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ABSTRACT 

MODELING FX OPTIONS IN PRESENCE OF STOCHASTIC VOLATILITY 

WITH OVERNIGHT-INDEXED-SWAP-DISCOUNTING 

Tekten, Selin 

M.Sc. , Department of Financial Mathematics  

Supervisor: Prof. Dr. Ömür Uğur 

December 2019, 76 Pages 

 

This study investigates the time contingent behavior of risk factor USDTRY. Option 

pricing models Black-Scholes and Heston has been utilized to estimate the behavior. 

The adjusted Black-Sholes model is the current market practice to model USDTRY risk 

factor. Market practitioners do not prefer to use constant volatility in the Black-Scholes 

Model, which violates the model assumption. They instead interpolate the volatility 

surface from market data of implied volatilities and use them in Black-Scholes Model. 

However, Heston model admits varying volatilities. The Heston Model adds a 

dimension to the Black-Scholes model by letting the volatility to be a stochastic process. 

In this thesis, we have used interpolated volatility surface as a benchmark for testing the 

results estimated by the Heston Model. Furthermore, while estimating option prices, 

Overnight-Indexed-Swap (OIS) discounting framework has been governed to achieve 

risk-free rates. The test results have indicated that Heston stochastic volatility model 



 

 viii 

with OIS discounting offers arbitrage-free pricing with similar computation efficiency 

to the benchmark. 

 

 

Keywords: Currency Options, USDTRY, Heston Model, Overnight-Indexed-

Swap Discounting, Volatility Surface 
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ÖZ 

STOKASTİK VOLATİLİTE ALTINDA, GECELIK VADEYE ENDEKSLI SWAP 

İSKONTO YÖNTEMİ İLE KUR OPSİYONLARININ MODELLENMESİ  

 

Tekten, Selin 

M.Sc. , Department of Financial Mathematics  

Supervisor: Prof. Dr. Ömür Uğur 

 

 

Aralık 2019, 76 Sayfa 

 

Bu çalışma, risk faktörü USDTRY'nin zamana bağlı davranışını incelemektedir. 

Opsiyon fiyatlama modelleri Black-Sholes ve Heston bu davranışı tahmin etmek için 

kullanılmıştır. Düzeltilmiş Black-Sholes modeli, USDTRY riskfaktörü modellemesinde 

güncel piyasa pratiğidir. Piyasa uygulayıcıları, Black-Scholes modelinde sabit volatilite 

kullanmazlar, ki bu model varsayımına aykırıdır. Bunun yerine, volatilite yüzeyini, 

piyasada gözlemlenen ima edilen volatilitelerden enterpole ederek oluşturur ve Black-

Scholes modelinde kullanırlar. Heston modelinde ise, değişken volatile varsayım 

dahilindedir. Heston modeli, volatiliteyi stokastik bir süreç olarak varsayarak, Black-

Scholes modelinin üzerine bir boyut daha ekler. Bu çalışmada, Heston modelinin tahmin 
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sonuçlarını test etmek için enterpole edilmiş volatilite yüzeyini referans olarak 

kullandık. Ayrıca, opsiyon fiyatlarının tahmininde kullanılacak risksiz-faiz-oranlarını, 

gecelik vadeye endeksli swap iskonto yöntemi ile inşa ettik. Test sonuçları, gecelik 

vadeye endeksli swap iskonto yöntemi kullanılan Heston stokastik volatilite modelinin, 

seçilen referansa yakın hesaplama verimliliği sağlarken, arbitrajsız fiyatlama imkanı 

sunduğunu göstermektedir. 

 

 

Anahtar Sözcükler: Kur Opsiyonları, USDTRY, Heston Model, Gecelik-

Vadeye-Endeksli-Swap İskonto Yöntemi, Volatilite Yüzeyi 
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CHAPTER 1 

OVERVIEW 

Interest rate differential benefits on foreign exchange markets in Turkey, entail high 

trade volume and variety of financial derivatives. The exposure to foreign exchange 

brings protection needs and permits complex hedging activities. Investors develop 

hedging strategies against their exchange rate exposure. Their transactions generate a 

liquid foreign exchange market.  

The fact that the average daily volume of the market in Turkey is estimated to be 

around 22 billion US Dollars [2]  indicates the size of the market. About 90% of this 

turnover consists of spot deals and foreign exchange swaps. Central-banks, commercial 

companies, and funds form a significant part of the market. Because actors of the foreign 

exchange market make large transactions, and also, they perform small deals, the market 

is split into levels of access that we cannot see in the stock exchange markets. As an 

inevitable outcome of this large volume of transactions, the majority of the trades are 

performed in the over-the-counter (OTC) market. Biggest commercial banks, security 

traders perform their deals in the inter-bank market. Since bigger trading size occurred 

at the top of this degree of access, ask-bid spreads of the currencies are narrower relative 
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to the lower degree of access. Ask-bid spread of currencies widens as go to the lower 

degree. 

In this study have focused on the FX-OTC market, since it is great in demand 

and offers liquid option quotations. The foreign exchange market has own specific 

conventions. Currency options’ deals do not consist of single options with a particular 

strike, unlike stocks exchange markets apply. Quotes on currency options address the 

portfolio of options based on specific deltas.  

In section 2.1, we have argued about resolve foreign exchange market 

conventions. Translation of the quotes into a standard format that financial models 

consume occurs in two steps; the first step is reversing the portfolio to single options; 

the next step is converting delta-implied volatility pairs into strikes. After relevant 

mapping, vanilla options data have been properly arranged to be involved in the 

calibration of pricing models, Heston, and Black Scholes. We have benefited the study 

[9], for the conversion of the option quotations and examining terms and conditions of 

USDTRY options. We have extended the scope of the study of Eratman [9], by using 

options with time-to-maturity of 1-month, 2-month, 3-month, 6-month, 9-month, and 

12-month instead of using only 1-month option data. We have adopted the approach of 

[18], by setting aside a part of the data (2-month and 9-month)  to use them in out-sample 

tests later on. 

During the calibration, due to the assumptions Heston and Black-Scholes 

models, we have also required risk-free rate data. The risk-free rate considered in the 



 

   3 

valuation of options should be the rate at which banks supply the cash and must create 

a dynamic hedging portfolio that will replicate the final payoff at expiry.  

In section 2.2, we have constructed risk-free, zero-coupon discount curves for 

USD and TRY. In the formation of USD risk-free, zero-coupon discount curve, we have 

benefited from quotations on Overnight-Indexed-Swaps. This framework has been 

widely accepted in the literature, see [12]. We have designed a much-complicated set up 

for TRY risk-free, zero-coupon discount curve. Since we have not got any liquidly 

traded derivatives on the TRY floating rate index like LIBOR, we have used information 

on foreign exchange instruments by applying interest rate parity. Thanks to findings of 

Kazdal and Küçüksaraç, see [14], we have taken FX swap points to construct the curve. 

However, to be able to build the TRY yield curve, we have also needed to construct a 

zero-coupon curve for 3m USD LIBOR to achieve fixed values for 3m USD LIBOR. 

This approach is known to be used by some private banks. However, to our knowledge, 

this study is the first one that considers the OIS yield curve construction for the TRY. 

In section 4.1, we analyzed historical data of USDTRY observed between 11 

March 2013 and 20 August 2018. 

We have dedicated chapter 3, to describe the dynamics of the models. 

In section 4.2, we have calibrated and tested the results. We have used both unit 

weights and liquidity-weights on the calibration procedure. We have extended the scope 

of We have considered in-sample and out-sample measure performances. Namely, we 

have compared the estimates and real data, and, afterward, we have estimated for 

different prices whose market-prices have not been involved during the calibration. 
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Furthermore, we have studied model-generated implied volatilities if they can stay in 

the bid-ask range. Otherwise, they may generate instantaneous arbitrage opportunity in 

market conditions. To our knowledge, this bid-ask range control has not mentioned in 

the literature. We have presented details of the tests in which the Heston model has 

comparable results with the benchmark.  
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CHAPTER 2 

PRELIMINARIES  

Unlike stock exchange markets, foreign exchange options market data represented based 

on options delta, instead of option prices by a strike. Moreover, the quotations expressed 

for a portfolio of options contracts rather than an individual option. 

Implied volatilities of foreign exchange options are represented based on 

maturities and deltas. Delta is one of the essential exposures to an options trader. It is 

the sensitivity of the price of the option to a change in the underlying asset.  

Since in the models we use in this study generate option prices depending on 

strike prices, we must map delta-based volatility to strike-based volatility data. 

However, delta has various formulations in the foreign exchange market. We present the 

details of the terms and conditions for the USDTRY currency pair in the following 

section. 
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2.1 Foreign Exchange Market Conventions 

2.1.1 FX Forward Value  

At the beginning, by rule of no-arbitrage, value of an outright forward contract is equals 

to zero. Then, as foreign exchange rates and/or interest rates change, the forward 

contract has value of different from zero, yet is the following [19], 

               υ𝑓(𝜏)  =  𝑒−𝑟𝑑𝜏(𝑓(𝑡, 𝑇) − 𝐾) = 𝑆𝑡𝑒−𝑟𝑓𝜏 − 𝐾𝑒−𝑟𝑑𝜏.  

2.1.2  Terms and Conditions 

Since the credit crunch of 2008 and the associated low levels of liquidity in short-term 

interest rate products, it became unfeasible for banks to agree on spot deltas (which 

include discount factors) [6]. 

When the underlying currency pair includes one of the emerging market 

currencies or maturity of the option is longer than one year, the market practice is to use 

forward delta. Forward delta convention is employed exclusively in the construction of 

the FX smile, which does not involve any discounting. The reason for this condition is 

that the discount factor shows itself as longer maturity is considered or high-interest 

rates are considered in the emerging markets. These options are utilized to hedge with 

the forward-contracts.  In the case of the USDTRY over-the-counter options market, the 

delta convention corresponds to forward-delta, and the ATM type corresponds to 

forward-delta-neutral case, for details see [9]. 
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2.1.2.1 Forward Delta 

Forward delta is formulated with the derivative of Black-Scholes value υ for the option 

with respect to forward price of the underlying asset υ𝑓(𝜏), 

∆f(K, σ, 𝜙) = 
∂υ

∂υ𝑓
=

∂υ

∂S

∂S

∂υ𝑓
=

∂υ

∂S
(

∂υ𝑓

∂S
)

−1

 (2. 1) 

∆𝑓(𝐾, 𝜎, 𝜙) =  𝜙Ν(𝜙𝑑+), (2. 2) 

where 𝜙 is a binary function of option class, which takes 1 for call options and, −1 for 

put options, 𝑁(𝑥) is the cumulative distribution function of standard normal distribution, 

𝑑+ =  
ln

𝑓

𝐾
+

1

2
𝜎2𝜏

𝜎√𝜏
, and, 𝑓 denotes forward rate, 𝐾 is the option strike price, and, 𝜎 denotes 

implied volatility (by Black-Scholes model). This yields a Put-Call delta parity as stated 

in a previous study [9], 

∆𝑓(K, σ, 1) − ∆𝑓(K, σ, −1)  =  1. (2. 2) 

In foreign exchange market, one must enter to a multiple of ∆𝑓 × 𝑁 number of 

forward contracts in favor of hedging a short vanilla position. Forward delta type is 

mostly governed convention in majority of the currency pairs, since the absolutes of 

delta of a call and put totals to 1; namely, 10Δ𝑃 and 90Δ𝑃 have the same volatilities. In 

addition, deciphering of the strike volatility pairs from delta volatility is required for the 

calibration phase. So, the strike price formula for forward delta type is given by,  

𝐾 =  𝑓 exp {−𝜙𝑁−1(𝜙∆𝑓)𝜎√𝜏 +
1

2
𝜎2𝜏}, (2. 3) 

where 𝜙 is a binary function of option class, which takes 1 for call options and, −1 for 

put options,  𝑁(𝑥) denotes the cumulative distribution function of standard normal 
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distribution, 𝑓 denotes forward rate, 𝐾 is the option strike price, ∆𝑓 denotes forward-

delta and, 𝜎 denotes implied volatility (by Black-Scholes model). 

