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ABSTRACT 

 

MODAL IDENTIFICATION OF STRUCTURES USING EULERIAN -PHASE 

BASED VIDEO MOTION MAGNIFICATION AND ANALYSIS  

 

Ismailov, Kadyrbek 

Master of Science, Civil Engineering 

Supervisor: Prof. Dr. Ahmet Türer 

 

January 2020, 72 pages 

 

Structural identification (St-Id) and dynamic analysis have been crucial in civil 

engineering structures, mainly buildings and bridges. In order to observe the 

vibrations of structures, networks of high-sensitivity sensors have been used. There 

are several limitations of such monitoring systems including cost, labor, number of 

sensors, and installation. A recent method called phase-based video magnification can 

be utilized in civil engineering to have a practical visual approach instead of array of 

sensors. This method will be useful especially for tall and long structures like 

skyscrapers and long span bridges where distance between sensors is a problem for 

data acquisition. Furthermore, video based modal testing is more convenient; number 

and spatial distribution of pixels is advantageous. Use of HD video as an input and 

magnification of tiny motions, which are not seen by naked eyes, are studied in this 

thesis. The phase-based video magnification algorithm is used and improved to obtain 

resonant mode shapes and frequencies of simple structures through video based 

spectral analysis. Simple ruler and cello wire vibrations and two pedestrian bridges 

were used as test structures to validate results directly obtained from video recordings. 

Keywords: Modal identification, phase-based video magnification  
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ÖZ 

 

EULERĶAN-FAZ TABANLI VĶDEO B¦Y¦TME KULLANILARAK 

YAPILARIN MODAL TANIMLAMA VE ANALĶZĶ 

 

Ismailov, Kadyrbek 

Yüksek Lisans, Ķnĸaat M¿hendisliĵi 

Tez Danēĸmanē: Prof. Dr. Ahmet Türer 

 

Ocak 2020, 72 sayfa 

 

Ķnĸaat m¿hendisliĵinde Yapēsal belirleme (St-Id) ve dinamik analiz, özellikle köprü 

ve binalar aēsēndan ok ºnemlidir. Yapēlarēn titreĸimlerini gºzlemlemek iin y¿ksek 

hassasiyetli sensºr aĵlarē kullanēlmaktadēr. Bunun gibi izleme sistemlerinin maliyet, 

iĸilik, sensºr sayēsē ve kurulum gibi birçok dezavantajlarē vardēr. Faz tabanlē video 

b¿y¿tme adē verilen yeni bir yºntem ile ok sayēda noktadan ve sensörlerin 

kullanēlmasēnē engelleyerek inĸaat m¿hendisliĵinde kullanēlabilir. Bu yöntem, 

ºzellikle sensºrler arasēndaki mesafenin veri toplama iin bir sorun olduĵu 

gºkdelenler ve uzun aēk kºpr¿ler gibi yapēlar iin yararlē olabilir. Ayrēca, video 

tabanlē mod testi piksellerin sayēsē ve uzamsal daĵēlēmēndan dolayē daha avantajlēdēr. 

Bu tezde HD videoyu bir girdi olarak kullanarak ēplak gºzle gºr¿lemeyen küçük 

hareketlerin büyütülmesi incelenmiĸtir. Faz tabanlē video b¿y¿tme algoritmasē, video 

tabanlē spektral analiz yoluyla rezonant mod ĸekilleri ve basit yapēlarēn frekanslarēnē 

elde etmek iin kullanēlmēĸtēr ve geliĸtirilmiĸtir. Cetvel ve çello teli gibi basit yapēlarēn 

ve iki yaya köprüsünün rezonant mode ĸekilleri ve frekanslarē doĵrudan video 

kaydēndan elde edilmiĸtir.  

Anahtar Kelimeler: Modsal tanēmlama, faz tabanlē video b¿y¿tmesi 
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CHAPTER 1  

 

1. INTRODUCTION  

 

1.1. Importance of structural health monitoring (SHM)  

Structural decay is a big problem faced by many developed countries in the 

world. After years of service, many structures, such as bridges, tunnels, dams, and 

power plants, are showing severe deterioration. The structural condition or ñhealthò 

needs to be periodically monitored, in order to guarantee safety of these structures and 

to perform proper maintenance over time. 

