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ABSTRACT 

 

PLANAR PEROVSKITE SOLAR CELLS WITH METAL OXIDE 

TRANSPORT LAYERS BY CO-EVAPORATION AND HYBRID VAPOR-

SOLUTION SEQUENTIAL METHOD 

 

 

Soltanpoor, Wiria 

Doctor of Philosophy, Micro and Nanotechnology 

Supervisor: Assist. Prof. Dr. Selçuk Yerci 

Co-Supervisor: Assoc. Prof. Dr. Görkem Günbaş 

 

 

February 2020, 94 pages 

 

 

The recent success in achieving beyond 25% efficiency with perovskite solar cells 

(PSC) has called for further upgrading the fabrication techniques to meet the 

scalability requirements of the photovoltaic (PV) industry. Co-evaporation and a 

hybrid vapor-solution technique have been shown to produce uniform and efficient 

planar PSCs. Therefore, in this study, co-evaporation method was optimized 

studying the partial pressure of the organic precursor. Later electron transport layers 

in n-i-p and p-i-n structures were addressed achieving 13.0% and 16.1% efficiencies, 

respectively. Besides, mixed-halide perovskites were fabricated following a hybrid 

sequential method focusing on the deposition rate of PbI2 and a solution of 

methylammonium-halides to control the crystallization and morphology of the 

perovskite layer. This conferred efficiencies up to 19.8% in the case of MAPbI3-X-

YBrXClY with 90 hours of operational stability. This is an important measure towards 

scalability due to the uniform deposition of the first inorganic layer by vacuum-

deposition. As another step towards the scalability of perovskite PV, radio frequency 

(RF) magnetron sputtering was devised to deposit NiOX as a hole transport layer with 



 

 

vi 

 

wide bandgap, matched band structure with perovskite, and stability. The effect of 

Ar-partial pressure, deposition rate on the optoelectronic properties of the sputtered 

NiOX was investigated. The passivation of NiOX using organic (Poly-TPD) and 

inorganic (CuO) materials boosted the overall efficiency of the PSCs by 2.2% and 

1.2%, respectively. Finally, Cu doping NiOX via co-sputtering enhanced the 

efficiency of the PSCs by 3%. This thesis provides a benchmark for applying scalable 

methods (from evaporation to sputtering) towards efficient PSCs. 

Keywords: Perovskite, Co-evaporation, Partial pressure, Sputtering, Hybrid vapor 

solution 
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ÖZ 

 

BIRLIKTE BUHARLAŞTIRMA VE HIBRIT BUHAR ÇÖZELTISI SIRALI 

YÖNTEMI ILE METAL OKSIT DELIK (HOLE) TAŞIMA KATMANLI 

DÜZLEMSEL PEROVSKIT GÜNEŞ HÜCRELERI 

 

 

 Soltanpoor, Wiria 

Doktora, Mikro ve Nanoteknoloji 

Tez Yöneticisi: Dr. Öğr. Üyesi Selçuk Yerci 

Ortak Tez Yöneticisi: Doç. Dr. Görkem Günbaş 

 

 

Şubat 2020, 94 sayfa 

 

Perovskit güneş hücrelerinde yakın zamanda gösterilen %25'in üzerinde verimlilik 

elde etme başarısı, fotovoltaik (FV) endüstrisinin ölçeklenebilirlik gereksinimlerini 

karşılamak için imalat tekniklerini daha da geliştirmeyi gerektirdi. Birlikte 

buharlaştırma ve hibrit buhar çözeltisi tekniklerinin, düzgün ve verimli düzlemsel 

perovskit güneş hücreleri ürettiği gösterilmiştir. Bu sebeple, bu çalışmada, organik 

öncü maddenin kısmi basıncı çalışılarak, birlikte buharlaştırma metodu optimize 

edilmiştir. Daha sonra, n-i-p ve p-i-n yapılarındaki elektron taşıyıcı katmanlar 

araştırılarak %13,0 ve %16,1 verime sahip hücreler elde edilmiştir. Öte yandan, 

hibrit buhar çözeltisi metodu ile karışık halojenür perovskitler üretilmiş ve perovskit 

katmanının kristalleşme oranı ve morfolojisini kontrol etmek için PbI2’nin kaplanma 

oranı ve metilamonyum halojenürün çözülme oranına odaklanılmıştır. Bu yöntem 

MAPbI3-X-YBrXClY kulanılma durumunda %19,8 verimlilik ve 90 saatlik 

operasyonel kararlılıkla sonuçlanmıştır. Bu, ilk inorganik katmanın vakum 

biriktirme yöntemiyle homojen biriktirilmesinden dolayı ölçeklenebilirliğe yönelik 

önemli bir ölçüdür. Perovskit FV'nin ölçeklenebilirliğine bir başka adım olarak, 

geniş bant aralıklı ve perovskit ile eşleşen bant yapısıyla kararlı bir boşluk taşıma 
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katmanı olarak NiOX'u kaplamak için radyo frekansı (RF) magnetron saçtırma 

yöntemi kullanılmıştır. Ar-kısmi basınç, birikme hızı ve Cu katkılamanın saçtırma 

ile büyütülmüş NiOX'un optoelektronik özellikleri üzerindeki etkisi araştırılmıştır. 

NiOX'un organik (Poli-TPD) ve inorganik (CuO) materyalleri kullanılarak pasive 

edilmesi perovskit güneş hücrelerinin verimliliklerini sırasıyla %2,2 ve %1,2 

artırmıştır. Son olarak, birlikte saçtırma kullanılarak Cu katkılı NiOX katmanı ile 

üretilen perovskit hücrelerinin verimlilikleri %3 iyileştirilmiştir. Bu tez yüksek 

verimli perovskit FV’lere yönelik ölçeklenebilirlik uygulamaları açısından 

(buharlaştırmadan saçtırmaya) bir referans ölçütü sağlamaktadır. 

 

Anahtar Kelimeler: Perovskit, Birlikte buharlaştırma, Kısmi basınc, Saçtırma, 

Hibrit buhar çözeltisi 
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CHAPTER 1  

1 INTRODUCTION  

With the advent of the steam engine by Thomas Newcomen in 1712, the industrial 

revolution was inaugurated to promote the economy and lifestyle of human beings. 

However, over the last century, it lead to the accelerated demand for energy and in 

turn to the use of fossil fuels as a traditional energy source. The consumption of fossil 

fuels has increased the emission of greenhouse gases such as CO2, leading to global 

warming and climate change. Therefore, alternative sources of energy such as 

photovoltaics (PV) are deemed necessary to depress the amount of CO2 and to relieve 

the current status of the World atmosphere. In this thesis, our aim lies in the 

optimization of potentially scalable fabrication techniques of perovskite solar cells 

as a groundbreaking class of emerging PV. 

1.1 Global warming and photovoltaics 

The world's human population grew from 3 billion in 1960 to 7.8 billion in 2020 1. 

The growing standards of living and constant economic growth around the world has 

stimulated energy consumption from 10035 to 14050 million tonnes of oil equivalent 

over the period from 2000 to 2017 2. As another alarming fact, the emission rate of 

CO2 has increased from 6 billion tonnes per year in 1989 to 32.5 billion tonnes per 

year in 2017 2 such that in 2019 the amount of CO2 exceeded 410 parts per million 

(ppm) in the atmosphere as shown in Figure 1-1. 
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Figure 1-1.1 The yearly amount of CO2 in units of parts per million in the 

atmosphere. 

 

As one of the most malicious greenhouse gases, the escalated amount of CO2 has 

lead to a global temperature rise of 1 °C from 1960 to 2020 3. To reduce the emission 

rate of CO2, the energy demand and its clean generation must be balanced. That is 

why the need for renewable energy sources gets more and more highlighted. The 

share of renewable energy sources in the electricity supply of 2019 was 24.7% as 

shown in Figure 1-2. This number is forecast to be 40% in 2040, but it is not if it will 

be enough to halt global warming.  According to International Energy Agency (IEA), 

among the renewable energy sources, photovoltaics (PV) is growing more popular 

due to its competitive optimization in sustainability 2. 
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Figure 1-2. The share of the energy sources in global electricity consumption in 

2019. 

The photovoltaic effect was first discovered by Edmond Becquerel in 1839 and over 

the turn of the century in 1954, the first solar PV panel was launched based on Si. In 

the beginning, solar power was expensive limiting its usage to satellite applications. 

However, following the advances in fabrication procedures, the cost of energy 

supplied by the Si PV decreased from 76 US dollars per watt (US$/watt) in 1977 to 

0.30 US$/watt in 2015 4. The first generation of solar cells was based on 

monocrystalline and polycrystalline Si making it a well-established industry that 

governs the PV market by 80%. In an attempt to reduce the material usage and cost, 

the second generation PV was proposed which is based on thin film technology such 

as amorphous Si and Cadmium Telluride (CdTe). To further utilize the Sun power 

via modern technologies, the third generation of PV has been under intense research. 

Multijunction solar cells, perovskite solar cells, organic solar cells, and quantum dot 

sensitized solar cells are some examples in this category. According to the efficiency 

chart of solar cells updated by the National Renewable Energy Laboratory (NREL) 

shown in Figure 1-3, the increase of efficiency has been the most rapid with 

perovskite solar cells among the emerging PV and other types of solar cells. The 

efficiency of this family of solar cells increased from 3.9% to 25.2% over only a 



 

 

4 

decade. This owes to the pioneering research and knowledge in other classes of PV 

especially dye-sensitized solar cells 5.  

 

                

Figure 1-3 a) NREL efficiency chart for the emerging PV, b) NREL efficiency 

chart for perovskite and perovskite/Si tandem solar cells. 

(a) 

(b) 
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1.2 Perovskite solar cells 

Perovskite was discovered in nature by Gustav Rose in the oxide form of CaTiO3 in 

1839 and was named after Russian mineralogist Lev Perovski. Organic inorganic 

metal halide perovskites usually have a chemical formula of ABX3. A consists of 

organic methylammonium (MA), formamidinium (FA) or inorganic cations such as 

Rb or Cs. B is taken by Pb or Sn and the X site is typically occupied by I, Br or Cl 

halides as illustrated in Figure 1-4. The success in the application of perovskite 

absorbers in solar cells lies in their easy and cost-efficient fabrication processes. 

Perovskites possess excellent optoelectronic properties such as direct bandgap which 

can be tuned between 1.3 eV and 3.1 eV by changing the composition of A or X site 

6. The absorption coefficient of metal halide perovskites is in the range of 105 cm-17. 

Also, the exciton binding energy of MAPbI3 (MAPI) has been reported to be as low 

as 37 meV which is comparable to the thermal energy of the cell under working 

condition 8. Therefore, MAPI can plausibly be regarded as a semiconductor 

generating electrons and holes rather than excitons upon illumination. Besides, the 

charge carrier diffusion lengths exceed 1 µm 9. 

             

Figure 1-4 The structure of ABX3 perovskite. 
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The first perovskite solar cell was born as a DSSC cell working with 3.9% efficiency 

5. Later, it was used by Park et al in a quantum dot sensitized cell exhibiting 6.5% 

efficiency. The first solid state perovskite solar cell was introduced by Snaith et al 

using a mesoporous structure with a solid phase hole transport layer demonstrating 

10.9% efficiency in 2012 10. Later, metal halide perovskite was used as a thin film in 

a planar structure showing 12.2% efficiency due to its micron-scale charge carrier 

diffusion lengths 9. Using planar structure for perovskite solar cells was a turning 

point in that, its application could be extended to larger area solar cells. Perovskite 

solar cells have been fabricated via a multitude of methods such as single step 

solution coating, two-step solution coating, two step vapor coating, vapor assisted 

solution coating, hybrid vapor-solution sequential coating, co-evaporation, chemical 

vapor deposition, pulsed laser deposition, doctor blade coating, slot-die coating, etc. 