2.1.3 Foreign Exchange Vanilla Quotes 

Foreign exchange market structures deep volatility smile shape. Current market practice 

is to trade volatility smile factors rather than individual vanilla options. A combination 

of vanilla options at different deltas is used to catch the volatility smile dynamics. 

Examples of liquidly traded a portfolio of options are at-the-money straddles, risk 

reversals, and butterfly spreads, whose delta are typically 0.10 or 0.25. 

2.1.3.1 At-the-Money Options 

Traders denote prices of options on currencies and precious metals as Black-Scholes 

implied volatilities. As assumed in the study of Eratman in [9], the exercise-price of an 

USDTRY at-the-money option corresponds to the current forward rate of time to 

maturity equals to the option tenor, rather than the spot-exchange-rate. This option 

convention is referred to as at-the-money forward, hereafter denoted by ATM as in [15]; 

and 

𝜎𝐴𝑇𝑀  =  𝜎(𝑡, ∆, 𝜏|𝐾∆ = 𝑓), (2. 4) 

where 𝑓 is the forward rate, and ∆ is the delta value (that equals to the forward rate) as 

the strike. 

2.1.3.2 Risk Reversal 

A risk reversal is a portfolio of options which is built as difference (being long and short) 

of two options: a call option with a high exercise price and a put option with a low 
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exercise price both having the same time-to-maturity. Mostly, these two exercise prices 

imply different implied volatilities, and market quotation refers to the difference of the 

implied volatilities of those options. This quotation is named as the “risk reversal of the 

implied volatility smile” or shortly “the smile risk reversal”. The direction of that 

difference of implied volatilities is specified based on the market practice of order.  

Market practitioners mostly adopt the direction that will yield non-negative portfolio 

value. In this case, every market player admits the side of implied volatilities is eminent 

for the market taken into consideration.  In the lack of certainty of the direction of risk 

reversal quotes, to emphasize the direction. They used the phrase “bid for” for the 

options with higher volatility. The direction is often characterized through the out-of-

the-money option with option type (call option or put option) of a currency in the 

currency pair (i.e., currency other than USD if USD is in the currency pair). In USDTRY 

options, higher implied volatilities are observed in options with a high exercise price. 

Thus, one would declare “bid for the high side” or “bid for TRY puts”. We can compute 

the risk reversal of the implied volatility smile by taking a long position in the high-

exercise-price implied volatility and taking a short position in the low- exercise-price 

implied volatility.  

The risk reversal related to skewness in the smile [7]. For instance, if we let 

𝜎25∆𝑅𝑅 stand for the 25-delta-risk reversal quote for USDTRY. Then the 25-delta-call 

and 25-delta-put options’ implied volatility difference is amount to the risk reversal 

quote,  
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𝜎25∆𝑅𝑅  =  𝜎25∆𝑐𝑎𝑙𝑙 − 𝜎25∆𝑝𝑢𝑡 . (2. 5) 

2.1.3.3 Butterfly Spread 

A strangle is the mean of long out of-the-money put and call option. A strangle 

margin is referred to as the difference between the strangle volatility and the ATM 

volatility. The butterfly quote implies to this difference and, describes how convex the 

smile is. Again, if we let 𝜎25∆𝐵𝐹 express the 25-delta-butterfly quote. So, 

𝜎25∆𝐵𝐹  =  
𝜎25∆𝑐𝑎𝑙𝑙 + 𝜎25∆𝑝𝑢𝑡

2
− 𝜎𝐴𝑇𝑀 .  (2. 6) 

 

Figure 2.1 demonstrates risk reversal and skew relation and butterfly and 

convexity relation. ATM quotations give a parallel shift of volatility smile, Risk reversal 

spread lets the slope of the smile more prominent, and butterfly spread effects the 

curviness of smile. 
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2.2 Yield Curve Construction 

If we let option valuation, to be based on forming a dynamic hedging portfolio that will 

replicate the final payoff at expiry, we should find at which rate banks must supply the 

cash to create such portfolio. OTC dealers borrow and lend at a rate based on LIBOR, 

which is the funding rate for large commercial banks. Therefore, We have not used the 

Government bond yield curve in this study. 

There has lately been a move from LIBOR-indexed swaps to OIS based swaps 

along with the OIS-LIBOR spread has been widened. The spread expanded to be 

Figure 2.1 Butterfly and Risk Reversal, [23].Graphic representation of the butterfly and 

risk reversal. It could be observed that the risk reversal spread widens as skew increases. 

Moreover, butterfly appreciates, as degree of curvature of the smile increases (Namely 

the bigger the second derivative). 
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apparent in the time of the financial crisis in 2008. OIS discounting has become the 

market practice in the valuation of collateralized instruments, and clearinghouses require 

it.  

Similar to an interest rate swap, OIS contracts comprise the exchange of only the 

interest cash flows; the principal amount equals to notional. Namely, counterparties deal 

to exchange, on the designated notional amount, the difference between interest accrued 

at the fixed rate, which agreed upon at inception and interest accrued by daily 

compounding (generally, the geometric average is used) of the floating overnight index 

rate. 

Since the OIS market being very liquid for dominant currencies, besides liquid 

quotation involves a wide range of maturities, those OIS quotes can effectively calibrate 

a discount curve by benefiting standard approaches and, can be employed to discount 

collateralized derivative instruments. 

We have used OTC market data of options in t calibration of models Heston and 

Black-Scholes. Besides, most OTC market transactions are subjected to a collateral 

agreement. 

As stated by Hull et. Al in [12], overnight rate yield curves implied by OIS 

should be used as a risk-free rate even though the portfolio is not collateralized.  Hence, 

we have used the OIS based yield curve as a proxy of the risk-free rate in this study.  

In the scope of this study, we build yield curves up to 1-year tenor. We aim to 

estimate the discounting curve for currency TRY and currency USD. 
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We have fitted the discounting curve for currency TRY, to foreign exchange 

swaps and cross-currency swaps as opposed to OIS discounting framework. However, 

we have discounted USD currency-denominated cash flows of those foreign exchange 

instruments with USD Discount Curve (fitted to OIS mid-market quotes). Hence, We 

have addressed the OIS discounting in the TRY Discount Curve. However, we require 

a forward curve for 3m USD LIBOR to find the floating rates of the future cash flows 

of the above-mentioned cross-currency swap. Furthermore, again, the forward curve of 

3m USD LIBOR is constructed by referring discount factors from USD discounting 

curve (OIS curve). 

2.2.1 USD Discount Curve 

As stated in the previous section, we have constructed the discount curve for USD on 

information from overnight indexed swap contracts written on the effective-fed-funds-

overnight-rate.   

OIS refers to an interest rate swap that exchanges a fixed-rate coupon for a 

floating rate coupon, which is a daily compounded overnight rate, where the dates of the 

two coupon payments typically coincide. Hence, the floating payment for a period [𝑡, 𝑇] 

will be 

∏(1 + 𝛼(𝑡𝑖, 𝑡𝑖+1)𝑭𝑭(𝑡𝑖, 𝑡𝑖+1))

𝐾−1

𝑖=0

− 1, (2. 7) 

where 

𝐾: number of all the business days in the time interval [𝑡, 𝑇] 
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{𝑡𝑖}𝑖=0
𝐾 : all the business days in the accrual period [𝑡, 𝑇] with 𝑡0 = t and 𝑡𝑘 = 𝑇 

𝑭𝑭(𝑡𝑖, 𝑡𝑖+1): represents the overnight interest rate for the period (𝑡𝑖, 𝑡𝑖+1) 

𝛼(𝑡𝑖, 𝑡𝑖+1): the year fraction between 𝑡𝑖 and 𝑡𝑖+1 according to a market convention. 

Now we consider the calculation of the net present value of a payer OIS contract. 

At time 𝑡, if we us enter into a payer OIS with 𝑁 coupons, payments dates at 𝑇1  <  𝑇2 <

⋯ <  𝑇𝑁  and 𝑇0  − 𝑡 days of spot lag. Assume that we pay a fixed rate 𝑘 and receive a 

floating rate (daily compounded overnight rate). Then, by (2.7) the 𝑖th floating leg rate 

𝑭𝑭𝑪𝒐𝒎𝒑(𝑇𝑖−1, 𝑇𝑖) is given by 

𝑭𝑭𝑪𝒐𝒎𝒑(𝑇𝑖−1, 𝑇𝑖) =
1

∑ 𝛼(𝑡𝑗 , 𝑡𝑗+1)
𝐾𝑖−1

𝑗=0

(∏ (1 + 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝑭𝑭(𝑡𝑗, 𝑡𝑗+1))

𝐾−1

𝑗=0

− 1) . (2. 8) 

Here we recall that ∑ 𝛼(𝑡𝑗 , 𝑡𝑗+1) = 𝛼(𝑇𝑗, 𝑇𝑗+1)
𝐾𝑖−1
𝑗=0 . Thus, by setting 𝛿 such that 

𝑒𝛿𝑡 = 1 + 𝑖𝑡, then it yields 

∏ (1 + 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝑭𝑭(𝑡𝑗 , 𝑡𝑗+1))

𝐾𝑖−1

𝑗=0

− 1 = e
ln(∏ (1+α(tj,tj+1)𝐅𝐅(tj,tj+1))

Ki−1

j=0
)

− 1 

 = 𝑒
∑ ln(1+𝛼(𝑡𝑗,𝑡𝑗+1)𝑭𝑭(𝑡𝑗,𝑡𝑗+1))

𝐾𝑖−1

𝑗=0 − 1 

 = 𝑒
∑ 𝛼(𝑡𝑗,𝑡𝑗+1)𝛿(𝑡𝑗,𝑡𝑗+1)

𝐾𝑖−1

𝑗=0 − 1. (2. 9) 

 

 

In the equation (2.9) the term ∑ 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝛿(𝑡𝑗 , 𝑡𝑗+1)
𝐾𝑖−1
𝑗=0  is equal to the 

Riemann sum of function 𝛿 with partition 𝒫 = {[𝑡0, 𝑡1] , [𝑡1, 𝑡2] , … [𝑡𝐾𝑖−1, 𝑡𝐾𝑖
] } . So,  

∑ 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝛿(𝑡𝑗 , 𝑡𝑗+1)

