Lesh et al., 1988). 

Nevertheless, the utmost importance of proportional reasoning is rooted in its potential 

for promoting problem-solving skills (Lesh et al., 1988).  

Thus, proportional reasoning is a comprehensive, unifying, and integrative concept and 

a key skill in the development of other mathematical and scientific concepts. This 

emphasis on proportional reasoning and a focus on its conceptual development is also 

highlighted in many of the national and international standards and curricular documents 

(Common Core State Standards Initiative [CCSSI], 2010; Finnish National Board of 

Education, 2003; Ministry of National Education [MoNE], 2013, 2018; Ministry of 

Education Singapore, 2012; National Council of Teachers of Mathematics [NCTM], 

2000). For instance, NCTM (2000) considers proportionality among foundational ideas 

“that should have a prominent place in the mathematics curriculum because they enable 

students to understand other mathematical ideas and connect ideas across different areas 

of mathematics” (p. 15). Similarly, CCSSI (2010) refers to proportional reasoning as one 

of the four critical areas that instructional time should be devoted to in grades six and 

seven. Similar to the US Standards, the Turkish Middle School Mathematics Curriculum 
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highlights the importance of proportional reasoning and devotes a substantial portion of 

course time to it, especially in the seventh grade (MoNE, 2013, 2018).  

Despite the importance attached to proportional reasoning and its pervasiveness, there is 

a pile of studies showing that students experience a great deal of challenges in responding 

to proportional reasoning tasks and understanding the concepts of ratio and proportion 

(Ayan & Isiksal-Bostan, 2018; Ben-Chaim, Fey, Fitzgerald, Benedetto, & Miller, 1998; 

Brousseau, 2002; Hart, 1981, 1988; Kaput & West, 1994; Karplus et al., 1983;  Lobato 

& Thanheiser, 2002; Misailidou & Williams, 2003; Resnick & Singer, 1993, 

Steinthorsdottir & Sriraman, 2009; Thompson & Preston, 1994; Tourniaire & Pulos, 

1985; Tourniaire, 1986; van Dooren, De Bock, & Verschaffel, 2010). For instance, 

Thompson and Preston (1994) indicate that students experience challenges in covarying 

quantities while keeping the relationship the same while dealing with proportional 

reasoning tasks. Moreover, Lobato and Thanheiser (2002) state that using incorrect or 

irrelevant data in computations while solving proportional problems is one of the 

common errors.  

Other difficulties include the inability of discerning proportional and non-proportional 

situations and an overreliance of proportional strategies for nonproportional situations  

(Ayan & Isiksal-Bostan, 2018; De Bock, Verschaffel, & Janssens, 1998; De Bock, van 

Dooren, Janssens, & Verschaffel, 2002; Freudenthal, 1983; Hadjidemetriou &Williams, 

2010; Modestou & Gagatsis, 2007, 2009, 2010; van Dooren, De Bock, Verschaffel, & 

Janssens, 2003; van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2004; van 

Dooren, De Bock, Janssens, & Verschaffel, 2007). In another study, Ben-Chaim et al. 

(1998) found that students responded to the numbers and performed meaningless 

operations instead of attending to the context of a given problem. Besides, centration on 

one of the variables and ignoring the other part, and providing subjective and irrelevant 

responses were among the reported challenges of students (Ben-Chaim et al., 1998). 

Moreover, Misailidou and Williams (2003) revealed students’ major errors in 
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proportional reasoning as incorrect build-up method, magical halving/doubling, and 

incomplete reasoning. To be more specific, they reported that students correctly used 

build-up strategies to some point and then added a constant difference to both variables 

in order to handle the remainder (e.g., 3 yellow - 6 red, 6 yellow – 12 red, 6+1 = 7 yellow 

and 12+1 = 13 red), which was referred to as an incorrect build-up method. Magical 

halving/doubling was used to refer to students’ tendency to double/halve to arrive at the 

answer when doubling/halving was inappropriate (Misailidou & Williams, 2003).  

Apart from those, erroneous additive reasoning was reported as the most common 

difficulty while dealing with proportional reasoning tasks in a great number of studies 

starting from the early studies by Piaget and colleagues (Atabaş & Öner, 2017; Ben-

Chaim et al., 1998; Duatepe, Akkuş-Çıkla, & Kayhan, 2005; Fernández, Llinares, van 

Dooren, De Bock, & Verschaffel, 2012; Harel, Behr, Lesh, & Post, 1994; Hart, 1981, 

1984, 1988; Inhelder & Piaget, 1958; Kahraman, Kul, & İskenderoglu, 2019; Kaplan, 

İşleyen, & Öztürk, 2011; Kaput & West, 1994; Karplus et al., 1983; Kayhan, Duatepe & 

Akkuş-Çıkla, 2004; Mersin, 2018; Misailidou & Williams, 2003; Noelting, 1980a, 

1980b; Özgün-Koca & Altay, 2009; Piaget & Beth, 1966; Piaget & Inhelder, 1975; 

Resnick & Singer, 1993; Steinthorsdottir & Sriraman, 2009; Tourniaire & Pulos, 1985, 

Tourniaire, 1986; van Dooren et al., 2010). Indeed, “the early preference for additive 

solutions to proportion problems is a robust finding, replicated in several studies” 

(Resnick & Singer, 1993, p. 123). For instance, Tourniaire (1986) found that several 

students used inappropriate additive reasoning for the following problem: 

There are two mixtures of orange juice and water. One is made with two glasses of 

orange juice and four glasses of water. The other is made with six glasses of orange 

juice. How much water should be used to get the same taste? (p. 404) 

Those students who adopted an incorrect additive approach answered the problem as “8, 

because there should be 2 more water than orange juice” (p. 404). Students’ tendency to 

reason additively was also inherent in other contexts, including scaling (Kaput & West, 

1994). Indeed, Misailidou and Williams (2003) pointed out that incorrect additive 
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reasoning was the most common error for all types of proportional reasoning problems. 

Lastly, van Dooren et al. (2010) found that students showed a greater tendency to use 

additive strategies for multiplicative problems, especially when the numbers given 

formed non-integer ratios.  

Therefore, it is understood that students might fail to think about what is going on in 

proportional situations (Smith III, 2002). Similar to students, teachers have been found 

inadequate in both understanding the essential elements of proportional reasoning and 

providing students with a rich environment for effective teaching and learning (Canada, 

Gilbert, & Adolphson, 2008; Harel & Behr, 1995; Hilton, & Hilton, 2019; Hines & 

McMahon, 2005; Kastberg, D’Ambrosio, & Lynch-Davis, 2012; Nagar, Weiland, Orrill, 

& Burke, 2015; Simon & Blume, 1994a, 1994b; Sowder, Armstrong, Lamon, Simon, 

Sowder, & Thompson, 1998; Sowder & Philipp, 1995; Thompson, & Thompson, 1994, 

1996; Weiland, Orrill, Nagar, Brown, & Burke, 2020). Besides, it is reported that 

teachers rely heavily on procedural algorithms for solving proportional reasoning tasks 

(Fisher, 1988; Lobato, Orrill, Druken, & Jacobson, 2011; Orrill & Burke, 2013), and 

their knowledge is isolated (Hilton, & Hilton, 2019; Nagar et al., 2015). Moreover, it was 

revealed that some inservice teachers had inadequate understanding of the difference 

between additive and multiplicative reasoning and how to support students’ 

understanding of those concepts (Sowder & Philipp, 1995). Furthermore, even having a 

strong mathematics background was not enough to teach proportional reasoning 

conceptually (Thompson & Thompson, 1994, 1996).   

Given teachers’ lack of conceptual understanding for the teaching of proportional 

reasoning, the difficulties experienced by students might be attributed to how instruction 

takes place in classrooms (Hilton, Hilton, Dole, & Goos, 2016). It is well known that the 

teaching of proportional reasoning is mostly based on procedural algorithms without 

making connections to other topics. Concerning this, Karplus et al. (1983) note that in 

classrooms, "students are shown how to represent the information in proportion word-
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problems as an equivalent fraction equation, and to solve it by cross multiplying and then 

dividing" (p. 79). Similarly, for the instruction in textbooks, Lamon (1995) points out 

that proportional reasoning is taught "in a single chapter of the mathematical textbook, 

in which symbols are introduced before sufficient groundwork has been laid for students 

to understand them" (p. 167). In other words, students are often imposed cross-

multiplication algorithm that includes operating with the equality of multiplication of 

cross values (i.e., if 
𝑎

𝑏
 = 

𝑐

𝑑
; then, a×d = b×c) (Lamon, 1995; Lesh et al., 1988).  

However, it is consistently reported that students do not make sense of the cross-

multiplication algorithm (Lamon, 1995; Post, Behr, & Lesh, 1988), it is not a student-

generated algorithm (Hart, 1984), and does not enhance proportional reasoning; rather, 

precludes it (Lesh et al., 1988). Therefore, “teaching children how to solve proportion 

problems by correctly placing three of the four quantities into the equation 
𝑎

𝑏
 = 

𝑐

𝑑
, then 

cross multiplying and dividing, does nothing to promote proportional reasoning” 

(Lamon, 1995, p. 167). Therefore, it is clear that the current instruction is inadequate in 

addressing the essential elements of proportional reasoning, and there is a need for 

improved instruction through which students’ conceptual understanding of proportional 

reasoning is nurtured.   

NCTM (2000) suggests that instruction in proportional reasoning should entail methods 

that have a powerful and intuitive basis. There is an amassed number of studies that 

reveal young children’s intuitive knowledge in proportional reasoning. This intuitive 

knowledge refers to “knowledge that does not depend on formal instruction, knowledge 

that children construct on the basis of their everyday experience in the world” (Resnick 

& Singer, 1993, p. 107). Piaget and colleagues (Inhelder & Piaget, 1958; Piaget, 1968; 

Piaget & Beth, 1966; Piaget & Inhelder, 1975) proposed that children have only basic 

qualitative reasoning mostly based on an understanding of similarity until 11-12 years of 

age and cannot construct a common identity element to make proportional judgments to 

connect two ratios that fall into the same equivalence class. Besides, they claimed that 
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proportional reasoning is a late achievement in the development of pupils since it 

includes higher-order reasoning with an understanding of "relationships of relationships" 

(Piaget & Inhelder, 1975, p. 160). Katz and Beilin (1976) found similar findings that 

young children (aged 3-5) do not have a solid understanding of proportionality and 

invariance.  

However, Bryant (1974) suggested a contrary view that young children (aged 3-5) can 

deal with invariance both qualitatively and quantitatively. Bryant’s (1974) assertion was 

based on the presumption that “young children can on the whole register and remember 

relative values with great ease but have problems in situations in which they must 

remember absolute values along any continuum” (p. 14). Therefore, he suggested that 

the development of proportional schemes progresses from the initial ideas related to 

making relative judgments to quantifying these in absolute manners. This showed 

evidence that young children can make inferences regarding proportional relations and 

operate with two linked quantities by using one to one correspondence (Bryant, 1974). 

Bryant noted that although this correspondence is an instance of relative coding, 

proportional reasoning requires making relative judgments that are quantified 

multiplicatively (e.g., there are twice as many black counters as white counters).    

Similarly, Muller (1977, 1978) found that young children aged 5-11 can create a common 

identity element (e.g., size, color, or proportion) and connect two quantities logically by 

using this element (i.e., given two ratios 2: 6 and 3: 9, the identity element of 1:3 is 

constructed). Thus, he showed evidence contrary to Piaget and colleagues’ assertions 

regarding the inability of young children to reason proportionally. In addition, he 

proposed that children can quantify continuous and discrete proportions through a three-

level-trajectory: (1) very young children cannot make successful relative choices, (2) 

young children can maintain more/less relationships and quantify those judgments 

multiplicatively, (3) children can make inferences regarding proportional situations.  



 

 

8 
 

Therefore, these early studies showed that young children have intuitive and informal 

proportional reasoning as opposed to the claims made by Piaget and colleagues. Since 

then, there has been a boost in studies that examine young children’s intuitive 

conceptions related to proportional reasoning in the past three decades (e.g., Boyer, 

Levine, & Huttenlocher, 2008; Boyer, & Levine, 2012; Fujimura, 2001; Gouet, Carvajal, 

Halberda, & Peña, 2020; Ham, & Gunderson, 2019; Lamon, 1994, 1995; Möhring, 

Newcombe, & Frick, 2015; Möhring, Newcombe, Levine, & Frick, 2016; Ng, Heyman, 

& Barner, 2011; Resnick & Singer, 1993; Singer, Kohn, & Resnick, 1997; Singer & 

Resnick, 1992; Spinillo, & Bryant, 1991, 1999).  

To begin with, Resnick and Singer (1993) suggest that “quite young children have 

protoquantitative relational schemas that, in principle, could serve as the basis for 

quantified ratio schemas” (p. 126). That is, young children have an intuitive and informal 

knowledge of proportional reasoning, on which more formal knowledge can be built. 

However, early strategies used by children to deal with proportional situations are based 

on “protoratio” strategies that do not require constructing ratios (Resnick & Singer, 

1993). These strategies stem from children’s informal knowledge about the factorial 

structures of numbers or number relations that they are familiar with, which are also 

referred to as children’s existing strengths (Lamon, 1995). Lamon (1995) considers 

counting, matching, and partitioning skills among these strengths. Kaput and West 

(1994) consider that these early experiences are associated with “natural build-up 

reasoning patterns rooted in counting, skip counting, and grouping… and unit factor 

approach” (p. 283). Similarly, Tourniaire (1986) refers to those as elementary methods 

that do not involve multiplication and division.  

Spinillo and Bryant (1991) also agree with those researchers by claiming that young 

children can make judgments based on proportional reasoning as young as six years old, 

provided that they can make sense of the first-order relations that they have difficulties 

with when dealing with second-order relations (i.e., proportions). They also suggest that 
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young children's proportional reasoning is mostly based on part-part relationships and 

their images of “half,” rather than part-whole relationships. 

Therefore, there is a striking discrepancy among the findings of the research studies that 

focus on the developmental course of proportional reasoning. These striking 

discrepancies cannot be attributed to the differences in the design of studies or 

participants of those studies (Spinillo & Bryant, 1999). A more tenable explanation is 

that “there are radically different kinds of proportional reasoning, some of which are 

readily available to young children, whereas others continue to be difficult for them in 

adolescence and even into adulthood” (Spinillo & Bryant, 1999, p. 192). For instance, 

Noelting (1980a, 1980b) conducted a study in which he asked children (aged 5-16) to 

decide which of the two orange punches would have a more orangey taste. According to 

the findings of the study, even children as young as seven years old could successfully 

compare the two mixtures: Mixture A (one glass of orange juice-one glass of water) and 

Mixture B (one glass of orange juice-two glasses of water). Since the amount of orange 

juice is equal in both mixtures, very young children could compare them by focusing on 

the amounts of water in both without any calculation. However, even some of the older 

children aged 10-12 were not able to compare the two mixtures: Mixture A (3 glasses of 

orange juice-two glasses of water) and Mixture B (4 glasses of orange juice and 3 glasses 

of water) since this comparison required a multiplicative and relative reasoning (Lamon, 

1994). Therefore, the numbers used in a task is also a determinant of kinds of 

proportional reasoning that is required (Noelting 1980a, 1980b).  

The strategies that are inherent in young children’s reasoning are mostly based on an 

understanding of covariation between two quantities (Spinillo & Bryant, 1999). Children 

can construct a simple form of covariation for many proportional problems: “when one 

changes, the other one also changes in a precise way with the first quantity” (Lamon, 

2007, p. 648). For instance, let us say, in order to make an orange punch, for every glass 

of orange juice, one should add two glasses of water. A young child can keep track of 
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the covariation between the amount of water and orange juice as follows: 1-2, 2-4, 3-6, 

4-8… by build-up reasoning and find the other amount when the other amount is known 

(Kaput & West, 1994; Thompson, 1994). In this process, students experience ratio and 

proportion “through a concrete activity such as counting and pairing two sets of objects” 

that is “an important prerequisite to abstracting the concept of ratio, an important step in 

a learning cycle” (Lamon, 1994, p. 115). In the following stages of the development, 

students should understand that while two quantities vary together (i.e., covary), the 

relationship between these quantities does not change (i.e., is invariant) (Lamon, 1995).  

At the heart of covariation and building up is forming composite units and being able to 

work with composite units (Battista & van Auken Borrow, 1995; Lamon, 1994; Steffe, 

1988). This process includes constructing a unit of units, taking it as one thing (i.e., 

composite unit), and operating with the composite unit by keeping track of how many 

times this composite unit is iterated. Therefore, iterating composite units is defined as 

the ability to take one group as a unit and iterate this unit without changing the nature of 

its elements (Steffe, 1994). Lamon (1994) refers to this process of forming a composite 

unit as a reference unit as “unitizing” and considers it one of the critical abilities for the 

development of proportional reasoning.  

The ultimate goal for creating composite units is reinterpreting a situation in relation to 

that unit, which is referred to as norming (Freudenthal, 1983; Lamon, 1994). One of the 

most common uses of norming is working with the scalar relationship within the same 

family of quantities. For instance, back to the Noelting’s (1980a, 1980b) example- 

comparing Mixture A (3 glasses of orange juice-two glasses of water) and Mixture B (4 

glasses of orange juice and 3 glasses of water)-, one can take 3 glasses of orange juice as 

a composite unit and reinterpret 4 glasses of orange juice in the second punch as 
4

3
 of 3 

glasses (i.e., 4 = 
4

3
 (3)). Then, seeing that the same scale factor does not apply to the 

amounts of water in both mixtures (i.e., 3 ≠ 
4

3
 (2)), she or he can decide that the two 
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mixtures do not taste the same. Moreover, by finding the scale factor that applies to the 

amounts of water in both mixtures as 
3

2
 (i.e., 3 = 

3

2
 (2)), she or he can understand that 

Mixture A has a stronger taste of orange since the scale factor used for the amount of 

orange juice is greater than that of the amount of water. These relationships that involve 

working with the scale factors within the same measure space are referred to as scalar 

ratios (Lamon, 1994; Lesh et al., 1988; Vergnaud, 1994), internal ratios (Freudenthal, 

1973), within measures ratios (Lamon, 1994), or between ratio (Karplus et al., 1983; 

Noelting, 1980a, 1980b).  

On the other hand, one can also focus on the functional relationship between the amount 

of orange juice and water within each mixture. Then, she or he could reason like, “the 

amount of orange juice in Mixture A is 
3

2
 of the amount of water in Mixture A; yet, the 

amount of orange juice in Mixture B is  
4

3
 of the amount of water in Mixture B. Therefore, 

there is more orange juice than water in Mixture A in relative terms.” This type of 

interpretation that entails reasoning with functional relationships between quantities that 

belong to different measure spaces are called functional relationships/rates (Lamon, 

1994; Lesh et al., 1988; Vergnaud, 1994), external ratios (Freudenthal, 1973), between 

measures ratios (Lamon, 1994), or within ratio (Karplus et al., 1983; Noelting, 1980a, 

1980b). This understanding focuses on the part-part relationships within each mixture. It 

is also possible to work with part-whole relationships for this problem. In this case, one 

can reason such as, "In Mixture A, 2 of the 5 glasses of liquid is orange juice while 4 of 

the 7 glasses of liquid is orange juice. Hence, less than half of the liquid in Mixture A is 

orange, whereas more than half of the liquid is orange juice in Mixture B. Therefore, 

Mixture A has a stronger taste." Therefore, working with scalar or functional 

relationships is critical for the development of proportional reasoning since students 

approach proportional problems either of these two ways, whatever strategy they use 

(Lamon, 1994). 



 

 

12 
 

Therefore, it is seen that there is a mass of research that documents students’ difficulties 

in proportional reasoning and their strengths crucial for the development of proportional 

reasoning. In addition, it is clear to see that there is convergence in the developmental 

course of proportional reasoning. Taken all together, these issues and concerns suggest 

a need to find ways to "promote the development of new mathematical concepts (e.g., 

ratio, derivative, variation), particularly whose development is often unsure” (Simon & 

Tzur, 2004, p. 92). Concerning this, Simon (1995) proposed the development and use of 

Hypothetical Learning Trajectories (HLT) that are referred to as “predictions as to the 

path by which learning might proceed” (Simon, 1995, p. 135). He also suggested that 

they include “the learning goal, the learning activities, and the thinking and learning in 

which students might engage” (p. 133). In doing so, he offered the essential aspects of 

how to plan mathematics lessons. In a later study, Simon and Tzur (2004) explicated the 

underlying assumptions of HLTs as follows:   

1. Generation of an HLT is based on understanding of the current knowledge of 

the students involved.  
2. An HLT is a vehicle for planning learning of particular mathematical concepts. 

3. Mathematical tasks provide tools for promoting learning of particular 

mathematical concepts and are, therefore, a key part of the instructional process.  
4. Because of the hypothetical and inherently uncertain nature of this process, the 

teacher is regularly involved in modifying every aspect of the HLT. (p. 93) 

Therefore, it is critical to consider students’ current understanding of a mathematical 

topic and their likely progressions in their development of that topic. In this process, 

research on student thinking and learning and their development progress in a certain 

mathematical topic can be used as essential resources (Clements & Sarama, 2004; 

Confrey, Maloney, & Corley, 2014; Daro, Mosher, & Corcoran, 2011; Simon, 1995). 

Besides, instructional tasks should be selected carefully and purposefully since they play 

a critical role in students’ development of mathematical concepts (Clements & Sarama, 

2004; Lamon, 1995; Simon & Tzur, 2004). In addition, since learning trajectories (i.e., 

students’ increasingly sophisticated ways of reasoning) are hypothetical and uncertain, 

teachers should engage in a cyclic process of assessing student thinking and revising the 
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HLT as they interact with students (Clements & Sarama, 2004; Simon, 1995; Simon & 

Tzur, 2004). 

Since Simon’s (1995) introduction, HLTs have constituted a significant part of research 

area that focus on curriculum development, measurement and assessment, professional 

development, and improving the quality of instruction and learning (Corcoran, Mosher, 

& Rogat, 2009; Lobato & Walters, 2017; Sarama, Clements, Barrett, Van Dine, & 

McDonel, 2011). Based on Simon’s notion of HLTs, Clements and Sarama (2004) 

described HLTs as:  

descriptions of children's thinking and learning in a specific mathematical domain 
and a related, conjectured route through a set of instructional tasks designed to 

engender those mental processes or actions hypothesized to move children through 

a developmental progression of levels of thinking, created with the intent of 

supporting children's achievement of specific goals in that mathematical domain. 

(p. 83) 

Moreover, they stressed the importance of using an ordered set of instructional tasks to 

engender the "mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking," which is referred to as an instructional 

sequence (Clements & Sarama, 2004, p. 83). Based on this, they suggest that “a complete 

hypothetical learning trajectory includes all three aspects: the learning goal, 

developmental progressions of thinking and learning, and sequence of instructional 

tasks” (Clements & Sarama, 2004, p. 84). 

There is a considerable amount of HLTs developed in mathematical ideas/subjects 

including length measurement (Battista, 2006), area and volume measurement (Battista, 

2004), linear measurement and flexible arithmetic (Gravemeijer, Bowers, & Stephan, 

2003a), rational numbers (Wright, 2014), proportional reasoning (Carpenter, Gomez, 

Rousseau, Steinthorsdottir, Valentine, & Wagner et al., 1999; Steinthorsdottir & 

Sriraman, 2009), equipartitioning (Confrey, Maloney, Nguyen, & Rupp, 2014), 

geometric and spatial thinking (Battista, 2007), place value (Bowers, Cobb, & McClain, 
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1999), statistics (Cobb, McClain, & Gravemeijer, 2003), whole number calculation (van 

den Heuvel-Panhuizen, 2008), multiplication (Sherin & Fuson, 2005), spatial thinking 

(Cross, Woods, & Schweingruber, 2009), exponential growth (Ellis, Ozgur, Kulow, 

Dogan, & Amidon, 2016), integer addition and subtraction (Stephan & Akyuz, 2012), 

relational thinking about addition, subtraction, and division (Carpenter, & Moser, 1984; 

Stephens & Armanto, 2010), three-dimensional shapes and their properties (Sahin 

Dogruer & Akyuz, 2020). Besides, Clements and Sarama (2009) address several HLTs 

for a variety of early mathematical ideas (i.e., recognition of number and subitizing, 

counting, composing number and multidigit addition and subtraction, shapes, 

composition and decomposition of shapes, geometric measurement, spatial thinking, 

comparing, ordering, and estimating number, addition and subtraction) in their book, 

“Learning and teaching early math: The learning trajectories approach.” 

In each of these studies, HLTs are approached differently. In their systematic review of 

literature, Lobato and Walters (2017) outlined seven approaches to learning trajectories 

including (1) Cognitive levels, (2) Levels of discourse, (3) Schemes and operations, (4) 

Hypothetical learning trajectory, (5) Collective mathematical practices, (6) Disciplinary 

logic and curricular coherence, and (7) Observable strategies and learning performances. 

Although most of these approaches focus on the gradual development of mathematical 

learning at the individual level, HLTs in Approach 5 (i.e., Collective mathematical 

practices) describe the collective progress of a community of learners (Lobato & Walters, 

2017). An HLT in this perspective includes a "sequence of classroom mathematical 

practices together with conjectures about the means of supporting their evolution from 

prior practices" (Cobb, 1999, p. 9). Besides, classroom mathematical practices in this 

approach are described as “taken-as-shared ways of reasoning, arguing, and symbolizing 

established while discussing particular mathematical ideas” (Cobb, Stephan, McClain, 

& Gravemeijer, 2001, p. 12). The term, taken-as-shared used here, is to emphasize that 

the focus is on a community’s specific ways of reasoning that are established and no 

longer need justification (Rasmussen, & Stephan, 2008; Stephan & Rasmussen, 2002).  
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Participating in classroom mathematical practices takes place through engaging in social 

interactions in which students and teachers make mathematical claims and justify their 

claims by providing evidence. This process is called a Collective Argumentation 

(Krummheuer, 1995). A collective argumentation does not develop in a linear way; 

instead, disagreements might take place that would eventually result in the processes of 

correcting, modifying, retracting, and replacing (Krummheuer, 1995). Hence, the result 

of such a process is called an argument (Krummheuer, 1995), while argumentation is 

defined as “the substantiation, the part of the reasoning that aims at convincing oneself, 

or someone else, that the reasoning is appropriate” (Lithner, 2000, p. 166). 

Recent studies in mathematics education, based on Toulmin’s (1958) model of 

argumentation and following Krummheuer (1995), have drawn special attention to 

collective argumentation as an essential element of teaching and learning process 

(Brown, 2017; Conner, Singletary, Smith, Wagner, & Francisco, 2014a, 2014b; Dede, 

2018; Krummheuer, 1995, 2007; Rasmussen & Stephan, 2008; Stephan & Rasmussen, 

2002; Wagner, Smith, Conner, Singletary, & Francisco, 2014; Weber, Maher, Powell, & 

Lee, 2008; Whitenack & Knipping, 2002; Yackel, 2001). This emphasis is also seen in 

Principles and standards for school mathematics (NCTM, 2000) that sees making 

conjectures and developing sense-making arguments as essential components of 

mathematical thinking and reasoning. Concerning this, NCTM (2000) calls for attention 

to creating environments that promote making conjectures and constructing arguments 

and responding to others' arguments by asking questions such as “Why do you think it is 

true?” and “Does anyone think the answer is different, and why do you think so?” (p. 

56). Hence, by engaging in the process of argumentation in such an environment, 

students can “see that statements need to be supported or refuted by evidence and learn 

and agree on what is acceptable as an adequate argument in the mathematics classroom” 

(NCTM, 2000, p. 56). Similarly, the (Turkish) Middle School Mathematics Curriculum 

(2018) highlights the importance of raising students who question, express their thoughts 

verbally, and produce claims based on evidence (MoNE, 2018). Also, it includes the 
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statement, students… "should express their reasoning easily and detect deficiencies and 

gaps in others’ reasoning” (MoNE, 2018, p. 5) as one the specific goals of the curriculum. 

Therefore, it is critical to provide students with learning environments that would support 

their argumentation skills (Krummheuer, 2007). 

In a collective argumentation environment, it is essential to support a classroom 

community’s collective ways of reasoning and learning by providing them with the 

opportunities to explore informal material and move to more formal mathematics by 

engaging in the processes of negotiation, collaboration, and discussion (Gravemeijer, 

Cobb, Bowers, & Whitenack, 2000; Streefland, 1991). In this process, it is critical to 

develop a sequence of instructional tasks that would support students’ development in 

increasingly sophisticated ways (Clements & Sarama, 2004; Gravemeijer, & Stephan, 

2002). Recent research suggests that the domain-specific instructional theory of Realistic 

Mathematics Education can guide the design and development of instructional sequences 

(Cobb, 2003; Gravemeijer et al., 2000, Gravemeijer, & Stephan, 2002; Gravemeijer et 

al., 2003a, 2003b; Stephan & Akyuz, 2012).  

Realistic Mathematics Education (RME) is a theory that is founded by Freudenthal 

(1973, 1991), who is opposed to seeing mathematics as a set of rules, symbols, and 

algorithms. According to Freudenthal, no "teaching matter should be imposed upon 

student as a ready-made product" (Freudenthal, 1973, p. 118). Instead, mathematics 

should be seen “as an activity, in particular as the activity of a learner” (Freudenthal, 

1973, p. 114). Freudenthal (1973) termed that kind of teaching method “that is built on 

interpreting and analyzing mathematics as an activity” as the method of reinvention (p. 

120).  

In a reinvention process, students start with exploring realistic situations that are 

unmathematical or less mathematical matters and organize them into a more 

mathematical structure that would allow for refinements, which is referred to as 
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mathematizing (Freudenthal, 1973, 1991). Mathematizing should take place in rich 

contexts that are referred to as the domains of reality and presented to the learner to be 

mathematized (Freudenthal, 1991). There are two forms of mathematizing: horizontal 

and vertical mathematizing (Freudenthal, 1991; Treffers, 1978). According to this 

distinction, horizontal mathematizing refers to moving from the real-world situations to 

the symbolic world, whereas vertical mathematizing refers to manipulating symbols 

within the mathematical matter to arrive at more efficient procedures (Freudenthal, 1991; 

Streefland, 1991; Treffers, 1978).  

Models are important in the process of mathematizing in such a way that a shift from a 

model of to model for should support the process of mathematizing (Freudenthal, 1973, 

1991; Gravemeijer, 1999; Streefland, 1991). In this process, models represent the reality 

explored in unmathematical or less mathematical situations at the beginning. Later on, 

as the model is found helpful in applying to other situations, it becomes a model for more 

mathematical reasoning (Freudenthal, 1991; Streefland, 1991). Hence, models do not 

directly apply to mathematics; instead, they should be used as intermediaries in order to 

arrive at mathematical formulas (Freudenthal, 1991). 

Reinvention can be an individual or collective activity. In a collective reinvention activity 

that takes place in a classroom setting, students and the teacher engage in discussions 

where they make conjectures and justify/refute these conjectures in order to arrive at 

taken-as-shared meanings (Gravemeijer et al., 2000). In order to foster a collective 

reinvention process with an RME perspective, it is critical to design instructional 

sequences that start from realistic situations and move to the intended formal 

mathematics. In this process, a specific set of RME heuristics should be followed 

(Gravemeijer et al., 2000; Gravemeijer, & Stephan, 2002). These principles are (1) 

guided reinvention through progressive mathematizing, (2) didactical phenomenology, 

and (3) emergent models (Freudenthal, 1983; Gravemeijer et al., 2000; Gravemeijer, & 

Stephan, 2002; Streefland, 1991). Regarding the first principle, it is essential to consider 
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the historical and informal development of a mathematical topic in order to see potential 

strengths and obstacles that would be helpful in designing instructional sequences 

(Gravemeijer et al., 2000; Streefland, 1991). The second principle guides the anticipation 

of the relationships between students’ informal thinking and critical elements of a 

mathematical phenomenon and design of experientially real contexts through which 

students can arrive at mathematically advanced strategies in increasingly sophisticated 

ways (Freudenthal, 1983; Gravemeijer et al., 2000; Lamon, 1995). Lastly, the third 

principle is helpful in anticipating students’ informal use of models/tools and reasoning 

with these models/tools and in supporting the transition from these informal models to 

more formal models/tools (Gravemeijer et al., 2000; Gravemeijer & Stephan, 2002). 

1.1. Purposes and Research Questions of the Study 

The purposes of this study are manifold: (1) to develop, test, and revise a classroom HLT 

and related instructional sequence for teaching proportional reasoning in seventh grade 

(2) to explain students’ communal ways of reasoning with informal tools and how this 

reasoning evolves over time to reasoning with formal tools in line with an RME 

perspective, (3) to document students’ collective development of mathematical concepts 

related to proportional reasoning (i.e., documenting mathematical practices). It should 

be noted that, although proportional reasoning may also include reasoning about inverse 

proportional relationships, the scope of this study is limited to direct proportional 

relationships. 

In particular, the first and second purposes of the study seek answers to propose an 

instructional sequence and HLT and associated local instructional theory that explains 

how the instructional sequence and the HLT can be effective in teaching and learning of 

proportional reasoning. In this process, they attempt at blending the critical components 

and perspectives of HLT and RME and building the instruction on the accumulated 

knowledge of students’ informal ways of reasoning in proportional reasoning (including 

the tool use) and its developmental course in young children. More specifically, the initial 
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points of departure and informal tools for the teaching and learning of proportional 

reasoning, and how students rely on their informal knowledge and informal use of tools 

as they try to mathematize (horizontally and vertically) these initial situations are the 

aspects under investigation within the context of the first two purposes.  

The third purpose is associated with understanding how the hypothesized HLT takes 

place in the classroom setting by documenting the classroom mathematical practices. 

Particularly, the potentials and barriers provided by the hypothesized instructional 

sequence in supporting the collective mathematization of students are the foci of the 

analysis as part of the third purpose. Therefore, the study attempts to arrive at shreds of 

evidence from the classroom experiments conducted by using the HLT and the 

instructional sequence to support the viability of the proposed local instructional theory 

for teaching proportional reasoning and to suggest refinements to the HLT and the 

instructional sequence. To these purposes, the research questions of this study are 

phrased as follows:  

1. What would an optimal HLT and instructional sequence for proportional reasoning 

look like?  

o What would be the initial points of departure for teaching proportional 

reasoning based on RME?   

o How do students rely on their informal knowledge in order to mathematize 

that knowledge?  

o How does the instructional sequence foster this process of mathematization?  

o What opportunities and barriers does the instructional sequence provide for 

realization of the hypothesized learning trajectory?  

o How do student-generated solutions provide opportunities for horizontal and 

vertical mathematization?  

o What evidences emerge from the classroom experiments conducted by 

using the HLT and instructional sequence? 
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2. What are the mathematical practices as students engage in the instructional 

sequence? 

Given these purposes and research questions, the rationale for conducting this study is 

elucidated in the next part.  

1.2. Significance of the Study 

As aforementioned, proportional reasoning is an essential domain for students’ academic 

success, especially in mathematics and science (Cramer & Post, 1993a, 1993b; 

Kilpatrick, Swafford, & Findell, 2001; Lesh et al., 1988). In addition, it is critical in order 

to deal with daily life situations (Cramer & Post, 1993a, 1993b; Karplus et al., 1983; 

Spinillo & Bryant, 1999). Indeed, NCTM (1989) argues that the development of 

proportional reasoning is so important that “it merits whatever time and effort that must 

be expended to assure its careful development” (p. 82).  

The “ability to reason proportionally develops in students throughout grades 5-8” 

(NCTM, 1989, p. 82). That is, middle school years are the critical years for the 

development of proportional reasoning. On the other hand, the development of 

proportional reasoning is also a challenging process. Lamon (2007) points out that: 

of all the topics in the school curriculum, fractions, ratios and proportions arguably 

hold the distinction of being the most protracted in terms of development, the most 
difficult to teach, the most mathematically complex, the most cognitively 

challenging, the most essential to success in higher mathematics and science, and 

one of the most compelling research sites (p. 629).  

Moreover, Resnick and Singer (1993) state that the concepts of ratio and proportion 

"constitutes one of the stumbling blocks of the middle school curriculum, and there is a 

good possibility that many people never come to understand them" (Resnick & Singer, 

1993, p. 107). Concerning this, Lamon (2006) states that more than half of the adult 

population is not able to reason proportionally.   
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These difficulties and challenges faced in the teaching and learning of proportional 

reasoning are attributed to the traditional instruction that mostly approaches ratio and 

proportion as isolated topics and focuses on procedural algorithms such as the cross 

multiplication. Nevertheless, the literature is consistent in showing that these algorithms 

do not address the essential understandings of proportional reasoning (Hart, 1984; 

Lamon, 1995; Post et al.,1988) On the other hand, there is also evidence that a carefully 

developed instruction can improve students’ proportional reasoning in a great extent 

(Adjiage, & Pluvinage, 2007; Bentley, & Yates, 2017; Fujimura, 2001; Jitendra, Star, 

Starosta, Leh, Sood, Caskie, ... & Mack, 2009; Jitendra, Star, Rodriguez, Lindell, & 

Someki, 2011; Lamon, 1995; Ng et al., 2011; Smith, Silver, Stein, Boston, Henningsen, 

& Hillen, 2005).  

This study aims at proposing an HLT and related instructional sequence for teaching 

proportional reasoning together with a local instructional theory outlining the rationale 

for those. This instructional sequence was designed based on the theory of RME that 

objects to the traditional type of instruction that starts with procedural skills and 

algorithms and puts the most emphasis on them. With an RME perspective, this study 

aims at designing and implementing instruction that values conceptual understanding 

through the processes of reinvention and mathematization. In this process, students start 

with exploring realistic situations and use informal tools (i.e., ratio tables) to represent 

and organize the phenomenon in those situations. Later on, the tools they use evolve into 

more formal and mathematical tools (i.e., symbolic ratio and proportion) together with 

how they reason with the tools. Therefore, this study has the potential for improving the 

classroom instruction in proportional reasoning and, in return, accelerating student 

understanding and achievement since it highlights meaningful and gradual learning in 

line with a reinvention and mathematization perspective. 

Many studies showed that teachers have similar misconceptions and difficulties as their 

students, and lack conceptual understanding required to understand and teach 



 

 

22 
 

proportional reasoning (Canada et al., 2008; Harel, & Behr, 1995; Hilton, & Hilton, 

2019; Hines & McMahon, 2005; Kastberg et al., 2012; Nagar et al., 2015; Sowder et al., 

1998; Simon & Blume, 1994a, 1994b; Sowder & Philipp, 1995; Thompson & Thompson, 

1994, 1996; Weiland et al., 2020). Moreover, a number of studies revealed that their 

strategies for dealing with proportional situations rely excessively on procedural 

algorithms (Fisher, 1988; Lobato et al., 2011; Orrill & Burke, 2013). These constitute a 

serious problem since it is critical for teachers to have a conceptual understanding of 

proportional reasoning "to employ explicit teaching strategies to promote students' 

proportional reasoning and to enhance the underlying foundational concepts" (Hilton et 

al., 2016, p. 194).  

More salient rationale arises when considered that "successful teaching requires, at 

minimum, that teachers possess the schemes we hope children will build" (Thompson & 

Thompson, 1996, p. 21). Therefore, in addition to being an essential skill, proportional 

reasoning is also difficult to learn and teach, and it is most likely that teachers need to 

improve their understandings of proportional reasoning and how to support student 

understanding in instruction. This study provides teachers with knowledge of the 

essential understandings of proportional reasoning together with their developmental 

course and how to support those understandings using the developed HLT and the 

instructional sequence. Besides, it also provides informal and formal tools that would 

support the development of proportional reasoning in increasingly sophisticated ways. 

Hence, it is expected that this study could be helpful in improving teachers’ subject 

matter knowledge and pedagogical content knowledge in proportional reasoning as it 

outlines the essential understandings of proportional reasoning in an increasingly 

sophisticated way and how these understandings can be supported in a classroom context.  

Carpenter, Franke, Jacobs, and Fennema (1996) suggest that teachers' knowledge of 

student thinking and learning enhances teachers' instruction, and, hence, advances 

students' achievement in mathematics. This study provides teachers with the opportunity 
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to learn about students' developmental track in proportional reasoning and to make use 

of the existing literature on student thinking and meaningful learning and how to support 

students along this track. Therefore, this study has the potential to foster teachers' 

understanding of the meaning of the track in some detail and “knowing what is likely to 

help keep a student moving forward on it, or to get him or her back on it if they are having 

problems” (Daro et al., 2011, p. 55). That is to say, it is expected that this study would 

help teachers learn about and recognize research studies in proportional reasoning, 

students' conceptual progressions, and the resources they need in order to support 

learning along that progression (Confrey et al., 2014).  This is very critical since teachers 

are not provided with the tools they need to teach (Daro et al., 2011). Hence, it is believed 

that the study would help teachers integrate the knowledge of their students’ learning and 

the tools they need to support that learning into their instructional practices and to 

enhance student achievement in proportional reasoning.  

Even though the elements of student learning (i.e., how students learn) are not unfamiliar 

issues in educational research for particular domains, the implementation and testing of 

this accumulated knowledge on learning in real classroom contexts do not happen much 

frequently (Wilson, 2009). Given that proportional reasoning is essential in mathematical 

understanding of students from elementary school to advanced years, a vast amount of 

knowledge related to students' success, failures, misconceptions, and learning of 

proportional reasoning is available in the literature. In other words, there is a considerable 

amount of studies amassed over many decades in which students’ conceptions and 

misconceptions in proportional reasoning and its developmental course have been 

revealed.  

Despite the richness of this line of research, there has been a gap in educational research 

and practice in such a way that “teaching practice has been only marginally influenced 

by this research” (Misialidou & Williams, 2003, p. 336); that is, “implications for 

teaching ratio and proportion have been slow to emerge” (Lamon, 1993, p. 152). Thus, 
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the questions of how to support students’ development of proportional reasoning and 

what characterizes a full conceptual understanding of proportional reasoning, and how 

this understanding develops, and what kinds of instructional activities are helpful for 

promoting this understanding have not been fully addressed in the research literature 

(Resnick & Singer, 1993). This study utilizes a design research in a real classroom 

environment in order to develop a research-based learning trajectory that characterizes 

the development of seventh-grade students' conceptual understanding of essential aspects 

of proportional reasoning and to propose a set of instructional activities promoting that 

developmental process together with an instructional theory that outlines their rationale. 

Therefore, it is believed that this study could be helpful in enhancing the theoretical and 

practical issues of learning of proportional reasoning by acting as a bridge between 

theory and practice so that productive and practical outcomes will be reached.  

Particularly, this study attempts to address how best to support students’ development of 

proportional reasoning and reduce the gap between theory and practice by making use of 

the previous research results on student thinking. In doing so, it pursues "balancing the 

theoretical analysis by examining children's knowledge in clinical interviews either 

before formal instruction, after limited instruction, or in teaching experiments to 

determine which informal knowledge forms a useful foundation upon which instruction 

might be built" (Lamon, 1993, p. 132). That is to say, this study provides an instructional 

theory for the teaching and learning of proportional reasoning that is informed by the 

accumulated knowledge of children's informal ways of thinking and by students’ 

intuitive knowledge that develops before formal instruction.  

In relation to this, this study also has the potential to address how students' informal and 

intuitive knowledge can inform instructional design and how students can rely on that 

knowledge as they engage in this instructional design. This is a significant contribution 

since it might be helpful in addressing Resnick and Singer's (1993) following concern: 

"Although mathematics educators in recent years have been receptive to the idea that 
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considerable mathematics knowledge is rooted in everyday practice, a good theory has 

not been developed to suggest how that experience could give rise to formal 

mathematical thinking” (p. 107). Given that this study provides teachers with an 

instructional sequence and related instructional resources together with a local 

instructional theory that suggests the rationale for the instructional sequence developed 

(Cobb & Jackson, 2015), it has the potential to inform teachers and researchers about 

how students can rely on their informal experiences and develop more mathematical 

knowledge in gradually increasing sophistication.  

In regard to this, Stephan, Bowers, Cobb, and Gravemeijer (2003) suggest that one way 

to assess the viability of an instructional sequence is to document the Classroom 

Mathematical Practices (CMPs) since CMPs manifest how the hypothesized learning 

trajectory are realized or actualized in classroom settings. Thus, documenting 

mathematical practices has the potential to provide evidence related to the 

revisions/refinements that are necessary for improving the emerging instructional theory 

on proportional reasoning. The third purpose of the study deals with documenting the 

classroom mathematical practices that emerge as the teacher and the students interact 

around the instructional sequence. In doing so, it promises to provide evidence that would 

be helpful in revising the instructional sequence so that a better version of it would be 

available to be used in classrooms.   

Lamon (1993) stresses that one of the major goals of research is “to identify important 

mechanisms by which thinking becomes progressively more sophisticated from early 

childhood through adulthood” (p. 132). Similarly, Steffe (2004) notes that constructing 

learning trajectories of children’s mathematical reasoning constitutes “one of the most 

daunting but urgent problems facing mathematics education today” (p. 130). Besides, it 

is noted that there is limited knowledge about the key steps in the development of 

mathematical knowledge and how to support students who experience problems along 

that developmental path (Daro et al., 2011). However, one can make use of this existing 
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body of knowledge to design instruction and see how it works out so that this gap can be 

filled over time (Daro et al., 2011). One of the major gaps in students' developmental 

progress and the ways to support that progress occurs in the topics of ratio, rate, and 

proportion (Daro et al., 2011). Although substantial work has been carried out in 

developing HLTs to address students’ conceptual development of other mathematical 

topics, few studies have focused on the development of HLTs in proportional reasoning 

and related concepts (Carpenter, Gomez, Rousseau, Steinthorsdottir, Valentine, Wagner, 

et al., 1999; Steinthorsdottir & Sriraman, 2009; Wright, 2014). 

Nevertheless, these studies have focused on the development of individuals’ 

understanding of these concepts. That is to say, none of the studies above have focused 

on the gradual development of proportional reasoning in collective ways as it takes place 

in a classroom environment. Given students’ difficulties in proportional reasoning and 

related concepts, this study has the potential to contribute to the theory and practice in 

providing a picture of how a community of learners' gradual development in proportional 

reasoning takes place in a classroom environment and how this reasoning is supported in 

increasingly sophisticated ways with an RME perspective.  

Several studies showed that students’ informal experiences of natural build-up strategies 

and “situationally grounded presentations, accompanied by tabular or systematic forms 

of record-keeping, may support the eventual discovery of new number relationships" that 

are essential in the development of proportional reasoning (Resnick & Singer, 1993, p. 

127). However, research studies that propose an instructional theory highlighting the 

initial points of instruction with these kinds of experiences are scarce (Resnick & Singer, 

1993). Therefore, there is a “strong need for the kinds of concrete representations that 

support and extend students’ natural build-up reasoning patterns rooted in counting, skip 

counting, and grouping” (Kaput & West, 1994, p. 283). Students should engage in these 

kinds of experiences in order to have an informal and conceptual background before 

formal instruction on ratio and proportion takes place (Kaput & West, 1994).  
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Although there is a number of available learning trajectories in proportional reasoning 

and related concepts (Carpenter et al., 1999; Steinthorsdottir & Sriraman, 2009; Wright, 

2014), they are not readily available to teachers to be used as instructional tools (Daro et 

al., 2011) since they outline individual students’ developmental progress. Nevertheless, 

there is a need to develop learning trajectories “that stress the learning supports, the key 

mathematics ideas, and the key questions for students so that they can support classroom 

teachers and students through the learning paths” (Daro et al., 2011, p. 57). To this end, 

this study has the potential to fill this gap since it provides the teachers with a complete 

picture of the key ideas and essential understandings of proportional reasoning together 

with the learning supports including a sequence of instructional tasks and the tools that 

would support the development of those key ideas in increasingly sophisticated ways.  

It is stressed that this study aims at developing a local instructional theory for the teaching 

of proportional reasoning by using the theory of RME as a guideline and inspiration. In 

this sense, RME is “worked out” in a local instructional theory for proportional reasoning 

within the context of this study (Gravemeijer & Stephan, 2002). Since local instruction 

theories "comprise newly created instances of how RME can be worked out, these local 

theories can, in turn, form the raw material for the construction of a more refined version 

of the general theory" (Gravemeijer & Stephan, 2002, p. 148). In relation to this, the 

findings obtained from this study can inform the general theory of RME since this study 

provides a "reconstruction of a theory in action" and an instance of how RME can inform 

the design of an HLT for proportional reasoning. In doing so, it helps develop the guiding 

theory (i.e., RME) itself, although the central phenomenon of seeing mathematics as an 

activity of learners remains the same (Gravemeijer & Stephan, 2002). 

Moreover, it is well known that prior experience, knowledge, and cultural background 

have an influence on learning, and there is a need to understand the mathematical 

development of students with different knowledge and cultural backgrounds (Daro et al., 

2011). Although this study does not attempt to examine how students’ mathematical 
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development is affected by their academic and cultural backgrounds, it provides a picture 

of a Turkish classroom community's mathematical development of proportional 

reasoning. Therefore, it has the potential to enhance the understanding of mathematical 

development in a different context. 

Above all, the Middle School Mathematics Curriculum was revised in 2013 and 2018 in 

Turkey, and many changes were made regarding the concepts of ratio, rate, and 

proportion, which are the foci of proportional reasoning. Since then, not many studies 

have been conducted that would help teachers how to integrate those changes into their 

instruction. Furthermore, although the objectives related to ratio and proportion in the 

curriculum are presented in order, there is no clear empirical evidence about whether that 

order is helpful in supporting students' development of proportional reasoning. 

Moreover, the curriculum does not include any information related to how to best support 

students in a classroom environment in achieving those objectives. These, together with 

the fact that the curriculum (MoNE, 2018) does not include all of the critical components 

of proportional reasoning (e.g., additive and multiplicative reasoning, qualitative 

reasoning), it is expected that this study has potential in informing the objectives in the 

curriculum and their order.  

In particular, in this study, the essential understandings of proportional reasoning and the 

instructional tasks that would support students' development of those understandings 

were determined based on empirical knowledge available in the literature. Also, these 

instructional tasks were ordered in increasingly sophisticated ways by taking students' 

informal ways of reasoning and developmental course of proportional reasoning into 

consideration. Therefore, it is expected that the HLT and the instructional sequence 

developed in this study would be helpful in guiding teachers to teach proportional 

reasoning in conceptual and comprehensive ways in an increasingly sophisticated 

manner. In doing so, it could provide a “road map that helps teachers guide students to 

increasing levels of sophistication and depths of knowledge… and understand the 
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mathematics that has been studied by students at the previous level and what is to be the 

focus at successive levels" (NCTM, 2000, p. 16). In this respect, the study has the 

potential to contribute to both the theory and practice regarding the teaching and learning 

of proportional reasoning. Therefore, the hypothetical learning trajectory and related 

instructional sequence to be developed might have a role as a source not only for access 

to related literature but also for making sense of the curriculum objectives related to 

proportional reasoning. 

1.3. Definitions of Important Terms of the Study 

For the sake of ease of understanding and avoiding vagueness, the terms and concepts 

that are pertinent to the purposes of this study are defined both constitutively and 

operationally in this section.  

1.3.1. Proportional Reasoning 

In general, proportional reasoning is referred to as making inferences about the essential 

structural relationships in situations that can be represented by a proportion (i.e., 
𝑎

𝑏
 = 

𝑐

𝑑
). 

It is also a term that refers to “reasoning in a system of two variables between which 

there exists a linear functional relationship” (Karplus et al., 1983, p. 219). In this study, 

proportional reasoning is referred to as a type of mathematical reasoning that requires "a 

sense of co-variation and of multiple comparisons, and the ability to mentally store and 

process several pieces of information" (Lesh et al., 1988, p. 93). Besides, an 

understanding of proportional reasoning in this study involves making inferences and 

predictions about the holistic relationships between two rational expressions that are 

ratios, rates, quotients, and fractions through both qualitative and quantitative ways of 

reasoning (Lesh et al., 1988). 
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1.3.2. Ratio, rate, and proportion 

A ratio, in general sense, is "a comparative index that conveys the abstract notion of 

relative magnitude" (Lamon, 1995, p. 169). Concerning this, a proportion is usually 

referred to as "the statement of equality between one ratio and another in the sense that 

both convey the same relationship” (Lamon, 1995, p. 171). With a different 

interpretation, it is also possible to define proportion as a function that satisfies the 

isomorphic properties “f (x+y) = f(x) + f(y)” and “f(ax) = af(x)” (Vergnaud, 1988, 1994). 

Also, a proportion can also be defined based on interpretations with external and internal 

ratios: a proportion, also referred to as linear mapping, is either obtained by mapping one 

magnitude upon another by preserving the internal ratios or by postulating the constancy 

of the external ratio (Freudenthal, 1978). Hence, ratio refers to a relative comparison 

between quantities, and proportion to the equality of these comparisons; in other words, 

equality of ratios or ratio preservation (Freudenthal, 1978). 

In mathematics education literature, rate is usually defined based on its distinctions from 

ratio. Several classifications define ratios and rates and how they differ from each other. 

The early attempts consider ratio as a comparison of quantities that belong to the same 

measure space and rate as a comparison of quantities that belong to different measure 

spaces (Vergnaud, 1988). Another perspective imposes using the terms intensive and 

extensive quantities instead of ratios and rates. According to this perspective, extensive 

quantities express the extent of a quantity (i.e., how much) of an object, whereas intensive 

quantities tell relationships between a quantity relative to a unit of the other quantity. 

Therefore, in this perspective, rate refers to a single intensive quantity while ratio refers 

to a relationship between two quantities (Freudenthal, 1973; Kaput, Luke, Poholsky, & 

Sayer, 1986; Kaput & West, 1994; Schwartz, 1988). Lesh et al. (1988) suggest a different 

perspective by referring to rates as intensive quantities that could be "recognized by the 

"per" in their unit labels," and ratios as "binary relations which involve ordered pairs of 

quantities (of either the extensive, intensive or scalar types)" (p. 112). Thus, rates include 

only the unit rates (i.e., so many A's per 1 B) in Lesh et al.’s (1988) perspective. 
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Although all of these perspectives and associated definitions are valuable, Thompson’s 

(1994) perspective that stresses the mental operations for describing rates and ratios is 

adopted in this study. Based on this perspective, a ratio is referred to as “the result of 

comparing two quantities multiplicatively” (Thompson, 1994, p. 191) while rate as “a 

reflectively abstracted constant ratio” regardless of the measure spaces of the quantities 

(p. 192). Therefore, in this way of interpretation, a comparison of two specific and fixed 

(i.e., non-varying) quantities is considered as a ratio. When this comparison between the 

two quantities is abstracted in order to interpret the ratio in relation to the invariant (i.e., 

constant) result of the multiplicative comparison, then it is referred to as rate (Thompson, 

1994).  

1.3.3. Within and between ratios 

There are two main ways to define within and between ratios, and they are almost the 

opposites of each other. Mathematics Education Literature refers to within ratios as 

comparisons within the same measure space, whereas between ratios are interpreted as 

comparisons between different measure spaces (Freudenthal, 1973; Lamon, 1994; 

Vergnaud, 1994). However, research that follows a science tradition (e.g., Karplus et al., 

1983; Noelting, 1980a, 1980b) uses a different terminology basing the distinction on 

whether or not the two quantities belong to the same system that they define as a series 

of interacting elements. According to this perspective, within ratios include comparisons 

within a system while between ratios involve comparisons between two systems that 

interact with each other. Therefore, two interpretations are the opposites of each other. 

However, this confusion can be eradicated by using a specific terminology as “within or 

between measure spaces” (Lamon, 2007, p. 634). In this study, this specific terminology 

will be used in order to avoid this conflict and for the sake of ease of understanding. 

1.3.4. Multiplicative and additive reasoning 

Multiplicative reasoning, in general terms, is defined as “making multiplicative 

comparisons between quantities” (Wright, 2005, p. 363). In multiplicative reasoning “the 
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terms within a ratio are related multiplicatively and then this relation is extended to the 

second ratio” (Tourniaire & Pulos, 1985, p. 184), while in additive reasoning “the 

relationship within the ratios is computed by subtracting one term from another, and then 

the difference is applied to the second ratio” (Tourniaire & Pulos, 1985, p. 186). 

Therefore, in general terms, multiplicative reasoning is a type of reasoning that underlies 

proportional reasoning, while additive reasoning does not apply to proportional 

situations. 

Another perspective that is helpful in understanding multiplicative and additive 

reasoning lies in making distinctions between understanding change in relative and 

absolute manners (Lamon, 1995). In line with this perspective, thinking about change in 

absolute manners involves additive reasoning while thinking about change in relative 

terms entails multiplicative reasoning. To illustrate, let us say one observes that a tree 

was 30 cm last year, and now, a year later, it is 40 cm. That person can think that "the 

tree has grown 10 cm in a year" (actual growth-absolute thinking) or "the tree has grown 

1

3
 of its initial length” (relative growth-relative thinking). Therefore, multiplicative 

reasoning is associated with relative thinking, while additive reasoning is connected to 

absolute thinking. Since proportional reasoning requires interpreting change in relative 

terms, additive reasoning is usually considered as an incorrect type of reasoning for 

proportional situations. Similarly, additive reasoning is interpreted as an erroneous 

strategy when applied to proportional reasoning tasks in this study.  

In general, multiplicative reasoning is associated with being able to work with within 

and between ratios (Lamon, 1994). More specifically, multiplicative reasoning includes 

being able to find and operate with a scalar operator- the number that transposes a 

measure within a single measure space- and with a function operator- the number that 

represents the coefficient of a mapping (i.e., a linear function) from a measure space to 

another (Lamon, 1994). That is to say, multiplicative reasoning is usually referred to as 

understanding the multiplicative relationships within and between measure spaces 
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between two equal ratios/rates. To illustrate, multiplicative reasoning includes 

understanding and operating with the horizontal “times two relationships” (i.e., ×2) and 

the vertical “times five relationship” (i.e., ×5) represented in the following figure:  

  

Figure 1.1. The components of multiplicative reasoning 

 The horizontal times-two-relationship requires reasoning with the questions of “how 

many one-cake in 2-cakes? How many one-cake goes into 2-cakes? What is the scale 

factor that transposes the number of cupcakes from 1 to 2?” while the vertical times-five-

relationship involves reasoning with the question “What is the relationship between the 

number of cupcakes and money paid?”  

Therefore, in common, multiplicative reasoning is defined as understanding this two-

way multiplicative nature of the rational numbers (Lamon, 2007). As different from this 

understanding, in this study, understanding and being able to operate with the 

multiplicative relationship between variables in different measure spaces (i.e., functional 

relationships) is considered as multiplicative reasoning, whereas understanding and 

being able to operate with the multiplicative relationship between variables within the 

same measure space is interpreted as pre-multiplicative reasoning. The rationale behind 

this is on account of the fact that working with the scalar operator is associated with a 

short way for building up strategies, which will be explained in more detail in Chapter 4 

(i.e., Findings) and Chapter 5 (i.e., Discussion) of this dissertation.   
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1.3.5. Hypothetical Learning Trajectories 

The term Hypothetical Learning Trajectories (HLTs) was coined by Simon (1995) who 

defined them as “predictions as to the path by which learning might proceed" (p. 135), 

which includes “the learning goal, the learning activities, and the thinking and learning 

in which students might engage” (p. 133). Another definition by National Research 

Council (2007) refers to learning trajectories as “descriptions of the successively more 

sophisticated ways of thinking about a topic that can follow one another as children learn 

about and investigate a topic over a broad span of time" (p. 214). In another study, 

Confrey, Maloney, and Corley (2014) refer to HLTs as “research-based frameworks 

developed to document in detail the likely progressions, over long periods of time, 

students’ reasoning about big ideas in mathematics” (p. 720). Clements and Sarama 

(2004) define HLTs as:   

descriptions of children’s thinking and learning in a specific mathematical domain 
and a related, conjectured route through a set of instructional tasks designed to 

engender those mental processes or actions hypothesized to move children through 

a developmental progression of levels of thinking, created with the intent of 

supporting children’s achievement of specific goals in that mathematical domain 

(p. 83).  

Moreover, they suggest that “a complete hypothetical learning trajectory includes all 

three aspects: the learning goal, developmental progressions of thinking and learning, 

and sequence of instructional tasks” (Clements & Sarama, 2004, p. 84).  

While all of these definitions emphasize the learning routes of individuals, the definition 

has also been adapted to refer to a learning path of a social community (Cobb, 2001). 

This perspective reconceptualizes the term learning trajectory as a "sequence (or set) of 

(taken-as-shared) classroom mathematical practices that emerge through interaction 

(especially through classroom discourse-with the proactive involvement of the teacher)" 

(Clements & Sarama, 2004, p. 85). In relation to this, Stephan (2015) uses the term 

Classroom Learning Trajectories (CLT) defined as “conjectures about the mathematical 
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ideas that become taken-as-shared and individuals' ways of participating in and 

contributing to them” (Stephan, 2015, p. 908). She goes on to suggest that these 

conjectures include "the mathematical goals, and tool use as students engage with the 

instructional tasks" (Stephan, 2015, p. 908). Furthermore, CLTs include an outline of 

instructional supports in order to foster student learning along a learning path.  

In this study, the perspectives by Clements and Sarama (2004) and Stephan (2015) are 

followed in order to define and interpret HLTs. In other words, within the context of this 

study, HLT is used to refer to CLT since the use of the term HLT is more common.  

1.3.6. (Collective) Argumentation 

I follow Krummheuer (1995), who sees argumentation as a social phenomenon in which 

individuals present justifications for their actions and make adjustments in their 

intentions. Argumentation in such an environment is referred to as techniques and 

methods to establish a claim and seen as a specific aspect of social interaction 

(Krummheuer, 1995). Therefore, a successful process of argumentation involves 

challenging claims and arriving at a consensual and acceptable claim for all individuals 

(Krummheuer, 1995). This kind of argumentation in which several individuals contribute 

to the development of mathematical arguments through social interaction is called a 

collective argumentation (Krummheuer, 1995). A collective argumentation does not 

develop in a linear way; instead, disagreements might take place that would eventually 

result in the processes of correcting, modifying, retracting, and replacing (Krummheuer, 

1995). Hence, the result of such a process is called an argument (Krummheuer, 1995). 

1.3.7. (Collective) Reinvention and Mathematization 

 Freudenthal (1973) coined the terms “reinvention” and “mathematization” and referred 

to the former as a process that includes understanding and analyzing mathematics as a 

human activity and the latter as the activity of organizing nonmathematical or 

inadequately mathematical matters into a structure that would allow for mathematical 
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refinements. Later on, Gravemeijer et al. (2000) drew attention to the activities of 

reinvention and mathematizing as being both individual and collective activities.  

I follow Gravemeijer et al. (2000), who focus on reinvention and mathematization as 

they take in the social context of a classroom context. In such collective activities, 

students participate in whole-class discussions as they engage in the processes of 

conjecturing, explaining, and justifying (Gravemeijer et al., 2000). In this process, the 

teacher capitalizes on students’ reasoning in order to guide their progress to intended 

mathematics so as to foster the process of classroom negotiation in order to support the 

emerging of taken-as-shared meanings when certain social and sociomathematical norms 

are established (Cobb & Yackel, 1996; Gravemeijer et al., 2000; Yackel & Cobb, 1996).  

1.3.8. Horizontal and Vertical Mathematization 

Horizontal mathematization is referred to as moving from the real world to the symbolic 

world, whereas vertical mathematization as the acts of mechanical and reflective shaping, 

reshaping, and manipulation of symbols that take place in the world of symbols 

(Freudenthal, 1973, 1991; Treffers, 1978). Streefland (1991) stresses that starting from 

reality and engaging in the processes of structuring, arranging, symbolizing, visualizing, 

schematizing, and hence moving to mathematics is horizontal mathematization. Working 

within this mathematical matter in order to arrive at more efficient procedures, 

abbreviations, and symbolic language of mathematics by abstracting, generalizing, 

unifying, and specifying is associated with vertical mathematization (Freudenthal, 1973, 

1991; Streefland, 1991).  
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CHAPTER 2 

 

 LITERATURE REVIEW 

 

 

The main purpose of this study is to develop, test, and revise a classroom HLT and related 

instructional sequence in order to propose a potentially viable local instructional theory 

for supporting the development of proportional reasoning in seventh grade. In relation to 

this purpose, another purpose of the study is to document seventh grade students' 

collective growth in proportional reasoning by an analysis of Classroom Mathematical 

Practices. In addition, the third purpose includes expounding seventh-grade students' 

communal ways of reasoning with informal and formal tools and how this reasoning is 

supported in increasingly sophisticated ways with an RME perspective.  

This chapter presents the literature that is germane to these purposes. The research 

agenda includes three main research fields: Proportional Reasoning, Realistic 

Mathematics Education, and Hypothetical Learning Trajectories. First, it puts forward 

the essential concepts and skills in proportional reasoning and elaborates on them with a 

focus on students’ informal ways of reasoning in proportional reasoning and its 

developmental course. Second, it expounds on the theory of RME and its principles. 

Third, it explores the definitions of Hypothetical Learning Trajectories and introduces 

the literature that discusses different understandings and uses of HLTs. Lastly, previously 

developed HLTs in proportional reasoning are discussed. 
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2.1. Proportional Reasoning  

Proportional reasoning is a type of mathematical reasoning that requires "a sense of co-

variation and of multiple comparisons, and the ability to mentally store and process 

several pieces of information" (Lesh et al., 1988, p. 93). It involves making inferences 

and predictions through both qualitative and quantitative ways of reasoning (Lesh et al., 

1988). Proportional reasoning is referred to as a watershed concept, a cornerstone of 

higher mathematics, a capstone of elementary concepts (Lesh et al., 1988) and a gateway 

to higher levels of mathematics success (Kilpatrick et al., 2001; Lesh et al., 1988). In 

particular, proportional reasoning is “a capstone of elementary arithmetic, number, and 

measurement concepts and cornerstone of algebra and other higher levels areas of 

mathematics” and "a watershed concept that separates elementary from more advanced 

concepts: it is both one of the most elementary higher-order understandings and one of 

the highest-level elementary understandings" (Lesh et al., 1988, p. 97). Moreover, 

proportional reasoning is viewed as a herald of a conceptual transition from concrete 

operational level to a formal operation level in Piaget’s theory of learning (Hart, 1988; 

Piaget & Beth, 1966) since it is associated with a relationship between two relationships 

(i.e., a second-order relationship) (Piaget & Inhelder, 1975). Therefore, proportional 

reasoning is “a complex phenomenon both in terms of mathematical relationships and in 

terms of the experiences that give rise to the mathematics” (Lamon, 1995, p. 167). 

The importance of proportional reasoning is on account of the fact that it is related many 

of the foundational concepts in mathematics, science, geography, and art, as well as 

situations in everyday life (Cramer & Post, 1993; Hart, 1988; Lesh et al., 1988). Basic 

scientific concepts related to proportional reasoning include but are not limited to 

temperature, density, concentrations, velocities, and chemical compositions (Karplus et 

al., 1983; Spinillo & Bryant, 1999). Everyday life situations include deciding on the best 

buy, grocery purchases, personal finances (Spinillo & Bryant, 1999), medicine dosages, 
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and economic and sociological predictions (Valverde & Castro, 2012). In addition, the 

relationships between the sales tax paid and the item cost, the amount of paycheck and 

the number of hours worked, and the distance in real life and representation of that 

distance on a map are typical situations that include proportional relationships in their 

nature (Lamon, 1995). Peculiar to mathematics, proportional reasoning is an essential 

integrative concept that connects many mathematics topics in grades 6-8 (Lesh et al., 

1988; NCTM, 2000). Besides, it is a key and unifying concept in a wide variety of 

essential topics beyond middle school (Lesh et al., 1988; van de Walle, Karp, Bay-

Williams, & Wray, 2013).  

To begin with, Lamon (1999) stated that “proportional reasoning is one of the best 

indicators that a student has attained understanding of rational numbers” (p. 3). Other 

mathematical topics related to proportional reasoning include ratios, fractions, percent, 

similarity, scaling, trigonometry (Beswick, 2011); basic algebra, geometry, problem-

solving (Empson, 1999; Fuson & Abrahamson, 2005; Hasemann, 1981; Lamon, 1995; 

Lesh et al., 1988; Saxe, Gearhart, & Seltzer, 1999); functions, graphing, variables, 

algebraic equations, measurement, and vectors (Karplus et al., 1983; Lamon, 1995, 2007; 

Lesh et al., 1988; Vergnaud, 1988); probability and statistics, scale drawing, similar 

figures, measurement conversions (Greenes & Fendell, 2000); and steepness (Cheng, 

Star, & Chapin, 2013). Moreover, proportional reasoning is assumed in order to achieve 

higher-level mathematics and science, including "geometry, calculus, statistics, 

chemistry, and physics" (Lamon, 1995, p. 172). On the other hand, it is associated with 

some of the most conceptual stumbling blocks in the curriculum including, “(equivalent) 

fractions, long division, place value and percents, measurement conversion, ratios, and 

rates" (Lesh et al., 1988, p. 95). Thus, proportional reasoning is a comprehensive, 

unifying, and integrative concept and a key skill in the development of other 

mathematical and scientific concepts.  
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Despite being such an inclusive, comprehensive, and essential concept, the definition of 

proportional reasoning is too superficial and restrictive in such a way that it is 

conventionally referred to as solving missing-value problems (Lesh et al., 1988). In other 

words, students who are able to solve problems asking for the fourth value when three 

values related to a situation are given are conventionally considered as reasoning 

proportionally. This limited understanding of proportional reasoning is also present in 

most of the national and international textbooks. Lamon (1995) notes that proportional 

reasoning has typically been taught in "a single chapter of the mathematical textbook, in 

which symbols are introduced before sufficient groundwork has been laid for students to 

understand them" (p. 167). Besides, "students are shown how to represent the 

information in proportion word-problems as an equivalent fraction equation, and to solve 

it by cross multiplying and then dividing" (Karplus et al., 1983, p. 79).   

In particular, many mathematics textbooks in Turkey begin with the definitions of ratio 

and proportion, make students find ratios of quantities by division, and include missing 

value proportional problems. These explorations require only computational skills. 

Parallel to the instruction in textbooks, students are often imposed cross-multiplication 

algorithm that includes operating with the equality of multiplication of cross values (i.e., 

if  
𝑎

𝑏
 = 

𝑐

𝑑
; then, a×d = b×c) in classrooms (Lamon, 1995; Lesh et al., 1988). However, it 

is consistently reported that: students do not make sense of cross-multiplication 

algorithm (Lamon, 1995; Post et al., 1988), it is not a student-generated algorithm (Hart, 

1984), and does not enhance proportional reasoning; rather, precludes it (Lesh et al., 

1988). Therefore, “teaching children how to solve proportion problems by correctly 

placing three of the four quantities into the equation 
𝑎

𝑏
 = 

𝑐

𝑑
, then cross multiplying and 

dividing, does nothing to promote proportional reasoning” (Lamon, 1995, p. 167).  

Therefore, solving proportional problems by memorized algorithms cannot be regarded 

as an indicator of proportional reasoning (Cramer & Post, 1993a, 1993b; Lesh et al., 

1988). It is essential for proportional reasoning to reason about the holistic relationships 
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between two rational expressions that are ratios, rates, quotients, and fractions (Lesh et 

al., 1988). In other words, it is necessary for a child to be considered as reasoning 

proportionally that he or she “presents valid reasons in support of claims made about the 

structural relationships that exist when two ratios are equivalent” (Lamon, 1995, p. 173) 

either on a quantitative or qualitative level. These structural relationships are depicted in 

Figure 2.1 below.  

 

Figure 2.1. Structural relationships in a proportional situation (Lamon, 1995, p. 172) 

In Figure 2.1 given above, the relationships between the number of vans and the number 

of people, and between the number of vans in the first situation and the second situation, 

and between the number of people in the first situation and second situation should be 

interpreted. These interpretations are based on structural relationships among those four 

vales that are referred to as within comparisons and between comparisons (Lamon, 

1994). Regardless of the strategy used, students usually solve a proportion question by 

viewing the initial ratio as in either of the two ways: between and within comparisons 

(Lamon, 1994). For instance, for the situation represented in Figure 2.1 above, a within 

comparison would be comparing the two scalar multipliers within each measure space 
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(i.e., 1 
1

2
 ) to see if they are the same. Also, it would require reasoning in such a way that 

having the same scalar multiples would mean having the same number of groups within 

each quantity (i.e., 1 
1

2
 groups of 2 vans in 3 vans and 1 

1

2
 groups of 16 people in 24 

people). Moreover, a between comparison would be making sense of the functional 

relationship connecting the number of vans and the number of people and forming the 

rule 1:8 (i.e., the reduced form of 2:16 or 3:24) and using it to find an unknown value.  

For the same relationships within each type of measure space and between measure 

spaces, Vergnaud (1994) uses the terms scalar ratios (within quantity types) and 

functional ratios (between quantity types), as shown in Figure 2.2 below.  

 

Figure 2.2. Scalar ratios and functional rates (Vergnaud, 1994, p. 51) 

For this situation, including the number of cakes and the corresponding cost, reasoning 

with a scalar ratio would mean "How many 3-cakes are there in 12-cakes?" or "How 

many 3-cakes goes into 12-cakes?" Then, seeing that 4 units of 3-cakes would go into 

12-cakes, the corresponding cost should be multiplied by the same scale factor. 

Furthermore, reasoning with a functional rate would require thinking, "What is the 

relationship between the number of cakes and cost?" Then, upon formulating the 

relationship between the number of cakes and the corresponding cost as 1:2, the 

corresponding cost in the second situation should be multiplied by 2.  
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Similar to the examples above, Freudenthal (1973) distinguishes internal (within 

measures) ratios and external (between measures) ratios based on whether the quantities 

belong to the same measure space. More specifically, if two quantities belong to the same 

measure space, then they form an internal (within measures) ratio; if two quantities 

belong to different measures spaces, then they form an external (between measures) ratio. 

He also stresses that “internal ratios are ‘abstract’ numbers, whereas external ratios are 

in general ‘concrete’ numbers.” (Freudenthal, 1978, p. 293), meaning that external ratios 

form a single entity on their own (e.g., velocity). 

However, there is confusion and convergence in the literature about this distinction 

between within comparison/ratio/strategy and between comparison/ratio/strategy. 

Research that follows a science tradition (e.g., Karplus et al., 1983; Noelting, 1980a, 

1980b) uses different terminology. Particularly, in this tradition, the concept of a system 

is interpreted differently as a series of elements that interact (Lamon, 2007). Hence, 

according to this interpretation, the first of the following examples corresponds to a 

within ratio, while the second example corresponds to a between ratio. 

(1) 2 glasses of orange juice:3 glasses of water = 4 glasses of orange juice:6 

glasses of water 

(2) 2 glasses of orange juice:4 glasses of orange juice = 3 glasses of water:6 

glasses of water  

According to Karplus et al.’s and Noelting’s approach, the first example (1) is interpreted 

as a within ratio since it includes the relationships between the two systems (i.e., the 

amount of water and the amount of orange juice) that interact with each other (Noelting, 

1980a, 1980b). Besides, the second example (2) is interpreted as a between ratio since it 

deals with comparisons between the systems. Therefore, as can be seen in the examples 

above, the two interpretations are the opposites of each other. However, this confusion 

can be eradicated by using a specific terminology as "within or between systems" or 

"within or between measure spaces" (Lamon, 2007, p. 634). In this study, this specific 
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terminology will be used in order to avoid this conflict and for the sake of ease of 

understanding. 

In this section, the structural relationships in a proportion and corresponding 

interpretations of these relationships were explained as essential understandings for 

proportional reasoning and clarified for the purposes of this study. Concerning this, the 

concepts of ratio and rate and the distinctions between them are described in the next 

section.  

2.1.1. Ratio, rate, and proportion 

A ratio, in general sense, is “a comparative index that conveys the abstract notion of 

relative magnitude” (Lamon, 1995, p. 169). In relation to this, a proportion is “the 

statement of equality between one ratio and another in the sense that both convey the 

same relationship” (Lamon, 1995, p. 171). With a different interpretation, it is also 

possible to define proportion as a function that satisfies the isomorphic properties “f(x+y) 

= f(x) + f(y)” and “f(ax) = af(x)” (Vergnaud, 1988, 1994). Besides, Freudenthal (1978) 

defines proportion based on the distinction he makes between external and internal ratios: 

a proportion, also referred to as linear mapping, is either obtained by mapping one 

magnitude upon another by preserving the internal ratios or by postulating the constancy 

of the external ratio (Freudenthal, 1978). In other words, the two ways to define 

proportions are as follows "by the equality of corresponding internal ratios" and "by the 

constancy of the external ratio of corresponding values" (Freudenthal, 1978, p. 294). 

Hence, ratio refers to a relative comparison between quantities, and proportion to the 

equality of these comparisons; in other words, equality of ratios or ratio preservation 

(Freudenthal, 1978).  

Defining rate is rather difficult since there is a tendency of defining rate based on how it 

differs from ratio in the literature. It is specifically more difficult since there is a 

disagreement about how rates differ from ratios (Lesh et al., 1988; Thompson, 1994). In 
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earlier studies based on the tradition of Greeks, ratios and rates were defined in relation 

to comparisons within and between measure spaces (Lamon, 2007). According to this 

type of definitions, ratio is thought as a comparison of quantities that belong to the same 

measure space, while rate is thought as a comparison of quantities that belong to different 

measure spaces. In this tradition, some researchers argue that rates include quantities in 

two different measure spaces (e.g., 20 km/4 hours) while ratios involve quantities within 

a single measure space (e.g., 10 books/6 books) (Vergnaud, 1983, 1988). For instance, 

Vergnaud (1988) refers to fractions as part-whole relationships between two quantities 

that have the same nature where "one is the part of the other" (p. 158) and stresses that 

the value of fractions is always less than one. Furthermore, he refers to ratios as part-part 

relationships between two quantities that have the same nature where one is not included 

in the other (e.g., number of girls/number of boys) and argues that its value can be 

anything (i.e., less than/equal to/greater than one). Lastly, Vergnaud (1988) defines rates 

as relationships between two quantities that have different natures and refers to them as 

functions.  

On the other hand, some researchers follow Gauss in making distinctions between the 

two types of quantities: extensive quantities and intensive quantities rather than stressing 

whether the quantities belong to the same measure space or different measure spaces 

(Freudenthal, 1973; Kaput et al., 1986; Kaput & West, 1994; Schwartz, 1988). In this 

distinction, while extensive quantities express the extent of a quantity (i.e., how much) 

of an object (e.g., 4 apples or 10 kilometers, etc.), intensive quantities tell relationships 

between a quantity relative to a unit of the other quantity (e.g., 20 kilometers per hour, 

30 students per a teacher, etc.). In this case, two quantities that belong to the same 

measure space can be intensive if they are compared in relation to another (e.g., getting 

an extra 5 points per ten-points earned). Thus, according to this interpretation, rate refers 

to a single intensive quantity, while ratio refers to a relationship between two quantities 

(Schwartz, 1988). 
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Lesh et al. (1988) argue that there are problems in both types of distinctions and attempt 

to clarify the concepts of ratios, rates, fractions, and quotients. According to Lesh et al. 

(1988), rates are intensive quantities that could be "recognized by the per in their unit 

labels," and ratios are "binary relations which involve ordered pairs of quantities (of 

either the extensive, intensive or scalar types)" (p. 112). Furthermore, fractions are 

"special kinds of extensive quantities; they tell the size of a single object" (p. 112). Lastly, 

quotients are "binary operations which combine two quantities (extensive, intensive, or 

scalar) by mapping them to a quantity in a third measure space" (p. 113). Thus, rates 

include only the unit rates (i.e., so many A's per 1 B) in Lesh et al.’s (1988) perspective.  

Thompson (1994) stresses that while all of the researchers above focus on situations in 

order to make sense of the distinction between ratios and rates, it is also important to 

focus on the mental operations by which people make sense of them. Based on this 

notion, Thompson (1994) refers to a ratio as “the result of comparing two quantities 

multiplicatively” (p. 191) and rate as “a reflectively abstracted constant ratio” regardless 

of the measure spaces of the quantities (p. 192). The following quote highlights this 

interpretation and the change in the way of thinking about the relationship between the 

two quantities:  

When one conceives of two quantities in multiplicative comparison and conceives 

of the compared quantities as being compared in their independent, static states, 
one has made a ratio. As soon as one reconceives the situation as being that the 

ratio generally applies outside of the phenomenal bounds in which it was originally 

conceived, then one has generalized ratio to a rate. (Thompson, 1994, p. 192, 

emphasis in original)  

Thus, in this way of interpretation, a comparison of two specific and fixed (i.e., non-

varying) quantities is considered as a ratio. The comparison might be made between two 

quantities as wholes or in terms of comparison of one quantity relative to the units of the 

other quantity (Thompson, 1994). On the other hand, when this comparison between the 

two quantities is abstracted in order to interpret the ratio in relation to the invariant (i.e., 

constant) result of the multiplicative comparison, then, it is referred to as rate.  
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Thompson (1994) sees build-up strategies as a rich environment to facilitate students' 

process of reconceptualizing rate in terms of the constant ratio. In this process, while a 

student builds up in a succession of equivalent ratios (i.e., two oranges to three apples, 

four oranges to six apples, ….twenty oranges to thirty apples), he or she can abstract this 

relationship between the number of oranges and apples as "two oranges for three apples" 

(i.e., an iterable ratio between the number of oranges and apples that may vary) and 

ultimately they can arrive at the conclusion, "there should be 2/3 of an apple for every 

orange" or "the number of oranges will be 2/3 of the number of apples." This is a shift in 

students' ways of thinking from co-varying the number of oranges and apples to 

understanding that they co-vary in a constant (i.e., invariant) ratio to the other. While the 

conception at the beginning is referred to as an internalized ratio, the emerging 

conception that emphasizes the invariant relationship between the quantities is referred 

to as an interiorized ratio, or a rate (Thompson, 1994). In this study, the concepts of ratio 

and rate are interpreted in line with Thompson’s (1994) point of view since this 

interpretation fits the classroom data of this study.  

