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ABSTRACT 

 

A GAZE-CENTERED MULTIMODAL APPROACH TO  

FACE-TO-FACE INTERACTION  

 

 

Arslan Aydın, Ülkü 

Ph.D., Department of Cognitive Sciences 

Supervisor: Assoc. Prof. Dr. Cengiz Acartürk 

Co-Supervisor: Assoc. Prof. Dr. Sinan Kalkan 

 

January 2020, 167 pages 

 

Face-to-face conversation implies that interaction should be characterized as an inherently 

multimodal phenomenon involving both verbal and nonverbal signals. Gaze is a nonverbal 

cue that plays a key role in achieving social goals during the course of conversation. The 

purpose of this study is twofold: (i) to examine gaze behavior (i.e., aversion and gaze on 

face) and relations between gaze and speech in face to face interaction, (ii) to construct 

computational models to predict gaze behavior using high-level speech features. We 

employed a job interview setting, where pairs (a professional interviewer and an 

interviewee) conducted mock job interviews. Twenty-eight pairs of native speakers took 

part in the experiment. Two eye-tracking glasses recorded the scene video, the audio and 

the eye gaze position of the participants. To achieve the first purpose, we developed an 

open-source framework, named MAGiC (A Multimodal Framework for Analyzing Gaze 

in Communication), for the analyses of multimodal data including video recording data 

for face tracking, gaze data from the eye trackers, and the audio data for speech 

segmentation. We annotated speech with two methods: (i) ISO 24617-2 Standard for 

Dialogue Act Annotation and, (ii) using tags employed by the previous studies that 

examined gaze behavior in a social context. We then trained simplified versions of two 

CNN architectures (VGGNet and ResNet) by using both speech annotation methods. 

 

Keywords: Mobile Eye Tracking, face-to-face interaction, gaze analysis, ISO 24617-2 

standard, CNN for time series 
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ÖZ 

 

YÜZ YÜZE İLETİŞİME BAKIŞ MERKEZLİ 

ÇOK MODLU YAKLAŞIM 

 

 

Arslan Aydın, Ülkü 

Doktora, Bilişsel Bilimler Bölümü 

Tez Yöneticisi: Doç. Dr. Cengiz Acartürk 

Ortak Tez Yöneticisi: Doç. Dr. Sinan Kalkan 

 

Ocak 2020, 167 sayfa 

 

Yüz yüze iletişim, doğası gereği, etkileşimin, hem sözsel hem de sözsel olmayan 

sinyallerini içeren çok modlu bir yaklaşımla karakterize edilmesini gerektirir. Bakış, 

iletişim sürecinde, sosyal hedeflere ulaşmada kilit rol oynayan sözsüz bir ipucudur. Bu 

çalışmanın amacı iki yönlüdür: (i) bakış davranışını (göz kaçırma ve yüze bakma) yüz 

yüze iletişimdeki bakış ve konuşma arasındaki ilişkilerle incelemek, (ii) bakış 

davranışlarını tahmin etmek için, üst seviye konuşma özellikleri kullanan hesaplamalı 

modeler oluşturmak. Çiftlerin (mülakatı yapan bir profesyonel ve iş başvurusu yapan 

aday) sahte iş görüşmeleri yaptığı iş görüşmeleri ayarladık. Deneyde anadil 

konuşanlarından oluşan 28 çift yer aldı. İki göz izleme gözlüğü, çevredeki görüntü, ses ve 

katılımcıların baktıkları pozisyonları kaydetti. İlk amaca yönelik olarak, yüz izlemede 

kullanılan görüntü, göz izleme cihazlarından bakış ve konuşma segmentasyonunda 

kullanılan sesi içeren, çok modlu verilerin analizleri için MAGiC (İletişimde Bakışları 

Analiz Etmek için Çok Modlu Çerçeve) adlı açık kaynaklı bir çerçeve geliştirdik. 

Konuşmayı iki yöntemle etiketledik: (i) Diyalog Eylemi Etiketleme için ISO 24617-2 

standardı ve (ii) sosyal bağlamda bakış davranışlarını inceleyen önceki çalışmalarda 

kullanılan etiketleri kullanma. Daha sonra her iki etiketleme yöntemini kullanarak iki 

CNN mimarisinin, VGGNet ve ResNet, basitleştirilmiş versiyonlarını eğittik. 

  

Anahtar Sözcükler: Mobil Göz İzleme, yüz yüze iletişim, bakış analizi, ISO 24617-2 

standardı, zaman serileri için CNN   
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 “When Gregor Samsa woke up one morning from unsettling dreams,  

he found himself changed in his bed into a monstrous vermin”. 

(Franz Kafka, The Metamorphosis) 

 

The skills of conversation using language along with the accompanying non-verbal 

signals set us apart from other species. Hence, conversation is considered to be one of 

the important indicators of humanness and human interaction. An influential figure in 

this sense was Alan Turing, who proposed keyboard conversation between machine 

and a human as a method for evaluating the ability of a computer to mimic a human 

(Turing, 1950). Nowadays, Embodied Conversational Agents (ECAs) are becoming 

more common. As Cassell (2000) stated, perhaps we are in the age of thinking about 

“face-to-face Turing test”. Face-to-face conversation implies that interaction should 

be characterized as an inherently multimodal phenomenon, instead of speech in 

isolation (e.g., Kendon, 2004, Levinson & Holler, 2014; Mondada, 2016) This is 

because we, as human beings, have an ability to send and receive information by means 

of nonverbal cues such as facial expressions, gestures, gaze, and posture, during a 

social conversation. In particular domains, they even correspond to 50% - 70% of the 

entire messages that the speaker conveyed (Gerwing & Allison, 2009; Holler & 

Beattie, 2003). Listeners comprehend the speakers’ messages by integrating multiple 

nonverbal and verbal channels (Kelly, Healey, Özyürek, & Holler, 2015; Willems, 

Özyürek, & Hagoort, 2007). 

Gaze is an important nonverbal cue that plays a key role in achieving natural social 

interaction. Although it varies depending on different personalities and cultural 

backgrounds, we usually make eye contact with the interlocutor which, for instance, 

facilitates joint and shared attention. Even though we have such a tendency, face-to-

face conversation is not just an interactive communication where partners constantly 

sustain eye contact, instead, it involves a sort of transition between gazing towards and 

away from the communication partner(s). In his landmark study, Kendon (1967) 

identified the differences in gaze behavior between the speaker and the listener. 

Speakers shifted their gaze away from the listeners more frequently, while listeners 

tend to keep an eye on the speakers (Bavelas, Coates, & Johnson, 2002; Ho, Foulsham, 
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& Kingstone, 2015; Kendon, 1967). Kendon (1967) ascribed three fundamental 

functions to the gaze behavior: (i) regularity function, (ii) monitoring function, and 

(iii) expressive function. First, gaze behavior has a regularity role in coordinating turns 

between speakers. Just before starting the speech, speakers direct their gaze away to 

indicate that they want to be the next speaker, i.e., taking the turn. Similarly, speakers 

avert their gazes from their partners to inform them that he/she continues speaking. On 

the other hand, the speaker looks at the recipient to show his/her intent to yield the 

turn. Secondly, speakers look at the others and try to interpret the recipient’s gestures, 

intentions, attentional states and so on. Kendon (1967) suggested that speakers do not 

focus on recipients while speaking since they probably think about what they will say 

rather than interpreting the others’ states. Lastly, mutual gaze expresses particularly 

the level of emotion and arousal. For instance, when the emotional level between two 

interacts is high, the mutual gaze will be less, as an indicator of embarrassment. 

Conversely, the desire to cooperate leads to an increase in the mutual gaze. 

Research on gaze have attracted considerable attention since the 1960s (Klienke, 

1986). Especially in recent decades, the development of eye-tracking technologies has 

enabled more accurate measurements and various experimental designs in this field 

(Gredeback, Johnson, & von Hofsen, 2010). However, most of the studies were 

performed in a laboratory by adopting static eye-tracking methods (Pfeiffer, Vogeley, 

& Schilbach, 2013), in which participants often monitor the stimulus presented to them 

on the computer screen. Although such experimental designs are advantageous in 

allowing one to provide a controlled procedure, the findings lack generalizability. Eye 

movements in the field might be different from those in studies conducted with static 

stimuli in a highly controlled laboratory environment (Risko, Richardson, & 

Kingstone, 2016). This difference can be explained by the two-way function of gaze 

in social communication. While gaze sends messages about, for instance, floor 

management or the desire to work together, we also gather information on emotions, 

intention or attentional states of others by gazing on them. Since we are somehow 

aware of this dual function of gaze, it causes an individual to be influenced by the 

presence of another person in the environment, and in terms of eye movements, 

individuals tend to behave differently compared to an environment where they are 

alone (Gobel, Kim, & Richardson, 2015; Risko et al., 2016). Studies have reported 

that people follow other’s gaze more frequently and for a longer duration when they 

are not visible by their interlocutors. (Foulsham, Walker, & Kingstone, 2011; Gallup, 

Chong, & Couzin, 2012). 

Describing gaze behavior in natural communication is an appropriate starting point to 

examine the underlying modalities and their relevance in face-to-face conversation. 

Advances in mobile eye-tracking technology have opened the door to researchers who 

study social interaction in real-life situations. Eye-tracking glasses are capable of 

recording participants' eye movements while they interact with the environment, 

without requiring participants to sit in front of a computer. This technology allows 

obtaining a rich data-set in dyadic interaction where both participants wore eye-

tracking glasses. Since these glasses are available with relatively new technologies and 

data analysis is more challenging than the static experimental designs, there are not 
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many publications present in the literature yet. Rogers, Speelman, Guidetti, and 

Longmuir (2018) summarized two studies published in this area, one utilizing dual 

eye-tracking paradigm with Applied Science Laboratory (ASL) (Broz, Lehmann, 

Nehaniv, & Dautenhahn, 2012) and the other utilizing Dikablis eye-tracking glasses 

(Ho et al., 2015). Broz et al. (2012) recorded 15-minute conversations between 37 

pairs and reported that during 46% of the entire conversation, participants involved in 

mutual face gaze. The drawback of this study was the significant loss in gaze data. If 

the participant was not looking through the center of the glasses, eye movements could 

not be recorded properly. In order to minimize data loss, Ho et al. (2015) performed 

manual coding by replaying the synchronized recordings exported from the glasses of 

both participants. They studied the timings of gaze behaviors in turn-taking 

mechanisms. Rogers et al. (2018) extend gaze on face analysis one step further by 

dividing the face area into five regions; eyes, nose, mouth, forehead and other parts, 

and the off-face area into four regions; off-left, off-right, up and down. They examined 

gaze patterns in a face to face conversation during which they utilized Tobii Pro 

Glasses2 along with Mangold INTERACT as the behavioral coding software. They 

discussed the necessity of more research to make a more accurate estimation of gaze 

patterns in dyadic conversation. 

Meanwhile, studies of Natural Language Processing (NLP) involving text mining, 

automated question answering and machine translation have gained momentum as a 

reflection of the developments in Machine Learning (ML) technology (Meyer and 

Popescu-Belis 2012; Popescu-Belis 2016; Sharp, Jansen, Surdeanu, Clark, 2015). 

Hence, researchers’ attention to discourse analysis has increased in parallel. There is 

a distinction between the usual meaning of a word or a sentence and the meaning it 

implies in specific circumstances. We need to distinguish between the direct and 

implied meanings of the texts. Sometimes we ask a question with the implicit intention 

of request. For instance, when one goes to a restaurant, one of the likely questions that 

would be asked to the waiter is “Can I see the menu?”. In fact, nobody expects to hear 

"yes" or "no" as the answer indicating the ability to see a menu, instead this is a kind 

way of requesting the menu. This is the implicit intention of the speaker. This 

dichotomy, meaning and pragmatics on the one hand, the use on the other, is 

controversial among linguists regarding the specifying of relational arguments of a 

speech and in broader terms, of a discourse. Discourse relations might ground in 

lexical items, be driven by semantics, or consist of both intentional and semantic 

relations. In the last few decades, a variety of discourse annotation schemas were 

proposed involving RST (Rhetorical Structure Theory), RST Treebank, SDRT, 

DISCOR, ANNODIS and PDTB (Penn Discourse Treebank) In addition, an ISO 

standard for dialogue act annotation, namely ISO standard 24617-2 was developed 

(ISO DIS 24617-2; 2010). Behind these efforts, researchers have the goal of 

automating discourse analysis in accordance with technological developments, as well 

as the intention to characterize the high-level features of discourse.  

Assuming that we are in the age of “face-to-face Turing test”, we are expected to 

perform analysis of dyadic conversation with a multimodal approach and, hence create 

automation based on the performed analysis. Studies examining the relationship 
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between gaze and language processing showed the significance of that relation. Prasov 

and Chai (2008) demonstrated the importance of gaze for reference analysis in 

multiple interaction environments. In another study, Qu and Chai (2009) showed that 

the coupling of speech and gaze significantly makes word acquisition performance 

better. From this point of view, are proposed discourse annotation schemes, in 

particular ISO DIS 24617-2, proper and sufficient to be considered in coupling with 

another crucial modality in face-to-face communication, namely gaze, or can similar 

coupling performances between gaze be achieved with a simpler and hence cost-

effective annotation method? 

1.1. Significance and Scope of the Thesis 

The studies in face-to-face communication are not new to the literature, yet the 

increasing interest in ECAs draw more researchers’ attention to the field. In the present 

study, we investigate the relation between speech, particularly high-level language 

processing, instead of low-level features like acoustics properties, and gaze behavior, 

specifically face contact and gaze aversion, in a dyadic conversation.  The main 

motivation behind the present study is to explore such relations in a more nuanced and 

comprehensive manner through employing state of the art technologies and by taking 

into account the limitations of the previous studies in the field. The main constraints 

encountered in the previous studies that we study are as follows: 

i. Most of the eye tracking studies in the related research were conducted in a 

laboratory environment with highly controlled stimuli and subjects were 

generally asked to sit in front of the computer screen displaying the stimuli. 

However, this so-called static eye tracking method, is insufficient to reflect the 

underlying gaze behavior of face-to-face social interaction in real life. 

ii. Eye trackers generate a raw data stream containing a list of points-of-regard 

(POR) while the subject is performing a task. Depending on the duration of a 

task and the sampling rate of an eye tracker, excess POR data can be produced. 

Fixation identification algorithms are employed to group the POR data within a 

specified neighborhood or velocity. Working on fixations rather than PORs not 

only decreases the amount of data to be analyzed but also eliminates the noise 

and saccadic movements. Most of the well-known fixation identification 

algorithms supposed that the scene viewed by the observer is stationary, 

however, wearable eye trackers capture dynamic scenes. There is still no 

commonly accepted method to extract fixation from POR data in dynamic scenes 

(Munn, Stefano, & Pelz, 2008; Stuart, Galna, Lord, Rochester, & Godfrey, 

2014). Although there exist a few methods suggested by some commercial 

analysis frameworks, since these methods are generally not open source, we 

could not get detailed information about inner processing. 

iii. It is more complex to perform Area of Interest (AOI) analysis in dynamic scenes 

extracted from the mobile eye-tracking devices compared to static ones. For this 
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reason, researchers often manually annotate the corresponding area where a 

subject is looking at. As mentioned above, the amount of data that researchers 

have to annotate may be largely depending on the duration of the study. 

Therefore, researchers might spend days, or even months, just for the annotation 

of gaze data. Also, human-related errors might occur when annotation is 

performed manually. In addition, because of the hardware or operational 

constraints, eye-tracking devices can estimate the gaze location with errors. Eye 

tracker manufactures provide the estimated error that is specific to device in 

degrees for the visual angle. It is not possible to annotate the area corresponding 

to eye gaze coordinates manually by taking into account this margin of error, 

unless the tool in which the researcher makes annotation, calculates the gaze 

location taking the specified margin of error into account and presents the 

updated location to the researcher. 

iv. There exist studies that made operational assumptions for the gaze and speech 

relation in a conversation by proposing computational models that simulate the 

gaze behavior on humanoid robots through head movements alone, or by 

encoding the presence or absence of human speech rather than language 

processing. These operational assumptions can be considered as 

oversimplification compared to the real life settings, and to the extent allowed 

by technical capabilities, they should be replaced by advanced computational 

models. 

The present study has a two-fold purpose: first, we examine the gaze and speech 

modalities and their relations in face to face social communication by considering the 

constraints mentioned above, and secondly, we construct a computational model to 

predict gaze behavior using high-level speech features. For these purposes we 

conducted human-to-human experiments in a mock job interview environment where 

both participants were wearing eye-tracking glasses, and then analyzed the frequency 

and duration of gaze behavior, speech instances and their relations. In order to 

overcome the methodological constraints mentioned above, we have developed an 

open-source framework, namely MAGiC (A Multimodal Framework for Analyzing 

Gaze in Communication) (Arslan Aydin, Kalkan, & Acarturk, 2018), for analyzing 

face contact and gaze aversion by incorporating speech. We annotated speech with 

two schemes, ISO 24617-2 standard for dialogue act annotation and a simple scheme 

consisting of tags that we identified by considering previous studies examined gaze 

behaviors in a social context. The reason we create an alternative speech tag set is not 

proposing a new scheme for discourse annotation. Our aim is to examine, in a sense, 

the ability of one of a current dialogue act annotation framework, which has major 

efforts behind, in the computational modeling of gaze behavior by comparing its 

performance with a simplified speech tag set. 



6 

 

1.2. Research Questions 

The present study, in general, aims to investigate how people use face contact and gaze 

aversion mechanisms in face-to-face conversations to achieve conversational goals 

and convey their intentions in a social environment, and to find out whether gaze 

behavior can be predicted by employing speech modality. To this end, we will consider 

the following questions: 

RQ1: What are the underlying features of gaze behavior among humans and 

what is the relation between gaze and speech to achieve conversational goals in 

a specified face-to-face interaction environment, namely in a job interview? 

RQ2: How can we computationally model gaze behavior with the high-level 

features of speech and what is the appropriateness of employing discourse 

analysis scheme, namely ISO 24617-2 standard, in a computational model of 

gaze behavior? 

1.3. Organization of the Dissertation 

This dissertation is composed of seven chapters in total. The introduction chapter sets 

the significance, scope and aims of the thesis. Chapter 2 provides a theoretical 

background for the research questions. The literature review is presented under three 

main headings, studies in gaze, speech annotation and computational models of face 

to face interaction. Under the title of gaze studies, the role of gaze functions in social 

communication and the state of the art developments in eye tracking methodologies 

are represented. Then, under the title of speech, the frameworks proposed for dialogue-

act and rhetorical relation (RR) annotations are reviewed. At the final section of 

Chapter 2, computational models of face-to-face interaction is summarized. In Chapter 

3, we provided information about pilot study conducted between three pairs and we 

assessed the problems with the experimental design and analysis procedure in order to 

improve upon the design and analysis. In Chapter 4, we presented an open-source 

framework, namely MAGiC for analyzing gaze behavior in face-to-face 

communication by integrating eye-tracking, audio, and video data for investigating 

gaze behavior, speech analysis, and face tracking, respectively. The experiment which 

is conducted between 28 pairs with professional interviewers and the results of 

statistical analysis are presented in Chapter 5. In Chapter 6, the history of neural 

networks, the components of a basic Convolutional Neural Network (CNN) and two 

CNN models that we utilize in the present study, VGG and ResNet, which are well 

known for their high performance are summarized. We also reported the accuracy of 

developed models. Chapter 7 is the final chapter and a general discussion about the 

outcomes together with the aims and research questions of the dissertation is given. 

Contributions and limitations are also presented as well as possible future works for 

which the experience gained in the process of the present study has paved the way. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

The review of related literature includes separate sections for the studies in gaze, 

speech analysis and computational models. The role of gaze in the social context and 

dyadic interaction researches utilizing mobile eye tracking are presented in the first 

section. In the next section, developments in NLP schemes for the annotations of 

dialogue-act and RR are reviewed. We focus on the history and architecture of 

Convolutional Neural Network (CNN) in the last section. 

2.1. Social Gaze 

In our social lives, compared to nonhuman primates, the specialized morphology of 

the human eyes, which have a sharp contrast between the white sclera and darker pupil, 

indicates the special role of revealing gaze direction by the sender and, thus, enables 

those around the sender to acknowledge about the direction of his gaze. (Kobayashi & 

Kohshima, 1997). We have the ability to make a distinction between directed and 

averted gaze from a very young age. Farroni, Csibra, Simion and Johnson (2002) stated 

that even an infant can make such a distinction in the first days of his life. Following 

the gaze direction enhances cooperation. Moreover, in case of a discrepancy between 

the deceiver’s verbal and gaze clues, children older than 3 years begin to prefer gaze 

cue in obtaining information from the interlocutor (Freire, Eskritt, & Kang, 2004; 

Tomasello, Hare, Lehmann, & Call, 2007). 

The range of functions that the gaze fulfills in social interaction is extensive. 

Expressing emotions is one of the well-known function of gaze (Izard, 1991). An 

individual should perform eye movements in an appropriate way for the aim of 

conveying emotional states to an addressee successfully (Fukayama, Ohno, Mukawa, 

Sawaki, & Hagita, 2002). In addition, gaze takes part in regulation of conversation, 

transmitting the intention, coordination of turn taking, asserting uncertainty or 

dissatisfaction, regulation of intimacy, and, signaling the dominance and 

conversational roles (Argyle, Lefebvre, & Cook, 1974; Duncan, 1972; Ho et al., 2015; 

Kendon, 1967).  
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Moreover, shared and joint attention requires following the gaze of an interlocutor. In 

shared attention both individuals are aware of the other’s direction of attention, 

whereas in joint attention, only one of the individuals observes the other’s attention.  

Emery (2000) summarized the role of gaze to differentiate joint and shared attention, 

see Figure 1. In short, Baron-Cohen (1994) designed a system for modeling the theory 

of mind in human infants. His system consists of four components: Eye Direction 

Detector (EDD), Shared Attention Mechanism, Intentionality Detector and Theory of 

Mind Mechanism. Later on, Perrett and Emery (1994) proposed two additional 

components to the Baron-Cohen system: Direction and Attention Detector (DAD) and 

a Mutual Attention Mechanism. Activation of the EDD or DAD components is 

necessary to initiate joint attention, whereas in shared attention, Shared Attention 

Mechanism component could be activated when Mutual Attention Mechanism is 

activated as well as EDD or DAD components. Joint attention and hence the role of 

following other’s gaze also studied in the literature of language learning and 

observational learning (Dunham, Dunham, & Curwin, 1993; Tomasello & Farrar 

1986). Similarly, Otteson and Otteson (1980) revealed that students show a high level 

of understanding when a teacher makes eye contact with them. 

As well as eye contact, gaze aversion functions a crucial role in social interaction as 

an important non-verbal cue. Gaze aversion is defined as the act of looking away from 

the interlocutor. There exist cognitive, psychological, sociological and 

neuropsychological studies conducted on gaze aversion. Hietanen, Leppänen, Peltola, 

Linna-aho and Ruuhiala (2008) claimed that averted gaze of another person initiates a 

tendency to avoid, whereas direct gaze would initiate a tendency to approach. In their 

study, participants viewed pictures of people either directing the gaze towards them or 

averting the gaze from them. The participants give higher ratings for likeability and 

attractiveness when the presented picture is combined with direct rather than averted 

gaze (Mason, Tatkow, & Macrae, 2005; Pfeiffer, Timmermans, Bente, Vogeley, & 

Schilbach, 2011). Furthermore, Adams and Kleck (2003, 2005) assumed that facial 

expressions of sadness and fear are associated with the avoidance-motivation, while 

happy and angry faces are associated with the approach-motivation. Participants 

recognize happy and angry faces faster when they are demonstrated with a direct gaze 

rather than averted gaze. On the contrary, sad and fearful faces are recognized faster 

when they are presented with averted gaze than they are recognized with a direct gaze. 

In the next sub-sections, the advantages of mobile eye tracking for researches in social 

gaze along with related studies on this subject are summarized. 
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Figure 1: The role of following gaze direction. Gaze direction supplies some clues about the information 

on others or objects in an external world or enables to learn about the intentional states of other 

individuals. In Joint Attention (C), unlike the situation in Gaze Following (B), there exists something 

on which both people concentrate. Shared Attention (D), on the other hand, is a mixture of Gaze 

Following (B) and Joint Attention (C). In this case, not just one but both of them focus on each other. 

Lastly, individuals use their higher-level cognitive strategies during the attention process in Theory of 

Mind (E) (adapted from Emery, 2000). 

2.1.1. Mobile Eye Tracking in Dyadic Interaction 

Gaze behavior study is not a new topic in the literature. The first studies date back to 

the 1960s (Klienke, 1986). Research in the field thrived during the 1970s and 1980s 

with the developments in eye-tracking technology. Psychologists started to investigate 

the connection between cognitive processes and eye-tracking data with improved eye 

trackers that became less intrusive and provided better accuracy (Gredeback et al., 

2010).  The majority of this research have been conducted under highly controlled 

conditions in which participants were required to sit in front of a monitor and interact 

with screen-based stimuli. For social interaction, such an experimental design might 

result in somewhat divergent findings that are distant from real-life situations. Thus, it 

would be problematic to generalize the findings of this context constructed by an 

experimenter to real-life contexts (Pfeiffer et al., 2013). This is because static stimuli 

cannot provide a proper situation to observe the dual function of the human gaze. In a 

natural social interaction, an individual directs attention on a particular object or 

situation to receive information, i.e., encoding function of gaze, while communicating 

to others and revealing information about himself, i.e., a signaling function of gaze 
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(Risko et al., 2016). Moreover, studies have shown that eyes also transfer information 

as well as collecting it, for instance, if an individual is informed that his or her eye 

movements are being observed by others, he or she behaves differently than the case 

they are not being observed (Myllyneva & Hietanen, 2016). 

The advent of mobile eye-tracking offers new opportunities for studies in the real, 

dynamic world. Utilizing eye-tracking glasses in a real interactive face-to-face 

communication, allows researchers to examine how gaze information is conveyed 

between two individuals during a real-time social interaction. Rogers et al. (2018) 

designed an experiment that involved a face-to-face conversation between participants 

both wearing Tobii Pro glasses1, and thus their gaze behavior could simultaneously be 

recorded. They examined two topics: (i) the personal differences in gaze patterns 

during dyadic interaction, (ii) the incidence percentages of mutual face gaze and 

mutual eye contact in a conversation. In line with the Kanan,  Bseiso, Ray, Hsiao, and 

Cottrell (2015), they found some individual differences in the patterns of gaze 

scanning when looking at the face. The general trends observed were divided into three 

groups. The first group focused on the mouth, the second group on eyes and the third 

group spread their gaze on the mouth and eye region consecutively. Moreover, Rogers 

et al. (2018) found that the duration of mutual face gaze (i.e., when both participants 

were looking at each other’s face at the same time) was shorter up to 1 second than the 

findings of previous studies (e.g., Binetti, Harrison, Coutrot, Johnston, & Mareschal, 

2016), which was 3.3 seconds on average. 

Through the usage of a pair of mobile eye trackers, Rogers et al. (2018) also measured 

the mutual eye contact duration in a dyadic conversation. On average, it lasted about 

0.36 seconds and spanned up to 10% of the whole interaction. At the end of the session, 

the participants were asked to rate the frequency of mutual eye contact that they 

perceived during a conversation on a 6-point scale; Never represented the least and 

Very Often represented the highest frequency. They reported that there was a 

difference in the frequency of the mutual contact perceived and the measured values. 

People tend to estimate the frequency of mutual eye contact more than measured value. 

This failure in participants’ estimation rates might be stemmed from limitations on 

cognitive resources that were allocated to the comprehension of conversation. In fact, 

participants’ estimations were closer to the frequency of mutual face gaze. One might 

need further studies to understand whether people have the ability to differentiate 

between the perceived mutual face gaze and eye contact. In line with this information, 

we focus on the face gaze (viz. face contact) instead of eye contact in the present study. 

2.1.2. The Role of Gaze in Conversation 

As Kendrick and Holler (2017) stated, the practical nature of the human gaze is 

perhaps most apparent during a face-to-face conversation. The direction of the eye 

 

1 Tobii Pro Glasses 2: https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/ 

https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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gaze undertakes an important function when initiating social interaction and while 

maintaining it (Gorman & Hall, 1964). 

The landmark study by Kendon (1967) examined the role of gaze in a face-to-face 

conversation. He summarized the difference between a listener and a speaker 

regarding the gaze behavior in terms of frequency and duration. According to this 

approach, listeners tend to look at the interlocutor more frequently compared to 

speakers. Moreover, gaze contact of listeners took longer than the gaze contact of 

speakers. He also noted that speakers generally tend to look at their companion when 

they were close to finishing their speech. On the other hand, they averted gaze at the 

beginning of the speech. In agreement with the studies initiated by Kendon (1967); 

Vertegaal, Slagter, Van Der Veer, & Nijholt (2001) showed that by observing the eye 

movements of an individual in a face-to-face conversation, it is 88% likely to infer 

whether he or she is a speaker or a listener. Even though the context of a conversation 

drives the behavior of gaze, similar results are generally reported in the studies that 

examined the functions of gaze in turn-taking and regulation (Argyle et al., 1974; 

Goodwin, 1980; Kendon, 1967). However, as Rossano, Brown, and Levinson, (2009) 

pointed out, many of those studies have been carried out with the participants from 

western societies speaking English. Therefore, even though they did not express it 

clearly, those studies implicitly assumed that gaze behavior in a face-to-face 

conversation is independent of culture and language. Rossona et al. (2009) found some 

similarities as well as differences in the gaze behaviors of participants from different 

cultural backgrounds. For instance, the primary factor that drives the gaze behavior 

during conversations in Italian is the sequence of talk, instead of turn-taking. Similar 

to the gaze behavior in turn-taking, people tend to signal the start and the end of a 

sequence. 

In another study, i.e., Bavelas et al. (2002), coordination role of gaze during a face-to-

face conversation was examined. One of the participants told a story as the speaker 

and the other one listened to him. In line with the previous studies, the authors reported 

that listeners looked at the speakers more often than speakers did. The most remarkable 

finding of the study was that whenever the speaker asked for a response, first, a mutual 

gaze contact was established and then, during mutual face contact, listener gave a 

feedback with a verbal/vocal expression such as, “yes”, “mhm”, “okay” or non-verbal 

signals like head gestures, and, after that in a short period of time, speaker averted his 

gaze from the listener and continued the speech. Thus, it confirmed that gaze 

coordinated the speech and integrated into it during a conversation. 

Srinivasan, Bethel, and Murphy (2014) summarized the literature to automate gaze 

behavior based on the structure of sentence and time intervals between certain 

structures. They argued that it might be possible to generate good enough autonomous 

head-gaze acts without semantic understanding. In order to generate autonomous head-

gaze motion, they proposed analyzing structures for sentences and computing time 

intervals between certain structures. For instance, if it is the beginning of a new turn, 

the new speaker will say the very first word which can be easily detected in real-time. 

At the same time, the speaker would most probably avert his gaze from an addressee 
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to emphasize that he or she is about to speak. In another case, if it is the middle of a 

turn for the speaker, he would probably direct his gaze towards an addressee. Based 

on the previous studies, they proposed a behavioral framework in a particular sentence 

structure and with a corresponding social gaze act, four of these behaviors are as 

follows: 

• Start of Turn: When the very first word of a turn is presented, speakers 

generally avert the gaze. 

• Middle of Turn: It can be categorized under two types: (i) speakers tend to 

avert gaze more than a chance level, right after punctuation marks located 

between sentences. (ii) after punctuation marks, speakers fixate on an 

interlocutor with a probability of 70%, when more than half of the words, around 

75% of them were presented. 

• End of Turn: When the last sentence before the carriage return ends, speakers 

tend to fixate on an interlocutor 

• Robot manifesting interaction: Robots fixate on an object, 800 ms to 1 s 

before their names are uttered. 

In the proposed study, we will adopt an approach similar to the ones in Srinivasan et 

al. (2014) studies, but we will perform experiments with Turkish speaking participants. 

For this, one needs to discover behaviors and related sentence structures for Turkish 

dialogues. Srinivasan et al. (2014) research is based on corpus in English in which the 

theme of a dialogue or a simple sentence is generally given at the beginning and the 

rheme is generally presented towards the end of a dialog and sometimes as a simple 

sentence. However, the Turkish language is different than English as they belong to 

different language families. Therefore, at first, we will conduct human-human 

interaction experiments to discover such relations between sentence-structure and gaze 

behaviors in Turkish. 

So far, the advantages that mobile eye-tracking devices provide in researches of social 

gaze, particularly investigation of gaze behaviors in face-to-face communication are 

summarized. In the present study, we examined speech-driven social gaze, therefore, 

we discussed speech in terms of dialogue and rhetorical relation annotations, in the 

following section.  

