
JOINT LEARNING OF MORPHOLOGICAL SEGMENTATION, MORPHEME
TAGGING, PART-OF-SPEECH TAGGING, AND DEPENDENCY PARSING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

HÜSEYIN ALEÇAKIR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COGNITIVE SCIENCE

JANUARY 2020

Approval of the thesis:

JOINT LEARNING OF MORPHOLOGICAL SEGMENTATION, MORPHEME
TAGGING, PART-OF-SPEECH TAGGING, AND DEPENDENCY PARSING

submitted by HÜSEYIN ALEÇAKIR in partial fulfillment of the requirements for the degree
of Master of Science in Cognitive Science, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek
Dean, Graduate School of Informatics

Prof. Dr. Cem Bozşahin
Head of Department, Cognitive Science, METU

Prof. Dr. Cem Bozşahin
Supervisor, Cognitive Science, METU

Assist. Prof. Dr. Burcu Can Buğlalılar
Co-supervisor, Department of Computer Engineering, Hacettepe
University

Examining Committee Members:

Prof. Dr. Deniz Zeyrek
Cognitive Science Department, METU

Prof. Dr. Cem Bozşahin
Cognitive Science Department, METU

Assist. Prof. Dr. Burcu Can Buğlalılar
Department of Computer Engineering, Hacettepe University

Prof. Dr. İlyas Çiçekli
Department of Computer Engineering, Hacettepe University

Assist. Prof. Dr. Umut Özge
Cognitive Science Department, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HÜSEYIN ALEÇAKIR

Signature :

iii

ABSTRACT

JOINT LEARNING OF MORPHOLOGICAL SEGMENTATION, MORPHEME
TAGGING, PART-OF-SPEECH TAGGING, AND DEPENDENCY PARSING

Aleçakır, Hüseyin

M.S., Department of Cognitive Science

Supervisor : Prof. Dr. Cem Bozşahin

Co-Supervisor : Assist. Prof. Dr. Burcu Can Buğlalılar

January 2020, 45 pages

In agglutinating languages, there is a strong relationship between morphology and syntax. In-
flectional and derivational suffixes have a significant role while determining the syntactic role
of the word in the sentence. This connection enables the joint learning of morphology and
syntax. Apart from that, the complex morphology poses a sparsity problem. In this respect,
morphological analysis and segmentation are vital for various natural language processing
applications. All of these have provided the primary motivation to develop a joint learning
model for morphological segmentation, morphological tagging, part-of-speech (POS) tag-
ging, and dependency parsing. The proposed model consists of a multi-layered neural net-
work structure. In each level, there is a bidirectional long-short memory unit (BiLSTM) to
encode sequential information. Additionally, attention networks are used to compute soft
alignment between encoder-decoder states in the morphological tagging component. Finally,
the obtained results from each layer of the network are compared with other works from the
literature. The results are very competitive on Universal Dependencies (UD) dataset.

Keywords: Dependency Parsing, Part of Speech Tagging, Syntax, Morphology, Deep Learn-
ing

iv

ÖZ

MORFOLOJİK ANALİZ, SÖZCÜK TÜRÜ İŞARETLEME VE BAĞLILIK
AYRIŞTIRMANIN EŞ ZAMANLI ÖĞRENİLMESİ

Aleçakır, Hüseyin

Yüksek Lisans, Bilişsel Bilimler Programı

Tez Yöneticisi : Prof. Dr. Cem Bozşahin

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Burcu Can Buğlalılar

Ocak 2020 , 45 sayfa

Bitişimli dillerde biçimbilim ve sözdizim arasında güçlü bir ilişki vardır. Çekim ve yapım
eklerini sözcüğün sözdizimsel rolünün belirlenmesinde etkili olmaktadır. Sözdizim ve biçim-
bilim arasındaki bu bağlantı ikisinin eşzamanlı öğrenilmesini olanaklı kılmaktadır. Bunun
yanında dildeki karmaşık morfolojinin varlığı seyreklik problemine neden olabilmektedir. Bu
nedenden ötürü morfolojik analiz ve işaretmele pek çok doğal dil işleme çalışması için zaruri-
dir. Yukarıda sıralanan sebepler morfolojik analiz ve işaretleme, sözcük türlerinin bulunması
ve bağlılık ayrıştırma gibi farklı sözdizimsel analizlerin yapılmasına teşvik etmektedir. Öne-
rilen model çok katmanlı yapay sinir ağlarından oluşmaktadır. Her bir seviyede ardışık bilgiyi
kodlayabilen iki yönlü uzun kısa vadeli bellek ağı birimleri bulunmaktadır. Buna ilaveten,
morfolojik etiketleme bileşeninde kullanılan dikkat ağı yardımıyla kodlayıcı ve çözücü du-
rumları arasındaki hizanlamanın kurulması amaçlandı. Her bir seviyeden elde edilen sonuçlar
literatürdeki diğer çalışmalarla karşılaştırıldı. Evrensel Bağlılık Ağaç Yapılı veri kümesinde
karşılaştırabilinir sonuçlar alındı.

Anahtar Kelimeler: Bağlılık Ayrıştırma, Sözcük Türü İşaretleme, Sözdizimi, Morfoloji, Derin

Öğrenme

v

vi

ACKNOWLEDGMENTS

I thank my supervisor Cem Bozsahin for his guidance and support. Furthermore, I thank my
co-supervisor Burcu Can Buglalilar for introducing me to the topic as well for the support on
the way.

I thank my friends for being there whenever I need them.

I thank Naz for every single moment we had together.

Finally, I thank my family for always being there for me, whatever it takes.

This study is partially funded by TUBITAK (The Scientific and Technological Research
Council of Turkey) with grant number 115E464.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiii

CHAPTERS

1 INTRODUCTION . 1

2 RELATED WORK . 3

2.1 Morphological Segmentation . 3

2.2 Morphological Tagging . 5

2.3 Part-of-Speech Tagging . 6

2.4 Dependency Parsing . 7

3 MODEL . 11

3.1 Neural Building Blocks . 11

3.1.1 Recurrent Neural Networks 11

3.1.2 Bidirectional RNNs . 12

viii

3.1.3 Long Short Term Memory 12

3.1.4 Attention Mechanism . 13

3.2 The Proposed Model: Joint Morpheme Segmentation, Morpheme
Tagging, POS Tagging, and Dependency Parsing 14

3.2.1 Morphological Segmentation 16

3.2.1.1 Input/Output Representations 16

3.2.1.2 Model . 16

3.2.2 Morphological Tagging 17

3.2.2.1 Input/Output Representations 17

3.2.2.2 Model . 17

3.2.3 Word Vector Representation 19

3.2.4 POS Tagging . 21

3.2.4.1 Input/Output Representations 21

3.2.4.2 Model . 21

3.2.5 Dependency Parsing . 21

3.2.5.1 Input/Output Representations 21

3.2.5.2 Model . 22

3.2.6 Model Training . 23

4 EXPERIMENTS . 25

4.0.1 Data . 25

4.0.2 Implementation . 25

4.0.3 Results . 26

4.0.4 Error Analysis . 29

4.0.4.1 Effect of Sentence Length 30

ix

4.0.4.2 Effect of Projectivity 30

4.0.4.3 Effect of Linguistic Constructions 32

4.0.5 Pipeline Ablation . 34

5 CONCLUSION . 37

x

LIST OF TABLES

Table 4.1 Experimental results for different joint models. 27

Table 4.2 The comparison of the Turkish dependency parsing results with other models. 28

Table 4.3 The comparison of the Turkish PoS tagging results with other models. . . . 29

Table 4.5 The results on other languages . 29

Table 4.4 The comparison of the Turkish morphological tagging results (FEATS) with

other models. 30

Table 4.6 UAS by Length. 31

Table 4.7 LAS by Length. 31

Table 4.8 Statistics about test partition of Turkish IMST universal dependencies . . . 32

Table 4.9 Projective and non-projective tree percentages grouped by the sentence length. 32

Table 4.11 Results for non-projective sentences. 32

Table 4.10 Results for projective sentences. 33

Table 4.12 UAS by coarse POS categories. 33

Table 4.13 LAS by coarse POS categories. 34

Table 4.14 Pipeline ablation results. 35

xi

LIST OF FIGURES

Figure 3.1 The overview of the full neural architecture that performs joint morpheme

segmentation, morpheme tagging, PoS tagging, and dependency parsing. 15

Figure 3.2 The architecture of the segmentation component. 17

Figure 3.3 The encoder-decoder architecture of the morphological tagging component. 20

Figure 3.4 Pointer network representation that is used in the model. 23

xii

LIST OF ABBREVIATIONS

BI-LSTM Bidirectional Long short-term memory

BTS Byte-to-Span

CRF Conditional Random Field

HMM Hidden Markov Model

LSTM Long Short-Term Memory

MAP Maximum a Posteriori

MDL Minimum Description Length

MEMM Maximum Entropy Markov Model

MLP Multi Layer Perceptron

NLP Natural Language Processing

RNN Recurrent Neural Network

POS Part Of Speech

UD Universal Dependencies

xiii

xiv

CHAPTER 1

INTRODUCTION

The subfields of linguistics concern with different levels and aspects of the structure of lan-
guage. There are multiple levels of structure of language to deal with interaction with cogni-
tion. Furthermore, the different components of language work together to convey the intended
meaning. From the natural language processing (NLP) perspective, to able to achieve human-
level language understanding, various aspects of language must be taken into consideration.

Most of the NLP systems pay attention to tasks related to text-based input. Almost all of
these tasks require word-level and sentence-level syntactic information to extract the repre-
sentation of who did what to whom. In some cases, word-level information can constrain
the combinatoric potential of words at the sentence level. It is also frequent in languages
with rich morphology. NLP systems have to incorporate word-level information to achieve
linguistically plausible syntactic models.

The focus of this study will be on morphology and syntax. Morphology is the subfield of
linguistics. In broad terms, it can be defined as the study of word formation and concerned
with the internal structure of words. The unit under consideration is a morpheme, which is
the smallest meaning-bearing units of language. The syntax of a language can be viewed as
a system of rules for constructing grammatical sentences out of words and determining their
form and meaning. Morphology and syntax work together to convey the intended meaning.
This interaction enables the joint learning of these syntactic units.

Morphological segmentation and morphological tagging are word-level syntactic tasks that
deal with morphemes in word, and part-of-speech (POS) tagging and dependency parsing are
sentence-level syntactic tasks.

The goal of morphological segmentation is to break a word into morphemes in a particular
context. Some of the work in the literature deals with morphology as a segmentation task that
only aims to segment each word into its morphemes (Harris, 1955; Yarowsky & Wicentowski,
2000; Goldsmith, 2001; Creutz & Lagus, 2002, 2005a; Can & Manandhar, 2013; Soricut &
Och, 2015; Üstün & Can, 2016). In morphological tagging, given a surface form in context,
only sequences of morphological features predicted. Some of the work deals with morphology
as both segmentation and sequence labeling problem, which is called morphological tagging
(Müller et al., 2013; Heigold et al., 2016; Dayanik, 2018). POS tagging investigates the
syntactic functions of words in the sentence. Thus far, several versions of POS tagger are
proposed by Church (1989); DeRose (1988); Schütze & Singer (1994); Brants (2000); Tseng
et al. (2005); Gillick et al. (2015); Ling et al. (2015); Plank et al. (2016). Dependency parsing
describes the internal structure of the sentence in terms of directed relations between words in

1

the sentence. In the last few decades, there has been a surge of interest in supervised methods
for data-driven dependency parsing (Kudo & Matsumoto, 2002; Yamada & Matsumoto, 2003;
Eisner, 1996; McDonald et al., 2005).