The main reason to apply SHM is to improve reliability of the existing 

structures. It is important that structures are designed to be cost effective and have 

long service of life.  It is reported in ASCE infrastructure report cart for year 2017 that 

almost 56000 bridges in USA, which is 10% of all existing bridges in the country, 

suffer from structural or functional deficiencies (ASCE, 2017). Such deficiencies 

require immediate attention, otherwise they may lead to serious damages. The 

dramatic example of Morandi Bridge in Italy shows that proper maintenance should 

be done at early stage of structural deficiency, before the damage occurs.  

The Ponte Morandi, also known as Morandi Bridge, was a bridge engineered 

by Riccardo Morandi. It connected two districts across the Polcevera valley, Italy, and 

more importantly served as a link between Italy and France on European route E80. 

In August 2018, during the torrential rainstorm, 210 m section of the bridge collapsed, 

taking away 43 human lives. It is believed that collapse occurred due to structural 

weakness of the westernmost cable-stayed pillar of Ponte Morandi, where collapse 

was centered. 
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Therefore, proper SHM should be applied in order to improve reliability of the 

structure together with achieving lower cost condition maintenance, anticipating 

possible damage, and lastly but more importantly, avoiding catastrophic outcomes. 

1.2. Modal identificati on as SHM method  

One of the mostly used techniques for health monitoring and model 

characterization of the structure is dynamics-based vibration method, using modal 

identification (Shang & Shen, 2017). The main idea is that the damage and 

deterioration of the structure causes physical change in mass, damping, and stiffness 

which can be detected by measuring the abnormal responses of structural vibrations 

(Farrar & Jauregui, 1998).  

Vibration measurements can be divided into two categories, contact and non-

contact methods. The contact method involves wires and transducers, shown as small 

squares in Figure 1, that are located at a place of interest which allows to see the 

frequencies and amplitudes of vibrations. There is a variety of such contact transducers 

like accelerometers, linear variable displacement transducer, and strain gages. 

Although contact transducers can detect vibrations at long dynamic range and high 

accuracy, the physical installation is a costly, time and labor-consuming process and 

sometimes even impossible (Yang et al., 2017). Besides, the natural behavior of the 

structure may change with additional mass loading during inspection which is more 

profound for the structures of low mass (Nassif et al., 2005). This makes us question 

the practicability of these contact methods.  
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Figure 1. Contact method for vibration detection 

 

More practical approach would be using non-contact measurement. At present, 

there are many different non-contact sensors such as Laser Doppler Vibrometry, 

synthetic aperture radar, ultra-sound systems, and vision systems. 

The latter has several advantages over others in terms of cost and 

implementation (Baqersad et al., 2017). In addition, the robustness and accuracy of 

vision-based approach has been greatly enhanced with progress of image processing 

and computer algorithms (Baqersad et al., 2017). An excellent example for non-

contact vision system is digital video camera, which are relatively not expensive and 

mobile. They can be effectively used for the vibration measurements of various 

structures when combined with suitable image processing algorithm (Caetano et al., 

2011). 

 

 

Figure 2. Video camera-based vibration detection 
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The main advantage of video-based method is that high spatial resolution can 

be obtained in a relatively efficient manner, since every pixel function as a separate 

sensor, as illustrated in Figure 2. On the other hand, in this method, high-contrast 

markers, which are placed on the surface of the structures are needed for point 

tracking. So, additional surface preparation is required, but it can be problematic when 

measurement area is large or inaccessible.  

Camera-based measurements gained more wide acceptance with the 

development of motion magnification technique, which allowed video-based 

measurements without additional structural surface preparation. Besides, it became 

possible to have appropriate visualization of resonant vibration mode shapes without 

the use of paints and markers on the surface of the structure (Chen et al., 2015). 

1.3. Motion microscopy 

Motion detection is straightforward for video-based measurements when the 

displacement is large. However, for a tiny motion which is not detected by naked eye, 

the need for additional method arises. In analogy with daily life, where tiny living 

things are observed by the microscope, in the computer vision the imperceptible 

motions can be detected by the motion microscopy. The term motion microscopy was 

introduced by MIT researchers, Freeman and Rubinstein (2014). They described new 

method of motion magnification that enables us to amplify tiny motions in video in 

specified frequency band. 

