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ABSTRACT 

 

DYNAMIC MODELING OF JOINTS IN 3D STRUCTURAL MODELS 

 

Tekin, Merve 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

 

November 2019, 132 pages 

 

In the design and development stages of mechanical structures, one of the most 

challenging part is modelling joints. Due to complex dynamic behavior of joints, it is 

difficult to build a reliable model for joints using only theoretical approaches, and 

therefore usually methods based on experimental measurements are employed. In this 

study, a structural modification method is used to find dynamic characteristics of a 

bolted joint connecting two beams. A simple formulation based on a structural 

modification method is suggested to represent a bolted joint with a complex stiffness 

matrix. The method requires the measurement of only the assembled structure, not 

individual substructures connected with a bolted joint. The method proposed is 

validated by using simulated experiments. The ultimate purpose of this work is to find 

a complex stiffness matrix representing a bolted joint in more complicated structures. 

Therefore, in the finite element formulation of beams, 3D solid elements are used, and 

the complex stiffness matrix corresponding to 3 translations and 3 rotations is 

identified from measured FRFs. The performance of the method is compared with a 

similar identification using FRF decoupling. The results showed that this new 

approach is less sensitive to measurement errors and gives better results compared to 

those of the FRF decoupling method. 
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ÖZ 

 

3 BOYUTLU YAPISAL MODELLERDEKİ BAĞLANTILARIN DİNAMİK 

MODELLENMESİ 

 

Tekin, Merve 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. H. Nevzat Özgüven 

 

Kasım 2019, 132 sayfa 

 

Mekanik yapıların tasarım ve geliştirme aşamalarında, en zorlu kısımlardan biri de 

bağlantıları modellemektir. Bağlantıların karmaşık dinamik davranışları sebebi ile 

sadece teorik yaklaşımlar kullanılarak güvenilir bir bağlantı modeli oluşturmak 

zordur, bu sebeple deneysel ölçümlere dayanan yöntemler kullanılır. Bu çalışmada, 

iki kirişi birbirine bağlayan bağlantı elemanının dinamik karakteristiğini bulmak için 

yapısal değişiklik yöntemi kullanılmıştır. Civatalı bağlantıyı karmaşık direngenlik 

matrisi ile temsil etmek amacıyla yapısal değişiklik yönteminden yola çıkılarak basit 

bir formulasyon önerilmiştir. Bu yöntem sadece montajlanmış yapıdan ölçüm almayı 

gerektirir, civata ile bağlanmış alt yapılardan ölçüm almaya gerek yoktur. Önerilen 

yöntem, simule edilmiş deneyler ile doğrulanmıştır. Bu çalışmanın nihai amacı daha 

karmaşık yapılarda kullanılan civatalı bağlantıları karmaşık direngenlik matrisi ile 

temsil edebilmektir. Bu nedenle kirişlerin sonlu elemanlar ile modellenmesinde 3 

boyutlu katı elemanlar kullanılmış, 3 yöndeki ötelenme ve 3 yöndeki dönmeye karşı 

gelen karmaşık direngenlik matrisi, ölçülmüş Frekans Tepki Fonksiyonları (FTF) 

kullanılarak bulunmuştur. Bu metodun performansı FTF ayrıştırma kullanılarak 

yapılan benzer tanılama yöntemleri ile karşılaştırılmıştır. Sonuçlar göstermiştir ki bu 

yeni yaklaşım, kullanılan diğer FTF ayrıştırma yöntemleri ile karşılaştırıldığında, 

ölçüm hatalarına daha az duyarlıdır ve daha iyi sonuçlar vermektedir. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1 Overview 

In many engineering applications, it is very common to have systems assembled by 

means of bolts. They often play a critical role; failure of them can cause the structure 

or machine fail catastrophically. Thanks to recent advances in Finite Element (FE) 

techniques and availability of FE packages, which are frequently used for the solution 

of structural problems, when a solid structure is modeled, a reasonable accuracy is 

obtained. However, most of the engineering structures are composed of assembled 

substructures, and for the assembled structures, the results of actual tests are generally 

different from those of the FE analysis. The most important reason behind this 

discrepancy is difficulties in modeling bolted-joints.  

Although a joint is known as a source of flexibility in an assembled structure, its 

behavior is still not implicitly understood when subjected to dynamic loading. The 

ability to model and predict bolted joint behavior is of great concern, especially for 

high-impact applications such as defense, aerospace, and automotive engineering 

industries. For instance, missiles which are one of the defense industry products that 

are being developed in these days, are subjected to vibration due to several reasons 

such as stage separation, air turbulence, wind, etc. If these vibrations are at a frequency 

close to one of the missile’s natural frequencies, system comes to resonance, which is 

the most undesired situation. Extensive studies have revealed over the past years that 

the stiffness of joints influences the dynamics of a missile considerably. Bending 

stiffness of most rockets and missiles may be reduced by 20-30% due to joints which 

may cause decreases in natural frequencies, especially the first modal frequency, as 

much as 10-20%. Moreover, the mode shapes and nodal lines would change [1]. 
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Therefore, it is essential to carry out the modal analysis of a missile accurately. 

Especially, finding the first modal frequency correctly has great significance. Other 

than considering natural frequencies, bolted flange connections are essential parts of 

the missile as they connect stages, and flange connections weaken the whole 

structure’s load-bearing capacity. Because of the structure’s strong nonlinear 

characteristics, the geometric continuity of the missile body is destroyed, and some 

difficulties such as excessive local deformation and stress concentration can happen 

during loading [2].  

 Current analytical techniques for modeling bolted joint regions are based on the 

assumptions of either a rigid joint connection or simplified linear models. 

Nevertheless, they are highly nonlinear. The stiffnesses of joint members in 

compression are proportional to the joint members’ interface contact area which 

depends on the joint preload and the external loads carried by the joint [3]. The 

tightening of bolts creates static loads in the joint. These static loads will add on to 

dynamic loads during dynamic excitation of the system. If dynamic load changes are 

small compared to static loads, then the dynamic response will have affected slightly 

in terms of natural frequency and dissipation [4]. In other words, overall joint region 

stiffness is a function of the external loads carried by the joint and this is the reason 

for the nonlinearity of a jointed connection.  

In light of the above discussion, it can be concluded that accurate modelling of 

connection dynamics is a difficult task, and when there are higher loads, it usually 

requires a nonlinear model. However, even a nonlinear model is required, the starting 

point is to identify the joint parameters corresponding to the linear part of the model, 

such as the stiffnesses and damping coefficients. Furthermore, in some applications 

using a linear model may be sufficient to obtain reliable results. So it can be seen that 

the identification of linear model parameters of joints is important, which also serves 

to understand the effect of the joint on the dynamic response of the mechanical system. 
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1.2 Literature Survey 

For many years, numerous studies have been conducted on modeling structural joints 

and identifying joint properties. The first category of these studies is the model 

updating approaches which require the combined use of experimental data and FEM 

model results. However, in order to use updating schemes, the mass and stiffness 

matrices of the whole structure including joints are necessary, and in complex systems 

obtaining these properties and using them in an updating algorithms is expensive. 

Besides, most model updating studies require measured natural frequencies and modal 

vectors simultaneously and the application of curve fitting operations in the extraction 

of these experimental data, which causes inevitable approximation errors [5-7]. 

Li [7] proposed a model updating method that uses the so-called reduced-order 

characteristic polynomial (ROCP) and it is focused on joint stiffness identification. In 

this method, since measured natural frequencies are the only experimental data 

required, some of the issues associated with the spatial incompleteness of the 

measured displacement/FRF information can be avoided. 

The second category of joint identification studies include the methods based on 

experimental data which can be either modal or frequency response function (FRF). 

In the past, many studies have used modal parameters for the estimation of joint 

properties. Some researchers combined mode shapes of structures from experimental 

modal analysis with FE model to investigate the joint stiffness and damping properties 

[8, 9]. These methods require extraction of accurate mode shapes and natural 

frequencies that are prone to measurement errors. Due to complexity of measurements, 

they are impractical in real applications. In order to overcome such difficulties, FRFs 

of the assembled system and its substructures were directly used for the identification. 

The response coupling methods, receptance and impedance coupling, are the subsets 

of FRF based methods, in which the assembled structures’ FRFs can be generated 

using experimentally or analytically obtained FRFs of the substructures [10, 11]. 

Conversely, to identify joint parameters, inverse coupling methods can be used.  
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In the past decades, many researchers have identified joint parameters using FRF 

based substructuring methods. These methods are based on identifying the dynamic 

behavior of the connection by using known (measured) dynamic behavior of the 

coupled system and those of the subsystems. If we consider bolted connections, 

structure with joints is referred to as the coupled system and structures obtained when 

joint is removed are referred to as the substructures. The joints are modeled with 

stiffness and damping elements, and these properties are identified from the 

information about the dynamic responses of the coupled system and substructures.  

Hong and Lee [12] presented a hybrid method that makes use of the measured, 

incomplete FRFs and FRFs computed from an auxiliary finite element model of the 

system. The proposed method is straightforward and requires neither modal 

parameters nor any condensation techniques for the model. 

Yang and Park [13] proposed an iterative method that combines measured FRFs with 

the analytical model for the identification of linearized joint parameters. They 

estimated unmeasured FRFs from the measured ones by solving an overdetermined 

set of linear equations. After the needed FRFs obtained, joint parameters are identified 

iteratively with the minimization of loss function. Three different joint models are 

evaluated. In the first one, only translational properties are considered. In the second 

one, both translational and rotational parameters are included and in the final model, 

they additionally considered cross-coupled terms. They have shown that cross-

coupled terms of joints have no significant effect on the response of the assembled 

system. 

Lee and Hwang [14] proposed an FRF based substructuring method with an iterative 

optimization technique, realizing that an inherent error comes from using directly 

obtained FRFs. To enhance the efficiency of the iterations during optimization, an 

analytic sensitivity formula is proposed and used in the identification procedure. 

Tol and Özgüven [15] have used a method based on FRF decoupling in order to 

successfully identify linear joint parameters of a bolted connection in beams. In that 
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method, they used FRFs of the substructures obtained theoretically or experimentally 

and measured FRFs of the assembled structure. Using these data, translational, 

rotational and cross-coupling joint properties, in terms of stiffness and damping 

values, are calculated by first applying FRF decoupling formulation and then an 

optimization algorithm.  

Klaassen et al. [16] extended the work of Tol and Özgüven [15] by using the System 

Equivalent Model Mixing (SEMM) technique in order to expand the measurement 

DOF set. The aim in that study was to identify the joint properties in six DOFs. 

Although inevitable measurement errors, ill-conditioning problems and difficulties in 

obtaining FRFs corresponding to rotational DOFs cause poor results in real structures 

when FRF based substructuring approaches are used, not requiring modal information 

is considered as an advantage. Several studies are still being carried out to apply 

different approaches to solve the problems of these FRF based methods. 

FRF Decoupling method gives accurate results when exact values are used for all 

FRFs. However, for the coupled structure it is a must to use measured FRFs, and the 

problem mainly comes from the inability to measure FRFs corresponding to rotational 

DOFs, especially at the subsystem interface. Different approaches have been used to 

solve this problem.  Some researchers used modal expansion techniques, such as 

SEREP and Guyan expansions and others applied the so-called Equivalent Multi-Point 

Connection (EMPC) method [17,18] in literature.  

De Klerk et al. [17] presented the application of EMPC method in their work. They 

proposed measuring the subsystems’ interface at multiple nodes in multiple 

translational directions as in the case of finite element analysis. As the number of FRFs 

used in this kind of coupling corresponds to the number of DOF describing the 

interface, rotational information can be implicitly accounted for. They claimed that to 

describe all motions of a rigid interface, a minimum of 6 coupling DOF at three nodes 

is enough. 
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1.3 Objective 

The objective of this thesis is the modeling and identification of bolted joints in 

structures. As can be seen from the review of the previous works in section 1.2, due 

to complex dynamic behavior of joints, it is challenging to build a reliable model for 

joints using only theoretical approaches, and therefore usually methods based on 

experimental measurements are employed. In this study, a structural modification 

method which is an FRF based method, is used to identify the parameters of a linear 

bolted model. As mentioned above, in several applications a linear model may be 

adequate, and for the applications where a nonlinear model is required, the first stage 

of constructing a nonlinear model is obtaining linear part of the model. Therefore, an 

accurate method to identify the parameters of a linear joint model is very important. 

The method proposed in this study requires the measurement of only the FRFs of the 

assembled structure, not individual substructures connected with a bolted joint. As it 

further explained in Section 1.2, there are several methods developed for the 

identification of joint parameters, but almost all of them are focused on two-

dimensional structures, so that even more complicated structures are simplified to 2D 

structures. However, most real structures do not have dynamic characteristic which 

makes it possible to represent them accurately with simple 2D elements. Therefore, 

an identification method for 3D structures is needed. The proposed methodology is 

applicable to 2D structures where only two degrees of freedom (DOFs) in translation 

and rotation are involved, as well as to 3D structures where all DOFs in translation 

and rotation are involved. The bolted joint is modeled with translational and rotational 

stiffness and damping elements, for all six DOFs. Therefore, the proposed technique 

accounts for the effects of RDOFs. Since such an approach requires the measurement 

of FRFs related with rotational DOFs, finite difference method is used and FRFs 

corresponding to rotational DOFs are approximated with translational FRFs of the 

assembled structure. The applicability of the method suggested is demonstrated and 

validated with simulated experiments. 
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In this study, the FRF Decoupling method developed in an earlier work is also 

expanded so that it can be used for 3D structural models, and finally the performance 

of the method proposed in this study is compared with that of the FRF Decoupling 

method.  

1.4 Scope of the Thesis 

The outline of the thesis is as follows: 

Chapter 2 provides the basic theory of the joint model used and the identification 

methods employed. First, the theory of connection dynamics is explained. Then, the 

Inverse Structural Modification Method (ISMM) proposed in this study is introduced.  

Finally, the FRF decoupling method and its extension to systems with 6 DOF per node 

are given. The importance of the RDOF in joint modeling is also explained in this 

chapter, and the estimation methods for FRFs corresponding rotational DOF are 

presented. 

In Chapter 3, several case studies are given to verify and illustrate the application of 

the suggested method to 2D structures. In these case studies, where lumped mass 

systems and beam structures are used, the joint parameters are extracted in terms of 

stiffness and damping matrices by using both the proposed method and the FRF 

Decoupling method. The effects of measurement errors on the identified parameters 

in both methods are studied and compared with each other extensively. 

In Chapter 4, the details of the 3D finite element model used for a bolt connection, 

and the simulated experiments using 3D elements are given. Case studies using 3D 

elements are presented in this chapter in order to demonstrate the application of 

proposed method. The comparison of the performance of the method proposed with 

that of the FRF Decoupling method is also presented in this chapter. 

Finally, general conclusions and recommendations for future research are presented 

in Chapter 5. 
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CHAPTER 2  

 

2. JOINTS DYNAMIC MODELING AND IDETIFICATION OF MODEL 

PARAMETERS  

 

Complex structures compose of various substructures that are joined together with the 

help of different types of joints. Among them, the most commonly used one is bolted 

joint. If the dynamics of the joint is known, the dynamics of the whole assembled 

structure can be found by using the dynamics of the substructures. However, 

predicting the dynamics of the joint accurately is not an easy task since it depends on 

various factors such as pretension on the bolt, coefficient of friction, conditions of the 

contact surfaces, etc. Once the joint dynamics is determined, the assembled structure’s 

dynamics can be found by using mathematical relationships. 

In this chapter, firstly, the dynamics of two substructures connected with a joint 

represented by a complex stiffness matrix between connecting degrees of freedom is 

studied. Then, two different approaches proposed in identifying the parameters of the 

joint model employed are given. The first approach is a new method, whereas the 

second one is the extended version of a method proposed in a previous study [15]. In 

section 2.1, the theory of substructure coupling with connection dynamics is 

explained. In sections 2.2 and 2.3, it is shown how structural modification method and 

FRF decoupling method are used to identify joint parameters, respectively. 

 Theory of Substructure Coupling with Elastic Connection Dynamics 

Let us consider that a joint element connects substructures A and B elastically, as 

shown in Figure 2-1. The points j and k represent joint degrees of freedom (DOFs), 

while r and s represent internal DOFs, and they are not involved in the joint interface. 

In this figure, 𝐾∗ is a complex stiffness matrix of the joint and it represents the joint 
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dynamics. It consists of the stiffness and damping elements. The free body diagrams 

of the substructures and the connecting element are given in Figure 2-2. 

 

Figure 2-1 Connection of Two Substructures with Joints 

 

Figure 2-2 Substructures Free Body Diagrams 

The relationship between the displacement vectors and the force vectors (composed 

of applied forces and moments) in each substructure can be defined as follows:  

For substructure A: 

{𝑥𝐴} = [𝛼𝐴]{𝐹𝐴} 

{
 
 

 
 
𝑥𝑟

𝐴

𝜃𝑟
𝐴

𝑥𝑗
𝐴

𝜃𝑗
𝐴
}
 
 

 
 

=

[
 
 
 
ℎ𝑟𝑟 𝑙𝑟𝑟 ℎ𝑟𝑗 𝑙𝑟𝑗
𝑛𝑟𝑟 𝑝𝑟𝑟 𝑛𝑟𝑗 𝑝𝑟𝑗
ℎ𝑗𝑟 𝑙𝑗𝑟 ℎ𝑗𝑗 𝑙𝑗𝑗
𝑛𝑗𝑟 𝑝𝑗𝑟 𝑛𝑗𝑗 𝑝𝑗𝑗]

 
 
 

{
 
 

 
 

𝑓𝑟
𝐴

𝑀𝑟
𝐴

𝑓𝑗
𝐴 + 𝑓𝑗

𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝐴 +𝑀𝑗

𝑗𝑜𝑖𝑛𝑡
}
 
 

 
 

                   (2.1) 
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For substructure B: 

{𝑥𝐵} = [𝛼𝐵]{𝐹𝐵} 

{
 
 

 
 𝑥𝑘

𝐵

𝜃𝑘
𝐵

𝑥𝑠
𝐵

𝜃𝑠
𝐵
}
 
 

 
 

= [

ℎ𝑘𝑘 𝑙𝑘𝑘 ℎ𝑘𝑠 𝑙𝑘𝑠
𝑛𝑘𝑘 𝑝𝑘𝑘 𝑛𝑘𝑠 𝑝𝑘𝑠
ℎ𝑠𝑘 𝑙𝑠𝑘 ℎ𝑠𝑠 𝑙𝑠𝑠
𝑛𝑗𝑘 𝑝𝑠𝑘 𝑛𝑠𝑠 𝑝𝑠𝑠

]

{
 
 

 
 𝑓𝑘

𝐵 + 𝑓𝑘
𝑗𝑜𝑖𝑛𝑡

𝑀𝑘
𝐵 +𝑀𝑘

𝑗𝑜𝑖𝑛𝑡

𝑓𝑠
𝐵

𝑀𝑠
𝐵

}
 
 

 
 

      (2.2) 

where 𝑥𝑝 and 𝜃𝑝 represent the translational and rotational displacement vectors at 

location p while  𝑓𝑝 and 𝑀𝑝 represent the force and moment at location p.  [𝛼𝐴] 

and [𝛼𝐵] represent receptance matrices for substructures A and B, respectively.  

