
IMPROVING REINFORCEMENT LEARNING USING DISTINCTIVE CLUES
OF THE ENVIRONMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALPER DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

NOVEMBER 2019





Approval of the thesis:

IMPROVING REINFORCEMENT LEARNING USING DISTINCTIVE
CLUES OF THE ENVIRONMENT

submitted by ALPER DEMİR in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering, METU

Dr. Erkin Çilden
Co-supervisor, STM Defense Tech. Eng. and Trade Inc.

Examining Committee Members:

Prof. Dr. H. Altay Güvenir
Computer Engineering, Bilkent University

Prof. Dr. Faruk Polat
Computer Engineering, METU

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Erol Şahin
Computer Engineering, METU

Assoc. Prof. Dr. Mehmet Tan
Computer Engineering, TOBB ETU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Alper Demir

Signature :

iv



ABSTRACT

IMPROVING REINFORCEMENT LEARNING USING DISTINCTIVE
CLUES OF THE ENVIRONMENT

Demir, Alper

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

Co-Supervisor : Dr. Erkin Çilden

November 2019, 120 pages

Effective decomposition and abstraction has been shown to improve the performance

of Reinforcement Learning. An agent can use the clues from the environment to either

partition the problem into sub-problems or get informed about its progress in a given

task. In a fully observable environment such clues may come from subgoals while

in a partially observable environment they may be provided by unique experiences.

The contribution of this thesis is two fold; first improvements over automatic subgoal

identification and option generation in fully observable environments is proposed,

then an automatic landmark identification and an anchor based guiding mechanism

in partially observable environments is introduced. Moreover, for both type of prob-

lems, the thesis proposes an overall framework that is shown to outperform baseline

learning algorithms on several benchmark domains.

Keywords: Reinforcement Learning, Automatic Subgoal Identification, Options Frame-

work, Automatic Landmark Identification, Anchor Based Guiding

v



ÖZ

ÇEVREDEN GELEN BELİRGİN İPUÇLARINI KULLANARAK
PEKİŞTİRMELİ ÖĞRENMEYİ GELİŞTİRME

Demir, Alper

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Ortak Tez Yöneticisi : Dr. Erkin Çilden

Kasım 2019 , 120 sayfa

Etkili ayrıştırma ve soyutlamanın Pekiştirmeli Öğrenme performansını arttırdığı bir-

çok çalışmada gösterilmiştir. Bir etmen, çevrenin ipuçlarını ya sorunu alt sorunlara

bölmek ya da verilen bir görevdeki ilerleyişi hakkında bilgilenmek için kullanabilir.

Tamamen gözlenebilir bir ortamda bu tür ipuçları, alt hedeflerden gelebilirken, kıs-

men gözlenebilir bir ortamda ender gözlenen tecrübeler ile sağlanabilir. Bu tezde iki

aşamalı bir katkı sunulmuştur; tamamen gözlemlenebilir ortamlarda otomatik alt he-

def tanımlama ve seçenek oluşturma konusunda iyileştirmeler önerilirken, otomatik

olarak bir yer işareti tanımlaması ve kısmen gözlenebilir ortamlardaki destek nokta-

larına dayanan bir yönlendirme mekanizması da tanıtılmıştır. Ayrıca, her iki model

türü için de tez, birkaç ölçüt problemdeki temel öğrenme algoritmalarından daha iyi

performans gösteren genel bir çerçeve önermektedir.

Anahtar Kelimeler: Pekiştirmeli Öğrenme, Otomatik Alt Hedef Tespiti, Seçenekler

Çatısı, Otomatik Yer İşareti Tespiti, Destek Nokta Temelli Yönlendirme

vi



Dedicated to my dear family

vii



ACKNOWLEDGMENTS

I would like to start by thanking my supervisor, Prof. Dr. Faruk Polat. His wisdom

and passion for research have guided me throughout my academic career. He acted as

a father figure, supporting me in every way he could. His professionalism and rational

viewpoint have always impressed me. I hope that one day, I could be an academic in

his standards.

I would also like to thank my co-supervisor, Dr. Erkin Çilden, to starting me off by

giving his code base, examining every minor issue and contributing to this thesis. It

is a blessing to have someone like Erkin as he always had the time to discuss on the

work, patiently correct my mistakes and help with my academic writing.

I am lucky to meet Hüseyin Aydın, who became a dearest friend over the years. We

had many good moments besides beating our brains out on research topics. I have

always enjoyed his companion through life. I sincerely hope that we could publish a

paper together in the future.

I am grateful to be the child of a two excellent educators, Necmeddin and Emel Demir.

My father have always pushed me forward by providing an amazing leadership. Hav-

ing a Ph.D. was his vision for me and without him I wouldn’t know what to do. My

courage and passion originates from my mother. As a strong woman, she set a great

example for pursuing my goals. I know that she will never give up on me. As art

teachers, my parents inspired me by their touching on people’s lives. Also, I am so

lucky to have a fun sister Başak, that I know, will accomplish great things in life. I

love them so much.

Finally, I want to thank my girlfriend Melek. We started dating at the beginning of

this Ph.D. Although we lived in different cities, I have always felt at home when we

were together. Over the years, we studied, travelled and shared a happy life together.

Living in the same city with her was one of the main motivations to complete my

thesis in such a short time.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Definition . . . . . . . . . . . . . . . . . . 1

1.1.1 Clues of the Environment . . . . . . . . . . . . . . . . . . . . 2

1.1.1.1 Subgoals . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1.2 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1.3 Anchors . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . 9

ix



2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Semi Markov Decision Processes . . . . . . . . . . . . . . . . . . . 10

2.3 Partially Observable Markov Decision Processes . . . . . . . . . . . 10

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Sarsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Eligibility Traces . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3.1 Q(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3.2 Sarsa(λ) . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Abstractions in Reinforcement Learning . . . . . . . . . . . . . . . . 15

2.5.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Macro-Q Learning . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Reinforcement Learning with Hidden States . . . . . . . . . . . . . . 16

3 GENERATING EFFECTIVE INITIATION SETS . . . . . . . . . . . . . . 19

3.1 Automatic Subgoal Identification . . . . . . . . . . . . . . . . . . . 20

3.2 Automatic Option Generation . . . . . . . . . . . . . . . . . . . . . 23

3.3 History Tree Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 35

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 39

4 A CONCEPT FILTERING APPROACH FOR DIVERSE DENSITY . . . . 41

x



4.1 Diverse Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Diverse Density for Automatic Subgoal Identification . . . . . . . . . 42

4.3 Diverse Density with Concept Filtering . . . . . . . . . . . . . . . . 43

4.3.1 Bridging and Clustering Coefficients . . . . . . . . . . . . . . 44

4.3.2 Congestion Ratio . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Concept Filtering with Congestion Ratio . . . . . . . . . . . . 46

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 51

4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 54

5 AUTOMATIC LANDMARK DISCOVERY . . . . . . . . . . . . . . . . . 57

5.1 Landmarks and Landmark-POMDPs . . . . . . . . . . . . . . . . . . 59

5.2 SarsaLandmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Diverse Density with Concept Filtering . . . . . . . . . . . . . . . . 60

5.4 The Extended SarsaLandmark Framework . . . . . . . . . . . . . . . 61

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.1 Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 70

5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 73

6 ANCHOR BASED GUIDANCE . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



6.2 Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Reward Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Intrinsic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.6 Anchor Based Guidance . . . . . . . . . . . . . . . . . . . . . . . . 82

6.8 Automatic Anchor Discovery . . . . . . . . . . . . . . . . . . . . . 86

6.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.9.1 Problem Domains . . . . . . . . . . . . . . . . . . . . . . . . 88

6.9.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.9.3 Learning Performances . . . . . . . . . . . . . . . . . . . . . 93

6.9.4 Analysis on Guidance with Subsets of Anchors . . . . . . . . 98

6.10 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 99

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xii



LIST OF TABLES

TABLES

Table 3.1 Sizes and reference publications given with determinism status of

the action’s outcomes for the environments used in this chapter. The sub-

script F represents full observability. . . . . . . . . . . . . . . . . . . . . 30

Table 3.2 Learning parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.3 Parameter values used for automatic subgoal identification methods. 34

Table 3.4 Average number of steps to goal per episode for automatic subgoal

identification experiments with 95% confidence interval. Standard devia-

tion of the values are given in the parentheses. . . . . . . . . . . . . . . . 36

Table 3.5 Average initiation set sizes with Segmented Q-Cut algorithm given

with 95% confidence interval. Standard deviations are given in the paren-

theses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3.6 Average memory usage per episode (KB) for automatic subgoal

identification experiments with 95% confidence interval. Standard devia-

tion of the values are given in the parentheses. . . . . . . . . . . . . . . . 37

Table 3.7 Average CPU time consumption (msec) per episode for automated

experiments with 95% confidence interval. Standard deviation of the val-

ues are given in the parentheses. . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.1 Sizes and reference publications given with determinism status of

the action’s outcomes for the environments used in this chapter. The sub-

scripts F and P represents full and partial observability. . . . . . . . . . . 49

xiii



Table 4.2 Reward per step results averaged over 50 experiments. . . . . . . . . 51

Table 4.3 Number of used concepts and time results averaged over 50 experi-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5.1 Problem sizes, the number of landmarks in the problems (including

the goal states) and their reference publications. The problems marked

with ∗ are modified versions of their originals and the sub-script P repre-

sents partial observability. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 5.2 Average number of steps taken in the problem domains. The values

are given with their %95 confidence interval. . . . . . . . . . . . . . . . 70

Table 5.3 Number of concepts used for automatic landmark identification. . . 71

Table 6.1 Details of the domains used in the experiments for Anchor Based

Guidance. The sub-script P represents partial observability. . . . . . . . . 88

Table 6.2 Details of the estimated state space with different state estimation

forms where κ is the average aliasing ratio. . . . . . . . . . . . . . . . . . 92