2.2. The Annotation of Discourse Relation 

Natural Language Processing (NLP) dates back to the 1950s. A landmark study in this 

domain was Alan Turing's pioneering works. Turing proposed an imitation game to 

test the ability of computers to exhibit an indistinguishable intelligent behavior of a 

human, in a real-time written conversation. In that study, conversation alone was 

assumed to be a sufficient tool for impersonating a human (Turing, 1950). Later, 

Chomsky proposed the existence of an innate language faculty which makes it easier 
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for children to learn how to speak, i.e., the theory of universal grammar (Lees & 

Chomsky 1957; Peter & Chomsky 1968). On the other hand, starting in the late 1980s, 

interest in NLP studies showed an increase with the introduction of ML (Machine 

Learning) algorithms. Until the late 1980s, there was relatively less research in the 

field of Machine Translation and NLP (Natural Language Processing). Some 

significant developments during this period were Augmented Transition Networks 

which is a sort of syntax processor that also provided a formalism to express domain-

specific knowledge, Case Grammar which contributed especially to the translation of 

prepositions problems of Machine Translation and also to the semantic information 

with a little processing effort, and lastly developments in semantic research, e.g., 

Conceptual Dependency (Fillmore, 1968; Schank & Tesler, 1969; Woods, 1970). 

The first instances of ML algorithms were based on hardly coded if-then rules similar 

to the hand-written rules that had been proposed up to the 1980s. However, later on, 

instead of hand-coding a large set of rules, researches focused on probabilistic models 

that automatically learn rules by analyzing real-world data. In parallel to the 

developments in approaches to ML technology, the sub-fields of NLP such as machine 

translation (Meyer & Popescu-Belis, 2012; Popescu-Belis, 2016), automated question 

answering (Sharp et al., 2015) and text mining along with improvements in their real-

world applications like sentiment analysis, automatic text summarization, topic 

extraction, relationship extraction and so on, rise rapidly. Besides sentence-level 

analyses, in recent years we have also seen an increase in the attention paid to the 

discourse processing, especially to the field of discourse relation annotation. 

Collections of large-scale corpus annotated according to various schemes have 

fastened the progress in the field of discourse relation annotation2. In particular, PDTB 

(Prasad et al., 2008), Rhetorical Structure Theory Discourse Treebank (RST-DT; 

Carlson, Marcu, & Okurowski, 2001) and DialogBank (Bunt, Volha, Andrei, Alex, & 

Kars, 2018) include texts in English. There are also numerous resources developed for 

other languages (see, for example, Zeyrek, Demirşahin, & Bozşahin, 2018; Zeyrek et 

al., 2019, Oza, Prasad, Kolachina, Sharma, & Joshi, 2009). 

There is still no agreement on a particular scheme of discourse relation annotation. In 

any annotation scheme, there are two subjects to be identified: the annotation unit and 

the labels. The annotation unit can be determined depending on the type of the word 

or sound, phrase, clause etc. Labels can vary in dimensions and the number of layers 

from scheme to scheme. The definitions of labels, annotation units and the features 

associated with these units should be as clear and operational as possible so that the 

labels assigned to the same piece of discourse do not change from annotator to 

annotator (Ide, 2017). In addition, the quality of these operational definitions will 

affect the success level of the model during the automatic annotation of discourse 

relations.  

 

2 Note that in the present study, terms of scheme, framework and taxonomy are used interchangeably. 
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The existing frameworks identify relational differences based on similar fundamental 

concepts. They differ in the way that they specify the relational arguments. For 

instance, discourse relations might either ground in lexical items, drive-by semantics, 

or consist of both intentional and semantic relations. Besides, discourse structure 

resulting from defining the relational arguments might be either tree or non-tree like 

(Demberg, Scholman, & Asr, 2019). Two of the most well-known frameworks are 

RST-DT and PDTB, on which many researchers have studied. 

RST-DT is essentially an RST implementation like RST treebank. RST was proposed 

by Mann and Thompson (1988) while they were working on computer-based text 

generation. RST-DT follows the RST style annotation, however, it differs from other 

implementations in terms of the way the segments are specified and the whole set of 

labels. There are two main features of this framework. First, relational arguments are 

determined in such a way that no part of the text is left out and the resulting form of 

the discourse should be in the tree structure. Second, at least one of the relational 

arguments must be the key element, i.e., nucleus. If both arguments are equally 

important according to the type of the relation, as in the case of contrast relation, this 

relation is made up of two nuclei, otherwise one of the arguments becomes the nucleus 

and the other becomes the satellite. 

Before the annotation process, the segments have to be extracted as it is the case in all 

other frameworks. In RST-DT, segmentation refers to the function of splitting text into 

a sequence of elementary discourse units (EDUs). EDUs are clause like units that serve 

as basic elements for discourse parsing in RST. Then, to make a label assignment, the 

nucleus is determined simultaneously with the label assignment. The determination of 

the nucleus is based on the intent of the sender. In order to understand this intention, 

it is often necessary to comprehend the context of the text. Discourse relations are 

established as recursive with a bottom-up approach, starting from EDUs. 

Consequently, discourse relations are in the structure of a hierarchical tree (Carlson et 

al., 2001). 

The largest manually annotated discourse relation corpus is the PDTB 2.0 corpus 

(Prasad et al., 2007) created using the PDTB framework. Recently, PDTB 3.0 was 

introduced as a more operational and extended version of PDTB (PDTB 3.0, Prasad, 

Webber, & Lee, 2018). In contrast to RST-DT, PDTB makes no promise to the type 

of high-level structure that is built from the low-level annotation of relations. 

Furthermore, PDTB adopted a lexically-based approach for representing the discourse 

relations. Discourse annotated with the PDTB framework has either implicit or explicit 

relations. There is an explicit relation when there exist lexical items such as 

conjunctions inside a discourse, otherwise, the relation is implicit. If discourse 

connective does not explicitly exist, annotator is expected to enter the most appropriate 

connective as an implicit discourse connective.  PDTB framework allows 3 specific 

labels as an implicit connective: AltLex, EntRel and NoRel. The PDTB annotator 

generally assumed to annotate each successive segment, while, not all successive 

segments need to be related. In such cases, the NoRel label is assigned as a connective. 

If the relation with the previous one is only entity-based, then EntRel is assigned 
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whereas if adding an explicit connective will result in redundancy because of the 

sentence structure, then AltLex is assigned. 

These differences make it difficult for researchers to work on corpus annotated with 

different schemes. It also limits the number of available inputs provided for training 

the model during automatic labeling as the granularity levels and set of labels change 

scheme to scheme. It would be a hassle to find the corresponding labels from one 

scheme to another. Studies on the problem of mapping between discourse relations 

have gained interest in the last decade (Zitoune,  & Taboada, 2015; Sanders et al., 

2018). Bunt and Prasad (2016) proposed an ISO standard for the annotation of 

semantic relations in a discourse, namely ISO DR-Core, and they defined a mapping 

between ISO DR-Core and among most of the well-known taxonomies such as RST, 

RST Treebank, SDRT, DISCOR, ANNODIS and PDTB. In the present study, we 

employed ISO 24617-2 for dialogue-act annotation and ISO DR-Core for RR 

annotation. 

2.2.1. Dialogue Act Annotation 

The dialogue act is the act that the speaker is performing during a dialogue. In a 

simplified sense, it is a speech act used in a conversation. A dialogue act has a 

particular semantic content that specifies the objects, events and their relations. 

Furthermore, it maintains a communicative function intended to change the state of 

mind of an addressee by means of its semantic content. In practice, dialogue act 

annotation generally depends on the communicative function.  

In the 1990s, a variety of domain-specific dialogue act annotation schemes such as 

TRAINS and Verbmobil were proposed (Allen & Core, 1997; Alexandersson et al., 

1998). Although there were some common communicative functions in those schemes, 

there were also inconsistencies between. In order to overcome this difficulty, in the 

late 1990s, a domain-independent and multi-layered scheme, DAMSL (Dialogue Act 

Markup using Several Layers) were proposed (Allen & Core, 1997). Subsequently, 

many studies were carried out until the establishment of ISO standard for dialogue act 

annotation. Especially, two of them played a major role in the idea of building a 

standard framework. First, Bunt developed the DIT++ scheme (Bunt, 2006; Bunt, 

2009) by combining the studies on the developed extensions of DAMSL and his 

previous work DIT (Bunt, 1994). DIT++ is multidimensional, and it is mutually 

consistent with the referenced schemes according to the communicative functions and 

dimensions (Bunt, 2006; Bunt, 2009). The second attempt was the LIRICS project, 

which identified data categories for manual annotation using some of the 

communicative functions proposed in the DIT++ scheme (LIRICS, 2006a, 2006b). As 

these studies were mature enough, efforts were made to establish an ISO standard for 

dialogue act annotation. Eventually, ISO standard 24617-2 “Semantic annotation 

framework (SemAF) – Part 2: Dialogue acts” was developed (ISO DIS 24617-2, 

2010). 
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A turn represents the duration that the speaker is talking and it is an important 

organizational tool in spoken discourse. It is necessary to participate effectively in 

conversation without interrupting the person speaking. Turns can be rather long and 

complex, in this case, they cannot be taken as units to determine communicative 

functions. They need to be cut into smaller parts called functional segments. 

Functional segments supply information to determine both the semantic content, 

namely “dimensions”, and communicative functions of a dialogue act.  

In case an addressee does not understand an entire functional segment or just a chunk 

of it such as a single word or a sequence of words, he or she may want to verify the 

information when it is his or her turn by saying something related to the previous 

functional segment. ISO 24617-2 annotation scheme required to specify such relations 

as feedback dependence between the current dialogue act and the previous functional 

segment. In general, feedback dependences are involved with the perception, 

comprehension, and assessment of what was previously said. Therefore, it may be 

related to the previous dialogue act, as well as a previous functional segment. 

Moreover, most dialog acts are responsive in character and rely on one or more dialog 

acts previously performed in the dialog. This refers, for instance, to answers whose 

content depends fundamentally on the question. Similarly, returning to greeting, to 

self-introduction and to goodbye, accepting the suggestion, the offer and the request, 

agreement or disagreement to information and, confirming or disconfirming a yes-no-

question are also responsive in nature and require the specification of functional 

dependence between the related dialogue acts. Furthermore, in Dialogue-act 

annotation, distinct roles are assigned to participants: (i) “sender” or “speaker” is the 

one whose communicative behavior will be interpreted by examining the purpose of 

his utterance rather than focusing on what he explicitly says, (ii) “addressee” or 

“recipient” is the participant whose mental state is tried to be influenced by a sender 

via communicative functions. 

Dialogue act annotation can be done in three main steps: (i) the dialogue is the initial 

source and it is divided into two or more functional segments, (ii) one or more dialogue 

acts are associated with each functional segment, (iii) annotation components are 

assigned to dialogue acts, see Table 1 for the components. 
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Table 1: Annotation components. One and only one dimension, communicative function, sender and 

addressee should be attached to a dialogue act. On the other hand, there might be zero, one or more 

qualifiers, rhetorical relation, participant other than sender and addressee, and dependence relation. * 

Relation is between dialogue acts. ** Relation is between either dialogue acts or a dialogue act and a 

functional segment 

Component Number 

Dimension 1..1 

Communicative Function 1..1 

Qualifier  0..N 

Rhetorical Relation*  0..N 

Participant  

sender 1..1 

addressee 1..1 

other  0..N 

Dependence Relation  

feedback**  0..N 

functional*  0..N 

 

In successful communication, the listener understands what the speaker says, the way 

the speaker desires. In doing so, the listener takes into account the basic characteristics 

of the speaker's utterances, as well as the motivation behind the initiation and the 

history of the dialogue, and even his/her assumptions about the opinions and goals of 

the interlocutor. We cannot derive the communicative function of a dialogue act by 

considering only the surface form of utterances since the same utterance forms can 

have different meanings in different conversations between different people. The 

form-based dialogue act annotation is applied mostly by automatic annotation systems. 

Intention-based approaches, however, is more applicable for human annotators, as they 

are experienced in understanding the intention of others.  

A general-purpose dialogue act annotation framework should provide communicative 

functions which require deep semantic knowledge that can be easily understood by 

humans and should support a form-based approach in order to enable automatic 

annotation. ISO standard 24617-2 introduced qualifiers and hierarchy of 

communicative functions to handle such requirements (Bunt, 2019). To further 

specialize the communicative function based on the speaker's presumed intention, this 

qualifier or a lower-level communicative function can be assigned. The set of 

communicative functions is illustrated in Figure 2 in a hierarchical tree structure, see 

Bunt (2012) for detailed information on each function. 

Almost all dialogue act annotation frameworks neglect some minor nuances that the 

speaker intended to give. For instance, the communicative function of Inform would 

be assigned when the speaker is giving information. However, that annotation could 

not reflect whether the speaker is sure of the information she/he provided. The speaker 

may want to emphasize that he/she is not sure or very confident. Similarly, when the 

speaker accepts an offer, he may wish to emphasize that it makes him happy or he 
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conditionally accepts it. ISO standard 24617-2 recommended 3 qualifiers, see Table 

2. 

Table 2: Qualifier attributes, set of values and default values. * ISO standard 24617-2 does not provide 

a set of sentiment qualifiers, instead, the annotator is free to use whatever elements they deem 

appropriate with regard to the dialogue context. 

Attribute Values Default value 

Certainty 

 

Uncertain, certain, quite 

certain 

Certain 

Conditionality Conditional, 

unconditional 

Unconditional 

Sentiment* Happiness, surprise, 

anger, sadness.. 

Empty 



 

 

 

 

 

Figure 2: Hierarchy of general purpose functions. General purpose functions are presented with a gray background

1
9
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Functional segments in a dialogue can comprise a single word or a sequence of words, or 

can be broken up into multiple of those. Then proper dialogue acts are assigned to each 

one. However, this does not require that the utterances of each dialogue act should be 

different from each other. Therefore, the same utterances could be related to more than a 

single communicative function. For instance, the speaker might repeat the utterances of a 

question as a response. That way, one conveys simultaneously that he or she has taken the 

turn and understands the question but needs some time to think about the answer. For such 

cases, ISO standard 24617-2 has adopted a multidimensional approach. In order to 

determine the “core dimensions” that can be used in a general purpose framework, 

Petukhova and Bunt (2012) examined related previous studies and set some criteria to 

determine nine basic dimensions. The functions listed in Figure 2 are general purpose 

functions and can be applied to any of these nine dimensions. The remaining functions, 

however, are dimension specific. These dimensions and a set of communicative functions 

that can be assigned under related dimension are presented in Table 3, see Bunt (2012) for 

detailed information and examples. 

Dialogue Act Markup Language (DiAML), being a part of the ISO standard 24617-2, 

follows the ISO linguistic annotation framework and makes a distinction between 

representation and annotation. The term “annotation” indicates the linguistic information 

and is applied to a portion of dialogue regardless of the way it is represented. On the 

contrary, the word “representation” refers to the manner in which the information is 

presented. DiAML XML annotations can be created with the ANVIL annotation software 

and are ideal for computational processing. Nonetheless, for human inspection and 

alteration, other formats such as DiAML-TabSW and DiAML-MultiTab (Bunt, 2019) are 

more convenient. In the present study we use DiAML-MultiTab format for annotation. 
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Table 3: Dimensions and communicative functions defined in ISO 24617-2. 

Dimension Communicative Functions 

Task: Category of dialogue acts that helps to 

carry out the tasks or activities that 

inspire the dialogue 

General Purpose 

Functions (GPFs) 

Auto-Feedback: Category of dialogue acts that take 

place, in which the sender addresses his 

processing of past dialogue.  

AutoPositive, 

AutoNegative, GPFs 

Allo-Feedback: Category of dialogue acts that take 

place, in which the sender argues about 

the addressee’s processing of past 

dialogue. 

AlloPositive, 

AlloNegative, 

FeedbackElicitation, 

GPFs  

Turn 

Management: 

Category of dialogue acts that are 

intended to coordinate the role of the 

speaker  

TurnAccept, 

TurnAssign, 

TurnGrab, 

TurnKeep, 

TurnRelease, 

TurnTake, GPFs 

Time 

Management: 

Category of dialogue acts that deal with 

the allocation of time during the speech 
Stalling, 

Pausing, GPFs 

Own 

Communication 

Management: 

Category of dialogue acts where in the 

ongoing turn the speaker alters his own 

speech  

SelfCorrection, 

SelfError, 

Retraction, GPFs 

Partner 

Communication 

Management: 

Category of dialogue acts where in the 

ongoing turn the speaker alters the 

speech of the previous speaker 

Completion, 

CorrectMisspeaking, 

GPFs 

Discourse  

Structuring: 

Category of dialogue acts that organize 

the dialogue directly 

InteractionStructuring, 

Opening, GPFs 

Social 

Obligations 

Management: 

Category of dialogue acts carried out to 

meet social responsibilities such as 

welcoming, thanking and apologizing 

InitialGreeting, 

ReturnGreeting, 

InitialSelfIntroduction, 

ReturnSelfIntroduction, 

Apology, 

AcceptApology, 

Thanking, 

AcceptThanking, 

InitialGoodbye, 

ReturnGoodbye, GPF 
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ISO standard 24617-2 also supports the annotation of rhetorical relations (RR). Although 

this standard does not provide any specific set for RR, it suggests a specific standard, 

namely ISO 24617-8. In the present study, we adopted ISO 24617-8 or better known as 

ISO DR-Core for RR annotation as presented in the following section. 

2.2.2. Rhetorical Relation Annotation 

For understanding a discourse, it is not enough to understand individual sentences or 

clauses. The relationship between individual semantic units is called RR (also called 

“discourse relations” or “coherence relations”) and it allows us to understand the discourse 

as a whole. Although semantic units associated with RRs such as cause, result, condition, 

dialogue act, usually correspond to a sentence; they may be even longer, like as 

paragraphs, or even shorter, like dialogue segments. Parallel to the increase in NLP studies 

in recent years, more studies to create resources annotated with RR are being carried out 

in order to meet the needs and demands in these areas. ISO standard 24617-2 has been 

developed in order to provide the theoretical and empirical background for semantic 

annotation of discourse relations by examining those studies in terms of their 

commonalities and differences (Prasad & Bunt, 2015; Bunt & Prasad, 2016). 

Two of the most well-known frameworks in this field are; PDTB (Prasad et al., 2008, 

2018) and RST Bank (Carlson et al., 2001) based on RST (Mann & Thompson, 1988), As 

we mentioned above in the dialogue act section, Prasad and Bunt (2015) summarized one 

of the most fundamental issues where frameworks differ from each other is the 

representation of discourse structure. For instance, RST based models aim to build a tree 

structure containing all discourse as a result of the annotation process. The tree structure 

adopted in these models varies: Nodes of a tree might have single or multiple-parents, 

there might be crossing edges (edge from vertex v to vertex u which is not an ancestor or 

a descendant of v) or graph might be acyclic (having no graph cycles). PDTB framework, 

however, does not force to build a tree-like structure at the end of an annotation. ISO DR-

Core aims to provide interoperability with existing frameworks, it has adopted the 

principle of low-level annotation. Thus, if it is desired to be compatible with a framework 

that requires high-level annotation, such as a tree structure, annotated relations can be 

further processed to provide this structure. Another issue that differs between frameworks 

is the intention or information based definition of RRs. RST supports intention-based 

relations, while PDTB supports information-based ones. In many cases, the relation from 

one approach to another can be mapped. ISO DR-Core has adopted the information-based 

approach.  

One or both two of the RR arguments might have an implicit belief beyond the semantic 

content. For instance, in the following example (1), the second sentence gives information 

about the act of offering itself, instead of information about the offer’s content. 

Do you want to drink coffee? Because you look sleepy.                              (1) 
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This distinction is referred to as the semantic-pragmatic distinction in the literature (Van 

Dijk, 1979; Miltsakaki, Robaldo, Lee, & Joshi, 2008). ISO DR-Core supports the 

semantic-pragmatic distinction, but not on the basis of relation, but in the sense of the role 

that the arguments of the relations take. Furthermore, the ISO standard imposes 

restrictions not on the syntactical form, but the semantic character of arguments. That is, 

an argument of discourse relation must imply some sort of abstract object. Therefore, non-

clausal phrases, as well as clauses might be the arguments of a discourse relation. Lastly, 

regarding adjacency, some frameworks like RST require the corresponding arguments to 

be carried out with adjacent textual utterance, while others like PDTB only impose that 

limitation on implicit relations. In this respect, the ISO standard is noncommittal and does 

not impose any limitations on the context or adjacency of the arguments (Prasad & Bunt, 

2015; Bunt & Prasad, 2016).  

Almost all existing frameworks reflect the symmetrical and asymmetrical relations, that 

is to say, in the case of the relation REL and its arguments A and B, the discourse relation 

will be symmetric if (REL, A, B) substitutes (REL, B, A), and vice versa. For instance, 

the discourse relation of Similarity is symmetrical while the discourse relation of 

Exemplification is asymmetrical. The list of relations with their definitions and roles of 

the arguments if the relation is asymmetric is presented in the list below, where the first 

and the second arguments of discourse are represented by Arg1 and Arg2 respectively. 

For detailed information please see ISO (2016) and Bunt and Prasad (2016).  

Cause: Arg1 is used for the interpretation of Arg2. It is an asymmetric relation with 

the roles of Reason and Result. 

Condition: Arg1 is an unrealized condition that brings Arg2, if it is realized. It is 

an asymmetric relation with the roles of Antecedent and Consequent. 

Negative Condition: Arg1 is an unrealized condition that brings Arg2, if it is not 

realized. It is an asymmetric relation with the roles of Negated-Antecedent and 

Consequent. 

Purpose: Arg1 is used to let Arg2 occur. It is an asymmetric relation with the roles 

of Goal and Enablement. 

Manner: Arg1 discusses how Arg2 happens. It is an asymmetric relation with the 

roles of Means and Achievement. 

Concession: Arg2 cancels or refuses the anticipated causal relation between Arg1 

and Arg2. It is an asymmetric relation with the roles of Expectation-raiser and 

Expectation-denier. 

Exception: Arg1 refers to a number of circumstances where the status mentioned is 

present, whereas Arg2 refers to one or more cases in which it is not addressed. It is 

an asymmetric relation with the roles of Regular and Exclusion. 
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Substitution: Arg2 is the preferred or chosen one where alternatives are Arg1 and 

Arg2. It is an asymmetric relation with the roles of Disfavored-alternative and 

Favored-alternative. 

Exemplification: A variety of circumstances are listed in Arg1 and Arg2 is a 

component of that set. It is an asymmetric relation with the roles of Set and Instance. 

Elaboration: Arg1 and Arg2 represent the same situation but Arg2 provides more 

information. It is an asymmetric relation with the roles of Broad and Specific. 

Asynchrony: Arg1 is before Arg2 in the time domain. It is an asymmetric relation 

with the roles of Before and After. 

Expansion: Arg2 provides additional definitions of a certain entity/entities in Arg1. 

It is an asymmetric relation with the roles of Foreground and Entity-description. 

Functional Dependence: In case, Arg1 is a responsive dialogue-act, the response 

to Arg1, i.e. Arg2 will functionally depend on Arg1. It is an asymmetric relation 

with the roles of Antecedent-act and Dependent-act. 

Feedback Dependence: Arg2 is a dialogue act that produces information on the 

status or assessment of one of the dialog participants of Arg1's. It is an asymmetric 

relation with the roles of Feedback-scope and Feedback-act. 

Contrast: This relation indicates the differences between Arg1 and Arg2, as a whole 

or in the context of a common entity they are referring to. It is a symmetric relation. 

Similarity: This relation indicates the similarities between Arg1 and Arg2, as a 

whole or in the context of a common entity they are referring to. It is a symmetric 

relation. 

Conjunction: Arg1 and Arg2 have the same relation with some other circumstances 

elicited in the discourse. This relation indicates that they either do the same thing or 

do it together with respect to these circumstances. It is a symmetric relation. 

Disjunction: In case Arg1 and Arg2 are alternatives, this relation indicates that at 

least one of the arguments is carried out. It is a symmetric relation. 

Restatement: Although Arg1 and Arg2 are the same states, they are defined from 

different perspectives. It is a symmetric relation. 

Synchrony: This relation indicates that there is a certain degree of time overlap 

between Arg1 and Arg2. It is a symmetric relation. 

Up to this point, we have summarized the studies in the literature on social gaze and 

discourse annotation. In the present study, we investigate the speech-driven gaze in 
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accordance with the multimodal nature of face-to-face interaction. The following section 

represents the computational models of verbal and nonverbal behaviors from the 

perspective of the multimodal approach. 

2.3. Computational Models of Face-to-Face Interaction 

Face-to-face communication involves some sort of harmony in which partners 

continuously adjust their behaviors according to verbal and non-verbal signals. Although 

interpersonal behaviors exhibited by interacts have long been studied in the literature, with 

the developments in the machine learning, signal processing, and pattern recognition, 

researchers get the opportunity to use these techniques for analyzing, recognizing and 

predicting individual’s behavior during social interaction. This research direction has 

many practical applications. For instance, improvements in recognizing human behaviors 

would have impacts in many contexts including human interaction, medicine (Beck, 

Daughtridge, & Sloane, 2002), education (Skinner & Belmont, 1993), marketing and 

services (Gabbott & Hogg, 2000; Sundaram & Webster, 2000). Moreover, studies in 

human-computer interaction (Pantic, Pentland, Nijholt, & Huang, 2007), affective 

computing (Picard, 1999) and human-robot interaction (Fong, Nourbakhsh, & 

Dautenhahn, 2003) would also benefit providing a natural way to communicate with 

virtual agents and robots. Even, the related studies provide information for the diagnosis 

of autism spectrum disorders (Wall, Kosmicki, Deluca, Harstad, & Fusaro, 2012).  

The multimodal nature of human communication makes it inherently challenging to 

identify underlying mechanisms of an individual’s behaviors, clearly. Studies on 

understanding multi-modal behaviors differ in their approach to addressing the issue. 

According to an effective approach put forward by Ekman and Davidson (1994); and some 

later studies by other researchers (e.g., Jaimes & Sebe, 2007), it is possible to interpret 

human behaviors in the light of emotion experience. A similar line of approach is proposed 

to interpret human behaviors in the context of social signals (Vinciarelli, Pantic, & 

Bourlard, 2009). In this approach, automatic communication analysis uses social signal 

data to predict social emotions (e.g., happiness, anger), social activities (e.g., turn-taking 

and backchannel) and social relations (e.g., roles). In order to address these problems, 

various computer models have been proposed. The influence model which is proposed to 

model the interaction between individuals in a communication environment is one of 

them. This computer model is developed based on a term of influence in statistical physics 

and it aims to prevent the high parameter requirement of models such as Hidden Markov 

Models (HMMs) (Basu et al., 2001; Choudhury & Pentland, 2004). In another model, 

Otsuka, Sawada, and Yamato (2007) proposed to use Dynamic Bayesian Network (DBN) 

for modeling turn-taking mechanisms in communication. In this 3-layered method, the 

first layer is based on the external observation and the 2nd and 3rd layers are based on the 

estimation. First, speech and head movement data are taken, gaze patterns are predicted 

in the next layer, and in the final layer, the regime of the conversation is estimated. In the 

model they proposed to distinguish laughter from speech, they showed that using audio 

and visual modalities together presents better results than using speech. In this model, they 
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used AdaBoost for feature selection and neural network for classification. In addition, 

ANNA (Artificial Neural Network Assistant) (Fragopanagos & Taylor, 2005) and RNN 

(Recurrent Neural Network) (Karpouzis et al., 2007) are proposed to predict social 

emotion by using audio and visual data in a multimodal manner. In the present study, as 

described in the sixth chapter, we used state of the art network which is a particular type 

of Deep Neural Network known as CNN. 

The multi-modal characteristics of human communication can be modeled by multi-modal 

machine learning that takes and processes information from various modalities. As 

Baltrusaitis, Ahuja, & Morency (2019) summarizes, multi-modal machine learning 

studies present a number of challenges for researchers. First of all, the heterogeneous data 

in multi-modal learning should be represented and summarized by highlighting the 

complementary context while avoiding redundancy. For example, the language is 

represented by symbols while the audio is indicated by signals and videos are composed 

of frames. Secondly, the way of mapping from one modality to another should be 

identified clearly. This is not only due to the heterogeneous nature of multi-modal data, 

but also it is the result of the open-ended and subjective interpretation of relations between 

modalities. In the third place, it is necessary to analyze and align the relations between 

modalities. For example, to align the steps of a recipe by watching a cooking video, we 

need to look at the interrelationships of different models and their interdependence, even 

if there is a long range between them. Next, information obtained from different 

modalities should be joined for prediction by considering their various predictive power 

and noise topology, as well as handling the possibly missing data. Lastly, it may be 

important how the information learned through one modality can be transferred to a 

computational model trained with another modality. This may be problematic especially 

when one of the modalities has a limited resource. We summarized the details of input 

features coming from speech and gaze modalities, their representations and the way we 

align them as a time series signal in the sixth chapter. 
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CHAPTER 3 

 

3.  ANALYSIS OF GAZE AVERSION AND SPEECH IN A FACE-TO-FACE 

INTERACTION: A PILOT STUDY 

This study was conducted for improving the experimental design and data analysis. In this 

chapter, we report the pilot study and the experience gained through it. This chapter 

outlines, firstly, participants, apparatus and the experimental design employed during the 

study. Thereafter, the procedure followed during the analysis was introduced along with 

the results of the analysis. The analyses involved synchronization of multimodal data 

including video recording data for face tracking, gaze data from the eye trackers, and the 

audio data for speech segmentation. Lastly, we assessed the problems with the 

experimental design and analysis procedure in order to improve upon the design and 

analysis of the full-scale experiment. 

3.1. Materials and Design 

3.1.1. Participants 

Three pairs of male participants (university students as volunteers) took part in the pilot 

study (mean age 28, SD = 4.60). The task was a mock job interview. The participants were 

assigned the role of either an interviewer or an interviewee and the roles were distributed 

randomly. All the participants were right-handed, native Turkish speakers and had a 

normal or corrected-to-normal vision. 

3.1.2. Apparatus 

Both participants wore monocular Tobii eye-tracking glasses with a sampling rate of 30 

Hz with a 56°x40° recording visual angle capacity for the visual scene. The glasses 

recorded the video of the scene camera and the sound, in addition to gaze data. Each 

participant was positioned exactly one meter away from a wall. Then, we asked them to 

follow the IR (infrared) marker while wearing Tobii glasses. The IR marker calibration 

process was repeated until 80% accuracy is achieved. 
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3.1.3. Procedure 

At the beginning of the experiment, participants were informed about the task. We asked 

an interviewee to think about a position that he is interested in, so as to motivate him for 

the interview. Eight common job interview questions, adopted from Villani, Repetto, 

Cipresso, & Riva (2012), were translated into Turkish and handed to an interviewer on a 

sheet of paper, (questions are listed in Appendix A). The interviewer was instructed to ask 

given questions, and also to evaluate the interviewee for each question right after the 

response, by using paper and pencil. The evaluation criterions are given in Appendix B. 

Ratings were on a scale of 1 to 7, where 7 was the highest score.  

After calibration, the participants were seated on the opposite sides of a table, 

approximately 100 cm away from each other.  The experimental protocol is adopted from 

the Andrist, Mutlu, and Gleicher (2013) study, and it is illustrated in Figure 3. Lastly, a 

beeping sound was generated to indicate the beginning of a session. The participants were 

left alone in the room throughout the experiment. 

 

Figure 3: Schematics of the experimental setup  

3.2. Data and Analysis 

Data analysis consists of three main steps. In the first one, we extracted gaze aversions for 

each participant. We used OpenCV-3.03 (Open Source Computer Vision Library) libraries 

to detect and track faces in each video frame. As the next step, we analyzed audio data to 

 

3  OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine 

learning software library. The official web-site is: http://opencv.org/ 

http://opencv.org/
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recognize speakers and to segment the audio file into smaller chunks including sub-words 

and pauses by using CMU Sphinx44 libraries. We, then, manually annotated each speech 

segment using a predefined list of speech instances, hereinafter referred to as speech-acts 

or speech-tag set. In the final step, we synchronized gaze aversion data with speech 

annotations and performed statistical analysis on it. 

3.2.1. Speech Analysis 

Audio data were extracted from the video files. Since CMU Sphinx4 requires a 16 kHz, 

16 bit, mono and little-endian audio format, we converted audio data into a supported 

format for CMU Sphinx4 input, command is given below. 

ffmpeg -i input.wav  -acodec  pcm_s16le -ac 1 -ar 16000 output.wav          (2) 

3.2.1.1. Speaker Recognition and Speech Segmentation 

The CMU Sphinx4 libraries enabled us to obtain speech segments at millisecond 

precision. In order to store the starting time and duration of speech segments, we forked 

open-source Sphinx4 repository and then, implemented corresponding requirements. 

As a result of pair recordings, we ended up with two audio files for each session, one was 

recorded by the interviewer’s glass and the other from the interviewee’s. Both recordings 

were processed in the same environment. We preferred to annotate the segments extracted 

from interviewers’ audio recordings. 

The LIUM tools embedded in Sphinx4, identify unique speakers in an audio file, viz. 

speaker recognition, and split the audio into distinct chunks, namely segments. We run 

both speaker recognition and speech segmentation functions on interviewees’ recordings. 

Outputs were time intervals in which speakers are recognized in an audio stream, audio-

segments and the text file containing the duration of each segment. For different pairs, the 

number of segments, which varied depending on the length and the content of the audio, 

is given along with the number of speech intervals in Table 4. 

Table 4: The number of speech segments and recognized speech intervals. 