Most of the record efficiencies reported for the perovskite solar cells have been 

achieved via the solution process. This is mainly due to the easier nondemanding 

routes in the solution process facilitating compositional control of the fabricated thin 

films. The two-step method was employed to get more reproducible results. Easy 

inexpensive processing along with efficiencies as high as 25.2% in single junction 

and 28% in perovskite/Si tandem devices already make perovskite solar cells a 

perfect candidate for the industrial application. The generated energy of perovskite 

solar cell modules is estimated to cost less than half of Si solar cells1112. However, 

two other crucial prerequisites to commercialize perovskite solar cells, are their 

scalability and stability. Co-evaporation has been successfully utilized to deposit 

uniform perovskite layers demonstrating efficiencies above 20.3% 13. This 

methodology is discussed in the second chapter of the thesis. Since the deposition 

takes place in a high vacuum chamber (10-6 Torr), the role of the deposition pressure 

is used as a key parameter to obtain crystalline perovskite. The effect of post-

annealing on the crystallinity of co-evaporated perovskite is intriguing and therefore 

was investigated in this thesis. The optoelectronic optimization of the perovskite 

solar cell depends not only on the perovskite layer but also on the transport layers 

used. Therefore, TiO2 and C60 as electron transport layers need to be studied 
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systematically. Another potentially scalable deposition method to fabricate 

perovskite layers is a hybrid vapor-solution method in which the inorganic lead-

halide compartment is first vacuum-deposited followed by solution coating of the 

organic compound14. The effect of the deposition rate of the lead-halide layer on the 

crystallinity and morphology of the perovskite film during the sequential method has 

not been studied yet. Also, the interdiffusion of the methylammonium-halide into the 

inorganic layer must be facilitated for the full reaction of the components. Therefore, 

we studied the effect of halide-mixing on the interdiffusion process and the 

outcoming photovoltaic properties of the perovskite layer. Another issue with the 

perovskite solar cells is their nonstable property which impedes their entry to the 

industry. The stability of perovskite solar cells has been improved to some extent 

during the recent years by stoichiometric modification, 2-dimensional (2D) 

perovskite layer onto the 3D layer, interface engineering, and encapsulation 

techniques. As a result, the lifetime of perovskite solar cells have reached 10000 

hours 15. We tried to improve the stability of the perovskite solar cells via halide-

mixing during the vapor-solution technique. Apart from the absorber layer, the effect 

of the transport layers on the stability of the perovskite solar cells has been extremely 

important 16–18. NiOX, in particular, has been shown to improve the air-stability of 

perovskite solar cells 17. The optimization of the NiOX deposition technique is of 

prime importance for roll-to-roll productions. Therefore, we investigated the 

deposition parameters of NiOX during a radio-frequency (RF) sputtering to optimize 

the optoelectronic properties of NiOX as a hole transport layer in perovskite solar 

cells. In addition, the effect of doping the NiOX layer with Cu during a co-sputtering 

process has not yet been studied in perovskite photovoltaics. Besides, since the 

passivation of NiOX with organic and inorganic materials has shown better band-

alignment of NiOX with the perovskite layer, it is interesting to explore novel organic 

or inorganic materials to passivate NiOX 19–21. 
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1.3 Thesis outline 

The second chapter of the thesis addresses co-evaporation as a method to fabricate 

perovskite solar cells in two different configurations. TiO2 and C60 as electron 

transport layers (ETL) were systematically optimized leading respectively to 13.0% 

and 16.1% efficiencies. Also, the co-evaporated perovskite was tested in the large 

active area perovskite solar cells with 6.0% and 5.5% efficiencies with 1.00 cm2 and 

2.03 cm2 areas. In the third chapter of the thesis, we propose the employment of 

methylammonium bromide (MABr) and methylammonium chloride (MACl) as 

additives to facilitate the interdiffusion process and to control the crystallization of 

mixed halide perovskite during the hybrid vapor-solution sequential method. The 

resultant perovskite solar cells exhibited a maximum of 19.8% efficiency and stable 

performance under 1 Sun illumination. In the fourth chapter, the optimal radio 

frequency (RF) magnetron sputtering conditions for NiOX as a hole transport layer 

(HTL) in perovskite solar cells are thoroughly discussed. The interface of 

perovskite/NiOX was modified by organic and inorganic compounds promoting the 

reproducibility of the resultant perovskite solar cells. Sputtered Cu doped NiOX was 

used for the first time in perovskite solar cells boosting the efficiency of the devices 

by 2.1% on average compared to the intrinsic NiOX. Chapter five presents a summary 

of the concluding remarks as well as the future outlooks. 
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CHAPTER 2  

2 LARGE AREA CO-EVAPORATED PEROVSKITE SOLAR CELLS WITH 

OPTIMIZED ELECTRON TRANSPORT LAYERS  

Co-evaporation as a method to deposit planar film was first introduced by Snaith et 

al. in 2013 22. The perovskite was conformal and exhibited 15.4% efficiency. They 

optimized the deposition rates of PbCl2 and MAI as the inorganic and organic 

sources to form CH3NH3PbI3-XClX (MAPI-Cl). The record efficiencies for co-

evaporated perovskite have been reported by Bolink et al where the deposition rates 

of PbI2 (0.5 Å/s) and MAI (1 Å/s) were optimized to fabricate perovskite solar cells 

with 20.3% efficiency 13. I was involved in a study with the same group to use double 

inorganic sources of PbI2 and PbCl2 to fabricate 16% efficient MAPI-Cl based solar 

cells23. Such nice results stem from a pure phase perovskite without residual solvents 

deposited uniformly. Therefore, co-evaporation is a nice candidate to construct 

perovskite solar cells in large areas. In section 2.1, an optimization of the co-

evaporation method is carried out to fabricate a highly crystalline perovskite layer. 

In sections 2.1.2-3, the fabrication and systematic optimization of solution-processed 

TiO2 as electron transport layer is presented which resulted in 11.5% efficiency of 

perovskite solar cells in the n-i-p structure. Later, the transport layers in p-i-n 

structure (NiOX and C60) are optimized demonstrating perovskite solar cells with 

16.3% efficiency as presented in sections 2.1.4-6. The p-i-n structure was used to 

fabricate large area perovskite solar cells showing 5.5% and 6.0% efficiencies with 

2.03 cm2 and 1.00 cm2 of the active area as shown in section 2.1.6.  
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2.1 Co-evaporated perovskite solar cells 

To fabricate perovskite films, PbCl2 and MAI were used as the inorganic and organic 

sources, respectively. While PbCl2 was purchased from Sigma-Aldrich, MAI was 

synthesized by reacting 60 mL of methylamine (40% in methanol) and 80 mL of 

hydroiodic acid (57 wt% in water) in a 250 mL round-bottom flask containing 150 

mL absolute ethanol at 0 °C. Before adding the HI and CH3NH2, the ethanol-

containing flask was kept stirring at 0 °C for 30 minutes under an Argon 

environment. Then, CH3NH2 was added to the flask followed by the dropwise 

addition of HI. The solution was kept stirring for 2 hours at 0 °C. The precipitate was 

recovered by putting the solution on a rotary evaporator at 50 °C. The yellowish raw 

product of CH3NH3I was washed with diethyl ether once. Later, the powder was 

dissolved in ethanol and was recrystallized 3 times. MAI was collected and dried at 

60 °C in a vacuum oven for 24 hours. To fabricate perovskite films, the substrates 

were transferred to a chamber which was evacuated to 5 × 10-6 Torr of base pressure. 

The deposition rate of PbCl2 was monitored by a gold-coated quartz crystal 

microbalance (QCM). Since slow deposition rates let the vapor molecules have 

enough time to migrate over the surface of the substrate and find the best place in 

terms of the lowest energy, the deposition rate of PbCl2 was kept at 0.3 Å/s 

throughout the co-evaporations. The evaporation of MAI however, is not easy to 

control due to its omnidirectional evaporation as illustrated in Figure 2.1a. The 

evaporated MAI molecules randomly scatter and occupy the volume of the vacuum 

chamber. Figure 2.1b shows the evaporation rate of MAI and the pressure change 

inside the chamber during the deposition. According to this figure, the deposition 

rate of MAI follows the MAI partial pressure. Other research groups have also used 

MAI partial pressure to control the deposition rate of MAI 24,25. 
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Figure 2-1 a) The vacuum chamber for co-evaporation of PbCl2 (green cone) and 

MAI (yellow circles) which scatter around the chamber, b) MAI vapor pressure and 

deposition rate.  

We used glass substrates to study the crystallinity and optical properties of 

perovskite. Keeping the deposition rate of PbCl2 constant at 0.3 Å/s, the MAI partial 

pressure was varied among 4 × 10-5, 5 × 10-5, and 6 × 10-5 Torr. Figure 2-2 depicts 

the XRD patterns for the resultant glass/MAPI-Cl films. The diffractions at 2θ of 

14.3°, 28.5°, 31.3°, and 40.5° respectively correspond to the (110), (220), (310), and 

(224) crystal planes of perovskite 26. According to the XRD results, the MAPI-Cl 

made under 4 × 10-5 Torr of MAI partial pressure exhibited strong diffraction at 2θ 

= 12.6° belonging to (100) crystal plane of PbI2 
26. Therefore, the film is a mixture 

of perovskite and PbI2 phases. Among all, the MAPI-Cl fabricated under 5 × 10-5 

Torr of MAI partial pressure demonstrated the most intense (110) diffraction peak 

indicating its superior crystallinity over the other samples. Apart from the deposition 

parameters, there have been numerous reports regarding improved crystallinity of 

perovskite by post-treatments such as annealing. Therefore, we annealed the 

perovskite film in the air for different periods tracking the full width at half 

maximum (FWHM) of (110) peak at 2θ = 14.3°. FWHM of a specific peak in the 

XRD pattern is inversely proportional to the crystallite size. According to Scherer’s 

formula (Equation 2.1), the smaller the FWHM, the larger the grains. 

D = (0.94 × λ) / (β × cos (θ))    (2.1) 
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Where, D is the crystallite size in nm, λ denoted the employed X-ray kα1 beam 

wavelength (0.1542 nm), and β is FWHM. The results have been summarized in 

Table 2-1. 30 minutes of annealing the perovskite film resulted in the narrowest 

FWHM indicating larger crystallites. The scanning electron microscope (SEM) 

image of the perovskite surface shows perovskite grains larger than 500 nm as shown 

in Figure 2-3a. The UV-Visible (UV-Vis) spectroscopy of the fabricated perovskite 

exhibits a sharp absorption at λ = 780 and photoluminescence (PL) peak at λ = 760 

nm as shown in Figure 2-3b. In short, the XRD, UV-Vis spectroscopy, SEM and PL 

analyses indicate a pure crystalline phase of perovskite film with a sharp absorption 

at its bandgap (Eg). Therefore, the solar cells presented in the next sections of this 

chapter are constructed using the optimized perovskite film here.  

   

Figure 2-2 a) X-ray diffractograms of co-evaporated perovskite films under different 

MAI partial pressures, b) the (110) plane diffraction of the MAPI-Cl annealed in the 

air for different periods.  

 

Table 2-1 The FWHM of the (110) crystal plane of MAPI-Cl shown in Figure 2-2b. 
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Figure 2-3 a) SEM image of the MAPI-Cl sample deposited under 5×10-5 Torr of 

MAI partial pressure and annealed for 30 minutes in the air, b) the absorbance (red) 

and photoluminescence spectra (blue) of the sample in (a). 

 

2.1.1 n-i-p structure perovskite solar cells using the optimized deposition 

parameters 

Depending on the light incident side of perovskite solar cells, they are categorized 

into n-i-p or p-i-n structures. In the n-i-p configuration, the light incident side of the 

substrate is transparent conductive oxide (TCO)/electron transport layer (ETL). 

While in p-i-n configuration, the substrate is TCO/hole transport layer (HTL). TiO2 

has been one of the most popular ETLs in the n-i-p perovskite solar cells due to its 

wide bandgap and matched conduction band with MAPI. TiO2 can be fabricated 

using various techniques such as spin coating, radiofrequency magnetron sputtering, 

electrodeposition, spray pyrolysis, atomic later deposition (ALD), etc. In the current 

study, we focused on the optimization of TiO2 film deposited via spin coating. For 

this purpose, we investigated the crystallinity of TiO2 deposited using titanium 

diisopropoxide bis (TDIP-b) and titanium tetraisopropoxide (TTIP). As the substrate, 

fluorine-doped tin oxide (FTO) coated glass was purchased from Pilkington (NSG 

TECTM 7 with RS = 7 Ω sq-1) and was washed using 10-minute sonication in acetone, 

2 vol.% hellmanex in H2O and isopropanol, consecutively. Later, the substrates were 

(b) 
(a) 
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treated by UV-ozone plasma for 15 minutes to remove any organic contamination 

and to increase the hydrophilicity of the surface. A 0.3 M solution of TDIP-b or TTIP 

with 13 mM HCl in 1-butanol, was spun at 1500rpm for 6 seconds followed by 3000 

rpm for 30 seconds. Then it was heated at 150 °C for 10 minutes before annealing at 

500 °C for 30 minutes. Grazing incidence XRD (GIXRD) analysis (shown in Figure 

2-4a) at a grazing incidence of 0.3° shows TiO2 diffractions at 25.3°, 36.1°, 48.1°, 

and 54.0° attributed to (101), (004), (200) and (105) planes which are indicative of 

crystalline TiO2 in anatase phase 27. The (101) peak is more intense in TTIP as 

compared with TDIP-b. Besides, the full width at half maximum (FWHM) of (101) 

peak is 0.90° for TDIP-b and 0.56° for TTIP. In view of these results and Scherrer’s 

formula (Equation 2.1), the TiO2 made using TTIP has higher crystallinity which 

ensures fewer grain boundaries within TiO2 and thereby more efficient charge 

transport. 

