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ABSTRACT

MODELING FX OPTIONS IN PRESENCE OF STOCHASTIC VOLATILITY
WITH OVERNIGHT-INDEXED-SWAP-DISCOUNTING

Tekten, Selin
M.Sc. , Department of Financial Mathematics
Supervisor: Prof. Dr. Omiir Ugur

December 2019, 76 Pages

This study investigates the time contingent behavior of risk factor USDTRY. Option
pricing models Black-Scholes and Heston has been utilized to estimate the behavior.
The adjusted Black-Sholes model is the current market practice to model USDTRY risk
factor. Market practitioners do not prefer to use constant volatility in the Black-Scholes
Model, which violates the model assumption. They instead interpolate the volatility
surface from market data of implied volatilities and use them in Black-Scholes Model.
However, Heston model admits varying volatilities. The Heston Model adds a
dimension to the Black-Scholes model by letting the volatility to be a stochastic process.
In this thesis, we have used interpolated volatility surface as a benchmark for testing the
results estimated by the Heston Model. Furthermore, while estimating option prices,
Overnight-Indexed-Swap (OIS) discounting framework has been governed to achieve

risk-free rates. The test results have indicated that Heston stochastic volatility model

vii



with OIS discounting offers arbitrage-free pricing with similar computation efficiency

to the benchmark.

Keywords: Currency Options, USDTRY, Heston Model, Overnight-Indexed-

Swap Discounting, Volatility Surface
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0z

STOKASTIK VOLATILITE ALTINDA, GECELIK VADEYE ENDEKSLI SWAP
ISKONTO YONTEMI iLE KUR OPSIYONLARININ MODELLENMESI

Tekten, Selin
M.Sc. , Department of Financial Mathematics
Supervisor: Prof. Dr. Omiir Ugur

Aralik 2019, 76 Sayfa

Bu calisma, risk faktérii USDTRY'nin zamana bagli davranigini incelemektedir.
Opsiyon fiyatlama modelleri Black-Sholes ve Heston bu davranisi tahmin etmek i¢in
kullanilmistir. Diizeltilmis Black-Sholes modeli, USDTRY riskfaktorii modellemesinde
glincel piyasa pratigidir. Piyasa uygulayicilari, Black-Scholes modelinde sabit volatilite
kullanmazlar, ki bu model varsayimina aykiridir. Bunun yerine, volatilite yiizeyini,
piyasada gozlemlenen ima edilen volatilitelerden enterpole ederek olusturur ve Black-
Scholes modelinde kullanirlar. Heston modelinde ise, degisken volatile varsayim
dahilindedir. Heston modeli, volatiliteyi stokastik bir siire¢ olarak varsayarak, Black-

Scholes modelinin tizerine bir boyut daha ekler. Bu ¢alismada, Heston modelinin tahmin

iX



sonuclarini test etmek icin enterpole edilmis volatilite yiizeyini referans olarak
kullandik. Ayrica, opsiyon fiyatlarinin tahmininde kullanilacak risksiz-faiz-oranlarini,
gecelik vadeye endeksli swap iskonto yontemi ile insa ettik. Test sonuglari, gecelik
vadeye endeksli swap iskonto yontemi kullanilan Heston stokastik volatilite modelinin,
secilen referansa yakin hesaplama verimliligi saglarken, arbitrajsiz fiyatlama imkani

sundugunu gostermektedir.

Anahtar Sozciikler: Kur Opsiyonlari, USDTRY, Heston Model, Gecelik-

Vadeye-Endeksli-Swap Iskonto Yontemi, Volatilite Yiizeyi
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CHAPTER 1

OVERVIEW

Interest rate differential benefits on foreign exchange markets in Turkey, entail high
trade volume and variety of financial derivatives. The exposure to foreign exchange
brings protection needs and permits complex hedging activities. Investors develop
hedging strategies against their exchange rate exposure. Their transactions generate a
liquid foreign exchange market.

The fact that the average daily volume of the market in Turkey is estimated to be
around 22 billion US Dollars [2] indicates the size of the market. About 90% of this
turnover consists of spot deals and foreign exchange swaps. Central-banks, commercial
companies, and funds form a significant part of the market. Because actors of the foreign
exchange market make large transactions, and also, they perform small deals, the market
is split into levels of access that we cannot see in the stock exchange markets. As an
inevitable outcome of this large volume of transactions, the majority of the trades are
performed in the over-the-counter (OTC) market. Biggest commercial banks, security
traders perform their deals in the inter-bank market. Since bigger trading size occurred

at the top of this degree of access, ask-bid spreads of the currencies are narrower relative
1



to the lower degree of access. Ask-bid spread of currencies widens as go to the lower
degree.

In this study have focused on the FX-OTC market, since it is great in demand
and offers liquid option quotations. The foreign exchange market has own specific
conventions. Currency options’ deals do not consist of single options with a particular
strike, unlike stocks exchange markets apply. Quotes on currency options address the
portfolio of options based on specific deltas.

In section 2.1, we have argued about resolve foreign exchange market
conventions. Translation of the quotes into a standard format that financial models
consume occurs in two steps; the first step is reversing the portfolio to single options;
the next step is converting delta-implied volatility pairs into strikes. After relevant
mapping, vanilla options data have been properly arranged to be involved in the
calibration of pricing models, Heston, and Black Scholes. We have benefited the study
[9], for the conversion of the option quotations and examining terms and conditions of
USDTRY options. We have extended the scope of the study of Eratman [9], by using
options with time-to-maturity of 1-month, 2-month, 3-month, 6-month, 9-month, and
12-month instead of using only 1-month option data. We have adopted the approach of
[18], by setting aside a part of the data (2-month and 9-month) to use them in out-sample
tests later on.

During the calibration, due to the assumptions Heston and Black-Scholes

models, we have also required risk-free rate data. The risk-free rate considered in the



valuation of options should be the rate at which banks supply the cash and must create
a dynamic hedging portfolio that will replicate the final payoff at expiry.

In section 2.2, we have constructed risk-free, zero-coupon discount curves for
USD and TRY. In the formation of USD risk-free, zero-coupon discount curve, we have
benefited from quotations on Overnight-Indexed-Swaps. This framework has been
widely accepted in the literature, see [12]. We have designed a much-complicated set up
for TRY risk-free, zero-coupon discount curve. Since we have not got any liquidly
traded derivatives on the TRY floating rate index like LIBOR, we have used information
on foreign exchange instruments by applying interest rate parity. Thanks to findings of
Kazdal and Kiigiiksarag, see [14], we have taken FX swap points to construct the curve.
However, to be able to build the TRY yield curve, we have also needed to construct a
zero-coupon curve for 3m USD LIBOR to achieve fixed values for 3m USD LIBOR.
This approach is known to be used by some private banks. However, to our knowledge,
this study is the first one that considers the OIS yield curve construction for the TRY.

In section 4.1, we analyzed historical data of USDTRY observed between 11
March 2013 and 20 August 2018.

We have dedicated chapter 3, to describe the dynamics of the models.

In section 4.2, we have calibrated and tested the results. We have used both unit
weights and liquidity-weights on the calibration procedure. We have extended the scope
of We have considered in-sample and out-sample measure performances. Namely, we
have compared the estimates and real data, and, afterward, we have estimated for
different prices whose market-prices have not been involved during the calibration.

3



Furthermore, we have studied model-generated implied volatilities if they can stay in
the bid-ask range. Otherwise, they may generate instantaneous arbitrage opportunity in
market conditions. To our knowledge, this bid-ask range control has not mentioned in
the literature. We have presented details of the tests in which the Heston model has

comparable results with the benchmark.



CHAPTER 2

PRELIMINARIES

Unlike stock exchange markets, foreign exchange options market data represented based
on options delta, instead of option prices by a strike. Moreover, the quotations expressed
for a portfolio of options contracts rather than an individual option.

Implied volatilities of foreign exchange options are represented based on
maturities and deltas. Delta is one of the essential exposures to an options trader. It is
the sensitivity of the price of the option to a change in the underlying asset.

Since in the models we use in this study generate option prices depending on
strike prices, we must map delta-based volatility to strike-based volatility data.
However, delta has various formulations in the foreign exchange market. We present the
details of the terms and conditions for the USDTRY currency pair in the following

section.



2.1 Foreign Exchange Market Conventions

211 FXForward Value

At the beginning, by rule of no-arbitrage, value of an outright forward contract is equals
to zero. Then, as foreign exchange rates and/or interest rates change, the forward
contract has value of different from zero, yet is the following [19],

ve(r) = e T (f(t, T) — K) = Spe™/T — Ke™"a",

2.1.2 Terms and Conditions

Since the credit crunch of 2008 and the associated low levels of liquidity in short-term
interest rate products, it became unfeasible for banks to agree on spot deltas (which
include discount factors) [6].