Interviewer ID 
Speech 

Segments 

Recognized 

Speech Intervals 

Interviewer-1 86 30 
Interviewer-2 55 29 
Interviewer-3 126 38 

 

4  The Sphinx4 is a speech recognition system jointly designed by Carnegie Mellon University, Sun 

Microsystems Laboratories, Mitsubishi Electric Research Labs, and Hewlett-Packard's Cambridge Research 

Lab.  The Official web-site is: http://cmusphinx.sourceforge.net/ 

http://cmusphinx.sourceforge.net/
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The duration of speech segments might be different from the recognized speech intervals. 

We merged both intervals in order to improve segmentation. The interval merge process 

is illustrated in Figure 4. We notice that Sphinx4 did not generate segments when the 

speaker could not be identified. However, those non-segmented parts may contain 

information that might be useful for researchers.  Thus, we carried out additional 

development works to generate audio segments automatically from non-segmented parts 

in an audio file. In addition, the closer the microphone was to the participant, the cleaner 

and the better the gathered audio recording was. Therefore, we might miss data in case we 

annotated segments that were extracted solely from interviewer’s recordings. In order to 

overcome this problem, we segment both interviewer’s and interviewee’s recordings from 

a session, and then, after synchronization (discussed in the next topic), we merged time 

intervals of segments originating from two distinct sources, for detailed information see 

the chapter 4). 

 

Figure 4: Merging intervals of segments and speakers 

3.2.1.2. Synchronization 

In an investigation of interactions, especially between participants in a pair, 

synchronization of the recordings is crucial. Since it is not practically possible to start to 

record at exactly the same moment on two devices, we had to synchronize their recordings. 

We signaled the start of the experiment by playing a distinguishable beeping sound not 

only to ease the determination of an initial segment but also to provide a reference point 

in time in the synchronization process. 

After the segmentation of both interviewer’s and interviewee’s recordings in a pair was 

completed, we specified the beginning of the session for each participant by determining 

the audio-segments containing beeping sound. Then, the starting point of the next segment 

was assumed to be the initial time for the session. Time offset in a session, which is 

essential for synchronization of interviewer’s and interviewee’s recordings, was taken to 

be the time difference between the starting moments of two recordings in that session. The 

flow chart of the synchronization algorithm run for the first pair is given in Figure 5. 
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Figure 5: The flow chart of the synchronization process. Values of first pair are presented. 

In addition, the final moment of a session was determined first by specifying the last 

segment of an interviewee that contained speech, and then by extracting the end of that 

particular segment. As a result, even if the initial times in interviewer’s and interviewee’s 

recordings differ for a session, the duration must be the same for both recordings in a pair, 

see Table 5. 

Table 5: Time intervals of session recordings. 

 Interviewer 

(mm:ss.ms) 

Interviewee 

(mm:ss.ms)                                 

 Session duration 

   (mm:ss.ms) 

Pair-1 00:23.960 – 03:18.520    00:19.390 – 03:13.090      02:54.560 

Pair-2 00:16.730 – 05:13.980    00:19.000 – 05:16.250      04:57.250 

Pair-3 00:38.740 – 05:17.500    00:07.900 – 04:45.850      04:38.760 

3.2.1.3. Annotation 

The Speech-act theory is applicable to discourse analysis. It focuses on actions performed 

through speech and provides a framework to specify the conditions for understanding an 

utterance as a linguistically realized action. Searle classified this theory further. He states 

that the taxonomy of speech act is deficit as its original definition, and he proposed criteria 

for distinguishing one kind of illocutionary force from another. As we stated before, Searle 

divides illocutionary acts into the following types: Directive, Commissive, Representative, 

Declarative and Expressive.  
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As we investigate gaze aversion mechanism in accordance with speech modality, in 

addition to speech acts, we proposed additional speech-instances that they might have an 

effect on gaze aversion mechanisms. In the first place we proposed the following list of 

speech instances for speech annotation: 

Speech: Includes the speech itself. It is a type of commissive or declarative speech-

act. 

Asking a Question: Speaker requests for information. It is a type of directive 

speech-act. This category was specific to interviewers. 

Confirmation: Act of verifying or making something certain. It is a type of 

representative speech-act. 

Pre-Speech: The non-speech instance which includes the silence before the speech 

and the sounds for warming up the voice. 

Speech Pause: Includes the pauses during the course of speech. 

Thinking: We named the conversation segment as thinking when it included filler 

sounds, such as uh, er, um, eee, the repetition of a question, and drawls – the 

nonphonemic lengthening of syllables. 

Signaling End of Speech: The conversation segments that include phrases 

signifying the end of the speech, such as that’s all 

Questionnaire Filling: The interviewer evaluates the interviewee after each 

question by looking at the notebook and using a pen. This category was specific to 

interviewers.  

After we reviewed data, we realized that the interviewer looked at the notebook while 

asking questions from it and evaluating the interviewee’s response. Thus, in terms of 

generated gaze behavior, these actions generally caused the same behavior, namely gaze 

aversion. Consequently, we merged Questionnaire Filling and Asking a Question 

instances into a single instance called Looking at the Notebook. Furthermore, we 

eliminated speech-instances that show up less than 5%. As a result, we annotated segments 

with the following speech instances: Pre-Speech, Speech, Speech Pause, Thinking, 

Signaling End of Speech, Looking at the Notebook. 

3.2.2. Gaze Analysis 

We first exported videos from recordings by running the corresponding function of Tobii 

Studio and obtained six video-files for three pairs of participants. Tobii Studio supports 

AVI file format for movies, which contains both video and audio data, as well as 

information on audio-video synchrony. We converted AVI files into WMV prior to the 

remaining analysis. 
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3.2.2.1. Face Detection 

We extracted frame images of each video stream. Tobii glasses recorded data with a 

sampling rate of 30 Hz., i.e., video stream had 30 Frames Per Second. Therefore, the 

duration of each frame was 33 milliseconds. Besides, the frame resolution was 640 x 480 

pixels. 

In order to detect faces in extracted frame-images, we developed a C# application that 

calls the OpenCV image processing library. At first, we employed the Viole-Jones method 

for face detection. However, most of the faces could not be detected because of the poor 

resolution, rapid head movements and/or the errors dependent on the technical constraints 

of eye-tracking glasses worn throughout the study. To overcome this problem, face 

detection and face tracking processes were combined so that when the face detection 

algorithm failed to detect a face, the application we had developed run Camshift face-

tracking-method by passing the coordinates of the last detected face. 

Camshift generally performs better for moving objects than the other face tracking 

methods such as meanshift. It achieves fairly good tracking results on a simple background 

as it considers the color histogram of the target. However, it is not robust against complex 

backgrounds containing noise and/or objects with the same color as the target. In such 

cases, the algorithm would fail to track the target (Stern & Efros, 2002; Wang &  Yagi, 

2008). Accordingly, we made a further improvement in the face detection application. 

Along with the Camshift algorithm, we used Kalman Filters which consider the direction 

and the velocity of the object and handles the loss of target on a complex background, as 

proposed by Kim and Kang (2015). The Algorithm is given as follows: 
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Figure 6: The algorithm of face detection 

Face Detection algorithm detected faces in a rectangular shape and specify them with four 

values. First two of them represent coordinates of the top left corner and the last two 

indicate the width and the height of the rectangle. Nevertheless, as the data is reviewed 

we realized that locating the face in a rectangle caused an unreliable gaze-behavior 

estimation, especially when the raw gaze data was near the corners of the rectangle. The 

problem is illustrated in Figure 7. For this reason, later on, we adopted OpenFace 

framework which includes facial landmark detection and, hence, identifies the face 

boundary with a more realistic shape. (for detailed information see the chapter 4). At the 

end of the face detection phase, we had six text files storing 68 landmark positions which 

means face-boundary in each frame-image of the recording is identified. 

 

Figure 7: Face detected either in a rectangular shape or with landmark points a)The previous method 

identified face boundary as a rectangle b)OpenFace detected 68 facial landmarks for positioning the face. 
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The yellow dot represents the gaze point on that particular frame-image. According to the previous method, 

since gaze point was inside the rectangle, it would be interpreted as if the interviewee was looking at the 

interviewer’s face, i.e., there was no gaze aversion at that particular time, which was not true. OpenFace 

enabled us to identify the exact boundary of the face and, hence, a reliable decision about gaze behavior is 

possible. 

3.2.2.2. Detection of Gaze Behavior 

We exported raw data of eye movements obtained by the Tobii Glasses Eye Tracker. Tobii 

Glasses had just one camera positioned on the right-hand side, thereof, Tobii Studio 

generated an output file storing x and y positions of the right eye at a resolution of 33.33 

milliseconds. Afterward, we developed a C# application to decide whether, at a particular 

time, a participant was looking at the interlocutor’s face (viz. in) or looking away from it 

(viz. out). The inputs of the application were text files containing the face coordinates of 

each frame-image, which were generated in the previous face detection phase, and eye 

movements on these frame-images exported from Tobii Studio 3.3.1.  

We realized that more than 50% of gaze aversions generated by interviewers lasted up to 

33 msec, in other words, correspond at most one frame-image, for the numbers see Table 

6. However, since previous studies reported longer fixation durations, we made further 

improvements in the detection of gaze aversion. 

Table 6: Percentages  of gaze aversions lasted 33 ms  

 Interviewer Interviewee 

Pair1 22 29 

Pair2 73.8 39.1 

Pair3 50 37.3 

Mean 43.8 33.1 

 

Fixation identification algorithms may then be employed to determine whether raw data 

points accumulate into fixations during the course of gaze aversion. A challenge in the 

specification of fixations from raw data comes from the fact that wearable eye trackers 

capture dynamic scenes. Currently, there is no commonly accepted method for detecting 

eye movement events in dynamic scenes (Munn et al., 2008; Srinivasan et al., 2014). In 

the present study, we analyzed raw data after a cleansing process described in the 

following section. 

In the detection of gaze aversion, we used cleansed raw gaze data as input. The cleansing 

process involved gap-filling via linear interpolation where at most two frames were filled. 

After detecting gaze aversions, we merged adjacent aversions between which there were 

at most two consecutive non-aversion frames. Finally, we eliminated short aversions that 

are less than 100 ms (Figure 8). 
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Figure 8: Process flow for detection of gaze aversion.  

In addition, the application developed computed coordinates of gaze relative to the 

detected face of the interlocutor. As shown in Figure 9, frame-image was theoretically 

divided into 9 (3x3) areas of interests (AOIs). Each AOI might be different in size. If the 

gaze data was inside the detected face, ‘E’ is assigned as a label to the AOI, otherwise one 

of the eight characters, namely a, b, c, d, e, f, g, h, i was assigned. Characters in labels 

were determined according to the relative position of that particular area with respect to 

the face area. For instance, north-west of face-area was always labeled as a, and similarly 

south of face-area was labeled as h. The application produced text files containing frame-

image IDs along with the corresponding AOI-labels, for each recording. Figure 9 shows 

detected facial landmarks and gaze data overlay on a sample image frame. 

 

Figure 9: Gaze location relative to the face. The yellow dot represents the gaze data of an interlocutor, in 

this case, of an interviewee. The frame-image of an interviewer was divided into 9 (3x3) AOIs.  The 

middlemost area was the detected face of an interviewer. An interviewee was looking at the south-west of 

an interviewer’s face. Thus, this frame-image should be labeled as ‘G’. 
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3.2.2.3. Gaze and Speech Multimodal Data 

At the last phase of gaze analysis, we synchronized gaze behavior and annotated speech 

data obtained from the previous analysis. We iterated AOI labels, annotated-speech-

segments and interlocutor’s AOI labels, synchronously. Eventually, in each iteration, we 

ended up with sender information, AOI label, speech-instance and interlocutor’s AOI 

label, for the particular frame-image. An iteration was assigned as the starting frame of 

the gaze aversion if its AOI label was different from e provided that the AOI label of the 

previous iteration had been e. Gaze aversion continued as long as the AOI label remained 

different from e. At the end, we kept the following information for each frame-image: 

Gaze Behavior: It can be one of the following labels: Aversion, Face Contact or 

Empty. The Empty label was assigned, when raw gaze data of the participant could 

not be extracted and/or there was a problem in face detection. This value was 

handled separately for both interviewer and interviewee participants. 

Gaze Behavior Onset: It is the duration of instant gaze behavior starting from its 

initial occurrence. This value was handled separately for both interviewer and 

interviewee participants. 

Sender: It can be either an interviewer or an interviewee. 

Speech Instance: It can be 1 of the following 6 items: Pre-Speech, Speech, Speech 

Pause, Thinking, Signaling End of Speech and Looking at the Notebook. 

Speech Modality: It is a combined feature including both the sender (i.e. an 

interviewer or an interviewee) and the speech-instance. 

Speech Modality Onset: It is the duration of instant speech-modality starting from 

its initial occurrence. 

3.3. Results 

We analyzed the mean number of gaze aversions per minute (i.e., gaze aversion 

frequency), the mean duration of gaze aversions and the timings of gaze aversion 

instances. All analyses were carried out in R programming language and environment (R 

Core Team; 2016). using lme4 and lmerTest software packages. All data files and R 

scripts used during the analysis are publicly available.5 

 

5 Data files and R scripts are available under: 

https://gist.github.com/ulkursln/9d14fe288471b9e83f845607d5c3045d 

https://gist.github.com/ulkursln/9d14fe288471b9e83f845607d5c3045d
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3.3.1. Gaze Aversion Frequency 

The number of gaze aversions was closely related to the length of the corresponding 

session. Since no time limit was imposed in the experiment, we needed to calculate a 

normalized frequency per minute of gaze aversion. The analysis revealed that the 

interviewees performed more frequent gaze aversions (M = 27.95, SE = 8.53) when 

compared with the interviewers (M = 22.72, SE = 3.26). 

3.3.2. Gaze Aversion Duration 

The analysis revealed that gaze aversions of the interviewees took longer (M = 2207.9 ms, 

SE = 1291.2) than gaze aversions of the interviewers (M = 1860.0 ms, SE = 363.0). These 

numbers represent the analysis which covered all gaze aversion instances. However, as 

already mentioned above, the interviewers looked at the notebook while they filled in the 

questionnaire to evaluate the interviewee’s response and while they articulated the 

questions. Therefore, we repeated the analysis by excluding those instances where the 

interviewer looked at the notebook, as they did not represent genuine cases of gaze 

aversions during the course of conversation. The renewed analysis resulted in a more 

salient difference in duration of gaze aversions between the interviewers (M = 1179.3 ms, 

SE =384.1) and the interviewees (M= 1802.3 ms, SE = 921). We also investigated the 

relation between gaze aversion and speech-instance type. A single gaze aversion might be 

related to multiple speech-instances. Figure 10 shows the average duration while a 

participant was averting his gaze from the interlocutor’s face and performing the specific 

speech-instance. 

 

Figure 10: The average duration of gaze aversion for each type of speech-instances. Light gray bars represent 

interviewers and dark gray bars are for interviewees.  

The durations of gaze aversions were analyzed via linear mixed effects regression, LMER, 

by using the lme4 package in R. We treated the participant pairs (viz., pair-id) as random 
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effects to control the influence of different duration values associated with the same pair. 

In a mixed-model, removing Sender, Speech-Instance, Gaze-Behavior-Onset and Speech-

Modality-Onset significantly decreased the goodness of fit, as indicated by likelihood ratio 

tests – effect of Sender χ2(1) = 22.1, p < .000; effect of Speech-Instance χ2(5) = 69.6, p < 

.000; effect of Gaze-Aversion-Onset χ2(1) = 16.1, p = .000 and effect of Speech-Modality-

Onset χ2(1) = 20, p < .000. A post hoc Tukey test performed on speech-instance category 

showed that Looking-at-Notebook (M =1067.8 ms, SE = 76.9) significantly (all ps<.000) 

increased aversion duration compared with Speech (M =742.6 ms, SE = 40.6), with Pre-

Speech (M =398.2 ms, SE = 45.2), with Speech-Pause (M =432.2 ms, SE = 33.9) and with 

Thinking (M =477.7 ms, SE = 34.5). Moreover, the following pairs of instances found to 

be significantly different (all ps< .05): Pre-Speech and Speech, Speech-Pause and Speech, 

Thinking and Speech, Signaling-End-of-Speech and Pre-Speech, Signaling-End-of-Speech 

and Speech-Pause, and Signaling-End-of-Speech and Thinking.  

A post hoc Tukey test performed on the Sender category showed that aversion duration 

significantly (p<.000) decreased when the speaker was the interviewee (M =629.6 ms, SE 

= 25.4) instead of the interviewer (M =918.8 ms, SE = 63.9). Finally, the lmer mixed-

model showed that the duration of aversion was linearly related to Gaze-Aversion-Onset 

(b =132.9 ms, SE = 32.9), and Speech-Modality-Onset (b =-102.5 ms, SE = 30.9). 

3.3.3. Occurrence of Gaze Aversion 

We introduced mixed-effects-logistic-regression models, in order to investigate the effects 

that influence whether it is time to avert gaze by considering following aspects for every 

30 milliseconds during the all three sessions: (The sample size was 23,1156 )  

The first model was created to predict the interviewer’s gaze-behavior-type (i.e., whether 

it was gaze aversion or not, in that particular time). As fixed-effects, we identified the 

interviewer’s Gaze-Behavior-Onset, a correlated relation of Sender, Speech-Instance and 

Speech-Modality-Onset and lastly a correlated relation of interviewee’s Gaze-Behavior 

and interviewee’s Gaze-Behavior-Onset. As the random effect, we had Pair-Id, as 

mentioned in the previous section. In a mixed-model, removing the Sender, Speech-

Instance, interviewer’s Gaze-Behavior-Onset, Speech-Modality-Onset, interviewee’s 

Gaze-Behavior and interviewee’s Gaze-Behavior-Onset significantly decreased the 

goodness of fit, as indicated by likelihood ratio tests – effect of Sender χ2(1) = 2031.7, p 

< .000; effect of Speech-Instance χ2(5) = 85.9, p < .000; effect of Gaze-Behavior-Onset 

χ2(1) = 927.9, p < .000; effect of Speech-Modality-Onset χ2(1) = 77, p < .000; effect of  

interviewee’s Gaze-Behavior χ2(1) = 35.4, p < .000 and effect of  interviewee’s Gaze-

Behavior-Onset χ2(1) = 6.25, p < =.01.  

 

6 The link to access the data file:  

https://drive.google.com/open?id=0B-DfZx3YFEzgRldUNm1fZ3ZPZDQ 

https://drive.google.com/open?id=0B-DfZx3YFEzgRldUNm1fZ3ZPZDQ
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A post hoc Tukey test was performed for making pairwise comparisons among the ratios 

of gaze aversion to face-contact (i.e., odd ratio) for several Speech-Instances. If the odd 

ratio of the first instance in the pair is larger than the second one, the confidence interval 

will be on the positive side, otherwise, it will be on the negative side. Moreover, results 

indicate that the following pairs did not significantly differ from each other (i.e., their 

confidence intervals include 0): Speech – Pre-Speech, Speech Pause – Pre-Speech and 

Speech Pause – Speech, and for all the other pairs the differences are significant (see 

Figure 11). 

 

Figure 11: Interviewer’s pairwise comparisons among the ratios of gaze aversion to face-contact for several 

Speech-Instances. The confidence intervals that do not include 0, point out a significant difference. For 

instance, an interviewer is more likely to avert his eyes while the Speech-Instance is Signaling-End-of-

Speech rather than being Pre-Speech. 

We performed a similar analysis also for the interviewees. The second model was created 

to predict the interviewee’s gaze-behavior-type (i.e., gaze aversion or not). We identified 

the interviewee’s Gaze-Behavior-Onset, correlated relation of Sender, Speech-Instance 

and Speech-Modality-Onset, and lastly a correlated relation of interviewer’s Gaze-

Behavior and interviewer’s Gaze-Behavior-Onset, as fixed-effects. As the random effect, 

we had Pair-Id. In a mixed-model, removing the Sender, Speech-Instance, interviewee’s 

Gaze-Behavior-Onset, Speech-Modality-Onset, interviewer’s Gaze-Behavior and 

interviewer’s Gaze-Behavior-Onset significantly decreased the goodness of fit, as 

indicated by likelihood ratio tests – effect of Sender χ2(1) = 11.6, p < .000; effect of 

Speech-Instance χ2(5) = 1020, p < .000; effect of  interviewer’s Gaze-Behavior-Onset 

χ2(1) = 62.61, p < .000; effect of Speech-Modality-Onset χ2(1) = 7.23, p < .000; effect of  

interviewer’s Gaze-Behavior χ2(1) = 27.01, p < .000 and effect of interviewee’s Gaze-

Behavior-Onset χ2(1) = 25.22, p < =.000. 

A post hoc Tukey test was performed for making pairwise comparisons among the ratios 

of gaze aversion to face-contact (i.e., odd ratio) for several Speech-Instances. Results 

indicate that the following pairs did not significantly differ from each other: Speech Pause 
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– Pre-Speech and Speech – Signaling End of Speech, and for all the other pairs the 

differences are significant (see Figure 12). 

 

Figure 12: Interviewee’s pairwise comparisons among the ratios of gaze aversion to face-contact for several 

Speech-Instances. The intervals that do not include 0 point out a significant difference. For instance, an 

interviewee is more likely to avert his eyes while the Speech-Instance is Speech rather than being Pre-

Speech. 

3.3.4. Relative Spatial Positions of Gaze Aversions 

We calculated the relative spatial positions of gaze aversions with respect to an 

interlocutor’s face. As illustrated in Figure 13, during gaze aversion, the interviewees 

frequently looked at the lower right-hand side of an interlocutor, whereas the interviewers 

looked straight down in the case of articulating questions or filling the questionnaire, as 

expected. 

 

Figure 13: The distribution of gaze aversion’s location relative to the location of interlocutor’s face. Dots 

represent the relative positions of gaze aversions with respect to the interlocutor’s face.  
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3.4. Discussion 

The purpose of the pilot study was to improve the design and analysis methods, for the 

purpose of gaining an in-depth understanding of gaze behavior in a natural conversation 

of pairs. In this chapter, we investigated gaze aversion from a multimodal perspective, by 

employing face tracking and analyzing speech data as well as eye-tracking data in a mock 

job-interview task. Synchronous use of face tracking and gaze data overlay allowed us to 

detect gaze aversions of both communication partners. 

The results of the study show that gaze aversion characteristics differ between 

interviewees and interviewers. In particular, the interviewees exhibited more frequent 

gaze aversions than the interviewers did. We also found that the interviewees and the 

interviewers employed different patterns of specific speech instances during the course of 

conversations. 

In terms of improvement in design principle, we noted two important points. Firstly, we 

realized that the face detection algorithm performs suboptimal due to the noise and poor 

lighting conditions in the environment. Thus, we decided to perform the next study in a 

room with proper lighting and a clear background. Secondly, we realized that the 

interviewer looked at the notebook while asking a question and evaluating the 

interviewee’s response. That also affected the performance of face detection. Face 

detection algorithms might miss the face when the head was tilted. Therefore, we 

abandoned the use of pen and pencil and decided to provide an alternative solution.  

On the other hand, we observed the necessity of improvements in speech and gaze 

analysis. For speech analysis, we run speaker recognition and speech segmentation 

functions of Sphinx4, both. We, then, merged the speech intervals and segments generated 

as outputs of these two functions in order to improve segmentation. Nevertheless, Sphinx4 

did not generate segments when the speaker could not be identified despite the fact that 

those non-segmented parts might contain information useful for researchers.  Thus, we 

carried out additional development to generate audio segments automatically from non-

segmented parts in audio recordings. In addition, the closer the microphone was to the 

participant, the cleaner and the better the gathered audio recording was. Therefore, in case 

we annotated segments that were extracted only from an interviewer recording, we might 

miss data. In order to overcome this problem, we segmented both interviewer’s and 

interviewee’s recordings for a session, and then, after synchronization, we merged 

intervals of segments coming from distinct sources. Lastly, after we reviewed the 

annotated speech data, we realized that it could be better to handle the proposed speech-

instances with the perspective of functional roles of gaze in social communication. 

The Gaze analysis phase was composed of face and gaze-aversion detection. We, first, 

employed the Viole-Jones method for face detection. Then, we made an improvement in 

case the face detection algorithm failed to detect the face.  The application developed run 

Camshift face-tracking-method by passing the coordinates of the last detected face. Yet, 

Camshift is not robust against the complex backgrounds containing noise and/or objects 
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with the same color as the target. Therefore, we proposed further improvement in face 

detection and adopted the Kalman filter. Furthermore, Face Detection algorithm detected 

faces in a rectangular shape and this might cause unreliable estimation of gaze behavior, 

especially when the gaze data of a participant was near the corners of face-rectangle, 

which indeed should be the case of gaze aversion. Thus, we adapted OpenFace framework, 

which includes facial landmark detection and, hence, identifies the face boundary with a 

more realistic shape. 
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CHAPTER 4 

 

4.  MAGIC: A MULTIMODAL FRAMEWORK FOR ANALYSING GAZE IN 

COMMUNICATION7 

This chapter presents an open-source framework, namely MAGiC, for analyzing gaze 

contact and gaze aversion in face-to-face communication. The analysis of dynamic scenes 

has been a challenging domain in eye tracking research. MAGiC provides an environment 

that is capable of detecting and tracking conversation partner’s face automatically, 

overlaying gaze data on top of the face video, and incorporating speech through speech-

act annotation. Specifically, MAGiC integrates eye-tracking, audio, and video data for 

gaze, speech segmentation, and face tracking, respectively. MAGiC has been developed 

as an open-source software tool, which is available for public use and development. 

Separation of Concerns design principle is adopted in order to address different concerns 

under separate modules. Moreover, MAGiC produces standard output files (such as wav 

or txt files) in each inner step. This helps researchers to understand inner processing and 

enables them to conduct further analysis. We demonstrate the capabilities of MAGiC 

through a pilot study and report the usability analysis. 

4.1. Introduction 

In face-to-face social communication, interlocutors exchange both verbal and non-verbal 

signals. Non-verbal signals are conveyed in various modalities, such as facial expressions, 

gestures, intonation and eye contact. Previous research has shown that when there is any 

inconsistency between the messages simultaneously conveyed by non-verbal and verbal 

modalities, the former prevails the latter. In particular, interlocutors usually interpret non-

verbal messages, rather than verbal messages, as a reflection of true feelings and intentions 

(Archer & Akert, 1977; Mehrabian & Wiener, 1967). Accordingly, investigating the 

structural underpinnings of social interaction requires the study of non-verbal modalities 

as well as verbal modalities of communication. In the present chapter, we focus on gaze, 

 

7 This chapter, largely in its current form, is published as: 

Arslan Aydin, Ü., Kalkan, S., & Acarturk, C. (2018). MAGiC: A multimodal framework for analysing gaze 

in dyadic communication. Journal of Eye Movement Research, 11(6). https://doi.org/10.16910/jemr.11.6.2 
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in particular the analysis of eye contact and gaze aversion, as the non-verbal modality in 

face-to-face communication. 

Eye contact plays a crucial role in initiating a conversation, in regulating turn taking (e.g., 

Duncan, 1972; Sacks, Schegloff, & Jefferson, 1974), in signaling topic change (e.g., 

Cassell et al., 1999; Grosz & Sidner, 1986; Quek et al., 2000, 2002) and in managing the 

conversational roles of interlocutors (e.g., Bales, Strodtbeck, Mills, & Roseborough, 1951; 

Goodwin, 1981; Schegloff, 1968).  Interlocutor’s putative mental states, such as interest, 

are usually inferred from gaze (Baron-Cohen, Wheelwight, & Jolliffe, 1997). Eye contact 

is a fundamental, initial step for capturing the attention of the communication partner and 

establishing joint attention (Fasola & Mataric, 2012; Kleinke, 1986). Gaze aversion, 

complementary to eye contact, is another coordinated interaction pattern that regulates the 

conversation. Gaze aversion is defined as the act of looking away from the interlocutor, 

intentionally. In the literature, there are numerous studies concerning the effects of gaze 

aversion on avoidance and approach motivations. Hietanen et al. (2008) report that an 

averted gaze of an interlocutor initiates a tendency to avoid, whereas a direct gaze initiates 

a tendency to approach.  In similar studies, the participants gave higher ratings of 

likeability and attractiveness when the picture stimuli included a face with a direct gaze 

contact, compared to the stimuli that included a face with averted gaze (Mason et al., 2005; 

Pfeiffer et al., 2011).  These findings suggest that gaze aversion is expected to last shorter 

than eye contact in an efficient conversation.  More generally, three conversational 

functions have been attributed to gaze aversion (Abele, 1986; Argyle & Cook, 1976; 

Kendon, 1967): 

i. Intimacy modulation: The overall level of intimacy is influenced by periodic gaze 

aversions. 

ii. Floor management: Gaze aversion occurs when the speaker takes a break by 

temporarily stopping the conversation during the course of speech. 

iii. Cognitive management: The speaking partner conducts more gaze aversion than 

the listening partner to facilitate thinking and remembering. This eventually reduces 

the effort needed to pay attention to the listener. 

As the above classification suggests, the conversational function of gaze aversion is 

closely related to speech.  In other words, speech and gaze are closely connected 

modalities in social interaction. Similar to other non-verbal signals, gaze provides 

repeating, complementing, and substitution of a verbal message as well as regulating it. 

Speech requires temporal coordination of embodied cognitive processes: planning, 

phonemic construction, and memory retrieval for lexical and semantic information 

(Elman, 1995; Ford & Holmes, 1978; Kirsner, Dunn, & Hird, 2005; Krivokapić, 2007; 

Power, 1985).  Speech involves various sorts of signals depending on its content or 

quality, such as intonation, volume, pitch variations, speed, and actions performed 

throughout it (viz. speech acts).  We focus on speech acts due to salient role as the speech 

modality in conversation. 
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According to the speech act theory (Austin, 1962; Searle, 1969), language is a tool to 

perform acts, as well as to describe things and inform interlocutors about them.  The 

speech act theory is concerned with the function of language in communication.  It states 

that a speech act consists of at least three components that have distinct functional roles:  

i.Locutionary act refers to the act of saying something with its literal meaning 

ii.Illocutionary act indicates the intent of the speaker 

iii.Perlocutionary act is the effect of an utterance on the interlocutor. 

For analyzing language in communication, discourse should be segmented into units that 

have communicative functions, and related communicative functions should be identified 

and labeled accordingly. For instance, the following labels are proposed by Searle (1969) 

to classify locutionary acts. 

Directives: to make the listener perform a particular action (e.g., request, order, 

advice, etc.),  

Commissives: speaker commits himself to take further action (e.g., promises, 

planning, etc.)  

Assertives: speaker represents a state of affairs (e.g., concluding, suggesting, etc.) 

Expressives: speaker express emotions and attitudes towards the situation denoted 

by the preposition (e.g., apologizing, congratulations, thanks, etc.) 

Declaratives: speaker changes the world by uttering a locutionary act (firing, 

resigning, nominating, betting, etc.) 

Speech-acts are identified by analyzing the content of a speech. However, not only the 

content but also the temporal properties of speech convey information to the interlocutor.  

For instance, the analysis of a pause may be taken into account for signaling a shift in 

topic (Krivokapic, 2007), or it may be used for estimating speech intent, evaluating 

speaker’s fluency (Grosjean & Lane, 1976) and even detecting speech disorders (Hird, 

Brown, & Kirsner, 2006). MAGiC enables researchers to carry out analyses by employing 

both the content of speech and its temporal properties. 

In the current state of technology, eye tracker manufactures provide researchers with the 

tools for identifying basic eye movement measures, such as gaze position and duration, as 

well as a set of derived measures, such as Area of Interest (AOI) based statistics.  The 

analysis of social behavior, however, requires more advanced tools that are able to overlay 

gaze data on top of dynamical scene recordings.  The analysis of gaze data in dynamical 

scenes has been a well-acknowledged problem in eye-tracking research (e.g., Holmqvist 

et al., 2011) as there exist technical challenges in recognizing and tracking objects in a 

dynamical scene. This is because eye trackers generate a raw data stream, which contains 
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a list of points-of-regard (POR) during the course of task performance by the participant.  

In a stationary scene, it is relatively straightforward to specify subregions (i.e., AOIs) of 

the stimuli on the display, and then this information is used to extract AOI-based eye 

movement metrics. In the case of a dynamic scene, as in the case of mobile eye trackers, 

automatic detection of regions is a complex task. To the best of our knowledge, there is 

no commonly accepted method for achieving eye movement analysis in dynamic scenes 

(Munn et al., 2008; Stuart et al., 2014). 

MAGiC focuses on face recognition, which is a relatively well-developed subdomain of 

object recognition. The recognition of faces has been subject to intense research in 

computer vision due to its potential importance to practical applications in daily life, such 

as its use in digital camera recordings for security purposes. MAGiC employs face 

recognition techniques to automatically detect gaze contact and gaze aversion in dynamic 

scenarios, where eye movement data are recorded.  It aims to facilitate frame-by-frame 

analysis of dynamic scenes, thus reducing the effort for time-consuming and error-prone 

manual annotation gaze data. MAGiC also provides an environment that facilitates the 

analysis of audio recordings.  Manual segmentation of audio recordings into speech 

components and pause components is not efficient and reliable, since it may exclude 

potentially meaningful information from the analyses (Goldman-Eisler, 1968; Hieke, 

Kowal, & O’Connell, 1983). In the following section, we present major characteristics 

and the benefits of MAGiC in more detail. 