Recent work shows that representation that is learned by using words as separate tokens are
not well enough to capture the syntactic and semantic information of words in agglutinative
languages because of two main reasons. One reason is that various kinds of information are
expressed in morphology. For instance, tense, aspect, and mood are commonly expressed
via inflectional morphology. These morphological features are the grammaticalized proper-
ties of events. The second reason is that morphological complexity increases data sparsity.
Hence, words as separate tokens are not well enough to capture the syntactic and semantic
information of words in agglutinative languages.

In this study, a joint model for learning morphological segmentation, morpheme tagging,
POS tagging, and dependency parsing, especially in agglutinating languages, is introduced.
The four tasks can be learned efficiently in a single unified framework by helping each other
through sharing the neural vector representations between layers. As a consequence of this
hierarchal sharing mechanism, upper layers, such as dependency parsing or POS tagging, can
access morphological information that are encoded in words. Here, morpheme and character
representations have been used to cope with the sparsity problem.

Our framework is built upon the joint PoS tagging and dependency parsing model of Nguyen
& Verspoor (2018), where we introduce two more layers for morphological segmentation
and morphological tagging. Therefore, this study can be seen as an extension of Nguyen &
Verspoor (2018) and Kiperwasser & Goldberg (2016).

To our knowledge, there has not been any study that combines morphological segmentation,
morpheme tagging, POS tagging, and dependency parsing in a single framework using deep
neural networks, especially for morphologically rich languages.

The results show that such a unified framework benefits from joint learning of various levels
from morphology to dependencies significantly.

The thesis is divided into five distinct sections. The remaining parts of this study are struc-
tured as follows. Chapter 2 establishes the linguistics background of morphology and syntax
and summarizes the related work on morphological segmentation, morpheme tagging, part-of-
speech (POS) tagging, dependency parsing, and joint learning. Chapter 3 gives the mathemat-
ical background of sequence-based neural networks and details the proposed model. Chapter
4 explains data, implementation details, and analyzes the results obtained from experiments.
Chapter 5 concludes the study with future goals.

2

CHAPTER 2

RELATED WORK

2.1 Morphological Segmentation

Morphology is the subfield of linguistics. In broad terms, it can be defined as the study of
word formation and concerned with the internal structure of words. The unit under consider-
ation is a morpheme, which is the smallest meaning-bearing units of language. The goal of
morphological segmentation is to break a word into morphemes in a particular context.

The first heuristics-based unsupervised morpheme segmentation method (LSV) was first pre-
sented by (Harris, 1955) and further investigated by others. Harris (1970) proposed a seg-
mentation algorithm, which is based on distributional characteristics of letters in utterance,
to detect possible morpheme boundaries of a word. In the 2000s, there are many studies that
follow the unsupervised tradition for morphology learning (Yarowsky & Wicentowski, 2000;
Goldsmith, 2001; Creutz & Lagus, 2002, 2005a; Can & Manandhar, 2013).

Goldsmith’s Linguistica (Goldsmith, 2001) was based on information-theoretic principle,
which is called Minimum Description Length (MDL). There is some equivalence between
the notion of probability in Bayesian learning and the notion of length of a binary message in
information theory. One needs to maximize the posterior probability in Bayesian learning and
minimize the message length in information theory. There is an important notion called a sig-
nature introduced by Linguistica. Signatures are a set of affixes attached to given stems; these
signatures are collected from an unannotated corpus. Thus, Linguistica represents the lan-
guage of morphology by signatures and signature-stem pairs. To choose the best hypothesis
to explain the data, Linguistica makes use of MDL for stem-signature coding.

Yarowsky & Wicentowski (2000) introduced a minimally supervised corpus-based morpho-
logical analyzer. The proposed algorithm learns the alignment between roots and their in-
flected forms. Unlike Goldsmith (2001), this method can learn non-affixal alignments forms
such as < take, took >.

Creutz & Lagus (2002) proposed two methods for learning of morphological segmentation:
MDL-based and probabilistic-based. There are two parts of the data representation in this
model. The first one is called codebook—dictionary of morphemes; the second one is a
sequence of texts. The cost function of the MDL-based model is as follows:

3

Totalcost = cost(source)+ cost(codebook)

= ∑
mi∈T
− log p(mi)+ ∑

m j∈M
k ∗ length() (2.1)

where M and T denote the number of morpheme types and sequence of tokens, respectively.
The function math length(m j) computes the length of token m j in characters. k is the maxi-
mum code length of a character. The negative log-likelihood is used to compute the cost of a
sequence of tokens. This cost function aims to reduce the size of the codebook.

As opposed to the MDL-based model, the second model of (Creutz & Lagus, 2002) uses the
maximum likelihood of data without prior information. Here, codebook cost is not included:

Totalcost = cost(source)

= ∑
mi∈T
− log p(mi) (2.2)

where the total cost is equal to the summation of all tokens’ negative log probabilities. A
variant of expectation-maximization is used to estimate the model parameters.

Creutz & Lagus (2005a,b) presented another Morfessor family tool based on (Creutz & Lagus,
2002) for unsupervised segmentation. The Morfessor relies on the priors about morphemes
such as length, frequency, and perplexity. The maximum a posteriori (MAP) estimation is
employed during the training step to determine optimal lexicon and segmentation.

argmax
lexion

P(lexicon|corpus) = argmax
lexicon

P(corpus|lexicon)∗P(lexicon) (2.3)

where lexicon and corpus correspond to a set of distinct morphemes and sequences of tokens,
respectively.

Can & Manandhar (2013) presented a Dirichlet process model for joint POS tagging and
morphological segmentation. It is a generative model where the authors generate the POS
tags, stems, and suffixes of words jointly. A mixture model is adopted for POS tagging by
using the tags of the contextual words. A Dirichlet process model is adopted for morphology
learning where stems may belong to any POS tag. The model generates stems based on POS
tags. It is a mixture model. Moreover, It adopts a Dirichlet process model for morphology-
based on POS tags.

A great deal of previous research on morphological segmentation has focused on the relation-
ship between morphology and semantics (Soricut & Och, 2015; Üstün & Can, 2016). These
studies have assessed the efficacy of distribution-based word vector representations such as
the Skipgram model Mikolov et al. (2013) and subword model Bojanowski et al. (2017). Skip-
gram model Mikolov et al. (2013) uses neighbor words to estimate word vectors. It encodes
words to dense vectors using word co-occurrence statistics.

Üstün & Can (2016) proposed a segmentation algorithm based on the skipgram model. The
model proposed by (Üstün & Can, 2016) takes the input pair, which has the form of (word:

4

logical form) and using the semantic vector knowledge, it reduces the number of possible
combinations to segmentation set called pseudo-morphemes. After producing all possible
combinations, the model makes use of semantic vector information to eliminate segmenta-
tions below a given threshold. The model proposed by (Üstün & Can, 2016) calculates the
cosine distance between word and its suffixed form, e.g., cosine_similarity(araba, arabalar),
and repeats this process for each split point in the word. The primary assumption of Üstün
& Can (2016) is that inflectional morphemes do not change the meaning of word radically,
so cosine similarity between word itself and its inflected form has to be higher than 0.25.
However, this proposed method is not directly applicable to the derivational morphology.

Soricut & Och (2015) introduced the language-agnostic unsupervised Transformation-Based
segmentation model. Soricut & Och (2015) shows that morphological representations can be
extracted using semantic vectors. This work only considers prefixes and suffixes. The below
pipeline overviews the proposed algorithm.

Given a finite vocabulary V:

1. Extract candidate prefix/suffix rules from V

2. Train embedding space En ⊂ R for all words in V

3. Evaluate the quality of candidate rules in En

4.Generate lexicalized morphological transformations

In the first phase, it finds all tuples, i.e. candidate rules, (w1, w2) ∈ V starting with the same
prefix or ends with the same substring. Then, in the second stage, they train all words in V
using Skipgram model.

type:from:to (w1, w2)
suffix:ed:ing ⇒ (increased, increasing)

prefix:un:re ⇒ (unmade, remade)

suffix:ion:ed ⇒ (creation, created)

In the following phases, Soricut & Och (2015) evaluated the quality of candidate rules using
the meaning-preservation property, and quantitatively measured the assertion ’car is to cars
what dog is to dogs’. Furthermore, the last step, to avoid over-applying, e.g., suffix:ε:ly
⇒ (only,ly), they restrict the application by graph reduction. This model outperformed past
works on word similarity tasks.

2.2 Morphological Tagging

A considerable amount of information is encoded within words in morphologically rich lan-
guages. Morphologic analyzers and disambiguators identify the underlying form of words–
morphemes and morphological features. Some of the NLP applications require this informa-
tion encoded in a word, e.g., machine translation models. Traditionally, morphologic ana-

5

lyzers typically are carried out by language-specific fine-state transducers. They can produce
possible analysis, and then morphological disambiguators assign particular analysis to a sur-
face string within context. TRMorph for Turkish (Cöltekin, 2010) and Morphisto for German
(Zielinski & Simon, 2009) are open-source implementations of two-level morphological ana-
lyzers.

The task of morphological tagging is similar to morphological analysis. In morphological
tagging, given a surface form in context, only sequences of morphological features predicted.
Also, several studies (Müller et al., 2013; Heigold et al., 2016; Dayanik, 2018) incorporate
part-of-speech tag into sequences of predicted features. It is important to note that the mor-
phological tagger proposed in this study excludes part-of-speech tags.

Müller et al. (2013) introduced a Conditional Random Fields (CRFs) (Lafferty et al., 2001)
based sequence prediction model for morphological tagging. Thus far, several studies have
begun to examine the use of neural networks in the task of morpheme tagging (Heigold et al.,
2016; Dayanik, 2018; Malaviya et al., 2018). The first of them is proposed by Heigold et al.
(2016). In this study, two character-based morpheme segmentation models was compared—
convolutional neural networks (CNN) and long short term memory networks. Heigold et
al. (2016) have shown that LSTM architectures are more suitable for morphological tasks.
Cotterell & Heigold (2017) subsequently improved a character-based LSTM model with the
transfer learning techniques. They aimed to transfer the obtained knowledge from high-
resource language to low-resource languages.

Finally, MorphNet (Dayanik, 2018) made use of sequence-to-sequence neural architectures to
combine morphological analysis and disambiguation in a single model. MorphNet has three
recurrent neural networks (RNNs) to encode features of input words on different levels: word
encoder, context encoder, and output encoder. Finally, MorphNet has one decoder to predict
the morph tags by conditioning on three encoder embeddings.

2.3 Part-of-Speech Tagging

It is challenging to describe parts of speech. It is a somewhat vague term. Schachter &
Shopen (2018) defined the term part of speech distributionally; it means that words that have
the same part-of-speech category have similar syntactic functions in the sentence. Exceptions
can be presented with the substitution test, which controls the grammaticality of the sentence
when the selected word substituted for each word belongs to the same part of speech category.
Besides syntactic distribution, Hengeveld (1992) highlighted the importance of semantic roles
of a word in the sentence. Semantically defined categories can add power to distributionally
defined ones in cross-linguistics studies.

Although there are no precisely defined universal part of speech tag sets that capture every
associated characteristic in all languages, a smaller version of a universal tag set is proposed
for practical purposes. There are 45 tags, including punctuation, provided in Penn Treebank
for English to code syntactic functions of the word (Marcus et al., 1993). Moreover, there
are also cross-lingual, more finer-grainer tagsets are available; for instance, Universal Depen-
dency (UD) datasets have 17 lexical tags which only capture core syntactic categories in all
languages.

Part-of-speech (POS) tagging is a kind of sequence labeling problem. In this task, each word

6

in an input sentence is labeled with a POS tag. Early examples of research into POS tagging
were influenced by Harris’ distributional hypothesis (Harris, 1954), which states that ’lin-
guistic items with similar distributions have similar meanings’. From this point of view, the
POS tagging problem can be seen as clustering words based on the distributional properties
of syntax.