When the underlying currency pair includes one of the emerging market
currencies or maturity of the option is longer than one year, the market practice is to use
forward delta. Forward delta convention is employed exclusively in the construction of
the FX smile, which does not involve any discounting. The reason for this condition is
that the discount factor shows itself as longer maturity is considered or high-interest
rates are considered in the emerging markets. These options are utilized to hedge with
the forward-contracts. In the case of the USDTRY over-the-counter options market, the
delta convention corresponds to forward-delta, and the ATM type corresponds to

forward-delta-neutral case, for details see [9].



2.1.2.1 Forward Delta
Forward delta is formulated with the derivative of Black-Scholes value v for the option

with respect to forward price of the underlying asset v, (7),

_dv Qv ads _ av[(dv\
A¢(K,0,¢) = ﬁ = %ﬁ = £<¥> (2.1)
Ar(K,0,¢) = ¢N(¢d,), (2.2)

where ¢ is a binary function of option class, which takes 1 for call options and, —1 for
put options, N (x) is the cumulative distribution function of standard normal distribution,

fil.2
d _an+20"L'
= =

P and, f denotes forward rate, K is the option strike price, and, o denotes

implied volatility (by Black-Scholes model). This yields a Put-Call delta parity as stated
in a previous study [9],
Ar(K,0,1) — Ap(K 0,—1) = 1. (2.2)

In foreign exchange market, one must enter to a multiple of As X N number of
forward contracts in favor of hedging a short vanilla position. Forward delta type is
mostly governed convention in majority of the currency pairs, since the absolutes of
delta of a call and put totals to 1; namely, 10AP and 90AP have the same volatilities. In
addition, deciphering of the strike volatility pairs from delta volatility is required for the

calibration phase. So, the strike price formula for forward delta type is given by,

K = fexp {—ng‘l(quf)m/? + %O‘ZT}, (2.3)

where ¢ is a binary function of option class, which takes 1 for call options and, —1 for

put options, N(x) denotes the cumulative distribution function of standard normal

7



distribution, f denotes forward rate, K is the option strike price, A denotes forward-

delta and, o denotes implied volatility (by Black-Scholes model).

2.1.3  Foreign Exchange Vanilla Quotes
Foreign exchange market structures deep volatility smile shape. Current market practice
is to trade volatility smile factors rather than individual vanilla options. A combination
of vanilla options at different deltas is used to catch the volatility smile dynamics.
Examples of liquidly traded a portfolio of options are at-the-money straddles, risk
reversals, and butterfly spreads, whose delta are typically 0.10 or 0.25.
2.1.3.1 At-the-Money Options
Traders denote prices of options on currencies and precious metals as Black-Scholes
implied volatilities. As assumed in the study of Eratman in [9], the exercise-price of an
USDTRY at-the-money option corresponds to the current forward rate of time to
maturity equals to the option tenor, rather than the spot-exchange-rate. This option
convention is referred to as at-the-money forward, hereafter denoted by ATM as in [15];
and

oarm = 0(t, A T|Ky = f), (2.4)
where f is the forward rate, and A is the delta value (that equals to the forward rate) as
the strike.
2.1.3.2 Risk Reversal
Acrisk reversal is a portfolio of options which is built as difference (being long and short)
of two options: a call option with a high exercise price and a put option with a low

8



exercise price both having the same time-to-maturity. Mostly, these two exercise prices
imply different implied volatilities, and market quotation refers to the difference of the
implied volatilities of those options. This quotation is named as the “risk reversal of the
implied volatility smile” or shortly “the smile risk reversal”. The direction of that
difference of implied volatilities is specified based on the market practice of order.
Market practitioners mostly adopt the direction that will yield non-negative portfolio
value. In this case, every market player admits the side of implied volatilities is eminent
for the market taken into consideration. In the lack of certainty of the direction of risk
reversal quotes, to emphasize the direction. They used the phrase “bid for” for the
options with higher volatility. The direction is often characterized through the out-of-
the-money option with option type (call option or put option) of a currency in the
currency pair (i.e., currency other than USD if USD is in the currency pair). In USDTRY
options, higher implied volatilities are observed in options with a high exercise price.
Thus, one would declare “bid for the high side” or “bid for TRY puts”. We can compute
the risk reversal of the implied volatility smile by taking a long position in the high-
exercise-price implied volatility and taking a short position in the low- exercise-price
implied volatility.

The risk reversal related to skewness in the smile [7]. For instance, if we let
0,5arg Stand for the 25-delta-risk reversal quote for USDTRY. Then the 25-delta-call
and 25-delta-put options’ implied volatility difference is amount to the risk reversal

quote,



025ARR = O25Acall — 925Aput - (2.5)
2.1.3.3 Butterfly Spread
A strangle is the mean of long out of-the-money put and call option. A strangle
margin is referred to as the difference between the strangle volatility and the ATM
volatility. The butterfly quote implies to this difference and, describes how convex the
smile is. Again, if we let a,5,5F €Xpress the 25-delta-butterfly quote. So,

O25acall T O25pput
O25ABF — > — OATM - (2.6)

Figure 2.1 demonstrates risk reversal and skew relation and butterfly and
convexity relation. ATM quotations give a parallel shift of volatility smile, Risk reversal
spread lets the slope of the smile more prominent, and butterfly spread effects the

curviness of smile.

10
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Butterfly and Risk Reversal

call delta

putdelta % ATM oo

Figure 2.1 Butterfly and Risk Reversal, [23].Graphic representation of the butterfly and
risk reversal. It could be observed that the risk reversal spread widens as skew increases.
Moreover, butterfly appreciates, as degree of curvature of the smile increases (Namely
the bigger the second derivative).

2.2 Yield Curve Construction
If we let option valuation, to be based on forming a dynamic hedging portfolio that will
replicate the final payoff at expiry, we should find at which rate banks must supply the
cash to create such portfolio. OTC dealers borrow and lend at a rate based on LIBOR,
which is the funding rate for large commercial banks. Therefore, We have not used the
Government bond yield curve in this study.

There has lately been a move from LIBOR-indexed swaps to OIS based swaps

along with the OIS-LIBOR spread has been widened. The spread expanded to be
11



apparent in the time of the financial crisis in 2008. OIS discounting has become the
market practice in the valuation of collateralized instruments, and clearinghouses require
it.

Similar to an interest rate swap, OIS contracts comprise the exchange of only the
interest cash flows; the principal amount equals to notional. Namely, counterparties deal
to exchange, on the designated notional amount, the difference between interest accrued
at the fixed rate, which agreed upon at inception and interest accrued by daily
compounding (generally, the geometric average is used) of the floating overnight index
rate.

Since the OIS market being very liquid for dominant currencies, besides liquid
quotation involves a wide range of maturities, those OIS quotes can effectively calibrate
a discount curve by benefiting standard approaches and, can be employed to discount
collateralized derivative instruments.

We have used OTC market data of options in t calibration of models Heston and
Black-Scholes. Besides, most OTC market transactions are subjected to a collateral
agreement.

As stated by Hull et. Al in [12], overnight rate yield curves implied by OIS
should be used as a risk-free rate even though the portfolio is not collateralized. Hence,
we have used the OIS based yield curve as a proxy of the risk-free rate in this study.

In the scope of this study, we build yield curves up to 1-year tenor. We aim to

estimate the discounting curve for currency TRY and currency USD.

12



We have fitted the discounting curve for currency TRY, to foreign exchange
swaps and cross-currency swaps as opposed to OIS discounting framework. However,
we have discounted USD currency-denominated cash flows of those foreign exchange
instruments with USD Discount Curve (fitted to OIS mid-market quotes). Hence, We
have addressed the OIS discounting in the TRY Discount Curve. However, we require
a forward curve for 3m USD LIBOR to find the floating rates of the future cash flows
of the above-mentioned cross-currency swap. Furthermore, again, the forward curve of
3m USD LIBOR is constructed by referring discount factors from USD discounting

curve (OIS curve).

2.2.1  USD Discount Curve
As stated in the previous section, we have constructed the discount curve for USD on
information from overnight indexed swap contracts written on the effective-fed-funds-
overnight-rate.