In the previous sections, the within and between measure spaces types of comparisons 

and related approaches to the concepts of rate and ratio are expounded for the aim of 

clearing up those constructs before embarking on other essential understandings in 

proportional reasoning. In the following section, other critical components of 

proportional reasoning are presented from a Didactical Phenomenology perspective.   

2.1.2. Didactical Phenomenology of proportional reasoning   

According to Freudenthal (1983), a didactical phenomenological perspective should be 

followed for the teaching and learning of a subject/idea. In this process, critical elements 

of a subject area should be organized around learning sites that would help children gain 

essential understandings of that subject area. Therefore, Didactical Phenomenology 

describes the possible experiences and learning sites through which a student enters into 
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the process of learning by organizing the phenomena and reconstructs the intended 

mathematical idea (Freudenthal, 1983).  

Based on this notion, Lamon (1995) examines the types of experiences and learning sites 

that facilitate proportional reasoning and outlines a didactical phenomenology of ratio 

and proportion by stressing the critical components for the development of those 

concepts. These include relative and absolute change, covariance and invariance, and 

ratio sense. Besides, she refers to partitioning, relations, and unitizing as three 

interrelated areas of didactical activities that have the potential to foster children’s 

understanding of those critical components.  

The mathematical contents and early didactical activities related to the development of 

proportional reasoning proposed by Lamon (1995) are presented in Figure 2.3 below. 

According to Lamon (1995), it is crucial to facilitate the essential mathematical 

components of proportional reasoning in the first level (i.e., absolute and relative 

thinking, covariance and invariance, ratio appropriateness) by building the proportional 

reasoning instruction on the didactical activities on the second level (i.e., relationships, 

unitizing, partitioning) for the development of proportional reasoning (Lamon, 1995). 

 

Figure 2.3. Some mathematical and didactical dimensions of proportional reasoning 

(Lamon, 1995, p. 177). 
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These mathematical components and didactical activities are explained in the following 

sections. Besides, another critical component (i.e., qualitative and quantitative reasoning) 

and didactical dimension of proportional reasoning (i.e., linking and iterating composite 

units) are discussed in order to extend this groundwork by Lamon (1995).  

 Critical mathematical components of proportional reasoning 

Three mathematical components of proportional reasoning were documented by Lamon 

(1995) as absolute and relative thinking, covariance and invariance, and ratio 

appropriateness. One mathematical component (i.e., qualitative and quantitative 

reasoning) was added in this study in order to extend this framework. These four 

components are explained in the following sections.  

2.1.2.1.1. Absolute and relative thinking  

NCTM (2000) calls for attention to analyzing patterns of change in a variety of contexts. 

It recommends that students understand the change and develop a “deeper understanding 

of the ways in which changes in quantities can be represented mathematically” (NCTM, 

2000, p. 305). In particular, analyzing and interpreting change in terms of both absolute 

and relative manners is one of the most critical types of thinking for the development of 

proportional reasoning (Lamon, 1995). The example given below might help understand 

the difference in these two types of thinking:  

Jo has two snakes, String Bean and Slim. Right now, String Bean is 4 feet long and 

Slim is 5 feet long. Jo knows that two years from now both snakes will be fully 

grown. At her full length, String Bean will be 7 feet long, while Slim's length 
 when he is fully grown will be 8 feet. Over the next two years, will both 

snakes grow the same amount? (Lamon, 1995, p. 174).  

It is possible to approach the problem from two perspectives: both snakes will grow 3 

feet of length, which is the same amount (absolute change). This change represents the 

actual growth, regardless of anything else. However, another perspective is associated 

with expected growth relative to their present length (relative change). More specifically, 
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String Bean is expected to grow 
3

4
 of her present length (3 feet = 

3

4
 of 4 feet), and Slim is 

expected to grow 
3

5
 of his present length (3 feet =  

3

5
 of 5 feet). Thus, relatively, they will 

grow in different amounts (Lamon, 1995). Therefore, it is essential to make sense of 

change in these two different perspectives for proportional reasoning. 

Most importantly, it is vital for students to shift to an understanding in relative manners 

since ratio involves a relative and hence multiplicative comparison (e.g., 

“How many times its present length did each snake grow?”) (Lamon, 1995, p. 175). 

Although, Freudenthal (1978) asserts that the concepts “relatively” or “comparatively” 

are “rooted independently of ratio and proportion” (p. 297), students’ transition from 

thinking in absolute ways to relative ways might be difficult. Indeed, this transition might 

proceed through the following levels suggested by Freudenthal (1978):  

Understanding that what matters in certain orders is comparative order;  

understanding 'relatively' in the sense of 'in relation to... .', with the criterion of 

comparison filled in in the blank space; 
completing ‘relatively’ and ‘in relation to’ in a context;  

knowing what ‘relatively’ and ‘in relation to’ mean in general;  

explaining what ‘relatively’ and ‘in relation to . . .’ mean in general (p. 297).  

In addition to interpreting change within a single quantity, it is also essential to construct 

an image of a quantity and coordinate images of two quantities and form an image of 

change in both quantities (Thompson, 1994). This is related to the concept of variation, 

more specifically, covariation, which will be explained in the following part. 

2.1.2.1.2. Covariance and invariance  

The quantities that compose a ratio vary together (i.e., covary); yet, the relation between 

them does not change (i.e., is invariant) (Lamon, 1995). For instance, buying three tickets 

for four dollars represents the same relationship as buying six tickets for eight dollars. 

Although the quantities that compose the ratio (i.e., the number of tickets and the amount 

of money) change, the relationship stays the same (i.e., one ticket for 
4

3
 dollars). Therefore 
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“all at the same time, something changes, but something else doesn’t change” (Lamon, 

1995, p. 176). This implies that students should accommodate both covariation and 

invariation within a single situation (Lamon, 1995). Moreover, they need to understand 

that the second ratio (i.e., six tickets for eight dollars) is two sets of the first ratio (i.e., 

three tickets for four dollars).   

Proportional relationships entail a simple form of covariation: two linked quantities 

change together (i.e., covary) in such a way that "when one changes, the other one also 

changes in a precise way with the first quantity" (Lamon, 2007, p. 648).  In other words, 

covariation in proportional relationships includes interpretations such as “y varies as x” 

or “y is directly proportional to x” (Lamon, 2007, p. 648). For instance, let’s say, in a 

cake recipe, for every glass of sugar, one adds 2 
1

2
  glasses of milk. If he or she doubles 

the recipe and uses 2 glasses of sugar, then he or she has to double the amount of milk 

and use 5 glasses of milk so that the amount of sugar compared to the amount of milk 

always remains the same regardless of the size of the cake. Indeed, in any size of the 

cake made by using this recipe, there is always 2 times as much milk as there is sugar. 

That is to say, the amount of sugar and milk can vary together (i.e., covariation), 

conditioned that the relationship between them is preserved (invariation). It is important 

for proportional reasoning to "look beyond the given quantities to construct a new 

quantity… that derives from the relationship of the two changing and connected 

quantities; this new quantity remains constant" (Lamon, 2007, p. 649). Therefore, being 

able to interpret and work with covariance and invariance at the same time in a 

proportional situation is an essential component of proportional reasoning. 

 Concerning understanding covariation and invariation, there is a mass of literature on 

covariational reasoning, which is defined as "the cognitive activities involved in 

coordinating two varying quantities while attending to the ways in which they change in 

relation to each other” (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002, p. 354). Although it 

is mostly seen as a way to think about functions (Confrey & Smith, 1994), its 
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development starts in middle school or even earlier within the context of early 

covariational reasoning (Ellis et al., 2016).  

To discuss a few, Confrey and Smith (1994) describe covariation as a process that 

includes coordination of movements from ym to ym+1 and from xm to xm+1. That is to say, 

a covariational approach “entails moving between successive values of one variable and 

coordinating this with moving between corresponding successive values of another 

variable” (Saldanha & Thompson, 1998, p. 298). According to Confrey and Smith 

(1994), a covariation approach is easy and intuitive for the development of the concept 

of function. Moreover, coordinating the invariant relationship between the two quantities 

in tables by building up or down can "also lead nicely to an algebraic coding of the 

correspondence rule for a function" (Confrey & Smith, 1994, p. 33). Therefore, exploring 

covariance and invariance in tables have the potential to foster the algebraic notation of 

a function that represents a proportional relationship. For instance, building-up on a table 

by covarying the quantities such as 1-3, 2-6, 3-9, and so on, students can obtain the 

relationship between these two variables as y = 3x. 

Coulombe and Berenson (as cited in Saldanha & Thompson, 1998) describe that 

covariational reasoning entails  

 (a) the identification of two data sets, (b) the coordination of two data patterns to 

form associations between increasing, decreasing, and constant patterns, (c) the 
linking of two data patterns to establish specific connections between data values, 

and (d) the generalization of the link to predict unknown data values (p. 88).  

Therefore, at the heart of covariation is coordinating sequences in successive manners. 

Tables can be effective tools to present these successive states of quantities that vary 

together. In doing so, seeing covariation can be described as “holding in mind a sustained 

image of two quantities’ values (magnitudes) simultaneously. It entails coupling the two 

quantities, so that, in one’s understanding, a multiplicative object is formed of the two” 

(Saldanha & Thompson, 1998, p. 298). Saldanha and Thompson (1998) argue that these 
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images of covariation are developmental, and "in early development one coordinates two 

quantities' values- think of one, then the other, then the first, then the second, and so on" 

(p. 298). 

2.1.2.1.3. Ratio appropriateness (ratio sense)  

Ratio appropriateness or ratio sense deals with the ability to distinguish between 

situations that "are appropriately organized by ratios and those that are not" (Lamon, 

1995, p. 176). The first stage includes being aware of the relationship between two 

quantities and the invariance of this relationship. Then, it is critical to distinguish 

examples and nonexamples of proportional relationships and to determine the conditions 

under which a situation can be represented by proportional relationships. In addition, 

ratio sense includes the use of correct mathematical language and vocabulary for 

discussing proportional relationships. This should include informal ways of expressing 

ratios (Lamon, 1995). These informal ways include "per language" (e.g., 3 food bars per 

5 fish) and other ways to compare quantities intensively (e.g., for every 10 students there 

are 2 teachers, out of every 12 people 2 of them are teachers, etc.). Thus, ratio sense 

refers to an “intuitive sense about the contexts and the mathematical relationships 

associated with proportions” (Lamon, 1995, p. 176) by analyzing various relationships 

that are proportional or nonproportional.  

One way to distinguish proportional and nonproportional situations is to focus on 

additive and multiplicative relationships and being able to reason additively and 

multiplicatively for appropriate situations. In addition, thinking about change in absolute 

manners involves additive reasoning while thinking about change in relative terms entails 

multiplicative reasoning. These terms will be used instead of relative and absolute change 

throughout the dissertation. Besides, being able to discern additive and multiplicative 

relationships and to apply the correct strategy will be considered in terms of having a 

ratio sense. 
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2.1.2.1.4. Quantitative and qualitative reasoning 

Quantitative reasoning is “the analysis of a situation into a quantitative structure - a 

network of quantities and quantitative relationships” that focuses on relationships among 

quantities rather than numbers (Thompson, 1993, p. 165). Hence, quantitative reasoning 

entails an analysis of quantities and their relationships, the creation of new quantities, 

and making inferences based on those (Thompson, 1994). First, it is important to 

understand what a quantity is in order to grasp quantitative reasoning. A quantity “is not 

the same as a number. A person constitutes a quantity by conceiving of a quality of an 

object in such a way that he or she understands the possibility of measuring it” 

(Thompson, 1993, p. 165). In other words, although quantities might have numerical 

values when measured, one does not have to know those values in order to think about 

them (Thompson, 1993). For instance, it is possible to compare two people’s heights 

without actually knowing them. Therefore, quantitative reasoning should not be confused 

with numerical reasoning since quantitative reasoning can be numeric or nonnumeric in 

nature (Lobato, & Siebert, 2002; Thompson, 1994). 

Though it is not the opposite of quantitative reasoning, maybe a specific case of it, 

qualitative reasoning involves deciding about the order relations between ratios/rates 

without depending on the numbers (Behr, Harel, Post, & Lesh, 1992). These situations 

are represented by the equation a/b = c, and the task requires children to reason about the 

direction of change (or no change at all) rather than the amount when one or two of the 

three values change (i.e., decrease or increase). The required reasoning should be as 

follows: when a remains the same and b increases, a/b decreases; when b remains the 

same and a increases, a/b increases; when a and b both increase, the situation is 

indeterminant, and quantitative type of reasoning is required (Behr et al., 1992). Then, 

determinability and determination are essential aspects of qualitative reasoning. 

Determinability is related to the question "Can the order relation requested in the problem 

be determined through qualitative reasoning?" while determination is related to the 

question: "What is the order relation requested in the problem, if it can be determined?" 
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(Behr et al., 1992, p. 317). Once determinability is assured, then the relation can be 

ascertained as less than, equal to, or greater than (Behr et al., 1992). The nine ways in 

which the effects of increasing/decreasing numerator and/or denominator on the value of 

a rate are presented in Figure 2.4 below.  

 

Figure 2.4. Changes in the value of a rate when the numerator and/or denominator of 

the rate changes (Heller, Post, Behr, & Lesh, 1990)  

As seen in Figure 2.4 above, two of these nine cases result in a situation in which the 

direction of change in the value of a rate is indeterminant. These are the cases when both 

components of the rates increase or decrease at the same time.   

Streefland (1985) argues that qualitative comparisons are at the onset of learning of ratio 

and proportion. Young children (aged 6-7) can informally and qualitatively deal with 

situations involving ratio and proportion by a natural form of mathematical intuition that 

develops independently of instruction (Lamon, 1994; Streefland, 1985; Van den Brink 

& Streefland, 1979). This intuitive and informal knowledge is mostly based on a visual 

understanding related to similarity and congruence (Harel et al., 1992; Lamon, 1994; 

Streefland, 1985). On the other hand, Kaput and West (1994) report that, of the many 

missing value problems, similarity problems are the most challenging problems for sixth-

grade students.  

As different from this intuitive and informal knowledge of qualitative reasoning that is 

rooted in a visual understanding of congruence, qualitative reasoning of children has 

been the subject of studies through a different interpretation that includes making 
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inferences about the direction of change and determinability of change. To begin with, 

Heller, Ahlgren, Post, Behr, and Lesh (1989) examined seventh-grade students' 

reasoning in both numerical and qualitative tasks that were either missing value or 

comparison tasks. Two examples, one of which deals with a ratio change and the other 

with qualitative comparison, are presented in Figure 2.5 below.  

 

Figure 2.5. Qualitative directional reasoning problems (Heller et al., 1989, p. 211) 

Heller et al. (1989) found that some of the participants performed well on numerical 

reasoning tasks, whereas the same participants performed worse in qualitative reasoning 

tasks. They concluded that while problems including numerical values can be 

approached by rotely memorized algorithms without having good skills in qualitative 

reasoning (Heller et al., 1989), qualitative reasoning tasks require approaching problems 

in unusual ways (Billings, 2002). Therefore, one can solve numerical problems without 

being able to reason qualitatively. In other words, numerical reasoning does not warrant 

qualitative reasoning. Another conclusion was that qualitative reasoning might improve 

performance on numerical reasoning tasks; yet, it is not sufficient for proportional 

reasoning. Therefore, a person should be able to reason both qualitatively and 

quantitatively in order to become a proficient proportional reasoner.  
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In another study by Larson, Behr, Harel, Post, and Lesh (1989), seventh-grade students' 

qualitative reasoning was explored through tasks asking students to decide if the value 

of a ratio would change and, if changes, to determine the direction of the change (i.e., 

decrease, stay the same, increase). According to the results of the study, some of the 

students indicated that the value of a ratio would change in the same direction as its 

components when the two components change in the same direction. In addition, some 

students stated that the direction of change in the value of a ratio depends on the amount 

of change in numerator and denominator: if the denominator increases more than the 

numerator, then, the value of the ratio would decrease; if the numerator increases more 

than the denominator, then the value of the ratio would decrease. Therefore, it was 

concluded that seventh-grade students had a sense of the direction of change, though it 

is incomplete. 

 In a third study, Heller, Post, Behr, and Lesh (1990) investigated 467 seventh grade and 

522 eighth grade students’ performance on quantitative and qualitative reasoning tasks. 

Two sample problems for qualitative reasoning tasks that were used in the study are 

given in Figure 2.6 below.  

 

Figure 2.6. Qualitative directional reasoning problems (Heller et al., 1990, p. 391) 
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The results of the study revealed that approximately 60% of the seventh and eighth-grade 

students correctly answered the qualitative reasoning tasks with a significantly higher 

performance of eighth-graders. Besides, seventh grade and eighth-grade students were 

found to use similar response patterns in these tasks. Moreover, only one-fifth of the 

students in grade seven and one-fourth of the students in grade eight were able to answer 

the questions related with the two indeterminate situations correctly (i.e., 

increasing/increasing and decreasing/decreasing). Lastly, the results of this study 

confirmed the results of a previous study by Heller et al. (1989) stressing that numerical 

reasoning tasks can be solved by students who performed low in qualitative reasoning 

tasks, although a high performance in qualitative reasoning tasks assures greater success 

in numerical reasoning tasks.  

Based on the results of these studies, the development of qualitative reasoning and 

whether it precedes or proceeds numerical reasoning is ambiguous. As can be interpreted 

from the discussions above, there is an aspect of qualitative reasoning that develops long 

before students can deal with proportional situations numerically (Lamon, 1994; 

Streefland, 1985). However, it is also reported that many students could deal with 

numerical reasoning tasks but failed in qualitative reasoning tasks (Heller et al., 1989, 

1990). Therefore, there is a need to make a distinction between expert qualitative 

reasoning and intuitive and informal qualitative reasoning as follows: while qualitative 

reasoning applied by experts is mostly rooted in scientific principles that are used to form 

relationships and based on principles of the content domain, qualitative reasoning applied 

by novices is based on intuitive knowledge and superficial relationships among the 

problem components (Behr et al., 1992).  

2.1.2.1.5. Reasoning within and between measure spaces (multiplicative 

reasoning) 

It is stressed in many studies that at the heart of multiplicative reasoning is creating 

composite units and being able to work with composite units (Battista & van Auken 
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Borrow, 1995; Lamon, 1994; Steffe, 1988). The goal for creating a composite unit is 

usually to reinterpret a situation in relation to that unit, which is referred to as norming 

(Freudenthal, 1983; Lamon, 1994). One of the most prevalent uses of norming is to 

determine a scale factor within a measure space wherein one value is a scalar multiple of 

the other. In this process, one value is reinterpreted in relation to the other value by "using 

the process of scalar decomposition" (Lamon, 1994, p. 95), which is depicted in Figure 

2.7 below. 

 

Figure 2.7. A scalar operator transposes a measure within a single measure space 

(Lamon, 1994, p. 95) 

As seen in the figure above, the unit whole is 4, and 7 is reinterpreted in relation to four 

units, which includes a whole-four-unit and a certain fractional part (i.e., 
3

4
 ) of the four-

unit. This ability of norming and working with a scalar operator is critical for 

understanding proportional situations since the values within the same measure spaces 

are linked by the same scalar operator in a proportional situation, as illustrated in Figure 

2.8 below.  

 

Figure 2.8. The scalar method for finding a missing value in a proportion: an instance 

of norming (Lamon, 1994, p. 95) 
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This relationship can be used to find a missing value in a proportional situation (i.e., "If 

I can make five team shirts with 7 yards of material, how many yards of material will I 

need to make a team shirt for each of fifteen children on the soccer team?" (Lamon, 1994, 

p. 96), which is referred to as a within strategy or a scalar method (Lamon, 1994). In this 

method shown in Figure 2.8, five is thought as the unit whole, and fifteen is considered 

as three of the five-unit whole. Therefore, the scalar operator in this situation is three. 

On the other hand, a between strategy or a functional method for the same situation would 

include equating two ratios in two different measure spaces (i.e., between measure 

spaces). This relationship can also be useful for finding a missing value in a proportional 

situation (i.e., "The pharmacist gave you 7 ounces of medicine for $8.75. What would 

you expect to pay for a bottle containing 4 ounces?” (Lamon, 1994, p. 96), as illustrated 

in Figure 2.9 below.  

 

Figure 2.9. Finding the function operator through a norming process (Lamon, 1994, p. 

96) 

As seen in the figure above, the process of norming also applies to this method since 7 

ounces is considered as a whole unit and $8.75 (i.e., 8 dollars + 
3

4
 dollars) is reinterpreted 

in terms of 7. However, this interpretation is a little bit different than the previous one. 

Here, the function operator does not represent a scaling; rather, it is the coefficient of the 

mapping (i.e., a linear function) from M1 to M2 (Lamon, 1994). 
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Several studies in the literature suggest that a within-measures-strategy is more natural 

than a between-measures-strategy (Karplus et al., 1983; Vergnaud, 1980). A piece of 

further evidence that a within-measures-strategy is more natural comes from the fact that 

it was the only accepted form of proportional reasoning until the 14th century 

(Freudenthal, 1978; Karplus et al., 1983). However, it should be noted that a between-

measures-strategy is “more faithful to the problem’ structure” (Karplus et al., 1983, p. 

221) since it deals with a functional relationship. 

In the previous sections, the essential mathematical components of proportional 

reasoning were described. Another level in Lamon's (1995) work related to the didactical 

phenomenology of proportional reasoning includes didactical dimensions of proportional 

reasoning through which those components are to be facilitated. In the next section, these 

dimensions are explained in detail.  

 Didactical dimensions of proportional reasoning   

Didactical activities that are supposed to facilitate students’ understanding of 

proportional situations include students’ already existing strengths prior to instruction. 

The earliest and intuitive experiences of children in relation to ratio and proportion 

include understanding relationships. This can involve making judgments regarding 

scaled drawings based on visual interpretation and noticing distortion, and interpreting 

covariation in basic terms. Other experiences include partitioning (e.g., fair-sharing, 

especially halving and doubling) and unitizing (creating units, both 1-unit and other 

units- and deciding on efficient units) (Lamon, 1995). These didactical activities have 

the potential to facilitate children’s understanding of the mathematical components 

discussed above. In the following sections, how those mathematical components can be 

fostered through the early didactical activities will be discussed in detail. 
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2.1.2.2.1. Relationships  

Among the earliest experiences young children have in relation to ratio and proportion 

is a visual and intuitive level that includes evaluating the relative size relationships 

between the parts of an object or between various objects (Lamon, 1995). For instance, 

it is possible that most preschool children can intuitively reason about whether a drawing 

or a picture appear right or wrong in terms of scaling or enlargement (Lamon, 1995). 

That is, they can make judgments regarding the distortion of pictures. Besides, they can 

make intuitive judgments about basic proportional relationships (e.g., the more money 

you have, the more food you can buy, the closer the object is, the bigger it looks). 

Although students have these kinds of intuitive understandings of different relationships, 

they might have difficulties in verbalizing those relationships (Lamon, 1995). Hence, the 

instruction should be built upon children’s existing strengths related to these 

understandings of relationships in order to move students to a more formal and 

mathematical understanding of those relationships. In this process, early experiences 

related to counting, matching, and partitioning can play an important role (Lamon, 1995).  

2.1.2.2.2. Partitioning 

Another early experience of children that is essential in the development of proportional 

reasoning is partitioning that entails subdividing a whole into equal parts (Lamon, 1995; 

Pothier & Sawada, 1983). Children deal with sharing among their siblings, starting from 

early childhood (Lamon, 1995). These experiences are mostly based on halving and 

splitting in to equal parts whose denominators are powers of two (Pothier & Sawada, 

1983). In later years, they can deal with other fractions that have odd denominators 

(Pothier & Sawada, 1983). During the instruction on proportional reasoning, students 

should discuss various ways to partition a whole and decide which partition is the most 

effective one (Lamon, 1995).  

Recently, the term “equipartitioning” has been used more often to refer to the cognitive 

behaviors in order to produce “equal-sized groups (from collections) or equal-sized parts 
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(from continuous wholes), or equal-sized combinations of wholes and parts, such as is 

typically encountered by children initially in constructing fair shares for each of a set of 

individuals” (Confrey, Maloney, & Corley, 2014a, p. 724). Therefore, even though it is 

not the same as partitioning, it refers to a more general term used for splitting or 

producing equal shares since partitioning can involve breaking into unequal parts that 

have the same size (Confrey et al., 2014a). These researchers suggest that 

equipartitioning is foundational for rational number reasoning; hence, proportional 

reasoning (Confrey, Maloney, Nguyen, & Rupp, 2014b).  

 Confrey et al. (2014a) outlines the proficiency levels of equipartitioning and proposes a 

sixteen-level learning trajectory. According to this trajectory, the lower levels (i.e., 

Levels 1-5) entail equipartitioning of collections and wholes, being able to justify 

strategies and results, name each fair share in terms of fractional language (i.e., 
1

𝑛
 th), and 

identify the size of the whole based on a single fair share (i.e., n times as many/much). 

Besides, the middle levels (i.e., Levels 6-11) consist of a variety of relationships and 

properties regarding the equipartitioning of single wholes (e.g., geometrical shapes). 

These also include the composition of splits, judging the inverse relationship between 

the number of shares and size of shares, and understanding that a whole can be shared 

into any number of pieces. Lastly, the upper levels (i.e., Levels 12-16) include being able 

to work with multiple wholes based on the experiences gained in the lower levels.  

Therefore, partitioning is one of the essential didactical activities that is inherent in young 

children’s early experiences. Another didactical activity is unitizing, which is the 

opposite process of partitioning (Lamon, 1995). The activity of unitizing is explained in 

the following section.  

2.1.2.2.3. Unitizing and norming 

Lamon (1994) points to the ability of "unitizing" as one of the critical abilities for the 

development of proportional reasoning. Unitizing is defined as "the ability to construct 
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a reference unit or a unit whole, and then reinterpret a situation in terms of that unit" 

(Lamon, 1994, p. 92). In this process, children, starting from early childhood, create 

composite units in progressively sophisticated ways to form complex structures of 

quantities (Lamon, 1994).  The beginning of this process of creating composite units 

possibly traces back to early childhood, where visual quantifying (e.g., subitizing) takes 

place and then is extended to counting (Lamon, 1994). It is required to conceptually 

coordinate multiple compositions in order to develop addition and subtraction schemes 

into multiplicative structures (Lamon, 1994). Below is an example of a simple 

multiplicative structure, as illustrated in Figure 2.10 below:  

 

Figure 2.10. A simple multiplicative structure (Lamon, 1994, p. 93) 

Students begin with seeing 16 objects as 16 singleton units (i.e., 16 one units), form units 

of units (i.e., four composite units each including 4-one singleton units), and then form 

units of units of units (i.e., one three-unit including three of the four four-units). In 

addition, multiplicative structures may consist of two entities in different measure spaces 

to form an entity different from either of the entities. For instance, if an airplane travels 
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1800 kilometers in two hours, its average speed is 90 kilometers per hour. While the two 

entities are the distance (in kilometers) and time (in hours), they form a totally different 

entity (i.e., speed) having a different measure (i.e., kilometers per hour) when they come 

together in a multiplicative situation. 

While seeing a relationship as a single entity and operating with it seems to be the basic 

ability, making sense of the relative nature of entities in a ratio seems to be a higher level 

for understanding ratio and proportion (Lamon, 1994). Based on this, a number of 

processes in which students’ reasoning evolves into more sophisticated levels as they 

interpret ratio and proportion is summarized in Figure 2.11 below. 

 

Figure 2.11. The increasing complexity of the unitizing process as revealed by 

children’s thinking in the additive and multiplicative conceptual fields (Lamon, 1994, 

p. 114) 

In order to interpret the table above in terms of increasing levels of sophistication in 

student thinking, the route from left to right between the columns and from top to bottom 
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between the rows should be followed (Lamon, 1994). Early counting activities that 

include grouping of objects (i.e., subitizing) are the early foundations of forming 

composite units. This process involves grouping single items to construct a single 

quantity on itself. A more sophisticated level includes matching quantities and using 

them simultaneously. Using pictorial representations enhances the ability to coordinate 

these entities, two at a time (Lamon, 1994). The next level is abstracting wherein 

operating with the composite unit takes place without attending to its elements in such a 

way that the composite unit is an entity on itself. The more sophisticated level includes 

relating the abstract numerical composites to others. For instance, understanding the parts 

as composite units as well as the whole in part-whole relationships is a sophisticated level 

of thinking that is included in this stage.  

2.1.2.2.4. Linking composite units and iterating linked composites 

Another didactical activity essential for proportional reasoning is linking composite units 

and iterating linked composites, which students’ proportional reasoning is said to be built 

on (Battista & van Auken Borrow, 1995; Park & Nunes, 2001; Steffe, 1988). In order to 

understand these, it is essential to look at the teaching experiment studies of Steffe (1988, 

1994) related to the construction of number sequences and multiplying schemes wherein 

the early foundations for proportional reasoning is outlined. 

In his study, Steffe (1988, 1994) focuses on young children's transition from initial 

number sequences (i.e., counting by ones 1-2-3-4-5 and so on) to creating composite and 

iterable units. In this process, children first construct a unit of units, take it as one thing, 

and operate with that abstract composite unit by keeping track of how many times this 

composite unit is iterated. According to Steffe (1994), coordinating at least two 

composite units and distributing one of them over the elements of the other is necessary 

in order to establish a situation as multiplicative. Therefore, the ability to iterate 

composite units is crucial for the development of multiplicative reasoning, and hence 

proportional reasoning.  
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Iterating composite units is defined as the ability to take one group as a unit and iterate 

this unit without changing the nature of its elements (Steffe, 1994). An example of a 

process of iterating composite units by Steffe (1994) might support understanding of this 

skill better. A big red piece of paper and several blue pieces of paper of the same size 

and in rectangular forms, six of which would fit on the red paper, are placed in front of 

a student. The student is asked to find the number of blue pieces that would fit on the red 

paper. After she places six blue pieces on the red paper and answers the question as six, 

the implementer removed three of these blue pieces and put two orange square pieces on 

a blue piece. The student, then, is asked how many orange squares would fit on the red 

paper by considering the blue pieces and without concretely fitting the pieces. To answer 

this question, the student reasons like 1-2, 3-4, 5-6, 7-8, 9-10, 11-12, and gives the answer 

12, in which she coordinates two-for-ones and distributes the units of two over the units 

of six.   

According to Steffe (1994), this type of reasoning is not repeated addition since it 

includes linking units by making one-to-many correspondences and iterating those linked 

composites. When a student is asked, "What is the number of total cubes when there are 

9 rows and 3 cubes in each row?” and he is able to iterate this unit such as 3, 6, 9, 12, 

15, … nine times; then, it is evident that he takes 3 cubes as one unit (iterating unit) and 

does not need to distribute a unit of three over the units of nine. In other words, the child 

is able to create a unit of three and iterate this unit by keeping track of these iterations in 

order to establish nine units of three. Steffe (1994) calls this process "an iterating concept 

of multiplication and take it as a root of repeated addition" (p. 23). Steffe (1994) 

concludes that multiplication should not be taught depending solely on either repeated 

addition or distributing a (composite) unit over the elements of another (composite) unit.      

Continuing the works of Steffe; Battista and van Auken Borrow (1995) claimed that once 

students gain the ability to iterate composite units, this thinking can be extended to the 

ratio concept and proportional reasoning. In order to describe this transfer to proportional 
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situations, they conducted a study with a second-grade student in which the interviewer 

created a bundle of 5 white and 3 red sticks and asked the student the number of the same 

kind of bundles behind his back if he had 10 white sticks. The student immediately 

answered as “5, 10, … then 2.” Then, she was asked the number of white sticks if there 

were 12 red sticks. The student answered as “you need for bundles to get 12 reds. Then 

5, 10, 15, 20” and hence is considered as having the ability to iterate composite units of 

3 and 5. Battista and van Auken Borrow (1995) claimed that the student extended his 

counting scheme to construct a “linked composite” counting sequence since she was able 

to iterate a composite consisting of a composite of 3 linked together with a composite of 

5. Therefore, she managed to iterate linked composites in order to solve a proportional 

situation.  

Lamon (2007) refers to this process as “reasoning up and down” and gives an example 

of this type of thinking with two students’ works for the problems as follows:  

 

 

 

Figure 2.12. Reasoning up and down (Lamon, 2007) 

As seen in Figure 2.12 above, students link the number of cups and loads and create a 

list of corresponding amounts by iterating the linked composites of the number of cups 
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and loads in order to arrive at the amount they need to find. In this process, they do not 

reason with the symbolic representation of proportion (i.e., 
𝑎

𝑏
 = 

𝑐

𝑑
 ). These kinds of 

strategies are also called building-up or down strategies in the literature (Kaput & West, 

1994; Thompson, 1994).  

To sum up, the essential mathematical components of proportional reasoning include 

absolute and relative thinking (Lamon, 1995), understanding covariance and invariance 

(Carlson et al., 2002; Confrey & Smith, 1994; Ellis et al., 2016; Lamon 1995, 2007; 

Saldanha & Thompson, 1998), ratio sense (Lamon, 1995), qualitative and quantitative 

reasoning (Behr et al., 1992; Heller et al., 1990, Thompson, 1993), and reasoning within 

and between measure spaces (Freudenthal, 1978; Karplus et al., 1983; Lamon, 1994; 

Vergnaud, 1981). Besides, the informal and intuitive experiences that young children 

have prior to instruction, which are referred to as didactical activities in this study, are 

mostly based on relationships (Lamon, 1995), partitioning / equipartitioning (Confrey et 

al. 1994a, 1994b; Lamon, 1995), unitizing and norming (Lamon, 1994, 1995), and 

iterating linked composites (Battista & van Auken Borrow, 1995; Steffe, 1994). These 

mathematical components and didactical activities were explained in general terms in the 

previous parts.  

It is also essential to understand informal knowledge that students have before instruction 

and their developmental progress in proportional reasoning for designing and 

implementing instructional sequences. In particular, it is vital to determine the informal 

knowledge of students so that effective instruction could be built on that intuitive 

knowledge and strategies (Kaput & West, 1994; Lamon, 1994). Therefore, in the next 

section, students' informal strategies for solving specific proportion problems prior to 

ratio and proportion instruction will be portrayed in order to understand the roots of 

proportional reasoning and its developmental progress.  
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2.1.3. Students’ informal strategies for solving proportion problems  

Students’ strategies for solving proportional problems are mostly based on the 

mathematical components and didactical activities that were discussed in the previous 

parts. However, it is helpful to delve into how they make use of those kinds of reasoning 

and activities in order to solve proportional problems. In this part, students' strategies for 

solving specific problems will be expounded, starting from students' informal strategies 

before they were instructed on ratio and proportion. 

Lamon (1994) reports the results of her study in which she conducted clinical interviews 

with 24 sixth grade children prior to formal instruction in ratio and proportion. The 

purpose of the study was to outline increasingly sophisticated ways of reasoning as 

students solve ratio and proportion problems. In particular, through these problems, the 

goal was to investigate students' tendency to work with singleton units or composite units 

and to use within or between strategies and to examine the ability to deal with multiple 

compositions. The problems used in the study and related informal strategies of students 

are presented in the following pages. 

The first problem that is "The Balloon Problem" included a situation about finding the 

cost for 24 balloons, when the cost of 3 balloons was known. This problem and the 

strategies used by the students are shown in Table 2.1 below.  
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Table 2.1. The balloon problem and students’ informal strategies (Lamon, 1994) 

Problem Strategies  

Problem 1: "The 

balloon problem: 

Ellen, Jim, and 

Steve bought 3 

helium-filled 

balloons and paid 

$2.00 for all 

three. They 

decided to go 

back to the store 

and get enough 

balloons for 

everyone in their 

class. How much 

did they have to 

pay for 24 

balloons?" 

(Lamon, 1994, p. 

101). 

 

1. Reasoning with a composite unit of 3 

“For every third balloon, you pay $2.00. So you have eight 

packets (sets, groups, or bunches of eight) and 8 × 2 would be 

$16.” (p. 103)  

2. Constructing a table to keep track of doubling counting (p. 

103) 

3 $2.00 

6 4 

9 6 

12 8 

15 10 

18 12 

21 14 

24 16 

3. Two-step unit rate strategy with an inaccurate answer (p. 

103)  

$2.00/3 =  .6666 … or .66 r2    .66 × 24 = $15.84 

4. Reasoning with the unit rate (p. 103) 

“Three balloons were $2.00 and 2 divided by 3 is 2/3, so I 

asked myself how many 24ths is 2/3? The answer is 16.” 

5. Using the scalar operator within measures space (p. 104)  

 
 

Therefore, as seen in the table above, the first informal strategy for the balloon problem 

was related to working with a composite unit of 3 and reasoning with the number of 

composite units of 3 that would go into 24 and multiplying this number with 2 that is the 

amount for every third balloon. It was reported that 10 of the 24 students employed this 

strategy for this problem. The second strategy for the balloon problem, which was used 

by the two of the participants, included keeping track of a double-counting scheme by 

constructing a table and extending the table upon pattern recognition. Lamon (1994) 

reported that the two of the students that used this strategy were not able to recognize the 

functional relationship between the number of balloons and the related cost; hence, they 
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could not find the cost for a given number of balloons. The third strategy employed by 

three students was named as two-step unit rate strategy in which the students reasoned 

with single units but ended up with an inaccurate answer. Lamon (1994) reported that 

this kind of reasoning with single units was less powerful than reasoning with composite 

units, though it was more sophisticated. However, another student was able to reason 

with the unit rate without converting it to decimal and thinking as, "how many 24ths 

would go into 2/3?" The work that involved recognizing the structural relationships 

within the measure spaces and operating with the scalar operator by a student was 

reported as the last strategy for the balloon problem.  

The second problem in Lamon’s (1994) study, The Subscription Problem, involved 

information regarding different costs for monthly (i.e., 6 months, 9 months, or 12 

months) subscriptions to a magazine and asked about comparing these deals. This 

problem is presented in Figure 2.13 below, and students' informal strategies for solving 

this problem is depicted in the table that follows.   

 

Figure 2.13. The Subscription Problem (Lamon, 1994, p. 101) 

Students’ informal strategies for the subscription problem (Lamon, 1994, p.104); 
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1. Reasoning with equal scale factors within measure spaces  
“The price for two 6-month subscription is the cost of 12 months and 9 is just the 

middle of that.”  

2. Reasoning with the equivalent fractional parts of the wholes  

“4 is 2/3 of $6.00 and 6 is 2/3 of 9.”  
3. Scaling up and down the cost for different monthly subscriptions  

“Three payments of $ 4.00 is $12.00; three payments of $6.00 is $18.00; three 

payments of $8.00 is $24.00. Divide each in half and you get 6, 9, and 12.” 
4. Recognizing the number patterns of increase in both entities  

“The months go up by 3 and the dollars go up by 6, so it’s the same any way you 

do it” 

5. Finding the unit rate 
“In each case, if you figure out how much it costs a month, you get $2.00 a month.” 

6. Equating one of the quantities and comparing the corresponding costs  

“For the 6-month subscription, every 3 months would be $2.00; for the 9-month 

subscription, every 3 months is $2.00; the same for the 12-month subscription.” 

Lamon (1994) reported that 13 of the 24 students were successful in solving the 

subscription problem. Various solution strategies of those students were also reported. 

To begin with the first strategy, five of the students reasoned with the equal scale factor 

within each of the measure spaces (i.e., the number of months and the corresponding cost 

for that number of months). The second strategy for the subscription problem, which was 

employed only by a student, included reasoning with the equivalent fractional parts of 

the wholes and comparing the scalar operators in both measure spaces. The third strategy 

used by a student for answering the subscription problem included finding the total cost 

for three payments and seeing that the number of months and corresponding cost in 

dollars have the same values (i.e., the cost is $1 per month in each situation). Another 

student used a strategy in which he focused on the number patterns related to the increase 

in both measures. The fifth strategy used by a student was related to finding the cost for 

the subscription per month (i.e., unit rate) in each case. The most common strategy 

employed by 13 students who correctly answered the subscription problem included 

equating one of the quantities (i.e., the number of months) in each situation and 

comparing the corresponding cost in each situation. Lamon (1994) stressed that in most 

of these strategies, students showed a tendency to find and compare rates, only one of 

which is focused on the unit rate. In particular, while the fifth strategy includes a one-
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month unit, the remaining involves working with three-month or six-month units. Lamon 

(1994) concluded that the preference of the most suitable unit depends on the problem 

situation since most of the strategies made use of 3-month unit since 3 was the greatest 

common factor of the three number of months given in the problem (i.e., 6, 9, and 12).  

The third problem on which students work while they were engaged in clinical interviews 

was the apartment problem. This problem asked students to find the number of one-, two-

, or three-bedroom apartments satisfying a rule for the communities’ needs. This problem 

is depicted in Figure 2.14 below.  

Problem 3. “The apartment problem. In a certain town, the demand for rental units 

was analyzed and it was determined that, to meet the community’s needs, builders 

would be required to build apartments in the following way: Every time they build 

3 one-bedroom apartments, they should build 4 two-bedroom apartments and 1 

three-bedroom apartment. Suppose a builder is planning to build a large apartment 

complex containing 30-40 apartments. How many apartments should be built to 

meet this regulation?  

Suppose one built 32/40 apartments (choose one). How many one-bedroom, two-

bedroom, and three-bedroom apartments would the apartment building contain?  

Suppose one built 14 one-bedroom apartments, 18 two-bedroom apartments, and 

4 three-bedroom apartments. Would the requirement be satisfied?”  

Figure 2.14. The apartment problem (Lamon, 1994, p. 101) 

This problem could be solved by creating units (i.e., 1- bedroom apartments, 3-bedroom 

apartments, 4- bedroom apartments) and units of units (i.e., three units of 1-bedroom 

apartments, four units of 3-bedroom apartments, one unit of, 4-bedroom apartments), and 

units of units of units (i.e., one eight-unit of apartments), and units of units of units of 

units (i.e., 5 of that eight-unit apartments). According to the findings of Lamon’s (1994) 

study, eleven students were able to use related composition and decomposition processes. 
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A sample student answer wherein she constructed one eight-unit of 1-, 3- and 4-bedroom 

apartments is provided below in Figure 2.15. 

 

Figure 2.15. Creating units of units of units for the apartment problem (Lamon, 1994, 

p. 107) 

Besides, four students were able to add columns of units of units without creating one 

eight-unit of units of units in order to obtain a total of 40 apartments. A sample student 

answer is provided in Figure 2.16 below.  

 

Figure 2.16. Adding columns of units of units to obtain a total of 40 apartments for the 

apartment problem (Lamon, 1994, p. 107) 
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The fourth problem used by Lamon (1994) to understand students’ informal knowledge 

in ratio and proportion concepts was the pizza problem that asked the comparison of the 

amount of pizza received in two situations. This problem is presented in Figure 2.17 

below.  

 

Figure 2.17. The pizza problem (Lamon, 1994, p. 102) 

Lamon (1994) reported that eighteen of the students that are the ones who correctly 

solved the problem took a pizza and boy as a linked composite unit (i.e., unitizing) and 

reinterpreted the case for girls in relation to the number of boys and a pizza relationship 

(i.e., norming) as illustrated in Figure 2.18 below. 

 

Figure 2.18. Unitizing and norming for the pizza problem (Lamon, 1994, p. 110) 

The last problem used in the study of Lamon (1994) was the Alien Problem that is 

presented in Figure 2.19 below.   
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Figure 2.19. The alien problem (Lamon, 1994, p. 102) 

The Alien Problem was solved correctly and in the same way by all of the 24 students 

(Lamon, 1994). The strategies used for solving this question included taking 3 aliens and 

5 food pellets as a linked composite unit and re-interpreted other situations in terms of 

this unit. A sample interview transcript and related drawing of the student is presented in 

Figure 2.20 below.  
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Figure 2.20. The ratio 3:5 used as a norming unit for the alien problem (Lamon, 1994, 

p. 111) 

In order to interpret the results of Lamon’s (1994) study in relation to ratio and 

proportion, the students were able to consider ratio as “an invariant composite unit” and 

work simultaneously with both its components in a double matching process 

(covariance), which is the kind of understanding that is necessary for the development of 

ratio and proportion concepts. In addition, they were able to choose the most appropriate 

unit and operate with it. In this process, unitizing and norming were the processes by 

which more sophisticated levels of reasoning evolved. It is important to note that the 

divisibility relationship between 3 aliens in the first situation and 9 aliens in the second 

situation paves the way for using 3:5 as the norming unit (Lamon, 1994). Lamon (1994) 

concluded that children have informal and intuitive knowledge about ratio and proportion 

prior to instruction: They were able to use invented strategies that were based on the 

abilities of unitizing and norming without employing any symbol use to communicate 

their reasoning, which might be interpreted as “presymbolic quantitative proportional 

reasoning." 
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Thus, Lamon’s (1994) study provides a comprehensive and detailed outline for the 

specific types of proportional problems and students’ informal strategies for those 

problems. Although Lamon (1994) does not classify these problems, proportional 

reasoning problems can be classified under three main categories (Behr et al., 1992; 

Cramer, Post, & Currier, 1993; Cramer, & Post, 1993b; Heller et al., 1990; Kaput & 

West, 1994; Noelting, 1980a; Post et al., 1988). Below is the classification of these three 

types of problems: 

1. “Missing value problems: Problem includes an implicit or explicit instance of a 

ratio and one of the two values in another ratio that is equivalent to the first one. 

It asks to find the corresponding fourth value in the second ratio (Cramer et al., 

1993; Kaput & West, 1994)  

2. Numerical comparison problems: All the values of two ratios/rates are given, and 

the task is to compare these ratios/rates rather than finding a numerical value 

(Cramer et al., 1993; Karplus et al., 1983; Noelting, 1980a) 

3. Qualitative prediction/comparison problems: The problem does not require 

computing with numerical values; instead, the task is to reason about the direction 

of change by making comparisons” (Behr et al., 1992; Cramer et al., 1993)  

Freudenthal (1978) stresses that missing value and numerical comparison problems can 

be approached in three ways: (1) reasoning with an internal (within measures) ratio (e.g., 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2
 = 

𝑡𝑖𝑚𝑒1

𝑡𝑖𝑚𝑒2
) and applying the result for solving the problem, (2) reasoning with an 

external (between measures) ratio (e.g., 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1

𝑡𝑖𝑚𝑒1
 = 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

𝑡𝑖𝑚𝑒2
) and applying the result for 

solving the problem, and (3) avoiding computation until the result has been found or 

setting up a relationship that includes all the data and computing.  

By referring to these three types of problems, Ben-Chaim et al. (1998) suggest that these 

types of problems can appear in three broad categories:  
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1. Comparison of two (or more) parts of a single whole (e.g., ratio of the number of 

girls to boys in a classroom)  

2. Comparison of different quantities that are connected in some ways (e.g., unit 

price, miles per gallon, density) 

3. Comparison of two conceptually related quantities that are not parts of a whole 

(e.g., scaling up/down)  

Additionally, in their study, Ben-Chaim et al. (1998) investigated seventh-grade students' 

strategies (including incorrect ones) for solving proportional reasoning problem types 

and categories mentioned above. In this study, Ben-Chaim et al. (1998) worked with 

approximately 2000 students who were taught with different types of curricula (i.e., 

mainly two types as traditional and reform-based curricula). They examined these 

students’ written responses to a paper-pencil test and in individual interviews. According 

to the results of the study, they identified nine different strategies for numerical 

comparison problems that are listed in the following pages.  

Strategy 1. “Comparing the ratio of two different variables using external ratios or a 

functional method” (Ben-Chaim et al., 1998, p. 258): In this strategy, students work with 

price per unit or unit per price in making comparisons. Another name for this strategy is 

unit rate since students deal with external or within measures ratios, including units. Ben-

Chaim et al. (1998) report that this is one of the most frequently used strategies for 

comparison problems that develop independently of instruction. 

Strategy 2. “Comparing ratios of the same variable using internal ratios or a scalar 

method” (Ben-Chaim et al., 1998, p. 259): In this strategy, students deal with ratios 

including values that belong to the same measure space. Ben-Chaim et al. (1998) reported 

that fewer students used this strategy and concluded that it was more complicated than 

the first strategy. 
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Strategy 3. “Comparing the cost of the same quantity by finding common factor or 

common multiple quantities such as price per unit” (Ben-Chaim et al., 1998, p. 260): In 

this strategy, students equate the amounts (e.g., kg, ounce) in both situations and compare 

the corresponding costs. The type of reasoning here is: “If I buy the same amount in both, 

in which option do I get a cheaper deal?” 

Strategy 4. “Comparing amounts for the same cost by finding common factor or common 

multiple costs such as unit per price" (Ben-Chaim et al., 1998, p. 260): In this strategy, 

rather than equating the amounts, students equate the costs in both situations and 

compare the corresponding amounts. The type of reasoning here is: "If I pay the same 

money, in which option do I get more amount of what I would like to buy?" 

 Strategy 5. “Building up strategy” (Ben-Chaim et al., 1998, p. 260): In this strategy, 

students create a list of the linked quantities of cost and money by building up (e.g., 2-

16, 4-32, 6-48, etc.) in both situations. When they reach a common multiple, they 

compare the other value in order to make a decision. Ben-Chaim et al. (1998) reported 

that a small number of students used this strategy. They concluded that this might be due 

to the presence of non-integer ratios in the problems, which might have discouraged 

students from using a build-up strategy. In addition, they suggested that another possible 

explanation might be that building up strategy and constructing a ratio table do not 

develop naturally in students.  

Strategy 6. “Looking at ratios of differences between the same variables" (Ben-Chaim et 

al., 1998, p. 261): This strategy involves students' erroneous focus on comparing the 

differences between values that belong to the same measure spaces, which is known as 

incorrect additive strategy. Ben-Chaim et al. (1998) reported that students used this 

strategy almost for all of the problems, including the problems that ask students to 

compare change in relative terms. 
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Strategy 7. “Responding to the numbers but not the context of a given problem” (Ben-

Chaim et al., 1998, p. 261): In this strategy, students only apply algorithms including 

multiplication, that is close to cross multiplication and do not perform operations related 

to the meaning of the problem (e.g., multiplying time 1 and distance 2, which does not 

make sense for the problem context). Apparently, students who used this strategy lack 

essential understandings of proportional reasoning.   

Strategy 8. “Relating to only one variable by ignoring part of the data in the problem” 

(Ben-Chaim et al., 1998, p. 262): In this strategy, students centrate on one of the variables 

and ignore the other. Thus, this erroneous strategy lacks thinking ratio as a single entity 

on its own that includes a relative comparison. 

Strategy 9. “Affective responses to numerical data and questions” (Ben-Chaim et al., 

1998, p. 262): This strategy includes students’ subjective responses including irrelevant 

and nonmathematical information that did not make relation to comparing ratios (e.g., I 

like it better).  

Thus, the study by Ben-Chaim et al. (1998) has provided a comprehensive and detailed 

analysis of seventh-grade students’ correct and incorrect and informal and formal 

strategies. In summary, students’ correct strategies are mostly based on working with 

within or between measures ratios (also called a multiplicative strategy), unit factor (also 

called unit rate) approach, and building up strategies. Indeed, these are the three basic 

types of strategies that students use for most proportional problems (Tourniaire & Pulos, 

1985). Besides, students' incorrect strategies include ignoring part of the data, providing 

an irrelevant response, and erroneous additive reasoning (Ben-Chaim et al., 1998; 

Tourniaire & Pulos, 1985).  

In another study, Tourniaire (1986) proposed that there are basically two kinds of 

erroneous reasoning for proportional reasoning, which consist of misuse of an incorrect 

strategy (e.g., using an inappropriate multiplier) and incorrect use of additive reasoning. 
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While the former is reported in a few studies, there is an amassed number of studies that 

report additive reasoning as an incorrect type of reasoning for proportional reasoning 

tasks. Indeed, when the literature on ratio and proportion is reviewed, it is seen that the 

most frequently reported incorrect type of reasoning for proportional problems is based 

on an erroneous additive reasoning (Brousseau, 2002; Hart, 1981, 1988; Kaput & West, 

1994; Karplus et al., 1983; Misailidou & Williams, 2003; Resnick & Singer, 1993; 

Steinthorsdottir & Sriraman, 2009; Tourniaire & Pulos, 1985; Tourniaire, 1986; van 

Dooren et al., 2010). In later years, this type of reasoning where multiplicative reasoning 

is required, is called as an obstacle in the development of proportional reasoning (Ayan, 

& Isiksal-Bostan, 2018). 

2.1.4. Erroneous additive reasoning: The obstacle in the development of 

proportional reasoning  

Multiplicative reasoning is defined as “making multiplicative comparisons between 

quantities” (Wright, 2005, p. 363). In another study, it is defined as “the functioning of 

a person’s multiplicative operations, multiplying schemes, and multiplicative concepts 

in ongoing interaction in her experiential world” (Hackenberg, 2010, p. 391). In 

multiplicative reasoning "the terms within a ratio are related multiplicatively and then 

this relation is extended to the second ratio" (Tourniaire & Pulos, 1985, p. 184) while in 

additive reasoning "the relationship within the ratios is computed by subtracting one term 

from another, and then the difference is applied to the second ratio" (Tourniaire & Pulos, 

1985, p. 186). Therefore, in general terms, multiplicative reasoning is a type of reasoning 

that underlies proportional reasoning, while additive reasoning does not apply to 

proportional situations.   

Students learn addition and subtraction before multiplication and division in primary 

school. The questions that they deal with in these early years of the primary school 

include the following: "How many more (less) is A than B?" and "How many are A and 

B all together?" Based on these explorations, they learn multiplication as a short way for 
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repeated addition. For instance, for the problem, "There are 3 boxes each of which 

contains 4 eggs. How many eggs are there altogether?" students learn about the equation 

4 + 4 + 4 = 3 × 4. Thus, some researchers suggest that multiplicative reasoning is based 

on repeated addition or additive reasoning (Fishbein, Deri, Nello, & Marino, 1985). 

However, recent approaches propose that this understanding is sketchy and superficial, 

although it is helpful intuitively for students (Clark & Kamii, 1996; Park & Nunes, 2001; 

Van Dooren et al., 2010).  

According to Park and Nunes (2001), repeated addition is only a procedural skill to solve 

multiplication problems. Thus, in primary school and the early years of middle school, 

students’ reasoning is expected to change from additive to multiplicative (NCTM, 2000; 

Harel & Confrey, 1994; Fernandez & Llinares, 2009; Park & Nunes, 2001). Singh (2000) 

stresses that two changes should be ensured while moving from additive to multiplicative 

reasoning: they are the “changes in what numbers are and changes in what the numbers 

are about” (p. 273).  

Even though repeated addition is not accepted as lying in the roots of multiplicative 

reasoning, additive reasoning is seen as a prior stage for multiplicative reasoning 

(Fernandez, Llineares, van Dooren, et al., 2010). Many researchers point to a pre-

proportional reasoning stage in which additive reasoning is applied by building-up 

strategies to respond to multiplicative situations (Lesh et al., 1988; Piaget & Inhelder, 

1975; Steffe, 1994). Therefore, it is important to build multiplicative reasoning on 

students’ additive reasoning skills (Fernandez et al., 2010) in order to move students 

from additive reasoning to multiplicative reasoning (Harel & Confrey, 1994).  

On the other hand, Misailidou and Williams (2003) pointed out that additive reasoning 

is the strategy that was most commonly reported as an inappropriate strategy in solving 

proportional reasoning problems. In another study, it is reported that one-third of 12-15 

years old students applied incorrect additive reasoning (i.e., focusing on the difference) 
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for several tasks, including the highly known Mr. Tall and Mr. Short problem (Hart, 

1988). Therefore, although additive reasoning is essential for the development of 

proportional reasoning, it is also an obstacle in the development of proportional 

reasoning (Ayan & Isiksal Bostan, 2018).   

Fernandez and Llinares (2009) state that discerning additive and multiplicative 

relationships from each other is a sign of mathematical maturity. However, many 

students are incapable of interpreting and distinguishing additive and multiplicative 

relationships and tend to use them in inappropriate situations. This misuse might occur 

in two ways: either using additive strategies for multiplicative problems or using 

multiplicative strategies for additive problems. For instance, for the problem, "Grandma 

adds 2 spoonfuls of sugar to the juice of 10 lemons to make lemonade. How many lemons 

are needed if 6 spoonfuls of sugar are used?” (van Dooren et al., 2010, p. 362) students 

might erroneously think that the second mixture should include 6-2=4 more spoonfuls of 

sugar and, hence, it should include 10+4 = 14 lemons. 

On the other hand, for the problem, "Sue and Julie were running equally fast around a 

track. Sue started first. When she had run 9 laps, Julie had run 3 laps. When Julie 

completed 15 laps, how many laps had Sue run?" (Cramer & Post, 1993, p. 344) students 

might think that the correct answer is 45 by considering a multiplicative relationship as 

𝑎

𝑏
  = 

𝑐

𝑑
. Nevertheless, it can be understood that the context of the problem requires an 

additive reasoning instead of a multiplicative one, and the result is 21 laps.  

Kaput and West (1994) asserted that the area of geometry and measurement is one of the 

most vulnerable areas to erroneous additive reasoning. This means that students might 

use additive strategies for geometry and measurement problems, which are multiplicative 

in nature. A problem used in the study of Kaput and West (1994) is presented in Figure 

2.21 below. 
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Figure 2.21. Missing value geometry problem (Kaput & West, 1994, p. 268-269) 

A student who applies additive reasoning to this problem might think that since the height 

is increased by the amount of 15 (24 – 9 = 15), the length is also increased by 15 and, the 

result is 30 (15 + 15 = 30 cm). However, it is not the case for this problem since the 

shapes are similar, and the lengths should increase by the same ratio, not the same 

amount. Therefore, the correct solution for the problem should be 
9

24
 = 

15

?
 or 

9

15
 = 

24

?
 that 

is 40 cm. Kaput and West (1994) conclude that the incorrect use of additive reasoning, 

in this case, is rooted in an inadequate comprehension of similarity and its quantitative 

implications. On the other hand, it is also possible that a student uses addition by default 

when he or she is confused about them (Kaput & West, 1994). Besides, he or she might 

tend to apply addition when the sizes of two units are large, but there is a small difference 

between them (Kaput & West, 1994). 

In addition, van Dooren et al. (2010) conducted a study in order to investigate 325 third, 

fourth, fifth, and sixth-grade students' additive strategies to solve proportional problems. 

The researchers also aimed at investigating the proportional strategies of the students in 

order to solve additive problems and also students' progress from additive to 

multiplicative ways of thinking. The researchers administered a test in which half of the 

problems required additive strategies, and half of them required proportional strategies. 
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The two sample questions, one of which is additive, and the other is multiplicative, are 

provided in Figure 2.22 below. 

 

 

 

 

 

 

Figure 2.22. Additive and multiplicative problems (Van Dooren et al., 2010, p. 361) 

Van Dooren and colleagues described the first situation by a function f (x) = x+a and 

explained that the situation is additive since the numbers are related by addition and 

subtraction. Therefore, the correct solution strategy for the first problem is looking at the 

differences between the ages of the two persons and applying the difference to the second 

value. Moreover, they described the second situation by a function f (x) = bx and justified 

that the situation was multiplicative (proportional or linear) since the variables are related 

by multiplication and division. Thus, the correct solution strategy for the second problem 

is writing a proportion between the given variables or applying the ratio of the first two 

variables to the second variable. The researchers pointed out that the required reasoning 

in these situations is very distinct since the first one deals with a difference, and the 

second one deals with a ratio between the two values. The findings of the study revealed 

that students showed a tendency to use additive strategies for multiplicative problems. 

Specifically, 46.6% of the students in the third grade and 6.4% of the students in the sixth 

grade were additive reasoners. Another finding of the study was that the tendency to use 

additive strategies for multiplicative problems decreased with age, whereas the tendency 

to use multiplicative strategies for additive problems increased with age. Karplus et al. 

(1983) urge that proportional reasoning requires being able to differentiate these two 

types of systems of relationships. 
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In another study conducted by Misailidou and Williams (2003), constructing an 

instrument to determine the misconceptions of the students in the domain of proportional 

reasoning was aimed. The researchers hypothesized that the misconception of the use of 

additive strategy for proportional problems would occur in students' answers frequently. 

Three hundred three students between 10 and 14 years of age were given a test prepared 

to determine their misconceptions related to proportional reasoning. Students' answers 

were coded as correct or erroneous for each item, and the results were analyzed using the 

Rasch model in order to scale the most common errors. The findings of the study revealed 

that the "tendency to additive strategy" was the strongest and the most frequent 

misconception. 

Thus, it is understood that additive reasoning constitutes one of the stumbling blocks in 

the development of proportional reasoning. The literature is rich in providing evidence 

that additive reasoning becomes more apparent when specific types of task variables are 

used in the problems. Thus, in the following section, these task variables that affect 

student success in proportional reasoning and cause students to fall back to additive 

reasoning will be explained in order to guide the development of the tasks used in this 

study.  

2.1.5. Task variables affecting student success in proportional reasoning 

Noelting (1980a, 1980b) called for attention to the numbers used in a task. He ordered 

the orange juice task in terms of difficulty based on the values that it included. The task 

included pictures and required children to decide which of the two orange juice 

concentrations that included different amounts of orange juice and water had a more 

orangey taste. Karplus et al. (1983) used a similar task, including lemon juice 

concentrations, wherein students were asked to find a missing value as well as make 

comparisons. According to the results of their study, 60% of the answers to the 

comparison questions included a within recipe approach, while less than 20 % included 

a between recipe approach. Moreover, it was reported that almost 60% of the participants 
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could correctly answer the questions with integer ratios, whereas only 10% of them could 

correctly answered the questions that required creating a common denominator (or 

numerator). Twenty-five percent of the participants could solve integer ratios correctly 

by multiplicative reasoning, but they applied incorrect additive reasoning when the 

question included a non-integer ratio. Thus, they concluded that, the numbers used in a 

task is a significant factor that determines the task difficulty. Particularly, if the numbers 

in a task are divisible, form an integer ratio or a unit rate, the task is considered to be less 

difficult, and it is possible to enhance symbolic representations of proportions by using 

these number relationships (Karplus et al., 1983; Noelting, 1980).  

Kaput and West (1994) outline a hierarchical analysis of proportional problems in terms 

of problem difficulty. In particular, they lay out the task variables that facilitate and 

hinder the solution of problems in terms of numerical and semantic features. To begin 

with, the first task variable that is considered to enhance problem solution is the reduced 

form of ratio that has to do with the numerical feature of a task. Having a whole number 

quotient between the quantities (i.e., the reduced form of ratio) enables multiplicative 

comparison and the use of build-up strategies. The second task variable is including a 

familiar multiple of one quantity of the other quantity either within the measure space or 

between the measure spaces in terms of numerical features. This makes it easy to notice 

that one of the quantities is a multiple of the other quantity directly and without 

calculation. In addition, this could also pave the way for the application of (abbreviated) 

build-up strategies. Concerning semantic features, containment, for every/each 

statement, and familiar rates are discussed to facilitate problem-solving. In particular, it 

is stressed that if a problem context involves a containment wherein it is possible to 

associate two entities, then build-up strategies would be more applicable, which would, 

in return, facilitate problem solution. Secondly, if the explicit use of "for every/each 

statement" appears in the problem, then it makes it easier to conceptualize the situation 

as rate or ratio. Lastly, a problem situation that involves a familiar rate (e.g., speed, price) 
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enables students to understand the situation as rate-ratio and to use the unit-factor 

approach (Kaput & West, 1994). 

On the other hand, some task features hinder the process of problem solution that are 

related to numerical or semantic features. In relation to the numerical features, if a task 

includes two quantities, either of which does not divide the other evenly, then, that task 

would be more difficult for the students. In addition, the tasks that involve quantities 

with a small difference between them yield students' tendency to use additive strategies, 

which would increase the task difficulty. When semantic features that hinder the 

problem-solving process is in question, ambiguous grouping might be responsible for 

increasing the task difficulty. If a problem involves ambiguous groups that lose their own 

identities (e.g., mixture problems), it might be hard for children to keep their original 

measures separately. Besides, including continuous units in the tasks that are hard to be 

visualized and identified as separate makes the task more difficult for students (Kaput & 

West, 1994; Tourniaire, 1986).   

Up to this point, the essential elements of proportional reasoning and related didactical 

activities were discussed with a didactical phenomenology perspective. Then, different 

types of proportional reasoning tasks and students' informal and formal strategies for 

these tasks were elaborated. Other topics discussed include additive reasoning as an 

obstacle for proportional reasoning and task variables that hinder/facilitate students' 

success in proportional tasks. In the following section, the developmental course of 

proportional reasoning will be explained in order to shape the learning trajectory and 

instructional sequence in this study. 

2.1.6. Development of Proportional Reasoning  

The development of a concept occurs “not in isolation but in relationship with other 

concepts, through several kinds of problems and with the help of several wordings and 

symbolisms” (Vergnaud, 1988, p. 142). In other words, it is not possible to describe a 
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single and linear route for the development of understanding complex mathematical 

domains independent of other concepts; rather, “development looks more like a tree with 

an intricate branching system” (Lamon, 1994, p. 90). Kieren (1976) suggests essential 

subconstructs of rational number understanding as fractions, equivalence classes of 

fractions, ratio, operators or mappings, quotients, measures, and decimals. He argues that 

all of these subconstructs are related to and interact with each other (Kieren, 1976). 

Similarly, Vergnaud (1983, 1988) puts forward the term “Multiplicative Conceptual 

Field” [MCF] that includes situations that “can be analyzed as simple and multiple 

proportion problems and for which one needs to multiply or divide” (Vergnaud, 1988, p. 

141). This field consists of the concepts “linear and n-linear functions, vector spaces, 

dimensional analysis, fraction, ratio, rate, rational number, and multiplication and 

division” (Vergnaud, 1988, p. 141). Therefore, it is essential to look at the development 

of proportional reasoning in relation to other concepts.  

Additionally, in order to understand children’s proportional reasoning, it is also 

significant to make sense of the developmental course of it. However, there is no clear 

developmental time course of proportional reasoning in the literature (Boyer, Levine, & 

Huttenlocher, 2008). The original works by Piaget and colleagues (Inhelder & Piaget, 

1958; Piaget & Beth, 1966; Piaget & Inhelder, 1975) suggest that proportional reasoning 

is a late achievement, and children are not capable of reasoning proportionally until 11-

12 years of age. On the other hand, later studies have consistently shown that young 

students have an informal and intuitive knowledge in proportional reasoning and can deal 

with proportional situations as early as grades 3-5 (Boyer et al., 2008; Kaput & West, 

1994; Lamon, 1994). Nevertheless, these strategies might be “primitive, context bound, 

relatively symbol free, and based upon counting, adding, and halving” (Lamon, 1994, p. 

99). 

Students have a bulk of prior knowledge and experience in proportional situations by the 

time they engage in instruction on proportional reasoning (Lamon, 1994, 1995). By the 
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time they are in middle school, they already have powerful skills to count, match, and 

partition. Therefore, it is essential to build new knowledge of proportional reasoning on 

powerful use of those skills (Lamon, 1995). However, "the development of proportional 

reasoning depends on more than a child's existing collection and organization of past 

informal experiences" (Lamon, 1995, p. 178). It is also evident that proportional 

reasoning is developed and facilitated through a teaching and learning process (Lamon, 

1994, 1995). Thus, though students have rich and extensive knowledge before 

instruction, it is the teacher who should utilize and guide this knowledge to 

mathematically significant directions progressively over time in accordance with 

didactical phenomena (Freudenthal, 1983, 1978; Lamon, 1994, 1995). Hence, essential 

questions for the teaching of learning of proportional reasoning should include: “How 

can we view ratio, and eventually proportional reasoning, as an extension of some basic 

mathematical idea(s)?” and “What intuitive, informal, or existing knowledge aids the 

learning of rational number concepts?” (Lamon, 1994, pp. 90-91). I already tried to 

answer these questions in the previous sections.  

The growth in proportional reasoning takes place in a progressive increase in local 

competence (Karplus et al., 1983; Tourniaire & Pulos, 1985). The mastery of 

proportionality is gained in a small and limited set of problem situations and then 

progressively extended to other sets of problems (Lesh et al., 1988). This progressive 

increase in local competence helps guide research and instruction on proportional 

reasoning (Lesh et al., 1988). Therefore, a variety of frameworks that lay out the 

developmental stages of students in proportional reasoning that have potential in guiding 

the design of the instructional sequence and the teaching/learning environment are 

described in the following parts.  

To begin with, Lesh et al. (1988) outline essential stages in children’s development of 

proportional reasoning as follows:  
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(1) At the most primitive stage, students neglect part of information. For instance, 
they might ignore denominators and only compare numerators in the proportion 

A/B = C/D.  

(2) In the second stage, students might recognize relations among the four values 

in the proportion A/B = C/D; yet, relating those values might be solely in 
qualitative ways. 

(3) In the third stage, quantification starts with recognizing constant differences in 

additive manners. 
(4) The fourth stage is referred to as the earliest stage of multiplicative reasoning 

that includes pattern recognition and replication or a build-up strategy (i.e., 2 pieces 

for 8 cents, 4 pieces for 16 cents, 6 pieces for 24 cents, etc.).   

(5) At the fifth stage, the child notices a multiplicative relationship between two 

values, and then, this relationship is applied to the other pair of values.  

Although these stages are essential in understanding students’ development of 

proportional reasoning, “the level of reasoning that a child uses is often not consistent 

across tasks or even within a given task” …which is referred to as "horizontal decalage" 

(Lesh et al., 1988, p. 105). In other words, these stages are not linear, and the type of 

reasoning students employ depends highly on the tasks used. 

These five stages can be summarized in a two-stage distinction in students’ development 

of proportional reasoning as pre-proportional (additive) reasoning and proportional 

reasoning (Lesh et al., 1988; Piaget, & Inhelder, 1975; Steffe, 1994). Pre-proportional 

reasoning involves coordination of functions, whereas proportional reasoning includes 

reversible operations (Piaget & Inhelder, 1975; Steffe, 1994). At the pre-proportional 

stage, students might recognize a pattern and apply this pattern to find the missing value. 

In other words, they have a sense that the values change according to their sizes, and the 

nature of this change is multiplicative. However, they may not notice that the difference 

between these values constantly increases (Lesh et al., 1988).  In this stage, children can 

deal with multiplicative relationships that can be represented by the equations A/B = C/D 

or A*B = C*D "without recognizing the structural similarity of the two sides of the 

equation" (Lesh et al., 1988, p. 102-103). This type of reasoning is a weak indicator of 

proportional reasoning (Lesh et al., 1988). On the other hand, the foremost characteristic 

of proportional reasoning entails recognition of "the invariance of a simple mathematical 
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system" (Lesh et al., 1988, p. 101). Hence, the critical difference between pre-

proportional reasoning and proportional reasoning depends on whether or not the child 

can change one of the remaining three values in order to preserve the equality (i.e., 

compensate) when one of the four values in a proportion change (Lesh et al., 1988).  

In another study, Kaput and West (1994) delineate competent but informal reasoning of 

students in proportional tasks, which is defined as reasoning patterns of students that 

were not based on the formal symbolism (i.e., cross multiplication or formal division). 

In particular, they highlight three basic types of reasoning: “(1) Coordinated build-

up/build-down processes, (2) Abbreviated build-up/build-down processes using 

multiplication and division, (3) Unit factor approaches” (Kaput & West, 1994, p. 244).  

Kaput and West (1994) consider the first of these forms of reasoning (i.e., coordinated 

build-up/down) as the most fundamental one in the development of proportional 

reasoning. Also, they stress that the second form of reasoning is cognitively based on the 

first one concerning the repeated addition interpretation of multiplication, especially 

while dealing with discrete quantities and integer ratios. The development of the first two 

build-up strategies might appear independent of formal instruction; yet, the development 

of the unit factor approach can be facilitated through engagement in carefully designed 

tasks (Kaput & West, 1994). The three ways of reasoning can be facilitated through the 

use of pictures and tables and in situations that include discrete or continuous variables 

(Kaput & West, 1994). These three forms of reasoning processes are illustrated by the 

help of the strategies used for solving the following problem:  

Placemat Problem (1): A restaurant sets tables by putting seven pieces of 

silverware and four pieces of china on each placemat. If it used thirty-five pieces 
of silverware in its table settings last night, how many pieces of china did it use? 

(Kaput & West, 1994, p. 245) 

According to Kaput and West (1994), the basic build-up process to solve this problem 

includes increasing both quantities in coordination in terms of double skip counting as 

“For seven silver there is four china, for fourteen silver there is eight china, for twenty-
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one silver there is twelve china,  for twenty-eight silver there is sixteen china, for thirty-

five silver there is twenty china” (p. 246), which can be organized in such tables provided 

in Figure 2.23 below.  

 

Figure 2.23. Double skip counting by sevens and fours for the Placemat Problem 

(Kaput & West, 1994, p. 246) 

This type of reasoning involves two processes as an initial conceptualization of the 

correspondence relationships between the quantities and computation of increment (or 

decrement) in both quantities (Kaput & West, 1994). In order to handle the process of 

incrementing (or decrementing) in more efficient ways, this process can be abbreviated 

or consolidated in terms of multiplication (as an efficient way of repeated addition). This 

kind of process is referred to as the abbreviated build-up process (Kaput & West, 1994). 

An abbreviated build-up strategy for a different version of the Placemat Problem above 

when the number of pieces of china for 392 pieces of silverware is asked would be 

thinking as:  

“We are given 392 pieces of silverware, so 392 silverware divided by 7 silverware 
per placement gives 56 placemats. There are 4 pieces of china per placemat, so 

there were 4 china per placemat times 56 placemats, which gives 224 pieces of 

china” (Kaput & West, 1994, p. 248).  
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This would be written symbolically as follows:  

 

Figure 2.24. Abbreviated build-up strategy for the Placemat Problem (Kaput & West, 

1994, p. 248) 

It should be noted that the unit size of one quantity is divisible to the other quantity, that 

is, the quotient is a whole number in this example. Students might deal with a divisibility 

failure, when the quotient is not a whole number, by making an adjustment in unit size 

at the beginning and operate with the adjusted unit or by making an adjustment later. 

This process of making adjustments can lead to the unit factor approach wherein the unit 

size of a quantity is used as a divisor (i.e., unit factor) to find the unknown quantity. A 

related strategy for the Placemat problem is illustrated in Figure 2.25 below: 

4 𝑝𝑖𝑒𝑐𝑒𝑠 𝑜𝑓 𝑐ℎ𝑖𝑛𝑎

7 𝑝𝑖𝑒𝑐𝑒𝑠 𝑜𝑓𝑠𝑖𝑙𝑣𝑒𝑟𝑤𝑎𝑟𝑒
 ≈ 0. 57 china/silverware 

0. 57 china/silverware × 35 silverware ≈ 20 china 

Figure 2.25. The unit factor approach for the Placemat Problem (Kaput & West, 1994) 

While the informal strategies for the Placemat Problem would be related to one or more 

of the three strategies above, the formal approach to the problem would involve setting 

up a formal equation, either within a measure of between measures. A within-measure 

formal equation for the Placemat Problem is presented in Figure 2.26 below.  

7 𝑠𝑖𝑙𝑣𝑒𝑟𝑤𝑎𝑟𝑒

392 𝑠𝑖𝑙𝑣𝑒𝑟𝑤𝑎𝑟𝑒
 = 

4 𝑐ℎ𝑖𝑛𝑎

𝑥 𝑐ℎ𝑖𝑛𝑎
 

Figure 2.26. A formal equation for the Placemat Problem (Kaput & West, 1994, p. 253) 
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Last but not least, particularly, the teaching experiment study conducted by Lo and 

Watanabe (1997) can give essential insight into the informal understandings of children 

prior to ratio and proportion instruction. This study focuses on the development of one-

fifth grader's ratio and proportion concepts as he gains knowledge in the multiplicative 

conceptual field and how he schematizes his informal knowledge over the course of six 

months. The researchers posed several proportion tasks, including a variety of task 

variables (e.g., the numbers, the context, availability of physical materials) to the fifth-

grade student, Bruce, in face-to-face interviews. The findings of the study showed that, 

at the beginning of the study, he was able to use physical materials in order to group and 

link them and to find the answers using multiplication and missing multiplicand 

approaches, ratio-unit/build-up method, or an intelligent guess. Nevertheless, he avoided 

working with division and fractions while using physical manipulatives. After the 

removal of the manipulatives, he started to draw pictures for the candy-buying task, 

"Yesterday, I bought 28 candies with 12 quarters. Today, if I go to the same store with 

15 quarters, how many candies can I buy?" (Lo & Watanabe, 1997, p. 218). Below is an 

example of his work that included drawing circles to represent candies and quarters and 

coordinating equivalent relationships between the number of candies and the number of 

quarters:   

 

Figure 2.27 Bruce’s drawing for the candy-buying task (Lo & Watanabe, 1997, p. 223) 

In a follow-up interview, Bruce was asked to solve a different version of the candy-

buying task, "Yesterday, I bought 8 candies with 12 quarters. Today, if I go to the same 
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store with 9 quarters, how many candies can I buy?" (Lo & Watanabe, 1997, p. 223) 

without drawing circles. However, he was not able to correctly find the answer; instead, 

he applied an erroneous additive reasoning and concluded that the answer was 5 by 

applying the difference between the number of candies and quarters in the first situation 

(i.e., 12-8 = 4) to the second situation (i.e., 5 is 4 less than 9). Nevertheless, for the 

following question, "How many candies can six quarters buy?" (Lo & Watanabe, 1997, 

p. 224), he was able to realize his mistake. Instead of drawing circles, he wrote down 

numbers 1 to 12 in a column-like manner and 1 to 8 in another column next to the first 

one. Then, he grouped the numbers in both columns to find equivalent relations and 

coordinate the two sets of numbers. However, he was still unaware of the common factor 

between the number of candies and quarters. Below is an illustration of this process: 

 

Figure 2.28 Coordinating the two sets of numbers to find equivalent relations (Lo & 

Watanabe, 1997, p. 224) 

After four more sessions of the teaching experiment, Bruce wrote down a table-like 

representation and employed coordinated build-up reasoning while working on the 

following task:  

A house was 24 feet tall and had a window that was 12 feet above the ground. This 

house became 18 feet tall after a certain amount of magic liquid was applied. How 
tall would the window be above the ground after the magic liquid was applied? (Lo 

& Watanabe, 1997, p. 225) 
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Below is Bruce’s table-like representation and coordinated build-up reasoning:  

 

Figure 2.29 Bruce’s table like representation and coordinated build-up reasoning (Lo & 

Watanabe, 1997, p. 225) 

In particular, as he was reasoning with the table-like representation above, Bruce focused 

on the multiplicative relationship between the old and new heights of the house (i.e., 24 

feet and 18 feet). Eventually, he concluded that "the house went down one fourth, so the 

window went down one fourth." (Lo & Watanabe, 1997, p. 225). The researchers 

concluded that he identified 6 as a common factor between the old and new heights of 

the house, which was referred to as norming (Lo & Watanabe, 1997). They also stressed 

that even though he was able to find a common factor through a norming process, he was 

still unable to curtail the build-up process through multiplication and division, which is 

referred to as abbreviated build-up reasoning, especially when the numbers got bigger. 

However, during the next interviews, while he was working on the question, "A 

helicopter flies 16 miles from the airport to a downtown hotel in 10 minutes. At this rate, 

how far could the helicopter fly in 2 hours?" (Lo & Watanabe, 1997, p. 229), he was able 

to curtail this process to scale both values within their measure spaces upon the 

interviewer's probing in the following table-like representation: 

 

Figure 2.30 Curtailment of the build-up reasoning by multiplication within measures 

spaces (Lo & Watanabe, 1997, p. 229), 

More precisely, Bruce came to the point that he had to multiply 16 by 12 in order to find 

the distance the helicopter could fly in 2 hours since 120 was 10 multiplied by 10. The 
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researchers concluded that Bruce developed several methods to tackle a variety of 

proportional tasks, including scalar and functional methods. Moreover, his methods were 

influenced by several task variables, including the size of the numbers involved, the type 

of ratio, and the context.  Lastly, they concluded that Bruce's difficulties were rooted in 

his limited understanding of several concepts in the multiplicative conceptual field: 

multiplication, division, fractions, and decimals. 

 Therefore, the findings of the study by Lo and Watanabe (1997) suggest that the 

development of ratio and proportion concepts occurs in relation to other concepts in the 

multiplicative conceptual field. Moreover, the findings of this study propose that the 

development of these concepts happen in relation to the use of informal tools such as 

pictures and table-like representations in order to link composite units and coordinate 

different kinds of linked composites. Moreover, several other studies cited above pointed 

out that students can naturally use tables and table-like representations in order to make 

sense of the proportional relationships by drawing their informal experiences of building 

up and iterating linked composites. Similarly, in this study, ratio tables are the 

overarching model that deserves particular attention on its own. Hence, the role of ratio 

tables in the development of proportional reasoning and related concepts of ratio and 

proportion is elucidated in more detail in the next section. 