𝐾𝑖−1

𝑗=0

≈ ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑇𝑖−1

. 
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And, the no arbitrage principle, price of an instrument must be equal to its 

expected cash flows. Then, the present value of a payer OIS contract (pays fixed rate, 

receives floating rate) becomes: 

𝑃𝑉(𝑡) = 
∑ τ(Ti−1, Ti)𝔼t [e− ∫ δ(s)ds

Ti
t 𝐅𝐅𝐂𝐨𝐦𝐩(Ti−1, Ti) − k]

N

i=1

 

 

= ∑ 𝜏(𝑇i−1, 𝑇i)𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑡 (
1

∑ 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝑗

(∏ (1

𝐾𝑖−1

𝑗=0

N

𝑖=1

+ 𝛼(𝑡𝑗 , 𝑡𝑗+1)𝑭𝑭(𝑡𝑗 , 𝑡𝑗+1)) − 1) − 𝑘)] 

 = ∑ 𝜏(𝑇i−1, 𝑇i)𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑡 (
1

𝜏(𝑇i−1, 𝑇i)
(𝑒

∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑇𝑖−1 − 1) − 𝑘)]

N

𝑖=1

 

 = ∑ 𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑡 (𝑒
∫ 𝛿(𝑠)𝑑𝑠

𝑇𝑖
𝑇𝑖−1 − 1)] − 𝑘 ∑ 𝜏(𝑇i−1, 𝑇i)𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠

𝑇𝑖
𝑡 ]

N

𝑖=1

N

𝑖=1

 

 = ∑ 𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖−1

𝑡 − 𝑒∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑡 ] − 𝑘 ∑ 𝜏(𝑇i−1, 𝑇i)𝔼t [𝑒− ∫ 𝛿(𝑠)𝑑𝑠
𝑇𝑖

𝑡 ]

N

𝑖=1

N

𝑖=1

 

 = ∑ 𝑃(𝑡, 𝑇𝑖−1) − 𝑃(𝑡, 𝑇𝑖) − 𝑘 ∑ 𝜏(𝑇i−1, 𝑇i)𝑃(𝑡, 𝑇𝑖)

N

𝑖=1

N

𝑖=1

 

 = 𝑃(𝑡, 𝑇0) − 𝑃(𝑡, 𝑇𝑁) − 𝑘 ∑ 𝜏(𝑇𝑖−1, 𝑇𝑖)𝑃(𝑡, 𝑇𝑖).

𝑁

𝑖=1

 

 

(2. 10) 

Accordingly, if we suppose that the fixed rate 𝑘 is a mid-market quote, then, by no-

arbitrage arguments what we get is that the present value of the OIS is equal to zero. 

Therefore, when  

(2.10) is equal to zero it yields, 
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𝑃(𝑡, 𝑇𝑁)  =  
𝑃(𝑡, 𝑇0) − 𝑘 ∑ 𝜏(𝑇𝑖−1, 𝑇𝑖)𝑃(𝑡, 𝑇𝑖)

𝑁−1
𝑖=1

1 + 𝑘𝜏(𝑇𝑁−1, 𝑇𝑁)
 . (2. 11) 

This equation represents the bootstrapping equation associated to the 𝑁-coupons 

OIS contract. Here we recall that we have 𝑁 +  1 variables 

𝑃(𝑡, 𝑇0), 𝑃(𝑡, 𝑇1), … , 𝑃(𝑡, 𝑇𝑁) and only one equation. Hence, one needs to obtain more 

OIS contracts to obtain more bootstrapping equations and a method to figure out this 

system of equations. 

In the USD OIS market, cashflows of the swaps with maturities no longer than 

a year normally consist of one payment at maturity, while swaps with a maturity over a 

year normally consist of yearly payments. In the scope of this study, contracts of 

maturity up to one year is used to construct the yield curve.  So following the trimmed 

version of (2.11) will be sufficient, in our study, Namely, we will use 

𝑃(𝑡, 𝑇𝑋)  =  
𝑃(𝑡, 𝑇0)

1 + 𝑘𝑋𝜏(𝑇0, 𝑇𝑋)
 , (2. 12) 

where 

𝑃(𝑡, 𝑇0) =  𝑃(𝑡, 𝑡 + 2) =  𝑃(𝑡, 𝑡 + 1)𝑃(𝑡 + 1, 𝑡 + 2) 
 

(2. 13) 
 

=
1

1 + 𝜏(𝑡, 𝑡 + 1)𝑂𝑁
∙

1

1 + 𝜏(𝑡 + 1, 𝑡 + 2)𝑇𝑁
 . 

Given that spot lag for USD OIS contracts is two business days and, ON 

represents overnight effective fed funds rate, TN represents effective fed funds rate of 

term for tomorrow to the next day period. In Table 2.1 we present the market data used 

in the estimation of the USD discount curve. ACT/360 in Table 2.1 is a day count 

convention by formula, 
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𝐷𝑎𝑦 𝐶𝑜𝑢𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟𝐴𝐶𝑇/360(𝑡1, 𝑡2) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝐷𝑎𝑦𝑠(𝑡1, 𝑡2)

360
. 
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2.2.2 USD Forward Index LIBOR 3m Curve 

In the previous section, we define the methodology followed for the construction 

of the USD discounting curve. Here if we recall the significance of this curve. This curve 

is used to discount every cash flow nominated in USD currency. In this section, we 

present the methodology for building index forward curves. We present a methodology 

of how to estimate the forward curve for LIBOR 3m. For the calibration of the forward 

index LIBOR 3m curve, we take the plain vanilla IRS as a benchmark. The maturities 

and swap rates that we will use for the forward curve calibration represented within the 

tables in the following section. 

Let 𝑃𝑉(𝑡) represents the present value (at time 𝑡) of a payer IRS denominated in 

USD based on LIBOR 3m with maturity of 𝑦 years, then we write 

𝑃𝑉(𝑡) = 

∑ 𝛼(𝑡𝑖−1, 𝑡𝑖)

𝑄𝑦

𝑖=1

𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖))𝑃(𝑡, 𝑡𝑖)−𝑘𝑦 ∑ 𝛽(𝑠𝑗−1, 𝑠𝑗)

𝑆𝑦

𝑗=1

𝑃(𝑡, 𝑠𝑗) ,       (2. 14) 

where 

𝑘𝑦: fixed rate of the plain vanilla interest rate swap with maturity in y years 

𝑄𝑦: number of quarters in y years 

𝑆𝑦: number of semesters in y years 

𝑡𝑖: coupon periods (start date, end date) for the leg indexed to LIBOR 3m 

𝑠𝑖: coupon periods (start date, end date) for the fixed leg 
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𝛼(𝑡𝑖−1, 𝑡𝑖): accrual factor of the 𝑖th coupon of the floating leg (ACT/360) 

𝛽(𝑠𝑗−1, 𝑠𝑗): accrual factor of the 𝑗th coupon of the fixed leg (30/360) 

𝑃(𝑡, 𝑠𝑗): discount factors in USD 

𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖)): the LIBOR 3m forward rate of the 𝑖th coupon. 

The above characteristics present the plain vanilla IRS in the USD market. It 

swaps LIBOR 3m payable quarterly versus a semiannual fixed-rate coupon with a day 

count of 30/360 that is used primarily in government bonds. It is referred to as the plain 

vanilla since it is the most standard and liquid swap in the market.  

Now, let us rewrite 𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖)) from equation (2. 15) in terms of 

a discount curve 

𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖)) =  

1

𝜏(𝑡i−1, 𝑡i)
(

𝑃3𝑚(𝑡, 𝑡𝑖−1)

𝑃3𝑚(𝑡, 𝑡𝑖)
− 1) , (2. 16) 

where 𝜏(𝑡i−1, 𝑡i) =  𝜏𝑖 represents the day count convention to determine the year fraction 

for the discounting and curve building. 

Combining (2.16) and (2. 17) and solving for discount factor obtained 

calibrated to USD LIBOR 3m, 𝑃3𝑚 (𝑡, 𝑡𝑄𝑦
) yields 

 

 

 

 

 



 

   21 

𝑃3𝑚 (𝑡, 𝑡𝑄𝑦
) = 

 

𝑃3𝑚 (𝑡, 𝑡𝑄𝑦−1)

1 +

𝜏𝑄𝑦
(𝑘𝑦 ∑ 𝛽𝑗

𝑆𝑦

𝑗=1
𝑃(𝑡, 𝑠𝑗) − ∑

𝛼𝑖

𝜏𝑖

𝑄𝑦−1

𝑖=1
(

𝑃3𝑚(𝑡, 𝑡𝑖−1)
𝑃3𝑚(𝑡, 𝑡𝑖)

− 1) 𝑃(𝑡, 𝑡𝑖))

𝛼𝑄𝑦
𝑃 (𝑡, 𝑡𝑄𝑦

)

 . 

 

(2. 18) 

This equation supports us in finding the discount curve based on LIBOR 3m using a 

simple bootstrapping and an interpolation method. In Table 2.2, market data mentioned 

in the estimation of USD Forward Index LIBOR 3m Curve is represented.
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2.2.3 TRY Discount Curve 

Since interest rate derivatives markets is not deep in TRY, funding is performed mostly 

using foreign exchange swaps on interbank market of TRY. Accordingly, discount curve 

construction market practice is based on liquid foreign exchange instruments. Hence, in 

this study we benefit from foreign exchange instruments while calibrating the TRY 

discount curve. 

For terms smaller than 1-year, foreign exchange swap quotes are fitted to 

discount curves. As Kazdal and Küçüksaraç states in [14], foreign exchange swaps and 

outright forwards are similar in nature and, moves together. In this study, assuming their 

finding, we take forward implied rates for calibration of TRY discount curve. Otherwise, 

may need to translate cross-currency-swap rates into zero coupon rates by bootstrapping. 

For a 1-year term and further, cross-currency swaps are more liquidly traded 

rather than foreign exchange swaps in case of currency TRY. Therefore, we use 1-year 

cross-currency swap quotes of TRY fixed payer- USD LIBOR 3m receiver, for the long 

end of the curve. 

OIS instruments denominated in TRY could not be used for the construction of 

the curve since there are no liquid quotes. Nevertheless, we can still utilize information 

from OIS instruments in USD. TRY discounting curve constructed in the following 

sections is linked to OIS discounting, as per foreign exchange instruments whose USD 

denominated cash flows are discounted with OIS discounting  

. 



 

   24 

2.2.3.1 Short Terms of TRY Discount Curve 

In this section, we form the short end of the TRY discounting curve. As stated in 

previous section, we take forward implied rates for tenors shorter than 1-year. Present 

value of a forward contract is 

𝑃𝑉(𝑡) =  𝔼𝑡
𝑡𝑖(𝐔𝐒𝐃)𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) − 𝑘𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) , (2. 19) 

where 𝑡𝑖 is the maturity date of outright forward contract and, 𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) is the discount 

factor for TRY nominated instruments and 𝑘 is the mid-market quote for outright 

contract. 