OIS refers to an interest rate swap that exchanges a fixed-rate coupon for a
floating rate coupon, which is a daily compounded overnight rate, where the dates of the

two coupon payments typically coincide. Hence, the floating payment for a period [¢, T

will be
K-1
[ [0+ et tnFre ) - 1, @7
i=0

where

K: number of all the business days in the time interval [¢, T]

13



{t;}%,: all the business days in the accrual period [t, T] with to =tand t, =T
FF(t; t;.,): represents the overnight interest rate for the period (t;, t;,1)
a(t;, t;+1): the year fraction between t; and t;,; according to a market convention.
Now we consider the calculation of the net present value of a payer OIS contract.
Attime t, if we us enter into a payer OIS with N coupons, payments datesat T, < T, <
-+ < Tyand T, — t days of spot lag. Assume that we pay a fixed rate k and receive a
floating rate (daily compounded overnight rate). Then, by (2.7) the ith floating leg rate

FFComp(T;_4,T;) is given by

FFComp(T;,_,,T;) =

K-1
H (1+ a(ty i )FF(t; 1)) — 1] . (2.8)

j=0

2;(:01 +1)
Here we recall that ZK‘ La(tj, tiy1) = a(T;, Tjy1)- Thus, by setting & such that

8t = 1 + it, then it yields

Ki—1
Ki-
1_[ (1 + a(tj: tj+1)FF(tj, tj+1)) -1 = eln(nl =0 (1+°‘(tl 0 )FF(58541))) _ 1
Jj=0 Ki—-1
_ ez}.:‘O ln(1+a(tj,t]-+1)FF(tj,fj+1)) -1
Ki—l
— eZj=o a(tjtjv)d(tjtjea) _ 1. (2.9)

In the equation (2.9) the term X7 " a(t;, t741)8(t;, tj41) is equal to the

Riemann sum of function & with partition P = {[t,, t,], [t1, t2], ... [tk,—1, tk,] } - SO,

Ki—-1 T
Z (X(tj,tj+1)6(tj,tj+1) = 6(5)(15
j=0

Ti—1

14



And, the no arbitrage principle, price of an instrument must be equal to its
expected cash flows. Then, the present value of a payer OIS contract (pays fixed rate,

receives floating rate) becomes:

N

PV (t) T
Z T(Ti—li Ti)]Et _e_ ft ls(s)dsFFCOmp(Ti_l, Tl) - k]

Ki—1

i=1
= _ 1
T;
ZT(Ti—l'Ti)[Et e~ Je '8(ads 1_[(
2j “( +1)

i=1

+ (X(tj, tj+1)FF(tJ, tj+1)) -1

N

_(Ti 1 fTi 8(s)ds
7(Ti_y, T)E [e Jet8ads (— (e Ti — 1) —k)]
Z (1 1 1) t T(Ti—pTi)

i=1

N
i ; Ty i

e~ Il 16(s)as (efTi—l(s(s)dS - 1)] —k E T(Ti—1, T Eq [e"ftT S(S)ds]
- i=1

11
i
X

N

[ Ti_ Tj z : Tj

_e_ft 18(s)ds _ eft 6(5)(15] —k T(Ti—l' Ti)IEt [e—ft 5(s)ds]
i=1

1
1=
£

N N
Y P = PET) —k Y o(Ti, TIP(T)
i=1 i=1

= P(t,Ty) — P(t, Ty) — k Z (T, THP(LT,). (2.10)

i=1

Accordingly, if we suppose that the fixed rate k is a mid-market quote, then, by no-
arbitrage arguments what we get is that the present value of the OIS is equal to zero.
Therefore, when

(2.10) is equal to zero it yields,
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P(t,To) — kX0 o(Ti_, TOP (L, T)
1 + kT(TN—l’ TN) ) (2' 11)

P(t,Ty) =

This equation represents the bootstrapping equation associated to the N-coupons
OIS contract. Here we recall that we have N + 1 variables
P(t,Ty), P(t, Ty), ..., P(t, Ty) and only one equation. Hence, one needs to obtain more
OIS contracts to obtain more bootstrapping equations and a method to figure out this
system of equations.

In the USD OIS market, cashflows of the swaps with maturities no longer than
a year normally consist of one payment at maturity, while swaps with a maturity over a
year normally consist of yearly payments. In the scope of this study, contracts of
maturity up to one year is used to construct the yield curve. So following the trimmed

version of (2.11) will be sufficient, in our study, Namely, we will use

P(t,Ty) = P(t, To) (2.12)
X T 1+ kxt(To, Tx) ’ .
where
P(t,Ty) = P(t,t+2)= P(t,t+1)P(t+1,t+2)
_ 1 1
141t t+ 10N 1+1(t+1,t+2)TN’ (2.13)

Given that spot lag for USD OIS contracts is two business days and, ON
represents overnight effective fed funds rate, TN represents effective fed funds rate of
term for tomorrow to the next day period. In Table 2.1 we present the market data used
in the estimation of the USD discount curve. ACT/360 in Table 2.1 is a day count

convention by formula,
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Number of Calendar Days(ty,t;)
360 '

Day Count Factorycr/zeo(ts, ta) =

17



09€/10V  '104 ‘PO AT 09¢/10V  '104 ‘pON AT v16'T AT Pz  SIO TOSSN AT
09¢/LOV 104 'pPOIN AT 09¢/ LoV 104 'POIN WTT €€96'T WTIT pc SIO MOSSN INTT
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN woT T¥c6'T  WOT 74 SIO fOSsSN INOT
09€/LOV 'Iod 'POIN AT 09€/10V ‘104 "POIN w6 ¢v68'T w6 74 SIO 10SSN N6
09¢/10V ‘|04 ‘PO A1 09¢/10V  '[od "PoIN wg 69987 wg pe SI0 HOSSN NS
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN w/ P$EE8T w/ 74 SIO 90SSN NL
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN w9 G208'T w9 74 SIO 40SSN N9
09¢/LOV 104 'POIN AT 09¢/ L0V 104 'POIN ws $8..°T wg pc SIO 30SSN ING
09¢/LOV 'Iod 'pPOIN AT 09¢/ LoV 104 'POIN wy  v.T w pc SIO aossn 414
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN Wwg 86971 we 974 SIO 20SSN INE
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN weg TT189T we 74 SIO a0ssn INC
09€/1LOV  'Iod 'pPOIN AT 09¢/ L0V 104 'POIN wl €97 wTt pc SIO YOSSN INT
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN Mg €97 Mg 74 SIO Z€0SsSN ME
09€/LOV 104 'POIN AT 09€/10V ‘104 "POIN Mg /09T MZ 74 SIO Z20SSN M¢Z
09€/1LOV  'Iod 'pPOIN At 09¢/ L0V 104 "‘POIN MT  $189'T MT pc SIO Z10SSN MT
- - - 09g/L0V  Bumojjoo - Tt pT PT  ysed 707134 NL

- - - 09g/L0V  Bumojjo4 - Tt pT PO ysed T071Aa34 NO

a|ny AeQ wno) Aeg 9Ny AeQ
wnod Aeq ssaulsng poliad ssauisng ssauisng poliod Aep  Aep JENRINE
ssauisng Bo E Bo Bo fa aley u e adA L BA50WLOO Jous |
Ba] paxi4 1 paxi4 L 1 Buneo|4 pu3 S q 19
. paxi4 . Buneo| Buneol4 j

'8T02/80/02 WoJy saotid Ae@ Jo pu3 ate sajond "aAINd WN0ISIP ASN
JO UOITRIQI[ED Ul PaJiadlal a]qe] SUONIPUO pue SWId) Blep 1exJew Biaquoolg "ereq Blaquioolg aAInD unodsid ASN :T°Z 8lgel

18




2.2.2  USD Forward Index LIBOR 3m Curve

In the previous section, we define the methodology followed for the construction
of the USD discounting curve. Here if we recall the significance of this curve. This curve
is used to discount every cash flow nominated in USD currency. In this section, we
present the methodology for building index forward curves. We present a methodology
of how to estimate the forward curve for LIBOR 3m. For the calibration of the forward
index LIBOR 3m curve, we take the plain vanilla IRS as a benchmark. The maturities
and swap rates that we will use for the forward curve calibration represented within the
tables in the following section.

Let PV (t) represents the present value (at time t) of a payer IRS denominated in

USD based on LIBOR 3m with maturity of y years, then we write

PV (t) =
Qy SJ/
ti
Z a(ti_q, t;) E;(LIBOR3M(¢;_q, t;))P(t, t;)—k, Z B(si—1,s)) P(ts;), (2.14)
i=1 j=1
where

k,: fixed rate of the plain vanilla interest rate swap with maturity in y years
Qy: number of quarters in 'y years

y: number of semesters iny years

t;: coupon periods (start date, end date) for the leg indexed to LIBOR 3m

s;: coupon periods (start date, end date) for the fixed leg
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a(t;_1,t;): accrual factor of the ith coupon of the floating leg (ACT/360)
B(sj-1,5;): accrual factor of the jth coupon of the fixed leg (30/360)
P(t,s;): discount factors in USD

E;(LIBOR3M(t;_y, t;)): the LIBOR 3m forward rate of the ith coupon.

The above characteristics present the plain vanilla IRS in the USD market. It
swaps LIBOR 3m payable quarterly versus a semiannual fixed-rate coupon with a day
count of 30/360 that is used primarily in government bonds. It is referred to as the plain
vanilla since it is the most standard and liquid swap in the market.

Now, let us rewrite IEi"(LIBORBM(ti_l, tl-)) from equation (2.15) in terms of

a discount curve

, 1 P3™M(t, t;—q)
E; (LIBOR3M(t;_y, t;)) = e ti)( Eac ltl; - 1>, (2.16)

where T(t;_4, t;) = T; represents the day count convention to determine the year fraction
for the discounting and curve building.