2.1.7. The Role of Ratio Tables in the Development of Proportional 

Reasoning 

Kenney, Lindquist, and Heffernan (2002) reported fourth-grade students' informal 

strategies for two proportional reasoning tasks from the 1996 National Assessment of 

Educational Progress (NAEP) in mathematics that can be helpful to understand how 

elementary school students approach proportional reasoning tasks. The first one of these 

tasks named “the Butterfly Task” asks grade four students to find the number of complete 

butterfly models that can be made from the given supply of 29 wings, 8 bodies, and 13 
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antennae when a complete model of butterfly requires 4 wing pieces, 1 body, and 2 

antennae. Below is the “Butterfly Task”:  

 

Figure 2.31. The Butterfly Task from NAEP 1996 for Grade 4 (Kenney et al., 2002, p. 

88) 

Although many strategies that include pictorial models with or without words were 

reported, the two of these strategies were helpful in order to understand fourth-grade 

students' use of informal tools. These two strategies are presented in Figure 2.32 below. 

Figure 2.32. Two examples of responses to the Butterfly Task that include the 

organization of the information with informal tools (Kenney et al., 2002, p. 91) 
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As seen in the strategy on the left in Figure 2.32, the fourth-grade student linked 4 wings, 

1 body, and 2 antennae that composed a complete butterfly model and wrote these linked 

quantities until there is not enough of one of the supplies (i.e., wings, body, and 

antennae). In this process, he or she represented these linked quantities by writing them 

next to each other. Besides, as a similar but more organized strategy, another student 

wrote these in a table in order to keep track of the iterations he or she made with the 

linked supplies. 

 The second task, named "the Caterpillar Task," asks students how many leaves would 

be necessary to feed 12 caterpillars if 5 leaves are needed to feed 2 caterpillars. Below is 

this task:   

 

Figure 2.33. The Caterpillar Task from NAEP 1996 for Grade 4 (Kenney et al., 2002, 

p. 88) 

The fourth-grade students were able to come up with several strategies for solving this 

task, including pictorial answers and verbal explanations (Kenney et al., 2002). However, 

their responses that include the use of horizontal and ratio tables gave essential ideas 

about informal tool use for proportional reasoning tasks. Below is an example of students' 

use of horizontal and vertical ratio tables in order to respond to the Caterpillar Task: 
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Figure 2.34. Fourth-grade student's use of the horizontal ratio table (Kenney et al., 

2002, p. 96) 

As seen in Figure 2.34, a fourth-grade student was able to link the number of caterpillars 

and required leaves (i.e., 2-5) and iterate this link through the columns of the horizontal 

ratio table. Besides, some of the students structured these tables vertically, as presented 

in Figure 2.35 below. 

  

Figure 2.35. Fourth-grade student's use of the vertical ratio table (Kenney et al., 2002, 

p. 96-97) 

Therefore, the data from a big scale assessment program revealed that fourth-grade 

students were able to deal with proportional reasoning tasks by iterating linked 

composites and building up strategies. In addition, it was also seen that these students 
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were able to organize their build-up and iteration processes in horizontal and vertical 

ratio tables before receiving any formal instruction on ratio and proportion. 

In another study, Streefland (1984) elucidates a teaching experiment with third graders 

(aged 8-9), which he suggests that can serve as building blocks for a teaching and 

learning theory for ratio. In this study, he particularly exhibits tools for outlining and 

shaping the long-term process of learning ratios in which he focuses on fostering 

schematization of ratio. In this experiment, the classroom discussion revolves around the 

theme "with the giant's regards ratio as a phenomenon" (Streefland, 1984, p. 327). In 

particular, one of the situations in this story is as follows:  

"The giant has a son. Sometimes they take a walk with the baker. This is not easy. 

For three steps of the giant the baker needs fifteen… Take the distance from the 
giant’s dwelling place to the baker’s house, The giant can do it in 18 steps. What 

about the baker?” (Streefland, 1984, p. 329-330).  

Below is the schematization of this situation as it emerged in the classroom discussion 

initially:  

 

 

Figure 2.36. The initial schematization of the steps of the giant and the baker on the 

number line (Streefland, 1984, p. 330). 

In the following instances of the discussion, the teacher asks where the giant has done 

ten steps, five steps, and one step tell while moving her finger along the number line 

from 18 towards 0 as in the following figure:  
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Figure 2.37. Moving fingers along the number line in order to represent the walk (hand 

gesture) (Streefland, 1984, p. 330). 

Streefland (1984) suggests that once the Giant’s and Baker’s walk together is represented 

on the number line, the same process can be coordinated on the number line as follows:  

 

Figure 2.38. Building up the walk of the Giant and Baker on the number line 

(Streefland, 1984, p. 330). 

Moreover, he suggests that the corresponding ratio table can also be helpful to represent 

the walk of the two as in the following figure: 

 

Figure 2.39. Building up the walk of the Giant and Baker in the table (Streefland, 1984, 

p. 330). 

Streefland (1984) refers to this approach that includes gradually building up with number 

lines and tables as an “open approach” and suggests that this approach has the potential 

to invite children to fill in the values for other situations by obeying the given number 

relationships while “ratios remain invariant” (p. 333).    
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In a follow-up study, Streefland (1985) suggests that making coffee with a fixed recipe 

is a mapping (i.e., ϕ) of numbers of scoops on numbers of cups; that is, a ratio-

anticipating activity. For this task, various situations of coffee by using the same recipe 

(i.e.,  
3

4
 of a scoop per cup) can be rendered in a table as follows:  

 

Figure 2.40. Rendering various situations of coffee with the same strength (Streefland, 

1985, p. 80)  

As seen in Figure 2.40, by using the given recipe (i.e.,  
3

4
 of a scoop per cup), a variety of 

situations can be represented in the table while the relationship between the number of 

scoops and cups remains the same. Furthermore, several properties of proportional 

relationships can be observed by using the relationships in the table (Streefland, 1985). 

For instance, the property “ϕ(na) = nϕ(a)- if you want doubling or otherwise multiplying 

the number of cups, double or, correspondingly, multiply the numbers of scoops” 

(Streefland, 1985, p. 81) can be represented in the table as follows:  

 

Figure 2.41 Scaling up the numbers in the ratio table (representing the property of ϕ(na) 

= nϕ(a) (Streefland, 1985, p. 81) 

As seen in Figure 2.41, the process of scaling up the number of scoops and cups with the 

same scale factor can easily be observed by using ratio tables. Moreover, a process that 

requires scaling down can also be easily represented in the table as follows, where the 

scale factor is a fraction. This can be represented algebraically by "ϕ(
1

𝑚 
a) = 

1

𝑚
 ϕ(a)- half 
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of some other (integral) part of cups requires half or the corresponding part of scoops 

respectively” or “of ϕ(ra) = rϕ(a) where r is a fraction” (Streefland, 1985, p. 81).  

  

Figure 2.42. Scaling down the numbers in the ratio table (representing the property of 

“ϕ(
1

𝑚 
a) = 

1

𝑚
 ϕ(a) and of ϕ(ra) = rϕ(a), respectively (Streefland, 1985, p. 81) 

Hence, in a similar vein to Kenney and colleagues’ (2002) study, Streefland’s (1984, 

1985) studies provided useful insights regarding students’ informal ways of reasoning in 

proportional tasks and how they make use of ratio tables in order to organize, represent, 

and communicate their reasoning. Thus, in this study, the instruction is built on these 

ways of reasoning and tool use in such a way that in the hypothesized trajectory ratio 

tables are anticipated as informal tools that would support students’ understanding of 

proportional situations and covariation and invariation relationships that occur among 

these situations.  

In summary, the review of the literature on proportional reasoning revealed essential 

mathematical components of proportional reasoning (i.e., absolute and relative thinking, 

covariance and invariance, ratio appropriateness-ratio sense, quantitative and qualitative 

reasoning, and reasoning within and between measure spaces-multiplicative reasoning) 

and related didactical activities (i.e., relationships, partitioning, unitizing and norming, 

linking composite units and iterating linked composites). Besides, it declared the formal 

and informal strategies of students for solving proportion tasks as mostly based on 

working with within or between measures ratios (also called the multiplicative strategy), 

unit factor (also called the unit rate) approach, and building up strategies. Besides, it 
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presented the incorrect types of student reasoning when dealing with proportional tasks 

as ignoring part of the data, providing an irrelevant response, and erroneous additive 

reasoning with a focus on the last one. As another concern, it displayed the task variables 

that affect student performance, and that should get attention while designing 

instructional tasks. Lastly, it portrayed the developmental course of proportional 

reasoning, especially in young students. Thus, all this information provided a 

comprehensive background in order to guide the development of an instructional 

sequence and related hypothetical learning trajectory. Another tenet that guided the 

design of this study is the theory of Realistic Mathematics Education. Therefore, this 

theory will be described with a focus on its principles in the following section.  

2.2. Realistic Mathematics Education 

The domain-specific instructional theory of Realistic Mathematics Education was used 

to develop, revise, and implement the instructional sequence and HLT developed in this 

study. This theory is elucidated in the following sections by a focus on its developmental 

course.  

2.2.1. Early works by Treffers, Freudenthal, and Streefland  

In a traditional mathematics classroom, [formal] mathematics (i. e., definitions and 

notation) is usually the starting point, and concrete problems appear at the end as 

applications (Freudenthal, 1973, 1991). In this process, students passively listen to what 

the teacher prescribes to the students, and students imitate as they learn "ready-made 

mathematics" (Freudenthal, 1973, 1991). However, Freudenthal is opposed to this type 

of teaching by claiming that no "teaching matter should be imposed upon student as a 

ready-made product" (Freudenthal, 1973, p. 118) since this type of teaching is not 

compatible with a didactical perspective. As the opposite of ready-made mathematics, 

he uses the term "the method of re-invention" for a teaching method that focuses on 

understanding and analyzing mathematics as a human activity, particularly as the activity 

of a learner. 
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In a re-invention process, concrete problems should be the starting point, and they should 

be explored in terms of mathematical matters in a process that he termed as re-invention. 

Similarly, Treffers (1987) and Streefland (1991) emphasize a learning process of 

students, which would start from problems that are open and generative in their nature 

and move to construction and production of mathematics on their own. In this process, 

the role of reality should be to act as a source for producing mathematics and hence to 

serve as a domain of application (Streefland, 1991). He goes on to stress that this is also 

a path that is compatible with the historical learning process since it includes the process 

of reconstructing the historical progress of mathematical knowledge (Streefland, 1991). 

Following this path makes sure that students can gradually progress in their process of 

mathematization as they engage in a learning process (Streefland, 1991).  

Freudenthal (1991) exemplifies a process of re-inventing geometry as follows. Let us say 

a student starts with analyzing a number of parallelograms and discovers many common 

properties of those shapes (i.e., opposite sides are parallel, measures of opposite angles 

are equal, adjacent angles are supplementary, diagonals bisect mutually, certain triangles 

obtained by dividing of bisectors are congruent, it is possible to pave the plane by using 

congruent parallelograms, etc.). Later on, he or she discovers connections among those 

properties and logically organizes these properties in such a way that he or she finally 

discovers one property among all that can be used to derive all other properties from, 

which would be the formal definition of a parallelogram. Therefore, this student involves 

in the activity of defining rather than being imposed a definition that would be an instance 

of antididactical inversion (Freudenthal, 1991).  

As can be observed in Freudenthal’s example of a re-invention process given above, the 

learning has to proceed through structured levels of directed invention organized around 

perspectives of students in which the student himself/herself re-invents mathematics 

(Freudenthal, 1973). Bottom level activities include real situations that include 

unmathematical matter. On this level, students construct models to the real situation that 
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is to be mathematized. These activities include performing actions that are not directly 

related to mathematical ideas. However, bottom level activities are not unmathematical; 

rather, they are pre-mathematical since they are precursors that prepare students for 

higher-level mathematics (Freudenthal, 1973). Students may not even realize they are 

doing mathematics as they operate with the concepts on this level; however, the teacher 

would know how children's actions relate to higher degree mathematical ideas. 

Freudenthal (1973) argues that passing over this pre-mathematical level is a mistake, 

which is very common in traditional mathematics instruction.   

On the next level, the organization of the activities done on the bottom level and 

reflections on these activities should take place in a more mathematical manner so that 

children become aware of what they have done previously. Otherwise, they would 

believe what they have been doing is irrelevant and would not be able to move to a higher 

level; that is, the higher level would not be accessible (Freudenthal, 1973). Eventually, 

higher-level operations can be introduced as algorithms and routines to provide 

automatism and autonomy as long as the didactic principle of re-invention is followed. 

Freudenthal typifies this process by giving an example of a child who starts to work 

intuitively on finding 8 + 5 with suitable material and splits the expression as (8+2) + 3, 

possibly as unconsciously. As soon as the child becomes conscious of what he is doing, 

feels the need to split, and develops the algorithm for such additions, he moves to the 

next level. Eventually, when the child is able to formulate the splitting algorithm, he even 

moves to a higher level. Thus, the child discovers an algorithm, which is the best way to 

understand it (Freudenthal, 1973).   

Therefore, starting from the bottom level activities and moving to higher-level activities, 

formalizing takes place progressively. Students work with objects, construct models to 

these objects, and operate with these objects and models on the bottom level. As objects 

and operations become routine, they might provoke short-cut methods and streamlining, 

which in return might eventually lead to a common language and symbolism. This 
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process is what Freudenthal (1991) terms as progressive formalizing. Engaging in this 

process of re-invention and progressive formalizing as one’s own activity is essential in 

order to make sense of mathematizing (or mathematization), which is explained in the 

next section.   

 Mathematization 

Mathematizing has always been one of the main interests of mathematicians. Freudenthal 

(1973) suggests that students should also learn to mathematize wherein they begin with 

real situations and eventually mathematize those situations at the end. He even claims 

that "there is no mathematics without mathematising" (Freudenthal, 1973, p. 134). 

Mathematizing can include mathematizing unmathematical things and/or not adequately 

mathematical things, which need to be mathematized better and more perspicuously 

(Freudenthal, 1991). Hence, mathematizing is referred to as the activity of organizing 

nonmathematical or inadequately mathematical matters into a structure that would allow 

for mathematical refinements (Freudenthal, 1991).  

Therefore, mathematizing could occur at different levels: Understanding spatial gestalts 

as figures is a mathematization of space, organizing the properties of parallelograms to 

obtain a definition is a mathematization of the conceptual field of parallelogram, 

organizing the geometrical theorems to arrive at all of those from a number of those is a 

mathematization of geometry, arranging this system into a language is a mathematization 

of a subject, which is called formalizing (Freudenthal, 1991). Hence, how far students 

should mathematize is a question to be considered; however, they should undoubtedly 

engage in mathematizing on the lowest level that includes working with unmathematical 

matter and on the next level where an organization of mathematical matter into a structure 

takes place (Freudenthal, 1973). 

Freudenthal (1991) mentions modeling as an essential aspect of mathematizing, which 

includes creating schemes to fit reality and where the emphasis is on the content in lieu 
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of the form. Within the context of mathematization, a model should act as an 

“intermediary by which a complex reality or theory is idealized or simplified in order to 

become accessible to more formal mathematical treatment” (Freudenthal, 1991, p. 34). 

Hence, models do not directly apply to mathematics; instead, they should be used as 

intermediaries in order to arrive at mathematical formulas (Freudenthal, 1991). 

According to him, urns (i.e., small bags that are used to draw lots from) are models for 

mathematizing things that are conditioned by chance (Freudenthal, 1991).  

Similarly, Streefland (1991) highlights the importance of models to support 

mathematization and proposes a process of a shift from a model of to model for. 

According to him, reality is first simplified to a model as an after-image, and as the model 

is found as applicable to other situations, it becomes a model for higher-level 

mathematical reasoning. This shift from a model of to model for can be observed in 

students' work in (fair-)sharing pizzas (Streefland, 1991). In sharing pizzas, students 

firstly draw circles to represent pizzas and divide those circles into equal parts, in which 

circles act as models of pizzas. As students reason with similar drawings about the 

relations between fractions, they become models for higher-level mathematical 

reasoning. In addition to the importance of using models to reason with in order to arrive 

at more mathematical knowledge, production and creation of models, schemas, and 

symbols is also crucial to communicate the obtained knowledge (Streefland, 1991).  

2.2.1.1.1. Horizontal and Vertical Mathematization 

Treffers' (1978) study is known to be the first attempt to distinguish horizontal and 

vertical mathematizing where horizontal mathematizing is referred to as making a 

problem situation accessible to mathematical treatment, and vertical mathematizing is 

referred to as processing more or less sophisticated mathematics. Freudenthal (1991) 

clarifies this distinction by referring to horizontal mathematization as moving from the 

real world to the symbolic world and vertical mathematization as the acts of mechanical 
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and reflective shaping, reshaping, and manipulation of symbols that take place in the 

world of symbols.  

Likewise, according to Streefland (1991), students should begin with reality and then 

engage in the processes of structuring, arranging, symbolizing, visualizing, 

schematizing, and hence move to mathematics, through which they engage in horizontal 

mathematization. Besides, they should also work within the mathematical matter in order 

to arrive at more efficient procedures, apply abbreviations, and use the symbolic 

language of mathematics by engaging in the processes of abstraction, generalization, 

unification, and specification, which Freudenthal (1973, 1991) mentions as vertical 

mathematization. These worlds can get wider or narrower, and there is no clear line 

between these worlds (Freudenthal, 1991). While something can belong to the real world 

on one occasion, in another, it can belong to the symbolic world. For instance, natural 

numbers can belong to the real world; yet, symbolic addition with natural numbers 

belongs to the world of symbols. On the other hand, mathematical objects and operations 

can be a natural part of a mathematician's life, while this may not be the case for students. 

Therefore, the distinguishing of horizontal and vertical mathematization is highly 

dependent on the situation, the individual that is engaged in the process, and the 

environment (Freudenthal, 1991). 

We can look at the examples provided by Freudenthal (1991) in order to better 

understand the distinction between these two types of mathematizations. For instance, if 

a student works on the operations 2+9 and 9+2 visually and/or mentally and discovers 

that these two can be replaced by each other, this is horizontal mathematization. If the 

student applies the law of commutativity generally; then, that would be vertical 

mathematization. He also gives several examples that would apply to the concepts of 

ratio and linearity. For example, schematizing and graphing the linear functions as 

straight lines would be vertical mathematization of the concept of ratio, while the concept 

of ratio can be mathematized horizontally through daily life situations. In this situation, 
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understanding the relationship between constant ratio and straightness is related to 

vertical mathematization. Besides, grasping the relationship between the ratio’s value 

and the graph’s steepness is an example of vertical mathematization as well. 

Furthermore, in a context involving similar shapes, going back and forth through visual 

geometrical, and arithmetical similarity might lead to alternating of horizontal and 

vertical mathematization with each other as students start with interpretations such as 

"what is double in size here, must also be double in size here" (Freudenthal, 1991, p. 43). 

Freudenthal (1983) suggests that the process of mathematizing should be based on 

Didactical Phenomenology. He alludes to the use of the term "didactical" instead of 

educational. The aim of this is to stress the relationship between teaching and learning 

since the didactics of a subject area is related to the organization of the process of 

teaching and learning in that area (Freudenthal, 1991). According to Freudenthal (1983), 

the process of teaching and learning should include learning sites that help children to 

gain critical insights into essential mathematics. These learning sites constitute the 

didactical phenomenology of a mathematical domain, which includes a series of realistic 

situations in which critical mathematical ideas are rooted in real phenomena. In other 

words, these learning sites serve as contexts wherein meaningful learning of mathematics 

occurs through an organization of the real phenomena being investigated. Therefore, 

didactical phenomenology describes the possible experiences and learning sites through 

which a student enters into the process of learning by organizing the phenomena and 

reconstructs the intended mathematical idea (Freudenthal, 1983). In a later study, 

Freudenthal (1991) outlines a series of didactical principles of mathematics, among 

which guided re-invention and bonds with reality is highlighted. These principles will be 

explained in further detail in the following sections. 

 Guided re-invention 

Freudenthal (1991) stresses that the term discovery might be preferred in the context of 

teaching (i.e., discovery learning); yet, the term "invention" puts an emphasis on both the 
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interactions between content and form and discovering and organizing. That means, 

while the term discovery as in discovery learning is related to uncovering things covered 

up by someone, the term invention involves the process of discovering the content and 

then organizing the content in mathematical forms. Furthermore, while the term 

"invention" in re-invention stands for the steps in the process of learning, the prefix "re-

" puts a restriction on what the learner would invent since he or she is supposed to invent 

something new for him but known and intended by the guide (Freudenthal, 1991).  

Re-invention is also related to the “historical learning process” through which “insightful 

construction of the system” of mathematics should take place as how the construction of 

mathematics took place in history (Streefland, 1991, p. 19). However, it should be noted 

that it does not mean that students must go through exactly the same experience as in 

history (Freudenthal, 1991; Streefland, 1991). Instead, they can retrace what took place 

in the history of the development of mathematics according to the spirit of historical 

learning process (Streefland, 1991); that is, “not as it factually took place but rather as it 

would have done if people in the past had known a bit more of what we know now” 

(Freudenthal, 1991, p. 48). However, re-invention does not always have to refer to the 

historical learning process; children's informal ways of thinking can also be sources for 

the intended formal knowledge (Streefland, 1991). 

Some children can re-invent some of the mathematical knowledge (e.g., arithmetic) on 

their own; however, it is not reasonable to expect every child to reinvent all the 

mathematics on their own. So, they need the guidance of others- adults and their peers 

(Freudenthal, 1991). Hence, the term "guided" implies the instructional environment 

organized by the guide to allow the process of re-invention. Guided re-invention includes 

acquiring knowledge and ability as a result of the learner's own activity. Therefore, the 

learner retains and uses that knowledge and skills better. Besides, it might provide with 

higher motivation. Third, by engaging in the process of re-invention, learners can better 

experience and see mathematics as a human activity (Freudenthal, 1991). 
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 Bonds with reality  

Freudenthal stresses that if a child learns mathematics in an unrelated way in his/her 

lived-through reality, that learned knowledge would disappear since "what is unrelatedly 

learned does not last long" (Freudenthal, 1973, p. 77). As opposed to the teaching of 

those unrelated sets of mathematical subjects, he proposes the teaching of "mathematics 

fraught with relations." Similarly, Streefland (1991) urges that instruction should be 

intertwined or interwoven in such a way that the material should be related to other 

mathematical concepts. Engaging in intertwined teaching of mathematics fraught with 

relations, students could learn faster and deeper, and retain that learned knowledge 

(Freudenthal, 1973; Streefland, 1991). Therefore, the teaching of coherent and connected 

material rather than isolated teaching should be valued. These connections can be within 

mathematics in order to teach mathematics in a unified manner. Another type of 

connection can be made to physics or daily life, which is considered to be more natural 

and essential (Freudenthal, 1973, 1991). However, these connections should involve a 

lived-through reality instead of a "dead mock reality" (Freudenthal, 1973, p. 78) that is 

made-up to serve as an example. Therefore, it is crucial to create, strengthen, and 

maintain bonds with reality (Freudenthal, 1991). 

In order to teach mathematics fraught with relations, mathematizing should take place in 

rich contexts that are referred to as the domains of reality that are presented to the learner 

to be mathematized (Freudenthal, 1991). Streefland (1991) also highlights the role of 

realistic contexts for concept formation and highlights the importance of embedding 

concepts in daily life contexts. These contexts can include cases such as location (e.g., 

Disneyland-like-island), story (e.g., Gulliver in Lilliput), project (e.g., building a 

bungalow), themes (e.g., flying), and clippings (e.g., information from newspapers, 

books and/or other media) that are demarcated by the teacher in order for the learner to 

reinvent specific processes and formal knowledge (Freudenthal, 1991).  Freudenthal 

(1991) also lists teaching and learning processes among the didactic principles of 

mathematics, in which he stressed individual and group learning processes. 
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2.2.2. Recent Work on RME  

Freudenthal (1973) sowed the seeds of the theory of Realistic Mathematics Education 

(RME), and Treffers (1987) and Streefland (1991) have contributed to the theory 

substantially, as aforementioned in the section above. However, RME is not a rigid 

theory, but it has been continuously subject to essential elaborations and refinements "in 

an on-going process of designing, experimenting, analyzing, and reflecting" 

(Gravemeijer, 1991, p. 157). Based on the works of Freudenthal related to guided re-

invention, progressive formalization, and mathematization, Gravemeijer (1991) refers to 

the RME theory as a theory of knowledge construction, in which students start from 

experientially real contexts and arrive at mathematical knowledge through progressive 

formalization.   

Freudenthal (1991) stressed the importance of models in mathematizing and described 

their role as intermediaries that idealize and simplify realities in order to make reality 

accessible for mathematical refinements. Since then, a growing interest has been 

expressed in the role of models among RME researchers. To begin with, Gravemeijer 

(1991) made a distinction between the role of models in RME practices and other 

approaches. According to Gravemeijer (1991), while models are used as the concrete 

examples of formal mathematics to be taught in other approaches, it is intended that 

models grounded in the contexts are created by students and used to re-invent more 

formal mathematics in RME approach.  

It is also essential that a model should act as a catalyst for a shift from a model of to 

model for, together with a shift in the ways students reason with the models 

(Gravemeijer, 1991). While models encourage thinking about the context at the 

beginning; later, they should support a focus on mathematical relations. An example 

would be the emergence of the ruler as a model where students start to work with the 

empty number line model in the activity of measuring. Therefore, the term emergent in 

emergent models is overarching: “it refers both to the process by which models emerge 
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within RME and to the process by which these models support the emergence of formal 

mathematical knowledge” (Gravemeijer, 1991, p. 175). Therefore, the emergent model 

heuristic of RME is attributed to three intertwined processes: (1) global transition, 

wherein the model emerges as a model of students’ informal activity at the beginning 

and develops into a model for higher-level mathematical thinking progressively, (2) 

emerging of new mathematical reality as a shift from model of to model for takes place 

(3) emerging of a chain of signification, which implies a series of signs occurring in a 

recursive manner. 

As Freudenthal (1991) highlights the importance of individual and group learning 

processes, Gravemeijer, Cobb, Bowers, and Whitenack (2000) draws attention to the 

activity of reinvention as being both an individual and collective activity. In a collective 

re-invention activity, students participate in whole-class discussions as they engage in 

the processes of conjecturing, explaining, and justifying, which is referred to as collective 

mathematizing (Gravemeijer et al., 2000). In such an activity, the teacher should 

capitalize on students’ reasoning in order to guide their progress to intended 

mathematics. In this process, the teacher and students negotiate in order to support the 

emerging of taken-as-shared meanings when certain social and sociomathematical norms 

are established (Cobb & Yackel, 1996; Gravemeijer et al., 2000; Yackel & Cobb, 1996). 

In such normative ways, the classroom community engages in horizontal 

mathematization as they come up with informal taken-as-shared ways of reasoning and 

communicating; that is, as they mathematize the reality in the served context. When these 

ways of reasoning and communication are subject to further mathematization, students 

engage in the activity of vertical mathematization in collective ways (Gravemeijer et al., 

2000).  

In order to support a classroom community’s collective ways of reasoning and learning 

through an RME perspective, it is essential to design instructional sequences, including 

situations that would enhance the progress from these situations to intended mathematics. 
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In order to design such sequences that are compatible with the spirit of RME, a specific 

set of heuristics RME heuristics should be followed (Gravemeijer et al., 2000, 

Gravemeijer, & Stephan, 2002). The first principle is "guided reinvention through 

progressive mathematizing," which guides the exploration of the history of mathematics 

in order to understand its development over time. In this way, it is possible to see and 

make sense of the potential obstacles and breakthroughs in the case of designing 

instructional sequences. The designer, then, should check if students may go through the 

same path to develop an understanding of the subject. In addition to history, this principle 

also includes thinking about possible informal understandings of students that may 

anticipate more mathematical practices. Therefore, the historical development and/or 

students' informal reasoning may be the starting points and sources of insight while 

designing an instructional sequence (Gravemeijer et al., 2000; Streefland, 1991). 

When mathematics is interpreted as a product of the activity of a community of learners 

trying to find solutions to problems in a progressive manner, it is essential to develop 

real-life problems with rich contexts (Gravemeijer et al., 2000). However, finding 

problems with rich contexts that would support progressive mathematizing in designing 

instructional sequences is challenging. The heuristics of didactical phenomenology 

(Freudenthal, 1983) can be used as a guide in the process of developing rich contexts. In 

this process, the goal is to analyze the relations between thinking processes and 

mathematical phenomenon from a didactical standpoint. That means, the developers try 

to create experientially real contexts wherein students can negotiate gradually advanced 

solutions to problems in collective and normative ways (Gravemeijer et al., 2000). 

The third principle that helps guide the design of instructional sequences for collective 

mathematization is the heuristic of emergent models. In the context of collective 

mathematization, models emerge as situated in students' informal ways of reasoning and 

develop over time to more mathematical models including symbols as negotiation takes 

place in order to arrive at "taken-as-shared ways of symbolizing" (Gravemeijer et al., 
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2000, p. 240). The goal in this process is to come up with ways of symbolizing that can 

fit and foster students' informal reasoning (Gravemeijer & Stephan, 2002). Another goal 

is to capitalize on the informal use of students' own models and support the shift to using 

conventional symbols by introducing symbolizations that are apt to the ways they reason 

(Gravemeijer et al., 2000). In this way, a transition from a model of to model for would 

be supported. Therefore, this taken together with the previous principles, it is essential 

to create situations "in which symbolizations and meaning co-evolve" (Gravemeijer & 

Stephan, 2002, p. 146) and wherein students could invent their own models that 

eventually evolve into more mathematical models and/or symbols as hypothesized in the 

proposed learning trajectory. Such an approach is called a "bottom-up approach" 

(Gravemeijer & Stephan, 2002, p. 146) as opposed to the classical “top-down approach” 

wherein fixed models are emanated from formal mathematical knowledge.  

Therefore, in this section, the domain-specific theory of RME was elaborated with a 

focus on its principles and its developmental course. The literature review on RME 

showed that embedding mathematical concepts in realistic contexts is necessary in order 

to support students ‘processes of mathematization and reinvention. Moreover, it also 

revealed that the use of models and tools should support these processes in such a way 

that a transition from a model of to model for is supported. Especially, the recent work 

on RME depicted the principles that should be followed while designing and 

implementing instructional sequences within the context of classroom-based research in 

order to support students’ reasoning in collective ways. Since the purposes of this study 

include developing, testing, and revising an instructional sequence based on an RME 

perspective, these guidelines were followed in the design and implementation of the tasks 

in this instructional sequence. More specifically, in order to support students' processes 

of mathematization and reinvention, the essential mathematical ideas that were described 

in the previous section were embedded in realistic tasks as bottom level activities. In this 

process, students' informal strategies (i.e., build-up, abbreviated build-up, unit factor 

approach, within- and between-measures comparisons, etc.) were taken as the starting 



 

 

121 
 

points since the review on its historical progress did not yield specific guidelines to build 

instruction on. Besides, ratio tables were hypothesized to be used as models that would 

emerge from students' build-up strategies and foster their processes of mathematization. 

In the next section, Hypothetical Learning Trajectories will be explained by focusing on 

the different definitions made to define them and the areas in which they are used and 

approached.  

2.3. Hypothetical Learning Trajectories 

Since the constructivist views started to dominate the educational area, more and deeper 

knowledge about learning and learners have been available (Simon, 1995). These 

changing views about learning have resulted in a significant reform in mathematics 

teaching and learning worldwide (National Council of Teachers of Mathematics 

[NCTM], 1989). Even though reform curricula highlight student reasoning and problem-

solving as essential aspects of teaching and learning, they do not adequately address how 

student reasoning develops over time in each topic (Lobato & Walters, 2017).  

Consequently, even though reform efforts achieved great success in changing practices 

in selected cases, they have failed to cause a broader effect (Ball, Lubienski, & Mewborn, 

2001). Moreover, many international and national studies continue to report low student 

achievement (National Assessment of Education Progress [NAEP], 2007; Yıldırım, 

Yıldırım, Ceylan, &Yetişir, 2013). Therefore, there might be some gap between the 

constructivism theory and practice.   

Simon (1995) stresses that constructivism “does not tell us how to teach mathematics” 

(p. 114); that is, it does not impose a particular way of any instructional method. 

Therefore, it might be hard to integrate a constructivist approach into instructional 

decisions. Based on this concern, Simon (1995) proposes that teachers design 

mathematics lessons in line with related research findings on student thinking and 

learning and anticipated ways of reasoning. Simon (1995) suggests a way to integrate 
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research and educational practice by the development and use of Hypothetical Learning 

Trajectories (HLT). In this process of developing an HLT, a teacher engages in 

developing conjectures about the ways of his/her students might reason and their possible 

challenges about a specific subject. Upon the anticipation of student’s potential learning 

route, the teacher creates learning activities that would support their learning of the 

targeted subject along the hypothesized route that includes sophisticated levels of 

understanding. Simon (1995) stresses that HLTs are hypothetical since it is not possible 

to know the real learning trajectory. He defines learning trajectories as "predictions as to 

the path by which learning might proceed" (p. 135). He goes on to suggest that they 

include “the learning goal, the learning activities, and the thinking and learning in which 

students might engage” (p. 133). Learning goal specifies the direction, learning activities 

are the tools that will be used to reach the goal, and the learning process includes the 

ways students' thinking and understanding will be developed by the help of these 

activities (Simon, 1995).  

 It should be noted that "the development of a learning process and the development of 

learning activities have a symbiotic relationship" (Simon, 1995, p. 136). That means, the 

development of learning activities depends on the thinking and learning processes of 

students, and the hypotheses of students’ learning routes are dependent on the nature of 

the learning activities. Moreover, "all forms of teacher support, appropriate tasks and 

tools, peer-to-peer discourse, and the language necessary to specify and build ideas" have 

a central role in students' progress (Confrey, Maloney, & Corley, 2014, p. 721). 

Therefore, the nature of instructional activities and the teaching and learning process is 

critical for students’ development of mathematical ideas.  

Since Simon (1995)'s introduction, HLTs have been considered as an essential research 

area in curriculum development, measurement and assessment, professional 

development, improving the quality of instruction and learning (Corcoran, Mosher, & 

Rogat, 2009; Lobato & Walters, 2017; Sarama, Clements, Barrett, Van Dine, & 



 

 

123 
 

McDonel, 2011). This gaining interest in HLTs urges a transition from partitioned and 

isolated teaching of mathematical facts and skills to organized and sequenced teaching 

where the focus is on developing longer and coherent sequences of instruction that 

connects knowledge vertically across grades and horizontally within a grade (Duschl, 

Maeng, & Sezen, 2011). 

The definition of HLTs has been subject to change, and researchers have focused on 

different aspects over time. For instance, Clements and Sarama (2004) define HLTs as 

"descriptions of children's thinking and learning in a specific mathematical domain and 

a related, conjectured route through a set of instructional tasks designed to engender 

those mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking, created with the intent of supporting 

children's achievement of specific goals in that mathematical domain" (p. 83) and 

maintain that HLTs should include a learning goal, related learning activities, and 

possible thinking of students. Also, they stress that the learning activities should 

comprise key tasks that would support student learning along sophisticated and 

succeeding levels of learning, which they refer to as an instructional sequence (Clements 

& Sarama, 2004). Based on this, they suggest that "a complete hypothetical learning 

trajectory includes all three aspects: the learning goal, developmental progressions of 

thinking and learning, and sequence of instructional tasks" (Clements & Sarama, 2004, 

p. 84). Additionally, it should be noted that learning trajectories are hypothetical at the 

beginning; thus, teachers "must construct new models of children's mathematics as they 

interact with children around the instructional tasks and thus alter their own knowledge 

of children and future instructional strategies and paths" (Clements & Sarama, 2004, p. 

85). Hence, the actual learning trajectory and the taken-as-shared ways of reasoning are 

emergent. 

 Another definition by National Research Council (2007) refers to learning trajectories 

as "descriptions of the successively more sophisticated ways of thinking about a topic 
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that can follow one another as children learn about and investigate a topic over a broad 

span of time" (p. 214). In another study, Confrey et al. (2014) refer to LTs as "research-

based frameworks developed to document in detail the likely progressions, over long 

periods of time, students' reasoning about big ideas in mathematics" (p. 720). While all 

of these definitions emphasize the individualistic routes of learning, the definition has 

also been adapted to refer to a learning path of a social community (Cobb, 2001). This 

perspective reconceptualizes the term learning trajectory as a "sequence (or set) of 

(taken-as-shared) classroom mathematical practices that emerge through interaction 

(especially through classroom discourse-with the proactive involvement of the teacher)" 

(Clements & Sarama, 2004, p. 85). 

Having different definitions of learning trajectories in the literature is closely related to 

how they are approached. Concerning this, Lobato and Walters (2017) classified seven 

approaches to learning trajectories based on a systematic review of literature as follows: 

(1) Cognitive levels, (2) Levels of discourse, (3) Schemes and operations, (4) 

Hypothetical learning trajectory, (5) Collective mathematical practices, (6) Disciplinary 

logic and curricular coherence, and (7) Observable strategies and learning performances. 

According to Lobato and Walters (2017), the Cognitive Levels Approach includes 

qualitative identification of distinct hierarchic levels of cognition, although the 

hierarchies can be weak. In this approach, researchers integrate the results of a series of 

empirical research in order to come up with levels of sophisticated reasoning. In the 

second approach, namely Levels of Discourse, hierarchic levels of communication, 

including discursive practices, are under investigation. In the third approach, the focus is 

on initial schemes and (mental) operations of students and how they are modified over 

time. The fourth approach, namely Hypothetical Learning Trajectories, is rooted in 

Simon’s (1995) work on instructional decisions and related to making decisions that 

support student learning. In this approach, the teacher anticipates a learning route of 

his/her students by taking into account their present understandings regarding the 
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learning goal. Based on this anticipation, the teacher creates learning activities that would 

support students' transition in sophisticated ways of thinking and learning. In the fifth 

approach, Collective Mathematical Practices, a classroom's taken-as-shared ways of 

reasoning, operating, arguing, and tool use are being explored. The sixth approach is 

referred to as Disciplinary Logic and Curricular Coherence Approach, wherein expert 

knowledge informed by long-time research is used in generating levels of how students 

think in sophisticated levels in a particular subject and/or domain. In the seventh and last 

approach, namely Observable Strategies and Learning Performances, describing 

proficiency levels of observable behaviors and/or learning performances is the primary 

goal. 

Although the approaches to and definitions of HLT have changed over time, some 

commonalities exist in all approaches/definitions. When these commonalities are in 

question, it can be seen that all of them include the following features: (1) HLTs are 

research-based, (2) HLTs include learning goals, activities, and possible reasoning of 

students as they engage with those activities, (3) HLTs include long-term learnings of 

students. On the other hand, learning trajectories can focus solely on learning (i.e., 

approaches 1, 2, 3, 6, 7) or the interplay between teaching and learning (i.e., approaches 

4-5). Furthermore, they can also focus on an individual’s learning (i.e., Steffe, 2004) or 

emerging mathematical practices of communities of learners in a classroom (i.e., 

Gravemeijer et al., 2003b). 

Concerning this, different terms are used in order to emphasize the interaction of teaching 

and learning along a trajectory. For instance, Cross, Woods, and Schweingruber (2009) 

adapt the term learning trajectory as "teaching-learning paths" in their report. Similarly, 

Van den Heuvel-Panhuizen (2008) uses the term "learning-teaching trajectories" in order 

to put an emphasis on teaching and learning. Lastly, when descriptions of normative 

ways of reasoning and learning of a classroom are in question, Stephan (2015) uses the 

term classroom learning trajectories (CLT) defined as “conjectures about the 
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mathematical ideas that become taken-as-shared and individuals' ways of participating 

in and contributing to them” (Stephan, 2015, p. 908). These conjectures include "the 

mathematical goals, and tool use as students engage with the instructional tasks" 

(Stephan, 2015, p. 908). 

Furthermore, CLTs include an outline of instructional supports in order to foster student 

learning along a learning path. After the implementation in a classroom takes place, the 

developer documents the actual learning trajectory (i.e., classroom mathematical 

practices) and make refinements to the CLT and the instructional sequence based on 

his/her analysis of the classroom implementation. With this refined and hypothetical 

learning trajectory (HLT), another classroom experiment is conducted to inform future 

research (Stephan, 2015). 

An example of a CLT for teaching addition and subtraction with integers, which was 

developed, revised, and refined after a series of implementations, was reported in 

Stephan and Akyuz (2012). A portion of the table that belongs to this CLT is presented 

in the following figure.  
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Figure 2.43. A portion of the CLT table for the integer sequence (Stephan & Akyuz, 

2012, p. 434) 

As can be seen in the figure above, a CLT includes tools, imagery, activity/taken-as-

shared interests, possible topics of mathematical discourse, and possible gesturing and 

metaphors for the related mathematics subject. Besides, when CLTs are in question, it is 

necessary to develop the related instructional sequence that would support the 

hypothesized development through interaction with the instructional sequence. The 

initial instructional sequence includes a set of ordered instructional tasks together with 

guidelines regarding the order of the tasks and anticipated thinking and learning 

processes of students as they interact with these tasks. In the second phase, these tasks 

are tested in a classroom setting and subject to revisions and refinements throughout 

classroom testing on a daily basis based on the experience obtained from the 

implementation of previous tasks (Clements & Sarama, 2004). These revisions can also 

be related to the teacher’s role and /or the classroom culture (Clements & Sarama, 2004). 

In the third phase, the “best-case instructional sequence” is developed in order to come 
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up with a more general HLT that describes the local instructional theory that can be used 

by the teachers in their classrooms (Clements & Sarama, 2004).  

In a similar way, the learning trajectory that is developed in this study is a CLT that 

includes the same elements (i.e., tools, imagery, activity/taken-as-shared interests, 

possible topics of mathematical discourse, and possible gesturing and metaphors) in it. 

In addition, the related instructional sequence that students would interact with is 

developed in order to support students’ development along the hypothesized trajectory. 

However, there are some differences, as well. First of all, the CLT developed in this 

study includes big ideas as learning goals in line with Simon’s (1995) allusion to that 

learning trajectories should include learning goals. Second, tools and imageries are 

presented together in the same column since they are closely related to each other. For 

instance, in this experiment, students started the instructional sequence by circling 

pictures of fish and food bars in order to group them and linking the two groups with 

arrows. Therefore, the pictures of the fish and food bars were the tools students used to 

link and iterate composite units. However, as the numbers got bigger, the students quit 

drawing pictures and imagined the grouping and linking processes in their minds to 

divide and multiply the number of food bars and/or fish. Therefore, the physical tools 

turned in to mental images that could then be called imageries.  

Up to this point, different approaches to HLTs were described. Concerning this, the 

different definitions and uses of HLTs were elaborated. In the next section, a literature 

review of HLTs developed for proportional reasoning or related fields will be portrayed 

in order to describe the convergences of the HLT developed in this study and in the 

previous studies. 

2.3.1. HLT in ratio and proportion 

Carpenter, Gomez, Rousseau, Steinthorsdottir, Valentine, Wagner, et al. (1999) proposed 

a four-level learning trajectory in proportional reasoning developed through studying a 
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combined classroom of 4th and 5th graders in a 2-week period. According to this 

trajectory, Level 1 includes a demonstration of limited knowledge of ratio. This limited 

knowledge might include performing random calculations or reasoning additively (i.e., 

focusing on the difference). At the next level, Level 2, students perceive ratio as a single 

unit and find equivalent ratios by repeated addition or by multiplication with an integer. 

However, students at this level cannot perform operations related to partitioning the 

given ratio (i.e., noninteger ratios). Therefore, this level is characterized mostly by build-

up strategies in which repeated addition, multiplication, or a combination of both is 

performed when integer ratios exist. Furthermore, at Level 3, students can perceive ratio 

as a single unit and perform operations with both types of ratios, integer, and non-integer 

ratios. Therefore, Level 3 is an extension of Level 2, wherein ratios are reduced. For 

instance, while working on a problem that can be represented by the proportion 
8

12
 =  

42

𝑥
, 

a student at Level 2 cannot proceed to the solution while a student at Level 3 can reduce 

the ratio 
8

12
 to 

2

3
 and perform within or between strategies on the proportion 

2

3
 =  

42

𝑥
. As an 

alternative, multiplying the ratio 
8

12
 by a non-integer value (i.e., 5

1

4
 ) to find the missing 

value is a characteristic of a student at Level 3. Besides, a student at Level 3 can build 

up from 
8

12
 to 

40

60
, reduces 

8

12
 to 

2

3
, and then adds this reduced ratio to 

40

60
 in order to find 

the missing value. The representation of this kind of thinking on a ratio table is presented 

in Figure 2.44 below.    

 

Figure 2.44. A typical strategy at Level 3 in Carpenter et al.’s (1999) trajectory 

Lastly, Level 4 involves thinking ratios as more than just units and recognizing within 

and between relationships in the proportion 
𝑎

𝑏
 = 

𝑐

𝑑
. Therefore, students do not only use 
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some kind of build-up strategies, but they can also make sense of preserving the 

relationships within a ratio, regardless of the fact that these relationships form an integer 

value or not. 

In a later study, Steinthorsdottir and Sriraman (2009) investigated the developmental 

trajectory of two classes of 5th-grade girls through the implementation of an instructional 

unit in 12 weeks in order to validate, explicate, and extend the learning trajectory 

developed by Carpenter et al. (1999). According to the results of the study, the four-level 

learning developmental trajectory for proportional reasoning was validated; yet, 

extending the trajectory by adding an emerging Level 3 between Level 2 and Level 3 

was found necessary. The results showed that emerging Level 3 students could solve a 

problem that included a scaling-down process (i.e., 
8

24
 = 

2

𝑥
 ) while Level 2 students could 

not. However, these students at emerging Level 3 could not perform a scaling-down 

process with noninteger ratios, while Level 3 students could deal with noninteger 

relationships. Therefore, an emerging level between Level 2 and Level 3 was suggested 

to represent the competence that students displayed.  

In another study, Wright (2014) proposes a hypothetical learning trajectory for rational 

numbers based on a literature review wherein he takes rates and ratios as a sub-construct 

of rational numbers along with measures, quotients, and operators. The first phase of this 

trajectory is associated with improper centration on one of the measures or no application 

of ratio/rate. Besides, focusing on the difference of measures (i.e., inappropriate additive 

reasoning) is also inherent in this first phase (Wright, 2014). In the second phase, a 

composite unit is formed and treated as a ratio, and this ratio is built up by repeated 

addition. In the third phase, the composite unit treated as a ratio is built up 

multiplicatively in such a way that the process of building up is abbreviated. In the last 

phase (i.e., Phase 4), the ratios/rates are treated as iterable units, and the within and 

between measures relationships are used flexibly irrespective of whether there exists an 

integral or non-integral operator.  



 

 

131 
 

An example might be helpful to make sense of and distinguish between these phases. For 

instance, while comparing the lightness of the colors obtained by mixing 2 units of blue 

and 3 units of yellow and by mixing 3 units of blue and 5 units of yellow, a student might 

judge that the color obtained by mixing the colors with a ratio of 2:3 would yield in a 

lighter color since that includes less amount of blue in Phase 1. This is rooted in improper 

centration on the absolute amount of the colors rather than the relative amount. However, 

it is possible to correctly judge the lightness of the color when one measure is equal (i.e., 

2:3 and 2:4). In order to answer the same question, a student at the second phase would 

be able to replicate 2:3 in order to form 4:6, and 6:9 and compare 6:9 and 6:10 (which is 

equivalent to 3:5) and make a correct judgment. 

Moreover, a student at the third phase would correctly obtain 16:24 as equivalent to 2:3 

by scaling by 8 and 15:25 as equivalent to 3:5 by scaling by 5. Then, he or she would be 

able to compare these 16:24 and 15:25 by focusing on the parts of a whole since both 

have a whole composed of 40 parts. Lastly, a student at the fourth phase would be able 

to compare 2:3 and 3:5 by reconceptualizing these ratios as part-whole relationships (
2

5
 

and 
3

8
) and make use of fraction comparison.  

Therefore, although it is limited to a small number of studies, the literature review on the 

previously developed HLTs in proportional reasoning revealed that the development of 

proportional reasoning proceeds along a path starting from focusing on the differences 

(i.e., absolute change) or no relevant reasoning at all. In the middle levels, students start 

to build up by iterations or repeated addition while they might be unaware of the 

multiplicative relationships between the quantities. In the upper levels, students start to 

work with within- or between-measures comparisons. In this phase, the presence of an 

integer or non-integer ratio is a critical determinator of students’ performance to result 

in their falling back to the erroneous additive reasoning. In the top levels, students can 

make comparisons between different ratios/rates.  



 

 

132 
 

 Additionally, it was seen that the already developed HLTs mostly focused on 

individuals' gradual development. In other words, none of the studies above describes 

collective ways of development in progressively sophisticated manners, although they 

might be useful in informing those. Therefore, this study has the potential to contribute 

to the literature in providing a developmental path of a group of students in communal 

ways.   
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CHAPTER 3  

 

METHODOLOGY 

 

 

The purposes of this study are multifaceted: (1) to develop, test, and revise a classroom 

HLT and related instructional sequence for proportional reasoning in seventh grade (2) 

to explain students’ communal ways of reasoning with informal tools and how this 

reasoning evolves over time to reasoning with formal tools in line with an RME 

perspective, and (3) to document students' collective development of mathematical 

concepts related to proportional reasoning (i.e., documenting mathematical practices). 

To these ends, the research questions of this study are phrased as follows:  

1. What would an optimal HLT and instructional sequence for proportional reasoning 

look like?  

o What would be the initial points of departure for teaching proportional 

reasoning based on RME?   

o How do students rely on their informal knowledge in order to mathematize 

that knowledge?  

o How does the instructional sequence foster this process of mathematization?  

o What opportunities and barriers does the instructional sequence provide for 

realization of the hypothesized learning trajectory?  

o How do student-generated solutions provide opportunities for horizontal and 

vertical mathematization?  
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o What evidences emerge from the classroom experiments conducted by 

using the HLT and instructional sequence? 

2. What are the mathematical practices as students engage in the instructional 

sequence? 

In order to achieve these purposes and to answer these research questions, a design 

research was conducted. In the following sections, this methodological approach, the 

context and participants of the study, data collection procedures, data collection tools, 

and data analysis methods are explained in detail. In addition, the issues related to the 

trustworthiness of the study, researcher role, and ethical considerations are elaborated in 

the sections that follow. 

3.1. Design of the Study 

Design research has attracted a great deal of attention recently, especially in the 

educational field (van den Akker, Gravemeijer, McKenney, & Nieveen, 2006). This was 

mostly due to the “disappointment with the impact of conventional approaches to 

research in education” and “the availability of promising new theories of learning and 

technologies through which these theories can be applied” (Walker, 2006, p. 8). The 

motivation for the development of design research has been reducing the gap between 

educational research and educational policy and practice (Bakker, & van Eerde, 2015; 

Lagemann & Shulman, 1999; van den Akker et al., 2006) and the wish to handle 

theoretical issues related to the nature of learning in the real contexts with more 

meaningful and broader measures of learning (Collins, Joseph, & Bielaczyc, 2004). With 

a design research perspective, researchers and practitioners can create promisingly 

effective interventions by a careful study of learning in the target settings and inform the 

results together with principles that form the basis of their effectiveness (Collins et al., 

2004; van den Akker et al., 2006). In doing so, a greater chance of improved policy and 

practice is ensured (van den Akker et al., 2006).  
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Another motivation for design research is related to the desire to develop empirically 

grounded theories (i.e., local instruction theories) by a study of the forms of learning and 

means of supporting and organizing the process of learning (Cobb, 2003; Gravemeijer, 

& Cobb, 2006). Hence, the aim in design research is both "developing theories about 

domain-specific learning and the means that are designed to support that learning" 

(Bakker & van Eerde, 2015, p. 430). In doing so, it aims at producing both useful 

educational products and theoretical understandings of how these products can be useful 

in education (Bakker & van Eerde, 2015). In this process, the design of educational 

products is an essential part of the research itself (Bakker & van Eerde, 2015). That is to 

say, “the design of learning environments is interwoven with the testing or developing 

of theory” (Bakker & van Eerde, 2015, p. 430). 

Design research is defined as “a series of approaches, with the intent of producing new 

theories, artifacts, and practices that account for and potentially impact learning and 

teaching in naturalistic settings” (Barab & Squire, 2004, p. 2). In another study, it is 

referred to as “the study of learning in context through the systematic design and study 

of instructional strategies and tools” (Design-Based Research Collective, 2003, p. 5). 

Another definition emphasizes the interplay between design research and developing 

instructional sequences while describing design research as “an iterative process of 

integrating socially situated analyses of students’ learning within the design of classroom 

environments, of which instructional sequences are one part” (Stephan & Cobb, 2003, p. 

36). In this study, this approach is followed in order to interpret and carry out a design 

research study.   

 Design research has been conducted for various goals in the educational research area, 

including designing and examining innovations like activities, institutions, interventions, 

or curricula (Design-Based Research Collective, 2003). More specifically, it is a 

promising research method for searching for innovative environments of teaching and 

learning in a complex system, generating context-based theories of learning and teaching, 
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building up knowledge of design, and improving the capacity for novelty in education 

(Design-Based Research Collective, 2003). However, design research is more than 

designing and examining specific interventions; it also serves for an understanding of 

how theory, interventions, and practice are related to each other in order to contribute to 

the existing theories of teaching and learning (Design-Based Research Collective, 2003). 

Therefore, the main concern in design research is applying enactments that have the 

potentials to result in knowledge that applies to educational practices. 

Design research is used as a common name in this study for a series of related research 

approaches including design studies/experiments (Brown, 1992), 

development/developmental research (Freudenthal, 1991; Gravemeijer, 1994), formative 

research (van den Akker et al., 2006), engineering research (van den Akker et al., 2006), 

and transformational research (Gravemeijer, 1994; National Council of Teachers of 

Mathematics Research Advisory Committee, 1988). Although different names are used, 

and the related terminology has not been fully established, van den Akker et al. (2006) 

lists the characteristics that are applicable to most design research and related studies as 

follows:   

• Interventionist: the research aims at designing an intervention in the real world;  
• Iterative: the research incorporates a cyclic approach of design, evaluation, and 

revision;  

• Process oriented: a black box model of input–output measurement is avoided, the 
focus is on understanding and improving interventions;   

• Utility oriented: the merit of a design is measured, in part, by its practicality for 

users in real contexts; and  

• Theory oriented: the design is (at least partly) based upon theoretical propositions, 

and field testing of the design contributes to theory building (p. 5).  

  

As slightly different from those, Design-Based Research Collective (2003) also puts 

forward some characteristics that a satisfactory design research should have. First, there 

must be an interplay between the main goals of designing learning contexts and 

establishing theories related to learning. Second, there should be iterative cycles of 
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"design, enactment, analysis, and redesign" (p. 5). Third, the design study should end up 

with theories that would be helpful for practitioners and other educational stakeholders. 

Fourth, the research study should also stress the interactions between issues related to 

learning in addition to the accomplishments or deficiencies for the aim of leading to a 

better design. In other words, design research studies should have the goal to address the 

complex nature of educational settings by designing key elements and evaluating these 

elements operating as a system to improve learning by means of multiple iterations 

(Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). 

It is believed that design research is an appropriate methodology for this study by 

considering many issues from the purposes of the study to the nature of the study. First, 

design research is defined as the study of context-based learning in a systematically 

designed environment (Design-Based Research Collective, 2003), and it makes use of 

theories and the findings of previous studies. This study aims to examine the teaching 

and learning process designed and implemented based on related literature in 

proportional reasoning. Thus, design research would help evaluate what the previous 

research suggests to integrate into a systematically designed teaching and learning 

process and understand the teaching and learning process within a specific domain and 

context. On the other hand, one of the main goals of design research is to develop theories 

and improve educational practice. Therefore, the study has a promising aspect that would 

also help to “increase the impact, transfer, and translation of education research into 

improved practice” (Anderson & Shattuck, 2012, p. 16). Hence, the design research 

approach would have the potential not only to help us to use the theory and literature but 

also to use what is evidenced in the learning environment to develop theories and 

improve practice.  

Teachers do not have time or required training to conduct accurate research studies, and 

researchers do not have the knowledge of complexities of learning environments to 

design an effective intervention (Anderson & Shattuck, 2012). Given that design research 
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studies deal with the critical design elements of a learning environment from the 

perspectives of both researchers and a teacher, it enables us to blend and complement the 

experiences of the researchers and teacher in order to have a holistic understanding of 

these elements from theoretical and practical bases. Moreover, since design research is 

very much context-dependent, it would allow us to collect rich data related to the 

teaching and learning process of proportional reasoning in complex and natural settings.   

As aforementioned, design research is iterative in nature (Design-Based Research 

Collective, 2003). Similarly, the purposes of this study require an iterative nature in its 

process in order to design, implement, refine, and evaluate a hypothetical learning 

trajectory and related instructional sequence. In addition, it is critical to have multiple 

iterations in order to identify critical elements, examine the opportunities and barriers of 

the designed HLT and instructional sequence, and test and revise them. Moreover, it is 

essential to take all of these considerations as they place in the complex nature of a 

classroom environment. Therefore, design research would help us understand the gradual 

development of proportional reasoning of a classroom community as it is situated in a 

classroom context.   

 In summary, there is a match between the nature of this study and design research in two 

major ways. First, the study aims to explore the processes of design and development, 

implementation, and evaluation. Second, the study has the purpose of filling the gap in 

our understanding of the design of a learning environment, HLT, and related instructional 

sequence developed based on empirical knowledge of student thinking and how students’ 

learning in communal ways can be supported through those. 

So far, the purposes and research questions of the study were stated. Besides, the design 

research methodology was explained with a focus on its general characteristics and 

purposes. Lastly, the considerations regarding why design research is the most 

appropriate methodology were expounded. In the following section, phases of a design 
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research study, and the principles and procedures that are followed in each phase will be 

elaborated. In the pages that follow, the principles of this study and the procedures that 

were followed in this study are explicated in each of these phases.  

3.1.1. Phases of Design Research 

There are different classifications for the phases of design research studies suggested by 

several researchers. For instance, McKenney and Reeves (2012) outline the three phases 

of a design research study as baseline, intervention, and retrospective analysis. In another 

study, Plomp and Nieveen (2013) list three phases named preliminary research, 

development or prototyping phase, and assessment phase. In line with the purposes of 

this study, the phases for conducting a design research study specified by Gravemeijer 

and Cobb (2006) were followed. These phases are elaborated in the following sections, 

together with explanations of the corresponding aspects of this study. 

Gravemeijer and Cobb (2006) list the three phases of a design research study as: “1) 

preparing for the experiment, (2) experimenting in the classroom, and (3) conducting 

retrospective analyses” (p. 19). These phases are explained in further detail in the 

following sections. The procedures followed in each of these phases within the context 

of this study are explained in further sections.  

 Phase 1- Preparing for the experiment  

The aim of the first phase in a design research study is to clarify the theoretical intent of 

the study (research perspective) and to create a local instruction theory that is open to 

elaboration and refinement (from a design perspective) (Gravemeijer & Cobb, 2006). To 

this purpose, the starting point should be the determination and clarification of the 

learning goals in a mathematical domain. Taking the learning goals from curricula as 

they are and searching for the ways to arrive at these goals is not the goal of design 

researchers; instead, the research team has to come up with the most relevant, essential, 

and useful goals. Thus, it is essential for the researcher to ask the following question: 
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“What are the core ideas in this domain?” (Gravemeijer & Cobb, 2006, p. 19). It is also 

essential to assess the consequences of earlier instruction in this phase (Gravemeijer & 

Cobb, 2006).  

After a determination of learning goals (i.e., potential endpoints) and analysis of the 

consequences of earlier instruction (i.e., instructional starting points), the research team 

needs to conjecture a local instruction theory (Gravemeijer & Cobb, 2006). This local 

instruction theory includes "conjectures about a possible learning process, together with 

conjectures about possible means of supporting that learning process" (Gravemeijer & 

Cobb, 2006, p. 21). Therefore, a local instructional theory entails both students' learning 

processes and the instructional tasks and tools that are developed as a means to support 

these. The team anticipates the evolution process of students' reasoning and 

understanding prior to the implementation of the planned instructional tasks in the 

classroom. Additionally, the research team makes conjectures about the means of 

supporting student reasoning and understanding. These entail productive and effective 

instructional tasks, tools including technological ones, classroom culture and norms, and 

the components of the proactive role of the teacher (Gravemeijer & Cobb, 2006).  

Thus, a local instruction theory and related means of supporting students' learning are 

the components of instructional design. In addition to conjecturing an instructional 

design, the research team should also devise the theoretical intent of the design research 

study since the goal in a design study is not only describing what happened in the 

classroom but also "to define cases of more general phenomena that can inform design 

or teaching in other situations" (Gravemeijer & Cobb, 2006, p. 22). Therefore, in order 

to prepare for the experiments of this study, these steps and suggestions were followed. 

The procedures conducted regarding this phase are explained in the section “Data 

Collection Procedures” in the following pages.   
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 Phase 2- The Design Experiment 

The second phase of a design research entails carrying out the design experiment in the 

classroom, in which the research team takes the responsibility of the learning of students 

for a specific time period (Gravemeijer & Cobb, 2006). The aim of carrying out the 

design experiment lies in the desire to test and refine the conjectured local instructional 

theory and to understand how it works rather than seeing whether it works (Gravemeijer 

& Cobb, 2006). This process of testing, refining, and understanding happens through an 

“iterative sequence of tightly integrated cycles of design and analysis” (Gravemeijer & 

Cobb, 2006, p. 24).  

Therefore, a cyclical process of designing, testing, and refining lies at the heart of design 

research studies. The research team engages in anticipatory thought experiments in each 

cycle wherein the actual realization of the prepared instructional activities and tools, and 

possible student learning through these activities are envisioned. Moreover, during the 

classroom implementations and after each class session, actual learning of students and 

their participation behaviors are analyzed. Based on these on-going and retrospective 

analyses, the research team assesses if the proposed conjectures regarding the 

instructional task and the classroom norms are valid and tries to refine these aspects of 

the design. Hence, the design research study involves cyclical processes of anticipatory 

thought experiments and instruction experiments, which are referred to as microcycles 

of design and analysis (Gravemeijer & Cobb, 2006).  

These microcycles are associated with Simon’s “mathematical teaching cycle” that refers 

to a similar process of a mathematics teacher’s anticipation, enactment, and refinement 

of hypothetical learning trajectories (Simon, 1995). In such a teaching cycle, a 

mathematics teacher hypothesizes students’ mental activities when they are engaged in 

proposed instructional tasks, then assesses the extent the actual student reasoning is 

consistent with the anticipated reasoning during the implementation of the tasks, and 

finally makes decisions about follow-up tasks (Simon, 1995). However, there are two 
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differences between a local instructional theory and Simon’s interpretation of HLT: (1) 

an HLT, in Simon’s notion, includes small number of instructional tasks while the local 

instructional theory comprises a whole instructional sequence; and (2) an HLT is 

formulated for the teacher’s own classroom at a specific instance while the local 

instruction theory is a more general framework that informs other situations 

(Gravemeijer, 1999). Therefore, although Simon’s notion undergirds the HLT that is 

developed in this study, the instructional theory developed in this study provides a more 

general picture that have the potential to inform other contexts since that kind of theory 

includes an instructional sequence (and HLT) together with the rationale regarding how 

the instructional sequence might facilitate student learning.  

The microcycles in a design experiment that includes anticipatory thought experiments 

and instruction experiments lay the basis for creating a local instruction theory 

(Gravemeijer & Cobb, 2006). Besides, the conjectured local instruction theory serves as 

a guide for these thought and instruction experiments. Thus, there exists a “reflexive 

relation between the thought and instruction experiments and the local instruction theory 

that is being developed” (Gravemeijer & Cobb, 2006, p. 28). Below is a figure that 

summarizes this reflexive relationship:  

 

Figure 3.1. Reflexive relation between theory and experiment (Gravemeijer, & Cobb, 

2006, p. 28). 
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These microcycles of thought and instruction experiments consist of on-going analyses 

of students' individual and collective activities and social aspects of a classroom in order 

to inform ensuing thought experiments, the creation and refinement of instructional tasks, 

and reshaping the learning goals (if necessary) (Gravemeijer & Cobb, 2006).  

In addition to the assessment and refinement of a local instruction theory during a single 

design experiment, it is also possible to conduct a subsequent design experiment that is 

informed by the retrospective analysis of the previous experiment in order to obtain a 

more robust yet still revisable local instructional theory (Gravemeijer & Cobb, 2006). In 

such cases, macrocycles that span all levels of the experiments can be conducted. This 

process of conducting microcycles and macrocycles and the reflexive relationship 

between those and the emerging local instructional theory is summarized in Figure 3.2 

below.   

 

Figure 3.2. Micro- and macro-design cycles (Gravemeijer & Cobb, 2006, p. 29) 

Therefore, adopting this perspective of design research that entails micro- and macro-

cycles, this study was conducted in two macrocycles that are composed of two design 

experiments. The details of these two experiments are explained in the section “Data 

Collection Procedures” in the following pages.   
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Conducting micro- and macro-cycles in a design research results in a big set of data in a 

complex environment of classrooms. In order to make sense of the nature of this complex 

and messy classroom events, it is essential to have an interpretative framework through 

which the learning and engagement of students and the means of supporting and 

organizing that process is interpreted (Gravemeijer & Cobb, 2006). This interpretative 

framework can be useful in interpreting these events during the experiment, as well as in 

the process of retrospective analysis. In doing so, it is crucial to describe explicitly how 

the classroom observations are translated into scientific interpretations. Such a 

framework should encompass components that enable the researchers to interpret the 

emerging learning environment in addition to mathematical thinking and learning of 

students (Gravemeijer & Cobb, 2006). Two frameworks guided the design and 

development and interpretation of the findings of this study. In particular, the domain-

specific instructional theory of Realistic Mathematics Education was used to design and 

develop the tasks in the instructional sequence, whereas Emergent Perspective was used 

in order to interpret the learning of the classroom community as it took in the classroom 

contexts. These frameworks are described in more detail in the section “Data Collection 

Procedures." 

 Phase 3- The Retrospective Analysis 

The last phase of a design research study consists of conducting a retrospective analysis 

of the complete set of data collected throughout the experiment in order to inform the 

local instruction theory. This type of analysis should entail analyzing the complete set of 

data in an iterative process. This set of data mostly consists of video recordings of 

classroom implementation sessions and individual student interviews prior to and 

following the experiment, duplicates of entire written works of students, field notes, and 

audio recordings of debriefing sessions with the teacher and research team meetings 

(Gravemeijer & Cobb, 2006). Based on the systematic and detailed analysis of this set of 

data, the conjectures are refined and/or refuted, and the local instructional theory is 

reconstructed (Gravemeijer & Cobb, 2006) since the ultimate goal of retrospective 
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analysis is to obtain a revised local instruction theory and “potentially optimal 

instructional sequence” (Gravemeijer & Cobb, 2006, p. 42). This process includes 

eliminating the instructional activities that did not function as expected and revising the 

instructional tasks that have proven effective. In this process, on-going analyses that were 

conducted during the experiment and retrospective analyses that were conducted at the 

end of the design should act as complementary to each other so that the results of the 

design experiment are empirically grounded. The inferences made from these results can 

sometimes require the need for a subsequent experiment (i.e., macrocycle).  

In addition to the development of local instruction theories, design research also provides 

a contribution to the formulation of a domain-specific instruction theory. This theory 

development can occur at three different levels: "the instructional activities (micro 

theories) level, the instructional sequence (local instruction theories) level, the domain-

specific theory level” (Gravemeijer & Cobb, 2006, p. 46). In this study, after the revised 

instructional sequence was implemented in the second experiment, students’ collective 

ways of reasoning along this sequence were analyzed by a documentation of the 

mathematical practices. These practices, then, guided the process of making final 

revisions for the best case HLT and the instructional sequence (local instruction theory). 

The final revisions are explained in the results section.  

3.2. Context and Participants of the Study 

This study was conducted in two seventh grade classrooms in a public middle school in 

Altındağ District of Ankara, Turkey, that includes students aged 11-14 and in grades 5-

8. Almost 1000 students from the low socioeconomic background were attending to this 

school. The (revised) instructional sequence was implemented in two macrocycles in two 

consecutive years: the first one during January-February 2016 (including a semester 

break) in five weeks (25 class hours) and the second one during January-February 2017 

in six weeks (30 class hours) according to the school’s yearly plan of instruction. The 

Turkish Middle School Curriculum (2013) devotes 8 class hours for the development of 
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the ratio concepts (part-whole, part-part, structuring ratios) in sixth grade and 24 class 

hours to proportional relationships (including inverse proportion) and 10 hours to linear 

equations and their graphs in seventh grade. Therefore, 5-6 weeks (25-30 class hours) 

was a realistic and justifiable period of time for implementing the instructional sequence.  

The teacher was selected based on her willingness to take part in the study and 

collaborate with the researchers. Besides, she was selected because she had ambitious, 

innovative, and inquiry-based teaching practices, and was open for collaboration and 

improvements. The teacher had eight-year teaching experience in teaching seventh 

grades and 10-year experience in teaching middle school in general when the first cycle 

was conducted. This teacher got a master's degree in 2008 and conducted a classroom 

teaching experiment in her own class as a fulfillment of this degree. In addition, she took 

part in the revision of the Turkish Middle School Mathematics Curriculum (MoNE, 

2013) and developing middle school mathematics textbooks in line with the reform 

movement of mathematics education in Turkey.   

The first experiment of the study was conducted in one of this teacher's seventh-grade 

classrooms that included 12 girls and 15 boys starting from January 2016. In the second 

experiment, a revised version of the instructional sequence was implemented in a 

seventh-grade classroom of the same teacher that included 14 boys and 11 girls. There 

were two boys and a girl with learning disabilities, and a few students were known to 

perform above the seventh-grade level. Almost half of the remaining students were 

known to perform at their grade level and the other half considerably below their grade 

level. Both of these two groups of seventh graders were taught by the same teacher when 

they were in fifth and sixth grades. Therefore, the targeted social classroom norms and 

sociomathematical classroom norms were established prior to the experiments conducted 

for this study. Moreover, since both experiments in two macrocycles started in January, 

that is three and a half months after the start of the school year, these norms were stable 

during the experiments.  
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The teacher took a proactive role in the two phases of this design research study. 

Particularly, in the preparation phase, she collaborated with the design research team in 

order to anticipate likely student responses and communal learning paths of her 

classroom, including tool use in line with an RME perspective and design, sequence, and 

revise instructional tasks to support that path of learning. In the design experiment phase 

of this study, she took a proactive role in the teaching and learning process wherein she 

introduced the task, gave time for small-group work explorations, monitored the group 

work and orchestrated the whole class discussion by selecting and sequencing particular 

students to explain their reasoning and justifications, and helping students make 

mathematical connections among these ideas. Looking from another perspective, the 

teacher’s role was similar to the five practices for facilitating mathematical discussions 

suggested by Stein and colleagues (Stein, Engle, Smith, & Hughes, 2008). 

In addition to those practices, the teacher had a specific role in facilitating the 

argumentation process in whole-class discussions. These roles included managing 

students’ turn-taking in order to provide everyone with the access to the discussion, 

repeating or clarifying students’ contribution, asking for agreement/disagreement, 

selecting students in order to support mathematically elegant discussions, and 

introducing the formal symbolism in order to enable students (re)organize their thinking 

(Stephan & Akyuz, 2012). While these were the hypothesized roles of the teacher, the 

analysis of the classroom data collected in this study indicated that she also took another 

role in order to facilitate the mathematical argumentation process during the whole-class 

discussions. This role included providing a claim and asking students to provide other 

elements (i.e., data, warrant, backing, rebuttal) for the claim when necessary. 

Prior to and following each experiment, pre- and post-tests were implemented to all 

students in the classes where the experiments are conducted in. The same test used as a 

pretest and posttest. This test included a set of questions that were related to the big ideas 

in the instructional sequence. Based on students’ answers to the pre-test and the teacher's 
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suggestion, eight students were selected to be involved in pre-and-post- interviews. 

These students were selected according to the following criteria: ensuring variability in 

terms of academic performance and having different reasoning patterns so as to 

contribute to the whole-class discussions significantly.  

3.3. Data Collection Procedures 

As aforementioned, a design research study entails three phases: "1) preparing for the 

experiment, (2) experimenting in the classroom, and (3) conducting retrospective 

analyses" (Gravemeijer & Cobb, 2006, p. 19). In the following sections, the procedures 

followed, and the steps taken in each of these phases within the context of this study are 

described in detail. 

3.3.1. Phase 1- Preparing for the experiment 

As suggested by Gravemeijer and Cobb (2006), the first attempt in order to prepare for 

the experiment was made in relation to determining and clarifying learning goals for 

proportional reasoning in seventh grade. To this end, a research team was created, 

including the researchers (the doctoral student and two advisors) and the teacher, in order 

to review the curricula and literature to find out the most relevant, essential, and useful 

goals (Gravemeijer & Cobb, 2006).   

The researchers started to work on an instructional sequence that was developed for 

teaching ratio and proportion in the USA by Stephan et al. (2015) and engaged in design 

team meetings related to the adaptation of this instructional sequence. The teacher also 

participated in some of these meetings since it is crucial in design research that the 

selection and design of the intervention is a mutual and joint work of researchers and the 

teacher (Anderson & Shattuck, 2012). In this study, this joint work of the teacher and the 

researchers was ensured “from initial problem identification, through literature review, 

to intervention design and construction, implementation, assessment, and to the creation 

and publication of theoretical and design principles” (Anderson & Shattuck, 2012, p. 17).  
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In the meantime, a literature review was conducted on proportional reasoning and related 

concepts such as ratio, rate, proportion, and rational numbers in order to come up with 

other big ideas and key learning goals of proportional reasoning. Also, the related 

objectives in the Turkish Middle School Mathematics Curriculum (MoNE, 2013) and 

several other curricula were examined. It was seen that the Turkish Middle School 

Mathematics Curriculum has 11 objectives directly related to proportional reasoning. 

The three of these objectives are in sixth grade, seven in seventh grade, and one in eighth 

grade. According to the Turkish Middle School Mathematics Curriculum, sixth-grade 

students deal with the concepts of rate and ratio only and not the proportion or 

proportional relationships. They use ratios for comparing quantities, find the part-part 

and part-whole ratios, and solve related problems. In the seventh grade, a huge emphasis 

is given to proportions and solving problems related to proportional situations. More 

specifically, seventh-grade students find the value of one quantity when the value of the 

other quantity and their ratio are provided and also find the unit rate and proportionality 

constant between quantities. Besides, seventh-grade students determine whether two 

quantities form a proportional situation by analyzing ratio tables and line graphs and 

express the proportional relationship between two quantities in tables and equations.  

Next, seventh-grade students determine whether two quantities form an inverse 

relationship by analyzing ratio tables and line graphs and solve related problems. As a 

last consideration, it was agreed that the objective in the eighth grade related to similarity 

and finding the lengths of similar shapes is associated with proportional reasoning even 

though this objective is placed under the domain of geometry.  

A cross-analysis of curriculum objectives and related literature on proportional reasoning 

and related concepts was conducted in order to determine big ideas of proportional 

reasoning. This analysis yielded several big ideas that were organized as:   

Linking composite units and iterating linked composites while the link is preserved 

(also referred to as unitizing and norming in the literature) (Battista & van Auken 
Borrow, 1995; Lamon, 1994; Steffe, 1988, 1994; Stephan et al., 2015) 
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Covariation and invariation (Bryant, 1974; Carlson et al., 2002; Confrey & Smith, 
1994; Ellis et al., 2016; Lamon, 1995, 2007; Muller, 1977, 1978; Saldanha & 

Thompson, 1998)  

Absolute and relative thinking (Freudenthal, 1978; Lamon, 1995; NCTM, 2000) 

Additive reasoning and multiplicative reasoning (Clark & Kamii, 1996; Harel & 
Confrey, 1994; Hart, 1988; Park & Nunes, 2001; Stephan et al., 2015; Tourniaire 

& Pulos, 1985; van Dooren et al., 2010) 

Partitioning (Lamon, 1995; Pothier & Sawada, 1983) 
Ratio appropriateness (ratio sense) (Lamon, 1995) 

Linear relationships and their representations (Cramer & Post, 1993; Cramer, Post, 

Currier, 1993; Karplus et al., 1983; MoNE, 2013; Stephan et al., 2015) 

Part-part and part-whole relationships (Spinillo & Bryant, 1991; Stephan et al., 
2015) 

Within and between measures comparisons (Freudenthal, 1973, 1978; Karplus et 

al., 1983; Lamon, 1994, 2007; Noelting, 1980a, 1980b; Stephan et al., 2015; 
Vergnaud, 1981, 1988)  

Distinguishing rates and ratios (Lamon, 2007; Lesh et al., 1988; Stephan et al., 

2015; Thompson, 1994), 
Similarity and distortion (Kaput & West, 1994; MoNE, 2013; Stephan et al., 2015; 

Streefland, 1985; van den Brink & Streefland, 1979)  

Quantitative and qualitative reasoning (Behr et al., 1992; Heller et al., 1989, 1990; 

Lamon, 1994; Larson et al., 1989; Lobato, & Siebert, 2002; Thompson, 1993, 

1994) 

In addition to determining big ideas, it is important to comprehend the consequences of 

already existing instruction in order to conjecture a local instruction theory (Gravemeijer 

& Cobb, 2006). In this process, existing research results might be useful (Gravemeijer & 

Cobb, 2006). In addition, researchers themselves should conduct assessments (e.g., 

written tests, interviews, whole class performance assessments) before initiating a design 

research study (Gravemeijer & Cobb, 2006). In this study, the literature review revealed 

that the instruction of proportional reasoning is procedural, isolated, and superficial, and 

there is a need to build on students' informal understandings of linking composite units, 

unitizing and norming, build-up strategies, and within and between measures 

comparisons. 

Moreover, the literature review provided an insight into the informal tools that can be 

used as models of organizing students' iteration and build-up processes. According to the 

reviewed studies, children intuitively work with linked quantities either pictorially or 
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numerically and use table-like representations in order to keep track of the linked 

quantities and iterations with them (Kenney et al., 2002; Middleton, & Van den Heuvel-

Panhuizen, 1995; Misailidou & Williams, 2003; Stephan et al., 2015; Streefland, 1984, 

1985). In a similar vein, the pre-test and the pre-interviews conducted with the students 

prior to the study gave essential information about students’ intuitive ideas of build-up 

strategies and the use of tables as informal tools to keep track of the building-up or -

down processes. This information that reveals young children's intuitive and informal 

ways of reasoning and tool use were used in shaping the instruction in such a way that it 

was hypothesized that the students would start making iterations with linked quantities 

pictorially and in table-like representations. Moreover, it was anticipated that ratio tables 

would also help support the transition from building-up or -down by ones to building-up 

or --down by many (Middleton & Van den Heuvel-Panhuizen, 1995; Stephan et al., 2015; 

Streefland, 1985).   

As suggested by Gravemeijer and Cobb (2006), the research team worked on 

conjecturing a local instructional theory subsequent to determining learning goals and 

analyzing the consequences of earlier instruction. It was stressed that this local 

instruction theory should include “conjectures about a possible learning process, together 

with conjectures about possible means of supporting that learning process” (Gravemeijer 

& Cobb, 2006, p. 21). In particular, it is critical that a local instructional theory includes 

the evolution of students' learning and the instructional tasks and tools that have the 

potential to foster this process. Moreover, the means of supporting this learning process 

should also entail classroom culture and norms, and the components of the proactive role 

of the teacher (Gravemeijer & Cobb, 2006). 

Concerning these issues, researchers should also clarify the theoretical perspectives of 

the study in order to make sense of what is going on in classrooms (Gravemeijer & Cobb, 

2006). Two frameworks were used in this study: (1) to design the instructional tasks and 

(2) to interpret students' mathematical development as socially constructed in the 
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classroom. While the domain-specific theory of Realistic Mathematics Education was 

used to guide the former, Emergent Perspective was used to guide and interpret the latter 

in this study. These two frameworks, together with their principles, are explained in the 

following sections. 

 Realistic Mathematics Education  

The theory that undergirds the design and development of the instructional sequence 

developed in this study is RME. The core of RME is based on understanding mathematics 

as a human activity. Freudenthal (1968) noted that mathematics should be seen not "as a 

closed system, but rather as an activity, the process of mathematizing reality and if 

possible even that of mathematizing mathematics" (p. 7). Within the context of RME 

studies, students need to be guided to reinvent mathematical ideas and concepts by 

organizing didactically rich contexts that are realistic (Gravemeijer, 1994). Besides, they 

need to be encouraged to reason with models and imagery related with the physical tools, 

inscriptions and activities they deal with. 

In such kinds of processes, models are important to support mathematization (Streefland, 

1991). In particular, models should act as simplified versions of reality at the beginning, 

and as models are applied to other situations, they should act as models for higher-level 

mathematical thinking. This kind of process is named as a transition from a model of to 

model for in the RME literature (Gravemeijer, 1991, 1994; Streefland, 1991). In such a 

process of transition, the normative reasoning in the classroom is also expected to change 

in such a way that while models encourage thinking about the context at the beginning; 

later, they should support a focus on mathematical relations (Gravemeijer, 1991).  