4.2. An Overview of Characteristics 

4.2.1. Reduced Annotation Effort and Time 

MAGiC reduces the amount of time spent on preparing manually annotated gaze and 

audio data for each image frame of a scene video. Without MAGiC, in order to identify 

face contact, gaze aversion, and their location, a researcher would need to annotate 36,000 

image-frames, for a 10-minute recording of a 60 Hz eye tracker. Assuming that one needs 

1 second for annotating one frame, the duration would exceed 10 hours for a 10-minute 

recording. Fortunately, MAGiC significantly reduces the amount of time spent on 

annotation. The same process takes approximately 5 to 10 minutes per 10-minute 

recording, in a typical personal computer with Intel Core i5 2.3 GHz CPU and 8 GB of 

RAM. Likewise, the effort spent for the AOI annotation, the segmentation, and annotation 

of an audio recording have been significantly reduced by MAGiC. It automatically 

segments the audio file in a couple of seconds and also provides an interface to facilitate 

the annotation of audio segments. 

4.2.2. Automated Multimodal Analysis 

MAGiC provides functionalities for automatic analyses of both speech and gaze. In 

addition to saving time, automation enables researchers to obtain further information that 
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may not be extracted manually.  For instance, OpenFace8, an open-source facial behavior 

analysis toolkit utilized in MAGiC, detects the coordinates of 68 facial landmarks. 

MAGiC extracts the coordinates of some facial features such as eyes or mouth and then 

evaluates the relative coordinates of gaze location to extracted facial features. In addition, 

MAGiC employs CMUSphinx9 framework for segmenting audio signals at millisecond 

precision. Speaker change, speech-pause and humming (e.g., sounds like “hmm”, “mhm”, 

“uh-huh”) are some of the content or temporal based speech properties that might be taken 

into consideration in speech analysis. The automated annotation improves the quality of 

annotated data since it is virtually impossible for human annotators to detect speech 

instances at this level of temporal granularity. MAGiC also offers an interface to make 

manual AOI annotation. 

4.2.3. Performance Improvement and Visualization 

MAGiC has the functionality to visualize face tracking data and the AOI annotation 

frame-by-frame. It overlays the detected facial landmarks, the raw gaze data, and the status 

of gaze interaction (gaze-contact and gaze-aversion) in a single video recording.  MAGiC 

displays the ratio of non-annotated gaze data (thus, the success level of face detection) as 

a percentage of total data. If the user is not satisfied with the face detection performance, 

one may employ MAGiC’s training interface to improve face detection. The training 

interface aims to increase the average accuracy of face detection, see Figure 14. 

 

8 OpenFace: an open-source facial behavior analysis toolkit, 

https://www.cl.cam.ac.uk/~tb346/res/openface.html, retrieved on April 15, 2017. 

9 CMU Sphinx, Open-Source Speech Recognition Toolkit, http://cmusphinx.sourceforge.net/, retrieved on 

April 15, 2017. 



 

 

   

  

(a) (b) 

  

 
 

(c) (d) 

  

5
0

 



51 

 

Figure 14: A set of screenshots taken from related MAGiC’s components for visualization, training and 

performance monitoring. a) The set of facial landmarks are presented around the face of the interviewer 

with pink circles, b) The ratio of non-annotated gaze data along with their causes are displayed. The absence 

of raw-gaze data or undetected faces are the reasons behind the failure of AOI-annotation.  c) During the 

training of a custom face detector, the user has to specify the boundaries of the face in the pre-defined set 

of training-images by drawing boxes around d) After training is complete, the performance of the custom-

detector is displayed. Each detected face in the pre-defined set of test-images is displayed one-by-one. 

4.2.4. Flexibility 

The number of audio and video sources varies across experimental designs. The simplest 

set-up involves a single source, such as a single eye-tracker glasses in a conversation dyad.  

A more complex design may consist of two or more eye trackers, which requires 

synchronization of the data sources in multi-source recordings. MAGiC provides an 

interface to synchronize pair recordings semi-automatically. It is a semi-automatic process 

since once the MAGiC completed the automatic segmentation of audio files, a human 

annotator has to listen to audio-segments for specifying the first and the last segments of 

the recordings. Another aspect of flexibility in MAGiC is based on the adoption of the 

Separation of Concerns (SoC) design principle (Reade, 1989). It guarantees the 

modularity and the independence of the modules, in order to address different needs from 

users. Accordingly, each module in MAGiC can be used in isolation, without employing 

all the functionalities of the tool. For instance, it is possible to use MAGiC only for speech 

segmentation, face tracking, or synchronization of pair recordings. 

4.2.5. Extensibility 

The implementation of MAGiC has taken possible future improvements into 

consideration, in order to facilitate extensibility.  MAGiC has been developed as an open-

source software application, accessible as a public and non-commercial resource. Hence, 

open-source developers have the opportunity to contribute to the development of MAGiC 

which may eventually expand its capabilities to accommodate the requirements of 

researchers in various fields.  MAGiC utilizes three open-source toolkits, namely 

OpenFace, dlib, and CMUSphinx; for face tracking, training of face detector and speech 

segmentation, respectively. The improvements in the component toolkits will lead to 

enhancing the performance of MAGiC. The loosely-coupled design of MAGiC to its 

component toolkits intends to reduce compatibility issues with newer versions of the 

component toolkits. 

4.2.6. Ease of Use 

MAGiC has been designed to serve researchers from different research domains. For this 

reason, its design has been based on minimizing the requirement for technical background. 

The required input from the user is video recording and raw gaze data. MAGiC generates 

standard output files (such as .wav and .txt files) to help researchers access data directly 

and to ease the data transfer to statistical software. 
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A technical overview of the component toolkits for face tracking and speech segmentation 

along with the further source code improvements of the toolkits for MAGiC are in Section 

3. Section 4 reports the system requirements, the installation procedure, the phases of the 

software development, the design principles, and the guidelines for using the MAGiC 

interface. In Section 5, the capabilities of MAGiC are illustrated through a demonstration 

of data analysis in a pilot, experimental study. Section 6 concludes the article, and it 

discusses future work to improve MAGiC. 

4.3. A Technical Overview of Components 

In the next two subsections, we explain how face tracking, speech segmentation and 

annotation of segments are conducted by MAGiC by employing its open-source 

components. 

4.3.1. Face Tracking 

Face tracking has been a challenging topic in computer vision. In face tracking, firstly a 

face in a video-frame is detected and then it is tracked throughout the stream. In this 

chapter, we employ a face-tracking toolkit called OpenFace, which is an open-source tool 

for analyzing facial behavior. OpenFace combines out-of-the-box solutions with state-of-

the-art research to perform some tasks including facial-landmark detection, head pose 

estimation, and action unit (AU) recognition. The face-tracking method used in our study 

(and presented in this section) is based on the studies conducted by Baltrušaitis, Robinson 

and Morency (2016) which are also connected to previous ones (Baltrušaitis, Robinson, 

& Morency, 2013; Baltrušaitis, Mahmoud, & Robinson, 2015). 

OpenFace makes use of a pre-trained face detector, trained in dlib10, which is an open-

source machine-learning library written in C++. Max-margin object-detection algorithm 

(MMOD), using Histogram of Oriented Gradients (HOG) feature extraction, was 

employed to train a face detector with a relatively small amount of training data (King, 

2009, 2015). After detecting a face, for detecting the facial landmarks, OpenFace utilizes 

a novel instance of Constrained Local Model (CLM), namely Constrained Local Neural 

Field (CLNF), to handle feature detection problems in complex scenes. The response maps 

are extracted using pre-trained patch experts, and patch responses are optimized with Non-

Uniform Regularized Landmark Mean-Shift (NU-RLMS), which is a novel fitting method 

(seeFigure 15). 

 

10 Dlib C++ Library, http://dlib.net/, retrieved on April 15, 2017. 
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Figure 15: A demonstration of OpenFace methodology, adapted from Baltrušaitis et al. (2013). Here it is 

intentionally limited to two landmarks for illustrative purposes 

The Constrained Local Model (CLM) is composed of three main steps, as described 

below. 

(1) A Point Distribution Model extracts the mean geometry of a shape from a set of 

training shapes. A statistical shape model is built from a given set of samples. Each 

shape in the training set is characterized by a set of landmark points. The number of 

landmarks and the anatomical locations represented by specific landmark points 

should be consistent in successive shapes. For instance, for particular face shape, 

specific landmark points may always correspond to eyelids. Then, in order to 

minimize the sum of squared distances to the mean of a set, each training shape is 

aligned into a common coordinate frame by rotating, translating and scaling. 

Principal Component Analysis is used to pick out the correlations between groups 

of landmarks among the trained shapes. At the end of this step, patches are created 

around each facial landmark. The patches are trained with a given set of face-shapes. 

(2) Patch Expert, also known as local detectors, are used for calculating response 

maps, which represent the probability of a certain landmark that is being aligned at 

point 𝑥𝑖 (Equation 1), from Baltrušaitis et al. (2013). 

𝜋(𝑥𝑖) = 𝐶𝑖(𝑥𝑖; 𝐼),                            (Equation 1) 

where 𝐼 is an intensity image, and 𝐶𝑖  is a logistic regressor intercept with a value 

between 0 to 1 (here 0 represents no alignment and 1 represents perfect alignment).  

Due to its computational advantages and implementation simplicity, Support Vector 

Regressors are usually employed as patch experts.  On the other hand, the CLNF 
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model uses the Local Neural Field approach, which takes the spatial features that 

lead to fewer peaks, smoother response and reduced noise into account. 

(3) Regularised Landmark Mean Shift (RLMS) is the third step of the CLM. It is a 

common method for solving data fitting. It updates the CLM parameters to get closer 

to a solution. An iterative fitting is performed to update the initial parameters of the 

CLM until convergence to an optimal solution is achieved. Adapted from 

Baltrušaitis et al. (2013), the general concept of iterative fitting is defined as  

arg min Δp [𝑅(𝑝0 + ∆𝑝) + ∑ 𝐷𝑖(𝑥𝑖; 𝐼)𝑛
1 ],  (Equation 2) 

where R is a regularization term to degrade complex deformations and 𝐷𝑖 represents 

the misalignment measure for the image 𝐼 at the image location 𝑥𝑖. RLMS does not 

discriminate between confidence levels of response maps. Since outcomes revealed 

that some response maps are noisier than the others, a novel non-uniform RLMS 

weighting mean-shifts is proposed to overcome this issue. 

At the end of the third step, the OpenFace toolkit detects a total of 68 facial landmarks 

(Figure 16). Determining the face boundaries based on facial landmarks instead of a 

rectangle covering the face enables more precise calculations. 

 

Figure 16: A total of 68 landmark positions on a face. 

We extended the OpenFace source code by making a set of improvements, which allowed 

the user to conduct manual AOI annotation, to generate visualizations that employ new 
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input parameters, to build a custom face detector and then use it to track the face with that 

detector and to generate separate output files depending on the input parameters. 

4.3.2. Speech Segmentation 

Speech is a continuous audio stream with dynamically changing and not readily 

distinguishable parts. Speech analysis has been a challenging domain of research, due to 

the difficulty to identify clear boundaries between speech-related units, automatically. 

Speech analysis involves two interrelated families of methodologies, namely speech 

segmentation and diarization. Speech segmentation is the process of separation of the 

audio recordings into units of homogeneous parts, such as speech, silence, and laugh. 

Diarization, on the other hand, is used to extract various characteristics of signals such as 

speaker id, gender, channel type and the background environment (e.g., noise, music, 

silence). MAGiC addresses both methodologies since both segmentation and 

identification are indispensable components of face-to-face conversation. 

We extended the CMUSphinx Speech Recognition System for analyzing recorded speech. 

CMUSphinx is an open-source, platform-independent and speaker-independent speech 

recognition system. CMUSphinx is integrated with LIUM11, an open-source toolkit for 

speaker segmentation and diarization. The speech analysis process starts with feature 

extraction. As features, Mel-frequency Cepstral Coefficients, which collectively represent 

the power spectrum of a sound, are extracted by CMUSphinx functions. Afterwards, the 

speech segmentation, which is based on the Bayesian Information Criterion (BIC), is 

performed (Barras, Zhu, Meignier, & Gauvain, 2006; Chen & Gopalakrishnan, 1998). 

Two passes are performed over the signal for the segmentation. In the first pass, a distance-

based segmentation detects the change points by means of a likelihood measure, namely 

the Generalized Likelihood Ratio (GLR). In the second pass, the system mixes the 

successive segments of the same speaker (Meignier & Merlin, 2010) together. After the 

segmentation, BIC hierarchical clustering is performed with an initial set consisting of 

one cluster per each segment.  At each iteration, ∆𝐵𝐼𝐶𝑖𝑗 value for two successive clusters 

i and j is determined by Equation 3, from Meignier and Merlin (2010), as 

∆𝐵𝐼𝐶𝑖𝑗 =
𝑛𝑖+𝑛𝑗

2
𝑙𝑜𝑔|𝛴| −

𝑛𝑖

2
𝑙𝑜𝑔|𝛴𝑖| −

𝑛𝑗

2
𝑙𝑜𝑔|𝛴𝑗| − 𝜆𝑃,         (Equation 3) 

where |𝛴𝑖|, |𝛴𝑗| and |𝛴| are the determinants of Gaussians associated with the clusters 𝑖, 𝑗 

and (𝑖 + 𝑗),. Here 𝑛𝑖  and 𝑛𝑗 refer to the total lengths of cluster 𝑖 and cluster 𝑗. λ is the 

smoothing parameter to be chosen appropriately to get a good estimator and 𝑃 is the 

penalty factor. ∆BIC values for each successive cluster are calculated and they are merged 

when the value is less than 0. 

 

11 LIUM Speaker Diarization Wiki,  

http://www-lium.univ-lemans.fr/diarization/doku.php/welcome, retrieved on April 15, 2017. 
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As the next step of the speech analysis, the Viterbi decoding is applied for re-

segmentation. A Gaussian Mixture Model (GMM) with eight components is employed to 

represent clusters (the parameters of the mixture are estimated using Expectation 

Maximization). However, the Viterbi decoding may not always determine the segment 

boundaries with high accuracy. This leads to some issues such as too long segments or 

segments that overlap within word boundaries. These issues are minimized by moving the 

segments slightly towards the low energy states and by cutting long segments iteratively 

so as to create segments shorter than 20 seconds. Up to this point, un-normalized features 

preserving background information are employed during segmentation and clustering 

processes. This facilitates to differentiate speakers and assign one and only one speaker to 

each cluster, however, one might need to place the same speaker in multiple clusters. 

GMM-based speaker clustering with normalized features is performed to assign the same 

speaker to the same cluster. GMM iterates until it reaches a pre-defined threshold value. 

Figure 17 shows the workflow of speaker diarization. 

 

Figure 17: Classical process for speaker diarization and segmentation, adapted from LIUM Speaker 

Diarization Wiki Page12 

We extended the CMUSphinx source code and made the following additions: 

CMUSphinx does not generate segments for the whole audio. For instance, it does not 

generate segments for the parts when the speaker could not be identified.  However, those 

non-segmented parts might contain useful information for researchers. Thus, we carried 

out additional development to generate an audio segment from the non-segmented parts 

automatically. To achieve this, we compared the time interval of each successive segment. 

 

12Wiki page of LIUM Speaker Diarization is available under: 

 http://www-lium.univ-lemans.fr/diarization/doku.php/overview 
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If there is a difference between the end of the previous segment and the beginning of the 

next one, we have created a new audio segment that covers this time range. We have also 

added a new functionality for segmenting audio with specified intervals. 

4.4. Framework and Usage 

4.4.1. The Development 

MAGiC is developed as a desktop application in C# programming language and using it 

does not require any programming skills.  The user can select the desired function and set 

the analysis parameters from a graphical user interface. MAGiC comes with detailed help 

pages describing the step-by-step procedure to run each function. Each page specific to a 

function briefly states the purpose of its use, characterizes the input parameters and if the 

parameter is a file, there exists a link to access a sample file, otherwise, the user is supplied 

with a sample value. Moreover, tooltips are created for almost all fields in the interface to 

enhance usability. Prior to running a function, data validation is performed in order to 

ensure the correctness and the consistency of data. If validation fails, user-friendly error 

messages are displayed close to non-validated fields. Similarly, the user is informed of the 

success status. 

Separation of Concerns (SoC) design principle (Reade, 1989) is adopted to achieve high 

cohesion and low coupling between the features. As explained in the previous section, the 

SoC approach enables users to focus on specific processes without employing all 

functionalities of a software program. For instance, MAGiC can be solely used for speech 

segmentation or face tracking. In the following subsections MAGiC’s software 

architecture, system requirements, installation procedure and availability are mentioned. 

4.4.1.1. Software Architecture 

Figure 18 provides an overview of the architecture used in MAGiC. The home screen is 

the main panel of the application. It loads the user interface and initializes the controllers. 

There are four main modules: Speech Analysis, AOI Analysis, Summary, and 

Walkthroughs. The Graphical User Interface (GUI) is stored under the View folder and 

back-end classes are collected under the Controller folder. There is a one-to-one relation 

between the GUI and the related controller class. The AOI Analysis includes OpenFace 

and dlib executable files with dependent libraries. Similarly, Speech Analysis has 

executable files of CMUSphinx in it. All the components of interfaces are members of the 

base user-interface class which is the ParentUI. The home screen implements the 

Navigation Listener interface and the ParentUI has a Navigation Listener as a field. Such 

a structure enables the user to navigate between walkthrough-pages and the related 

function, and vice versa. 
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Figure 18: The Software architecture of MAGiC. 

4.4.1.2. System Requirements 

MAGiC is developed under .Net Framework 4.6 as a Windows Forms application and the 

operating system must be Windows 7 or later.  There are different requirements for end-

users and developers. System requirements for end-users to run MAGiC are as follows: 

(i) .Net Framework 4.6 (or a later version) which needs at least 512 MB Ram and 4.5 GB 

Disk Space, (ii) Visual C++ Redistributable for VS2015 (or later), requires 50 MB of 

available hard disk space, (iii) Java Runtime Environment-8 (or later) supposing that there 

is 128 MB memory, and (iv) MAGiC itself requires 250 MB of free disk space. For users 

who do not plan to make any improvement, these four items will suffice. 
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In order to contribute to the development of MAGiC, the developers should download the 

source code from the GitHub repository13 and open it with VS2015 or with a more recent 

version. The .net Framework 4.6 and Visual C++ Redistributable for VS2015 are 

prerequisites. MAGiC also involves 3rd party toolkits such as dlib, OpenFace and 

CMUSphinx, as introduced in the previous sections. 

4.4.1.3. Installation Procedure 

An installation file is provided for end-users at the GitHub repository. The installation 

first checks whether the system meets the software prerequisites and it installs the missing 

ones in case it is needed. Once the initial requirements have been met, MAGiC  is installed, 

a shortcut for Start menu item is created and MAGiC is launched automatically14. 

An open-source developer can re-deploy the employed 3rd party tools, then complete 

additional developments. CMUSphinx is available as a Gradle package. Among other 

things, the build.gradle file holds the project’s description, version and its dependencies 

to external libraries. The Gradle FatJar plugin allows creating a JAR file with all 

dependencies. It is necessary to copy the generated JAR file (namely sphinx4-core-all-

1.0) to the CMUSphinx under the speech_analysis folder in the parent directory. The 

feature extraction project in OpenFace and the imglab project in dlib are also employed in 

MAGiC.  In order to reflect the OpenFace modifications to MAGiC, the user should copy 

the release version of FeatureExtraction.exe into OpenFaceFiles under the aoi_analysis 

folder in the parent directory. Similarly, changes in the dlib framework can be adapted to 

MAGiC by copying the release version of generated imglab.exe into imglabFiles under 

the aoi_analysis folder in the parent directory. 

4.4.1.4. Availability 

The MAGiC software is licensed under the GNU General Public License (GPL). 

Therefore, the source code of the application is openly distributed and programmers are 

encouraged to study on it and contribute to its development. In addition to MAGiC, we 

also provide particular modified component toolkits (OpenFace for face tracking, dlib for 

the training of a custom face detector, and CMUSphinx for speech segmentation) on 

MAGiC’s GitHub repository. 

  

 

13  MAGiC_v1.0, https://github.com/ulkursln/MAGiC/releases, retrieved on May 11, 2017. 

14 MAGiC App. Channnel, https://www.youtube.com/channel/UC2gvq0OluwpdjVKGSGg-vaQ, 

retrieved on May 11, 2017 

https://www.youtube.com/channel/UC2gvq0OluwpdjVKGSGg-vaQ
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4.4.2. Usage and Modules 

4.4.2.1. The Main Control Panel 

The main control panel shows up after launching MAGiC. It consists of two panels split 

by a collapsible splitter. On the left panel, links to the modules are listed and on the right 

one, all the functions of the module selected from the navigation pane are presented. The 

main workspace-area is under the right panel. The user can create a larger one on the right-

hand side by collapsing the left panel (see Figure 19). 

 

Figure 19: The main panel of MAGiC 

4.4.2.2. The Walkthrough Module 

The main page of the walkthrough module is in the form of a tree structure which 

represents the hierarchical nature of (cf. the right panel in Figure 19). The leaf nodes in 

blue color provide access to the related walkthrough page. Walkthrough pages provide a 

brief description of the corresponding function and step-by-step guidance on how to 

conduct analysis. It is possible to navigate from the walkthrough page to the related 

function and vice versa. 

4.4.2.3. The Speech Analysis Module 

For the sake of usability, the functionalities of each module are presented sequentially. 

Within each module, accordion panels are arranged in accordance with the procedure 

sequence (see Figure 7). For instance, the speech-analysis module consists of four 

consecutive processes: (i) formatting and extraction of audio, (ii) segmentation of audio, 

(iii) time interval estimation and (iv) speech annotation. In case of traveling the sequence 

in reverse order: for annotating speech data gathered from an experiment, time interval of 

an experiment must be specified (iv – iii); time-interval-estimation requires segmentation 

of audio (iii – ii); and at the top, for segmentation, the audio must be extracted from video 

and it must be formatted appropriately (ii – i). Each function produces the output files that 
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might be needed for the next step so that the user does not have to perform all the functions 

in a single session. Also, the user will have the opportunity to examine the outputs 

generated at each step and make further analysis, thus increasing the usage diversity. 

(1)  Formatting and Extraction of Audio: As the first step, the “Extract and Format 

Audio” panel is used to extract an audio file from an input video file in AVI format.  

It also allows formatting the audio for further CMUSphinx analysis. Sphinx4 

requires '16 kHz', '16 bit', 'mono' and 'little-endian' wav files. The user has to select 

a video file and specify the output folder where the extracted and formatted audio 

file will be saved under. Both fields are mandatory and as is the case for all other 

functions, mandatory fields are validated when the operation button is pressed. 

Unless specified as “optional” in GUI, all the fields are mandatory and must be 

entered a value. 

 

Figure 20: A sample interface showing the accordion panels. 

(2)  Segmentation of Audio: As the second step, the “Segment Audio” panel offers 

an interface to segment the audio file into smaller chunks including sub-words and 

pauses. The user has to select the formatted audio file. As the output, audio-

segments and a text file are generated. The text file contains the duration of each 

segment in milliseconds. The audio-segments are named automatically starting from 

zero and incrementing by one, to preserve the sequence information. For instance, 

if the audio is divided into 300 segments, the name of the last segment will be 

299.wav. 

(3)  Time Interval Estimation: As the third step, the “Time Interval Estimation” panel 

can be used for performing two tasks: time interval estimation of an experiment 

session and synchronization of pair recordings. Even though the segmentation is 

completed automatically, a human annotator is still needed to listen to audio-

segments, in order to specify the first and the last segments of an experiment session 

recording. It is a recommended practice to start an experiment session with a 

distinguishable bleep signal to facilitate the identification of the initial segment in 
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the analysis phase.  This panel is also necessary to provide synchronization of 

participant pairs' session recordings. In particular, recordings from different sources 

have to be synchronized to conduct synchronous data analysis in a dyad 

conversation setting. The GUI provides an interface for performing the time-

interval-estimation of either a single participant (or a participant pair session. In the 

case of a single-participant, the user is expected to enter the unique id of the 

participant, select the segments-interval file, which has already been created in the 

previous step, and enter the experiment interval by typing the name of the first and 

the last segment. In the case of a participant pair, the same procedure is repeated for 

both participants. 

When the experiment session is conducted with multiple recording devices, one of 

the major issues is the synchronization of the recordings. A method to ensure 

synchronization is to employ audio alignment software, which synchronizes 

multiple audio tracks. An alternative method is to set and synchronize the internal 

clock of the recording devices over a network by Network Time Protocol. Although 

both solutions work with high accuracy, eye tracker manufacturers do not provide 

synchronization solutions yet. In most cases, the device clocks are set manually, 

causing errors in precision.   

MAGiC overcomes the synchronization problem by following a data-driven 

approach instead of a device-driven approach. It provides a semi-automatic method 

for synchronizing multiple recordings from a participant pair.  In this method, the 

user is expected to specify the beginning of the experiment session by listening to 

the segments, after automatic speech segmentation. The time offset which provides 

synchronization is calculated from the difference in time between the starting 

moments of two device recordings.  In the case of a participant pair, a re-

segmentation option is provided. After synchronization, the user obtains two 

recordings with the same length and processed in the same environment.   

A re-segmentation function is provided as an optional choice. Re-segmentation aims 

at improving segmentation quality by merging information from different 

segmentation processes. This applies to situations in which each participant in a pair 

has his/her own microphone. The closer the microphone is to a participant, the 

cleaner and more accurate the audio recording becomes. The re-segmentation 

process involves selecting a base audio recording, generating a segments-interval 

file, and re-segmenting the base audio recording based on the merged segments-

interval file. 

(4)  Speech Annotation: At the final stage of the analysis, the “Speech Annotation” 

panel involves two sub-panels, namely “Define Speech-Acts” and “Annotation”. 

From the former, the user may select a pre-defined set of speech-act items, devise a 

new speech-act list from scratch, or update a list for the specific analysis. Selecting 

the latter, the user annotates segmented audio files with the pre-defined speech-acts. 

To do this, the user has to upload the list of the speech-acts, the audio-segments and 
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the segments-interval file. The interface embeds a media player control to play audio 

files, which also displays the audio time in milliseconds. The annotation process 

involves listening to the audio file and selecting the appropriate speech-act(s) along 

with the speaker identity from the list. The interface automatically appends a new 

line comprising the speech-act(s), speaker identity and the time-interval that 

corresponds to the speech-act; and then it plays the next audio file. 

4.4.2.4. The Area of Interest Analysis Module 

The AOI Analysis Module consists of three main consecutive steps: (i) face tracking, (ii) 

AOI analysis, and (iii) Review Outcomes. Similar to the Speech-Analysis module, the 

outputs are generated after each step for further analysis. 

(1)  Face Tracking: In the first step, the “Face Tracking” panel offers two sub-panel 

options. These are “Face Tracking with the default detector” (henceforth, the default 

mode) and “Face Tracking with the trained detector” (henceforth, the training 

mode). The default mode employs the default face detector propped by the dlib 

toolkit for tracking the face in the uploaded video. The interface offers an option to 

visualize detected faces during tracking. The user selects a video file as an input and 

specifies an output folder where the output files will be saved. The output file 

options are listed in Appendix C. The success of face detection in the default mode 

is subject to a set of technical challenges, such as the positioning of the light source 

(e.g., sun or lamps). For instance, if the light source is behind the participant, the 

face detection performance is adversely affected. MAGiC provides the user with the 

interface for monitoring the efficiency of face detection through the “Review 

outcomes” panel and the “visualize tracking” option, both of which serve for 

detecting the success ratio of face tracking (the Review Outcomes panel is explained 

in the next section). Whenever the user is not satisfied with the efficiency of face 

tracking in the default mode, the training mode provides the opportunity to design a 

custom face-detector. The training mode is composed of three stages: exporting 

image frames, training and face tracking. The image-frames are automatically 

extracted from a user-specified video, stored in a folder in sequential order, and the 

image names are displayed as a list on the panel. The user then selects a group of 

images from the list and these images are stored in an output folder.  In the training 

stage, the user hits the train button and labels the face in each selected image by 

drawing boxes around (see Figure 14). In the background, a variant of Support 

Vector Machine with a usual C parameter is used for training. The C parameter 

represents the tolerance value to the outliers and its default value is 1. Developers 

may select higher or lower values to avoid overfitting or underfitting (i.e., losing the 

generalization property) by simply changing the parameter given to set_c function 

in the dlib environment. Likewise, developers may try different epsilon values for 

the specification of the risk gap. The default value for epsilon is 0.01. Smaller 

epsilon values yield a more accurate SVM optimization but it will take longer to 

train. The outcome of the training is a customized face-detector. At the last stage, 
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the user tracks faces on face tracking sub-panel and checks if the customized face-

detector is able to detect the faces efficiently. 

(2)  AOI Analysis: The first step in the AOI module was the face tracking step, as 

explained above. The second step is the AOI analysis. The “AOI Analyse” panel 

has two sub-panels: “Pre-process Gaze Data” and “Face as AOI”. The former offers 

an option to complete the missing data in a raw-data file generated by an eye tracker. 

Missing data are mostly due to blinks or temporary problems in the eye tracker 

recording process. The fill-in function fills in the data gaps via linear interpolation. 

The user has the option to specify the maximum gap length to be filled. The user 

also has an option to make drift correction to handle systematic errors in the raw 

gaze data.  The latter, namely “Face as AOI”, can be used for defining the boundary 

of the face and then testing the conversation partner’s gaze direction. The face 

tracking data and the gaze data are synchronized by overlaying a two-dimensional 

landmark file on raw gaze data. MAGiC automatically annotates each image frame 

to identify whether a participant is looking at the interlocutor’s face (viz.  in), or 

away from it (viz.  out). The relative positions of gaze data with respect to the face 

location are also stored. As shown in Figure 21, the image frames are theoretically 

divided into 9 (3x3) AOIs. If the gaze of the participant is inside the interlocutor’s 

face, an e character is assigned as an AOI-label to denote in. Moreover, if the 

participant is looking at the interlocutor’s face, the face area is divided into three 

regions (mouth, nose and eyes) and the region at which the participant is looking is 

stored. On the other hand, if the gaze location is outside the face boundary, 1 of 8 

character values, namely, a, b, c, d, f, g, h, i that corresponds to the gaze region is 

assigned as an AOI-label to denote out. 

 

Figure 21: The AOIs specification. The green dot on the upper left AOI shows the gaze location of 

the conversation partner. 

(3)  Review Outcomes: In the AOI Analysis module, the third step allows the user to 

review the outcomes of the first “Face Tracking” and the second “AOI Analysis” 

steps, as briefly mentioned above. The “Review Outcomes” panel is composed of 

the following sub-panels: “Visualize Tracking”, “Find AOIs Detection Ratio”, 
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“Label AOIs Manually” and “Re-analyze AOIs (considering manually labeled 

AOIs)”. 

(3.1) Visualize Tracking Sub-panel: The interface can display the video file overlaid 

by facial landmarks, AOI-label and gaze point location. There is an option to specify 

and correct systematic drift errors of the eye tracker, another option to specify a 

confidence threshold for facial landmark accuracy, and a third one to visualize a 

specified recording session. 

(3.2) Find AOIs Detection Ratio: This sub-panel indicates the number and the 

percentage of labeled image frames. For this, the user selects the AOIs file, the 

experiment-interval-file, enters the participant id and the frequency of an eye-

tracker. In case the detection-ratio is below the expectations, the user may re-track 

the face in the training mode or label the AOIs manually, as described below. 

(3.3) Label AOIs Manually: The interface for manual labeling provides the user with 

an environment for labelling the AOIs in a fast and efficient way, via a keypad 

(Figure 22). The keypad buttons correspond to the nine AOIs illustrated in Figure 

21. Navigation between the frames is via arrow keys on the keyboard. 

 

Figure 22: AOI labels associated with keypad numbers 

(3.4) Re-analyze AOIs: This panel offers a function for merging automatically 

extracted and manually labeled AOIs. 

4.4.2.5. The Summary Module 

This module allows the user to combine the data obtained in speech and AOI analyzes 

into a single file. Each line of the generated text file corresponds to each frame of video-

recording. It contains time interval in milliseconds, the speech act, speaker identity, AOI-

label of the participant if there is only one or AOI-labels of each participant (for a pair) 

along with the coordinates of the minimum bounding rectangle of the detected faces and 

raw gaze data. 
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4.5. A Pilot Study 

This section reports a pilot study to demonstrate the functionalities and benefits of 

MAGiC. The setting is a mock job interview setting, in which a pair of participants wear 

eyeglasses and conducts the interview. The gaze data and the video data are then analyzed 

by MAGiC. 

4.5.1. Participants 

Three pairs of participants (university students as volunteers) took part in the pilot study 

(mean age 28, SD = 4.60). The task was a mock job interview. The participants were 

assigned the role of either an interviewer or an interviewee and the roles were distributed 

randomly. All the participants were native Turkish speakers and they had a normal or 

corrected-to-normal vision. The participants were not restricted by any time constraints. 