Table 6.3 Anchor identification performance of DDCF under different learn-

ing algorithms. Values are given with their lower and upper bound of

confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 An example task of taxi driving where picking up a passenger is

a subgoal to reach the goal of carrying a passenger to a destination. . . . 3

Figure 1.2 An example task of taxi driving in a partially observable envi-

ronment where the location when the museum is seen on the left is a

landmark state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3 An example task of taxi driving in a partially observable environ-

ment where observing a museum on the left is not unique but observing

a second one after going straight is an anchor. . . . . . . . . . . . . . . 5

Figure 2.1 Reinforcement learning sketch. . . . . . . . . . . . . . . . . . . 11

Figure 3.1 2Rooms2DoorsF domain with state names where the sub-script

F represents full observability. The doorways, s100 and s101, are sub-

goal states and the goal state is named as G. . . . . . . . . . . . . . . . 26

Figure 3.2 Comparison of option lag and history tree heuristics for initiation

set generation on an example episode. . . . . . . . . . . . . . . . . . . 27

Figure 3.3 Domains used in the experiments. The goal states are marked as

G in the grid world domains (except TaxiF). . . . . . . . . . . . . . . 31

Figure 3.4 Number of steps to reach the goal state for each subgoal identi-

fication method with different heuristics in 4Rooms4DoorsF domain. . 35

xv



Figure 4.1 Sample graphs colored by (a) BC (b) CR(3) (c) 1/CC(2) (d)

CR(2) values. Brighter is better. . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2 Domains used in the experiments where the goal states are marked

as G. Numbers in 2Rooms1DoorP indicate the identifiers of observa-

tions gathered by the agent when it resides in the corresponding grid

cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.3 Subgoals found in 2Rooms1DoorF domain. Brighter color

means higher number of identification as a subgoal. . . . . . . . . . . . 52

Figure 4.4 Subgoals found in 2Rooms1DoorP domain. Brighter color

means higher number of identification as a subgoal. . . . . . . . . . . . 53

Figure 5.1 SarsaLandmark with MDD/DDCF workflow. Shaded parts are

the steps that DDCF introduces to MDD. . . . . . . . . . . . . . . . . . 61

Figure 5.2 Domain sketches. In ElevatorEscapeP, the light switch, the

button and the elevator positions are marked with S, B, E and the goal

states and the landmark states are marked with G and L in the other

domains. The states marked as L* in LargeLandmarkGridP are the

additional landmark states, emerging due to the observation semantics

of the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.3 Observation transition graphs of the smaller domains. The goal

states and landmark states are labeled as G and L, respectively. . . . . . 66

Figure 5.4 Observation transition graphs of the larger domains. The goal

states and landmark states are labeled as G and L, respectively. . . . . . 67

Figure 5.5 Average CPU time usage for DD approaches. . . . . . . . . . . 71

Figure 5.6 Precision and recall comparisons of DDCF against MDD. . . . . 72

Figure 6.1 An example mapping from the set of estimated states X to the

set of true states S in a POMDP with hidden states. . . . . . . . . . . . 76

xvi



Figure 6.2 Example 2D grid world domain where the agent can take four

navigational actions and gets observations based on the presence of a

wall in those directions. The goal state is marked as G. . . . . . . . . . 78

Figure 6.3 An illustration of an abstract model for a sample grid world do-

main (6RoomsP, see Figure 6.5a for the original sketch). The anchors

correspond to the doorways and the goal state is marked with G where

circles and dashed lines represent the anchors and transitions between

anchors in the abstract model. . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.4 The workflow of Reinforcement Learning when the agent is

equipped with the coupling of DDCF and ABG. . . . . . . . . . . . . . 86

Figure 6.5 Sketches of the domains used in the experiments for Anchor

Based Guidance. The goal states are marked with G in the grid world

domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 6.6 A simple example in ToH3P problem where seeing only one rod

may correspond to multiple configurations but a transition from one to

another with left action is specific to a single state, creating an anchor

formed as x = ot−1at−1ot. . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 6.7 Observation transition graphs of the domains. The goal states

are labeled as G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.8 Average number of steps taken to reach the goal state in 6-

RoomsP domain where the state estimation has the form of x = ot.

The dashed line represents the best value from the MDP version of the

problem and shaded areas are the 95% bootstrapped confidence intervals. 95

Figure 6.9 Average number of steps taken to reach the goal state in 4-

Rooms4HallwaysP domain with different state estimation forms. Shaded

areas are the 95% bootstrapped confidence intervals. . . . . . . . . . . . 95

xvii



Figure 6.10 Average number of steps taken to reach the goal state in 4-

Rooms4HallwaysP domain where the state estimation has the form

of x = ot−1ot. The dashed line represents the best value from the MDP

version of the problem and shaded areas are the 95% bootstrapped con-

fidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 6.11 Average number of steps taken to reach the goal state in ToH3P

domain with different state estimation forms. Shaded areas are the 95%

bootstrapped confidence intervals. . . . . . . . . . . . . . . . . . . . . 97

Figure 6.12 Average number of steps taken to reach the goal state in ToH3P

domain where the state estimation has the form of x = ot−1at−1ot.

The dashed line represents the best value from the MDP version of the

problem and shaded areas are the 95% bootstrapped confidence intervals. 97

Figure 6.13 Average number of steps to goal in 4Rooms4HallwaysP when

ABG is fed with the different subsets of the anchor set. The percent-

age of the provided subsets are given in parentheses and the confidence

intervals are omitted for better view. . . . . . . . . . . . . . . . . . . . 98

Figure 6.14 Comparison of DDCF + ABG to ABG with the subsets of an-

chors in terms of average number of steps to goal in 4Rooms4HallwaysP.

The percentage of the provided subsets are given in parentheses and

shaded areas are the 95% bootstrapped confidence intervals. . . . . . . . 99

xviii



LIST OF ABBREVIATIONS

AI Artificial Intelligence

RL Reinforcement Learning

MDP Markov Decision Process

SMDP Semi-Markov Decision Process

POMDP Partially Observable Markov Decision Process

LoBet Local Betweenness

LCut Local Cuts

SegQCut Segmented Q-Cut

ToH Tower of Hanoi

ER Experience Replay

DD Diverse Density

MI Multiple Instance

MDD McGovern’s Diverse Density

DDCF Diverse Density with Concept Filtering

ABG Anchor Based Guiding

PBRS Potential Based Reward Shaping

xix



xx



CHAPTER 1

INTRODUCTION

Learning is an important part of intelligence. Taking lessons from past experiences

leads to higher achievements and plays a crucial role in an intelligent creature’s pros-

perity. As a baseline for intelligence, humans are experts on understanding patterns

and finding clues in their environment. This skill of ours makes us fast learners and

enable us to comprehend abstract notions and solve complex tasks. The speed of

learning is especially a key point when each experience may have the potential of

danger. Hence, keeping up with the clues of the world is a clever way to overcome

such situations.

Reinforcement learning (RL), as many other machine learning methods, focuses not

only the final learned concept, but also the efficiency on learning it [1]. A reinforce-

ment learning agent interacts with an environment and learns by feedbacks. Such

feedbacks come as rewards or punishments based on the action taken and the aim is

to maximize the sum of rewards taken. Thus, the agent forms a policy, a function

determining what action to employ in which state. Since the agent is expected to act

while learning, the fast convergence to a good policy is the main focus.

1.1 Motivation and Problem Definition

A machine learning method faces the scalability problem whenever it operates on real

life. As the data grows dramatically, understanding and processing it in a reasonable

amount of time becomes the main challenge. To overcome this issue in RL, many

offered methods like partitioning the problem into smaller and easier chunks, making

abstractions to shrink the size of the learning space and finding hierarchies in the

1



task. These ideas depend on the success of identifying the patterns and clues of the

world.

Learning is also challenging when the knowledge about the world is limited. In such

a situation, a RL agent has to make the best of its perceptions about the environ-

ment. Even though the information from the world is uncertain, there may be some

experiences that serve as clues for success.

1.1.1 Clues of the Environment

An environment that a RL agent operates on contains natural clues. Such clues may

arise from the structure of the problem model or the semantics of the actions. Their

presence can be used to increase the speed of learning if they can be identified in the

early stages of learning. A clue may point to a partitioning of the problem or show a

hierarchy on which states should be visited in which order. Moreover, a clue can be

utilized to inform the agent about its progress in the learning task.

1.1.1.1 Subgoals

One type of the clues in an environment is subgoal. A subgoal can be defined as a

state that needs to be visited in order to reach the goal [2, 3] or a bottleneck state that

enables transition between regions of space [4, 5, 6, 7]. Subgoals help to partition the

problem into sub-problems so that these sub-problems can be solved more easily and

their solutions are to be used to form the overall solution. They naturally contain a

hierarchy in them, thus their presence can improve Reinforcement Learning.

For example, in Figure 1.1, an agent aims to learn the task of driving a taxi. Obviously,

this task has two stages; picking up a passenger and carring her/him to the intended

location. In this example, picking up the passenger serves as a subgoal to the goal

of completing the whole task. By dividing the problem into two, an agent can first

learn how to pick up a passenger, then it may make an abstraction over this task and

use this abstract action (or macro action) in its learning. Driving the passenger to a

destination results in the generation of another abstract action, carrying the passenger.

2



1st St

2n
d

St
3r

d
St

4t
h

St

Figure 1.1: An example task of taxi driving where picking up a passenger is a subgoal

to reach the goal of carrying a passenger to a destination.

Having these abstract actions improves the learning speed as the agent does not need

to consider the primitive actions in each trial anymore.

In Chapter 3, we propose an improvement on the generation of a well known macro

action form, called option, and experiment on it with the well known subgoal identi-

fication methods.

1.1.1.2 Landmarks

Under partial observability, finding clues is both challenging and crucial for learning.

When the perceptions are limited and lead to ambiguous observations, an agent has no

other way but to hold on to the unique ones such as the ones given by landmark states.

A landmark has many definitions over few fields, yet in RL, it is a state that gives a

unique observation in partial observable problems [8]. Because states may cause the

same observations under limited perception, a landmark acts as an important clue.