In this study, the processes of reinvention and mathematization are perceived as both 

individual and collective activities in line with Gravemeijer and colleagues’ (2003) 

perspective. That is, a social environment that includes conjecturing, explaining, 

challenging, and justifying where a teacher and students negotiate in order to arrive at 
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taken-as-shared meanings and model use is valued. In such communal ways, a 

community of learners engages in horizontal and vertical mathematization as they reason 

in increasingly sophisticated ways while they interact around an instructional sequence. 

This instructional sequence was designed in order to support students’ mathematization 

by a transition from a model of to model for. In particular, it was anticipated that ratio 

tables would be introduced as effective ways of representing and organizing the reality 

(i.e., linking the number of fish and food bars in line with the rule and iterating this link) 

at the beginning. In the following instances, these ratio tables are curtailed in order to 

arrive at more efficient procedures (i.e., abbreviated build-up). Lastly, as short ratio 

tables are found as applicable to finding missing values in proportional situations, they 

are used in order to support the evolution of reasoning with symbolic proportion 

representation. Therefore, ratio tables are used as models of organizing linked composites 

at the onset. As they are found applicable to finding missing values by scalar and 

functional operators (i.e., within and between ratios), they become models for structuring 

symbolic representation of ratios and proportions. 

 Emergent Perspective  

The second interpretative framework employed in this study is Emergent Perspective 

that is useful in examining the mathematical growth of students "as it occurs in the social 

context of the classroom" (Cobb & Yackel, 1996, p. 176). In this framework, the two 

distinct theoretical perspectives, namely constructivist and sociocultural perspectives, 

are coordinated in such a way that it is based on a social constructivist perspective (Cobb 

& Yackel, 1996). That is to say, in this perspective, both individual and social aspects of 

learning are essential “with neither taking primacy over the other” (Stephan, 2003, p. 

28). This interpretative framework is summarized in Figure 3.3 below.  
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Figure 3.3. An interpretative framework for analyzing individual and collective activity 

at the classroom level (Cobb & Yackel, 1996, p. 177) 

The social perspective (see the left column in Figure 3.3) emphasizes an interactionist 

perspective of seeing classroom processes in collective ways whereas the psychological 

perspective (see the right column in Figure 3.3) accentuates a constructivist perspective 

of students’ individual activities as they engage in and contribute to the evolving 

collective activities (Cobb & Yackel, 1996). As seen in the figure above, the social 

perspective includes three subconstructs as classroom social norms, sociomathematical 

norms, and classroom mathematical practices, which indicate the three aspects of a 

classroom’s culture. In relation to these social subconstructs, the corresponding 

individual aspects are listed below the psychological perspective on the right column. 

Thus, each row in the figure above denotes a dual relationship between an aspect of 

classroom culture and the individual activities of those who engage in and contribute to 

it (Cobb & Yackel, 1996).  

According to Cobb and Yackel (1996), classroom social norms, as a subconstruct of 

social perspective, are the norms that characterize patterns in collective activities that are 

established by all members of the classroom (i.e., the teacher and students) through 

negotiation. The teacher and students can renegotiate the classroom social norms as the 
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instruction progresses. In participating in this renegotiation process, students engage in 

the process of reorganizing their beliefs about their roles as well as others', and the 

general nature of mathematical activity in school. Some of the classroom norms in this 

study included articulating and justifying solution ways, listening to others' ideas and 

trying to understand them, showing agreement/disagreement, and searching for 

alternative ways to solve problems (Cobb & Yackel, 1996). These practices had been 

established in the classroom community prior to the study since the collaborating teacher 

had attempted to establish an inquiry-based practice and valued meaningful student 

learning and argumentation.  

Classroom social norms that are specific to mathematics and mathematical activities are 

referred to as sociomathematical norms (Cobb & Yackel, 1996; Yackel & Cobb, 1996). 

Sociomathematical norms in this study involved establishing claims based on a 

mathematical argumentation process rather than referring to the rules and/or any 

authority such as a textbook. In addition, negotiation of "what counts as a different 

mathematical solution, a sophisticated mathematical solution, an efficient mathematical 

solution, and an acceptable mathematical solution" (Cobb & Yackel, 1996, p. 178) were 

among the sociomathematical norms established in this study. Even though related 

sociomathematical norms had been established in the classroom, these types of 

sociomathematical norms were renegotiated throughout the experiment. In this 

renegotiation process, students adopt beliefs and values that are specific to mathematics, 

which in return facilitates student autonomy (Cobb & Yackel, 1996; Yackel & Cobb, 

1996). Therefore, mathematical beliefs and values are considered as corresponding 

psychological constructs for sociomathematical norms, as seen in Figure 3.3.  

The third subconstruct of social perspective in the Emergent Perspective is classroom 

mathematical practices that are related to the communal mathematical growth of a 

classroom. Analyzing classroom mathematical practices are compatible with the aims of 

design research since this type of analysis focuses on the documentation of the 



 

 

156 
 

hypothesized instructional sequence as it is realized in the classroom (Cobb & Yackel, 

1996). It also enables to connect instructional development and theory by informing the 

current efforts based on a description of mathematical learning as situated in the social 

context (Cobb & Yackel, 1996). Mathematical conceptions and activities are considered 

as corresponding psychological constructs for classroom mathematical practices as seen 

in Figure 3.3, since in such a process student “actively contribute to the evolution of 

classroom mathematical practices as they reorganize their individual mathematical 

activities and, conversely, that these reorganizations are enabled and constrained by the 

students’ participations in the mathematical practices” (Cobb & Yackel, 1996, p. 180). 

Therefore, there exists a reflexive relation between classroom mathematical practices 

and individuals' mathematical conceptions and activities as individual students engage 

in and contribute to the evolution of classroom mathematical practices. Thus, a 

documentation of classroom mathematical practices gives a picture of how the 

instructional sequence is actualized in the classroom and how individuals contribute to 

the evolving of those practices (Stephan et al., 2003). 

Therefore, using RME as design theory and Emergent Perspective as an interpretative 

framework to interpret learning in a classroom setting, a local instructional theory 

including students’ reasoning in sophisticated ways for proportional reasoning and 

possible means of supporting this learning was conjectured in this study. This theory also 

provides a rationale for the HLT, and instructional sequence developed and how they can 

be helpful in supporting students' gradual development in the classroom context by 

taking into consideration classroom culture and norms and the proactive role of the 

teacher. In the development process of this local instructional theory, various research 

studies in the literature, and particularly, the Hypothetical Learning Trajectory and the 

related instructional sequence developed by Stephan, McManus, Smith, and Dickey 

(2015) were used as guides to shape instruction on proportional reasoning. In this study, 

this HLT and the instructional sequence was extended and enriched by the help of the 

related research on proportional reasoning and related concepts. In the following 
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sections, the original instructional sequence developed by Stephan et al. (2015) and the 

revisions and extensions made to the original instructional sequence, together with their 

rationale, are explained in detail. 

 The original instructional sequence 

The original instructional sequence and the related HLT were developed in the United 

States by Stephan et al. (2015) in order to support the teaching of rate and ratio for 

understanding and in ways that are consistent with the Common Core State Standards 

(CCSSI, 2010). That is to say, this sequence was developed for practical concerns and 

published on the website of the university as an instructional resource for teachers.  

The instructional design theory that undergirds this sequence is RME. In this sequence, 

instruction begins with a story about a bad dream in which aliens were chasing the 

teacher, and a bar of food was enough to satisfy three aliens. Then, the teacher introduces 

the anchor activity, which is referred to as alien-food bar activity throughout the 

dissertation. This activity is considered as an anchor activity since the informal, more 

formal, and formal tools (i.e., long and short ratio tables, symbolic proportion) would be 

introduced through this activity. Below is a small portion of this anchor activity:      

 

Figure 3.4. A small portion of the alien-food bar activity (Stephan et al., 2015) 
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This activity aims to support students' linking of one food bar with three aliens and 

understanding that this rule cannot be broken. In the following stages, the rule changes 

so as to include different unit rates, reducible ratios/rates, and non-integer ratios/rates 

(i.e., 1-5, 2-4, 2-3, and 2-5). As students solve problems, they are encouraged to organize 

their pictures or numbers, and eventually, a (long) ratio table is introduced as an efficient 

way to keep track of how the two quantities may scale up or down. In the following 

instances, this long ratio table is shortened to include four values only. In doing so, it 

encourages more efficient and faster calculations, as suggested by Streefland (1995). 

Below is an illustration of a transition from a long ratio table to shortened ratio table by 

putting an emphasis on an abbreviated build-up process in Stephan and colleagues’ 

(2015) HLT:   

 

 

Figure 3.5. The transition from long ratio tables to shortened ratio tables (Stephan et al., 

2015) 

The second task in Stephan and colleagues' (2015) sequence includes new contexts 

wherein different wordings of ratio (i.e., informal ratio language related to part-part 

relationships) and the formal terminology are used. The learning goals associated with 

this task include applying proportional reasoning in these new contexts and using the 

informal and formal ratio language correctly to make sense of the part-part relationships. 

The first context includes the relationships between the number of infants and teachers 

and toddlers and teachers in a fictional daycare called Tiny Tots. In the second context, 

similar use of informal ratio language exists to represent part-part relationships between 

the number of people who are in favor of and against the war. A similar context that 

includes relationships between amounts of sugar and flour in a recipe is included as the 

third context. The last context includes part-part relationships between the number of 

seventh and eighth graders who preferred action movies. Therefore, the second task 
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includes different contexts where part-part relationships are explored in both informal 

and formal use of ratio language. Most of these contexts also include a question that 

required students to decide whether the given ratios were equal to the ratios given in the 

problems. The use of the shortened ratio table is also encouraged in these contexts 

(Stephan et al., 2015).  

In the following parts of the instructional sequence, proportionality problems, including 

both integer and non-integer ratios and having different contexts, are given place. During 

explorations on these problems, students are introduced the symbolism and definition of 

proportion by erasing the lines in between the ratios in the table. Below is the summary 

of this transition from shortened ratio tables to the symbolic representation of proportion: 

 

Figure 3.6. The transition from shortened ratio tables to the symbolic representation of 

proportion (Stephan et al., 2015) 

Also, throughout these discussions, distinguishing ratios (part-whole) from rates (part-

part) is targeted. Scaling (i.e., stretching) problems and comparing ratios in the contexts 

of comparing the tastes and density of different mixtures are also included in the 

following parts. Moreover, concerning comparing rates/ratios, several contexts that 

include comparing different speeds and deciding on the best buy are presented. Lastly, 

the final tasks in the sequence target moving from ratio tables to graphs in order to 

represent proportional relationships graphically.     

Therefore, the original instructional sequence is comprehensive in the sense that it 

encompasses most of the essential big ideas for proportional reasoning. These ideas 
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include but are not limited to linking composite units, iterating linked composites by 

building up by ones or abbreviatedly (i.e., scaling), additive and multiplicative reasoning, 

analyzing equivalent ratios/rates, and comparing ratio/rates. The corresponding HLT that 

includes components including these big ideas, related tool/imagery use, and possible 

topics of discourse is presented in Figure 3.7 below. 

 

 



 

 

161 
 

 

F
ig

u
re

 3
.7

. 
R

at
io

 a
n
d
 r

at
es

 h
y
p
o

th
et

ic
a
l 

le
ar

n
in

g
 t

ra
je

ct
o

ry
 (

S
te

p
h
an

 e
t 

al
.,

 2
0
1
5
) 

 



 

162 
 

As seen in Figure 3.7, this HLT includes big ideas, tools/imagery, and possible topics of 

(mathematical) discourse for the related instructional sequence. In this HLT table, the 

big idea column describes the learning goal for that portion of the instruction, and the 

tools/imagery column outlines the specific inscriptions and/or notations that are intended 

to support the corresponding learning goal. The third column, possible topics of 

discourse, is meant to guide teachers in the types of questions or mathematical 

conversations that are important for that section of the sequence. More information about 

this HLT, instructional sequence and the materials is available on 

https://cstem.uncc.edu/sites/cstem.uncc.edu/files/media/Ratio%20T%20Manual.pdf 

 Revisions to the original instructional sequence (prior to the 

experiments) 

The original sequence is of good quality in several ways. First, it is one of the first 

attempts to propose a classroom HLT and instructional sequence for teaching ratio and 

proportion that was developed by a collaboration of teachers and a researcher in the field 

of mathematics education. Second, it was developed to explicitly move students from 

informal reasoning to formal knowledge; hence, it sits well with RME. In particular, 

although ratio tables have been stated as effective tools for fostering students' 

proportional reasoning in other studies (e.g., Kenney et al., 2002; Middleton, & Van den 

Heuvel-Panhuizen, 1995; Misailidou & Williams, 2003; Streefland, 1984, 1985) and the 

use of ratio tables for supporting building-up/down process is emphasized in some of 

these studies (e.g., Middleton & Van den Heuvel-Panhuizen, 1995; Streefland, 1985), 

none of these studies specifically focus on a transition from a model of to a model for 

perspective in line with an RME perspective.  

Therefore, one of the most significant strengths of the HLT and the instructional 

sequence developed by Stephan et al. (2015) lies in its potential to support a transition 

from using informal ratios (i.e., ratio tables) to reasoning with formal tools (i.e., symbolic 

representation of proportion, 
𝑎

𝑏
=  

𝑐

𝑑
 ). Another strength of the HLT is emanated from the 

https://cstem.uncc.edu/sites/cstem.uncc.edu/files/media/Ratio%20T%20Manual.pdf
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fact that it involves engaging contexts for a variety of big ideas in ratio and proportion. 

Fourth, the fact that it is a ready-made tool for teachers since it includes guidelines for 

teachers in order to implement the sequence in classrooms makes it an essential tool to 

work on. Therefore, the HLT and the instructional sequence were very helpful in guiding 

the instructional sequence and the local instruction theory developed in this study. 

However, in spite of all its qualities, the research team had some concerns about a few 

drawbacks that the original sequence had and that it would not directly apply to the 

Turkish context. To begin with, it was questionable whether the alien-food bar context 

would be engaging for Turkish students. Another drawback was concerned with the 

scope of the sequence. Even though the original sequence is comprehensive, it was 

anticipated that it lacks some of the essential big ideas related to proportional reasoning. 

For instance, although the sequence includes a question emphasizing the relationships 

among verbal, tabular, and graphical representations of proportional situations, it lacks 

explorations related to writing the symbolic equation representation of proportional 

relationships (i.e., y = mx). However, representing proportional situations, algebraically, 

is an objective that seventh-grade students should attain according to the Turkish Middle 

School Mathematics Curriculum (MoNE, 2013).  

Another big idea that is not included in Stephan and colleagues’ (2015) instructional 

sequence is related to distinguishing between proportional relationships with the form y 

= mx and linear non-proportional relationships with the form y = mx + n. Besides, 

qualitative reasoning tasks are not included in the scope of Stephan and colleagues’ 

(2015) instructional sequence. Even though these key ideas are not highlighted in the 

national curriculum (MoNE, 2013), the literature on proportional reasoning considers 

them among essential understandings of proportional reasoning and main types of tasks 

that foster proportional reasoning.     

Therefore, several revisions were made to the instructional sequence developed by 

Stephan et al. (2015) prior to the first experiment of this study in order to address those 
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drawbacks. First of all, the story of the anchor context was changed from the alien-food 

bar context to the fish-food bar context in order for it to be more engaging for Turkish 

students. By doing so, it was hypothesized that this story would lay the ground for 

students to make sense of why the rule for feeding the fish could not be broken -if the 

fish are underfed or overfed, they might get sick or even die from underfeeding or 

overfeeding. Besides, the contexts of some of the remaining tasks were also changed for 

similar reasons. Second, several tasks were added to the sequence in order to extend its 

scope. These tasks include explorations on the tabular, graphical, and algebraic 

representations of proportional relationships of the form y = mx and linear non-

proportional relationships of the form y = mx + n. These tasks are provided in the 

instructional sequence that is given in the Appendix section. Moreover, a task that 

requires students to rely on their qualitative reasoning skills was added to the 

instructional sequence. This task is the last in the sequence (See Appendix A). 

Additionally, another task that was added to the instructional sequence before the first 

experiment included measuring different lengths with long and short sticks whose actual 

lengths were not known to the students. Within the context of this activity, it was aimed 

that students would measure various lengths and record how many long sticks and short 

sticks were those lengths in ratio tables. It was anticipated that students would make 

sense of proportional relationships between the results of their measurements with short 

and long sticks in ratio tables by drawing on their knowledge of measurement and 

experiences in measuring.  

On the other hand, although several tasks were added to the original instructional 

sequence before the first experiment, a couple of tasks were also removed from the 

sequence. In particular, the tasks related to the concept of percent were not included in 

this study in order to have a more focused sequence on proportional reasoning and the 

concepts of rate, ratio, and proportion. Thus, even though these changes were made to 
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the instructional sequence, the initial version of the HLT for this study was structured as 

the same as the one in Stephan and colleagues’ (2015) study (see Figure 3.7).  

3.3.2. Phase 2. Design experiment 

Gravemeijer and Cobb (2006) refer to the second phase of a design research study as the 

"Design Experiment" phase and stress that the aim in this phase is to test and refine the 

conjectured local instruction theory and see that how it works out in the classroom. As 

aforementioned, this phase includes a cyclical process of designing, testing, and revising, 

where a series of anticipatory thought experiments and instruction experiments guide this 

process (Gravemeijer & Cobb, 2006). The microcycles of a design experiment consist of 

these anticipatory thought experiments, and instruction experiments lay the basis for 

creating a local instruction theory, which entails on-going analyses of students' individual 

and collective activities and social aspects of the classroom (Gravemeijer & Cobb, 2006). 

A design research study can have several macrocycles, each of which is comprised of 

many microcycles in order to arrive at a more robust local instructional theory (see Figure 

3.2). Following this perspective, this study was conducted in two macrocycles that are 

composed of two design experiments (i.e., macrocycles). First of these design 

experiments took place in five weeks during January-February 2016 and the second in 

six weeks during January-February 2017. These design experiments provided insights to 

understand how the hypothesized instructional sequence works out in the complex nature 

of classrooms.  

 Design Experiment 1 

In accordance with the principles of a design research study, the researchers and the 

teacher worked on the instructional sequence and engaged in thought experiments in 

order to anticipate likely growth of the classroom community in mathematical reasoning 

and tool use as they interact with the instructional sequence long before the experiment 

starts. After the completion of these procedures in the initial preparation phase, the 
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instructional sequence was implemented in one of the teacher’s seventh-grade classes for 

five weeks (i.e., 25 class hours) from January 2016 to February 2016. Before each class 

session, the teacher and the researcher engaged in thought experiments in order to review 

the learning goals of the classroom session and possible topics of mathematical 

discourse, including aspects regarding the possible use of tools and imagery.   

The instructional sequence that was implemented in the first experiment included nine 

activities, each of which targeted several big ideas that were determined as the essential 

aspects of proportional reasoning. The order of these activities, together with the learning 

goals they target, are summarized in the table below. 

Table 3.1. The content of the instructional sequence implemented in the first 

experiment  

Instructional tasks Learning goals 

1. Let’s feed the fish Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, within 

and between measures comparisons, distinguishing rates 

and ratios, ratio appropriateness (ratio sense), additive 

and multiplicative reasoning 

2. What do the 

survey results tell? 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, within 

and between measures comparisons, distinguishing rates 

and ratios, ratio appropriateness (ratio sense), additive 

and multiplicative reasoning, informal ratio language 

3. Measuring lengths 

with sticks 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, within 

and between measures comparisons, distinguishing rates 

and ratios, ratio appropriateness (ratio sense)   

4. Learning ratio and 

proportion 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, within 

and between measures comparisons, distinguishing rates 

and ratios, ratio appropriateness (ratio sense), additive 

and multiplicative reasoning, formal ratio language, 

symbolic use of ratio and proportion 
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Table 3.1. (Continued) 

5. Representing 

proportional 

situations with 

graphs and 

equations 

Iterating linked composites, unitizing and norming, 

covariation and invariation, linear relationships and their 

representations 

6. Do the pictures 

look alike? 

Iterating linked composites, unitizing and norming, 

covariation, and invariation, within and between 

measures comparisons, ratio appropriateness (ratio sense), 

additive and multiplicative reasoning, similarity, and 

distortion. 

7. Comparing 

oranginess  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between measures 

comparisons, ratio appropriateness (ratio sense), additive 

and multiplicative reasoning, distinguishing rates and 

ratios 

8. Comparing speeds 

and deciding on 

best buy  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between measures 

comparisons, ratio appropriateness (ratio sense), additive 

and multiplicative reasoning, distinguishing rates and 

ratios 

9. Comparing coffee 

strengths 

Unitizing and norming ratio appropriateness (ratio sense), 

absolute and relative thinking, additive and multiplicative 

reasoning, qualitative reasoning 

 

As can be seen in the table above, most of the activities include many of the big ideas 

stated as essential understandings of proportional reasoning. The first task is an 

adaptation of the first activity (i.e., alien-food bar activity) in Stephan and colleagues’ 

(2015) sequence. The second task aims at the exploration of part-part and part-whole 

relationships similar to the second task in the original instructional sequence, although 

the contexts of the questions are quite different. In addition, it makes use of informal 

ratio language (i.e., per language, for every…, out of every…) and does not include any 

formal terminology. The third task requires students to measure different lengths with 

short and long sticks whose actual lengths are not known, keep a record of the 

measurement results in tables, and make sense of the proportional relationships between 

the results of measurements within long and short sticks. This task was developed by the 
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researcher as inspired by the well-known Mr. Short and Mr. Tall problem (Karplus, 

Karplus, & Wollman, 1974).   

After making explorations regarding iterations, covariation and invariation, within and 

between measures comparisons in the first three activities, the fourth task was designed 

to foster the formal language and symbolic use of ratio and proportion. In the last part of 

this task, students are required to decide which of the given ratios belong to the same 

equivalence class as the given ratio. Therefore, they are required to analyze whether or 

not given two ratios form a proportion (i.e., are proportional). The fifth task entails 

making explorations with proportional relationships and their tabular, graphical, and 

algebraic representations and understanding the relationships among those. The first part 

of the sixth task includes finding the missing lengths of two similar shapes, while the 

second part is related to deciding whether or not the given two shapes are similar. These 

tasks were developed by the researchers based on the activities in Stephan and 

colleagues’ (2015) instructional sequence.  

As seen in Table 3.1 above, the last three tasks involve comparing ratios/rates in addition 

to previous key ideas. Particularly, the seventh task involves comparing pairs of orange 

juice mixtures containing different amounts of water and orange juice. This task was 

adapted from Noelting’s (1980a, 1980b) task. The eighth task includes comparing speeds 

of people and cars based on given information related to how far people/cars travel in a 

specific time interval. Besides, deciding on the best buy by analyzing the information 

regarding the price of products sold in different amounts in different supermarkets was 

another context in the eighth task. This task was developed based on the activities in the 

original instructional sequence (Stephan et al., 2015). Lastly, the ninth task was added to 

the instructional sequence in order to support students’ reasoning in qualitative ways; 

that is, independent of numbers. In the ninth task, students are required to investigate 

whether adding coffee and/or milk affects the strength of coffees and determine the 

change of direction if it does. This task is adapted from Billings’ (2002) study.  
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These instructional tasks were implemented in the classroom in five weeks that include 

25 class hours (i.e., 2+2+1 hours each week). The first experiment of the study took place 

in one of the seventh-grade classes of the collaborating teacher for five weeks from 

January 2016 to February 2016. Posttests and post interviews were conducted from 

March 2016 to April 2016. Also, the teacher was interviewed for assessing the whole 

process until the end of the first experiment. From April 2016 to January 2017, the 

researchers conjectured the necessary revisions for the subsequent experiment by 

working on the classroom data, teacher interviews, pre- and post-tests and interviews, 

and design research team meetings. The classroom events that took place as students and 

the teacher interact around these activities were analyzed in line with the theoretical 

lenses of the Emergent Perspective and Realistic Mathematics Education during and after 

the first experiment. These analyses revealed the need for revising the instructional 

sequence to be implemented in the second design experiment in the next macro-cycle. 

These revisions are explained in the following section.   

3.3.2.1.1. Revisions to the instructional sequence during and after the first 

experiment 

In line with the spirit of design research, the teacher and the researcher(s) conducted 

debriefing sessions in order to assess the learning of students as it took place in normative 

ways. During each mini-cycles of the first experiment and after the first experiment was 

completed, the classroom videos were watched, and the audio recordings of the teacher 

and student interviews, and design research team meetings were listened. This helped the 

researchers to improve the HLT and the instructional sequence and have a better case for 

the subsequent experiment. In between the mini-cycles, referred to as thought 

experiments (see Figure 3.1), the design team made conjectures about the sequence of 

the activities, the social and sociomathematical classroom norms, how students moved 

from informal ways of reasoning to more formal ways of reasoning together with the tool 

use, and whether and how the instructional sequence supported this shift. For instance, 

after the implementation of the first four parts of the first task (i.e., fish-food bar), the 
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following dialogue took place between the collaborating teacher (T) and the researcher 

(R) in a debriefing session: 

R: We finished the first four parts of the first activity, and we will implement the 

last part in the next class. First, can I have your general opinion? How did the 

implementation go? What went well? What could be improved?  
T: I think the activates are sequenced well (so far). First, students dealt with the 

pictures to make sense of the big ideas (linking and iterating), then they moved to 

reasoning with numbers. They already had prior knowledge… They are familiar 
with the subjects. So they could draw on their previous knowledge of problem-

solving. 

R: What should we improve for the next implementation?  

T: I think we should give the pictures in the third part (i.e., 2 food bars-4 fish) in 
order to make students feel the need for the unit ratio like we did in the first part. 

They can group the pictures of fish and food bars and link them and see that 2-4 is 

the same as 1-2 on the pictures. 
R: Do you think we should also give the pictures for the last part (2 food bars-3 

fish, for the next class)?  

T: Yes, I think that would be helpful too. And I think we should include more 

questions that are not multiples of 4 (for the number of fish)? Like 6 or 22… 
R: OK. Any other suggestions?  

T: We already introduced a long ratio table. So, we can include ratio tables in the 

following parts. Well. I asked students myself, but that would be helpful to include 
directions related to the relationships in the table (in the activity sheet). We draw 

the tables on the board, but they could fill in the tables in their activity sheets and 

explore the relationships on the table. We can keep track of their work more easily 

on the tables, and also, they can see the relationships in a more organized way. 

In the excerpt above, the teacher and the researcher debriefed on the instruction 

experiment on Day 2 of the first design experiment. In this debriefing session, the teacher 

assessed the sequence of the activities and students' reasoning with the informal tools by 

drawing on their informal and prior knowledge related to multiplicative reasoning. She 

also made suggestions for the next macro-cycle, and together with the researcher, they 

decided to include pictures and long ratio tables in the activity sheet for the next 

instruction experiment in the same cycle. The teacher and the researcher engaged in a 

great number of similar debriefing sessions during the design experiments. 

Therefore, one of the revisions to the instructional sequence after the first implementation 

was related to the inclusion of pictures and tables in students’ activity sheets. Another 
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revision that can be given as an example of the revisions made was related to the 

sequence of the instructional activities. In the instructional sequence implemented in the 

first design experiment, the third activity was related to measuring with sticks whose 

actual lengths were unknown. The researchers had anticipated that the activity would 

support students' understanding of the multiplicative relationships between the lengths 

of the sticks and the results of measurements with those sticks. After the implementation 

of the task, the design team conjectured that this activity did not successfully support 

students' understanding of the direct proportional relationships since it includes complex 

sets of relations about relations (i.e., the length of the sticks, the measurement results, the 

relationships between the lengths of the sticks and the measurement results). On the other 

hand, the teacher and the researcher conjectured that this task would have great potential 

in supporting students' understandings of inverse proportional relationships and its 

relationship with direct proportion (i.e., A×B = C×D and 
𝐴

𝐶
 = 

𝐷

𝐵
). Below is a dialogue 

between the researcher and the teacher in which they discuss the potentials and 

drawbacks of the measurement activity: 

T: I think we should not put this activity (i.e., measurement activity) in this place. 

The students got confused about long and short sticks and measurement results 

with long sticks and short sticks. Very confusing terms. Nevertheless, we can use 
it for inverse proportion so that they can arrive at the idea that is measuring with 

long sticks results in a smaller measure while measuring with short sticks results 

in a greater measurement result. 

R: I agree that the students got confused about the terms. They even had a hard 
time stating their explorations (verbally). Do you think they can make sense of the 

invariance of the products of these (the lengths of the sticks and measurement 

results with these sticks) in a further implementation? 
T: I think they can. Multiplying the length of the stick by the (measurement) result 

gives the length of the (measured) object, and they can figure it out. 

R: Then, we should give the lengths of the sticks.  

T: I think so.  

In the debriefing sessions, the researchers and the teacher agreed on many revisions for 

the following days within the first experiment (i.e., mini-cycles) and the subsequent 

experiment (i.e., second macrocycle). The two excerpts given above can be given as 



 

172 
 

evidence to this, although many revisions were made in many of those debriefing 

sessions. 

In many other debriefing sessions and design research team meetings, the members of 

the design research team decided on the necessary changes in order to obtain a more 

viable instructional sequence. Although the dialogues in which these changes were 

conjectured will not be provided from now on, these changes will be summarized 

together with their rationale in a few sentences that follow. As aforementioned, the 

activity that included measuring lengths with short and long sticks was removed from 

this sequence that aims at fostering understanding of direct proportional relationships 

since it had greater potential to facilitate making sense of inverse proportional 

relationships.  

Another revision was made to the activity named “Representing proportional situations 

with graphs and equations” (i.e., the fifth activity in the first version). Particularly, the 

scope of this activity was extended by the inclusion of a context that included finding 

weights on the Moon given the weights on the Earth with a fractional scale factor (i.e., 

the weight on the Moon is 
1

6
 of the weight on the Earth). It was conjectured that this 

context would foster students’ understandings of representing proportional situations 

using graphs and equations. Furthermore, an activity that includes non-proportional 

linear situations (i.e., a situation that can be represented by the equation y = mx + n, n 

≠0) was added to the sequence following this activity. It was anticipated that this activity 

would enhance students’ understanding of proportionality and linearity and how their 

tabular, graphical, and algebraic representations differ from each other.  

Lastly, the order of the activities “Comparing oranginess” and “Comparing speeds and 

deciding on best buy” were switched places since the activities related to comparing 

speeds and deciding on best buy were found as more intuitive than comparing the tastes 

of orange punches. Therefore, it was moved forward so that it appears before the activity 
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named “Comparing oranginess.” The content of the instructional sequence in order to be 

implemented in the second experiment is provided in the following section named 

“Design Experiment 2.” 

Another modification made after the first design experiment was related to the structure 

and content of the HLT table in the original sequence. As seen in Figure 3.7 above, the 

original HLT table includes big ideas, tools/imagery, and possible topics of 

(mathematical) discourse. In the first design experiment, it was seen that the classroom 

discussions revolved around some specific activities changing almost every day. 

Moreover, it was observed that some gestures and metaphors emerged in the classroom 

discussion, which were efficient in supporting the collective reasoning of the students. 

One of these was related to making hand gestures (i.e., moving fingers horizontally along 

the horizontal ratio tables) in order to point to making iterations with and scaling of 

values that belong to the same measure space in the ratio tables and the symbolic 

proportion representations. Moreover, moving fingers vertically in the horizontal ratio 

tables took place in the classroom discussion frequently in order to point to the invariant 

(i.e., functional) relationships between values in different measure spaces. Other gestures 

and metaphors were also found useful in order to support students' reasoning in 

normative ways. 

Therefore, the design research team decided to add the components of “activities/taken-

as-shared interest” and “possible gestures and metaphors” to the HLT table. Therefore, 

the HLT developed in this study is organized in a table that includes five components: 

big ideas, tools/imagery, activity/taken-as-shared interest, possible topics of 

mathematical discourse, and possible gestures and metaphors similar to some of the 

studies in related domain (e.g., Gravemeijer et al., 2003; Rasmussen, Stephan, & Allen, 

2004; Stephan & Akyuz, 2012). Moreover, the HLT was also broken into six phases in 

order to specify the shifts in students’ mathematical reasoning along this HLT. The 
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revised HLT that guided the implementation in the second experiment is provided in the 

following section named “Design Experiment 2.” 

  Design Experiment 2 

Upon the completion of making the necessary revisions to the first version of the 

instructional sequence, the second experiment of this design research study was 

conducted in six weeks (i.e., 30 class hours) from the first days of January 2017 to the 

last days of February 2017 (including a 2-week semester break). One of the collaborating 

teacher’s seventh-grade classrooms was selected since the teacher indicated that that 

specific classroom had effective argumentation practices than any other seventh-grade 

class of the teacher. Below is the revised version of the instructional sequence that the 

classroom discussion took place around:  

Table 3.2. The content of the instructional sequence implemented in the second 

experiment  

Instructional tasks Learning goals 

1. Let’s feed the fish Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning 

2. What do the 

survey results 

tell? 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning, 

informal ratio language 

3. Learning ratio 

and proportion 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning, 

formal ratio language, symbolic use of ratio and 

proportion 
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Table 3.2. (Continued) 

4. Let’s solve 

problems 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, ratio 

appropriateness (ratio sense), additive and multiplicative 

reasoning, formal ratio language, symbolic use of ratio 

and proportion 

5. Representing 

proportional 

situations with 

graphs and 

equations 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

linear relationships and their representations 

6. Proportionality 

and linearity 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

linear relationships and their representations, additive 

and multiplicative reasoning 

7. Do the pictures 

look alike? 

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, similarity 

and distortion. 

8. Comparing 

speeds and 

deciding on best 

buy  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, 

distinguishing rates and ratios 

9. Comparing 

oranginess  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, 

distinguishing rates and ratios 

10. Comparing coffee 

strengths 

Unitizing and norming ratio appropriateness (ratio 

sense), absolute and relative thinking, additive and 

multiplicative reasoning, qualitative reasoning 
 

As can be seen from the table above, the instructional sequence implemented in the 

second design experiment included ten tasks. In particular, two of these tasks (Task 4 

and Task 6) were implemented for the first time in the second experiment. Moreover, 

some of the tasks switched places in order to provide a more productive learning path for 

students. Although it cannot be seen in the table above, the contents of some of these 
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activities were also revised. The final versions of these activities are provided as an 

appendix to this study (see Appendix A). 

As afore-stated, the HLT presented in Stephan and colleagues’ (2015) study was used as 

the backbone for the first experiment. However, this HLT was also subject to revisions 

in between two design experiments. The revisions made to the HLT were explained in 

the previous part, together with their rationales. The revised version of the HLT that used 

as a guide for the second experiment, and that includes five components: big ideas, 

tools/imagery, activity/taken-as-shared interest, possible topics of mathematical 

discourse, and possible gestures and metaphors are presented in Figure 3.8 through 

Figure 3.13 below. 
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According to the first phase (i.e., Phase 1) of the HLT table created before the second 

experiment, students start with grouping and linking the pictures of groups of fish and 

food bars as composite units and make iterations with linked composites. In this phase, 

it is hypothesized that students would start using numerical iterations (i.e., 1-3, 2-6, 3-9, 

etc.) when the numbers get bigger. Then, the first tool, the horizontal long ratio table, 

will be introduced in order to organize these iterations and keep track of them. As 

students deal with different rules for the number of food bars and fish, it is envisioned 

that they will reason with building up by ones and eventually abbreviatedly (i.e., using 

scale factor within measure spaces). Upon the emerging of abbreviated build-up 

strategies, shortened ratio tables will be introduced as the second tool in order to do more 

efficient calculations. In the first phase, it is anticipated that students will make sense of 

the covariation (i.e., building up/scaling up within measure spaces) and invariation (i.e., 

unit ratio/rate) in the long and short ratio tables. 

After students make sense of the covariation and invariation in the short ratio tables in 

the contexts that include discrete variables, in Phase 2, it is envisioned that these 

understandings regarding covariation and invariation would be extended to part-whole 

contexts. In the next phase, Phase 3, formal representation of ratio and proportion will 

be introduced as formal tools by removing some of the borders of the short ratio table. It 

is envisioned that students would draw on their experiences related to covariance and 

invariance in the ratio tables to make sense of the functional and scalar relationships in 

the proportions in order to create and analyze equivalent ratios. Phase 4 of the HLT 

anticipates that students will move from tabular and formal representations of 

proportional relationships to representing proportional relationships graphically and 

algebraically. Also, it envisions that students will make sense of the relationships 

between multiple representations (i.e., tabular, numerical, graphical, algebraic) of 

proportional relationships. The next phase, Phase 5, envisions that students will move 

from creating equivalent proportions by scalar and functional relationships to compare 

ratios/rates and decide which one is bigger/smaller/equal in different contexts, including 
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similar/similar shapes and taste comparisons. Lastly, it is hypothesized that in Phase 6, 

students would reason independent of numerical values in order to reason about the 

determinability of change in the values of ratios and find the direction of change if it is 

determinable in a context that includes comparing tastes of liquids. Thus, this HLT gives 

a picture of the hypothesized growth of learning in normative ways. Documentation of 

Classroom Mathematical Practices is used in order to see how this hypothesized learning 

path will be actualized in the second experiment of this study and suggest revisions to 

the HLT and the instructional sequence. This method of analysis is described in the 

following sections under the subsection named Data Analysis. 

In the previous sections, the procedures and the events that took place during the first 

two phases of the study were explained. Below is a table that summarizes this process in 

a time table:  

Table 3.3. Time schedule of the study 

Time period Events and activities 

January-December 2015 Preparation for the experiments (Literature 

review, development of the HLT and the 

instructional sequence for the first experiment) 

December 2015 Pre-test and pre-interviews 

January-February 2016 (5 

weeks) 

Design experiment 1 

March-April 2016 Post-test and post-interviews 

March-December 2016 Revisions to the HLT and the instructional 

sequence  

December 2016 Pre-test and pre-interviews 

January-February 2017(6 

weeks) 

Design experiment 2 

March 2017 Post-test and post-interviews 

April-September 2017 Transcription of classroom and interview data 

December 2017-May 2018 Retrospective analysis (Mathematical 

Practices Analysis) 

June 2018-June 2019 Final revisions to the HLT and the 

instructional sequence 
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3.3.3. Data Collection Tools 

Design research makes use of a variety of data collection tools by utilization of various 

research techniques in order to evaluate the outcomes of design and refine the design 

process (Anderson & Shattuck, 2012; Design-Based Research Collective, 2003). More 

specifically, the key elements of a learning environment, which constitutes the units of 

analysis of design research, are “the tasks or problems that students are asked to solve, 

the kinds of discourses that are encouraged, the norms of participation that are 

established, the tools and related means provided, and the practical means by which 

classroom teachers can orchestrate relations among these elements” (Cobb et al., 2003, 

p. 9). Additionally, it might be helpful to incorporate suitable anchor assessment items 

that are utilized by other researchers (Gravemeijer & Cobb, 2006). 

In this study, the data collection tools consist of video recordings of classroom 

implementation sessions, pre-and post-tests of all students, individual student interviews 

prior to and following the experiments, duplicates of entire written works of students, 

field notes, and audio recordings of debriefing sessions with the teacher and research 

team meetings (Gravemeijer & Cobb, 2006). While all of this data helped to understand 

and conjecture sophisticated ways of communal reasoning and how to support this 

gradual process, some of the data collection tools had other major aims. The details of 

these data collection tools, together with the aim of collecting such kinds of data are 

stated in the following subsections. 

 Video recordings of classroom implementations 

The classroom implementations during the two design experiments of this design 

research study were video recorded. After the implementations, the researcher herself 

transcribed these video recordings into words by a systematic and persistent observation 

in which the teacher’s actions, students’ mathematical thinking and learning, the learning 

environment, gesture use, tool use, and the connections among these were noted next to 

the transcripts.  
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 Pre- and post-tests 

Pre-and post-tests are usually implemented in order to assess success rates before and 

after any intervention and to see if there is a difference between the results. In this study, 

apart from this aim, the major goal in collecting data through pre-test was to understand 

the informal and intuitive ways of reasoning of students and their tool use in proportional 

reasoning in order to build the instruction on those (Kaput & West, 1994; Lamon, 1994). 

To these ends, a test that included questions regarding most of the big ideas determined 

as critical understandings of proportional reasoning was constructed to be used as a pre-

test and post-test. Particularly, this test consisted of questions that measured the big ideas 

of iterating linked composites, unitizing and norming, multiplicative reasoning, unit rate, 

within and between measure comparisons, and qualitative reasoning. 

In the first few questions of the test, it was given that three balloons could be bought with 

one Turkish Lira (the national currency of Turkey). Students were required to find the 

missing values, either the money needed to buy a specific number of balloons or the 

number of balloons that could be bought with a specific amount of money by using this 

rule. Besides, a set of questions that included informal ratio language (i.e., per language 

or part-whole relationships) related to part-whole and part-part relationships were 

included in this test. Moreover, the test involved questions related to finding missing 

lengths of similar shapes and deciding on the best buy. Lastly, the test included 

qualitative reasoning tasks wherein no numbers were present, and the students were 

required to find the direction of change.  

The analysis of students’ work in the pretest revealed that students had some informal 

knowledge related to linking composite units and iterating linked composites with 

pictures and on tables. All of the students were able to group the pictures of balloons and 

linked them with 1 Turkish Lira (TL) when it was given that three balloons could be 
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bought with one TL. When the pictures were not provided, and bigger numbers were 

included in the questions, some of the students continued to draw pictures of balloons 

and coins for the questions. Besides, some of the students were able to link 1 and 3 

numerically and build up by ones and threes numerically (e.g., 1-3, 2-6, 3-9, etc.), some 

of them were able to divide and multiply as a procedural way for grouping and iterating. 

Nevertheless, these informal ways of reasoning were quite naïve in that they were mostly 

based on building up and did not include the invariant functional relationship between 

the amounts of balloons and money. Furthermore, for a considerable number of students, 

these informal ways of reasoning yielded in an incorrect additive reasoning, especially 

when the story did not include a unit ratio, as shown in Figure 3.14a and Figure 3.14b 

below. 

  

Figure 3.14a. Additive reasoning in 

the pre-test 

Figure 3.14b. Additive reasoning in the pre-

test 

Therefore, it was anticipated that one of the most challenging obstacles would be related 

to incorrect additive reasoning during the experiments. Thus, it was conjectured that the 

numbers had to be selected strategically to include unit ratios and integer ratios at the 

beginning and also non-integer ratios in the following instances.  

 Also, the pretest and pre-interview data showed that almost all of the students were able 

to reason qualitatively for basic comparisons, such as deciding on the faster person when 

it was known that one of them took the same distance in a shorter time. Furthermore, 

some of the students were also successful in comparing the ratios/rates by finding the 
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unit rates. However, it was also the case that some of the students compared two 

situations by focusing only on the amount of one quantity in both situations instead of 

focusing on their relative amounts. Therefore, the data collected before the experiments 

consistently showed that students had different amounts of knowledge in the big ideas of 

proportional reasoning, but they were all able to make iterations with the linked 

composites either with pictures or numbers by building up. Therefore, these data 

supported that the starting point for the instructional sequence had to be linking 

composite units and iterating linked composites based on build-up strategies.  

The purpose of the post-test was to gain insight into students' learning after the 

experiment in order to see the shifts in their reasoning processes and the use of tools and 

symbols. However, the posttests were not analyzed in detail within the context of this 

study.  

 Pre- and post-interviews 

After each student in the classroom in which the experiments would be conducted 

answered the written pre-tests, eight students were selected to be involved in pre-and 

post-interviews in both experiments based on their answers in the pre-tests. Besides, the 

teacher was consulted for the selection of these students. The selection criteria for student 

interviews were related to ensuring variability in terms of academic performance and 

having different reasoning patterns so as to contribute to the whole-class discussions 

significantly. In the pre- and post- interviews, the students were asked to solve the 

problems in the written pretest and think aloud as they solved those problems. Moreover, 

a few extra questions were asked where necessary. In this way, there was a chance to 

delve into students' informal ways of reasoning, together with their informal tool use. 

The goal of conducting pre and post-test interviews was the same as the pre- and post-

test. In particular, pre-interviews were conducted in order to make sense of students' 

informal and intuitive knowledge and tool use for proportional reasoning tasks. This 
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information, then, was used to shape the instruction (Kaput & West, 1994; Lamon, 1994). 

Similar to the pretests, the pre-interviews also revealed that students made use of table-

like representations in order to link and iterate composite units. Moreover, they had 

challenges when the problems included non-integer and/or nonreducible ratios and 

misapplied additive reasoning for proportional situations.   

 Student’s written work 

In both experiments, the students worked on the tasks in the instructional sequence, both 

individually and in small groups. After each class session, the sheets that included 

students' work were copied. These duplicates of students' work as they interact with the 

instructional tasks provided extra insight into their mathematical growth and reasoning, 

including the use of models and tools. In addition, they were also helpful in 

understanding individual students' contributions to the classroom mathematical practices 

in detail.   

 Audio recordings of debriefing and research team meetings 

The teacher and the researcher met before and after each classroom session. They 

engaged in anticipatory thought experiments before each classroom implementation in 

order to go over the learning goals of the lesson and envision students’ likely 

progressions in that class. In addition, the teacher and the researcher met after each class 

session in order to assess the benefits and drawbacks of the prior class and to conjecture 

the revisions necessary for HLT and the instructional sequence. Besides, the design 

research team met occasionally in order to evaluate instruction and come up with 

conjectures about students’ collective learning and the ways to facilitate this learning for 

the subsequent experiment. All of these meetings were audiotaped. The audiotapes were 

listened carefully and frequently in order to make revisions to the HLT and the 

instructional sequence.  
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 Fieldnotes 

Field notes are “the written account of what the researcher hears, sees, experiences, and 

thinks in the course of collecting and reflecting on the data in a qualitative study” 

(Bogdan & Biklen, 2007, p. 118-119). In this study, I, as the researcher, was present in 

the classroom during all the implementation sessions in both experiments. As a 

participant-observer in the classroom, in addition to talking with the teacher in order to 

resolve a situation in the classroom, I always took field notes related to the classroom 

events and revised those notes after each classroom session. 

3.4. Data Analysis 

Having a vast amount of data (i.e., videotapes of almost 30 hours of classroom 

implementation, audiotapes of almost 20 hours of research team meetings and debriefing 

sessions, etc.) requires a careful organization and analysis of the data. While these data 

were analyzed continuously as a part of the on-going analysis process, the retrospective 

analysis focused on understanding the taken-as-shared ways of learning of a classroom 

community and documenting the mathematical practices. To this end, transcripts of the 

classroom video data were created as the starting point. The classroom data were 

analyzed by an adaptation of Toulmin's (1958, 2003) argumentation model by Stephan 

and Rasmussen (2002) and Rasmussen and Stephan (2008). This process of analysis 

method includes three phases. In the first phase, the videotapes of every class session 

were watched, and the instances in which a claim is made were noted, and the whole-

class discussions were coded according to Toulmin’s argumentation model. Therefore, 

it is important to explain this model at first.  

A basic argumentation process involves three components as a claim (C), data (D), and 

warrant (W) in Toulmin's (1958) model of argumentation. According to this model, a 

claim is an assertion or a conclusion that is made based on the data (Toulmin, 1958). 

Therefore, data point out the ground on which the argument is constructed. Warrants are 

different from data in that they describe and justify how one gets from the data to the 
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claim (Toulmin, 1958, 2003). Therefore, warrants act as bridges between data and claims 

in that they show that “taking these data as a starting point, the step to the original claim 

or conclusions is an appropriate and legitimate one.” (Toulmin, 2003, p. 91). These 

warrants are usually rules or principles that authorize the steps taken to move from the 

data to the claim (Toulmin, 2003). Below is a skeleton proposed by Toulmin (1958, 

2003) for analyzing:  

 

Figure 3.15. Basic skeleton for analyzing arguments (Toulmin, 2003, p. 92) 

As seen in the basic argumentation model shown in Figure 3.15 datum and claim are 

connected by an arrow to emphasize their relation, and a warrant is written right below 

the arrow. In the example provided in Figure 3.6, the warrant functions as explanatory in 

that its task is to legitimize the step taken from the data to the claim and to refer to the 

other groups of steps that are supposedly legitimate (Toulmin, 2003). However, warrants 

can be of different types, and “may confer different degrees of force on the conclusions 

they justify.” (Toulmin, 2003, p. 92). In other words, warrants can function differently 

and justify the claim in different degrees- some of them authorize the claim in a way that 

leaves no doubt, whereas some of them authorize the claim tentatively or under certain 

conditions or qualifications (Toulmin, 2003). Therefore, an argument might be more 

complex, and it may not be enough to include only data, claim, and warrants in the 

corresponding skeleton. Therefore, a more complex argumentation scheme includes the 

components of qualifier (Q), rebuttal (R), and backing (B). A qualifier describes the 
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degree of and the extent to which the claim is justified by the warrant, whereas a rebuttal 

indicates the circumstances wherein the warrant fails to confer the claim. Besides, a 

backing supports the warrant’s acceptability and legitimacy. Therefore, a more complex 

argumentation, including all these elements can be structured as follows: 

 

Figure 3.16. A comprehensive skeleton for analyzing arguments (Toulmin, 2003, p. 97) 

As seen in the figure above, the qualifier is written beside the claim it qualifies, and the 

rebuttal is written right below the qualifier to specify the exceptional conditions that can 

defeat or rebut the warranted conclusion (Toulmin, 2003). Therefore, below is an 

extension of the example depicted in Figure 3.16, which includes all the additional 

elements:   

 

Figure 3.17. An exemplary argument including elements of an argument (Toulmin, 

2003, p. 97) 
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Although Toulmin (1958) proposes this model of argumentation for the field of law and 

for individual argumentation processes, he stresses that some features of this model are 

field-invariant. That means this model can be applied to other fields. Taking this notion, 

Krummheuer (1995) adapted Toulmin’s model for analyzing mathematical arguments. 

Besides, he also focused on the social aspects of an argumentation process where he sees 

argumentation as a social phenomenon in which individuals present justifications for 

their actions and make adjustments in their intentions (Krummheuer, 1995). 

Argumentation in such an environment is referred to as techniques and methods to 

establish a claim and seen as a specific aspect of social interaction (Krummheuer, 1995). 

Therefore, a successful process of argumentation involves challenging claims and 

arriving at a consensual and acceptable claim for all individuals (Krummheuer, 1995). 

This kind of argumentation in which several individuals contribute to the development 

of mathematical arguments through social interaction is called a collective argumentation 

(Krummheuer, 1995). A collective argumentation does not develop in a linear way; 

instead, disagreements might take place that would eventually result in the processes of 

correcting, modifying, retracting, and replacing (Krummheuer, 1995). Hence, the result 

of such a process is called an argument (Krummheuer, 1995). In line with this 

perspective, Yackel (2001) states that “what constitutes data, warrants, and backing is 

not predetermined but is negotiated by the participants as they interact” (p. 7), 

emphasizing that the elements of the arguments are “situation-specific, emergent, and 

co-constituted.” (Cole, Becker, Towns, Sweeney, Wawro, & Rasmussen, 2012, p. 197). 

Krummheuer (1995) refers to the skeleton of an argument that contains only data, 

conclusion (claim), and warrant as the core of an argument. He gives an example of a 

symbolic representation of the core of an argument as follows:  
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Figure 3.18. Symbolic representation of the core of an argument (Krummheuer, 1995, 

p. 243) 

In addition to the core of an argument, Krummheuer (1995) points to the importance of 

backing to ratify and authorize the claim and considers an argumentation including data, 

claim, warrant, and backing as sufficiently elaborated. An example of backing for the 

core of the argument above and how it is attached to it is presented in Figure 3.19 below. 

 

Figure 3.19. Complete schematic representation of a collective argument 

(Krummheuer, 1995, p. 246) 
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Similar to Krummheuer’s (1995) approach, I coded the whole-class discussions as claim, 

data, warrant, and backing (if necessary) and created the corresponding argumentation 

schemes. In this process, I consulted my co-advisor, Dr. Stephan, in order to verify or 

refute the argumentation schemes. We went over the argumentation schemes, and came 

to an agreement on the argumentation schemes or drew new argumentation schemes for 

the purposes of reliability (Rasmussen & Stephan, 2008). In this process of identification 

of the elements of the argumentation schemes, we paid attention to the function of the 

contribution that the teacher or the students made (Rasmussen & Stephan, 2008). For 

instance, if a contribution functioned as a bridge between the data and claim, it was 

identified as a warrant. In addition, the aim of the contribution was also the focus. For 

instance, if a student answered the problem, it was identified as a claim, whereas it was 

identified as a warrant if he or she answered a question that the teacher asked for 

elaboration. Hence, at the end of the first phase, an argumentation log ordering all the 

argumentation schemes in succession across all whole-class discussions was obtained.   

In line with the second phase of the three-phase method developed by Stephan and 

Rasmussen (2002) and Rasmussen and Stephan (2008), the argumentation log obtained 

in the first phase was analyzed across the class sessions in order to see which of these 

mathematical ideas became taken-as-shared (i.e., become a part of the class' communal 

reasoning). In this phase, the following two criteria developed by Stephan and 

Rasmussen (2002) Rasmussen and Stephan (2008) was used: 

1. When the backings and/or warrants for an argumentation no longer appear 
in students' explanations (i.e., they become implied rather than stated or 

called for explicitly, no member of the community challenges the 

argumentation, and/or if the argumentation is contested and the student's 
challenge is rejected), we consider that the mathematical idea expressed in 

the core of the argument stands as self-evident. 

2. When any of the four parts of an argument (the data, warrant, claim, or 

backing) shifts position (i.e., function) within subsequent arguments and 
is unchallenged (or, if contested, challenges are rejected), the 

mathematical idea functions as if it were shared (p. 200).  
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For instance, on Day 6, the idea of formalizing the invariant multiplicative relationship 

into an equation was noted as a new mathematical idea when a student claimed that the 

relationship between the amounts of apples in kg and its price as y= 2x and provided a 

warrant related to the invariant "times two" relationship. Then, on the very same day, 

several students wrote the corresponding equations representing the relationships 

between the amounts of vegetables/fruits and their price, and no warrant/backing came 

out, or nobody required any warrants/backings. Moreover, the same idea never got 

challenged on the following days. Hence, based on the first criteria related to dropping 

off of the warrants, we were able to conclude that the idea of formalizing the invariant 

multiplicative relationship into an equation was taken-as-shared among the classroom 

community. In addition, when students used a previously justified claim in their 

data/warrant/backing for subsequent arguments (i.e., the idea shifted place from claim to 

become data/warrant/backing), it was evident that the idea was taken-as-shared. 

Although using these two criteria was very helpful for identifying the mathematical ideas 

that became taken-as-shared in the classroom community, an additional criterion 

improved the analysis method. This criterion was put forward by Cole et al. (2012) as it 

emerged when they utilized the three-phase methodological approach by Stephan and 

Rasmussen (2008) into their Chemistry classrooms. This criterion is as follows: 

“Criterion 3 When a particular idea is repeatedly used as either data or warrant for 

different claims across multiple days” (Cole et al., 2012, p. 200). In particular, this 

criterion was helpful in order to conclude that the initial mathematical ideas in the 

instructional sequence were taken-as-shared. For example, the initial task (fish-food bar 

task) in the instructional sequence required students to find the numerical answers to the 

questions that asked the number of food bars needed to feed the specific number of fish 

or the number of fish that could be fed with the given amount of food bars. In order to 

make claims about the numerical answers, students used linking and iterating with 

pictures, numbers, and operations, and on tables in their data and warrants. Since this is 

an informal and intuitive idea that develops in grades 3-5 (Kaput & West, 1994; Lamon, 
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1994), none of the students in the seventh-grade classroom used a warrant or asked for a 

warrant on how they arrived at the answers based on these intuitive ideas. In other words, 

the ideas related to iterating and linking appeared only in data or warrant in the first place 

and never got challenged, which made it impossible to use the two criteria by Stephan 

and Rasmussen (2002) and Rasmussen and Stephan (2002). However, by using the third 

criterion, we were able to conclude that iterating composite units and linking composite 

units was taken-as-shared since this idea was repeatedly used in students' data or warrants 

for a variety of claims across multiple days.   

The identification of the taken-as-shared ideas took place in a cyclical manner in which 

we went back and forth across all class sessions. In this process, a three-column-chart 

was created including the elements (1) the mathematical ideas that were identified as 

taken-as-shared, (2) the mathematical ideas emerged in the discussion and to be kept an 

eye on to see if there would be further evidence for them to be taken-as-shared on the 

following days, (3) additional comments (Rasmussen & Stephan, 2008; Stephan & 

Rasmussen, 2002). Below is a portion of this table that belonged to Day 6: 

Table 3.4. A portion of the mathematical ideas chart for Day 6 of the instruction  

Taken-as-shared ideas Keep an eye on Additional comments 

Structuring ratios and 

proportions 

multiplicatively and 

extending invariance 

and covariance to 

proportion 

Checking for 

proportionality  

Students heavily drew on their 

knowledge of comparing fractions while 

they checked whether the given two 

ratios were proportional. For instance, 

while checking whether or not 
2

3
 and 

10

20
 

were proportional, students drew on 

their knowledge in fractions by 

referring to the 
10

20
 as half and 

2

3
 as larger 

than a half.  

 

Table 3.4 is only a portion of a series of charts that belonged to each day of the 

experiment. The complete set of tables was used in order to see if the ideas in the second 
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column (i.e., keep an eye on) moved to the first column (i.e., taken-as-shared) across 

subsequent days. In doing so, the conclusions related to the mathematical ideas' being 

taken-as-shared were made based on the comparison of the elements of the mathematical 

ideas chart, which is also consistent with the Constant Comparison Method of analysis 

by Glaser and Strauss (1967).  

Upon the completion of the identification of all the taken-as-shared ideas, these ideas 

were organized around common activities, which were later referred to as classroom 

mathematical practices in the third phase of the analysis method. When considered 

together, these classroom mathematical practices comprise the collective development 

of the classroom community in sophisticatedly increasing ways. For instance, it was 

observed that the students grouped the objects (i.e., fish and food bars) to form composite 

units, linked those composite units, and made sense of the covariation between those by 

making iterations with linked composites by using numerical, pictorial and tabular 

representations. Later on, these iterations took shifted from building up/down by ones to 

scaling up/down abbreviatedly. Then, the invariant multiplicative relationship between 

the linked quantities was interpreted and conceptualized as unit rate and used as a 

benchmark for finding missing values. Lastly, these understandings of covariance and 

invariance were reconceptualized in part-whole contexts. These mathematical ideas that 

were taken-as-shared on the first four days of instruction felt like being related to the 

general activity of reasoning with pictures and tables to find missing values. Therefore, 

these five mathematical ideas were put together and organized around the common 

activity of reasoning with pictures and tables to find missing values as they emerged and 

became taken-as-shared. Hence, the first mathematical practice in this study was called 

“reasoning with pictures and tables to find missing values (preserving link and it’s one 

situation, not comparing two)” and consisted of the following five taken-as-shared ideas:  

• Linking composite units and iterating linked composites while the link is 

preserved  
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• Pre-multiplicative reasoning - covarying the linked composites by a scale factor 

(i.e., building up abbreviatedly) 

• Multiplicative reasoning- invariance of the multiplicative relationship between 

the two units as they covary-  

• Conceptualizing the invariant relationship between the two linked composites as 

unit rate and constant of proportionality and using it as a tool/benchmark/anchor 

for finding missing values 

• Reasoning with ratio tables and symbolic proportion representation to extend 

covariation and invariation to the relationship between parts and their whole. 

Five classroom mathematical practices, including the above one, were identified in this 

study. It was found that these classroom mathematical practices emerged in a network-

like manner, as found by Stephan and Rasmussen (2002), in which the separation of the 

practices was not always possible. For instance, there were a couple of times where more 

than one mathematical practice was established by the same taken-as-shared ideas. 

Moreover, it was possible that a specific mathematical idea became taken-as-shared, 

whereas a different idea emerged in the discussion during the same day. In other words, 

these mathematical practices "can have structural overlap, rather than a timing overlap 

of when the practices are initiated and constituted" (Rasmussen & Stephan, 2008, p. 201).   

3.5. Trustworthiness 

 The trustworthiness of a research study is related to the procedures followed to ensure 

validity and reliability (Patton, 2002). In particular, trustworthiness in a design research 

study is related to the extent that the inferences and conjectures are justified and 

reasonable (Gravemeijer & Cobb, 2006). Briefly, validity is concerned with the question 

of whether the researchers measure what they intend to measure, whereas reliability 

concerns the independence of the researcher (Bakker, & van Eerde, 2015). Lincoln and 

Guba (1985) elaborates on the issues of validity and reliability by referring to the terms, 

credibility, transferability, dependability, and confirmability. In the following parts, 

these issues and how they are handled in this study will be explained in detail.   

First, credibility is related to internal validity (i.e., how truthful are the findings?) and 

deals with the “quality of data and the soundness of the reasoning that has led to the 
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conclusions” (Bakker & van Eerde, 2015, p. 444). The credibility of a study can be 

established by a description of prolonged engagement of the researcher with students and 

teachers in the context (Gravemeijer & Cobb, 2006; Lincoln & Guba, 1985; McKenney 

& Reeves, 2012), which is one of the strengths of design research studies (Gravemeijer 

& Cobb, 2006). In particular, according to Bakker and van Eerde (2015), internal validity 

of a design research study can be improved by testing the conjectures to multiple episodes 

and checking if different data collection tools yield to the same conjectures, which is 

referred to as triangulation (Lincoln & Guba, 1985; McKenney & Reeves, 2012, Patton, 

2002). In this study, the researcher took part actively in the designing, classroom 

experimenting, and revising processes for almost three years. In this process, the 

researcher conducted interviews with the students and the teacher periodically before, 

during, and after the design experiments in two cycles, which in return helped the 

researcher understand the context with its potentials and drawbacks and come up with 

the means to support learning in that context. Besides, this study was conducted in two 

macro-cycles in two consecutive years, which made it possible to test the early developed 

conjectures in successive experiments, which contributed to the improvement of the 

internal validity of the study (Bakker & van Eerde, 2015). 

Additionally, the data were collected through a variety of tools (i.e., student and teacher 

interviews, field notes, classroom observations, design research team meetings, 

debriefing sessions, etc.), all of which were used in developing and testing conjectures 

of the study. In this process, the research design team, including the researcher, the two 

advisors, and the collaborating teacher, participated in developing and testing the 

conjectures related to student learning and the means of supporting this learning. In 

addition, debriefing sessions with the teacher after each class session were conducted. 

Particularly, in order to ensure the credibility of data analysis, a plausible method of data 

analysis (i.e., three-phase-method for documenting mathematical practices) was used, 

and all the phases of the analysis process were documented in detail (Gravemeijer & 
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Cobb, 2006). Moreover, in this process of data analysis, the researcher worked with Dr. 

Stephan, who is one of the designers of the three-phase method. 

Second, transferability is related to external validity (Lincoln & Guba, 1985), 

generalizability (Bakker & van Eerde, 2015), or ecological validity (Gravemeijer & 

Cobb, 2006). It deals with the question “how do the findings inform other contexts?” and 

"to what extent do the lessons learned in a specific experiment can be useful for 

subsequent experiments" (Bakker & van Eerde, 2015). In a design research study, 

classroom activities and classroom events are the issues that are associated with 

generalizability; yet, it should be noted that each classroom has its own characteristics 

(Gravemeijer & Cobb, 2006). Thus, in a design research study, “what is generalized is a 

way of interpreting and understanding specific cases that preserves their individual 

characteristics” (Gravemeijer & Cobb, 2006, p. 47). That is to say, the insights obtained 

from this study can be used to interpret and inform other cases that are relevant in terms 

of students’ mathematical learning. In this way, the developed local instruction theory 

and instructional activities can be used to foster the learning of students in other 

classrooms (Gravemeijer & Cobb, 2006). Also, the design of this study can inform 

further research and future instructional design. To put it differently, it is the desire in a 

design research study that the developed local instruction theory "can function as a frame 

of reference for teachers who want to adapt the corresponding instructional sequence to 

their own classrooms, and their personal objectives" (Gravemeijer & Cobb, 2006, p. 45). 

One of the major ways to address transferability or ecological validity is “thick 

description” (Bakker & van Eerde, 2015; Firestone, 1987; Gravemeijer & Cobb, 2006; 

Lincoln & Guba, 1985; McKenney & Reeves, 2012). Particularly in design research 

studies, these descriptions should include the details of participation behaviors of 

students, teaching-learning process (Gravemeijer & Cobb, 2006) and “failures and 

successes, procedures followed, the conceptual framework used, and the reasons for 

certain choices” (Bakker & van Eerde, 2015, p. 445). In addition, an analysis of how the 
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teaching-learning process might be affected by these aspects should be provided in detail 

(Gravemeijer & Cobb, 2006). Also, the design principles followed, and both the 

processes of evaluation and the context should be articulated theoretically in order to 

help the audience to estimate the extent that transferring from the reported situation to 

theirs is possible (Miles & Huberman, 1994). In line with these suggestions, in this study, 

the interpretative frameworks (i.e., RME, emergent perspective), procedures followed, 

and revisions to the sequence in each phase with their rationale were explained in detail. 

Besides, students’ communal ways of reasoning as they interact with the instructional 

sequence and how this reasoning is interpreted within the interpretative frameworks were 

explained in detail. Moreover, collective ways of participating in the classroom 

mathematical practices and how these participation behaviors were categorized in terms 

of Toulmin's argumentation scheme were described thoroughly. In addition, transcripts 

from the classroom experiments were provided where necessary in order to help readers 

understand the context and the theoretical claims made (Bakker & van Eerde, 2015).  

Third, dependability relates to reliability and deals with the consistency and replicability 

of the findings (Lincoln & Guba, 1985). Gravemeijer and Cobb (2006) point out that 

design research studies do not aim replication of the instructional strategies in other 

classrooms since replicability is not possible and even desirable (Simon, 1995). Instead, 

they refer to ecological validity as the aim in design research, wherein adaptations are 

made to other situations based on the explanations of the results of a specific study 

(Gravemeijer & Cobb, 2006). One way to establish the dependability of a study might 

be possible through the use of the same design principles and multiple iterations in design 

research (McKenney & Reeves, 2012). Concerning this, this study is conducted in two 

macrocycles in two consecutive years. In these two cycles, the same design principles 

(e.g., the principles of RME) were followed. 

Forth, confirmability is associated with objectivity and deals with the question “how 

much are the findings shaped by the participants and conditions and not due to researcher 
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bias?” (Bakker & van Eerde, 2015; Lincoln & Guba, 1985; McKenney & Reeves, 2012). 

The same issue is referred to as internal reliability, which is associated with the “degree 

of how independently of the researcher the data are collected and analyzed” (Bakker & 

van Eerde, 2015, p. 445). According to Bakker and van Eerde (2015), it can be improved 

by audio- or videotaping during data collection and peer examination (i.e., inter-rater 

reliability). Besides, the triangulation of data collection methods can be helpful in 

ensuring confirmability (Lincoln & Guba, 1985; McKenney & Reeves, 2012). In this 

study, data were collected in a variety of ways. Besides, the classroom sessions, teacher 

and student interviews, and design team meetings were recorded via audio- or video 

recording, and the transcripts were provided where necessary. Lastly, two coders worked 

collaboratively in analyzing the data in order to establish a peer examination.    

 Above all, one of the critical considerations related to the trustworthiness of qualitative 

studies is that the researcher's skills, competence, personal beliefs, and experiences affect 

his interpretations (Patton, 2002). This issue will be minimized by a detailed description 

of the researcher's role throughout all stages of the study.  

3.6. Researcher Role 

Researcher’s ontological, epistemological, and methodological beliefs, or what is called 

paradigm, shape and guide the research (Denzin & Lincoln, 1994). In design 

experiments, researchers should be present in the classroom during the experiment and 

engage in debriefing sessions with the teacher subsequent to each classroom session in 

order to come up with common interpretations of the classroom events (Gravemeijer, & 

Cobb, 2006). Therefore, in line with the principles of a design research study, I was 

present in each class session during the two experiments and conducted meetings before 

and after each class session.  

Particularly, throughout this study, I took two roles: a participant-observer in collecting 

and analyzing data and a data source as a supporter of the teacher in designing the course. 



 

203 
 

In other words, I was an active participant in all of the phases of this design research 

study. Even though it might be regarded as biased through quantitative paradigms, this 

active participant in the process provided me with the opportunity to interpret the study 

through my own experience in the context (Marshall & Rossman, 1999). In particular, 

even though being in the setting seems like a threat to the trustworthiness of the study, it 

might also be considered as an advantage to support the design process and solve the 

design problems in the setting (Barab & Squire, 2004). 

3.7. Ethical Considerations 

In advance of the design experiment, the necessary permissions were taken from Middle 

East Technical University Human Subjects Ethics Committee (see Appendix B) and the 

Head of Elementary Mathematics Education program of the university. Then, official 

permissions needed for conducting the study were taken from the Ministry of National 

Education (see Appendix C). The collaborating teacher was informed about the purposes 

and procedures of the study and asked for her consent. In relation to the procedures, she 

was explicitly informed that her classes would be video recorded, and debriefing sessions 

will be audio recorded. Also, she was assured about the confidentiality of her identity 

and that the results will be used only for scientific purposes. See Appendix D for the 

informed consent form through which her consent was taken. 

Additionally, the students in both macrocycles were informed about the same issues (i.e., 

purposes, data collection procedures, confidentiality, voluntarism). In order to ensure 

confidentiality, pseudonyms were used for the students. Moreover, permissions from the 

parents of the students that were selected to be interviewed at the beginning and end of 

the study were taken via parent permission form (See Appendix E). In this form, it was 

explicitly written that the interviews conducted with these students would be videotaped 

without capturing their faces. They were also assured that the identities of their children 

would be kept confidential. After the necessary permissions were obtained from the 
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parents, these children that were selected to be interviewed were informed about the same 

issues and were asked for their consent.    
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CHAPTER 4 

 

FINDINGS 

 

 

The overall purposes of this dissertation are to develop, test, and revise a classroom HLT 

and related instructional sequence for supporting seventh-graders' proportional 

reasoning, to explain collective development of proportional reasoning of a seventh-

grade classroom community by a documentation of classroom mathematical practices, 

and to describe the emergence of communal ways of reasoning with informal and formal 

tools (i.e., models, imageries, gestures, and metaphors). This chapter is devoted to the 

elaboration of the findings obtained by the Classroom Mathematical Practices analysis. 

Particularly, this chapter explains the taken-as-shared ideas and the classroom 

mathematical practices that emerged as the students interacted around the instructional 

sequence and the HLT. A particular focus is given to the tool use and transition from 

reasoning with informal tools to reasoning with formal tools. It also delineates how the 

classroom community’s reasoning is supported in increasingly sophisticated ways with 

an RME perspective and what opportunities and barriers the instructional sequence 

provides for realization of the hypothesized learning trajectory and the process of 

mathematization. In doing so, it also embodies how the students rely on their informal 

knowledge in order to mathematize their informal and intuitive knowledge and self-

generated solutions.  
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Five mathematical practices were documented over the course of 15 class periods that 

were focused on ratio, proportion, and proportional reasoning. The process of 

mathematical ideas being taken-as-shared and the emergence of the five mathematical 

practices occurred in a network-like manner, as found by Stephan and Rasmussen (2002). 

Thus, the separation of the practices was not always possible. This was because the 

instructional sequence was designed in order for students to develop a web of ideas in 

pictorial, tabular, graphical, numerical, and symbolic ways of representations. For 

example, there were a couple of times where more than one mathematical practice was 

established by the same taken-as-shared ideas. Moreover, it was possible that a specific 

mathematical idea became taken-as-shared, whereas a different idea emerged in the 

discussion during the same day as Stephan and Rasmussen (2002) stressed. The 

mathematical ideas that were taken-as-shared (TAS) throughout the establishment of 

these mathematical practices are described in the following parts. 

Table 4.1. Five Classroom Mathematical Practices 

Classroom Mathematical Practices 

Practice 1. Reasoning with pictures and tables to find missing values 

• Linking composite units and iterating linked composites while the link is 

preserved  

• Pre-multiplicative reasoning- covarying the linked composites by a scale 

factor (i.e., abbreviated build-up)  

• Multiplicative reasoning- invariance of the multiplicative relationship 

between the two units as they covary 

• Conceptualizing the invariant relationship between two linked composites 

as unit rate and using it as a tool/benchmark/anchor for finding missing 

values 

• Reasoning with ratio tables and symbolic proportion representation to 

extend covariation and invariation to the relationship between parts and 

their whole 

Practice 2. Reasoning with tables and symbols to determine proportional situations 

• Structuring ratios and proportions multiplicatively and extending 

invariance and covariance to symbolic proportion representation.  

• Determining proportionality by covariational and multiplicative reasoning 
 



 

207 
 

Table 4.1 (Continued) 

Practice 3. Coordinating the relationships among the representations 

• Linking composite units and iterating linked composite units 

• Multiplicative reasoning- the relationship between the two composite units 

is invariant 

• Formalizing the invariant multiplicative relationship into an equation 

• Representing proportional relationships with linear equations of the type 

y=mx and graphs passing through the origin 

• Representing non-proportional linear relationships with linear equations of 

the type y=mx+b and graphs not passing through the origin 

Practice 4. Extending covariation and invariation to continuous contexts  

• Reasoning with within-shape and between-shapes ratios to find missing 

side lengths of similar shapes 

• Conceptualizing distortion of shapes 

Practice 5. Comparing rates/ratios and deciding which one is bigger/smaller/equal 

• Creating and reasoning with equivalent ratios to compare quantities. 

 

4.1. CMP 1. Reasoning with pictures and tables to find missing values  

Five ideas became taken-as-shared as the students mathematized the fish-food bar 

situations and part-whole relationships on the first five days of the instruction.  

• Linking composite units and iterating linked composites while the link is 

preserved (i.e., building up) 

• Pre-multiplicative reasoning- covarying the linked composites by a scale factor 

(i.e., abbreviated build-up) 

• Multiplicative reasoning- invariance of the multiplicative relationship between 

the two units as they covary 

• Conceptualizing the invariant relationship between the two linked composites 

as unit rate and constant of proportionality and using it as a 

tool/benchmark/anchor for finding missing values 

• Reasoning with ratio tables and symbolic proportion representation to extend 

covariation and invariation to the relationship between parts and their whole. 

The instructional sequence started with an experientially real context that required 

students to link composite units and make iterations with linked composites. In order to 
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launch the lesson, the teacher asked the students if they had pets. After getting answers 

from the students, she told a story as follows:   

I have pet fish, and I had a dream last night. In my dream, there was a noise coming 

from the living room where the aquarium is. I went to see what the noise was about 

and saw that the fish jumped out of the aquarium and were wandering around the 
living room screaming, “we want food.” I thought that I had given them enough 

food, but I felt sorry that it was not enough. The fish were so mad at me that they 

attacked me. That woke me up, and I was so frightened that I went to the living 
room and checked the fish, but they seemed fine. I was so upset that I promised 

myself I would be cautious about the amount of food I give them. Besides, I 

thought that could be a delicate topic for today's math class.  

 The teacher then asked the students how they feed their pets. The students suggested 

that pets had to be fed with a certain amount of food each day. If they were underfed, 

they would be hungry; if they were overfed, they would get sick. In the worst case, they 

could even die from under- or overfeeding. Below is a classroom dialogue that illustrates 

this process:  

Teacher: Is there anyone who pets fish (A couple of students raise hands). How do 

you feed them? What happens when you overfeed? 
Berk: They die when overfed. We need to give a specific amount of food each day.  

Teacher: That’s right. Our pet fish died due to overfeeding. What happens if we 

underfeed?  
Ozan: Then, they get hungry. 

Berk: They can even die from being underfed.  

As could be deduced from the dialogue above, this story laid the ground for the students 

to make sense of why the rule for feeding the fish could not be broken. Then, the teacher 

introduced an activity that explored situations involving feeding fish with food bars each 

time using the given specific rule. 

TAS Idea 1: Linking composite units and iterating linked composites while the link is 

preserved (i.e., building up). The first rule was one food bar for three fish, which 

included a whole number ratio between the food bars and the fish as the starting point. 

The pictures of fish and food bars were also included at the beginning in order to help 
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students group the pictures and link the composites concretely, as shown in the 

following figure. 

 

 

 

Figure 4.1. A sample question with pictures of food bars and fish for grouping and 

linking 

Even though this might be a simple problem for seventh graders, it was posed so that 

there was a chance for the teacher to capitalize on student thinking related to taking three 

fish as a unit and linking with one food bar. Including the pictures was also helpful for 

the students to make sense of the rule and the linking process in the first place by 

concretely grouping the three fish and matching each group with one food bar with 

arrows. Below is a dialogue that is helpful to understand how including the pictures 

helped the students:  

 Teacher: How did you solve the problem? 

Seval: (Writes her solution on the board) 3 fish eat one food bar. I circled three fish 

like this and wrote 1,2,3 on the bars. The last bar was not used (draws circles to 
represent the fish and rectangles to represent the bars. Then, she draws closed 

curves to group each three fish and writes 1, 2,3 on each group, and writes 1,2,3 

on the three of the four food bars. She leaves the fourth rectangle blank and writes 

one extra food bar next to it, See Figure 4.2 below)  
Elif: Yes, there is enough. We have even one extra (food bar).  

Berk: Yes, we can feed three more fish. That means there is enough and even more.  
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Figure 4.2. Drawing closed curves to group three fish and linking with food by using 

numerals 

As it was deduced from the dialogue and the figure given above, Seval grouped the 

pictures of fish in 3s and wrote 1,2,3 on each of the groups and also on the food bars in 

order to show the link between each group and a food bar. When a Toulmin analysis was 

conducted on this dialogue, Seval's solution, including the pictorial and verbal 

explanations, was considered as a data to the claim “there is enough food bar.” Elif and 

Berk explained why having an unmatched food bar led to the claim that there is enough 

food bar, which in return was regarded as a warrant to Seval's data and claim. This 

interpretation is illustrated with Toulmin's analysis scheme presented in Figure 4.3 

below:  

 

Figure 4.3. Toulmin Analysis scheme regarding linking composite units 

Claim: There is 

enough food bar. 

(Seval) 

 

Warrant: We have even one extra (food 

bar). We can feed three more fish. That 

means there is enough and even more. 

(Elif, Berk) 

Data: If three fish eat one food bar. I circled 

three fish like this and wrote 1,2,3 on the 

bars. The last bar was not used (together 

with her pictorial representation given in 

Figure 4.2). (Seval)  
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Even though Seval used numerals in order to link a group of 3 fish and a food bar during 

the whole class discussion, many students also used arrows for showing the same link 

during the small group discussions. This can be seen in the following figure that includes 

Ceyda’s work on the activity sheet. 

  

Figure 4.4. Using arrows for linking a group of fish and a food bar 

As the students engaged with similar questions that included the pictures of food bars 

and fish, they continued to make claims in which they answered if there were enough 

food bars for the given number of fish. They also referred to the rule and the fact that 

there were not enough food bars if any fish was left unfed or the number of food bars 

was enough if all the fish were fed in their data and/or warrants. 

In the following problems on Day 1, pictures of either food bars or fish were provided in 

order to support students' move to numerical linking and iterating gradually, as shown in 

the following figures: 

 

  

Figure 4.5a. Only the pictures of fish were 

given in the problem 

Figure 4.5b. Only the pictures of 

food bars were given in the 

problem 
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In order to answer the problem in Figure 4.5a, Sinem came to the board and drew 12 

circles in order to represent the fish and wrote 1-2-3-4 on each group, as shown in Figure 

4.6 below. 

 

Figure 4.6. Grouping the fish in 3s and linking with a food bar 

Then, Merve suggested that she had an alternative way of solving the problem, and the 

following dialogue happened in the classroom discourse, which led to making 

connections between grouping and division operation:  

Sinem: There are 12 fish, and four food bars are needed to feed them. I grouped the 
fish in 3s, and a food bar is needed for each (group).  

Merve: I divided 12 by three and found 4. Four food bars are needed. 

Teacher: Why did you divide 12 by 3?  

Merve: I used the given rule. It is the same as grouping. I grouped the fish in threes 
and obtained four groups (shows Sinem’s solution on the board).  

Giray: Yes, we don’t need to draw fish all the time.  

When the analysis of this dialogue in terms of Toulmin’s model in question, Sinem 

claimed that four food bars were needed (in order to feed 12 fish). Her data for this claim 

included grouping the pictures of fish in 3s and linking each group with a food bar by 

using numerals. Noone challenged Sinem, and Merve provided alternative data for the 

same claim by suggesting to divide 12 by 3. The teacher asked Merve to justify her 

strategy, which led us to note how her data related to the claim for two reasons. The first 

one was that dividing as a procedural way for grouping emerged for the first time in the 

classroom, and the second one was due to the fact that it was a procedural strategy. Upon 
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this request, Merve provided a warrant in which she made a connection between the 

division operation and grouping by 3s. Based on this kind of interpretation, the following 

Toulmin scheme was constructed for the dialogue above:   

 

Figure 4.7. Toulmin’s Analysis scheme on discussion related to grouping and linking 

and corresponding division operation to maintain the link and iterating 

Similarly, when only the pictures of food bars were given as seen in Figure 4.5b, Gizem 

claimed that 15 fish could be fed (with five food bars) by providing data that included 

multiplying three by five and referring to the rule. Since this was procedural data, the 

teacher asked the class why Gizem multiplied three by five. As an answer to the teacher’s 

question, Faruk drew five rectangles to represent five food bars and wrote three on top 

of each rectangle to establish a link between a food bar and three fish. He further 

explained that adding five threes would mean three multiplied by five, which acted as a 

warrant for the data-claim pair that Gizem established. The operational answer by Gizem 

and the drawing by Faruk on the board is illustrated in Figure 4.8 below.  