Combining (2.16) and (2.17) and solving for discount factor obtained

calibrated to USD LIBOR 3m, P3™ (t, to) yields

20



p3m (t, to) =

p3m (t, to_l)
s Qy-1a; (P3™(t, t;_1)
TQy (ky Z]il :Bj P(t, S]) - 2,_:1 T_Z(Wt,ltl; - 1) P(t’ tl)
1+

aQyP (t, to)

(2.18)

This equation supports us in finding the discount curve based on LIBOR 3m using a
simple bootstrapping and an interpolation method. In Table 2.2, market data mentioned

in the estimation of USD Forward Index LIBOR 3m Curve is represented.
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2.2.3  TRY Discount Curve

Since interest rate derivatives markets is not deep in TRY, funding is performed mostly
using foreign exchange swaps on interbank market of TRY. Accordingly, discount curve
construction market practice is based on liquid foreign exchange instruments. Hence, in
this study we benefit from foreign exchange instruments while calibrating the TRY
discount curve.

For terms smaller than 1-year, foreign exchange swap quotes are fitted to
discount curves. As Kazdal and Kiigiiksarag states in [14], foreign exchange swaps and
outright forwards are similar in nature and, moves together. In this study, assuming their
finding, we take forward implied rates for calibration of TRY discount curve. Otherwise,
may need to translate cross-currency-swap rates into zero coupon rates by bootstrapping.

For a 1-year term and further, cross-currency swaps are more liquidly traded
rather than foreign exchange swaps in case of currency TRY. Therefore, we use 1-year
cross-currency swap quotes of TRY fixed payer- USD LIBOR 3m receiver, for the long
end of the curve.

OIS instruments denominated in TRY could not be used for the construction of
the curve since there are no liquid quotes. Nevertheless, we can still utilize information
from OIS instruments in USD. TRY discounting curve constructed in the following
sections is linked to OIS discounting, as per foreign exchange instruments whose USD

denominated cash flows are discounted with OIS discounting
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2.2.3.1  Short Terms of TRY Discount Curve
In this section, we form the short end of the TRY discounting curve. As stated in
previous section, we take forward implied rates for tenors shorter than 1-year. Present

value of a forward contract is

PV(t) = ]Eii(USD)PTRY(t: t)) — kPrry(t,t;), (2.19)

where t; is the maturity date of outright forward contract and, Pzy (t, t;) is the discount
factor for TRY nominated instruments and k is the mid-market quote for outright
contract.

By interest rate parity, there is a strong relationship between forward rates and
interest rates that is given by

P(t,t;) (2.20)

Ef(USD) = §, —— |
t ( ) ‘ Prgy(t, t;)

where P(t,t;) is discount factor for USD nominated instruments and S; is todays spot
exchange rate to buy USD for TRY. Thus, P(t, t;) acquired from OIS calibration links
our TRY discount curve to OIS discounting framework. Substituting equation (2.20)
into (2.19),
PV(t) = S, P(t,t;) — kPrry(t, t;) . (2.21)

Now, if we assume that the fixed rate k is a mid-market quote then, again, by the no-
arbitrage arguments we have the result that the present value of the outright forward
amounts to zero. Therefore,

SiP(t, t;) (2.22)

Prry(t, t;) = .

24



However, we still should interpret (2.22) as our market data, namely in terms of swap

points and spot rate at spot date we have

F(t, TOD
(Sto + g0,000 )>P(t, t;)

F(to, t:) ’
(Sto t 10,000)

Prgy(t,t;) = (2.23)

where,

St,+ spotexchange rate to buy USD for TRY at spot date, the next business date.
F(t,TOD): negative swap point to discount spot rate from spot date to today with basis

equal to 10,000
F(to, t;): positive swap point to compound spot rate from spot date to t; with basis

equal to 10,000

t;: Maturity date of outright forward contract
P(t,t;): discount factor in USD (estimated using OIS instruments)

Thus, TRY discount factors are estimated for some specific tenors up to 9
months. We have directly used swap points and a USD discount factors. OIS discounting
framework have been employed by using P(t, t;) which is taken from OIS based yield
curve that we have constructed in section 2.2.1. However, we will need another yield

curve to estimate the last remained tenor in TRY discount curve construction.
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2.2.3.2  1l-year Tenor of TRY Discount Curve
In this section, we have derived a formula for the long end of the TRY discount curve.
Let us refer to index forward rates from the previous section in order to describe how to
estimate the forward curve for LIBOR 3m. For the construction of the long-end of TRY
discounting curve, we use cross-currency swap quotes. In tables, we present the
maturities and swap rates that we will use for the discount curve calibration.

Let PV (t) be the present value of a TRY fixed rate payer- USD LIBOR 3m
receiver cross-currency swap denominated in USD based on LIBOR 3m with a maturity

of y years, hence.

Qy
PV(t) = Za(ti_l,ti) E; (LIBOR3M(t;_y, t;))P(t, t;)

i=1

(2.24)

Sy
— ky Z B(sj-1,5;) Prey(t.s7)
j=1

where
ky,: TRY fixed rate of the cross currency swap with maturity in y years
Qy: number of quarters iny years

v+ er of semesters in y years
t;: coupon periods (start date, end date) for the leg indexed to LIBOR 3m
s;: coupon periods (start date, end date) for the fixed leg

a(t;_4,t;): accrual factor of the ith coupon of the floating leg (ACT/360)

B(sj-1,5;) accrual factor of the jth coupon of the fixed leg (ACT/360)
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P(t, sj): discount factors in USD (estimated using OIS instruments)

E;(LIBOR3M(t;_y, t;)): the USD LIBOR 3m forward rate of the ith coupon.
This cross-currency swap with the above characteristics is the most liquid swap
in the market. It exchanges USD LIBOR 3m payable quarterly versus an annual TRY
fixed rate coupon with a day count of ACT/360. Namely, have taken the number of days

in subjected period and divide it by 360.

Substituting (2.16) into and solving for P3™ (t, to) yields,

3m (2.25)
Qy (P°™(t,t;_ Sy—1
( ) Zli/l( P3ng(t ltl;) - 1) P(ty tl) - ky 213;1 ﬁj PTRY(tI S])
P t,s = ! _
TRY Sy kyﬁ_gy
For our long-end case, when S,, = 1 and @, = 4 we obtain
P3™M(t, t;_q) (2.26)
4 rYi—1) )
i=1 ( P3m(t t,) 1) P(t,t)

Prry (t» Ssy) = kybs, ,

where P3™(t,t;) is the discount factor obtained from USD LIBOR 3m forward index
curve. This equation together with (2.23) allows us to find TRY discount curve based
on FX swaps and CIRS using a simple bootstrapping and an interpolation method.

In a few words, in this section, we have aimed to construct zero coupon curves
to benefit in the option pricing procedure. Risk-neutral valuation requires risk-free
estimates of discount factor, so we applied for the instruments that are accepted to

converge the risk-free proxy. However, those instruments are quoted for some specific
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time period which may not starts from today. We cannot directly use quotes unless their
“Type” column in Table 2.2 and Table 2.3 are not equal to “Cash”. We have benefited
cash instruments for discounting the later instruments (which have start day greater than
0) to today which have start day greater than 0. By this way we have achieved the zero-
coupon rates for each “End day” in these tables. Besides, in these tables, non-empty cells
of in column “Floating Leg Period” implies that the instrument has a floating leg.
Namely, we should consult to another yield curve to obtain estimated fixed values of
that period. In this manner we have built USD LIBOR 3m Curve and also studied section

“1-year Tenor of TRY Discount Curve” as byproducts.
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In Figure 2.2 we present estimated yield curves (TRY Discount Curve, USD
Discount Curve, LIBOR 3m Forward Curve) for date 20/08/2018. We have observed
that LIBOR 3m Index Curve is higher than OIS based yield curve at all tenors. This
means that there is a non-negative spread between the LIBOR 3m Forward Curve and

USD Discount Curve.
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Figure 2.2: Yield Curves Estimated at Date 20/08/2018.
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CHAPTER 3

MODELS

3.1  Black Scholes Model

In 1973 Black and Scholes derived the price of European call and put options. In
1983 Garman et al implemented Black-Scholes approach to foreign exchange options,
see details in [6].