Consider the same example of driving a taxi, but now, the streets are not named

and they all look like the same as in Figure 1.2. Without any knowledge about the

neighbourhood, the agent has to cling on the unique structures. In this example, there

is one museum that can be used to navigate towards the passenger to complete the

first sub-task. Here, observing a museum on the left is a unique observation in the

problem since there is no other location that such an observation can be get. This

3



Figure 1.2: An example task of taxi driving in a partially observable environment

where the location when the museum is seen on the left is a landmark state.

location, by definition, is a landmark state and it can be used to direct the agent by

giving instructions as “take a right turn when you see the museum on the left”.

In Chapter 5, we devised a framework that can identify the landmarks of a partially

observable problem and use them in an on-policy algorithm that has been shown to

work under such settings [8].

1.1.1.3 Anchors

In the case where uncertainty in the perceptions is high, the agent may have to keep

some sort of memory to distinguish the states of the problem from each other. Find-

ing a method to keep a good memory is a challenging task and it may not always end

up overcoming ambiguity. In such problems, there may be no landmark states with

unique observations but some experiences may be unique. These experiences, that

we call anchors, can be dependable in an uncertain environment. We define an an-

chor as a compact information that uniquely maps to a state in a partially observable

environment.

In Figure 1.3, the same example of driving a taxi under perceptual aliasing is modified

by adding another museum. Assuming that both museums look the same to the agent,

now, observing a museum on the left is not unique by itself, hence the problem has no

landmark states. However, the sequence of observing one on the left, going straight

and observing another on the left is specific to a certain location. When the agent

4



Figure 1.3: An example task of taxi driving in a partially observable environment

where observing a museum on the left is not unique but observing a second one after

going straight is an anchor.

keeps such a memory, this anchor experience can help it to base its learning on it.

In Chapter 6, we further extend the idea of landmark states to anchors and propose a

method to reward the agent when an abstract transition between two anchors occurs

in order to help finding a good policy under partial observability.

1.2 Proposed Methods

This thesis proposes methods to improve Reinforcement Learning with the help of

clues in an environment. It covers both fully and partially observable problems. The

methods that we offer are as follows:

• In Chapter 3, a coupling of automatic subgoal identification with an improved

option generation mechanism is given. Our heuristic, named history tree, fo-

cuses on improving the initiation set generation resulting in more effective op-

tions,

• In Chapter 4, a concept filtering mechanism for a subgoal identification method,

called Diverse Density (DD) is introduced. Also, Diverse Density has been

shown to work on both fully and partially observable problems for the task of

finding clues to success,

5



• In Chapter 5, we further move our focus to POMDPs with hidden states and

more known notion of landmarks. We propose an overall framework that can

identify the landmarks online and use them in the learning updates of Sarsa-

Landmark,

• In Chapter 6, we put a wider definition for clues under partial observability,

define anchors, and demonstrate a method to inform the agent about its move-

ments by introducing additional rewards. We couple the algorithm with Diverse

Density and Concept Filtering (DDCF) to make it a complete framework.

1.3 Contributions and Novelties

Throughout this thesis, we have focused on improving Reinforcement Learning by

utilizing the clues of the environment. We devise algorithms that helped the agent

under both full and limited perceptions.

Our contributions are as follows:

• Our history tree heuristics improves over the greedy approach of including all

previously visited states to an option’s initiation set in order to generate goal

directed options. The method is merged with automatic subgoal identification

and forms a complete online algorithm for automatic abstractions in RL,

• We proposed a novel metric, called congestion ratio, that is employed in con-

cept filtering in Diverse Density search for subgoals. Eliminating redundant

concepts decreases the time and memory consumption of Diverse Density al-

gorithm,

• We experimented with Diverse Density on problems with hidden states and

showed that it is useful to identify important observations under partial observ-

ability, which is a challenging and unexplored field,

• We employed Diverse Density for automatic landmark identification task which

enabled algorithms like SarsaLandmark to work on realistic scenarios since the

original algorithm assumes the landmark are known beforehand. Our complete

framework is shown to work on several problems,

6



• We put a wider definition on the unique experiences under uncertainty, called

anchor, and further utilized such clues to inform the agent about its progress

by providing additional rewards. We again used DDCF for online anchor dis-

covery and showed that the proposed algorithm dramatically increases learning

speed on different levels of state estimation.

1.4 The Outline of the Thesis

The thesis is organized as follows: Chapter 2 establishes a background on the prob-

lem that we attacked and states several algorithms that are well accepted in the field.

Chapter 3 proposes the history tree heuristics to improve option generation mecha-

nism. Then, Chapter 4 introduces the concept filtering method to a well known sub-

goal identification algorithm called Diverse Density, in order to improve its compu-

tation requirements and experiments on both fully and partially observable problems.

Next, the focus of the thesis further moves towards problems with hidden states. In

Chapter 5, we further experiment with Diverse Density and our proposed version of

it, Diverse Density with Concept Filtering, for the task of finding landmarks online

and combine the methods with an on-policy learning algorithm for problems with

landmarks, named SarsaLandmark. Finally, Chapter 6 defines anchors and devises a

guiding method based on them. It couples DDCF with this guiding algorithm to form

a realistic algorithm.

7



8



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we provide the necessary background that covers the focus of this

thesis. The chapter introduces the environment models, explains well known learning

methods on them and summarizes existing related work on the topics of the thesis.

2.1 Markov Decision Processes

In RL context, a decision problem is usually modeled by a Markov decision process

(MDP) which is defined as a tuple 〈S,A, T,R〉, where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A× S → [0, 1] is a transition function, and

• R : S × A→ < is the reward function.

T (s, a, s′) is a function indicating the probability of being in state s′ if action a is

performed in state s, which has the property ∀s ∈ S, ∀a ∈ A,
∑

s′∈S T (s, a, s′) = 1.

It specifies whether a problem is deterministic or stochastic, where a stochastic prob-

lem has more than one non-zero values for different s′ values unlike a deterministic

problem having only one ending state for any state and action pair.

R(s, a) is the immediate reward yielded by the environment after taking action a

in state s. A problem may have sparse rewards and provide a positive reward only

upon reaching a designated goal state. In such settings, it is especially difficult to

experience a high reward transition, so that the learning also becomes difficult.

9



An MDP holds an important property called Markov property which is denoted as;

P (st+1|s1, ..., st−2, st−1, st) = P (st+1|st)

It indicates that the current state of the environment contains enough information

about the problem so that the future is independent of the past given the present. In

this model, a reinforcement learning agent can base its predictions on the current state

without requiring any other information.

2.2 Semi Markov Decision Processes

One of the models used in this work is the Semi-MDP (SMDP) which is an abstraction

of MDP over time aiming to model transitions with stochastic time duration (i.e. an

action can take more than one time step). It is a tuple 〈S,A, T,R, F 〉 where

• the first four terms define an MDP,

• and F (t|s, a) denotes the probability that starting at s, action a completes

within time t [9].

Obviously, MDP is a special form of SMDP with a step function having a jump at 1

[10]. Importance of SMDP is its ability to model temporal abstractions on an MDP

so that improvements can be made both inside the abstracted actions and among the

abstractions [10].

2.3 Partially Observable Markov Decision Processes

The other model is the Partially Observable MDP (POMDP), which is defined by a

tuple 〈S,A, T,R,Ω, O〉

• defined by an MDP (S, A, T and R),

• a finite set of observations Ω,

• and an observation function O : S × A× Ω→ [0, 1].

10



Agent Environment

Actions

Perceptions

Rewards

Figure 2.1: Reinforcement learning sketch.

O(s′, a, o) represents the probability of getting the observation o after the agent takes

the action a in the state s [11]. POMDP is a generalization of MDP that enables to

model a partially observable environment.

One of the interpretations of POMDP assumes the set of states are completely hid-

den, and the model provides a very limited set of observations, violating the Markov

property. According to this interpretation, the observation function O can map differ-

ent states to the same observation, causing a fundamental problem called perceptual

aliasing [12]. Perceptual aliasing makes it very difficult, sometimes even impossible,

to solve the task especially when the optimal actions for these states are different and

cannot be identified relying on the same observation.

2.4 Reinforcement Learning

Reinforcement learning (Figure 2.1) is a machine learning strategy that aims to learn

which action to take on which situation [1]. It forms a model where an agent inter-

acts with an environment, gets perceptions and rewards based on its actions. As the

environment dynamics is unknown, the agent needs to discover while learning.

In RL point of view, an environment is modeled by one of the previous forms and the

feedbacks provided to the agent is determined by the reward function of the model.

The agent aims to map an action to every state so that it learns how to act in the

environment.

11



A specific decision behaviour schema in a RL problem is called a policy, defined as

π : S × A→ [0, 1], which is the probability of selecting an action in a state.

The aim of RL is to find the optimal policy π∗ which maximizes the expected dis-

counted return received by the learning agent, defined as;

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

where 0 ≤ γ ≤ 1 is the discount rate. Discount rate determines how important the fu-

ture rewards are. A low discount rate causes agent to put more value on the immediate

rewards while a high one leads to more consideration on the future rewards.

The unsupervised characteristic of RL is the fact that the reward and transition func-

tions are initially unknown, otherwise the optimal policy could easily be found us-

ing classical dynamic programming techniques. However, π∗ can still effectively be

found by estimating the value function (i.e. function giving the value of being in a

state on the way to goal) incrementally. Incremental estimation approach makes use

of the average cumulative rewards over different trajectories obtained by following a

policy to calculate the value function and gives rise to the central idea of most RL

algorithms, called the temporal difference (TD) [13].

2.4.1 Q-Learning

A well known TD algorithm using state/action-values (i.e. Q-values) instead of state-

values is named Q-Learning [14], and is credited for its simplicity and ease of use.

The update rule for Q-Learning is

Q(s, a)← (1− α)Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)] (21)

where α ∈ [0, 1) is the learning rate, γ ∈ [0, 1) is the discount factor and s is

the state which the agent employed action a and reached to state s′. Q-Learning has

been shown to converge to the optimal action-value function under standard stochastic

approximation assumptions.