The receptance matrix components are defined as; 

ℎ𝑝𝑞 =
𝑥𝑝

𝑓𝑞
      (2.3) 

𝑙𝑝𝑞 =
𝑥𝑝

𝑀𝑞
                            (2.4) 

𝑛𝑝𝑞 =
𝜃𝑝

𝑓𝑞
       (2.5) 

𝑝𝑝𝑞 =
𝜃𝑝

𝑀𝑞
       (2.6) 

The substructure FRFs can be combined by using the joint interface's equilibrium and 

compatibility conditions to form the FRFs of the assembled structure [19]. It is 

assumed that the joint segment is an element that mainly imposes stiffness and 

damping to the structure. In other words, the connection dynamics is modelled by a 

complex stiffness matrix between the connection degrees of freedom. 

Assume that there is no forces and moments acting on joints externally and that 

flexible connection is massless, the equilibrium condition at the joint can be written 

as: 
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{
𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} + {
𝑓𝑘
𝑗𝑜𝑖𝑛𝑡

𝑀𝑘
𝑗𝑜𝑖𝑛𝑡

} = 0     (2.7) 

{
𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} = −{
𝑓𝑘
𝑗𝑜𝑖𝑛𝑡

𝑀𝑘
𝑗𝑜𝑖𝑛𝑡

}                 (2.8) 

Then the compatibility of translational and rotational displacements at connection 

DOFs can be written by using Eqn. (2.7) as follows: 

𝑐𝑥(�̇�𝑘
𝐵 − �̇�𝑗

𝐴) + 𝑘𝑥(𝑥𝑘
𝐵 − 𝑥𝑗

𝐴) = 𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

                          (2.9) 

𝑐𝜃 (�̇�𝑘
𝐵
− �̇�𝑗

𝐴
) + 𝑘𝜃(𝜃𝑘

𝐵 − 𝜃𝑗
𝐴) = 𝑀𝑗

𝑗𝑜𝑖𝑛𝑡           (2.10) 

Let us define joint complex stiffness matrix in frequency domain as: 

[𝐾∗(𝜔)] = [
𝑘𝑥 + 𝑖𝑐𝑥𝜔 0

0 𝑘𝜃 + 𝑖𝑐𝜃𝜔
]          (2.11) 

Now, Eqns. (2.9) and (2.10) can be written as 

{
𝑥𝑘

𝐵 − 𝑥𝑗
𝐴

𝜃𝑘
𝐵 − 𝜃𝑗

𝐴} = [𝐾
∗(𝜔)]−1 {

𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

}            (2.12) 

𝐻𝑗𝑜𝑖𝑛𝑡 denotes the inverse of complex stiffness matrix [𝐾∗(𝜔)] 

[𝐻𝑗𝑜𝑖𝑛𝑡] = [
ℎ𝑡𝑡

𝑗𝑜𝑖𝑛𝑡 0

0 ℎ𝑟𝑟
𝑗𝑜𝑖𝑛𝑡

] = [𝐾∗(𝜔)]−1                (2.13) 

where subscript t refers to translational information and subscript r refers to rotational 

information of the joint model. 

By using Eqn. (2.1), 𝑥𝑗
𝐴 and 𝜃𝑗

𝐴
 can be written as 

𝑥𝑗
𝐴 = ℎ𝑗𝑟𝑓𝑟

𝐴 + 𝑙𝑗𝑟𝑀𝑟
𝐴 + ℎ𝑗𝑗(𝑓𝑗

𝐴 + 𝑓𝑗
𝑗𝑜𝑖𝑛𝑡) + 𝑙𝑗𝑗(𝑀𝑗

𝐴 +𝑀𝑗
𝑗𝑜𝑖𝑛𝑡)       (2.14) 

𝜃𝑗
𝐴 = 𝑛𝑗𝑟𝑓𝑟

𝐴 + 𝑝𝑗𝑟𝑀𝑟
𝐴 + 𝑛𝑗𝑗(𝑓𝑗

𝐴 + 𝑓𝑗
𝑗𝑜𝑖𝑛𝑡) + 𝑝𝑗𝑗(𝑀𝑗

𝐴 +𝑀𝑗
𝑗𝑜𝑖𝑛𝑡)        (2.15) 
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and by using Eqn. (2.2), 𝑥𝑘
𝐵 and 𝜃𝑘

𝐵
 can be written as  

𝑥𝑘
𝐵 = ℎ𝑘𝑘(𝑓𝑘

𝐵 + 𝑓𝑘
𝑗𝑜𝑖𝑛𝑡) + 𝑙𝑘𝑘(𝑀𝑘

𝐵 +𝑀𝑘
𝑗𝑜𝑖𝑛𝑡) + ℎ𝑘𝑠𝑓𝑠

𝐵 + 𝑙𝑘𝑠𝑀𝑠
𝐵         (2.16) 

𝜃𝑘
𝐵 = 𝑛𝑘𝑘(𝑓𝑘

𝐵 + 𝑓𝑘
𝑗𝑜𝑖𝑛𝑡) + 𝑝𝑘𝑘(𝑀𝑘

𝐵 +𝑀𝑘
𝑗𝑜𝑖𝑛𝑡) + 𝑛𝑘𝑠𝑓𝑠

𝐵 + 𝑝𝑘𝑠𝑀𝑠
𝐵 (2.17) 

Then, by using Eqn. (2.12) and replacing 𝑓𝑘
𝑗𝑜𝑖𝑛𝑡

 with −𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

 and 𝑀𝑘
𝑗𝑜𝑖𝑛𝑡 with 

−𝑀𝑗
𝑗𝑜𝑖𝑛𝑡  the following equations can be written 

{
ℎ𝑡𝑡

𝑗𝑜𝑖𝑛𝑡𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

ℎ𝑟𝑟
𝑗𝑜𝑖𝑛𝑡𝑀𝑗

𝑗𝑜𝑖𝑛𝑡
} = {

𝑥𝑘
𝐵 − 𝑥𝑗

𝐴

𝜃𝑘
𝐵 − 𝜃𝑗

𝐴}    (2.18) 

By using Eqns. (2.16) and (2.14), the first element of the vector can be written as 

ℎ𝑡𝑡
𝑗𝑜𝑖𝑛𝑡𝑓𝑗

𝑗𝑜𝑖𝑛𝑡 = ℎ𝑘𝑘𝑓𝑘
𝐵 − ℎ𝑘𝑘𝑓𝑗

𝑗𝑜𝑖𝑛𝑡 + 𝑙𝑘𝑘𝑀𝑘
𝐵 − 𝑙𝑘𝑘𝑀𝑗

𝑗𝑜𝑖𝑛𝑡 + ℎ𝑘𝑠𝑓𝑠
𝐵 + 𝑙𝑘𝑠𝑀𝑠

𝐵 −

ℎ𝑗𝑟𝑓𝑟
𝐴 − 𝑙𝑗𝑟𝑀𝑟

𝐴 − ℎ𝑗𝑗𝑓𝑗
𝑗𝑜𝑖𝑛𝑡 − ℎ𝑗𝑗𝑓𝑗

𝐴 − 𝑙𝑗𝑗𝑀𝑗
𝐴 − 𝑙𝑗𝑗𝑀𝑗

𝑗𝑜𝑖𝑛𝑡  (2.19) 

and by using Eqns. (2.17) and (2.15) the second element of the vector can be written 

as 

ℎ𝑟𝑟
𝑗𝑜𝑖𝑛𝑡𝑀𝑗

𝑗𝑜𝑖𝑛𝑡 = 𝑛𝑘𝑘𝑓𝑘
𝐵 − 𝑛𝑘𝑘𝑓𝑗

𝑗𝑜𝑖𝑛𝑡 + 𝑝𝑘𝑘𝑀𝑘
𝐵 − 𝑝𝑘𝑘𝑀𝑗

𝑗𝑜𝑖𝑛𝑡 + 𝑛𝑘𝑠𝑓𝑠
𝐵 +

𝑝𝑘𝑠𝑀𝑠
𝐵 − 𝑛𝑗𝑟𝑓𝑟

𝐴 − 𝑝𝑗𝑟𝑀𝑟
𝐴 − 𝑛𝑗𝑗𝑓𝑗

𝐴 − 𝑛𝑗𝑗𝑓𝑗
𝑗𝑜𝑖𝑛𝑡 − 𝑝𝑗𝑗𝑀𝑗

𝐴 − 𝑝𝑗𝑗𝑀𝑗
𝑗𝑜𝑖𝑛𝑡     (2.20) 

By rearranging Eqn. (2.19), the following equation can be written 

[ℎ𝑡𝑡
𝑗𝑜𝑖𝑛𝑡 + ℎ𝑘𝑘 + ℎ𝑗𝑗 𝑙𝑘𝑘 + 𝑙𝑗𝑗] {

𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} = [ℎ𝑘𝑘 𝑙𝑘𝑘] {
𝑓𝑘
𝐵

𝑀𝑘
𝐵} +

[ℎ𝑘𝑠 𝑙𝑘𝑠] {
𝑓𝑠
𝐵

𝑀𝑠
𝐵} − [ℎ𝑗𝑟 𝑙𝑗𝑟] {

𝑓𝑟
𝐴

𝑀𝑟
𝐴} − [ℎ𝑗𝑗 𝑙𝑗𝑗] {

𝑓𝑗
𝐴

𝑀𝑗
𝐴}                                 (2.21) 

and by rearranging Eqn. (2.20), the following equation can be written 
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[𝑛𝑘𝑘 + 𝑛𝑗𝑗 ℎ𝑟𝑟
𝑗𝑜𝑖𝑛𝑡 + 𝑝𝑘𝑘 + 𝑝𝑗𝑗] {

𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} = [𝑛𝑘𝑘 𝑝𝑘𝑘] {
𝑓𝑘
𝐵

𝑀𝑘
𝐵} +

[𝑛𝑘𝑠 𝑝𝑘𝑠] {
𝑓𝑠
𝐵

𝑀𝑠
𝐵} − [

𝑛𝑗𝑟 𝑝𝑗𝑟] {
𝑓𝑟
𝐴

𝑀𝑟
𝐴
} − [𝑛𝑗𝑗 𝑝𝑗𝑗] {

𝑓𝑗
𝐴

𝑀𝑗
𝐴}                     (2.22) 

Combining Eqns. (2.21) and (2.22) results in 

[
ℎ𝑡𝑡

𝑗𝑜𝑖𝑛𝑡 + ℎ𝑘𝑘 + ℎ𝑗𝑗 𝑙𝑘𝑘 + 𝑙𝑗𝑗

𝑛𝑘𝑘 + 𝑛𝑗𝑗 ℎ𝑟𝑟
𝑗𝑜𝑖𝑛𝑡 + 𝑝𝑘𝑘 + 𝑝𝑗𝑗

] {
𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} = [
ℎ𝑘𝑘 𝑙𝑘𝑘
𝑛𝑘𝑘 𝑝𝑘𝑘

] {
𝑓𝑘
𝐵

𝑀𝑘
𝐵} +

[
ℎ𝑘𝑠 𝑙𝑘𝑠
𝑛𝑘𝑠 𝑝𝑘𝑠

] {
𝑓𝑠
𝐵

𝑀𝑠
𝐵} − [

ℎ𝑗𝑟 𝑙𝑗𝑟
𝑛𝑗𝑟 𝑝𝑗𝑟

] {
𝑓𝑟
𝐴

𝑀𝑟
𝐴} − [

ℎ𝑗𝑗 𝑙𝑗𝑗
𝑛𝑗𝑗 𝑝𝑗𝑗

] {
𝑓𝑗
𝐴

𝑀𝑗
𝐴}                     (2.23) 

Rearranging Eqn. (2.23) yields 

{
𝑓𝑗
𝑗𝑜𝑖𝑛𝑡

𝑀𝑗
𝑗𝑜𝑖𝑛𝑡

} = −{
𝑓𝑘
𝑗𝑜𝑖𝑛𝑡

𝑀𝑘
𝑗𝑜𝑖𝑛𝑡

} = [𝑍]−1[𝐻𝑘𝑘] {
𝑓𝑘
𝐵

𝑀𝑘
𝐵} + [𝑍]

−1[𝐻𝑘𝑠] {
𝑓𝑠
𝐵

𝑀𝑠
𝐵} −

[𝑍]−1[𝐻𝑗𝑟] {
𝑓𝑟
𝐴

𝑀𝑟
𝐴} − [𝑍]

−1[𝐻𝑗𝑗] {
𝑓𝑗
𝐴

𝑀𝑗
𝐴}                                              (2.24) 

where [𝑍] = [𝐻𝑗𝑜𝑖𝑛𝑡 + 𝐻𝑘𝑘 + 𝐻𝑗𝑗] = [𝐾
∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗] 

Substitution of Eqn. (2.24) into Eqns. (2.1) and (2.2) leads to the assembled structure’s 

FRFs in terms of the substructures’ FRFs as [20]: 

{

𝑋𝑟
𝑋𝑗
𝑋𝑘
𝑋𝑠

} =

[
 
 
 
 
𝐻𝑟𝑟

𝐶 𝐻𝑟𝑗
𝐶 𝐻𝑟𝑘

𝐶 𝐻𝑟𝑠
𝐶

𝐻𝑗𝑟
𝐶 𝐻𝑗𝑗

𝐶 𝐻𝑗𝑘
𝐶 𝐻𝑗𝑠

𝐶

𝐻𝑘𝑟
𝐶 𝐻𝑘𝑗

𝐶 𝐻𝑘𝑘
𝐶 𝐻𝑘𝑠

𝐶

𝐻𝑠𝑟
𝐶 𝐻𝑠𝑗

𝐶 𝐻𝑠𝑘
𝐶 𝐻𝑠𝑠

𝐶
]
 
 
 
 

{
 
 

 
 𝐹𝑟

𝐴

𝐹𝑗
𝐴

𝐹𝑘
𝐵

𝐹𝑠
𝐵
}
 
 

 
 

   (2.25) 

{

𝑋𝑟
𝑋𝑗
𝑋𝑘
𝑋𝑠

} =

[
 
 
 
 
𝐻𝑟𝑟 −𝐻𝑟𝑗𝑍

−1𝐻𝑗𝑟 𝐻𝑟𝑗 − 𝐻𝑟𝑗𝑍
−1𝐻𝑗𝑗 𝐻𝑟𝑗𝑍

−1𝐻𝑘𝑘 𝐻𝑟𝑗𝑍
−1𝐻𝑘𝑠

𝐻𝑗𝑟 −𝐻𝑗𝑗𝑍
−1𝐻𝑗𝑟 𝐻𝑗𝑗 − 𝐻𝑗𝑗𝑍

−1𝐻𝑗𝑗 𝐻𝑗𝑗𝑍
−1𝐻𝑘𝑘 𝐻𝑗𝑗𝑍

−1𝐻𝑘𝑠

𝐻𝑘𝑘𝑍
−1𝐻𝑗𝑟 𝐻𝑘𝑘𝑍

−1𝐻𝑗𝑗 𝐻𝑘𝑘 −𝐻𝑘𝑘𝑍
−1𝐻𝑘𝑘 𝐻𝑘𝑠 − 𝐻𝑘𝑘𝑍

−1𝐻𝑘𝑠

𝐻𝑠𝑘𝑍
−1𝐻𝑗𝑟 𝐻𝑠𝑘𝑍

−1𝐻𝑗𝑗 𝐻𝑠𝑘 −𝐻𝑠𝑘𝑍
−1𝐻𝑘𝑘 𝐻𝑠𝑠 − 𝐻𝑠𝑘𝑍

−1𝐻𝑘𝑠 ]
 
 
 
 

 

{
 
 

 
 𝐹𝑟

𝐴

𝐹𝑗
𝐴

𝐹𝑘
𝐵

𝐹𝑠
𝐵
}
 
 

 
 

        (2.26) 
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Note that, in the above equations Z and H represent submatrices, and for simplicity 

matrix sign is not used. 

 Identifying Joint Parameters by Using Inverse Structural Modification 

Approach 

2.2.1. Matrix Inversion Method 

The matrix inversion method was first proposed to calculate the receptances of 

damped structures by using those of the undamped structures for a non-proportionally 

damped structure by Özgüven [21]. Later, it is presented as a general structural 

modification method, in which basically, the FRFs of a modified structure are obtained 

from those of the original system and the modification matrix [22]. 