 



 

 

15 

 

  

Figure 2-4 a) GIXRD patterns measured at 0.3° incidence for FTO/TiO2 deposited 

using TDIP-b and TTIP, b) SEM from the surface of FTO/TiO2 deposited using 

TTIP, c) cross-sectional SEM of the sample in (b). 
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2.1.2 TiCl4 treatment of TiO2 

The interface between perovskite and TiO2 layer is of critical importance to fulfill 

the charge extraction efficiency of TiO2. TiCl4 treatment has been shown to fill in 

the cracks on the surface of TiO2 and to depress its work function resulting in lower 

charge recombination at the perovskite/TiO2 interface 28. For this purpose, TiO2/FTO 

substrates are typically immersed in a hot deionized (DI) water bath containing 0.05 

M TiCl4 and later annealed at 500 °C for 30 minutes before using as the substrate in 

perovskite solar cells. In the literature, the treatment is performed for 30 minutes at 

70 °C 29. In this section, 20, 30, 45 and 60 minutes of TiCl4 treatment were compared 

in full perovskite solar cells shown in Figure. Therefore, the TiCl4 treated TiO2/FTO 

substrates were coated by co-evaporated MAPI-Cl (discussed in section 3.1). As 

HTL, 2,20,7,70‐tetrakis‐(N,N‐dip‐methoxyphenylamine)‐9,9′‐spirobifluorene 

(Spiro‐OMeTAD, 73.2 mg mL−1 of anhydrous chlorobenzene) was spin-coated at 

2000 rpm for 20 seconds onto the substrates to form 200 nm thick layer. Spiro-

OMeTAD was doped with 4-tert‐butyl pyridine (TBP, 11.4 μL), lithium 

bis(trifluoromethane sulfonyl)imide (LiTFSI, 12 μL) solution (520 mg mL-1 of 

acetonitrile) and 7.2 μL of FK 209 Co(III) TFSI (stock solution 375 mg mL-1 of 

acetonitrile) 30. Finally, a 100 nm thick Ag was vacuum-deposited (base pressure of 

5 x 10-6 Torr) to form the top electrode. According to the J-V characteristics of the 

full devices (Table 2-2), 45 minutes of TiCl4 treatment resulted in the best average 

fill factor (FF), open circuit voltage (VOC) and power conversion efficiency (PCE). 
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Table 2-2 The resultant average and best J-V characteristics following different 

times of TiCl4 treatment. 

TiCl4 treatment time 

(minutes) 

20 30 45 60 

VOC (mV) 
 

Ave. 

Best 

1009.0 

1027.7 

1001.0 

1040.5 

1064.7 

1088.1 

1040.7 

1052.2 

JSC (mA/cm2) 
 

Ave. 

Best 

9.3 

14.2 

10.4 

12.9 

11.3 

14.1 

12.1 

14.5 

FF (%)  
 

Ave. 

Best 

63.0 

61.3 

61.2 

61.1 

71.1 

67.7 

63.9 

59.2 

PCE (%)  
 

Ave. 

Best 

5.9 

9.0 

6.4 

8.2 

8.6 

10.4 

8.1 

9.0 

 

2.1.3 Bilayer of TiO2 

Since the surface of FTO is rough with root mean square roughness (Rrms) of 16-50 

nm 31, a single solution coating of TiO2 might result in uncoated areas of FTO leading 

in charge recombination sites at MAPI-Cl/TiO2 interface. Therefore, the TTIP 

solution was spin coated twice to form the final TiO2 layer. For this purpose, three 

molarities of TTIP solution were considered: 0.1, 0.15 and 0.3 M with five different 

sequence-combinations of the first and second TTIP solutions. The substrates were 

later annealed at 500 °C for 30 minutes, treated by TiCl4 for 45 minutes, annealed at 

500 °C for another 30 minutes and finally were used to make full MAPI-Cl solar 

cells explained in section 3.2. A cross-sectional SEM of a finished device is given in 

Figure 2-5. The J-V curves for the best working devices in each TTIP sequence 
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category and average J-V characteristic values have been demonstrated in Figure 

2-6a and Table 2-3. According to these results, the initiation of spin coating of TTIP 

with 0.15 M followed by 0.3 M solution coating resulted in the highest average JSC 

(16.4 mA/cm2, best: 17.8 mA/cm2) and therefore highest average PCE (10.2%, best: 

11.5%) compared to other combinations. Although the TiO2 layer was optimized, the 

resultant devices showed hysteresis as shown in Figure 2-6b. A solar cell is hysteretic 

if it shows different J-V characteristics depending on the sweeping direction of 

voltage during the measurement. 

 

Figure 2-5 Cross-sectional SEM image of a full device using optimized bi-layer of 

TiO2. 
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Figure 2-6 a) J-V curves for the best working perovskite solar cells made of TiO2 

using different TTIP solution concentrations and sequences, b) J-V curves measured 

in forward and reverse scans for the perovskite solar cell using 0.15 + 0.30 

combination of TTIP. 

Table 2-3 Summarized average and best-cell J-V characteristic data for the 

perovskite solar cells made of TiO2 using different TTIP solution concentrations and 

sequences. 

TTIP solution order (M) VOC (mV) 
JSC 

(mA/cm2) 
FF (%) PCE (%) 

(0.10+0.15) 
Ave. 

(Best) 

1002.7 

(988.3) 

16.1 

(17.6) 

56.0 

(57.3) 

9.0 

(10.0) 

(0.15+0.15) 
Ave. 

(Best) 

984.7 

(998.2) 

16.5 

(16.8) 

52.2 

(57.3) 

8.5 

(9.5) 

(0.10+0.30) 
Ave. 

(Best) 

1017.1 

(1031.7) 

15.8 

(18.7) 

63.5 

(62.4) 

10.2 

(12.0) 

(0.15+0.30) 
Ave. 

(Best) 

990.4 

(1046.3) 

18.6 

(20.1) 

63.0 

(61.9) 

11.6 

(13.0) 

(0.30+0.30) 
Ave. 

(Best) 

949.9 

(936.5) 

18.0 

(19.9) 

56.5 

(56.6) 

9.7 

(10.5) 
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2.1.4 p-i-n perovskite solar cells 

The p-i-n configuration of perovskite solar cells has been popular due to non-

hysteretic behavior as compared to the n-i-p structure. Moreover, since there is 

typically no need for high-temperature fabrication steps in contrast to compact TiO2 

(500 °C as discussed in section 2.1.3), the p-i-n configuration is a good candidate 

with unresistant-to-heat TCO/glass or flexible substrates making it an industrially 

attractive choice. The structure used in this thesis has been shown in Figure. In this 

structure, all the layers are deposited using vacuum deposition. As a result, it will be 

shown viable in the large active area (2.03 cm2) solar cells in this subsection. As 

substrates, NiOX/tin-doped indium oxide (ITO) was used. NiOX layer was deposited 

using radiofrequency (RF) magnetron sputtering to form a uniform layer. The 

optoelectronic properties and the optimization of sputtered NiOX have been 

thoroughly studied in Chapter 4. Here, a range of previously reported optimized 

parameters has been employed to sputter NiOX 
32. Therefore, an argon partial 

pressure of 20 mTorr with a deposition rate of 1 nm/min was used to deposit NiOX. 

As ETL a layer of fullerene (C60) is evaporated at a rate of 0.5 Å/s (base pressure of 

5 x 10-6 torr) atop ITO/NiOX/MAPI-Cl followed by 7 nm thick Bathocuproine (BCP) 

vacuum deposition (at a rate 0.5 Å/s and base pressure of 8 x 10-6 torr) as a hole 

blocking layer 33,34. The thicknesses of NiOX and C60 are optimized before usage in 

large area perovskite solar cells. Starting with NiOX, a 20 nm thick C60 was used 

throughout the experiments 35. The thicknesses of sputtered NiOX were chosen as 40, 

65 and 90 nm. The resultant effects were probed in the performance of full perovskite 

solar cells as exhibited by J-V characteristic data in Figure 2-7 and Table 2-4. 
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Figure 2-7 J-V curves for the best working p-i-n perovskite solar cells with different 

NiOX thicknesses. 

Table 2-4 Average and best (in parenthesis) J-V characteristic data for p-i-n 

perovskite solar cells with different NiOX thicknesses. 

NiOX 

thickness 

(nm) 

VOC (mV) JSC (mA/cm2) FF (%) PCE (%) 

40 
931.6 ± 9 

(919.5) 

17.0 ± 0.7 

(17.7)  

60.4 ± 3.4 

(65.5) 

9.5 ± 0.7 

(10.7) 

65 
949.8 ± 12.6 

(945.1) 

16.9 ± 0.8 

(17.5) 

68.3 ± 4.6 

(72.2) 

10.9 ± 0.8 

(11.9)  

90 
922.2 ± 11.2 

(921.6) 

12.2 ± 0.3 

(12.6)  

59.6 ± 1.6 

(61.8) 

6.6 ± 0.3 

(7.2)  
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According to the J-V characteristic data for the perovskite solar cells, 65 nm thick 

NiOX resulted in the highest average VOC (949.8 mV) and FF (68.3%). The average 

JSC in the case of 40 nm thick NiOX, was the highest, but it exhibited low VOC (931.6 

mV) and FF (60.4%). In sum, the highest average (10.9%) and best (11.9%) PCE 

was achieved when NiOX was 65 nm thick. To further optimize the p-i-n solar cells, 

the thickness of C60 as the ETL was also triggered. We tested the effect of 10 to 50 

nm of C60 thickness on the performance of the full devices. The J-V plots for the best 

working devices in each category are shown in Figure 2-8. Also, Table 2-5 

summarizes the average and best J-V characteristic data for the solar cells. When C60 

was 10 nm, the resultant devices showed the lowest average VOC (982.1 mV). On the 

other hand, 50 nm thick C60 resulted in the lowest average FF (46.8%) indicating 

increased resistance of C60 at this thickness. The best overall J-V characteristics and 

highest average efficiencies (12.2% and 12.5%) were achieved when C60 was 20 nm 

and 30 nm thick. Especially, the champion solar cell worked with 16.1% efficiency. 

In conclusion, the thickness of C60 must be in the range of 20 to 30 nm to achieve 

the highest efficiencies in perovskite solar cells employing C60 as the ETL. This is 

also in agreement with previous studies 23,36. 
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Figure 2-8 J-V curves for the best working p-i-n perovskite solar cells with different 

C60 thicknesses. 

Table 2-5 The average and best (in parenthesis) data for J-V characteristic data for 

perovskite solar cells with different C60 thicknesses. 

C60 thickness 

(nm) 
VOC (mV) JSC (mA/cm2) FF (%) PCE (%) 

10 
982.1 

(980.1) 

16.3 

(19.0) 

61.0 

(71.0) 

9.8 

(13.2) 

20 
1002.0 

(1051.4) 

17.9 

(20.5) 

68.1 

(74.6) 

12.2 

(16.1) 

30 
1000.2 

(1027.9) 

18.8 

(21.3) 

66.7 

(70.6) 

12.5 

(15.5) 

50 
1001.9 

(1026.5) 

16.0 

(16.6) 

46.8 

(68.8) 

7.5 

(11.7) 
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2.1.5 Large area perovskite solar cells 

Since the p-i-n configuration of the perovskite solar cells used in this chapter were 

fabricated using vacuum depositions, we chose this structure for the large area cells. 

Also, this configuration demonstrated higher efficiencies (16.1%) as compared to the 

n-i-p structure (PCE = 13.0%) with the co-evaporated perovskite solar cells made in 

our lab. Therefore, the large active area (1.00 cm2 and 2.03 cm2) perovskite solar 

cells were fabricated using the optimized parameters for the p-i-n structure such as 

65 nm thick sputtered NiOX and 25 nm thick C60. Also, more conductive ITO 

substrates (Rs = 7 Ω aq-1) were employed to reduce the probable series resistance 

arising from ITO with Rs = 15 Ω aq-1. The J-V curves and data are shown in Figure 

2-9a and Table 2-6. Smaller area cells (0.05 cm2) were also fabricated on the same 

substrates for comparison. The substrate containing different active areas of 

perovskite cells is shown in Figure 2-9b. The cross-sectional SEM image of the 

device is given in Figure 2-9c showing a 560 nm thick perovskite layer in the device. 

The devices showed close efficiencies in forward and reverse sweeping direction 

indicating minimal hysteresis. As the active area increased from 0.05 cm2 to 2.03 

cm2, the average FF dropped from 60.1% to 47.4%. Also, there was a drop in the 

average VOC and JSC by 46.6 mV and 2.5 mA/cm2, respectively. The drops in the FF 

and JSC are attributed to the increased series resistance of the solar cell due to the 

large area of bottom ITO (Rs = 7 Ω aq-1). Despite the drop in the overall efficiency, 

large area perovskite solar cells were successfully fabricated demonstrating 

efficiencies of 6.0% and 5.5% with 1.0 cm2 and 2.03 cm2 of the active areas. 
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Figure 2-9 a) The J-V curves for the best working perovskite solar cells with different 

active areas, b) the perovskite solar cell with three active areas, c) The cross-sectional 

SEM image of the perovskite solar cell with an active area 2.03 cm2. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Active area (cm2)

 0.05

 1.00

 2.03

J 
(m

A
/c

m
2
)

Voltage (V)

(a) (b) 

(c) 



 

 

26 

Table 2-6 The performance details for the best working perovskite solar cells with 

different active areas corresponding to Figure 2-9a. 