 

Data-a: There are 12 fish. I grouped the fish 

in 3s, and a food bar is needed for each 

(group). (Sinem). 
Claim: 4 food bars 

needed (to feed 12 fish) 

(Sinem) 

Data-b: I divided 12 by three and found 4. 

(Merve)  

 Warrant: I used the given rule. It’s 

the same as grouping. I grouped the 

fish in threes and obtained four 

groups (shows Sinem’s solution on 
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Figure 4.8. Linking and pictorial/numerical iterations to maintain the link 

Therefore, the symbolic division as a procedural way for grouping and multiplication as 

a procedural strategy for iterating emerged in the classroom at the very beginning of the 

instruction on Day 1. Moreover, the students felt the need to provide warrants for the 

claims related to these relationships. In addition to the classroom discourse, students' 

work on the activity sheets as the classroom discussion took place also gave evidence 

related to this. Some of the students provided pictorial representations as data to their 

claims regarding finding the corresponding number of fish/food bars in relation to the 

given number of food bars/fish, as seen in Figure 4.9a and 4.9b below. As seen in Figure 

4.9a, the link between three fish and one food bar is illustrated with a grouping of three 

fish and drawing a rectangular prism to represent the food bars beside the fish. Similarly, 

the same link between a food bar and three fish is represented by drawing circles, as 

shown in Figure 4.9b.  

 

 

 

 
Figure 4.9a. Drawing rectangular prisms to 

represent the food bars and linking these with a 

group of three fish 

Figure 4.9b. Drawing circles to 

represent the fish and linking 

these with a food bar 
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Rather than drawing pictures, some of the students used numbers and operations with the 

number of fish/food bars as data in order to make claims about the answers to the 

questions, as illustrated in Figure 4.9c and 4.9d.  

As understood from both dialogues and the figures, the strategies related to division (see 

Figure 4.6) and multiplication (see Figure 4.8) were short ways for linking a food bar 

and three fish and making iterations with this link. It was clear that the students were 

maintaining the link between 1 food bar and three fish by making iterations with this 

link. This became more apparent, especially when Merve pointed to Sinem’s solution 

with grouping and made a connection between grouping and division operation. 

Moreover, it was also obvious when Faruk wrote 3s on each of the rectangles that 

represent the food bars and pointed out that he had to add three five times. In other words, 

even though these strategies included multiplication and division, they were not regarded 

as multiplicative reasoning since they were related to making numerical iterations with 

the help of the given pictures. Instead, these types of strategies were considered as short 

numerical ways for iterating linked composites as the students did in the previous parts 

with the given pictures.   

In the following problems, questions with bigger numbers (e.g., How many fish can be 

fed with nine food bars? How many fish can be fed with ten food bars?) were posed. No 

picture was included in these problems in order to promote students’ process of creating 

 

 
 

 

Figure 4.9c. Initial numerical iterations by 

making connections to grouping 

Figure 4.9d.  Initial numerical 

iterations by making connections 

to iterating 
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mental images of linking composite units and iterating this link. As seen in small group 

work, Sezin and Faruk continued to draw pictures of food bars and/or fish. They worked 

with the corresponding numerical operations, in which they continued to link a food bar 

with three fish and iterate this link in pictorial and pictorial/numerical ways in their 

providing of data for their claims, as demonstrated in Figure 4.10a&10b below. 

The teacher had Sezin and Faruk share their pictorial strategies on the board, and Seval 

came to the board and said that she multiplied three by 10. Nobody challenged Sezin or 

Faruk about linking and iterating with pictures or Seval about the multiplication as a 

short way for making iterations. Then, the teacher gave the floor to Giray and let him 

share his strategy, which the teacher had observed in the small group discussion for the 

question “How many fish can be fed with ten food bars?" Below is a classroom dialogue 

took place while Giray was sharing his strategy to this problem:  

Teacher: Giray solved the question in a different way. Giray, how did you come 

up with this?  
Giray: We had found that nine food bars could feed 27 fish (in the previous 

question). There are 10 bars here, and 10 bars can feed 30 fish. I added 3 to 27.  

Teacher: Is there anyone who didn’t get what Giray did?  

Selim: Why did you add 3 to 27?  
Giray: Since 1 (food) bar can feed three fish, it goes up by 3s. When a food bar is 

added, 3 (more) fish can be fed. 

Selim: OK. 

Q. How many fish can be fed with 

nine food bars?

 

Q. How many fish can be fed with ten food 

bars? 

 

Figure 4.10a. Sezin continued to 

draw pictures and link a food bar 

with three fish and iterate 

Figure 4.10b. Faruk continued to draw 

pictures and link a food bar with three fish 

and iterate 
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In order to interpret this dialogue in terms of Toulmin Analysis, it could be said that the 

claim for the previous question [27 fish can be fed with nine food bars] became the data 

for a later claim [30 fish can be fed with 10 bars]. Together with a previous claim, Giray 

stated that he added 3 to 27, which also acted as data for that claim. When he was 

challenged to justify this strategy, he provided a warrant implying the link between a 

food bar and three fish and the fact that the link had to be maintained even when the 

number of food bar/fish changed with a build-up strategy. Therefore, this was the first 

time a building up strategy emerged in the classroom discussion. This interpretation is 

summarized in the Toulmin scheme in Figure 4.11 below:  

 

 

 

 

 

 

 

 

Figure 4.11. A claim becomes data for a subsequent claim while a student is using a 

build-up strategy 

On the second day of the instruction, as a different application of build-up strategy, it 

was observed that Berk started to make pictorial/numerical linking in small group work. 

Particularly, he started to build-up the number of fish as 3, 6, 9, 12, 15, etc. with a 

numerical/pictorial representation that was presented in Figure 4.12 below:  

 

Data1: Since 

each bar can 

feed three 

fish, we 

multiplied 

three by 9. 

(Ceyda) 

Claim1: 9 

food 

bars 

feed 27 

fish 

(Ceyda) 

Data: I 

added 3 to 

27 (Giray) 

Claim2: 10 food 

bars can feed 30 

fish (Giray) 

 

Warrant: Since 1 (food) bar 

can feed three fish, it goes up 

by 3s. When a food bar is 

added, 3 (more) fish can be 

fed (Giray) 
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Figure 4.12. Berk’s building up with pictures and numbers 

(pictorial/numerical build-up) 

The teacher had Berk share this strategy on the board and moved to the next question. 

When the students were working on the question “how many food bars would be needed 

in order to feed 18 fish?” in small groups, the teacher observed that Aylin linked the 

number of food bars and the number of fish and iterated this link numerically as shown 

in Figure 4.13 below. In contrast, other students made iterations by grouping pictures 

and division as a short way for grouping.    

 

Figure 4.13. Aylin’s iteration of the 1-3 link numerically 

After the students shared their strategies related to iterating by grouping and/or division 

on the board, the teacher showed Aylin’s iteration on the board. The teacher took this 

opportunity to introduce a long ratio table. Below is a classroom dialogue in which the 

long ratio tables were introduced on the second day of the instruction:  

Teacher: Aylin, can you explain what you did on your paper? 

Aylin: I started from one and three and went on like two-six, three-nine, four-
twelve, and so on and found that 18 fish could be fed with six bars. 

Teacher: Did you understand what Aylin did with these numbers? 

Students: Yes. 
Teacher: She aligned them vertically, fish and food bars. We can see how many 

fish could be fed with each of the numbers (number of food bars). I would like to 

put these numbers into a table to organize them better (draws the table presented 

in Figure 4.14 below). Nevertheless, I would like to write the number of food bars 
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in the first row and the number of fish on the second. Can you help me fill in these 
blanks? 

Students: (Saying aloud all together) 1 bar 3 fish, 2 bars 6 fish, 3-9, 4-12, 5-15, 6-

18. 

Teacher: How did you fill in those blanks? 
Elif: I went up according to the rule. 

Musa: I skip-counted. 

Merve: I multiplied one by three, two by three, three by three. 

 

Figure 4.14. Introduction of long ratio table to organize the linked numbers (Day 2) 

As understood from the dialogue above, the teacher introduced a long horizontal ratio 

table (HRT) on the board in order to organize the linked quantities and keep track of the 

iterations with this link by using Aylin’s informal table-like representation. Therefore, 

with an RME perspective, long ratio tables functioned as models of an organized way of 

iterations with linked composites in the first place. Then, the teacher had all the students 

in the class say aloud the numbers that would go in the table. After constructing the table 

on the board, a bunch of students said aloud all together "1 food bar 3 fish, two food bars 

6 fish, three food bars 9 fish, etc.”, in which they used build-up reasoning in their data. 

Even though Merve touched upon the multiplicative relationship between the number of 

food bars and fish, neither the teacher nor the students paid attention to that idea that 

emerged for the first time in the instruction.  

In the second period of the second day of the instruction, after filling in the table by 

building up strategies, the teacher encouraged students to explore the relationships in the 

table by posing the following prompt: "Is there a relationship between the change in the 
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number of food bars and the number of fish?" This prompt was presented to help students 

use correct mathematical language related to the covariation between the number of food 

bars and fish. Merve made a claim saying that “For every one food bar added, three more 

fish are added” and provided data by referring to the rule as “since one food bar feeds 

three fish." She went on expressing her reasoning in different words using a specific hand 

gesture: "when the number of food bars goes up by one [points at number 1 in the first 

row in the table and moves her hand until it points to number 2 in the first row, repeating 

consecutively], the number of fish goes up by three" [points at number 3 in the second 

row in the table and moves her hand until it points to number 6 in the second row in the 

table, repeating consecutively], as demonstrated in Figure 4.15a and 4.15b below.  

 
 

Figure 4.15a. Merve building up by ones and threes in 

the long ratio table 

Figure 4.15b. The hand 

gesture for building up in 

the long ratio table 

No student challenged Merve’s claim related to iterating the number of food bars by one 

and the number of fish by three. Therefore, the idea of “linking composite units and 

iterating linked composites while the link is preserved” never got challenged in the 

instruction. In other words, as the students answered the questions by linking and 

iterating with pictures, numbers and operations, and on tables, they just referred to the 

given rule as data. Moreover, none of the students ever asked for a warrant or used a 

warrant for why they linked one food bar with three fish and preserved the link 

throughout the first two days of the instruction. Therefore, the two criteria by Stephan 

and Rasmussen (2002) and Rasmussen and Stephan (2008) were not met in order to 
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conclude that this idea was taken-as-shared. On the other hand, this idea was used in 

tables and with pictures and/or numbers as data for different claims across different days. 

Hence, it was evident that this idea was taken-as-shared since the third criterion by Cole 

et al. (2012) was met. Besides, the episodes from the subsequent days also gave further 

evidence that this idea was repeatedly used as data for different claims. Therefore, linking 

composite units and iterating linked composites while the link is preserved was taken-

as-shared among the classroom community by the end of the second day of the 

instruction.  

TAS Idea 2. Pre-multiplicative reasoning- covarying the linked composites by a scale 

factor (i.e., abbreviated build-up, reasoning with within measures ratio). As the students 

continued to explore the relationships in the table, Sinem stated a different relationship 

by claiming that "While the number of food bars is increasing by 5 [points at number 1 

in the first row in the table and moves her hand until it points to number 6 in the first row 

in the table], the number of fish increased by 15 [points at number 3 in the second row 

in the table and moves her hand until it points to number 6 in the second row]." That 

means the number of fish grows three times more when compared to the number of food 

bars.” These procedures are illustrated in Figure 4.16a and 4.16b below: 
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                                                        +5 

Number of 

food bars 

1 2 3 4 5 6 7 8 

Number of 

fish 

3 6 9 12 15 18 21 24 

                                                     +15 

 

Figure 4.16a. Sinem’s building up by multiples of one and 

three on the long ratio table 

Figure 4.16b. The 

hand gesture for 

building up on the 

long ratio table 

Since this was a procedural claim, the teacher asked the other students whether or not 

they understood what Sinem was trying to tell. Emre challenged Sinem by asking the 

reasoning behind this relationship with the following question: "I can see that it increased 

by five above and 15 below, but I don't understand why it is times three below" (referring 

to Sinem’s claim regarding growing three times more). Sinem provided a warrant for her 

claim by referring to the rule and stressing that “since one food bar feeds three fish, the 

number of fish always increases three times more in relation to the number of (food) 

bars.” Therefore, even though multiplying the number of food bars by three as a short 

and symbolic way for iterating with pictures emerged on Day 1, the “times three 

relationship” between the increment in the number of food bars and the number of fish 

emerged on Day 2 and was challenged by a classmate. Later on, the teacher asked the 

students to explore other relationships in the table, and the following dialogue took place 

in the classroom: 

Teacher: Did you observe any other relationship in the table?  

Ceyda: I shaded two first and then 10 (in the table). For the food bars, for instance, 

ten is two multiplied by five. When we look at the (number of) fish, five times six 
is 30 (Ceyda explains her group’s solution in her seat and moves her hands as if 

she was shading, and the teacher shades 2 and 6 in the second column in the table 

and then 10 and 30 in the sixth column in the table according to Ceyda’s 
explanations) (See Figure 4.17 below). 
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Teacher: Then, what kind of a relationship do you think is there?  
Ceyda: Both numbers are multiplied by the same number.  

İlter: We took 12 and 36. (İlter explains his group’s solution in his seat and moves 

his hands as if he was shading, and the teacher shades 12 and 36 in the twelfth 

column in the table. Later, İlter moves his hand backwards so as to point to 6 in the 
sixth column). We divided 12 by two and got 6. Then, we divided 36 by two and 

got 18 (the teacher draws a curve from 12 to 6 and then from 36 to 18 backwards 

according to İlter’s explanations) (See Figure 4.17 below).  
Teacher: Then, you went from here (points to the twelfth column of the table) to 

here (points to the sixth column of the table).  

İlter: Yes, we went backwards. We went from 12 to 6 (in the first row) and 36 to 

18 (in the second row). Both are divided by 2. 
Teacher: Then, this group found that both numbers are multiplied by the same 

number, and this group found that both numbers are divided by the same number. 

Why does it happen that way?  
Ceyda: Because, for instance, when we go from 2 to 10, there are five groups, each 

including two food bars. When five groups of fish are added (linked) (moves her 

hand in circles to iterate five groups of fish) to those, the number of fish is 
quintupled.    

Elif: That means that they (fish and food bars) are added in groups instead of one 

by one.  

In order to interpret the dialogue above in terms of Toulmin’s model of argumentation, 

it is understood that Ceyda grouped a column of food bar and fish and compared it to 

another grouped column of food bar and fish in the table. She observed that the numbers 

 

 
Figure 4.17. Representations of abbreviated build-up strategies on the long ratio 

table 
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in the second column were five times larger than the ones in the first column. Based on 

this data, she claimed that both numbers are multiplied by the same number (in order to 

obtain the numbers in the second column). Then, İlter grouped two columns of food bar 

and fish (6-18 and 12-36) and moved backwards from 12 to 6 (in the first row) and 36 to 

18 (in the second row) and claimed that both numbers were divided by 2. However, since 

these were procedural answers, the teacher asked those students to provide warrants for 

those claims. Ceyda provided a warrant by referring to the times five relationship as 

adding groups of fish to 5 groups of food bars. After that, Elif provided backing by 

making a connection between the times five relationship and adding groups instead of 

ones. In doing so, she implicitly referred to multiplication as an abbreviated way for 

iterating linked composites by addition. In other words, by reasoning that way, as it is 

clear from Ceyda’s warrant, the students were scaling the number of food bars and fish 

at the same time. However, there still needs some higher-order reasoning that deals with 

the invariant relationship between the number of food bars and fish. This type of thinking 

could not be considered as complete multiplicative reasoning since it does not include 

the invariant relationship between the number of food bars and fish. These strategies that 

included scaling both quantities as a short way for doing iterations were called horizontal 

relationships in the HRT. These horizontal relationships deal with the increase/decrease 

within the same unit. They do not involve the relationship between the number of 

different units, which is usually referred to as within measures ratio reasoning in the 

literature.  

As soon as the students discovered the scaling relationships within each measure spaces, 

the teacher took this opportunity to provoke them to shorten the table so that they were 

representing two different situations involving four variables in order to make 

calculations easier. The teacher's goal was to encourage the students to begin to create 

equivalent ratios in shorter and more efficient ways with multiplication or division 

(Battista & Van Auken Borrow, 1995). The dialogue that took place in the classroom as 

the teacher encouraged students to shorten the long ratio tables is provided below:  
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Teacher: We don’t need to write all the columns, do we? Let’s say we want to find 
how many fish would 20 food bars feed, the number of food bars is multiplied 

by…how many (draws an arrow from 1 to 20 in the first row of the table as shown 

in Figure 4.18a below)? 

Students: 20 
Teacher: Then, the number of fish should be multiplied by… how many? 

Students: 20 

Teacher: Why 20? 
Giray: Since (the number of) food bars is multiplied by 20, so should (the number 

of) fish.  

Teacher: Then, how many fish can be fed with 20 food bars? 

Giray: 60. 
Teacher: We don’t even have to put all the columns in between. We can just write 

1 and 20 and 3 and ? in the table as we only need them (see Figure 4.18b below).  

     ×20 

 

         ×20 

Food bars 1       20 

Fish 3       ? 

                                     ×20 

                                   ×20 

Food bars 1 20 

Fish 3 ? 

Figure 4.18a. The teacher’s representation to 

provoke a shortened ratio table 

Figure 4.18b. Shortened ratio 

tables 

As deduced from the dialogue and the figures above, the teacher wrote down a number 

that was not in the previous table (i.e., 20 food bars) and asked the students to find the 

number of fish that could be fed with 20 food bars. She stressed that there was no need 

to write down the numbers in each column and asked the students to find the scale factor 

(even though she did not use the term) for the number of food bars and fish. Many 

students said all together that the number of food bars was multiplied by 20 and so the 

number of fish had to be multiplied by 20 as well. In the end, Giray referred to this 

relationship as a "times 20" relationship. This acted as data to find 60 as the number of 

fish that could be fed with 20 food bars, and no student challenged Giray. Moreover, the 

fact that the idea of scaling both quantities with the same factor shifted place from claim 
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to data provided with initial evidence about that idea (i.e., covarying the linked 

composites by a scale factor) being taken-as-shared.  

On the other hand, looking from an RME perspective, long and short ratio tables 

functioned as models of iterating the number of food bars and fish in more effective ways 

(i.e., scaling) as well as organizing information and making iterations one by one. This 

also helped the teacher to keep track of students’ single and abbreviated iterations.  

TAS Idea 3. Multiplicative reasoning- invariance of the multiplicative relationship 

between the two units as they co-vary (reasoning with between measures ratio). 

Throughout the first two days of the instruction, the students moved from grouping and 

linking the pictures of fish and food bars to making grouping and iterating with numerical 

values. Then, the long ratio table was introduced as a tool for organizing iterations with 

numbers and (abbreviated) build-up strategies. After the students discussed these 

relationships in long ratio tables for some time, long ratio tables were shortened to 

represent abbreviated build-up strategies and to make calculations in more efficient 

ways. On Day 3, the students worked with the same rule (i.e., 1-3) and continued to make 

claims about the number of food bars/fish for the given situations by scaling both values 

by the same factor in long and short ratio tables. These ideas appeared in data, and no 

warrants were provided or required. Later on, the teacher encouraged students to start 

thinking about the invariant multiplicative relationship between the numbers of food bars 

and fish, as illustrated in the following dialogue:  

Teacher: Is there a relationship between the number of food bars and the number 
of fish?  

Seval: Since one food bar feeds three fish, when we multiply the number of food 

bars with 3, we get the number of fish.  
Teacher: Do you think you can always get the number of fish when you multiply 

the number of food bars by three regardless of the numbers (number of food bars 

and/or fish)?  

Seval: Yes, the number of fish is always three times that of food bars, since one 
food bar feeds three fish. We can see on the table. When we multiply the number 

of food bars by three, it always gives the number of fish (shows her previous work 
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on the activity sheet by making a hand gesture to draw vertical arrows from the 
first row to the second row as illustrated in Figure 4.19a & Figure 4.19b below). 

Teacher: Can you come to the board and show your table to everyone? 

Seval: See (shows her work in Figure 4.19aa by making hand gestures as shown in 

Figure 4.19b)? It’s always correct.   
Gizem: Or we get the number of food bars when we divide the number of fish by 

3.   

Teacher: Do you think it always gives the (correct) result?  
Gizem: Yes, when we think it from the other way around, we get the number of 

food bars when we divide the number of fish by 3.  

 

 

Figure 4.19a. The invariant times three relationship on the 

long ratio table 

Figure 4.19b. Using 

hand gestures to show 

the vertical times three 

relationship on the 

long ratio table 

  As deduced from the dialogue and the associated figures above, when asked to 

explore the relationship between the number of food bars and fish, Seval claimed that 

when the number of food bars is multiplied by three, the result gives the number of fish. 

This implied an operational relationship. When she was asked to make a conjecture about 

whether or not this relationship always holds, she claimed that the number of fish is 

always three times that of food bars. This implied a more conceptual relationship than 

the previous one. Then, she provided a warrant by showing her calculations in the long 

ratio table and the vertical times three relationship by hand gestures. Then, Gizem made 

a claim about the reciprocal “divided by three” relationship between the number of fish 

and food bars.  



 

228 
 

In the next parts of the first task, the students worked with shortened ratio tables, 

including different relationships between the number of food bars and fish (i.e., 2-4 and 

2-3). In this process, they found the missing values in short ratio tables by exploring both 

the horizontal and vertical relationships without providing warrants/backings. Hence, 

they made claims about the missing values in the tables by using the invariant 

relationship between the number of food bars and fish, which was a previous claim, in 

their warrants. This indicated that the invariant relationship between the number of food 

bars and fish was taken-as-shared at this point. Still, there is further evidence from the 

following classes that would support this conclusion.  

TAS Idea 4. Conceptualizing the invariant relationship between two linked composites 

as unit rate and using it as a tool/benchmark/anchor for finding missing values. Up to 

this point, the number of food bars in the rule was one (e.g., 1-3). This automatically 

made the students reason with the number of fish that can be fed with one food bar (unit 

rate). In the second period of Day 3, the instructional sequence continued with different 

rules that required constructing different types of links between the number of food bars 

and fish. The first rule that did not include a unit rate was "two food bars for four fish," 

which was intentionally chosen for the students to make sense of unit rate. While some 

students used the given rule in order to find missing values for different situations in 

similar ways as they did previously, some of the students claimed that they could change 

the rule to “one food bar for two fish.” Below is a conversation in which multiple students 

negotiated about changing the rule while the question was asking how many food bars 

were needed to feed 12 fish (when the rule was two food bars for four fish): 

Teacher: How many food bars do we need to feed 12 fish? 

Sezin: 6 food bars are needed. Because I divided 12 by 2.  

Teacher: Why did you divide 12 by 2?  
Sezin: Because four fish can be fed with two food bars. 

Berk: Then, you have to divide it by 4, right?  

Teacher: Why do you think you have to divide it by 4?  
Berk: (Writes and explains his solution on the board by drawing 12 circles to 

represent 12 fish and groups each four fish by a bigger circle) I grouped the fish by 
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4s and obtained three groups [of 4 fish]. I know that I need two food bars for each 
group. So, I multiplied three by two and obtained 6. 

Aylin: We changed the rule. If two food bars feed four fish, then, one food bar feeds 

two fish. So, we divided each value by 2.   

Teacher: What does everyone think about this?  
Gizem: It is easily seen with the pictures (links 1 food bar with two fish with 

pictures). It is easily seen that one food bar feeds two fish. It is easier to use this 

rule. We can group fish by 2s [for the following questions] after we change the 
rule. (See Figure 4.20 below) 

Berk: Oh, OK. I see it now.   

 

Figure 4.20. Changing the rule while preserving the link between the number of 

food bars and fish 

In order to interpret this dialogue in terms of the Toulmin analysis scheme, it is 

considered that Sezin claimed that six food bars were needed for 12 fish by drawing on 

her data that involved directly dividing the number of fish by two. This was the first 

instance that included operating with values different than the ones in the given rule. 

Therefore, Berk challenged her with his own warrant (12 divided by 4) to solve the 

question using the given rule as they did previously. Even though Berk provided a 

warrant for his reasoning, no student focused on his warrant since it was a previously 

taken-as-shared idea and that Berk’s solution functioned as a warrant for his own strategy 

than a challenge to Sezin’s strategy. Thus, Aylin joined in the conversation with backing 

for Sezin’s claim by referring to the equivalence of the two rules: “2 food bars-4 fish” 

and “1 food bar-2 fish.” Then, Gizem came in by using the pictures in order to show that 

both rules are grounded on the same link between the number of food bars and fish, as 

shown in Figure 4.20. This acted as a further backing for Sezin’s data and claim. 

Therefore, these students provided warrants related to changing the rule while preserving 

the link and the invariant relationship between the number of food bars and fish. This 

gave evidence about the strength of the first and second taken-as-shared ideas. On the 
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other hand, even though she did not use the term, Gizem also referred to the concept of 

unit rate and how using unit rate makes calculations easier. Hence, this was the first 

instance in which the concept of unit rate was explicitly used as a tool/benchmark/anchor 

for finding missing values. For finding the missing values in all of the remaining 

questions related to the rule "2 food bars for four fish," multiple students used the altered 

data in the data and/or warrants that they provided.  

 Following the rule "2 food bar for four fish", the students were given a new rule "2 food 

bars for six fish" in a short ratio table in order to support their use of short ratio tables 

and interpretations of horizontal and vertical relationships in them. When the number of 

food bars to feed 15 fish was asked, interpretation of the “vertical times three 

relationship” as unit rate emerged in the classroom as illustrated in the following 

dialogue:  

Teacher: How did you find the missing value in this short table? 
Elif: Since there is three times the number of fish as the number of food bars (draws 

a vertical arrow from 2 to 6 and writes ×3 next to it, see Figure 4.21), and there is 

“times three.” So, I thought like “3 multiplied by what makes 15?” Then, I divided 

15 by three and found 5.   
Murat: I found a different way. I didn't think two food bars for six fish but thought 

one food bar for three fish (draws a new column and writes 1 and 3 in it, see Figure 

4.21 below). It was easier to find like this. I solved all the (remaining) questions 
like this. 

Teacher: Do you see a connection between this 3 (points to the ×3 next to the 

vertical arrow) and that (1 food bar for three fish)? 
Murat: Yes, when I divide six by 3, I find the number of fish that can be fed with 

a food bar. 

 

Figure 4.21. Vertical relationships on the shortened ratio table 
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As deduced from the dialogue above, Elif claimed that five food bars could feed 15 fish. 

For this claim, she provided data, including the application of the "vertical times three 

relationship" between the number of food bars and fish with a hand gesture to the second 

value. Then, Murat proposed different data for the same claim by referring to the unit 

rate and how it made calculations easier. When asked to interpret the relationship 

between this unit rate and “vertical times three relationship” (or divided by 3), he 

connected these two by implying that dividing by three gives the unit rate. Thus, further 

evidence was obtained regarding the interpretation of the invariant multiplicative 

relationship since it appeared in the data for another claim.  

As another variation of the rule, the instructional sequence continued with the values that 

did not form an integer ratio (i.e., two food bars for three fish) in order to strengthen the 

students’ making sense of the concepts of iteration, covariation, and multiplicative 

reasoning. Throughout the activity, multiple students made claims about missing values 

of the number of fish/food bars by using (i) build-up strategies (i.e., adding up by 2s and 

3s on the long ratio table); (ii) abbreviated build-up strategies (i.e., scaling the number 

of food bars and fish with the same factor); (iii) numerical grouping and iterations (i.e., 

dividing the number of food bars (or fish) by 2 (or 3) and multiplying the result by 3 (or 

2)); and (iv) using the invariant multiplicative relationship between the two units (i.e., 

the number of fish is always 1.5 times of the number of food bars, which is also the unit 

rate) in their data/warrants. A sample classroom dialogue that included these TAS ideas 

in the students’ data/warrants is given below for illustration:   

Emre: (Fills in the long ratio table by iterating the link- 2 food bars for three fish) 

Since 2 bars feed three fish, this (first row) increases by 2s (draws horizontal curves 
between each value and makes a corresponding hand gesture). This (the second 

row) increases by 3s (draws horizontal curves between each value and makes a 

corresponding hand gesture, see Figure 21a below). I can continue by skip 
counting.  

Teacher: Anybody thinking differently? 

Ceyda: I did like this. Let’s say we would like to find how many fish could be fed 

with 4 bars. Since the number of food bars is multiplied by two (makes a hand 
gesture for drawing horizontal arrows from 2 in the first row and moving it until 4 



 

232 
 

in the same row), so should the number of fish (makes hand gesture for drawing 
horizontal curves starting from 3 in the second row and moving it until 6 in the 

same row). If the number of food bars is multiplied by 3, so should the number of 

fish.  

Teacher: OK. How did you find the answer to this question? (How many fish can 
be fed with 16 food bars?) 

Tolga: (Looks at the table that Emre filled in) We can look at the table. Sixteen 

food bars feed 24 fish.   
Sinem: We found (the answer) in a different way. When we divide 16 by 2, the 

result is 8. When we add 16 and 8, we find 24.   

Teacher: Can you explain your strategy on the board?  

Sinem: 16 divided by 2 is 8. Then, I add the result (on to 16). It is valid for all the 
other numbers. 

Teacher: Anybody understood her strategy? I didn’t understand it.  

Researcher: (Intervenes by talking to the teacher in private and says: She finds 
three over 2 of the number of food bars by adding its half on to itself, and the 

teacher agrees.) 

Teacher: What happens when you divide by two and then add the result (to the 
number itself)? 

Sinem: That means, I find the half and add on to itself.  

Berk: What is it that you found, then?  

Sinem: Then, I found three over 2 of it (the number of food bars).   
Ceyda: That means you found 1.5 times of it. 

Sinem: Yes, that means I can find the number of fish when I divide (the number of 

food bars) by two and multiply the result by 3. 
Teacher: How can you relate it with the rule?  

Ceyda: 3 fish can be fed with two food bars in the rule. That means the number of 

fish is always three over 2 of the number of food bars. This is always true.   
Teacher: Anybody who found a different way?  

Ozan: We divided 16 by 2. By doing that, I grouped 16 by 2s and found that there 

are eight groups of 2. We know that three fish can be fed with each group. Hence, 

I multiplied 8 with three and found 24. 
Seval: (Shows her work on the activity sheet in front of the class, see Figure 4.22b 

below) We found the answer in a different way. If two food bars can feed three 

fish, then, one food bar can feed 1.5 fish. Therefore, we multiplied the number of 
food bars by 1.5 to find the number of fish in each situation (points her hand to the 

number 2 in the first row and moves vertically until the number 3 in the second 

row, through which she traced the vertical arrows drawn on her activity sheet, see 

Figure 4.22b below).  
Teacher: Can you find a relationship between the two strategies? 

Seval: Ozan divided [the number of food bars] by two and then multiplied (the 

result) by 3. This is the same thing as multiplying by 1.5.   
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Figure 4.22a. Building up by 2s and 

3s in the long ratio table 

Figure 4.22b. Using the unit rate to find 

missing values in the long ratio table 

In order to get a sense of the dialogue in Toulmin’s model of argumentation, it is inferred 

that Emre provided data to make claims about the values that would go in the table, which 

included building up by 2s and 3s (i.e., TAS Idea 2). Then, Ceyda worked with equal 

scale factors within the same measure spaces to find missing values. Then, Sinem made 

a claim about the relationship between 16 and 24, which was related to adding the half 

of 16 on to itself and obtaining the number of the fish that would be fed with 16 bars. 

She further claimed that that relationship holds for all the other numbers as well. Since 

this was a procedural claim, which was not anticipated prior to the implementation, the 

teacher was not sure about what Sinem was trying to tell. As the researcher in the 

classroom understood that the teacher was struggling to understand her claim, she talked 

to the teacher in private and stated that Sinem was calculating 
3

2
 of 16 (the number of 

food bars) by adding its half on to itself. Then, the teacher asked Sinem what those 

operations meant. She provided a warrant by expressing that she added half of 16 on to 

itself, which was eventually explained as finding 
3

2
 of 16. Ceyda joined in the discussion 

by stressing that that would mean finding 1.5 times of 16, and this functioned as a backing 

to Sinem’s claims. Then, Sinem agreed to Ceyda’s warrant and made a conjecture about 

how to find the number of fish when the number of food bars was known (i.e., divide by 

two and multiply the result by 3). Upon this conjecture, the teacher asked the students to 

make a connection between Sinem’s conjecture and the given rule, which resulted in 

Ceyda’s folding back to the invariant relationship between the number of food bars and 
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fish (i.e., the number of fish is always three over 2 of the number of food bars- TAS Idea 

3).  

After it was evident that the confusion was resolved, the teacher went back to the problem 

and asked if anyone could suggest an alternative method. Ozan claimed that 24 fish could 

be fed with 16 food bars based on his data that included grouping 16 food bars in 2s and 

multiplying the result by 3 to link each group with groups of 3 fish and iterate. This was 

a previous claim (i.e., TAS idea 1) that appeared now in data for a subsequent claim. 

Seval provided different data regarding the “invariant 1.5 times relationship” (i.e., unit 

rate) between the number of food bars and fish. This was also related to the previous 

claims (i.e., TAS idea 3 & TAS idea 4). Furthermore, Seval expressed the relationship 

between grouping and iterating, and the unit rate, which showed the strength of the 

previous ideas being taken-as-shared.   

Therefore, it was evident that the first four ideas were taken-as-shared among the 

classroom community at the end of the third day of the instruction. This allowed the 

teacher to alter the symbolization to introduce the symbolic representations of ratio and 

proportion. Hence, on Day 4, the teacher started with writing a shortened ratio table 

including the "2-3 relationship" on the board, and had the students summarize the 

horizontal and vertical relationships in the table. While the short ratio table was on the 

board, she suggested removing some of the borders of the table to obtain the traditional 

ratio and proportion representations. Below is a classroom dialogue that illustrates this 

process of introduction of the symbolic representations of ratio and proportion: 

Teacher: We have been using short ratio tables to find the number of food bars and 

fish in different situations. What we are going to do now is quite fancy. Musa said, 
“the ratio of the number of food bars to fish” the other day, remember?  

Students: Yes. 

Teacher: How can we write the ratio of (the number of) food bars to fish in this 
situation?  

Musa: It is two over three.  

Teacher: Yes, we need to write it in the fractional form. So, I wrote two over three 

here. That means, I erased some of the borders of the table. And I am going to 
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remove the other border here (erases all of the vertical lines and some of the 
horizontal in the short ratio table). What do I need to write?  

Seda: 16 over question mark.  

Teacher: OK. First, let’s find the question mark. What number is it?  

Seda: It’s 24. We found it before.  
Teacher: Good. Then, I am writing two over three here and 16 over 24 here (writes 
2

3
. and 

16

24
 next to each other). Which one is bigger? 

Student: 16 over 24.  

(Several students say “no” in the background) 
Teacher: Selim, which one is bigger?  

Selim: They are the same.  

Teacher: We don't say they are the same, right? Can we say that they are 

equivalent?  
Selim: Yes, they are equivalent.  

Teacher: Why did you think they are equivalent?  

Selim: They are reduced to the same thing when simplified.  
Merve: They are just like equivalent fractions, then.  

Ceyda: Actually, do we need to simplify? We found it by multiplying (both values) 

with the same number, didn’t we?  
Teacher: What do you mean, Ceyda? Can you explain it in more detail? 

Ceyda: We looked at the relationships in the table. Since the number of food bars 

is multiplied by 8, we also multiplied the number of fish by 8. That means, we 

expanded the first fraction.  
Teacher: So, can I put an equal sign between these two (ratios)? (Puts the equal 

sign “=” in between the two ratios 
2

3
 and 

16

24
 to obtain the symbolic representation 

of proportion 
2

3
 = 

16

24
, See Figure 4.23 below).  

Students: (All together) Yes. 

Teacher: So, we will say that two ratios are proportional when they are equivalent 
and write the symbolic representation as equality of two ratios like this (points to 

the symbolic representation on the board). We can show all the relationships in the 

tables that we explored from the beginning by establishing proportions. We call 

each of the comparisons here (points to the ratios 
2

3
 and 

16

24
) as "ratios." You learned 

last year what ratio means. 

Elif: The ratio between two quantities. 

Teacher: Yes, what does "the ratio between two quantities" mean? (No student 

could define ratio). We have explored the relationships between (the number of) 
food bars and (the number of) fish since the beginning of this task. What kinds of 

relationships have we explored?  

Ozan: We looked at how many times it is multipled.  
Ali: We explored the “times” relationship between (the number of) food bars and 

(the number of) fish. Like “times 3”, “times 1.5” relationships.  

Teacher: Yes. We compared the quantities multiplicatively. We name these 
multiplicative comparisons like this as “ratio.” Now, I have a question for you. Can 

we talk about the horizontal and vertical relationships here in the proportion? 

(draws vertical and horizontal arrows in the proportion representation, see Figure 

4.23).  
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Aylin: Yes.  
Teacher: What does this (horizontal) relationship mean (points to the horizontal 

arrow that she drew from 2 to 16, and then, 3 to 24, See Figure 4.23).  

Aylin: It means that the number of food bars is scaled by 8.  

Teacher: OK. We will call this “times 8” relationship scale factor since we scale 
both quantities with 8. What does the vertical relationship mean (points to the 

vertical arrow that she drew from 2 to 3 and then 16 to 24, See Figure 4.23)? 

Merve: It means that the number of fish is times 1.5 of the number of food bars.  
Teacher: This "vertical times 1.5 relationship" or "two over three relationship," 

you can call it the constant of proportionality.  

 

 

Number of food bars     2 16 

Number of fish     3 ? 

 

 

     
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑜𝑑 𝑏𝑎𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑠ℎ
  =    

2

3
   =  

16

?
 

Figure 4.23. Using shortened ratio tables to introduce the symbolic representations 

of ratio and proportion (Day 4) 

Therefore, as deduced from the dialogue above, the fractional representation was 

introduced as the formal representation of ratio based on a previous classroom 

discussion. In addition, the equality of two ratios was introduced as the formal 

representation of proportion by removing some of the borders of the short ratio table for 

the first time on Day 4. Moreover, the “horizontal relationship” in the short ratio table, 

which the students discovered as a short way for making iterations with linked 

composites, was introduced as the scale factor. On the other hand, the "vertical 

relationship," which was referred to as the invariant multiplicative relationship between 

the two linked composites, was introduced as the constant of proportionality for the first 

time in the instruction. Therefore, this implied an incipient shift from a model of to model 

for since the students were introduced the conventional proportion representation as a 

tool for solving a variety of proportional problems. This is due to the fact that ratio tables 

were used as a model of an organized way of linking composite units and iterating linked 

composites at the onset of the instruction; yet, they became a model for structuring 

symbolic representations of ratios and proportions.  
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TAS Idea 5: Reasoning with ratio tables and proportion representation to extend 

covariation and invariation to the relationship between parts and their whole. On the first 

four days of the instruction, the students engaged in the fish-food bar context in which 

they made iterations, reasoned about covariation and invariation by using pictures and 

long and short ratio tables.  Eventually, the students formalized these explorations into 

formal representations of ratio and proportion. On Day 5, a new task, including situations 

with different ratio language usages in part-whole contexts, was introduced. Throughout 

the activity, the students employed their previous strategies for solving the problems 

given in the new part-whole contexts.  

In the first question, it was given that “for every three students who commute to school 

by bus, there are seven students who walk to school," which included the use of "per 

language" as a type of informal ratio language. The students were required to find the 

numbers of students in each group and the total number of students for different 

situations. Sezin and Faruk solved the first problem that asked the number of students 

who walked to school on the board with different strategies when it was given that 45 

students took the school bus. Particularly, Faruk drew a short ratio table, wrote three and 

seven in the cells in the first column, and said, "If 45 corresponds to three in the table, 

we need to find what corresponds to seven. Since [the number of] students who take the 

school bus is scaled by 15 [the number of], [the number of] students who walk to school 

should also be scaled by 15." Based on this data, he claimed that the answer was 105, as 

seen in Figure 4.24 below. No one challenged Faruk, and Sezin took the floor and said 

that she wanted to provide an alternative solution. This showed that she agreed upon 

Faruk’s solution and wanted to add on it. She divided 45 by three and multiplied the 

result by seven, which was related to grouping and iterating. No one challenged Faruk 

and Sezin and nor asked for warrants/backings for this question, which gave evidence 
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that the ideas regarding linking and iterating, and covariance (i.e., TAS idea 1 & TAS 

idea 2) were taken-as-shared among the students.  

 

 

Figure 4.24. Iterating linked composites by scaling or abbreviated build-up (i.e., 

pre-multiplicative reasoning) in part-whole contexts 

Even though the fish-food bar context did not involve a relationship between parts of a 

whole, the students were able to draw on their experiences of grouping, linking, and 

iterating in the fish-food bar context. Moreover, they did not require any 

warrants/backings for this question that included a part-part relationship. However, when 

the next question included only the number of the total students in the school as 120 and 

asked for the number of students who walked to school and took the bus, that was not 

the case. To answer this question, Giray claimed that the number of students who took 

the school bus was 36, and the number of students who walked to school was 84. When 

asked for the corresponding data and warrant, he said that he did trial and error in such a 

way that he multiplied three and seven by 11 (random multiplier) at first, found the 

corresponding numbers as 33 and 77, added these numbers, and found the total number 

of students in the school as 110. He continued to explain his reasoning that he had to try 

a bigger multiplier since the value should have been bigger. For the second trial, he 
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multiplied three and seven by 12 and found the corresponding numbers as 36 and 84, and 

the total number of students as 120. Therefore, he only used the link between the parts 

and iterated these linked composites by a scale factor, but did not think about the link 

between the part(s) and the whole. In other words, there was no evidence of extending 

his reasoning about covariation and invariation to the relationships between a whole and 

its parts. Thus, the teacher asked Giray and the rest of the students in the class to find a 

different way other than trial and error. Upon this request, Berk proposed a different 

method by drawing a table that included an extra row with a value of 10, representing 

the total number of students. This solution can be seen in Figure 4.25 below, and the 

associated explanations regarding his reasoning can be understood from the following 

excerpt.  

 

 

Figure 4.25 Representing the whole in terms of the link between its parts 

Berk: We inserted an extra row for the total number of students in the school and 
wrote 3, 7, and 10 in the first cells, respectively. We wrote 120 next to 10 since the 

total number of students was given as 120. Since the total number of students is 

multiplied [scaled] by 12, so should the number of students who walk and take the 
bus (using hand gestures for the horizontal relationships). Hence, there are 36 

students that commute to school by bus and 84 students who walk to school.  

Emre: Where did ten come from? 
Berk: There are as many students in the school as the sum of the number of students 

who walk to school and who take the school bus. Hence, we add three and seven. 

The corresponding number for the total number of students is 10. 

Teacher: Why did you add three and seven Berk?  
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Berk: It is given in the smallest generalization in the question. For every seven 
students that walk to school, three students take the bus. That means, there are ten 

students in the general form. 

Teacher: Did you understand where ten came from, Emre?  

Emre: Yes, I did.  
Teacher: Is there anyone who didn't understand where ten came from? 

Students: No. 

Teacher: Is there anyone who wants to explain it differently? 
Seval: There are seven students who walk to school for every three students who 

take the school bus. That means that out of every ten students, seven students walk 

to school, and three students take the school bus. Therefore, the corresponding 

number for the total number of students is 10.  

Teacher: Yes, this brings us to the next question. 

As deduced from the dialogue above, when Berk added an extra value (i.e., 10) 

corresponding to the total number of students, Emre required him to clarify his data 

regarding where that ten came from. It was the first time that the students were required 

to explore the relationships between the whole and its parts and to infer a value for the 

whole by using the values that represented the link between the two parts of a whole. 

When Berk clarified his data by referring to the part-whole relationship in the given 

information, the students accepted it. Then, Seval expanded the discussion by opening 

up a different use of an informal ratio language that focused on the relationship between 

the whole and its parts. In the following questions, no one required a warrant or a backing 

for the inferred value of the total number of students. Moreover, multiple students used 

this idea in their data/warrants to find the missing values in the same part-whole context.  

The second part of the task gave the result of a survey as “five out of every eight students 

have at least one sibling, and others don’t have any siblings.” Therefore, this information 

included the use of informal ratio language that is focused on part-whole relationships. 

The first question in this part asked the number of students who didn’t have any siblings 

if there were 65 students who had at least one sibling. To answer this question, Erdem 

drew a ratio table including three rows and named those rows as siblings, no siblings, 

and total. Moreover, he wrote five, three, and eight in the corresponding cells, 

respectively, as Berk did in the previous question. He also wrote 65 next to five in the 

third column to link the number of students who had at least one sibling. He argued that 
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the number of students who had at least one sibling was scaled by 13, so the number of 

students who did not have any siblings also had to be scaled by 13 by using the horizontal 

relationships in the table. Then, he claimed that the number of students who did not have 

any siblings was 39. No student challenged Erdem, which provided initial evidence about 

the idea of extending covariation to part-whole contexts being taken-as-shared.  

Then, the teacher selected Mehmet to express the answer he found since she observed 

that he made a mistake while he was working with his peers in small groups. Mehmet 

said that he found the answer as 104. The teacher asked him to explain his solution on 

the board. Mehmet drew a (short) table and named the cells as sibling and no siblings. 

He wrote five and eight next to these cells, as illustrated in Figure 4.26 below and 

explained his reasoning as in the excerpt that follows:  

 

Figure 4.26. Establishing an incorrect link between the parts 

Mehmet: I wrote five and eight in the table since five out of every eight students 

had siblings. Since the (number of) students with siblings is multiplied [scaled] by 

13 (points to the horizontal arrow in the first row of the table), so should the 
students with no siblings (points to the horizontal arrow in the second row of the 

table). So, I found the answer as 104. 

Students: (Many students show disagreement with Musa by shaking their heads 
side to side) No, that is not true.  

Musa: It can’t be 104 anyway. The number of students who don’t have siblings 

should be less than the number of students who have siblings.  

Teacher: Why do you think it should be less than that? 
Musa: There are three students who don’t have any siblings for every five students 

who have siblings. That means there are fewer students who don’t have any 

siblings than students who have.  
Seval: Yes, it should be less than 65, since it is given that there are 65 students who 

have siblings.  

Mehmet:  Ok. I got it. I read it wrong. Eight is for [the number of] all students.  
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The analysis of the dialogue above gave further evidence that the first two ideas were 

taken-as-shared for a couple of reasons. First, when Mehmet established an incorrect link 

between the parts and the whole, many students disagreed with him. Moreover, Musa 

and Seval rebutted him by providing an argument related to the link between the number 

of students who had siblings and who didn’t (i.e., the parts of the whole). Moreover, even 

though Mehmet assigned incorrect values for representing the parts, he was able to scale 

the parts within the same measure spaces, and none of the students rebutted him about 

this scaling. Besides, considering the whole process, it was deduced that the multiple 

students agreed that the number of students who had no siblings could be represented by 

three. This was because none of the students were challenged or requested any warrant 

or backing regarding this link and the covariation between the whole and its parts in the 

following sub-questions. Thus, more salient evidence about these three ideas’ (TAS Idea 

1 & TAS Idea 2) being taken-as-shared was obtained at this point.  

The following question asked the number of students who had at least one sibling if the 

total number of students in the school was 168 (the link is the same, that is, five out of 

every eight students have at least one sibling, and others don’t have any siblings). Ceyda 

drew a short table, including two variables for the number of students with sibling(s) and 

the total number of students. She proposed to draw the table vertically as different from 

the previous days, as demonstrated in Figure 4.27 below. 

 

Figure 4.27. The emergence of a vertical ratio table (Day 5)  
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Ceyda told that since the total number of students is scaled by 21, so should the number 

of students who had siblings by using hand gestures to show the vertical relationship. 

She said that it did not matter if the table was drawn horizontally or vertically. However, 

this time the vertical relationship was related to scaling of the values within the same 

measure space, not the invariant relationship between the values in different measure 

spaces. Hence, she emphasized that the horizontal relationship in the horizontal table 

corresponded to the vertical relationship in the vertical table. So, the use of the vertical 

ratio table (VRT) emerged in the classroom naturally on Day 5, and a discussion about 

the horizontal and vertical relationships in vertical and horizontal ratio tables was 

initiated. 

In the second period of the class on Day 5, the instructional sequence posed a question 

in which it was given that out of every nine students, four support BJK (soccer team 1-

ST1), three support GS (soccer team 2-ST2), and two support FB (soccer team 3-ST3). 

Therefore, this question included part-whole relationships wherein there were three parts 

of a whole. The first sub-question asked the number of people who support GS and FB 

when it was given that there were 44 BJK supporters. As an answer to this question, 

Hande drew the corresponding horizontal table, including three parts and a whole, and 

used the horizontal relationships in this table. In some of the following sub-questions, 

either a value for one of the parts was given, and the other parts and the whole were 

asked, or a value for the whole was given, and the corresponding values for all of the 

parts were asked. The students drew horizontal ratio tables and used the horizontal 

relationships (i.e., scaling within measure spaces) in those tables in their data to come up 

with claims to answer the questions, as illustrated in Figure 4.28 below.  
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Figure 4.28. Horizontal relationships in the short ratio tables including three parts of a 

whole 

As seen in Figure 4.28 above, the students made use of the horizontal relationships in the 

short ratio tables to find parts and/or whole, and none of these strategies were challenged. 

This provided further evidence that TAS Idea 1 and TAS Idea 2 were taken-as-shared. 

On the other hand, this also gave further evidence about the students’ extending their 

understanding of covariation to part-whole contexts. This allowed the teacher to 

encourage the students to reason about the invariant multiplicative relationship in this 

part-whole context. Thus, she asked the classroom if there was a relationship between 

the numbers of BJK supporters and FB supporters. Hande expressed that the number of 

BJK supporters is twice as much as the number of FB supporters in each situation. The 

teacher then asked if they were able to interpret such relationships between the other 

quantities. Ceyda claimed that the number of GS supporters is always 
1

3
 of the total 

number of students. Musa claimed that the number of FB supporters is 
2

3
 of the number 

of GS supporters. Erdem claimed that the number of FB supporters is 
1

2
 of the number of 

BJK supporters. Seval claimed that the number of BJK supporters is 
4

9
 of the total number 

of the students. Therefore, all of these students were able to abstract the relationships 

between the pairs of parts or between a specific part and the whole. Thompson (1994) 

refers to those abstractions as interiorized ratios or rates while he refers to a multiplicative 
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comparison of two particular values as a ratio. Hence, at this point, the students 

abstracted their understandings of ratios between fixed values to arrive at interiorized 

ratios or rates in this part-whole context.   

Even though this was the first time that the students reasoned about the invariant 

multiplicative relationships between parts and the whole and its parts, there is no 

evidence that the students needed warrants or backings for these relationships. However, 

a later discussion that took place on the same day might give an idea about this issue. 

After Tunay answered the question related to finding the number of BJK supporters when 

it was given that “there were 60 GS supporters,” based on the horizontal relationships 

(see Figure 4.29), the teacher challenged her to reason with the invariant multiplicative 

relationship between the two parts. Moreover, when she used this invariant relationship 

to find a missing value, another student challenged her as well. Below is a classroom 

discussion that took place regarding this process:  

             x20 

𝐺𝑆 

𝐵𝐽𝐾
=

3

4
 = 

60
 

             x20  

Figure 4.29. Using the symbolic representation of proportion to find missing values in 

part-whole contexts 

Tunay: Since the number of the GS supporters is scaled by 20, so should the 

number of BJK supporters. The answer is 4×20 = 80. 

Teacher: Can you find the answer by using the relationship between the number of 
GS supporters and BJK supporters, which you mentioned a short time ago? 

Tunay: Well, we didn't find the relationship between GS and BJK. But I can find 

it. [The number of] GS supporters is  
3

4
 of [the number of] BJK supporters. 

Ahmet: Yes.  
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Tunay:  Then, to find [the number of] BJK supporters, we need to divide 60 by 
three and multiply (the result) by four. 

Ahmet: Or should we divide it by four and multiply (the result) by three?  

Tunay: No. GS is 
3

4
 of BJK, so GS is the smaller part. We need to find the whole 

when 
3

4
 (of that whole) is 60.  

Ahmet: OK, like we did with fractions. 

Tunay: Yes. So, the number of BJK supporters is 60:3=20 and 20×4=80.  

As inferred from the excerpt above, Tunay wrote the symbolic representation of 

proportion to find the missing value and used the horizontal relationships in the 

proportion. When the teacher asked her to use the (invariant) relationship between these 

parts to find that value, she was able to state the invariant multiplicative relationship 

between the two parts. However, when she used this relationship to find a missing value, 

Ahmet required her to provide a warrant regarding the multiplicative relationship 

between the two variables. This resulted in Tunay's making a connection to fractions. 

Therefore, even though no student required warrants for the invariant multiplicative 

relationship between the parts, Tunay was challenged to provide a warrant for using this 

relationship to find another part when one of the parts was known. Hence, it could be 

that the students were able to draw on the previously established idea regarding the 

invariant multiplicative relationship between the quantities from the fish food bar context 

to reason in the part-whole context. 

Nevertheless, when this invariant multiplicative relationship (i.e., unit rate) was used as 

an anchor to find the missing value, it was challenged. Even so, it wasn’t for sure whether 

or not extending the invariance to the part-whole contexts was taken-as-shared in the 

classroom community at that time. However, it became more salient on the ensuing days 

(e.g., Day 6, Day 8, and Day 13) that students were able to extend their understanding of 

invariance to the part-whole contexts. For instance, on Day 13, multiple students 

included the invariant multiplicative relationships between the amounts of water and 

orange juice in their data/warrants for making claims about comparing the tastes of 

mixtures.   
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To sum up, during the first five days of the instruction, the students started to group 

objects to form composite units, linked those composite units, and made sense of the 

covariation between those by making iterations with linked composites by using 

numerical, pictorial and tabular representations. These iterations evolved from building 

up/down by ones to abbreviated build-up/down strategies (i.e., scaling up/down by the 

same factor). Then, the invariant multiplicative relationship between the linked quantities 

was interpreted and conceptualized as unit rate. In addition, it was used as a 

tool/benchmark/anchor for finding missing values. Lastly, these understandings of 

covariance and invariance were reconceptualized in several part-whole contexts. These 

mathematical ideas felt like being related to the general activity of reasoning with 

pictures and tables to find missing values as the students worked collectively. Therefore, 

these five mathematical ideas were put together and organized around the common 

activity of reasoning with pictures and tables to find missing values as they emerged and 

became taken-as-shared.  

4.2. CMP 2. Reasoning with tables and symbols to write and solve proportions  

On Day 6, the instruction focused on interpreting the relationships between the values in 

the proportion representation and making inferences regarding covariation and 

invariation among those values. As the students engaged in discussions regarding those, 

two ideas became taken-as-shared among the classroom community: 

• Structuring ratios and proportions multiplicatively and extending covariance 

and invariance to symbolic proportion representation, 

• Determining proportionality by covariational and multiplicative reasoning. 

TAS Idea 1. Structuring ratios and proportions multiplicatively and extending covariance 

and invariance to symbolic proportion representation. The teacher started Day 6 by 

asking Berk to count the number of students in the class and to write the ratio of the 

number of girls to the number of boys. Berk stated that there were 12 girls and 15 boys 
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in the class and wrote the corresponding ratio as 
12

15
 on the board. Therefore, this was a 

claim regarding structuring ratios multiplicatively. Then, the teacher asked the class if 

they could express the same ratio in different ways. After she let the students work for a 

while in small groups, she took an answer from Emre, and the following dialogue took 

place in the discussion: 

Emre: We made a table and found the other values, 24-30, 36-45, and so on. 
However, the teacher asked us (in the small group discussion) if we could represent 
12

15
 with smaller numbers. So, we extended the table backward. We couldn't divide 

both (numbers) by 2, so we tried 3. Then, we divided both (numbers) by three and 

got 
4

5
.  

Teacher: Did you try to go backwards again? 

Emre: Yes, you asked us to go backwards again, but we couldn’t divide 
4

5
 by any 

other number.  

Teacher: What do you all think about Emre’s strategy? 

Ozan: We found the same thing, but we did not draw a table. We wrote 
12

15
 is equal 

to 
24

30
. This is equal to 

36

45
 and so on (writes these proportions as an equivalence class 

on the board, i.e., 
12

15
 = 

24

30
 = 

36

45
 = 

48

60
 ). That means we expanded the given ratio as 

we do with fractions. Then, when the teacher asked us (in small group discussion) 

if there could be smaller numbers, we reduced it to 
 4

5
 (adds 

4

5
  to the left to obtain 

the equivalence class 
4

5
 =  

12

15
 = 

24

30
 = 

36

45
 = 

48

60
 ). We couldn’t reduce it anymore, either.  

Teacher: Anyone who could find a smaller ratio?  

Students: No. 

Teacher: So, we call the most simplified ratio as the base ratio. Then, what is the 
base ratio for the number of girls to the number of boys? 

Students: 
4

5
.  

As understood from the dialogue above, Emre provided data related to drawing a ratio 

table and making iterations to make claims about representing the given ratio in different 

ways. Ozan made these iterations in the symbolic representation of proportion to obtain 

an equivalence class of ratios by making references to expanding and reducing fractions 

in his warrants. Eventually, the teacher introduced the term "base ratio" as the most 

simplified ratio. The argumentation analysis of the dialogue above is summarized in the 

following argumentation schema illustrated in Figure 4.30 below. 
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Figure 4.30. Argumentation schema for structuring ratios and proportions 

multiplicatively and making iterations with the symbolic representations 

Structuring ratios and proportions multiplicatively and using covariance to obtain 

proportional situations appeared on Day 4 for the first time when the classroom 

discussion was shifted from reasoning with short ratio tables to using the proportion 

representation and talking about the horizontal and vertical relationships in it. Thus, on 

that day, the idea of “structuring ratios and proportions multiplicatively and using 

covariance to obtain proportional situations” appeared in the students’ claims.  However, 

as deduced from Figure 4.30, this idea appeared in data to make claims about equivalent 

ratios (i.e., proportion) on Day 6. This gave initial evidence that the idea of structuring 

ratios and proportions multiplicatively was taken-as-shared among the classroom 

community. Moreover, extending covariance to the proportion representation was taken-

as-shared as well based on the same concerns. The classroom discussion on Day 6 

continued with the teacher’s question given below. The teacher wanted the class to make 

interpretations from the base ratio of the number of girls to the number of boys in their 

Data 1: We made a table and found the other values as 

24-30, 36-45, and so on. We extended the table 

backward. We couldn't divide both (numbers) by 2, so 

we tried 3. Then, we divided both by three and got 
4

5
 

(Emre).  Claim: 
12

15
 can be 

represented by 
24

30
, 

36

45
, etc. and also 

4

5
 

(Emre, Ozan) 

Data 2: We found the same thing, but we did not draw 

a table. We wrote 
12

15
 is equal to 

24

30
. This is equal to 

36

45
 

and so on (writes these proportions as an equivalence 

class on the board, i.e., 
12

15
 = 

24

30
 = 

36

45
 = 

48

60
 ). That means 

we expanded the given ratio as we do with fractions. 

Then, we reduced it to 
 4

5
 (adds 

4

5
  to the left to obtain 

the equivalence class 
4

5
 =  

12

15
 = 

24

30
 = 

36

45
 = 

48

60
 ). We 

couldn’t reduce it anymore, either (Ozan). 

 

Warrant: Expanding 

and simplifying 

ratios done with 

equivalent fractions 

(Ozan). 
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class by using informal ratio language. Below is a dialogue in which two students used 

informal part-part-whole relationships to make sense of the relationship between the 

number of girls, boys, and all students in the classroom:  

Teacher: So, we made interpretations yesterday like "there are seven students who 
walk to school for every three students who take the bus.” Remember? Can you 

use the same language for the number of boys and girls in this class?  

Sinem: There are four girls for every five boys. 
Teacher: Yes. Another one?  

Ozan: Out of every nine students, four are girls, and five are boys. 

As seen in the dialogue above, Sinem and Ozan made claims about the part-part-whole 

relationships by using informal ratio language in a context that included the comparisons 

among the number of boys, girls, and all students in the class without any need for 

warrants/backings. Therefore, this could be given as further evidence that the idea of 

extending covariance relationship to part-whole contexts was taken-as-shared. After 

finding equivalent ratios and making connections to part-part-whole relationships, the 

students were encouraged to work in small groups. They were asked to find the numbers 

of girls, boys, and all students in a given class, not their class anymore, by using the 

following information “the ratio of the number of girls to the number of boys is 2:3.” 

Particularly, the first question asked the students to find the number of boys when there 

were 16 girls in that class. Merve drew a short ratio table and placed two next to the 

number of girls (K) and three next to the number of boys (E). Then, she used the 

horizontal relationships to find the number of boys as 24, when there were 16 girls. She 

also wrote the corresponding symbolic proportion representation, as shown in Figure 

4.31 below.  
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Figure 4.31. Moving from a short ratio table to symbolic proportion representation to 

find a missing value 

The class discussion proceeded by making claims about finding the number of 

girls/boys/all students (part-part-whole) for different situations. For this, the students 

used the formal ratio language, structured the formal representation of proportion, and 

made sense of the horizontal/vertical relationships in the proportion in their data. At the 

end of the first session on Day 6, the classroom discussion was shifted to deciding 

whether the given ratios belong to the same ratio (i.e., 
2

3
 ). This included checking for 

proportionality and deciding if the given two ratios were proportional. One of the 

questions requested the students to determine if  
2

3
 and 

10

20
 were proportional. Below is a 

dialogue that took place when the classroom discussion revolved around comparing those 

two ratios:  

Teacher: So, what do you think about 
10

20
? 

Faruk: It is not proportional (to 
2

3
) since two is multiplied by five to obtain ten, but 

three is not multiplied by five. 

Teacher: Do you all agree with Faruk? 

Ceyda: Yes. They cannot be proportional anyway because 
10

20
 is half, and the other 

one is 
2

3
.  

In this dialogue, Faruk claimed that the two ratios were not proportional since 
10

20
 could 

not be obtained by scaling 
2

3
 by 5. Then, the teacher asked the class if they agreed, and 

Ceyda provided a warrant for the same claim by making connections to fraction 

comparison. Therefore, Ceyda used the invariant multiplicative relationship between the 
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values in her warrant to determine the proportionality of the give two ratios. Therefore, 

this gave initial evidence that the invariant relationships were extended to the symbolic 

representation of proportion. However, there is further evidence from the ensuing days 

to suggest that the invariant relationships between the values in different measure spaces 

were extended to the symbolic representation of proportion. 

As an answer to the following question, Selim claimed that 
2

3
 is proportional to 

8

12
 since 

eight is four times two, and 12 is four times two (i.e., the equivalence of the scale factors). 

As Selim was providing his data, the teacher drew horizontal arrows on the board and 

put a checkmark next to the proportion since Selim claimed that they were proportional. 

The classroom discussion progressed with deciding on whether each of the given ratios 

was proportional to the ratio of the number of girls to the number of boys given in the 

task. Throughout these discussions, the students made claims about checking if the two 

ratios were proportional by using the horizontal relationships in the two proportions that 

were related to the processes of scaling (i.e., abbreviated build-up). The students based 

these claims on the data that were focused on whether the given ratios could be obtained 

by scaling 
2

3
 with any factor. Particularly, they claimed that the two ratios were 

proportional if the second one was the scaled version of 
2

3
, and they were not proportional 

if the second one was not a scaled version of  
2

3
. Therefore, on Day 6, the students made 

claims about checking for proportionality and determining if the given two ratios were 

proportional. These claims were initially challenged. This was an idea that needed to be 

kept an eye on whether or not it would be taken-as-shared in the following days.  

TAS Idea 2.  Determining proportionality by covariational and multiplicative reasoning. 

On Day 7, the students engaged in solving problems in a variety of contexts. The first 

problem asked the number of pens that could be bought with 12 Turkish Liras (TLs) if 

two pens could be purchased with four TLs. The teacher encouraged the students to use 

multiple strategies. Below is a conversation in which the students used ratio tables and 
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symbolic proportion, and interpreted covariation and invariation by referring to the 

horizontal and vertical relationships on those:  

Teacher: You should be able to solve these (problems) in several ways. Let’s solve 

all the problems in several ways.  

Ceyda: I set up a proportion including 
4

2
. That means I wrote the ratio between TL 

and (the number of) pens. Since it asks how many pens could be bought with 12 

TLs, I put an equal sign and wrote 
12

𝑥
. Since 12 is three times as much as 4, I should 

multiply the (number of) pens by 3, so that they could be equal (The teacher writes 

the proportion on the board while Ceyda was explaining her strategy from her seat, 
See Figure 4.32a below). So, I can buy six pens. 

Merve: We can also simplify 
4

2
 to 

2

1
. That means one pen can be bought with 2 TLs. 

So, six pens can be purchased with 12 TLs.  
Hande: Can I tell another strategy?  

Teacher: Say it. 

Hande: We can also think vertically. We can reduce 
4

2
, and then one pen could be 

bought with 2 TLs. So, six pens could be bought with 12 TL, since it should be its 

half.  

Giray: We can also write the ratio between the amount of money (in the first 
situation) and the amount of money (in the second situation) and (the number of) 

pens (in the first situation) and (the number of) pens (in the second situation).  

Teacher: How can you write the ratios between the amounts of money and the 
number of pens? What does that mean?  

Giray: If we draw a table for money to money and pen to pen (tells his strategy 

from his seat, the teacher draws the tables on the board, See Figure 4.32b below); 

then, (the amount of) money is tripled (makes a hand gesture to show the vertical 
relationship from 4 to 12 in the VRT), so should the (number of) pens. It will be 6.  

Teacher: Yes, Ceyda had drawn a table vertically like this in a previous class. Can 

you tell me the ratio that could be obtained from this table (see Figure 4.33b)? 

Giray: 
4

12
 is equal to 

2

𝑥
. So, it’s the ratio of money to money and pen to pen.  

Teacher: Ceyda, can you tell me which proportion could be obtained from this table 

(points to the table in Figure 4.33a)?  

Ceyda: It’s the one that I wrote. 
4

2
 is equal to 

12

6
 (points to the table in Figure 31a). 

Teacher: So, we can draw tables vertically and horizontally. Each table gives a 

different proportion, but they give the same result. Can you complete my 
sentences? Horizontal relationships in the horizontal table (points to the horizontal 

arrows in the horizontal table shown in Figure 4.33a) correspond to the… 

Students: (all together) vertical relationships in the vertical table (teacher points to 
the vertical arrows in the vertical table shown in Figure 4.33b). 

Teacher: Yes, and the vertical relationships in the horizontal table corresponds to 

the… 
Students: (all together) horizontal relationships in the vertical ratio table.  
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Figure 4.32a. Structuring of between 

measures ratios 

Figure 4.32b. Structuring of within 

measures ratios 

 

As understood from the dialogue and the related figures above, Ceyda made a claim 

about the missing value in proportion by referring to the horizontal relationship (i.e., 

scaling) in the proportion (i.e., within measures ratio) in her data. Then, Merve provided 

data regarding simplifying the ratio that included numerical values to obtain the unit rate 

(i.e., the amount of money needed to buy one pen) in the same proportion. Hande 

provided backing to Merve’s argument by referring to the same relationship as the 

vertical relationship and the invariant times 
1

2
 relationship. Afterward, Giray suggested 

drawing a VRT that would vertically align the values within the same measure spaces 

  

Figure 4.33a. HRT (model for between 

measures ratio) 

Figure 4.33b. VRT (model for within 

measures ratio) 
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and referred to the vertical relationship in the vertical table (i.e., scaling) in his data to 

obtain the same claim. Later, the teacher made a connection to a previous discussion 

regarding Ceyda’s drawing of the table vertically. Eventually, the teacher had students 

make connections between HRT and between measures ratios, and VRT and within 

measures ratios. Also, the correspondences between the horizontal relationships in the 

HRT and the vertical relationships in the VRT, and the vertical relationships in the HRT 

and the horizontal relationships in the VRT were re-negotiated and established.  

The students continued to engage in the process of solving proportional problems in 

different contexts in small groups by considering the teacher's request in the second 

period of the instruction on Day 7: solving the problems in as many ways as possible. 

After they tried to come up with a variety of solution ways, each group shared their 

solutions with their classmates on the board for each question. Then, after each group 

finished explaining different solutions, the teacher asked the whole class if they could 

add any other strategy. In sharing their solutions on the board, each group provided 

alternative data that included horizontal/vertical ratio tables and symbolic proportion 

representation, including within/between measures ratios, by referring to the 

horizontal/vertical relationships in those to make claims about the answers to the 

problems. None of the students was challenged or asked for further warrant/backing 

regarding their arguments, which showed further evidence that the ideas of "structuring 

ratios and proportions multiplicatively and extending invariance and covariance to 

proportion" and "determining proportionality by covariational and multiplicative 

reasoning" became taken-as-shared. To illustrate, a dialogue that took place in the whole 

class discussion for answering the question “A real distance of 9 kilometers is 

represented by 5 centimeters on a map. Then, how long is a distance in real life if it is 

represented by 20 cm on the map?” is presented below: 

Remzi: (Writes a VRT including a within measures ratios, draws vertical arrows to 

show the vertical relationships, and writes ×4 next to the vertical arrows, See 
Figure 4.34a). We made a vertical table for real (distance) and (distance on the) 
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map. It became 20 when it was 5, so nine should become 36 since it should also be 
multiplied by 4.   

Teacher: What is the unit of 36? 

Remzi: Kilometers. 

Teacher: OK. What kind of ratios did you establish?  
Remzi: Ratios of real distance to real distance and (distances on the) map to map.  

Ozan: We wrote a proportion, not a table. Still, we looked at the times four 

relationships as well. Since this was five and became 20 (writes 
9

5
 = 

𝑥

20
 on the board 

and makes a hand gesture from 5 to 20 in the denominators of the two ratios, see 
Figure 4.34b); that means, it is multiplied by four. This (points to x in the numerator 

of the second ratio) should be four times 9; that is, 36.   

Seval: As an alternative solution, I wrote the proportion differently (writes 
9

𝑥
 = 

5

20
 

on the board, see Figure 4.34c). Then, since this side is multiplied by 4 (draws a 
vertical arrow from 5 to 20 and writes ×4 next to the arrow), nine multiplied by 4 

becomes 36. 

Berk: The fourth method is the horizontal of the first method (draws an HRT and 

horizontal arrows from 5 to 20, see Figure 4.34d). I thought what multiple of 5 is 
4. It is times four. Therefore, times four above gives the result as 36.  

Murat: We looked at the vertical relationship in the proportion (writes  
9

5
 = 

𝑥

20
 on 

the board, draws a vertical arrow from 5 to 9 and writes 
9

5
 next to the arrow, see 

Figure 4.34e). We wrote the proportion 
9

5
 is equal to 

𝑥

20
. Then, we thought what 

multiplied by five is equal to 9 and found it as  
9

5
 (shows the vertical arrow and ×

9

5
  

next to it). Then, we divided 20 by five and multiplied (the result) by 9. It is 36.   

Teacher: Yes, we talked about it before. We can look at the non-integer 
relationships like this. But I have a question for you, how did you write the 

proportion?  

Murat: We wrote the ratios of real distances to the distances on the map.  

Teacher: Can you interpret these ratios? 

Murat: 9 kilometers (points to the number 9 in the proportion 
9

5
 = 

𝑥

20
) in real is 

shown by 5 (points to the number 5 in the proportion) centimeters on the map, 36 

kilometers (points to the number 36 in the proportion) in real is shown by 20 (points 

to the number 20 in the proportion) centimeters on the map.  
Teacher: Is this relationship true for only 9 km and five cm and 36 km and 20 cms?  

Murat: No. For all the distances. Every five cm on the map is actually 9 km in real 

life.   

Teacher: Good, thank you. Have you ever seen a number in the bottom corner of a 
map?  

Students: Yes. 

Teacher: What does that number mean?  
Student 1: For example, it says 250 kilometers is 1 centimeter. That means a 

distance of 250 kilometers in real life is represented by 1 centimeter on the map. 

Ceyda: It gives a unit rate. This rate applies to all numbers (distances) on the map. 
For instance, a distance of 2 centimeters on the map is 500 kilometers in real life.  
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Teacher: Yes, we call this number the "scale of a map.” So, what is the scale of our 
map (the one that they were working on)?  

Ceyda: 5 centimeters over 9 kilometers is the scale of this map.  

Teacher: OK. Let’s bring a map in the following class and talk about that.  

 

Figure 4.34a. Remzi 

drawing a VRT 

 

Figure 4.34b. Ozan writing a 

proportion including within 

ratios 

 

Figure 4.34c. Seval 

writing a proportion 

including between ratios 

 

Figure 4.34d. Berk drawing an HRT  

 

Figure 4.34e. Murat referring to the 

vertical relationships on the proportion 

As inferred from the dialogue and the related figures above, multiple students made the 

same claim for the answer to the scaling problem by providing a variety of previous ideas 

in their data without a need for any further warrant/data. First, Remzi drew a VRT 

including the within measures ratios, and claimed that the distance that was represented 

by 20 cm on the map was 36 km in real life by referring to the vertical relationships (i.e., 

scaling). Then, Ozan wrote a proportion including the ratios between measure spaces and 

referred to the horizontal relationships (i.e., scaling) in his data. Seval also wrote a 

proportion including the ratios within measure spaces and made use of the vertical 
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relationships (i.e., scaling). Later, Berk drew an HRT and referred to the horizontal 

relationships (i.e., scaling) in his data. Up to that point, either using horizontal or vertical 

relationships, the students referred to the relationships regarding working with the same 

scale factors in the tables and proportions. Then, Murat referred to the vertical 

relationships in the proportion that included between measures ratios, which 

corresponded to the invariant multiplicative relationship or the unit rate between the 

distances on the map and in real life. Then, the teacher took this opportunity to introduce 

the term “scale of a map” and asked the students to express the scale of the map they had 

been working on. 

In sum, during Days 6 and 7, the classroom discussion and the communal ways of 

reasoning were moved from finding missing values in ratio tables to reason with the 

symbolic representation of proportion by drawing on their experiences of scaling (i.e., 

abbreviated build-up/iteration), invariant multiplicative reasoning (i.e., unit rate) in the 

contexts of fish-food bar and part-whole. In addition, the emergence of VRT and 

corresponding proportion representations contributed to the shift from reasoning with 

ratio tables to the structuring of within measures and between measures ratios and related 

representations of proportion. Therefore, even though the discussions that took place on 

Days 6 and 7 were built on the TAS Ideas in CMP 1, the ways students reasoned with 

the tools and the nature of the classroom discourse were altered to a more mathematical 

way of thinking. Therefore, the mathematical ideas of “Structuring ratios and proportions 

multiplicatively and extending invariance and covariance to proportion” and 

“Determining proportionality by covariational and multiplicative reasoning” felt 

different than the TAS Ideas in CMP 1. Moreover, it was inferred that those ideas 

belonged to the general activity of “Reasoning with tables and symbols to determine 

proportional situations.” Thus, these two mathematical ideas were put together and 

organized around the common activity of “Reasoning with tables and symbols to 

determine proportional situations” as they emerged and became taken-as-shared during 

the discussion of Days 6 and 7.  
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4.3. CMP 3: Coordinating the relationships among the representations 

Throughout Days 8 to 11, the students were engaged in a series of activities that included 

representing proportional and non-proportional situations using tables, graphs, and 

equations. Therefore, three mathematical ideas were taken-as-shared as the students 

worked on these activities:  

• Formalizing the invariant multiplicative relationship into an equation, 

• Representing proportional relationships with linear equations of the type y=mx 

and graphs passing through the origin, 

• Representing non-proportional linear relationships with linear equations of the 

type y=mx+b and graphs not passing through the origin. 

TAS Idea 1. Formalizing the invariant multiplicative relationship into an equation. On 

the eighth day of the instruction, the students were formed into five groups, and each 

group was given a different situation related to the unit price of a vegetable/fruit. Their 

task was to fill a long ratio table for different amounts of the given vegetable/fruit and 

their price. The information given to each group included one of the following five unit 

prices: 1 kg of potatoes is 1 Turkish Lira (TL), 1 kg of apples is 2 TLs, 1 kg of tomatoes 

is 3 TLs, 1 kg of bananas is 5 TLs, and 1 kg of kiwi is 6 TLs. Even though the price for 

each vegetable/fruit was different, the idea was the same in each situation: finding the 

amount of money required to buy specific amount of vegetables/fruits in kilograms when 

the unit price was known; and representing the relationship between the amount of 

fruit/vegetable and the money using tables, graphs, and equations. After working in small 

groups, each shared their strategies and answers on the board. Ceyda came to the board 

and explained how they filled in the table and obtained the algebraic equation as 

illustrated in the following exchange:  
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Ceyda: One kg of apple is 2 TLs in our example. Since 1 kg of apple is 2 TLs, we 
thought about how much 2 kg would cost (shows the numbers in the long ratio 

table they filled in in her activity sheet). Since this (the amount of apples) is 

doubled, the money would be 4 TLs. And we continued to fill in the table like this. 

Here (points to the x on the last column of the table), we thought what the price 
would be for an unknown amount x. That would be 2x since the price is always 

(makes a hand gesture to point to the vertical relationships on the table) twice the 

amount.   
Teacher: Yes. We have explored the relations so far, but now, we are writing the 

relationship algebraically. Then, we need to draw it on the coordinate plane. Which 

value should be on the y-axis on the coordinate plane?   

Student: y 
Teacher: Then, in order to represent this relationship on the coordinate plane, I 

should say that y = 2x. That becomes the equation of the relationship. Ceyda, can 

you explain what this equation means?  
Ceyda: The twice the amount (of apples) is equal to the price.   

Teacher: Yes. We are going to represent relationships with algebraic equations. 

Can you explain the graph, Ceyda?  
Ceyda: 1 kg is 2 TLs, so these are (points to the values on the table) 1 to 2, 2 to 4, 

3 to 6, and so on. These became the points on the coordinate plane.   

Teacher: I see you drew a graph on your paper. How did you obtain that graph?  

Ceyda: We connected the points 1-2, 2-4, 3,6, 4-8 (points to the points on the graph, 
see Figure 33), and so on and obtained a line. 

Teacher: How did you know it was a line?  

Ceyda: 1-2, 2-4, 3-6, 4-8, and so on. It could go forever since we can buy any 
amount.  

Teacher: Well. I see the origin on the graph. How did you obtain that?  

Ceyda: When we don’t buy anything, we don’t have to pay. Then, it becomes the 

point zero to zero.  

In this exchange, Ceyda claimed that the general algebraic expression for the price of the 

apples of any amount would be 2x by looking at the values on the table that they filled 

in by building up (i.e., iteration). She also provided a warrant for this argument that 

included the “invariant times two relationship” between the amount and the price of the 

apples. Therefore, her argument could be summarized as in the following Toulmin’s 

scheme: 
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Figure 4.35. Toulmin’s argumentation scheme for formalizing the invariant relationship 

into an algebraic expression 

Therefore, Ceyda formalized the invariant multiplicative relationship into an algebraic 

expression for the first time in the instruction and provided a warrant in the first place. 

However, since it was not in an equation form, the teacher introduced the corresponding 

equation as y=2x by referring to the coordinate plane. Then, the teacher asked Ceyda to 

explain how they obtained the line graph that they had on their paper and especially how 

they figured out to include the origin in their graph (see Figure 4.36 below).  

 

Figure 4.36. Ceyda’s line graph for the equation y = 2x 

Ceyda made a connection between the linked composites 1-2, 2-4, 3-6, 4-8… in the table 

and the points that included the corresponding ordered pairs on the coordinate plane. 

Data: Filling in the table by building 

up and looking at the values in the 

table (Ceyda)  

 

Claim: The relationship 

for any amount of apples 

is 2x. (Ceyda) 

Warrant: The price is always  twice 

the amount (Ceyda) 
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Based on this, she claimed that they obtained a line (to represent the relationship between 

the amount and price of the apples). Besides, she stressed that they included the origin in 

their graph since they interpreted the origin as paying nothing when buying nothing. 

Therefore, in this instance, the claim was the graph drawn by the students, and the data 

were related to the procedures regarding how they obtained the graph (i.e., plotting the 

points on the coordinate plane, connecting the points and obtaining a line and including 

the origin). The teacher took this opportunity to revise the claim and introduce the term, 

“linear relationship,” as understood from the following excerpt: 

Teacher: Then, what can you say about this graph? Where does it pass through?  
Students: The origin.  

Teacher: (To the class) Does your graph also pass through the origin? 

Students: Yes.  

Teacher: Well. Yes, these are all graphs that pass through the origin. Since the 
relationship between the amount of apples and its price can be represented by a 

line, we will call this a linear relationship.  

Therefore, in the excerpt above, the teacher claimed that all the situations that the 

classroom worked on formed linear relationships since they could be represented by 

lines. Thus, this was the first time that the issue of representing proportional situations 

by linear graphs passing through the origin emerged in the discussion. Hence, this was 

an idea to keep an eye on whether it becomes taken-as-shared later. 