Consider a system represented by a stiffness matrix [𝐾], a mass matrix [𝑀] and a 

structural damping matrix [𝐻]. The equation of a motion of the structure can be written 

as 

[𝑀]{�̈�} + 𝑖[𝐻]{𝑥} + [𝐾]{𝑥} = {𝐹}                                                               (2.27) 

For a harmonic excitation {𝐹}, the steady response of the structure is given by 

{𝑥} = ([𝐾] − 𝜔2[𝑀] + 𝑖[𝐻])−1{𝐹}                                                             (2.28) 

from which, the receptance matrix of the structure [𝛼] can be obtained as 

[𝛼] = ([𝐾] − 𝜔2[𝑀] + 𝑖[𝐻])−1                                                               (2.29) 

If the structure is modified, then the receptance matrix of the modified system can be 

written, in a similarly way, as 

[𝛾] = ([[𝐾] + [∆𝐾]] − 𝜔2[[𝑀] + [∆𝑀]] + 𝑖[[𝐻] + [∆𝐻]])
−1

                          (2.30) 

where [∆𝐾], [∆𝑀] 𝑎𝑛𝑑 [∆𝐻] are the matrices representing stiffness, mass and 

damping modifications, respectively. Inverting both sides of the Eqns. (2.29) and 

(2.30), and then combining them yields 

[𝛾]−1 = [𝛼]−1 + [𝐷]                                                               (2.31) 
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where [𝐷] is the dynamic structural modification matrix and is expressed as 

[𝐷] = [∆𝐾] − 𝜔2[∆𝑀] + 𝑖[∆𝐻]                                                       (2.32) 

If Eqn. (2.31) is pre-multiplied by [𝛼] and post-multiplied by [𝛾], it gives 

[𝛼] = [𝛾] + [𝛼][𝐷][𝛾]                                                             (2.33) 

from which [𝛾] can be obtained as 

[𝛾] = [[𝐼] + [𝛼][𝐷]]
−1
[𝛼]                ( 2.34) 

As discussed in [21] and [22], the above formulation is most advantageous when the 

structural modification is local, that is, when  

[𝐷] = [
[𝐷𝑚𝑚] [0]

[0] [0]
]                                                                   (2.35) 

Then, the receptance matrix of the modified system can be obtained as [22]: 

[𝛾𝑚𝑚] = [[𝐼] + [𝛼𝑚𝑚][𝐷𝑚𝑚]]
−1
[𝛼𝑚𝑚] 

[𝛾𝑚𝑢]
𝑇 = [𝛾𝑢𝑚] = [𝛼𝑚𝑢][[𝐼] − [𝐷𝑚𝑚][𝛾𝑚𝑚]] 

[𝛾𝑢𝑢] = [𝛼𝑢𝑢] − [𝛼𝑢𝑚][𝐷𝑚𝑚][𝛾𝑚𝑢] 

Here, subscripts m and u correspond to the structure’s modified and unmodified 

regions respectively. Briefly, here the aim is to find the receptances of the modified 

system by using the dynamic structural modification matrix [D] (it is [𝐷𝑚𝑚 ] when the 

modification is local) and the receptance matrix of the original structure. 

2.2.2. Using Inverse Structural Modification Method in Identifying Joint Parameters 

The structural modification formulation used in the Matrix Inversion Method (MIM) 

is employed in this approach in reverse direction in order to identify the dynamic 

properties of a joint. The calculated FRFs of two subsystems coupled with a bolted 

joint by using an initially estimated complex stiffness matrix representing the joint 

dynamics are taken as the FRFs of the original system, [α]. The measured FRFs of the 
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same assembly are taken as the FRFs of the modified system, [𝛾] and the modification 

matrix (in the form of complex stiffness matrix) is calculated by using the formulation 

obtained from the Structural Modification Method (SMM) MIM. Thus, the calculated 

modification matrix will give the required modification in the initially estimated 

complex stiffness matrix in order to have the calculated and measured FRFs be the 

same. The complex stiffness matrix representing the bolted joint then can be obtained 

by adding the calculated modification matrix to the initially estimated complex 

stiffness matrix. 

By rewriting Eqn. (2.33) as  

 

[
[𝛼𝑚𝑚] [𝛼𝑚𝑢]

[𝛼𝑢𝑚] [𝛼𝑢𝑢]
] = [

[𝛾𝑚𝑚] [𝛾𝑚𝑢]

[𝛾𝑢𝑚] [𝛾𝑢𝑢]
] +

[
[𝛼𝑚𝑚] [𝛼𝑚𝑢]

[𝛼𝑢𝑚] [𝛼𝑢𝑢]
] [
[𝐷𝑚𝑚] [0]

[0] [0]
] [
[𝛾𝑚𝑚] [𝛾𝑚𝑢]

[𝛾𝑢𝑚] [𝛾𝑢𝑢]
]                                                (2.36) 

[
[𝛼𝑚𝑚] [𝛼𝑚𝑢]

[𝛼𝑢𝑚] [𝛼𝑢𝑢]
] = [

[𝛾𝑚𝑚] [𝛾𝑚𝑢]

[𝛾𝑢𝑚] [𝛾𝑢𝑢]
] +

[
[[𝛼𝑚𝑚][𝐷𝑚𝑚][𝛾𝑚𝑚]] [[𝛼𝑚𝑚][𝐷𝑚𝑚][𝛾𝑚𝑢]]

[[𝛼𝑢𝑚][𝐷𝑚𝑚][𝛾𝑚𝑚]] [[𝛼𝑢𝑚][𝐷𝑚𝑚][𝛾𝑚𝑢]]
]                                                   (2.37) 

and using Eqn. (2.37) yields  

[𝛼𝑚𝑚] = [𝛾𝑚𝑚] + [𝛼𝑚𝑚][𝐷𝑚𝑚][𝛾𝑚𝑚]                       (2.38) 

[𝛼𝑚𝑚] − [𝛾𝑚𝑚] = [𝛼𝑚𝑚][𝐷𝑚𝑚][𝛾𝑚𝑚]                       (2.39) 

If Eqn. (2.39) is pre-multiplied by [𝛼𝑚𝑚]
−1 and post-multiplied by [𝛾𝑚𝑚]

−1, dynamic 

structural modification matrix can be obtained as 

[𝐷𝑚𝑚] = [𝛼𝑚𝑚]
−1([𝛼𝑚𝑚] − [𝛾𝑚𝑚])[𝛾𝑚𝑚]

−1                          (2.40) 

In the method proposed, the above equation is used to calculate [𝐷𝑚𝑚] from the 

measured FRFs represented by [𝛾𝑚𝑚] and the FRFs calculated [𝛼𝑚𝑚] by using the 



 

 

 

18 

 

initially estimated complex stiffness matrix representing the bolted joint. It should be 

noted that in order to calculate [𝐷𝑚𝑚] we need only the receptances corresponding to 

the joint coordinates. Therefore, [𝐷𝑚𝑚] is the modification matrix in the size of the 

joint DOFs. 

2.2.3. Identifying Joint Parameters  

The procedure for modeling a bolted joint is as follows: Firstly, [𝛼𝑚𝑚] is calculated 

by using finite element model of the structure and an initially estimated complex 

stiffness matrix representing the bolted joint. The only measurement required is the 

FRFs of the bolted structure at the connection points of the bolt, which defines [𝛾𝑚𝑚]. 

Then the modification matrix [𝐷𝑚𝑚] is calculated by using Eqn. (2.40), and finally, 

the complex stiffness matrix representing the bolted joint is calculated by adding 

[𝐷𝑚𝑚] to the initially estimated complex stiffness matrix. It can be seen that the 

computational effort will be considerably reduced since only the receptances 

corresponding to the degrees of freedom of the “modified” region is used. 

The receptance matrix corresponding to the connection coordinates of the system with 

initially estimated bolt parameters can be expressed as follows 

[𝛼𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐼
 𝐻𝑗𝑘

𝐶
𝐼
 

𝐻𝑘𝑗
𝐶

𝐼
 𝐻𝑘𝑘

𝐶
𝐼
 

]         (2.41) 

 

Figure 2-3 Coupled System with Initially Estimated Bolt Parameters 
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By using the FRFs of the substructures and predefined (initially estimated) complex 

stiffness matrix, coupled system receptance matrix components can be obtained by 

using Eqn. (2.26) as follows: 

[ 𝐻𝑗𝑗
𝐶

𝐼
 ] = [𝐻𝑗𝑗] − [𝐻𝑗𝑗] [[𝐾0

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑗𝑗]          (2.42) 

[ 𝐻𝑗𝑘
𝐶

𝐼
 ] = [𝐻𝑗𝑗] [[𝐾0

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑘𝑘]     (2.43) 

[ 𝐻𝑘𝑘
𝐶

𝐼
 ] = [𝐻𝑘𝑘] − [𝐻𝑘𝑘] [[𝐾0

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑘𝑘]             (2.44) 

[ 𝐻𝑘𝑗
𝐶

𝐼
 ] = [𝐻𝑘𝑘] [[𝐾0

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑗𝑗]             (2.45) 

where [𝐾0
∗(𝜔)] is the initially estimated complex stiffness matrix. 

Experimentally measured FRFs of the assembled substructure, as shown in Figure 2-4 

can be expressed as follows,  

[𝛾𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐸
 𝐻𝑗𝑘

𝐶
𝐸
 

𝐻𝑘𝑗
𝐶

𝐸
 𝐻𝑘𝑘

𝐶
𝐸
 

]     (2.46) 

 

Figure 2-4 Simulated Experiment Model 

 

                                                   (2.47) 

2𝑛 𝑥 2𝑛 2𝑛 𝑥 2𝑛 2𝑛 𝑥 2𝑛 2𝑛 𝑥 2𝑛 

[𝐷𝑚𝑚] = [𝛼𝑚𝑚]
−1([𝛼𝑚𝑚] − [𝛾𝑚𝑚])[𝛾𝑚𝑚]

−1 
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[𝐷𝑚𝑚] = [
𝑗 𝑐𝑜𝑜𝑟𝑑. −∆
−∆ 𝑘 𝑐𝑜𝑜𝑟𝑑.

]        (2.48) 

In this work the simulated experimental results calculated using ABAQUS software 

were employed, and Eqn. (2.47)  is used to calculate [𝐷𝑚𝑚] from these simulated 

experimental FRFs represented by [𝛾𝑚𝑚], and [𝛼𝑚𝑚], the FRFs calculated by using 

initially estimated complex stiffness matrix [𝐾0
∗(𝜔)] representing the bolted joint, 

which is an 𝑛 𝑥 𝑛 matrix, whereas the receptance matrices are 2𝑛 𝑥 2𝑛 matrices. Here 

" 𝑛 " represents the size of the joint degree of freedoms. After the calculation of 

dynamic structural modification matrix [𝐷𝑚𝑚], adding off-diagonal terms of that into  

[𝐾0
∗(𝜔)] will give the identified complex stiffness matrix [𝐾∗(𝜔)]. Real parts of this 

matrix are used to find stiffnesses and respectively, imaginary parts are used for 

damping values which represent the bolted joint characteristics. 

 Identifying Joints Parameters by Using FRF Decoupling Approach 

This method is proposed in an earlier study [23] to identify contact dynamics in 

machine tools, and later applied to bolted joints [15]. It is based on substructure 

coupling method which is commonly used and well-understood for predicting coupled 

structures’ dynamics from those of substructures and coupling dynamics. 

Let us consider the system shown in Figure 2-4. The assembled system receptance 

matrices can be obtained by using Eqn. (2.26) as follows 

[𝐻𝑟𝑟
𝐶] = [𝐻𝑟𝑟] − [𝐻𝑟𝑗] [[𝐾

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑗𝑟]         (2.49) 

[𝐻𝑟𝑠
𝐶] = [𝐻𝑟𝑗] [[𝐾

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑘𝑠]       (2.50) 

[𝐻𝑠𝑟
𝐶] = [𝐻𝑠𝑘] [[𝐾

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑗𝑟]                  (2.51) 

[𝐻𝑠𝑠
𝐶] = [𝐻𝑠𝑠] − [𝐻𝑠𝑘] [[𝐾

∗(𝜔)]−1 + [𝐻𝑘𝑘] + [𝐻𝑗𝑗]]
−1
[𝐻𝑘𝑠]              (2.52) 
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Complex stiffness matrix, coupling two substructures can be obtain from any of the 

equations given above (Eqns. (2.49) to (2.52)):  

[𝐾∗] = [[𝐻𝑗𝑟] [[𝐻𝑟𝑟] − [𝐻𝑟𝑟
𝐶]]

−1
[𝐻𝑟𝑗] − [𝐻𝑗𝑗] − [𝐻𝑘𝑘]]

−1

           (2.53) 

[𝐾∗] = [[𝐻𝑘𝑠][𝐻𝑟𝑠
𝐶]
−1
[𝐻𝑟𝑗] − [𝐻𝑗𝑗] − [𝐻𝑘𝑘]]

−1

                (2.54) 

[𝐾∗] = [[𝐻𝑗𝑟][𝐻𝑠𝑟
𝐶]
−1
[𝐻𝑠𝑘] − [𝐻𝑗𝑗] − [𝐻𝑘𝑘]]

−1

                (2.55) 

[𝐾∗] = [[𝐻𝑘𝑠] [[𝐻𝑠𝑠] − [𝐻𝑠𝑠
𝐶]]

−1
[𝐻𝑠𝑘] − [𝐻𝑗𝑗] − [𝐻𝑘𝑘]]

−1

          (2.56) 

If the assembled structure’s and substructures’ FRF matrices are available at any 

frequency, by using any of the above equations, joint identification can be 

accomplished and theoretically speaking, it does not make any difference which 

equation is used in the identification of the joint parameters. Similarly, theoretically 

speaking it also does not make any difference at which frequency these equations are 

used. However, the earlier study [15] shows that the equations are very sensitive to 

FRF values, some of which are unavoidably measured ones. Therefore, the application 

of this method is not very straightforward. 

 Estimation of FRFs 

Frequency response functions (FRFs) are frequently used in vibration analysis to find 

the dynamic characteristics of a structure. Measuring FRFs accurately for all relevant 

degrees of freedom is very important. However, measurement of certain FRFs is 

impossible due to difficulty in reaching to these points. Besides, measuring all the 

elements of an FRF matrix experimentally is very time consuming and expensive. In 

this work, in some case studies, three translational and three rotational components 

have to be used and measurements of the rotational components are the most 
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challenging part due to the need for special and dedicated equipment. Under these 

conditions, it is useful to have some solutions that help to obtain accurate estimation 

for unmeasured FRFs. 

2.4.1. Estimation of FRFs Corresponding to RDOF 

In order to obtain the complete description of the system dynamics, it is extremely 

important to have information about the rotational FRFs. Silva et al. [24] claim that 

FRFs involving rotational information represent 75% of the whole FRF matrix and 

cannot be ignored.  

The main problem in obtaining FRFs related with rotational degrees of freedom is the 

difficulty in applying a pure moment to a test structure, especially to a specified 

measurement points and measuring angular displacements. There are several options 

for moment excitation, such as twin shaker arrangements, blocks, magnetostrictive 

exciters, and synchronized hammers. Among these approaches, twin shaker type and 

magnetostrictive type moment exciters have been shown to be particularly successful 

but they have an important drawback; exciters inevitably affect the behavior of the test 

structure due to the shaker arrangement and they occupy large space. Therefore, they 

are impractical for use in many real applications. The approach of using synchronized 

hammers is shown to be feasible, but it requires accessibility from both sides of the 

test structures which often will not be the case [25]. On the other hand, a particular 

finite difference approach referred to as the “central difference” method [26] provides 

a simple way of obtaining FRFs involving rotational DOFs with a practical 

application. Therefore, in this study, the finite difference technique is used to acquire 

rotational data from the translational measurements.  

Depending on the position of the accelerometer and the position of the excitation 

point, three different formulas can be used. In this work, the central difference 

approach by using three points formula is used because of the needed accuracy 

requirement. 
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In Figure 2-5, an illustration of an arbitrary test structure is shown. Three points on 

the structure can be defined: point 2 is the reference point at which RDOF FRFs are 

required, and points 1 and 3 are measurement points. The close-accelerometers 

method has been performed with three accelerometers placed in constant distance 

close to one another, as shown in figure.   

Predicted FRFs, [𝐻𝑝𝑟𝑒𝑑], which include rotational and coupled information for the 

reference point (point 2) from measured translational FRFs can be obtained as 

[𝐻𝑝𝑟𝑒𝑑] = [
𝐻𝑦𝑦 𝐻𝑦𝜃𝑧
𝐻𝜃𝑧𝑦 𝐻𝜃𝑧𝜃𝑧

] = [𝑇2𝑐]. [𝐻𝑚𝑒𝑎𝑠]. [𝑇2𝑐]
𝑇   (2.57) 

where [𝐻𝑚𝑒𝑎𝑠] represents the measured translational FRF matrix 

[𝐻𝑚𝑒𝑎𝑠] = [

𝐻11 𝐻12 𝐻13
𝐻21 𝐻22 𝐻23
𝐻31 𝐻32 𝐻33

]    (2.58) 

and [𝑇2𝑐] denotes the central difference transformation matrix  

[𝑇2𝑐] =
1

2𝛥𝑥
[
0 2𝛥𝑥 0
−1 0 1

]     (2.59) 

where  𝛥𝑥 is the constant spacing between points. 

 

Figure 2-5 Finite Difference Method  
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Duarte and Ewins [27] claim that spacing between accelerometers affects the quality 

of the predictions too much and sensitivity to measurement noise is regarded as being 

a drawback of the approach.  

It is accepted that it is possible to improve the accuracy of a finite difference equation 

by reducing the spacing, but as spacing decreases, small errors or perturbations in the 

input data, such as noise or misalignment, result in large errors in the output. 

Therefore, it is necessary to find a solution that balances the numerical error of the 

finite difference equation with the perturbation propagation error from the data. 

Gibbons et al. [28] presented an analytical error analysis to prove the instability of the 

finite difference method, and then they proposed a new optimum spacing. This method 

requires that the structure exhibits beam-like dynamic behavior. 
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CHAPTER 3  

 

3. JOINT DYNAMICS IDENTIFICATION IN A LUMPED MODEL AND IN BEAMS - 

TWO DIMENSIONAL SPACE 

 

In this chapter, the suggested method is verified and demonstrated in three case 

studies. In section 3.1, the connection is identified in a discrete system. Then, in 

sections 3.2 and 3.3, the applications of the proposed method to two beams connected 

with a lap-type bolted joint is presented and the bolted joint properties are extracted 

in terms of stiffness and damping matrices. In section 3.2, substructures are modeled 

by using finite element method (FEM). Euler-Bernoulli beam elements are used in 

obtaining elemental stiffness and mass matrices, from which FRFs are calculated. In 

section 3.3, FRFs of the substructures are obtained directly by using the finite element 

software ABAQUS, in order to have more accurate results to verify the proposed 

method (ISMM). The identified joint parameters are compared with the actual values, 

as well as with the values identified by using FRF Decoupling method [15] without 

using optimization.  

 Identification in Discrete Model 

In the first case study, in order to demonstrate and validate the proposed joint 

identification method, a system composed of two substructures, each has two DOFs, 

and connected with an elastic element is considered. Here, translational stiffness and 

a viscous damping element are used in modeling the joint, as illustrated in Figure 3-1.  

These two elements can be combined as a joint complex stiffness which can be written 

as follows: 

𝐾∗(𝜔) = (𝑘 + 𝑗𝜔𝑐)     (3.1) 
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Dynamic properties of the substructures and the joint are tabulated in Table 3-1. These 

are the values used in the work of Tol [15]. 