Active area 

(cm2) 

Scan 

direction 
VOC (mV) 

JSC 

(mA/cm2) 
FF (%) PCE (%) 

0.05 
Forward 

Reverse 

984.6 

975.4 

13.9 

14.7 

56.5 

60.1 

7.7 

8.7 

1.00 
Forward 

Reverse 

975.6 

977.0 

10.8 

11.1 

57.0 

55.5 

6.0 

6.0 

2.03 
Forward 

Reverse 

932.7 

928.8 

12.5 

12.2 

46.9 

47.4 

5.5 

5.4 

 

We argue that the second issue causing the efficiency drop with large active area 

perovskite solar cells is the reproducibility of the perovskite layer co-evaporated 

using a chamber with the substrate mounting unit opening to the air. The organic 

source used for the co-evaporation (MAI) is extremely hygroscopic and condensates 

onto the inner walls of the vacuum chamber during every deposition of the perovskite 

layer. Therefore, every deposition follows a different amount of MAI on the walls 

with different volume of adsorbed humidity. This made us suffer from the 

performance reproducibility of the perovskite solar cells. As a result, the chamber 

should be isolated from the air using an N2 or Ar filled glovebox to make the co-

evaporation more reproducible.
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CHAPTER 3  

3 HYBRID VAPOR-SOLUTION SEQUENTIALLY DEPOSITED MIXED-HALIDE 

PEROVSKITE SOLAR CELLS 

The recent sky-rocketing performance of perovskite solar cells has triggered a strong 

interest in further upgrading the fabrication techniques to meet the scalability 

requirements of the photovoltaic industry. The integration of vapor-deposition into 

the solution process in a sequential fashion can boost the uniformity and 

reproducibility of the perovskite solar cells. Besides, mixed-halide perovskites have 

exhibited outstanding crystallinity as well as higher stability compared with iodide-

only perovskite. Here the deposition rate of the PbI2 layer was systematically 

optimized along with Br⁻ and Cl⁻ content at the solution deposition step of the 

sequential method towards rendering high and reproducible performance of the 

perovskite solar cells. Then the solution step was further inspected addressing 

MABr/MAI molar ratio and found to be 0.41 to minimize the deviation from the 

Shockley-Queisser limit at the corresponding bandgap. The introduction of MABr 

and MACl into the hybrid vapor-solution method showed a successful control over 

the crystallization and morphology of the perovskite layer which resulted in high 

efficiencies up to 19.8% in p-i-n devices exhibiting 90 hours operational stability 

under continuous illumination. The fabrication of triple halide perovskites using a 

hybrid vapor-solution method was shown to serve as an excellent choice towards 

scalable production techniques.  

3.1 Hybrid vapor-solution sequential deposition 

Lorem The unprecedented evolution of halide perovskites optoelectronics, achieving 

photovoltaic efficiencies beyond 25.2% 37 in less than 11 years, stems from their 

high absorption coefficients, long charge carrier diffusion lengths and adjustable 
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bandgaps 9,11,38-40. In contrast with conventional methylammonium lead iodide 

(CH3NH3PbI3 or MAPI), partial replacement of methylammonium (MA) with 

formamidinium (FA) and Cesium (Cs), has exhibited enhanced thermal, moisture 

and mechanical stability of the perovskite layer 41-44. Also, including fractional 

bromide (Br⁻)  instead of iodide (I⁻), has proven to boost the crystal formation, 

efficiency as well as the phase stability of perovskite 43,45. A myriad of fabrication 

techniques for making potentially low cost yet high-quality perovskites have been 

developed which mainly include solution-based and/or evaporation techniques. The 

solution process has been popular due to the ease of stoichiometric control and low-

cost nature. Thus, most of the reported record efficiencies have been achieved using 

wet chemical processes. In this category, in a single step perovskite fabrication 

method, where all the precursors are in the same solution, the crystallization of the 

perovskite film has been controlled using antisolvent technique and other post-

treatments like heat or vacuum quenching 46. However, typically the sequential 

deposition method, where each deposition step involves the use of a solution with 

some of the precursors, has been shown to result in more uniform pin-hole free 

perovskite layers 47,48. Despite the simplicity of the solution process, it often lacks 

reproducibility and applicability to large-area solar cells 49. On the other hand, 

techniques such as co-evaporation, render high uniformity and thickness control of 

the perovskite layer with nominal efficiencies above 20% 13,50. All evaporated 

sequential method also proved as a promising method in achieving highly crystalline 

perovskite films with 17.6% efficiency 51. In principle, evaporation-based methods 

are appealing since industrial-scale devices can be realized due to their high 

reproducibility and uniformity. However, it is not straightforward to construct multi-

halide or multi-cation perovskites with stoichiometric precision. As a result, 

combining evaporation and solution in a sequential fashion called hybrid vapor-

solution technique is expected to benefit from the advantages of both vapor 

deposition and solution process such as uniformity, time investment and simplicity 

altogether 52. During the hybrid vapor-solution method, first, a layer of lead halide 

(PbX2 with X = I, Cl) is vacuum deposited and then the organic component is 
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introduced by immersion into or by spin-coating an alcohol solution containing MA- 

or FA- halide1448525354. Vapor deposition of the inorganic PbX2 ensures a uniform 

layer throughout the surface of the substrate. In addition, since the formation of the 

perovskite is accompanied by volume expansion of the initial PbX2 layer, the final 

structure is a continuous pinhole-free perovskite film. This makes the method 

particularly interesting for roll-to-roll production procedures such as slot-die and 

spray coating5556. Recently, Rafizadeh et al used a hybrid vapor-solution method to 

fabricate planar MAPI-based devices with 18.9% efficiency in n-i-p structure57. 

Inasmuch as they used TiO2 as the substrate, the evaporated PbI2 layer was porous 

promoting its transformation into perovskite during the solution step. However, 

using TiO2 in direct contact with perovskite typically results in hysteresis58-60. 

Applying organic inter/sublayers has widely been shown to mitigate the hysteresis 

50,61-63. Nevertheless, this was also shown to induce a nonporous compact PbI2 layer 

14. Therefore, employing diffusive ions such as Br⁻ or Cl⁻ in the solution step, are 

deemed necessary to facilitate the conversion of the PbI2 layer into perovskite. 

Besides, compared with MAPI, mixed halide perovskites have proven to possess 

larger charge carrier mobilities and longer diffusion lengths which can suppress the 

hysteresis 9. Moreover, it was shown by Sun et al that the addition of Br⁻ and Cl⁻ 

enhances the crystallinity and photoluminescence quantum yield (PLQY) of the 

perovskite film 64.  

Hence, we analyze the main crystallization and perovskite formation processes in 

each step of the sequential hybrid vapor-solution fabrication method. In the first step, 

we studied the effect of the deposition rate of the PbI2 bottom layer on its roughness, 

which determines the subsequent crystallization of perovskite and device 

performance. During the second step, the inclusion of Br⁻, Cl⁻ and their combination 

in the MA-halide solution, was thoroughly investigated which resulted in improved 

overall device performance up to 19.8% with VOC above 1144.8 mV and FF more 

than 82% with no hysteresis. Such performance enhancement was shown to stem 

from the improved crystallinity of mixed halide perovskites and reduced 

nonradiative recombination within the structure of the perovskite solar cell 65. While 
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Cl⁻ was effective to transform the initial PbI2 layer into perovskite, the addition of 

Br⁻ was found to be essential for sustaining the operational stability.  

3.2 Results and Discussion 

3.2.1 PbI2 layer 

 The initial PbI2 layer can be deposited either by solution or evaporation during the 

two-step sequential method. Evaporation enables effective control over the 

thickness, crystallinity, and morphology of a highly pure PbI2 layer without residual 

solvents. The quality of the final perovskite layer depends predominantly on the 

properties of the initial PbI2 film 48. After introducing the organic MA-halide 

solution, the reaction initially takes place at PbI2 crystal defects and follows the 

Ostwald’s step rule to reduce Gibbs free energy engendering perovskite 66. The 

reaction between PbI2 and MA-halide components starts by forming a capping layer 

of perovskite on top followed by a dissolution-recrystallization process and a series 

of PbI2 grain migration within the film to form perovskite 67. The crystallization of 

the capping layer at the surface is rapid and can impede the effective interdiffusion 

of the organic precursors into the integral bulk of the PbI2 layer. To expedite the 

mass transfer of the organic compounds during the sequential method, many routes 

have been proposed such as adding ammonium acid iodide (AAI) derivatives to PbI2 

precursor 68, treating PbI2 with chlorobenzene 69, introducing cyclohexane to MA-

iodide solution to lower the solution polarity 70, and incorporating Cl- during a multi-

cycle dropping technique 71. Fu et al showed that using poly-crystalline substrates 

such as TiO2, ZnO, CdS, Zn(O,S) and FTO induces porous plate-like PbI2 

microstructures, while, amorphous substrates such as CuSCN, PEDOT:PSS and 

PCBM result in compact PbI2 layers 14. Conversion of compact PbI2 into perovskite 

is challenging due to its dense structure. During the sequential approach, the 

inclusion of small halide ions such as Cl⁻ and Br⁻ has been shown to improve the 

mass transfer of MA compounds into the PbI2 layer 64,72. Therefore, we propose using 
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MACl and MABr to facilitate the diffusion of the organic solutes through the packed 

PbI2 grains to effectively convert them into the perovskite layer. Here we focus on 

the effect of the PbI2 sublimation rate, choosing 2.0, 2.5 and 3.5 Å/s, on the resulting 

PbI2 layer and thereby on the perovskite film and the associated device performance. 

In particular, crystallinity and morphology were studied by X-Ray Diffractometry 

(XRD), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy 

(SEM). As shown in Figure 3-1a, the vacuum deposited PbI2 film (thickness = 250 

nm) demonstrates 3 diffraction peaks at 2θ =12.7°, 25.5° and 38.6° belonging to the 

(100), (011), and (110) PbI2 crystal planes, respectively. The PbI2 layers deposited 

at different rates share common XRD patterns. The dominant (100) planar 

orientation is indicative of the preferential growth of PbI2 grains perpendicular to the 

c-axis 73. This is further shown by SEM images in Figure 3-1b-d, where the PbI2 

layer is in the form of smooth platelets packed along the horizontal plane irrespective 

of the deposition rate. However, according to AFM measurements in Figure 3-2a-d, 

the surface roughness of PbI2 film increases slightly from Root Mean Square (RMS) 

values of 2.7 to 4.0 nm as the deposition rate is changed from 2.0 to 3.5 Å/s, 

respectively.  
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Figure 3-1 a) XRD patterns for the PbI2 layer deposited at deposition rates of 2.0-3.5 

Å/s. SEM surface images of 250 nm PbI2 layer deposited at a) 2.0 Å/s, b) 2.5 Å/s, c) 

3.5 Å/s. The insets show the cross-sectional SEM images of the related sample. 
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Figure 3-2 AFM results for PbI2 layer deposited at (a) 2 Å/s, (b) 2.5 Å/s, (c) 3.5 Å/s. 

d) RMS roughness values of the PbI2 layer shown in a-c.  

The perovskite layer was subsequently formed by spin-casting MA-halide solution 

containing MAI (35 mg), MABr (10 mg) and MACl (5 mg) in 1 ml of IPA. 

According to Figure 3-3a, when PbI2 is deposited at 2.0 Å/s, there exists a PbI2 

diffraction peak at 2θ=12.7 ̊ in the diffractogram of the perovskite implying that the 

final perovskite layer is PbI2 rich. However, the same peak is suppressed when the 

initial PbI2 is sublimed at 2.5 Å/s, and it is eliminated when the deposition rate of 

PbI2 is further increased to 3.5 Å/s, as shown in Figure 3-3a. This is attributed to the 

increased roughness of PbI2 deposited at high rates (Figure 3-2d) and thereby more 

defects to initiate the reaction between MA-halide and PbI2 platelets. In addition, as 

the deposition rate increases, the resultant film is likely to be more porous allowing 

for better impregnation of the MA-halides into the PbI2 film. The surface and cross-

sectional view of the perovskite layers depending on the initial deposition rate of 

Pbl2 are shown in SEM images in Figure 3-3b-g. The thickness of the final perovskite 

layer is 350 nm in all the samples. They present directional grains or boundaries 

which can hinder the charge carrier collection in the vertical orientation, a 

benchmark of MACl incorporation during perovskite fabrication 74. However, the 
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surface morphology changes depending on the deposition rate of the initial PbI2 

layer. When the PbI2 rate is 2.0 Å/s, bright platelets remain at the surface of the final 

perovskite (Figure 3-3b, c) which is speculated to be due to residual unreacted PbI2, 

since heavy-atom regions appear with brighter contrast in the SEM images 65. This 

is in line with the XRD analysis in Figure 3-3a, which shows a more intense PbI2 

peak when the deposition rate is 2.0 Å/s. The white flakes are in the form of scattered 

platelets throughout the surface. The perovskite layers formed out of PbI2 deposited 

at higher rates of 2.5 and 3.5 Å/s are compact with micro-scale grains as 

demonstrated in Figure 3-3d-g. Bright regions are also detectable with higher rates 

of 2.5 and 3.5 Å/s shown with circles on the SEM images. Nevertheless, the number 

of PbI2 platelets reduces with the deposition rate. Collectively, these results indicate 

more intercalation of PbI2 with organic components as the deposition rate of PbI2 

increases. 
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Figure 3-3 a) XRD pattern of the perovskite layers having the PbI2 layer deposited 

at different rates. SEM surface and cross-sectional images of perovskites after 

conversion of PbI2 layers at rates of (b,c) 2.0 Å/s, (d,e) 2.5 Å/s, (f,g) 3.5 Å/s. 