To date, in the literature, there are two conventional methods suggested to handle sequence la-
beling problem in the domain of POS tagging: generative and discriminative methods. Hidden
Markov models (HMM) are based on a generative approach, and maximum entropy Markov
models (MEMM) and recurrent neural networks (RNN) are based on the discriminative ap-
proach.

An HMM is based on the Markov chain, which describes the probabilities of a sequence of
possible events where the probability of the next event only depends on the current event.
However, in the task of POS tagging, events in the input sequence, i.e., POS tags, are not
observable, they are hidden. For that reason, HMM models incorporated a new component,
which is called as emission probability, into existing first-order Markov chain models. Emis-
sion probability matrix stores each of the probability of a token being generated from all
possible POS tags, and is estimated from a labeled corpus. Thus far, several versions of
HMM-based tagger Church (1989); DeRose (1988); Schütze & Singer (1994); Brants (2000);
Tseng et al. (2005) are introduced to deal with problems such as unknown words.

An HMM tagger is conditioned on the observations and previous hidden states. Furthermore,
it is not easy to incorporate arbitrary features such as tag features, morphological features,
and multiword features. A MEMM tagger (Ratnaparkhi, 1996) predicts the best tag sequence
given an observation, previous tags, and handcrafted features. Toutanova et al. (2003) presents
the bidirectional version of MEMM tagger. Lafferty et al. (2001) reported the observational
bias problem resided in MEMM and introduced a structured prediction technique called con-
ditional random fields (CRF).

In recent years, researchers have investigated a variety of neural-based approaches to the
POS tagging problem (Gillick et al., 2015; Ling et al., 2015; Plank et al., 2016). Especially,
RNN based methods have been shown great success in sequence prediction tasks. Gillick et
al. (2015) described an LSTM-based model, which they call Byte-to-Span (BTS). The pro-
posed model is language-agnostic; it means that it does not have additional parameters for
each distinct language. Ling et al. (2015) introduced BI-LSTM-based model to learn word
representations by composing characters. The final word representations fed into a bidirec-
tional LSTM model for POS tagging. Plank et al. (2016) introduced auxiliary loss function
to account for rarely occurring words. This model gained state-of-art results, especially in
languages that have rich morphology.

2.4 Dependency Parsing

Dependency grammar is a family of grammar formalism that describes the internal structure
of the sentence in terms of directed relations between words in the sentence. There are no con-
stituents as in Penn Treebank (Marcus et al., 1993). Dependency grammar formalism encodes
the grammatical structure of sentence through the instrument of directed graph-like structure,
which has a set of nodes correspond to lexical items in the sentence, and a set of labeled binary

7

relations correspond to grammatical functions between "head" and "dependent" words. A no-
tion of head exists in other grammar formalisms, such as phrase structure grammar (Gazdar,
1982) and head-driven phrase structure grammar (Pollard & Sag, 1994). In phrase structure
grammar, within constituents, the head of the constituent governs arguments and adjuncts,
but these relationships are not made explicit. Fortunately, dependency grammar is explicitly
encoded head-dependent relationships without the need to require word-order information in
contrast to phrase structure grammar.

In recent years, a considerable amount of effort has been devoted to the annotation of de-
pendency treebanks especially for morphologically rich languages such as Prague depen-
dency treebank (Hajičová, 1998), Basque dependency treebank (Aduriz et al., 2003), METU-
Sabancı Turkish Dependency Treebank (Oflazer et al., 2003). We used Universal Dependency
(UD) (Nivre et al., 2016) framework for grammar representation.

Dependency parsing is the task of automatically analyzing the dependency structure of sen-
tences. In other words, dependency parsing is a mapping problem; it takes input sentence S
and generates graph-like dependency structure G. There are two main approaches to depen-
dency parsing problem: data-driven and grammar-based approaches. Data-driven approaches
heavily make use of machine learning; however, grammar-based approaches are based on for-
mal grammar. Most of the data-driven parsers either transition-based (Kudo & Matsumoto,
2002; Yamada & Matsumoto, 2003) and graph-based (Eisner, 1996; McDonald et al., 2005).
Context-free (Hays, 1964; Gaifman, 1965) and constraint-based (Maruyama, 1990) parsers
are the main approaches to grammar-based parsers.

In the last few decades, there has been a surge of interest in supervised methods for data-driven
dependency parsing. In literature, unsupervised dependency parsing has gained little atten-
tion. Most-well known examples are (Yuret, 1998; Klein & Manning, 2005; Smith, 2006).

When dealing with morphologically rich languages, e.g., Turkish and Hungarian, morpholog-
ical information needs to be integrated. Eryiğit et al. (2008) proposed a probabilistic parsing
method for Turkish using the gold morphological analysis and POS tags provided by Oflazer
et al. (2003). Eryiğit et al. (2008) shows the effect of morphology on syntactic parsing in
Turkish.

In recent years, neural network-based models have been becoming a common trend in de-
pendency parsing as well as other tasks in NLP (Chen & Manning, 2014; Dyer et al., 2015;
Kiperwasser & Goldberg, 2016).

Chen & Manning (2014) introduced a neural transition-based dependency parsing model.
Chen & Manning (2014) pointed out that manually designed or automatically captured fea-
tures bring about sparsity problem since there is no adequate data to estimate these feature
parameters correctly. The proposed (Chen & Manning, 2014) method was faster and more
accurate (about 2% improvement) than existing works.

Dyer et al. (2015) presented their stack LSTM-based dependency parser, where the parser’s
state represented by fixed-dimensional continuous vectors. Additionally, Dyer et al. (2015)
enable compositional representation of complex phrases using Recursive neural networks.

Kiperwasser & Goldberg (2016) presented a dependency parsing model in which uses two
layered bidirectional LSTM (BI-LSTM) to encode sequences of tokens. Kiperwasser & Gold-
berg (2016) tested BI-LSTM based oracle on transition-based parsing. The resulting parser

8

achieves comparable results with current state-of-the-art methods on the English (PTB) and
Chinese (CTB) datasets.

Joint learning of morphology, word categories, and syntax becomes more widespread with the
aid of end-to-end neural systems (Nguyen et al., 2017; Nguyen & Verspoor, 2018; L. Yang et
al., 2017; Hashimoto et al., 2017).

Nguyen et al. (2017); Nguyen & Verspoor (2018) introduced and improved neural network-
based joint model for POS tagging and graph-based dependency parsing. A similar depen-
dency architecture is used in (Kiperwasser & Goldberg, 2016), but the character-based word
embedding is used instead of word embeddings.

Hashimoto et al. (2017) introduce a deep multi-task learning model, which is based on a
hierarchical parameter sharing mechanism, to learn several NLP tasks simultaneously. Five
different NLP tasks are handled in separate levels: word level, syntactic level, and semantic
level. Hashimoto et al. (2017) show that introducing supervision at word level can improve
the overall performance of syntactic and semantic level tasks.

9

10

CHAPTER 3

MODEL

The section below describes the outline of the joint model for morphological segmentation,
morpheme tagging, part-of-speech tagging, and dependency parsing.

3.1 Neural Building Blocks

The structure and functions of neural building blocks, which are used in models for sequence
modeling, will be explained in the following section.

3.1.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) (Rumelhart et al., 1986) are a class of artificial neural
networks designed to handle sequential data. The primary difference between RNNs and
feedforward neural networks lies in shared parameters that enable RNNs to model samples of
various lengths and to generalize across them. In other words, RNNs have shared parameters
for each input feature, and thus RNNs can capture information about the dependencies in the
sequential input along the temporal direction. The modern RNN types have been developed
to deal with shortcomings of earlier versions such as Elman Networks (Elman, 1990).

RNNs can be built in many ways, but in all forms have a function involving recurrence. The
mathematical notation of recurrent function that computes the hidden state of the network at
a given timestep t for input sequence can be defined as a function f as follows:

ht = f (ht−1,xt ;θ) (3.1)

where X is an input sequence (x1,x2, ..,xt , ...xT) with length T , ht represents the state infor-
mation at time t, and θ refers to parameters set.

Typically, there is also another affine layer to project hidden information to outputs to make
predictions. It is also possible to extend simple RNN with a stacked version by adding multi-
ple recurrent hidden states on top of each other.

The full RNN model can be formally defined as:

11

hl
t = f (Wxhl−1

t +Whht−1 +bl
h)

ot = g(Wohl
t +bl

o)
(3.2)

where Wx ∈ Rdh,dx weight matrix for input hl−1
t ∈ Rdh , Wh ∈ Rdh,dh weight matrix for hl

t−1 ∈
Rdh , and bl

h ∈ Rdh is bias term. The sum of these values is passed into suitable activation to
compute the hidden state hl

t ∈ Rdh . Wo ∈ Rdo,dh E dim and bo ∈ Rdo E dim are output layer
parameters, and g is the output layer activation function. Typically, the softmax activation
function is used as a g to compute normalized probability distribution.

Although RNNs theoretically can manage to encode long sequences of input, practically, it
is not easy to learn long-term dependencies using simple RNNs. Bengio et al. (1994) have
first identified that during the training phase in the backpropagation step gradients become
close to zero due to repeated multiplications of the Jacobians at every timestep. Therefore
parameter weights would not be updated, so the neural network does not learn. There is also
another problem caused by the gradient explosion. Pascanu et al. (2013) proposed a simple
way called a gradient clipping to resolve this issue.

3.1.2 Bidirectional RNNs

Simple RNNs process input sequence left-to-right manner, hence the hidden state of RNN at
time t only encodes the information up to input xt , i.e., the left context of the input. However,
in some applications such as machine translation (Bahdanau et al., 2014), speech recognition
(Graves et al., 2013) and, hand-writing recognition (Graves & Schmidhuber, 2009) requires
both right and left context at each timestep. Bidirectional RNNs (Schuster & Paliwal, 1997)
were designed to meet these needs.

Two separate RNNs are trained in the forward and backward directions of the input sequence
and at each time step forward and backward outputs combined in some way to represent the
state of the network at a given timestep t. Even though the conventional way of backward and
forward context combination method is concatenation operation, there are some alternative
methods such as element-wise addition and multiplication.

3.1.3 Long Short Term Memory

As discussed above, it is clear that RNNs appear to have difficulties while learning long-range
dependencies. Because of the vanishing gradients problem in RNNs for the longer sequences,
Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) networks, which learn
to carry only the relevant hidden information (memory) to pass through the network and learn
to forget the irrelevant bits, are preferred for longer sequences of dependencies. Thus far,
several studies have confirmed the effectiveness of LSTMs in different areas of NLP, such
as syntactic parsing (Vinyals et al., 2015), machine translation (Cho et al., 2014; Schuster
& Paliwal, 1997), and language modeling (Graves, 2013). In this study, LSTM architecture
proposed by (Zaremba et al., 2014) is adopted.

12

LSTM : x,ht−1,ct−1→ ht ,ct
i
f
o
g

=


sigm
sigm
sigm
tanh

W
(

x
ht−1

)

ct = f � ct−1 + i�g

ht = o� tanh(ct)

(3.3)

where x , c, and h denotes input embedding, cell state, hidden state, respectively. sigm and
tanh are element-wise operations. W is a R4n,2n dimension weight matrix. The input modula-
tion gate learns to neglect current input, the forget gate learns to determine how much of the
previous hidden state should be kept. The forget gate could be sufficient to alleviate the risk
of vanishing gradient problem in most cases.

3.1.4 Attention Mechanism

The term ‘attention’ has been used to describe the behavioral and cognitive process of selec-
tively focusing on a discrete part of the information rather than the whole. There is no simple
meaning of attention in psychology and is little consensus about what attention means.