By interest rate parity, there is a strong relationship between forward rates and 

interest rates that is given by 

𝔼𝑡
𝑡𝑖(𝐔𝐒𝐃) = 𝑆𝑡  

𝑃(𝑡, 𝑡𝑖)

𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖)
 , 

(2. 20) 

where 𝑃(𝑡, 𝑡𝑖) is discount factor for USD nominated instruments and 𝑆𝑡 is todays spot 

exchange rate to buy USD for TRY. Thus, 𝑃(𝑡, 𝑡𝑖) acquired from OIS calibration links 

our TRY discount curve to OIS discounting framework. Substituting equation (2.20) 

into (2.19), 

𝑃𝑉(𝑡) =  𝑆𝑡 𝑃(𝑡, 𝑡𝑖) − 𝑘𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) . (2. 21) 

Now, if we assume that the fixed rate 𝑘 is a mid-market quote then, again, by the no-

arbitrage arguments we have the result that the present value of the outright forward 

amounts to zero. Therefore, 

𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) =  
𝑆𝑡𝑃(𝑡, 𝑡𝑖)

𝑘
 . 

(2. 22) 



 

   25 

However, we still should interpret (2.22) as our market data, namely in terms of swap 

points and spot rate at spot date we have 

𝑃𝑇𝑅𝑌(𝑡, 𝑡𝑖) =  
(𝑆𝑡0

+
𝐹(𝑡, TOD)

10,000 ) 𝑃(𝑡, 𝑡𝑖)

(𝑆𝑡0
+

𝐹(𝑡0, 𝑡𝑖)
10,000 )

 , (2. 23) 

where, 

𝑆𝑡0
: spot exchange rate to buy USD for TRY at spot date, the next business date. 

𝐹(𝑡, TOD): negative swap point to discount spot rate from spot date to today with basis 

equal to 10,000 

𝐹(𝑡0, 𝑡𝑖): positive swap point to compound spot rate from spot date to 𝑡𝑖 with basis 

equal to 10,000 

𝑡𝑖: Maturity date of outright forward contract 

𝑃(𝑡, 𝑡𝑖): discount factor in USD (estimated using OIS instruments) 

Thus, TRY discount factors are estimated for some specific tenors up to 9 

months. We have directly used swap points and a USD discount factors. OIS discounting 

framework have been employed by using 𝑃(𝑡, 𝑡𝑖) which is taken from OIS based yield 

curve that we have constructed in section 2.2.1. However, we will need another yield 

curve to estimate the last remained tenor in TRY discount curve construction. 
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2.2.3.2 1-year Tenor of TRY Discount Curve 

In this section, we have derived a formula for the long end of the TRY discount curve. 

Let us refer to index forward rates from the previous section in order to describe how to 

estimate the forward curve for LIBOR 3m. For the construction of the long-end of TRY 

discounting curve, we use cross-currency swap quotes. In tables, we present the 

maturities and swap rates that we will use for the discount curve calibration. 

Let 𝑃𝑉(𝑡)  be the present value of a TRY fixed rate payer- USD LIBOR 3m 

receiver cross-currency swap denominated in USD based on LIBOR 3m with a maturity 

of y years, hence.  

𝑃𝑉(𝑡) = ∑ 𝛼(𝑡𝑖−1, 𝑡𝑖)

𝑄𝑦

𝑖=1

𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖))𝑃(𝑡, 𝑡𝑖) 

(2. 24) 

 − 𝑘𝑦 ∑ 𝛽(𝑠𝑗−1, 𝑠𝑗)

𝑆𝑦

𝑗=1

𝑃𝑇𝑅𝑌(𝑡, 𝑠𝑗) , 

where 

𝑘𝑦: TRY fixed rate of the cross currency swap with maturity in y years 

𝑄𝑦: number of quarters in y years 

𝑆𝑦: number of semesters in y years 

𝑡𝑖: coupon periods (start date, end date) for the leg indexed to LIBOR 3m 

𝑠𝑖: coupon periods (start date, end date) for the fixed leg 

𝛼(𝑡𝑖−1, 𝑡𝑖): accrual factor of the 𝑖th coupon of the floating leg (ACT/360) 

𝛽(𝑠𝑗−1, 𝑠𝑗): accrual factor of the 𝑗th coupon of the fixed leg (ACT/360) 
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𝑃(𝑡, 𝑠𝑗): discount factors in USD (estimated using OIS instruments) 

𝔼𝑡
𝑡𝑖(𝐋𝐈𝐁𝐎𝐑𝟑𝐌(𝑡𝑖−1, 𝑡𝑖)): the USD LIBOR 3m forward rate of the 𝑖th coupon. 

This cross-currency swap with the above characteristics is the most liquid swap 

in the market. It exchanges USD LIBOR 3m payable quarterly versus an annual TRY 

fixed rate coupon with a day count of ACT/360. Namely, have taken the number of days 

in subjected period and divide it by 360.  

Substituting (2.16) into   and solving for 𝑃3𝑚 (𝑡, 𝑡𝑄𝑦
) yields, 

𝑃𝑇𝑅𝑌 (𝑡, 𝑠𝑆𝑦
) =  

∑ (
𝑃3𝑚(𝑡, 𝑡𝑖−1)

𝑃3𝑚(𝑡, 𝑡𝑖)
− 1)

𝑄𝑦

𝑖=1
𝑃(𝑡, 𝑡𝑖) − 𝑘𝑦 ∑ 𝛽𝑗

𝑆𝑦−1

𝑗=1
𝑃𝑇𝑅𝑌(𝑡, 𝑠𝑗)

𝑘𝑦𝛽𝑆𝑦

 . 

(2. 25) 

 

For our long-end case, when 𝑆𝑦 = 1 and 𝑄𝑦 = 4 we obtain 

𝑃𝑇𝑅𝑌 (𝑡, 𝑠𝑆𝑦
) =  

∑ (
𝑃3𝑚(𝑡, 𝑡𝑖−1)

𝑃3𝑚(𝑡, 𝑡𝑖)
− 1)4

𝑖=1 𝑃(𝑡, 𝑡𝑖)

𝑘𝑦𝛽𝑆𝑦

 , 

(2. 26) 

where 𝑃3𝑚(𝑡, 𝑡𝑖) is the discount factor obtained from USD LIBOR 3m forward index 

curve. This equation together with (2.23) allows us to find TRY discount curve based 

on FX swaps and CIRS using a simple bootstrapping and an interpolation method.  

In a few words, in this section, we have aimed to construct zero coupon curves 

to benefit in the option pricing procedure. Risk-neutral valuation requires risk-free 

estimates of discount factor, so we applied for the instruments that are accepted to 

converge the risk-free proxy. However, those instruments are quoted for some specific 
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time period which may not starts from today. We cannot directly use quotes unless their 

“Type” column in Table 2.2 and Table 2.3 are not equal to “Cash”. We have benefited 

cash instruments for discounting the later instruments (which have start day greater than 

0) to today which have start day greater than 0. By this way we have achieved the zero-

coupon rates for each “End day” in these tables. Besides, in these tables, non-empty cells 

of in column “Floating Leg Period” implies that the instrument has a floating leg. 

Namely, we should consult to another yield curve to obtain estimated fixed values of 

that period. In this manner we have built USD LIBOR 3m Curve and also studied section 

“1-year Tenor of TRY Discount Curve” as byproducts. 
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In Figure 2.2 we present estimated yield curves (TRY Discount Curve, USD 

Discount Curve, LIBOR 3m Forward Curve) for date 20/08/2018. We have observed 

that LIBOR 3m Index Curve is higher than OIS based yield curve at all tenors. This 

means that there is a non-negative spread between the LIBOR 3m Forward Curve and 

USD Discount Curve.  

 

 

Figure 2.2: Yield Curves Estimated at Date 20/08/2018. 
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CHAPTER 3 

MODELS 

3.1 Black Scholes Model 

In 1973 Black and Scholes derived the price of European call and put options. In 

1983 Garman et al implemented Black-Scholes approach to foreign exchange options, 

see details in [6].  

Here if we let 𝑆𝑡 to be the spot rate, i.e., the amount of money in the domestic 

currency required to buy one unit of foreign currency. Assumption accepted for the 

model is that the spot exchange rate adopts a geometric Brownian motion, and further, 

not an only domestic risk-free asset (𝐵𝑑) but also a foreign risk-free asset (𝐵𝑓) with 

constant interest rates are considered: 

                  𝑑𝑆𝑡 = 𝑆𝑡𝜇𝑑𝑡 + 𝑆𝑡𝜎𝑑𝑊̅ (3. 1) 

𝑑𝐵𝑑 = 𝑟𝑑𝐵𝑑𝑑𝑡 (3. 2) 

𝑑𝐵𝑓 = 𝑟𝑓𝐵𝑓𝑑𝑡 , (3. 3) 

where 𝑊̅ is a Wiener process under market probability measure ℙ. 
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Björk et al. derived a formula for 𝑑𝑆𝑡 in terms of a wiener process of a risk-neutral 

measure, (see [3] for details): 

𝑆𝑡 = 𝑆0𝑒(𝑟𝑑−𝑟𝑓−
1
2

𝜎2)𝑡+𝜎𝑊𝑡 . (3. 4) 

3.1.1 Option Pricing Formula 

In foreign exchange markets, most of the options are subject to physical settlement (i.e., 

taking long position in USDTRY vanilla call indicates being entitled to receive USD 

notional amount 𝑁 at maturity and pay (𝑁 ×  𝐾)TRY, where 𝐾 is the strike price). The 

price of such instrument is calculated with the Black–Scholes formula, 

𝐻(𝑆𝑡, 𝐾, 𝜎, 𝜙) = 𝜙[𝑆𝑡𝑒−𝑟𝑓𝜏Ν(𝜙𝑑+) − 𝑒−𝑟𝑑𝜏𝐾Ν(𝜙𝑑−)] (3. 5) 

 = 𝜙𝑒−𝑟𝑑𝜏[𝑓(𝑡, 𝑇)Ν(𝜙𝑑+) − 𝐾Ν(𝜙𝑑−)] , (3. 6) 

where 𝑓(𝑡, 𝑇) denones forward rate, 𝑑± =  
ln

𝑓(𝑡,𝑇)

𝐾
±

1

2
𝜎2𝜏

𝜎√𝜏
 , 𝜙 denotes call options if it 

equals to +1 and denotes put options if it equals to −1, 𝐾 is the option’s strike price, 𝜎 

denotes  implied volatility (by the Black-Scholes model) and 𝑁(𝑥) is the cumulative 

distribution function of the standard normal distribution. (See details in Wystup  et al. 

[19]) 

3.1.2 Adjusted Black-Scholes Option Pricing  

Despite the advanced models proposed in the literature, the Black-Scholes model 

commonly accepted by market practitioners. The practitioners build a volatility surface 
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to use it as 𝜎 in the Black-Scholes model. Namely, the market practitioners do not use a 

constant coefficient 𝜎 in the Black-Scholes model. 

The market practitioners construct the volatility surface by linear interpolation 

of the market quotation of implied volatilities. Therefore, they are violating the 

assumption constant volatility of the Black-Sholes model and they are exposed to any 

losses from being arbitraged. 

We will use the formula below to find the interpolated market implied 

volatilities. 