The effect of the PbI2 sublimation rate on the performance of the devices was studied 

in perovskite solar cells fabricated in the p-i-n configuration shown in Figure 3-4. In 

this structure, perovskite is sandwiched between N4,N4,N4′,N4′-tetra([1,1′-

biphenyl]-4-yl)-[1,1′:4′,1′-terphenyl]-4,4′-diamine (TaTm)/ molybdenum oxide 

(MoOX) as hole transport layer (HTL) and C60/ bathocuproine (BCP)  as electron 
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transport layer (ETL). All the transport layers were vacuum deposited as detailed in 

the Experimental Section. 

 

Figure 3-4 Device structure used for perovskite solar cells and its corresponding 

cross-sectional SEM image. 

 

3.2.2 Device fabrication 

The ITO-coated substrates were sonicated for 10 minutes successively in soap, 

deionized water, and isopropanol, followed by UV-ozone treatment for 15 minutes. 

Then, the samples were transferred into a vacuum chamber integrated into an N2-

glovebox. A 6 nm-thick MoOX was thermally evaporated at a base pressure of 

2 × 10−7 Torr onto the substrates followed by an annealing step at 100 °C for 

10 minutes. Later, 10-nm thick TaTm was thermally deposited under a vacuum of 5 

× 10−6 Torr, followed by 250 nm-thick PbI2 at rates of 2.0, 2.5 and 3.5 Å/s for the 

rate study and 2.5 Å/s for the rest of the paper. The deposition rate was monitored 

using quartz crystal microbalance (QCM). Later, the MA-halide solution was spin-

cast at 2100 rpm for 30 seconds on top of ITO/MoOX/TaTm/PbI2‐coated substrates, 

which was followed by an annealing step at 100 °C for 45 minutes to form the 

perovskite layer. The substrates were washed twice by IPA and dried on a hot plate 

at 100 °C. Unless otherwise stated, the MA-halide solution consisted of MAI (35mg), 

MABr (10 mg) and MACl (5 mg) per 1 ml of anhydrous IPA. The perovskite coated 
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substrates were transferred into a vacuum chamber to deposit C60 and BCP (25 and 

7 nm, respectively) as electron transport layers at a base pressure of 5 × 10−6 Torr. 

Finally, a 100 nm-thick Ag was deposited by thermal evaporation at a pressure of 

2 × 10−7 Torr to form the electrode. 

The current density–voltage (J–V) curves and their statistics are summarized in 

Figure 3-5 and Table 3-1. The highest average and record open circuit voltages (VOC 

= 1102.7 mV and 1117.0 mV, respectively) were achieved for the lowest deposition 

rate of 2.0 Å/s. This is correlated with the excess unreacted PbI2 at the interfaces of 

perovskite, which has been shown to passivate nonradiative recombination centers 

75. On one hand, as the deposition rate of PbI2 increased from 2.0 to 3.5 Å/s, the 

average VOC dropped monotonically from 1102.7 to 1020.8 mV as shown in Figure 

3-5a. On the other hand, the average short circuit current (JSC) increased from 20.3 

to 21.7 mA/cm2 as the deposition rate of PbI2 increased from 2.0 to 2.5 Å/s, and 

dropped 0.2 mA/cm2 when the deposition rate was 3.5 Å/s as given in Figure 3-5b. 

The increase in JSC is likely because of better conversion of PbI2 into perovskite as 

implied by the XRD analysis in Figure 3-3a. Above all, the highest average fill factor 

(FF = 77.4%) was measured when the deposition rate was 2.5 Å/s for PbI2. As a 

result, the highest average efficiency of 18.1% and lowest parameter scattering were 

achieved when the sublimation rate of PbI2 was 2.5 Å/s implying higher 

reproducibility. When the deposition rate was 3.5 Å/s, there seemed to be a higher 

current leakage according to the dark J–V curves presented in Figure 3-5f. This is 

rationalized by the formation of PbI2 deficient perovskite as seen in Figure 3-3f-g. 

Excess PbI2 as in the case of lower PbI2 rates, can passivate the perovskite film and 

facilitate charge transportation 65. As a result, considering the highest efficiencies 

and reproducibility, the deposition rate of PbI2 was kept constant at 2.5 Å/s in the 

following sections. 
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Figure 3-5 a-d) Photovoltaic parameters of the perovskite solar cells made from 

PbI2 layers deposited at different evaporation rates, e) J–V curves for the best 

devices made using PbI2 deposited at different evaporation rates, f) Dark J–V 

curves for the best devices shown in e). 
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Table 3-1 J–V parameter values for the best devices corresponding to Figure 3-5e.  

PbI2 rate(Å/s) VOC (mV) JSC (mA/cm2) FF (%) PCE (%) 

2.0 1117.0 20.2 76.7 17.3 

2.5 1078.0 22.2 78.0 18.7 

3.5 1042.3 22.0 73.2 16.8 

 

3.2.3 The effect of Br⁻ and Cl⁻ and their combination 

The effect of mixed halide incorporation in the perovskite structure was studied in 

terms of crystallinity, morphology, and the optical properties of the perovskite layer. 

The concentration of MAI (35 mg/ml) was kept close to the optimized range of 

previously reported studies 48,57. We named the perovskite after the halides present 

in the MA-halide solution. When the solution is composed of MAI only, the resultant 

perovskite is denoted as MAPI. If MACl (5 mg/ml) or MABr (10 mg/ml) is added, 

the perovskite is named MAPI-Cl or MAPI-Br, accordingly. Provided both MACl (5 

mg) and MABr (10 mg) are added, the perovskite is denoted as MAPI-BrCl. The 

surface and cross-sectional SEM images of MAPI, MAPI-Cl, MAPI-Br, and MAPI-

BrCl are shown in Figure 3-6a-h. The corresponding XRD patterns, absorbance, 

EQE spectra, and J–V curves and data are presented in Figure 3-7a-d and Table 3-2. 

The perovskite layer was unsmooth with grains in the form of humps with 

heterogeneous sizes in MAPI (Figure 3-6a) which might be due to relatively high 

strain between the crystallites in MAPI 76. Also, a 50 nm-thick PbI2 layer remained 
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unreacted between MAPI and the bottom substrate as displayed in Figure 3-6b. The 

unreacted PbI2 resulted in an intense XRD peak at 12.7 ̊ according to Figure 3-7a. 

Furthermore, according to External Quantum Efficiency (EQE) spectrum shown in 

Figure 3-7b, the device from MAPI suffered from minimal charge collection in the 

short wavelength region of the spectrum with a JSC of 17.5 mA/cm2 and from low FF 

(53.8%) (Figure 3-7d).  These results suggest that the thickness of the unreacted PbI2 

layer at the light incident interface is excessive and acts as a charge collection barrier. 

According to Figure 3-7a, the PbI2 (100) X-ray diffraction was less intense in the 

case of MAPI-Cl. Besides, as shown in Figure 3-7d, the thickness of the unreacted 

PbI2 layer was reduced to ≈ 20 nm (i.e. much thinner compared with MAPI). The 

grains are more homogenous having a more preferential orientation compared to 

MAPI, as shown in Figure 3-6c-d. This is plausibly due to the inclusion of MACl, 

which can enhance the perovskite crystallization 77. Moreover, Cl⁻ ion has a smaller 

ionic size (1.67 Å) than I⁻ (2.07 Å) [47] and therefore, Cl⁻ has higher diffusivity. 

Consequently, MACl improved the impregnation of MA-halide components into the 

compact PbI2 layer in the case of MAPI-Cl. There is a considerable reinforcement in 

the absorbance with its edge blue-shifted from λ=780 nm to λ=750 nm as shown in 

Figure 3-7b. However, according to Figure 3-7c, the onset of charge collection of 

MAPI-Cl overlaps MAPI at λ=780 nm. This is attributed to the volatile nature of 

MACl. We argue that since the absorbance measurement was carried out 

immediately after perovskite formation, MACl was still integrated into the 

perovskite lattice. But it volatilized during the upcoming steps of the device 

fabrication which involves vacuum deposition of C60, BCP, and Ag on top of the 

perovskite layer. In line with the EQE measurement shown in Figure 3-7c, the charge 

collection was enhanced significantly throughout the whole visible spectrum in 

contrast with MAPI. Also, there is a remarkable improvement in JSC (21.3 mA/cm2), 

VOC (1146.3 mV), FF (77.3%) and PCE (18.9%) according to J–V curves in Figure 

3-7d. These results show the beneficial role of MACl inclusion in an effective 

reaction between PbI2 and MA-halide solutes. Similarly, the addition of MABr 

enhanced the transformation of the PbI2 layer into perovskite, which is revealed by 
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the suppressed PbI2 (100) diffraction in MAPI-Br diffractogram (Figure 3-7a). This 

is further proven by the cross-sectional SEM image in Figure 3-6f where no residual 

interfacial PbI2 layer is traceable in contrast with MAPI and MAPI-Cl. According to 

the SEM image of the sample surface in Figure 3-6e, the crystallites appeared 

relatively small but uniform in the case of MAPI-Br. The enhanced conversion of 

the PbI2 layer into perovskite is likely due to the more diffusive nature of Br- than I- 

into the PbI2 layer 78. As demonstrated in Figure 3-7b-c, the absorption edge is at 

λ=750 nm in both absorbance and EQE measurements for MAPI-Br, entailing strong 

and nonvolatile alloying of MABr (unlike MACl) in the perovskite structure. This is 

due to 7 times stronger bonding of Pb2+ with Br⁻ than I⁻ 79. According to Figure 3-7b-

d, MAPI-Br showed enhanced EQE and J–V characteristics in contrast with MAPI. 

The minimum PbI2 (100) diffraction peak intensity was observed in MAPI-BrCl 

(Figure 3-7a). The grains appeared large, uniform, compact and perpendicularly 

oriented in MAPI-BrCl as shown in Figure 3-6g-h. Also, no visible trace of the 

unreacted PbI2 layer at the bottom of the perovskite layer shows that the concurrent 

inclusion of Br- and Cl⁻ in the MA-halide solution significantly improved the 

crystallization of perovskite. The absorbance of MAPI-BrCl surpassed the other 

types of perovskite with single/double halides (Figure 3-7b). According to Figure 

3-7c, the EQE  exceeded 90% demonstrating a superior JSC of 22.1 mA/cm2. MAPI-

BrCl also showed higher FF (79.6%) and PCE (19.1%) as compared with MAPI, 

MAPI-Br, and MAPI-Cl (Figure 3-7d). Thus, the most efficient conversion of the 

PbI2 layer into perovskite took place when the MA-halide solution contained MAI, 

MABr, and MACl altogether. Nevertheless, the highest VOC (1146.3 mV) was 

achieved with MAPI-Cl. This is ascribed to the whiter phase PbI2 regions on the 

surface of MAPI-Cl and a thin unreacted PbI2 layer between the perovskite and the 

substrate 75 which is at the expense of JSC loss as compared to MAPI-BrCl. The same 

holds for the relatively high VOC (1107.1 mV) with thicker PbI2 in the case of MAPI 

costing a dramatic loss in JSC (17.5 mA/cm2) and FF (53.8%). Considering all the 

observations above, we chose MAPI-BrCl as the champion perovskite type in this 

study as it showed successful utilization of MACl and MABr as recrystallizing 
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agents to fabricate perpendicularly oriented grains of perovskite with the highest 

efficiency. 

   

   

Figure 3-6 SEM surface and cross-sectional images for a, b) MAPI, c, d) MAPI-Cl, 

e, f) MAPI-Br, and g, h) MAPI-BrCl. 
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Figure 3-7 a) XRD patterns, b) Absorbance spectra, c) External quantum efficiency, 

and d) J–V  curves for the perovskite solar cells with single, double and triple halides 

in the MA-halide solution. 
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Table 3-2 The performance details corresponding to Figure 3-7d. 

Perovskite) VOC (mV) JSC (mA/cm2) FF (%) PCE (%) 

MAPI 1107.1 17.5 53.8 10.4 

MAPI-Cl 1146.3 21.3 77.3 18.9 

MAPI-Br 1074.0 19.3 68.7 14.2 

MAPI-BrCl 1081.9 22.1 79.6 19.1 

 

The concentration of MACl was fixed at 5 mg/ml in all the MA-halide solutions as 

more quantities of MACl resulted in poor crystal structure with a PbI2 rich perovskite 

layer according to XRD results shown in Figure 3-8. This is also in line with a 

previous study regarding MACl concentration 74.  
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Figure 3-8 XRD patterns for MAPI-BrCl with 5 and 10 mg of MACl. 