 

Figure 3-1 a) Two Substructures with a Flexible Joint Element b) Coupled System 

[15] 

 

Table 3-1 Dynamic Properties of the Discrete Model Elements  

 

𝐾1
∗(𝜔) which is the initially estimated complex stiffness value, is taken as  

𝐾1
∗(𝜔) = (1000 + 𝑗𝜔1.5 )𝑁 𝑚⁄           (3.2) 



 

 

 

27 

 

The receptance matrix corresponding to the connection coordinates of the system, 

which is represented by [𝛼𝑚𝑚] in Eqn. (2.40), with initially estimated bolt parameters 

can be expressed as follows 

[𝛼𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐼
 𝐻𝑗𝑘

𝐶
𝐼
 

𝐻𝑘𝑗
𝐶

𝐼
 𝐻𝑘𝑘

𝐶
𝐼
 

] = [
𝛼22 𝛼23
𝛼32 𝛼33

]        (3.3) 

For the experimentally measured FRFs of the assembled structure, simulated 

experimental results were used. In this chapter, all calculations are done numerically. 

Therefore, in order to obtained simulated experimental results, predefined complex 

stiffness value  𝐾2
∗(𝜔) is used. 

𝐾2
∗(𝜔) = (2000 + 𝑗𝜔3 )𝑁 𝑚⁄     (3.4) 

Experimentally measured FRFs of the assembled substructure corresponding to the 

connection coordinates of the system can be written as follows 

[𝛾𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐸
 𝐻𝑗𝑘

𝐶
𝐸
 

𝐻𝑘𝑗
𝐶

𝐸
 𝐻𝑘𝑘

𝐶
𝐸
 

] = [
𝛾22 𝛾23
𝛾32 𝛾33

]    (3.5) 

Since the only measurement required is the FRFs of the bolted system, corresponding 

to the connection coordinates, the size of the receptance matrices [α𝑚𝑚] and [γ𝑚𝑚] 

will be 2x2. 

[𝐷𝑚𝑚] = [𝛼𝑚𝑚]
−1([𝛼𝑚𝑚] − [𝛾𝑚𝑚])[𝛾𝑚𝑚]

−1   (3.6) 

Eqn. (3.6) is used to calculate [𝐷𝑚𝑚] from simulated experimental FRFs represented 

by [𝛾𝑚𝑚], and [𝛼𝑚𝑚], the FRFs calculated by using initially estimated complex 

stiffness 𝐾1
∗(𝜔) representing the bolted joint: 

[𝐷𝑚𝑚] = [
𝑗 𝑐𝑜𝑜𝑟𝑑. −∆
−∆ 𝑘 𝑐𝑜𝑜𝑟𝑑.

]               (3.7) 

As explained in Chapter 2, after the calculation of dynamic structural modification 

matrix [𝐷𝑚𝑚], adding the off-diagonal terms of it to  𝐾1
∗(𝜔) will give the identified 

complex stiffness 𝐾∗(𝜔) representing the joint dynamics. The real part of this value 
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will give the joint stiffnesses, and the imaginary part will give the damping value, 

combination of which represents the bolted joint. 

In Figure 3-2 the comparison of the predicted FRF using initially estimated complex 

stiffness 𝐾1
∗(𝜔), and the measured FRF using 𝐾2

∗(𝜔) for the assembled substructure 

at point r are given.  

 

Figure 3-2 Comparison of Receptance 𝐻𝑟𝑟
𝐶  Calculated Using Initial and Actual 

(Predefined) Complex Stiffness Values 

Since the simulated experimental FRFs are taken exactly the same as calculated 

values, FRFs predicted by using identified joint parameters come out to be identical 

to the simulated experimental FRFs. However, in real applications, the experimental 

values will include some experimental errors, therefore the same identification is made 

by using polluted FRF values. After calculating all required FRFs of the coupled 

system, { 𝐻𝑗𝑗
𝐶

𝐸
 }, { 𝐻𝑘𝑘

𝐶
𝐸
 } , { 𝐻𝑗𝑘

𝐶
𝐸
 } and { 𝐻𝑘𝑗

𝐶
𝐸
 }, they are polluted by adding ± 5% 

noise to simulate real experimental measurements. The noise is generated with the 

"normrnd" function of MATLAB with zero mean, normal distribution and standard 

deviation of 5% of the maximum amplitude of the system response calculated at that 

frequency, as shown in Figure 3-3. 
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Figure 3-3 𝐻𝑗𝑗
𝐶  for the Coupled Structure 

The joint identification can be made at any frequency in the spectrum using the 

associated equations. Theoretically, the same values of stiffness and damping should 

be found in each case. However, at certain frequencies, the calculated values vary 

considerably from the actual values due to the noise in measurements and sensitivity 

of the equations to such errors. Therefore, the frequency interval at which joint 

dynamics has the maximum effect on the coupled system FRF should be found first. 

After that, the average values in that sensitive frequency range is taken as the identified 

value. It can be seen from Figure 3-4 that, changing the joint stiffness has no effect on 

the FRF of the coupled system between 0-3 Hz (at the first mode). Hence, there is no 

point to make identification in that region. However, the situation is totally different 

at the second and third modes, therefore the joint parameters are identified at this 

sensitive frequency range, which is between 3-9 Hz. 

The identified joint stiffness and damping values are given in Figure 3-5 and Figure 

3-6, respectively, at all frequency range and also at the sensitive region.  
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Figure 3-4 Sensitivity Analysis for Coupled System 

 

Figure 3-5 Identified Stiffness of the Joint 
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Figure 3-6 Identified Damping of the Joint 

The results show that in the sensitive frequency range, which is 3-9 Hz for this case, 

the proposed method (ISMM) works well. When average values are calculated, results 

are found to be 2010.9 N/m for the stiffness and 3.37 N.s/m for damping, whereas the 

actual values are 2000 N/m and 3 N.s/m- respectively. The actual values deviate from 

0.54 % and 12.4 %, respectively. 

In Figure 3-7, the receptance of the coupled system at point r, 𝐻𝑟𝑟
𝐶  is regenerated using 

identified stiffness and damping values for the joint. As can be seen from the figure, 

the regenerated and actual FRFs match perfectly. 
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Figure 3-7 Regenerated FRF of the Coupled Structure at Point r 

From now on, identified joint parameters are shown only in the sensitive regions, not 

in the entire frequency range. 

 Identification in Beams Using Finite Element Method 

In the second case study, two beams connected with an elastic joint, as shown in Figure 

3-8 is used. The boundary condition of substructure A is fixed-free and that of 

substructure B is free-free. In order to model the beams, the finite element method 

(FEM) is used.  The mass and stiffness matrices are found by using finite element 

equations [15]. To model the substructures, three nodes are used for beam A and two 

nodes are used for beam B. For each node, two degrees of freedom displacement data 

are used, one translational and one rotational. 

 

 

Figure 3-8 Two Beams Connection with Elastic Joint 
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For the beams, the same material and dimensional properties are used with Tol [15]. 

The complex stiffness matrix representing the elastic joint can be defined as follows 

[𝐾∗] = [
𝑘𝐹𝑦 + 𝑗𝜔𝑐𝐹𝑦 0

0 𝑘𝑀𝜃 + 𝑗𝜔𝑐𝑀𝜃
]    (3.8) 

where 𝑘𝐹𝑦 represents the translational stiffness, 𝑐𝐹𝑦 represents the translational 

damping, 𝑘𝑀𝜃 represents the rotational stiffness and  𝑐𝑀𝜃 represents the rotational 

damping properties of the joint.  

As explained before, two different complex stiffness matrices are defined. One 

represents the initially estimated matrix which is used to calculate FRFs of the initial 

system, and the other represents the actual complex stiffness of the system (which 

needs to be identified). The second complex stiffness matrix is used to calculate the 

FRFs which represent the measured FRFs. 

Complex stiffness matrix used for the initial system is as follows 

[𝐾1
∗(𝜔)] = [

106  + 𝑗𝜔25 0

0 103 + 𝑗𝜔5 
]           [

𝑁 𝑚⁄  
 𝑁𝑚 𝑟𝑎𝑑⁄

] (3.9) 

The receptance matrix corresponding to the connection coordinates of the system with 

initially estimated bolt parameters can be expressed as  

[𝛼𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐼
 𝐻𝑗𝑘

𝐶
𝐼
 

𝐻𝑘𝑗
𝐶

𝐼
 𝐻𝑘𝑘

𝐶
𝐼
 

] = [
[𝛼33] [𝛼34]

[𝛼43] [𝛼44]
]   (3.10) 

and complex stiffness matrix used in the computation of the simulated experimental 

values is as follows 

[𝐾2
∗(𝜔)] = [

6 ∗ 106 + 𝑗𝜔50 0

0 5 ∗ 103 + 𝑗𝜔15
]              (3.11) 

Simulated experimental FRFs of the assembled substructure obtained by using 

[𝐾2
∗(𝜔)], for the  connection coordinates of the system can be written as  
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[𝛾𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐸
 𝐻𝑗𝑘

𝐶
𝐸
 

𝐻𝑘𝑗
𝐶

𝐸
 𝐻𝑘𝑘

𝐶
𝐸
 

] = [
[𝛾33] [𝛾34]

[𝛾43] [𝛾44]
]                       (3.12) 

Again, the only measurement required is the FRFs of the coupled structure 

corresponding to the connection coordinates, and therefore the size of the receptance 

matrices [α𝑚𝑚] and [γ𝑚𝑚] will be 4 x 4, since the joint model is composed of both 

translational and rotational parameters.  

The comparison of the receptance values obtained for the coupled systems at points r 

and s, by using initially estimated and actual complex stiffness matrices are shown in 

Figure 3-9. 

 

Figure 3-9 Receptances at Points r and s 

After calculating all required FRFs of the coupled system, [ 𝐻𝑗𝑗
𝐶

𝐸
 ], [ 𝐻𝑘𝑘

𝐶
𝐸
 ] , [ 𝐻𝑗𝑘

𝐶
𝐸
 ] 

and [ 𝐻𝑘𝑗
𝐶

𝐸
 ], they are polluted with ±5% noise in order to simulate experimental 
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measurements. FRFs of the coupled system are directly multiplied with uniformly 

distributed data with a mean of 1 with a 5% standard deviation. The noise is generated 

with “rand” function of MATLAB. Noise contamination is uniform in all regions of 

the FRF curve, as in Figure 3-10.  

 

 

Figure 3-10 𝐻𝑗𝑗
𝐶  for the Coupled Structure 

As discussed in the first case study, to identify joint properties, we should examine the 

frequency regions where changing joint properties affect the response of the coupled 

system most. Then, the joint properties are identified by taking an average of the 

results in that range of frequency. 

In this case study, the following ranges are used in the identification of the joint 

properties: 200-900 Hz for the translational joint properties and 15-200 Hz for the 

rotational joint properties, after studying the effects of joint stiffnesses on FRFs in 

Figure 3-11 and Figure 3-12. 
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Figure 3-11 Coupled Structure Receptance Sensitivity to 𝑘𝐹𝑦 

 

Figure 3-12 Coupled Structure Receptance Sensitivity to 𝑘𝑀𝜃 
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Identified joint stiffnesses and damping values for translational and rotational DOFs 

are given in Figure 3-13 and Figure 3-14, respectively. 

 

Figure 3-13 Identified Translational and Rotational Stiffnesses Representing the 

Joint 
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Figure 3-14 Identified Translational and Rotational Damping Representing the Joint 

The joint parameters identified by using proposed method and the percentage 

differences from the actual values are given in Table 3-2. 

 

Table 3-2 Identified Joint Properties 

 𝑘𝐹𝑦 [𝑁/𝑚] 𝑐𝐹𝑦 [𝑁𝑠/𝑚] 

𝑘𝑀𝜃  

[𝑁𝑚/𝑟𝑎𝑑] 

𝑐𝑀𝜃  

[𝑁𝑚𝑠/𝑟𝑎𝑑] 

Actual values 6 ∗ 106 50 5000 15 

Identified values 6.23 ∗ 106 251.59 4857.5 15.32 

Error (%) 3.83 -403.2 -2.85 -2.13 
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 Identification in Beams Using Finite Element Software 

In this section, the application of the proposed method to two beams connected with 

a lap-type bolted joint is presented. As illustrated in Figure 3-15, substructure A has 

fixed-free boundary conditions and substructure B has free-free boundary conditions. 

Points j and k represent joint coordinates at substructures A and B, respectively. Point 

s is tip point of the coupled structure and point r is the middle point of the substructure 

A. 

Each substructure is modeled with 5 mm length beam elements using finite element 

software. In order to model beams, two-dimensional beam elements are used which is 

called B21 in ABAQUS. B21 is a linear, Euler-Bernoulli type beam element. 

Rectangular cross-section is assigned to these elements. Global mesh size is 1 mm, 

therefore for the meshing, 300 elements are used for beam A and 225 elements are 

used for beam B. Each node has 3 DOFs. For the boundary condition of clamped 

beam, “encastre” type is selected. Since the FEM model is two dimensional, we are 

able to obtain both translational and rotational displacement data of the nodes. 

 

Figure 3-15 Substructures Coupled with a Joint 

Data used to model the beams are given in Table 3-3. 
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Table 3-3 Material and Geometric Properties of Beams 

Material properties  Beam properties  

Density (𝑘𝑔/𝑚3) 𝜌 = 2700  Beam width (m) 𝑤 = 0.025 

Modulus of elasticity 

(𝑁 𝑚2⁄ ) 𝐸 = 67. 109 Beam height (m) ℎ = 0.006 

Structural Damping  0.01 Length (m) 𝐿𝐴 = 0.3 ,   𝐿𝐵 = 0.225 

 

This system is modeled in ABAQUS to see the dynamic response of the coupled 

structure. In order to simulate the bolted joint, translational and rotational spring-

damping elements connected in parallel are used at the matting section, which are 

acting in the direction of the degrees of freedom used to define the motion of the 

structure. The damping in the joints is assumed viscous. Spring stiffness is defined as 

the force per relative displacement, while the viscous damping coefficients defined as 

the force per relative velocity.  

As can be seen from Figure 3-16, the mode shapes of the coupled structure resemble 

those of a cantilever beam, as expected. Therefore, it can be said that to model joint 

properly, both translational and rotational parameters have to be used. 
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Figure 3-16 Mode Shapes of the Coupled Structure 

 

In this joint model, both rotational and translational joint parameters are used in the 

complex joint stiffness matrix, as in the previous case study. In order to increase the 

difference between FRFs at the tip point s in the coupled system where the initially 

estimated complex joint stiffness [𝐾1
∗(𝜔)] is used, and in the actual system which 

assumed to have the complex joint stiffness [𝐾2
∗(𝜔)], considerably different complex 

stiffness values are used in this case study as shown below. 
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Complex stiffness matrix used in the initial system: 

[𝐾1
∗(𝜔)] = [

105 + 𝑗𝜔5 0

0 103 + 𝑗𝜔0.5
]    (3.13) 

and complex stiffness matrix used in the actual system (the system of which response 

is taken as simulated experimental values) is as follows: 

[𝐾2
∗(𝜔)] = [

6 ∗ 105 + 𝑗𝜔20 0

0 5 ∗ 103 + 𝑗𝜔1.5
]   (3.14) 

The elements of the complex stiffness matrix representing the bolted joint are defined 

in Eqn. (3.8). 

The comparison of the receptance amplitudes in both coupled systems (coupled by 

using initially estimated joint parameters and by using the actual values) at points s 

and r are shown in Figure 3-17 and Figure 3-18, respectively. Compared to previous 

case study, the difference is deliberately increased to see the performance of the 

method when the initially estimated complex stiffness matrix is considerably different 

from the actual value. As a matter of fact, various different initial estimates are used 

to investigate the performance of the method, and it is observed that the initial estimate 

does not affect the performance of the method. 
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Figure 3-17 Translational Receptance Values for Point s  

 

Figure 3-18 Translational Receptance Values for Point r 
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The sensitivity of FRFs to translational and rotational joint stiffnesses in different 

frequency regions are determined before the identification of joint parameters. In order 

to find sensitive frequency regions, FRFs of the coupled system are used. 

The sensitivities of FRFs of the tip point s to joint translational and rotational 

stiffnesses are shown in Figure 3-19 and Figure 3-20, respectively. 

 

Figure 3-19 Sensitivity of System Response at Point s to 𝑘𝐹𝑦 

 

Figure 3-20 Sensitivity of System Response at Point s to 𝑘𝑀𝜃 
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From the Figure 3-19 and Figure 3-20, it can be seen that, for the translational joint 

parameters, the sensitive frequency regions are between 200-400 Hz and between 600-

800 Hz, and that for the rotational joint parameters is between 650-800 Hz. 

On the other hand, if we examine sensitivity of  FRFs at point r, we can see that the 

sensitive frequency regions may show some variation, as can be seen in Figure 3-21 

and Figure 3-22. 

 

Figure 3-21 Sensitivity of System Response at Point r to 𝑘𝐹𝑦 

 

Figure 3-22 Sensitivity of System Response at r to 𝑘𝑀𝜃 
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From Figure 3-21 and  Figure 3-22, it can be seen that, for the translational joint 

parameters, the sensitive frequency region is between 200-800 Hz, and that for the 

rotational joint parameters is between 700-800 Hz. As can be seen there are slight 

changes in sensitive frequency regions, and since identified values are obtained by 

averaging results in the sensitive frequency range, changing this range will affect the 

identified values. The reason for selecting different frequency regions will be 

explained in the next section in more detail; but in brief, FRFs of different points may 

be sensitive to each joint parameter at different frequency regions. 

Since the equations used for identification in both methods are exact, when exact FRFs 

calculated for the actual system are used as simulated experimental results, it is 

expected to identify the joint parameters accurately. Any deviation, which may be 

considerably high depending on the approach used, is due to experimental 

measurement errors. Therefore, in order to simulate experimental measurements 

realistically, the calculated FRFs for the actual system are polluted with 5% noise as 

described in the previous case studies. By using the polluted values of FRFs calculated 

for the actual system and employing Eqn. (3.6), the structural modification matrix 

required to modify the initial estimates for the joint parameters is calculated. Then, 

the off-diagonal terms of the structural modification matrix are used to modify the 

initially estimated complex joint stiffness matrix. Thus, the identification of joint 

parameters is performed.  