4.5.2. Materials and Design 

At the beginning of the session, the participants were informed about the task. Both 

participants wore monocular Tobii eye-tracking glasses at a sampling rate of 30 Hz with 

a 56°x40° recording visual angle capacity for the visual scene. The glasses recorded the 

video of the scene camera and the sound, in addition to gaze data. The IR-marker 

calibration process was carried out at 100 cm distance to the participant. After the 

calibration, the participants were seated on opposite sides of a table, 100 cm away from 

each other. A beeping sound was generated to indicate the beginning of a session. 

Eight common job interview questions, adopted from Villani, Repetto, Cipresso and Riva 

(2012), were presented on a sheet of paper to a participant taking the role of an interviewer.  

The interviewer was instructed to ask the given questions, and also to evaluate the 

interviewee for each question by using paper and pencil. 

4.5.3. Data Analysis 

We conducted data analysis using the speech analysis module, the AOI analysis module 

and the summary module in MAGiC. As a test environment, a PC with an Intel Core i5 

2410M CPU at 2.30 GHz with 8 GB RAM, running Windows 7 Enterprise (64 bit) was 

used. 

4.5.3.1. Speech Analysis 

Firstly, the “Extract and Format Audio” function was employed to extract the audio and 

then to format the extracted audio for subsequent analysis. This function was run 

separately for each participant in the pair. Therefore, in total six .wav files were created.  

Each run took 1 to 2 seconds. Secondly, the formatted audio files were segmented one by 

one. Audio-segments and a text file were created. The text file contained the id number 

and the duration of each segment. The number of segments varied depending on the length 

and the content of the audio (see Table 7). Each run took 1 to 2 seconds. 
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Table 7: Audio length and number of segments for each participant’s recording. 

               Interviewer  Interviewee 

 Audio Length 

(m:ss.ms) 

# Segments Audio Length 

(m:ss.ms) 

# Segments 

Pair-1 3:46.066 170 3:57.000 176 

Pair-2 5:25.066 120 5:40.000 200 

Pair-3 5:28.000 246 5:09.000 208 

 

Thirdly, time-interval estimation, synchronization and re-segmentation were performed 

for each pair through the “Time Interval Estimation” panel. At the beginning, we listened 

to audio-segments to specify the start and the end of the segments of the recording 

sessions. Whenever needed, the re-segmentation process guaranteed time synchronization 

of the segments by utilizing synchronization information and merging segments from both 

recordings. After the re-segmentation, we ended up with equal-duration of the session for 

participants within each pair. Table 8 lists the experiment duration in milliseconds and the 

number of segments produced after re-segmentation.  Each run took 1 to 2 seconds. 

Table 8: Experiment duration and corresponding segment-numbers 

 Exp. Duration 

(ms) 

# Segments 

Pair-1 182,410 261 

Pair-2 305,420 282 

Pair-3 282,620 406 

 

Finally, speech annotation was performed. A list of speech-acts was defined as the first 

step of the analysis. Below is a list of predefined speech-acts: 

- Speech 

- Speech Pause  

- Thinking (e.g., “uh”, “er”, “um”, “eee”, “for instance”) 

- Ask-Question 

- Greeting (e.g., “welcome”, “thanks for your attendance”) 

- Confirmation (e.g., “good”, “ok”, “huh-huh”) 

- Questionnaire Filling (Interviewer filling in questionnaire) 

- Pre-Speech (i.e., warming up the voice) 

- Reading and Articulation of Questions 

- Laugh 

- Signaling the end of the speech (e.g., “that is all”) 
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The next step was the annotation process.  This process involved selecting the Speech-

act(s) and hitting the “annotate” or "annotate and play next" icons placed next to the 

speech-act list. At each annotation, a new line was appended and displayed, which 

contained the relevant segment's time-interval, the associated participant if any and 

selected speech-act(s). This step was repeated for all three pairs of participants. Each run 

took 10 to 20 minutes, depending on the session-interval. 

4.5.3.2. AOI Analysis 

All six videos were processed with a default-mode face detector. The tracking processes 

produced two-dimensional landmarks on the interlocutor’s face image. This process took 

4 to 10 minutes per video, depending on its length.  Then, the gaps with at most two frames 

duration in the gaze raw-data file were filled in by linear interpolation. The raw data file 

included the columns for the frame number, gaze point classification (either Unclassified 

or Fixation), and x and y coordinates. The processed data comprised 2% of the total gaze 

raw-data (see Table 9). The gap-filling process took less than a second per pair. 

Table 9: The number and the ratio of the filled gaps for each participant’s raw gaze data. 

 Interviewer/Interviewee 

 Number of  

filled gaps 

Ratio of  

filled gaps (%) 

Pair-1 146 / 236 2.15 / 3.32 

Pair-2 171 / 236 1.75 / 2.31 

Pair-3 157 / 335 1.6 / 3.61 

 

After the gap-filling process, we performed AOI detection by setting the parameters for 

eye tracker accuracy and image resolution. In the present study, the size of the captured 

images during face tracking was 720 × 480 pixels, while the eye tracker image-frame 

resolution was 640 × 480. The eye-tracking glasses had a reported degree of accuracy of 

half a degree of visual angle. The recording angles of the built-in scene camera of the eye-

tracking glasses were 56 degrees horizontal and 40 degrees vertical. The seating distance 

between the participants was approximately 100 cm. The corresponding eye tracker 

accuracy was 4.84 pixels in horizontal and 5.34 pixels in vertical. The AOI detection took 

a couple of seconds. After AOI detection, the “Find AOIs Detection Ratio” panel was 

used for reviewing the AOI detection accuracy. Table 10 lists the number and the ratio of 

image-frames that AOI detection failed due to undetected face. The results indicate that 

higher undetected-face rates were observed at the interviewers’ recordings. Nevertheless, 

face detection was performed with an average success rate over 90%. 
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Table 10: The number and the ratio of image-frames in which face could not be detected. 

 Interviewer/Interviewee 

 Number of  

undetected 

Ratio of  

undetected (%) 

Pair-1 570 / 173 10.4 / 3.16 

Pair-2 2113 / 488 23.1 / 5.33 

Pair-3 1251 / 117 14.8 / 1.38 

 

Another reason for AOI detection failure is the absence of gaze data. Table 11 shows the 

ratio of undetected AOIs due to the absence of gaze data. 

Table 11: The number and the ratio of image-frames for which raw gaze data were absent 

 Interviewer/Interviewee 

 Number of  

absent data 

Ratio of  

absent data (%) 

Pair-1 3237 / 392 59.1 / 7.16 

Pair-2 4762 / 1050 52.0 / 11.5 

Pair-3 4010 / 1732 47.3 / 20.4 

 

The failure in AOI detection on the interviewer’s side is about 50% or more owing to the 

experimental setting, which requires the interviewer to look at the questions to read them. 

This is a common situation that experiment designers face frequently in dynamic 

experiment settings.  MAGiC’s interface allows the user to detect the source of the 

problem through the “Visualize Tracking” panel. The panel interface displays the 

recording by overlaying the detected facial landmarks, raw gaze data and gaze annotation 

(looking at the interlocutor’s face, i.e., in, or looking away from the interlocutor’s face 

i.e., out) on top of the video recording for each frame, as shown in Figure 23: An image 

taken during the visualize-tracking process.. 
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Figure 23: An image taken during the visualize-tracking process. 

Our analysis of the scenes through the Visual Tracking panel revealed that the missing 

raw-gaze data originate from the interviewer’s reading and articulation of the questions as 

well as the evaluating process of the interviewee’s response using paper and pencil. This 

might be expected since the glasses lie outside the field of view of the interviewer while 

looking at the notebook (Figure 24). This situation exemplifies the practical difficulties 

that researchers face when conducting experiments in dynamical environments.  To cope 

with these situations, the user may use MAGiC's manual-labeling function. Our manual 

annotation took 15 to 20 minutes per pair, depending on the length of the video and the 

number of missing AOI-labels. 

 

Figure 24: An image-frame captured while the interviewer was articulating a question. 

The final step in the AOI-analysis was conducted by running the re-analyze and the find-

detection ratio function. The re-analysis step automatically merged the detected AOIs with 
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the manually extracted AOI-labels. The find-detection ratio function was run to compare 

the detection ratio with the previous outcomes. Table 12 shows face-detection and gaze-

detection accuracy for the interviewer’s recordings.  The results reveal an improvement 

of more than 30% compared to the previous analysis steps (cf. Table 10 and Table 11). 

Table 12: The number and the ratio of the image-frames in which face and gaze could not be detected 

Id #undetected 

face 

Ratio of undetected 

face (%) 

#undetected 

gaze 

Ratio of undetected 

gaze (%) 

1 4 0.07 1508 27.55 

2 38 0.41 1292 14.10 

3 5 0.06 1143 13.48 

 

4.5.3.3. Summary 

The data obtained in speech and AOI analyses were merged into a single summary-file 

and using it, we calculated the percentages of gaze locations, such as in-out, AOIs, speech 

acts, as well as the mutual gaze behaviors of the conversation pairs. The analyses finally 

revealed information about the distribution of interlocutor’s gaze locations. The findings 

showed a tendency of more frequent gaze aversion on the right side, especially to the right-

bottom (Figure 25). 

 

Figure 25: The distribution of gaze behavior with relative location to interlocutor’s face. At 21.7% of the 

sessions participants looked at the interlocutor’s face. The bottom left corner was the most sighted region 

with 29.6%. 

The rightward shifts are usually associated with verbal thinking, whereas the leftward 

shifts are usually associated with visual imagery (Kocel, Galin, Ornstein, & Merrin, 1972).  

On the other hand, recent studies report that the proposed directional patterns do not 

consistently occur when a question elicited verbal or visuospatial thinking. Instead, the 

individuals are more likely to avert their gaze while listening to a question from their 

partner (see Ehrlichman & Micic, 2012, for a review). 

A further investigation of the mutual gaze behavior of the conversation pairs and speech 

acts was conducted by a two-way ANOVA. The speech-acts had eleven levels (Speech, 
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Speech Pause, Thinking, Ask-Question, Greeting, Confirmation, Questionnaire Filling, 

Pre-Speech, Reading Questions, Laugh and Signaling the End of the Speech) and the 

mutual gaze behavior had four levels (Face Contact, Aversion, Mutual Face Contact, 

Mutual Aversion). 

The analysis with normalized gaze distribution frequency revealed a main effect of gaze 

behavior, F(3,72) =58.3, p<.05. The Tukey post hoc test was performed to establish the 

significance of differences in frequency scores with different gaze behavior and speech-

acts. It revealed that the frequency of Gaze Aversion (M=0.5, SD=0.12) was significantly 

larger than the frequency of Face Contact (M=0.1, SD=0.19 , p<.05), the frequency of 

Mutual Face Contact (M=0.02, SD=0.06, p<.05), as well as the frequency of Mutual 

Aversion (M=0.38, SD=0.15, p<.05). Moreover, the frequency of Mutual Aversion was 

significantly larger than the frequency of Face Contact (p<.05) and the frequency of 

Mutual Face-Contact (p<.05), while there was no significant difference between the 

frequency of Face Contact and the frequency of Mutual Face Contact (p=0.31). 

Finally, the interaction between speech-acts and gaze behavior was investigated. The 

results indicated that when the participants were thinking, there was a significant 

frequency difference between the frequency of Mutual Aversion (M=0.58, SD=0.07) and 

the frequency of Face Contact (M=0.03, SD=0.05, p<.05), as well as a significant 

difference between the frequency of Mutual Aversion and the frequency of Mutual Face 

Contact (M=0.01, SD=0.02, p=.02). 

4.6. Usability Analysis of MAGiC 

This section reports a usability analysis of the MAGiC framework. For the analysis, the 

AOI Analysis interface and the Speech Analysis interface were randomly assigned to a 

total number of eight participants. The participants performed data analysis using publicly 

available sources (see Supplementary material15) The usability analysis was conducted in 

three steps, as described below: 

i) Perform the analysis manually,  

ii) Perform the analysis by using MAGiC,  

iii) Assess the usability of MAGiC using a 7-point scale ISO 9241/10 questionnaire 

(see Appendix D).  

 

We recorded the time spent to execute data analysis, and then compared it with the average 

duration when the participants performed the same analysis manually. When manual 

 

15  See the MAGiC App Channel under Youtube, 

https://www.youtube.com/channel/UC2gvq0OluwpdjVKGSGg-vaQ, and MAGiC App Wiki Page under 

Github 

https://www.youtube.com/channel/UC2gvq0OluwpdjVKGSGg-vaQ
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annotation is replaced by MAGiC, in the AOI analysis, the mean duration to annotate a 

single frame decreased from 29.1 seconds (SD=22.7) to an average value of 0.09 seconds 

(SD=0.02); and in the speech analysis, the mean duration for a single annotation decreased 

from 44.5 seconds (SD=8.8) to an average value of 7.1 seconds (SD=1.4). The Usability 

test scores are plotted in Figure 26. 

 

Figure 26: Usability Scores by function. All of the usability metrics were scored higher than the average. 

4.7. Conclusion 

In the present chapter, we introduced an environment, namely MAGiC, that allows 

researchers to analyze the gaze behavior of participants in a conversation. Human-Human 

conversation settings are usually dynamic scenes, in which the conversation partners 

exhibit a set of specific gaze behavior, such as gaze contact and gaze aversion. MAGiC 

detects and tracks the interlocutor’s face in a video recording, automatically. Then it 

overlays gaze location data over the face to detect face contact and gaze aversion behavior. 

It also incorporates speech data into the analysis by means of providing an interface for 

annotation of speech-acts.  

MAGiC facilitates the analysis of dynamic eye-tracking data by reducing the annotation 

effort and the time spent for frame-by-frame analysis of video data. Its capability for 

automated multimodal (i.e., gaze and speech) analysis makes MAGiC advantageous over 

error-prone human annotation. The MAGiC interface allows researchers to visualize face 

tracking process, gaze-behavior status and annotation efficiency on the same display.  It 

also allows the user to train the face tracking components manually by providing labeled 

images.  
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The environment has been developed as an open-source software tool, which is available 

for public use and development. MAGiC has been developed by integrating a set of open-

source software tools, in particular OpenFace for analyzing facial behavior, dlib for 

machine learning of face tracking and CMUSphinx for the analysis of recorded speech; 

and by extending their capabilities further for the purpose of detecting eye movement 

behavior, and for annotating speech and gaze data simultaneously.  MAGiC’s user 

interface is composed of a rich set of panels, which provides the user with an environment 

to conduct a guided, step-by-step analysis. 

MAGiC is able to process data from a single eye tracker or a dual eye-tracking setting. 

We demonstrated MAGiC’s capabilities in a pilot study, which was conducted in a dual 

eye-tracking setting.  We described MAGiC’s data analysis capabilities by describing the 

analysis steps on the recorded data in the pilot study.  We intentionally employed a low-

frequency eye tracker, with relatively low video quality in a low-illuminated environment, 

as these are typical real environment challenges that affects the face tracking capabilities.  

Our analysis revealed that MAGiC is able to exhibit acceptable success ratio in its 

automatic analyses under those challenging conditions, with an average AOI labeling (i.e., 

face contact and gaze aversion detection) efficiency of 80%. Likely improvements in eye-

tracking recording frequency, eye-tracking data quality, and image resolution of video 

recordings have the potential to increase the accuracy of MAGiC’s outputs. We also note 

that MAGiC’s speech analysis component, namely CMUSphinx offers several high-

quality acoustic models, although there is no pre-build acoustic model for Turkish. Despite 

this challenge, MAGiC returned successful results for speech analysis. The speech-act 

annotation also helped us to overcome speech segmentation issues by providing sub-

segments for speech segment intervals.  

All the data analyses were completed in approximately two hours for the three pairs of 

participants.  Our estimations reveal that the time and effort that would have been spent 

on manual frame-by-frame video analysis and speech segmentation is much more, in 

addition to their disadvantage due to human annotator errors. 

MAGiC is in its first version. Our future work will include making improvements in the 

existing capabilities of MAGiC, as well as developing new capabilities.  For instance, the 

face-detection ratio may be increased by employing recently-published OpenFace 2.0. 

Besides, in its current version, MAGiC sets an AOI-label on the interlocutor’s face image. 

We plan to expand this labeling method so that it could processes other objects, such as 

the objects on a table. This will expand the domain of use of MAGiC into a broader range 

of dynamic visual environments which are not limited to face-to-face communication. 

However, this development would require training a detector for the relevant objects, 

which is a challenging issue for generalization of the object recognition capabilities. 

Moreover, the face-tracking function of MAGiC already makes it possible to extract facial 

expressions, based on the Facial Action Coding System (FACS). As a further 

improvement, MAGiC may automatically summarize facial expressions during the course 

of a conversation.  
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Finally, for speech analysis, MAGiC provides functions for semi-automatically 

synchronized recordings, in its recent version. Further development of MAGiC will 

address to improve its synchronization capabilities; its capability to transcribe speech into 

text to train speech-act annotation with pre-defined speech acts and to automate 

subsequent annotations.  We believe that MAGiC has a chance to take advantage of being 

an open-source tool for behavior research, and expect further development from the 

community, in addition to our plans for its development. 
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CHAPTER 5 

 

5.  ANALYSIS OF GAZE AND SPEECH IN FACE-TO-FACE INTERACTION 

The design and analysis of the second experiment were updated based on the experience 

gained from the pilot study. Similar to the previous one, in this chapter, materials, 

methods, and data analysis steps of the study were summarized. This time we deepened 

speech analysis, not only by improving tag set used for speech annotation but also by 

adopting an alternative annotation method, namely dialogue-act annotation. 

5.1. Materials and Design 

5.1.1. Participants 

Seven professional interviewers, 4 female (mean age= 33.8, SD=4.72) and 3 male (mean 

age= 35.7, SD=0.58), with the mean age of 34.6 (SD=3.51); and 28 interviewees, 14 

female (mean age=25.1, SD=2.57) and 14 male (mean age=25.4, SD=2.68), with the mean 

age of 25.3( SD=2.58) took part in the study. Interviewers interviewed with four 

participants on average. Participants in each pair did not know each other beforehand. All 

the participants were native Turkish speakers and had a normal or corrected-to-normal 

vision. (see Appendix E for detailed information about the pairs). 

5.1.2. Apparatus 

Both participants in a pair wore monocular Tobii eye-tracking glasses, which had a 

sampling rate of 30 Hz with a 56°×40° recording visual angle capacity for the visual scene. 

The glasses recorded the video of the scene camera and the sound, in addition to gaze data. 

The threshold for the accuracy of IR-marker calibration process was 80%. Interviewers 

read the questions and evaluate the interviewee’s response on a Wacom PL-1600 15.6 

Inch Tablet which enables users to interact with the screen by using a digital pen. 
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5.1.3. Procedure 

At the beginning of the experiment, participants were informed about the task. 

Additionally, in order to motivate interviewees for an interview, we asked them to think 

of a job-position that they were interested in. The experimental protocol was the same as 

the pilot study, (see Figure 3). Besides, interviewers used a digital pen and a Wacom 

Tablet placed vertically on the table, instead of paper and pen. Unlike the pilot study, this 

time, the room was uniformly illuminated and the objects all around were diminished for 

a less noisy background. Also, there was no time limit. Interviewers were free to ask 

further questions if they think it was necessary. 

5.2. Data and Analysis 

We excluded the data of three pairs for which the gaze data collected during a session is 

less than 70%. There were similarities with the analysis of the pilot study. Additional 

improvements were the followings: (i) We employed MAGiC in many steps of gaze and 

speech-tag set analysis, (ii) we extracted face contact as well as gaze aversion via a newly 

developed application, (iii) we reviewed and updated the proposed speech-tags, (iv) as 

well as speech-tag set annotation, we annotated speech with an alternative dialogue-act 

model and employed Praat for marking time intervals for words, (v) finally, we developed 

computational models by using either speech-tag set or dialogue-act annotations. 

5.2.1. Speech-tag Set Analysis 

“Extract and Format Audio” function of MAGiC was run to extract audio-stream from the 

video files obtained from each participant’s recordings and to convert the audio into 16 

kHz, 16 bit, mono and little-endian format (for command see Chapter 3 - Data and 

Analysis). 

5.2.1.1. Segmentation and Synchronization 

As the first step, the “Segment Audio” function of MAGiC was run to segment the audio 

file into smaller chunks including sub-words and pauses. Audio-segments and a text file 

that contained the id number and the duration of each segment were generated for each 

audio-stream. The mean duration of the recordings was 09:41.543 (SD=04:05.418) (in 

mm:ss.ms format). 

Then, in order to determine session intervals, we listened to audio-segments and identified 

the start and the end of each session.  Next, “Time Interval Estimation” function of Magic 

was run to provide synchronization of pair recordings.  Lastly, we re-segmented 

synchronized pair recordings by merging segmentation information of each participant in 

a pair in order to improve segmentation quality. The number of segments varied depending 

on the length and the content of the audio (M=737.4, SD=414.1), see Appendix F 
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5.2.1.2. Annotation 

At the final stage of Speech-tag set analysis, we firstly defined speech acts by using the 

related MAGiC function. The speech-tag list is given as follows. 

Speech: Includes the speech itself. It is a type of commissive or declarative speech-

act. 

Speech While Laughing: We suppose that it might be different from regular 

speech, regarding gaze behavior.  That is the reason for which we added this item to 

the list. 

Asking a Question: Speaker request for information. It is a type of directive speech-

act. 

Confirmation: Act of verifying or making something certain. It is a type of 

representative speech-act. 

Pre-Speech: The non-speech instance which includes the silence before the speech 

and the sounds for warming up the voice. 

Speech Pause: Includes the pauses during the course of speech. 

Micro Pause: Represents gaps up to 200 ms. We add this item because it was 

different from Speech Pause, as proposed by Heldner and Edlund (2010). 

Thinking: We name the conversation segment as thinking when it included filler 

sounds, such as uh, er, um, eee, and drawls – the nonphonemic lengthening of 

syllables. 

The Repetition of Question: We suppose that it might be different from the 

instances of Speech and Thinking, regarding gaze behavior, due to the fact that the 

participant who repeats the question is both thinking about the question and 

confirming whether understood the question correctly. 

Signaling End of Speech: The conversation segments that include phrases 

signifying the end of the speech, such as that’s all, were annotated with this item. 

Questionnaire Filling: The interviewer evaluates the interviewee after each 

question by looking at the monitor and using a digital pen. This category is specific 

to interviewers. 

Greeting: An action of giving a sign of welcome or to express pleasure. It is a type 

of expressive speech-act. 
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Read Question: Interviewers ask a question by reading from the monitor. We 

distinguish asking a question from reading it because looking at the monitor would 

obviously affect the gaze behavior of an interviewer. This category is specific to 

interviewers 

Laugh: It is generally a sign of joy or positive feedback. 

Later on, we annotated segments of each session by using the “Annotation” interface of 

MAGiC. 

5.2.2. Dialogue-act Analysis 

Since we conducted an experiment with two participants, dialogue act annotation might 

be a good alternative during the speech analysis. We employed ISO 24617-2 standard for 

this purpose, which was lastly updated in September 2017. Dialogue act annotation is a 

process that involves the following steps: (i) segmentation of dialogue into grammatical 

units that have a communicative function and a semantic content; (ii) assigning of 

communicative function labels to each segment, see Figure 2 and Table 3 for the entire 

list of communicative functions (Bunt, 2012; Bunt, Petukhova , & Fang, 2017). 

5.2.2.1. Transcription 

We transcribed text of each session into a file by listening audio-stream of both 

participants in a pair separately. We created a single document for each session. We first 

opened a Google Document and enabled speech to text feature, then started to articulate 

audio while listening to the interviewee’s audio-stream. After that, we listened to the same 

recording once more so as to add non-verbal vocalizations and punctuation.  

We added non-verbal vocalizations as it was proposed in the dialogue act manual 

(Augmented Multiparty Interaction Consortium (AMI), 2005) and related previous study 

(Trouvain, & Truong, 2012). Non-verbal vocalizations might be a critical clue while 

selecting dimension, communicative function and qualifier. Therefore, it is necessary to 

consider them in the segmentation and annotation phases. The list of non-verbal 

vocalizations that we added in the transcribed text is given below: 

Unfinished Word: Depending on the context, it might be a member of either Self-

correction, Stalling or Retraction. 

Filler Sound: Such as uh, er, um, eee. It is a member of Stalling. 

Confirmation Sound: Such as hıhı, hımm. It is a member of either Agreement or 

Auto-Positive. 

Laughing While Speech: Sentiment qualifier might be joy. 
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Laugh: It might be a member of Auto-positive. In addition, sentiment qualifier 

might be joy. 

Drawls: The nonphonemic lengthening of syllables. It is a member of Stalling. 

Warm-up: The sounds for warming up the voice. It is a member of Turn Take or 

Pause. 

Breathing noise: It might be a member of Stalling or Turn-Take. 

Then, while we were listening to the interviewer’s audio-stream for the same pair, we 

completed missing words in the transcription text file of a session. Thus, we reviewed the 

transcription of a session twice in this phase. Lastly, we divided the transcription text file 

into two separate files based on the source. As a result, at the end of the Transcription 

phase, two files per session were created in total, one for the interviewer’s transcription 

and other for the interviewee’s. The workflow of the transcription phase is presented in 

Figure 27 below. 

 

Figure 27: The workflow of transcription phase  
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5.2.2.2. Time Intervals and Synchronization 

Secondly, time intervals of each word were marked by using Praat program16. Three 

students took part in this study and 16716 words in 15 sessions were processed in total. 

We selected 15 sessions by giving priority to longer ones where communication, and 

hence dialogue acts and RRs were more frequent.  

Praat is a free application for speech analysis in phonetics. It has lots of functions for 

speech analysis but we employed only the “Transcribing speech with Praat function”. As 

we have already transcribed audio-stream, the word or non-word vocalization was copied 

from the transcription file and pasted into the related area in an interface. Then, the time 

interval of a word was specified by marking the beginning and the end. As an initial 

process, we specified the ending time of the beeping sound and marked it as beginning of 

a session. We did the same for both interviewer’s and interviewee’s audio-stream. Then, 

time offset to provide synchronization was calculated based on the time difference 

between the starting moments of the audio streams of interviewer and interviewee in the 

same pair. 

Even though we reviewed the transcript text twice in the previous phase, there would still 

be some missed words or non-word vocalizations. In such cases, the transcription file was 

updated with the missing word and/or non-word vocalization. In addition to that, after 

each word was processed, a controller checked if it was necessary to update the time-

intervals of words and transcribed texts. Thus, the transcription file was reviewed four 

times in total since its creation and word-intervals were checked twice. 

Lastly, we merged the transcription files of the interviewer and interviewee in a session. 

As a result, we are left with a single transcription file per session at the end of this phase. 

The workflow is presented in Figure 28 below: 

 

16 For detailed information about Praat:  http://www.fon.hum.uva.nl/praat/ 
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Figure 28: The workflow for generating final version of transcriptions 

5.2.2.3. Segmentation and Annotation 

We segmented speech utterances into dialogue act units. As proposed by Prasad and Bunt, 

(2015), dialogue act units were determined based on the meaning rather than the syntactic 

features. Since we were investigating the relation between dialogue act units and gaze 

behavior which was able to change quite fast, we specified dialogue-act units in smaller 

intervals that differed from the previous and the subsequent dialogue-act units in terms of 

communicative function, qualifiers and RRs.  

Before starting the annotation, we studied the ISO 24617-2 standard, its revised version 

and the manual of annotation (Augmented Multiparty Interaction Consortium (AMI)., 

2005; Bunt, Kipp, & Petukhova, 2012; Bunt et al., 2017; ISO, 2012). Furthermore, we 

reviewed the sample annotations given in DialogBank (Bunt et al., 2018). DialogBank 

was developed by Tilburg University and contains a collection of dialogues following the 

ISO 24617-2 standard. After that, based on the information obtained from these sources, 

we created three yes-no decision trees17 to provide a tool for assigning the (i) Dimension 

and Communicative Function, (ii) Certainty Qualifier and, (iii) Conditionality Qualifier. 

They were prepared in Turkish as they were created for the annotations of dialogues in 

Turkish. 

 

17 Available under https://github.com/ulkursln 

https://github.com/ulkursln
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A decision tree is a flowchart like diagram which represents the various outcomes of a 

series of possible decisions. A primary advantage of using a yes-no decision tree is that it 

is easy to follow. A decision tree has three main parts: root node, leaf nodes, and branches. 

The root is the starting point of a tree. The root and leaf nodes prompt the user to answer 

to a yes-no question. Branches consist of arrows connecting nodes from questions to 

answers.  

Even though ISO 24617-2 supports RR annotation, it does not specify any particular set 

for RR. Thus, we employed another standard recommended by ISO 24617-2 for the 

annotation of discourse relation. ISO 24617-8, also known as ISO DR-Core, was proposed 

as an international standard for the annotation of discourse relations (ISO, 2016; Bunt & 

Prasad, 2016; Prasad & Bunt, 2015). It provides a mapping of the relations among the 

existing annotation frameworks, including PDTB to the ISO DR-Core. This mapping 

enabled us to study previously annotated discourses following the PDTB framework. For 

instance, we benefited from the TED-Multilingual Discourse Bank, (Zeyrek et al., 2019). 

They followed the principles of PDTB and annotated TED-Talks in six languages 

including Turkish. In order to get more insight into discourse annotations in Turkish, we 

reviewed their annotations with PDTB Annotator, which is a tool for annotating discourse 

relations (Lee, Prasad, Webber, & Joshi, 2016). 

ISO DR-Core proposed the markup language DiAML (Dialogue Act Markup Language) 

with the representation format using XML. Instead of DiAML-XML format, which is 

computer-friendly, we adopted an alternative one, human-friendly tabular representation, 

namely DiAML-MultiTab representation. According to DiAML-Multitab representation, 

an annotator has to assign the unique ID to each dialogue act. Moreover, if there is a 

functional or feedback dependence between two dialogue acts, intending to represent this 

relation, the ID of the preceding dialogue-act should be referenced by the succeeding one. 

Similarly, in case there is a RR between two dialogue-acts, the dialogue act which is the 

first argument of the RR, should be referenced by the other one. We developed an excel 

macro18 to automatize the process of assigning unique ID’s and updating references. 

Automation minimizes the error rate and improves performance. Suppose that you have 

made an update on the DiAML-MultiTab excel, for instance, you have added a missing 

dialog-act unit. In such a case, you would have to update all dialogue-act IDs and 

references accordingly, right after the line inserted. Since the excel macro took care of this 

process we did not perform any manual update. As a result, a single excel file in DiAML-

MultiTab format was created for each session, at the end of this phase. The workflow is 

presented in Figure 29. 

 

18  It will be available under https://gist.github.com/ulkursln 

https://gist.github.com/ulkursln
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Figure 29: The workflow of segmentation and annotation 

5.2.3. Gaze Analysis 

We first exported the video from recordings by running the corresponding function of 

Tobii Studio. We obtained 56 video-streams for 28 pairs of participants. Tobii Studio 

supports AVI file format for movies. We converted AVI files to WMV before continuing 

analysis. 

5.2.3.1. Face Detection 

We run “Face Tracking with the default detector” function of MAGiC. Then, we extracted 

Area of Interest (AOI) labels corresponding to the frame-image along with the input 

parameter: (i) 2D landmarks of faces and (ii) linearly interpolated raw gaze data. We set 

the following parameters for AOI extraction function. 
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 The size of the captured images during face tracking was 720 × 480 pixels, while 

the eye tracker image-frame resolution was 640 × 480. 

 The eye-tracking glasses had a reported degree of accuracy of half a degree of 

visual angle. The recording angles of the built-in scene camera of the eye-tracking 

glasses were 56 degrees horizontal and 40 degrees vertical.  The seating distance 

between the participants was approximately 100 cm. The corresponding eye tracker 

accuracy was 4.84 pixels in the horizontal direction and 5.34 pixels in the vertical 

direction. 

After that, in order to interpolate missing gaze data, first the scaling factor was calculated 

via Equation 4, then the location of the first sample after gap was multiplied by the scaling 

factor, and lastly the result was added to the location of the last sample before the gap. 

The max gap length that would be filled with interpolation was chosen to be shorter than 

a normal blink which was 75 ms as proposed by previous studies. (Benedetto et al., 2011; 

Komogortsev, Gobert, Jayarathna, Koh, & Gowda, 2010; Ingre, Akerstedt, Peters, Anund, 

& Kecklund) 

𝑠𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 −  𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑔𝑎𝑝

𝑡𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑔𝑎𝑝  −  𝑡𝑡𝑖𝑚𝑒𝑠𝑎𝑚𝑝 𝑜𝑓 𝑓𝑖𝑟𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑔𝑎𝑝
, 

(Equation 4, taken from Olsen, 2012) 

Then, we monitored the efficiency of face detection through the “Review Outcomes” 

panel. The “Find AOIs Detection Ratio” function gave the number and percentage of 

extracted AOI labels in frame-images. Furthermore, we trained a custom detector for the 

video-stream in case more than 30% of frame-images could not be assigned to an AOI-

label.  Then, we re-run the face-tracking function but this time with the trained detector. 

Again, we monitored the performance of face tracking and continued the analysis with the 

AOI labels which got the higher percentage rate, see Table 13. 

Table 13: Performance of face-tracking with a trained custom detector 

 #Face Detection 

<70% 

#Trained detector 

better 

#Default detector 

better 

Interviewer 2 1 1 

Interviewee 11 11 0 

 

The detection of AOI-labels failed due to undetected faces and/or the missing gaze data. 