Here if we let S; to be the spot rate, i.e., the amount of money in the domestic
currency required to buy one unit of foreign currency. Assumption accepted for the
model is that the spot exchange rate adopts a geometric Brownian motion, and further,
not an only domestic risk-free asset (B,) but also a foreign risk-free asset (By) with

constant interest rates are considered:

dBd = T‘ddet (3 2)

where W is a Wiener process under market probability measure P.
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Bjork et al. derived a formula for dS; in terms of a wiener process of a risk-neutral

measure, (see [3] for details):

5, = §,e(raTr9%)eroWe (3.4)

3.1.1  Option Pricing Formula

In foreign exchange markets, most of the options are subject to physical settlement (i.e.,
taking long position in USDTRY vanilla call indicates being entitled to receive USD
notional amount N at maturity and pay (N X K)TRY, where K is the strike price). The

price of such instrument is calculated with the Black—Scholes formula,

H(S.,K,0,¢) = ¢[Sie™ /" Mpd,) — e ""KMepd_)] (3.5)
= ¢e " [f(t, T)Med,) — KM¢pd_)], (3.6)

FAD 152,
where f(t,T) denones forward rate, d, = "U—\/_; , ¢ denotes call options if it

equals to +1 and denotes put options if it equals to —1, K is the option’s strike price, o
denotes implied volatility (by the Black-Scholes model) and N(x) is the cumulative
distribution function of the standard normal distribution. (See details in Wystup et al.

[19])

3.1.2  Adjusted Black-Scholes Option Pricing
Despite the advanced models proposed in the literature, the Black-Scholes model

commonly accepted by market practitioners. The practitioners build a volatility surface
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to use it as o in the Black-Scholes model. Namely, the market practitioners do not use a
constant coefficient o in the Black-Scholes model.

The market practitioners construct the volatility surface by linear interpolation
of the market quotation of implied volatilities. Therefore, they are violating the
assumption constant volatility of the Black-Sholes model and they are exposed to any
losses from being arbitraged.

We will use the formula below to find the interpolated market implied

volatilities.

o K, t; -0 K, t,_
5(1{, Ti) — O-market(Kf Ti—l) + (Ti _ Ti—1) market( ;+1) — Tmarket( i 1) . (3. 7)
i+1 i-1

3.2  Heston Model

In option pricing theory, Black Scholes in [4] bring a formula that option prices are
associated with the distribution of underlying. While the option pricing formula of Black
and Scholes was outstanding by describing the distribution of underlying prices and
option price dynamic. Moreover, Black and Scholes did not consider the smile effect is
not considered in the model assumptions. Namely, options with varying exercise prices
and time-to-maturities does not necessarily produce different implied volatilities, due to
the constant volatility assumption. In case the market prices of options are reversed with
the Black-Scholes formula to get volatility, with given exercise price, time-to-maturity,
discount rate, and underlying price, it is entitled Black Sholes implied-volatility. This

case is inconsistent with the assumption that the underlying price process involves
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constant volatility because it has been noticed that options with the same underlying but
with different exercise prices and time-to-maturities indeed comprise varying
volatilities. A simple solution for this issue is to govern varying models per different
strike prices and time-to-maturities, in order that these models would produce varying
volatilities over strike-axis and time-to-maturity axis. Nevertheless, employing varying
models could lead to divergence on the handling of option portfolios that consists of
different strike prices and time-to-maturities.

Eventually, the literature focused on to mitigate the constant volatility
assumption. The recent improvement of the literature has brought forth models with
local volatility. Merton et al. in [17] proposed that building the volatility related to time-
to-maturity. While this proposal describes the varying implied volatilities over time, it
could not adequately analyze the volatility smile over different strikes. Dupire et al. in
[8], and Rubinstein et al. in [20] suggest designing the volatility as a variable with
respect to time, and also to state variables. Their perspective was adequate to produce
the volatility smile, yet it falls to produce continuous smile behavior, which does not
dissolve across time-period.

Local volatility models led the approach of designing the volatility as a stochastic
process with their deficiency. The following development is the study of Scott [21], Hull
and White [11], and Wiggins [22]. Their design of stochastic volatility is more advanced
than the Local Volatility Model. However, stochastic volatility models' disadvantages
are the deficiency of having analytic solutions for European options and significant
dependency of numerical techniques.
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The stochastic volatility model Heston [10] is distinct from the others. Firstly,
the Heston model involves a stochastic variance process, which is mean-reverting and
non-negative, in line with the market. The second reason is that the Heston model
involves a semi-closed formula for the solution European options, whose
implementation is simple. Yet another advantage is prominent in model calibration to
the market data. Thus, these capabilities led Heston's model to be well-known, and many
professionals benefit from this model in many applications, such as treasury software

implementation.

3.2.1 Definition

Heston in [10], introduced the following model:

ds, = pS.dt+ V.S, dW}

dv, = k(0 —Vdt + 0\[V,S,dW? (3.8)
dwrdw? = pdt,

where S, and V; denote the spot price and variance processes, respectively. W and W2
are Brownian motions with the correlation coefficient p. Here, u is the expected rate of
return of the underlying asset. 8 is the long-term mean of the variance process, k is the
speed of the mean reversion of the variance process; and ¢ stands for the volatility of
the variance process.

In case of p > 0, the price process becomes more volatile as the underlying price

or returns increase. Oppositely, in case of p <0, the price process becomes more volatile

as the underlying price or returns decrease. The correlation coefficient p, then, influence
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the skewness of the distribution. If o equals to 0, then the second Brownian motion will
be removed so that the volatility becomes deterministic. Hence, the log-returns are
distributed normally. Bigger o lead the skew/smile evident. Namely, volatility becomes
volatile further. On the other hand, x, the mean reversion parameter x could be explained
as describing the degree of volatility clustering. This behavior is in line with the market;

large price variations expected to result in significant price variations.

3.2.2  Option Pricing Formula

Risk neutral valuation considers contingent claim pricing under equivalent martingale
measure. The price is calculated as the expected discounted payoff of the contingent
claim, in the equivalent martingale measure Q [5]. Hence,

H(x,0,0,p, 414,77,V S, K, T, ¢) = E? [erT=OH(T)], (3.9
where H(T) denotes the payoff of the option at time T and r denotes the risk-free rate
across [t, T]. Shifting from a physical measure to equivalent martingale measure is
obtained by Girsavov’s theorem. Especially

AW = dWi +v,dt

AW? dW? + A(S,V,t)dt

1 t
A exp{——j v2 +A(S,V,s)ds—j
dP 2 ), 0

t

v dWl —f

t
AGS,V, t)thz} (3.10)
0

Ut—\/vt'
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where P denotes the physical measure and W2 and W2 are Q-Brownian motions. 1 =

A(t, v, S) referred as the volatility risk premium. In measure Q, (3.8) is
ds, = rSidt+ V.S, dW}
th = K*(e* - Vt)dt + O'\/Vtstthz (3 11)

awrdw? = pdt,

where,
K =k+ 21
_ K6 (3.12)
0" K+

We will assume A=0. In a complete market, every asset/option corresponds to
the same market price of risk. Yet volatility lacks direct information about itself since it
is not a traded asset. Hence this yields incomplete market and, A(t, v, S) is not a constant.
It is apparent that (3.10) solely impose the equivalent martingale measure. This yields
the equivalent martingale measure to be not unique and be dependent on the value of
A(t,v,S). Various equivalent martingale measures will generate various option prices,
depending on the choice of A(¢t, v, S). At first, this could point out an issue. However,
the issue is defeated because of the parametric nature of the model and the existence of
a closed-form solution.

Therefore, our risk neural-measure and physical measure is the same. With this
assumption, we will refer derivation of the closed form solution in following paragraphs.

Suppose a contingent claim, whose value is G (¢, v, S) attime t, paying G(T, v, S)
at time T. Because Heston model employs two Brownian motions, the self-financing
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portfolio must involve the probabilities of the money market, spot market and a
derivative instrument whose value is V(t, v, S) . The differential of the wealth process
X is given by:

dX =AdS +TdV +ry(X — TV — AS)dt + reASdt, (3.13)
where A denotes the amount of underlying held and I' denotes the amount of derivative
instruments V, at time t. Our goal is establishing a portfolio whose initial value is X,
and solving for Aand I" to have X, = G(¢t,v,S) forallt = [0, T]. The popular technique
is examining the differential of X and G. A few calculations lead the partial differential

equation which G must solve, in order to avoid the arbitrage:

1 6, 9% 1, 626+( )SaG
272 952 TP 5500 T 2% Vapz T\aT 1) 5
(3.14)
+ {Kk(0 —v) — A(t S}aG+aG G=0
K v (t,v,S) FIL T ;G =0.