However, it was intriguing to investigate MABr/MAI molar ratio to better engineer 

the MA-halide solution to optimize the performance of MAPI-BrCl based perovskite 

solar cells. The MABr/MAI molar ratio was varied from 0.36 to 0.41, 0.46, 0.51, 

0.56, 0.61 and 0.71. Increasing the ratio from 0.36 to 0.71 shifted the absorbance 

edge from 755 (1.64 eV) to 730 nm (1.7 eV) as shown in Figure 3-9a. According to 

Figure 3-9b, the amplitude of the blue-shift in the bandgap was not linear and varied 

when the molar ratio of MABr/MAI. The average associated VOC increased from 

1083.9 mV to a maximum value of 1136.7 mV as the MABr/MACl molar ratio 

increased from 0.36 to 0.56 (Figure 3-10), in agreement with the trend for the 

expected values based on Shockley-Queisser (SQ) limit at the associated bandgap of 

every MABr/MAI ratio (Figure 3-12). However, the magnitude of the difference 

between the SQ and average values (VOC
SQ – VOC

AVE) shown in Figure 3-12, 

increased more as the MABr/MAI ratio increased from 0.41 to 0.51. When the ratio 

was further increased to 0.71, not only the average VOC dropped from 1136.7 to 

1114.9 mV but also, VOC
SQ – VOC

AVE increased. Since the minimum value of VOC
SQ 

– VOC
AVE belongs to the MABr/MAI ratio of 0.41, one can claim that the non-

radiative recombinations are minimal at this ratio. On the other hand, the trends in 

the average JSC, FF, and PCE also, follow the predicted SQ trends based on the 

bandgap at each MABr/MAI ratio (Figure 3-12). The highest average JSC (20.8 

mA/cm2) and FF (80.7%) were measured when the ratio was 0.41 and 0.61, 
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respectively. Above all, the minimum difference between the SQ limit and average 

values of VOC, JSC, and PCE was measured when the ratio was 0.41. This is most 

likely representative of the suppressed non-radiative recombinations at the bulk 

and/or the interfaces when the ratio is 0.41.  In addition, the minimum data scattering 

occurred at the same ratio in Figure 3-10 and Figure 3-12, which indicates the highest 

reproducibility. The best average efficiency (18.7 %) and record efficiency (19.8 %) 

were achieved when the ratio was equal to 0.41, as depicted in Figure 3-11. 

 

Figure 3-9 a) Absorbance spectra of perovskite for different MABr:MAI molar ratio 

in the MA-halide solution, b) the absorbance edges of the samples in (a).  

 

(b) 
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Figure 3-10 Photovoltaic parameters of the perovskite solar cells made with different 

MABr:MAI molar ratios between 0.36 to 0.71 in the MA solution. The amount of 

MACl was kept constant in all solutions. 
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Figure 3-11 The J–V characteristic curve and data for the champion cell with an 

MABr/MAI molar ratio of 0.41. 
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Figure 3-12 Shockley-Queisser limit and average values for VOC (a), JSC (b), FF (c) 

and PCE (d). 

The stability of the encapsulated devices from MAPI-Br, MAPI-Cl, and MAPI-BrCl 

were measured tracking J–V characteristics of the devices every 15 minutes under 

constant 1 Sun illumination while held at room temperature. The results are shown 

in Figure 3-13. MAPI-Br and MAPI-BrCl respectively demonstrated maximum 

stability in all the J–V characteristic data with a 6% and 10% increase of their starting 

efficiency over 90 hours of constant operation. Conversely, MAPI-Cl turned out to 

be unstable due to JSC and FF loss over time. Thus, despite the enhanced 

crystallization of perovskite and improved efficiencies of MAPI-Cl, the exclusion of 

Br- was at the expense of stability especially in the FF of the devices. In short, in 

view of the J–V data and stability analyses, the incorporation of both Br⁻ and Cl⁻ in 

the MA-halide solution was found to be optimal in achieving the best device 

performance as well as sustaining the device stability under working conditions 

which is in agreement with the previous studies 64. 
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Figure 3-13 Stability analysis for MAPI, MAPI-Cl, MAPI-Br, and MAPI-BrCl based 

on IV measurements taken under continuous one sun irradiance. 

 

3.3 Conclusions 

In sum, mixed halide perovskite solar cells were successfully fabricated using a 

hybrid vapor-solution technique for the first time. A highly uniform perovskite layer 

was achieved owing to the vapor deposition of the initial PbI2 layer in the first step. 

The addition of Br⁻ and Cl⁻ into the MA-halide solution during the second step 

ensured a robust permeation of MA-halide compounds into a dense PbI2 film. It also 

provided effective control over the crystallization of perovskite with preferential 

grains and power conversion efficiencies as high as 19.8%. The highest 

reproducibility and minimum deviation from the expected SQ limit values were 
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accomplished through fine-tuning the MABr/MAI ratio in the MA-halide solution. 

The optimum performance/stability of the solar cells was achieved with the triple 

halide perovskite.
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CHAPTER 4  

4 SPUTTERED INTRINSIC AND DOPED NIOX HOLE TRANSPORT LAYERS 

FOR PLANAR PEROVSKITE SOLAR CELLS  

NiOX as a hole transport layer has been extremely popular in p-i-n perovskite solar 

cells (PSCs) due to its wide bandgap, matched band structure with perovskite, and 

stability 80. Radiofrequency (RF) magnetron sputtering is a technique offering 

control on the stoichiometry and morphology of the deposited thin films with doping 

capability, high purity, and reproducibility. As a result, it has been used as a scalable 

methodology to fabricate NiOX films in PSCs during recent years. We used the same 

methodology here to fabricate an efficient NiOX layer in planar PSCs. Our results 

showed that Ar-partial pressure (APP) during the sputtering defines the optical and 

electrical properties of NiOX. Also, doping NiOX with Cu was conducted during this 

study proving sputtered Cu doped NiOX as an efficient HTL in PSCs.  

4.1 Introduction 

In the p-i-n configuration of PSCs, the hole transport layer (HTL) must fulfill both 

optical and electrical requirements to render high photovoltaic efficiencies. 

Therefore, the choice of the material, as well as the fabrication scheme, are extremely 

important. A variety of fabrication techniques for NiO has been used including sol-

gel, combustion methods, pulsed laser deposition (PLD), atomic layer deposition 

(ALD), sputtering, e-beam evaporation and electrochemical deposition 81823283848586. 

Among all, RF magnetron sputtering is one of the popular techniques mainly due to 

its straightforward application in the industry 87. Also, sputtering outweighs other 

methodologies due to a multitude of advantages such as stoichiometric control, 

highly pure film products, thickness control, uniform coating over large areas and 

doping capability. To fabricate NiO film, different schemes of sputtering have been 
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used. For instance, a Ni layer was deposited using DC-sputtering and later, the film 

was oxidized using O2 or O3 flow treatment. Also, reactive sputtering using Ni target 

and O2 flow has been used. Direct sputtering of NiO has been a favorable choice, as 

well. During NiO sputtering, the sputtering power and APP define the number of 

oxygen interstitials (IO) and Ni vacancies (VNi) within the film which in turn, 

determine the optical, electrical and morphological properties of the final NiOX 

layer. Islam et al changed the sputtering power to tune the work function of NiOX 
88. 

In another study, the same group changed APP determining the ratios of Ni3+/Ni2+ in 

the NiOX lattice and thereby on the optical transmittance of NiOX 
32. As an important 

inherent property of the magnetron sputtering, varying APP under a constant 

sputtering power entails a change in the deposition rate of the sputtered material. 

Besides, any minute change in the location or the angle of the target with respect to 

the substrate position, modifies the deposition rate, dramatically. To rule out such 

unwanted effects, we kept the rate constant tracking the effects of APP and sputtering 

power, independently. According to our studies, increasing APP from 2 × 10-3 torr 

to 16 × 10-3 Torr increased the Ni3+/Ni2+ ratio and IO count in the NiOX lattice. 

Therefore, the conductivity of the final film increased with APP. However, it caused 

a decrease in the fill factor (FF) and VOC of the corresponding PSCs. In addition, 

annealing the NiOX layer was found effective in improving the FF of the PSCs 83,89. 

The improvement was found irrelevant to the crystallinity of NiOX. A thin layer of 

Poly-TPD atop the NiOX enhanced the short circuit current (JSC) of the PSCs. 

Annealing the NiOX layer together with a Poly-TPD interlayer, improved the average 

PCEs by 2.5%. The effect of the NiOX deposition rate was also studied. After 

defining the optimal rate and APP relying on the statistical J–V analysis, surface 

passivation of NiOX by sputtered CuO and SiO2 was investigated. Also, the effect of 

Cu dopant on the optoelectronic properties of the NiOX layer was investigated. An 

atomic percentage of 1.8% for Cu within NiOX, was found optimum with maximum 

VOC and power conversion efficiencies (PCE).  

In this chapter, X-ray photoelectron spectroscopy (XPS), X-ray diffractometry 

(XRD), Spectroscopic ellipsometry, UV–VIS spectrometry and space charge limited 
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current (SCLC) analysis were employed to characterize the sputtered undoped and 

Cu doped NiOX layers. In the first section of the report, the effect of APP was 

investigated on the undoped NiOX. Then, the effect of Cu dopant on NiOX 

optoelectronic properties was studied. 

4.2 Results and Discussions 

4.2.1 Post-treatment of NiOX and prerequisites 

Although NiO has been a popular HTL enhancing the stability of perovskite solar 

cells, its surface is vulnerable to the ambient air. Ultraviolet photoelectron 

spectroscopy (UPS) was devised to measure the work function (ɸ) and valence band 

maximum (VBM) of the as-deposited and aged sputtered NiOX/ITO as shown in 

Figure 4-1a. The NiOX/ITO aged 18 hours in ambiance with a temperature of 27 °C 

and humidity of 38%. The work function decreases from 4.54 to 4.43 eV when NiOX 

aged for 18 hours. Also, due to aging, the Fermi level difference with VBM shifts 

from 0.91 to 0.96 eV indicating a less p-type characteristic of the exposed NiOX. 

According to the XPS measurement shown in Figure 4-1b, the concentration of 

carbon in NiOX increased from 9.3 to 14.2% after aging. Therefore, we ascribe the 

reduction in ɸ and Fermi level-VBM difference, to the carbonaceous adsorptions to 

the surface of NiOX. It has been suggested in the literature that the adsorbed hydroxyl 

groups are also responsible for such an effect. But since the O peak from surface 

OH-groups is concomitant with the bulk O from Ni2O3 at a binding energy of 531 

eV, it is not possible to conclude if the sample is OH-rich or Ni2O3-rich during XPS 

measurements. For a better resolution, we suggest the usage of angle-resolved XPS 

(ARXPS) which can be the subject of a future study. 



 

 

56 

  

 

Figure 4-1 a) UPS measurement results for fresh and 18 hours aged NiOX/ITO, b) 

XPS for the samples in (a). 

  

 

(a) 

(b) 
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Following the UPS results, it seems to be a must for post-treatments of NiOX to 

sustain its electronic properties. Otherwise, any change in the temperature, humidity 

or ambiance carbon concentration may modify the surface electronic properties of 

NiOX. Various organic materials have been proposed to passivate the surface of 

NiOX such as F6TCNNQ, PTZ, PFBT, n-Butylamine, SDBS, TMAH, DEA, PTAA, 

rGO and cysteine 19,20,89-95. However, poly-TPD (PTPD) as a passivation layer for 

NiOX has not been studied yet. Therefore, we studied the effect of annealing and 

surface coating NiOX by PTPD to increase the reproducibility of the J-V 

characteristics of the resultant PSCs. The NiOX samples were prepared by sputtering 

NiOX at a rate of 1 nm/min under APP of 4 mTorr. The annealed samples were 

prepared by heating the samples at 300 °C in the air. As for PTPD /NiOX/ITO, a 

chlorobenzene solution of 7 mg ml-1 was spin-coated atop NiOX/ITO at 3000 rpm 

for 60 seconds and washed once with chlorobenzene. For studying the annealing 

effect, 200 nm thick NiOX was used to increase the resolution of the XRD 

diffractions compared to ones coming from the bottom ITO. Annealing NiOX was 

predominantly performed to remove hydroxyl or carbonaceous adsorbates from the 

surface of NiOX and it did not change the crystallinity of NiOX/ITO as evidenced by 

XRD results shown in Figure 4-2a. The perovskite solar cells were prepared in a p-

i-n structure shown in Figure 4-2b. The perovskite layer was fabricated following 

the hybrid vapor-solution sequential approach. For this purpose, a 295 nm-thick PbI2 

layer was vacuum-deposited atop NiOX/ITO followed by spin-casting an IPA 

solution containing MAI, MABr, and MACl. Therefore, the perovskite is denoted as 

MAPI-BrCl. Later, a 50 nm PCBM was formed by spin-casting a chlorobenzene 

solution. The samples were transferred into a vacuum chamber integrated into the 

glovebox and were finished by evaporating BCP (6 nm) and Ag (100 nm) as the top 

electrode. The J-V characteristics of the resultant devices are shown in Figure 4-2c-

f. It is important to note that all JSC values were corrected to the integrated external 

quantum efficiency (EQE) spectra. 
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Figure 4-2 a) XRD patterns for as-deposited NiOX/ITO and annealed NiOX/ITO in 

the air at 300 °C. b) Perovskite solar cell configuration, c, d, e, f) all VOC, JSC, FF and 

PCE data for devices using as-deposited, annealed, coated with PTPD. 
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Figure 4-3 (continued). 