Eventually, we run the “Assign AOIs Label” function of MAGiC which enabled us to 

assign AOI labels to the frame-images manually. We assigned or updated the AOI labels 

for the following cases: 

 

https://pdfs.semanticscholar.org/66cd/ac4b380eabb9de3b25c7922c8de92d8d6cae.pdf
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 The face of the interlocutor was on frame-image, yet it could not be detected 

automatically. 

 The face of the interlocutor was on frame-image, but it was not detected correctly.  

 The face of the interlocutor did not exist for that particular frame-image. This 

happens especially when an interviewer was looking at the monitor while evaluating 

the interviewee or reading the question. In such cases, if we already knew the 

relative position of an interviewee with respect to the monitor, we easily inferred 

AOI –label. 

Lastly, after reviewing and updating the extracted AOI labels manually, we re-run “Find 

AOIs Detection Ratio” function and eliminated three pairs that had less than 70% of the 

assigned labels (the workflow is illustrated in Figure 30). Hence, we continued speech-tag 

set analysis with the remaining 25 pairs. 

5.2.3.2. Gaze Behavior Detection 

In the previous phase, we ended up with AOI labels corresponding to each frame-image. 

As mentioned in the MAGiC chapter, 1 of the 9 characters from a to i was assigned as an 

AOI-label. If the participant was looking at the face of the conversation partner, AOI-label 

would be e, otherwise it would be one of the eight remaining characters. At the beginning 

of this phase, we matched the label e with face contact and the other labels with gaze 

aversion. Currently, there is no commonly accepted method for fixation identification in 

dynamic scenes (Munn et al., 2008; Srinivasan et al., 2014). 

 



 

 

 
 

Figure 30: The workflow for selecting  extracted AOIs with the better detection rate

8
8
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In the present study, in line with the literature, we followed the consequent steps, as 

illustrated in Figure 32. In case the duration threshold was set too high, actual fixations 

might be missed. On the other hand, if it was set too low, false fixations might be present 

(Camilli, Nacchia, Terenzi, & Di Nocera, 2008). As recommended by Manor and Gordon 

(2003), we determined the minimum fixation duration as 100 ms. Before applying that, 

first, we merged adjacent aversions between which there were at most two consecutive 

non-aversion frames, see Figure 31. Then, we eliminated short aversions that are less than 

100 ms. 

 
Figure 31: Merging Adjacent Aversions 

Lastly, we re-run Merge and Discard functions with the same parameters, this time for 

face contact. We have developed a C# application and automatized the process described 

above. By doing so, we also reduced the error rate which would have been higher 

otherwise. 
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Figure 32: Process flow for detection of gaze behavior 

5.2.4. Multimodal Data  

5.2.4.1. Gaze and Speech-tag set 

The data obtained in speech and gaze analyses were merged into a single summary-file. 

Each line of the generated text file corresponded to the particular frame-image.  The 

columns of the file were the speech-tag, sender, gaze behavior of sender and of an 

interlocutor, raw gaze data and coordinates of the minimum bounding rectangle of the 

detected face on that particular frame-image. As a result, we obtained a series of gaze 

behavior and related features taken at successive intervals of 33 ms. 

The last two columns allowed researchers to investigate gaze-aversion behavior and 

generate computational models predicting coordinates in the presence of gaze-aversion. 

On the other hand, in the present study, we only focused on the gaze-behavior, whether it 

was gaze aversion or face-contact. 

5.2.4.2. Gaze and Dialogue-act 

We first found the time interval of a particular dialogue unit by concatenating the time 

intervals of each word that produced a dialogue unit together. To this aim, we have 

developed a C# application. This application processed the text grid file generated via 

Praat analysis and excel file in DiAML-Multitab representation. The user is warned in 

case there is a mismatched text or an absent word.  
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In the summary file, each line represented the gaze behaviors of a sender and an 

interlocutor on that particular time with the corresponding communicative function(s), 

dimension(s), sender information, and if exist; RR(s), functional dependence(s), feedback 

dependence(s), certainty and sentiment qualifier. 

5.2.5. Statistical Analysis 

All analyses were carried out in R programming language and environment (R Core Team, 

2016). We first screened data and removed outliers. After that, we checked assumptions 

and decided whether we should transform data or run either the parametric test or the non-

parametric one. In addition, we handled individual differences by employing mixed 

models. We modeled individual variation on the dependent variable by assuming different 

intercepts for each subject. For instance, for a linear regression model with a single 

explanatory variable X, the single response variable Y is given by  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖, i=1...n                          (Equation 5) 

where i=1…n stands for the ith observation (Xi, Yi) with n being the number of 

observations. Here 𝛽0 is the intercept, 𝛽1 is the slope , and 𝜀𝑖 is the uncorrelated random 

error. In a linear model, the explanatory variable which is also known as fixed effect 

concerns a single individual in a row.  On the other hand, as in the case of the present 

study, the researcher might have collected data from the same subject several times. Since 

the linear model requires independence of data points assuming that each row in the 

dataset comes from a different subject, we could not run the linear model when we elicit 

multiple responses from the same subject causing non-independent responses. Therefore, 

we have to handle these non-independencies before performing the linear model. One 

option is taking the average over items for subject analysis. However, the previous studies 

discussed on the pros and cons of averaging and a general conclusion was that even though 

it is legitimate in principle, a mixed model enables researchers to take full data into 

account and gives them much more flexibility (Clark, 1973; Raaijmakers, Schrijnemakers, 

& Gremmen, 1999; Locker, Hoffman, & Bovaird, 2007) 

If we add a random effect for the subject in order to handle individual differences, we will 

get a mixed model with both fixed and random effects. The updated version of Equation 

5, where j represents the individual, is written as: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗 + 𝑢𝑗 + 𝜀𝑖𝑗, i=1...n.                      (Equation 6) 

This time there are two random terms both of which are specific to an individual: 

𝑢𝑗  and 𝜀𝑖𝑗 .  

The linearity of the models was checked via a residual plot. If there was a non-linear or a 

kind of curvy pattern, then it would indicate a violation of the linearity assumption. In 

such cases, the transformation of data might resolve the issue. In this study, if the linearity 

assumption was violated, we applied log and square-root transformations, and re-plotted 
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residuals. We continued the analysis with the transformed data only if the transformation 

resolved the linearity problem. Homoskedasticity was also checked by observing the 

residual plot. The residual value is a measure of how much a regression line misses a data 

point. If individual residuals of the model did not have a similar amount of deviation from 

the predicted value, the violation of Homoskedasticity occurred. To overcome this 

problem, we used similar methods that we applied in the case of the violation of linearity.  

Furthermore, we checked the normality of residuals and collinearity. In order to make sure 

that there would be no collinearity, we chose explanatory factors in such a way that they 

are not correlated with each other. After we checked all the assumptions, we decided on 

the analysis method. If we could not achieve to handle violations, then we used the proper 

non-linear analysis  

We decided on the explanatory factors by comparing the likelihood ratios among models 

with or without that particular factor. If there was a significant difference among the 

models, then, we concluded that it was due to that particular factor, thus we included it in 

the model. Lastly, we performed post-hoc tests to investigate the relationship or patterns 

between subgroups that would otherwise have remained undetected. 

5.3. Results 

In this chapter, the results of the statistical analysis and computation models are presented. 

The statistical results are organized under four main categories as frequency, duration, 

discourse annotation schemes, and evaluation scores. We generally investigated the 

relationship between annotated speech and gaze behaviors. Finally, we presented the 

computational models with their architecture and accuracy scores. 

5.3.1. Frequency 

The frequency of gaze aversion and face contact were examined. We calculated the 

normalized frequency by dividing the count of gaze behavior of a particular session by the 

duration of that session. The frequency of gaze behavior per minute was calculated using 

the following equation, where p represents the participant in session s: 

𝑓(𝑠, 𝑝) =
𝑁𝑠,𝑝

𝑇𝑠 60.000⁄
 ,.                                  (Equation 7) 

Here 𝑁𝑠,𝑝is the number of gaze behaviors of the participant p in session s and 𝑇𝑠 represents 

the duration of that session which was divided by 60.000 to convert milliseconds to 

minutes. 

The paired sample t-test was performed to compare the frequencies of gaze aversion and 

face contact per role. The analysis revealed that there was no significant difference 

between the frequencies of gaze aversion (M=20.8, SE=2.62) and face contact (M=23.2, 

SE=1.86) for interviewers, t(22)=-1.82, p=0.08. On the other hand, interviewees’ gaze 
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aversion frequency (M=44.7, SE=3.6) was significantly higher than their face contact 

frequency (M=35, SE=3.13), t(24)=2.49, p=0.02. 

5.3.1.1. Gaze Aversion 

The paired sample t-test was performed to compare the gaze aversion frequency of 

interviewers with those of interviewees. The analysis revealed that interviewees 

performed gaze aversions more frequently (M = 44.7, SE = 3.60) compared to the 

interviewers (M = 20.8, SE = 2.62) and the difference was significant t(23)=-5.03, p<.000.  

We also performed a multivariate analysis of variance to test the gender effect. The 

aversion frequencies of interviewer and interviewee were dependent variables. There was 

no statistically significant effect of gender in gaze aversion frequency, for both the role of 

an interviewer, F(2,19)=0.13, p=0.26 and an interviewee  F(2,19) =0.08, p=0.45. 

5.3.1.2. Face Contact 

The paired sample t-test was performed to compare the face contact frequency of 

interviewers with those of interviewees. The analysis revealed that interviewees 

performed face contact more frequently (M = 35, SE = 3.13) compared to the interviewers 

(M = 23.2, SE = 1.86) and the difference was significant t(22)=-3.28, p=0.003  

We also performed a multivariate analysis of variance to test the gender effect. The face 

contact frequencies of interviewer and interviewee were dependent variables. There was 

no statistically significant effect of gender in face contact frequency of interviewer, 

F(2,18)=0.16, p=0.2 and interviewee F(2,18) =0.14, p=0.26. 

5.3.1.3. Mutual Gaze Behavior 

The previous analyses were performed by considering the gaze behavior of a single 

participant. The dyadic experimental design also allows us to investigate mutual gaze 

behavior.  There were four possible pairs of gaze behaviors as presented in Figure 33 

below. 
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Mutual Aversion 
(A – A) 

Face Contact – 
Aversion 
(FC – A) 

Aversion – Face 
Contact 
(A – FC) 

          

 

 

                           

          
 

Figure 33: A visualization of dyadic gaze behaviors 

We designed a linear mixed model. We compared the potential models by ANOVA test 

to find out which one fits best. The best performing statistical model’s parameters are 

given in Equation 8. Fixed effects were mutual gaze behavior and the gender of the 

interviewer and interviewee. In addition to that, the mixed effect term was added for 

varying intercepts by interviewers, and by interviewees that are nested within 

interviewers’ groups. 

Fixed effects = Mutual Gaze Behavior × Interviewee Gender × Interviewer Gender, 

Random effects = 1 | InterviewerID /IntervieweeID. 

(Equation 8) 

The results revealed that when the interviewer was female and the interviewee was male, 

the frequency of mutual gaze aversion (M=28.6, SE=3.23) was higher than the frequency 

of mutual face contact (M=9.97, SE=3.6) and this difference is significant, t(88.6)=2.81, 

p=0.031. Furthermore, when the interviewee was male, the frequency of mutual face 

contact was higher for male interviewers (M=29.3, SE=6.99) compared to female-

interviewer (M=9.97, SE=3.6), and this difference is significant, t(83.4)=-2.63, p=0.01. 

We also analyzed the ratio of mutual face contact by taking into account the cumulative 

raw gaze data. It comprised 34% of the conversations with the average duration of 546.1 

ms. 

5.3.2. Duration 

We also examined the duration of gaze aversion and face contact. In the pilot study, the 

average duration of gaze behavior was calculated by Equation 9, where p represents the 

participant in the session s: 



95 

 

𝑇(𝑠, 𝑝) = 1

𝑛
∑ ∆𝑛

𝑖=1 𝑡𝑖,                                          (Equation 9) 

In the pilot study, we calculated the sum of durations and then divided it by the number 

of related gaze behaviors. We implemented those processes to guarantee the independence 

of observations which required that all participants in a sample are only counted once. 

However, even though averaging over items is legitimate in principle, it causes 

disregarding of subject variation. Therefore, this time, we designed a mixed model that 

takes the full data into account. 

We first screened data and removed outliers, then tested the assumptions of the linear 

mixed model. When we checked the plot where the y-axis represented observations and 

the x-axis represented quantiles modeled by the distribution, we realized that the data were 

best fitted to a gamma distribution. Moreover, the residual plot indicated some kind of a 

pattern. On this plot, better-fitted values have smaller residuals indicating that the model 

is more “on” with higher predicted means. Therefore, the variance is not homoscedastic: 

it’s smaller in the higher range and vice versa (see appendix G for both residual and the 

probability distribution plots of gaze aversion).  

As a result, since the data was non-normal and violated the homogeneity assumption we 

performed penalized quasi-likelihood (PQL) instead of linearity test. PQL is a flexible 

model that can deal with unbalanced design, non-linear data, and random effects. 

5.3.2.1. Gaze Aversion 

The statistical model is given in Equation 10 below. Fixed effects were gender, partner-

gender, role and their two-way and three-way interactions. In addition to that, the mixed 

effect term was added for varying intercepts by interviewers, and by interviewees that are 

nested within interviewers’ groups. Lastly, we considered varying the slope of 

the interaction between gender and partner-gender differing across interviewers’ groups. 

Fixed effects =  Role ×  Gender ×  PartnerGender, 

Random effects =  1 + Gender ×  PartnerGender  | InterviewerID /IntervieweeID. 

(Equation 10) 

There was a significant effect of the role, i.e., being an interviewer or interviewee, on the 

duration of gaze aversion. The post hoc tests revealed that a significant difference between 

the gaze aversion-durations of interviewers (M=258.2 ms, SE =5.25) and interviewees 

(M=313.2 ms, SE=3.43) was observed when the partner gender was female, t(9760)=5.75, 

p<.0001, see Figure 34. 
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Figure 34: Gaze aversion durations per gender, partner gender and role 

Furthermore, there was no statistically significant effect of gender in gaze aversion 

duration t(9760) = 0.92, p=0.36. We also examined the effect of gender in pairs.  We found 

that there was a significant difference in gaze aversion duration of an interviewer when 

the interviewer was female while the interviewee was male (M=328.4 ms, SE=8.68) 

compared to the case where both the interviewer and interviewee were female (M=247.8 

ms, SE=7.2), t(9760)=-3.33, p=0.005, see Figure 35. 

 

Figure 35: Gaze aversion durations per role and the pair of gender-partner gender  
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5.3.2.2. Face Contact 

The statistical model is given in Equation 11. Fixed effects were gender, partner gender, 

role and their interactions. In addition to that, the mixed effect term was added for varying 

intercepts by interviewers, and by interviewees that are nested within interviewers’ 

groups.  

Fixed effects = Role × Gender × PartnerGender, 

Random effects =  1| InterviewerID /IntervieweeID. 

(Equation 11) 

There was a significant effect of the role, i.e., being an interviewer or interviewee, on the 

duration of face contact. The interviewer’s face contact duration (M=648.9 ms, SE=7.06) 

was significantly higher than the interviewee’s face contact duration (M=585.8 ms, 

SE=6.06), t(10434)=-1.977, p=0.048. 

Furthermore, we found that there was a significant difference in face contact duration of 

an interviewee when the interviewee was male while the interviewer was female 

(M=645.8 ms, SE=15.3) compared to the case where both the interviewer and interviewee 

were female (M=555 ms, SE=9.47), t(10435)=-3.19 p=0.008. In addition to that, we also 

found a significant difference in face contact duration of an interviewer when the 

interviewer was female while the interviewee was male (M=472.4 ms, SE=16.9) 

compared to the case where both the interviewer and interviewee were female (M=873.7 

ms, SE=16), t(10435)=1.5, p<.0001, see Figure 36. 
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Figure 36: Face contact durations per role and the pair of gender-partner gender 

5.3.3. Multimodal Analysis 

We also examined the relation between gaze behavior and speech-tag or gaze behavior 

and dialogue-act. In this section, we will describe the analysis steps via speech-tag set. 

Similar calculations were also performed for dialogue-act analysis.  

Primarily, we extracted the ratio of gaze behavior observed during an instance of speech-

tag set. Each instance of speech-tag set might be assigned several times during a session. 

In Equation 12, let B is a set including percentages of gaze aversion and face contact 

during occurrences of speech-tags, for session x and participant p where i is the element 

of F which is a set of frames labeled with speech-tags. 𝐷 function gets the gaze behavior 

type and frame numbers as input parameters and returns the duration of that specified gaze 

behavior among those frames. 

𝐵𝑥,𝑝(𝑆, 𝐴)={ 𝑖 ϵ 𝐹𝑠:  𝐷(𝑖, 𝐴)  ( 𝐷(𝑖, 𝐴)⁄ + 𝐷(𝑖, 𝐹𝐶) ) },            (Equation 12) 

The process details are given in Table 14. We intentionally skip the frames between 10 

and 25 to simulate realistic data. During the analysis, we excluded the frames in which 

there was no extracted gaze behavior for the interviewer or interviewee. 
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Table 14: Illustration of calculating the ratio of gaze behavior (GB) to the particular speech-tags, S1 and S2. 

Only the interviewer’s gaze behavior is considered. A similar calculation is also performed for interviewees. 

Frame No Speech-Tag GB Ratio of GBDuration 

1  

 

 

 

S1,1 

 

A  

 

|A| / |S1,1|= 6/9 

 

2 A 

3 A 

4 A 

5 A 

6 A 

7 FC  

|FC| / |S1,1| = 3/9 

 
8 FC 

9 FC 

26  

 

S2,1 

 

FC  

|FC| / |S2,1|= 10/20 

 
27 FC 

28-35 FC 

36-44 A 
|A| / |S2,1|= 10/20 

45 A 

46  

 

S1,2 

 

A  

|A| / |S1,2|= 25/50 47 A 

48-70 A 

71 FC 
|FC| / |S1,2| = 11/50 

72-81 FC 

82 A 
|A| / |S1,2|= 14/50 

83-95 A 

 

A sample implementation of Equation 12 for Table 14 is given as follows:  

Frame Set:     

𝐹𝑠1 ={[1-9], [46-95]}  

    

Gaze Behavior Counts: 

𝐷([1 − 9], 𝐴) ={6},       𝐷([46 − 95], 𝐴) ={25, 14} 

𝐷([1 − 9], 𝐹𝐶) ={3},     𝐷([46 − 95], 𝐹𝐶) ={11} 

 

Set of Aversion Percentages, During S1: 

𝐵1,𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟(𝑆1, 𝐴)={i ϵ {[1-9], [46-95]}:  𝐷(𝑖, 𝐴) (𝐷(𝑖, 𝐴) + 𝐷(𝑖, 𝐹𝐶))⁄  } 

𝐵1,𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟(𝑆1, 𝐴)= {6/9, 25/50, 14/50} 

 

Set of Face Contact Percentages, During S1: 

𝐵1,𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟(𝑆1, 𝐹𝐶)={i ϵ {[1-9], [46-95]}:  𝐷(𝑖, 𝐹𝐶) (𝐷(𝑖, 𝐴) + 𝐷(𝑖, 𝐹𝐶))⁄  } 

𝐵1,𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤𝑒𝑟(𝑆1, 𝐹𝐶)= {3/9, 11/50} 

 

As well as the duration, we also calculated the frequency of fixations of gaze behavior 

during a particular speech-tag. This time, we just consider the fixation counts of related 

gaze behavior. For instance, in Table 14, the frequency of face contact was 1 for S1,2 , 
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whereas the frequency of gaze aversion was 2. Thus the percentages were 1/3 and 2/3 

respectively. 

5.3.3.1. Speech-tag Set Annotation 

The statistical analysis was conducted on the top 5 speech-tags, namely Speech, Micro 

Pause, Speech Pause, Thinking, Pre-Speech, which in total cover 80.3% of the whole 

data. (see Appendix H). 

The data was non-normal and violated the homogeneity assumption, thus we performed 

penalized quasi-likelihood (PQL). The statistical model is described by Equation 13. 

Fixed effects were role, speech-tag set, their mutual interaction, interviewer gender, 

interviewee gender and their mutual interaction. Besides, the mixed effect term was added 

for varying intercepts by interviewers, and by interviewees that are nested within 

interviewers’ groups. Lastly, we added the speech-tag ID which was a unique identifier 

for each occurrence of speech-tag set, as a mixed effect term. 

Fixed effects = Role × SpeechTagSet +  Interviewer Gender × Interviewee Gender, 

Random effects =  1| InterviewerID/IntervieweeID + 1|Speech tag ID.  

(Equation 13) 

There was a significant difference in frequency of gaze behavior between the interviewers 

and interviewees when the speech tag was Thinking (t(6840)=13, p<.0001), Speech 

(t(6840)=12.9, p<.0001), Speech Pause (t(6840)=10.8, p<.0001) or Micro Pause 

(t(6840)=7.23, p<.0001), see Figure 37. Moreover, we conducted pairwise comparisons 

between speech-tags. There were significant differences between Thinking and Speech 

(t(6840)= 4.28, p=0.0002), Thinking and Micro Pause (t(6840)=6.64, p<.0001), Speech 

and Pre-Speech (t(6480)= -3.66, p=0.0024), Speech and Micro Pause (t(6840)=3.62, 

p=0.0027), Speech Pause and Micro Pause (t(6840)=5.34, p=<.0001), and Pre-Speech 

and Micro Pause (t(6840)=5.77, p=<.0001). 
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Figure 37: Frequency of gaze behavior percentages for speech-tag set.  Significant differences are presented 

with * character. 

We also examined the difference in duration of gaze behavior between the interviewers 

and interviewees. Similarly, results revealed that when the speech-tag was Thinking 

(t(6840)=13.3, p<.0001), Speech (t(6840)=12.9, p<.0001), Speech Pause (t(6840)=10.7, 

p<.0001) or Micro Pause (t(6840)=7.8, p<.0001), interviewee’s gaze aversion duration 

was significantly longer than the interviewer’s. 

5.3.3.2. Dialogue Act Annotation 

The statistical analysis was conducted on the top 5 speech- acts, namely Stalling, Answer, 

Auto Positive, Inform, Turn Take, which in total cover 80.3% of the whole data. (see 

Appendix H).  

The data was non-normal and violated the homogeneity assumption, thus we performed 

PQL. The statistical model is described by Equation 14. Fixed effects were role, dialogue 

act, their mutual interaction, interviewer gender, interviewee gender and their mutual 

interaction. In addition, the mixed effect term was added for varying intercepts by 

interviewers, and by interviewees that are nested within interviewers’ groups. Lastly, we 

also added the dialogue act ID which was a unique identifier for each occurrence of 

dialogue acts, as a mixed effect term. 

Fixed effects = Role × Speech Act +  Interviewer Gender × Interviewee Gender,  

Random effects =  1| InterviewerID/IntervieweeID + 1|Dialogue Act ID.  

(Equation 14) 
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There was a significant difference in percentage frequency of gaze behaviors between the 

interviewers and interviewees when the dialogue act was Answer (t(5334)=13.1, p<.0001), 

Stalling (t(5334)=19.9, p<.0001), or Turn Take (t(5334)=5.69, p<.0001), see Figure 38. 

Moreover, we conducted pairwise comparisons between communicative functions of 

dialogue-act. There were significant differences in the frequency of gaze behavior 

between Answer and Inform (t(5320)= -3.31, p=0.0085), Answer and Stalling (t(5320)=-

3.97, p=0.0007 ), Answer and TurnTake (t(5320)= -7.20, p<.0001), AutoPositive and 

TurnTake (t(5320)=-4.66, p=<.0001), Inform and TurnTake (t(5320)=-2.77, p=0.0444), 

and Stalling and TurnTake (t(5320)=-4.57, p=<.0001). 

 

Figure 38: Frequency of gaze behavior percentages per dialogue act 

We also examined the difference in duration of gaze behavior between the interviewers 

and interviewees. Similarly, results revealed that when the dialogue act was Answer 

(t(5334)=14.2, p<.0001), Stalling (t(5334)=19.8, p<.0001) or Turn Take (t(5334)=5.58, 

p<.0001), interviewee’s gaze aversion duration was significantly longer than the 

interviewer’s. 

5.3.4. Average Scores of Evaluation Questionnaire 

We investigated the relation between gaze behavior and the average scores of evaluation 

criteria. We made use of linear mixed models to predict the average score of each of the 

4 questions by considering the frequency or duration of the gaze behavior. The only 

significant effect was found in the model in which fixed effects were interviewer gender, 

interviewee gender, their mutual interaction, aversion frequency of interviewer, aversion 

frequency of interviewee and their mutual interaction. We also added interviewer ID as a 

mixed effect term (see Equation 15) 
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Fixed effects = Interviewer′s Frequency × Interviewee′s Frequency   
+ Interviewer Gender × Interviewee Gender,  

Random effects =  1|Interviewer ID. 

(Equation 15) 

We found that the average score of the first question significantly decreased as the 

aversion frequency of an interviewee increased ( χ2 (1)= 4.78, p=0.29) , see Figure 39. 

 

Figure 39: Average score of the first question as a function of aversion frequency. Considering both the 

interviewers and interviewees, there are 25 points in total that correspond to a single session. Both the 

aversion frequency and the score of the first question were averaged over a session. The lines represent the 

general direction followed by either an interviewer or an interviewee. 
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CHAPTER 6 

 

6.  COMPUTATIONAL MODEL OF SPEECH DRIVEN GAZE IN FACE-TO-

FACE INTERACTION 

The secondary research questions of this dissertation are making computational model of 

gaze behavior with the high-level features of speech and the difference in the performance 

of computational models when the input features are extracted from either Dialogue-act 

or speech-tag set analysis. For this aim, we trained simplified versions of ResNets (He, 

Zhang, Ren, & Sun, 2016) and VGGNet (Simonyan & Zisserman, 2015) which are CNN 

(Convolution Neural Network) architectures, with the data from the 28 pair experiment 

(for details see Chapter 5). In this chapter, firstly the structure of CNN architecture is 

presented. Afterwards, the list of input data, their representations and the way how we 

align them as a multimodal time series are explained. Lastly, we report the performances 

of computational models and visualize filters of the model with the best performance to 

get insight on why and how a particular prediction was made. 

6.1. Introduction 

Convolutional Neural Networks (CNNs) are a particular type of Deep Neural Networks 

(DNNs). In the following subsections, the brief history and basic building block of DNNs, 

components of a basic CNN architecture, and the topology of VVGNet (Simonyan & 

Zisserman, 2015) and ResNet (He, Zhang, Ren, & Sun, 2016) are summarized. Moreover, 

in the present study we use speech driven-gaze data as a time series. Accordingly, the 

shape of time series data and the basic method for calculating the convoluted features 

using this data are presented. 

6.1.1. Deep Neural Networks 

The deep learning approach has greatly improved many artificial intelligence tasks 

including machine translation, object detection and speech recognition. In addition to 

classical AI tasks, researchers have adapted deep learning to various areas. Osako, Singh, 

and Raj (2015) tried to eliminate noise from speech signals by using a particular type of 

DNN, namely RNNs (Recurrent Neural Networks), Wang, Meghawat,  Morency, and 
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Xing (2017) performed sentiment analysis with data from multiple modalities, and Gatys,  

Ecker, and Bethge (2016) utilized neural models to produce images in different styles. 

The basic building block of neural networks are neurons which are inspired by their 

biological counterparts, yet they still differ in several ways. The idea behind neural 

networks is based on the assumption that several parts of neurons like dendrites, cell 

bodies, axons and their inner workings can be imitated by simple mathematical models. 

McCulloch and Pitts (1943) produced the first mathematical model of neural networks. 

Afterwards, at the end of the 1950s, Rosenblatt (1958) proposed Perceptron as a simplified 

mathematical model representing the operations of neurons in our brains. Accordingly, a 

neuron takes binary inputs from a group of neighborhood neurons. These data are then 

multiplied by the weight values corresponding to the synapse strength between the 

neurons, and in parallel with the all-or-none principle, if the sum of these weighted inputs 

is above a certain threshold value, one is produced as the output otherwise zero is 

produced, see Figure 40. 

 

Figure 40: Biological inspiration for neural networks. Here xi represents ith input, n represents the number 

of elements in neuron sets which is greater than zero. ωi represents the weights associated with the ith 

connection, θ is the bias term. The output is computed by applying the activation function f to the weighted 

sum of the input signals. The gray background labels represent the parts of biological neurons corresponding 

to the related structure of the mathematical model presented below them. 

In order to solve more complex tasks than a single neuron can do, networks containing 

multiple layers of neurons are produced. Networks up to three layers are generally called 

shallow neural networks, while networks that have more than three layers are called deep 

neural networks. In a DNN, instead of a single output layer, the input data is directed to 

hidden layers, which consist of a set of neurons. The output of a hidden layer is used as 

the input for the next layer both of which cannot be directly observed from outside. In 

other words, data in between these layers are hidden until the very end of the network, 

where one gets the output, i.e. the apparent response of the network. Intermediate 

calculations done by hidden layers allow tackling very complex problems by focusing on 

input data characteristics instead of noisy raw data. An activation function defines whether 

a node in the network will be active based on the sum of weighted inputs. This function is 

generally selected to be non-linear to allow learning about complex non-linear 
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transformations on the input signal (Goodfellow, Warde-Farley, Mirza, Courville, & 

Bengio, 2013), whereas bias values help for better data fitting with left or right shifts from 

the activation function (Goodfellow, Bengio, & Courville, 2017). 

The main mechanism of learning in neural networks is backpropagation. The network 

propagates the signals of the input data forward through its parameters, and then 

propagates the information about the errors backwards through the network so that the 

parameters can be updated (for more detailed coverage, see Goodfellow et al., 2017), see 

Figure 41. 

 

 

Figure 41: DNN structure with three hidden layers 

In the present study, simplified VVGNet (Simonyan & Zisserman, 2015) and ResNet (He, 

Zhang, Ren, & Sun, 2016) which are CNN (Convolution Neural Network) architectures 

are trained. The brief history and operations of CNN, as well as the topology of VGGNet 

and ResNet are presented in the following subsection.  

6.1.2. Convolution Neural Networks 

Convolution Neural Networks (CNN) are regularized versions of fully connected 

networks. It takes the name CNN from an important mathematical operation, namely 

convolution, which integrates the product of two functions. It is useful for calculating the 

derivatives, finding patterns in signals, detecting edges, applying blurs and so on. CNN 

dates back to the studies in the neural basis of visual perception performed by Hubbel and 

Wiesel (1959). They recorded the activity of neurons in the visual cortex when a certain 

pattern of light was projected on a screen in front of a cat. Depending on the angle at which 

light is incident, they observed activation in different neuron groups. They also noticed 

that some neurons, which they called simple cells, showed different activation levels when 

exposed to light and some other neurons, which they named complex cells, played a 

crucial role in edge detection. This study has demonstrated that the visual system generates 

complex visual information from simple features of a stimulus. Parallel to the studies on 

brain, in the 1980s, Fukushima proposed hierarchical network models inspired by the 

theory of simple and complex cells (Fukushima, 1980, 1988). There have been neural 
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network models that mimic humanly cognitive faculty at the behavioral level. As one of 

the first example of such studies, LeCun, Bottou, Bengio, and Haffner (1998) developed 

LeNet-5 which was specialized in recognition of handwriting characters. The basic 

comprehension of LeNet-5 was that the features of the image were scattered throughout 

the entire image and the similar features in different parts of the image could be effectively 

revealed out by a few learnable parameters. The basic features of LeNet-5 can be listed as 

follows: (i) sparse matrix between layers to reduce computational load (ii) use of 

multilayer neural networks as a classifier in the last stage, (iii) use of nonlinear activation 

functions such as sigmoid and hyperbolic tangent, (iv) spatial averaging. 

A basic CNN architecture includes four fundamental operations respectively: (i) 

convolution, (ii) nonlinearity (ReLU), (iii) pooling or subsampling and (iv) classification 

(Fully Connected), see Figure 42. 

 

Figure 42: A simple CNN model. The output is one of the four flowering plants, image adapted from LeCun 

et al., 1998 

In the first step, the purpose of the convolution layer is to extract the features of an input 

image. Convolution learns features over the small square areas on the image, and this 

method enables maintaining spatial relations. Suppose that we have a 5 x 5 input image 

as matrix and another 3 x 3 matrix which is called “filter” or “kernel” or “feature detector”. 

In the convolution step, the element-wise multiplication between those two matrices is 

computed and then, the outputs of multiplication are added in order to get a single integer, 

see Figure 43. This process would be repeated until all pixels of an input image are covered 

by sliding kernel over the input matrix via a predefined number of pixels, named stride, 

and forming a new matrix which is termed “Convolved Feature” or “Feature Map” or 

“Activation Map”. In practice, CNN determines the content values of the kernel itself in 

the learning phase, but of course some parameters like the number of filters and the filter 

size must be specified beforehand. The more the number of filters, the more features of 

the image will be extracted, which also would improve the performance at recognizing 

patterns in the images that we have never encountered. 
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Figure 43: Illustration of convolution operation for 2D input data. 