 

For translational joint parameters, the identified values by using different frequency 

ranges, which are 200-400 Hz and 200-800 Hz, are shown in Figure 3-23 and Figure 

3-24.  
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Figure 3-23 Identified value of Translational Stiffness by Using Different Frequency 

Regions  
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Figure 3-24 Identified value of Translational Damping by Using Different Frequency 

Regions 

 

For rotational joint parameters, the identified values by using different frequency 

ranges, which are 650-800 Hz and 700-800 Hz, are shown in  Figure 3-25 and Figure 

3-26. 
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Figure 3-25 Identified value of Rotational Stiffness by Using Different Frequency 

Regions 
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Figure 3-26 Identified value of Rotational Damping by Using Different Frequency 

Regions 

 

Now, in order to study the effect of the noise on the identification results, FRFs of the 

coupled structure, [ 𝐻𝑗𝑗
𝐶

𝐸
 ], [ 𝐻𝑘𝑘

𝐶
𝐸
 ] , [ 𝐻𝑗𝑘

𝐶
𝐸
 ] and [ 𝐻𝑘𝑗

𝐶
𝐸
 ], are polluted with different 

levels of random noise (5% and 10%). The identification results are compared in 

Figure 3-27 and Table 3-4. 
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Figure 3-27 Effects of Measurement Errors on Identified Joint Parameters  

 

Table 3-4 Identified Joint Parameters and Percentage Errors for Different Noise 

Level Representing Measurement Errors 

 𝒌𝑭𝒚 𝒄𝑭𝒚 𝒌𝑴𝜽 𝒄𝑴𝜽 

 [𝑁/𝑚] [𝑁𝑠/𝑚] [𝑁𝑚/𝑟𝑎𝑑] [𝑁𝑚𝑠/𝑟𝑎𝑑] 
Actual Values  6 ∗ 105 20 5000 1.5 

Identification with 10 

% noise  
6.172 ∗ 105 48.249 3679.6 1.124 

Error (%10) 2.87 141.24 −26.42 −25.07 

Identification with 5 

% noise  
6.069 ∗ 105 28.219 4276 1.315 

Error (%5) 1.15 41.09 −14.48 −12.33 
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3.3.1. Comparison of Two Methods when Applied to 2D Structural Systems 

As explained in Chapter 2, if FRF matrices of the substructures and that of the coupled 

structure at any frequency are available, then the FRF Decoupling method can be used 

and joint identification can be achieved by using any of the four equations, Eqns. (2.53 

- 2.56). Each equation uses FRFs of the coupled system for different points. For 

example, while Eqn. (2.53) uses 𝐻𝑟𝑟
𝐶  for identification, Eqn. (2.56) uses 𝐻𝑠𝑠

𝐶 . It was 

observed that the performance of the equations is different and the most accurate 

results were obtained when Eqn. (2.53) was used.  

However, it was recommended in [15] to use Eqn. (2.56) for identification since it is 

more practical considering the experiments applicability. Therefore, when sensitivity 

of the receptance of the coupled system to the joint properties is investigated, FRFs of 

the related point should be considered in determining the sensitive frequency region. 

However, in the proposed method (ISMM) there is only one equation to apply, and 

therefore in finding the sensitive frequency region it may be reasonable to investigate 

the variation of the response with joint parameters for the points where maximum 

response is observed.  

In FRF Decoupling method, Tol and Özgüven [15] studied the accuracy of using 

different decoupling equations and concluded that to increase the accuracy of the 

identification the equation given below is to be used in finding the complex stiffness 

matrix representing the joint dynamics 

[𝐾∗] = [[𝐻𝑘𝑠]. [[𝐻𝑠𝑠] − [𝐻𝑠𝑠
𝐶]]

−1
. [𝐻𝑠𝑘] − [𝐻𝑗𝑗] − [𝐻𝑘𝑘]]

−1

  (3.15) 

In that work Eqn. (3.15) was employed by using the translational and rotational FRFs 

at the tip point (point s) of the coupled structure. This approach requires the RDOF 

related FRFs at the tip point, as shown in Figure 3-28. All the FRF matrices in this 

identification approach are of size 2 by 2. 
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Figure 3-28 Coupled Structure [15] 

 

An alternative way of employing the same equation by avoiding the use of RDOF 

related FRFs is to use more than one translational FRF at the tip point of the coupled 

structure, as shown in Figure 3-29. As it was observed in [15] that this approach yields 

more accurate results than the other approach, it was preferred in their experimental 

studies. However, extension of this approach to 3 dimensional model is not practical 

at all, since the extension of this approach to 3D model will require FRFs in more than 

one point in all directions, including the RDOF related ones. Therefore, the first 

approach which requires RDOF related FRFs as well, but only in one point, is used 

for the comparison. 

 

Figure 3-29 Coupled Structure [15] 

 

The joint parameters identified by using the proposed method and the FRF Decoupling 

method are shown in Figure 3-30 to Figure 3-33. 
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Figure 3-30 Identified Translational Stiffness Obtained by Using ISMM and FRF 

DM 

 

Figure 3-31 Identified Translational Damping Obtained by Using ISMM and FRF 

DM 
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Figure 3-32 Identified Rotational Stiffness Obtained by Using ISMM and FRF DM 

 

Figure 3-33 Identified Rotational Damping Obtained by Using ISMM and FRF DM 

 

Then, the FRFs of the coupled system at the tip point s are regenerated by using the 

joint parameters identified, applying ISMM and FRF DM. They are compared with 

each other, as well as with the actual FRFs in Figure 3-34. It can be observed that 

ISMM gives much better results. 
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Figure 3-34 Comparison of the FRFs of the tip Point Calculated Using Joint 

Parameters Identified by Using ISMM and FRF DM 
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CHAPTER 4  

 

4. IDENTIFICATION OF JOINT DYNAMICS IN BEAMS – THREE DIMENSIONAL 

SPACE  

 

In this chapter, a bolted joint connecting two beams modelled in 3D space is identified. 

The system considered is composed of two beams: The first beam, substructure A, has 

fixed-free boundary conditions, and the second beam, substructure B, has free-free 

boundary conditions. Since substructures are modeled using three-dimensional brick 

elements, each node on substructures has 6 DOFs, including three translational DOFs 

(TDOFs) and three rotational DOFs (RDOFs). These beams are connected with a 

bolted joint.  

In this chapter, two case studies are given. In the first case study, the bolted joint is 

modeled by using Spring/Dashpot elements connecting two reference points (RPs), 

which are located at the center of the mating surfaces. Since RPs are points, rotational 

displacement information can be obtained directly from the finite element software in 

order to obtain the FRFs representing the measured values in the simulated 

experiment. In the second case study, bolted joint is modeled using 3D brick elements. 

In this model, in order to obtain RDOFs related FRFs, finite difference formulation is 

used, and therefore some calculations must be done. For both case studies, a complete 

joint model includes three translational and three rotational DOFs stiffness and 

damping parameters. Therefore, two different finite element simulations were 

conducted to investigate the effectiveness of the proposed identification method. 

In section 4.1, finite element modeling of the system by using Spring/Dashpot -

elements representing the bolted joint is given. Then, in section 4.2, finite element 

modeling of the system by using three-dimensional model of the bolted joint is 

presented. In section 4.3, the model used in obtaining simulated experimental data, 
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validation and demonstration of the proposed method is given. Comparison of the two 

methods also studied in this section. 

 Finite Element Simulation of Coupled Beams by Using Spring/Dashpot 

Elements for Bolted Joint  

In this section, the details of the finite element simulation of coupled beams by using 

Spring/Dashpot elements for bolted joint is given. In this model, two substructures are 

connected to each other, as shown in Figure 4-1. Two beams are taken identical. The 

width of the beams is 0.025 m, the height of the beam cross-sections is 0.006 m, the 

length of the beams is 0.3 m, and the damping of the beams is taken structural damping 

with a loss factor of 0.01. The material of the beams is aluminum with a modulus of 

elasticity (E) of 70 GPa and density of (ρ) 2700 𝑘𝑔/𝑚3.  

Beams have meshed with C3D8R (eight-node brick element with reduced integration) 

element which is a general-purpose linear brick element with 3 DOFs at each node. 

For each beam, the number of elements used is 1030. 

 

 

Figure 4-1 Coupled Structure Finite Element Model 

 

Substructure A 

Substructure B 
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The substructure A is clamped, and substructure B is attached to it through the joint. 

As shown in Figure 4-2, Surface 1 represents the surface of substructure A where the 

bolt head is in contact, and Surface 2 represents the surface of substructure B where 

the nut is in contact. Reference points (RPs) are assigned to the centers of the surfaces 

where the bolt head and the nut are in contact with the beams. 

 

Figure 4-2 Contact Surfaces  

In this simplified model, modeling of a bolt is much simpler than solid modeling 

because there is no need to define contact pairs. The bolt shank is modeled by using 

Spring/Dashpot elements for the three translational and three rotational directions. As 

it is shown in Figure 4-3, the nodes (RPs) are connected to the surfaces (Surface 1 and 

Surface 2) by means of the so-called kinematic coupling constraint. In kinematic 

coupling constraint, the “coupling” nodes which are the nodes on Surface 1 and 

Surface 2, are constrained to the rigid body motion of a single node, which are RP1 

and RP2. Therefore, the associated nodes (the nodes on the surfaces) are forced to 

have the same displacement in all six DOF as a result of the coupling condition. After 

that, Spring/Dashpot elements are placed between these two RPs.  
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Figure 4-3 Representation of RPs and Coupling Elements 

In this approach, the pretension effect is not considered for the bolt. Section cut view 

of the model can be seen in Figure 4-4. 

 

 

Figure 4-4 Section View of the Model 

In order to fully define the joint, three translational and three rotational springs and 

dashpots elements are used. 
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 Finite Element Simulation of Two Beams Coupled with a Bolted Joint by 

Using 3D Brick Elements  

Depending on the level of accuracy required, different modeling approaches are 

available for the bolts in a beam connection when ABAQUS FEA is used. Among 

several methods, the most accurate method is modeling the bolt’s entire geometry, 

including the components such as bolt head and nut, with solid elements. This 

modeling method allows contact interactions between all the elements concerned as is 

the case in reality. This modeling approach will be explained in Section 4.2.3. 

However, firstly some issues about modeling in ABAQUS, such as solver selection, 

will be explained. 

4.2.1. Selecting Solver 

In ABAQUS, two solver options are available, Standard and Explicit. In 

ABAQUS/Standard, convergence is checked at the end of each load increment. If the 

results have not converged, the size of the loading increment is reduced before another 

convergence attempt is made. However, for a very complicated problem, it may not 

be able to find a converging solution, and in that case, it will fail. Finding convergent 

solutions at multiple time increments in dynamic loading cases is very expensive. For 

that reason, ABAQUS/Explicit can be used as an alternative. It uses very small load 

increments/time steps, and after each load increment/time step is applied, the analysis 

moves on, regardless whether it converges or not. Thus, by using it, complicated 

problems can be solved, however it is possible to have a wrong solution. Besides, 

because of the very small load increments/ time steps used, computing time is much 

higher than Standard version. Accordingly, if the solution converges, 

ABAQUS/Standard results in a more accurate solution in less time. Therefore, in this 

study ABAQUS/Standard version is used for all analyses. 
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4.2.2. Description of the Finite Element Model 

In order to simulate a real experimental case of two beams connected with a bolted 

joint as accurately as possible, so that the contact interface can be modelled better and 

the simulated experimental values of the required receptances can be obtained more 

accurately, the finite element software ABAQUS/Standard is used. It is aimed to 

model the bolted joint as closely as possible to a real experimental case.  

The solid model, as shown in Figure 4-5 and Figure 4-6,  is the most realistic finite 

element model of a bolted connection among other modeling methods, such as using 

wire elements or beam elements. In this model, in order to mesh both the beams and 

the bolt, three-dimensional brick elements, called C3D8R in ABAQUS are used. As 

mentioned before, the element is described by eight-noded, linear elements with 3 

DOFs at each node. Therefore, when using a three-dimensional brick element in a 

model, obtaining rotational displacement information is not possible.  

 

  

 
 

Figure 4-5 The Finite Element Modeling of Coupled Structure 

 
Figure 4-6 Section View of the 3D Bolted Connection 

 

The external diameters of the bolt head and the nut are taken as those of a real M8 bolt 

and nut. If the bolt shank and all associated elements, such as nut, are modeled as one 
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part, modeling is faster because of the elimination of tieing associated surfaces of the 

bolt as in Figure 4-7. The reason behind this simplification is that because of the high 

preload that is likely to exist in the bolt, it can be assumed that there would be no 

relative motion between the bolt and the nut. Moreover, the bolt thread was not 

modeled since the performance of thread is not our concern in this study. 

 

According to [29], the small depth of the washer suggests a small variation 

in contact pressures, high in magnitude, and unlikely to allow any relative movement 

on either surface of the washer. Therefore, it is concluded not to model the washers 

underneath the bolt head and the nut, because adding two extra contact interface to the 

model would have increased the computational time considerably and would not 

increase the accuracy notably. 

 
Figure 4-7 3D Modelling of Bolt Head, Bolt Shank and Nut as One Part 

 

 

As stated above, this approach allows for assigning contact interactions between all 

relevant components/parts that come into contact in a bolted connection.  In Figure 

4-8 and Figure 4-9, the contact pairs between bolt and beams, and beam and beam are 

shown. 
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Figure 4-8 Contact Regions Between 1) Bolt Head and Beam A    2) Nut and Beam 

B 

 

 

Figure 4-9 Contact Region Between Beams 

 

As visualized in Figure 4-8 and Figure 4-9, the model includes surface-to-surface 

contact elements, which consists of master and slave nodes. They are used on the 

interfaces between: 

 The bolt head and the upper surface of beam A 

 The bolt nut and the lower surface of beam B  

 Between the lower surface of beam A and the upper surface of beam B  
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4.2.3. Interaction Properties 

ABAQUS/Standard offers two formulations for the modeling of the interaction of two 

deformable bodies. The first one is a small sliding formulation in which the contact 

surfaces are only allowed to undergo relatively small sliding relative to each other, but 

surface rotation is permitted. The second one is a finite sliding formulation. This 

formulation allows the separation of surfaces as well as finite amplitude of sliding and 

arbitrary rotation of the surfaces [30]. In this study, finite sliding formulation is used. 

 Contact problems in finite element methods are nonlinear. To determine which nodes 

are in contact, ABAQUS implements a master/slave contact algorithm. Surfaces 

generally transmit shear and normal forces across their interface when they are in 

contact. Therefore, the analysis may need to take into account frictional forces that 

resist relative sliding of the surfaces. Coulomb friction is a common model of friction 

used to define the interaction of the contact surfaces. The model uses a friction 

coefficient μ to characterize the frictional behavior between the surfaces. 

The default friction coefficient is zero. Critical shear stress value depends on the 

normal contact pressure. According to the following equations, the tangential motion, 

which is sliding, is zero until the surface traction reaches to a critical shear stress value 

of 

 

𝜏𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝜇. 𝑝     (4.1) 

 

The equivalent shear stress  𝜏𝑒𝑞 = √𝜏1
2 + 𝜏2

2    (4.2) 

 

where μ is the coefficient of friction, and p is the contact pressure between the 

contacting surfaces. So, this equation says that the contacting surfaces will not slide 

relative to each other until the equivalent shear stress across their interface equals to 

the limiting frictional shear stress, μp.  
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Figure 4-10 Frictional Behavior [31] 

In Figure 4-10, the solid line summarizes the Coulomb friction model’s behavior; there 

is zero slip (zero relative motion) of the surfaces when they are stick condition ( shear 

stress < μp). 

It can be complicated to simulate ideal friction behavior. ABAQUS utilizes a 

formulation of penalty friction with an allowable “elastic slip” shown by the dotted 

line in Figure 4-10. 

The elastic slip is the small amount of relative motion that occurs between the surfac

es when the surfaces should stick. ABAQUS selects the penalty stiffness (the slope of 

the dotted line) automatically to make this allowable “elastic slip” is a very small 

fraction of the length of the characteristic element. Since the penalty friction 

formulation works well for most problems [3], in this study, penalty friction 

formulation is used together with 0.3 coefficient of friction for aluminum-aluminum 

contacting surfaces [32]. Contact parameters can be defined from the “Interaction” 

module in ABAQUS. 

A model of the contact characteristics generally needs parameters for the normal 

behavior in addition to tangential behavior. The “hard” contact pressure- overclosure 

relationship can be used in ABAQUS to describe the contact model. At constraint 

locations, it minimizes the penetration of the slave surface into the master surface as 

shown in Figure 4-11. 
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Figure 4-11 Default pressure-overclosure relationship [33] 

To sum up, contact properties between contacting surfaces, as stated before, were 

modeled as a combination of tangential and normal behavior. “Penalty” friction 

formula with the friction coefficient value of 0.3 is used for tangential behavior, and 

for normal behavior “hard” contact formula is considered with linear contact stiffness. 

Since the bolts are more rigid than beam structure, they are denoted as master surfaces 

in contact pairs. 

4.2.4. Bolt Preload 

Since the contact stiffness values are determined based on contact preloads, the bolt 

should be preloaded. The analysis has been performed through the following steps; 

Initial step: Defining boundary conditions and describing interaction properties. 

Step1: Bolt preloading and activating contact elements. 

Step2: Fixing the bolt length. 

Step3: Applying dynamic load. 

Before the steady-state dynamic analysis step is conducted, a static calculation step is 

performed to simulate the bolt’s preload. The calculations resulting from this static 

step bring out additional stiffness to the model as contact pairs are made in the 

interface, and geometrical non-linearities occur. 
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The pretension is simulated by dividing the bolt body into two parallel surfaces in  

the bolt shank and apply  preload force, as shown in Figure 4-12. 

 

 

        Figure 4-12 Preloaded Bolt 

 

For calculating the preload value, Shigley [34] is taken as a reference. Bowman 

recommends a preload of 75 percent of proof load [35]. According to Shigley’s 

guidelines, the following is recommended to be used for preload: 

 

𝐹𝑖 = 0.75𝐹𝑝 , 𝑓𝑜𝑟 𝑛𝑜𝑛𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑢𝑠𝑒𝑑 𝑓𝑎𝑠𝑡𝑒𝑛𝑒𝑟𝑠  (4.3) 

where 𝐹𝑝 is the proof load, obtained from the equation 

𝐹𝑝 = 𝐴𝑡𝑆𝑝      (4.4) 

Here 𝑆𝑝 is the proof strength and 𝐴𝑡 is the tensile stress area. 

According to the above calculation, the minimum preload must be 22784 N for grade 

10 steel bolts. 

Bolt length is fixed at its current position after applying bolt load (pretension) to the 

bolt. This method helps to prevent the problem of elongation of the bolts under the 

load. Otherwise, ABAQUS will continue to apply pretension force. 
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All three degrees of freedom in the pretension section is restricted during the first two 

steps. This degree of freedom served as the artificial boundary condition to avoid the 

numerical singularity error that can be arisen from rigid body motion. This artificial 

boundary condition is then removed after preloading and activating the contact 

properties. Details of the contact pressure (CPRESS output variable) on substructures 

and bolt surfaces are given in Figure 4-13 to Figure 4-15. 