𝜎(𝐾, 𝜏𝑖) = 𝜎𝑚𝑎𝑟𝑘𝑒𝑡(𝐾, 𝜏𝑖−1) + (𝜏𝑖 − 𝜏𝑖−1)
𝜎𝑚𝑎𝑟𝑘𝑒𝑡(𝐾, 𝜏𝑖+1) − 𝜎𝑚𝑎𝑟𝑘𝑒𝑡(𝐾, 𝜏𝑖−1)

𝜏𝑖+1 − 𝜏𝑖−1
. (3. 7) 

3.2 Heston Model 

In option pricing theory, Black Scholes in [4] bring a formula that option prices are 

associated with the distribution of underlying. While the option pricing formula of Black 

and Scholes was outstanding by describing the distribution of underlying prices and 

option price dynamic. Moreover, Black and Scholes did not consider the smile effect is 

not considered in the model assumptions. Namely, options with varying exercise prices 

and time-to-maturities does not necessarily produce different implied volatilities, due to 

the constant volatility assumption. In case the market prices of options are reversed with 

the Black-Scholes formula to get volatility, with given exercise price, time-to-maturity, 

discount rate, and underlying price, it is entitled Black Sholes implied-volatility. This 

case is inconsistent with the assumption that the underlying price process involves 
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constant volatility because it has been noticed that options with the same underlying but 

with different exercise prices and time-to-maturities indeed comprise varying 

volatilities. A simple solution for this issue is to govern varying models per different 

strike prices and time-to-maturities, in order that these models would produce varying 

volatilities over strike-axis and time-to-maturity axis. Nevertheless, employing varying 

models could lead to divergence on the handling of option portfolios that consists of 

different strike prices and time-to-maturities.  

Eventually, the literature focused on to mitigate the constant volatility 

assumption. The recent improvement of the literature has brought forth models with 

local volatility. Merton et al. in [17] proposed that building the volatility related to time-

to-maturity. While this proposal describes the varying implied volatilities over time, it 

could not adequately analyze the volatility smile over different strikes. Dupire et al. in 

[8], and Rubinstein et al. in [20] suggest designing the volatility as a variable with 

respect to time, and also to state variables. Their perspective was adequate to produce 

the volatility smile, yet it falls to produce continuous smile behavior, which does not 

dissolve across time-period.  

Local volatility models led the approach of designing the volatility as a stochastic 

process with their deficiency. The following development is the study of Scott [21], Hull 

and White [11], and Wiggins [22]. Their design of stochastic volatility is more advanced 

than the Local Volatility Model. However, stochastic volatility models' disadvantages 

are the deficiency of having analytic solutions for European options and significant 

dependency of numerical techniques.  
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The stochastic volatility model Heston [10] is distinct from the others. Firstly, 

the Heston model involves a stochastic variance process, which is mean-reverting and 

non-negative, in line with the market. The second reason is that the Heston model 

involves a semi-closed formula for the solution European options, whose 

implementation is simple. Yet another advantage is prominent in model calibration to 

the market data. Thus, these capabilities led Heston's model to be well-known, and many 

professionals benefit from this model in many applications, such as treasury software 

implementation. 

3.2.1 Definition 

Heston in [10], introduced the following model:  

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 +  √𝑉𝑡𝑆𝑡𝑑𝑊𝑡
1 

(3. 8) 𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑆𝑡𝑑𝑊𝑡
2 

𝑑𝑊𝑡
1𝑑𝑊𝑡

2 = 𝜌𝑑𝑡 , 

where 𝑆𝑡 and 𝑉𝑡 denote the spot price and variance processes, respectively. 𝑊𝑡
1 and 𝑊𝑡

2 

are Brownian motions with the correlation coefficient 𝜌. Here, 𝜇 is the expected rate of 

return of the underlying asset. 𝜃 is the long-term mean of the variance process, 𝜅 is the 

speed of the mean reversion of the variance process; and 𝜎 stands for the volatility of 

the variance process. 

In case of 𝜌 > 0, the price process becomes more volatile as the underlying price 

or returns increase. Oppositely, in case of 𝜌 < 0, the price process becomes more volatile 

as the underlying price or returns decrease. The correlation coefficient 𝜌, then, influence 
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the skewness of the distribution. If 𝜎 equals to 0, then the second Brownian motion will 

be removed so that the volatility becomes deterministic. Hence, the log-returns are 

distributed normally. Bigger 𝜎 lead the skew/smile evident. Namely, volatility becomes 

volatile further. On the other hand, 𝜅, the mean reversion parameter 𝜅 could be explained 

as describing the degree of volatility clustering. This behavior is in line with the market; 

large price variations expected to result in significant price variations. 

3.2.2 Option Pricing Formula 

Risk neutral valuation considers contingent claim pricing under equivalent martingale 

measure. The price is calculated as the expected discounted payoff of the contingent 

claim, in the equivalent martingale measure ℚ [5]. Hence,  

𝐻(𝜅, 𝜃, 𝜎, 𝜌, 𝜆, 𝑟𝑑, 𝑟𝑓  , 𝑣𝑡, 𝑆𝑡, 𝐾, 𝜏, 𝜙) =  𝔼𝑡
𝑄⌈𝑒𝑟(𝑇−𝑡)𝐻(𝑇)⌉ , (3. 9) 

where H(T) denotes the payoff of the option at time T and r denotes the risk-free rate 

across [t, T]. Shifting from a physical measure to equivalent martingale measure is 

obtained by Girsavov’s theorem. Especially 

𝑑𝑊̃𝑡
1 = 𝑑𝑊𝑡

1 + 𝜐𝑡𝑑𝑡 

(3. 10) 

𝑑𝑊̃𝑡
2 = 𝑑𝑊𝑡

2 +  Λ(𝑆, 𝑉, 𝑡)𝑑𝑡 

𝑑ℚ

𝑑ℙ
 = 𝑒𝑥𝑝 {−

1

2
∫ 𝜐𝑠

2 +
𝑡

0

Λ(𝑆, 𝑉, 𝑠)𝑑𝑠 − ∫ 𝜐𝑠𝑑𝑊𝑠
1 −

𝑡

0

∫ Λ(𝑆, 𝑉, 𝑡)𝑑𝑊𝑡
2

𝑡

0

} 

𝜐𝑡 = 
𝜇 − 𝑟

√𝑉𝑡

 , 
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where ℙ denotes the physical measure and 𝑊̃𝑡
1 and 𝑊̃𝑡

2 are ℚ-Brownian motions. 𝜆 =

𝜆(𝑡, 𝑣, 𝑆) referred as the volatility risk premium. In measure ℚ, (3.8) is 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 +  √𝑉𝑡𝑆𝑡𝑑𝑊̃𝑡
1 

(3. 11) 𝑑𝑉𝑡 = 𝜅∗(𝜃∗ − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑆𝑡𝑑𝑊̃𝑡
2 

𝑑𝑊̃𝑡
1𝑑𝑊̃𝑡

2 = 𝜌𝑑𝑡 , 

where, 

𝜅∗ =∗ 𝜅 + 𝜆 

(3. 12) 

𝜃∗ 
= 

𝜅𝜃

𝜅 + 𝜆
 . 

We will assume 𝜆=0.  In a complete market, every asset/option corresponds to 

the same market price of risk. Yet volatility lacks direct information about itself since it 

is not a traded asset. Hence this yields incomplete market and, 𝜆(𝑡, 𝑣, 𝑆) is not a constant. 

It is apparent that (3.10) solely impose the equivalent martingale measure. This yields 

the equivalent martingale measure to be not unique and be dependent on the value of 

𝜆(𝑡, 𝑣, 𝑆). Various equivalent martingale measures will generate various option prices, 

depending on the choice of 𝜆(𝑡, 𝑣, 𝑆). At first, this could point out an issue. However, 

the issue is defeated because of the parametric nature of the model and the existence of 

a closed-form solution.  

Therefore, our risk neural-measure and physical measure is the same. With this 

assumption, we will refer derivation of the closed form solution in following paragraphs. 

Suppose a contingent claim, whose value is 𝐺(𝑡, 𝑣, 𝑆) at time 𝑡, paying 𝐺(𝑇, 𝑣, 𝑆) 

at time 𝑇. Because Heston model employs two Brownian motions, the self-financing 
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portfolio must involve the probabilities of the money market, spot market and a 

derivative instrument whose value is 𝑉(𝑡, 𝑣, 𝑆) . The differential of the wealth process 

𝑋 is given by: 

𝑑𝑋 =∆𝑑𝑆 + Γ𝑑𝑉 + 𝑟𝑑(𝑋 − Γ𝑉 − ∆𝑆)𝑑𝑡 + 𝑟𝑓∆S𝑑𝑡 , (3. 13) 

where ∆ denotes the amount of underlying held and Γ denotes the amount of derivative 

instruments 𝑉, at time 𝑡. Our goal is establishing a portfolio whose initial value is 𝑋0, 

and solving for ∆ and Γ to have 𝑋𝑡 = 𝐺(𝑡, 𝑣, 𝑆) for all 𝑡 =  [0, 𝑇]. The popular technique 

is examining the differential of 𝑋 and 𝐺. A few calculations lead the partial differential 

equation which G must solve, in order to avoid the arbitrage: 

1

2
𝑣𝑆2

𝜕2𝐺

𝜕𝑆2
+ 𝜌𝜎𝑣𝑆

𝜕2𝐺

𝜕𝑆𝜕𝑣
+

1

2
𝜎2𝑣

𝜕2𝐺

𝜕𝑣2
+ (𝑟𝑑 − 𝑟𝑓)𝑆

𝜕𝐺

𝜕𝑆

+ {𝜅(𝜃 − 𝑣) − 𝜆(𝑡, 𝑣, 𝑆)}
𝜕𝐺

𝜕𝑣
+

𝜕𝐺

𝜕𝑡
− 𝑟𝑑𝐺 = 0 . 

(3. 14) 

Here we recall that 𝜆(𝑡, 𝑣, 𝑆) represents the volatility risk premium and different 

levels of 𝜆(𝑡, 𝑣, 𝑆) would result in different risk-neutral measure and yields an 

incomplete market. Nevertheless, this is in the nature of Heston model, because the 

model has one more independent equation, Brownian motion for the variance process, 

in contrast to simpler models. For solving the partial differential equation above, the 

appropriate boundary conditions must be governed. The conditions for European options 

are given by 

𝐺(𝑇, 𝑣, 𝑆) = 𝑚𝑎𝑥{𝜙(𝑆 − 𝐾), 0} (3. 15) 

𝐺(𝑡, 𝑣, 0) = 
1 − 𝜙

2
𝐾𝑒−𝑟𝑑𝜏 

(3. 16) 
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𝜕𝐺

𝜕𝑆
(𝑡, 𝑣, ∞) = 

1 + 𝜙

2
𝑒−𝑟𝑓𝜏 

(3. 17) 

𝑟𝑑𝐺(𝑡, 0, 𝑆) = (𝑟𝑑 − 𝑟𝑓)𝑆
𝜕𝐺

𝜕𝑆
(𝑡, 0, 𝑆) + 𝜅𝜃

𝜕𝐺

𝜕𝑣
(𝑡, 0, 𝑆) +

𝜕𝐺

𝜕𝑡
(𝑡, 0, 𝑆) 

(3. 18) 

𝐺(𝑡, ∞, 𝑆) = {
𝑆𝑒−𝑟𝑓𝜏   𝜙 = +1
𝐾𝑒−𝑟𝑑𝜏   𝜙 = −1

 , 
(3. 19) 

where 𝐾 denotes the exercise price, 𝜙 specifies call options if 𝜙 = 1 and put options if 