As the second step, after each convolution process, ReLU (Rectified Linear Unit) (He, 

Zhang, Ren, & Sun, 2016) is applied. It is a non-linear operation and updates all negative 

pixel values on the feature map to zero. The purpose of the ReLU layer is to introduce 

non-linearity to the model in consistency with the generally non-linear real-world data. 

ReLU is not the single alternative, sigmoid and hyperbolic tangent would be applied as 

well. The output is referred to as the “Rectified feature map”. 

In the third step, the rectified feature map is reduced in size without losing valuable 

information. In this reduction process, three different methods can be applied; Max, 

Average and Sum. Suppose that we adopted the average operation. First, we select a 

window to determine the amount of spatial neighborhood, for instance 2 x 2. Then, we 

slide this window until we pass through all elements of the rectified feature map, and each 

time take the average of the four values within that window. Since pooling is applied to 

each of the input maps separately, the number of output maps will be the same with the 

input one. Pooling brings important benefits.  Reducing the size of the feature dimension 

makes the model easier to manage. Furthermore, it enables to handle the overfitting 

problem by reducing the number of parameters and hence calculations to be performed.  

In addition, it prevents small distortions on the input from adversely affecting the model 

performance.  

The reason why the last step is called Fully Connected Layer (FCL) is that it is a classic 

multilayer perceptron where all of the input and output neurons are connected. In case the 

model is trained for classifying the input image as a type of flowering plant, until the FCL 

step, the high-level features of the input image are extracted. The FCL consumes these 

features to calculate the probability of classes. The probabilities are normalized to be 

between 0 and 1 with the sum of all being 1, as the softmax function is applied. 

These four steps we have described so far are members of forward propagation. Just before 

running them, the parameters and weights in the network are initialized randomly. In the 

very first training phase, the output class probabilities are likely to diverge from expected 

values, as the weights are randomly assigned. The output probabilities are optimized by 

updating the weights with individual gradient descent values calculated in the 
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backpropagation phase. Forward and back propagations are repeated for the predefined 

number of times of complete passes through the training dataset, i.e., epochs. 

So far, we discussed the architecture of LeNet-5, one of the first CNNs. Until the early 

2010s, there were not many developments in the field of CNN. After 2010, with the 

increase in the amount of data collected and computational power, the number of issues 

that CNN had the opportunity to work on increased. In 2012, a more complex version of 

LeNet-5, called AlexNet (Krizhevsky, Sutskever, & Hinton, 2012) won the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) by a large margin, re-accelerating 

researches on CNN. In the present study, we used simplified versions of the ResNets (He, 

Zhang, Ren, & Sun, 2016) and VGGNet (Simonyan & Zisserman, 2015) which are also 

the winners of ILSVRC 2014 and 2015 challenges respectively. In contrary to large 

convolutions, the VGG network demonstrated that using multiple 3 x 3 convolutions 

sequentially can emulate a similar effect to represent complex features, see Table 15.  

The reason behind our selection is that VGG has simple architecture, thus it is easy to 

implement and ResNet, in recent years, is one of the networks with the highest 

performance (Canziani, Paszke, & Culurciello, 2016). 

Table 15: VGG16 architecture. VGG16 to classify input image [224 X 224 X 3] into one of 16 categories. 

Layer (type) Output Shape Param # 

input_1 (InputLayer) (None, 224, 224, 3) 0 

block1_conv1 (Conv2D) (None, 224, 224, 64) 1792 

block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 

block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 

block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 

block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 

block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 

block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 

block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 

block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 

block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 

block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 

block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 

block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 

block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 

block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 

block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 

flatten (Flatten) (None, 25088) 0 

fc1 (Dense) (None, 4096) 102764544 

fc2 (Dense) (None, 4096) 16781312 

predictions (Dense) (None, 1000) 4097000 

dense_1 (Dense) (None, 16) 16016 
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Convolutional Neural Network (CNN) models produce successful results, especially in 

the areas of image classification and recognition. Although they are mostly used for image 

processing, they have also been used for time series in recent years (Fawaz, Forestier, 

Weber, Idoumghar, & Muller, 2019). In this study, we collected the gaze data in the form 

of a time series and trained 1D CNN networks. In this way, the location of the feature 

within the input segment is not of high relevance when compared to 2D inputs. The 

illustration of the convolution operation for time series data is presented in Figure 44. 

 

Figure 44: Illustration of the convolution operation for time series data. Input shape is (1,4,2), i.e., one 

sample of four time points, each item having two channels. The kernel shape is (2,2). 

1D CNN is mostly used in NLP studies. Data points in time series are generally introduced 

to the network as a group of instances, rather than one by one. The number of instances in 

a group is referred to as timestamps and distance between consecutive groups is called 

step-distance. For instance, for a discourse consisting of eight words, each having two 

channels, the updated shape of an input that will be introduced to CNN is (3,4,2) where 

the corresponding timestamp is four and step-distance is two, see Figure 45. 

 

Figure 45: Shape of the time series array.  On the left, the shape of data is (8,2) where the number of data 

points is eight and the number of dimensions is two. On the right-hand side, the shape has changed to (3,4,2) 

where the timestamp is four and the step distance is two. 

In this study, we obtained a series of gaze behavior and related features taken at successive 

intervals of 33 ms. According to the data obtained from the human-human experiment, 

the average gaze behavior duration is 300 ms. Therefore, we assigned nine to timestamps 
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as each frame was 33 ms and since the minimum fixation duration was 100 ms, we 

assigned three to step distance.  

6.2. Data and Analysis 

One of the research questions of this dissertation was the difference in the performance of 

computational models when the input features were extracted from either Dialogue-act or 

speech-tag set analysis. With this aim, we trained CNN models and then compared the 

best performances obtained from the test results. 2D CNN models were generally 

developed for the classification of images. It is called a 2D convolution since the 

movement of the filter across the image takes place in two dimensions: width and height. 

2D CNN enables one to derive interesting features as well as local spatial features of each 

pixel. On the other hand, the location of the feature does not have much significance in 

time series. Since we produced time series of gaze behavior with corresponding 

conversation tags in the previous phases, we constructed and trained 1D CNN models. 

We worked on 2 well-known CNN models. First, we constructed a smaller and more 

compact 1D variant of the VGGNet which was the runner-up at the ILSVRC 2014. We 

preferred this model because it is quite appealing with its uniform architecture. In addition 

to that, we constructed an alternative Residual Neural Network architecture (ResNet). 

Fawaz et al. (2019) showed that ResNet performs with a high accuracy when applied to 

the time series. 

In our experimental design, while the interviewees participated in a single session, 

interviewers took part in multiple interviews. Thus, we collected more data from 

interviewers than we acquired from interviewees. Because of that, we designed 

computational models for predicting gaze behavior of interviewers rather than the 

interviewees. 

At the beginning of the training, we split data set into two as training and testing. The test 

set comprised 20% of the whole dataset and was not used in the training. Moreover, for 

parameter tuning, we performed 5-fold cross validation on the training data set and split 

it into training and validation data sets. K-fold cross validation assumes that each 

observation is independent. Therefore, when evaluating a model for time series 

forecasting, classic k-fold cross validation cannot be directly used. Instead, we performed 

back-testing in which data was split by respecting the temporal order, in contrast to 

random splitting, see Figure 46. 
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Figure 46: Illustration of 5-fold Backtesting. 

The validation accuracy fluctuated between splits in the course of 5-fold back-testing (for 

details see result under section 6.3). We first applied pooling, weight and dropout 

regularizations to the networks in order to handle underfitting (i.e., the network cannot 

capture the underlying trend of the data) and overfitting (i.e., the network captures the 

noise in the data and have poor generalizability). Since the problem persisted, then, we 

examined the data and back-testing method more carefully. In the n-fold back-testing, the 

ratio of data provided for the training and validation is different at each split. It is five for 

the fifth split and one for the first split, see Figure 46. When the training data is not big 

enough, the network might not quite learn about the underlying trend of the data. 

Moreover, as presented in Table 16,  even in different networks, there were similar 

fluctuations in the validation accuracy of splits.  In the case presented in Table 16, 

validation accuracy of the second and the fourth splits are lower than the others. 

Table 16: Validation accuracy in each split of 5-fold back-testing. The tagging scheme of input data was 

Speech-tag set and feature map size of the first blocks was 16. 

 
gazeResNet gazeVGG 

1. 75.9 75.9 

2. 62.5 61.7 

3. 78.5 80.1 

4. 61.8 57.1 

5. 66.9 66.6 

 

We examined the reason for such similarities. In the second split training performed with 

the data that involved the first and the second interviewer, along with a half data of the 

third one, whereas the test was performed on the remaining data of the third interviewer 

and approximately the half data of the fourth interviewer. Similarly, on the fourth split, 

training was performed with the data that involved the first five interviewers, whereas it 

was tested with the sixth interviewer. The difference in the frequency of gaze behaviors 
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between the interviewers changed as presented in Figure 47. The second and the third 

interviewer had a greater tendency to aversion whereas the sixth one had a tendency in the 

opposite direction. Hence, especially for the second and the fourth splits, the distribution 

of data for training and testing was different which resulted in validation fluctuations. 

 

Figure 47: The ratio of the frequency of face contact to aversion per interviewer.  

In light of the information we discussed above, one of the possible reasons for the 

fluctuation we experienced in validation accuracy was the lack of a sufficient amount of 

training data for the first splits. This issue is caused by the n-fold back-testing that is 

adopted for cross validation of time series data. Another reason was the order of 

interviewers in the data presented to the network. Particular orders of interviewers in the 

input data result in specific orders of interviewers in splits used for training and validation. 

This might cause testing the network with a different distribution than the one used in 

training. The classical cross validation method enables to handle such distribution issues 

by randomly dividing the set of input data into training and test sets. However, time-series 

data have temporal relations that prevent randomized division. Thus, in order to handle 

fluctuations in the validation accuracy, we created five input data by shuffling the order 

of interviewers, and then in each data set, we separated the initial 80% of the data for 

training and the remaining 20% for testing. Since we used fewer data when tagging with 

the dialogue-act scheme, we created a distinct order for both tagging schemes.  To make 

predictions over almost all of the data, we shuffle the order of interviewers in five data 

sets so that the pair of last two interviewers in the order was different from the ones in the 

remaining four data sets, see Table 17.  
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Table 17: The list of data sets created by shuffling the orders of interviewers in the input data. Numbers 

represent interviewer ID’s. 

 Orders of Interviewers 

 Speech-Tag Set Dialogue Act 

1. 1-2-3-4-5-6-7  1-2-3-5-6-7 

2. 2-7-3-5-1-4-6 2-3-5-6-7-1 

3. 3-1-4-7-6-2-5 3-6-5-7-1-2 

4. 4-6-5-2-7-1-3 5-3-1-7-2-6 

5. 6-3-2-1-7-5-4 6-7-1-2-3-5 

 

We trained mini VGGNet and mini ResNet models with input data either annotated with 

speech-tag set or dialogue acts. As discussed above, the 5-fold back-testing is used for 

tuning feature map size which was either 16 or 32, and the one that minimized the errors 

on the validation set was chosen. Finally, we trained the models with the chosen feature 

map size on the data sets in which orders of interviewers differ from each other (see Table 

17). Then we evaluate the model with test data that corresponds to the last 20% of data. 

Later we compared the test accuracies of VGGNet and ResNet to determine the best 

accuracy rate specific to the tagging scheme. 

In the speech-tag set model, we provided the computational model with the following 20 

features as input variables: 

Sender: It can be either an interviewer or an interviewee. 

Speech Instance: It can be one of the following items: Speech, Speech while 

Laughing, Asking a Question, Confirmation, Pre-Speech, Speech Pause, Micro 

Pause, Thinking, The Repetition of Question, Signaling End of Speech, 

Questionnaire Filling, Greeting, Read-Question, Laugh 

Gender: Gender information was held for both the interviewer and the interviewee 

participant in a separate column. 

Is the Same Person: It is a polar question to specify whether the current individual 

is the same person with the one in the previous line. This value was stored separately 

for the interviewer and the interviewee participants. 

Gaze Behavior: If raw gaze data of the participant could not be extracted and/or 

there was a problem in face detection, we omitted those cases. Thus, the value for 

gaze behavior can be either Aversion or Face Contact. This value was stored 

separately for the interviewer and the interviewee participants. We treated the 

interviewee’s gaze behavior as an input feature when constructing a model for 
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predicting the interviewer’s gaze behavior, i.e., the target variable was the 

interviewer’s gaze behavior, and vice versa. 

On the other hand, in the dialogue-act tagging model, a total of 137 features involving the 

following input variables in addition to Sender, Gender, Is the Same Person and Gaze 

Behavior features: 

Communicative Function: We annotated conversations of 15 sessions with 

Dialogue-act tagging. We encountered 43 out of 56 communicative functions, 

except the following 13 functions: Correction, Accept Offer, Decline Offer, Decline 

Request, Decline Suggestion, Auto Negative, Allo Negative, Feedback Elicitation, 

Return Self Introduction, Question, Address Offer, Address Request, Address 

Suggest (see Table 3 for the whole list) One or more functions might be assigned 

per utterance. 

Dimension: It represents the type of semantic content. ISO 24617-2 proposed nine 

dimensions and we encountered all of them: Task, Turn Management, Time 

Management, Auto Feedback, Own Communication Management, Discourse 

Structuring, Social Obligation Management, Allo Feedback, Partner 

Communication Management. One or more dimensions might be assigned per 

utterance. 

Certainty: It can be one of the following items: Certain, Uncertain, Empty 

Sentiment: It can be one of the following items: Joy, Surprised, Empty 

Functional Dependence: It represents whether there is a functional dependence or 

not. 

Feedback Dependence: It represents whether there is a feedback dependence or 

not. 

Rhetorical Relation: It represents the coherence of text and discourse. There are 

four options: (i) an utterance might not have a RR relation (characterized by Empty 

label), (ii) an utterance is associated with a single RR (characterized by one of the 

RR labels), (iii) an utterance is associated with the same RR multiple times 

(characterized by multiple option of the related RR), (iv) an utterance is associated 

with multiple RR (characterized by the related multiple RR labels). As a result, a 

total of 37 labels are available: 18 labels for the RR category, 18 labels for multiple 

choice of each RR category and a single label for the Empty category.  

Argument Number of Rhetorical Relations: Argument number represents the 

argument-order of an utterance in a related RR. Each RR has two arguments, a first 

and a second. Since the same RR might be associated with an utterance multiple 

times, an utterance might be both the first and the second argument of a certain RR. 

This feature characterizes the state of being the first and second argument for a 
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particular RR. Eventually, a total of 36 labels are available for this category, 18 

labels for being the first argument and the remaining for the second one. 

Lastly, we preprocessed categorical data by applying One-Hot-Encoding, in which a 

feature with n category is represented by n variable, instead of a single one. The new 

variables were coded as numbers: 1 represents the presence of category and 0 otherwise. 

Such a transformation also enabled us to handle the multi-dimensional aspect of Dialogue-

act tagging. Consequently, instead of assigning a value to a single column holding 

multiple categories, we assigned the value to each category individually. 

6.3. Results 

We trained models on Google Colab which is a free Jupyter notebook environment 

provided by Google. Colab offers Tesla K80 GPU, using Keras and Tensorflow. We 

implemented training codes in Python 3.0 by Keras libraries with Tensorflows being its 

backend19. First, we have trained the simplified version of the VGG network with either 

16 or 32 filters. We trained the models by applying 5-fold backtesting on the separated 

training, validation and test sets. We also applied generally accepted methods for the 

following problems: (i) validation loss was much higher than the training loss, i.e., 

overfitting, (ii) training took too long, and (iii) model performance was poor on the test 

data set, i.e underfitting. Batch normalization, pooling, weight and dropout regularization 

were applied to the proposed networks. In Figure 48, the updated gazeVGG architecture 

is presented. 

 

Figure 48: GazeVGG architecture with batch normalization, regularization and pooling. * L2 kernel and L2 

bias regularizers were applied. **L2 kernel regularizer was applied. 

As stated in the second research question, we are trying to investigate the performance 

differences among computational models based on the data annotated either with 

 

19  Colaboratory Notebooks including training codes will be publicly available under 

https://github.com/ulkursln 

https://github.com/ulkursln
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dialogue-act or speech-tag set. Since the number of input features depends on the speech 

annotation scheme, dialogue-act annotation resulted in more features. Taking that 

difference in input numbers into account, we tested the performances on multiple models 

with varying filter-lengths. In addition to VGG, the other model trained was the simplified 

version of ResNet. To apply batch normalization and regularization techniques, we made 

further improvements on the source code of ResNet mentioned in Fawaz et al. (2019), see 

Figure 49 for the architecture. 

 

Figure 49: Simplified ResNet architecture with batch normalization, regularization, and pooling. There is a 

convolution between blocks and a residual connection between the last item of the previous block and the 

current one, which means the training in between layers is omitted. * L2 kernel and L2 bias regularizers are 

applied.  

As a result of 5-fold back-testing, 16 is the optimal filter number for training VGG 

network with input data involving dialogue act annotation, and 32 for the remaining (see, 

appendix I). We performed 5-fold cross-validation on the models created with optimal 

filter numbers and input data created by shuffling the orders of interviewers. In Table 18, 

we summarized the performances of computational models. According to the results, 

computational models running on the data annotated with Speech-tag set generally 

perform better than the ones running on the data annotated with Dialogue-acts. 
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Table 18: Performances of computational models with 5-fold cross-validation. The highest test accuracy 

was obtained from the ResNet model that had 32 filters and received data annotated with the Speech-tag set 

method.* represents the filter numbers in the first block. 

Tagging 

Scheme 

CNN 

Architecture 

Filter-

Number* 

Avg. Training 

Accuracy 

(%) 

Avg. Test Accuracy 

(%) 

Dialogue-Act 
VGG 16 83.2 (SD: 1.20) 69.6 (SD: 11.3) 

ResNet 32 83.1 (SD: 0.88) 70.7 (SD: 12.3) 

Speech-Tag 

Set 

VGG 32 81.1 (SD: 0.18)  76.9 (SD: 5.82) 

ResNet 32 81.1 (SD: 0.14) 78.8 (SD: 5.94) 

 

As can be seen in Table 18, there is a 10% difference between training and test accuracy 

performances in the models that receive the data annotated by ISO 24617-2 standard. In 

order to get a more robust estimation about how accurately models make predictions on 

unseen data, we then performed 10-fold cross-validation on those data by splitting the last 

10% of data for testing in each iteration., see Appendix J for the interviewers’ orders. We 

obtained accuracy performances similar to the 5-fold validation, see Table 19. 

 
Table 19: Performances with 10-fold cross-validation. The highest test accuracy was obtained from the 

ResNet model with 32 filters. .* represents the filter numbers in the first block 

Tagging 

Scheme 

CNN 

Architecture 

Filter-

Number* 

Avg. Training 

Accuracy 

(%) 

Avg. Test 

Accuracy 

(%) 

Dialogue-Act 
VGG 16 82.9 (SD: 1.1) 69.9 (SD: 12.9) 

ResNet 32 82.8 (SD: 0.8) 70.3 (SD: 12.8) 

 

In order to examine the quantitative differences between models classification accuracy, 

we also created confusion matrices that contain the ratio of false and correct estimations, 

see Table 20. 
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Table 20: Confusion Matrix of the models with the highest performances for each tagging scheme.  It 

represents the percentages of true and false predictions made on actual classes, i.e., aversion and face 

contact.  The percentage of true aversion predictions is 76.3% for the Speech-tag set scheme, while it is 54% 

for the dialogue act scheme. 

  Predicted Class  

  Speech Tag Set Dialogue Act 

  Face Contact Aversion Face Contact Aversion 

Actual 

Class 

Face Contact 85.1% 14.9% 94.8% 5.2% 

Aversion 23.7% 76.3% 46% 54% 

 

  



121 

 

 

 

 

 

 

  CHAPTER 7 

 

7.  GENERAL DISCUSSION AND CONCLUSION 

7.1. Discussion 

Gaze provides an effective way to receive and send information in a face to face 

interaction, similar to other non-verbal communication channels accompanying speech. 

When studying gaze and speech, it is necessary to decide from which level both models 

will be addressed. We can examine the gaze through low-level eye movements such as 

saccadic movements which occur while focusing on small parts of an object to get higher 

resolution in resolving the grand picture of it, vestibulo ocular reflexes necessary for fixing 

the position of the moving object in the retina, or smooth pursuit movements that take a 

role in the perception of depth and tracking moving objects. As an alternative, features 

underlying biologically realistic eye movements such as the physiology of the eye and 

eyelid, or motion kinematics of eye, eyelid and combination of eye-head movements can 

be employed. Low-level eye movements, anatomic features of the eye and kinematics of 

eye movements have been extensively studied by physiologists. As a result, a wealth of 

information has been obtained to enable biologically realistic eye animations in virtual 

agents or robots. However, although there exist studies in the related fields, eye 

movements have some other high-level characteristics still waiting to be resolved, like 

when they occur, how long they last, what their roles are in communication and what their 

relations with cognitive status are (Ruhland et al., 2015).  

As in the gaze studies, researchers have dealt with the speech at different levels for 

modeling non-verbal communication components driven by speech. In the Zoric, 

Forchheimer, and Pandzic (2011) study, they produced facial expressions in real-time with 

prosodic information obtained from speech signals. In the modeling of gaze behavior, 

Marsella et al. (2013) went one step further. In addition to the prosodic information of 

speech signals, they also employed superficial semantic information. Moreover, to 

identify roles of a conversation, Cassell, Torres, and Prevost (1999) proposed information 

structures, particularly the theme that associate the previous discourse with the current 

discourse and rheme that presents the new information regarding the theme. In the present 

study, we investigated the roles of the high-level characteristic of eye movements driven 

by high-level features of speech in face-to-face interaction. 
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7.1.1. Gaze in Relation with Speech 

The first research questions of the present study are as follows: “What are the underlying 

features of gaze behavior among humans” and “What is the relation between gaze and 

speech to achieve conversational goals in a specified face-to-face interaction 

environment?” To examine this question, we first conducted a pilot study with three pairs. 

It was a mock job interview task comprising the Turkish translations of eight common job 

interview questions adapted from Villani et al. (2012). Then, we performed the next study 

with the experience gained from the pilot study and by addressing the constraints 

encountered in experimental procedures, methodology and analysis of previous studies. 

Twenty-eight pairs consisted of seven professional interviewers and 28 interviewees took 

part in the study.  The participants in the pairs had not met before. They wore Tobii glasses 

throughout the study. Tobii glasses record eye-tracking data, sound and scene camera 

video that has a frame rate of 30 fps, which means the duration of each frame is 33 ms. 

The Interviewers read questions and evaluated the interviewees’ responses on the Wacom 

PL-1600 15.6 Inch Tablet which enabled users to interact with the screen by using a digital 

pen. Prior to the experiment, we allowed the interviewer to test the interview interface on 

the screen and ensured that the interviewer got familiar with interview questions and 

evaluation criteria, and gained enough experience with the digital pen. Moreover, to 

increase the motivation for participation, we asked the interviewee to think about the 

position and the company that he or she wanted to work for and to answer the questions 

posed by the interviewer by aiming for this position. We also shared this information with 

the interviewer at the beginning of the experiment. To conduct a more realistic interview, 

in addition to the given eight questions, interviewers were allowed to ask further ones, if 

they thought it was necessary. There was no time limit for the study. The participants 

stayed alone in the room throughout the session. In addition, we adjusted the lighting of 

the room accordingly so as to improve the quality of the collected eye data. 

We first analyzed gaze behavior. Since both participants were wearing Tobii eyeglasses 

during experiments, a total of six video streams were extracted from the recordings of the 

pilot study, and a total of 56 video-streams were extracted from the recordings, 28 of them 

obtained from interviewers’ recordings and the remaining from interviewees. Gaze 

behavior is identified as either face contact or gaze aversion by detecting whether the 

participant is looking at the other person's face or not. We investigated gaze aversion in 

the pilot study, whereas, in the next study, we expanded the analysis and examined both 

face contact and gaze aversion. The gaze analysis was carried out in three steps: (i) 

determining the boundaries of the face, i.e., face detection, (ii) deciding whether the 

partner’s gaze was within those boundaries, i.e., identification of gaze behavior, (iii) 

fixation detection of related gaze behavior.  In the second step, gaze behavior was 

identified for a single raw data, while in the third step, a fixation of gaze behavior was 

defined, which is the process of handling a group of raw gaze data rather than a single 

one. 

We, first, used the Viole-Jones (Viola & Jones, 2001) method for face detection, then, in 

order to minimize the number of undetected faces, we used face detection and face 
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tracking methods together. In cases where the Viole-Jones method could not detect the 

face, Camshift face-tracking was executed with the coordinates of the last detected face. 

Besides, we added the Kalman filter, since Camshift method might not produce very 

robust results against background noise. As a result, although we achieved to detect faces 

with better performances comparing to using Viole-Jones method alone, the face 

boundaries were constructed by a rectangle shape. The assumption that the faces are 

rectangular can lead to wrong estimation of gaze behavior, especially when the raw gaze 

data was near the corners of the rectangle, see Figure 7. Therefore, to specify more realistic 

face boundaries, we adopted OpenFace framework which defines face boundaries over 68 

facial landmarks, see Figure 16. We used the information we gained during the gaze 

analysis of the pilot study in the development of MAGiC application, which we discussed 

in the next section. 

We performed the gaze behavior analysis of 28 pairs via MAGiC application. We 

monitored the ratio of unidentified gaze behavior of each recording and observed that the 

identification rate of 11 interviewees and two interviewers were less than 70%.  The 

visualization function of MAGiC enables us to reveal the underlying reason for such a 

difference in the identification rate between interviewers and interviewees. Even there was 

a raw data of interviewees, the interlocutors’ (i.e., interviewers’) face might not be 

detected while they were reading a question or evaluating the responses of an interviewee 

by turning their head and face to the screen. For such cases, we trained a custom face 

detector instead of using Haar-Cascade classifiers which were provided by OpenFace as 

the default detector. Face tracking with the custom detectors improved the gaze analysis 

on the recordings for one of two interviewers and all 11 interviewees.  

The reason for the failure of identifying gaze behavior is either the undetected partner’s 

face or the person's missing gaze data. In order to minimize data loss, we manually 

determined the related gaze behavior on frame-images with an interface provided by 

MAGiC. We manually assigned or updated the identity of raw gaze behavior for the 

following situations: (i) the partner's face was on the frame, however, the face could not 

be detected automatically or was detected incorrectly. (ii) the partner’s face does not exist 

for a specific frame-image, thus even the raw gaze data of the participant for that particular 

frame-image cannot be obtained, aversion can be assigned as gaze behavior. After all these 

processes, we re-monitored the ratio of undefined gaze behaviors, and then we excluded 

the data of the 3 pairs that still have an identification rate below 70%. In this way, we 

completed the face detection and identification of gaze behavior which are the first two 

steps of gaze analysis. As a result, using gaze raw data we ended up with whether the gaze 

behavior on each frame-image was gaze aversion or gaze on a face. 

Raw gaze data includes noise and saccadic movements which are rapid and designed to 

direct the fovea to the vision of interest. They are identified as the jump from one fixation 

to another. Saccadic behavior might be important for particular research questions like 

searching for visual targets, but in the present study, since we focused on maintaining gaze 

on the interlocutor’s face or out of the face, we should eliminate jumping behaviors as 
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well as noise from the data. Fixation identification algorithms are employed to group the 

POR data within a specified neighborhood or velocity. 

Classical eye-tracking systems (i.e., remote eye tracking) require users to sit against the 

screen without moving their heads. On the other hand, wearable or mobile eye tracking 

offers the user the freedom to move around and interact with the real dynamic world. 

Hessels, Niehorster, Nyström, Andersson, & Hooge (2018). pointed out that while 

classical eye tracking allows identifying head-centered fixations, mobile eye tracking 

should consider head movements and larger world space, i.e., world centered approach. 

This is important for preventing to present the eye movement metrics that cannot be 

compared with each other. The fixation detection algorithms in the software packages of 

some eye tracking device manufacturers generally offer black box solutions. However, we 

thought it would be useful to state the fixation algorithm explicitly in order to represent 

comparable results. 

In the present study, we detected fixations in a few steps decided in line with the findings 

in the literature and the information contained in the manual of the eye-tracking device 

that we utilized during the study. We firstly interpolate missing data. The maximum gap 

length that would be filled with interpolation was chosen to be shorter than an ordinary 

blink which was 75 ms as proposed by previous studies (Benedetto et al., 2011; Ingre et 

al., 2006; Komogortsev et al., 2010) Then, we merged adjacent gaze behaviors of the same 

type (i.e. both aversion or face contact) between which there were again a gap shorter than 

an ordinary blink, i.e. 75 ms. Finally, gaze behaviors under 100 ms were discarded as 

recommended by Manor and Gordon (2003). Thus, we completed preparation for gaze 

analysis and then we passed to the speech analysis. 

We handled speech annotation in two ways: (i) discourse and rhetorical relations with ISO 

24617-2 and ISO 24617-8 respectively, (ii) an alternative set of speech tags that we 

produce based on the roles attributed specifically to the gaze in social communication 

studies. Our aim of annotating speech with two different methods is to investigate which 

characteristics of speech will produce better performance in modeling social gaze. In the 

pilot study, we only used the speech tags for annotating speech (viz. speech-tag set). We 

updated the tag set proposed in the pilot study for the speech annotation performed in the 

experiment. The updated set we proposed for speech annotation was determined based on 

studies on the role of eye movements in social communication as well as our observations 

on the data we collected. We considered the followings while creating and updating the 

tag set: 

- We identified separate labels for communication, requesting information and 

providing feedback, which are functions of communication. (Speech, Asking a 

Question, Confirmation) 

- We assigned labels to the pauses. We classified pauses by their duration and role 

as proposed by Heldner and Edlund (2010). (Pre-Speech, Speech Pause, Micro 

Pause) 
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- In parallel with the turn management role of speech, we labeled statements 

implying turn change and indicating that the speaker will release the turn at the end 

of the speech. (Signaling End of Speech). 

- We named the conversation segment as thinking when it included filler sounds, 

such as uh, er, um, eee, and drawls. We defined a separate label for thinking, 

because, we assumed that gaze behavior might be effected in the course of thinking 

with the aim at reducing the burden of what is being looked upon (Thinking). 

- As the interviewer reads the questions from the screen, the interviewer's gaze 

would evidently be directed towards the screen, so we tagged this case separately 

(Read Question). 

- A separate label for repeating the question is identified instead of annotating 

related speech segments as Speech or Thinking since repeating the question is both 

a sort of speech and it might be used by participants to save time to think (Repetition 

of the Question). 

- We assumed that gaze behavior would be affected by laughter, thus, separate labels 

are defined for them. (Laugh, Speech While Laughing) 

- The interviewers evaluated the interviewee's answer before proceeding to the next 

question. This evaluation process performed by looking at the screen. We 

categorized it separately from Asking a Question because in the meantime there is 

generally a no verbal or non-verbal exchange of information (Questionnaire 

Filling). 

- We handled greeting apart from Speech because we assumed that the sender would 

aim to signal intimacy while greeting and this might have an effect on gaze behavior 

(Greeting). 

In speech tag set analysis, we use MAGiC for segmentation and synchronization of pair 

recordings. Later on, we annotated segments of each session by using the “Annotation” 

interface of MAGiC. 

As well as speech-tag set annotation, we annotated speech with an alternative dialogue-

act model. For the analysis of the dialogue act, we first transcribed the conversations by 

listening to the audio streams of both the interviewer and the interviewee in each session. 

After that, we listened to the audio streams once more to add non-verbal vocalizations 

such as Unfinished Word, Filler Sound , Laugh, Drawl, Warm-up and so on. Adding non-

verbal vocalizations is recommended by the standard depending on they have an effect on 

the choice of communicative function, or qualifiers. At this point, we also updated the 

transcribed text in case there were missing words. 

As the last step of the transcription phase, we separated the transcription file of a session 

according to the sender. Thus, we ended up with two transcribed text files, one involved 
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the transcribed text of the interviewer and the other of the interviewee. After that, using 

the Praat program, three students marked the time interval of a total of 16716 words in 15 

out of 25 sessions. When selecting these 15 sessions, we have given priority to long 

sessions in which dialogue act and RR tagging might be more frequent. Each marker file 

was checked by another person. In addition, transcribed text files were once more updated 

if non-verbal vocalizations or words that were not included before and caught while 

listening sessions on Praat. Thus, transcribed text files were reviewed four times in total 

since its creation and the word intervals were checked by two people. We performed 

dialogue act annotation on those transcribed texts of each session. 