 

 

Figure 4-13 Contact Pressure at Surface Nodes for Substructure A 
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Figure 4-14 Contact Pressure at Surface Nodes for Substructure B 

 

 

 

Figure 4-15 Contact Pressure at Surface Nodes for Bolt 
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4.2.5. Direct Steady-State Dynamic Analysis 

ABAQUS /Standard offers a “direct” steady-state dynamic analysis procedure for 

structures undergoing continuous harmonic excitation.  

The structure may exhibit material and geometrical nonlinear behavior as well as 

contact nonlinearities for the calculation of the base state. Moreover, viscous damping 

and discrete damping (such as dashpot elements) can be included in this procedure. 

Considering all of these, it can be seen that direct steady-state dynamic analysis is the 

most suitable procedure for this study [30]. It should be noted that a “direct solution 

steady-state dynamic analysis” is used to calculate the steady-state linearized dynamic 

response of the system to harmonic excitation. In order to obtain FRFs of the 

assembled structures, 1 N concentrated force is applied and displacement data at the 

nodes are extracted. 

 Identification of Joint Properties in Beams in 3D Space 

In this section, in order to verify and demonstrate the implementation of the suggested 

method, two case studies are given. For both case studies, substructures are modeled 

using three-dimensional brick elements. The difference between case studies is the 

modeling method of the bolted joint as explained before. 

In the first case study, the receptance values of the initial system and of the measured 

system are calculated by using RPs values. In the second case study, while receptance 

values of the initial system are obtained by using RPs values, the receptances in the 

measured system are obtained by using the simulated experiment model which uses 

three dimensional elements for bolt. 

4.3.1. Case Study 1 

In this case study, two identical beams, substructure A having fixed-free boundary 

conditions and substructure B having free-free boundary conditions, are coupled 

elastically with a joint. Each substructure is modeled with the three-dimensional brick 

elements using finite element program ABAQUS. In this model, in order to represent 
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the bolted joint, spring-/dashpot elements with coupled reference points (RPs) are 

used.  

In order to use the proposed identification method, the FRFs of the assembled structure 

at the connection coordinates are required. The FRFs of the initially estimated bolted 

model can be obtained using RPs’ translational and rotational displacement 

information, directly. In this case study, the FRFs of the measured system can also be 

obtained from the corresponding FE model with the actual values for the connection 

dynamics in the same manner. 

As can be seen from Figure 4-16, three translational and three rotational springs  and 

dashpots are placed between connection points (RPs).  

 

 

       Figure 4-16  Using Predefined Complex Stiffness Matrix for Both Systems 
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The complex stiffness matrix representing the elastic joint can be defined as follows 

[𝐾∗] =

[
 
 
 
 
 
 
𝑘𝐹𝑥 + 𝑗𝜔𝑐𝐹𝑥 0 0 0 0 0

0 𝑘𝑀𝜃𝑦 + 𝑗𝜔𝑐𝑀𝜃𝑦 0 0 0 0

0 0 𝑘𝐹𝑦 + 𝑗𝜔𝑐𝐹𝑦 0 0 0

0 0 0 𝑘𝑀𝜃𝑥 + 𝑗𝜔𝑐𝑀𝜃𝑥 0 0

0 0 0 0 𝑘𝐹𝑧 + 𝑗𝜔𝑐𝐹𝑧 0
0 0 0 0 0 𝑘𝑀𝜃𝑧 + 𝑗𝜔𝑐𝑀𝜃𝑧]

 
 
 
 
 
 

(4.5) 

where 𝑘𝐹𝑖 is the force to linear displacement stiffness in the  i direction, 𝑐𝐹𝑖 is the force 

to linear displacement damping in i direction and likewise, 𝑘𝑀𝜃𝑖 is the moment to 

angular displacement stiffness in i direction and 𝑐𝑀𝜃𝑖 is the moment to angular 

displacement damping in i direction of the joint  (i can be x, y and z). The dynamic 

properties of the joint for the initially estimated and measured systems are tabulated 

in Table 4-1. 

The receptance matrix corresponding to the connection coordinates of the system with 

initially estimated bolt parameters can be expressed as  

[𝛼𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐼
 𝐻𝑗𝑘

𝐶
𝐼
 

𝐻𝑘𝑗
𝐶

𝐼
 𝐻𝑘𝑘

𝐶
𝐼
 

]     (4.6) 

Experimentally measured FRFs (simulated experimental values) of the assembled 

structure at the connection coordinates of the system can be written as  

[𝛾𝑚𝑚] = [
𝐻𝑗𝑗

𝐶
𝐸
 𝐻𝑗𝑘

𝐶
𝐸
 

𝐻𝑘𝑗
𝐶

𝐸
 𝐻𝑘𝑘

𝐶
𝐸
 

]     (4.7) 
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Table 4-1 Joint Parameters for Coupled Structures 

  initially 

estimated 

bolt 

parameters 

[𝑲𝟏
∗(𝝎)] 

parameters 

need to be 

identified 

[𝑲𝟐
∗(𝝎)] 

𝒌𝑭𝒙 : Translational stiffness in the x-direction [N/m] 105 106 

𝒄𝑭𝒙 : Translational damping in the x-direction 

[N.s/m] 

1 10 

𝒌𝑭𝒚 : Translational stiffness in the y-direction [N/m] 105 106 

𝒄𝑭𝒚 : Translational damping in the y-direction 

[N.s/m] 

3 30 

𝒌𝑭𝒛 : Translational stiffness in the z-direction [N/m] 105 107 

𝒄𝑭𝒛 : Translational damping in the z-direction 

[N.s/m] 

2 20 

𝒌𝑴𝜽𝒙: Rotational stiffness in the x-direction 

[N.m/rad] 

5 ∗ 103 103 

𝒄𝑴𝜽𝒙: Rotational damping in the x-direction 

[N.m.s/rad] 

1 5 

𝒌𝑴𝜽𝒚: Rotational stiffness in the y-direction 

[N.m/rad] 

5 ∗ 103 104 

𝒄𝑴𝜽𝒚: Rotational damping in the y-direction 

[N.m.s/rad] 

1 10 

𝒌𝑴𝜽𝒛: Rotational stiffness in the z-direction 

[N.m/rad] 

102 103 

𝒄𝑴𝜽𝒛: Rotational damping in the z-direction 

[N.m.s/rad] 

1 5 

 

As explained before, the only required measurement is the FRFs of the coupled 

structure at the connection coordinates, and therefore the size of the receptance 
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matrices [α𝑚𝑚] and [γ𝑚𝑚] will be 12x12, since the joint model is composed of 

translational and rotational parameters for all six DOFs. The components of the 

receptance matrices are shown in Eqn. (4.8), where p and q represent measurement 

and excitation points, respectively. 

𝐻𝑝𝑞
𝐶

𝐼,𝐸
 =

[
 
 
 
 
 
 
 
 
𝐻𝑥𝑝𝑥𝑞

𝐶 𝐻𝑥𝑝𝜃𝑦𝑞
𝐶 𝐻𝑥𝑝𝑦𝑞

𝐶 𝐻𝑥𝑝𝜃𝑥𝑞
𝐶 𝐻𝑥𝑝𝑧𝑞

𝐶 𝐻𝑥𝑝𝜃𝑧𝑞
𝐶

𝐻𝜃𝑦𝑝𝑥𝑞
𝐶 𝐻𝜃𝑦𝑝𝜃𝑦𝑞

𝐶 𝐻𝜃𝑦𝑝𝑦𝑞
𝐶 𝐻𝜃𝑦𝑝𝜃𝑥𝑞

𝐶 𝐻𝜃𝑦𝑝𝑧𝑞
𝐶 𝐻𝜃𝑦𝑝𝜃𝑧𝑞

𝐶

𝐻𝑦𝑝𝑥𝑞
𝐶 𝐻𝑦𝑝𝜃𝑦𝑞

𝐶 𝐻𝑦𝑝𝑦𝑞
𝐶 𝐻𝑦𝑝𝜃𝑥𝑞

𝐶 𝐻𝑦𝑝𝑧𝑞
𝐶 𝐻𝑦𝑝𝜃𝑧𝑞

𝐶

𝐻𝜃𝑥𝑝𝑥𝑞
𝐶 𝐻𝜃𝑥𝑝𝜃𝑦𝑞

𝐶 𝐻𝜃𝑥𝑝𝑦𝑞
𝐶 𝐻𝜃𝑥𝑝𝜃𝑥𝑞

𝐶 𝐻𝜃𝑥𝑝𝑧𝑞
𝐶 𝐻𝜃𝑥𝑝𝜃𝑧𝑞

𝐶

𝐻𝑧𝑝𝑥𝑞
𝐶 𝐻𝑧𝑝𝜃𝑦𝑞

𝐶 𝐻𝑧𝑝𝑦𝑞
𝐶 𝐻𝑧𝑝𝜃𝑥𝑞

𝐶 𝐻𝑧𝑝𝑧𝑞
𝐶 𝐻𝑧𝑝𝜃𝑧𝑞

𝐶

𝐻𝜃𝑧𝑝𝑥𝑞
𝐶 𝐻𝜃𝑧𝑝𝜃𝑦𝑞

𝐶 𝐻𝜃𝑧𝑝𝑦𝑞
𝐶 𝐻𝜃𝑧𝑝𝜃𝑥𝑞

𝐶 𝐻𝜃𝑧𝑝𝑧𝑞
𝐶 𝐻𝜃𝑧𝑝𝜃𝑧𝑞

𝐶
]
 
 
 
 
 
 
 
 

    (4.8) 

 

After calculating all required FRFs of the coupled system, dynamic structural 

modification matrix [𝐷𝑚𝑚] is calculated and by adding off-diagonal terms of it to 

[𝐾1
∗(𝜔)] will give the identified complex stiffness matrix [𝐾∗ (𝜔)] representing the 

joint dynamics in six DOFs. 

[𝐷𝑚𝑚] = [
𝑗 𝑐𝑜𝑜𝑟𝑑. −∆ (6𝑥6)
−∆ (6𝑥6) 𝑘 𝑐𝑜𝑜𝑟𝑑.

]              (4.9) 

[𝐾𝑖𝑑𝑒𝑛
∗ (𝜔)] = [𝐾1

∗(𝜔)] + [∆]                       (4.10) 

In Figure 4-17, the comparison of the predicted FRF using initially estimated complex 

stiffness matrix [𝐾1
∗(𝜔)], and the measured FRF using [𝐾2

∗(𝜔) ] for the assembled 

substructure at points s and r in y-direction are given. 
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Figure 4-17 Receptances at Points r and s in y-direction 

 

As mentioned in Chapter 3, the sensitivity of FRFs to different joint stiffnesses should 

be determined before the identification of joint parameters.  In Chapter 3, since the 

joint model is composed of one translational and one rotational stiffness, there are two 

different sensitive frequency regions for the identification. However, for three-

dimensional joint model, all the three translational and three rotational stiffnesses and 

damping parameters should be identified at their sensitive regions.  
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The sensitivities of FRFs of the tip point s to joint translational and rotational 

stiffnesses are shown in Figure 4-18 to Figure 4-23. Sensitivity of the system response 

to each joint parameter is investigated and tabulated in Table 4-2. 

Changing 𝑘𝐹𝑥, 𝑘𝑀𝜃𝑦  𝑎𝑛𝑑 𝑘𝑀𝜃𝑧 affects the receptance amplitude of the coupled system 

at point s in x-direction as shown in Figure 4-18, Figure 4-22 and Figure 4-23. 

Likewise, changing 𝑘𝐹𝑦 𝑎𝑛𝑑 𝑘𝑀𝜃𝑥 affects the receptance amplitude of the coupled 

system at point s in y-direction as shown in Figure 4-19 and Figure 4-21 and finally 

changing 𝑘𝐹𝑧 and 𝑘𝑀𝜃𝑥  affects that of in z-direction as shown in Figure 4-20 and 

Figure 4-21. 

It should be noted that if we are interested in vibrations only in one direction, for 

example the vibration of the coupled beams in transverse direction, we need to do 

sensitivity analysis only for the parameters 𝑘𝐹𝑦 𝑎𝑛𝑑 𝑘𝑀𝜃𝑥, since only these two 

parameters will affect the response of the system in that direction. In this section, the 

sensitivity analysis was performed for all six stiffnesses values, since the responses in 

three directions will be examined. 
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Figure 4-18 Sensitivity of the System Response at Point s to 𝑘𝐹𝑥 
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Figure 4-19 Sensitivity of the System Response at Point s to 𝑘𝐹𝑦 
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Figure 4-20 Sensitivity of the System Response at Point s to 𝑘𝐹𝑧 
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Figure 4-21 Sensitivity of the System Response at Point s to 𝑘𝑀𝜃𝑥 
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Figure 4-22 Sensitivity of the System Response at Point s to 𝑘𝑀𝜃𝑦 
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Figure 4-23 Sensitivity of the System Response at Point s to 𝑘𝑀𝜃𝑧 
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Table 4-2 Sensitive Regions 

 Region 1 Region 2 

𝑘𝐹𝑥 200 Hz - 300 Hz 450 Hz - 520 Hz 

𝑘𝐹𝑦 180 Hz - 300 Hz - 

𝑘𝐹𝑧 20 Hz - 600 Hz - 

𝑘𝑀𝜃𝑥 50 Hz - 120 Hz 350 Hz - 500 Hz 

𝑘𝑀𝜃𝑦 200 Hz - 500 Hz - 

𝑘𝑀𝜃𝑧 475 Hz - 525 Hz - 

 

Each joint property is identified in the range of frequency where the response is 

sensitive to that parameter, and the average of the values are taken in that region. The 

ranges that are used in the identification of the joint properties in this case study are 

tabulated in Table 4-2.  

Now, in order to study the effect of the noise on the identification results, FRFs of the 

coupled structure, [ 𝐻𝑗𝑗
𝐶

𝐸
 ], [ 𝐻𝑘𝑘

𝐶
𝐸
 ] , [ 𝐻𝑗𝑘

𝐶
𝐸
 ] and [ 𝐻𝑘𝑗

𝐶
𝐸
 ], are polluted with 5% 

random noise, as explained before. The identification results for translational and 

rotational properties are shown in Figure 4-24 to Figure 4-27, respectively.  
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Figure 4-24 Identified Translational Stiffnesses 
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Figure 4-25 Identified Translational Damping 
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Figure 4-26 Identified Rotational Stiffnesses 
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Figure 4-27 Identified Rotational Damping 
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It is observed that translational joint stiffness identification results are very good 

compared to translational damping values. Note that, the damping properties are prone 

to noise much more than the stiffness properties, since their effects on the coupled 

system dynamics is much less than those of the joint stiffness values. For the damping 

parameters, the frequency ranges used for the identification of stiffness values are 

employed. The average values of the identification results in these ranges are given in 

Table 4-3 and Table 4-4. 

 

Table 4-3 Identified Translational Joint Parameters and Percentage Errors 

 Actual 

Values 

Identification Region 

1 

Identification Region 

2 

𝒌𝑭𝒙 [𝑵 𝒎]⁄   

106 

1.017 ∗ 106 1.013 ∗ 106 

Error (%) 1.7 1.3 

𝒌𝑭𝒚 [𝑵 𝒎]⁄   

106 

1.095 ∗ 106  

Error (%) 9.5  

𝒌𝑭𝒛  [𝑵 𝒎]⁄   

107 

1.003 ∗ 107  

Error (%) 0.3  

𝒄𝑭𝒙 [𝑵. 𝒔 𝒎]⁄    

10 

7.799 12.696 

Error (%) -22.01 26.96 

𝒄𝑭𝒚 [𝑵. 𝒔 𝒎]⁄    

30 

45.976  

Error (%) 53.253  

𝒄𝑭𝒛 [𝑵. 𝒔 𝒎]⁄    

20 

54.114  

Error (%) 170.57  
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Table 4-4 Identified Rotational Joint Parameters and Percentage Errors 

 Actual 

Values 

Identification 

Region 1 

Identification 

Region 2 

𝒌𝑴𝜽𝒙  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

103 

965.07 738.77 

Error (%) -3.493 -26.123 

𝒌𝑴𝜽𝒚  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

104 

9838.3  

Error (%) -1.617  

𝒌𝑴𝜽𝒛  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

103 

−40.846  

Error (%) -104.08  

𝒄𝑴𝜽𝒙  [𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

5 

4.896 4.779 

Error (%) -2.08 -4.42 

𝒄𝑴𝜽𝒚[𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

10 

10.074  

Error (%) 0.74  

𝒄𝑴𝜽𝒛  [𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

5 

0.042  

Error (%) -99.16  

 

4.3.2. Comparison of Two Methods when Applied to 3D Structural Systems 

The joint parameters identified by using the proposed method and FRF decoupling 

method, are shown in Figure 4-28 to Figure 4-31. The joint parameters identified by 

using two methods and the percentage differences from the actual values are given in 

Table 4-5 and Table 4-6. 
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Figure 4-28 Identified Translational Stiffnesses Obtained by Using ISMM and FRF 

DM 
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Figure 4-29 Identified Translational Damping Obtained by Using ISMM and FRF 

DM 
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Figure 4-30 Identified Rotational Stiffnesses Obtained by Using ISMM and FRF 

DM 
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Figure 4-31 Identified Rotational Damping Obtained by Using ISMM and FRF DM 
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Table 4-5 Comparison of Identified Translational Joint Parameters and Percentage 

Errors 

 Actual Values ISMM FRF DM 

𝒌𝑭𝒙 [𝑵 𝒎]⁄   

106 

1.017 ∗ 106 4.341 ∗ 105 

Error (%) 1.7 -56.6 

𝒌𝑭𝒚 [𝑵 𝒎]⁄   

106 

1.095 ∗ 106 7.014 ∗ 105 

Error (%) 9.5 -29.86 

𝒌𝑭𝒛  [𝑵 𝒎]⁄   

107 

1.003 ∗ 107 9.987 ∗ 106 

Error (%) 0.3 -0.13 

𝒄𝑭𝒙 [𝑵. 𝒔 𝒎]⁄    

10 

7.799 268.62 

Error (%) -22.01 2586.2 

𝒄𝑭𝒚 [𝑵. 𝒔 𝒎]⁄    

30 

45.976 32.047 

Error (%) 53.25 6.83 

𝒄𝑭𝒛 [𝑵. 𝒔 𝒎]⁄    

20 

54.114 330.49 

Error (%) 170.57 1552.45 

Table 4-6 Comparison of Identified Rotational Joint Parameters and Percentage 

Errors 

 Actual Values ISMM FRF DM 

𝒌𝑴𝜽𝒙  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

103 

965.07 680.68 

Error (%) -3.493 -31.932 

𝒌𝑴𝜽𝒚  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

104 

9838.3 8732.5 

Error (%) -1.617 -12.675 

𝒌𝑴𝜽𝒛  [𝑵.𝒎 𝒓𝒂𝒅]⁄   

103 

-40.846 820.44 

Error (%) -104.08 -17.95 

𝒄𝑴𝜽𝒙  [𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

5 

4.896 4.289 

Error (%) -2.08 -14.22 

𝒄𝑴𝜽𝒚[𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

10 

10.074 9.172 

Error (%) 0.74 -8.28 

𝒄𝑴𝜽𝒛  [𝑵.𝒎. 𝒔 𝒓𝒂𝒅]⁄    

5 

0.042 3.79 

Error (%) -99.16 -24.2 
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Knowing natural frequencies and mode shapes of the coupled system may help to 

understand the reason of the deviation from the actual FRFs, better. As shown in 

Figure 4-32; the first, third, fourth and sixth modes are basically in y direction. On the 

other hand, it can be seen that from Figure 4-33 that the second, fifth and seventh 

modes are basically in x direction. 