According to James (1890):

Everyone knows what attention is. It is the taking possession by the mind, in
clear and vivid form, of one out of what seem several simultaneously possible
objects or trains [p. 404] of thought. Focalization, concentration, of
consciousness are of its essence. It implies withdrawal from some things in
order to deal effectively with others, and is a condition which has a real
opposite in the confused, dazed, scatterbrained state which in French is called
distraction, and Zerstreutheit in German.

Historically, attention mechanisms used in deep learning are loosely based on biologically
inspired human visual attention mechanisms. The early investigations of attention mecha-
nisms in NLP were made in the context of machine translation (Bahdanau et al., 2014). After
that, attention-based neural network architectures have been shown great success in document
classification (Z. Yang et al., 2016), semantic parsing (Dong & Lapata, 2016; Finegan-Dollak
et al., 2018), and language modeling (Devlin et al., 2019).

Chaudhari et al. (2019) reviewed the neural architectures using attention mechanism, and
provide the taxonomy of several attention mechanisms. For instance, document classification
and machine translation models require different attention architectures. The former has an
input sequence but not the output sequence; however, the latter has both input and output
sequence. The multi-level inner attention type is proposed for the document classification
task (Z. Yang et al., 2016), and mostly distinctive-soft attention type is proposed for machine
learning tasks (Bahdanau et al., 2014).

Having defined what is meant by attention mechanism, let us now consider to define the

13

formal definition of it. Due to being the predecessor of the modern attention mechanism, the
attention architecture introduced by Bahdanau et al. (2014) will be briefly explained.

Recurrent neural networks based encoder-decoder architectures (Cho et al., 2014; Sutskever
et al., 2014) have been used to model machine translation problems. Generally, the encoder
reads the input sequence and produces the summary of input, which is called as context.
Then decoder initializes its hidden vector using context information and generates the out-
put. However, traditional encoder-decoder models suffer from two well-known deficiencies:
fixed-sized representations and word alignment problem. First, RNN has to encode all input
information into fixed-size representation. For instance, using a fixed-sized representation en-
coder must encode all the semantic aspects of a long sentence. Secondly, there is no alignment
between the input and output sequences. Bahdanau et al. (2014) came up with an ingenious
idea of attention. In the first phase of the process, the encoder takes all input data, then pro-
duces feature vector representations for each item in the input sequence. In the second phase
of the process, at each decoding position j, attention network learns soft probabilities αi j to
compute context vector c j by weighted averaging of all hidden representations of the input
sequence. The attention model proposed by Bahdanau et al. (2014) can be formally defined
as:

e ji = a(hin
i ,h

out
j)

αi j =
e ji

∑i e ji

c j = ∑
i

α jihin
i

(3.4)

where hin
i is encoder hidden state at time i, hout

j is decoder hidden state at the time j, and
a(hin

i ,h
out
j) is alignment function which outputs a scalar score between hout

j and hin
i per input

position i. e ji is score between hout
j and hin

i , αit is soft attention score, and c j refers to weighted
average of all hidden representations of input sequence called context.

3.2 The Proposed Model: Joint Morpheme Segmentation, Morpheme Tagging,
POS Tagging, and Dependency Parsing

The following part of this section describes the architecture of the joint model. The proposed
model handles the four related task-morpheme segmentation, morpheme tagging, pos tagging,
and dependency tagging-in a joint manner. The model proposed by Nguyen & Verspoor
(2018) and Kiperwasser & Goldberg (2016) provides the base model. It can be seen that this
study is an extension of its predecessors. Morphological information, morpheme, and tag
information are incorporated into the base model.

The base model, which is proposed by Nguyen & Verspoor (2018), has three layers. In
the first layer, words are represented by their distributed word vectors are taken from pre-
trained models, and their character-level representations are captured by BiLSTM. In the
second layer, word vectors are fed into the BiLSTM model, then output representation of
BiLSTM is passed to a multi-layer perceptron with one hidden layer to predict part-of-speech
tags of words in the given context. In the third layer, pos tag representations of words and
word vectors representations are fed into another BiLSTM, then created latent feature vectors

14

 S
eg

m
en

ta
tio

n

Segmentation

Component

Encoder

o

 okul a

k u l a

Encoder

git ti

Segmentation

Component

g i t t i

 M
or

ph
em

e
Ta

gg
in

g

 W
or

d
Em

be
dd

in
gs

MorphTagging

Component

o k u l a

 e1: c1 w1

Pre-trained
Word

Embedding

 e1: c1 w1

 e2: c2 w2

CharacterBased + Pretrained Word
Embeddings

c1 c2

MorphTagging

Component

g i t t i

c1 c2

Character Encoder

o k u l a

Encoder

A3sg Dat

Encoder

A3sg Past

Character Encoder

g i t t i

s1 :

c1 : c2 :

w
1

w
2

s2 : mt1 : mt2 :

 P
oS

 T
ag

gi
ng

D
ep

en
de

nc
y

P
ar

si
ng

PoS Tagging

Component

Dependency Parsing

Component

e1 s1mt1

e2 s2 p2mt2

e2 s2mt2

p1 : p2 :

okula gitti

advmod

NOUN VERB

e1 s1 p1mt1

Figure 3.1: The overview of the full neural architecture that performs joint morpheme seg-
mentation, morpheme tagging, PoS tagging, and dependency parsing.

are passed into multi-layer perceptron to predict dependency relations with their labels.

The proposed joint model extends the previous studies (Nguyen & Verspoor, 2018) by adding
two extra components: morphological segmentation and morphological tagging model. The
high-level sketch of the joint model is illustrated in Figure 3.1.

15

3.2.1 Morphological Segmentation

3.2.1.1 Input/Output Representations

The morphological segmentation component takes sequence characters of a word as an input,
then produces sequences of binaries that corresponding to morpheme splitting points. Each
word is represented as wi = [wi1, ...,wi j, ...,wiLi] , wi j ∈ A where wi, wi j, Li, and A are ith
word of sentence, jth character of word wi, the length of word wi, and the set of alphanumeric
characters, respectively. The output is represented as yi = [yi1, ...,yi j, ...,yiLi], yi j ∈ {0,1}.
Each item yi j in output yi can be 0 or 1 which indicates the segmentation point.

3.2.1.2 Model

The first layer of the joint model consists of BiLSTM and MLP layers. Each character wi j

in wi is mapped to C-dimensional character embedding xi j ∈ RC. Firstly, a BiLSTM takes
sequences character embeddings xi,1:Li ∈ RLi,C as an input to encode latent feature represen-
tations.

vchar
j = BiLST Mseg(xi,1:Li , j) (3.5)

where vchar
j is a latent feature representation of jth character of word.

Each latent feature representation is passed to multi-layer perceptron with a sigmoid activation
function as given below:

ŷ j = sigmoid(MLPseg(vchar
j)) (3.6)

The sigmoid activation function scales the input and outputs continuous range from 0 to 1.
When the final prediction ŷ j number is close to 1, it is highly probable that there exists a
segmentation boundary after that character. The binary cross-entropy function is computed
for each position in the word. The segmentation loss is computed by formula 3.7:

Lseg =−
Li

∑
j
(yi j log(ŷ j)+(1− yi j) log(1− ŷ j)) (3.7)

where Lseg is the segmentation loss.

The morphological segmentation model is illustrated in Figure 3.2.

16

f r i e d

0 0 1 0 1

MLP MLP MLP MLP MLP

 fri ed

σ σ σ σ σ

Figure 3.2: The architecture of the segmentation component.

3.2.2 Morphological Tagging

3.2.2.1 Input/Output Representations

The morphological tagging component takes sequence characters of a word as an input, then
produces sequences of morphological tags as output. Morphological tagging and segmenta-
tion models have the same input representation. Output is represented as fi = [fi1, ..., fik, ..., fiNi],
fik ∈ T where fi, fik, Ni, and T are morphological feature list of ith word, kth morphological
feature of output, number of features in word wi, and set of morphological features, respec-
tively.

3.2.2.2 Model

There are three main parts of the morphological tagging component: word encoder, context
encoder, and decoder. As previously described in the segmentation model, each character wi j

in wi is mapped to C-dimensional character embedding xi j ∈RC. Firstly, a BiLSTM takes se-
quences character embeddings xi,: ∈RLi,C as an input to encode latent feature representations.

mchar
j = BiLST Mword_encoder(xi,1:Li , j) (3.8)

where mchar
j is latent feature representation of jth character of word.

17

There is a many-to-one structural mismatch between sequences of characters and morpheme
tags. For this reason, the classical encoder-decoder approach with fixed-size representation is
not appropriate. The attention mechanism is added as an internal layer between word encoder
and decoder in order to handle structural mismatches by reordering during the decoding phase.
With the help of the attention mechanism, this model can learn the soft alignments between
word input and morphological features. In this component, the attention network takes all
latent feature representations produced by the encoder; then, at each decoding position k, the
attention network learns soft probabilities α jk by calculating the relation between each mchar

j
and kth decoded token embedding tk as follows:

score(mchar
j , tk) = v1 · tanh([U1mchar

j]; [W1tk])

e jk = score(mchar
j , tk)

α jk =
e jk

∑ j e jk

(3.9)

where mchar
j is encoder hidden state at time j, tk is decoder hidden state at the time k, and

score(mchar
j , tk) is alignment function which outputs a scalar score between mchar

j and tk each
output position k. e jk is score between mchar

j and tk, and α jk is soft attention score. And also,
v1, U1, and W1 are word attention network weights.

Once the weights are estimated, the total contribution of all characters to the current word is
computed as the weighted sum of each character at time step k:

ck = Σ jα jkmchar
j (3.10)

where ck is the attended word characters of the current word that will be one of the inputs that
will be fed into the decoder.

As for the word encoder, we define a second one-layer BiLSTM, where each context word is
encoded as a vector, mword

i :

mword
j = BiLST Mcontext_encoder(xi:Li , j) (3.11)

where mword
j is latent feature representation of jth word of the sentence.

Another attention mechanism is added as an internal layer between context encoder and de-
coder to learn the soft alignments between sequences of words and morphological features.
At each decoding position k, the context attention network learns soft probabilities α jk by
calculating the relation between each mword

j and kth decoded token embedding tk as follows:

score(mword
j , tk) = v2 · tanh([U2mchar

j]; [W2tk])

e jk = score(mword
j , tk)

α jk =
e jk

∑ j e jk

(3.12)

where mword
j is encoder hidden state at time j, tk is decoder hidden state at the time k, and

score(mchar
j , tk) is aligment function which outputs scalar score between mword

j and tk each

18

output position k. e jk is score between mword
j and tk, and α jk is soft attention score. And also,

v2, U2, and W2 are context attention network weights.

Once the weights are estimated, the total contribution of all words in the sentence is computed
as the weighted sum of each word at time step t:

wvk = Σ jαk jmword
j (3.13)

where wvk is the attended context words that will be also another input to be fed into the
decoder.

At each decoding position k, concatenation of context vector and previous decoded token
embedding tk−1 are passed to the decoder. Then, at each decoding position k, the decoder
output vectors are passed to MLP, then it produces output vector vout put

k ∈ RNi . After that,
the softmax activation is applied to output vector to get normalized probability distribution
consisting of the size of |T| morphological features.

tk = ck ◦wvk ◦ tk−1

dtoken
k = LST Mdecode(t1:Ni ,k)

ŷk = so f tmax(MLPmtag(dtoken
k))

(3.14)

where tk, Ni, and dtoken
k are concatenated vector, number of features in word wi, and decoder

output representation of a morpheme tag, respectively.

Finally, categorical cross-entropy loss is computed for each position in the decoder. The
morphological tagging loss is computed by formula 3.15:

Lmtag =−
T

∑
k

fik log(ŷk) (3.15)

where Ltag is the morpheme tagging loss.

The morphological tagging model is illustrated in Figure 3.3.