Q-Learning is an off-policy learning algorithm, that is, it uses the action that leads to

the highest Q-value in its update rule but not directly the one that the policy chooses.

12



2.4.2 Sarsa

Sarsa is an on-policy learning algorithm that uses the Q-value of the action employed

by the current policy [15]. Basically, the update rule is changed to;

Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, a′)] (22)

where a′ is the action that is chosen by the current policy. The name of the algorithm

originates from the quintuple 〈s, a, r, s′, a′〉.

As the algorithm uses the Q value of the next state and action pair, the learning is

focused on the current policy. The difference to the original Q-Learning algorithm

resides in the transitions where the agent took a non-greedy action, possibly due to an

ε-greedy action selection mechanism.

2.4.3 Eligibility Traces

As a bridge between the one-step approach of temporal difference methods and Monte

Carlo methods, eligibility traces were introduced in which the agent leaves decaying

traces over the previous transitions and employs the value updates based on these

traces.

The traces allow a reward to propagate to the previous transitions much faster, leading

a faster convergence. The algorithms that adopted this idea, like Q(λ) and Sarsa(λ),

were shown to find good policies [14, 16] where λ represents the decay factor of the

eligibility traces.

Technically, there are two ways to introduce eligibility traces; traces can be accu-

mulated in each time step and decayed after the Q-update or the trace of the current

state-action pair can be replaced to 1.0 while all the others decayed and then Q-update

can be employed. Due to its better performance, we followed replacing trace tech-

nique throughout this thesis [1].

13



2.4.3.1 Q(λ)

Q(λ) is the adaptation of Q-Learning algorithm that includes eligibility traces [14].

It leaves a decaying trace over the previously visited state-action pairs, representing

their eligibility to the current temporal difference update. Although there are different

versions of the algorithm, Watkins’ Q(λ), which we followed in this study, resets the

traces whenever the agent takes a non-greedy action, to keep the algorithm truly off-

policy.

At a time step t with transition 〈st, at, rt, st+1〉, it calculates the temporal difference

error δt = rt + γ ·maxa′∈AQt(st+1, a
′)−Qt(st, at), and follows the updates;

ηt(st, at) = 1

∀(s 6= st or a 6= at), ηt(s, a) =

0 if Qt−1(st, at) 6= maxa′∈AQt−1(st, a
′)

γ · ηt−1(s, a) otherwise

∀s, a, Qt+1(s, a) = Qt(s, a) + α · ηt(s, a) · δt

(23)

where ηt(s, a) is the eligibility trace of the state-action pair 〈s, a〉 at time step t, α is

the step size and λ is the trace decay constant.

Note that this version of the algorithm with replacing traces, resets them if the taken

action was non-greedy based on the Q-values in time step t− 1, i.e. the agent did not

take the action with the maximum Q-value.

2.4.3.2 Sarsa(λ)

Sarsa(λ) is a family of on-policy learning algorithms that uses the notion of eligibility

traces [16]. It follows the same idea of updating the regular Q values of state-action

pairs with an error while leaving a trace over the previously visited state-action pairs.

Unlike Q(λ), it uses the next state-action pair’s Q-value in the temporal difference

error and does not reset the eligibility traces on non-greedy actions, since it is an

on-policy learning algorithm.

After the agent experiences the transition 〈st, at, rt, st+1〉 at time step t in which the

agent gathers state st+1 and receives reward rt by taking action at on the state st, the

14



following update rules are employed in the corresponding order:

ηt(st, at) = 1

∀(s 6= st or a 6= at), ηt(s, a) = γ · λ · ηt−1(s, a)

∀s, a, Qt+1(s, a) = Qt(s, a) + α · ηt(s, a) · δt

(24)

where ηt(s, a) is the eligibility trace of the state-action pair 〈s, a〉 at time step t, α is

the step size, λ is the trace decay constant, δt = rt + γ ·Qt(st+1, at+1)−Qt(st, at) is

the TD-error at time step t and at+1 is the action that the agent chooses by its action

selection mechanism.

By means of the parameter 0 ≤ λ ≤ 1, the algorithm maintains a decay over the

eligibility traces, together with a reset operation at the end of each episode. Sarsa(λ)

is shown to converge to a good policy on both fully and partially observable environ-

ments [16].

2.5 Abstractions in Reinforcement Learning

Reinforcement learning is a trial-and-error type of learning method and it is important

to decrease the number of trials as each trial has the potential of leading a highly

negative reward.

One approach to achieve the optimal strategy with the least number of steps is to adopt

the divide-and-conquer method. By dividing a given task into sub-tasks, solving each

sub-task and merging their solutions, an agent can solve the task much faster.

2.5.1 Options

Merging sub-solutions to form the overall solution to a task requires abstractions.

One way to form an abstraction over actions in an SMDP model is to use Options

framework [10]. An option is a macro-action, formed by the primitive actions of the

underlying MDP, allowing agent to take a multi-step action. Such an option can be

used to solve a sub-task and lead to a higher level of learning.

15



An option o is defined by a tuple 〈I, πo, β〉 where

• I is the initiation set, I ∈ S, the set of states that o can be employed at,

• πo : S × A→ [0, 1], the local policy of o, and

• β : S → [0, 1], the probability of termination.

An agent employs an option o in a state s ∈ I, follows πo until o is terminated

according to β. It is common to terminate an option when the agent steps out of the

initiation set I.

2.5.2 Macro-Q Learning

As the agent forms abstractions and generates options in an SMDP, it needs to use

them in the learning process. An adaptation of Q-learning, called Macro-Q Learning,

is proposed to serve that purpose [17]. In Macro-Q Learning, we also keep the Q

values of state-option pairs, Q(s, o), additional to the Q values of state-action pairs,

Q(s, a). The values of state-action pairs are updated according to the regular Update

Rule 21 where the value of option ot which is employed at state st at time t is updated

according to the following rule;

Q(st, ot)← Q(st, ot) + α(γnmax
o′
Q(st+n, o

′)−Q(st, ot)

+rt+1 + γrt+2 + ...+ γn−1rt+n)
(25)

Here, n represents the number of steps that ot lasted, st+n represents the state that ot

terminated at, o′ is the option from st+n that has the maximal Q value and rt+i is the

reward received at time t+ i. The update rule uses a discounted reward by the time it

is received.

2.6 Reinforcement Learning with Hidden States

In a more realistic setting, the agent is not capable of gathering all information re-

garding the task, yet its perception is somehow limited. Such a model is formed with

partially observable MDPs, providing observations rather than states.

16



There are two interpretations for POMDPs in the literature. One assumes that the

MDP structure is either known or estimated, i.e. the agent knows the set of states,

the set of observations and the transition function, yet does not know the observation

function. In such a setting, the agent is capable of keeping a probability distribution

over the set of states, called belief state [18], and update it with new observations from

the environment by using Bayes rule, leading to the field of Bayesian Reinforcement

Learning [19, 20, 21, 22, 23].

The other interpretation, which we followed in this thesis, constitutes a more realistic

setting where there is no knowledge about the underlying semantics of the model and

the agent only gets observations from the environment. In fact, the agent is clueless

on if its sensations are limited to represent the current state of the world.

In a POMDP with hidden states [24], the agent has to find a policy based only on

the observations from the environment. Since such a setting creates a non-Markovian

problem, it is not always feasible to find the optimal action depending only on the

observations due to perceptual aliasing. In fact, it has been shown that the regular

RL algorithms based on the most recent observation, such as Q-Learning [14], fail to

converge to a good policy when the agent’s perception is limited [25].

In such a partially observable environment, the agent has to estimate the true state by

employing additional approaches. A state estimate is the agent’s representation of the

current state in the environment and the agent aims to find a policy defined over the

set of estimated states. Such an estimate can be formed by a fixed length memory

[26], by keeping the previous observation-action pairs. A better way is to extend

the memory whenever it is required to form a good policy, leading to variable length

memory approaches such as Utile Suffix Memory (USM), Nearest Sequence Memory

(NSM) and U-Tree [24]. Also, more complex solutions such as Long Short-Term

Memory(LSTM) has been shown to work in these settings [27]. Finally, eligibility

traces are also used in POMDPs with hidden states where the state variable s in the

update rules of the algorithms like Q(λ) and Sarsa(λ) are replaced with the estimated

state variable x.

17



18



CHAPTER 3

GENERATING EFFECTIVE INITIATION SETS

One of the challenges in reinforcement learning [1], as in most of the machine learn-

ing frameworks, is the adverse effect of the problem size to time complexity of the

solution procedure. A classic approach to cope with this problem is the divide and

conquer strategy. Essentially based on this strategy, there are a few approaches trying

to diminish the adverse effects of dimensionality problem. The idea is that, if one

can divide the problem into sub-problems, it may be easier to solve the sub-problems

first (also potentially eliminating some repetitions in solution effort by reuse of sub-

solutions), and then combine the sub-solutions to achieve the answer to the overall

problem. In the solution point of view, there is a close resemblance of this decompo-

sition with the hierarchical algorithmic structures, handling the sub-solutions as the

abstractions or macros invoked whenever it is beneficial to do so. These attempts

gave rise to three prominent families in the area: options framework [10], value func-

tion decomposition [28], and hierarchical abstract machines [29].

Among the approaches, options framework drew attention due to its generality and

ease of implementation, where an option is nothing but a time extended abstract

action (or macro action). Since the original definition of the framework assumes that

the abstractions are provided in some way before learning, it becomes more effective

when coupled with a problem partitioning scheme, like subgoal discovery [3, 4].

Definition of an option involves an initiation set (states at which an option may start)

and a termination condition (how an option terminates). Partitioning mechanisms,

like subgoal discovery, usually deal with how to accurately identify the termination

condition, since its quality determines effectiveness of the partitioning. However,

very few studies deal with the initiation set (actually, almost none of them has its sole

19



focus on the initiation set generation), leaving the whole burden to the related action

selection strategy.

In this chapter, we claim that how you select the option starting points is as important

as how you determine the termination points, and can have a direct impact on solu-

tion quality. Thus, we propose a novel approach to generate effective initiation sets so

that higher quality options can be derived, increasing learning speed. Our proposed

approach [30] can provide advantage to the agent in the systems that requires reason-

ing under uncertainty, so that it is universal to the problems that can be modeled as a

Markov Decision Process.