Here we recall that A(t, v, S) represents the volatility risk premium and different
levels of A(t,v,S) would result in different risk-neutral measure and yields an
incomplete market. Nevertheless, this is in the nature of Heston model, because the
model has one more independent equation, Brownian motion for the variance process,
in contrast to simpler models. For solving the partial differential equation above, the

appropriate boundary conditions must be governed. The conditions for European options

are given by
G(T,v,S) = max{¢p(S —K),0} (3.15)
G(t,v,0) = % — (3.16)
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a_g tvo0) = TP orp (3.17)

2
B G G (3.18)
raG(t,0,8) = (rg —Tf)SaS(tOS)-i-KH (tOS)+—(tOS)
RO SR ey ¢

where K denotes the exercise price, ¢ specifies call options if ¢ = 1 and put options if
¢ = —1,and t = T — t stands for the time-to-maturity. Heston proposed the solution of
the partial differential equation for European type currency option price as follows, see
also [13]:

H(x,0,0,p, 4,714,177,V S, K, T, ¢) = ¢p{Se”"I*P,(¢p) — Ke T¢"P_(¢)}, (3.20)

where u;, =+ ,by = k + A—ap, b =k + 4, and,

d = \/(po‘(pi — bj)? — 02 Qujpi — ¢? (3.21)
_ by —pogi +d,

9 = bj — pogi — d; (3.22)
Cji(T, (p) = (Td — rf)gol’[ (3 23)

k0 . 1- gt

+ ﬁ{(bj — pogi + d;)t — 2log <1——g]

b; —popi+d; [ 1— e’
Di(r,p) = = 1— 7047 (3.24)
gj€ .

fi(6veT,0) = exp{Cj(T, @) + Di(r,p)v, + i(px} (3.25)

1 1 r “pyf](x Y, T, Q)
Pj(x,vt,T,y) = E‘i‘;f { d(p (326)
0
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The functions P; denote the cumulative distribution functions (of variable y = log K) of

the logarithm of the spot price after time ¢ = T — t starting at x = log S, for some trend

W. Thus:
1 —
&@)=—3£+¢&mWJJ) (3.27)
1 —
P—(d)) = T¢+¢P2(vat"['y)' (328)

3.2.3  Computational issues

The solution that Heston suggests is semi-analytical. P,(¢) and P_(¢) defined by
(3.27) and (3.28) involve integrand functions f;, that generally have oscillating
characteristics, in [13]. have recommended performing an elementary transformation
during the calculation of the characteristic function. They have also demonstrated that
the stability of the derived formulas is provided on a full-dimensional and unlimited
parameter range. Meaning that the solution uses the following instead of g;,

1 bj—popi—d;

g =—= , , 3.29
9 g; bj—poei+d; (3.29)
which yields to new formulas for C; and D;; respectively
Ci(t,p) = (rd - rf)(pi‘[ (3.30)
K6 1—ge™4°®
+ ?{(b] - pO'(pl - d])T — 210g <1g_+>}
and, 9
b; —popi—d; [ 1—e %"
Di(r, @) = - g ~—).
a? 1-ge a;T (3.31)
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These are to be used in (3.25). Here we emphasize the minor differences in
(3.22) and (3.29), (3.31), (3.24) and (3.31), respectively. The only difference per pair

is flipped plus or minus signs in front of the d;’s. The inconvenience due to referring

(3.22)-(3.24) is negligible. Actually, in case of short or middle term maturities are taken
into consideration on valuation and back-testing, the problem might not be captured at
all. Nonetheless, if longer maturities are considered (basically, 3-5 years or longer),
results diverse drastically and, absolute threshold depends on parameters, for a detailed

explanation, we refer to Albrecher et al. and Janek et al. [1], [13].

3.2.4  Feller Condition

The Cox-Ingersoll-Ross process for the variance, formulated by (3.8), is strictly
positive. Such feature is remarkable, and yields results in line with the market.
Nevertheless, optimally we require a strictly positive variance process, alternatively the
underlying process converge to a deterministic function when variance process falls near

to zero. To ensure the variance to be strictly positive, we would set condition that

4K6
Q= LZ 2, (3.32)
0-2

which is often called as the Feller condition.

Unfortunately, during estimation of the Heston model with market option prices,
parameters that violate the Feller condition (3.32) are not rare. This is not an exhaustive
trouble, since it is only infinitesimally small amount of time for the variance process to

strike zero, yet it would be concerning that very low levels of volatility (e.g. say below
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1%) are repeatedly reached for short amounts of time and that is not something observed
in the market. In addition to it is crucial for modeling approach, the Feller condition is a
subject in computational efficiency. During Monte Carlo simulations Feller condition
should also be considered in order that the simulation paths is strictly positive in case
(3.32) is not met. Considering the option PDE, the Feller condition decides either the
boundary of zero-variance is in- or out-flowing, namely, either the convection vector at
the boundary points in- or outwards.

By writing the log-spot transformed Heston PDE in convection-diffusion form,

we have

0
aU = div(A grad U) — div(Ub) + f . (3.33)
Thus, we obtain

1 %p0'+r'f—rd
b(x,v) =v| 2 + 1 , (3.34)
K+ A 7O-Z_KG

which is out-flowing at v = 0, boundary if
1
502—K0<0. (3.35)

This is the Feller condition (3.32) is again.
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CHAPTER 4

DATA and CALIBRATION

4.1 Data

411  Description

Data we use in this thesis has taken the vanilla option data from Bloomberg, which
involves bids on at-the-money, risk-reversals, and butterflies for USDTRY. Our data
consists of liquid instruments whose delta either 0.10 or 0.25. So, our options data
consist of quotes ATM, 25RR, 10RR, 25BF, and 10BF. Then we would like to resolve
which implied volatilities would be mapped to call or put options. Substituting (2.5)

with (2.6) can obtain a general formula for delta-call and delta-put:

OAcall = Oppr T EO-ARR + Oarm (4.1)

1 (4.2)
Oaput = OABF — 75 OARR + Oarm -

By this the delta basis put-call parity, we are now able to form five different on deltas

for point in volatility surface. For instance, we can obtain ;g acqu and o1papy: from
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(4.1) and (4.2) by using 10BF,10RR and ATM. We should find the corresponding stike
price for instance for o acqi- Since our calibration method requires market implied
volatilities in terms of strike prices and time-to-maturity, we benefit equation (2.3) to
translate the deltas and volatilities to find the strike prices.

The market data contain daily quotes from 11 March 2013 to 20 August 2018.
For each day in that period, ATM, 25RR, 10RR, 25BF and 10BF quotes are taken for
terms 1-month, 2-month, 3-month, 6-month, 9-month and 12-month. For the sake of
simplicity only mid-volatilities (i.e. the average of the bid and the ask implied
volatilities) have been subjected in calibration phase. It is the market practice to take
mid-volatilities; yet it seems interesting, because volatility and price have no linear
relation.

Interest rates have been obtained as described in previously for tenors of implied
volatility data requires. Bloomberg tickers listed in Table 4.1

Spot Lag refers to number of dates between the valuation date an settlement date

of option quotes.

Table 4.1 Implied Volatility Sample Data. Bloomberg market data terms and conditions
table referred in calibration and performance measuring for the Black-Scholes and the
Heston model. Quotes are End of Day prices from 20/08/2018

Bloomberg Spot Business  Business
Tenor Ticker Type  Delta Lag Rate Day Rule Day Count
IM  USDTRYVIM ,\A/Itotr?:y 50 1d 457175 Mod.Fol. ACT/360
IM  USDTRY25RIM RIS 1d 1746  Mod. Fol. ACT/360
Reversal
Risk
M USDTRY10R1M Reversal 1d 9.6575 Mod. Fol. ACT/360
1M USDTRY25B1M Butterfly 25 1d 1.495 Mod. Fol. ACT/360
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Bloomberg Spot Business  Business

Tenor Ticker Type  Delta Lag Rate Day Rule Day Count

1M USDTRYI10BIM Butterfly 10  1d  4.0475 Mod. Fol. ACT/360

oM USDTRYV2M Qtot::y 50 1d 402275 Mod.Fol. ACT/360
Risk

2M  USDTRY25R2M K 25 1d 180375 Mod.Fol. ACT/360
Risk

2M  USDTRYI0RZM RK 10 1d  9.8475 Mod. Fol. ACT/360

oM USDTRY25B2M Butterfly 25  1d 15875 Mod. Fol. ACT/360

2M USDTRY10B2M Butterfly 10 1d 412 Mod. Fol. ACT/360

3M  USDTRYV3M ,\A/Itot;‘:y 50 1d  37.085 Mod.Fol. ACT/360
Risk

3M  USDTRY25R3M K 25  1d 181175 Mod.Fol. ACT/360
Risk

3M  USDTRYI0R3M ¢ 10  1d 938 Mod. Fol. ACT/360

3M  USDTRY25B3M Butterfly 25  1d  1.665  Mod. Fol. ACT/360

3M  USDTRY10B3M Butterfly 10  1d 42725 Mod. Fol. ACT/360

6M  USDTRYV6M nAAtot::y 50 1d  32.8175 Mod.Fol. ACT/360
Risk

6M  USDTRY25R6M ok 25 1d 18135 Mod. Fol. ACT/360
Risk

6M  USDTRYLOR6M nbk 10  1d 98475 Mod.Fol. ACT/361

6M  USDTRY25B6M Butterfly 25  1d  1.8725 Mod. Fol. ACT/362

6M  USDTRY10B6M Butterfly 10  1d 4555  Mod. Fol. ACT/363

9M  USDTRYVOM I\Aﬂtot::y 50 1d 3075  Mod.Fol. ACT/364
Risk

9M  USDTRY25ROM [k 25 1d 1852  Mod.Fol. ACT/365
Risk

9M  USDTRYIOROM R~ 10  1d 99225 Mod.Fol. ACT/366

O9M  USDTRY25BOM Butterfly 25  1d  1.9725 Mod. Fol. ACT/367

O9M  USDTRY10BOM Butterfly 10  1d  4.835  Mod. Fol. ACT/368

1Y  USDTRYVLY At™e 55 14 2083  Mod.Fol. ACT/369
Money
Risk

1Y  USDTRY25RLY ROk 25  1d 1894  Mod.Fol. ACT/370
Risk

1Y  USDTRYLORLY ~O¢ 10  1d 100525 Mod.Fol. ACT/371

1Y  USDTRY25BLY Butterfly 25  1d  2.0525 Mod. Fol. ACT/372

1Y USDTRY10B1Y Butterfly 10 1d 4.935 Mod. Fol. ACT/373
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4.1.2  Analysis