𝜙 = −1, and 𝜏 = 𝑇 − 𝑡 stands for the time-to-maturity. Heston proposed the solution of 

the partial differential equation for European type currency option price as follows, see 

also  [13]: 

𝐻(𝜅, 𝜃, 𝜎, 𝜌, 𝜆, 𝑟𝑑, 𝑟𝑓  , 𝑣𝑡 , 𝑆𝑡, 𝐾, 𝜏, 𝜙) = 𝜙{𝑆𝑒−𝑟𝑓𝜏𝑃+(𝜙) − 𝐾𝑒−𝑟𝑑𝜏𝑃−(𝜙)} , (3. 20) 

where 𝑢1,2 = ±
1

2
 , 𝑏1 = 𝜅 + 𝜆 − 𝜎𝜌, 𝑏2 = 𝜅 + 𝜆,  and, 

𝑑j = √(𝜌𝜎𝜑𝑖 − 𝑏𝑗)2 − 𝜎2(2𝑢𝑗𝜑𝑖 − 𝜑2) 
(3. 21) 

𝑔j = 
𝑏𝑗 − 𝜌𝜎𝜑𝑖 + 𝑑𝑗

𝑏𝑗 − 𝜌𝜎𝜑𝑖 − 𝑑𝑗
 

(3. 22) 

𝐶𝑗(𝜏, 𝜑) = (𝑟𝑑 − 𝑟𝑓)𝜑𝑖𝜏

+
𝜅𝜃

𝜎2
{(𝑏𝑗 − 𝜌𝜎𝜑𝑖 + 𝑑𝑗)𝜏 − 2log (

1 − 𝑔𝑗𝑒𝑑𝑗𝜏

1 − 𝑔𝑗
)} 

(3. 23) 

𝐷𝑗(𝜏, 𝜑) = 
𝑏𝑗 − 𝜌𝜎𝜑𝑖 + 𝑑𝑗

𝜎2
(

1 − 𝑒𝑑𝑗𝜏

1 − 𝑔𝑗𝑒𝑑𝑗𝜏) 
(3. 24) 

𝑓𝑗(𝑥, 𝑣𝑡, 𝜏, 𝜑) = 𝑒𝑥𝑝{𝐶𝑗(𝜏, 𝜑) + 𝐷𝑗(𝜏, 𝜑)𝑣𝑡 + 𝑖𝜑𝑥} (3. 25) 

𝑃𝑗(𝑥, 𝑣𝑡, 𝜏, 𝑦) = 
1

2
+

1

𝜋
∫ ℜ {

𝑒−iφy𝑓𝑗(𝑥, 𝑣𝑡, 𝜏, 𝜑)

𝑖𝜑
} 𝑑𝜑

∞

0

 . 
(3. 26) 
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The functions 𝑃𝑗 denote the cumulative distribution functions (of variable 𝑦 = log 𝐾) of 

the logarithm of the spot price after time 𝜏 = 𝑇 − 𝑡 starting at 𝑥 = log 𝑆𝑡 for some trend 

𝜇. Thus: 

𝑃+(𝜙) = 
1 − 𝜙

2
+ 𝜙𝑃1(𝑥, 𝑣𝑡, 𝜏, 𝑦) (3. 27) 

𝑃−(𝜙) = 
1 − 𝜙

2
+ 𝜙𝑃2(𝑥, 𝑣𝑡 , 𝜏, 𝑦) . (3. 28) 

3.2.3 Computational issues 

The solution that Heston suggests is semi-analytical. 𝑃+(𝜙) and 𝑃−(𝜙) defined by 

(3.27) and (3.28) involve integrand functions 𝑓𝑗, that generally have oscillating 

characteristics, in [13]. have recommended performing an elementary transformation 

during the calculation of the characteristic function. They have also demonstrated that 

the stability of the derived formulas is provided on a full-dimensional and unlimited 

parameter range. Meaning that the solution uses the following instead of 𝑔j, 

𝑔j̃ =
1

𝑔j
=

𝑏𝑗 − 𝜌𝜎𝜑𝑖 − 𝑑𝑗

𝑏𝑗 − 𝜌𝜎𝜑𝑖 + 𝑑𝑗
 , (3. 29) 

which yields to new formulas for 𝐶𝑗 and 𝐷𝑗; respectively 

𝐶𝑗(𝜏, 𝜑) 

 

  

       and, 

= (𝑟𝑑 − 𝑟𝑓)𝜑𝑖𝜏

+
𝜅𝜃

𝜎2
{(𝑏𝑗 − 𝜌𝜎𝜑𝑖 − 𝑑𝑗)𝜏 − 2log (

1 − 𝑔j̃𝑒
−𝑑𝑗𝜏

1 − 𝑔j̃
)} 

(3. 30) 

𝐷𝑗(𝜏, 𝜑) = 
𝑏𝑗 − 𝜌𝜎𝜑𝑖 − 𝑑𝑗

𝜎2
(

1 − 𝑒−𝑑𝑗𝜏

1 − 𝑔j̃𝑒
−𝑑𝑗𝜏) . 

(3. 31) 
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These are to be used in (3.25). Here we emphasize the minor differences in 

(3.22) and (3.29), (3.31), (3.24) and (3.31), respectively. The only difference per pair 

is flipped plus or minus signs in front of the 𝑑𝑗’s. The inconvenience due to referring 

(3.22)-(3.24) is negligible. Actually, in case of short or middle term maturities are taken 

into consideration on valuation and back-testing, the problem might not be captured at 

all. Nonetheless, if longer maturities are considered (basically, 3-5 years or longer), 

results diverse drastically and, absolute threshold depends on parameters, for a detailed 

explanation, we refer to Albrecher  et al. and Janek et al. [1], [13]. 

3.2.4 Feller Condition 

The Cox-Ingersoll-Ross process for the variance, formulated by (3.8), is strictly 

positive. Such feature is remarkable, and yields results in line with the market.  

Nevertheless, optimally we require a strictly positive variance process, alternatively the 

underlying process converge to a deterministic function when variance process falls near 

to zero. To ensure the variance to be strictly positive, we would set condition that 

𝛼 ∶=
4𝜅𝜃

𝜎2
≥ 2 , (3. 32) 

which is often called as the Feller condition. 

Unfortunately, during estimation of the Heston model with market option prices, 

parameters that violate the Feller condition (3.32) are not rare. This is not an exhaustive 

trouble, since it is only infinitesimally small amount of time  for the variance process to 

strike zero, yet it would be concerning that very low levels of volatility (e.g. say below 
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1%) are repeatedly reached for short amounts of time and that is not something observed 

in the market. In addition to it is crucial for modeling approach, the Feller condition is a 

subject in computational efficiency. During Monte Carlo simulations Feller condition 

should also be considered in order that the simulation paths is strictly positive in case 

(3.32) is not met. Considering the option PDE, the Feller condition decides either the 

boundary of zero-variance is in- or out-flowing, namely, either the convection vector at 

the boundary points in- or outwards.  

By writing the log-spot transformed Heston PDE in convection-diffusion form, 

we have 

𝜕

𝜕𝑡
𝑈 = 𝑑𝑖𝑣(𝐴 𝑔𝑟𝑎𝑑 𝑈) − 𝑑𝑖𝑣(𝑈𝑏) + 𝑓 . (3. 33) 

Thus, we obtain 

𝑏(𝑥, 𝑣) = 𝑣 (

1
2

𝜅 + 𝜆
) + (

1
2 𝜌𝜎 + 𝑟𝑓 − 𝑟𝑑

1
2 𝜎2 − 𝜅𝜃

) , (3. 34) 

which is out-flowing at 𝑣 = 0, boundary if 

1

2
𝜎2 − 𝜅𝜃 < 0 . (3. 35) 

This is the Feller condition (3.32) is again. 
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CHAPTER 4 

DATA and CALIBRATION  

4.1 Data 

4.1.1 Description 

Data we use in this thesis has taken the vanilla option data from Bloomberg, which 

involves bids on at-the-money, risk-reversals, and butterflies for USDTRY. Our data 

consists of liquid instruments whose delta either 0.10 or 0.25. So, our options data 

consist of quotes ATM, 25RR, 10RR, 25BF, and 10BF. Then we would like to resolve 

which implied volatilities would be mapped to call or put options. Substituting (2.5) 

with (2.6) can obtain a general formula for delta-call and delta-put: 

𝜎∆𝑐𝑎𝑙𝑙  =  𝜎∆𝐵𝐹 +
1

2
𝜎∆𝑅𝑅 + 𝜎𝐴𝑇𝑀 , (4. 1) 

𝜎∆𝑝𝑢𝑡  =  𝜎∆𝐵𝐹 −
1

2
𝜎∆𝑅𝑅 + 𝜎𝐴𝑇𝑀 . 

(4. 2) 

By this the delta basis put-call parity, we are now able to form five different on deltas 

for point in volatility surface. For instance, we can obtain 𝜎10 ∆𝑐𝑎𝑙𝑙 and 𝜎10∆𝑝𝑢𝑡 from 
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(4.1) and (4.2) by using 10BF,10RR and ATM. We should find the corresponding stike 

price for instance for 𝜎10 ∆𝑐𝑎𝑙𝑙. Since our calibration method requires market implied 

volatilities in terms of strike prices and time-to-maturity, we benefit equation (2.3) to 

translate the deltas and volatilities to find the strike prices.  

The market data contain daily quotes from 11 March 2013 to 20 August 2018. 

For each day in that period, ATM, 25RR, 10RR, 25BF and 10BF quotes are taken for 

terms 1-month, 2-month, 3-month, 6-month, 9-month and 12-month. For the sake of 

simplicity only mid-volatilities (i.e. the average of the bid and the ask implied 

volatilities) have been subjected in calibration phase. It is the market practice to take 

mid-volatilities; yet it seems interesting, because volatility and price have no linear 

relation.  

Interest rates have been obtained as described in previously for tenors of implied 

volatility data requires. Bloomberg tickers listed in Table 4.1 

Spot Lag refers to number of dates between the valuation date an settlement date 

of option quotes. 