3.2.3 Word Vector Representation

The following is a brief description of word vectors representation that will be used in POS
tagging and dependency parsing components. Each sentence s is represented as s = [w1, ...,wi

, ...,wn], where wi corresponds to ith word of sentence s. For the POS tagging and dependency
tasks, each word wi is in s is mapped to C-dimensional word vector xi ∈RC. Each word vector
xi carry four different pieces of information: pre-trained word embedding x(w)wi , character-level
word embedding x(c)wi , morpheme embedding, and morpheme tag embedding x(m)

wi .

xi = x(w)wi ◦ x(c)wi ◦ x(m)
wi ◦ x(mt)

wi (3.16)

Pre-trained word embeddings are taken from word2vec (Mikolov et al., 2013). Character-level

19

Word Attention

Word Encoder

Decoder

Context Attention

Context Encoder

LSTM LSTM LSTM LSTM LSTM

Predictions

Input word

 </s>Number=Sing

 <s>

Person=1 PronType=PrsCase=Loc

MLP

softmax

MLP

softmax

MLP

softmax

MLP

softmax

MLP

softmax

b e n d e kahveleri bende içelim

Figure 3.3: The encoder-decoder architecture of the morphological tagging component.

word embeddings are learned using the BiLSTM model. As previously stated in morpholog-
ical segmentation part of this study, each word is represented as wi = [wi1, ...,wi j, ...,wiLi] ,
wi j ∈A where wi, wi j, Li, and A are ith word of sentence, jth character of word wi, the length
of word wi, and the set of alphanumeric characters, respectively. Each character wi j in wi is
mapped to C-dimensional character embedding xi j ∈ RC.

For the character-level word embedding generation step, BiLSTM takes sequences of charac-
ter embeddings xi,1:Li of the word wi. Then, the hidden representation of the last input time
step is used as character-level word embedding.

x(c)wi = BiLST Mchar_level_embed(xi,1:Li) (3.17)

where x(c)wi is charecter-level feature representation of ith word of sentence.

The morph2vec model (Üstün et al., 2018) is re-implemented to learn morpheme embeddings.
The morph2vec returns the sequence of morpheme embeddings for each word wi. Moreover,
a BiLSTM read these morpheme embeddings to produce single morpheme-level word repre-
sentation x(m)

wi .

x(m)
wi = BiLST Mmorph_level_embed(xm

i) (3.18)

where x(c)wi is morpheme-level feature representation of ith word of sentence and xm
i is the

sequences of morpheme embeddings of wi.

20

Finally, another a BiLSTM read these morpheme tag embeddings to produce single morpheme-
tag word representation x(mt)

wi .

x(mt)
wi = BiLST Mmorph_tag_embed(xmt

i) (3.19)

3.2.4 POS Tagging

3.2.4.1 Input/Output Representations

The POS tagging component takes the sequences of word vector representations xs = [x1, ..,xi

, ...,xLi] as an input, then produces sequences of POS tags as output. Output representations
is as yp = [yp1 , ...,ypi , ...,ypn], ypi ∈ P where ypk is the gold POS tag of ith word, and P refers
the set of POS tags.

3.2.4.2 Model

The POS tagging component consists of two layers: BiLSTM encoder and MLP-based clas-
sifier. BiLSTM reads the word vector representations, which are mentioned in the previous
section, to encode latent feature representations.

vpos
i = BiLST Mpos(xs) (3.20)

where xs denotes the sequence of word vectors representation of sentence s. vpos
i is the POS

representation of wi.

At each time step, BILSTM feeds the output vectors into MLP with a softmax activation
function to estimate part of speech tag of the word.

ŷ = so f tmax(MLPpos(vpos
i)) (3.21)

where ŷ is normalized probability distribution.

Categorical cross-entropy loss is used for training.

Lpos =−
P

∑
I

ypi log(vpos
i) (3.22)

where Lpos is the POS tagging loss.

3.2.5 Dependency Parsing

3.2.5.1 Input/Output Representations

The dependency parsing component takes word vector representation xi for each word wi in a
sentence s = [w1, ...,wi, ...,wn]. Each word vector xi carry five different pieces of information:

21

pre-trained word embedding x(w)wi , character-level word embedding x(c)wi , morpheme embed-
ding x(m)

wi , morpheme tag embedding x(mt)
wi ,and POS tag embedding xp

wi from POS tagging
component .

xi = x(w)wi ◦ x(c)wi ◦ x(m)
wi ◦ x(mt)

wi ◦ x(p)
wi (3.23)

Dependency parsing tasks can be seen as a structured learning problem. Output representation
has two parts: unlabeled dependency graph and labeled dependency relations. The directed
dependency graph g of sentence s= [w1, ...,wi, ...,wn] is defined as g= [parent(w1), ..., parent
(wi), ..., parent(wn)] where parent(wi) is function returns the parent id of word wi. The cor-
responding labels l for each arc in graph g is reprenseted as l = [l1, ..., li, ..., ln], ln ∈ L where
li and L denote label of wi and set of dependency labels.

3.2.5.2 Model

In the first step, BiLSTM reads the word vector representations of sentence x1:n to encode
latent feature representations.

vi = BiLST Mdep(x1:n, i) (3.24)

where xs denotes the sequence of word vectors representation of sentence s. vi is the latent
feature representation of wi.

Like (Nguyen & Verspoor, 2018) and (Kiperwasser & Goldberg, 2016), arc-factored parsing
method is used to dependency arcs (McDonald et al., 2005; Kübler et al., 2009). The MLP
based pointer networks are used to score arcs. All paired combinations of the latent feature
representations are passed to pointer networks.

score(i, j)arc = MLParc(vi ◦ v j ◦ (vi ∗ v j)◦ |vi− v j|) (3.25)

where score(i, j)arc is a function to compute strength of arc between head and dependent. vi and
v j correspond to a sample pair.

The structure of the directed graph is extracted from the score matrix using the decoder algo-
rithm proposed by Eisner (1996).

score(s) = argmax
ŷ∈Y (s)

∑
(h,d)∈ŷ

score(h,d)arc (3.26)

where Y (s) corresponds to all possible parse trees for sentence s. h and d denote the head
and dependent nodes.

There is another MLP with a softmax activation function to predict dependency labels. Output
label between the head and dependent arc is computed as follows:

ŷ = so f tmax(MLPlabel(vh ◦ vd ◦ (vh ∗ vd)◦ |vh− vd |)) (3.27)

22

where ŷ, vh, and vd denote the predicted label, latent feature representations of head, and latent
feature representations of headdependent words.

The dependency parsing model is illustrated in Figure 3.4.

Dependent

representation

Output vector
computation

Adjacency matrix

Head

representation

Output vector
computation

Eisner

Decoding

AğaçlarROOT artık yapraklarını döküyordu

root

nsubj

obj
punct

advmod

Figure 3.4: Pointer network representation that is used in the model.

3.2.6 Model Training

In the proposed joint learning framework, each component has its own error that contributes
to the total loss of the model L .

L = Lseg +Lmtag +Lpos +Larc +Lrel (3.28)

We use train and validation corpora to train the model. During training at each epoch, first the
model is trained by Adaptive Moment Estimation (Adam) optimization algorithm (Kingma
& Ba, 2014), and then per-token accuracy is calculated using the validation set. Every tenth
epoch, all momentum values were cleared in the Adam Trainer. Here, we applied step based
learning rate decay and early stopping.

23

24

CHAPTER 4

EXPERIMENTS

4.0.1 Data

We did the experiments on Turkish as a morphologically rich language. We used the UD
Turkish Treebank for both training and evaluation. The dataset is a semi-automatic conversion
of the IMST Treebank (Sulubacak et al., 2016), which is a reannotated version of the METU-
Sabancı Turkish Treebank (Oflazer et al., 2003). All of the three treebanks share the same raw
data that involves 5635 sentences collected from daily news reports and novels.

For the pre-trained word embeddings, we use pre-trained 200-dimensional word embeddings
provided by CoNLL 2018 Shared Task. We also pre-train morph2vec (Üstün et al., 2018) to
learn the morpheme embeddings. We obtain the gold segmentations from Zemberek (Akın &
Akın, 2007) to train the segmentation component.

4.0.2 Implementation

We implemented the model using DyNet v2.0 (Neubig et al., 2017), a dynamic neural network
library. For the morphological segmentation component, we split each token into characters
and we represent each character with a 50-dimensional character embedding. Using the char-
acters as input, we build a bi-directional LSTM with 50-dimensional unit size to encode the
character context. We feed a multi-layer perceptron (MLP) with a sigmoid output that has an
output size of 1 with the produced encoded characters to capture the segmentation boundaries.

Based on the segmentation probabilities obtained from the MLP, we created a morpheme list
that makes the input word. We encode morphemes with 50-dimensional embeddings and we
feed another Bi-directional LSTM with 50-dimensional units to encode each input morpheme.
As mentioned before, we concatenate the 200-dimensional word-level word embeddings, 50-
dimensional character-level word embeddings, and 100-dimensional morpheme-level word
embeddings for the final word representation.

For the morpheme tagging component, we use a two-layered Bi-directional LSTM with 128-
dimensional unit size to encode the character context. The decoder is also based on a two-
layered Bi-directional LSTM with 128-dimensional unit size that is fed with the attended
characters that are encoded by the encoder.

For the POS tagging component, we use a two-layered Bi-directional LSTM with 128-dimensional
unit size to encode the word context. We feed the output of the word context into a MLP with

25

a softmax activation function and 100-dimensional hidden unit size. Output size of the MLP
is equal to the number of distinct POS tags in a given language. The softmax function gives
the probability vector for the POS categories. We use the negative log-likelihood function as
a loss function for the POS tagging component.

Finally, for the dependency parsing component, we use another two-layered Bi-directional
LSTM with 128-dimensional unit size and a pointer network with 100-dimensional hidden
unit size. We use again negative log-likelihood function for training.

We use dropout to penalize some random weights to zero. We observed significant improve-
ment when we applied dropout with a rate of 0.3 after each LSTM units.

4.0.3 Results

We performed several experiments with the alternating components of the proposed model.
All models are trained jointly with a single loss function. However, according to the desired
joint tasks, we excluded either morpheme tagging or segmentation, or both tasks from the
full model. Therefore, we observed how the lower levels that correspond to morpheme tag-
ging and segmentation tasks affect the upper levels that refer to PoS tagging and dependency
parsing.

We followed the standard evaluation procedure of CoNLL 2018 shared task defined for de-
pendency parsing, morphological tagging and PoS tagging. For the PoS tagging, we evaluated
our results with an accuracy score that is the percentage of the correctly tagged words. For
the dependency parsing task, we present two different evaluation scores: labeled attachment
score (LAS) and unlabeled attachment score (UAS). The attachment score is basically the
percentage of the words that have the correct head and the dependency arc. LAS measures
the percentage of the words that have the correct head with the correct dependency label,
whereas UAS only measures the percentage of the words that have the correct head without
considering the dependency labels. We evaluate the segmentation results with also accuracy,
which is the percentage of the correctly segmented words. We evaluate the morpheme tag-
ging with an accuracy measure, which is also the percentage of correctly tagged words. Here,
we evaluate morpheme tagging based on all of the morpheme tags that each word involves.
Therefore, we postulate that all the morpheme tags of the word to be correct in order to count
the word as correctly tagged. It is defined as FEATS (universal morphological tags). Since
the gold segmentations are not provided in the CoNLL datasets, we segmented the test set by
Zemberek morphological segmentation tool Akın & Akın (2007) and evaluated based on the
Zemberek results.

All the results obtained from the proposed models are given in Table 4.1. We compare our re-
sults with the joint PoS tagging and dependency parsing model by Nguyen & Verspoor (2018),
which is the model that our joint model is built upon, and given as POS-DEP (Baseline) in the
table. We obtained an UAS score of 70.42% and a LAS score of 62.71% from the baseline
model. PoS tagging accuracy is the highest with 94.78% when all the components (morpheme
tagging and morphological segmentation) are included as a full joint model. The same also
applies to UAS, LAS, morpheme tagging accuracy and segmentation accuracy, which are the
highest when all the components are adopted in the model. This shows that all the layers in
the model contribute to each other during learning.