This section examines spot exchange rate USDTRY historical data, from period between
11 March 2013 and 20 August 2018. In Figure 4.1 and Figure 4.2, spot rate and daily
log returns for the period are depicted respectively. We have observed that the daily log
returns are higher, in absolute terms, in the recent currency crisis (The diplomatic tension
between Turkey and the United States due to the detention of the pastor, Andrew
Brunson), indicating a volatile market.

In Figure 4.3 a histogram of distribution of the daily log returns is presented.
Red-colored curve denotes a normal probability density fitted to the daily log returns.
We have also presented normal probability plot of daily log returns in Figure 4.4.

In Figure 4.3, we have observed that the occurrences is more intense in the
center, and the tails are fatter than implied by the normal distribution assumption. He
we emphasize the fat tails on normal probability plot of daily log returns in Figure 4.4.
This, and because volatility evolves overtime implies the opposite of the crucial

assumptions in the Black-Scholes model.
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Figure 4.1: USDTRY Spot Rates Over Time Period 2013 — 2018
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Figure 4.2: USDTRY Daily Log Returns Over Time Period 2013 — 2018
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Figure 4.3: Histogram of USDTRY Daily Log Returns 2013-2018
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Figure 4.4: Probability Plot of Fitted USDTRY Daily Log Returns 2013-2018

4.2  Calibration

Here by referring calibration, we aim, searching for parameter values in order to find
prices implied by the model that do not differ much from market prices. We have run
calibration on daily data for each day with the least square scheme. We have used option
data for tenors 1M, 3M, 6M, and 12M in the calibration procedure. We have left data
with tenors 2M and 9M for out sample tests.

Mathematically expressing, for a given model and corresponding market data,

N
A 1 2
6 = argmin Z o (H{narket(ri,l{i) — H{”Odel(‘ri,Ki)) , (4.3)

i=1 "

where N is the number of options I1™* k€t denotes corresponding market data and,

medel js model implied volatility. In this study we consider five option quotes and four
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different time-to-maturities which led N = 20. We have used unit weights and liquidity
weight by setting w; =1 and, w; = 04e; — Opiq;- Weighting schemes have not
affected the computation time significantly.

Unit weights aim to converge absolute squared volatilities difference to zero.
Intuitively, it is clear that unit weights puts more effort into correcting the options with
high implied volatilities.

We have also applied a relative weighting scheme that we call “liquidity
weights”. We have aimed to give attention to valuable information provided by liquid
quotes. The liquidity weights puts more effort into correcting the options that have
narrow bid-ask spread.

We have carried the calibration process is for all 1372 days, and per day a set of
parameters is found for both weighting schemes; the unit weights and the relative
weights. On average, daily calibration of the unit-weights for the Heston model have
taken 20 seconds whereas, liquidity-weights have taken 40 seconds on average for

Heston Model on 1.6 GHz Intel Core i5 computer.

4.2.1  Pricing with Heston Dynamics
The calibration process becomes complex for stochastic volatility models because the
calculation of a set of parameters is required, and the computational effort is much

higher. The prices are computed using partial differential equation, (3.20) recalled

H(k,0,0,p, 474,77, 0, St K, T, ¢) = p{Se /TP, (¢p) — Ke TP ()},
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with numerical integration in MATLAB. We have employed the the built-in MATLAB
function “quadgk” for numerical integration. Function “quadgk” applies adaptive
quadrature using 15th and 7th order formulas for Gauss-Kronrod pair (see details in
[16]).

In order to take Feller condition into account on calibration, we embed a
nonlinear constraint for MATLAB ”fmincon” by limiting the linear function
transformed from (3.32):
where ¢ is taken to be 0.00000001. Constraints for parameters are assumed by
considering market practice and literature

a(o,k,0) =0 —2k0 < ¢, (4.4)

where ¢ is taken to be 0.00000001.
Constraints for parameters are assumed by considering market practice and literature ,
see in [23],

0<Kk<?20,

0<6<1,

0<o<5,

-1<p<1,

0<vyy,<l1.

For initial guess of the start day of the calibration (11 March 2013), the initial
guess for the parameters by [9] is chosen:

k = 15,60 =0.05, 0 = 0.66, p = 0.05, vy = 0.40.
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For following days, the previous day's optimal values are set as parameters’ initial

values.

4.2.2  Parameter Statistics
In previous sections, we have described calibration characteristics. We have run the
calibration for 1372 days in period from 11 March 2013 to 20 August 2018. We have
obtained 1372 number of calibrated parameter sets 8,,,,;; and 1372 number of calibrated
parameter sets 8,.;4¢ive TOr the unit weights and the relative weights respectively, Both
Oynic and B,.014:ive have been calibrated to market implied volatilities o,,,4,xe¢ (A, ) With
(t,A) pairs such that t = 1M, 3M, 6M, and 12M; and A = 10, 25,50, 75 and 90.

In and , we have presented summary statistics of calibrated parameters for the
Heston model. Note that the standard deviation of x is high for the Heston Model with
unit weights . We have expected to see this outcome because, as seen in Figure 4.2,

mean reversion varies through time-line.

Table 4.2: Statistics of Calibrated Parameters of Heston Model with Unit Weights.

éunit K 0 o p Vo

Mean 48093  0.0223  0.4425 0.5988  0.0191
Standard Deviation 1.6675  0.0237  0.1259 0.1006  0.0241
Maximum 12.6445 05379 1.3614 0.9295  0.3529
Minimum 0.0070  0.0059  0.0865  -0.0881  0.0020
Median 46133  0.0203  0.4496 0.5837  0.0143
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Table 4.3: Statistics of Calibrated Parameters of Heston Model with Relative Weights

érelative Kk 0 o P Do

Mean 3.1881 0.0256  0.4007 0.6072 0.0157
Standard Deviation 1.2015 0.0021  0.0446 0.0351 0.0073
Maximum 8.24356 0.03224 0.60497 0.69422 0.04356
Minimum 1.90034 0.02215 0.32263  0.50743 0.00582
Median 3.14858 0.02531 0.39635 0.61297 0.01366

4.2.3  Error Measures
In this section error measurements of the empirical research are represented. Error
measurements carried on in sample and out sample outcomes.

In-sample set have been constituted by (t,Tin—sampie;A) pOINts such that
Tin—sampte = 1M, 3M, 6M,and 12M; and A = 10, 25,50, 75 and; t is any business date
in between 11 March 2013 and 20 August 2018. We have benefited the in-sample set
during the calibration.

Out-sample set have been constituted by (t, Tout—sampie, A) POINts such that
Tout-sample = 2M,9M; and A= 10, 25, 50, 75 and 90; t is any business date in between
11 March 2013 and 20 August 2018. We have avoided the out-sample set while
calibrating the parameters.

6 (Tin—sampies B; Oretative)» 6 (Tout—sampies B; Oretative )» 6 (Tin—sampes B Ounit)
and 6 (Tour—sampier A; Ounic ) are implied volatilities that calculated with the parameter

sets produced by the calibration procedures, and, with the Heston’s semi-closed form

solution. The empirical performance was examined in terms of four measures.
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The Interpolated Market Surface have been built to be used it as a benchmark on
out-sample tests. Interpolation have been done to acquire volatility estimates of tenors
2-M and 9-M by formula (4. 5). We have achieved 1372 number of interpolated implied
volatility sets: G(A, Tour—sampte) With (Tour—sampies -

Following tests are, carried to compare the volatility surface generated by Heston
model and, the Interpolated Market Surface. The empirical performance was examined

in terms of four measures.

Mean Absolute Errors (MAE)

N
1
MAE = N Zlnlfnarket _ Hlmodel ) (4_ 6)

=1

Mean Percentage Errors (MPE)

1 N Hmarket _ Hmodel
l l
MPE = RarkeE (4.7)
i=1 t
Mean Absolute Percentage Errors (MAPE)
1 N |Hmarket _ Hmodell
l l
MAPE = N z [ymarket , (4.8)
i=1 t

Root Mean Squared Errors (RMSE)
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N
MAE = % Z(Hgnarket _ l_[?wdel)z ’ (4.9)
i=1

where N is the number of options, II™#"*¢¢ is market implied volatility and, IT"°%¢! js
model implied volatility. In this study we consider five option quotes and four different
time-to-maturities which leads N = 20.