3.1 Automatic Subgoal Identification

It is known that partitioning the problem into sub-problems boosts learning perfor-

mance in RL [28, 31]. One of the various approaches is to focus on finding subgoals

within the state space, so that they can be used as a partitioning hint. There are num-

ber of different automatic subgoal discovery methods which are mainly distinguished

based on the types of clues used to seek the bottlenecks. One approach keeps track of

the irregularities or peaks of the reward signal, and is not suitable for problems with

delayed reinforcement [32]. Another one is based on state observation frequencies,

where a state with higher visitation score is a stronger subgoal candidate than others,

and is marked so if it passes a statistical filter [2, 33, 4]. These methods usually re-

quire problem specific statistical parameter values, and extensive exploration of the

problem.

Few researchers tried to make use of the information gathered during RL, like some

structural properties or the relative orientation of the reward peak, to identify subgoals

[34, 35].

In the graph based methods, a state transition diagram is constructed first, using ex-

periences. Then, different techniques such as clustering are incorporated to separate

the strongly connected regions from each other, and the states in between are marked

as subgoals [3, 36, 7].

20



Three graph based methods are in focus of this chapter as they are used in the experi-

ments. Two of them, Local Betweenness and L-Cut, are proposed by Simsek [4] in her

thesis where she models the problem of subgoal identification as a binary classifica-

tion with target and non-target states. Simsek forms a definition of an access state that

allows accessing to different regions of the state space. By using metrics working on

local information, Simsek’s approach keeps observations based on these metrics and

feeds them to the following Decision Rule formed with the help of Bayesian decision

theory;

n+

n
>

ln 1−q
1−p

ln p(1−q)
q(1−p)

+
1

n

ln(
λfa
λmiss

p(N)
p(T )

)

ln p(1−q)
q(1−p)

(31)

Here, the term “observation” is different then the one in a POMDP model. It can

be either a positive or a negative observation determined by a local metric. In the

Decision Rule 31, n is the total number of times a state is observed, n+ is the total

number of times that a state is observed to be a target candidate, p is the probability

of a positive observation given a target state (an access state), q is the probability

of a positive observation given a non-target state, λfa is the cost of a false alarm

(classifying a non-target state as target), λmiss is the cost of a miss (classifying a

target state as non-target), p(N) is the prior probability of non-target states and p(T )

is the prior probability of target states. Note that p(T ) and p(N) represents the prior

Bayesian belief observing a target or a non-target state.

By its definition, Decision Rule 31 marks the states which produced positive obser-

vations by the used local metric. Since each metric highlights bottleneck states, i.e.

states that act as narrow passageways in between regions of state space, a target state

in the equation corresponds to a subgoal in this setting. Both of the terms of on the

right depend on class conditional probabilities of observations where the second term

on the right is also dependent on the prior probabilities and costs of classification er-

rors. Also, the second term prevents initial noisy results and decays as the number

of observations increase. Note that, Decision Rule 31 uses parameters that should be

guessed or estimated beforehand. For further details, reader is encouraged to check

Simsek’s thesis [4].

Local Betweenness (LoBet) is one of the graph based methods proposed by [4] using

local interaction graphs derived through experienced transitions, meaning that the de-

21



cision is made by using locally collected information. A node in an interaction graph,

formed by the experiences of the agent, represents a state where an edge represents

a transition between two states. The method is based on the betweenness measure

of a graph usually credited for its use in social network analysis [37]. Betweenness

of a vertex in a graph is defined as the ratio of shortest paths on the graph, between

all possible sources and targets, that pass through the vertex of interest to the total

number of shortest paths. Local betweenness is the betweenness of a state in a local

interaction graph. Formally, the betweenness value of a vertex v is∑
s 6=t6=v

σst(v)

σst
wst (32)

where σst is the number of shortest paths from vertex s to t, σst(v) is the number of

such paths that pass through v, wst is the weight of the path from s to t as the graph

may contain weights (or costs) on edges representing the weight of the transitions.

Local Betweenness produces positive observations for the states with maximum be-

tweenness value among its neighbours and the observations for each state is then fed

to the Decision Rule 31.

Local Cuts (LCut) is another local graph based method again proposed by [4], aiming

to partition the local interaction graph into two according to a metric called normal-

ized cut (NCut) introduced by [38]. NCut measures the quality of the cut with given

two partitions. NCut is defined as

NCut(A,B) =
cut(A,B)

vol(A)
+
cut(B,A)

vol(B)
(33)

where A andB are two partitions (two sets of nodes), cut(A,B) is defined as the sum

of the weights of the edges that start in A and end in B and vol(A) is defined as the

sum of the weights of all edges that start in A, and edge weights denote transition fre-

quencies. The algorithm employs spectral clustering for the partitioning of the local

interaction graph. Then, it calculates NCut value of the partitioning for determin-

ing the cut quality. If NCut value is lower than a predetermined threshold called cut

threshold (tc), indicating that the partitions are well separated, then the border states

of this cut get a positive observation while the others get a negative one. Again, these

observations are fed to the Decision Rule 31 for further elimination.

Q-Cut is another automatic subgoal identification approach proposed by [3] which is

based on finding border states of the strongly connected areas within the interaction

22



graph. Unlike Simsek’s methods, Q-Cut seeks for a global criterion that chooses bot-

tlenecks by viewing all state transitions. The algorithm performs a Max-Flow/Min-

Cut algorithm on the transition graph built by using the history, paying attention to

the arc (i.e. transition) capacities calculated through a relative visit frequency metric.

A source state s and a target state t are required for the algorithm to operate, and

how to choose these states is problem specific. The quality of the cut is determined

by identification of a small number of bottleneck states that can separate balanced

chunks of the state space. In Q-Cut algorithm, this quality is maintained by the rati-

ocut bipartitioning metric [39]

Q[Ns, Nt] =
|Ns||Nt|
A(Ns, Nt)

(34)

where A(Ns, Nt) is the number of arcs connecting both sets (Ns, Nt), and take into

account the cuts whose quality factor is above a domain specific quality threshold

(tq) where high tq means a cut with well separated sets of nodes. Q-Cut works well

for problems where one bottleneck state leads to the other, but for many problems,

a linear partitioning scheme is not suitable. An extended version of Q-Cut, named

Segmented Q-Cut (SegQCut) uses bottlenecks discovered so far as a segmentation

tool, and iterate over segments by means of a divide-and-conquer approach.

Although they are effective in fully observable domains, these methods require exten-

sive exploration of the domain, and are limited with the capabilities of the underlying

graph algorithms. For partially observable problems, on the other hand, there are

very few related studies, mostly focusing on temporal abstraction mechanisms with-

out subgoal identification [40].

3.2 Automatic Option Generation

By itself, Options framework provides only a formal definition yet does not lead to

a method to form an effective option. Most greedy approach may be to focus on the

initiation set and the termination condition of an option to shape its effective domain

and focus [10].

In RL literature, most studies work on setting the termination condition as options

mostly used as a macro action to lead the agent to a particular region in the state space.

23



Such regions can be the bottleneck parts of the problem, dividing it to sub-problems.

Automatic subgoal identification algorithms form options ending in a found subgoal

to further make use of the subgoals in the learning process.

On the other hand, forming the initiation set of an option is mostly done greedily.

Such an approach includes all the states except the target ones (the states that the

option is aimed to) to the initiation sets and expects the agent to learn not to employ

an option in a state where the option is not useful. Besides the greedy approach of

including all states [41], some studies put restrictions to the states that are going to

be included to the initiation set of an option. While Stolle et al. forms a restriction

based on reachability to the target state [33], Simsek et al. puts a temporal restriction

called option lag [42]. Option lag heuristic adds the states seen before a target state

(possibly a subgoal) to the initiation set of the option reaching it, with the assumption

that there is a path from these states to the target one. The threshold temporal distance

from this target state is given with a parameter named option lag.

Other studies in the literature concentrate on the repeating sub-sequences in the ex-

periences of the agent instead of finding subgoals [43, 44]. Identifying useful sub-

sequences enable the agent to form useful options while learning. Such identification

is carried out by keeping past experiences in a memory [43] while some studies im-

prove the storage of experiences by keeping them in a shortcut tree structure, decreas-

ing the memory usage [44].

Options framework is further extended to different types of the problem model. In a

problem with continuous state space, skills (or options) can be formed in a way that a

skill terminates in the initiation set of the next skill, forming a skill chain [45]. Also,

some studies adopt the framework to factored MDPs by focusing on the reachability

criteria [46, 47].

The last part of an option, the local policy, is formed with a common method called

Experience Replay [48]. Experience Replay (ER) stores the previous transitions

(state, action, reward, next state tuples) in a memory and replays them to form a

policy. In case of option generation, the original rewards taken from the environment

are not used. In fact, artificial rewards replace them so that reaching to the target

states of the option is further rewarded while leaving the initiation set is punished.

24



3.3 History Tree Heuristic

This section proposes a heuristic method, called history tree heuristic [30], to identify

useful states to generate initiation sets of options, in the conventional option setting.

Our initial findings [49] suggest that a goal oriented initiation set generation based on

local history analysis may improve option quality. In majority of the related litera-

ture, the initiation set is defined by using a simpler heuristic and the focus is usually

on determination of a good termination condition. However, our history tree based

heuristic shows that the initiation set of an option is an integral part of the abstraction,

and a good heuristic may positively affect the overall learning performance. By exten-

sive experimentation on various problems, we show the effectiveness of our heuristic

method, coupled with well known subgoal identification algorithms.

As an integral part of the option generation process, selection of states for the initi-

ation set is important. Guiding the option with some information about the environ-

ment characteristics, like the relative orientation of reward peaks, are likely to have

positive impact on option performance, especially at the initial stages of learning.

This study aims to improve the widely used greedy approach for initiation sets, which

is generating the set using the simple “not in target set” strategy (possibly with some

additional restricting criteria), in such a way that it increases the overall option quality.