Table 4.1 Implied Volatility Sample Data. Bloomberg market data terms and conditions 

table referred in calibration and performance measuring for the Black-Scholes and the 

Heston model. Quotes are End of Day prices from 20/08/2018 

Tenor 
Bloomberg 

Ticker 
Type Delta 

Spot 

Lag 
Rate 

Business 

Day Rule 

Business 

Day Count 

1M USDTRYV1M 
At the 

Money 
50 1d 45.7175 Mod. Fol. ACT/360 

1M USDTRY25R1M 
Risk 

Reversal 
25 1d 17.46 Mod. Fol. ACT/360 

1M USDTRY10R1M 
Risk 

Reversal 
10 1d 9.6575 Mod. Fol. ACT/360 

1M USDTRY25B1M Butterfly 25 1d 1.495 Mod. Fol. ACT/360 
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Tenor 
Bloomberg 

Ticker 
Type Delta 

Spot 

Lag 
Rate 

Business 

Day Rule 

Business 

Day Count 

1M USDTRY10B1M Butterfly 10 1d 4.0475 Mod. Fol. ACT/360 

2M USDTRYV2M 
At the 

Money 
50 1d 40.2275 Mod. Fol. ACT/360 

2M USDTRY25R2M 
Risk 

Reversal 
25 1d 18.0375 Mod. Fol. ACT/360 

2M USDTRY10R2M 
Risk 

Reversal 
10 1d 9.8475 Mod. Fol. ACT/360 

2M USDTRY25B2M Butterfly 25 1d 1.5875 Mod. Fol. ACT/360 

2M USDTRY10B2M Butterfly 10 1d 4.12 Mod. Fol. ACT/360 

3M USDTRYV3M 
At the 

Money 
50 1d 37.085 Mod. Fol. ACT/360 

3M USDTRY25R3M 
Risk 

Reversal 
25 1d 18.1175 Mod. Fol. ACT/360 

3M USDTRY10R3M 
Risk 

Reversal 
10 1d 9.8 Mod. Fol. ACT/360 

3M USDTRY25B3M Butterfly 25 1d 1.665 Mod. Fol. ACT/360 

3M USDTRY10B3M Butterfly 10 1d 4.2725 Mod. Fol. ACT/360 

6M USDTRYV6M 
At the 

Money 
50 1d 32.8175 Mod. Fol. ACT/360 

6M USDTRY25R6M 
Risk 

Reversal 
25 1d 18.135 Mod. Fol. ACT/360 

6M USDTRY10R6M 
Risk 

Reversal 
10 1d 9.8475 Mod. Fol. ACT/361 

6M USDTRY25B6M Butterfly 25 1d 1.8725 Mod. Fol. ACT/362 

6M USDTRY10B6M Butterfly 10 1d 4.555 Mod. Fol. ACT/363 

9M USDTRYV9M 
At the 

Money 
50 1d 30.75 Mod. Fol. ACT/364 

9M USDTRY25R9M 
Risk 

Reversal 
25 1d 18.52 Mod. Fol. ACT/365 

9M USDTRY10R9M 
Risk 

Reversal 
10 1d 9.9225 Mod. Fol. ACT/366 

9M USDTRY25B9M Butterfly 25 1d 1.9725 Mod. Fol. ACT/367 

9M USDTRY10B9M Butterfly 10 1d 4.835 Mod. Fol. ACT/368 

1Y USDTRYV1Y 
At the 

Money 
50 1d 29.83 Mod. Fol. ACT/369 

1Y USDTRY25R1Y 
Risk 

Reversal 
25 1d 18.94 Mod. Fol. ACT/370 

1Y USDTRY10R1Y 
Risk 

Reversal 
10 1d 10.0525 Mod. Fol. ACT/371 

1Y USDTRY25B1Y Butterfly 25 1d 2.0525 Mod. Fol. ACT/372 

1Y USDTRY10B1Y Butterfly 10 1d 4.935 Mod. Fol. ACT/373 
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4.1.2 Analysis  

This section examines spot exchange rate USDTRY historical data, from period between 

11 March 2013 and 20 August 2018. In Figure 4.1 and Figure 4.2, spot rate and daily 

log returns for the period are depicted respectively. We have observed that the daily log 

returns are higher, in absolute terms, in the recent currency crisis (The diplomatic tension 

between Turkey and the United States due to the detention of the pastor, Andrew 

Brunson), indicating a volatile market.  

In Figure 4.3 a histogram of distribution of the daily log returns is presented. 

Red-colored curve denotes a normal probability density fitted to the daily log returns. 

We have also presented normal probability plot of daily log returns in Figure 4.4.  

In Figure 4.3, we have observed that the occurrences is more intense in the 

center, and the tails are fatter than implied by the normal distribution assumption. He 

we emphasize the fat tails on normal probability plot of daily log returns in Figure 4.4. 

This, and because volatility evolves overtime implies the opposite of the crucial 

assumptions in the Black-Scholes model. 
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Figure 4.1: USDTRY Spot Rates Over Time Period 2013 – 2018 
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Figure 4.2: USDTRY Daily Log Returns Over Time Period 2013 − 2018 
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Figure 4.3: Histogram of USDTRY Daily Log Returns 2013-2018 
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Figure 4.4: Probability Plot of Fitted USDTRY Daily Log Returns 2013-2018 

 

4.2 Calibration 

Here by referring calibration, we aim, searching for parameter values in order to find 

prices implied by the model that do not differ much from market prices. We have run 

calibration on daily data for each day with the least square scheme. We have used option 

data for tenors 1M, 3M, 6M, and 12M in the calibration procedure. We have left data 

with tenors 2M and 9M for out sample tests. 

Mathematically expressing, for a given model and corresponding market data, 

𝜃 = arg 𝑚𝑖𝑛 ∑
1

 𝜔𝑖
 (Π𝑖

𝑚𝑎𝑟𝑘𝑒𝑡(𝜏𝑖, 𝐾𝑖) − Π𝑖
𝑚𝑜𝑑𝑒𝑙(𝜏𝑖, 𝐾𝑖))

2

,

𝑁

𝑖=1

 (4. 3) 

where N is the number of options Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡 denotes corresponding market data and, 

Π𝑖
𝑚𝑜𝑑𝑒𝑙 is model implied volatility. In this study we consider five option quotes and four 
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different time-to-maturities which led N = 20. We have used unit weights and liquidity 

weight by setting 𝜔𝑖 = 1 and, 𝜔𝑖 = 𝜎𝑎𝑠𝑘𝑖
−  𝜎𝑏𝑖𝑑𝑖

. Weighting schemes have not 

affected the computation time significantly. 

Unit weights aim to converge absolute squared volatilities difference to zero. 

Intuitively, it is clear that unit weights puts more effort into correcting the options with 

high implied volatilities.  

We have also applied a relative weighting scheme that we call “liquidity 

weights”. We have aimed to give attention to valuable information provided by liquid 

quotes. The liquidity weights puts more effort into correcting the options that have 

narrow bid-ask spread. 

We have carried the calibration process is for all 1372 days, and per day a set of 

parameters is found for both weighting schemes; the unit weights and the relative 

weights. On average, daily calibration of the unit-weights for the Heston model have 

taken 20 seconds whereas, liquidity-weights have taken 40 seconds on average for 

Heston Model on 1.6 GHz Intel Core i5 computer. 

4.2.1 Pricing with Heston Dynamics 

The calibration process becomes complex for stochastic volatility models because the 

calculation of a set of parameters is required, and the computational effort is much 

higher. The prices are computed using partial differential equation, (3.20) recalled 

𝐻(𝜅, 𝜃, 𝜎, 𝜌, 𝜆, 𝑟𝑑 , 𝑟𝑓  , 𝑣𝑡, 𝑆𝑡, 𝐾, 𝜏, 𝜙) = 𝜙{𝑆𝑒−𝑟𝑓𝜏𝑃+(𝜙) − 𝐾𝑒−𝑟𝑑𝜏𝑃−(𝜙)} , 
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with numerical integration in MATLAB. We have employed the the built-in MATLAB 

function “quadgk” for numerical integration. Function “quadgk” applies adaptive 

quadrature using 15th and 7th order formulas for  Gauss-Kronrod pair (see details in  

[16]). 

In order to take Feller condition into account on calibration, we embed a 

nonlinear constraint for MATLAB ”fmincon” by limiting the linear function 

transformed from (3.32):   

 where 𝜀 is taken to be 0.00000001. Constraints for parameters are assumed by 

considering market practice and literature   

𝛼̃(𝜎, 𝜅, 𝜃) = 𝜎2 − 2𝜅𝜃 < 𝜀 , 
(4. 4) 

 where 𝜀 is taken to be 0.00000001. 

Constraints for parameters are assumed by considering market practice and literature , 

see in [23],  

 

 

 

  

 

For initial guess of the start day of the calibration (11 March 2013), the initial 

guess for the parameters by [9] is chosen: 

𝜅 = 1.5, 𝜃 = 0.05, 𝜎 = 0.66, 𝜌 = 0.05, 𝑣0 = 0.40. 

      0 < 𝜅 < 20 , 

    0 < 𝜃 < 1 , 

    0 < 𝜎 < 5 , 

−1 < 𝜌 < 1 , 

     0 < 𝑣0 < 1 . 



 

   53 

For following days, the previous day's optimal values are set as parameters’ initial 

values.  

4.2.2 Parameter Statistics 

In previous sections, we have described calibration characteristics. We have run the 

calibration for 1372 days in period from 11 March 2013 to 20 August 2018.  We have 

obtained 1372 number of calibrated parameter sets 𝜃𝑢𝑛𝑖𝑡 and 1372 number of calibrated 

parameter sets 𝜃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 for the unit weights and the relative weights respectively, Both  

𝜃𝑢𝑛𝑖𝑡 and 𝜃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 have been calibrated to market implied volatilities 𝜎𝑚𝑎𝑟𝑘𝑒𝑡(∆, 𝜏) with 

(𝑡, ∆) pairs such that 𝜏 = 1M, 3M, 6M, and 12M; and ∆ = 10, 25, 50, 75 and 90. 

In  and , we have presented summary statistics of calibrated parameters for the 

Heston model. Note that the standard deviation of 𝜅 is high for the Heston Model with  

unit weights . We have expected to see this outcome because, as seen in Figure 4.2,, 

mean reversion varies through time-line.  

 

Table 4.2: Statistics of Calibrated Parameters of Heston Model with Unit Weights. 

𝜃𝑢𝑛𝑖𝑡 𝜿 𝜽 𝝈 𝝆 𝒗𝟎 

Mean 4.8093 0.0223 0.4425 0.5988 0.0191 

Standard Deviation 1.6675 0.0237 0.1259 0.1006 0.0241 

Maximum 12.6445 0.5379 1.3614 0.9295 0.3529 

Minimum 0.0070 0.0059 0.0865 -0.0881 0.0020 

Median 4.6133 0.0203 0.4496 0.5837 0.0143 
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Table 4.3: Statistics of Calibrated Parameters of Heston Model with Relative Weights 

𝜃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝜿 𝜽 𝝈 𝝆 𝒗𝟎 

Mean 3.1881 0.0256 0.4007 0.6072 0.0157 

Standard Deviation 1.2015 0.0021 0.0446 0.0351 0.0073 

Maximum 8.24356 0.03224 0.60497 0.69422 0.04356 

Minimum 1.90034 0.02215 0.32263 0.50743 0.00582 

Median 3.14858 0.02531 0.39635 0.61297 0.01366 

4.2.3 Error Measures 

In this section error measurements of the empirical research are represented. Error 

measurements carried on in sample and out sample outcomes.  

In-sample set have been constituted by (𝑡, 𝜏𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆) points such that 

𝜏𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒  = 1M, 3M, 6M, and 12M; and ∆ = 10, 25, 50, 75 and; 𝑡 is any business date 

in between 11 March 2013 and 20 August 2018. We have benefited the in-sample set 

during the calibration. 

Out-sample set have been constituted by (𝑡, 𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆) points such that 

𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒 = 2M, 9M; and ∆= 10, 25, 50, 75 and 90; 𝑡 is any business date in between 

11 March 2013 and 20 August 2018. We have avoided the out-sample set while 

calibrating the parameters. 