Dialogue act represents the communicative function that serves in a dialogue to change 

the state of mind of an addressee by means of its semantic content. We employed ISO 

24617-2 which is a semantically based standard for dialogue annotation. ISO 24617-2 

proposed nine dimensions based on the type of semantic content: Task, Turn Management, 

Time Management, Auto Feedback, Own Communication Management, Discourse 

Structuring, Social Obligation Management, Allo Feedback, Partner Communication 

Management and 56 communicative functions. In the present study, we encountered 43 

out of 56 communicative functions, except the following ones: Correction, Accept Offer, 

Decline Offer, Decline Request, Decline Suggestion, Auto Negative, Allo Negative, 

Feedback Elicitation, Return Self Introduction, Question, Address Offer, Address Request, 

Address Suggest. The multi-dimensional approach of this standard allows multiple 

functions or dimensions to be assigned to a single utterance. When the speaker repeats the 

question posed to him, he or she might signal the following simultaneously: taking the 

turn, understanding the question and the need for time to answer. This standard allows 

handling such cases. Another strength of the standard is that many frameworks of the 

dialog act annotation neglect some minor nuances that the speaker wants to convey to an 

addressee. The utterance that the speaker is uttering for giving information should be 

labeled with Inform. However, the assignment of Inform alone cannot indicate whether 

the speaker is sure about the information that he or she is giving, or this information makes 

him or her happy, or this information is conditional. For such cases, ISO 24617-2 

recommends three qualifiers: (i) Certainty, (ii) Sentiment, (iii) Conditionality. Moreover, 

this standard recommends ISO 24617-8 or better known as ISO DR-Core for Rhetorical 

Relation annotation. To understand the discourse as a whole, the relation between the 

sentences or clauses in the discourse (i.e., Rhetorical Relations) should be considered. In 

this standard, 18 labels are recommended for RR. In the present study, all 18 labels were 

included. 

In order to ensure that the communicative functions are assigned as accurately as possible, 

as proposed in the annotation guideline, we have identified segments as the minimal 

stretch of utterances having a communicative function. While assigning functions to the 

identified segments, we tried to understand what the speaker meant by imagining 

ourselves in the place of an addressee. As suggested in the annotation guideline, whatever 

the way the speaker expressed himself, we considered following questions during 

annotation:(i) why did the speaker say it, (ii) what is the purpose of the speaker in using 

this utterance, and (iii) what are the speaker’s assumptions about the person he was 
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addressing. ISO 24617-2 indicates that labeling should be based on the speaker’s 

intention, instead of what he or she says literally. Therefore, this standard proposes to 

think functionally rather than relying on Linguistic cues, which are useful, but focusing 

only on them could make us miss what the speaker really wants to say and that would 

cause false labeling. In English, question sentences often contain words starting with 

“wh”, such as “what can I know?”, “which rule is violated?”. They are labeled as Set 

Question according to the ISO 24617-2 scheme. But we can't label all the sentences in this 

form as Set Question. For instance, “why don't you go tomorrow” might be a suggestion 

rather than a question, depending on the context.  Another issue to consider is to pick more 

specific communicative functions while annotating the functional segment. For instance, 

Check Question is a Propositional Question, but it additionally expects that the answer 

will be positive. In the present study, for segmentation and annotation of dialogue act, as 

well as considering the all criteria mentioned above, we studied the ISO 24617-2 standard, 

its revised version, the manual of annotation (Augmented Multiparty Interaction 

Consortium (AMI)., 2005; Bunt et al., 2012, 2017; ISO, 2012) the sample annotations 

given in DialogBank (Bunt et al., 2018) and we benefited from the TED-Multilingual 

Discourse Bank in order to get more insight into discourse annotations in Turkish(Zeyrek 

et al., 2019). We adopted DiAML (Dialogue Act Markup Language)-Multitab 

representation because it is human-friendly and easy to understand from the perspective 

of a third person. In DiAML-Multitab excel, we automatize the process of assigning 

unique ID’s and updating references by using the developed macro. 

We performed statistical analysis by merging the gaze and speech analysis data into a 

single summary file. Each line of the generated text file corresponded to a particular 

frame-image and the columns are gaze behavior of an interviewer and an interviewee on 

that particular frame-image and either the features related with speech-tag set analysis, 

such as sender, speech-tag label or the features related with dialogue act analysis such as, 

communicative function, RR label, qualifier and so on. As a result, we obtained two 

summary files, one involves the features of speech-tag set and the other dialogue-act, a 

series of gaze behavior and related features taken at successive intervals of 33 ms. 

All statistical analyses were carried out in the R programming language (R Core Team; 

2016). Instead of averaging the data points of subjects, we performed mixed models in 

order to provide independence of data points in a linear model. We represented individual 

differences by adding both fixed and random effects to a model. 

We observed that interviewees performed face contact and gaze aversion more frequently 

when compared to interviewers. Moreover, the gaze aversion-durations of interviewers 

were longer than that of interviewees. On the other hand, face contact durations of 

interviewees were longer than that of interviewers. When we examined gaze behavior per 

role, there was no difference between the frequencies of gaze aversion and face contact 

for interviewers, while a difference was observed for interviewees. Interviewees avert 

their gaze more frequently compared to performed face contact. 
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The findings are in line with the conclusions summarized by Kendon (1967) in his detailed 

study investigating the function of gaze in face-to-face conversation. Kendon (1967) 

stated that individuals tend to look at others more frequently when listening compared to 

speaking and the glances of speakers would be shorter than the listeners. He had grouped 

the roles in the conversation as speakers and listeners. In the present study, due to the role 

of interviewees, they spoke more frequently than the interviewers. Comparing 

interviewers and interviewees, the gaze behavior of the latter was more similar to that of 

the speakers mentioned in Kendon (1967).  

Broz et al. (2012) studied mutual gaze in a face-to-face conversation with participants 

wearing ASL eye-tracking devices. They observed a mutual face gaze occurring for about 

46% of a conversation. Rogers et al. (2018) also conducted a dual eye-tracking study and 

reported that the mutual face gaze comprised 60% of the conversation with 2.2 seconds 

duration on average. On the other hand, when cumulative data of all sessions are taken 

into account, we found a lower ratio in the present study, which was 34% and the average 

duration was 546.1 ms. There are two crucial steps in determining mutual face gaze: (i) 

deciding whether the gaze of an individual was inside the face boundaries of an 

interlocutor, and (ii) synchronization of recordings exported from eye-trackers. Broz et al. 

(2012) and Rogers et al. (2018) manually annotated gaze behavior in each frame. 

However, in the present study interlocutor’s face boundaries were detected based on 68 

facial landmark points and gaze behavior was generally decided automatically via 

MAGiC. For synchronization, in Broz et al. (2012) study, the experimenter produced 

handclaps at the start and end of an experiment. Then, to synchronize the pair’s recordings, 

they watched the video files exported from the eye tracker’s scene camera and manually 

determined the beginning and end of a conversation. On the other hand, Rogers et al. 

(2018) utilize behavioral annotation software, namely Mangold INTERACT20 for manual 

and synchronous coding of pair’s audiovisual files. In the present study, a beeping sound 

was generated to indicate the beginning of a session. We used the semi-automatic 

synchronization function of MAGiC, in which audio files of pairs were automatically 

divided into segments involving time interval information and then the audio-segments 

containing beeping sound was determined by listening to audio segments. The starting 

time of the following segment was set as the initial time of that participant’s recording in 

a pair. Then MAGiC calculated the time offset between the pair’s recordings which is 

necessary for synchronization. So we tried to ensure synchronization of pairs’ recordings 

as precisely as possible. This is crucial because, for instance, even a 33 ms shift in 

recordings exported from a 30 Hz eye tracker will result in incorrect synchronization and 

consequently incorrect analysis. One of the reasons for the differences in the ratio of 

mutual face gaze may be the method employed for synchronization.  

 

20  For detailed information about Mangold INTERACT, see https://www.mangold-

international.com/en/software/interact 
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Manual coding of gaze behavior might be the other reason since it is open to human-

related errors. Manual coding involves the process of detecting the face boundaries. 

Comparing to the previous studies, we employed state of the art technologies for face 

boundary detection. Moreover, because of the hardware or operational constraints, eye-

tracking devices might estimate gaze positions with deviations. Eye tracker manufactures 

provide the estimated error that is specific to device in degrees for the visual angle. In the 

present study, we utilized the MAGiC application which considers such error margins to 

estimate gaze behavior automatically, to visualize gaze and face boundaries overlaid on a 

frame-image for enabling manual annotation. It is not possible to code gaze behavior 

manually when this margin of error is taken into account.  For instance, Rogers et al. 

(2018) used 15 pixels for the size of the circle that represents the gaze position. They 

decided on a size of 15 pixels to achieve a balance between comfort in the coding process 

while providing distinguishable regions. In addition, Broz et al. (2012) studied with raw 

gaze data, while Rogers et al. (2018) employed a fixation extraction function provided by 

the eye-tracking manufacturer. Working on fixations rather than PORs not only decreases 

the amount of data to be analyzed but also eliminates the noise and saccadic movements. 

We adopted a similar approach with Rogers et al. (2018) study and worked on fixations 

instead of raw data. However, there was a crucial difference. They extracted fixations with 

a block-box solution that we could not get an insight into the inner processing of the 

provided function so we cannot make inferences about its suitability for dynamic scenes. 

On the other hand, in the present study, the fixation extraction algorithm that is suitable 

for dynamic scenes was explained step by step to provide repeatability of the study.  

Lastly, differences in eye-tracking equipment, cultures, spoken language and 

experimental procedures might be the underlying reasons for the variety of findings. For 

instance, we performed a mock job interview task whereas other studies conducted 

conversations without a predetermined topic and in Broz et al. (2012) study, the 

experimenter stayed in the room throughout the data collection, even though he stood out 

of the participant’s sight.  

Throughout this study, we tried to automate the analysis as much as possible by utilizing 

the state of the art methods. Thus, we aimed to overcome some methodological problems 

in the pilot study and to reduce the amount of human-related errors and the time necessary 

for annotation. In parallel with this aim, we developed MAGiC for the analysis of gaze 

which involves face detection, gaze behavior identification and speech analysis including 

segmentation, annotation and synchronization of pair’s recordings. 

7.1.2. MAGiC 

MAGiC was developed to allow researchers from various disciplines to work on it without 

a technical background. It is a desktop application written in C# programming language 

and an open-source software application which is publicly available for non-profit use.  

Comparing to remote eye tracking, mobile eye-tracking analysis has technical difficulties 

in recognizing and tracking objects in the dynamic scenes. MAGiC focuses on face 
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recognition, which is one of the most studied subdomains of object recognition. It 

automatically detects whether the extracted raw gaze data is gaze on the face of an 

interlocutor or aversion. In addition, it provides interfaces for speech analysis involving 

segmentation, synchronization of pair recordings and annotation of segments. MAGiC 

significantly reduces the time and effort required for manual annotation of eye and audio 

recording data. For instance, a 10-minute video recording extracted from a 60 Hz eye 

tracker contains 36,000 frame-images. It takes more than 10 hours to manually annotate 

the entire recording assuming that 1 second is required for annotation of a single frame. 

MAGiC automatically performs this analysis, and Depending on the capabilities of the 

computer used, MAGiC automatically completes this annotation around 10 minutes. It 

also significantly reduces effort and time required for the segmentation and annotation of 

audio recordings by segmenting audio recordings in a couple of seconds and by providing 

interfaces for the synchronization of pair’s recordings and annotation of segments.  

MAGiC employs OpenFace frameworks for gaze behavior analysis, CMUSphinx for 

audio recording analysis and dlib for machine learning of face tracking. Through the 

capabilities of those frameworks, it provides researchers with information that cannot be 

obtained in manual annotations, such as extracting the coordinates of some facial features 

like eyes or mouth and creating separate segments for pauses in a millisecond duration 

which is virtually impossible for human annotators to detect at this level of temporal 

granularity. 

Facial recognition with the default detector provided by OpenFace may lead to poor face 

detection in some video recordings and consequently, give low gaze behavior detection 

ratio. MAGiC provides interfaces to monitor problematic recordings, to train custom 

detectors for face detection on those problematic recordings and to perform face detection 

with the trained detectors. Moreover, it is developed based on the Separation of Concerns 

(SoC) design principle. Accordingly, each module in MAGiC can be used in isolation, for 

instance, it is possible to use MAGiC only for speech segmentation, face tracking, or 

annotation of speech segments. 

We represented MAGiC’s capabilities with the data gathered from the pilot study. The 

segmentation of the audio recordings was 1-2 seconds, and the annotation of segments 

took 10-20 minutes depending on the duration of the session. The face detection took 4-

10 minutes depending on the duration of the video. Our analysis revealed that MAGiC 

identified gaze behaviors with a success ratio of over 80%.  

Furthermore, we conducted a usability analysis of MAGiC.  A total of eight participants 

took part in the usability study. They firstly installed the MAGiC application on their 

personal computer by using publicly available sources. Then, they performed the 

randomly assigned Gaze or Speech analysis both manually and using related interface of 

MAGiC, respectively.  Finally, they assessed the usability of MAGiC using a 7-point scale 

ISO 9241/10 questionnaire. We sent them an excel file at the beginning of the study. They 

filled the related sheets and columns of excel with the annotations they made manually, 

the elapsed time they allocated for both manual and automatic analysis, and the notes they 
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responded with for the questionnaire. We compared the elapsed time of manual and 

automatic analysis. The mean duration to annotate a single frame-image decreased from 

29.1 seconds (SD=22.7) to an average value of 0.09 seconds (SD=0.02); and in the speech 

analysis, the mean duration for annotation of a single segment decreased from 44.5 

seconds (SD=8.8) to an average value of 7.1 seconds (SD=1.4). Furthermore, all of the 

usability metrics were scored higher than the average, namely 5.29 out of 7 for gaze 

analysis and 6.61 out of 7 for speech analysis. In order to investigate the reason for the 

differences in usability scores in speech and gaze analysis, we asked participants about 

their ratings. Even though they do not work specifically in this field, people are showing 

more tendency to comprehend the speech analysis and the motivation behind it when 

compared to the gaze analysis. For this reason, we think that the usability of gaze analysis 

would be even higher for the researchers working in this field. Since MAGiC is an open-

source project for behavior research, it is open to further developments from the 

community.  Some of the features that can be added later are as follows: automatic 

detection of facial expressions by using Facial Action Coding System (FACS) which is 

already provided by MAGiC, detection of gaze on specified objects or regions or face, 

and automating speech annotation. 

7.1.3. Computational Models 

The secondary research questions of the present study are as follows: “How can we 

computationally model gaze behavior with the high-level features of speech” and “How 

appropriate is employing discourse analysis scheme, namely ISO 24617-2 standard, in a 

computational model of gaze behavior?” To this aim, we trained two common 

Convolutional Neural Network (CNN) architectures, namely VGGNet and ResNet.  

A Convolution Neural Network is a particular type of deep neural network and it is most 

commonly applied to the processing of 2D images. On the other hand, gaze data is in the 

form of a time series (i.e., gaze on face or an aversion) and one requires to employ 1D 

CNN, which is mostly used in NLP studies and gets the input data as a group of timestamps 

with a pre-defined step-distance between consecutive groups of timestamps. In the present 

study, we found that the average duration of gaze behavior including aversion and gaze 

on face was around 300 ms. Therefore, we assigned nine to timestamps which corresponds 

to 300 ms for the 30 Hz eye tracker. Moreover, we assigned three to step distance which 

corresponds to the minimum fixation duration, namely 100 ms.  

We, first, preprocessed categorical data by applying One-Hot-Encoding, in which a 

feature with n category is represented by n variable, instead of a single one. For the input 

data including speech annotation with the speech-tag set, we provided a total of 20 features 

including Sender, Speech Instance, Gender, Is the Same Person and Interviewee’s Gaze 

Behavior. On the other hand, we provided a total of 137 channels involving Sender, 

Gender, Is the Same Person, Interviewee’s Gaze Behavior, Communicative Function, 

Dimension, Certainty, Sentiment, Functional Dependence, Feedback Dependence, 

Rhetorical Relation and Argument Number of Rhetorical Relations. We conducted 28 

sessions with seven professional interviewers and 28 interviewees, where each 
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interviewee took part in a single session and an interviewer attended more than one 

session. Therefore, we collected more data for a single interviewer compared to an 

interviewee. We trained computational models to predict the gaze behavior of 

interviewers.  

We trained VGG and Resnet models with 16 or 32 filters in the first block and taking an 

input data annotated either with a dialogue act or speech-tag set. In the parameter tuning 

phase, we used backtesting that is specific to the time series as a cross-validation method. 

For the data annotated with dialogue acts, ResNet with 32 filters and VGG with16 filters, 

and for the data annotated with a speech-tag set, 16 filters for both VGG and ResNet 

achieved better accuracies. After we decided the filter size in the first block, we trained 

models with the decided parameters and evaluated the models’ performances by building 

5-fold cross-validation with data sets created by shuffling the orders of interviewers in the 

input data. We observed that ResNet models achieved better accuracies for both 

annotation methods due to VGG bottleneck which causes loss of generalization capability 

after some depth whereas ResNet handles this vanishing gradient problem by using 

residual connections. Moreover, we found that the speech tag set gave rise to better 

performances compared to dialogue-act annotations. To get further insight into the 

differences in performances, we draw a confusion matrix representing the percentages of 

true and false predictions made on the actual gaze behavior. Although both ResNet models 

predicted face contact with higher accuracies, the dialogue-act method was not good at 

predicting aversions.  The probable reasons might be the differences in the number of 

features and the number of input sessions. In addition, speech-tag set involves Pre-Speech, 

Speech Pause and Micro Pause for annotation of pauses whereas dialogue act annotation 

does not handle pauses.  

7.2. Concluding Remarks and Future Directions 

We investigated gaze accompanying speech in a face-to-face interaction. Firstly, we 

studied the characteristics of gaze and its relations with speech with an experimental 

research conducted via mobile eye tracking devices. The results indicate that the 

frequency and duration of gaze differ significantly depending on the role. We showed 

these differences could not be observed in the analysis performed with raw gaze data 

instead of detected fixations. As in some of the previous studies, performing gaze analysis 

with raw gaze data or with detected fixations by using black box solutions are inadequate 

to obtain comparable results. Moreover, in multimodal analysis, it is important to 

automate annotations with the state of the art methods. Manual annotation is vulnerable 

to human-related errors and in addition, automatic annotation with the state of the art 

methods provide further information that may not be extracted manually such as, detecting 

the coordinates of facial landmarks, taking into account the error margins while annotating 

the gaze behavior or segmentation of the speech at milliseconds precision. MAGiC offers 

an analysis environment for researchers working in the field without requiring a technical 

background. It is also open to future developments as it is an open source project. 
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Secondly, we developed CNN models of gaze behavior in a face-to-face interaction.  The 

widely used VGGNet and ResNet architectures were adopted for this aim. In the first 

model, we annotated the speech data with the speech-tag set that we created by benefiting 

from the founding of previous social gaze studies and also by examining the data we have 

collected. In the second model, we used a particular semantic annotation framework 

proposed for dialogue act annotation, namely ISO 24617-2. The performance of the first 

model was higher than the second one. Our goal here was not to suggest an alternative 

scheme for discourse annotation. Due to the increasing number of Embodied 

Conversational Agents (ECAs) in recent years, studied in face-to-face interaction gain 

more importance, and it requires to handle interaction in a multimodal manner instead of 

speech in isolation. From this perspective, results showed that, in the computational model 

of gaze, comparing to performance of one of the discourse annotation scheme with a great 

effort behind it, annotation with a simple tag set performs better. Thus, multimodality 

should be taken into account when proposing an automatic speech annotation schemes. In 

addition, results showed that CNN allows us to predict high level features of eye 

movement with high level features of speech. 

As future work, other non-verbal cues accompanying speech might be experimentally 

investigated to examine their characteristics, roles and relations in social communication.  

In addition, in order to see the effect of language, culture and personal differences, similar 

experimental investigations might be performed. Moreover, instead of mock job interview 

task in which the role of participants causes a kind of asymmetry between the participants, 

an experimental investigation of open conversation might be another future study. As an 

outcome of the present study, we also provided a Turkish corpus that involves the time 

intervals of each words. This corpus might be used in different studies for different aims, 

such as investigating the effects of conjunctions in the prediction of gaze behavior. In the 

future studies, it is important to obtain comparable results to facilitate the flow of 

interdisciplinary knowledge on a face-to-face interaction that is studied by many different 

disciplines including, linguistics, computer engineering, AI and psychology. Thus, it will 

be useful to support open source environments in the field. Because they enable 

researchers from different backgrounds to work together, and also allow progressive 

information flow between different disciplines. 
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APPENDICES 

 

APPENDIX A 

 

QUESTIONS 

 

The Turkish translations of eight common job interview questions adapted from Villani 

et al. (2012) study: 

1) Biraz sizden bahsedelim. Neler yapmaktan hoşlanırsınız? Beklentileriniz 

hedefleriniz nelerdir? 

2) Önerdiğimiz bu pozisyonla nedne ilgileniyorsunuz? 

3) Bu pozisyonun hangi açılardan size uygun olduğunu düşünüyorsunuz? 

4) Önümüzdeki 5 yıl içinde kendinizi nerede görüyorsunuz? 

5) Biraz da kişisel özelliklerinizden konuşalım. Sizi tanımlayan 3 en belirgin 

özelliğiniz nelerdir? 

6) Liderlik yetenekleriniz hakkında ne düşünüyorsunuz? Nasıl bir lider olurdunuz? 

7) Liderlik özelliklerinizi ön plana çıkaran yaşadığınız bir deneyimi paylaşır mısınız? 

8) Başka bir yerden transfer edilme teklifi alsanız bu size nasıl hissettirir? 
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APPENDIX B 

 

EVALUATION QUESTIONNAIRE 

 

The interviewers evaluated the interviewees’ responses on a 7-point Likert Scale. 

Bilinçli cevap verdi: 1 2 3 4 5 6 7 

Doğal hareket etti: 1 2 3 4 5 6 7 

Yaratıcıydı: 1 2 3 4 5 6 7 

Göz hareketleri doğaldı: 1 2 3 4 5 6 7 
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APPENDIX C 

 

THE OUTPUT CONTENT OF THE AOI MODULE 

 

The output file options of “Face Tracking” panel. 

2d landmark: The first line of an output file generated for 2d landmark is header and is 

written as follows: frame, timestamp, confidence, detection_success and landmark 

coordinates, namely x_0, x_1 ...  x_67, y_0, y_1 ...  y_67.21 Confidence is a measure 

between 0 and 1 which represents the confidence level of tracking.  For each of the 68 

landmark points, first the x coordinate and then the y coordinate is recorded.  This option 

is non-editable and is selected by default. 

3d landmark: The first line of an output file is header and is specified as follows: X_0...  

X_67, Y_0...Y_67, Z_0...Z_67. For each of the 68 landmark points, first the x coordinate, 

then the y and the z coordinates are recorded respectively. Every 3d point is written in 

millimeters and represents the facial landmark location with respect to the camera.  A 

focal length and an optical center (by default, center of an image is assigned) are required 

to calculate the camera-related position. The Focal length is estimated using Algorithm 1.   

 

Algorithm 1.  Estimating the focal length. 

Input:   𝑤𝑐𝑖
: width of the captured image 

              ℎ𝑐𝑖
: height of the captured image  

Output: (𝑓𝑥, 𝑓𝑦): focal length  

 

1          begin 

2                 𝑓𝑥 ← 500 × (𝑤𝑐𝑖
640⁄ ) 

3                 𝑓𝑦 ← 500 × (ℎ𝑐𝑖
480⁄ ) 

4                 𝑓𝑥 ← (𝑓𝑥 + 𝑓𝑦) 2⁄  

5                 𝑓𝑦 ← 𝑓𝑥 

6……...end 
 

 

 

21
The naming convention is specified by the content module developers. We keep the naming convention 

intact in the present study. 
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Head Pose:  The first line of an output file is header and is written as: pose_Tx, 

pose_Ty, pose_Tz, pose_Rx, pose_Ry, pose_Rz. The first three are translations 

and they represent the location of the head with respect to the camera in millimeters. 

Others are rotations in radians around X, Y, Z axes. 

Action Units (AU).   AUs are proposed to represent facial muscular activity (Ekman & 

Friesen, 1978).  They are employed to extract facial expressions from facial appearance 

changes. The Facial Action Coding (FAC) system characterizes a spontaneous facial 

behavior among a group of items in a set of 46 AUs.  OpenFace is able to recognize 

intensity and/or presence of following AUs: 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 

15, 17, 20, 23, 25, 26, 28, and 45.  The first line of an output file is header and 

is written as: AU01_c, AU02_c… AU45_c, AU01_r, AU02_r… AU45_r.  The 

presence of AU is represented with the c suffixed column name.  It is encoded as 0 for the 

absence and 1 for the presence.  Intensity, on the other hand, is specified with r suffixed 

column name.  It is encoded as a continuous value in the range from 0 to 5 where 0 

represents absence, 1 represents presence at minimum intensity and 5 represents presence 

at maximum intensity. 

Tracking Framework Image-Size.  The last option is to create an output file holding the 

captured-image size.  This file is necessary for further analysis.  The raw gaze data 

depends on the image resolution of the eye tracker and it might have a different size than 

the image captured during face tracking has.  In such cases, MAGiC automatically scale 

coordinates to match each other’s dimensions.  This option is non-editable and selected 

by default. 
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APPENDIX D 

 

USABILITY METRICS 

 

The 7-point scale ISO 9241/10 questionnaire. 

Suitability for the task 1: The software inappropriately meets the demands of the tasks. 

7:Software is suitable, if it supports the user to realize his tasks 

effectively and efficiently. 

Self-descriptiveness 1: The software offers insufficient information regarding the inputs 

which are allowed or necessary 

7: Software is self-descriptive, if every step is understandable in an 

intuitive way, or, in case of mistakes supported by immediate 

feedback. 

Controllability 1:The software forces an unnecessary inflexible sequence of 

commands. 

7:Software is controllable, if the user is able to start the sequence 

and influence its direction as well as speed till he reaches his aim. 

Conformity with user 

expectations 

1:The software makes more difficult the orientation because of a 

non-conforming design. 

7:Software conforms with the user’s expectations, if it is consistent, 

complying with the characteristics of the user, e.g. taking into 

account the knowledge of the user in that special working area, 

accounting education and experience as well as general 

acknowledged conventions. 

Error tolerance 1:The software gives unspecific information regarding error 

correction and management. 

7:Software is error tolerant, if it requires no or just minimal 

additional effort despite obvious faulty steering or wrong input. 

Suitability for 

individualization 

1: The software is difficult for the user to expand if new tasks arise. 

7: Software is suitable for individualization, if the system allows 

customizing according to the task as well as regarding the individual 

capabilities and preferences of a user. 

Suitability for 

learning 

1:The software is difficult to learn without outside direction or 

handbooks. 

7:Software supports the suitability of learning, if the user is 

accompanied through different states of his learning process and the 

effort for learning is as little as possible. 
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APPENDIX E 

 

THE DETAILED INFORMATION OF PAIRS 

  

Table 21: The detailed information of participants  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Session InterviewerID Interviewer 

Gender 

Age Interviewee 

Gender 

Age 

1 Interviewer-1 Female 35 Female 27 

2 Interviewer-1 Female 35 Male 30 

3 Interviewer-1 Female 35 Female 30 

4 Interviewer-2 Male 35 Male 25 

5 Interviewer-2 Male 35 Male 22 

6 Interviewer-2 Male 35 Female 22 

7 Interviewer-2 Male 35 Male 21 

8 Interviewer-2 Male 35 Male 25 

9 Interviewer-3 Female 38 Female 22 

10 Interviewer-3 Female 38 Female 22 

11 Interviewer-4 Female 27 Female 24 

12 Interviewer-4 Female 27 Female 28 

13 Interviewer-4 Female 27 Female 24 

14 Interviewer-4 Female 27 Male 26 

15 Interviewer-4 Female 27 Male 26 

16 Interviewer-3 Female 38 Male 25 

17 Interviewer-3 Female 38 Male 25 

18 Interviewer-3 Female 38 Male 30 

19 Interviewer-5 Male 36 Male 22 

20 Interviewer-5 Male 36 Female 25 

21 Interviewer-5 Male 36 Female 24 

22 Interviewer-6 Male 36 Female 24 

23 Interviewer-6 Male 36 Male 24 

24 Interviewer-6 Male 36 Male 27 

25 Interviewer-6 Male 36 Male 27 

26 Interviewer-7 Female 35 Female 26 

27 Interviewer-7 Female 35 Female 25 

28 Interviewer-7 Female 35 Female 29 
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APPENDIX F 

 

THE NUMBER OF SEGMENTS 

  

Table 22: The number of segments of each session 

SessionID #Segments  

1.  683 

2.  383 

3.  356 

4.  608 

5.  526 

6.  378 

7.  403 

8.  379 

9.  611 

10.  715 

11.  623 

12.  394 

13.  455 

14.  466 

15.  935 

16.  664 

17.  721 

18.  515 

19.  893 

20.  342 

21.  362 

22.  1219 

23.  1452 

24.  1497 

25.  2002 

26.  672 

27.  752 

28.  850 

Total 19856 
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APPENDIX G 

 

RESIDUAL AND THE PROBABILITY DISTRIBUTION PLOTS  

 

 

Figure 50: The residual and the probability distribution plots. They were used to test the assumptions of the 

linear mixed model for the duration of gaze aversion. In Residual plot, higher fitted values have larger 

residuals indicating that the model is more “off” with larger predicted means. So, the variance is not 

homoscedastic: it’s smaller in the lower range and larger in the higher range. 
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APPENDIX H 

 

NUMBER OF LABELS  

 

Table 23: Number of  Speech-tags 

Tag  Frequency 

Speech  2867 

Micro Pause  1387 

Speech Pause  1262 

Thinking  927 

Pre-Speech            402 

 Sub-Total 6845  (covers 80.3%) 

 

Asking A Question  363 

Confirmation  337 

Read-Question  325 

Questionnaire Filling  239 

Signaling End of Speech  174 

Speech While Laughing  92 

Greeting  52 

Laugh  50 

The Repetition of Question  44 

 Total 8521 
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Table 24: Number of Dialogue-acts 

Dialogue-act  Frequency 

Stalling  1948 

Answer   1430 

Auto Positive   801 

Inform  753 

Turn Take  407 

 Sub-Total 5339 (covers 79.6%) 

 

Turn Keep  340 

Set Question  230 

Self Correction   140 

Interaction Structuring  117 

Agreement  80 

Request  69 

Retraction  52 

Propositional Question  35 

Check Question  32 

Turn Release  31 

Confirm  28 

Thanking  24 

Turngrab  23 

Accept Request  16 

Initial Greeting  16 

Return Greeting  16 

Opening  13 

Allo Positive  10 

Completion  10 

Choice Question  8 

Initial Self Introduction  8 

Pausing  8 

Turn Accept  8 

Accept Thanking  7 

Apology  7 

Accept Apology  6 

Suggest  6 

Instruct  5 

Turn Assign  4 

Initial-Goodbye  3 

Promise  3 

Accept Suggest  2 

Disagreement  2 

Offer  2 

Return-Goodbye  2 

Self Error  2 

Correct Misspeaking  1 

Disconfirm  1 

 Total 6706 
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Table 25: Number of Dialogue-act dimensions 

Dimension  Frequency 

Task  2658 

Turn Management  1948 

Time Management  820 

Auto Feedback  363 

Own Communication Management  337 

Discourse Structuring  325 

Social Obligation Management  239 

Allo Feedback  174 

Partner Communication 

Management 
 92 

 Total 8521 

 

 

Table 26: Number of Rhetorical-Relation 

Rhetorical Relation Frequency 

Elaboration  1589 

Conjunction  1549 

Cause  743 

Expansion  491 

Exemplification  347 

Contrast  314 

Concession  312 

Restatement  303 

Condition  280 

Similarity  172 

Substitution  151 

Disjunction  121 

Asynchrony    116 

Manner  108 

Purpose  42 

Synchrony  22 

Negative Condition  18 

Exception  6 

 Total 6684 
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APPENDIX I 

 

VALIDATION AND TRAINING ACCURACIES OF BACKTEST 

  

Table 27: The 5-fold backtesting  results of Speech Tag  Set. The highest validation accuracies of each 

architecture is written in bold. *) It represents the filter numbers in the first block. 

 16* 32* 

 Training Validation Training Validation 

ResNet 84.7 (SD:0.28) 69.1 (SD:7.71) 84.6 (SD:0.25) 71.9 (SD:7.44) 

VGG 84.8 (SD:0.21) 68.3(SD:9.61) 84.9(SD:0.21) 69.1 (SD:7.51) 

 

 
Table 28: The 5-fold backtesting results of Dialogue act. The highest validation accuracies of each 

architecture is written in bold. *) It represents the filter numbers in the first block. 

 16* 32* 

 Training Validation Training Validation 

ResNet 84.1(SD:1.53) 64.9(SD:6.71) 83.7(SD:1.25) 65.9 (SD:7.99) 

VGG 85.8(SD:1.03) 64.5 (SD:7.51) 86.7(SD:1) 64.4 (SD:7.88) 
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APPENDIX J 

 

ORDERS OF INTERVIEWERS 

 

10- fold cross validation for the models trained with the input data involving Dialogue-act 

annotation. 

Table 29: The orders of interviewers for 10-fold cross validation of dialogue-act annotation. 

Orders                Interviewer 

IDs 

1.  1-2-3-5-6-7 

2.  2-3-5-6-7-1 

3.  3-6-5-7-1-2 

4.  5-3-1-7-2-6 

5.  6-7-1-2-3-5 

6.  1-5-3-6-2-7 

7.  6-2-3-7-5-1 

8.  2-1-7-3-6-5 

9.  5-7-6-1-3-2 

10.  3-1-7-2-5-6 
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