MAPE measure is important since it prevents offsetting by negative and positive
difference. Since implied volatility is small, expressed in decimals, MAPE enables more
reasonable measurements. Following tables presents measurements results.

We have interpolated for 2-M and 9-M volatilities with formula (4.10).
Following tests are, carried to compare the volatility surface generated by Heston model

and, the Interpolated Market Surface.

Table 4.4: In-sample Error Measures of Heston Model with Relative Weights

0(Tin—sampter 1 Oretative) MAE MPE MAPE RMSE
Mean 0.0083 0.0108 0.0573 0.0092
Standard Deviation 0.0056 0.0605 0.0320 0.0060
Maximum 0.0291 0.1615 0.1615 0.0311
Minimum 0.0018 (0.1442) 0.0141 0.0024
Median 0.0066 0.0223 0.0518 0.0075
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Table 4.5: Out-sample Error Measures of Heston Model with Relative Weights

—~

0 (Tout—sampte 8 Orelative) MAE MPE MAPE RMSE
Mean 0.0220 (0.1789) 0.1884 0.0296
Standard Deviation 0.0023 0.0235 0.0222 0.0027
Maximum 0.0612 0.0087 0.1392 0.0734
Minimum 0.0021 -0.0279 0.0136 0.0029
Median 0.0059 -0.0029 0.0452 0.0079

Table 4.6: In-sample Error Measures of Heston Model with Unit Weights
0 (Tin—sampter 1 Ounir) MAE MPE MAPE RMSE
Mean 0.0044 0.0050 0.0179 0.0053
Standard Deviation 0.0017 0.0083 0.0097 0.0020
Maximum 0.0185 0.0436 0.0578 0.0221
Minimum 0.0002 (0.0266) 0.0072 0.0016
Median 0.0043 0.0052 0.0125 0.0053
Table 4.7: Out-sample Error Measures of Heston Model with Unit Weights.
8(Tour—sampier 85 Ouni) MAE MPE MAPE RMSE
Mean 0.0270 (0.2193) 0.2376 0.0359
Standard Deviation 0.0073 0.0494 0.0518 0.0090
Maximum 0.0934 (0.0061) 0.3958 0.1156
Minimum 0.0015 (0.3781) 0.0225 0.0018
Median 0.0257 (0.2113) 0.2305 0.0346
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Table 4.8: Out-sample Error Measures of Interpolated Market Surface

(A, Tour—sampie) MAE MPE MAPE RMSE
Mean 0.0159 0.0398 0.1310 0.0186
Standard Deviation 0.0063 0.0125 0.0484 0.0075
Maximum 0.0356 0.0723 0.3108 0.0422
Minimum 0.0053 -0.0294 0.0479 0.0062
Median 0.0136 0.0389 0.1207 0.0159

4.2.4  Market Arbitrage Score

Following statistics shows the percentage of model implied volatilities that are lie in
between market bid-ask implied volatilities. This measure examines models for
arbitrage opportunity. If a price estimate of a model fails to fall in between bid-ask prices
it will generate arbitrage opportunity for counterparts.

In Figure 4.5 and Figure 4.6 vertical axis shows the percentage of model implied
volatilities that are in between market bid-ask implied volatilities at the same date for
the delta in horizontal axis.

In Figure 4.5 in-sample results of the Heston model with the unit weights and
the relative weights have been presented. The bid-ask range for 25-delta and 75-delta is
not demanding, for both Heston model with the unit weights and the relative weights
can keep their estimates in the market bid-ask region. The Heston model with the unit
weights have been more successful to fit bid-ask range for 90-delta; The Heston model
with the relative weights have been more successful to fit bid-ask range for 10-delta, but

with no significant difference. 50-delta, (at-the-money) is the point that given most
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attention by the market players. Not surprising that at-the-money is the most liquidly
trade quote. The Heston model with the relative weights have been more successful to
fit the bid-ask range for 50-delta but, could not manage to be more than 90%.

In Figure 4.6 out-sample results of the Heston model with the unit weights and
the relative weights and Interpolated-Market-Surface have been presented. Interpolated-
Market-Surface will be used as a benchmark for traders’ tolerance. Again, the bid-ask
range for 25-delta and 75-delta is not demanding, for both Heston model with the unit
weights and the relative weights can keep their estimates in the market bid-ask region
and they are significantly better than the benchmark. The Heston model with the unit
weights have been more successful to fit bid-ask range for 90-delta; The Heston model
with the relative weights have been more successful to fit bid-ask range for 10-delta, but
with no significant difference to the other and to the benchmark as well. 50-delta, (at-
the-money) is the point that given most attention by the market players. The Heston
model with the relative weights have been the most successful to fit the bid-ask range
for 50-delta, the most important point, with a significant difference, even in the out-

sample set.
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Figure 4.5: In-sample Ability to Fall in Bid-Ask Spread
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Figure 4.6: Out-sample Ability to Fall in Bid-Ask Spread
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4.25 Calibration Performance by Term
In this section volatility smiles comparison of The Heston model with the unit weights
and the relative weights and Interpolated-Market-Surface by terms are represented for
1-month, 3-month, 6 month and 1-year tenors. We emphasize that Heston model is able
to follow market implied volatilities. The Heston model with the relative weights
follows closer the market especially for ATM node.

We have also presented the volatility smiles comparison of The Heston model
with the unit weights and the relative weights and Interpolated-Market-Surface by terms
for 2-month tenor and, 9-month tenor. The Heston model is not differing much to follow

market dynamics compared to the benchmark performance to follow model dynamics.
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Figure 4.7: Implied Volatility Comparison for 1 Month Tenor. Each Volatility Smile
Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.
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2 Month Tenor
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Figure 4.8: Implied Volatility Comparison for 2 Month Tenor. Each Volatility Smile
Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.
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3 Month Tenor

0,187

0,177

0,167

0,157

0,147

Average Implied Volatility

0,137

0127 ——Market

0,117 — Heston Model - Unit Weights

0,107
10Aput 25Aput ATM 25Acall 10Acall

Delta

Figure 4.9: Implied Volatility Comparison for 3 Month Tenor. Each Volatility Smile

Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.
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6 Month Tenor
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Figure 4.10: Implied Volatility Comparison for 6 Month Tenor. Each Volatility Smile
Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.

66



9 Month Tenor
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Figure 4.11: Implied Volatility Comparison for 9 Month Tenor. Each Volatility Smile
Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.
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1 Year Tenor
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Figure 4.12: Implied Volatility Comparison for 1 Year Tenor. Each Volatility Smile
Represents the Average Implied Volatilities for period between 11 March 2013 and 20
August 2018.
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Surface of Average Implied Volatilities estimated by The Heston model with the

unit weights and the relative weights and Interpolated-Market-Surface is shown in

following figures.
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Figure 4.13: Surface of Average Implied Volatilities estimated by Heston Model with
Unit Weights.
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Figure 4.14: Surface of Average Implied Volatilities estimated by Heston Model with
Relative Weights.
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Figure 4.15: Surface of Average Volatilities implied by the Market.
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CHAPTER 5

CONCLUSION

In this thesis, we aimed to investigate time contingent behavior of risk factor USDTRY.
To estimate the behavior, we have benefited option pricing models Black-Scholes with
market interpolated volatility surface and Heston model with two different weighting
schemes.

Since risk-neutral valuation requires, we have designed another process to
estimate the risk-free rates for both USD and TRY currency. We have governed OIS
discounting framework for risk-free rate estimate. To best of our knowledge, this is the
first study that benefits OIS discounting to estimate a risk-free rate for TRY nominated
instruments.

We have conducted in-sample and out-sample tests to measure the estimation
power of the models. We have also investigated the model performance by varying
tenors. We have developed a method to measure the models if they are precise enough
to generate implied volatilities in the observed bid-ask range of the market.

In context of the measurements, the Heston model, especially with liquidity

weights, has managed to follow the market dynamics and produce similar error
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performance per the benchmark, the Adjusted Black-Scholes model. Calculation costs
required by the Heston model have not differed from the Black-Scholes’ computation
costs, significantly, since the Heston model provides a semi-closed form option
valuation. Moreover, the Heston model can provide risk-neutral or arbitrage-free pricing
as an advantage and does not breach the tolerance that traders’ have been welcome
already.

We have observed that incorporating the liquidity weights significantly have
improved the Heston model performance. Future work would be to use the bid-ask prices
during the calibration process as a boundary condition. Then, we could expect a higher
percentage for implied volatility estimates that have not breached the bid-ask limits. On
the other hand, the effects of the bid-ask boundary conditions on calibration time and

parameter development should be monitored.
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