In the following instances on Day 8, a student from each group continued to share their 

answers, strategies, and graphs. As the spokesperson of the second group that worked 

with the information that included the unit price for a kilogram of bananas as 5 TLs, 

Gizem claimed that the algebraic equation for their situation was y=5x. The 

corresponding graph was also linear by referring to the "invariant times five relationship" 

between the amount of bananas and the related price. Similarly, the students from all 

remaining groups wrote the corresponding algebraic equations correctly and drew the 

corresponding line graphs, and no warrant/backing was presented. Therefore, dropping 

off of warrants in students’ answers showed that the idea of formalizing the invariant 
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multiplicative relationship into an equation was taken-as-shared. There is also evidence 

that these ideas were taken-as-shared from the following class, where students used these 

claims to provide their data/warrants. 

TAS Idea 2. Representing proportional relationships with linear equations of the type 

y=mx and graphs passing through the origin. As the students formalized the invariant 

multiplicative relationships into algebraic equations, they also drew the related line 

graphs that passed through the origin, as mentioned above. After each group presented 

their answers and explanations for the five different situations on the board, the answers 

(tables, graphs, and equations) for each situation were hung on the board as shown in the 

following figure:  

  

Figure 4.37. Formalizing the multiplicative relationships into linear equations of the 

type y = mx and drawing the corresponding line graphs that pass through the origin 

Now, the students were engaged in a discussion that focused on the 

similarities/differences among all of the situations and their tabular, algebraic, and 

graphical representations. Multiple students made a variety of claims regarding the 

similarities and differences, as illustrated in the following excerpt: 

Berk: We used the same region (quadrant) in all of those. 

Merve: That means all of them are in the first quadrant. 

Teacher: Why do you think we didn’t use the other quadrants?  
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A bunch of students: There is no minus (value).  
Seval: We cannot buy minus tomatoes, nor can we pay minus amounts.  

Teacher: Did you understand why we only used the first quadrant, Elif?  

Elif: Yes. There is no such thing as buying minus kg (of things).  

Teacher: OK.  Does anyone want to add anything?  
Berk: All of them are linear relationships.  

İlter: All (the graphs) pass through the origin.  

Selim: The (unit) amount is the same (i.e., 1 kg) in all, but the (unit) price is 
different.  

Teacher: What did you mean by saying that the amount was the same?  

Selim: The kg (amount) increases by 1s in all of the graphs and tables, but the price 

increases differently.  
Merve: For instance, in y=2x and y=5x, the increment in the amounts and the prices 

are different. The increment is 2 there (in y=2x), but 5 here (in y= 5x).  

Teacher: How does the x increase in each?  
Merve: It goes up by 1s in both.  

Teacher: Well. Can you tell the increment in x and y all together (for both)?  

Merve: x goes up by 1s whereas y, which is the price, goes up by 2s in this one 
(points to the equation y=2x). X goes up by 1s as well in this one (points to y=5x), 

but y goes up by 5s.  

Teacher: How can we observe this (difference) on the graphs?  

Merve: Their alignment becomes different.  
Teacher: How is their alignment different?  

Merve: One of them is more inclined (makes hand gestures to illustrate the 

inclination in each) than the other.  
Teacher: Yes. We will learn this next year. We will call this the slope of the lines. 

Now, let’s continue with the similarities and differences. 

Sinem: All have different slopes, then. 
Teacher: What makes the slopes different (in each)?  

Sinem: Price.  

Teacher: Well. What kind of a relationship is there among their equations?  

İlter: All of them are; y is equal to x, or something is equal to x (meaning y=x or 
y=mx).   

Teacher: What are the values in these equations?  

Student: The amount and price.  
Teacher: Yes. The relationship between the amount that I buy and the price that I 

have to pay forms a linear equation.  

In the exchange above, Berk and Merve claimed that all the graphs were only in the first 

quadrant. The teacher asked why all the graphs were in the first quadrant. Therefore, this 

was an instance where the teacher provided the claim and asked students to provide data 

and/or warrant for that claim. A bunch of students provided data saying that they did not 

have minus values in the problem. However, that was not enough for other students to 

understand what it had to do with the claim. Therefore, Seval provided a warrant saying 



 

265 
 

that it was not possible to buy a minus amount of tomatoes and pay a minus amount of 

money, hence that they were not supposed to use quadrants other than the first one.  

To continue to look for similarities and/or differences among the five different situations 

and their representations, Berk claimed that all of the relationships are linear 

relationships. Ilter added on to that by claiming that all the graphs pass through the origin. 

Besides, Selim told that the amount of vegetables/fruits increases by ones in each 

situation while the price increases differently, for which the teacher requested a warrant. 

Upon this request, Merve explained what Selim meant by taking the equations y=2x and 

y=5x as an example. She referred to the increment in the former equation as 2 and the 

latter as 5. In order to support students’ correct use of mathematical language, the teacher 

asked students to take the increment in x into consideration as well, which resulted in 

Merve’s claim related to the rate of change in both situations. Then, the teacher asked 

Merve how the difference in the increments could be observed in the graphs. As an 

answer to this question, Merve pointed to the differences in their alignments. Even 

though Berk and Merve touched upon the concept of slope, the teacher did not push for 

any warrants/backings from these students in this class or the following classes since the 

idea of the slope was beyond the trajectory and the seventh-grade curriculum. Instead, 

she introduced the term slope briefly as a topic that would be discussed in the following 

school year. Therefore, although these two students brought about a new idea regarding 

the slope of lines, there is no solid evidence whether they were taken-as-shared. 

Continuing to make claims about the similarities and differences among all the graphs, 

İlter claimed that all the equations have the form of, “y equals x multiplied by something” 

(i.e., y=mx). Thus, the fact that the students did not need to provide warrants/backings 

while comparing all five situations also gave initial evidence that the idea of representing 

proportional relationships by linear equations of the type y=mx and linear graphs passing 

through the origin was taken-as-shared in the classroom. There is also evidence from the 

subsequent classes that would support this conclusion.  
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At the end of the discussion about the similarities/differences among all five situations 

and their representations, the teacher posed the following question: “Well, you said that 

all of these graphs pass through the origin. Do you think all graphs (in the world) pass 

through the origin?” and the following discussion occurred:  

Teacher: Well, you said that all of these graphs passed through the origin. Do you 
think all graphs (in the world) pass through the origin?” 

Student1: Yes. 

Musa: No.  

Teacher: When do you think that it won’t pass?  
Musa: When it corresponds to zero.  

Student2: It may pass through the numbers.  

Sinem: I think it always passes through the origin.  
Student1: I agree.  

Teacher: I would like you to justify your answers. Musa, what do you mean by, “it 

won’t pass when it corresponds to zero?”  

Musa: The point A (the point on the origin), it can be 0 comma 2, can’t it?  
Teacher: Can you think of a situation where A would be (0,2).  

Musa: Well…I cannot think right now.  

Teacher: Let's think this way. In this situation, you don't pay anything when you 
don't buy anything. Can there be situations that you have to pay when you get 

nothing? 

Sinem: If we have a debt… 

Ceyda: If we call a taxi, we have to pay even if we don’t go anywhere.  

Teacher: Interesting. Then, the relationship is between which values? 

Ceyda: The distance traveled and the money paid. Like the taximeter.  

Teacher: What happens with the taximeter? 
Ceyda: We need to pay at the beginning, even if we don’t go anywhere. We pay 

extra money for the distance we travel.  

Teacher: Then, you say that it won’t pass through the origin.  
Ceyda: No. That would go from 0 and 2 since even if the distance is 0, we have to 

pay 2.  

Teacher: OK. We can talk about these relationships in the next class.  

In the excerpt above, the teacher encouraged students to think whether there would be 

graphs that won’t pass through the origin to see their intuitive conceptions about non-

proportional linear relationships and their readiness for the next class. Some of the 

students said that all graphs would pass through the origin while some of them said that 

not all graphs would go through the origin. Students engaged in a debate where they tried 

to think of situations that could be represented by a graph that would not go through the 
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origin. Sinem told that all the graphs would go through the origin, and a couple of 

students agreed with her. Musa challenged her, saying that it could go through the point 

(0, 2), which required further justification. He stated that when something is zero, the 

other thing could be two, which also required further clarification. Ceyda took the floor 

and told that they would have to pay an amount when they got a taxi even if the taxi 

driver did not take them anywhere. It means that she was able to exemplify a situation to 

justify her claim that not every graph would pass through the origin. The teacher asked 

her to say more, and she went on by saying that there is a starting price for the taxi, and 

extra money would have to be paid for the distance taken. She concluded by saying that 

the graph of the money and distance taken on a taxi would not go through the origin, but 

it would go through the point (0,2). This was a new idea regarding non-proportional 

linear relationships to be kept an eye on in the following classes to see whether it would 

be taken-as-shared. On the other hand, this paved the way for the teacher and the 

researcher to shape the task for the next class to bring a task regarding the taximeter 

example in the class to engage students in discussions regarding the linear situations that 

were not proportional. 

In the second block of the lesson on Day 8, the students worked on another similar task 

in which the information “a person weighs 72 kg on the Earth and 12 kg on the Moon” 

was given, and the students were asked to find the weight of a person on the moon if he 

weighs 48 kg on the Earth. Elif claimed that the person would weigh 8 kg on the Moon 

by providing procedural data and including the invariant multiplicative relationship 

between the weights on the Earth and the Moon, and several students rephrased this 

relationship. Below is an excerpt that includes those discussions: 

Elif: I used the given information (a person weighs 72 kg on the Earth and 12 kg 

on the Moon) and divided 72 by 6. Then, I divided 48 by 6 and found that he would 

weigh 8 kg on the Moon.  
Teacher: What does this “6” mean?  

Gizem: The relationship between the weight on the Earth and the Moon.  

Musa: It means that our weights on the Moon would be one-sixth of our weights 

on the Earth. 



 

268 
 

Merve: We find it by dividing the weight on the Earth by 6.  
Sinem: That means that we find the weight on the Moon by dividing the weight on 

the Earth by 6. Then, the weight on the Moon is one-sixth of the weight on the 

Earth. 

İlter: Our weights on the Moon would be six divided by our weights on the Earth, 

which is one-sixth. 

The argumentation process above can be summarized as in the following Toulmin 

scheme: 

 

Figure 4.38. The Toulmin scheme for finding the weight on the Moon 

As deduced from the excerpt above and the associated Toulmin argumentation scheme, 

Elif found the weight of a person on the Moon by dividing the weight on the Earth by 

six. Then, upon the teacher’s question regarding the meaning of 6, multiple students 

made three new claims regarding the "invariant times six relationship" between the 

weight on the Earth and the weight on the Moon without needing any data/warrant to 

back those claims. Therefore, this provided further evidence about the idea that reasoning 

with the invariant multiplicative relationship between the two units was taken-as-shared. 

Claim: 6 is the 

relationship between the 

weight on the Earth and 

the Moon(Gizem). 

Claim: The weight on the 

Moon would be one-sixth 

of the weight on the Earth 

(Musa, Sinem, İlter) 

Claim: The weight on the 

Moon is found by dividing 

the weight on the Earth by 

6. (Merve, Sinem, İlter) 

Claim: He (the person 

that weighs 48 kg on 

the Earth) would 

weigh 8 kg on the 

Moon (Elif).  

Data: Using the given 

information and 

dividing 72 by 6. Then, 

dividing 48 by 6 as well 

(Elif). 
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In the following instances, the students were asked to represent this relationship with 

equations and draw its graph. The classroom discussion above, then, was maintained as 

in the following exchange:  

Teacher: Then, how did you write the equation for this (relationship)?  
İlter: y is the weight on the Moon, and x is the weight on the Earth, and the equation 

is y equals x over 6.  

Teacher: OK. Let’s draw the graph of this relationship then and see if it would be 
linear.  

Ceyda: (Fills in the table including two units as the weight on the Earth and the 

weight on the Moon and plots the points on the coordinate plane) The first point is 
24 and 4, the second point is 30 and 5, the third point is 36 and 6, then 42 and 7, 

48 and 8, 54 and 9.  

Teacher: What would be the next point?  

Musa: 66 and 11. 
Teacher: How did you draw the graph?  

Merve: We connected these points, but it didn't pass through the origin. 

İlter: No, think about the smaller values too.   
Ceyda: Yes, it should go through the origin.  

Teacher: How many of you think that it would pass through the origin? (Most of 

the students raised their hands). İlter, can you explain why you think it would pass 
through the origin?  

İlter: If it (the weight on the Earth) was 18 kg then it (the weight on the Moon) 

would be 3; if it was 12 kg, then it would be 2 kg on the Moon, 6 kg would be 1 

kg, 0 kg would be 0 kg on the Moon too.  
Merve: Then, that passed through the origin.  

İlter: Yes, indeed.  

Teacher: Then, what kind of a relationship is there (between the weight on the 
Earth and the weight on the Moon) in this question?  

Students: Linear. 

Teacher: We will maybe talk about when it won’t be linear later.  

After the invariant multiplicative relationship between the weight on the Earth and the 

weight on the Moon was stressed in students’ warrants and backings, the teacher asked 

the students to formalize this relationship into an equation. İlter claimed that the equation 

would be, “y over 6,” without providing a warrant. Then the teacher asked the class to 

draw the graph of this relationship, and Ceyda considered the linked composites of the 

weights on the Earth and the Moon as ordered pairs and plotted the corresponding points 

on the coordinate plane. Merve claimed that the graph wouldn’t pass through the origin. 

However, İlter and Ceyda immediately disagreed with her. Then, the teacher asked 
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everyone to raise their hands if they thought that the graph would pass through the origin, 

and most of the students raised hands. İlter justified his claim by plotting the points with 

the smaller values on the coordinate plane, including (0,0), and Merve changed her claim 

by saying that the graph passed through the origin. Eventually, the teacher asked the 

students to name the type of the relationship, and many students named the relationship 

as, “linear relationship.” In terms of the ideas of formalizing the invariant relationship 

into an equation and representing proportional relationships by linear equations of the 

type y=mx and linear graphs passing through the origin being taken-as-shared, a couple 

of things may be asserted. First, İlter did not provide a warrant to make a claim about the 

equation y = 
𝑥

6
, and no one challenged him to do it. This, together with the fact that 

students were able to extend their understandings of formalizing the multiplicative 

relationship into an equation to situations represented by y=mx with a non-integer m, 

gave us further evidence about the idea of formalizing the invariant multiplicative 

relationship into an equation being taken-as-shared. Therefore, this could also be given 

as evidence of the idea of representing proportional relationships by linear equations of 

the type y=mx was taken-as-shared. 

On the other hand, even though Merve claimed that the graph of that relationship would 

not pass through the origin at the first place, several students disagreed with her by 

providing data including plotting the points for the corresponding smaller values for their 

claims that the graph would indeed pass through the origin. In other words, they were 

not challenged to provide warrants for their claims about the graph of y = 
𝑥

6
. Therefore, 

it was evident that the idea of representing proportional relationships by linear equations 

of the type y=mx and linear graphs passing through the origin was taken-as-shared in the 

classroom.  
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TAS Idea 3. Representing non-proportional linear relationships with linear equations of 

the type y=mx+b and graphs not passing through the origin. On Day 9, the instruction 

started with a context in which the students explored the relationship between the amount 

of money given and the distance taken on a taxi where there was an opening price of 

three Turkish Liras (TLs) and the taximeter charged two TLs for each kilometer of 

distance traveled. Therefore, the focus was on the non-proportional linear relationships 

and the differences between non-proportional and proportional relationships and their 

algebraic and graphical representations. This context was chosen since a student had 

brought up the context in the previous class. As the first task, the students were required 

to fill in the long ratio table for the given situation, and the following discussion occurred 

in the class:  

Teacher: So, let’s fill in the (ratio) table together. How did you fill in the table? 

Erdem: We get on the taxi, and there is a constant 3 TLs that we need to pay no 

matter how far we travel. I need to pay 2 TLs for each km I travel. Everyone will 

pay this 3 TLs regardless of how far they go. Then, I have to pay 2 TLs per each 
km traveled. So, I move further by adding 2 (makes a hand gesture to show 

horizontal relationships for building up by 2s) at each step.  

Teacher: What did you write for the relationship on the last row in the table? 
Erdem: I wrote 3+2, then 5+2, and 7+2, and so on. 

Teacher: Could you make a relationship between the distance traveled then and the 

money paid? Like, to find the money for traveling 100 km? 
Erdem: … (No answer) 

Teacher: Can you find the money that would be paid for traveling 10 km?  

Erdem: Well… 

Teacher: Ceyda, can you tell how you found the money for 10 km?  
Ceyda: I multiplied 10 by 2 and then added 3. 

Selim: I didn't understand why you multiplied it by 2. 

Ceyda: We don’t have to add one by one. 20 TLs is for paid the distance traveled, 
and then we add the constant 3.  

Teacher: İlter did it in another way so that he can find the money to be paid for any 

km traveled. İlter, can you tell us how you did it (filled in the table)? 

İlter:  We paid some money for the distance traveled. 2 multiplied by 2 equals 4. 
If we travel 3km, we multiply 2 by 3 and obtain 6. When we finally add the 3 in 

the beginning, it makes 9 TLs.   

Teacher: How do you find it (the money to be paid for any distance) then? 
İlter: That is, I find the money that I have to pay for the distance I travel, and I add 

the constant money at the beginning. Doing this way is easier than adding them 

one by one each time. 
Teacher: Did you understand? Ali, did you understand?  
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Ali: Yes 
Teacher: Then, can you tell how much money you have to pay for traveling 60 

km?  

Ali: I will multiply 60 by 2 and find the money for the distance I travel. I should 

also add the constant at the beginning. Then, I have to pay 123 TLs. 
Teacher: Then, let’s imagine that we don’t know the distance we travel or find the 

money for any distance we travel. That is, let’s say x for the distance we travel and 

find the equation.  
Faruk: Since we always multiply by 2 and add 3 (to the result), the equation is 

2x+3.  

Teacher: OK. How can you relate it to the other value?  

Faruk: Then, it becomes y = 2x+3. 
Teacher: Is there a difference between this and the equation that we learned in the 

previous class? 

Sinem: This (the equation) has something plus next to it since we pay 3 TLs even 
if we don’t travel anywhere.  

Teacher: OK. How did you solve the next questions then? 

Giray: It asks how much we need to pay when 12 km is traveled. I multiplied 12 
by 2 and added 3, and it is 27. 

Teacher: Well. Let’s do the following.  

Gizem: It asks how much money needs to be paid to the taxi driver for a distance 

of 40 km. Again, I multiplied 40 by 2 and added three, which equals to 83.  

 

Figure 4.39. Filling in the table and representing the non-proportional linear 

relationship with an equation 

In the exchange above, Erdem filled in the table that included the values regarding the 

distance traveled and the corresponding price by stressing the constant at the beginning 

and building up by 2s for each kilometer traveled and found the money that would be 

paid for the distances of 1 km, 2 km, 3 km, 4 km, and 5 km. He also symbolically showed 
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this building up by 2s at each step in order to express the relationship between the 

distance and the money. However, the teacher asked him whether he was able to find a 

direct relationship between the distance and the money to find the money required for 

the larger values of distance traveled (i.e., 10 km). As Erdem was struggling to find the 

money for traveling 10 km directly, the teacher asked the same question to Ceyda. Ceyda 

claimed that she found the answer by multiplying 10 by 2 and adding 3 to the result. 

Selim did not immediately understand what these calculations meant and asked Ceyda 

to provide an explanation (warrant) for her procedural solution. Ceyda said that they did 

not have to add 2s one by one and that it would be enough to multiply 10 by 2 for the 

distance traveled and add the constant 3 to the result. Then, the teacher went back to the 

strategies for filling in the table and gave the floor to İlter to share his strategy. He used 

the same strategy with Ceyda to find the money that would be paid to travel 2 km, 3 km, 

4 km, and 5 km. Then the teacher asked him to make a generalization about how he could 

find the money that would be paid for any distance traveled. Upon this request, he stated 

the general strategy to find the money to be paid to the taxi driver for traveling a distance 

as multiplying it by 2 and adding 3. For the following question that asked the money 

required to travel 60 kilometers, Ali claimed that he would have to pay 123 TLs based 

on the data that included multiplying 60 by 2 and then adding 3. Then, Faruk claimed 

that the equation for that relationship would be y= 2x + 3 upon the teacher’s question 

and guidance.  The students did not ask for a further warrant for the equation obtained 

for the given situation, and several students used the equation to find the money paid for 

the given distances without needing to provide data.  

The discussion was moved to drawing the graph of the equation y=2x+3. Sinem told that 

the first point on the graph would be (0,3) since they had to pay three TLs even if the taxi 

did not take them anywhere. She went on by saying the points (1,5), (2,7), (3,9), (4,11), 

(5,13) on the coordinate plane, and claimed that they would form a line when connected. 

All students agreed with her and, students didn’t ask for any explanation. The teacher 

asked the classroom whether the relationship between the distance traveled and the 
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amount of money paid for that distance was linear. A bunch of students claimed that the 

relationship was linear by looking at the type of the graph, which was a line. Then, the 

teacher asked if the students could give evidence to the claim that the relationship was 

linear by looking at the table, and the following dialogue took place in the discussion: 

Teacher: Well, we saw that connecting the dots resulted in a line graph. Can we 
understand that it is linear by looking at the table?  

Sinem: (Shows the values on the table drawn on the board). When we look at the 

values on the table vertically, they go up at the same proportion.  

Teacher: What do you mean by, “they go up at the same proportion?”  
Sinem: It means that while one value goes up by 1-1-1, the other one goes up by 2-

2-2 all the time.  

Seval: That is, the amount of change (in both values) is the same.  
Teacher: So, the amount of change is 1 here (on the first row on the table) and 2 

here.  

Students: Yes 

Teacher: And that results in being linear, you say.  
Sinem: Yes.  

Teacher: Like we did in yesterday’s graphs.  

In the dialogue above, Sinem’s data included the relationship between the change in the 

amounts of the two values (the distance traveled and the money paid), and she referred 

to it as “going up at the same proportion." Since it was not clear what she meant by this, 

the teacher asked her to provide a warrant for her argument. Upon this request, she 

expressed that while one of the values (i.e., distance) goes up by ones, the other value 

(i.e., money) goes up by twos in her warrant. Then, Seval provided backing by stressing 

that the amount of change was the same for both values. Therefore, these students' claims 

included the idea of representing the non-proportional linear relationships with linear 

graphs whose equations were in the form of y = mx + n. Furthermore, they referred to 

the idea of the constant rate of change (i.e., slope) in linear graphs; yet, they were not 

pushed for further warrants/backings since the ideas related to the rate of change was 

beyond the grade level and the trajectory. 

In the following part of the lesson, the students were asked whether the relationship 

between the amount of money paid, and the distance traveled was proportional in this 
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situation. Several students claimed that the relationship was proportional, whereas most 

students claimed that it was not proportional. The teacher engaged students in a debate 

by asking everyone to raise their hands for either of the claims. A majority of the students 

raised their hands for the second claim, and a few students raised their hands for the first 

claim. Students from the supporters of both claims were challenged to provide data and 

warrants for their claims, and the following argumentation process was observed in the 

classroom:  

Merve: It asks if the distance traveled, and the money that needs to be paid is 

proportional. 

Ozan and a few students: Yes, it is proportional. 

Seval: No, it is not proportional.  
Teacher: Raise your hand if you say it is proportional.  

(Ceyda, Aylin, Ilter, Ozan, Musa, Giray and a few more students raised their hands) 

Teacher: Raise your hand if you say it is not proportional.  
Teacher: Why do you think that it is proportional, Musa?  

Musa: A proportional relationship is related to the multiplication of multiples.  

Merve: It is not about the multiples here. (Writes the values in the table as ratios) 

1 over 5, 2 over 7, 3 over 9. These are not proportional.   
Gizem: But it increases by 1 in the upper part while it increases by 2 in the lower 

part.  

Merve: Look (showing the ratios she wrote on the board), it is not proportional. 
When I expand 1 over 5, I cannot obtain 2 over 7. If it was proportional, the price 

would be doubled when the distance was doubled.  

Ceyda: So, the 3 at the beginning destroys the proportionality, right?  

In the dialogue above, Musa provided data to his claim that the relationship between the 

distance traveled and the money to be paid to the taxi driver for the distance traveled was 

proportional by saying that proportional relationships include multiples. Merve 

immediately disagreed with him by saying that it had nothing to do with multiples and 

justified her reasoning by writing the values in the table as ratios 
1

5
, 

2

7
, and 

3

9
 and saying 

that these ratios were not proportional. Gizem challenged her by saying that the upper 

part was increasing by ones while the lower part was increasing by twos, so it had to do 

something with being proportional. Merve rebutted her by showing the ratios she wrote 

on the board and stressing that expanding 
1

5
 would not give the ratio  

2

7
. Ceyda agreed 
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with her and concluded that the 3 at the beginning ruined the proportionality. This was 

an instance where different rebuttals yielded a new claim regarding the impact of the 

constant at the beginning on ruining the proportionality, which was schemed as the 

following:  

 

Figure 4.40. Toulmin’s analysis model where different rebuttals yield a new claim 

The discussion was moved to another direction when the teacher asked the classroom 

how they could decide whether the relationship was proportional by looking at the graph, 

and the following discussion emerged in the classroom:  

Teacher: How can you understand whether it is proportional by looking at the 

graph?  
Sinem: (For a relationship) To be proportional, it should pass through the origin.  

Students: Yes. To be proportional, it should pass through the origin.  

In this dialogue, Sinem claimed that [to be proportional] the graph had to pass through 

the origin, and many students agreed with her. Continuing to work with non-proportional 
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and proportional relationships and their representations, the students were engaged in a 

task wherein they were required to fill in tables and write corresponding equations and 

real-life situations for the given line graphs on Day 10. The first graph was related to a 

multiplicative relationship with an equation of y = 3x, and the students filled in the table 

by using the points on the graph and interpreting them as linked composites to be written 

in the table. As the first claim, Ozan claimed that the equation would not have a constant 

value since the graph passed through the origin. In the following instances, as they filled 

in the table as 1-3, 2-6, 3-9, and so on, most of them immediately found the equation as 

y = 3x. Emre made a claim that the equation would be y=3x in the whole class discussion 

based on the explorations with the values written in the table (see Figure 4.41 below), 

and none of the students challenged him to provide a warrant. Then, as real-life 

situations, several students made claims about situations that would represent the 

relationship given on the graph: a domino moving 3 meters in a minute (Giray), a person 

skating 3 meters in a minute (Musa), an old woman walking 3 meters in a minute (Ali), 

a tailor sewing three-meters-long curtain in a minute (Tunay).  None of the students asked 

for any warrants, and no one asked them to do so.  

 

Figure 4.41. Filling in the table and writing the equation of the multiplicative 

relationship given on a line graph 
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As another type of graph, students were given the line graph of the equation y = 2x +8 

(only the graph not the equation) and asked to fill in the table, write the equation, and 

propose a related real-life situation similar to the task above. Looking at the graph, Berk 

immediately claimed that the equation would have a constant since the graph did not pass 

through the origin, and several students went on by making claims about the equation of 

the relationship as follows:  

Teacher: Berk, what do you see when you look at the graph given?  

Berk: (Looking at the graph given) It doesn’t pass through the origin, so there is a 

constant in its equation. Let’s say that it is a relationship where a plant grows 2 cm 
in a month since it goes up by 2s on the y-axis. 

Teacher: What do you think, Elif?  

Elif: I determined the points that are above the numbers. 0 to 8, 1 to 10, 2 to 12, 3 
to 14, and filled in the table. So, it goes up by 2s each time.  

Teacher: OK. Let’s decide on the real-life situation first. You explain it, Ilter.  

İlter: We buy fish from a pet store. Its height is 8 cm at the beginning, 10 cm after 

a month, and 12 cm in the second month. 
Esra: A newborn lizard is 8 cm, and it grows 2 cm each month. 

Teacher: How did you fill in the table, Esra? 

Esra: 0 to 8; the lizard is 8 cm at the beginning. One month passes, and it grows 2 
cm, and its length is 10 cm, so it is 8 +2 = 10. Then, at the end of two months, it 

again grows by 2 cm and becomes 8 +2 +2 12 cm; then after three months, it is 8 

+ 2 +2 + 2 = 14 cm and so on, and then at the end of x months, it becomes 8 + 2x 

cm in terms of length since we add 2 in each step. It’s easier to multiply by 2 than 
to write 2 plus 2 plus 2 for each month.  

Teacher: Then, I will write the steps as 8 + 2, 8+2.2, 8+2.3 in the table (See Figure 

39 below). 
Teacher: Then, what is the equation, Faruk? 

Faruk: y = 8 + 2x  

Ceyda: Or, y = 2x + 8 
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Figure 4.42. Filling in the table and writing the equation of the non-proportional 

relationship given on a line graph 

As deduced from the classroom discussion above, Berk immediately claimed that the 

equation would have a constant in it since it did not pass through the origin, and referred 

to the rate of change as 2 cm in a month. Then, Elif took the points on the graph and put 

them in the tablet to interpret them as linked composites and agreed to Berk’s idea about 

the rate of change. Then, upon the teacher’s request, İlter came up with a real-life 

situation that included the length of a pet fish in months, and Esra came up with a similar 

context that included the length of a newborn lizard in months.  Esra continued to 

interpret the points on the graph in accordance with the context she proposed by referring 

to the constant change in each month. She then claimed that the algebraic expression for 

the length of the lizard would be 8 +2x at the end of x months. Eventually, Faruk and 

Ceyda expressed the corresponding equations as y = 8 + 2x or y = 2x + 8. Therefore, 

when the two tasks and related dialogues on Day 10 were explored, it was seen that the 

students collectively constructed the equations for multiplicative and non-proportional 

relationships in the forms of y = mx, and y = mx + n respectively, and the warrants were 

removed from the conversation. In addition, there is also similar evidence from Day 11 

wherein the students worked on several problems that included proportional and non-

proportional relationships, including the famous problem “Sue and Julie were running 

equally fast around a track. Sue started first. When she had run nine laps, Julie had run 
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three laps. When Julie had completed fifteen laps, how many laps had Sue run?” (Cramer 

& Post, 1993). Therefore, it was evident that the two ideas related to representing 

proportional relationships with linear equations of the form y=mx and graphs passing 

through the origin and non-proportional relationships with linear equations of the form 

y=mx+b and graphs not passing through the origin were taken-as-shared among the 

classroom.  

Thus, Throughout Days 8 to 11, the focus of the classroom discussion and students' 

reasoning were shifted from finding the missing values by using covariation and 

invariation on the ratio tables and symbolic proportion representation to representing 

multiplicative and non-proportional relationships in algebraic, tabular and graphical 

ways and exploring the relationships among these different representations. Accordingly, 

students' reasoning was altered in such a way that the focus of the classroom discussion 

was on representing relationships with symbols, tables, and graphs. However, as students 

reasoned about and with these different representations, they drew on the two previous 

ideas: Linking composite units and iterating linked composite units and Invariant 

multiplicative reasoning- the relationship between the two composite units is invariant 

while filling in the tables and discovering the relationships on these tables. However, the 

three ideas, which are (1) Formalizing the invariant multiplicative relationship into an 

equation, (2) Representing proportional relationships with linear equations of the type 

y=mx and graphs passing through the origin, (3) Representing non-proportional linear 

relationships with linear equations of the type y=mx+b and graphs not passing through 

the origin, felt different than those and every other idea, and it was understood that these 

three ideas were related to the general activity of “Coordinating the relationships among 

the algebraic, tabular and graphical representations of multiplicative and non-

proportional relationships.” Therefore, the three ideas, together with the previous two 

ideas that belonged to CMP 1, were put together and organized around the common 

activity of “Coordinating the relationships among the representations” as they emerged 

in the discussion and became taken-as-shared in the classroom community.  
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4.4. CMP 4: Extending covariation and invariation to continuous contexts 

Although the previous contexts (i.e., fish-food bar, missing value word problems, etc.) 

were helpful for the ideas of iterating composite units, they were fairly less helpful for 

the invariant multiplicative relationships since the quantities were mostly discrete (i.e., 

it does not make sense to have 3,2 fish or students) rather than continuous. Therefore, 

scaling problems with continuous values were introduced for the first time on Day 12 of 

the instruction in order to support students' understanding of the invariant multiplicative 

relationship between the quantities. Hence, Mathematical Practice 4 emerged as the 

classroom discussion revolved around finding the missing length when the two shapes 

were known to be similar and deciding on whether the given pictures were similar to the 

original picture. This mathematical practice included three taken-as-shared ideas: 

• Reasoning with within-shape and between-shapes ratios to find missing side 

lengths of similar shapes, 

• Conceptualizing the distortion of shapes. 

TAS idea 1: Reasoning with within-shape and between-shapes ratios to find missing side 

lengths of similar shapes. The first question included two pictures, and it was stated that 

the two pictures were similar. The first shape had side lengths of 8 cm and 6 cm, and the 

second one had its short side length as 3 cm. The students were asked to find the missing 

long side length of the second shape, and the following collective argumentation process 

took place in the classroom:  

Ozan: It is 3 (cm) since the shape is shrunk to its half.  

Emre: What do you mean by “it is shrunk to its half?”  

Ozan: We can make a table. A table of the long side length and the short side length 
(Draws a short ratio table on the board, See Figure 40). 8 became 4, and it means 

that it was reduced to its half (Makes a hand gesture like drawing a horizontal curve 

from 8 to 4 and on the second row of the table). Then, 6 should also be reduced to 
its half and become 3.  

Berk: They should be proportional. 

Teacher: What does it mean, “they should be proportional?”  
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Berk: When we write the ratios, they should be proportional (Writes the proportion 
𝐿𝑜𝑛𝑔 

𝑆ℎ𝑜𝑟𝑡
 = 

8 

6 
 = 

𝑥

3
 on the board). So, the long side length should be 4 (cm).  

İlter: Why do they have to be proportional? It says the shapes are similar, not 
proportional.  

Berk: The side lengths of the second shape is half of the side lengths of the first 

shape since the shape is reduced to its half from the sides and the top (makes a 
hand gesture to shrink the shape to its half horizontally and vertically).   

Teacher: Yes, the first picture is halved in both directions horizontally and 

vertically, and the second shape is obtained. So, the shape is shrunk to its half. 

Halving the shape means multiplying the side lengths with 
1

2
. Each of the lengths 

is multiplied by 
1

2
 in order to obtain a similar shape. We will call this number that 

we multiply the lengths with, “scale factor.” It is the number that we use to scale 

the lengths in order to obtain a similar shape.  

In this dialogue, Ozan claimed that the missing length was 4 cm since the second shape 

was obtained by shrinking the first shape to its half. When he was challenged to further 

justify his reasoning by Emre, he came to the board and drew a short ratio table as 

demonstrated in Figure 4.42 below:   

 

Figure 4.42. Partnering values between situations in the context of similar shapes 

In this short ratio table, Ozan partnered the corresponding lengths (long-long and short-

short) between the two shapes by making a hand gesture. Then, he justified his claim by 

reducing both side lengths into half.  Then, Berk provided backing by stressing that the 

shapes had to be proportional. When he was asked what it meant for the shapes to be 

proportional, he set up a proportion by writing the ratios of the long side lengths to the 
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short side lengths within each shape as 
𝐿𝑜𝑛𝑔 

𝑆ℎ𝑜𝑟𝑡
 = 

8 

6 
 = 

𝑥

3
, which acted as alternative data for 

Ozan’s claim. It was still not clear how the shapes’ being similar required that their side 

lengths be proportional in the classroom community as deduced from İlter’s challenge 

about what being proportional had to do with being similar for the two pictures. Then, 

Berk provided a further backing by saying that both the short side length and the long 

side length of the first picture were halved in order to obtain the second picture, which 

meant that the picture was halved in both directions horizontally and vertically. He also 

used a hand gesture for shrinking to halve the side lengths in both directions. Here, even 

though he wrote the ratios of lengths within each shape, he partnered the lengths between 

the two shapes and hence reasoned with the scale factor between the two shapes. 

Therefore, the teacher revisited the term scale factor in this context and referred to it as 

the number used to scale the lengths of a shape in order to obtain a similar shape.  

In the following few questions with whole number scale factors, the students partnered 

the values between shapes and reasoned with between-shapes ratio without needing 

further warrants and/or backings. However, when a question included a non-integer scale 

factor (i.e., 
3

4 
 or 

4

3 
 ), the students started to investigate the ratios within the shapes. The 

third question included the side lengths of the first picture as 8 cm and 4 cm, and the long 

side length of the second shape was given as 12 cm. The short side length of the second 

figure was asked. Gizem started to reason with within-shapes-ratio, and below is a 

dialogue in which multiple students contributed to the discussion:  

Gizem:  The missing length is 6 cm. Since the ratio between the lengths of the first 

shape is 2, the ratio between the lengths of the second shape should be 2 as well.  
Murat: You mean, like a vertical relationship? 

Gizem: Yes. A vertical relationship.  

Teacher: What does the vertical relationship mean here? Can you explain it on the 
board?  

Gizem: (Comes to the board and writes the proportion  
𝐿𝑜𝑛𝑔 

𝑆ℎ𝑜𝑟𝑡
 = 

8 

4 
 = 

12

𝑥
) Since this 

(points to 4 on the denominator) is half of this (points to 8 on the numerator), this 

(points to x on the denominator) should be half of this (points to 12 on the 
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numerator). Therefore, (draws a vertical arrow from 8 to 4) since this is divided by 
2, 12 should be divided by 2 as well (draws a vertical arrow from 12 to x).  

Teacher: Yes, but what does it mean for the shapes?  

Ali: The long side lengths are twice as much as the short side lengths in both shapes.  

Teacher: Yes, that’s right. This vertical relationship is again about the invariant 
relationship between the values.  

Sinem: We can also say that there are 2 units of horizontal lengths for every 1 unit 

of vertical lengths.  
Teacher: What do you mean, Sinem? Can you explain it on the board?  

Sinem: (Comes to the board and draws two rectangles having the lengths of 8 cm 

and 4 cm, and 12 cm and 6 cm on the board) There is 1 unit of vertical length for 

every 2 units of horizontal lengths in this shape (makes a hand gesture to trace the 
side lengths of the first shape). There should be 1 unit of vertical length for every 

2 units of horizontal lengths in this shape, too (makes a hand gesture to trace the 

side lengths of the second shape, see Figure 4.43 below). 
Teacher: Does everybody understand this?  

Students: Yes.  

 
 

 

  

  

Figure 4.43. Tracing the unit lengths in similar shapes (the researcher’s drawing) 

In terms of Toulmin’s analysis, the discussion above was schemed as follows in the 

Figure 4.44:  
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Figure 4.44. Toulmin’s analysis scheme for the idea of reasoning with within-shapes-

ratio 

As understood from the discussion above and the related figures, Gizem claimed that the 

missing length was 6 cm by providing data and expressing the ratio of the lengths within 

the first shape and applying the same ratio in the second shape. Murat provided a warrant 

by referring to this ratio as the vertical relationship. When the teacher asked what the 

vertical relationship meant in that context, she referred to the “vertical times 
1

2
 

relationship” between the lengths of each shape. However, the teacher was not satisfied 

with this answer and asked for further backing regarding the meaning of the vertical 

relationships for the (similar) shapes. Upon this request, Ali referred to the invariant 

multiplicative relationship between the lengths of each shape, which acted as data to 

Gizem’s claim. In addition, Sinem provided a backing in which she stressed that there 

was 1 unit of vertical lengths (short length side drawn vertically) for every 2 units of 

horizontal lengths (the long length side drawn horizontally) in both shapes and used hand 

Claim: The missing length is 6 

cm (Gizem).  

Data: Since the ratio between the 

lengths of the first shape is 2, the 

ratio between the lengths of the 

second shape should be 2 as well 

(Gizem).  

Warrant: Like a vertical relationship 

(Murat, Gizem).  

Backing: The long side lengths are twice 

as much as the short side lengths in both 

shapes (Ali).  

Backing: There are 2 units of horizontal 

lengths for every 1 unit of vertical 

lengths—the pictorial representation in 

Figure 4.43 (Sinem). 
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gestures to trace each of the vertical 1 and horizontal 2 units in both shapes as seen in 

Figure 4.43. None of the students further challenged Ali or Sinem. Therefore, all students 

partnered the values within a shape and reasoned with within-shapes-ratio in their data, 

warrants, and backing(s). 

In the following questions, multiple students continued to partner the lengths of the 

shapes and reason with within-shape and between-shapes ratios without needing and/or 

providing warrants. This showed us that partnering the values within a situation/setting 

or between situations/settings and reasoning with within-shape ratios and between-

shapes ratios were taken-as-shared among the classroom. In addition, these classroom 

discussions also showed us that the previous ideas regarding the iteration of composite 

units and multiplicative reasoning (i.e., reasoning with the invariant multiplicative 

relationship between the values) were taken-as-shared since they shifted place from 

claims to data, warrants, and backing in this session. 

TAS Idea 2. Conceptualizing the distortion of shapes. In the first session of Day 12, the 

students found the missing lengths of similar shapes by reasoning with within-shape and 

between-shapes ratios. In the second session, the students were presented with an original 

picture and its various copies. The students were asked to determine whether each copy 

was [mathematically] similar to the original picture. Students had already discussed 

checking for proportionality on Day 6 while they were checking whether the given ratios 

of the number of boys and girls belonged to their class. Now they were continuing to 

check whether the side lengths of two shapes were proportional in order to decide 

whether the two shapes were similar. The teacher launched the second session by saying 

that all the pictures were the same printed differently, as illustrated in the following 

dialogue:  

Teacher: My question is this: There are various copies of this (original) picture. 
Some of them are stretched, some of them are shrunk. In some of them, the 

(original) picture is stretched only from its length, in some of them, from its width, 



 

287 
 

and sometimes from both. Which of these resembles the kid (in the picture) the 
most? 

Berk: The original picture. 

Teacher: Yes. Nevertheless, there is one original picture, and it’s hung on the 

board. You have its different copies.  
Student: The one that is stretched from both directions resembles the most.  

Teacher: Is it enough to stretch from both directions? I would like you to pay 

attention to this. Should I stretch more from one direction than the other direction? 
Should I stretch in the same amount from both directions? Or what should we do? 

Let’s discuss with our group members. I would like you to explain why they are 

similar or not.  

As understood from the dialogue above, a student claimed that the pictures that were 

stretched from both directions would resemble the kid himself the most as soon as the 

teacher launched the problems. Then, the teacher asked her whether it was enough to 

stretch from both directions and how this stretching had to be done in order to provoke 

the students about the rate of change in each direction. After the students discussed with 

their peers in small groups, the whole class discussion was started with the first picture. 

The original picture is provided in Figure 4.45 below.  

 

Figure 4.45. The original picture to be compared to its copies in order to check for 

similarity 

As seen in the figure, the side lengths of the original picture were 6 cm and 4 cm. The 

first picture to be explored included side lengths of 9 cm and 4 cm. Hande claimed that 

the two pictures were not similar since the short side lengths were the same in both 

pictures, but the long side lengths were different. Since how this data led to that claim 
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did not make sense for all students, the teacher asked Hande for a warrant. She justified 

her reasoning by saying that the [original] picture was stretched only in one direction to 

obtain the second picture and made the corresponding hand gesture for stretching 

horizontally. She also said that the kid in the picture looked fatter since the picture was 

stretched only horizontally. She was not challenged after this warrant, and the teacher 

took answers for the second picture. 

The second picture had both side lengths of 6 cm. Giray claimed that the two pictures 

were not similar since the second picture was stretched only in one way, similar to the 

first picture. He further justified his answer by saying that the kid in the picture looked 

taller and thinner compared to the original picture since it was stretched only vertically, 

and he made a hand gesture for stretching vertically. Ozan brought up the idea that people 

do these kinds of tricks, especially on social media, in order to look taller and thinner, 

but they look different on those photoshopped photos than they actually do. Elif took the 

floor and provided alternative data for why the two pictures were not similar by saying 

that the second picture was a square, whereas the original picture was a rectangle. 

Therefore, in the first two questions, the students intuitively reasoned about the distortion 

of the shapes when they were stretched only in one direction.  

The third picture, compared with the original picture, had side lengths of 8 cm and 12 

cm, whereas the original picture had side lengths of 4 cm and 6 cm. Sezin claimed that 

the two pictures were similar since the kids in the two pictures looked exactly the same, 

neither fatter nor taller. Musa claimed that the shapes were similar since that copy was 

the doubled version of the original copy. He also stressed that the short and long side 

lengths of the two shapes formed a proportion such as  
𝑆ℎ𝑜𝑟𝑡 

𝐿𝑜𝑛𝑔
 = 

4 

6 
 = 

8

12
, and no one 

challenged him to provide a warrant. The fourth and the last picture had side lengths of 

13 cm and 15 cm whereas the original picture had side lengths of 4 cm and 6 cm. Merve 

immediately checked whether the between-shapes ratios were equal such as :  
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and then stressed that they were not equal 
4

13
 ≠ 

6

15
. This was the first time that the not 

equivalent symbol (i.e., ≠) emerged in the discussion throughout the implementation. 

Since these values for the side lengths were intentionally chosen to reveal incorrect 

additive reasoning but it did not come out at the first place, the teacher intentionally 

posed the following question: “A student from another seventh-grade class told that the 

shapes were similar since both lengths of the original picture were increased by 9 cm. 

What do you think about his thinking?” Below is a discussion in which multiple students 

contributed to the rebuttal of an incorrect additive reasoning strategy:  

Merve: That is wrong. The original shape was distorted when both lengths were 

increased by 9 cm. 9 cm is more than two times of 4 cm (the short side length of 

the original picture) but less than two times of 6 cm (the long side length of the 
original picture). So, the long side length should be increased by a greater amount 

than 9 cm.  

Sinem: It is like making a 20 TL discount from both 100 TL and 50 TL. It affects 

this (50 TL) more. We should shrink more from the longer side (than the shorter 

side)  

Therefore, as understood from the discussion above, Merve and Sinem were able to 

provide rebuttals for an incorrect claim mooted by the teacher. Moreover, in these 

rebuttals, they reasoned multiplicatively and with between-shapes- and within-shapes-

ratios, which showed that the ideas of multiplicative reasoning (i.e., reasoning with the 

invariant relationship between the values) and reasoning with within-shape and between-

shapes-ratios were taken-as-shared.   

On the other hand, in terms of evaluating the instruction on Day 12, it could be deduced 

that the idea that the shapes were distorted when the shapes were stretched additively 

was very intuitive at the beginning of the class since the students only mentioned 

distortion when the shapes were stretched (or shrunk) in one direction. They claimed that 

the shapes (persons or animals in the pictures) got fatter when the shape was stretched 

only horizontally, and they got taller when it was stretched only vertically. As the 

discussion moved on, they came to the point that the shapes had to be scaled with a 
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particular factor in both directions in order to obtain similar shapes. In other words, they 

made claims about the fact that the shapes should be stretched (or shrunk) in both ways 

proportionally. Then, they used these claims as data and/or warrants for other claims for 

the following questions and in the following classes. 

Therefore, the mathematical practice analysis of the classroom instruction on Day 12 

showed that the classroom discussion shifted from coordinating the representations of 

the proportional and additive relationships to reasoning about the concepts of similar 

shapes and distortion on that day. Thus, the two ideas of (1) Reasoning with within-shape 

and between-shapes ratios to find missing side lengths of similar shapes and (2) 

Conceptualizing the distortion of shapes, were put together to form the fourth classroom 

mathematical practice of “Extending covariation and invariation to continuous contexts” 

as they emerged and became taken-as-shared among the classroom community. On the 

other hand, this dialogue shows that this task posed the term, “similar” without letting 

students explore what it means in informal contexts. This implied a revision in the order 

of this task in order to let students explore the ideas of stretching and shrinking before 

they are presented with the word “similar” and use tables and proportion to construct 

within-shape and between-shapes ratios.  

4.5. CMP 5: Comparing rates/ratios and deciding which one is bigger /smaller 

/equal.  

The students already compared different rates/ratios on Day 6 and Day 12 of the 

instruction; yet, the main focus was deciding whether the rates/ratios formed a 

proportion. Hence, they did not decide which rate/ratio was bigger/smaller/equal. They 

worked on three different contexts on Days 13, 14, and 15, all of which were focused on 

comparing rates/ratios and deciding which one was bigger/smaller/equal. The classroom 

discussion on Day 13 started with a task that would require using unit rate as a 

tool/anchor/benchmark for comparing the speeds of objects/people intuitively on the first 

day. In the following days, the students drew on their experiences with the concept of 
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speed in different contexts, such as the situations that involved deciding on best buy and 

comparing the tastes of mixtures. Throughout the three days, students made connections 

with their fraction knowledge, especially while comparing the rates/ratios and deciding 

which one was bigger/smaller/equal. However, the speed and best buy contexts did not 

involve the fraction concept since there were no part-whole relationships in these 

contexts. During the last day (i.e., Day 15), the students made a distinction between 

fractions and ratios/rates as they were engaged in a mixture context that included part-

part and part-whole ratios/rates. Therefore, Mathematical Practice 5 emerged as students 

worked on comparing different rates/ratios and determined which one was 

bigger/smaller/equal in different contexts on Days 13, 14, and 15. One mathematical idea 

became taken-as-shared while this practice became established in the classroom 

community on the last three days of instruction:  

• Creating and reasoning with equivalent ratios to compare quantities. 

 

TAS Idea 1: Creating and reasoning with equivalent ratios to compare ratios/rates On 

Day 13, the students worked on finding the interval(s) in which the car had the highest 

speed when it was given that the car completed a travel of 180-km-distance (Interval 1- 

Ankara/City 1-Bolu/City 2) in 2 hours, 70-km-distance (Interval 2-Bolu/City 2-

Adapazarı/City 3) in 1 hour, and 180-km-distance (Interval 3-Adapazarı/City 3-

İstanbul/City 4) in 3 hours. The values were selected to form integer ratios. Elif claimed 

that the car was the fastest in the first interval since dividing the distances by the 

corresponding times gave the greatest result for the first interval among all such that the 

speed in the first interval was 180:2 = 90, the speed in the second interval was 70:1 = 70 

and the speed in the third interval was 180:3 = 60. When the teacher asked her what those 

numbers meant, she explained that these numbers were the unit ratios/rates which stood 

for the speeds of the car in three intervals. Ilter added to that answer by saying that the 

car had the slowest speed in the third interval since 60 was the smallest number among 

the three. These class argumentations showed that the idea of creating and using unit rate 
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as a tool/anchor/benchmark for comparisons was taken-as-shared since this idea was 

used as a warrant for a new claim.  

The teacher then asked the classroom to compare the speeds of the car in the first and 

second intervals as she wanted to encourage students to develop different strategies. 

Selim suggested a solution method in which he made use of the equal distances of these 

two intervals, which acted as data for his claim. Below is a dialogue in which this 

argumentation process took place: 

Teacher: Well. Can you compare the speeds in the first and third intervals by using 

a different strategy?  

Selim: Since the distances are the same, I can look at the time. 180 km is traveled 

in 2 hours in one, and in 3 hours in the other.  
Merve: It means that we would be faster when we travel (180 km) in 2 hours. It is 

like dividing a cake into two pieces and eating one slice and dividing the same cake 

into three pieces and eating one slice. 
Sinem: I can say that it is faster (in the first interval) since it travels the same 

distance in a shorter amount of time.  

As understood from the dialogue above, Selim claimed that the car had a higher speed in 

the first interval since it traveled 180 km in 2 hours in the first interval and 3 hours in the 

third interval. Merve provided a warrant for this claim by making a connection with 

fraction imagery by saying that it was like dividing a cake into two pieces and eating one 

slice and dividing the same cake into three pieces and eating one slice, which acted as a 

strategy for deciding on the bigger rate. Even though the concept of speed was not 

conceptually connected with the concept of fractions, she drew on her previous 

knowledge regarding ordering the fractions while comparing and ordering rates/ratios. 

Sinem made it more explicit by providing a warrant for Selim's data and claim by saying 

that the car traveled the same distance in a shorter time in the first interval.  

In the second question, the information about different distances walked by four people 

in different time periods was given, and the students were asked to order the four people 

from the slowest to the fastest. It was given that Ahmet walked 10 km in 2 hours, Beren 
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walked 14 km in 4 hours, Ceylan walked 15 km in 5 hours, and Derya walked 24 km in 

6 hours. As an answer to the question, Faruk claimed that the four people could be 

ordered as Ceylan, Beren, Derya, and Ahmet from the slowest to the fastest based on his 

work that included the division of the distances by the time periods and comparison of 

the results. He also included informal language regarding the concept of unit rate (i.e., 

the distance walked in an hour) in his answer as can be understood from the following 

classroom discussion:  

Faruk: (Divides the distances by the time periods for each people) We should 

divide 10 by 2 and obtain 5. This is the distance (in kilometers) that he walks in an 

hour.  

Teacher: Can you write it using the proportion representation on the board?  

Faruk: (Writes the proportion 
2

10
 = 

1

5
 on the board).  

Teacher: Can you write the units next to them? 

Faruk: (Writes hour next to 1 and km next to 5). I am dividing the second one, too. 

I divided 14 by 4, and it is 3.5. It means that she walks 3.5 km in an hour. I divided 
15 by 5, and it means that she takes 3 km in an hour. When 24 is divided by 6, the 

result is 4 (writes the corresponding unit rates, i.e., speeds, on the board, as shown 

in Figure 4.46). Then, the slowest is Ceylan, then Beren, Derya, and Ahmet (orders 

these people from the slowest to the fastest by using less-than symbols as Ceylan 

< Beren < Derya < Ahmet).   

He also wrote the unit rates (i.e., speeds) and used less-than symbols, as shown in Figure 

4.46 and Figure 4.47 below.   

 

Figure 4.46. Writing the unit rates in order to find the speeds of the persons 

Later on, the teacher made the same move by asking the students to compare the speeds 

of Ahmet and Ceylan to encourage the use of different strategies. Musa stated that 

"Ahmet walks 10 km in 2 hours and Ceylan walks 15 km in 5 hours; so I multiplied 10 

Ahmet Beren Ceylan Derya 

10 𝑘𝑚

2 ℎ𝑜𝑢𝑟𝑠
 = 

5 𝑘𝑚

1 ℎ𝑜𝑢𝑟
 

14 𝑘𝑚

4 ℎ𝑜𝑢𝑟𝑠
 = 

3.5 𝑘𝑚

1 ℎ𝑜𝑢𝑟
 

15 𝑘𝑚

5 ℎ𝑜𝑢𝑟𝑠
 = 

3 𝑘𝑚

1 ℎ𝑜𝑢𝑟
 

24 𝑘𝑚

6 ℎ𝑜𝑢𝑟𝑠
 = 

4 𝑘𝑚

1 ℎ𝑜𝑢𝑟
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by 3 and 15 by 2 and made the distances equal. Ahmet walks 30 km in 6 hours, whereas 

Ceylan walks 30 km in 10 hours.” He claimed that “Ahmet is faster than Ceylan since he 

walked the same distance in a shorter time.” When the teacher asked Musa to come to 

the board and write the symbolic calculations of his reasoning, he came to the board and 

wrote the corresponding rates as in the following figure:  

 

Figure 4.47. Equalizing the distances walked in order to compare the speeds 

As can be seen from his solution in Figure 4.47 above, Musa compared the speeds of two 

persons by writing the rates of time periods to the distances taken and then changing each 

distance to a common numerator of 30 km. On the other hand, “less than” and “greater 

than” signs (i.e., <, >) emerged on Day 13, only a day after the not-equal-sign (i.e., ≠) 

emerged in the classroom discussion.  

 In the second session of Day 13, the students worked on a context that involved deciding 

on the best buy for different kitchen ingredients such as rice, yogurt, sugar, and vegetable 

oil. The prices for different amounts of these ingredients in three different supermarkets 

were given, and the students were asked to decide on the best buy for each of the 

ingredients. Ali wrote the corresponding amounts of rice per Turkish Lira (TL) in three 

supermarkets as 
18 𝑇𝐿

3 𝑘𝑔
 = 

6 𝑇𝐿

1 𝑘𝑔
 (Supermarket Sevgi);  

14 𝑇𝐿

2 𝑘𝑔
 = 

7𝑇𝐿

1 𝑘𝑔
 (Supermarket Dost); 

25𝑇𝐿

5 𝑘𝑔
 

= 
5 𝑇𝐿

1 𝑘𝑔
 (Supermarket Cicek) and claimed that the best buy could be made from 

Supermarket Cicek. The teacher asked for a warrant for those calculations from Tolga, 

and he said that these unit rates showed how much rice could be purchased for 1 Turkish 

Ahmet Ceylan  

Ahmet > Ceylan 2 ℎ𝑜𝑢𝑟𝑠

10 𝑘𝑚
  = 

6 ℎ𝑜𝑢𝑟𝑠

30 𝑘𝑚
 

           (3) 

5 ℎ𝑜𝑢𝑟𝑠

15 𝑘𝑚𝑠
  = 

10 ℎ𝑜𝑢𝑟𝑠

30 𝑘𝑚
   

                   (2) 
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Lira in all of the three markets.  None of the students challenged him for further 

warrants/backings.  

When the next question was asked to the students to determine the supermarket for the 

best buy for yogurt, Faruk wrote the corresponding unit rates on the board as  
4 𝑇𝐿

1 𝑘𝑔
 

(Supermarket Sevgi);  
6 𝑇𝐿

2 𝑘𝑔
 = 

3 𝑇𝐿

1 𝑘𝑔
 (Supermarket Dost); 

8 𝑇𝐿

 4 𝑘𝑔
 = 

2 𝑇𝐿

1 𝑘𝑔
 (Supermarket Cicek) 

and claimed that the best buy for yogurt could be made from Supermarket Cicek as well. 

Nobody asked him for a warrant, and Ozan provided different data for the same claim by 

suggesting to make all the denominators 4kg as follows: as  
4 𝑇𝐿

1 𝑘𝑔
 = 

16 𝑇𝐿

4 𝑘𝑔
 (Supermarket 

Sevgi);  
6 𝑇𝐿

2 𝑘𝑔
 = 

12 𝑇𝐿

4 𝑘𝑔
 (Supermarket Dost); 

8 𝑇𝐿

 4 𝑘𝑔
 (Supermarket Cicek). Once more, nobody 

asked for any warrants. Therefore, the discussion revolved around equating the amounts 

of kitchen ingredients and comparing the prices for equal amounts of products. The class 

worked on deciding on the best buys for sugar and vegetable oil using the same strategies: 

creating common denominators of the amount and choosing the smallest numerator of 

the price, creating unit rates, and choosing the smallest numerator without proving or 

asking for any warrants and/or backings. However, none of the following possible 

strategies emerged in the discussions that revolved around the best buy context: creating 

common numerators and choosing the biggest numerator; writing the rates as kg/TL, 

finding the common denominators and choosing the largest denominator; finding the 

amount of kitchen ingredients that could be purchased with 1 TL (i.e., unit rate); and 

focusing on the invariant relationship between the numerator and denominator (i.e., ×2, 

×3, etc.). This might be a consequence of the “best buy” context, which was based on 

saving money.  

On Day 14, students engaged in a task wherein the mixtures of varying numbers of 

glasses of orange juice and water in five pitchers were given (see Figure 4.48 below). 

The task required the students to compare the relative orange taste of each pair of 

mixtures and decide which one had a stronger taste of orange.  
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 Pitcher A Pitcher B Pitcher C Pitcher D Pitcher E 

 

     

Amount 

of orange 

juice 

 

3 glasses 

 

3 glasses 

 

4 glasses 

 

5 glasses 

 

2 glasses 

Amount 

of water 

2 glasses 3 glasses 3 glasses 5 glasses 3 glasses 

Figure 4.48. Five pitchers in the Orange Juice Task 

Musa started by comparing the mixtures in pitchers A and B and claimed that A was 

more orangey since both had the same amount of orange juice, but A had less amount of 

water. This comparison was named as "basic comparison" since it did not include a 

comparison of the relative amounts of the ingredients; instead, it included a comparison 

of the amounts of one ingredient only. Merve suggested alternative data by constructing 

the ratios between the amounts of orange juice and water in each pitcher such that 
𝑜𝑟𝑎𝑛𝑔𝑒

𝑤𝑎𝑡𝑒𝑟
 

= 
3

2
 > 

3

3
. When she was asked to provide a warrant regarding what those ratios had to do 

with the taste of oranginess, she explained that "the bigger the ratio was, the more 

orangey taste the mixture had since the numerator was the amount of orange juice.”  

In order to compare the tastes of the mixtures in pitchers B and D, a classroom discussion 

was held including basic comparison and use of unit rate as a benchmark for the 

comparison, as presented below:  

Berk: (Pitcher) B includes 3 glasses of orange juice and 3 glasses of water.  The 

amounts of orange juice and water are equal in (Pitcher) D as well. Then B and D 
are equal (in terms of the tastes of the mixtures they contain).  

Teacher: But D has 5 glasses of orange juice; that is, there is more orange juice (in 

D than in B). How come do they have equal tastes? 
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Berk: There is more orange juice, but there is more water, too. 
Merve: Both are equal to one whole when they are compared in ratios. I am 

comparing them in terms of unit rate, and there is one glass of water for a glass of 

orange juice in both.  

Sinem: Yes, there is a 1-1 ratio in both. A glass of water corresponds to a glass of 
orange juice in both. 

Musa: Yes, there is one glass to one glass correspondence. Hence, their tastes are 

equal  

The corresponding Toulmin argumentation scheme is constructed for the dialogue above, 

as shown below in Figure 4.49: 

 

Figure 4.49. Toulmin’s argumentation scheme for comparing ratios in the Orange Juice 

Task 

In order to interpret the dialogue and the related argumentation scheme, Berk claimed 

that the two mixtures in Pitchers B and D had the same taste since the amount of water 

was equal to the amount of orange juice in both pitchers. Upon the teacher’s request, 

Berk provided a warrant to his data and claimed that it included a comparison of the 

relative amount of orange juice and water in both pitchers. In order to justify this warrant, 

Merve and Sinem reasoned with the part-part ratios within the pitchers (i.e., the ratios of 

the amount of orange juice and water within each shape) and made a connection with the 

unit rate.   

Data: (Pitcher) B includes 3 glasses of orange 

juice and 3 glasses of water.  The amounts of 

orange juice and water are equal in (Pitcher) D 

as well. (Berk) 

Warrant: There is more orange juice, but 

there is more water, too (Berk). 

Claim: Then B and D are equal (in terms 

of the tastes of the mixtures they 

contain). (Berk) 

Backing: Both (ratios) are equal to one 

whole. There is one glass of water for a 

glass of orange juice in both. (Merve, 

Sinem, Musa)     
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The values in pitchers A and C were selected in such a way that the difference between 

the amount of water and orange juice was the same in both, which would reveal incorrect 

additive reasoning. While comparing A and C, the teacher intentionally gave the floor to 

Gizem, whom she observed as using incorrect additive reasoning in the small group 

discussion. Below is a discussion in which Gizem was challenged and rebutted by 

multiple students:  

Teacher: Gizem, can you tell us how you thought and solved this question? 

Gizem: (Comparing the mixtures in Pitchers A and C) 3 glasses of orange juice and 

2 glasses of water and 4 glasses of orange juice and 3 glasses of water. I think they 
are equal (in terms of orange taste).  

A couple of students: I don't think they are equal. 

Teacher: If you also think that their tastes of oranginess are the same, raise your 
hands. 

(A couple of students raise their hands) 

Teacher: Why do you think they are equal, Gizem?  

Gizem: Because the difference is 1 in both. 
Sinem: But we shouldn’t look at the difference.  

Ozan: If we write them as ratios 
3

2
 and 

4

3
, 

3

2
 is 

1

2
 more than one whole. 

4

3
 is 

1

3
 more 

than one whole. 
3

2
 is larger than 

4

3
. Hence, (the mixture in) Pitcher A is more orangey 

than (the mixture in) Pitcher C since the numerator is (the amount of) orange.   

Merve: When I check if they form a proportion, 
4

3
 and 

3

2
 are not proportional. 

Teacher: So, what do you mean by, “they are not proportional.”  
Merve: So, they don’t taste the same.  

Teacher: So, who thinks they taste the same?  

(None of the students raise their hands)  
Teacher: OK. So, we agree that they do not taste the same. Then, which one is 

more orangey? 

Seval: A is less orangey than C. I equalized the (amount of) orange juice (in both 

pitchers) at 12 (glasses). I multiplied (the amounts of orange juice and water in 
Pitcher) A by 4 and got 12 glasses of orange juice and 8 glasses of water. When I 

made (the amount of orange juice in Pitcher C) 12, the (amount of) water became 

9 (glasses). The more the water there is in it, the less orangey it is. So, since C 
includes more amount of water, it is less orangey (See Figure 4.50 below).   
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Figure 4.50. Equalizing the numerators in order to compare the ratios in the Orange 

Juice Task 

In order to interpret this dialogue in terms of Toulmin’s argumentation model, it is 

deduced that Gizem made an incorrect claim by using an incorrect additive reasoning in 

which she focused on the difference between the amounts of orange juice and the water 

in both pitchers. A couple of students immediately disagreed with her by claiming that 

their tastes were not equal. The teacher asked the students to raise their hands if they 

agreed with Gizem, and only a couple of students raised their hands. Sinem rebutted 

Gizem by stressing that the difference method should not be applied. Then, Ozan wrote 

the corresponding part-part ratios between the amounts of orange juice and the water in 

both pitchers and made a connection with the fraction imagery in order to compare the 

ratios. Merve took the floor and stressed that the two ratios did not form a proportion 

(i.e., 
4

3
 ≠ 

3

2
 ), so they did not taste the same. Upon this claim, the teacher asked how they 

could decide which of the mixtures was more orangey. Seval pointed an alternative 

strategy in order to decide which ratio was bigger, in which she changed the amount of 

orange juice and water so that both mixtures had equal amount of orange juice (i.e., 12 

glasses of orange juice in both; 8 glasses of water in A, 9 glasses of water in C). Then, 

she claimed that A had a stronger taste of orange since the mixture in Pitcher C had more 

water in it than the mixture in Pitcher A.  

For the comparison of another pair of mixtures (i.e., the mixtures in Pitchers C and D), 

Selim claimed that C had a stronger taste of orange than D because there was a one to 

one match in the Mixture D, but there was more than one glass of juice for a glass of 

water in the Mixture D. Nobody challenged Selim, and Ali immediately wrote and 
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compared the corresponding ratios as follows: 
𝑜𝑟𝑎𝑛𝑔𝑒

𝑤𝑎𝑡𝑒𝑟
 = 

4

3
 > 

5

5
  in order to provide an 

alternative data to Selim’s data and claim.  

After a while, since the solutions of all students included the ratios between the amount 

of orange juice and the amount of water (i.e., the amount of orange is always the 

numerator) within a mixture, the teacher asked the class whether they could write the 

amount of water in the numerator and the amount of orange juice in the denominator. 

Merve quickly responded that when the ratio is constructed in such a way that the water 

is on the top and the orange juice is on the bottom; then, the smaller ratio would give a 

more orangey taste. Ceyda contributed to this discussion by stressing that the one with 

the smaller numerator would be more orangey. The teacher asked both students to justify 

their reasoning. Ceyda justified her reasoning by stressing that the ratio, then, would give 

the amount of water per one glass of orange juice. To this point on Day 14, the students 

discussed the relative amount of water and orange juice within each mixture. These 

comparisons included direct basic comparison (i.e., when either amount is the same in 

both mixtures), equalizing the amount of one ingredient in both mixtures and then 

making a basic comparison, and constructing common denominators/numerators in order 

to equalize either amount and then comparing it with the amount of the other ingredient. 

In other words, students reasoned with part-part ratios and the relative amount of one 

ingredient to the other within each mixture. On the other hand, the warrants/backings 

were removed from the class discussion by the end of the first session.   

The second session of Day 14 started with the students’ reasoning about the part-part 

ratios as similar to the discussions in the first session while comparing the mixtures A 

and E. In order to encourage the use of the part-whole ratios (i.e., fractions), the teacher 

asked the class to compare the orange juice concentrate in the mixtures. Erdem claimed 

that A had a more orangey taste than E since it had a larger concentration of orange juice. 

When he was asked to clarify the relationship between this claim and the data he 

provided, he stressed that both mixtures had 5 glasses of liquid. He went on by saying 
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that, out of 5 glasses of liquid in both pitchers, there were 3 glasses of juice in A and 2 

glasses of juice in E. Therefore, Erdem used the previous idea of 

reconceptualizing/coordinating the linked composites in a ratio in terms of the whole in 

a warrant for a later claim, which also gave us further evidence that the previous idea 

was taken-as-shared. Besides, it was the first time in the instructional sequence that the 

term concentration, which is the ratio of an ingredient to the total mixture and a part-

whole ratio, emerged in the classroom discussion. At that instance in the instruction, the 

teacher highlighted the difference between a fraction and a ratio/rate by stating that the 

part-whole ratios could be considered as fractions while part-part ratios were not 

fractions since fractions are focused on the relationships between a whole and its parts.   

Throughout the rest of the second session, the students worked on the second part of the 

activity, which was designed to reveal and remedy any incorrect additive reasoning. The 

students were asked to decide whether the tastes of the mixtures in five pitchers would 

change when a glass of water and a glass of orange juice were added to each of the 

mixtures and to determine the direction of the change if there is any change. Below is a 

portion of a class discussion in which a few students discussed whether adding a glass of 

water and a glass of orange juice would affect the taste of the mixture in Pitcher A:  

Musa: Dividing a cake into two pieces and eating one piece and dividing the cake 

into three pieces, and eating one piece would not be the same. So, it (the taste) 
would not be the same. 

Teacher: What do you mean, Musa? How did you relate this to the question?  

Musa: The difference is 1 in both, but it (the 1 in both) is not the same for both 
(Having a hard time explaining his strategy).  

Teacher: Did you compare in relation to the amount before adding?  

Musa: Yes. There were 3 glasses of orange juice, but 2 glasses of water.   

Teacher: And, we add a glass of orange juice and a glass of water.  
Musa: It doesn’t have the same effect. Increasing the two by one and increasing 

the three by one don’t have the same effect.   

Teacher: What is the difference? 
Musa: Increasing the three by one has (the relative amount of orange juice) less 

effect. So, I think that the taste of orange would decrease.  

Teacher: Let’s think this way. When you add a glass of orange juice to the already 
existing amount of 3 glasses of orange juice, how much of the already existing 

amount does it make?  
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Musa: One over three. Yes, that’s what I was trying to say. 
Teacher: Then, can you interpret it the same way for the (amount of) water as well?  

Musa: There are two glasses of water at the beginning. When we add a glass of 

water to it, it means that we add half of the already existing amount. This will have 

more effect.  
Teacher: What do you think, Erdem? 

Erdem: I wrote the new amounts (after a glass of orange juice and water are added) 

next to the old amounts on the table (See Figure 4.51a below). For A, it (the part-

whole ratio) was 
3

5
, and now it is 

4

7
. I am looking at the orange juice in both pitchers 

and the total amount; that is the concentration of the orange juice. I equalized the 

denominators, and this became 
21

35
, and this became 

20

35
 (See Figure 4.51b below). 

So, they cannot taste the same.  

Teacher: What do 
21

35
 and  

20

35
 mean?  

Erdem: Of the 35 glasses of the mixture, there would be 21 glasses of orange juice, 

but after adding them, there would be 20 glasses of orange juice. So, the (orange) 
taste decreased.  

Teacher: OK. I would like you to think this way now. How much orange juice are 

there per a glass of water in each situation?  
Ceyda: There is 1.5 glasses (of orange juice) for a glass of water in the first 

situation. Here (after adding), I am dividing 4 by 3, and there is 1.33 glasses of 

orange juice for a glass of water.   

Teacher: (Asks the whole class) So, what is the answer? 

A bunch of students: The orange taste is less compared to the first situation. 

 

 

Figure 4.51a. Drawing a table in order to 

see the amounts before and after adding 

a glass of water and a glass of orange 

juice 

Figure 4.51b. Comparing part-whole 

relationships before and after adding 

a glass of water and a glass of 

orange juice 
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In order to interpret this dialogue in terms of Toulmin’s analysis, Musa claimed that the 

taste of the mixture A would change when a glass of orange juice and a glass of water 

were added to it. For this claim, he provided data that included making connections to 

the comparison of fractions 
1

2
 and 

1

3
. When he was asked what those had to do with the 

question, he expressed that the difference between the amount of orange juice and water 

in both situations would be one; yet, it did not mean that they would taste the same. Since 

he had a hard time justifying his reasoning, the teacher helped him to think about the 

relative amount of added ingredients and the already-existing amounts of the ingredients. 

Upon this probe, Musa justified his reasoning by referring to the different impacts of 

adding a glass of orange juice and water to a mixture that included three glasses of orange 

juice and two glasses of water on the taste of the mixture. Specifically, he stressed that a 

glass of orange juice is one-third of the already-existing amount of orange juice, but a 

glass of water is half of the already-existing amount of water. He concluded that adding 

equal amounts of water and orange juice would reduce the oranginess of the mixture, and 

less amount of water had to be added to keep the taste the same. In other words, he made 

use of the multiplicative relationship between the amount of already-existing-ingredients 

and the amount of added ingredients, which included reasoning with part-part ratios. In 

order to elaborate more on the discussion, the teacher asked Erdem to talk about the 

problem. Erdem reasoned with part-whole ratios before and after adding a glass of water 

and orange juice. In order to compare the two ratios, he made use of his previous 

knowledge about comparing fractions by equalizing their denominators. Since none of 

the students included unit rate in their data and/or warrants, the teacher encouraged the 

class to reason with the unit rate in each situation. Ceyda and a bunch of other students 

claimed that the oranginess would be less compared to the first situation by drawing on 

the comparison between the amounts of orange juice per glass of water in both situations. 

Thus, while Musa and Ceyda focused on part-part ratios, Erdem reasoned with the part-

whole ratios and referred to this relationship as “concentration.” In order to compare 

these part-part and part-whole ratios, all of these students drew on their knowledge in 

comparing fractions. 



 

304 
 

In the following instances, Ali claimed that the taste of B would not change after a glass 

of water and orange juice were added since there would be one glass of orange juice per 

glass of water in both situations. Giray repeated the same claim by referring to the 

equality of the ratios of orange juice to the total mixture in both situations, which he also 

referred to as orange juice concentration. The students made claims about the change in 

the tastes of the mixtures for all other mixtures in the second sessions of Day 14, and 

warrants were dropped off of the class discussion as the students referred to the part-part 

ratios (unit rate, multiplicative comparisons) and part-whole ratios in their data. 

Therefore, they incorporated the previous taken-as-shared ideas (covariation, 

multiplicative idea, coordinating parts into a whole, creating and using unit rate as a 

tool/anchor/benchmark for comparisons) throughout the lesson, which were taken-as-

shared by the end of Day 14. 

On Day 15, the classroom discussion centered around comparing the tastes of two coffees 

that involved different amounts of coffee and milk and had varying strengths of taste. 

However, no numerical value was provided in any of the questions in order for students 

to reason qualitatively, that is, without depending on numbers. The first question 

included the mugs A and B that were in different amounts and had different tastes, which 

could also be understood from the pictures given on the activity sheet. It was known that 

the mug A contained less liquid than B and had a stronger taste of coffee. The students 

were asked a question to determine which of the mugs would contain the liquid with a 

stronger taste after a spoon of coffee was added to the Mug A, and a spoon of dried milk 

was added to the Mug B. Musa claimed that the liquid in A would have a stronger taste 

since it was already stronger in the first place, and adding more coffee would make it 

stronger. Merve added to that claim by saying that the liquid in Mug A would be way 

stronger than the liquid in Mug B since adding coffee to the stronger coffee would make 

it stronger, and adding milk to the weaker liquid would make it weaker. The aim for 

starting with this simple question was to capitalize on the following ideas: "adding coffee 
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makes the mixture stronger" and "adding dried milk makes the mixture less strong,” as 

stressed by Musa and Merve.  

In the second question, both mugs contained an equal amount of liquid, but the liquid in 

Mug B had a stronger coffee taste. The students were asked to reason about the relative 

taste of the two mixtures after a spoon of coffee was added to each mug. Seda claimed 

that the situation would not change since their amounts were the same at the beginning. 

When she was asked to provide a warrant for this claim, she justified her reasoning by 

saying that Mug A contained less coffee than Mug B since their amounts were the same, 

but the one in A was weaker. After adding a spoon of coffee to each mug, both mugs 

would again contain the same amount of mixture, but Mug B would contain more coffee 

as it was the case in the first place. Hence, though it was implicit, she reasoned with the 

part-whole ratio. In relation to TAS Ideas, Seda referred to the previous taken-as-shared 

idea regarding the conceptualization of part/whole ratios in her warrant, and this gave 

further evidence for this idea being TAS.  

Even though all the questions on Day 15 were mostly about distinguishing additive and 

multiplicative relationships (and overcoming incorrect additive reasoning) since adding 

ingredients might cause incorrect additive reasoning, the third question directly aimed to 

uncover these issues. In the third question, two mugs included two liquid with the same 

strength of taste but in different amounts. While Mug B contained less of the same liquid, 

the students were asked to compare the tastes of the mixtures in two mugs after a spoon 

of coffee was added to both mugs. This question is presented in Figure 4.52 below:  
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Figure 4.52. The third question in the Coffee Task 

This question resulted in a debate in the class where some of the students claimed that 

both mixtures would still taste the same, and some of them claimed that the mixture in 

Mug B would have a stronger taste. The teacher gave the floor to Musa, who claimed 

that the two mixtures would again taste the same after a spoon of coffee was added to 

both. He explained that the two mixtures had the same taste in the first place, and the 

same amount of coffee was added to both, which acted as data for his claim. Below is a 

dialogue in which multiple students rebut Berk for this incorrect data and claim:  

Ceyda: Even though we are adding the same amount of coffee to both cups, B will 

have stronger coffee since the amount is less. When we add the coffee, it will affect 
B more, and it will be denser.  

Teacher: Your friend is saying that they taste the same, but they have different 

amounts. Therefore, the added-coffee will affect the mixture in Mug B more. What 
do you think? 

A couple of students: No, they taste the same.  

A couple of students: Yes, they would be equal (concerning the strength of the 
mixture). 

Musa: What does it have to do with being in less amount? They will taste the same. 

They had equal amounts of orange juice and water in the first place and after they 

were added.  
Ceyda: Let’s assume that Mug A has 3 spoons of coffee and 3 spoons of dried milk, 

and Mug B has 1 spoon of coffee and 1 spoon of dried milk so that they would 

taste the same. When a spoon of coffee is added to both, Mug A would contain 4 
spoons of coffee and 3 spoons of dried milk, and Mug B would contain 2 spoons 

of coffee and 1 spoon of coffee, hence, B would be denser and stronger.  

(A bunch of students showed agreement by nodding) 
Musa: Aha, I got it. Only coffee is added but not the dried milk.  

Ozan: Yea, it is just like we did with the orange juice yesterday.  

Teacher: Let’s think this way: You make coffee in a big coffee pot and pour some 

to a small cup. You add a spoon of coffee to each. How are the two coffees 
affected? Which one has a stronger taste?  

The two liquid in mugs A and B taste the same. 

Compare the tastes of the two liquid after a 

spoon of coffee is added to both mugs.  
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Musa: (The mixture in) The small cup would have a stronger taste. It will disperse 
less in the small cup.  

Ceyda: That is what I meant by denser. The less it disperses, the denser it is.   

As understood from the dialogue above, Ceyda tried to rebut Musa by referring to Mug 

B's having less amount and to the concept of density. The teacher asked the classroom if 

they understood what Ceyda said about being denser. No student elaborated on the idea 

of density, and then, Ceyda needed to draw on numbers. However, the teacher wanted to 

encourage their qualitative reasoning by raising the case of adding a spoon of coffee in a 

small cup and a big pot for the students to think about. Then, Musa claimed that the small 

cup would contain a stronger mixture by referring to the idea of "dispersion.” Upon this 

interpretation, Ceyda made a connection between being dense and dispersion. Thus, this 

coffee pot-small cup example helped the students draw on their daily life experiences 

and relate to the idea of density in general and specifically to the question above. The 

students came to the point that even though the same amount was added to both mugs, 

including the mixtures with the same taste, it would affect the mixture with the smaller 

amount more.  

In the following question, two mugs with the same amount of liquid were given. 

However, Mug B contained a stronger taste of milk coffee. The students were asked to 

reason about the tastes of the two mixtures after a spoon of coffee was added to Mug A, 

and a spoon of dried milk was added to Mug B with a stronger taste of coffee. Seval 

immediately claimed that they [the tastes of the two mixtures] could be equal. Seda added 

that they [the tastes of the two mixtures] might not be equal. Seval explained that it was 

not possible to make a specific conclusion since the amount [the amount of added 

ingredients compared to the ones already in the mixtures] was not known. She added that 

it also was not known how stronger the first mixture was than the second one. Ceyda 

provided a warrant by stressing that it was not possible to know if the added milk would 

suppress the strength of the first coffee and if the added coffee would strengthen the 

weaker coffee enough. She also emphasized that since neither the amounts of ingredients 

in the two mugs nor the amount of added ingredients were known, any of the following 
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was possible: The relative strengths might stay the same (i.e., the coffee in Mug A could 

still be stronger), their strengths might be equalized (i.e., they could taste the same), the 

relative strength might be reversely changed (i.e., the coffee in Mug B could be stronger). 