 

According to Figure 4-2, annealing NiOX improves the efficiency of the PSCs by 

improving the average FF from 60.9 to 70.0 %. When the annealed NiOX samples 

were coated by PTPD, the average JSC increased 0.6 mA/cm2 indicating better charge 

collection efficiency compared to the samples without PTPD. Overall, annealing 

NiOX followed by PTPD coating considerably boosted the average PCE by 2.2%. 

The detailed path explaining the mechanism of such improvements requires further 

XPS, UPS and AFM analysis, however, throughout the rest of the study all the 

deposited NiOX samples were prepared following the optimization procedure 

presented in this section. 

4.2.2 The effect of the deposition rate of NiOX 

The refractive indices of NiOX (33 nm) deposited at 0.44, 0.70, 1.00 and 1.50 nm/min 

during RF magnetron sputtering under the same APP (4 mTorr) were measured using 

spectroscopic ellipsometry as shown in Figure 4-4a. The refractive index of NiOX 

slightly increased with the deposition rate. Therefore, the optical 

transmittance/reflectance did not change significantly with the deposition rate of 

NiOX. However, the electrical properties of NiOX may change with the deposition 

As deposited

Annealed

Annealed+PTPD

40

50

60

70

80
F

F
 (

%
)

As deposited

Annealed

Annealed+PTPD

8

12

16

P
C

E
 (

%
)

(e) (f) 



 

 

60 

rate. According to SCLC measurements conducted for hole-only devices shown in 

Figure 4-4c, trap-filled limit voltage (the intersection of the two fitting lines in ohmic 

and trap-filled limit regions (VTFL)) does not change significantly with the rate. This 

indicates similar trap densities versus different deposition rates of NiOX layers 

according to Equation 4.1. In the equation, ntrap denotes the trap density, ε is the 

relative dielectric constant of perovskite, ε0 is the vacuum permittivity, e and L are 

the electronic charge and the thickness of the perovskite layer. However, the increase 

in the deposition rate of NiOX under the same APP has been shown to decrease the 

work function (ɸ) of NiOX/ITO. Islam et al proposed that this is due to an increase 

in the pH of the surface of NiOX when deposited at high rates. They also showed that 

high deposition rates do not significantly change the crystallinity and surface 

morphology of NiOX layers. The perovskite solar cells in the p-i-n structure shown 

in Figure 4-4f, were fabricated to investigate the effect of the NiOX deposition rate 

on the optoelectronic performance of such devices. The J-V analyses for the best and 

all the devices are shown in Figure 4-4e-j. There is a slight drop in the average FF 

and JSC when the deposition rate of the NiOX is 1.5 nm/min. The average VOC was 

the highest when the deposition rate was 0.5 nm/min. However, the difference 

between the deposition-rate ranges tried here is not significant. 

 

                                          Ntrap = 2εε0VTFL/(eL2)    (4.1)    

 

 



 

 

61 

   

          

 

Figure 4-4 a) refractive indices of NiOX/ITO deposited under APP = 4 mTorr, with 

different sputtering rates, b) Reflectance/transmittance measurement for the samples 

in (a), c) SCLC measurement for hole-only devices using NiOX/ITO samples in (a), 

d) hole only device structure of the devices in (c), e) J-V of the best cells from 

samples in (a), f) cross-sectional SEM belonging to a cell in (e), g, h, I, j) all VOC, 

JSC, FF, and PCE data for devices using NiOX/ITO samples in (a).  
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Figure 4-5 (continued). 

4.2.3 The effect of Ar-partial pressure 

The optoelectronic transitions in NiO as a p-type semiconductor are correlated with 

the energy states introduced by the intraband defects such as metal vacancies or 

oxygen interstitials. For instance, according to the density functional theory (DFT) 

calculations, nonstoichiometric NiOX with Ni vacancies (VNi) has energy states 

within the bandgap at the vicinity of the valence band (VB). Therefore, Ni vacant 

NiOX is equivalent to a p-type material 87. The chemical description for the process 

of p doping of NiO is shown in Equation 4.2. The excess oxygen concurs with the 

generation of VNi and Ni3+. VNi gets singly (V̍Ni) and doubly (V̎Ni) ionized creating 

holes in the lattice. Therefore, increasing VNi or equivalently the Ni3+/Ni2+ ratio, not 

only modify the work function of NiOX but also increases the carrier concentration. 

The APP has been shown to be the key parameter during RF magnetron sputtering 

(g) (h) 

(i) (j) 
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to tune the concentration of VNi within the lattice of NiOX. Also, according to the 

XRD results in Figure 4-6a, the (200) diffraction peak at 2θ = 42.6° is more intense 

in the case of NiOX deposited at a low APP of 4 mTorr compared with 16 mTorr. 

This indicates a preference in (200) crystal orientation of NiOX deposited at low 

APPs. If the sputtering power is kept constant, increasing the APP reduces the 

Ni3+/Ni2+ ratio exacerbating the electrical properties of NiOX. On the other hand, the 

transmittance of NiOX/ITO improves with APP. As a result, there seems to be a 

certain degree of APP fulfilling both the optical and electrical requirements of NiOX 

as an efficient hole transport layer (HTL) in a perovskite solar cell. Islam et al 

suggested an APP of 26 mTorr due to its high optical transmission and a thickness 

of 70 nm for optimal PCEs. To our knowledge, there are two crucial points usually 

overlooked in the literature regarding the optical characterization of NiOX. Firstly, 

the mere transmittance measurement of NiOX/ITO is not representative of the optical 

parasitic absorption of NiOX as it may be overshadowed by the reflection losses of 

NiOX/ITO. Therefore, in this study, depending on the sputtering APP, transmittance, 

reflectance and the consequent absorbance spectra for NiOX/ITO were measured for 

an APP range between 2 and 16 mTorr as shown in Figure 4-6c, and e. On one hand, 

increasing APP reduces the absorbance of NiOX/ITO. On the other hand, increasing 

APP intensifies the reflectance. Therefore, the loss in the transmittance of NiOX/ITO 

is due to not only the parasitic absorption but also the reflection losses.  It is 

worthwhile to note that the bandgap (Eg) of NiOX increases from 3.54 to 3.69 eV 

when APP increases from 2 to 16 mTorr according to the Tauc-plot analysis shown 

in Figure 4-6d. The pronounced reflection loss with APP is elucidated following the 

Fresnel equation and the refractive index (n) of NiOX measured by spectroscopic 

ellipsometry as shown in Figure 4-6b. The higher the refractive index difference 

between NiOX and air (nNiOx - nair), the higher the reflection from NiOX/ITO. nNiOx 

decreases from 2.33 to 1.79 (λ= 632.8 nm) when the APP is increased from 2 to 16 

mTorr. Since nair = 1 (λ= 632.8 nm), the reflectance decreases with APP. Secondly, 

the optical properties of any layer to be used in a stacked optoelectronic device such 

as PSCs must also be analyzed according to the refractive indices of the adjacent 
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layers to account for the interferences in the sack 96. Therefore, the refractive indices 

of perovskite rather than air were considered to explain the reflection losses from 

MAPI-BrCl/NiOX/ITO as shown in Figure 4-6a. The minimum difference between 

the refractive index of NiOX and MAPI-BrCl belongs to the NiOX deposited at 2 

mTorr. This difference maximizes with APP. Therefore, despite a slight increase in 

the parasitic absorption (discussed above), low APP is actually beneficial to diminish 

the reflection losses in the case of MAPI-BrCl/NiOX/ITO. In short, we argue that the 

most straightforward method to determine the optimum NiOX from an optical 

perspective is to measure the reflection of a full device consisting of all the layers. 

Therefore, we measured the reflection (R) off the 

Ag/BCP/PCBM/Perovskite/NiOX/ITO stack with NiOX deposited under different 

APPs and used Equation 4.3 to calculate the photocurrent (Jph) as shown in Figure 

4-6f.  

2Ni2+ + (½)O2 → O2- + 2Ni3+ + VNi 

VNi → V̍Ni + h*     (4.2) 

 V̍Ni → V̎Ni + h* 
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Figure 4-6 a) XRD patterns for NiOX/ITO deposited under 4 and 16 mTorr of APP, 

b) refractive indices measured by spectroscopic ellipsometry for NiOX/ITO samples 

deposited under APP of 2, 4, 6, and 16 mTorr, c) Reflectance/Transmittance for the 

samples in (b), d) Tauc plot for samples in (b), e) Absorbance spectrum for samples 

in (b), f) 1-R and the integrated Jph for full devices of (b) using 350 nm-thick 

perovskites, g) 1-R and the integrated Jph for full devices of (b) using 460 nm-thick 

perovskite. 

30 40 50 60

(220)
(200)

 NiOX/ITO APP = 16 mTorr

 NiOX/ITO APP = 4 mTorr

 ITO

In
te

n
s
it
y
 (

a
.u

.)

2Q (°)

(111)

400 500 600 700 800

3.1 2.5 2.1 1.8 1.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

k

hn (eV)

n

l (nm)

APP (mTorr)

 2.0       6.0

 2.0       6.0

 4.0       16.0

 4.0       16.0

 Perovskite

 Perovskite

(a) 

(b) 



 

 

66 

 

 

Figure 4-7 (continued). 

𝐽𝑝ℎ =  𝑞 ∫ φ(λ) (1 − R(λ)) dλ    (4.3) 

In the equation above, φ (λ) denotes the A.M 1.5 photon flux. As shown in Figure 

4-6f, in the case of a 350 nm-thick perovskite layer, Jph is 21.64 mA/cm2 when APP 
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is 16 and 6 mTorr and increases only by 0.04 and 0.02 mA/cm2 with reduced APP to 

4 and 2 mTorr, respectively. But when the perovskite layer is 460 nm, the overall 

reflection loss is mitigated in the red spectrum. Jph boosts from 21.92 to 22.36 

mA/cm2 when the APP is increased from 2 to 16 mTorr. The highest Jph (22.53 

mA/cm2) is achieved when the APP is 6 mTorr as shown in Figure 4-6g. Therefore, 

strictly speaking, the reflection losses of NiOX does not linearly follow the APP 

during RF magnetron sputtering. In sum, the electrical and interface properties of 

NiOX deposited under different APPs seems to outweigh the optical properties. 

According to SCLC measurements for hole-only devices shown in Figure 4-8a-b, 

VTFL increases dramatically from 0.085 to 0.305 V when the APP is changed from 2 

to 16 mTorr. According to Equation 4.1, this corresponds to growing trap density 

with the APP. The Ni3+/Ni2+ ratio during XPS measurements has widely been used 

in the literature to qualitatively evaluate the p-conductivity of NiOX
32,97,83. We argue 

that this measurement can be misleading. According to references 32
, the NiOX 

sample fabricated at low APPs (2 mTorr) has a higher Ni3+/Ni2+ ratio. However, the 

oxygen peak at 531 eV binding with Ni3+ is less intense than the NiOX sample 

deposited under 16 mTorr of APP as demonstrated in Figure 4-8c. This contradiction 

can be explained by the fact that XPS is based on the photoelectrons ejected from 

the top 5-10 nm of the sample surface. Provided the number of hydroxyls may differ 

from sample to sample due to their different surface properties, which would modify 

the oxygen and Ni peak shapes during XPS98–100. Therefore, for reliable 

interpretation of Ni3+/Ni2+ ratio, angle-resolved XPS measurements are suggested. 

According to average J-V characteristic values shown in Figure 4-8d-g, the average 

VOC decreases from 1.068 to 1.041 V when APP changes from 2 to 16 mTorr. The 

JSC does not change considerably with the APP, but FF is highest at low APP = 2 

mTorr. Therefore, the highest average PCE value was obtained with APP = 2 mTorr. 

The comparison between the APP of 2 and 4 mTorr was made in another batch with 

the results shown in Table 4-1. The devices made using NiOX deposited under APP 

= 4 mTorr, outperformed APP = 2 mTorr exhibiting higher average VOC and FF. The 
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low trap density in the case of low APP is plausibly the reason for the high average 

VOC achieved with low APPs. 

   

 

Figure 4-8 a) SCLC measurement for the hole-only device using NiOX/ITO 

prepared under different APPs, b) VTFL values derived from (a), c) XPS regional 

scan of the oxygen peak of the NiOX/ITO samples in (a), d, e, f, g) all VOC, JSC, FF 

and PCE data for devices using NiOX/ITO samples in (a). 
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Figure 4-9 (continued). 

Table 4-1 Average J-V characteristic values for perovskite solar cells fabricated 

using NiOX deposited under 2 and 4 mTorr of APP. 

APP (mTorr) VOC (V) JSC (mA/cm2) FF (%) PCE (%) 

2 1.024 ± 0.012 17.7 ± 0.2 65.3 ± 4.3 11.8 ± 0.9 

4 1.039 ± 0.004 17.9 ± 0.3 69.9 ± 2.3 13.0 ± 0.5 

 

4.2.4 Inorganic passivation of NiOX 

Aside from organic materials discussed in section 3.1, inorganic compounds have 

also been used to passivate NiOX such as KCl, NaCl, CuI 21,101. In this section, we 
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investigated the effect of in-situ deposition of a thin layer of SiO2 and CuO atop 10 

nm-thick NiOX, on the performance of PSCs using J-V analysis. For this purpose, 

the thicknesses of SiO2 and CuO were varied in the range of 0.5-1.5 nm and 0.5-2 

nm respectively. Figure 4-10a-f shows the J-V and EQE results for the CuO/NiOX. 