Assuming that the termination conditions are determined in some way beforehand

(like subgoal identification, manual design, option transfer etc.) and are potentially

useful upon reaching the goal, our intuition is that a target state usually possesses a

relative orientation, in terms of short term benefit, with respect to some states in the

overall state space. In other words, reaching a state s (designated to a termination

condition) from a certain subset of state space can be relatively more beneficial on

the way to goal, compared to other portions of the state space from which reaching s

is not really meaningful.

One of the popular greedy strategies selects the initiation set states among the ones

visited before the target state occurrences within an episode. The number of transi-

tions to check before the target state of the option is an externally supplied parameter

called the option lag (ol) [42]. In other words, option lag limits the number of recently

25



s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17

s18

s19

s20

s21

s22

s23

s24

s25

s26

s27

s28

s29

s30

s31

s32

s33

s34

s35

s36

s37

s38

s39

s40

s41

s42

s43

s44

s45

s46

s47

s48

s49

s50

s51

s52

s53

s54

s55

s56

s57

s58

s59

s60

s61

s62

s63

s64

s65

s66

s67

s68

s69

s70

s71

s72

s73

s74

s75

s76

s77

s78

s79

s80

s81

s82

s83

s84

s85

s86

s87

s88

s89

s90

s91

s92

s93

s94

s95

s96

s97

s98

s99

s100

s101

s102

s103

s104

s105

s106

s107

s108

s109

s110

s111

s112

s113

s114

s115

s116

s117

s118

s119

s120

s121

s122

s123

s124

s125

s126

s127

s128

s129

s130

s131

s132

s133

s134

s135

s136

s137

s138

s139

s140

s141

s142

s143

s144

s145

s146

s147

s148

s149

s150

s151

s152

s153

s154

s155

s156

s157

s158

s159

s160

s161

s162

s163

s164

s165

s166

s167

s168

s169

s170

s171

s172

s173

s174

s175

s176

s177

s178

s179

s180

s181

s182

s183

s184

s185

s186

s187

s188

s189

s190

s191

s192

s193

s194

s195

s196

s198

s199

s200

s201

Figure 3.1: 2Rooms2DoorsF domain with state names where the sub-script F rep-

resents full observability. The doorways, s100 and s101, are subgoal states and the goal

state is named as G.

visited states to be included into the initiation set of the option reaching a terminal

state. This strategy is based on the idea that there is a path reaching the target state

from each state visited before, and a similar ordering is likely to occur again in the

future episodes.

Although it seems reasonable, this idea does not always hold. In fact, some states

before the target state of an option may not need to visit the target state in order to

reach to the goal state. Let us examine such a case in 2Rooms2DoorsF domain

showed in Figure 3.1. Figure 3.2a shows the behaviour of option lag heuristic on an

sample episode where the agent travels to the right room by the subgoal s100 and goes

back to the left room by visiting the subgoal s101. In this case, option for reaching

s101 is not useful from the states on the right room. However, the option lag heuristic

ignores such information. It just puts those states into the initiation set, and hopes the

action selection mechanism to make the necessary distinction in the future. Unfortu-

nately, this unnecessary option transaction grabs learning time until the utility values

saturate, which negatively effects the overall performance of learning. Moreover, the

sequence of states in the option lag interval may have loops. In such a case, the set of

observed states are much smaller than the interval, causing a smaller initiation set to

be generated.

Our proposed approach in Algorithm 1 forms the initiation set of an option by making

26



...

G...s101s109s108...s100...s0

ol

...

(a) Example state history that the agent travels from the right room to the left room through s101 in

2Rooms2DoorsF domain. The states are ordered according to visitation from left to right.

G

s109

s101

s97

od

...
...... ...

(b) An example tree generated by history tree heuristic on the episode in Figure 3.2a. The circles

represent the states and arrows represent the parenthood relationship between the states.

Figure 3.2: Comparison of option lag and history tree heuristics for initiation set

generation on an example episode.

a smarter selection of states. Given a target state, our algorithm uses a history tree

to include the states that should be directed towards the target state. Such direction

is derived by the location of the goal state(s) and only the states that should visit the

target one to reach the goal state(s) are included to the initiation set of the option

reaching it. Moreover, as the history tree does not contain repetitions, the resulted

initiation set is bigger than the one of the option lag heuristic. Figure 3.2b shows how

our approach handles the case in the example episode. As the structure of the problem

suggests a direction to the right room, our heuristic does not include the states on the

27



Algorithm 1 HISTORY _TREE_HEURISTIC
Require: a history H

Require: a terminal state st {we assume the terminal state is known in advance}

Ensure: initiation set I

1: sr ← FIND_ROOT(H , st)

2: parent(sr)← null, Vsr ← 0,

3: for each episode e ∈ H ending with sr do

4: i← length(e)− 2

5: while i ≥ 0 do {calculate state values backwards in history}

6: if Vsi is undefined ∨ (ri+1 + γ ∗ Vsi+1
) > Vsi then

7: Vsi ← ri+1 + (γ ∗ Vsi+1
)

8: parent(si)← si+1

9: end if{get rid of loops}

10: i← i− 1

11: end while

12: end for

13: V ← {sr}, E ← ∅
14: for each state s 6= sr do

15: V ← V ∪ {s} {vertices of the tree}

16: E ← E ∪ (s, parent(s)) {edges of the tree}

17: end for

18: I ← traverse sub-tree of (V,E) rooted by st down to depth od (excluding st) and

collect each visited state

19: return I

right room (like s109) to the initiation set of the option reaching to s101.

Given a target state st (possibly a subgoal), Algorithm 1 first establishes a suitable

root state sr by using Algorithm 2 in order to form a tree where each node has a

parent node to reach except the root node. Algorithm 1 forms the tree so that a node

is directed in a path towards the found root state.

Algorithm 2 finds a possible goal state, visited at the end of an episode, so that it can

be used as the root node of the history tree and the new option can be directed at it.

28



Algorithm 2 FIND_ROOT
Require: a history H

Require: a terminal state st

Ensure: a root state sr

1: Esi ← 0,∀si ∈ H {number of reward peaked episodes ending with si containing

st}

2: for each episode e ∈ H do

3: Let sn be the last state of e

4: Let rn be the last reward achieved in e

5: if st ∈ e and rj < rn where 1 < j < n then

6: Esn ← Esn + 1

7: end if

8: end for

9: st ← arg maxEsi

10: return st

As a problem may have multiple goal states, the algorithm traverses over the episode

history of the agent (Algorithm 2, line 2), checks the episodes ending with a reward

peak, i.e. episodes where the maximum reward is taken at the end (Algorithm 2, line

5), and returns the last state which the target state st is used most to reach (Algorithm

2, lines 9 and 10). Here, the goal is to find an accurate direction for the new option.

With sr selected as the root node, the algorithm creates a shortest path tree from each

visited state to sr by iterating over the set of all episodes ending with sr (Algorithm

1, line 3). It keeps a value V for each state, which is calculated with the discounted

rewards taken in the way from a state to the root sr. Then, every sub-history (or

episode) is traversed backwards (Algorithm 1, line 5) and a parent state, a state best

to go in order to reach the root state, is selected for every visited state (Algorithm

1, lines 6-9). In line 17, a history tree with V vertices and E edges is generated

where V consists of the traversed states and E consists of transitions from a state to

its parent (Algorithm 1, lines 13-17). Finally, the sub-tree rooted by the target state

st is traversed down and the states in this sub-tree except st are included the initiation

set of the option reaching st (Algorithm 1, line 18). The traversal depth is controlled

by a parameter called option depth (od).

29



Figure 3.2b illustrates a portion of a tree generated by the algorithm in the example

domain of 2Rooms2DoorsF. The sub-tree traversal starts from s101 in the example

and ends at the depth od.

The remaining parts of the option is generated in ways that are identical to the greedy

strategy with option lag heuristic. The termination probability of the states in the

initiation set are set as 0.0, and a probability of 1.0 is assigned for the target states

and the policy to reach the terminal state is generated via ER.

3.4 Experiments

In order to compare the performance of different initiation set generation heuristics,

we experimented by coupling option generation with well known automatic subgoal

discovery methods, namely Local Betweenness (LoBet), Local Cuts (LCut) and Seg-

mented Q-Cut (SegQCut), so that a completely automatic process is tested. The fol-

lowing sections provide the experiment settings, results and discusses on them.

3.4.1 Problem Domains

Table 3.1: Sizes and reference publications given with determinism status of the ac-

tion’s outcomes for the environments used in this chapter. The sub-script F represents

full observability.

Problem |S| |A| Action Noise Reference

2Rooms2DoorsF 202 4 Yes [3]

VirtualOfficeF 212 4 Yes [50]

4Rooms4DoorsF 404 4 Yes [2]

4Rooms3DoorsF 403 4 Yes [2]

TaxiF 500 6 Yes [28]

ToH5F 243 6 No [51]

The experiment set of this study (given in Table 3.1) include different versions of

grid world domains and deterministic and non-deterministic domains with different

30



number of actions. Sketches of the domains are also given in Figure 3.3.

(a) 2Rooms2DoorsF (b) VirtualOfficeF

(c) 4Rooms4DoorsF (d) 4Rooms3DoorsF

(e) TaxiF (f) ToH5F

Figure 3.3: Domains used in the experiments. The goal states are marked as G in the

grid world domains (except TaxiF).

In grid world domains (2Rooms2DoorsF, VirtualOfficeF, 4Rooms4DoorsF

and 4Rooms3DoorsF), the agent is located in the grid cells and can employ four ac-

tions as north, east, south and west. Actions are non-deterministic, the agent moves to

the intended direction with a probability of 0.9 and randomly to any of the movement

directions with 0.1 probability. Initially, the agent is located at any cell in the room(s)

on west. The agent receives a positive reward of 1.0 upon reaching the goal state and

31



no reward or punishment for any other movements.