A bunch of students nodded and claimed that there was missing information.  

To sum up, the discussions that took place on Day 15 were hard to analyze in terms of 

the TAS ideas since the debate regarding the third question (i.e., same taste-different 

amount-one spoon of coffee is added to both mugs, see Figure 4.52) got resolved not by 

using qualitative reasoning but by reasoning with numbers. Even though Ceyda was able 

to reason qualitatively by referring to the density concept that is the amount of particles 

per volume, which is a unit rate, she needed to fold back to the orange juice concept in 

order to convince her classmates. Since the students had trouble reasoning qualitatively 

for this question, the teacher offered an example in another context, including the small 

cup-big pot case. This supported the students' conceptions of "density" and "dispersion.”  

On the other hand, the potentials of the milk coffee context are still evident. First, this 

context enabled students to fold back to the orange juice context in which part-part and 

part-whole relationships were established by using numerical values. However, the 

students focused on the part-whole relationships in the orange juice context as an 

alternative way to obtain the result, and not because they had to. Unlike the orange juice 

context, the students had to focus on the whole as well as the parts in this context since 

the parts and the whole were unknown and inseparable. Secondly, this context really 

pushed additive reasoning, and what came out of it is the concept of density where it did 

not come out this strongly before even though the students established part-part and part-

whole relationships on the previous days. Ceyda and some other students were able to 

reason intuitively that adding to a bigger mixture would not make an impact as much as 

it does to a smaller mixture.  

This argument, related to the concept of density, came out in Ceyda’s warrant. Similarly, 

other ideas related to qualitative reasoning appeared in students’ data and/or warrants 
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during Day 15 since the claims were related to deciding on the relative taste of the coffees 

in two mugs after a specific amount of coffee/milk was added. Therefore, qualitative 

reasoning did not appear as a claim; hence, it was not possible to use the two criteria by 

Stephan and Rasmussen (2002) for deciding on whether qualitative reasoning was taken-

as-shared. This might be due to the fact that only one task was posed qualitatively. 

Therefore, adding another task that is focused on qualitative reasoning is suggested and 

discussed in the final chapter.  
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CHAPTER 5 

 

CONCLUSIONS AND DISCUSSION 

 

 

In this study, a classroom Hypothetical Learning Trajectory (HLT) and associated 

instructional sequence for proportional reasoning were developed, tested, and revised in 

order to arrive at a potentially viable local instructional theory for the teaching of 

proportional reasoning. In addition, the development of the seventh-grade classroom 

community’s proportional reasoning in normative and increasingly sophisticated ways 

was analyzed by documentation of Classroom Mathematical Practices (CMPs). 

Particular emphasis was given to the development of seventh graders’ communal ways 

of reasoning with informal and formal tools (i.e., models, imageries, gestures, and 

metaphors) and how this reasoning was supported in increasingly sophisticated ways 

with an RME perspective. The need for several revisions for the instructional sequence 

and the HLT emerged out of the CMP analysis. 

This chapter presents a synopsis of the findings of this study concerning these purposes 

and compares those findings with the related literature in three major sections: (1) 

Development of proportional reasoning in the social context (Classroom Mathematical 

Practices), (2) The role of tools, models, imageries, gestures, and metaphors in 

supporting student understanding and learning, (3) Revisions to the instructional 

sequence and the HLT. Furthermore, it features implications for practice as wells as 

suggestions for further research in the sections that follow.  
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5.1. Development of Proportional Reasoning in the Social Context 

This study includes two subsequent design experiments that focus on the development 

of seventh-grade classroom community’s proportional reasoning and the means of 

supporting and organizing that development in line with a design-based research 

perspective (Bakker & van Eerde, 2015; Cobb, 2003; Gravemeijer & Cobb, 2006). In 

particular, this study presents what a classroom learning trajectory and related 

instructional sequence for proportional reasoning look like when developed, tested, and 

revised in a classroom setting by providing a picture of how the hypothetical learning 

trajectory was actualized in the classroom as the teacher and the classroom community 

interacted around the instructional sequence.  

Prior research of students’ learning of the concepts of ratio, rate, and proportion and the 

development of proportional reasoning was used to develop and revise the HLT and the 

instructional sequence. The Classroom HLT and the instructional sequence developed 

by Stephan and colleagues (2015) served as the backbone for the HLT and the 

instructional sequence developed in this study. The instructional sequence was designed 

and revised so that seventh-graders could work through realistic contexts to build an 

understanding of proportional reasoning and related concepts such as ratio, rate, and 

proportion as they interact with the instructional tasks.   

 The difficulties in understanding and learning mathematics are ascribed to the 

discrepancies between informal knowledge based on real-life experiences and formal 

mathematics that are taught through instruction (Gravemeijer, 1991, 1999). Nonetheless, 

within the context of this study, informal and formal knowledge of mathematics is not 

perceived as distinct from each other. Instead, the students reinvented formal 

mathematical knowledge regarding proportional reasoning, drawing on the informal and 

intuitive knowledge that were reported by other researchers who explored young 

children’s understanding and development of proportional reasoning. Some researchers 

also refer to this informal and intuitive knowledge as qualitative knowledge (Lesh et al., 
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1992; Resnick, 1986; van den Brink & Streefland, 1979) or personal knowledge (Kieren, 

1988).  

In addition, pre-tests and pre-interviews conducted prior to this study shed light on 

students' informal ideas regarding proportional reasoning. Upon a review of the related 

literature and drawing on the pre-assessment results, these informal ideas were 

determined as forming composite units and iterating linked composites (Battista & van 

Auken Borrow, 1995; Park & Nunes, 2001; Steffe, 1988, 1994), unitizing and norming 

(Freudenthal, 1983; Lamon, 1994, 1995), and (abbreviated) build-up strategies (Ben-

Chaim et al., 1998; Carpenter et al., 1999; Kaput & West, 1994; Lamon, 2007; Lesh et 

al., 1988; Thompson, 1994), which point to similar mental operations. 

Although prior research showed that several factors play role in determining students' 

proportional reasoning, most of those "do not provide illumination into how and why 

these factors operate as they do" (Akatugba & Wallace, 1999, p. 305). Moreover, there 

has been little attention to the social factors that are associated with students’ 

proportional reasoning (Akatugba & Wallace, 1999). However, there has been a call for 

studying learning in socially situated contexts as the social and cultural aspects have a 

significant influence on students' construction of understandings (Cobb & Bauersfeld, 

1995; Hufferd-Ackles, Fuson, & Sherin, 2004; Krummheuer, 1995, 2007; Saxe, 1991; 

Stephan, 2003; Vygotsky, 1978). In this study, learning and mathematical development 

of students are viewed through a social constructivist perspective, named Emergent 

Perspective (Cobb & Yackel, 1996), which sees learning both as an individual and social 

activity. Although I accept that both individual and social aspects of learning are essential 

at the same level and learning cannot be described by focusing only on the individual or 

social aspects, in this study, I put the social perspective in the foreground by focusing on 

the collective development of the classroom community. To this end, I described the 

emergence of the classroom mathematical practices that were established by a seventh-

grade classroom community. In doing so, I described the taken-as-shared ways of 
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reasoning and arguing of the community instead of how an individual was reasoning. 

The documentation of the classroom mathematical practices, therefore, gave a picture of 

the patterns in the classroom community’s processes of reasoning, structuring, arranging, 

arguing, symbolizing, visualizing, and schematizing as they interacted with the 

instructional sequence.  

Five mathematical practices were documented over the course of six weeks that included 

30 class hours by using an analysis method proposed by Stephan and Rasmussen (2002) 

and Rasmussen and Stephan (2008). The documentation of the classroom mathematical 

practices revealed that the instructional sequence has extensive potential in supporting a 

classroom community’s proportional reasoning in increasingly sophisticated ways. 

Particularly, CMP1 showed that the students were able to reason with pictures and tables 

to find missing values of fish/food bars in normative ways by drawing on their informal 

knowledge of grouping, linking, iterating, unitizing, norming, and building up. Within 

the context of the first practice, it became taken-shared-that when the number of food 

bars changes, the number of fish that can be fed with that specific amount of food bars 

changes in a precise way, that is, in line with the given rule. This includes a naïve 

understanding of what the literature terms as “covariation” or “covariance” (Carlson et 

al., 2002; Ellis et al., 2016; Lamon, 1995, 2007). At the onset, this understanding of 

covariance was based on coordinated build-up strategies (i.e., when the number of food 

bars goes up by ones, the number of fish goes up by threes) (Kaput & West, 1994) or a 

skip counting process (1-3, 2-6, 3-9, etc.). As students moved through the sequence, these 

naïve interpretations evolved into building up in more efficient and abbreviated ways. 

These efficient ways included using multiplication and division or working with a scalar 

operator within the same measure spaces (i.e., norming).   

For instance, on Day 2, when it was known that one food bar could feed three fish and 

the students were asked to find the number of food bars required to feed 12 fish (pictures 

of 12 fish were given), Merve suggested that she could divide 12 by three, instead of 
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grouping and linking, in order to find the number of the food bars needed by referring to 

the grouping with pictures. Besides, when the pictures of five fish were given, and the 

question asked how many food bars were needed to feed those 15 fish, Gizem suggested 

to multiply five by three in order to do more effective operations, and multiple students 

were able to provide warrants making connections between multiplication and iterating 

with pictures. These kinds of reasoning correspond to what Kaput and West (1994) refer 

to as “abbreviated build-up/build-down processes using multiplication and division” (p. 

244). On the following days, the classroom community clearly made a connection 

between these processes that include multiplication and division and reasoning with 

equal scale factors within measure spaces (i.e., doubling, tripling, or otherwise 

multiplying the values by the same factor within their own measure spaces). There were 

multiple instances that the classroom community used division within the same measure 

spaces in order to find the scale factor and multiplied the value that belonged to the other 

measure space with that scale factor in order to arrive at equivalent ratios. Moreover, 

both types of reasoning were also associated with the initial processes of grouping and 

linking with pictures.  

Particularly, reasoning with a scale factor emerged naturally in the classroom discussion 

on Day 2 when Sinem instigated a new type of reasoning with the (long) ratio table by 

stating, "the number of fish always increases three times more in relation to the number 

of (food) bars." In the following instances, multiple students made claims about finding 

more efficient ways of building up by ones. For instance, Ceyda observed that moving 

from 2 to 10 in the first row of the table (i.e., the row that includes the number of fish in 

each situation) and from 6 to 30 in the second row of the table (i.e., the row that includes 

the number of food bars in each situation), both numbers are multiplied by the same 

number, that is five. Moreover, İlter stated that while moving between the cells within 

the same rows, both numbers were divided by the same number as he went backward 

through the table. Also, Ceyda and Elif associated these processes with making iterations 

with linked composites. The analysis of the classroom data showed that this kind of 



 

315 
 

reasoning with a scalar operator appeared more frequently than the first one (i.e., 

abbreviated build-up/build-down processes using multiplication and division). 

Therefore, in this study, the term “abbreviated build-up strategies” is mostly used to refer 

to working with scalar operators within the same measure spaces as differently than 

Kaput and West (1994), although it should be noted that they correspond to similar 

mental operations.  

Therefore, the CMP analysis showed that these types of abbreviated build up strategies 

that include multiplication and division or operating with a scale factor within the same 

measure space are short ways for building up strategies and making iterations with linked 

quantities. In particular, it was evident when the students referred to their previous work 

of groupings and iterations with pictures in their warrants to justify the rationale behind 

those operations. Therefore, reasoning with abbreviated build-up strategies is not 

interpreted as multiplicative reasoning in this study. It was rather considered as pre-

multiplicative reasoning, as divergent from several studies (Lamon, 2007; Vermont 

Mathematics Partnership’s Ongoing Assessment Project, 2011; Wright, 2014). This is 

due to the fact that it entails similar characteristics (e.g., coordination of quantities, 

pattern recognition without a recognition of the structural invariant relationships) to what 

several researchers refer to as pre-proportional reasoning (Lesh et al., 1988; Piaget & 

Inhelder, 1975; Steffe, 1994).  

Although covariation of the number of fish and food bars in relation to each other by 

making coordinated and abbreviated iterations, that is building up by ones and 

abbreviated build-up strategies, emerged naturally on the first day of the instruction and 

became taken-as-shared on the same day, the idea regarding the invariant relationship 

between the number of food bars and fish did not emerge naturally on the first day of the 

instruction. Instead, the teacher stimulated the students to think about the relationship 

between the number of food bars and fish on Day 2. Upon the teacher’s stimulation, 

Seval provided the following operational claim “when we multiply the number of food 
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bars with three, we get the number of fish” in the first place, and then, a more conceptual 

claim “the number of fish is always three times that of food bars.” The second type of 

reasoning focuses on the invariant relationship between the number of food bars and fish; 

hence, it shows a more robust understanding of the functional relationship between the 

number of food bars and fish.   

In the following instances, multiple students used this functional relationship between 

the number of food bars and fish (i.e., the number of fish is always three times that of 

food bars) in order to find missing values. As the students moved through the 

instructional sequence, they were given a reducible ratio between the number of food 

bars and fish, that is, 2 food bars for 4 fish. The idea that this rule is the same as the rule 

1 food bar for 2 fish emerged shortly after the students started to work with the rule 2 

food bars for 4 fish. In addition, the equality of the functional relationship between the 

number of food bars and fish in both rules was emphasized. A shred of evidence comes 

from Gizem’s illustration with the pictures of food bars and fish that provides more 

backing for this claim (i.e., showing that 1-2 is the same as 2-4 with pictures, see Figure 

4.20). Then, this equivalent functional relationship between the number of food bars and 

fish (i.e., the number of fish is always two times of the number of food bars) was used in 

order to find missing values instead of the initial rule (i.e., 2 food bars for 4 fish). This 

was when it was revealed that the idea that the invariant relationship between the number 

of fish and food bars was conceptualized as unit rate and used as an anchor to find 

missing values was taken-as-shared among the classroom community. This taken-as-

shared idea is associated with what the literature refers to reasoning with a functional 

rate or unit rate (Ben-Chaim et al., 1998; Lamon, 1994; Tourniaire & Pulos, 1985; 

Vergnaud, 1994). 

Therefore, on the first four days of the instruction, the ideas related to linking composite 

units that included coordinated build-up strategies, and working with a scale factor that 

included abbreviated build-up strategies, and reasoning with the invariant functional 
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relationship between two distinct values, and using this invariant relationship to find 

missing values were taken-as-shared among the classroom community. Then, drawing 

on all of these experiences, these ideas were extended to the part-whole contexts on Day 

5. The classroom mathematical practice analysis suggested that these five ideas revolved 

around the same ideas of reasoning with covariation within the same measure spaces and 

with the invariant relationship between different measure spaces. Thus, these ideas were 

put together and organized around the common activity of reasoning with pictures and 

tables to find missing values as they emerged and became taken-as-shared.  

Mathematical Practice 2 showed the strength of these ideas for providing the foundation 

for reasoning within measures ratios and between measures ratios in order to find a 

missing value and determine proportionality by using the symbolic proportion 

representation. Reasoning with a scale factor within the same measure spaces (i.e., 

abbreviated build-up reasoning) and reasoning with the invariant and functional 

relationship between two linked values in different measure spaces became powerful 

strategies for solving proportional problems in a variety of contexts on Day 7. 

Particularly, the classroom discussion that emerged while the classroom community was 

working on deciding whether the given ratio (i.e., 
10

20
 ) belonged to the same equivalence 

class as the ratio between the number of girls to the boys (i.e., 
2

3
 ) can provide evidence 

for this. Faruk claimed that these ratios could not be proportional since the scale factors 

within the same measures were not the same (i.e., 2 is multiplied by 5 to obtain 10, but 

3 is not multiplied by 5). Moreover, Ceyda provided a warrant for this claim by focusing 

on the functional relationship between the number of girls and boys (i.e., 
10

20
 is equal to a 

half, but the other one is not). Other mathematically significant discussions that took 

place on Day 7 included structuring within and between ratios based on those two types 

of relationships.  
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Throughout days 8 to 11, the classroom community’s normative ways of reasoning 

shifted from finding missing values in tables or proportions to representing proportional 

relationships on tables and graphs and with algebraic equations and coordinating the 

relationships among them. In addition, understanding the nature of the nonproportional 

linear relationships of the form y = mx + n and how their algebraic and graphical 

representations differ from those of proportional relationships were among the topics of 

classroom discourse. In particular, formalizing the proportional and nonproportional 

linear relationships into algebraic equations was a new idea that was taken-as-shared on 

these days. Therefore, this shift observed in the classroom community’s reasoning 

suggested the emergence of a new practice, coordinating the relationships among the 

representations (CMP 3). However, again, it should be noted that the students drew on 

the previous taken-as-shared ideas of working with equivalent scale factors (i.e., 

abbreviated build-up) and reasoning with the invariant relationship between quantities 

that belong to different measure spaces throughout the establishment of the third 

mathematical practice.  

Similarly, during the remaining days in which CMP 4 and CMP 5 were established, the 

students heavily relied on their understanding of working with scale factors within the 

same measure spaces and the invariant functional relationship between quantities in 

different measure spaces. More specifically, while students decided if the given two 

shapes were similar or distorted and found the missing lengths in a pair of similar shapes, 

they reasoned with the between-shapes scale factors and/or the invariant multiplicative 

relationship between the lengths of a single shape (i.e., within shapes relationships) on 

the twelfth day of instruction. Moreover, on the following days, they also drew on these 

ideas while comparing different ratios/rates and deciding which one was bigger or 

smaller or if they were equal. For example, while the classroom was working on 

comparing the orange tastes in Mixture B (3 glasses of orange juice-3 glasses of water) 

and Mixture D (5 glasses of orange juice-5 glasses of water) on Day 14, Berk claimed 

that the two mixtures in Pitchers B and D had the same taste since the amount of water 
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was equal to the amount of orange juice in both pitchers. Then, multiple students referred 

to the invariant one to one relationship in both mixtures (i.e., for every glass of orange 

juice, there is one glass of water in both).  

The classroom mathematical practices analysis suggests that the idea of comparing 

ratios/rates demands higher cognitive reasoning than creating equivalent ratios/rates and 

finding the missing value in a pair of equivalent ratios/rates in two ways. First, as afore-

stated, reasoning within and between measure spaces underlie creating equivalent 

ratios/rates. In order to make claims about comparing different ratios/rates, one needs to 

analyze those within and between measures comparisons and evaluate whether both 

comparisons are the same. Second, because a ratio is a comparison itself, comparing 

ratios becomes a comparison of comparison of quantities, that is, a second-order act of 

comparing. Remembering Piaget’s utterance to ratio as “relationships of relationships" 

(Piaget & Inhelder, 1975, p. 160), or a second-order relationship, comparing ratios 

include relationships of relationships of relationships or a third-order relationship.  

However, it is noteworthy that a comparison of ratios can also include comparing the 

amount of one quantity when the other is equal. For example, when comparing the 

oranginess of Mixture A (3 glasses of orange juice and 2 glasses of water) and Mixture 

B (3 glasses of orange juice and 3 glasses of water) on Day 14, Namık only focused on 

comparing the amounts of water in two mixtures stating that the amount of orange juice 

was the same in both. In this study, this type of comparison was referred to as basic 

comparison since it did not include a comparison of the relative amounts of the 

ingredients; instead, a comparison of the amounts of one ingredient only. This kind of 

comparison is easier for students as Noelting (1980a) stressed that even children as young 

as seven years old could successfully compare those kinds of mixtures. 

The mathematical practices analysis can also provide insight into the essential 

mathematical components of proportional reasoning determined by the review of the 

literature. A thorough understanding of reasoning about change involves understanding 
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covariance and invariance. As several researchers (e.g., Carlson et al., 2002; Confrey & 

Smith, 1994; Ellis et al., 2016; Lamon 1995, 2007; Saldanha & Thompson, 1998) 

highlighted the importance of understanding covariation and invariation, the findings of 

this study suggest that a conceptual understanding of covariance and invariance lies at 

the heart of proportional reasoning. As shown by the classroom mathematical practices, 

the students in this study began making sense of the first task as they covaried the number 

of fish and food bars and eventually recognized and reasoned with the invariant 

relationship between the number of food bars and fish. In each of the following tasks, 

they relied on these notions of covariation and invariation.  

In regards to covariance and invariance, the findings of this study also have the potential 

to confirm the covariational reasoning levels suggested by Coulombe and Berenson (as 

cited in Saldanha & Thompson, 1998). In terms of the development of covariational 

reasoning through the fish-food bar activity, although there was no explicit statement, 

the classroom community first must have identified two data sets as the number of fish 

and food bars before linking these two sets. Then, they coordinated these two sets of data 

and inferred that when one increased, the other one also increased. Next, the classroom 

community constructed links between these data patterns number patterns (e.g., 1-3, 2-

6, 3-9, …etc.), which were referred to as coordinated build-up strategies. Lastly, this link 

is generalized in order to find missing values. Therefore, the mathematical practices 

analysis showed that the covariational reasoning levels suggested by Coulombe and 

Berenson were valid. However, it also revealed that these levels were too general that 

they do not include abbreviated build-up strategies. 

As another aspect associated with covariation and invariation, the mathematical practices 

analysis revealed that reasoning about change in relative terms rather than absolute terms 

paved the way for a deep understanding of proportional reasoning, as Lamon (1995) 

pointed out.  For instance, on Day 12, when the classroom community worked on 

determining whether or not the two rectangles (the first rectangle had lengths 4 cm and 
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6 cm, the second rectangle had lengths 13 cm and 15 cm) were similar, Merve reasoned 

with the between shapes ratios and claimed that the shapes were not proportional. Since 

the values for the side lengths were intentionally chosen to reveal incorrect additive 

reasoning but it did not emerge in the discussion, the teacher asked the class whether it 

was possible to reason about the change in the two shapes in absolute terms (i.e., the 

differences of short and long side lengths between the two shapes are the same, that is 9 

cm).  Multiple students rebutted this type of reasoning by referring to the relative 

relationship between the amount of change, that is 9 cm, and the short and long side 

lengths of the two shapes by stating that “9 cm is more than two times of 4 cm (the short 

side length of the original picture) but less than two times of 6 cm (the long side length 

of the original picture).”  

Ratio sense was another essential component for the development of proportional 

reasoning, as suggested by Lamon (1995). The mathematical practices analysis revealed 

that the classroom community was able to apply ratio reasoning to several tasks in which 

the term ratio was not used. They were able to organize the proportional situations in 

tables and with numbers and reasoned about the ratio relationships within and between 

measure spaces. Moreover, they were able to use correct mathematical language 

regarding its informal and formal uses. The classroom community was also able to 

distinguish proportional relationships from nonproportional relationships as they worked 

with the linear non-proportional relationships on Days 8-11.  

As the analysis of the emerging mathematical practices showed that the strategies that 

emerged in the classroom were based on either reasoning within measure spaces or 

between measure spaces (or within shape or between shapes in the context of similar 

shapes), the findings of the study showed how these understandings were essential for 

the development of proportional reasoning. Similarly, ideas associated with qualitative 

and quantitative reasoning emerged in the discussion often across multiple days.  



 

322 
 

In relation to these essential understandings, informal activities/experiences of 

relationships (Lamon, 1995), unitizing and norming (Lamon, 1994, 1995), and iterating 

linked composites (Battista & van Auken Borrow, 1995; Steffe, 1994) were mainly found 

helpful to promote proportional reasoning. More specifically, in terms of relationships, 

the classroom community drew on their intuitive experiences of relationships when they 

made sense of the relationships between the quantities and recognized that “when one 

increases, the other also increases.” Moreover, the classroom community relied on their 

experiences of basic comparisons related to recognizing distortion (i.e., looking 

fatter/thinner or taller/shorter) that took place on Day 12. Secondly, an example for the 

use of unitizing and norming can be given from Day 12, where Sinem reasoned with the 

within-shapes-ratio in order to refer to the invariant times two relationship between the 

within-shapes-lengths. More precisely, Sinem provided a warrant to a previous claim by 

saying that “there are 2 units of horizontal lengths for every 1 unit of vertical lengths." 

In this process, she also represented her reasoning with pictures (See Figure 4.43) in 

which she took a 4-cm-vertical-length in the first shape as a unit (unitizing) and 

reinterpreted the 8-cm-horizontal-length in the same shape in terms of that 4-cm-length 

(norming). Lastly, throughout the establishment of all the mathematical practices, the 

students relied on their intuitive knowledge of linking composite units and iterating 

linked composites (Battista & van Auken Borrow, 1995; Steffe, 1994). Therefore, the 

findings of the study confirm the extension of the groundwork by Lamon (1995) in terms 

of mathematical dimensions and informal activities of proportional reasoning. 

Thus, the classroom mathematical practices analysis provided parallel results with 

studies conducted at the individual level showing that formal proportional reasoning is 

based on the informal (didactical) activities of basic qualitative comparisons, creating 

composite units and iterating linked composites, building up strategies, reasoning with 

number patterns, unitizing and norming, working with within or between measures ratios 

(also called as multiplicative strategies), and unit factor (also called as unit rate) approach 

(Battista & van Auken Borrow, 1995; Ben-Chaim et al., 1998; Kaput & West, 1994; 
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Lamon, 1994, 1995; Lo & Watanabe, 1997; Park & Nunes, 2001; Steffe, 1988, 1994; 

Streefland, 1985; Tourniaire & Pulos, 1985). Notably, this study provided further 

evidence that the roots of proportional reasoning lie at the ideas of creating composite 

units (i.e., unitizing) and iterating linked composites (i.e., norming) in parallel with 

several researchers (Battista & Van Auken Borrow, 1995; Park & Nunes, 2001; Steffe 

1988, 1994) since all the five practices documented in this study were built on these 

ideas. On the other hand, this conclusion is in striking contrast with the arguments made 

by researchers that suggest that the basic idea behind multiplicative reasoning is repeated 

addition (Fischbein et al., 1985). 

On the other hand, prior research revealed students’ incorrect strategies and difficulties 

as ignoring part of the data, providing irrelevant response, and erroneous additive 

reasoning (Ben-Chaim et al., 1998; Tourniaire & Pulos, 1985), with the last one as being 

the most prevalent (Brousseau, 2002; Hart, 1981, 1988; Kaput & West, 1994;  Misailidou 

& Williams, 2003; Resnick & Singer, 1993; Steinthorsdottir & Sriraman, 2009; 

Tourniaire & Pulos, 1985; Tourniaire, 1986; van Dooren et al., 2010). Resnick and 

Singer (1993) attribute this high incidence of incorrect erroneous reasoning to two 

factors: (1) slow development of multiplicative relations compared to additive relations 

and (2) children’ initial experiences of quantifying additive relations of numbers than 

their multiplicative relations. In other words, beneath students’ tendency to reason 

additively for proportional tasks lie their early experiences and familiarity with additive 

relationships as well as the lower demand it requires than that of multiplicative reasoning 

requires. 

It is noteworthy that the erroneous additive reasoning was only suggested by a few 

students in this study, and when it was suggested, multiple students rebutted this idea by 

using the ideas of scaling within measure spaces and invariant relationships between 

measure spaces. For instance, when the classroom community worked on comparing the 

oranginess of Mixture A (3 glasses of orange juice and 2 glasses of water) and Mixture 
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C (4 glasses of orange juice and 3 glasses of water) on Day 14, Gizem claimed that the 

two mixtures would taste the same based on her observation that the difference of the 

values was 1 in both mixtures. It was not for sure whether she referred to the one unit of 

difference within measures spaces or between measures spaces. Regardless of this issue, 

several students showed disagreement with her and rebutted her claim. More precisely, 

Ozan referred to the part-part ratios within a mixture (i.e., between measure spaces), and 

the previous experiences with fraction comparisons (
3

2
 is bigger than 

4

3
 since 

3

2
 is 

1

2
 more 

than a whole, while 
4

3
 is 

1

3
 more than a whole) in his rebuttal. Merve stated that 

3

2
 and 

4

3
 do 

not form a proportion, so they would not taste the same. Then, Seval revised that claim 

to say that A is less orangey than C by equalizing the amounts of orange juice in both 

mixtures and comparing the amounts of water in both mixtures with the same amount of 

orange juice.  

This finding significantly differs from the studies that report a high incidence of 

erroneous additive reasoning in proportional tasks (Atabaş & Öner, 2017; Duatepe, et 

al., 2005; Fernández et al., 2012; Hart, 1981, 1988; Kahraman et al., 2019; Kaplan et al., 

2011; Kaput & West, 1994; Kayhan et al., 2004; Mersin, 2018; Misailidou & Williams, 

2003; Özgün-Koca & Altay, 2009; Resnick & Singer, 1993; Steinthorsdottir & Sriraman, 

2009; Tourniaire & Pulos, 1985; Tourniaire, 1986; van Dooren et al., 2010) although a 

low frequency of erroneous additive reasoning was also found in a few other studies 

(Karplus et al., 1983). This divergence from many studies might be attributed to several 

reasons ranging from the participants of this study to the nature of this study.  

First, it is noteworthy that some of these studies suggest that additive strategies dominate 

student thinking in primary school (Fernández et al., 2012; van Dooren et al., 2010). 

Since this study was conducted in a seventh-grade classroom, it might be possible that 

these students have already changed their additive reasoning schemas to multiplicative 

ones. Second, it should be noted that most of these studies that report a high incidence 

of additive reasoning in students' thinking involve a one-shot collection of data from 
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students through surveys or interviews. However, in this study, a classroom community’s 

development of proportional reasoning as they engaged in argumentation processes was 

examined. In such an environment, students engage in certain participation behaviors to 

present their ideas, question and evaluate others’ ideas, compare, contrast, justify, 

confirm, and rebut the emerging ideas (Brown, 2017). Thus, they may find opportunities 

to revise and reconstruct their ideas and make conjectures in collective ways (Whitenack 

& Knipping, 2002). Therefore, similar to the arguments made by these researchers, it is 

quite clear that when an incorrect additive reasoning appeared in the classroom 

discussion in this study, it was challenged, rebutted, and revised by the classroom 

community. Therefore, similar to the findings of the study conducted by Karplus, 

Karplus, Formisano, and Paulsen (1979), the findings of this study suggest that “additive 

reasoning does not lie on a invariant development sequence but is strongly influenced by 

instruction and represents an effort by students to deal with a task in an ad hoc rather 

than a systematic way” (p. 65). More precisely, the findings of this study conclude that, 

through a carefully designed instruction, erroneous additive reasoning might be 

prevented and eliminated.   

It should also be noted that no mention has been made of the cross-multiplication 

algorithm for solving the proportional reasoning tasks in this study. Although a small 

number of students attempted to suggest such types of procedural solutions as they 

provided alternative data to their claims, the classroom community required more 

conceptual answers due to the pre-established sociomathematical norm associated with 

the features of an acceptable mathematical solution (Cobb & Yackel, 1996). Therefore, 

this finding is in line with the findings of a few studies that reported a low frequency of 

the use of cross multiplication strategy (Karplus et al., 1983; Vergnaud, 1983). On the 

other hand, this finding is also in stark contrast to the findings of many studies that report 

overreliance of students on cross multiplication and similar procedural algorithms 

(Arıcan, 2019; Atabaş & Öner, 2017; Ben-Chaim et al., 1998; Cramer & Post, 1993; 

Cramer, Post, & Currier, 1993; Duatepe et al., 2005; Kahraman et al., 2019; Kaplan et 
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al., 2011; Kayhan et al., 2004; Özgün-Koca & Altay, 2009). Therefore, the findings of 

this study suggest that students can deal with a variety of proportional tasks without using 

the cross-multiplication algorithm or any other procedural strategy in a social setting. As 

another concern, it is critical to highlight that the cross-multiplication strategy did not 

naturally emerge in the classroom discussion as the other ideas did and became taken-

as-shared. Therefore, the findings of this study also conclude that cross multiplication is 

not a natural and student-generated algorithm, as Hart (1984) concluded.  

 Multiple studies showed similar developmental paths starting from recognizing patterns 

in qualitative ways (i.e., when one quantity increases, the other one also increases), 

moving through quantifying this pattern in additive ways through coordinated build-up 

strategies (i.e., when one quantity goes up by ones, the other goes up by threes) and 

abbreviated build-up strategies (i.e., when one quantity is scaled by n, the other quantity 

should also be scaled by n), and finally understanding the invariant multiplicative 

relationship (including unit rate) between two values and applying this to obtain 

equivalent ratios (Kaput & West, 1994; Lesh et al., 1988; Lo & Watanabe, 1997; Piaget, 

& Inhelder, 1975; Steffe, 1994; Tourniaire & Pulos, 1985). Moreover, several 

researchers pointed out that the development of proportional reasoning occurs in relation 

to other concepts, including fractions, rational numbers, linear mappings, multiplication, 

and division (Kieren, 1976; Lamon, 1994; Lo & Watanabe, 1997; Steffe, 1988, 1994; 

Vergnaud, 1988). Although these studies were conducted at the individual level, the 

findings of this study suggest that the development of proportional reasoning in a social 

setting might follow a similar path. Thus, based on the CMP analysis, it is safe to 

conclude that studies that investigated the informal knowledge and strategies, 

conceptions, and misconceptions and developmental trajectories that were conducted at 

the individual level can be useful in informing the ways to support the development of a 

mathematical subject at the classroom level. Nonetheless, it should be noted that the 

development of proportional reasoning depends on a teaching and learning process 

(Lamon, 1994, 1995), in particular, the tasks used in the instruction (Lesh et al., 1988). 
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Since the instructional sequence was designed based on the findings of the studies 

conducted at the individual level, it is no surprise that the development in a social setting 

follows a similar path as individual development.    

As afore-stated, this study was conducted based on an intensive literature review that 

resulted in the emergence of several issues for discussion and reflection. The findings 

obtained from the analysis of classroom mathematical practices can also be helpful to 

reflect on the afore-mentioned divergences in the definitions of several terms. To begin 

with, it was stated in the first two chapters that there is confusion in defining rates and 

ratios and how they differ from each other. To recapitulate, some researchers consider 

ratio as a comparison of quantities that belong to the same measure space and rate as a 

comparison of quantities that belong to different measure spaces (Vergnaud, 1988). 

Other researchers make distinctions between extensive and intensive quantities: while 

the former is referred to as the extent of a quantity, the latter is referred to as the 

relationships between a quantity relative to a unit of the other quantity (Freudenthal, 

1973; Kaput et al., 1986; Kaput & West, 1994; Schwartz, 1988). Therefore, they accept 

that rate refers to a single intensive quantity, while ratio refers to a relationship between 

two quantities (Schwartz, 1988). As different from those perspectives, Thompson (1994) 

focuses on mental operations in order to make a distinction between ratios and rates. 

According to him, a ratio is the result of a multiplicative comparison of two specific and 

fixed quantities, whereas rate is a reflectively abstracted constant ratio, that is, a 

generalization of the invariant ratio. In this study, I follow Thompson (1994) in making 

distinctions between ratios and rates since it is the most useful interpretation in order to 

make sense of the classroom data of this study. 

More precisely, as described in Chapter Four and briefly restated above in this chapter, 

the students in this study started to make sense of the fish-food bar task by making 

iterations (i.e., build-up strategies) in pictorial, numerical, and tabular forms. In this 

process, they reasoned with equivalent ratios successively (one food bar- three fish, two 
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food bars-six fish, three food bars-nine fish…). Indeed, this type of thinking constituted 

the first taken-as-shared idea in this study. As the students reasoned in more sophisticated 

ways in collective ways, the classroom discussion evolved into abstracting the invariant 

relationship between the number of food bars and fish (i.e., the number of fish should 

always be three times of the number of food bars). This was a shift in the classroom 

community's ways of reasoning from covarying the number of food bars and oranges in 

successive ways to understanding the invariant nature of this covariation. Therefore, 

these successive moves from covariation to invariation conclude that Thompson’s (1994) 

perspective can be adopted in order to interpret a classroom community’s communal 

ways of reasoning with ratios and rates. More precisely, the students’ mental operations 

were related to the concept of ratio when they made iterations within the same spaces 

and to the concept of rate when they abstracted this understanding of covariation to make 

sense of the invariant relationship between the number of food bars and fish.  

Another discrepancy revealed by the literature review was related to defining within and 

between ratios. As mentioned earlier, some researchers use the term within ratio to refer 

to a comparison of quantities that belong to the same measure space and between ratio 

to a comparison of quantities that belong to different measure spaces (Freudenthal, 1973; 

Lamon, 1994; Vergnaud, 1994). However, other researchers use the term within ratio as 

a synonym for a comparison of quantities that belong to the same system (i.e., a series of 

interacting elements) and between ratio for a comparison of quantities that belong to 

different systems (Karplus et al., 1983; Noelting, 1980a, 1980b). In this study, a specific 

terminology suggested by Lamon (2007) was used in order to avoid this confusion. This 

uses the terms within measure (spaces) ratio/comparison and between measure (spaces) 

ratio/comparison. The mathematical practice analysis showed that the classroom 

community started to make iterations within the same measure spaces by abbreviated 

build-up strategies, and then, moved to reasoning between different measure spaces by 

making sense of the invariant relationship between quantities that belonged to different 

measure spaces. In this process, while within measures comparisons emerged naturally 
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in the discussion, the teacher had to stimulate students in order to think about the between 

measures comparisons. Therefore, the mathematical practice analysis conducted in this 

study revealed that within measure spaces ratios are more natural than between measure 

spaces ratios as concluded by other researchers (Freudenthal, 1978; Karplus et al., 1983; 

Noelting, 1980a, 1980b; Vergnaud, 1980). Furthermore, the mathematical practice 

analysis also lent additional support to the conclusion that between measures ratios are 

more sophisticated in terms of mathematical thinking and more representative of the 

problem structure than within measures ratios the in the same direction with those 

researchers (Freudenthal, 1978; Karplus et al., 1983; Noelting, 1980a, 1980b; Vergnaud, 

1980) based on the same concerns stated above.  

Thus, the mathematical practices analysis shed light on several issues mentioned in the 

literature. It is noteworthy to restate that these practices evolved over time as the taken-

as-shared ways of reasoning were established in the classroom community, each of which 

emerged as growing out of the previous practices established by the classroom 

community. In the following section, the evolution of use of tools, inscriptions, models, 

and imageries in the classroom community is described. Moreover, the communal use of 

gestures and how it is co-evolved with students’ sophisticated ways of reasoning is 

presented. 

5.2. The Role of Tools, Inscriptions, Models, Imageries, and Gestures in 

Supporting Student Understanding and Learning 

Although the development of the classroom community’s proportional reasoning was 

discussed without an emphasis on the use of tools, inscriptions, models, imageries, and 

gestures in the previous section, I do not attempt to claim that development occurs in 

isolation from those. On the contrary, the findings of this study provide further evidence 

that learning and development occurs in relation to reasoning with tools, models, 

imageries, and gestures as stressed in many other studies (e.g., Cobb, 2003; Gravemeijer, 

1999; Gravemeijer et al., 2000, 2003; Lehrer, Schauble, Carpenter, & Penner, 2000; Lo 
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& Watanabe, 1997; Rasmussen et al., 2004; Stephan, 1998; Thompson, 1994, 1996). In 

other words, the findings of this study conclude that the creation of symbols and meaning 

co-evolve, as concluded in the studies cited above. Thus, I conclude that an increasingly 

sophisticated use of tools and models constitute a crucial element of an instructional 

sequence similar to Gravemeijer et al. (2003) and Stephan and Akyuz (2012).  

As aforesaid, in this study, the development and revision processes of the instructional 

sequence were guided by the instructional principle of “Emergent Models” (Gravemeijer, 

1991, 1994, 1999). Thus, it was anticipated that the classroom community would 

participate in and contribute to the development of emerging mathematical practices as 

they engage in increasingly sophisticated ways of tool use (Gravemeijer et al., 2003). 

Therefore, an increasingly sophisticated use of tools and models constitute a crucial 

element of the instructional sequence in this study. Although the ratio table was the 

overarching model, it took several forms of tools and inscriptions throughout the HLT 

(Gravemeijer, 1999), supporting the emergence of more formal tools and gestures, as 

explained in the following pages.  

The CMP analysis revealed that the introduction and use of ratio tables could support the 

classroom community’s ways of organizing the linked composites and keeping track of 

iterations with those linked composites. After the classroom community worked with the 

pictures of fish and food bars in order to make iterations with those on the first day of 

instruction, Berk and Aylin started to make table-like representations (see Figures 4.12 

and Figure 4.13) that included iterations with the numerical values of the number of fish 

and food bars. The teacher showed these students’ works and had these students explain 

their representations in front of the classroom community. Then, she took this 

opportunity to introduce a long ratio table, which was a similar representation to those 

of Aylin and Berkay, as a more organized way of their representations. The students 

immediately started to make iterations with the linked units in the tables (i.e., building 

up, 1-3, 2-6, 3-9…). As they made iterations in the tables, the first relationship 
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recognized in the table was related to how the two quantities change in relation to each 

other (i.e., for every one food bar added, three more fish are added). This was the 

beginning of reasoning about the covariation of the two quantities (i.e., how one changes 

in relation to the other). Moreover, this was also the time that the use of hand gestures to 

point to the successive numbers in each row of the table emerged in the classroom 

discussion. This suggests that the introduction of the ratio table incented students’ 

reasoning about the relative change of the two quantities as well as the use of hand 

gestures to make sense of and represent this change.  

As the classroom community continued to investigate the relationships in the table, 

Sinem made a different claim regarding the relative relationship between the changes in 

the two quantities. Instead of looking at the relationship between the two consecutive 

numbers, she focused on the relationships between pairs of linked quantities in the table 

and claimed that “While the number of food bars increases by 5, the number of fish 

increases by 15. That means the number of fish always increases three times more in 

relation to the number of (food) bars." She also used hand gestures to move from one 

number to another within each row. Shortly after this, multiple students reasoned with 

the scale factor within each measure spaces by using abbreviated build-up strategies (i.e., 

when the number of fish is multiplied by n, so should the number of food bars) and 

expressing their reasoning with hand gestures that pointed to moving in between measure 

spaces. Moreover, this process was also connected to grouping, linking, and iterating 

made with the pictures previously upon the teacher’s question. Thus, it was clear that 

how the iterations in the ratio tables were related to the previous activities of making 

iterations with food bars and fish.  

As the students reasoned with scale factors within the measure spaces in the (horizontal) 

ratio tables and made corresponding hand gestures, these relationships were, then, 

referred to as horizontal relationships in the classroom community. After the teacher 

made sure that the long ratio tables and the horizontal relationships in these tables were 
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discussed and used as a way for finding missing values, she provoked students to do 

more effective calculations to find a missing value by introducing a short(ened) ratio 

table stressing that “we don’t even have to put all the columns in between.” As the 

students worked on the short ratio tables, they drew on their experiences with the long 

ratio tables in order to reason with equal scale factors within each measure spaces and 

corresponding hand gestures and referred to those processes as horizontal relationships.  

Therefore, the introduction of short ratio tables by a curtailment of the long ratio tables 

supported the classroom community’s search for short and efficient ways of building up. 

More specifically, the imagery that underlay the short ratio tables was an abbreviated 

build-up process instead of building up by ones and singletons. Therefore, the advantages 

of this new tool were discussed, and the classroom community decided that it could be 

used as a tool for representing a shortcut way for abbreviated build-up reasoning. Just as 

they used multiplication as an easier way for repeated addition, they used the "times n" 

relationships in the short ratio tables as a shortened way for building up by ones and 

singles. 

On the second day of the instruction, the teacher prompted students to reason about the 

invariant multiplicative relationship between the number of food bars and fish (i.e., 

regardless of the number of food bars and fish, the number of fish is always three times 

that of the number of food bars). Upon this request, Seval referred to the long ratio table 

they drew the previous day and claimed that “when we multiply the number of food bars 

with 3, we get the number of fish” by making hand gestures to draw vertical arrows from 

the first row to the second row (See Figure 4.19a & 4.19b). In the following instances, 

the classroom community reasoned in more conceptual ways by referring to the invariant 

functional relationship between the number of food bars and fish in normative ways. For 

example, when it was given that 2 food bars could feed 6 fish, multiple students referred 

to the invariant “times many relationship” (Confrey et al., 2014a; Dole, Downton, 

Cheeseman, & Sawatzki, 2018) by writing ×3 next to the table and made hand gestures 
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to draw vertical arrows along the rows of the table. Moreover, they connected this “times 

three relationship” with the concept of unit rate. As the classroom community solved 

problems by using these invariant functional relationships between quantities and made 

corresponding hand gestures to refer to those, these relationships were then referred to 

as vertical relationships in the classroom community.  

However, on Day 4, the ways the classroom community was reasoning diverted by the 

introduction of the symbolic representation of proportion. More precisely, after the 

teacher made sure that the students were ready to move to the formal and symbolic 

notation, she introduced the symbolic proportion representation by removing some of the 

borders in the short ratio table. Then, the teacher and the students negotiated the 

horizontal and vertical relationships in the symbolic proportion representation by 

drawing on the previous taken as shared ideas (see Figure 4.23). Therefore, the students 

mathematized the relationships within measure spaces and between measure spaces to 

arrive at and reason with the symbolic proportion representation. In this process, the tools 

and gestures played significant roles in supporting learning in increasingly sophisticated 

ways.  

On the following days of the instruction, the classroom community continued to work 

with the symbolic representation and ratio tables. In particular, these ratio tables were 

drawn horizontally until the fifth day of the instruction. However, on Day 5, Ceyda 

suggested to draw the short table vertically (see Figure 4.27). This was the first time that 

the use of a vertical ratio table emerged in the classroom discussion. Two days later, on 

Day 7, a variety of problems were solved by using vertical and horizontal tables. 

Additionally, the classroom community (including the teacher and the students) 

negotiated about the structuring of between measures ratio from horizontal ratio tables 

and within measures ratio from vertical ratio tables. Moreover, horizontal relationships 

in horizontal ratio tables were associated with vertical relationships in vertical ratio 

tables, and vertical relationships in horizontal ratio tables were associated with horizontal 
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relationships in vertical ratio tables. Therefore, from that point, the terms horizontal and 

vertical relationships were not enough to refer to the previously taken as shared ideas. 

The classroom community had to re-negotiate what those relationships referred to in 

horizontal and vertical ratio tables. The associated gestures also needed to be 

renegotiated.   

Therefore, from an RME perspective, long and short ratio tables functioned as models of 

organizing and keeping track of iterations with food bars and the number of fish in more 

efficient ways at the onset of the instruction. As the classroom community reasoned with 

these tables in order to solve a variety of problems, they became models for structuring 

symbolic representation of ratios and proportions. In particular, horizontal ratio tables 

became models for the structuring of between-measures ratios, and vertical ratio tables 

became models for the structuring of within measures ratios. Below is a summary of this 

transition process:  

 

Figure 5.1. The transition from a model of to model for (Structuring of between 

measures ratios) 
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Figure 5.2. The transition from a model of to model for (Structuring of within measures 

ratios) 

 Therefore, the findings obtained from the CMP analysis suggest that the timings for the 

introduction of the semi-formal and formal notation were essential to foster the 

classroom community's reasoning as Gravemeijer et al. (2003) pointed out. The teacher 

had to make sure that the classroom community was ready to move to more formal ways 

of reasoning with the tools.   

Kendon (2000) defines gestures as “the range of visible bodily actions that are, more or 

less generally regarded as part of a person’s willing expression” (p. 49), which might 

involve facial expressions, body movements, and in particular hand movements. In this 

study, the use of gestures in this study mostly happened with the movements made by 

hand, similar to Rasmussen et al. (2004), although a few body movements also appeared 

in the classroom. The findings of this study suggest that the development and learning of 

a mathematical concept are associated with gestures in such a way that gesturing and 

learning, in particular mathematical practices, develop simultaneously as stressed by 

Rasmussen et al. (2004). 

Although the most commonly used hand gestures were the ones to show the horizontal 

and vertical relationships in the tables and symbolic proportion, other uses of hand 

gestures also appeared in the classroom discussion. For example, while the symbolic 

representation of the proportion was introduced by the teacher, the classroom community 
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used hand gestures to show the fractional division line by moving fingers to draw a 

straight line segment. Besides, as the classroom community interacted with the 

instructional sequence on Days 8 to 11, they used different hand gestures to show the 

graphical representation of proportional and linear relationships by drawing straight lines 

with fingers. Moreover, Merve made a hand gesture in order to show the different 

inclinations of the proportional relationships with the form y = mx. Nevertheless, since 

the idea of steepness was beyond the trajectory and the seventh-grade curriculum, the 

teacher did not push for further warrants and backings.   

Several other uses of hand gestures occurred on Day 12 when the classroom community 

worked on reasoning within shapes ratios and between shapes ratios in order to determine 

whether the two shapes were similar or distorted and finding the missing lengths in pairs 

of similar shapes. For instance, Berk used hand gestures to shrink the rectangular shape 

to its half both vertically and horizontally. Giray used hand gestures to stretch the shape 

vertically. Moreover, Sinem made a hand gesture to show the composite units of 4 cm 

and 6 cm that she unitized and traced these units to make comparisons (i.e., norming) 

with the other lengths in two rectangles. Another use of hand gesture appeared while the 

classroom community reasoned about the direction of change in the last two tasks (i.e., 

orange juice task and qualitative reasoning task) while they made hand gestures by 

moving their hands upwards to show increase in the tastes of the liquids and by moving 

their hand downwards to show decrease in the tastes of the liquids. Moreover, apart from 

the use of hand gestures, another use of gestures included body movements, nodding 

their heads in order to show agreement and shaking their heads (side to side movement) 

in order to show disagreement in the classroom discussion.  

Thompson (1996) refers to an image, rather than only being a mental picture, “as being 

constituted by experiential fragments from kinesthesis, proprioception, smell, touch, 

taste, vision, or hearing… and fragments of past cognitive experiences, such as judging, 

deciding, inferring, or imagining” (pp. 267-268). Moreover, he suggests that imagery has 
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an essential influence on the development of mathematical reasoning in two aspects: 

“students’ immediate understandings of the situations” and “more global aspects of their 

development of mental operations” (p. 274). Concerning this, seeing covariation is 

described as “holding in mind a sustained image of two quantities’ values (magnitudes) 

simultaneously. It entails coupling the two quantities, so that, in one’s understanding, a 

multiplicative object is formed of the two” (Saldanha & Thompson, 1998, p. 298). The 

findings of this study provide further evidence for Saldanha and Thompson’s (1998) 

arguments regarding that the images of covariation are developmental, starting from 

holding an image of two linked quantities and coordinating those quantities in successive 

ways. 

In particular, the findings of this study confirm the four successive images and operations 

that appear between ratio and rates suggested by Thompson and Thompson (1992) and 

Thompson (1994) with one exception. More specifically, these four successive images 

that appear between ratio and rates can be summarized as follows. At the first level, ratio, 

students compare two fixed quantities by using the criterion "as many times as." At the 

second level, internalized ratio, students construct accumulations of co-varying 

quantities where the accumulations occur additively, while no conceptual relationship 

between within measure spaces is made. At the third level, interiorized ratio, children 

construct covarying amounts of quantities additively, but they can anticipate that the ratio 

of the accumulations remains invariant. At the fourth level, rate, students can 

conceptualize the constant ratio variation between a pair of quantities as a single entity, 

that is, as a reflectively abstraction of ratio. In this study, the classroom community did 

not focus on the “as many times as” relationship between the number of food bars and 

fish in the first place. They started to explore the fish-food bar context by taking one food 

bar and three fish as a linked composite, and then, constructed accumulations of this 

linked composite by building up (i.e., additively) without referring to the invariant 

relationship between the number of food bars and fish (i.e., internalized ratio). Next, they 

constructed covarying amounts of quantities by building up by ones or operating with 
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equal scale factors (i.e., interiorized ratio). Lastly, they were able to abstract the invariant 

relationship between the number of fish and food bars (i.e., rate). In other words, the 

findings of this study do not provide evidence concerning the first level in Thompson's 

successive images but confirm the remaining three images in their exact orders. The 

reason for this might be due to the discrete nature of the two quantities (i.e., fish and food 

bar) and how they are linked to each other. That is, since the context is about feeding a 

specific number of fish with a specific number of food bars, it might be possible that it 

has led students to think about the question “How many groups of that number of food 

bars and fish can be created?” rather than “What is the relationship between the number 

of food bars and fish?” in the first place.  

5.3. The instructional sequence 

The instructional sequence included several contexts in which essential understandings 

of proportional reasoning were embedded. In particular, most of the fundamental ideas 

of proportional reasoning were embedded in the fish-food bar context. The CMP analysis 

revealed that five mathematical ideas were taken-as-shared and transition from informal 

tools to more formal tools were made as students made explorations within this context 

on the first four days of the instruction. On the following days, while the classroom 

community engaged in discussions while they interacted with other contexts, they 

referred to the explorations regarding the vertical and horizontal relationships made in 

the fish-food bar context. Therefore, the findings of this study suggest that a context can 

serve as an aid for supporting student understanding and recalling mathematical ideas, in 

particular, taken-as-shared ideas as other researchers stressed (Meyer, Dekker, & 

Querelle, 2001; Reinke, 2019). In particular, Reinke (2019) refers to those contexts that 

foster learners’ making sense of new mathematical ideas and ensuing examples and tasks 

as conceptual anchor contexts. Thus, the findings of this study conclude that the fish-

food bar context can serve as a conceptual anchor context in supporting a seventh-grade 

classroom community's development of proportional reasoning in increasingly 

sophisticated ways. 
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The instructional sequence was developed and revised based on an extensive literature 

review so as to include all types of problems stated in the literature. Based on the 

literature review, three major types of problems were identified as missing value 

problems, numerical comparison problems, and qualitative prediction/comparison 

problems (Behr et al., 1992; Cramer et al., 1993; Cramer & Post, 1993b; Heller et al., 

1990; Kaput & West, 1994; Noelting, 1980a; Post et al., 1988). Therefore, it can be seen 

that the instructional sequence involves all types of proportional problems. More 

precisely, the Tasks 1-5 and 9 involve missing value problems, the Tasks 10-11 include 

numerical comparison problems, and the last task (i.e., Task 12) involves qualitative 

prediction/comparison problems. Moreover, the instructional sequence includes all the 

contexts suggested by Ben-Chaim et al. (1998): comparison of part-whole relationships 

(Tasks 3 and 4), comparison of two connected quantities (Tasks 10 and 11), and 

comparison of two conceptually related quantities that does not include part-whole 

relationships (Tasks 1, 5, and 9). Also, the tasks included the ratios of discrete quantities 

(Tasks 1, 3, 4, 5) and continuous quantities (Tasks 2, 5, 6, 8, 9, 10, 11).   

Additionally, the literature on how task variables affect proportional reasoning was taken 

into consideration when the instructional sequence was designed, implemented, and 

revised. Nevertheless, since task variables were not the focus of this study, only a limited 

number of observations can be offered for consideration. Compatible with the conclusion 

of several researchers (e.g., Kaput & West, 1994; Tourniaire, 1986; Tourniaire & Pulos, 

1985), the students were able to reason with discrete quantities (e.g., fish and food bars) 

more naturally and easily than they did with continuous quantities (e.g., lengths of 

shapes). As Tourniaire and Pulos (1985) concluded, this was because discrete quantities 

can be visualized more easily. Notably, throughout the first few days of the instruction, 

the classroom community linked the pictures of fish and food bars and iterate them 

coordinately. On the ensuing days, they were able to work with the mental pictures of 

food bars and fish and made these coordinated iterations in tables and with numbers. The 

Toulmin Analysis showed that while making iterations with (mental) pictures of fish and 
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food bars, no warrants were provided or required in the classroom discussion. That is, 

the students were able to naturally and collectively work with the pictures of food bars 

and fish to make iterations. When the questions included continuous units such as lengths 

of similar shapes, the students provided warrants regarding their claims, and some of 

them were required to do so. This suggests that reasoning with continuous units required 

more demanding reasoning within the classroom community.  

The findings of this study can also provide evidence to reflect on the hierarchical analysis 

of task variables by Kaput and West (1994). To rehash the previously stated arguments, 

the numerical task variables that enhance success in proportional tasks are (1) having a 

reduced form of ratio (i.e., integer ratio) between the quantities, (2) having a familiar 

multiple of one quantity of the other quantity either within the measure space or between 

the measure spaces, (3) involving a familiar rate. Similar to the arguments made by Kaput 

and West (1994), the findings of this study suggest that having a reduced form of ratio 

enhances students' proportional reasoning and increase the number of strategies they can 

use. For instance, on Day 2, while the students were working on the fish-food bar and 

the rule was 2 food bars-4 fish, the classroom community made use of the equivalence 

of the ratios 
2

4
 and 

1

2
 in solving the problems and stated that working with a unit rate made 

the calculations easier (see Figure 4.20).  

Moreover, the findings of this study provide further evidence that the classroom 

community was able to work with quantities easily, one of which was a familiar multiple 

of the other either within the measure space or between the measure spaces, as suggested 

by Kaput and West (1994). The Toulmin analysis can provide evidence for this 

conclusion. When the rule was 1 food bar for three fish (3 is a familiar multiple of 1), the 

classroom community's reasoning with the whole number scale factors and functional 

relationships naturally emerged in the classroom across several days, and not many 

warrants/backings were provided or requested. However, the findings of this study also 

suggest that when a non-familiar multiple was present in the problem, the classroom 
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community’s reasoning increased in terms of sophistication. Hart (1981) makes a similar 

conclusion stated as: “when the question required operations more complicated than 

doubling or trebling the number of methods used by the children increased” (p. 91). For 

example, as afore-stated, the students came up with a variety of solution methods 

(including an incorrect one) with a variety of sophistication when comparing the tastes 

of Mixture A (3 glasses of orange juice and 2 glasses of water) and Mixture C (4 glasses 

of orange juice and 3 glasses of water). More specifically, these solution methods 

involved erroneous additive thinking, reasoning with part-part ratios within measure 

spaces, structuring ratios and comparing them based on fraction comparison, and 

equalizing the amounts of orange juice in both mixtures and comparing the amounts of 

water in both mixtures. It should be noted that neither within measure spaces ratio nor 

between measures spaces ratio yield in doubling or tripling. Instead, these comparisons 

required working with non-integer ratios. 

Regarding the semantic task variables, no specific conclusion can be made in relation to 

whether containment and explicit use of for every/each statement in the problem fosters 

problem-solving performance in proportional tasks. However, the findings of this study 

conclude that including a familiar rate such as speed or unit price can foster proportional 

reasoning. For example, on Day 8, the classroom community was able to work with a 

variety of unit prices, represent the relationships between the amounts of 

vegetables/fruits and their price in tables and on graphs, and eventually formalize these 

relationships into algebraic equations. Moreover, on Day 13, they were able to naturally 

reason about the best buy for various kitchen ingredients in a variety of strategies 

including creating common denominators of the amount and choosing the smallest 

numerator of the price, creating unit rates and choosing the smallest numerator without 

proving or asking for any warrants and/or backings.  

However, it should be noted that none of the following possible strategies emerged in the 

discussions that revolved around the best buy context: creating common numerators and 



 

342 
 

choosing the biggest numerator; writing the rates as kg/TL, finding the common 

denominators, and choosing the largest denominator; finding the amount of kitchen 

ingredients that could be bought with 1 TL (i.e., unit rate); and focusing on the invariant 

relationship between the numerator and denominator (i.e., ×2, ×3, etc.). This might be a 

consequence of the “best buy” context, which was based on saving money. Therefore, 

the findings of this study conclude that the strategies used by students are highly 

influenced by the contexts of the problems. This can also be supported by the classroom 

discussions that took place in the speed contexts. Particularly, when the classroom 

community worked on deciding the interval in which a car had the largest speed, 

reasoning with between measure spaces ratios (i.e., the ratio between distance and time) 

dominated the classroom discussion.  

Another task variable that was found to affect performance in proportional reasoning in 

this study, which was not mentioned by Kaput and West (1994), was including pictures 

in the problems. As hypothesized in the anticipatory thought experiments, the classroom 

community used representations with pictures in their warrants and backings in order to 

support their claims. This helped the students construct more salient claims and convince 

peers. For instance, when Sezin claimed that 6 food bars were needed to feed 12 fish, 

while the rule was 2 food bars for 4 fish, by dividing 12 by two. Berk did not understand 

why she divided by two, mainly because the rule was 2-4. Aylin provided a backing 

saying that the rules 1-2 and 2-4 are equivalent, and Gizem referred to the pictures in 

order to show that the two rules were equivalent, which acted as a further backing. 

Indeed, the Toulmin analysis showed that there were multiple instances where the 

pictures were used in providing data/warrant/backing in order to make/justify claims. 

Thus, the findings of the study conclude that including pictures in the problems facilitates 

students’ problem-solving performance in proportional tasks.  
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5.3.1. Suggested Revisions to the Instructional Sequence and the HLT 

The CMP analysis showed that the instructional sequence was actualized in the 

classroom as hypothesized to a great extent. In particular, it showed that the classroom 

community moved through the fish-food bar activity smoothly without any revision 

required. The documentation of the first classroom mathematical practice showed that 

the students could work with the scalar relationships within measure spaces and 

functional relationships between measure spaces in the fish-food bar context and various 

part-whole contexts. As the analysis of the first classroom mathematical practice 

revealed the ideas of linking composite units and iterating linked composites, covarying 

the linked composites by a scale factor (pre-multiplicative reasoning), invariance of the 

multiplicative relationship between the two units (multiplicative reasoning), 

conceptualizing the invariant relationship between the two linked composites as unit rate 

and constant of proportionality and using it as a tool/benchmark/anchor for finding 

missing values, and reasoning with ratio tables and symbolic proportion representation 

to extend covariation and invariation to the relationship between parts and the whole 

were taken-as-shared at the end of the first five days of the instruction.  

However, the findings obtained by the CMP analysis suggest a few revisions to have a 

more viable instructional sequence for future uses. First of all, in the instructional 

sequence implemented in the second experiment, the students worked with discrete 

quantities until Day 12. This might have hindered the classroom community’s reasoning 

with functional relationships in the form of decimals. Therefore, in order to foster 

students’ reasoning with functional relationships in decimal forms, including a task with 

continuous variables in a recipe context as the second task of the instructional sequence 

is suggested. An example of such a task is provided in the final instructional sequence 

that is given in the appendix (see Appendix A).  

Understanding and interpreting change in both relative and absolute terms was stated as 

an essential component of reasoning proportionally (Freudenthal, 1978; Lamon, 1995; 
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NCTM, 2000). Although there were several instances in which the classroom discussion 

revolved around interpreting change in relative terms, a task that specifically focuses on 

absolute and relative thinking and how they differ from each other is suggested to be 

included as the eighth task in the instructional sequence. In this way, further evidence 

could be obtained from the classroom mathematical analysis to conclude that these ideas 

were taken-as-shared.  

The seventh task in the instructional sequence, the similar shapes task, was designed so 

that students could work on similar shapes in order to extend previous ideas regarding 

proportion to the concept of similarity. Particularly, the first part of this activity was 

designed for students to draw on their previous experiences of creating equivalent ratios 

in order to find the missing lengths in pairs of similar shapes. The second part was 

designed so that the students would compare the two shapes and determine whether those 

shapes would be similar (i.e., have proportional lengths within and between shapes). 

Therefore, it was hypothesized that the flow of this activity would be parallel to the flow 

of the instructional sequence that first poses problems about creating equivalent ratios 

and then comparing ratios. However, the analysis of the fourth classroom mathematical 

practice (CMP 4) revealed that the similarity task posed the term “similar” without 

students exploring what that meant beforehand. The classroom dialogue that took place 

on Day 12 pointed that although a few students made connections between the lengths 

of shapes' being proportional and the shapes' being similar, it did not naturally occur to 

every student in the classroom community. This was evident when İlter challenged 

Berk’s solution that included writing a proportion between the short and long side lengths 

within the shapes to find the missing length with the following question: “Why do they 

have to be proportional? It says the shapes are similar, not proportional.” Although Berk 

and Onur were able to provide warrants for their solutions, including that the shape was 

shrunk to its half, the teacher had to explain what shrinking a shape to its half had to with 

being similar.   
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On the other hand, in the second period of the instruction, the students were presented 

with an original picture and its various copies and asked to determine which of the copies 

resembled the original picture. Particularly, the teacher launched the task with the 

question "Which of these resembles the kid (in the picture) the most?" without using the 

mathematical term similar, and one of the students immediately answered that “the one 

that is stretched from both directions resembles the most," which showed that he or she 

made an intuitive connection between stretching and resemblance. Upon this claim, the 

teacher posed the big question for students to explore “Is it enough to stretch from both 

directions? I would like you to pay attention to this. Should I stretch more from one 

direction than the other direction? Should I stretch in the same amount from both 

directions? Or what should we do? Let’s discuss with our group members.”  

After a small group discussion time, the students made claims about whether or not the 

pictures were similar without creating equivalent ratios but looking at whether or not the 

shapes were stretched/shrunk from both directions in the first place. Several students 

claimed that a shape could not be similar to the original picture if it was shrunk/stretched 

from only one direction. For instance, while exploring whether the shape that had lengths 

6 cm and 6 cm was similar to the original picture that had side lengths 6 cm and 4 cm, 

Giray claimed that the two pictures were not similar since the second picture was 

stretched only in one direction. He provided a warrant to this pair of data and claim by 

stressing that the kid in the picture looked taller and thinner compared to the original 

picture since it was stretched only vertically. Ozan made a connection to his daily life 

experience of people photoshopping pictures in order to look taller and thinner than they 

actually are. 

Furthermore, Elif drew attention to another point based on the fact that the picture was a 

square while the original picture was a rectangle. Therefore, multiple students intuitively 

reasoned about the distortion of the shapes when they were stretched only in one direction 

based on their informal knowledge in the first two questions. Then, for the third shape 



 

346 
 

that had lengths 8 cm and 12 cm, Sezin claimed that they were similar since the kids in 

the two pictures looked exactly the same, neither fatter nor taller. Moreover, Mehmet 

provided a warrant for this argument by stating that that copy was the doubled version 

of the original picture and created equivalent ratios to provide a backing (i.e., 
𝑆ℎ𝑜𝑟𝑡 

𝐿𝑜𝑛𝑔
 = 

4 

6 
 

= 
8

12
). As the discussion moved on, the classroom community came to the point that the 

shapes had to be scaled with a certain factor in both directions in order to obtain similar 

shapes; that is, the shapes had to be stretched (or shrunk) in both ways proportionally. 

Besides, within-shapes ratios were discussed, and connections between within shapes 

ratios and being proportional were established. 

Therefore, the CMP analysis showed that the ideas of similarity and distortion naturally 

emerged in the classroom discussion based on students’ intuitive and informal 

knowledge of resemblance and stretching/shrinking as they tackled with the second part 

of the task. This is no surprise when Lamon’s (1995) claim that even most preschool 

children can intuitively reason about whether a drawing or a picture appear right or wrong 

in terms of scaling or enlargement is considered. Therefore, it is suggested that the order 

of the two parts of this task is reversed so that students can draw on their informal ideas 

regarding stretching/shrinking and resemblance/distortion before they start using tables 

and proportions to reason with within and between shapes ratios.  

In addition to the revisions for the instructional sequence, the CMP analysis suggested a 

few revisions for the HLT that served as the mainstay of this study. To begin with, 

although reasoning in part-whole contexts was stated as the second phase before 

conducting CMP analysis, the findings of the study showed that the ideas that took place 

in the part-whole contexts revolved around the ideas of iterating linked composites by 

(abbreviated) build-up strategies and establishing and reasoning with the invariance 

between quantities, as similar to the ideas occurred in the fish and food bar context. That 

is, similar mental operations and reasoning took place as students moved to the part-

whole contexts, and the only difference was about the quantities having part-whole 
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relationships. Therefore, reasoning in part-whole contexts did not suggest a new phase, 

so, it was merged to the first phase. On the other hand, the CMP analysis made sure that 

structuring symbolic representations of ratios and proportions suggested a new phase 

since the classroom community’s reasoning as well as their tool use shifted direction on 

Day 6. Therefore, the second phase of the HLT table started when the idea of structuring 

ratios and proportions emerged in the classroom discussion and continued with as this 

idea was taken-as-shared as well as the ideas of creating equivalent ratios and analyzing 

equivalent ratios.  

Another revision about the phases of the HLT was adding a new phase that started when 

the similarity tasks were posed to the students on Day 12. The classroom mathematical 

practice analysis showed that the students’ thinking shifted from reasoning about 

proportional and linear relationships and their algebraic and graphical representations to 

reasoning about similarity and distortion by using within shapes and between shapes 

ratios on Day 12. More specifically, the occurrence of students' acts of challenging and 

justifications that included the relationships between proportionality and 

similarity/distortion provided evidence that their reasoning was shifted to another 

direction. Moreover, reasoning about continuous quantities in a geometrical context and 

using new gestures to shrink/stretch gave further evidence. Therefore, a new phase 

named analyzing proportionality, similarity, and distortion was added to the HLT table 

as the fourth phase. In addition, related hand gestures for stretching, shrinking, and 

tracing were added as the components of this phase.  

As the classroom instruction approached the last day, the students worked on the last task 

named Comparing coffee strengths that was posed qualitatively so that the idea of 

qualitative reasoning would emerge and become taken-as-shared in the classroom 

community. The CMP analysis showed that although the task fostered the use of previous 

ideas in students’ data, warrants, and backings in a new context and showed further 

evidence that those ideas were taken-as-shared. Moreover, it revealed that this task really 
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got students really challenged and talk about erroneous additive reasoning and paved the 

way for the emergence of the imageries of density and dispersion. However, even though 

this task had great potential for the issues above, the CMP analysis suggested that it did 

not cause the starting of a new phase. More precisely, since there was only one task posed 

qualitatively that did not cause a shift in the normative ways of reasoning of the 

classroom community, it did not merit a new phase on its own. Therefore, it was merged 

as an idea to the previous phase of the HLT. In addition, the CMP analysis failed to 

provide salient evidence of whether it was taken-as-shared in the classroom community. 

To conclude, the CMP analysis not only documented the collective growth of the 

classroom community but also provided a retrospective outline of the mathematical 

content that arose over the course of six weeks of implementation. Moreover, it unfolded 

the necessary revisions for the content and order of the instructional sequence and the 

Hypothetical Learning Trajectory for future uses. The revised version of the instructional 

sequence is given as an appendix to this study (see Appendix A). The phases of the 

revised HLT are provided below in Figure 5.3 through Figure 5.7.  
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5.4. Implications of the Study 

The findings and conclusions of this study provide essential insights into increasing the 

quality of instruction of proportional reasoning, which would be interest to many people 

in the mathematics education field. These people include mathematics teachers, primary 

school teachers, preservice teachers, teacher educators, curriculum developers, 

educational stakeholders, and mathematics education researchers. 

First and foremost, the findings of this study demonstrated that the instructional sequence 

and the related Hypothetical Learning Trajectory have the potential to support a seventh-

grade classroom community’s development of proportional reasoning in increasingly 

sophisticated ways in an argumentative classroom environment. The instructional 

sequence and the associated local instructional theory that conjectures about a likely 

learning path and possible means of supporting that path are provided as a readily usable 

instructional tool. Therefore, teachers can easily integrate these into their ratio and 

proportion instruction in seventh grade. Lower grades teachers can also let their students 

explore some of the tasks and reason about the ideas (e.g., covariation and invariation) 

without formally structuring ratios and proportions in order to facilitate students’ early 

proportional reasoning. Notably, the findings may help teachers anticipate students' 

informal and formal strategies and their difficulties in the development of proportional 

reasoning. Teacher educators can also integrate those into their instruction in order to 

help preservice teachers develop their subject matter knowledge and pedagogical content 

knowledge so that they can use those in their future instructions. This is significant when 

teachers’ lack of understanding of the essential elements of proportional reasoning is 

considered. 

Although there is a mass of literature stressing the importance of proportional reasoning 

and documenting students’ conceptions and misconceptions in this area, studies 

documenting essential understandings of proportional reasoning and how those 

understandings can be supported in a social context are rare. The literature review 
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conducted in this study and the analysis of classroom mathematical practices outlined 

the essential understandings of proportional reasoning and didactical activities. The 

examination of the Turkish Middle School Mathematics Curriculum (MoNE, 2013, 

2018) indicated that the curriculum lacks several of those understandings (e.g., iterating 

linked composites, absolute and relative thinking, qualitative reasoning, and several 

others). Therefore, based on the findings of this study, several objectives can be added 

to the topic “ratio and proportion” in sixth and seventh grades. Furthermore, several 

objectives can be added to other topics in a variety of grades since the findings of this 

study indicated that proportional reasoning develops in relation to several concepts and 

topics, including fractions, rational numbers, and multiplication and division. 

Concerning this, a promising teaching approach for enhancing proportional reasoning 

would be taking and grasping every opportunity to promote the development of 

proportional reasoning from preschool through middle school (Lamon, 1995). This 

requires seeing proportional reasoning as an umbrella skill that should be revisited in 

almost every topic in mathematics and many topics in science rather than approaching it 

as an isolated topic on its own. Moreover, it calls for linking applications of proportional 

reasoning with the general act of problem-solving in much wider contexts (Akatugba & 

Wallace, 1999). 

Several researchers pointed out that problems used in classrooms and textbooks and how 

they are taught do not help the conceptual development of students. More precisely, I 

agree with Freudenthal (1973) who stressed that textbooks include irrealistic problems 

that dictate routine solution methods, and also with Nunes and Bryant (1996) who state 

that "the problems that are used at school in mathematics exercise books for teaching 

children about proportions are often more an excuse to use the arithmetic than a content 

for the youngsters to think about" (p. 182-183). Over and above, these problems are 

treated in classrooms by focusing on fluent execution of algorithmic procedures without 

consideration and elaboration of the relationships inherent in those problems (van 

Dooren et al., 2010). The findings of this study suggest that if a variety of problem types 
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(i.e., missing value, comparison, and qualitative comparison) in a variety of realistic 

contexts are used in instruction in a successively sophisticated order, a classroom 

community can develop a meaningful and comprehensive understanding of the concepts 

of ratio, rate, and proportion in normative ways.  

Particularly, the findings of this study demonstrated that the cross-multiplication 

algorithm did not emerge naturally in the classroom discourse. Indeed, the classroom 

community could establish a variety of conceptual relationships in order to make sense 

of the proportional tasks and develop methods to solve those tasks. Therefore, the 

findings of this study suggest that a seventh-grade classroom can tackle with proportional 

tasks without using procedural algorithms such as cross-multiplication. Nevertheless, as 

stressed in NCTM (2000), I agree that “the so-called cross-multiplication method can be 

developed meaningfully if it arises naturally in students’ work, but it can also have 

unfortunate side effects when students do not adequately understand when the method is 

appropriate to use” (p. 221). That is, the method can only be an endpoint and used in 

instruction only after students have had a great deal of experiences and opportunities in 

a variety of contexts since it is a mechanical process being efficient but devoid of 

meaning (Cramer, Post, & Behr, 1989; Lamon, 1993; Post et al., 1988; Streefland, 1985).  

The findings of the study indicated that building the instruction on students' informal and 

intuitive understandings (e.g., grouping, building up strategies, unitizing, and norming) 

have significant potential in order to support a classroom community’s transition from 

informal to more formal knowledge regarding ratio and proportion. Therefore, I agree 

with several researchers who points out to the “need for the kinds of concrete 

representations that support and extend students’ natural build-up reasoning patterns 

rooted in counting, skip counting, and grouping” (Kaput & West, 1994, p. 283) and 

“matching and partitioning” (Lamon, 1995, p. 178) in grades 3-5 before formal 

instruction on ratio and proportion takes place. That is, I suggest that the formal 

representation of ratios and proportions should be built on what students already know 
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and understand. In this way, students' difficulties, especially erroneous additive 

reasoning, can be prevented, rather than remedied before it constitutes serious problems 

(Resnick & Singer, 1993; van Dooren et al., 2010). It should be noted that the complexity 

of students' knowledge and reasoning "starts out small and, with effective instruction, 

becomes much larger over time, and that the amount of growth clearly varies with 

experience and instruction” (Daro et al., 2011, p. 23). That is, as students move through 

the instruction over time, they will be more competent and proficient. Therefore, 

improving conceptual understanding of proportional reasoning would have the potential 

to facilitate understandings of several concepts in mathematics and science. 

The findings of the study showed that the numbers used in tasks are essential to support 

the conceptual growth of the classroom community. More specifically, starting with 

integer ratios (e.g., 1-3) can support making sense of problems at the onset. In addition, 

including pictures as students start out their explorations with proportional tasks can 

foster their use of a variety of strategies. Moving through using reducible ratios (e.g., 2-

4) and using non-integer values (e.g., 2-3, 3-5) can support the development of more 

sophisticated relationships and solution methods.  

Last but not least, the findings of the study indicated that the use of tools, models, 

imageries, and gestures have great potential in supporting a classroom community’s 

conceptual growth. Especially a transition from a model of to model for perspective in 

line with the theory of Realistic Mathematics Education has proved effective in 

supporting the development of the classroom community's proportional reasoning in 

increasing sophistication. Thus, it is suggested that this perspective should be adopted in 

teaching other concepts as well. 

5.5. Suggestions for Further Research  

This study provided a picture of how a seventh-grade classroom community developed 

essential ideas of proportional reasoning in increasingly sophisticated ways, how those 
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ideas became taken-as-shared as the students interacted with the instructional sequence, 

and how this development was supported. Thus, the findings of the study raise several 

questions and lack several answers to other questions. Therefore, in this part, additional 

explorations to find answers to those questions raised or remained unanswered by this 

study are suggested as further research.  

First of all, the data for this study were collected within a particular Turkish middle 

school context. It would be possible to see if the patterns in the development of 

proportional reasoning would be different in other contexts where the ratio and 

proportion topics are handled and sequenced differently. Thus, it would be interesting to 

examine whether the same developmental path would be followed or to what extent it 

would be followed as students interact with the same instructional sequence in another 

context. This would be a significant topic of study since cultural aspects might have a 

role in students’ learning and development in general (Trueba, 1988; Werstsch & Toma, 

1992), and, in particular, proportional reasoning (Aktugba & Wallace, 1999). 

The documentation of the classroom mathematical practices gave essential insight into 

the collective development of a classroom community’s proportional reasoning. It should 

be noted that this development took place in a sociocultural setting wherein social 

interactions contributed to learning (Lave, 1992). Observing and documenting the 

learning that took place in an intact class might fail to address some of the legitimate 

questions about individual students' understanding and development (Lesh & Doerr, 

2000). Therefore, investigating individual students’ development and especially how 

specific individuals benefited from and contributed to this collective development would 

be an interesting topic of study. Hence, a further study that explores individual 

development of students through individual pre-, post-, and ongoing interviews is 

suggested to provide a complete insight into the learning and development that took place 

in the classroom. Moreover, measuring the extent of the learning and development by 

means of quantitative analysis (e.g., pre- and post-tests) would be helpful to have a more 
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holistic and multifaceted understanding of the learning and development that occurred in 

the classroom community. Furthermore, conducting a longitudinal study would help 

examine the long-term learning and retainment of the classroom community.   

Another potential limitation of the study is that the scope is only limited to direct 

proportional reasoning. However, many of the essential understandings listed here (e.g., 

covariation and invariation) are also essential in the development of inverse proportional 

relationships. Therefore, a study that focuses on designing an instructional sequence and 

associated local instructional theory for the teaching of inverse proportional relationships 

and documentation of classroom mathematical practices analysis would contribute to an 

understanding of the development of a classroom community's inverse proportional 

relationships in a great extent. Such a study would be a significant contribution to the 

theory and practice when the scarcity of studies investigating students’ understandings 

of inverse proportional relationships is taken into account.  

This study provided evidence that proportional reasoning develops in relation to other 

concepts such as fractions, rational numbers, linear relationships, and similarity. 

However, this was not the main focus of this study. Thus, how proportional reasoning is 

developed within the multiplicative conceptual field might be a significant topic of study. 

Although a few studies touched upon these issues (e.g., Clark, Berenson, & Cavey, 2003; 

Hurst, & Cordes, 2019; Lo & Watanabe, 1997; Smith III, 2002; Thompson, & Saldanha, 

2003) at the individual level, there is a need to know more about the interplay between 

those concepts and the development of proportional reasoning as it takes in social context 

of a classroom.  

Lastly, the classroom mathematical practices that emerged in the classroom suggested 

several revisions to the instructional sequence and the HLT. In particular, a few tasks 

were suggested to be included in the instructional sequence, and a few tasks were 

switched places. Moreover, a few changes were made in the phases of the HLT and its 

components. Therefore, a subsequent design experiment (i.e., Design Experiment 3) can 
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give insight into whether those would be actualized in a further experiment and 

particularly if those changes would support a classroom community’s learning and 

development of proportional reasoning. Therefore, a follow-up study in which the 

revised version of the instructional sequence would be tried out is suggested in order to 

have a more viable and better case instructional sequence.  
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C. THE INSTRUCTIONAL SEQUENCE/ETKİNLİK DİZİSİ 

The final version of the instructional sequence developed in this study together with the 

suggestions for future uses is presented below. The list of the instructional tasks that 

comprise the instructional sequence is presented in the table below in English. In the 

following pages, the list of the instructional tasks and the content of these tasks are 

provided in Turkish.  