26

Table 4.1: Experimental results for different joint models.

POS UAS LAS FEATS SEG
POS-DEP (Baseline) 92.16 70.42 62.71 - -

MorphTag-POS-DEP 93.72 70.99 63.75 87.34 -

SEG-POS-DEP 94.51 70.99 62.62 - 98.90

SEG-MorphTag-POS-DEP 94.78 71.00 63.92 87.59 98.97

Since this is the first attempt that combines the four tasks in a single joint model, we compare
the performance of each component separately with different models. The dependency pars-
ing results are given in Table 4.2. The table shows the UAS and LAS scores of different de-
pendency parsing models. We compare our results with the joint PoS tagging and dependency
parsing model by Nguyen & Verspoor (2018), the winning of CoNLL 2018 shared task that
incorporates deep contextualized word embeddings by Che et al. (2018), the pipeline system
that performs tokenization, word segmentation, PoS tagging and dependency parsing by Qi et
al. (2018), the tree-stack LSTM model by Kırnap et al. (2018), and the dependency parser that
incorporates morphology-based word embeddings proposed by Özateş et al. (2018). The re-
sults show that our model makes a significant improvement on the baseline model of Nguyen
& Verspoor (2018). Our UAS score is 3% higher and the LAS score is almost 4% higher than
the joint PoS tagging and dependency parsing model by Nguyen & Verspoor (2018). Our
model outperforms most of the models that participated in CoNLL 2017 and CoNLL 2018.
The only model that perform better than our model is the one proposed by Che et al. (2018)
and Qi et al. (2018). Their models give an UAS score of 72.25% and 71.07%, LAS score of
66.44% and 64.42% respectively, whereas our model gives an UAS score of 71.05% and LAS
score of 63.32%. Our UAS score is competitive to the deep contextualized model by Che et al.
(2018). However, there is a 3% difference in the LAS scores of the two models. As the authors
of the work also state, deep contextualized word embeddings (BERT, Devlin et al. (2019)) af-
fect the parsing accuracy significantly. However, apart from the usage of contextualized word
embeddings, our base model is similar to their model. Ours performs morpheme tagging and
morphological segmentation additionally. Qi et al. (2018) present another prominent model
competed in CoNLL shared task 2018. They were placed on the 2nd in the shared task with
their UAS and LAS scores. Similar to our model, they also introduce a neural pipeline system
that performs tokenization, segmentation, PoS tagging, and dependency parsing. Their archi-
tecture is similar to ours. They use biaffine classifier for PoS tagging similar to that of Dozat
& Manning (2016).

The comparison of our PoS tagging results with other PoS tagging models is given in Table
4.3. We compare our model with Che et al. (2018), Qi et al. (2018), Özateş et al. (2018),
Kırnap et al. (2018). Our model outperforms other models with an accuracy of 95.02%.
Following our model, the best performing model is the one proposed by Che et al. (2018),
which uses deep contextualized word embeddings.

The comparison of our morphological tagging results (FEATS) with other models is given in
Table 4.4. We compare our model with Che et al. (2018), Qi et al. (2018), Özateş et al. (2018),
and Kırnap et al. (2018). The best performing model is by Qi et al. (2018) with an accuracy of

27

Table 4.2: The comparison of the Turkish dependency parsing results with other models.

Model UAS LAS
Che et al. (2018) 72.25 66.44

Qi et al. (2018) 71.07 64.42

Nguyen & Verspoor (2018) 70.53 62.55

Kırnap et al. (2018) 65.93 58.75

Özateş et al. (2018) 57.53 50.33

SEG-MORPH-POS-DEP 71.00 63.92

MORPH-POS-DEP 70.99 63.75

POS-DEP 70.42 62.71

SEG-POS-DEP 70.99 62.62

89.43%. It is worth to mentioning that none of those models perform joint learning for mor-
phological tagging. Our model is the only joint model that performs morphological tagging
along with other syntactic tasks. The results are very competitive with the ones of the other
models although they fall behind the other models.

The results for English, Czech and Hungarian languages are given in Table 4.5.

28

Table 4.3: The comparison of the Turkish PoS tagging results with other models.

Model Accuracy (UPOS)
Che et al. (2018) 94.78

Qi et al. (2018) 93.20

Özateş et al. (2018) 91.64

Kırnap et al. (2018) 91.64

Nguyen & Verspoor (2018) 92.93

SEG-MORPH-POS-DEP 94.78

SEG-POS-DEP 94.51

MORPH-POS-DEP 93.72

Table 4.5: The results on other languages

Language Model UAS LAS UPOS FEATS
English MORPH-POS-DEP 84.97 80.76 94.36 88.70

English Che et al. (2018) 86.79 84.57 95.64 94.60

English Nguyen & Verspoor (2018) 83.37 80.63 94.44 94.60

Czech MORPH-POS-DEP 89.71 86.27 98.69 81.16

Czech Che et al. (2018) 93.44 91.68 99.05 92.40

Czech Nguyen & Verspoor (2018) 88.66 86.06 98.64 92.40

Hungarian MORPH-POS-DEP 76.74 70.03 92.47 64.09

Hungarian Che et al. (2018) 87.21 82.66 96.43 88.09

Hungarian Nguyen & Verspoor (2018) 75.72 69.37 91.97 88.09

4.0.4 Error Analysis

Here, we endeavour to characterize the errors made by the proposed model variations in
greater detail. The experiments aim to classify the parsing errors with respect to the linguistic

29

Table 4.4: The comparison of the Turkish morphological tagging results (FEATS) with other
models.

Model FEATS
Qi et al. (2018) 89.43

Che et al. (2018) 86.23

Özateş et al. (2018) 86.15

Kırnap et al. (2018) 86.15

SEG-MORPH-POS-DEP 87.59

MORPH-POS-DEP 87.34

and structural properties of the dependency graphs. In all experiments, the four different joint
models have been trained and tested with the standard split of Turkish IMST universal depen-
dencies1. Error analysis is carried out using four linguistic and structural properties, namely,
sentence length, projectivity, arc type, and part-of-speech.

4.0.4.1 Effect of Sentence Length

We first try to see the effect of sentence length on the robustness of the four model variations.
For that purpose, test data is subdivided into equally sized sentence length intervals. Here, in-
terval length is 10. The UAS and LAS scores according to different sentence lengths are given
in Table 4.7 and Table 4.6 respectively. It can be clearly seen that the longer the sentences
are, the lower the both scores are for all model variations. However, MorphTag-POS-DEP
and SEG-MorphTag-POS-DEP models perform rather well in shorter sentences (0-20 length)
with regards to both UAS and LAS. What is interesting about the scores is that models that
have higher UAS and LAS scores in shorter sentences are worse in longer sentences (30-50).
Parsing errors gradually increase as the sentence lengths increase. In literature, a similar out-
come was also reported for other languages such as for English and Vietnamese (McDonald
& Nivre, 2007; Van Nguyen & Nguyen, 2015).

4.0.4.2 Effect of Projectivity

An arc in a dependency tree is projective if there is a directed path from the headword x to
all the words between the two endpoints of the arc (Kübler et al., 2009) and therefore there
are no crossing edges in the dependency graph. Projectivity is less frequent in languages with
more strict order such as English. However, projective trees can be seen more frequently in
free order languages such as Czech and German. Table 4.8 shows some statistics about the
test set. Turkish being a free order language, the number of projective dependency graphs is

1 Turkish IMST universal dependencies : https://universaldependencies.org/treebanks/tr
_imst/

30

Table 4.6: UAS by Length.

<=10 <=20 <=30 <=40 <=50
POS-DEP 77.73 67.52 63.88 63.18 60.63

SEG-POS-DEP 78.86 67.95 64.04 61.59 61.54

MorphTag-POS-DEP 79.07 68.29 63.17 62.05 59.28

SEG-MorphTag-POS-DEP 78.71 68.57 62.50 65.45 60.63
Number of Tokens 3875 3516 1952 440 221

Table 4.7: LAS by Length.

<=10 <=20 <=30 <=40 <=50
POS-DEP 70.27 59.95 55.33 54.77 55.20

SEG-POS-DEP 71.46 60.18 57.63 53.18 54.75

MorphTag-POS-DEP 71.92 60.95 55.94 54.32 52.94

SEG-MorphTag-POS-DEP 71.48 61.43 55.79 59.09 52.49
Number of Tokens 3875 3516 1952 440 221

a lot more higher than the number of non-projective dependency graphs.

Table 4.9 gives the LAS scores according to the sentence lengths. The results show that as the
complexity of sentences increases and thereby the lengths of the sentences, the probability of
generating non-projective trees also increases. Therefore, the number of projective trees is
higher for the sentence lengths smaller than 30, however the number of non-projective trees is
higher for the sentence lengths larger than 40. For example, all the sentences that are longer
than 50 in length are all built as non-projective dependency trees.

We analyze the labeled and unlabeled accuracy scores obtained from the projective and non-
projective trees in testing. As given in Table 4.10, the MorphTag-POS-DEP model outper-
forms other models both for labeled and unlabeled dependency arcs in projective trees. How-
ever, for the non-projective trees, the SEG-MorphTag-POS-DEP model outperforms other
models, as can be seen in Table 4.11.

31

Table 4.8: Statistics about test partition of Turkish IMST universal dependencies

Tokens Sentences
Projective 7928 855

Non-projective 2076 120
Total 10004 975

Table 4.9: Projective and non-projective tree percentages grouped by the sentence length.

<=10 <=20 <=30 <=40 <=50
Percentage of projective trees 91% 82% 78% 40% 0%

Percentage of non-projective trees 19% 18% 22% 60% 100%
Number of tokens 3875 3516 1952 440 221

Table 4.11: Results for non-projective sentences.

UAS LAS
POS-DEP 60.69 53.81

SEG-POS-DEP 60.84 54.62

MorphTag-POS-DEP 60.45 54.05

SEG-MorphTag-POS-DEP 62.43 55.39

4.0.4.3 Effect of Linguistic Constructions

Finally, we also aim to analyze the syntactic properties of the dependency relations based
on their PoS labels obtained from different models. Here, we analyze the results based on
the dependent’s PoS tag to see whether the dependent’s PoS tag plays a role in the accuracy.
As McDonald & Nivre (2007) proposed, we make use of coarse PoS categories instead of
universal POS (UPOS) categories in order to observe the performance differences between
the models easily for the sake of the loss of useful syntactic information. As for the coarse
PoS categories, nouns include nouns and proper nouns, pronouns consist of pronouns and
determiner, and verbs include verbs and auxiliary verbs.

UAS and LAS accuracies of the four models are given in Table 4.12 and Table 4.13 respec-
tively for the coarse PoS categories. As can be seen from Table 4.12, there is a slight im-
provement of UAS in conjunctions (CONJ) and substantial improvement in verbs (VERB)
and adpositions (ADP) in the SEG-MorphTag-POS-DEP model. The MorphTag-POS-DEP
model captures the unlabeled arcs for the adjective (ADJ) and adverb (ADV) dependents bet-
ter compared to the other models. The scores also show that there is a slight increase in the

32

Table 4.10: Results for projective sentences.

UAS LAS
POS-DEP 72.97 65.05

SEG-POS-DEP 73.65 65.98

MorphTag-POS-DEP 73.75 66.30

SEG-MorphTag-POS-DEP 73.25 66.16

Table 4.12: UAS by coarse POS categories.