In TaxiF domain (Figure 3.3e), the agent tries to transfer a passenger from a desig-

nated location to his desired location. As in the other grid world problems, the agent

can move to the four compass directions, and can perform two additional passenger

related actions pickup and putdown. At any given time, the passenger can be located

at one of the cells marked R, G, B, Y, or in the taxi. The pickup and putdown actions

are effective only when the taxi agent is at one of the designated cells. Initially, the

taxi agent is in any one of the grid cells, and the passenger is at one of the designated

cell locations. Any navigation action succeeds with probability 0.8, otherwise lead-

ing the agent to the left or right with respect to the intended movement direction with

probability 0.1 each. The agent receives −10.0 punishment for wrong pickups and

putdowns and a +20.0 reward for a successful transfer of the passenger to its desired

location. All other transitions yield a default reward value of −1.0.

ToH5F (Figure 3.3f) problem is the representative of classical puzzle games in our

problem set. In its classical definitions, the problem consists of m rods and n disks in

different sizes. The problem starts with all of the disks placed on one of the rods in

the order of increasing size. The aim is to move the disks one by one to another rod

so that at the end, they would be placed on that rod in the same order. The movement

of a disk is valid only if it is the uppermost disk in the rod, and is to be placed either

on an empty rod or on top of a disk of larger size. In our experiments, we set m = 3

and n = 5. For this setting, there are 6 disk movement actions, and the agent can only

move one disk per action step. The actions are deterministic, where an invalid action

causes no change in the environment. The agent is rewarded by 1.0 when the goal

state is reached, and punished by −0.1 if it employs a non-valid action. Any other

action yields a default punishment of −0.01.

3.4.2 Settings

While the general learning parameters are given in Table 3.2, the parameters used for

the subgoal discovery methods are as in Table 3.3. Parameters in Table 3.3 are iden-

tified by a number of trial-and-error runs, so that each method finds enough number

of useful subgoals to effectively improve learning.

32



Table 3.2: Learning parameters.

Algorithm Parameter Value

Q/Macro-Q

Learning

α 0.05

γ 0.9

ε 0.1

Experience

Replay

α 0.125

γ 0.9

rβ +1000.0

rĨ −100.0

rdefault −1.0

After the terminal states are set and the formation of the initiation sets is complete,

ER is employed by the agent to generate the policy through the states in the initiation

set to reach the terminal state. A transition is rewarded +1000.0 upon reaching the

terminal state, and punished with −100.0 for leaving the initiation set, and given a

−1.0 punishment for any other transition. The learning parameters of ER are α =

0.125 and γ = 0.9. An option is terminated upon reaching the terminal state with

probability 1.0, while it is terminated at any state in the initiation set with probability

of 0.0. The ER parameters are given in Table 3.2. The ER procedure is repeated 10

times to achieve a fast convergence of the Q function.

Macro-Q Learning is used with learning parameters as given in Table 3.2. All of the

methods are compared against the regular Q-Learning using same learning parameters

without options. Test results are averaged over 200 experiments.

The parameters option lag and option depth are set in such a way that the resulting op-

tions have initiation sets with approximately the same number of states on the average

for both approaches with a maximum difference of 3 states. On the other hand, the

initiation set generation heuristic of Segmented Q-Cut algorithm (which we will call

segmentation from now on) does not possess any parameters to control the initiation

set size. Thus, the related experiments are not restricted with the “almost equal initi-

ation set size” condition, that is, the resulted options does not have the same amount

of states in their initiation sets for each heuristics.

33



Table 3.3: Parameter values used for automatic subgoal identification methods.

Problem
Parameters used

Method p q tc tq te

2rooms LoBet 0.7 0.07 - - -

2doorsF LCut 0.2 0.01 0.05 - -

SegQCut - - - 1000 10

Virtual LoBet 0.8 0.08 - - -

OfficeF LCut 0.1 0.01 0.05 - -

SegQCut - - - 1000 15

4Rooms LoBet 0.5 0.05 - - -

3DoorsF LCut 0.2 0.01 0.015 - -

SegQCut - - - 1000 10

4Rooms LoBet 0.5 0.05 - - -

4DoorsF LCut 0.2 0.002 0.05 - -

SegQCut - - - 2000 10

TaxiF

LoBet 0.3 0.03 - - -

LCut 0.04 0.002 0.05 - -

SegQCut - - - 1000 200

ToH5F LoBet 0.9 0.09 - - -

LCut 0.25 0.025 0.05 - -

SegQCut - - - 200 10

Segmented Q-Cut is run upon reaching an episode threshold te, in order to guaran-

tee that the agent has explored the problem enough to derive an almost stable (i.e.

unchanging) state transition graph. The initial source and target state pairs used in

Segmented Q-Cut is given manually (specific for each problem) so that the algorithm

can make a reasonable partitioning. The heuristic for including the states in the seg-

ments partitioned by Segmented Q-Cut is also compared with the other heuristics.

Each subgoal discovery method is separately tested with different initiation set for-

mation heuristics.

34



3.4.3 Results and Discussion

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100
n
u
m

b
e
r 

o
f 

st
e
p

s

episode

 Q w/o options

 Macro-Q w/ LoBet history tree

 Macro-Q w/ LoBet option lag

(a) LoBet

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100

n
u
m

b
e
r 

o
f 

st
e
p

s

episode

 Q w/o options

 Macro-Q w/ LCut history tree

 Macro-Q w/ LCut option lag

(b) LCut

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20  40  60  80  100

n
u
m

b
e
r 

o
f 

st
e
p

s

episode

 Q w/o options

 Macro-Q w/ SegQCut history tree

 Macro-Q w/ SegQCut option lag

 Macro-Q w/ SegQCut segmentation

(c) SegQCut

Figure 3.4: Number of steps to reach the goal state for each subgoal identification

method with different heuristics in 4Rooms4DoorsF domain.

One representative result for 4Rooms4DoorsF domain is given in Figure 3.4 and

all of the results are given in Table 3.4 due to sake of space. As it can be seen in

Table 3.4, the learning performance of the options generated by history tree heuristic

35



Table 3.4: Average number of steps to goal per episode for automatic subgoal identi-

fication experiments with 95% confidence interval. Standard deviation of the values

are given in the parentheses.

Problem
Q

Macro-Q w/ LoBet Macro-Q w/ LCut Macro-Q w/ SegQCut

option lag history tree option lag history tree option lag segmentation history tree

2Rooms 664.14± 115.35 448.54± 125.03 303.59± 117.31 437.78± 114.97 319.09± 114.94 524.05± 137.06 311.50± 137.58 312.64± 136.62

2DoorsF (401.80) (434.53) (408.64) (400.47) (400.38) (477.43) (479.22) (475.90)

Virtual 524.73± 107.13 365.21± 101.22 265.88± 86.63 351.97± 99.41 282.23± 92.75 474.49± 130.99 268.43± 107.01 332.73± 106.69

OfficeF (478.39) (451.98) (386.82) (443.92) (414.18) (584.93) (477.85) (476.42)

4Rooms 735.04± 139.73 510.22± 145.21 310.78± 114.23 429.62± 129.93 303.52± 112.71 457.91± 138.97 292.90± 124.20 284.42± 122.21

4DoorsF (700.66) (728.17) (572.78) (651.54) (565.19) (696.88) (622.82) (612.81)

4Rooms 2996.29± 612.96 1462.88± 477.44 589.65± 379.91 3055.58± 825.86 1137.27± 456.27 1379.49± 530.97 917.44± 510.30 961.35± 513.35

3DoorsF (3073.69) (2394.13) (1905.04) (4141.30) (2287.95) (2662.55) (2558.89) (2574.20)

TaxiF 157.83± 3.65 114.67± 4.00 77.92± 3.97 112.64± 3.65 92.89± 3.72 151.22± 3.65 150.01± 4.62 148.14± 4.76

(58.81) (64.48) (63.99) (58.73) (59.97) (73.82) (74.37) (76.63)

ToH5F 857.21± 108.91 827.67± 128.77 304.95± 104.01 921.17± 113.18 530.32± 120.94 1103.91± 201.50 687.55± 118.93 662.32± 114.60

(546.15) (645.71) (521.57) (567.56) (606.44) (1010.43) (596.37) (574.67)

outperforms the one with the option lag heuristic, for all of the subgoal discovery

methods and for all of the problem domains. History tree heuristic includes only the

states that the option is proven to be useful on the way to goal, and by this way, the

agent gets rid of a significant amount of unnecessary learning time. On the other hand,

the performance of the options with segmentation heuristic is very close to the ones

with history tree heuristic. Since segmentation heuristic includes all the non-terminal

states in the source segment partitioned by the cut to the initiation set of the terminal

state, the generated options tend to have larger initiation sets (Table 3.5). For almost

every domain, although history tree heuristic shows a similar performance with seg-

mentation heuristic in terms of number of steps to goal, it achieves this performance

via significantly smaller initiation sets.

The memory consumption of heuristic methods, in terms of additional memory re-

quired for subgoal identification and keeping histories, are given in Table 3.6. Even

though the history tree heuristic uses an additional tree structure, its memory con-

sumption is better than the option lag, since the options with history tree heuristic

lead the agent to a goal state much sooner, causing shorter episodes. For segmentation

heuristics, on the other hand, the only additional memory usage is for the segments

generated in the partitioning to create an initiation set. Similarly, the increase in learn-

ing performance seems to decrease the overall memory usage. Mostly because they

share this advantage, the memory consumptions of both history tree and segmentation

heuristics are very close to each other.

36



Table 3.5: Average initiation set sizes with Segmented Q-Cut algorithm given with

95% confidence interval. Standard deviations are given in the parentheses.