 

Figure 4-32 Natural Frequencies and Mode Shapes of the Coupled System 
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Figure 4-33 Natural Frequencies and Mode Shapes of the Coupled System 

 

The FRFs of the assembled system are regenerated by using the joint parameters 

identified using ISMM and FRF DM, at the tip point, and they are compared with each 

other, as well as with the actual FRF in  Figure 4-34 to Figure 4-38. 

As it can be seen from Figure 4-34, the FRFs regenerated by using the joint parameters 

obtained from ISMM have some deviations from the actual FRFs in x direction in the 

third mode which corresponds to the torsional mode of the system (Figure 4-33). From 

the sensitivity of the related FRF to 𝑘𝑀𝜃𝑧 (Figure 4-23), it can be seen that it has the 

maximum effect on the FRFs in that frequency regions. This explains why the 

accuracy of the regenerated FRF is not so good in this region, as can also be seen from 

Table 4-6, since 𝑘𝑀𝜃𝑧 could not be identified accurately. 
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Figure 4-34 Comparison of the FRFs of the Tip Point Calculated Using Joint 

Parameters Identified by Using ISMM and FRF DM in x Direction 

In order to quantify errors for the comparison of FRFs calculated using joint 

parameters identified by employing ISMM and FRF DM, two different error criteria 

defined in [36] are used. 

The first one is “Amplitude Error” which is the difference between the maximum 

receptance amplitudes obtained by using joint parameters identified and the exact 

maximum receptance amplitude in the frequency range of interest, and it is defined as 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑥𝑚𝑎𝑥
𝑒𝑥𝑐 −𝑥𝑚𝑎𝑥

𝑜𝑏𝑡

𝑥𝑚𝑎𝑥
𝑒𝑥𝑐 | 𝑥100      (4.11) 

The second one is “Frequency Error” which is the difference between the resonance 

frequency values corresponding to the maximum receptance amplitude obtained and 

the exact value. It is expressed as follows 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 = |
𝜔𝑚𝑎𝑥
𝑒𝑥𝑐 −𝜔𝑚𝑎𝑥

𝑜𝑏𝑡

𝜔𝑚𝑎𝑥
𝑒𝑥𝑐 | 𝑥100      (4.12) 
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The errors related with FRFs calculated in x direction in two specific frequency ranges 

(Figure 4-35) are given in Table 4-7. 

 

Figure 4-35 Comparison of the FRFs of the Tip Point in Frequency Ranges   

30 Hz - 90 Hz and 445 Hz - 560 Hz 

Table 4-7 Amplitude and Frequency Errors for the Receptance 𝐻𝑠𝑠
𝐶  in x – Direction 

  Amplitude Error (%) Frequency Error (%) 

30 Hz – 90 Hz 
ISMM 6.66 0.25 

FRF DM   29.70 1.24 

445 Hz – 560 Hz 
ISMM -- -- 

FRF DM 34.16 0.62 
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From Figure 4-36, it can be seen that the FRFs regenerated by using the joint 

parameters obtained from ISMM perfectly match with the actual FRF in y direction 

(transverse direction) but the FRFs regenerated by using the joint parameters obtained 

from FRF DM have some slight deviations from the actual FRF. It is observed that 

while the differences between the identified values using ISMM and FRF DM and the 

actual ones are not very small, their effect on the system dynamics is not so significant. 

 

Figure 4-36 Comparison of the FRFs of the Tip Point Calculated Using Joint 

Parameters Identified by Using ISMM and FRF DM in y Direction 

Again, in order to quantify errors, amplitude error and frequency error are calculated 

for the  FRFs calculated in y direction by using identified parameters (Figure 4-37) 

are given in Table 4-8. 
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Figure 4-37 Comparison of the FRFs of the Tip Point Calculated Using Joint 

Parameters Identified by Using ISMM and FRF DM 

 

Table 4-8 Amplitude and Frequency Errors for the Receptance 𝐻𝑠𝑠
𝐶  in y – Direction 

  Amplitude Error 

(%) 

Frequency Error 

(%) 

70 Hz – 100 Hz 
ISMM 1.89 0 

FRF DM 14.76 0 

220 Hz – 265 

Hz 

ISMM 1.97 0.06 

FRF DM 6.65 0.32 
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Finally, it can be seen from Figure 4-38 that the FRFs regenerated by using the joint 

parameters obtained from ISMM and FRF DM perfectly match with the actual FRF in 

z direction. 

 

 

Figure 4-38 Comparison of the FRFs of the Tip Point Calculated Using Joint 

Parameters Identified by Using ISMM and FRF DM in z Direction 
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4.3.3.  Case Study 2 

FRFs involving rotational information are of the type, rotation/force, 

translation/moment and rotation/moment and they may represent 75% of the whole 

FRF matrix which cannot be ignored. The primary reason for the problems in 

obtaining rotational data are mainly due to the fact that there are no angular 

transducers available or practical means of implementing momentary excitations. In 

acquiring a complete view of the system dynamics, data regarding rotational degrees 

of freedom plays a major role. In this case study, obtaining RDOF related FRFs from 

translational FRFs in identifying joint parameters for all six DOFs is studied. As 

explained before, in this case, the bolt is modeled using three-dimensional brick 

elements. Therefore, it is not possible to obtain RDOFs related FRFs from the finite 

element simulation. Furthermore, in real applications we will need experimentally 

measured values. 

In order to estimate the RDOF related FRFs of the assembled system at the joint 

coordinates, j and k, finite difference method is used as explained in Chapter 2. In this 

study, since identification are done for all six DOFs, one set of measurement is not 

enough to obtain all the information. 

As a reminder of the method, Figure 2-5 given in Chapter 2 can be revisited. Three 

points on the structure can be defined: point 2 is the reference point at which RDOF 

FRFs are required, and points 1 and 3 are measurement points. The close-

accelerometers method has been performed with three accelerometers placed in 

constant distance close to one another, as shown in Figure 4-39. By using Eqns. (2.49) 

and (2.50), the predicted receptance matrix that includes rotational FRFs for point 2 

can be obtained. 
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Figure 4-39 Finite Difference Method 

 

In this case study, in order to obtained [𝛾𝑚𝑚] which is the measured receptance matrix 

corresponding to joint coordinates, we need at least 4 sets of measurements. The goal 

is to obtain as many of the elements of this matrix 𝐻𝑝𝑞
𝐶

𝐸
  ; but it is not possible due to 

the geometry of the substructures, which will be explained in section 4.3.3.1. 

𝐻𝑗𝑗
𝐶

𝐸
 =

[
 
 
 
 
 
 
 
 
 
𝐻𝑥𝑗𝑥𝑗

𝐶 𝐻𝑥𝑗𝜃𝑦𝑗
𝐶 𝐻𝑥𝑗𝑦𝑗

𝐶 𝐻𝑥𝑗𝜃𝑥𝑗
𝐶 𝐻𝑥𝑗𝑧𝑗

𝐶 𝐻𝑥𝑗𝜃𝑧𝑗
𝐶

𝐻𝜃𝑦𝑗𝑥𝑗
𝐶 𝐻𝜃𝑦𝑗𝜃𝑦𝑗

𝐶 𝐻𝜃𝑦𝑗𝑦𝑗
𝐶 𝐻𝜃𝑦𝑗𝜃𝑥𝑗

𝐶 𝐻𝜃𝑦𝑗𝑧𝑗
𝐶 𝐻𝜃𝑦𝑗𝜃𝑧𝑗

𝐶

𝐻𝑦𝑗𝑥𝑗
𝐶 𝐻𝑦𝑗𝜃𝑦𝑗

𝐶 𝐻𝑦𝑗𝑦𝑗
𝐶 𝐻𝑦𝑗𝜃𝑥𝑗

𝐶 𝐻𝑦𝑗𝑧𝑗
𝐶 𝐻𝑦𝑗𝜃𝑧𝑗

𝐶

𝐻𝜃𝑥𝑗𝑥𝑗
𝐶 𝐻𝜃𝑥𝑗𝜃𝑦𝑗

𝐶 𝐻𝜃𝑥𝑗𝑦𝑗
𝐶 𝐻𝜃𝑥𝑗𝜃𝑥𝑗

𝐶 𝐻𝜃𝑥𝑗𝑧𝑗
𝐶 𝐻𝜃𝑥𝑗𝜃𝑧𝑗

𝐶

𝐻𝑧𝑗𝑥𝑗
𝐶 𝐻𝑧𝑗𝜃𝑦𝑗

𝐶 𝐻𝑧𝑗𝑦𝑗
𝐶 𝐻𝑧𝑗𝜃𝑥𝑗

𝐶 𝐻𝑧𝑗𝑧𝑗
𝐶 𝐻𝑧𝑗𝜃𝑧𝑗

𝐶

𝐻𝜃𝑧𝑗𝑥𝑗
𝐶 𝐻𝜃𝑧𝑗𝜃𝑦𝑗

𝐶 𝐻𝜃𝑧𝑗𝑦𝑗
𝐶 𝐻𝜃𝑧𝑗𝜃𝑥𝑗

𝐶 𝐻𝜃𝑧𝑗𝑧𝑗
𝐶 𝐻𝜃𝑧𝑗𝜃𝑧𝑗

𝐶

]
 
 
 
 
 
 
 
 
 

         (4.13) 

  

The point corresponding to the joint coordinate “j” is shown as J11 (which is the same 

point with rp1) in Figure 4-40 and Figure 4-41.  
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Figure 4-40 Measurement Points for j coordinate 

 

Figure 4-41 Force Points for j coordinate 

 The point corresponding to the joint coordinate “k” is shown as K11 (which is the 

same point with rp2) in Figure 4-42 and Figure 4-43. 

 

Figure 4-42 Measurement Points for k coordinate 
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Figure 4-43 Force Points for k coordinate 

As can be seen from Figure 4-40 to Figure 4-43, there are three measurement and three 

excitation points at each axis. In order to explain the procedure better, an example 

calculation for estimated  𝐻𝑗𝑗
𝐶 and 𝐻𝑘𝑗

𝐶is shown below. 

Measurement 1 

As shown in Figure 4-44,  jcX, jbX and jaX are the force excitation points and J3, RP1 

and J1 are the measurement points where the accelerometers are placed at. sz is the 

constant spacing between points on z axis.  

 

Figure 4-44 Measurement 1 Points 

Transformation matrix is obtained using constant spacing as follows 
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[𝑇𝑧𝑐] =
1

2𝑠𝑧
[
0 2𝑠𝑧 0
−1 0 1

]     (4.14) 

Then, rotational FRF at points RP1 and RP2 are calculated by using the second-order-

central transformation matrix as follows: 

[𝐻𝑒𝑠𝑡1] = [
𝐻𝑥𝑥 𝐻𝑥𝜃𝑦
𝐻𝜃𝑦𝑥 𝐻𝜃𝑦𝜃𝑦

] = [𝑇𝑧𝑐]. [𝐻𝑚𝑒𝑎𝑠1]. [𝑇𝑧𝑐]
𝑇     (4.15) 

where [𝐻𝑒𝑠𝑡1] represents the estimated FRFs in 𝑥 and 𝜃𝑦 at points RP1 and RP2, and 

[𝐻𝑚𝑒𝑎𝑠1] denotes the measured translational FRFs at points 𝑗1, 𝑟𝑝1 𝑎𝑛𝑑 𝑗3 for the 

calculation of 𝐻𝑗𝑗
𝐶

𝐸
  and 𝑘1, 𝑟𝑝2 𝑎𝑛𝑑 𝑘3 for the calculation of 𝐻𝑗𝑗

𝐶
𝐸
  which are shown 

in Eqns. (4.16) and (4.17), respectively. 

[𝐻𝑚𝑒𝑎𝑠1] = [

𝐻𝑗1𝑗𝑎𝑋 𝐻𝑗1𝑗𝑏𝑋 𝐻𝑗1𝑗𝑐𝑋
𝐻𝑟𝑝1𝑗𝑎𝑋 𝐻𝑟𝑝1𝑗𝑏𝑋 𝐻𝑟𝑝1𝑗𝑐𝑋
𝐻𝑗3𝑗𝑎𝑋 𝐻𝑗3𝑗𝑏𝑋 𝐻𝑗3𝑗𝑐𝑋

]  𝑓𝑜𝑟 𝐻𝑗𝑗
𝐶

𝐸
   (4.16) 

[𝐻𝑚𝑒𝑎𝑠1] = [

𝐻𝑘1𝑗𝑎𝑋 𝐻𝑘1𝑗𝑏𝑋 𝐻𝑘1𝑗𝑐𝑋
𝐻𝑟𝑝2𝑗𝑎𝑋 𝐻𝑟𝑝2𝑗𝑏𝑋 𝐻𝑟𝑝2𝑗𝑐𝑋
𝐻𝑘3𝑗𝑎𝑋 𝐻𝑘3𝑗𝑏𝑋 𝐻𝑘3𝑗𝑐𝑋

]  𝑓𝑜𝑟 𝐻𝑘𝑗
𝐶

𝐸
   (4.17) 

Excitation and measurement points are shown in Figure 4-45 and Figure 4-46 for 

𝐻𝑗𝑗
𝐶

𝐸
  and 𝐻𝑘𝑗

𝐶
𝐸
 , respectively. 

 

Figure 4-45 Measurement 1 Points for the Calculation of 𝐻𝑗𝑗
𝐶

𝐸
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Figure 4-46 Measurement 1 Points for the Calculation of 𝐻𝑘𝑗
𝐶

𝐸
  

Measurement 2 

As shown in Figure 4-47, jcZ, jbZ and jaZ are the force excitation points and J2, RP1 

and J4 are the measurement points where the accelerometers are placed at. sx is the 

constant spacing between points at x axis.  

 

Figure 4-47 Measurement 2 Points 

Transformation matrix is obtained using constant spacing as follows 

[𝑇𝑥𝑐] =
1

2𝑠𝑥
[
0 2𝑠𝑥 0
−1 0 1

]     (4.18) 
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Then, rotational FRF at points RP1 and RP2 are calculated by using the second-order-

central transformation matrix as follows: 

[𝐻𝑒𝑠𝑡2] = [
𝐻𝑧𝑧 𝐻𝑧𝜃𝑦
𝐻𝜃𝑦𝑧 𝐻𝜃𝑦𝜃𝑦

] = [𝑇𝑥𝑐]. [𝐻𝑚𝑒𝑎𝑠2]. [𝑇𝑥𝑐]
𝑇    (4.19) 

where [𝐻𝑒𝑠𝑡2] represents the estimated FRFs in 𝑧 and 𝜃𝑦 at points RP1 and RP2, and 

[𝐻𝑚𝑒𝑎𝑠2] denotes the measured translational FRFs at points 𝑗2, 𝑟𝑝1 𝑎𝑛𝑑 𝑗4 for the 

calculation of 𝐻𝑗𝑗
𝐶

𝐸
  and 𝑘2, 𝑟𝑝2 𝑎𝑛𝑑 𝑘4 for the calculation of 𝐻𝑗𝑗

𝐶
𝐸
  which are shown 

in Eqns. (4.20) and (4.21), respectively. 

[𝐻𝑚𝑒𝑎𝑠2] = [

𝐻𝑗2𝑗𝑎𝑍 𝐻𝑗2𝑗𝑏𝑍 𝐻𝑗2𝑗𝑐𝑍
𝐻𝑟𝑝1𝑗𝑎𝑍 𝐻𝑟𝑝1𝑗𝑏𝑍 𝐻𝑟𝑝1𝑗𝑐𝑍
𝐻𝑗4𝑗𝑎𝑍 𝐻𝑗4𝑗𝑏𝑍 𝐻𝑗4𝑗𝑐𝑍

]  𝑓𝑜𝑟 𝐻𝑗𝑗
𝐶

𝐸
    (4.20) 

[𝐻𝑚𝑒𝑎𝑠2] = [

𝐻𝑘2𝑗𝑎𝑍 𝐻𝑘2𝑗𝑏𝑍 𝐻𝑘2𝑗𝑐𝑍
𝐻𝑟𝑝2𝑗𝑎𝑍 𝐻𝑟𝑝2𝑗𝑏𝑍 𝐻𝑟𝑝2𝑗𝑐𝑍
𝐻𝑘4𝑗𝑎𝑍 𝐻𝑘4𝑗𝑏𝑍 𝐻𝑘4𝑗𝑐𝑍

]  𝑓𝑜𝑟 𝐻𝑘𝑗
𝐶

𝐸
    (4.21) 

Excitation and measurement points are shown in Figure 4-48 and Figure 4-46 4-49 for 

𝐻𝑗𝑗
𝐶

𝐸
  and 𝐻𝑘𝑗

𝐶
𝐸
 , respectively. 

 

Figure 4-48 Measurement 2 Points for the Calculation of 𝐻𝑗𝑗
𝐶

𝐸
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Figure 4-49 Measurement 2 Points for the Calculation of 𝐻𝑘𝑗
𝐶

𝐸
  

Measurement 3 

As stated in Figure 4-50, j2Y, RP1Y and j4Y are the force excitation points and J2, 

RP1 and J4 are the measurement points that accelerometers are placed. sx is the 

constant spacing between points at x axis.  