Dependent POS Total MT MT MT MT
POS-DEP SEG-POS MorphTag SEG-MorphTag

-DEP -POS-DEP -POS-DEP
ADJ 939 72.52 72.63 74.01 72.31

ADP 360 76.11 81.39 78.89 80.56

ADV 345 68.70 65.22 68.70 66.09

CONJ 390 75.38 74.10 74.62 75.64

NOUN 3145 65.47 66.83 66.20 65.98

PRON 530 76.60 77.17 75.85 76.61

VERB 2121 72.09 71.28 72.99 73.51

unlabeled accuracy for the noun (NOUN) and pronoun (PRON) dependents in the SEG-POS-
DEP model. The POS-DEP model does not outperform other models for none of the PoS
categories. Only the UAS score for the adverb dependents is the same as the one obtained
from the MorphTag-POS-DEP. The overall results show that each component in the model
has an impact on the UAS scores for different PoS categories of the dependents, and the full
joint model that includes all the components has a higher overall UAS accuracy for different
dependent PoS categories.

As can be seen from Table 4.13, SEG-MorphTag-POS-DEP model tends to be more accu-
rate in nouns (NOUN) and conjunctions (CONJ). With the addition of the morpheme tags,
MorphTag-POS-DEP model has higher LAS accuracies for adjectives (ADJ), adverbs (ADV),
and verbs (VERB). There is a considerable improvement of LAS in adpositions (ADP) after
incorporating segmentation information in the joint SEG-POS-DEP model. However, SEG-
POS-DEP model does not outperform other models for other PoS categories. The only PoS
category that the POS-DEP outperforms other models is the pronouns (PRON), which can be
a sign that pronouns are usually not inflected and the morph tags and segmentation do not
contribute much for the pronoun category.

33

Table 4.13: LAS by coarse POS categories.

Dependent POS Total MT MT MT MT
POS-DEP SEG-POS MorphTag SEG-MorphTag

-DEP -POS-DEP -POS-DEP
ADJ 939 57.51 59.74 60.38 60.06

ADP 360 73.61 79.44 76.39 78.06

ADV 345 60.58 58.26 61.74 60.58

CONJ 390 69.49 66.92 66.41 69.74

NOUN 3145 53.90 55.86 55.74 56.00

PRON 530 68.68 67.73 67.36 67.36

VERB 2121 66.95 66.38 68.18 67.89

4.0.5 Pipeline Ablation

In order to measure the contribution of each component in the model, typically, that compo-
nent is removed from the model. It is the so-called ablation analysis, and actually, we have
done this kind of coarse version of ablation analysis in previous sections. There is also another
version of ablation analysis that measures the influence of the individual components in the
model by incrementally replacing the component with their gold annotations. This pipeline
version of ablation analysis was studied by Qi et al. (2018). Using this approach, researchers
have been able to decide whether an individual component is useful for higher-level tasks or
not and estimate the limitations of their studies in perfect conditions. Moreover, the errors
that flow through the network from different components are also filtered out to measure the
actual effect of each component on the final scores.

The results obtained from the pipeline ablation analysis of the joint model are given in Table
4.14. The first row gives the results of the full joint model without gold annotations. In
the second row (POS-MorphTag-GoldSEG-DEP), the morpheme segmentation component is
replaced with the gold morphological segmentations rather than predicting them, and the rest
of the components are left as they are. In the third row (POS-GoldMorphTag-SEG-DEP),
the morphological tagging component is replaced with the gold morpheme tags. Finally,
both morpheme segmentation and morphological tagging components are replaced with their
gold annotations in the fourth row (POS-GoldMorphTag-GoldSEG-DEP). The results show
that using the gold morpheme tags contributes to the dependency scores the most, however
the highest improvement is obtained when both gold morphological segmentation and gold
morpheme tags are incorporated in the model for the PoS tagging. Even if the individual
components are replaced with the gold annotations incrementally from bottom tasks to the
upper layers, there is still a huge gap between the ablation scores and the gold scores. The
morphological tagging accuracy is 100% for the last two rows, because the gold morpheme
tags have been used for these two ablation tests. Another natural finding of the ablation test is
that when the gold morphological segmentations are incorporated in the model, the morpheme
tagging accuracy can be also improved, which is an expected result.

34

Table 4.14: Pipeline ablation results.

POS UAS LAS UFeats
POS-MorphTag-SEG-DEP 94.78 71.00 63.92 87.59

POS-MorphTag-GoldSEG-DEP 94.90 70.93 64.05 87.81

POS-GoldMorphTag-SEG-DEP 97.30 72.34 66.68 100

POS-GoldMorphTag-GoldSEG-DEP 97.36 71.97 65.94 100

35

36

CHAPTER 5

CONCLUSION

The main goal of the current study was to demonstrate that the four tasks–morphological
segmentation, morpheme tagging, POS tagging, and dependency parsing– which related to
morphology and syntax can be learned efficiently in a single unified framework. The second
aim of this study was to investigate the effects of morpheme and character representations
to cope with the sparsity problem, which is introduced especially by agglutinative languages
such as Turkish due to their complex morphology.

The results of this investigation show that morphological information such as morpheme tags
and morphemes of the word improve both dependency parsing and PoS tagging results, which
indicates that morphemic knowledge plays a vital role in syntactic learning of morphologi-
cally rich languages. The present study has been one of the first attempts to combine morpho-
logical segmentation, morpheme tagging, POS tagging, and dependency parsing in a single
framework using deep neural networks. The results of this research support the idea that
morphemic knowledge plays an essential role in syntactic learning of morphologically rich
languages.

Current study did not include vertical information flow left-to-right or right-to-left manner.
Further research could also be conducted to determine the effectiveness of vertical information
flow. As a future goal in this work, the study should be repeated using deep contextualized
word embeddings such as BERT (Devlin et al., 2019) or Elmo (Peters et al., 2018). Finally,
further work could be conducted to determine the effectiveness of self-attention mechanism
in the current architecture.

37

38

Bibliography

Aduriz, I., et al. (2003). Construction of a basque dependency treebank.

Akın, A. A., & Akın, M. D. (2007). Zemberek, an open source NLP framework for Turkic
Languages. , 10.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157–166.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with
subword information. TACL, 5, 135-146. Retrieved from http://dblp.uni-trier.de/
db/journals/tacl/tacl5.html#BojanowskiGJM17

Brants, T. (2000, April). TnT – a statistical part-of-speech tagger. In Sixth applied natural
language processing conference (pp. 224–231). Seattle, Washington, USA: Association
for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/
A00-1031 doi: 10.3115/974147.974178

Can, B., & Manandhar, S. (2013, October). Dirichlet processes for joint learning of mor-
phology and PoS tags. In Proceedings of the sixth international joint conference on natural
language processing (pp. 1087–1091). Nagoya, Japan: Asian Federation of Natural Lan-
guage Processing. Retrieved from https://www.aclweb.org/anthology/I13-1152

Chaudhari, S., Polatkan, G., Ramanath, R., & Mithal, V. (2019). An attentive survey of
attention models. arXiv preprint arXiv:1904.02874.

Che, W., Liu, Y., Wang, Y., Zheng, B., & Liu, T. (2018). Towards better ud parsing: Deep
contextualized word embeddings, ensemble, and treebank concatenation. In Proceedings
of the conll 2018 shared task: Multilingual parsing from raw text to universal dependencies
(pp. 55–64). Association for Computational Linguistics. Retrieved from http://aclweb
.org/anthology/K18-2005

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on empirical methods in natural language
processing (emnlp) (pp. 740–750).

Cheng, H., Fang, H., He, X., Gao, J., & Deng, L. (2016). Bi-directional attention with
agreement for dependency parsing. In Proceedings of the 2016 conference on empirical
methods in natural language processing (pp. 2204–2214). Association for Computational
Linguistics. Retrieved from http://aclweb.org/anthology/D16-1238 doi: 10.18653/
v1/D16-1238

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

39

http://dblp.uni-trier.de/db/journals/tacl/tacl5.html#BojanowskiGJM17
http://dblp.uni-trier.de/db/journals/tacl/tacl5.html#BojanowskiGJM17
https://www.aclweb.org/anthology/A00-1031
https://www.aclweb.org/anthology/A00-1031
https://www.aclweb.org/anthology/I13-1152
http://aclweb.org/anthology/K18-2005
http://aclweb.org/anthology/K18-2005
http://aclweb.org/anthology/D16-1238

Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statisti-
cal machine translation. arXiv preprint arXiv:1406.1078.

Church, K. W. (1989). A stochastic parts program and noun phrase parser for unrestricted text.
In International conference on acoustics, speech, and signal processing, (pp. 695–698).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011,
November). Natural language processing (almost) from scratch. J. Mach. Learn. Res.,
999888, 2493–2537. Retrieved from http://dl.acm.org/citation.cfm?id=2078183
.2078186

Cöltekin, C. (2010). A freely available morphological analyzer for turkish. In Lrec (Vol. 2,
pp. 19–28).

Cotterell, R., & Heigold, G. (2017). Cross-lingual, character-level neural morphological
tagging. arXiv preprint arXiv:1708.09157.

Creutz, M., & Lagus, K. (2002). Unsupervised discovery of morphemes. In Proceedings of
the acl-02 workshop on morphological and phonological learning-volume 6 (pp. 21–30).

Creutz, M., & Lagus, K. (2005a). Inducing the morphological lexicon of a natural language
from unannotated text. In Proceedings of the international and interdisciplinary conference
on adaptive knowledge representation and reasoning (akrr’05) (Vol. 1, pp. 51–59).

Creutz, M., & Lagus, K. (2005b). Unsupervised morpheme segmentation and morphol-
ogy induction from text corpora using morfessor 1.0. Helsinki University of Technology
Helsinki.

Dayanik, E. (2018). Morphological Tagging and Lemmatization with Neural Components.

DeRose, S. J. (1988). Grammatical category disambiguation by statistical optimization.
Computational linguistics, 14(1), 31–39.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. In Naacl-hlt.

Dong, L., & Lapata, M. (2016). Language to logical form with neural attention. arXiv
preprint arXiv:1601.01280.

Dozat, T., & Manning, C. D. (2016). Deep biaffine attention for neural dependency parsing.
CoRR, abs/1611.01734. Retrieved from http://arxiv.org/abs/1611.01734

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based
dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075.

Eisner, J. M. (1996). Three new probabilistic models for dependency parsing: An exploration.
In Proceedings of the 16th conference on computational linguistics-volume 1 (pp. 340–
345).

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179–211.

Eryiğit, G., Nivre, J., & Oflazer, K. (2008). Dependency parsing of turkish. Computational
Linguistics, 34(3), 357–389.

40

http://dl.acm.org/citation.cfm?id=2078183.2078186
http://dl.acm.org/citation.cfm?id=2078183.2078186
http://arxiv.org/abs/1611.01734

Finegan-Dollak, C., Kummerfeld, J. K., Zhang, L., Ramanathan, K., Sadasivam, S., Zhang,
R., & Radev, D. (2018). Improving text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Gaifman, H. (1965). Dependency systems and phrase-structure systems. Information and
control, 8(3), 304–337.

Gazdar, G. (1982). Phrase structure grammar. In The nature of syntactic representation (pp.
131–186). Springer.

Gillick, D., Brunk, C., Vinyals, O., & Subramanya, A. (2015). Multilingual language pro-
cessing from bytes.

Göksel, A., & Kerslake, C. (2005). Turkish: A comprehensive grammar..

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language. Com-
putational linguistics, 27(2), 153–198.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In 2013 ieee international conference on acoustics, speech and signal
processing (pp. 6645–6649).

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional
recurrent neural networks. In Advances in neural information processing systems (pp. 545–
552).

Hajičová, E. (1998). Prague dependency treebank: From analytic to tectogrammatical an-
notations. Proceedings of 2nd TST, Brno, Springer-Verlag Berlin Heidelberg New York,
45–50.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146–162.