Table 1. The tasks in the final version of the instructional sequence 

Instructional tasks Learning goals 

1. Let’s feed the fish Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning 

2. Let’s make cakes 

and fruit punches   

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning 

3. What do the survey 

results tell? 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning, 

informal ratio language 

4. Learning ratio and 

proportion 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, 

distinguishing rates and ratios, ratio appropriateness 

(ratio sense), additive and multiplicative reasoning, 

formal ratio language, symbolic use of ratio and 

proportion 

5. Let’s solve 

problems 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

within and between measures comparisons, ratio 

appropriateness (ratio sense), additive and 

multiplicative reasoning, formal and informal ratio 

language, symbolic use of ratio and proportion 
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6. Representing 

proportional 

situations with 

graphs and 

equations 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

linear relationships and their representations, 

proportionality 

7. Let’s explore 

proportionality and 

linearity 

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

linear relationships and their representations, additive 

and multiplicative reasoning 

8. How much have 

the trees grown?  

Linking composite units, iterating linked composites, 

unitizing and norming, covariation and invariation, 

ratio appropriateness (ratio sense), relative and 

absolute change, additive and multiplicative 

reasoning 

9. Do the pictures 

look alike? 

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, 

similarity and distortion. 

10. Comparing speeds 

and deciding on 

best buy  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, 

distinguishing rates and ratios 

11. Comparing 

oranginess  

Iterating linked composites, unitizing and norming, 

covariation and invariation, within and between 

measures comparisons, ratio appropriateness (ratio 

sense), additive and multiplicative reasoning, 

distinguishing rates and ratios 

12. Comparing coffee 

strengths 

Unitizing and norming, ratio appropriateness (ratio 

sense), absolute and relative thinking, additive and 

multiplicative reasoning, qualitative reasoning 
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Tablo 2. Öğretimsel etkinlik dizisinindeki etkinlikler 

Etkinlikler Öğrenme amaçları 

1. Balıkları besleyelim Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme 

2. Tariflerle kek ve 

meyvu suyu yapalım   

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme 

3. Anket sonuçları ne 

söylüyor?  

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme, informel oran dili 

4. Oran ve orantıyı 

öğrenelim 

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme, formel oran dili, sembolik 

oran ve orantı gösterimleri  

5. Problemler çözelim Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme, formel ve informel oran dili, 

sembolik oran ve orantı gösterimleri   

6. Orantısal durumları 

grafikler ve 

denklemlerle 

gösterelim  

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), doğrusal ilişkiler ve gösterimleri, 

orantısallık 

7. Orantısallık ve 

doğrusallığı 

inceleyelim 

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 
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(invaryasyon), doğrusal ilişkiler ve gösterimleri, 

orantısallık, toplamsal ve çarpımsal düşünme 

8. Ağaçlar ne kadar 

büyüdü?  

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon), oran hissi, mutlak ve 

göreceli değişim, çarpımsal ve toplamsal düşünme 

9. Hangi fotoğraf 

orijinaline benziyor? 

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme, benzerlik ve çarpıtma 

10. Hızları kıyaslama ve 

en hesaplı ürüne 

karar verme  

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme 

11. Portakal tatlarını 

kıyaslayalım  

Birleşik birimleri bağlama, bağlı birleşik birimleri 

yineleme, birimleme ve biçimlendirme, ortak 

değişinti (kovaryasyon) ve değişmezlik 

(invaryasyon), aynı ve farklı ölçüm uzaylarında 

yapılan kıyaslamalar, oran hissi, toplamsal ve 

çarpımsal düşünme 

12. Kahvelerin 

sertliklerini 

kıyaslayalım  

Birimleme ve biçimlendirme, oran hissi, toplamsal 

ve çarpımsal düşünme, mutlak ve göreceli 

kıyaslama, nitel muhakeme 
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ETKİNLİK 1 - BALIKLARI BESLEYELİM 
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ETKİNLİK 2 - TARİFLERLE KEK VE MEYVE SUYU YAPALIM 
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ETKİNLİK 3 - ANKET SONUÇLARI NE SÖYLÜYOR? 
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ETKİNLİK 4 - ORAN VE ORANTIYI ÖĞRENELİM 
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ETKİNLİK 5 - PROBLEMLER ÇÖZELİM 
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ETKİNLİK 6 - ORANTISAL DURUMLARI GRAFİKLER VE 

DENKLEMLERLE GÖSTERELİM 
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ETKİNLİK 7 - ORANTISALLIK VE DOĞRUSALLIĞI İNCELEYELİM 
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ETKİNLİK 8 - AĞAÇLAR NE KADAR BÜYÜDÜ? 
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ETKİNLİK 9 - HANGİ FOTOĞRAF ORİJİNALİNE BENZİYOR? 
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ETKİNLİK 10 - HIZLARI KIYASLAMA VE EN HESAPLI ÜRÜNE KARAR 

VERME 
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ETKİNLİK 12 - KAHVELERİN SERTLİKLERİNİ KIYASLAYALIM 
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D. INFORMED CONSENT FORM/GÖNÜLLÜ KATILIM FORMU 
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F. TURKISH SUMMARY / TÜRKÇE ÖZET 

 

BİR YEDİNCİ SINIFTA MATEMATİKSEL UYGULAMALARIN GELİŞİMİ: 

ÖĞRENCİLERİN ORANTISAL AKIL YÜRÜTMELERİNİN GELİŞİMİNİN 

İNCELENMESİ  

 

1. Giriş 

Orantısal akıl yürütme en genel anlamıyla ortak değişinti (kovaryasyon) ve çarpımsal 

kıyaslamaların anlamlandırılması ile ilgili olan bir matematiksel akıl yürütme biçimidir 

(Cramer ve Post, 1993; English, 2004; Lesh, Post ve Behr, 1988). Özelde ise, orantısal 

ilişkileri belirleme, ifade etme, inceleme, açıklama ve bu ilişkilerle ilgili iddialar ortaya 

koymayı içerir (Lamon, 2007). Orantısal akıl yürütme birçok matematik konusunun 

temelinde yatmaktadır. Örneğin, rasyonel sayılar (Lamon, 2012); kesirler, yüzde, 

benzerlik, ölçekler, trigonometri (Beswick, 2011); cebir, geometri, problem çözme 

(Empson, 1999; Fuson ve Abrahamson, 2005); fonksiyonlar, grafik çizimi, denklemler, 

ölçme (Karplus, Pulos ve Stage, 1983); olasılık ve istatistik (Greenes ve Fendell, 2000) 

konuları için orantısal akıl yürütme çok önemlidir. Matematik dersine ek olarak, orantısal 

akıl yürütme fen dersi ve günlük hayattaki durumları anlamak için de büyük önem taşır 

(Cramer ve Post, 1993; Spinillo ve Bryant, 1999).  

Dolayısıyla, orantısal akıl yürütme geniş kapsamlı, birleştirici ve diğer kavramların 

gelişiminde önemli rol oynayan anahtar bir beceridir. (Amerikan) Ulusal Matematik 

Öğretmenleri Konseyi ([NCTM], 1989) orantısal akıl yürütmenin 5-8. sınıf aralığında 

geliştiğini öne sürmüş ve bu sınıf düzeylerinde orantısal akıl yürütmenin gelişimine 

önem verilmesi gerektiğine vurgu yapmıştır. Benzer şekilde, ülkemizde Millî Eğitim 

Bakanlığı (MEB, 2013, 2018) Ortaokul Matematik Dersi Öğretim Programı’nda 6. ve 7. 

sınıfta oran ve orantı konularına ayrılan sürenin çokluğu dikkat çekmektedir.  
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Bu kadar önemli ve geniş kapsamlı bir kavram olmasına rağmen, birçok çalışmada 

öğrencilerin orantısal durumlar içeren problemlere yanıt vermede ve oran ve orantı 

konusunu anlamlandırmada zorlandıkları görülmüştür (Atabaş ve Öner, 2017; Ben-

Chaim vd., 1998; Duatepe, Akkuş-Çıkla ve Kayhan, 2005; Fernández, Llinares, van 

Dooren, De Bock ve Verschaffel, 2012; Harel, Behr, Lesh ve Post, 1994; Hart, 1981, 

1984, 1988; Inhelder ve Piaget, 1958; Kahraman, Kul ve İskenderoglu, 2019; Kaplan, 

İşleyen ve Öztürk, 2011; Kaput ve West, 1994; Karplus vd., 1983; Kayhan, Duatepe ve 

Akkuş-Çıkla, 2004; Mersin, 2018; Misailidou ve Williams, 2003; Noelting, 1980a, 

1980b; Özgün-Koca ve Altay, 2009; Piaget ve Beth, 1966; Piaget ve Inhelder, 1975; 

Resnick ve Singer, 1993; Steinthorsdottir ve Sriraman, 2009; Tourniaire ve Pulos, 1985, 

Tourniaire, 1986; van Dooren vd., 2010).  

Öğrencilere benzer şekilde, birçok çalışmada, öğretmenlerin de orantısal akıl yürütmenin 

temel bileşenlerini bilmede ve öğrencilerine etkili ve zengin öğrenme fırsatları sunmada 

yetersiz oldukları belirtilmiştir (Canada, Gilbert ve Adolphson, 2008; Harel ve Behr, 

1995; Hilton ve Hilton, 2019; Hines ve McMahon, 2005; Kastberg, D’Ambrosio ve 

Lynch-Davis, 2012; Nagar, Weiland, Orrill ve Burke, 2015; Sowder, Armstrong, Lamon, 

Simon, Sowder ve Thompson, 1998; Simon ve Blume, 1994a, 1994b; Sowder ve Philipp, 

1995; Thompson ve Thompson, 1994, 1996; Weiland, Orrill, Nagar, Brown ve Burke, 

2020). Birçok çalışmada, öğretmenlerin orantısal akıl yürütme problemleri için 

çoğunlukla işlemsel stratejiler kullandıkları (Fisher, 1988; Lobato, Orrill, Druken ve 

Jacobson, 2011; Orrill ve Burke, 2013) ve bilgilerinin yüzeysel ve sınırlı olduğu (Hilton 

ve Hilton, 2019; Nagar vd., 2015) sonucuna ulaşılmıştır.  

Buradan anlaşılacağı üzere, öğrencilerin yaşadıkları zorlukların kaynakları sınıf 

ortamında gerçekleşen öğretimden kaynaklandığı söylenebilir (Hilton, Hilton, Dole ve 

Goos, 2016). Birçok çalışmada, oran ve orantı konusunun öğretiminin içler-dışlar 

çarpımı algoritmasına vurgu yapılarak verildiği ve diğer konulardan bağımsız bir konu 

olarak öğretildiği sonucuna varılmıştır (Karplus vd., 1983; Lamon, 1995; Lesh vd., 
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1988). Ancak, birçok çalışma öğrencilerin bu algoritmayı anlamlandırmadığı (Lamon, 

1995; Post, Behr ve Lesh, 1988) ve orantısal akıl yürütmeyi geliştirmediği; aksine, 

sınırlandırdığına (Lesh vd., 1988) dikkate çekmiştir. Sonuç olarak, okullarda gerçekleşen 

oran ve orantı öğretiminin orantısal akıl yürütmenin temel bileşenlerini geliştirmede 

yeterli olmadığı; oran ve orantı öğretiminin kalitesinin artırılması gerektiği sonucuna 

varılabilir.  

Çok sayıda önemli çalışma ve program dokümanında oran ve orantı öğretiminin 

öğrencilerin var olan sezgisel ve informel bilgileri üzerine kurulması gerektiğine dikkat 

çekilmiştir (Lamon, 1995; NCTM, 2000; Resnick ve Singer, 1993). Diğer yandan, 

öğrencilerin orantısal akıl yürütmelerinin gelişiminin ortaya konulduğu çalışmalar da 

öğretim tasarlanırken göz önüne alınmalıdır. Piaget ve arkadaşları, birçok çalışmada 

çocuklarda 11-12 yaşına kadar orantısal akıl yürütmenin gelişmediğini iddia etmiştir 

(Inhelder ve Piaget, 1958; Piaget, 1968; Piaget ve Beth, 1966; Piaget ve Inhelder, 1975). 

Dolayısıyla, alan yazındaki çalışmalar orantısal akıl yürütmenin gelişimi ile ilgili karşıt 

görüşler öne sürmektedir.  

Bu noktada, Simon ve Tzur’un (2004) önerdiği gibi, gelişim süreci belirli olmayan ve 

öğrencilerin zorlandıkları kavramların gelişiminin desteklenmesi için yeni yollar 

bulunmalıdır. Bu bağlamda, varsayıma dayalı öğrenme rotalarının öğretimin 

iyileştirilmesi için kullanılması önerilmektedir. Varsayıma dayalı öğrenme rotaları, 

Simon (1995) tarafından ortaya atılmış ve “öğrenmenin hangi rotada gerçekleşeceğine 

yönelik öngörüler” olarak tanımlanmıştır (s. 135). Varsayıma dayalı öğrenme rotaları, 

öğrenme amaçlarını, öğrenme etkinliklerini ve öğrencilerin bu etkinlikler süresince 

deneyimleyecekleri düşünme biçimlerini ve öğrenmeyi içerir (Clements ve Sarama, 

2004; Simon, 1995). İleriki yıllarda, birçok araştırmacı öğrenme etkinliklerinin 

varsayıma dayalı öğrenme rotalarının önemli bir bölümünü oluşturduğunu ve bu 

etkinliklerin öğrencilerin öngörülen rota boyunca ilerlemelerini sağlayacak şekilde 

sıralanması gerektiğini öne sürmüş ve bu sıralı etkinlikleri etkinlik dizisi olarak 
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tanımlamıştır (Cobb, 1999; Clements ve Sarama, 2004). Bu çalışmada, Stephan ve 

arkadaşları (2015) tarafından oran ve orantı öğretimi için Gerçekçi Matematik Eğitimi’ne 

dayalı olarak geliştirilen etkinlik dizisi ve ilgili varsayıma dayalı öğrenme rotası 

geliştirilmiş, test edilmiş ve düzenlenmiştir. Etkinlik dizisinin uygulanmasında Gerçekçi 

Matematik Öğretimi Teorisi esas alınmıştır. Sınıf içi uygulamanın analizi Toulmin 

Argümantasyon modelinin Stephan ve Rasmussen (2002) tarafından uyarlanan sınıf içi 

matematiksel uygulamalar analizi ile analiz edilmiştir. Bu çalışmanın amaçları ve bu 

amaçlara yönelik olarak oluşturulan araştırma soruları bir sonraki bölümde sunulmuştur.   

1.1. Çalışmanın Amaçları ve Araştırma Soruları 

Bu çalışmanın birinci amacı, yedinci sınıfta orantısal akıl yürütmenin öğretilmesi için bir 

varsayıma dayalı öğrenme rotası ve ilgili etkinlik dizisinin geliştirilmesi, test edilmesi ve 

düzenlenmesidir. Çalışmanın ikinci amacı, öğrencilerin informel ve formel araçlarla 

ortaklaşa akıl yürütmelerinin ve bu akıl yürütmenin Gerçekçi Matematik Eğitimi 

perspektifi doğrultusunda formel araçlarla akıl yürütmeye doğru gelişiminin 

açıklanmasıdır. Üçüncü amaç ise, öğrencilerin orantısal akıl yürütmeye yönelik fikir ve 

kavramların ortaklaşa gelişiminin ortaya konulmasıdır (sınıf içi matematiksel 

uygulamalar analizi). Orantısal akıl yürütme, ters orantı ile ilgili durumların da 

anlamlandırılmasını içerse de bu çalışmanın kapsamı doğru orantısal ilişkilerle sınırlıdır.  

Daha detaylı olarak ele almak gerekirse, çalışmanın ilk iki amacı orantısal akıl 

yürütmenin öğretimi için bir etkinlik dizisi, varsayıma dayalı öğrenme rotası ve bu 

etkinlik dizisi ile öğrenme rotasının nasıl etkili olabileceğini açıklayan ilgili yerel 

öğretimsel teorinin ortaya konulması ile ilgilidir. Bu bağlamda, bu çalışma öğrenme 

rotaları ve Gerçekçi Matematik Öğretimi perspektiflerinin kritik bileşenlerini bir araya 

getirerek, oran ve orantı öğretiminin öğrencilerin orantısal akıl yürütme ile ilgili informel 

ve sezgisel bilgilerinin üzerine inşa edilmesi sürecini ele almaktadır. Bu doğrultuda, 

orantısal akıl yürütme öğretiminin başlangıç noktalarının ne olması ve informel araç 

kullanımının nasıl olması gerektiği ile öğrencilerin bu informel bilgilerini ve informel 
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araçları kullanarak oran ve orantıya yönelik formel bilgiye nasıl ulaştıklarının 

(matematikleştirme) incelenmesi ilk iki amaç kapsamında ele alınmıştır. Üçüncü amaç 

ise, öngörülen öğrenme rotasının sınıf içinde nasıl gerçekleştiğinin matematiksel 

uygulamalar analizi ile ortaya konmasına dayalıdır. Bu doğrultuda, etkinlik dizisi ve 

öğrenme rotasının öğrencilerin ortaklaşa matematikleştirme sürecini desteklemedeki 

potansiyel güçlükleri ve sınırlılıkları üzerinde durulmaktadır. Çalışmanın araştırma 

soruları aşağıdaki gibidir:  

1. Orantısal akıl yürütmenin öğretimi için ideal bir varsayıma dayalı öğrenme rotası 

ve ilgili etkinlik dizisi nasıl olmalıdır?  

o  Gerçekçi Matematik Eğitimi’ne dayalı olarak orantısal akıl yürütme 

öğretiminin başlangıç noktaları nedir?  

o Öğrenciler informel bilgi ve araçları kullanarak oran ve orantıya yönelik 

formel bilgiye nasıl ulaşırlar (matematikleştirme)? 

o Geliştirilen etkinlik dizisi ve varsayıma dayalı öğrenme rotası bu 

matematikleştirme sürecini nasıl desteklemektedir? 

o Geliştirilen etkinlik dizisi ve öğrenme rotasının öğrencilerin ortaklaşa 

matematikleştirme sürecini desteklemedeki potansiyel güçlükleri ve 

sınırlılıkları nelerdir? 

o Geliştirilen varsayıma dayalı öğrenme rotası ve etkinlik dizisi 

kullanılarak yapılan öğretimde bu konularla ilgili hangi kanıtlar ortaya 

sunulmaktadır?  

2. Geliştirilen etkinlik dizisi ve öğrenme rotası ile yapılan öğretim sürecinde hangi 

matematiksel uygulamalar (mathematical practices) oluşturulmuştur?  
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Bu araştırma sorularına yönelik olarak, bu çalışmanın gerçekleştirilmesinin önemine bir 

sonraki bölümde yer verilmiştir.  

1.2. Çalışmanın Önemi 

Yukarıda belirtildiği gibi, bu çalışmanın en genel amacı orantısal akıl yürütmenin 

gelişime yönelik varsayıma dayalı bir öğrenme rotası ve ilgili etkinlik dizisinin 

geliştirilmesi, test edilmesi ve düzenlenmesidir. Dolayısıyla, bu çalışmanın sonuçlarının 

uygulamaya ve kurama birçok yönden katkı sağlayacağına inanılmaktadır. Bu katkılar 

aşağıda belirtilmiştir.  

Daha önce bahsedildiği gibi, orantısal akıl yürütme öğrencilerin özellikle matematik ve 

fendeki başarıları ve günlük hayattaki durumları anlamlandırmaları için önemlidir 

(Cramer ve Post, 1993). Diğer bir yandan, öğrencilerin ve öğretmenlerin orantısal akıl 

yürütmede zorlandıkları ve oran ve orantı öğretiminin genellikle işlemsel becerilere 

odaklandığı ve orantısal akıl yürütmeyi geliştirmediği belirtilmiştir (Hart, 1984; Karplus 

vd., 1983; Lamon, 1995; Post vd., 1988). Bu sebeplerden dolayı oran ve orantı 

öğretiminin iyileştirilmesi önem arz etmektedir. Bu çalışma kapsamında oran ve orantı 

konusu ile ilgili anahtar öğrenmeleri en anlamlı, kapsamlı ve sıralı bir şekilde 

gerçekleştirmeyi amaçlayan bir etkinlik dizisi geliştirilmesi hedeflenmektedir. Bu 

sebeplerden dolayı çalışma sonuçlarının okullardaki ve ders kitaplarındaki oran ve orantı 

konusunun öğretiminin iyileştirilmesine katkı sağlaması beklenmektedir.  

Diğer bir yandan, 2013 yılında yenilenen öğretim programlarında oran ve orantı 

konusuna yeni kazanımlar eklenmiştir (MEB, 2013). Örneğin öğrencilerden gerçek 

yaşam durumlarını, tabloları ve doğru grafiklerini inceleyerek iki çokluğun orantılı olup 

olmadığına karar verebilmeleri, doğru orantılı iki çokluk arasındaki ilişkiyi tablo ve 

denklem olarak ifade etmesi beklenmektedir. Ancak, bu kazanımlar uluslararası alan 

yazında vurgulanan tüm anahtar öğrenmeleri içermemekte ve var olan kazanımlar belli 

bir sırada sunulmuş olsa da bu sıralamanın öğrencilerin oran orantı konusunu en anlamlı 
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şekilde öğrenmesini sağlayacak şekilde olup olmadığı ile ilgili ampirik bir bilgi 

bulunmamaktadır. Buna ek olarak, programın doğası gereği konularla ilgili öğrenme 

çıktılarına hangi öğrenme materyalleri ile ve nasıl bir yol izlenerek ulaşılması gerektiği 

program kapsamına dahil edilmemiştir. Diğer yandan, ders kitaplarında ve ek 

kaynaklarda bulunan öğretim materyalleri ise genellikle işlemsel becerileri ön plana 

çıkarmakta ve kendi içerisinde belirli bir sıra barındırmamaktadır. Bu durum öğretmenler 

için de yeni olan ve var olan kazanımlara ulaşmayı sağlayacak öğrenme ortamları 

sunmada sorun oluşturmaktadır. Bu çalışmada geliştirilecek olan etkinlikler alan yazında 

rapor edilen çalışma sonuçlarına göre hazırlanarak test edilip öğrencilerin en iyi 

öğrenmelerini sağlayacak şekilde düzenlenmiştir. Bu bağlamda, hazırlanacak olan 

materyallerin öğretmenlere oran ve orantı konusunun en iyi, anlamlı ve sıralı bir şekilde 

öğretilmesine olanak sağlayacak bir kılavuz niteliği taşıyacak olmasından dolayı oran ve 

orantı konusunun öğretim kalitesinin artırılmasında yardımcı olacağı düşünülmektedir. 

Bu anlamda çalışmanın hem kurama hem de pratiğe özgün katkı sağlayacağına 

inanılmaktadır.  

Alan yazındaki çalışmalar öğrencilerin yanı sıra, matematik öğretmenlerinin ve aday 

öğretmenlerin orantısal akıl yürütmelerinin yetersiz olduğu ve bu konuda bilgi 

eksikliklerinin ve benzer kavram yanılgılarının olduğunu (Canada, Gilbert ve 

Adolphson, 2008; Harel ve Behr, 1995), bu konuyu öğretmede zorlandıklarını (Behr, 

Harel, Post ve Lesh, 1992) ve öğrencilerin oran orantı konusundaki düşünüş biçimleri, 

stratejileri ve gelişimsel süreçleri hakkında yetersiz bilgiye sahip olduklarını (Hines ve 

McMahon, 2005) göstermiştir. Bu sebeplerden dolayı, öğretmenler öğretim 

gerçekleştirirken farklı bağlamlarda örnekler sunamamakta ve öğrencilerin farklı 

stratejiler ve düşünüş biçimleri geliştirmelerine olanak sağlayacak öğrenme ortamı 

sağlayamamaktadırlar. Buna ek olarak, öğretmenler öğrencilerin oran ve orantı 

konusunu anlamlı öğrenmelerini sağlamak için ne öğreteceklerini, bunları hangi 

materyal ve bağlamlarla ve hangi sırada öğreteceklerini belirlemede güçlük 

yaşamaktadırlar. Bu sebeplerden dolayı, bu çalışma sürecinde geliştirilen varsayıma 
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dayalı öğrenme rotası ve ilgili etkinlik dizisi ve bunların nasıl uygulanması gerektiğini 

yerel öğretim teorisi sayesinde öğrencilerin orantısal akıl yürütmedeki gelişimlerini 

anlamalarında yardımcı olması ve bu bağlamda bu etkinliklerin öğretime entegre 

edilerek öğretmenlerin alan ve pedagojik alan bilgilerinin arttırılmasında önemli 

potansiyele sahip olduğu düşünülmektedir. Bu anlamda, çalışmanın uygulamaya ve 

kurama büyük bir katkı sağlayacağı öngörülmektedir.  

Diğer bir taraftan, bu çalışmada öğrencilerin orantısal akıl yürütmelerini geliştirmek için 

hazırlanan etkinliklerde Gerçekçi Matematik Eğitimi (GME) öğretim teorisi temel 

alınmıştır. Bu bağlamda, öğrencilerin orantısal akıl yürütmelerine ilişkin bilgiler onlara 

hazır kurallar sistemi olarak verilmemiş; aksine, bu bilgi ve becerilerin matematik 

problem çözme sürecinde edinmeleri sağlanmıştır (Gravemeijer, 1999). Diğer bir ifade 

ile çalışmada öğrencilere gerçek yaşam durumları sunularak bağlam içerikli çözüm 

stratejileri üretmeleri için fırsatlar sunulmuştur (Gravemeijer, 1994). Böylece, 

matematikleştirme sürecinde öğrencilerin orantısal akıl yürütmeye ilişkin informel 

bilgilerinden yararlanılarak formel bilgiye geçmeleri desteklenmiştir (Freudenthal, 1973, 

1991). Ancak alan yazına bakıldığında, orantısal akıl yürütmenin gelişimini Gerçekçi 

Matematik Eğitimi Teorisi kapsamında inceleyen çok az sayıda çalışmaya rastlanmıştır. 

Ayrıca, bu çalışmaların bu projede hedeflenen uzun soluklu, tasarı tabanlı araştırma 

modeli ile değil kısa süreli mevcut durumu ortaya koymaya yönelik veri toplamaya 

dayalı çalışmalardır. Bu anlamda mevcut çalışma alan yazınına katkı sağlamak adına 

büyük önem taşımaktadır. Buna ek olarak, genelde yurtdışındaki çalışmalarda kullanılan 

bu teorinin farklı kültürlerde uygulanabilirliğine yönelik çalışmalara olan ihtiyaç 

literatürde belirtilmiştir. Bu çalışmada Gerçekçi Matematik Eğitimi temel alınarak 7. 

Sınıf programında yer alan kazanımlar, bunlara ek olarak alan yazınından edinilen 

bulgular doğrultusunda belirlenen anahtar öğrenmeler ile öğrencilerin orantısal akıl 

yürütmelerinin gelişiminin desteklenmesine yardımcı olacak bir etkinlik dizisi 

geliştirilmesi hedeflenmektedir. Bu etkinlikler Türkiye bağlamında incelendiğinden 
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Gerçekçi Matematik Eğitiminin farklı kültürlerde ve farklı bağlamlarda nasıl çalıştığına 

yönelik sonuçların alan yazına kuramsal bir katkı sağlaması beklenmektedir.   

Son olarak, ulusal ve uluslararası alan yazında öğrencilerin orantısal akıl yürütmeye 

yönelik informel bilgileri, zorlukları ve kavram yanılgıları ile ilgili çok sayıda çalışma 

bulunmaktadır. Fakat bu çalışmaların sonuçlarına dayanarak hazırlanan bir öğretimin 

sınıf içerisinde test edilmesine yönelik çalışmalara sık rastlanmamaktadır (Wilson, 

2009). Benzer şekilde, orantısal akıl yürütmenin bileşenlerinin neler olduğu, öğrencilerin 

orantısal akıl yürütme gelişimlerinin nasıl ve hangi öğretimsel etkinliklerle 

destekleneceğine yönelik sorular cevapsız kalmaktadır (Rresnick ve Singer, 1993). Diğer 

bir deyişle, orantısal akıl yürütme özelinde de eğitim alanındaki araştırmalar ile 

pratikteki uygulamalar arasında önemli bir boşluk bulunmaktadır (Lamon, 1993; 

Misialidou ve Williams, 2003; Resnick ve Singer, 1993). Bu çalışmanın amaçları 

düşünüldüğünde, bu çalışmanın orantısal akıl yürütmeye yönelik araştırmalar ile öğretim 

arasındaki boşluğu doldurmaya yönelik olduğu görülebilir.   

Son olarak, alan yazında orantısal akıl yürütmeye yönelik varsayıma dayalı öğrenme 

rotalarını odak noktası olarak alan çalışmalar (Carpenter vd., 1999; Steinthorsdottir ve 

Sriraman, 2009; Wright, 2014) var olsa da bu çalışmalar bireysel öğrenme rotalarına 

odaklanmaktadır. Bu sebepten dolayı, hazır olarak öğretmenlerin sınıf içerisinde 

kullanımına uygun değildir (Daro vd., 2011). Bu çalışmada ise, bir sınıfın ortaklaşa 

olarak orantısal akıl yürütmelerinin nasıl gerçekleştiği ve bu gelişimin nasıl 

destekleneceğine odaklanılmaktadır. Bu sayede, bu çalışmada bir sınıf içerisinde 

orantısal akıl yürütmenin nasıl geliştirildiğine yönelik bir rota ve ilgili öğretimsel 

etkinlikler öğretmenlere hazır olarak sunulmaktadır.  

2. Alanyazın Taraması 

Orantısal akıl yürütme en genel anlamıyla kovaryasyon ve çarpımsal kıyaslamaların 

anlamlandırılması ile ilgili olan bir matematiksel akıl yürütme biçimidir (Cramer ve Post, 
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1993; English, 2004; Lesh vd., 1988). Dolayısıyla, ezberlenmiş algoritmalarla (içler-

dışlar çarpımı vb.) orantısal durumlar içeren problemleri çözmek orantısal akıl yürütme 

olarak adlandırılamayacağı vurgusu birçok araştırmacı tarafından dile getirilmiştir 

(Cramer ve Post, 1993; Lesh vd., 1988). Bundan ziyade, orantısal akıl yürütme, iki 

rasyonel ifade (oran, bölüm veya kesir) arasındaki bütünsel ilişkileri anlamlandırma ve 

bunlar hakkında akıl yürütmeyi içerir (Lesh vd., 1988). Bu ilişkiler, oranı oluşturan aynı 

ölçüm uzayına (measure space) ait çokluklar ve farklı ölçüm uzayına ait çokluklar 

arasındaki ilişkilerdir. Aynı ölçüm uzayına sahip çokluklar arasındaki ilişkileri 

anlamlandırmak için, “Bu çokluk ikinci durumda kaç katına çıkmış/kaça bölünmüş?” 

sorusu sorulmalıdır. Farklı ölçüm uzayına ait çokluklar arasındaki ilişkileri 

anlamlandırmak için ise, “Bu iki çokluk arasındaki (fonksiyonel) ilişki nedir?” sorusuna 

cevap aranmalıdır. Lamon’a (1994) göre, öğrenciler, hangi stratejiyi kullanırlarsa 

kullansınlar, orantısal akıl yürütme problemlerini bu iki ilişkiden birini kullanarak 

çözmektedir.  

Bu çalışmada, etkinlik dizisinin tasarlanması ve uygulanmasında Gerçekçi Matematik 

Eğitimi Teorisi kılavuz olarak kullanıldığı için, orantısal akıl yürütmenin öğretimi için 

“Öğretici Olgu” ilkesine bağlı kalınmıştır. Bu ilke matematiksel kavramların nasıl 

oluştuğunu belirleyebilmekle ilgilidir. Bu kapsamda, bir kavramın öğretici olgusu, o 

kavramla ilgili öğrencilerin muhtemel deneyimleri ve öğrenme fırsatları ile ilgilidir 

(Freudenthal, 1983). Öğrenciler bu deneyimler ve öğrenme fırsatları aracılığıyla 

öğrenme sürecine girerler ve süreç boyunca hedeflenen matematiksel fikir sürecin 

yeniden keşfi ile kazanılır. Bu ilkeden yola çıkarak, Lamon (1995) orantısal akıl yürütme 

için gerekli olan öğretici deneyimleri ve orantısal akıl yürütmenin kritik bileşenlerini 

ortaya koyduğu bir teorik çerçeve ortaya koymuştur. Bu çerçeveye göre, orantısal akıl 

yürütmenin kritik bileşenleri göreceli (relative) ve mutlak (absolute) değişim, ortak 

değişinti (covariance) ve değişmezlik (invariance) ve oran hissidir (ratio sense). Orantısal 

akıl yürütmenin öğrenilmesinde etkili olan öğretici (didactical) deneyimler ise, 

bölümlere ayırma (partitioning), ilişkiler ve birimleştirmedir (unitizing) (Lamon, 1995). 
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Bu çalışma kapsamında, Lamon (1995) tarafından ortaya konulan bu çerçeve 

genişletilmiştir. Bu bağlamda, nitel ve nicel muhakeme ile çarpımsal düşünme, orantısal 

akıl yürütmenin diğer kritik bileşenleri olarak kabul edilmiştir. Ayrıca, birleşik birimleri 

bağlama ve bağlı birleşik birimleri yineleme de diğer bir önemli öğretici deneyim olarak 

ele alınmıştır.  

Bu çalışmanın amaçları kapsamında öğrencilerin informel bilgi ve stratejilerine yönelik 

alanyazın taramasının incelenmesi de önemlidir. Bu sayede, geliştirilen öğretimsel 

tasarının ve etkinlik dizisinin öğrencilerin formel öğretime girmeden önce sahip 

oldukları bilgiler ve kullandıkları stratejilerin üzerine inşa edilmesi sağlanabilir. Birçok 

araştırmacı öğrencilerin orantısal akıl yürütmeye yönelik informel bilgilerini incelemiş 

ve bu bilgilerin genellikle şunlara dayandığını ortaya koymuştur: nitel akıl yürütme 

(Inhelder ve Piaget, 1958; Piaget, 1968; Piaget ve Beth, 1966; Piaget ve Inhelder, 1975); 

sayma, eşleştirme, eşit parçalara ayırma (Confrey vd., 2014; Lamon, 1995); gruplama, 

ritmik sayma, artırma stratejileri, birim faktör yaklaşımı (Kaput ve West, 1994); birleşik 

birimler oluşturma ve birleşik birimleri yineleme (Battista ve van Auken Borrow, 1995; 

Lamon, 1994; Steffe, 1988); parça-parça ilişkileri ve yarım imgesi (Spinillo ve Bryant, 

1991) ve kovaryasyon (Lamon, 2007; Spinillo ve Bryant, 1999). Birçok çalışmada, 6-11 

yaş öğrencilerin bu sezgisel bilgileri kullanarak orantısal durumlar içeren problem 

hakkında akıl yürütebildikleri sonucuna varılmıştır (Bryant, 1974; Lamon, 1995; Muller, 

1977, 1978; Resnick ve Singer, 1993; Spinillo ve Bryant, 1991, 1999).  

Buna ek olarak, alanyazın taramasında öğrencilerin sahip oldukları informel stratejilerin 

çoğunlukla artırma (build-up), kısa yoldan artırma (abbreviated build-up) ve birim faktör 

stratejilerine dayandığı belirtilmiştir (Ben-Chaim vd., 1998; Kaput ve West, 1994; 

Tourniaire ve Pulos, 1985). Diğer yandan, öğrencilerin bu stratejileri kullanırken tablo 

ve tablo-benzeri gösterimleri kendilerine öğretilmeden önce sezgisel olarak kullandıkları 

ve bu gösterimlerin öğrencilerin orantısal akıl yürütmelerini geliştirdiği belirtilmiştir 
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(Kenney, Lindquist ve Heffernan, 2002; Middleton ve Van den Heuvel-Panhuizen, 1995; 

Streefland, 1984, 1985).   

Öğrencilerin orantısal akıl yürütmeye yönelik zorlukları incelendiğinde ise, öğrencilerin 

orantısal akıl yürütme problemlerine cevap verirken birçok zorluk yaşadıkları ve bazı 

kavram yanılgılarına sahip oldukları belirtilmiştir. Örneğin, bazı çalışmalarda 

öğrencilerin orantısal ve orantısal olmayan durumları ayırt etmede zorlandıkları ve 

orantısal durumlar için kullanılan stratejileri orantısal olmayan durumlar için de 

kullanma eğiliminde oldukları görülmüştür (Ayan ve Isiksal-Bostan, 2018; De 

Bockverschaffel ve Janssens, 1998; Freudenthal, 1983; Modestou ve Gagatsis, 2007, 

2009, 2010; van Dooren, De Bock, Janssens ve Verschaffel, 2007). Diğer bir çalışmada, 

öğrencilerin problemlerin bağlamına odaklanmadan rastgele işlemler yaptıkları, orantısal 

durumları oluşturan çokluklardan yalnızca birine odaklandıkları ve diğerlerini 

görmezden geldikleri ve öznel ve alakasız cevaplar verdikleri görülmüştür (Ben-Chaim 

vd., 1998). 

Bu zorluklara ek olarak, orantısal durumlarla ilgili yaşanılan en büyük zorluk yanlış 

toplamsal düşünme biçimidir (Atabaş ve Öner, 2017; Ben-Chaimvd., 1998; Duatepe 

vd.,2005; Fernández vd.,2012; Harel vd.1994; Hart, 1981, 1984, 1988; Inhelder ve 

Piaget, 1958; Kahraman vd.,2019; Kaplan vd., 2011; Kaput ve West, 1994; Karplus vd., 

1983; Kayhan vd., 2004; Mersin, 2018; Misailidou ve Williams, 2003; Noelting, 1980a, 

1980b; Özgün-Koca ve Altay, 2009; Piaget ve Beth, 1966; Piaget ve Inhelder, 1975; 

Resnick ve Singer, 1993; Steinthorsdottir ve Sriraman, 2009; Tourniaire ve Pulos, 1985, 

Tourniaire, 1986; van Dooren vd., 2010). Dahası, yanlış toplamsal düşünme biçimi, 

orantısal akıl yürütmenin gelişiminde bir engel olarak görülmektedir (Ayan ve Isiksal 

Bostan, 2018).  

Bu çalışmanın amaçlarından birisi yedinci sınıf düzeyinde bir sınıftaki öğrencilerin 

orantısal akıl yürütmelerinin gelişiminin desteklenmesi için bir etkinlik dizisi ve 

varsayıma dayalı öğrenme rotasının geliştirilmesidir. Bu etkinlik dizisi ve varsayıma 
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dayalı öğrenme rotasının geliştirilmesinde ve uygulanmasında Hollandalı matematikçi 

ve eğitimci olan Hans Freudenthal’ın 1970’li yıllarda ortaya koyduğu Gerçekçi 

Matematik Eğitimi Teorisi kılavuz alınmıştır.  Bu teori somut çözüm stratejilerini formel 

matematik bilgiye dönüştürebilmede ön plana çıkan bir öğretim teorisidir. Freudenthal 

(1973) anti-didaktik olarak tanımladığı klasik matematik eğitiminde matematikçilerin 

sonuç olarak ulaştıkları formel bilginin matematik eğitimcileri tarafından derslerde 

başlangıç noktası olarak verildiğini, böylece öğrencilerin matematiği ezber ve hazır 

kurallar bütünü olarak gördüklerini belirtmiştir. Bu düşünceye karşıt olarak, Freudenthal 

(1968, 1973, 1991) matematiğin hazır kurallar sistemi değil bir insan etkinliği olarak 

görülmesi görüşünü savunur.  

Gerçekçi Matematik Eğitimi’nin temeli matematikleştirmeye dayanır. Öğrenciler 

öğrenmeleri gereken matematiksel bilgiyi matematik problem çözme sürecinde edinirler. 

Diğer bir deyişle, matematiğin hazır bir sistem olarak değil bir etkinlik olarak ele 

alınması gerektiği vurgulanır. Bahsedilen bu matematiksel etkinliklerin temelini ise 

matematiksel perspektiften düşünmeyi gerektiren matematikleştirme (mathematizing) 

oluşturur. Freudenthal bahsedilen matematik etkinliklerinin sonucunda formel 

matematiksel bilgiye ulaşma sürecini matematikleştirme olarak isimlendirmiştir. Farklı 

bir ifade ile, gerçek hayat durumlarının matematikleştirilmesi sürecinde öğrencilerin 

informel bilgilerinden yararlanılarak formel bilgiye geçtikleri savunulur. Bu sebepten 

öğrencilerin öğrenme ortamına getirdikleri informel bilgiler GME’de büyük önem taşır. 

Ayrıca, öğrencilerin gerçek yaşam durumları içerisinde verilen problemi inceleyerek ve 

informel bilgilerinden yola çıkarak formel bilgiye ulaşmaları beklenir (Gravemeijer, 

1994). Bu süreçte öğrencilerden her şeyi kendi başlarına keşfetmeleri beklenmez; önemli 

olan öğrencilerin edindikleri bilginin kendilerine ait özel bir bilgi olduğunu ve bu 

bilgiden kendilerinin sorumlu olduğunu benimsemeleridir (Freudenthal, 1991). Bu 

noktada modellere de formel matematiği yeniden keşif süreci kapsamında ihtiyaç 

duyulabilir çünkü modellerin bu geçişi desteklediği belirtilmiştir.  
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Gerçekçi Matematik Eğitimi Teorisi’ne ek olarak bu çalışmada varsayıma dayalı 

öğrenme rotasının geliştirilmesinde Simon (1995) tarafından ortaya atılan fikirler 

benimsenmiştir. Simon (1995) varsayıma dayalı öğrenme rotalarını öğrenmenin 

gerçekleşmesine yönelik öngörüler olarak tanımlamış ve bunların öğrenmeye yönelik 

amaç, bu amaca yönelik etkinlikler ve öğrencilerin bu etkinlikler süresince geçirecekleri 

muhtemel düşünce ve öğrenme süreçlerini içermesi gerektiğini savunmuştur. Zamanla 

bu tanım değişime uğramış ve farklı araştırmacılar tarafından farklı bileşenler içerdiği 

belirtilmiştir. Clements ve Sarama (2004) öğrenme rotalarını belirli bir matematik 

konusunda geliştirilen etkinlikler doğrultusunda öğrencilerin düşünmelerini ve 

öğrenmelerini gelişimsel bir süreç olarak belirten açıklamalar olarak tanımlamış ve 

öğrenme rotalarının Simon (1995)’un bahsettiği 3 temel bileşeni içermesi gerektiği 

düşüncesini devam ettirmiştir.  

İleriki yıllarda, Stephan (2015) bir sınıfa ait öğrenme rotaları (classroom learning 

trajectories) kavramını ortaya atmıştır. Stephan (2015)’a göre bir sınıfa ait öğrenme 

rotaları bir sınıftaki öğrencilerin birbirleriyle ve öğretmenle etkileşimleri süresince 

oluşur. Stephan’a göre belli bir konunun öğretiminde sınıf içi tartışmalardan doğan 

fikirler tüm sınıfça kabul görmelidir. Ayrıca, belirli bir konunun öğretimine yönelik 

araçlar, imgeler, etkinlikler, fikir paylaşımı ve muhtemel matematiksel söylemler ile 

muhtemel jest ve metaforlar öğrenme rotalarının bileşenlerini oluşturur (Gravemeijer, 

Bowers ve Stephan, 2003; Stephan ve Rasmussen, 2002; Stephan ve Akyuz, 2012).  

Dolayısıyla, bu çalışmada, yedinci sınıf öğrencilerinin orantısal akıl yürütmelerinin 

gelişimini desteklemek amacıyla, Gerçekçi Matematik Eğitimi Teorisi’ne dayanan bir 

sınıfa ait varsayıma dayalı öğrenme rotaları ve ilgili öğretimsel etkinlik dizisi 

oluşturulmuştur. Bu etkinlik dizisi ve varsayıma dayalı etkinlik dizisinin uygulanması 

süreci ve veri analizine yönelik detaylar bir sonraki bölümde ele alınmıştır.  
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3. Yöntem 

Bu çalışmanın birinci amacı, yedinci sınıfta orantısal akıl yürütmenin öğretilmesi için bir 

varsayıma dayalı öğrenme rotası ve ilgili etkinlik dizisinin geliştirilmesi, test edilmesi ve 

düzenlenmesidir. Çalışmanın ikinci amacı öğrencilerin informel ve formel araçlarla 

ortaklaşa akıl yürütmelerinin ve bu akıl yürütmenin Gerçekçi Matematik Eğitimi 

perspektifi doğrultusunda formel araçlarla akıl yürütmeye doğru gelişiminin 

açıklanmasıdır. Üçüncü amaç ise, öğrencilerin orantısal akıl yürütmeye yönelik fikir ve 

kavramların ortaklaşa gelişiminin ortaya konulmasıdır (sınıf içi matematiksel 

uygulamalar analizi).  

Bu amaçlara ulaşabilmek için çalışmanın deseni tasarı tabanlı araştırma (Gravemeijer ve 

Cobb, 2006; van den Akker vd., 2006) modeli olarak belirlenmiştir. Tasarı temelli 

araştırmanın amacı sadece sınıfta olanları betimlemek değil muhtemel öğrenme süreci 

ve bu öğrenme sürecini destekleyecek öğretimsel araç, etkinlik, yöntem, sınıf kültürü ve 

öğretmenin rolü ile ilgili kanıları (conjectures) içeren yerel öğretim teorilerini 

(Gravemeijer ve Cobb, 2006) desteklemek ve başka durumlardaki öğretime veya 

tasarıma durum oluşturacak nitelikte teorik altyapı oluşturmaktır. Ayrıca, tasarı tabanlı 

araştırmanın temelinde öğretimsel etkinliklerin yeniden tasarımı ve test edilmesini içeren 

döngüsel süreçler yer alır. Bu sebeplerden dolayı, çalışmanın amaçları ile bu araştırma 

modeli birebir örtüşmektedir. Gravemeijer ve Cobb’a (2006) göre tasarı tabanlı araştırma 

3 aşamadan oluşur. Bunlar 1) Uygulama için hazırlık, 2) Sınıf içi uygulama ve 3) Geriye 

dönük analizlerdir (Gravemeijer ve Cobb, 2006).  

3.1. Çalışmanın Bağlamı, Katılımcılar  

Bu çalışma kapsamında, İlk olarak MEB’e bağlı Altındağ ilçesindeki bir devlet okulu ve 

bu okulda çalışan iş birliğine açık, anlamlı öğrenmeye önem veren ve oran ve orantı 

konusunun öğretiminde sekiz yıllık ve öğretmenlikte 10 yıllık deneyime sahip olan bir 
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öğretmen seçilmiştir. Bu okul genellikle düşük sosyo-ekonomik düzeye sahip öğrencileri 

barındırmaktadır.  

Stephan, McManus, Smith ve Dickey (2015) tarafından geliştirilen etkinlik dizisi ve sınıf 

içi varsayıma dayalı öğrenme rotası uyarlanarak ve düzenlenerek 2015-2016 öğretim 

yılında bu öğretmen ve bu öğretmenin bir 7. sınıf öğrencileriyle araştırmanın ilk (pilot) 

makro döngüsü gerçekleştirilmiştir. İlk uygulama süresinde ve sonrasında yapılan tasarı 

ekibi (öğretmen, doktora öğrencisi ve danışmanı) toplantılarında ortaya konulan 

tartışmalara dayanarak bu etkinlik dizisi ve öğrenme rotası yeniden düzenlenerek 

çalışmanın ikinci makro döngüsü 2016-2017 öğretim yılında aynı öğretmen ve aynı 

şartları sağlayan başka bir 7. sınıf öğrencileriyle 6 hafta boyunca gerçekleştirilen öğretim 

kapsamında uygulanmıştır. Her iki döngüde de seçilen sınıftaki öğrencilerin grup 

çalışmasına ve matematiksel argümantasyon yapma becerileri ve alışkanlıklarına sahip 

olma şartları aranmıştır. 

Öğretmen, tasarı tabanlı bu çalışmanın ilk iki kısmında (uygulama için hazırlık ve sınıf 

içi uygulama) etkin olarak rol almıştır. Hazırlık aşamasında, araştırmacılarla toplantılara 

katılarak öğrencilerin muhtemel düşünüş biçimleri, Ortaokul Matematik Öğretim 

Programı kazanımları ve öğrenme rotaları ile ilgili bilgi ve deneyimlerini paylaşarak 

etkinlik dizisinin uyarlanmasında ve düzenlenmesinde kritik rol oynamıştır. Öğretmen 

sınıf içi uygulama kısmında araştırmacı ile her ders öncesi ve sonrasında görüşmüştür. 

Ders öncesinde dersin amaçları, öğrenme rotasının bileşenleri ve muhtemel öğrenci 

düşünüşleri gözden geçirilmiştir. Ders sonrasında ise, o günkü uygulamanın 

başarılı/başarısız yanlarına yönelik görüşlerini bildirmiş ve araştırmacı ile beraber bir 

sonraki uygulama için yapılması uygun görülen düzenlemelere karar vermiştir. Ayrıca, 

bu kısımda geliştirilen etkinlik dizisini tasarlandığı gibi uygulamış ve sınıf içerisinde 

zengin argümantasyon süreçlerinin oluşmasını sağlamıştır.   
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3.2. Veri Toplama Süreci 

Veri toplama sürecinin ilk basamağı Stephan ve arkadaşları tarafından hazırlanan 

etkinlik dizisinin ve varsayıma dayalı öğrenme rotasının uyarlanması, düzenlenmesi ve 

geliştirilmesi olmuştur. Çalışmanın ilk döngüsü öncesinde öğretmen ve 

araştırmacılardan oluşan tasarı ekibi bu süreçte ortaklaşa çalışmışlardır. Çalışmanın ilk 

döngüsü süresince ve sonrasında tasarı ekibi toplantılarında yapılan görüşmeler 

doğrultusunda bir sonraki ders ve çalışmanın ikinci döngüsü için gerekli düzenlemeler 

yapılmıştır. İkinci döngü öncesinde öngörülen varsayıma dayalı öğrenme rotası altı 

bölümden oluşmaktadır.  

Varsayıma dayalı öğrenme rotasının birinci bölümünde öğrenciler “Balıkları besleyelim” 

bağlamı kapsamında verilen kurala göre balık ve yem resimlerini gruplayarak birleşik 

birimler oluşturma ve bu birleşik birimleri gruplayarak birbirine bağlarlar.  Resimlerle 

başlayan bu yinelemelerin zamanla sayısal yinelemelere döneceği ve öğrencilerin tablo 

benzeri gösterimler kullanacağı öngörülmüştür (örn. 1-3, 2-6- 3-9, vb.). Buradan yola 

çıkarak, bağlamaların ve yinelemelerin daha düzenli bir şekilde yapılabilmesi için uzun 

oran tablolarının öğrencilere tanıtılması öngörülmüştür. Bu sayede, öğrencilerin artırma 

ve kısa yoldan artırma stratejilerini tablolar üzerinde etkili ve düzenli bir şekilde 

kullanmaları ve tablolarda yatay ilişkileri anlamlandırmalarının sağlanması 

hedeflenmiştir. Kısa yoldan artırma stratejisinin sınıf içi söylemde ortaya çıkmasından 

sonra ikinci uzun oran tablolarının kısaltılarak kısa oran tablolarına geçiş yapılması 

planlanmıştır. Bu süreçte, öğrencilerin uzun ve kısa oran tablolarında farklı birimlere 

sahip çokluklar arasındaki fonksiyonel ilişkileri de incelemeleri ve bu ilişkilerin dikey 

ilişkiler olarak adlandırılması amaçlanmıştır. Bu şekilde, birinci bölüm kapsamında 

öğrencilerin uzun ve kısa oran tablolarında ortak değişinti (artırma/kısa yoldan artırma 

stratejileri) ve değişmezlik (oran/ birim oran) ilişkilerini keşfetmeleri hedeflenmiştir.  

Öğrenme rotasının ikinci bölümünde, öğrencilerin keşfettikleri bu ortak değişinti ve 

değişmezlik ilişkilerinin parça-bütün bağlamlarında anlamlandırılması hedeflenmiştir. 
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Üçüncü bölümde kısa oran tablolarının dikey kenarlıkları kaldırılarak oran ve orantının 

sembolik ve formel gösterimine geçiş yapılması öngörülmüştür. Bu bölümde, 

öğrencilerin kısa oran tablolarında keşfettikleri ortak değişinti (yatay ilişkiler) ve 

değişmezlik (dikey ilişkiler) ilişkilerini orantının sembolik gösteriminde 

anlamlandırmaları ve bu ilişkileri kullanarak denk oranlar kurarak orantısal 

durumlardaki bilinmeyenleri bulmaları hedeflenmiştir.  

Öğrenme rotasının dördüncü bölümünde öğrencilerin düşünüşlerinin orantısal 

durumların tablosal ve sembolik gösterimlerinden grafiksel ve cebirsel gösterimlerine 

doğru yönlendirilmesi öngörülmüştür. Bu bağlamda, orantısal durumların çoklu 

gösterimleri (tablo, sayı, grafik, cebirsel) arasındaki ilişkilerin de anlamlandırılması 

hedeflenmiştir. Ayrıca, doğrusal ilişkilerin farklı gösterimleri ve bu gösterimlerin 

orantısal ilişkilerin gösterimleri arasındaki ilişkilerin incelenmesi de bu bölümde 

öngörülen muhtemel matematiksel söylemlerdendir. Beşinci bölümde ise, öğrencilerin 

daha önceki bölümlerde keşfettikleri aynı ölçüm uzayı içerisinde kısa yoldan artırma 

stratejileri ile yineleme (yatay ilişkiler) ve farklı ölçüm uzayları içerisinde fonksiyonel 

ilişkileri kullanarak farklı oranları kıyaslamaları ve hangi oranın daha büyük/küçük 

olduğuna farklı bağlamlar içerisinde karar vermeleri beklenmektedir. Bu bağlamlardan 

bazıları benzer şekiller ve farklı miktarlarda bileşen içeren karışımların tatlarının 

kıyaslanmasıdır. Son olarak, altıncı bölümde öğrencilerin sayılardan bağımsız olarak, 

sayı içermeyen bir bağlamda, oranın değerinin değişip-değişmeyeceği ve değişecekse 

hangi yönde değişeceğine yönelik çıkarımlar yapmaları hedeflenmiştir.  

Bu varsayıma dayalı öğrenme rotası bir sınıftaki öğrencilerin ortaklaşa bir şekilde 

orantısal akıl yürütmelerinin gelişiminin genel çerçevesini ortaya koymaktadır. 

Öngörülen bu öğrenme rotasının geliştirilen etkinlik dizisi boyunca sınıf içerisinde nasıl 

gerçekleştiğinin incelenmesi, geliştirilen varsayıma dayalı öğrenme rotası ve ilgili 

etkinlik dizisinin öğrencilerin orantısal akıl yürütmelerinin gelişimine ne derecede katkı 

sağladığı ve bunlara yapılacak düzenlemelerin belirlenmesi sınıf içi matematiksel 
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uygulamalar analizi ile mümkün olmuştur. Bir sonraki bölümde bu analiz yöntemi 

detaylı olarak anlatılmıştır.  

3.3.Veri Analizi  

Bu çalışmanın verileri altı hafta ve 30 saat süren sınıf içi uygulamanın video kayıtları ve 

tasarı ekibi toplantılarının ve öğretmenle yapılan ders öncesi/sonrası görüşmelerin sesli 

kayıtlarından oluşmaktadır. Görüşme kayıtları uygulama süresince devam eden analizler 

kapsamında analiz edilmiş ve öğrenme rotası ve etkinlik dizisine yapılacak 

düzenlemeleri belirlemek amacıyla kullanılmıştır. Sınıf içi uygulamanın video kayıtları 

ise tasarı çalışmasının üçüncü kısmı kapsamında (geriye dönük analizler) uygulama 

yapılan sınıftaki öğrencilerin orantısal akıl yürütmelerinin ortaklaşa gelişimi sürecinin 

analiz edilmesi için kullanılmıştır. Bu amaç için ikinci makro döngü kapsamında yapılan 

sınıf içi uygulamanın videoları deşifre edilmiştir. Sınıf içi videolar ve yazılı deşifreleri, 

Stephan ve Rasmussen (2002) tarafından geliştirilen üç aşamalı Sınıf içi Matematik 

Uygulamaları Analizi (Classroom Mathematical Practices Analysis) yöntemi ile analiz 

edilmiştir. İlk aşama kapsamında, her güne ait sınıf içi uygulaması Toulmin’in (1958) 

argümantasyon modeline göre analiz edilmiştir. Bu bağlamda, tüm sınıf tartışmaları veri, 

iddia, gerekçe ve destek olarak kodlanmıştır. İlk aşama sonunda elde edilen şey günlere 

göre sıralandırılmış bir argümantasyon akış şemasıdır. İkinci aşama kapsamında, bu 

argümantasyon akış şeması günlere göre incelenmiş ve sınıftaki kişiler tarafından daha 

öncesinde paylaşılan hangi fikirlerin sınıf içerisinde kabul gördüğünü ve ortaklaşa akıl 

yürütmenin bir parçası olduğunu (taken-as-shared) belirlemek için Stephan ve 

Rasmussen (2002) tarafından ortaya atılan aşağıdaki iki kriter kullanılmıştır: 

1. Bir argüman için yapılan açıklamalarda artık destek ve/veya gerekçelerin 

görülmemesi (açıkça belirtilmeden üstü kapalı bir şekilde ima edilmesi, herhangi 

bir öğrencinin bununla ilgili açıklama istememesi) 
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2. Bir argümanın herhangi bir bileşeni (veri, iddia, gerekçe, destek) ileriki bir 

argümanda bir diğerinin yerine geçmesi-dolayısıyla fonksiyonunu değiştirmesi- 

ve herhangi bir öğrencinin bununla ilgili bir açıklama istememesi 

Tüm kabul gören fikirlerin belirlenmesinden sonra, analiz yönteminin üçüncü aşaması 

kapsamında, bu fikirler bir araya getirilerek belirli matematiksel uygulamalar 

(mathematical practices) etrafında düzenlenmiştir. Sonuç olarak, bu matematiksel 

uygulamalar sınıftaki öğrencilerin orantısal akıl yürütmelerinin ortaklaşa gelişiminin 

düzenli bir biçimde sunulmuş halidir (Cobb vd., 2001).   

4. Bulgular, Tartışma ve Öneriler 

Bu çalışmanın birinci amacı, yedinci sınıfta orantısal akıl yürütmenin öğretilmesi için bir 

varsayıma dayalı öğrenme rotası ve ilgili etkinlik dizisinin geliştirilmesi, test edilmesi ve 

düzenlenmesidir. Çalışmanın ikinci amacı öğrencilerin informel ve formel araçlarla 

ortaklaşa akıl yürütmelerinin ve bu akıl yürütmenin Gerçekçi Matematik Eğitimi 

perspektifi doğrultusunda formel araçlarla akıl yürütmeye doğru gelişiminin 

açıklanmasıdır. Üçüncü amaç ise, öğrencilerin orantısal akıl yürütmeye yönelik fikir ve 

kavramların ortaklaşa gelişiminin ortaya konulmasıdır (sınıf içi matematiksel 

uygulamalar analizi). Bu amaçlara yönelik bulgular bu bölümde tek tek ele alınmadan 

bir bütün halinde sınıf içerisindeki öğrencilerin orantısal akıl yürütmelerinin ortaklaşa 

gelişimi ele alınacaktır. Böylelikle, bu amaçlara yönelik olarak ulaşılan bulgulara yönelik 

çıkarımlar okuyucular tarafından yapılabilir.  

Matematiksel uygulamalar analiz bulgularına göre, altı hafta ve 30 ders saati süren 

uygulama kapsamında, sınıf içi söylemde beş adet matematiksel uygulama 

oluşturulmuştur (bkz. Tablo 4.1) 
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Tablo 4.1. Oluşturulan Matematiksel Uygulamalar 

Matematiksel Uygulamalar 

Uygulama 1. Bilinmeyen değerleri bulmak için resim ve tablolarla akıl yürütme 

• Birleşik birimleri bağlama ve bağlı birleşik birimleri yineleme 

• Erken çarpımsal düşünme- bir ölçek katsayısı kullanarak bağlı birleşik 

birimleri eşgüdümlü olarak kısa yoldan yineleme   

• Çarpımsal düşünme- iki farklı ölçüm uzayında bulunan birbirine bağlı iki 

birim arasındaki çarpımsal ilişkinin değişmezliği (fonksiyonel ilişki)  

• İki farklı ölçüm uzayında bulunan birbirine bağlı iki birim arasındaki 

çarpımsal ilişkinin birim oran olarak anlamlandırma ve bilinmeyen 

değerleri bulmak için referans noktası (benchmark) olarak kullanma 

• Ortak değişinti ve değişmezlik ilişkilerini bir bütünün parçaları arasındaki 

ya da bir bütünün parçaları ile arasındaki ilişkilere genişletme  
Uygulama 2. Orantısal durumları belirlemek için tablo ve sembollerle akıl yürütme 

• Oran ve orantıyı çarpımsal olarak yapılandırma ve ortak değişinti ve 

değişmezlik ilişkilerini sembolik orantı gösterimine genişletme 

• Ortak değişinti ve çarpımsal düşünceyi kullanarak orantısallığı belirleme 

Uygulama 3. Gösterimler arasındaki ilişkileri koordine etme 

• Birleşik birimleri bağlama ve bağlı birleşik birimleri yineleme 

• Çarpımsal düşünme- iki farklı ölçüm uzayında bulunan birbirine bağlı iki 

birim arasındaki çarpımsal ilişkinin değişmezliği (fonksiyonel ilişki)  

• Değişmez çarpımsal ilişkiyi bir denklemle ifade etme 

• Orantısal ilişkileri y = mx formundaki doğrusal denklemlerle ve orijinden 

geçen doğru grafikleriyle gösterme 

• Orantısal olmayan doğrusal ilişkileri y = mx + n formundaki doğrusal 

denklemlerle ve orijinden geçmeyen doğru grafikleriyle gösterme  
Uygulama 4. Ortak değişinti ve değişmezlik ilişkilerini sürekli değerler içeren 

bağlamlara genişletme  

• Bir şekil içerisindeki ya da iki benzer şeklin kenar uzunlukları arasındaki 

oranları kullanarak benzer şekillerin verilmeyen kenar uzunluğunu bulma  

• Şekillerin çarpıtılmasının (distortion) anlamlandırılması 

Uygulama 5. Oranları kıyaslama ve hangi oranın daha büyük/küçük/eşit olduğuna 

karar verme 

• Çoklukları kıyaslamak için denk oranlar oluşturma ve oluşturulan denk 

oranları kullanarak akıl yürütme 
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Matematiksel uygulamalar analizinin sonuçları, geliştirilen etkinlik dizisi ve öğrenme 

rotasının bir sınıftaki öğrencilerin orantısal akıl yürütmelerinin gelişimini desteklemede 

büyük potansiyele sahip olduğunu göstermiştir. Örneğin, ilk matematiksel uygulama 

kapsamında, öğrenciler informel araçları (balık ve yem resimleri, gruplama için yuvarlak 

içine alma ve oklar kullanarak birleşik birimleri bağlama vb.) kullanarak başladıkları 

süreç içerisinde daha formel modellere (uzun oran tabloları) geçiş yapabilmişlerdir. Bu 

uygulama kapsamında, bilinmeyen değerleri bulmak için resim ve tablolarla akıl 

yürütürken, öngörüldüğü gibi, ritmik sayma, eşleştirme, gruplama, artırma ve kısa 

yoldan artırma stratejileri, birim faktör yaklaşımı, birleşik birimler oluşturma ve birleşik 

birimleri yineleme ve parça-parça- bütün ilişkilerinden faydalanmışlardır. Bunlar 

alanyazın taraması bölümünde belirtilen orantısal akıl yürütme için gerekli olan didaktik 

etkinlikler ve sezgisel bilgi/stratejilerdir. Ayrıca, ilk uygulama kapsamında, yem kutusu 

sayısı değiştiğinde bu yem kutularıyla beslenebilecek balık sayısının da belirli bir sayıda 

değiştiği fikri sınıf içerisinde kabul görmüştür. Bu fikir alanyazında ortak değişinti 

(kovaryasyon, kovaryans) olarak geçen terimle ilgilidir (Carlson vd., 2002; Lamon, 

1995, 2007).  

Bu ortak değişinti fikri başlangıçta koordineli artırma stratejileri (örn. yem kutusu sayısı 

1 arttığında balık sayısı 3 artar) ya da koordineli ritmik sayma (örn. 1-3, 2-6, 3-9, vb.) 

şeklinde kabul görmüştür. Öğrenciler etkinlik dizisi boyunca ilerlediğinde bu koordineli 

artırma stratejileri daha etkili ve kısa yollara dönüştürülmeye başlanmıştır. Öğrenciler, 

tek tek artırma yapmak yerine, aynı ölçüm uzayındaki birimleri kendi içerisinde aynı 

ölçek katsayısı ile çarparak kısa yoldan artırma stratejilerini geliştirmişlerdir. Bu süreçte, 

dört değeri barındıran kısa tablolar tanıtılmış ve öğrenciler kısa tablolarda yatay ilişkiler 

hakkında akıl yürütmüşlerdir. Daha detaylı olarak belirtmek gerekirse, kısa tablodaki 

yatay ilişki ile (x10 vb.), ilk etapta informel araçlarla (gruplandırma, grupları birbirine 

bağlayarak yineleme) yaptıkları süreçleri bağdaştırmışlardır. Sonrasında, öğrenciler 

uzun ve kısa oran tablolarında farklı ölçüm uzaylarındaki çokluklar (yem kutusu ve balık 

sayısı) arasındaki değişmeyen çarpımsal (fonksiyonel) ilişkiye odaklanmış ve bu ilişkiyi 
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tablolardaki dikey ilişkilerle ilişkilendirilmişlerdir. Tablolardaki bu değişmeyen ilişki ile 

verilen kurala yönelik olarak bağlama sürecini ve birim oranı ilişkilendirmişler ve birim 

oranı bilinmeyen değerleri bulmak için bir referans olarak kullanmışlardır. Son olarak da 

bu ortak değişinti ve değişmezlik ilişkilerini parça-bütün bağlamlarında 

anlamlandırmışlardır. Dolayısıyla, çalışmanın ilk uygulamaya yönelik bulguları 

kapsamında öğrenciler Kaput ve West (1994) tarafından ortaya konulan şu üç informel 

stratejiyi sırasıyla kullanmışlardır: (1) Koordineli artırma stratejileri, (2) Çarpma/bölme 

işlemleri kullanarak kısa yoldan artırma stratejiler, (3) Birim faktör yaklaşımı.  

Dolayısıyla, matematiksel uygulamalar analizi aynı ölçüm uzayı içerisinde çoklukları 

aynı ölçek katsayısı kullanarak çarpma işlemi yaparak denk oranlar bulmanın resimlerle 

yapılan gruplama/yineleme ve sayılarla yapılan artırma işlemlerinin kısa yolu olduğunu 

göstermiştir. Dolayısıyla, kısa yoldan artırma stratejileri (yatay ilişkiler), birçok 

çalışmadan farklı şekilde (örn. Lamon, 2007; Vermont Mathematics Partnership’s 

Ongoing Assessment Project, 2011; Wright, 2014), bu çalışma kapsamında çarpımsal 

düşünme olarak düşünülmemiş, bunun yerine, erken çarpımsal düşünme kapsamında ele 

alınmıştır.  

Diğer bir yandan, matematiksel uygulamalar analizine göre, eş oranlar elde etmek için 

aynı ölçüm uzayında ölçek katsayısı ile yapılan işlemlere yönelik fikirler uygulamanın 

ilk gününde sınıf içi tartışmada doğal olarak ortaya çıkmış ve öğrenciler tarafından kabul 

görmüştür. Halbuki, farklı ölçüm uzaylarındaki birimlerin arasındaki değişmez 

fonksiyonel ilişkiye yönelik fikirlerin ortaya çıkması öğretmenin “yem kutusu sayısı ile 

balık sayısı arasında nasıl bir ilişki vardır?” sorusu ile ortaya çıkmıştır. Bu sebepten 

dolayı, bu çalışmanın sonuçları aynı ölçüm uzayı içerisinde bulunan çokluklar arasındaki 

ilişkilerin farklı ölçüm uzayında bulunan çokluklar arasındaki ilişkilerden daha doğal ve 

sezgisel olduğunu ortaya koyan çalışmaların (Freudenthal, 1978; Karplus vd., 1983; 

Noelting, 1980a, 1980b; Vergnaud, 1980) sonuçlarını doğrular niteliktedir. Aynı 

zamanda, bu çalışmanın sonuçları yukarıda referans verilen çalışmaların farklı ölçüm 
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uzaylarında bulunan çokluklar arasındaki ilişkilerin aynı ölçüm uzayında bulunan 

çokluklar arasındaki ilişkilerin anlamlandırılmasından bilişsel olarak daha üst düzey 

beceriler içerdiğine yönelik sonuçlarını da destekler niteliktedir.  

İkinci matematiksel uygulama, ilk uygulama kapsamında sınıf içerisinde kabul gören 

fikirlerin ne kadar güçlü olduğunu göstermiştir. Öğrenciler bu uygulama kapsamında 

kısa oran tabloların kenarlıklarını kaldırarak oran ve orantının sembolik gösterimine 

geçiş yapmışlar ve orantının sembolik gösteriminde bir orantıda verilmeyen değeri 

bulmak için ortak değişinti ve değişmezlik ilişkilerini anlamlandırmışlardır. Ayrıca, kısa 

oran tablolarındaki yatay ve dikey ilişkilerden yola çıkarak orantının sembolik 

gösteriminde de yatay ve dikey ilişkiler ile ortak değişinti ve değişmezlik ilişkileri 

arasında ilişkiler kurmuşlardır.  

Üçüncü uygulama kapsamında, öğrencilerin düşünüşleri tablo ve orantı 

gösterimlerindeki yatay ve dikey ilişkilerden orantısal durumların grafiksel ve cebirsel 

denklem olarak ifade edilmesine doğru ilerlemiştir. Bu bağlamda, orantılı çokluklar 

arasındaki ilişkileri y = mx şeklindeki denklemlerle ve orijinden geçen doğrularla ifade 

etmişler ve bu gösterimler arasındaki ilişkilere değinmişlerdir. Bunun yanı sıra, üçüncü 

uygulama kapsamında, orantısal olmayan doğrusal ilişkileri de y = mx + n (n ≠ 0) 

şeklindeki denklemlerle ve orijinden geçmeyen doğrularla göstermişlerdir. Son olarak, 

orantısal ilişkiler ile orantısal olmayan doğrusal ilişkiler arasındaki farklılık/benzerlikleri 

ortaya koymuşlardır.  

Dördüncü uygulama kapsamında, öğrenciler yine aynı ölçüm uzayı içerisindeki 

çokluklar arasındaki ilişkiler ve/veya farklı ölçüm uzaylarındaki çokluklar arasındaki 

ortak değişinti ve değişmezlik ilişkilerini kullanarak benzer şekillerin bilinmeyen kenar 

uzunluklarını bulmuşlar ve verilen şekillerin benzer olup olmadıklarına karar vermişler 

ve şekillerin çarpıtılması ile ilgili iddialarda bulunmuşlardır.   
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Aynı şekilde, beşinci uygulama kapsamında da öğrenciler yine aynı ölçüm uzayı 

içerisindeki çokluklar arasındaki ilişkiler ve/veya farklı ölçüm uzaylarındaki çokluklar 

arasındaki ortak değişinti ve değişmezlik ilişkilerini kullanarak karışımların tatlarının 

kıyaslanması ile ilgili farklı bağlamlarda verilen oranları kıyaslamışlar ve iki oranın eşit 

olup olmadığına ve eşit değillerse hangisinin büyük/küçük olduğuna karar vermişlerdir. 

Örneğin, portakal suyu ve sudan oluşan karışımların tatlarını kıyaslarken her bir 

durumdaki portakal suyu miktarı ile su miktarının birbirine bağlayarak yinelemeler yapıp 

aynı tada sahip karışımlar oluşturmuşlardır (örn. 2 bardak portakal suyu-1 bardak su, 4 

bardak portakal suyu-2 bardak su, vb.). Daha sonrasında ise verilen karışımdaki portakal 

suyu ve su miktarları ile kıyaslama yaparak aynı tada sahip olup olmadıklarına karar 

vermişlerdir. Diğer bir yandan, her bir bardaktaki portakal suyuna karşılık gelen su 

miktarı (ya da her bir bardaktaki su miktarına karşılık gelen portakal suyu miktarı) ile 

ilgili gerekçelendirmeler yaparak çarpımsal düşünme ve birim oran ile ilgili fikirler 

üzerine oranları kıyaslama ile ilgili fikirleri inşa etmişlerdir. Aynı şekilde, oranların 

kıyaslanması anahtar öğrenmesi kapsamında kısa ve uzun tablolar oluşturarak ve 

orantının sembolik gösterimi üzerinde dikey ve yatay ilişkileri kullanarak muhakeme 

yapabilmişlerdir.  

Sonuç olarak, bu çalışma da orantısal düşünmenin temelinin, Steffe (1994) ve Battista 

ve Van Auken Borrow (1995)’in ileri sürdüğü gibi, birleşik birimleri bağlama ve bağlı 

birleşik birimleri yineleme becerilerinin kazanılmasından geçtiği sonucuna varılabilir. 

Öğrenciler artırma ve kısaltılmış artırma stratejileri kullanarak orantısal durumları 

anlamlandırmaya başlamış ve sonraki süreçte farklı ölçüm uzaylarına ait çokluklar 

arasındaki fonksiyonel ilişkilere odaklanmışlardır. Öğrenciler diğer fikirleri ve 

matematiksel uygulamaları bu anahtar öğrenmeler üzerine inşa edebilmiş ve her derste 

bu fikirleri kullanarak gerekçeler ortaya koyabilmişlerdir. Dolayısıyla erken orantısal 

akıl yürütme becerilerinin geliştirilmesi için bu becerilere önem verilmesi 

önerilmektedir.  
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Diğer yandan, matematiksel uygulamalar analizi orantısal akıl yürütmenin kritik 

bileşenlerinin, Lamon (1995) tarafından belirtildiği gibi, göreceli ve mutlak değişim, 

ortak değişinti ve değişmezlik ve oran hissinden oluştuğunu doğrular niteliktedir. Bunun 

yanı sıra, bu çalışma kapsamında eklenen iki bileşenin de (nitel ve nicel muhakeme ile 

çarpımsal düşünme) orantısal akıl yürütmenin gelişimi için kritik olduğu ortaya 

konmuştur. Diğer yandan, Lamon’un (1995) teorik çerçevesi kapsamında ortaya konulan 

orantısal akıl yürütmenin öğrenilmesinde etkili olan öğretici deneyimler de (bölümlere 

ayırma, ilişkiler ve birimleştirme) öğrencilerin yukarıda bahsedilen bileşenlere 

ulaşmasında önemli rol oynamıştır. Son olarak, bu çalışma kapsamında ele alınan birleşik 

birimleri bağlama ve bağlı birleşik birimleri yinelemenin de diğer bir önemli öğretici 

deneyim olduğu görülmüştür. Oran ve orantı öğretimi yapılırken öğrencilerin var olan 

bu öğretici deneyimleri üzerine öğretim kurularak orantısal akıl yürütme için kritik olan 

bu bileşenlere ulaşmalarının sağlanması önerilmektedir.   

Sonuç olarak, matematiksel uygulamalar analizi orantısal düşünmenin bireysel olarak 

gelişimine yönelik olarak yapılan çalışmaların sonuçları ile benzerlik göstermiştir. 

Buradan yola çıkarak, orantısal akıl yürütmenin sosyal bir ortamda ortaya konulan 

gelişiminin bireysel gelişime benzerlik gösterdiği sonucuna varılabilir. Yine de bu 

konunun araştırılması ileride yapılacak bir çalışmanın konusu olarak önerilmektedir.  

Ulusal ve uluslararası alanyazındaki çalışmaların sonuçlarında öğrencilerin orantısal akıl 

yürütmede birçok zorluk yaşadıklarına ve kavram yanılgılarına sahip oldukları 

belirtilmiştir. Bu zorluk ve kavram yanılgılarının en çok göze çarpanı yanlış toplamsal 

düşünme biçimidir (Hart, 1981, 1988; Kaput ve West, 1994; Misailidou ve Williams, 

2003; Resnick ve Singer, 1993; Steinthorsdottir ve Sriraman, 2009; Tourniaire ve Pulos, 

1985; Tourniaire, 1986; van Dooren vd., 2010). Matematiksel uygulamalar analizinde 

görüldüğü gibi bu çalışma kapsamında yanlış toplamsal düşünme biçimi yalnızca birkaç 

öğrenci tarafından birkaç kez ortaya atılmıştır. Dahası, bu yanlış düşünme biçimi ortaya 

atıldığında birçok öğrenci tarafından reddedilmiştir. Dolayısıyla, bu sonuç yukarıda 
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verilen birçok çalışmanın sonuçlarıyla zıt yöndedir. Bunun sebebinin bu çalışma 

kapsamında orantısal akıl yürütmenin temelinin, toplamsal düşünme yerine, birleşik 

birimlerin yinelenmesine (artırma ve kısaltılmış artırma stratejileri) dayanan ortak 

değişinti ve değişmezlik ilişkilerine vurgu yapılarak yapılandırılması olduğu 

düşünülmektedir. Diğer bir yandan, bu çalışma kapsamında, öğrencilerin bireysel yerine 

ortaklaşa bir şekilde orantısal akıl yürütmelerinin gelişimine odaklanılmıştır. Bu 

bağlamda, öğrenciler fikirlerini gerekçeleriyle birlikte sunar ve diğerlerinin fikir ve 

gerekçelerini analiz eder ve değerlendirir (Brown, 2017).  Böylece, fikirlerini düzenleme 

ve yeniden yapılandırma ve ortak kanılara ulaşma imkânı bulurlar (Whitenack ve 

Knipping, 2002). Dolayısıyla, yanlış düşünme biçiminin oluşumu önceden engellenmiş 

olur. Bu kapsamda, bu çalışmanın sonuçları, Karplus, Formisano ve Paulsen’in (1979) 

de dediği gibi, toplamsal düşünmenin orantısal akıl yürütmenin gelişiminde her zaman 

yer almayabileceği ve yanlış toplamsal düşünmenin öğretime bağlı olduğunu doğrular 

niteliktedir.  

Son olarak, alanyazında sıklıkla bahsedilen içler-dışlar çarpımı algoritmasının da 

matematiksel uygulamalar kapsamında ele alınmadığı görülebilir. Bu çalışma 

kapsamında bazı öğrenciler içler dışlar çarpımını alternatif çözüm yolu olarak sunsalar 

da bu fikirlerine gerekçe gösterememişlerdir. Bu çalışma kapsamında benimsenen sosyo-

matematiksel normlara (Cobb ve Yackel, 1996) göre öğrencilerin fikir ve iddialarına 

geçerli gerekçeler sunmaları gerekmektedir. Öğrenciler içler dışlar çarpımını kullanarak 

iddialarda bulunsalar bile bu iddialarına geçerli ve matematiksel gerekçeler sunmakta 

zorlanmışlardır. Bu sebepten dolayı, içler dışlar çarpımına yönelik fikirler, diğer fikirler 

gibi doğal olarak ortaya atılmamış ve sınıf içerisinde kabul görmemiştir. Bu sebepten 

dolayı, bu çalışmanın sonuçları içler dışlar çarpımı gibi algoritmaların öğrenciler 

tarafından doğal olarak geliştirilmediğini savunan Hart’ın (1984) çalışmalarını destekler 

niteliktedir. Buradan çıkarılacak sonuç ise, öğrencilerin içler dışlar gibi algoritmaları 

kullanmadan farklı gösterim ve araçlar kullanarak birçok orantısal durum hakkında akıl 

yürütebilecekleridir. Bu sonuç, öğrencilerin içler dışlar çarpımı gibi algoritmalara 
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sıklıkla başvurduklarını belirten birçok çalışmanın (Arıcan, 2019; Atabaş ve Öner, 2017; 

Ben-Chaim vd., 1998; Cramer ve Post, 1993; Cramer vd., 1993; Duatepe vd.2005; 

Kahraman vd., 2019; Kaplan vd., 2011; Kayhan vd., 2004; Özgün-Koca ve Altay, 2009) 

sonuçları ile karşıt düşmektedir. Dolayısıyla geliştirilen öğrenme rotası ve etkinlik 

dizisinin oran ve orantı öğretiminin iyileştirilmesi için önemli potansiyele sahip 

olduğundan dolayı öğretmenler tarafından derslerine entegre edilmesi önerilmektedir.  

Son olarak, matematiksel uygulamalar analizi öğrenme rotası ve etkinlik dizisinde az 

sayıda da olsa bazı düzenlemeler yapılması gerekliliğini ortaya koymuştur. Örneğin, 

balık ve yem etkinliğinden (Etkinlik 1) hemen sonra sürekli değerler içeren bir etkinliğin 

ikinci etkinlik olarak etkinlik dizisine eklenmesi uygun görülmüştür. Öğrenme rotasına 

yapılan örnek bir değişiklik ise, öğrenme rotasının bazı kısımlarının birleştirilmesi ve 

öğrenme rotasına bazı yeni kısımlar eklenmesidir. İleriki bir çalışmanın konusu olarak 

bu değişikliklerin öğrenci öğrenmeleri için potansiyeli araştırılabilir. Etkinlik dizisinin 

ve öğrenme rotasının önerilen son hali bu çalışmaya ek olarak verilmiştir.   
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