 One of the most robust method for motion magnification is phase-based 

approach, which is described in more detailed manner in Chapter 2. Phase-based 

motion magnification approach has gained more attention recently due to wide range 

of possible applications. To illustrate, phase-based motion magnification can be used 

in pulse detection, sound detection from vibrating object, breath movement detection, 

etc.  

Work done by Chen et al. (2015) can be given as in example for application of 

phase-based motion magnification in civil engineering. They have reported that by 
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using motion magnification algorithm together with phase-based motion estimation 

that resonant frequencies and operational deflection shapes can be detected. For their 

experiment they have used lab scaled benchmark structures like cantilever beam and 

pipe test specimen. They have showed that successful information about motion can 

be extracted from natural feature of the structure. Sarrafi et al. (2018) have reported 

application of phase-based motion magnification for determining resonant frequencies 

and operating deflection shapes of real-li fe sized wind turbine blade. In addition, they 

have used phase-based motion estimation to compare dynamic behavior of the 

structures from damaged and undamaged turbine blades. 

Although there are many examples of various application of phase-based 

motion magnification, literature still lacks in infield measurements of structures under 

exploitation.  

1.4. Aim of the study 

Inspired by many successful applications of phase-based motion magnification 

in literature, the aim of this study is to utilize this method for the modal identification 

of METU A1 Bridge deck. The main objective of this research is to eliminate the use 

of expensive equipment. For that purpose, instead of expensive video camera simple 

and more available smartphone camera was used for all video recordings. Before 

applying current method to METU A1 Bridge, method was verified by experiments 

with METU A4 Bridge cable, ruler, and cello.   

Within this thesis the phase-based motion magnification was utilized as a case 

study for modal identification of the bridge at outdoor condition. This method can be 

potentially used for modal identification of not only bridges but also large and 

complex structures where placing vibrational sensors is cumbersome. 
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CHAPTER 2  

 

2. THEORETICAL BACKGROUND  

 

In order to better understand working principle of phase-based motion 

magnification method, first, it is necessary to comprehend how the motion is detected. 

2.1. Lagrangian and Eulerian approaches 

In motion magnification just like in fluid mechanics, there are two different 

ways to track the motion, Lagrangian and Eulerian (Figure 3). The former describes 

the motion by tracking the specific object through space and time. The latter extracts 

the motion of an object by tracking the intensities of fixed pixels through the time. 

 

 

Figure 3. Lagrangian and Eulerian approaches (Rubinstein, 2014)  

 

In other words, in Lagrangian approach pixels are separated to different groups 

where each group represent different tracking objects or segments, and only after that, 

the motion vectors can be amplified to reveal small motion. The major disadvantage 

of Lagrangian method is that after amplification of the motions it may leave black 

holes, which are needed to be filled with appropriate pixels (Figure 4). However, 

filling black pixels accurately has major difficulties.  
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Figure 4. Motion magnification by Lagrangian approach  (Rubinstein, 2014)  

 

The other method, Eulerian approach is more effective in terms of 

computational expense and robustness. In this approach, after amplification there is 

no need to fill the black pixels since it works in a different way. The intensities of each 

pixel are traced and then the motion is tracked by the help of signal processing. In 

addition, there is no need for segmentation since it tracks each pixel, which increases 

stability of process. These advantages gained Eulerian approach larger application. 

2.2. Eulerian linear magnification 

Initially, Eulerian linear magnification of intensity was used to amplify the 

temporal difference of the intensities of the pixels to observe the blood flow in the 

human body through the skin. It was seen that the amplification of temporal changes 

in intensities leads motion magnification spatially. In other words, the amplification 

of difference between brightness values of each pixel in time domain is directly 

proportional to magnification of translation of brightness values in space. This relation 

of intensities can be shown mathematically.  

For the simplicity of understanding, lets first describe the process in one 

dimension. This description of the process is a review of Rubinstein work (2014) and 

derivations of the equations are taken from that work. If a single line of a video frame 

is taken, this line would have only intensity values in one spatial dimension. Then 

intensity values of translated signal can be written as Ὅὼȟὸ, where ὼ is position in 
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space and ὸ is time. Intensity at time ὸ π can be expressed as Ὅὼȟπ Ὢὼ. Then 

translated intensities can be written as 

Ὅὼȟὸ Ὢὼ ὸ     Eq. 1 

where ὸ is time dependent displacement and at time ὸ π it is zero, π π. 