Harris, Z. S. (1955, apr). From Phoneme to Morpheme. Language, 31(2), 190. Retrieved from
https://www.jstor.org/stable/411036?origin=crossref doi: 10.2307/411036

Harris, Z. S. (1970). Morpheme boundaries within words: Report on a computer test. In
Papers in structural and transformational linguistics (pp. 68–77). Springer.

Hashimoto, K., Xiong, C., Tsuruoka, Y., & Socher, R. (2017, September). A joint
many-task model: Growing a neural network for multiple NLP tasks. In Proceedings
of the 2017 conference on empirical methods in natural language processing (pp. 1923–
1933). Copenhagen, Denmark: Association for Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/D17-1206 doi: 10.18653/v1/D17-1206

Hays, D. G. (1964). Dependency theory: A formalism and some observations. Language,
40(4), 511–525.

Heigold, G., Neumann, G., & van Genabith, J. (2016). Neural morphological tagging from
characters for morphologically rich languages. arXiv preprint arXiv:1606.06640.

41

https://www.jstor.org/stable/411036?origin=crossref
https://www.aclweb.org/anthology/D17-1206

Heigold, G., & Van Genabith, J. (2017). An Extensive Empirical Evaluation of
Character-Based Morphological Tagging for 14 Languages. Eacl, 1(2016), 505–513.
Retrieved from http://www.aclweb.org/anthology/W17-4118{%}0Ahttp://arxiv
.org/abs/1706.01723

Hengeveld, K. (1992). Parts of speech. In Layered structure and reference in a functional
perspective (p. 29). John Benjamins Publishing Company. Retrieved from https://
doi.org/10.1075/pbns.23.04hen doi: 10.1075/pbns.23.04hen

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8), 1735–1780.

James, W. (1890). The principles of psychology. Dover Publications.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980. Retrieved from http://arxiv.org/abs/1412.6980

Kiperwasser, E., & Goldberg, Y. (2016). Simple and accurate dependency parsing using bidi-
rectional lstm feature representations. Transactions of the Association for Computational
Linguistics, 4, 313–327.

Kırnap, Ö., Dayanık, E., & Yuret, D. (2018). Tree-stack lstm in transition based dependency
parsing. In Proceedings of the conll 2018 shared task: Multilingual parsing from raw
text to universal dependencies (pp. 124–132). Association for Computational Linguistics.
Retrieved from http://aclweb.org/anthology/K18-2012

Klein, D., & Manning, C. D. (2005). The unsupervised learning of natural language structure.
Stanford University Stanford, CA.

Kübler, S., McDonald, R., & Nivre, J. (2009). Dependency parsing. Synthesis lectures on
human language technologies, 1(1), 1–127.

Kudo, T., & Matsumoto, Y. (2002). Japanese dependency analysis using cascaded chunking.
In proceedings of the 6th conference on natural language learning-volume 20 (pp. 1–7).

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez, R., Amir, S., . . . Luís, T. (2015,
September). Finding function in form: Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015 conference on empirical methods in
natural language processing (pp. 1520–1530). Lisbon, Portugal: Association for Compu-
tational Linguistics. Retrieved from https://www.aclweb.org/anthology/D15-1176
doi: 10.18653/v1/D15-1176

Malaviya, C., Gormley, M. R., & Neubig, G. (2018). Neural factor graph models for cross-
lingual morphological tagging. arXiv preprint arXiv:1805.04570.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus
of english: The penn treebank.

Maruyama, H. (1990). Structural disambiguation with constraint propagation. In Proceedings
of the 28th annual meeting on association for computational linguistics (pp. 31–38).

42

http://www.aclweb.org/anthology/W17-4118{%}0Ahttp://arxiv.org/abs/1706.01723
http://www.aclweb.org/anthology/W17-4118{%}0Ahttp://arxiv.org/abs/1706.01723
https://doi.org/10.1075/pbns.23.04hen
https://doi.org/10.1075/pbns.23.04hen
http://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/K18-2012
https://www.aclweb.org/anthology/D15-1176

McDonald, R., & Nivre, J. (2007). Characterizing the errors of data-driven dependency
parsers.

McDonald, R., Pereira, F., Ribarov, K., & Hajič, J. (2005). Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings of the conference on human language
technology and empirical methods in natural language processing (pp. 523–530).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Müller, T., Schmid, H., & Schütze, H. (2013). Efficient higher-order CRFs for morphological
tagging. EMNLP 2013 - 2013 Conference on Empirical Methods in Natural Language
Processing, Proceedings of the Conference(October), 322–332.

Narasimhan, K., Barzilay, R., & Jaakkola, T. (2015). An unsupervised method for uncovering
morphological chains. Transactions of the Association for Computational Linguistics, 3,
157–167.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos, A., . . . Yin,
P. (2017). Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980.

Nguyen, D. Q., Dras, M., & Johnson, M. (2017). A novel neural network model for joint pos
tagging and graph-based dependency parsing. arXiv preprint arXiv:1705.05952.

Nguyen, D. Q., & Verspoor, K. (2018). An improved neural network model for joint pos
tagging and dependency parsing. arXiv preprint arXiv:1807.03955.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič, J., Manning, C. D., . . . Ze-
man, D. (2016, May). Universal dependencies v1: A multilingual treebank collection. In
Proceedings of the tenth international conference on language resources and evaluation
(LREC’16) (pp. 1659–1666). Portorož, Slovenia: European Language Resources Associa-
tion (ELRA). Retrieved from https://www.aclweb.org/anthology/L16-1262

Oflazer, K., Say, B., Hakkani-Tür, D. Z., & Tür, G. (2003). Building a turkish treebank. In
Treebanks (pp. 261–277). Springer.

Özateş, c. B., Özgür, A., Gungor, T., & Öztürk, B. (2018). A morphology-based repre-
sentation model for lstm-based dependency parsing of agglutinative languages. In Pro-
ceedings of the conll 2018 shared task: Multilingual parsing from raw text to universal
dependencies (pp. 238–247). Association for Computational Linguistics. Retrieved from
http://aclweb.org/anthology/K18-2024

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. In International conference on machine learning (pp. 1310–1318).

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018, 02). Deep contextualized word representations.

Petrov, S., Das, D., & McDonald, R. (2012). A universal part-of-speech tagset. In Proceedings
of the 8th international conference on language resources and evaluation, lrec 2012.

Plank, B., Søgaard, A., & Goldberg, Y. (2016). Multilingual part-of-speech tagging with
bidirectional long short-term memory models and auxiliary loss.

43

https://www.aclweb.org/anthology/L16-1262
http://aclweb.org/anthology/K18-2024

Pollard, C., & Sag, I. A. (1994). Head-driven phrase structure grammar. University of
Chicago Press.

Qi, P., Dozat, T., Zhang, Y., & Manning, C. D. (2018). Universal dependency parsing from
scratch. In Proceedings of the conll 2018 shared task: Multilingual parsing from raw
text to universal dependencies (pp. 160–170). Association for Computational Linguistics.
Retrieved from http://aclweb.org/anthology/K18-2016

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Confer-
ence on empirical methods in natural language processing.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323(6088), 533–536.

Sak, H., Güngör, T., & Saraçlar, M. (2008). Turkish language resources: Morphological
parser, morphological disambiguator and web corpus. In B. Nordström & A. Ranta (Eds.),
Advances in natural language processing (pp. 417–427). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Schachter, P., & Shopen, T. (2018). Parts-of-speech systems.

Schone, P., & Jurafsky, D. (2001). Knowledge-free induction of inflectional morphologies.
In Second meeting of the north american chapter of the association for computational
linguistics.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 45(11), 2673–2681.

Schütze, H., & Singer, Y. (1994). Part-of-speech tagging using a variable memory markov
model. In Proceedings of the 32nd annual meeting on association for computational lin-
guistics (pp. 181–187).

Smith, N. (2006). Novel estimation methods for unsupervised discovery of latent structure in
natural language text (Unpublished doctoral dissertation). Johns Hopkins University.

Soricut, R., & Och, F. (2015). Unsupervised morphology induction using word embeddings.
In Proceedings of the 2015 conference of the north american chapter of the association for
computational linguistics: Human language technologies (pp. 1627–1637).

Sulubacak, U., Pamay, T., & Eryigit, G. (2016). IMST: A revisited Turkish dependency
treebank. In The first international conference on turkic computational linguistics-turcling
(Vol. 2016, pp. 1–6).

Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural
networks. Advances in NIPS.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 conference of the
north american chapter of the association for computational linguistics on human language
technology-volume 1 (pp. 173–180).

Tseng, H., Jurafsky, D., & Manning, C. (2005). Morphological features help POS tag-
ging of unknown words across language varieties. In Proceedings of the fourth SIGHAN

44

http://aclweb.org/anthology/K18-2016

workshop on Chinese language processing. Retrieved from https://www.aclweb.org/
anthology/I05-3005

Üstün, A. (2017). Probabilistic learning of turkish morphosemantics by latent syntax (Un-
published master’s thesis). Middle East Technical University, Ankara.

Üstün, A., & Can, B. (2016). Unsupervised morphological segmentation using neural word
embeddings. In International conference on statistical language and speech processing
(pp. 43–53).

Üstün, A., Kurfalı, M., & Can, B. (2018). Characters or morphemes: How to represent words?
In Proceedings of the third workshop on representation learning for nlp (pp. 144–153).

Van Nguyen, K., & Nguyen, N. L.-T. (2015). Error analysis for vietnamese dependency
parsing. In 2015 seventh international conference on knowledge and systems engineering
(kse) (pp. 79–84).

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. (2015). Grammar as a
foreign language. In Advances in neural information processing systems (pp. 2773–2781).

Yamada, H., & Matsumoto, Y. (2003). Statistical dependency analysis with support vector
machines. In Proceedings of the eighth international conference on parsing technologies
(pp. 195–206).

Yang, L., Zhang, M., Liu, Y., Sun, M., Yu, N., & Fu, G. (2017). Joint pos tagging and
dependence parsing with transition-based neural networks. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 26(8), 1352–1358.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical atten-
tion networks for document classification. In Proceedings of the 2016 conference of the
north american chapter of the association for computational linguistics: human language
technologies (pp. 1480–1489).

Yarowsky, D., & Wicentowski, R. (2000). Minimally supervised morphological analysis
by multimodal alignment. In Proceedings of the 38th annual meeting on association for
computational linguistics (pp. 207–216).

Yuret, D. (1998). Discovery of linguistic relations using lexical attraction. arXiv preprint
cmp-lg/9805009.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Zielinski, A., & Simon, C. (2009). Morphisto –an open source morphological analyzer
for german. In Proceedings of the 2009 conference on finite-state methods and natural
language processing: Post-proceedings of the 7th international workshop fsmnlp 2008
(p. 224–231). NLD: IOS Press.

45

https://www.aclweb.org/anthology/I05-3005
https://www.aclweb.org/anthology/I05-3005

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	RELATED WORK
	Morphological Segmentation
	Morphological Tagging
	Part-of-Speech Tagging
	Dependency Parsing

	MODEL
	Neural Building Blocks
	Recurrent Neural Networks
	Bidirectional RNNs
	Long Short Term Memory
	Attention Mechanism

	The Proposed Model: Joint Morpheme Segmentation, Morpheme Tagging, POS Tagging, and Dependency Parsing
	Morphological Segmentation
	Input/Output Representations
	Model

	Morphological Tagging
	Input/Output Representations
	Model

	Word Vector Representation
	POS Tagging
	Input/Output Representations
	Model

	Dependency Parsing
	Input/Output Representations
	Model

	Model Training

	EXPERIMENTS
	Data
	Implementation
	Results
	Error Analysis
	Effect of Sentence Length
	Effect of Projectivity
	Effect of Linguistic Constructions

	Pipeline Ablation

	CONCLUSION