𝜎̂(𝜏𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆; 𝜃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒), 𝜎̂(𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆; 𝜃𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒), 𝜎̂(𝜏𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆; 𝜃𝑢𝑛𝑖𝑡) 

and 𝜎̂(𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆; 𝜃𝑢𝑛𝑖𝑡) are implied volatilities that calculated with the parameter 

sets produced by the calibration procedures, and, with the Heston’s semi-closed form 

solution. The empirical performance was examined in terms of four measures. 
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The Interpolated Market Surface have been built to be used it as a benchmark on 

out-sample tests. Interpolation have been done to acquire volatility estimates of tenors 

2-M and 9-M by formula (4. 5). We have achieved 1372 number of interpolated implied 

volatility sets:  𝜎̅(∆ , 𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒) with (𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒 , ∆). 

Following tests are, carried to compare the volatility surface generated by Heston 

model and, the Interpolated Market Surface. The empirical performance was examined 

in terms of four measures. 

 

Mean Absolute Errors (MAE) 

𝑀𝐴𝐸 =
1

𝑁
 ∑|Π𝑖

𝑚𝑎𝑟𝑘𝑒𝑡 − Π𝑖
𝑚𝑜𝑑𝑒𝑙| 

𝑁

𝑖=1

, (4. 6) 

 

Mean Percentage Errors (MPE) 

𝑀𝑃𝐸 =
1

𝑁
 ∑

Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡 − Π𝑖

𝑚𝑜𝑑𝑒𝑙

Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡  

𝑁

𝑖=1

, (4. 7) 

 

Mean Absolute Percentage Errors (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑁
 ∑

|Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡 − Π𝑖

𝑚𝑜𝑑𝑒𝑙|

Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡  ,

𝑁

𝑖=1

 (4. 8) 

 

Root Mean Squared Errors (RMSE) 
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𝑀𝐴𝐸 = √
1

𝑁
 ∑(Π𝑖

𝑚𝑎𝑟𝑘𝑒𝑡 − Π𝑖
𝑚𝑜𝑑𝑒𝑙)

2
 

𝑁

𝑖=1

, (4. 9) 

where N is the number of options, Π𝑖
𝑚𝑎𝑟𝑘𝑒𝑡 is market implied volatility and, Π𝑖

𝑚𝑜𝑑𝑒𝑙 is 

model implied volatility. In this study we consider five option quotes and four different 

time-to-maturities which leads N = 20. 

MAPE measure is important since it prevents offsetting by negative and positive 

difference. Since implied volatility is small, expressed in decimals, MAPE enables more 

reasonable measurements. Following tables presents measurements results.  

We have interpolated for 2-M and 9-M volatilities with formula (4. 10). 

Following tests are, carried to compare the volatility surface generated by Heston model 

and, the Interpolated Market Surface. 

 

Table 4.4: In-sample Error Measures of Heston Model with Relative Weights 

𝝈̂(𝝉𝒊𝒏−𝒔𝒂𝒎𝒑𝒍𝒆, ∆; 𝜽̂𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆) MAE MPE MAPE RMSE 

Mean 0.0083 0.0108 0.0573 0.0092 

Standard Deviation 0.0056 0.0605 0.0320 0.0060 

Maximum 0.0291 0.1615 0.1615 0.0311 

Minimum 0.0018 (0.1442) 0.0141 0.0024 

Median 0.0066 0.0223 0.0518 0.0075 
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Table 4.5: Out-sample Error Measures of Heston Model with Relative Weights 

𝝈̂(𝝉𝒐𝒖𝒕−𝒔𝒂𝒎𝒑𝒍𝒆, ∆; 𝜽̂𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆) MAE MPE MAPE RMSE 

Mean 0.0220 (0.1789) 0.1884 0.0296 

Standard Deviation 0.0023 0.0235 0.0222 0.0027 

Maximum 0.0612 0.0087 0.1392 0.0734 

Minimum 0.0021 -0.0279 0.0136 0.0029 

Median 0.0059 -0.0029 0.0452 0.0079 

 

 

Table 4.6: In-sample Error Measures of Heston Model with Unit Weights 

𝝈̂(𝝉𝒊𝒏−𝒔𝒂𝒎𝒑𝒍𝒆, ∆; 𝜽̂𝒖𝒏𝒊𝒕) MAE MPE MAPE RMSE 

Mean  0.0044   0.0050   0.0179   0.0053  

Standard Deviation  0.0017   0.0083   0.0097   0.0020  

Maximum  0.0185   0.0436   0.0578   0.0221  

Minimum  0.0002   (0.0266)  0.0072   0.0016  

Median  0.0043   0.0052   0.0125   0.0053  

 

Table 4.7: Out-sample Error Measures of Heston Model with Unit Weights. 

𝝈̂(𝝉𝒐𝒖𝒕−𝒔𝒂𝒎𝒑𝒍𝒆, ∆; 𝜽̂𝒖𝒏𝒊𝒕) MAE MPE MAPE RMSE 

Mean  0.0270   (0.2193)  0.2376   0.0359  

Standard Deviation  0.0073   0.0494   0.0518   0.0090  

Maximum  0.0934   (0.0061)  0.3958   0.1156  

Minimum  0.0015   (0.3781)  0.0225   0.0018  

Median  0.0257   (0.2113)  0.2305   0.0346  
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Table 4.8: Out-sample Error Measures of Interpolated Market Surface 

 𝜎̅(∆ , 𝜏𝑜𝑢𝑡−𝑠𝑎𝑚𝑝𝑙𝑒) MAE MPE MAPE RMSE 

Mean 0.0159 0.0398 0.1310 0.0186 

Standard Deviation 0.0063 0.0125 0.0484 0.0075 

Maximum 0.0356 0.0723 0.3108 0.0422 

Minimum 0.0053 -0.0294 0.0479 0.0062 

Median 0.0136 0.0389 0.1207 0.0159 

 

4.2.4 Market Arbitrage Score 

Following statistics shows the percentage of model implied volatilities that are lie in 

between market bid-ask implied volatilities. This measure examines models for 

arbitrage opportunity. If a price estimate of a model fails to fall in between bid-ask prices 

it will generate arbitrage opportunity for counterparts.   

In Figure 4.5 and Figure 4.6 vertical axis shows the percentage of model implied 

volatilities that are in between market bid-ask implied volatilities at the same date for 

the delta in horizontal axis. 

In Figure 4.5 in-sample results of the Heston model with the unit weights and 

the relative weights have been presented. The bid-ask range for 25-delta and 75-delta is 

not demanding, for both Heston model with the unit weights and the relative weights 

can keep their estimates in the market bid-ask region. The Heston model with the unit 

weights have been more successful to fit bid-ask range for 90-delta; The Heston model 

with the relative weights have been more successful to fit bid-ask range for 10-delta, but 

with no significant difference. 50-delta, (at-the-money) is the point that given most 
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attention by the market players. Not surprising that at-the-money is the most liquidly 

trade quote. The Heston model with the relative weights have been more successful to 

fit the bid-ask range for 50-delta but, could not manage to be more than 90%. 

In Figure 4.6 out-sample results of the Heston model with the unit weights and 

the relative weights and Interpolated-Market-Surface have been presented. Interpolated- 

Market-Surface will be used as a benchmark for traders’ tolerance. Again, the bid-ask 

range for 25-delta and 75-delta is not demanding, for both Heston model with the unit 

weights and the relative weights can keep their estimates in the market bid-ask region 

and they are significantly better than the benchmark. The Heston model with the unit 

weights have been more successful to fit bid-ask range for 90-delta; The Heston model 

with the relative weights have been more successful to fit bid-ask range for 10-delta, but 

with no significant difference to the other and to the benchmark as well. 50-delta, (at-

the-money) is the point that given most attention by the market players. The Heston 

model with the relative weights have been the most successful to fit the bid-ask range 

for 50-delta, the most important point, with a significant difference, even in the out-

sample set. 
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Figure 4.5: In-sample Ability to Fall in Bid-Ask Spread 
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Figure 4.6: Out-sample Ability to Fall in Bid-Ask Spread 
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4.2.5 Calibration Performance by Term 

In this section volatility smiles comparison of The Heston model with the unit weights 

and the relative weights and Interpolated-Market-Surface by terms are represented for 

1-month, 3-month, 6 month and 1-year tenors. We emphasize that Heston model is able 

to follow market implied volatilities. The Heston model with the relative weights 

follows closer the market especially for ATM node. 

We have also presented the volatility smiles comparison of The Heston model 

with the unit weights and the relative weights and Interpolated-Market-Surface by terms 

for 2-month tenor and, 9-month tenor. The Heston model is not differing much to follow 

market dynamics compared to the benchmark performance to follow model dynamics. 
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Figure 4.7: Implied Volatility Comparison for 1 Month Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Figure 4.8: Implied Volatility Comparison for 2 Month Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Figure 4.9: Implied Volatility Comparison for 3 Month Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Figure 4.10: Implied Volatility Comparison for 6 Month Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Figure 4.11: Implied Volatility Comparison for 9 Month Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Figure 4.12: Implied Volatility Comparison for 1 Year Tenor. Each Volatility Smile 

Represents the Average Implied Volatilities for period between 11 March 2013 and 20 

August 2018. 
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Surface of Average Implied Volatilities estimated by The Heston model with the 

unit weights and the relative weights and Interpolated-Market-Surface is shown in 

following figures. 

 

 

Figure 4.13: Surface of Average Implied Volatilities estimated by Heston Model with 

Unit Weights. 
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Figure 4.14: Surface of Average Implied Volatilities estimated by Heston Model with 

Relative Weights.  
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Figure 4.15: Surface of Average Volatilities implied by the Market. 
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CHAPTER 5 

CONCLUSION 

In this thesis, we aimed to investigate time contingent behavior of risk factor USDTRY. 

To estimate the behavior, we have benefited option pricing models Black-Scholes with 

market interpolated volatility surface and Heston model with two different weighting 

schemes.  

Since risk-neutral valuation requires, we have designed another process to 

estimate the risk-free rates for both USD and TRY currency. We have governed OIS 

discounting framework for risk-free rate estimate. To best of our knowledge, this is the 

first study that benefits OIS discounting to estimate a risk-free rate for TRY nominated 

instruments.  

We have conducted in-sample and out-sample tests to measure the estimation 

power of the models. We have also investigated the model performance by varying 

tenors. We have developed a method to measure the models if they are precise enough 

to generate implied volatilities in the observed bid-ask range of the market.  

In context of the measurements, the Heston model, especially with liquidity 

weights, has managed to follow the market dynamics and produce similar error 
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performance per the benchmark, the Adjusted Black-Scholes model. Calculation costs 

required by the Heston model have not differed from the Black-Scholes’ computation 

costs, significantly, since the Heston model provides a semi-closed form option 

valuation. Moreover, the Heston model can provide risk-neutral or arbitrage-free pricing 

as an advantage and does not breach the tolerance that traders’ have been welcome 

already. 

We have observed that incorporating the liquidity weights significantly have 

improved the Heston model performance. Future work would be to use the bid-ask prices 

during the calibration process as a boundary condition. Then, we could expect a higher 

percentage for implied volatility estimates that have not breached the bid-ask limits. On 

the other hand, the effects of the bid-ask boundary conditions on calibration time and 

parameter development should be monitored.   
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