Then the magnified translation, Ὅ, can be expressed as  

Ὅὼȟὸ Ὢὼ ρ ὸ                   Eq. 2 

where  is a magnification factor. 

In order to magnify intensity, firstly, change in intensity between t=0 and t=t 

should be derived. The change in the intensity, ὄ, with respect to the Ὅὼȟπ is  

ὄὼȟὸ Ὅὼȟὸ Ὅὼȟπ                            Eq. 3 

By using first-order Taylor series expansion about ὼ and assuming that ὸ is 

respectively small, Ὅὼȟὸ in Eq. 1 can be approximated as 

Ὅὼȟὸ Ὢὼ ὸ     Eq. 4 

Derived change in intensity, B, can be approximated as 

ὄὼȟὸ ὸ                      Eq. 5 

Amplification in intensity between ὸ π and ὸ ὸ can be written as  

Ὅὼȟὸ Ὅὼȟὸ ὄὼȟὸ                           Eq. 6  

Combining equations Eq.4, Eq.5, and Eq.6 gives approximated magnified intensity in 

terms of  and ὸ 

Ὅὼȟὸ Ὢὼ ρ ὸ                    Eq. 7 
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Assuming that translation of intensities and its magnification ρ  ὸ is

not too large, it is possible to take another first-order Taylor approximation to 

magnified intensity in Eq. 7 to give Eq.8 

Ὅὼȟὸ Ὢὼ ρ  ὸ                   Eq. 8

Comparing Eq. 1, which expresses motion magnification and Eq. 8, which is 

approximation for intensity magnification, it can be seen that these two magnifications 

are roughly equal. 

Figure 5 graphically shows that magnifying intensity linearly between time π 

and ὸ, magnifies motion linearly as well. In other words, linear approximation between 

actual and magnified motions is produced. 

 

 

Figure 5. Motion magnification with linear approximation  (Rubinstein, 2014) 

 

The major setback of this method is that large linear amplification in intensity 

values gives unclear results in reconstructed video, due to increase in noise power. To 

increase the signal to nose ratio, instead of linear amplification the alternative method 



 

 

 

11 

 

of phase-based motion magnification can be used which amplifies phase differences 

of the intensity values. The difference between result of two methods demonstrated in 

Figure 6, where (a) is an input noise, (b) is linearly magnified, and (c) is result of 

phase-based magnification. 

 

 

Figure 6. Magnified noise of Linear magnification and Phase-based magnification  

(Wadhwa, 2016)  

 

2.3. Phase-based motion magnification 

In order to better comprehend the phase-based motion amplification, a better 

understanding of term phase is needed.  

2.3.1. Definition of phase 

Colorful image or RGB video frame can be transformed to the grayscale image 

and image would be represented in intensity values of whiteness. Moreover, image 

can be further transformed from spatial domain to the frequency domain with Fourier 

transformation method. Fourier transformation represents a signal in terms of its basis 

functions. Basis functions has different form such as standard  form 

ίὭὲ ὸȟɴ  ὸȟὧέί  ᴙ  and exponential form Ὡ ȟɴ   ᴙ  where is  

frequency. Taking a Fourier transformation of a signal or function Ὢὼ in space 

domain gives us complex form of representation in frequency domain  
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ꞈὪὼ Ὂ Ὢ᷿ὼὩ Ὠὼ ὥ Ὥὦ          Eq. 9 

where a and b are some real numbers. 

 Complex form can be also expressed in polar coordinates 

ὥ Ὥὦ ȿὊȿὩ В ὃὩ      Eq. 10 

where ‰  is called phase angle, ὃ  is called amplitude and equals to  

ὃ ȿὊȿЍὥ ὦ, Figure 7.  

 

 

Figure 7. Phase representation in complex domain 

 

Phase is playing big role in construction of image. The simple example of 

phase domination can be seen in Figure 8, where amplitudes and phases swap between 

two pictures are shown. 
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Figure 8. Swap of amplitudes and phases of two different pictures  (Skurowski & 

Gruca, 2009) 

 

From Figure 8 it can be seen that when two pictures are swapped the contours 

of image that was selected as phase component is more dominant than the ones which 

was selected as amplitude component. 

2.3.2. Global magnification of motion 

To get one step closer to local phase-based motion magnification, it is helpful 

to describe global case. 