The average VOC does not change considerably with CuO. 0.5 and 1 nm of CuO 

increases the average JSC from 18.4 to 19.1 and 19.3 mA/cm2, respectively. The 

average FF reaches a maximum (67.9) with 0.5 nm of CuO and drops with the thicker 

CuO layers which are due to the increased series resistance according to Figure 

4-10e. Overall, due to an enhancement of JSC and FF, the best average PCE (13.1 %) 

was achieved when CuO was 0.5 nm indicating a 1.5 % enhancement in average 

PCE compared to NiOX without CuO on top. 
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Figure 4-10 a, b, c, d) all VOC, JSC, FF and PCE data for devices using CuOX coated 

NiOX/ITO samples with different CuOX thicknesses, e) J-V for the best cells in (a), 

f) EQE spectra for the samples in (a). 

SiO2 on top of NiOX resulted in a drop in the average FF according to J-V 

characteristic results shown in Figure 4-11a-f. The FF dropped dramatically with 
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thicker SiO2 layers. Therefore, SiO2 was found unsuitable to passivate NiOX to be 

used in PSCs 

 

  

Figure 4-11 a, b, c, d) all VOC, JSC, FF and PCE data for devices using SiO2 coated 

NiOX/ITO samples with different SiO2 thicknesses, e) J-V for the best cells in (a), 

f) EQE spectra for the samples in (a). 
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4.2.5 Doping NiOX with Cu by co-sputtering 

Another way to tune the work function and electrical properties of NiOX is doping. 

NiOX has been doped with various metals such as Ag, Co, Zn, Li, Cs, Mg, Cu, La, 

Y, Sr. Among all the dopants, Cu has been a favorite choice due to its facile 

integration in the NiOX lattice and has rendered one of the highest PCE (20.3%)81,87. 

While many studies demonstrated mobility enhancement of Cu doped NiOX 

(Cu:NiOX) compared with intrinsic NiOX, some other studies showed reduced 

mobilities102. Nevertheless, doping NiOX with Cu, deepens its work function, 

increases its p-conductivity, promotes its charge carrier concentration, and even has 

improved the crystallinity of the upper MAPI layer81,82,103,104. Doping NiOX during 

RF magnetron sputtering has not been employed in perovskite solar cells. Here, we 

doped NiOX with Cu using a Cu target inside the sputtering chamber. The 

concentration of Cu was tuned using the rate ratios between Cu and NiOX and was 

measured by XPS as shown in Figure 4-12a. Because of the high refractive index 

(~2.8 at λ = 632 nm) of Cu doped NiOX (Cu:NiOX), thicknesses above 20 nm is not 

optically efficient 96. Therefore, in the first batch of solar cells, 5 nm-thick Cu:NiOX 

were used to fabricate PSCs. The results are shown in Figure 4-12b-e. 
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Figure 4-12 a) XPS local peak for Cu depending on the different concentrations of 

Cu in NiOX/ITO, b, c, d, e) all VOC, JSC, FF and PCE data for devices using 

Cu:NiOX in (a). 
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According to J-V characteristics in Figure 4-12, Cu doping increased the average JSC 

and FF. The highest average JSC (19.3 mA/cm2) was demonstrated when the atomic 

concentration of Cu was 1.8%. Therefore, 1.8 atomic percent Cu was found as 

optimal with the highest average efficiencies (13.8%) as compared with the undoped 

and other Cu concentrations in Cu:NiOX. However, the undoped NiOX showed too 

low FF. Therefore, another experiment was designed with thicker Cu:NiOX samples 

as shown in Figure 4-13. The average JSC (19.0 mA/cm2) and VOC (1.050 V), 

increased (19.6/19.6 mA/cm2) and (1.057/1.058 V) respectively when the thickness 

of Cu:NiOX was reduced from 20 to 15 or 10 nm. Overall, the highest average PCE 

(15.0 %) was achieved with a thickness of 10 nm as compared with 20 nm (14.5 %) 

and 15 nm (14.9 %). Therefore, a thickness range of 10-15 nm is optimal for 

Cu:NiOX as HTL in PSCs. 
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Figure 4-13 a, b, c, d) all VOC, JSC, FF and PCE data for devices using different 

thicknesses of Cu:NiOX/ITO samples.  

As another direct comparison between the performances of undoped NiOX and 

Cu:NiOX, another batch of cells was fabricated using 10 nm-thick NiOX and 

Cu:NiOX with the J-V data shown in Figure 4-14. The average J-V parameters were 

enhanced unanimously when doping NiOX by 1.8% Cu. The improvement is 

considerable in the average JSC which boosted from 17.5 in the case of NiOX to 19.1 

mA/cm2 with Cu:NiOX. The overall average PCE increased from 12.8 to 14.9 % 

following doping NiOX. According to Figure 4-14 and Table 4-2, the devices worked 

with minimal hysteresis. A higher efficiency was achieved with Cu:NiOX (16.3% ) 

as compared with NiOX with the best PCE of 13.3%. 
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Figure 4-14 a, b, c, d) all VOC, JSC, FF and PCE data for devices using NiOX/ITO 

and Cu:NiOX/ITO with 1.8% of Cu, e) Forward and reverse J-V for the best cells in 

(a). 
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Table 4-2 Forward and reverse J-V data for the best cells presented in Figure 4-14e. 

Best cells VOC (V) JSC (mA/cm2) FF (%) PCE (%) 

NiOX 

(reverse) 

1.040 

(1.040)   

17.9 

(17.9) 

71.4  

(72.3) 

13.3 

(13.5)  

Cu:NiOX 

(reverse) 

1.070 

(1070)  

19.3 

(19.3) 

78.9 

(78.0) 

16.3 

(16.1) 

 

4.3 Conclusions 

In this chapter, we studied the effects of the sputtering rate and Argon partial pressure 

on the optoelectronic properties of sputtered NiOX in full perovskite-based 

photovoltaic devices. The optical properties of NiOX were elucidated considering the 

stack of NiOX based stack of the solar cell. We propose the same discretion to study 

any film in optoelectronic devices. According to our studies, depositing NiOX under 

APP of 4 mTorr resulted in the best solar cell performance. To understand, the 

interfacial properties of NiOX UPS measurements are necessary. While annealing 

NiOX improved the FF, coating NiOX with Poly-TPD improved VOC and JSC of the 

devices. The deposition of 0.5 nm thick CuOX on top of NiOX enhanced the 

efficiency of the solar cells by improving the JSC and FF of the devices. Coating 

NiOX with SiO2 resulted in the deterioration of FF and JSC and therefore poor 

efficiencies. Doping NiOX with 1.8 At% Cu by RF magnetron sputtering enhanced 

all the J-V characteristics especially 2.6% efficiency rise of the resultant perovskite 

solar cells.
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CHAPTER 5  

5 CONCLUSIONS AND OUTLOOKS 

In this thesis, the industrially feasible techniques were employed to fabricate and 

optimize multi-layer perovskite solar cells. The co-evaporation of organic MAI and 

inorganic PbCl2 was conducted in a high-vacuum chamber. While the deposition rate 

of PbCl2 was monitored by a QCM, the deposition rate of MAI was shown to follow 

its vapor pressure inside the chamber. The crystallinity of MAPI-Cl perovskite was 

tracked optimizing MAI vapor pressure (5 × 10-5 Torr) while the PbCl2 deposition 

rate was kept constant at 0.3 Å/s. The post-annealing of the samples at 100 °C further 

enhanced the crystallinity of the perovskite films. The solution deposition of TiO2 

was optimized in terms of the employed precursor and the TiCl4 treatment. Also, the 

two-step precursor spin-casting was engineered to achieve the highest FF and JSC of 

the resultant perovskite solar cells. The co-evaporated perovskite was successfully 

employed in both n-i-p and p-i-n structures. FTO/TiO2/MAPI-Cl/Spiro-

OMeTAD/Ag was used as the n-i-p structure yielding solar cells with 13.0% 

efficiency. The p-i-n structure is more attractive to use due to its low-temperature 

processing. All the constituent transport layers and the absorber layer were fabricated 

through vacuum-deposition resulting in conformal layer coverage over the entire 

area of the substrates. Therefore, this structure qualifies as integrable into scalable 

production with light-weight flexible substrates. The presented p-i-n stack can be 

adopted in tandem with the thin-film PV technologies such as a-Si or CIGS. In this 

work, ITO/NiOX/MAPI-Cl/C60/BCP/Ag was used as the p-i-n configuration 

optimizing the thickness of C60 to yield high efficiencies of 16.1%. When larger 

active areas of 1.00 cm2 and 2.03 cm2 were used, the devices worked with 

efficiencies of 6.0 % and 5.5 %, respectively. We attribute the drop in the efficiency 

with the larger area to arise from the increased series resistance of the bottom TCO 

and the nonreproducibility issues. To avoid the resistance issue, one future work can 
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be using perovskite solar cells in the form of a module 105. To tackle the problem 

with the reproducibility, the mounting unit of the chamber used for perovskite by co-

evaporation must be placed in an inert atmosphere such as N2 or Ar isolated from the 

air 22,23,106. 

The hybrid vapor-solution sequential method was upgraded in this thesis. The 

crystallization of the inorganic PbI2 layer depends strongly on the bottom substrate 

forming porous morphology on crystalline substrates such as TiO2 facilitating the 

interdiffusion process during the two-step method. However, when an organic layer 

is used as the substrate, the PbI2 film takes a compact form limiting the thickness of 

the converted PbI2 layer into perovskite. We used MABr and MACl as additives to 

overcome such conversion barriers making 460 nm thick perovskite layers using this 

method for the first time. Halide-mixing also improved the crystallization of the 

perovskite layer and the operational stability of the resultant devices. The ratios of 

MABr/MAI was successfully engineered to minimize the cell performance gap 

between the measured values and the Shockley-Quiesser limit corresponding to the 

bandgap of the perovskite layer. The optimized devices demonstrated 19.8% 

efficiency with 90 hours of stable performance. The method presented here benefits 

from the uniform coating of vacuum deposition making it industry-friendly. 

Furthermore, the solution step provided control over halide mixing which may not 

be as straightforward in vapor deposition. The spin-coating can be promoted into 

more versatile solution processes such as dip-coating or slot-die coating. Therefore, 

the hybrid vapor-solution sequential is a methodology expandible to roll-to-roll PV 

technologies. As a future study, mixed cation perovskites including Cs+ and FA+ can 

be realized using this methodology to elevate the stability of the devices facilitating 

the introduction of these solar cells into the market. In this concept, CsI and FAI can 

be dissolved in the halide solution. Alternatively, CsI can be co-evaporated with PbI2 

or PbBr2 followed by a solution treatment containing FAI. 

The scalability of the p-i-n perovskite solar cells was further triggered by focusing 

on the HTL. For one thing, a proven stable HTL namely NiO was chosen. Second, 

RF magnetron sputtering was employed as a popular technology in the industry to 
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deposit NiOX thin films. In this regard, the Ar partial pressure (APP) was found to 

be the key parameter during the sputtering to define the crystallinity and 

optoelectronic properties of NiOX. The refractive indices of NiOX were investigated 

versus the APP providing a subtle insight into the optical properties of NiOX. We 

proved that there is a trade-off between the parasitic and reflection losses to define 

the optical transmission of NiOX leading to high photocurrents. Our results pinpoint 

the urge to study the optical properties of any thin film according to its adjacent 

media. The electronic trap density increased with the APP. We devised full 

perovskite solar cells proving low APP of 4 mTorr as optimal to fabricate NiOX 

layers. The interfacial properties of NiOX improved with annealing as the FF of the 

solar cells got enhanced. Besides, we showed for the first time that applying poly-

TPD as an interlayer between the NiOX and perovskite layers enhanced the VOC and 

considerably improved the FF and charge collection efficiency of the final solar cells. 

We showed that while sputtered SiO2 as an inorganic interlayer, degraded the FF and 

JSC, 0.5 nm-thick CuOX boosted the FF and JSC of the employed solar cells. Doping 

NiOX by Cu via co-sputtering was successfully attempted here to be used in 

perovskite solar cells. According to our results, 1.8 atomic percentage of Cu within 

the NiOX improved the efficiency of the perovskite solar cells from 13.3 % to 16.3%. 

In sum, sputtering was demonstrated as a strong tool to effectively tune the crystal, 

optical, electrical, and interfacial properties of transport layers. The electrical 

properties of a film can also be upgraded by precise doping via co-sputtering. These 

results give a strong momentum to bring the perovskite solar cells closer to 

industrialization. We propose that these findings are universal and the optimized 

NiOX layers can be used in Si cells with dopant-free asymmetric heterocontacts 

(DASH cells). As a future study, doping NiOX with other elements such as Al, Zn, 

and W using co-sputtering can be explored to further improve the electrical 

conductivity and work-function of NiOX. Also, sputtering alternative inorganic 

materials to in-situ passivate NiOX before use is an interesting and potentially useful 

way out to upgrade the use of NiOX as an efficient hole transport layer in 

heterojunction solar cells. 
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