 

Figure 4-50 Measurement 3 Points 

Rotational FRF at points RP1 and RP2 are calculated by using the transformation 

matrix in Eqn. (4.16) as follows: 

[𝐻𝑒𝑠𝑡3] = [
𝐻𝑦𝑦 𝐻𝑦𝜃𝑧
𝐻𝜃𝑧𝑦 𝐻𝜃𝑧𝜃𝑧

] = [𝑇𝑥𝑐]. [𝐻𝑚𝑒𝑎𝑠3]. [𝑇𝑥𝑐]
𝑇   (4.22) 
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where [𝐻𝑒𝑠𝑡3] represents the estimated FRFs in 𝑦 and 𝜃𝑧 at points RP1 and RP2, and 

[𝐻𝑚𝑒𝑎𝑠3] denotes the measured translational FRFs at points 𝑗2, 𝑟𝑝1 𝑎𝑛𝑑 𝑗4 for the 

calculation of 𝐻𝑗𝑗
𝐶

𝐸
  and 𝑘2, 𝑟𝑝2 𝑎𝑛𝑑 𝑘4 for the calculation of 𝐻𝑗𝑗

𝐶
𝐸
  which are shown 

in Eqns. (4.23) and (4.24), respectively. 

[𝐻𝑚𝑒𝑎𝑠3] = [

𝐻𝑗2𝑗2𝑌 𝐻𝑗2𝑅𝑃1𝑌 𝐻𝑗2𝑗4𝑌
𝐻𝑟𝑝1𝑗2𝑌 𝐻𝑟𝑝1𝑅𝑃1𝑌 𝐻𝑟𝑝1𝑗4𝑌
𝐻𝑗4𝑗2𝑌 𝐻𝑗4𝑅𝑃1𝑌 𝐻𝑗4𝑗4𝑌

]  𝑓𝑜𝑟 𝐻𝑗𝑗
𝐶

𝐸
    (4.23) 

[𝐻𝑚𝑒𝑎𝑠3] = [

𝐻𝑘2𝑗2𝑌 𝐻𝑘2𝑅𝑃1𝑌 𝐻𝑘2𝑗4𝑌
𝐻𝑟𝑝2𝑗2𝑌 𝐻𝑟𝑝2𝑅𝑃1𝑌 𝐻𝑟𝑝2𝑗4𝑌
𝐻𝑘4𝑗2𝑌 𝐻𝑘4𝑅𝑃1𝑌 𝐻𝑘4𝑗4𝑌

]  𝑓𝑜𝑟 𝐻𝑘𝑗
𝐶

𝐸
    (4.24) 

Excitation and measurement points are shown in Figure 4-51 and Figure 4-52 for 

𝐻𝑗𝑗
𝐶

𝐸
  and 𝐻𝑘𝑗

𝐶
𝐸
 , respectively. 

 

Figure 4-51 Measurement 3 Points for the Calculation of 𝐻𝑗𝑗
𝐶

𝐸
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Figure 4-52 Measurement 3 Points for the Calculation of 𝐻𝑘𝑗
𝐶

𝐸
  

Measurement 4 

As stated in Figure 4-53, j1Y, RP1Y and j3Y are the force excitation points and J1, 

RP1 and J3 are the measurement points that accelerometers are placed. sz is the 

constant spacing between points at z axis. 

 

Figure 4-53 Measurement 4 Points 

Rotational FRF at points RP1 and RP2 are calculated by using the transformation 

matrix in Eqn. (4.12) as follows: 

[𝐻𝑒𝑠𝑡4] = [
𝐻𝑦𝑦 𝐻𝑦𝜃𝑥
𝐻𝜃𝑥𝑦 𝐻𝜃𝑥𝜃𝑥

] = [𝑇𝑧𝑐]. [𝐻𝑚𝑒𝑎𝑠4]. [𝑇𝑧𝑐]
𝑇   (4.25) 
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where [𝐻𝑒𝑠𝑡4] represents the estimated FRFs in 𝑦 and 𝜃𝑥 at points RP1 and RP2, and 

[𝐻𝑚𝑒𝑎𝑠4] denotes the measured translational FRFs at points 𝑗1, 𝑟𝑝1 𝑎𝑛𝑑 𝑗3 for the 

calculation of 𝐻𝑗𝑗
𝐶

𝐸
  and 𝑘1, 𝑟𝑝2 𝑎𝑛𝑑 𝑘3 for the calculation of 𝐻𝑗𝑗

𝐶
𝐸
  which are shown 

in Eqns. (4.26) and (4.27), respectively. 

[𝐻𝑚𝑒𝑎𝑠4] = [

𝐻𝑗1𝑗1𝑌 𝐻𝑗1𝑅𝑃1𝑌 𝐻𝑗1𝑗3𝑌
𝐻𝑟𝑝1𝑗1𝑌 𝐻𝑟𝑝1𝑅𝑃1𝑌 𝐻𝑟𝑝1𝑗3𝑌
𝐻𝑗3𝑗1𝑌 𝐻𝑗3𝑅𝑃1𝑌 𝐻𝑗3𝑗3𝑌

]  𝑓𝑜𝑟 𝐻𝑗𝑗
𝐶

𝐸
    (4.26) 

[𝐻𝑚𝑒𝑎𝑠4] = [

𝐻𝑘1𝑗1𝑌 𝐻𝑘1𝑅𝑃1𝑌 𝐻𝑘1𝑗3𝑌
𝐻𝑟𝑝2𝑗1𝑌 𝐻𝑟𝑝2𝑅𝑃1𝑌 𝐻𝑟𝑝2𝑗3𝑌
𝐻𝑘3𝑗1𝑌 𝐻𝑘3𝑅𝑃1𝑌 𝐻𝑘3𝑗3𝑌

]  𝑓𝑜𝑟 𝐻𝑘𝑗
𝐶

𝐸
    (4.27) 

Excitation and measurement points are shown in Figure 4-54 and Figure 4-46 4-55 for 

𝐻𝑗𝑗
𝐶

𝐸
  and 𝐻𝑘𝑗

𝐶
𝐸
 , respectively. 

 

Figure 4-54 Measurement 4 Points for the Calculation of 𝐻𝑗𝑗
𝐶

𝐸
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Figure 4-55 Measurement 4 Points for the Calculation of 𝐻𝑘𝑗
𝐶

𝐸
  

After four set of measurements, 8 elements of 𝐻𝑝𝑞
𝐶

𝐸
  can be found as shown below: 

𝐻𝑗𝑗
𝐶

𝐸
 =

[
 
 
 
 
 
 
 
 
 
𝐻𝑥𝑗𝑥𝑗

𝐶 𝐻𝑥𝑗𝜃𝑦𝑗
𝐶 0 0 0 0

𝐻𝜃𝑦𝑗𝑥𝑗
𝐶 𝐻𝜃𝑦𝑗𝜃𝑦𝑗

𝐶 0 0 0 0

0 0 𝐻𝑦𝑗𝑦𝑗
𝐶 𝐻𝑦𝑗𝜃𝑥𝑗

𝐶 0 𝐻𝑦𝑗𝜃𝑧𝑗
𝐶

0 0 𝐻𝜃𝑥𝑗𝑦𝑗
𝐶 𝐻𝜃𝑥𝑗𝜃𝑥𝑗

𝐶 0 0

0 0 0 0 𝐻𝑧𝑗𝑧𝑗
𝐶 0

0 0 𝐻𝜃𝑧𝑗𝑦𝑗
𝐶 0 0 𝐻𝜃𝑧𝑗𝜃𝑧𝑗

𝐶

]
 
 
 
 
 
 
 
 
 

         (4.28) 

The components of the matrix which are shown in red are obtained from Measurement 

1. The components which are shown in blue, green and orange color are obtained from 

Measurement 2, 3 and 4 respectively. 

The FRF of the assembled system is regenerated by using the identified parameters of 

the bolted joint, and it is compared with the actual FRF in Figure 4-56. As it can be 

seen from the regenerated FRFs of the coupled structure in y direction a pretty good 

match is obtained. However, the same agreement between the regenerated and the 

actual FRFs for the coupled structure in x direction cannot be obtained, as shown in 

Figure 4-57. Further investigation showed that the main reason for this difference is 

not using all the elements of the receptance matrices shown in Eqn. (4.26), in the 

identification. This point will be explained in detail in section 4.3.3.1. 
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Figure 4-56 Regenerated FRF of the Coupled Structure Using Identified Joint 

Properties in y Direction 

 

Figure 4-57 Regenerated FRF of the Coupled Structure Using Identified Joint 

Properties in x Direction 
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In order to study the transferability of the joint properties identified, the identified joint 

parameters are used to calculate the receptances of the cantilever beam coupled to a 

shorter beam (that is, the substructure B is changed). The predicted FRFs are compared 

with the actual ones (simulated experimental values obtained from the FE analysis of 

the assembly where 3D elements are used for the bolt). In this case study, the length 

of substructure B is selected as 0.2 m and the length of substructure A is kept the same 

(0.3 m). As can be seen from Figure 4-56 and Figure 4-58, except a slight deviation 

around the first anti-resonance in the response in y-direction, the regenerated FRFs 

match are quite in agreement with the actual FRFs. However, the same observation 

cannot be made for the response in x direction, as can be seen from Figure 4-59, which 

is an expected observation, as we could not obtain very good results even with the 

original substructure B (see Figure 4-57). 

 

 

Figure 4-58 Regenerated FRF of the Coupled Structure (using shorter beam for 

substructure B) Using Identified Joint Properties in y Direction 
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Figure 4-59 Regenerated FRF of the Coupled Structure (using shorter beam for 

substructure B) Using Identified Joint Properties in x Direction 

4.3.3.1. Error Analysis 

In case study 2, application and validation of the proposed method is shown by using 

the simulated experiment data. Since the simulated experiments are expected to reflect 

the real experimental conditions, the excitation and measurement points are selected 

by considering the real size of an accelerometer. As mentioned in the section 4.1, the 

height of the beam cross-sections is 0.006 m. Therefore, we cannot take measurement 

from the points shown in Figure 4-60.  
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Figure 4-60 Unmeasurable Points 

 

Figure 4-61 Measurement Scheme 

There are some consequences of not being able to take measurement from these points. 

When Figure 4-61 is examined, it can be seen that excitation and displacement 

measurement in x direction will give the estimated FRFs in 𝑥 and 𝜃𝑧 directions as 

follows 

[𝐻𝑒𝑠𝑡_𝑥] = [
𝐻𝑥𝑥 𝐻𝑥𝜃𝑧
𝐻𝜃𝑧𝑥 𝐻𝜃𝑧𝜃𝑧

]     (4.29) 
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In the same way, excitation and displacement measurement in z direction will give the 

estimated FRFs in 𝑧 and 𝜃𝑥 directions as shown below 

[𝐻𝑒𝑠𝑡_𝑧] = [
𝐻𝑧𝑧 𝐻𝑧𝜃𝑥
𝐻𝜃𝑥𝑧 𝐻𝜃𝑥𝜃𝑥

]     (4.30) 

Since we cannot excite and take the displacement measurements from these points, in 

the identification of the joint parameters, experimentally measured FRFs of the 

assembled structure at the connection coordinates of the system cannot fully be 

determined. Since all components of the receptance matrices [ 𝐻𝑗𝑗
𝐶

𝐸
 ], [ 𝐻𝑘𝑘

𝐶
𝐸
 ] , 

[ 𝐻𝑗𝑘
𝐶

𝐸
 ] and [ 𝐻𝑘𝑗

𝐶
𝐸
 ] cannot be obtained, that will bring further errors.  

Even if accurate data (without noise) is used in the identification, the effect of not 

being able to measure the matrix [𝐻𝑒𝑠𝑡_𝑥] given by Eqn. (4.27) will cause errors in 

identified parameters as shown in Figure 4-62 and Figure 4-63. Similarly, not being 

able to measure the matrix given by Eqn. (4.28) will result in errors in identified 

parameters as shown in Figure 4-64 and Figure 4-65. 
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Figure 4-62 The Effect of Unmeasured FRFs on Stiffness Parameters 

 

Figure 4-63 The Effect of Unmeasured FRFs on Damping Parameters 
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Figure 4-64 The Effect of Unmeasured FRFs on Stiffness Parameters 

 

Figure 4-65 The Effect of Unmeasured FRFs on Damping Parameters 
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CHAPTER 5  

5. CONCLUSION AND FUTURE WORK 

 Summary and Conclusions 

The main objective of the thesis is to characterize structural joints dynamically. Due 

to complex dynamic behavior of joints, it is challenging to build a reliable model for 

joints using only analytical methods, and therefore usually models based on 

experimental measurements are employed. In this thesis, an FRF based identification 

method is suggested to obtain dynamic characteristics of bolted joints. The proposed 

method is based on the structural modification method called Matrix Inversion 

Method (MIM). The MIM formulation is used in reverse direction. In this approach, 

the frequency response functions (FRFs) of the coupled structure are experimentally 

measured and FRFs of the coupled system by using an initially estimated set of joint 

model parameters are calculated. Then, by using two sets of FRFs of the coupled 

systems, measured and calculated, the dynamic parameters of the joint consisting of 

stiffness and damping elements are identified using the so-called Inverse Structural 

Modification Method (ISMM). The method proposed in this study requires the 

measurement of only the FRFs of the assembled structure, not individual substructures 

connected with a bolted joint.  

The proposed method is applicable to 2D structures where only two degrees of 

freedom (DOFs), translation and rotation, are involved, as well as to 3D structures 

where all DOFs in translation and rotation are involved. Therefore, the validity and 

the application of the proposed method were investigated on different joint models. 

The first joint model is used for discrete MDOF systems and it includes only 

translational joint parameters, the second model is used for beams and it includes 

rotational parameters as well. This model is used in transverse vibrations of bolted 

beams. The extended 3D joint model has both translational and rotational stiffness and 

damping elements; therefore, identification requires measurements in all translational 

directions.  
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The validity of the method proposed is demonstrated with various case studies. In 

these case studies the experimental FRFs of the coupled structure are obtained using 

simulated experiments, where the measurement errors are simulated by polluting the 

calculated values.  

For the identification of joint parameters in 2D structural systems, in theoretical 

computations, as well as in obtaining simulated experimental results, 2D beam 

elements with two DOFs (one transverse displacement and one angular displacement) 

at each node are used. Both translational and rotational parameters of the joint model 

are obtained from the information coming from translational displacements only in 

order to simulate actual measurement in which it is not easy to measure angular 

displacements directly.  In 3D structural systems, however, as the joint model includes 

translational and rotational parameters in all six DOFs, it is required to make 

translational displacement measurements in all three directions. The identification is 

made by using the simulated experiments and by using 3D brick elements with three 

translational DOFs at each node.  

In this study, in addition to presenting a new identification approach for joint dynamics 

and studying its performance with case studies, several observations were made and 

some important conclusions were obtained. Some important observations and 

conclusions are summarized below. 

From case studies, it is observed that using only translational parameters for any of 

the joint models does not simulate the real case accurately, and rotational information 

is usually important. However, obtaining RDOF related FRFs accurately is not an easy 

task in three dimensional model. Furthermore, it is observed from the case studies that 

the errors in the identified rotational joint parameters are higher than those of 

translational joint parameters. It is also observed that joint damping identification is 

prone to measurement errors much more than joint stiffnesses identification.  

As it was concluded in previous studies, it is also concluded in this study that in both 

methods it is important first to carry out a sensitivity analysis and then make the 
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identifications in the frequency regions where the FRFs are sensitive to the related 

parameters. All joint parameters are identified at their own sensitive regions but it is 

observed that noise has not less effect in the frequency regions which are sensitive to 

joint parameters. 

 

 It is observed from the case studies that although the errors in identified parameters 

may have larger values, the FRFs regenerated by using these identified joint 

parameters and actual FRFs of the coupled structure perfectly match for transverse 

vibrations for both 2D and 3D bolted beam systems. Moreover, in 3D structural 

system, the regenerated FRFs again perfectly match with the actual ones for 

longitudinal vibrations of the beam. However, the model (and/or identified 

parameters) for the bolted joint for vibrations in the third direction, does not seem to 

give promising results. Since in actual applications, the joint dynamics in this direction 

will be basically determined by the friction force, at least for higher force levels, a 

nonlinear model will be required to represent the joint dynamics accurately in this 

direction. Therefore, not having accurate results in x direction will not be so 

significant.   

The performance of the proposed method is compared with that of the previously 

developed joint identification method based on FRF Decoupling [15]. In the previous 

work [15], the model is developed for 2D systems, and therefore identification in 3D 

structural systems was not possible. In this thesis, the previously proposed method is 

also extended to three-dimensional space and the performance of the extended model 

is studied.  

The effect of measurement errors on the identification results is included by polluting 

the simulated FRFs of the assembled structure with 5% random noise. By using 

polluted FRFs for simulating measured values, and making use of the FRFs calculated 

for the coupled system with initially estimated bolt parameters, identification is made. 

Then the average of the values identified at several frequencies in the frequency 
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regions sensitive to related joint parameters are calculated and taken as the bolted joint 

parameters.  

 

In 3D structural systems, the rotational displacement information is obtained from 

translational displacements by using finite difference formulations. However, due to 

geometric restrictions, this is not possible in all directions in 3D systems; therefore, 

the experimentally measured FRFs of the assembled structure at the connection 

coordinates of the system will not be fully determined and that will bring further errors 

in the identified parameters of 3D model. It is concluded in this study that in the 

identification of 2D joint model parameters which are composed of translational and 

rotational terms (excluding cross coupling terms), the proposed method ISMM gives 

much better results than FRF Decoupling method. In the identification of 3D joint 

model parameters, again excluding cross coupling terms, although the differences 

between the identified values obtained by using ISMM and the actual ones are much 

lower than the errors in parameters obtained using FRF DM, the effect of this 

difference on the regenerated FRFs are not much. 

However, in order to generalize the above conclusions in confidence, we need to carry 

out real experiments and identify the bolt parameters by using ISMM and FRF DM 

with real experimental data.  

 Future Work 

This research has presented a joint identification technique that is applicable to 2D 

and 3D structural systems. It focuses on the linear behavior of the joint and any non-

linear effect in the joint is ignored. Therefore, the effects of nonlinearities need to be 

addressed in future studies. Moreover, cross coupling terms can be included into the 

joint model. 

It may also be recommended to study the different techniques to obtain RDOF related 

FRFs. In this study, finite difference formulations were used but there are methods 

proposed in recent years, promising much better results than finite difference method.  
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As a further work, the method proposed here can be used for more complex structures. 

However, before applying the method to different type of structures, the accuracy of 

the method need to be validated by using real experimental data. 
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