As it was mentioned before, Ὅὼȟὸ is intensity values of 1D image signal and 

equals to Ὢὼ ὸ , where ŭ is translation distance and π π. The Fourier shift 

theorem states that translation of a signal in space can be represented in Fourier 

domain by multiplication of  Ὡ  to its Fourier transform, where x is translation 

distance in space domain. Treating intensity signal by Fourier transformation gives 

the collection of amplitudes and phases 

ꞈὪὼ В ὃ Ὡ     Eq. 11 
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Therefore, translated intensity Ὅὼȟὸ  can be represented as 

ꞈ Ὢὼ ὸ В ὃ Ὡ Ὡ В ὃ Ὡ    Eq. 12 

 The linearity of Fourier transform allows extraction of phase difference between t=0 

and t=t phases 

Ὅὼȟὸ Ὅὼȟπ ꞈ ὃ Ὡ ὃ Ὡ ꞈ ὃ Ὡ  

Eq. 13 

After phase difference ,ὸ is extracted, which is directly proportional to translation 

the motion can be magnified by factor of Ŭ 

Ὅὼȟὸ Ὢὼ ρ ὸ ꞈ В ὃ Ὡ         Eq. 14 

(Wadhwa, 2016) 

By using Fourier transform theorem magnified global motion can be easily 

achieved. However, in real life the objects in videos do not move globally, on the 

contrary, they move separately, i.e. locally. Local movement can be seen even at 

different parts of the same object. Thus, images need to be decomposed to local basis 

function where phases of local motion can be tracked. For that purpose, complex 

steerable pyramid is utilized, which uses local waves (wavelets) as a basis function for 

tracking local motions. 

2.3.3. Complex steerable pyramid  

Complex steerable pyramid is an overcomplete linear transform. 

Overcompleteness is concept from linear algebra where removal of one element from 

subset of a system, does not result in completeness of the system. Pyramid in image 

processing is a representation of a signal or an image in multiple scales where 

graphical representation of the process looks like pyramid. There are two types of 

pyramid low pass and band pass pyramids. Low pass pyramid usually used for 
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smoothing sharp images by using averaging fil ter. Band pass pyramid is used for 

decomposition of image to different levels, where each level achieved by applying 

different bandpass filters. In complex steerable pyramid the band pass pyramid 

method is used to decompose the image into different scales and orientations with the 

help of bank of steerable filters. This representation of image in coefficients of 

steerable filters allows to track local motion, since steerable filters work as 2D 

wavelets for 2D images.  

2.3.3.1. Local motion magnification of 1D image 

Before applying complex steerable pyramid to 2D image it is easier to 

comprehend its working principle by describing local motion magnification in 1D, 

since working principles of the steerable filters in 1D and 2D are similar. 

Consider 1D image having only intensity values. In this case, to track local 

phases 1D signal is decomposed into sets of wavelets, which are localized infinite 

complex sinusoids. In order to localize complex sinusoids represented as Ὡ , 

Gaussian window function Ὡ  is used. Consequently, resultant wavelet is described 

as Ὡ Ὡ . Graphical illustration for this process is shown in Figure 9. 

 

 

Figure 9. Gaussian windowing of complex sinusoid  (Wadhwa, 2016)  

 

   Since basis functions of complex steerable pyramid are self-similar the ratio 

between standard deviation „ of Gaussian window and frequency of complex sinusoid 
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is fixed. In other words, to obtain similar wavelets Gaussian window can deviate so  

that „Ⱦ.is constant  

 In order to translate 1D signal by distance of ὸ, where ὸ  , the phase 

of wavelet is shifted, which is done by multiplying the wavelet function with Ὡ  

Ὡ Ὡ Ὡ Ὡ Ὡ  Ὡ Ὡ   Eq. 15 

 (Wadhwa, 2016) 

and phase difference between shifted and not shifted wavelet is equals to which is  

proportional to local motion. 

Figure 10 illustrates how local motion in original signal effects composition of 

wavelets where only related wavelet response to the local motion. 

 

 

Figure 10. Decomposition of the signal into wavelets  (Wadhwa, 2016) 

 

After phase difference is derived, it can be magnified by factor of  to 

synthesize local motion magnification which is represented by 

Ὡ Ὡ  
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Figure 11 Motion magnification of 1D signal  (Wadhwa, 2016) 

 

Figure 11 shows the graphical illustration of overall process how motion is 

magnified using complex steerable filter in 1D. In Figure 11 input signal at t=0 is 

represented by blue color and signal frame at t=1 is shown in red. When complex 

steerable pyramid basis is applied to each frame separately the signals are decomposed 

into sets of wavelets. Respective wavelets of same frequency are chosen, and resultant 

phases are shown in complex plain in Figure 11. The difference between phases is 

calculated and multiplied by Ŭ to give magnified motion which is shown in green 

color. Reconstruction of resultant shifted wavelet clearly shows that the motion in 

frame at t=1 was magnified. 

In Figure 11 the amplification of motion by using single element of basis 

function is illustrated. However, when signal is decomposed into complex steerable 

pyramid basis there are multiple number of elements. Described process is applied to 

all of the elements in the same way. Then the combination of these elements gives 

magnified local motions.  
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2.3.3.2. Motion magnification of 2D image 

When all operations are considered in two dimensions, number of components 

of basis function increases by number of orientations. 

 Application of complex steerable filter bank to each frame of the video, gives 

amplitude and phase values for each pixel of frame. These values are different for each 

scale .— and orientation (texture frequency)  

Mathematical representation of extraction of amplitude, ὃ ȟ, and phase, ‰ ȟ, 

values from each frame using complex steerable filters is shown in Eq. 16. 

ὃ ȟ ὼȟώȟὸὩ ȟ ȟȟ )ØȟÙȟὸ ɰ ȟ       Eq. 16 

(Wadhwa, 2016) 

Here  ɰ ȟ is complex steerable filter or 2D wavelet which differs by scale and 

orientation. 

 Decomposition of the frames according to scale, orientation, and position is 

done in Fourier domain. Therefore, filters and frames need to be transferred to 

frequency domain. 

Figure 12 shows complex steerable filters of different scales and orientations in space 

domain, Figure 12a, and frequency domain, Figure 12b. 2D filter in frequency domain 

can be also illustrated in 3D, Figure 12c. In Figure 12d idealized filet map is illustrated 

where each filter is shown in different distinctive color and each filter covers related 

area. On this map one can also see high and low pass filters which are not involved in 

magnification. Since, the basis function is complex the map shows only real part and 

imaginary part is represented in black color. 
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Figure 12. Complex steerable filters  (Wadhwa, 2016)  

 

Figure 13 explicitly shows working flow of phase-based motion magnification. 

Initially input video is transferred to frequency domain using Fast Fourier Transform, 

Figure 13, step (1). Then the images in frequency domain pass through sub band filters 

of the complex steerable pyramid basis. Sub band are sorted into three categories: high 

pass, band pass, and low pass Figure 13, step (2). High pass and low pass filters 

correspond to high and low texture frequencies that are not in range of interest, hence, 

directly added to final reconstructed video. Frames from the video in frequency 

domain filtered by band pass filters of different scales and orientations, results are 

operated by IFFT to extract amplitudes and phases of the frames Figure 13, step (3). 

In order to attenuate unwanted frequencies of phases in time domain and magnify 

target frequencies, temporal filter, FIR, is applied Figure 13, step (4). Finally, resultant 

phases are multiplied by magnification factor of Ŭ, Figure 13, step (5), and motion 

magnified video is reconstructed, Figure 13, step (6).  
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Figure 13. Work flow of motion magnification  

 

 This method can be used not only for motion magnification but also for motion 

estimation by applying modifications in source code (Wadhwa, 2013). Modified code 

takes first 3 steps of the work flow, described in Figure 13, and adds operations on 

phase values of the frames to extract vibrational frequency spectrum of target region. 

Since phase is directly proportional to translation, frequency spectrum can be 

extracted for each scale by treating phase difference as spatial displacement. In other 

word, after step (3) in Figure 13, without applying remaining steps, phase values of 

each pixel can be transferred to frequencies domain to extract frequency spectrum of 

phase change in time domain. By this way, frequency spectrum of a single pixel or an 

average of frequency spectra of target region pixels can be achieved. Averaging can 

be done with amplitude weighted, where pixels with higher amplitude are more 

valuated. In other words, pixels with good texture are assigned more weight. The 

 










































































