Problem option lag segmentation history tree

2Rooms2DoorsF 28.51 ± 0.54 98.53 ± 1.38 44.65 ± 0.46

(3.88) (9.90) (3.30)

VirtualOfficeF 52.18 ± 0.68 159.29 ± 0.97 122.98 ± 3.05

(4.89) (6.94) (21.81)

4Rooms4DoorsF 56.09 ± 0.98 122.73 ± 4.97 49.51 ± 0.71

(7.04) (35.55) (5.11)

4Rooms3DoorsF 76.01 ± 0.74 114.06 ± 2.28 78.44 ± 0.37

(5.31) (16.31) (2.63)

TaxiF 16.81 ± 0.24 22.00 ± 0.49 24.36 ± 1.13

(1.28) (2.35) (5.23)

ToH5F 16.58 ± 1.39 32.03 ± 4.83 27.63 ± 3.71

(9.96) (34.54) (26.57)

Table 3.6: Average memory usage per episode (KB) for automatic subgoal identifica-

tion experiments with 95% confidence interval. Standard deviation of the values are

given in the parentheses.

Problem
Macro-Q w/ LoBet Macro-Q w/ LCut Macro-Q w/ SegQCut

option lag history tree option lag history tree option lag segmentation history tree

2Rooms 1287.35± 123.84 917.13± 68.29 1235.84± 121.25 950.61± 74.19 1499.47± 154.95 997.17± 72.08 995.96± 73.09

2DoorsF (431.36) (237.86) (422.37) (258.43) (539.74) (251.10) (254.58)

Virtual 1769.54± 118.03 1311.18± 75.16 1706.88± 111.46 1394.66± 80.33 2294.12± 173.72 1408.03± 75.49 1690.17± 105.33

OfficeF (527.05) (335.61) (497.72) (358.70) (775.75) (337.10) (470.33)

4Rooms 3174.31± 170.85 1975.30± 85.08 2685.31± 135.87 1931.33± 81.93 2926.20± 151.59 1955.96± 76.07 1900.95± 73.49

4DoorsF (856.72) (426.64) (681.32) (410.85) (760.15) (381.47) (368.52)

4Rooms 9419.42± 465.74 4024.82± 108.28 18961.61± 1211.39 7499.97± 308.89 9198.69± 415.65 6384.41± 217.62 6644.05± 235.08

3DoorsF (2335.44) (542.98) (6074.54) (1548.92) (2084.29) (1091.27) (1178.81)

TaxiF 5411.34± 137.82 3915.84± 86.47 5200.94± 135.16 4468.30± 108.35 7185.40± 194.34 7143.63± 192.38 7109.40± 189.26

(2219.91) (1392.75) (2177.07) (1745.13) (3130.20) (3098.63) (3048.29)

ToH5F 4009.47± 303.75 1653.14± 84.30 4397.43± 348.25 2927.78± 175.70 5296.54± 446.88 3565.73± 246.80 3393.49± 235.57

(1523.17) (422.71) (1746.32) (881.06) (2240.90) (1237.59) (1181.25)

Overall CPU time consumption results averaged per episode are given in Table 3.7.

Please note that, since the subgoal identification methods may produce diverse results

affecting the overall learning procedure, in order to be fair among the methods, this

table shows the total learning time. The results show that options with history tree

37



saves CPU time compared to both regular Q-Learning and learning with option lag

heuristic. We can deduce that time gained by Macro-Q Learning by incorporating the

history tree based initiation set generation is more than the additional computation

required. Again, like the similar performances in learning speed, the time consump-

tions for segmentation and history tree heuristics are very close to each other. In

terms of CPU time, history tree heuristic is better than option lag, and competitive

with segmentation heuristic.

Table 3.7: Average CPU time consumption (msec) per episode for automated experi-

ments with 95% confidence interval. Standard deviation of the values are given in the

parentheses.

Problem
Q

Macro-Q w/ LoBet Macro-Q w/ LCut Macro-Q w/ SegQCut

option lag history tree option lag history tree option lag segmentation history tree

2Rooms 70.18 ± 12.18 67.12± 18.98 48.29± 16.57 79.09± 19.95 59.69± 19.35 116.20± 65.92 66.49± 55.67 67.73± 56.09

2DoorsF (42.42) (66.12) (57.72) (69.49) (67.39) (229.62) (193.92) (195.38)

Virtual 72.38 ± 14.72 63.89± 17.76 48.17± 15.01 76.39± 20.26 61.09± 18.70 90.47± 36.60 51.46± 29.19 64.42± 29.74

OfficeF (65.73) (79.31) (67.04) (90.49) (83.50) (163.44) (130.32) (132.82)

4Rooms 295.91 ± 56.69 298.12± 84.53 210.12± 67.52 166.28± 44.24 122.14± 37.93 197.93± 88.28 124.65± 71.57 121.59± 62.32

4DoorsF (284.28) (423.89) (338.58) (221.84) (190.20) (442.68) (358.88) (312.49)

4Rooms 645.78 ± 132.35 434.56± 152.45 189.64± 116.67 874.78± 239.04 368.36± 137.60 627.73± 335.97 396.21± 298.85 415.85± 308.60

3DoorsF (663.69) (764.48) (585.03) (1198.69) (690.01) (1684.74) (1498.56) (1547.46)

TaxiF 41.25 ± 0.95 107.14± 3.77 80.63± 3.32 55.42± 2.57 43.45± 2.53 87.80± 33.48 86.49± 33.55 88.70± 33.76

(15.24) (60.64) (53.42) (41.44) (40.68) (539.29) (540.35) (543.69)

ToH5F 47.02 ± 5.96 143.35± 40.35 66.81± 22.47 181.05± 20.24 148.64± 17.04 381.71± 198.28 198.54± 130.49 179.54± 57.65

(29.87) (202.32) (112.70) (101.47) (85.46) (994.27) (654.37) (289.08)

Even though segmentation heuristic and history tree heuristic seem to perform sim-

ilarly, it is worth reminding here that Segmented Q-Cut method requires the whole

state space to be explored before a meaningful subgoal identification can be made,

employing a global approach. On the other hand, history tree heuristic can be used

whenever a subgoal is identified. Also, the initial source and target states must be

provided beforehand for the Segmented Q-Cut to operate, so that it can find a rea-

sonable segmentation. The selection of these states are problem specific and may not

always be straightforward to manually identify. However, history tree heuristic can

work with no additional information specific to the problem domain.

38



3.5 Summary and Discussion

In this chapter, we proposed a goal oriented option initiation set generation method

utilizing a history tree heuristic. It restricts the initiation set of an option to the states

from which employing the option would be useful on the way to the previously expe-

rienced goals.

By achieving higher quality options, the new approach increases the learning per-

formance of the agent without requiring additional computation time and memory,

compared to the other methods. Moreover, a history tree does not contain any in-

formation regarding the actions taken, so it is not affected by the stochasticity of the

problems. Experimentation is done with automatically generated subgoals, using well

known subgoal identification algorithms. The final algorithm can find the subgoals

online and form options that the agent can effectively employ for reaching goal states.

Our experiments show that careful creation of the initiation set plays an important

role in the efficacy of an option as much as the terminal state of it. Better approaches

like history tree can save learning time by creating goal directed options.

39



40



CHAPTER 4

A CONCEPT FILTERING APPROACH FOR DIVERSE DENSITY

A prominent way to decompose a problem is to search for bottlenecks in the state

space which are presumed to cluster the problem, then learn how to reach the identi-

fied bottlenecks separately, while preserving an abstract learning strategy among the

clusters using the sub-policies learned so far. There are various attempts that aim

to automatically discover bottlenecks. An effective one is the Diverse Density (DD)

method [2], however, its computational complexity limits its use for realistic prob-

lems.

In this chapter, we propose an extension for McGovern’s DD approach, called Con-

cept Filtering [52], which significantly improves its computation time. The method

makes use of a novel local graph metric, called the Congestion Ratio, which uses

and enhances bridgeness and clustering coefficients. The effectiveness of the modi-

fied algorithm is empirically shown by experimentation, for both fully observable and

partially observable domains.

4.1 Diverse Density

Diverse Density (DD) is originally an effective method to attack multiple-instance

(MI) problems. DD treats an MI problem so that it consists of positive and negative

bags of instances. Each positive bag contains at least one positive instance, and each

negative bag contains only negative instances. The aim is to find the target concept

by using only the sign tags (positive or negative) of bags, since the instances are not

labeled individually.

41



Maron et al. [53] propose a metric called Diverse Density (DD) and define the DD of

a target concept ct as;

DD(ct) = Pr(ct|B+
1 , ..., B

+
n , B

−
1 , ..., B

−
m) (41)

where Pr(ct) is the probability that tth concept is the correct concept, B+
i is the ith

positive bag, B−i is the ith negative bag. The target concept is the one with the highest

DD value and the search space is

DD(ct) =
∏

1≤i≤n

Pr(ct|B+
i )

∏
1≤i≤m

Pr(ct|B−i ). (42)

The terms in this equation are defined with a noisy-or model:

Pr(ct|B+
i ) = 1−

∏
j

(1− Pr(B+
ij ∈ ct))

Pr(ct|B−i ) =
∏
j

(1− Pr(B−ij ∈ ct))
(43)

where Bij is the jth instance of the ith bag, and Pr(Bij ∈ ct) is defined to be a Gaus-

sian probability inversely proportional with the distance from the particular instance

to the target concept.

The original algorithm uses the term concept as an abstract notion that is learned

by using the bags. Under RL setting, a concept can be a state in fully observable

problems, or an observation or an experience of observations and actions in partially

observable domains.

4.2 Diverse Density for Automatic Subgoal Identification

McGovern et al. [2] model the task of automatic subgoal identification in an MDP

as a multiple instance problem and adopt Diverse Density for the solution. Their

approach considers each state gathered from the environment as a concept, presuming

every successful episode as a positive bag and all other episodes as negative bags. On

this matter, besides being defined as whether the agent reached the goal state or not,

the success of an episode may also be dependent on a step threshold, i.e. an episode

may be required to reach the goal state under a given number of steps in order to be

considered as successful.

42



McGovern et al. propose that a bottleneck state, possibly a subgoal, must be observed

in positive bags but not in negative ones. In that case, a bottleneck state is expected to

have a higher DD value as the result of an exhaustive DD search. Their study shows

that DD can be effectively used for finding subgoals while learning on an MDP [2].

4.3 Diverse Density with Concept Filtering

The original version of McGovern’s DD approach (MDD) was proposed in order to

discover subgoals in fully observable RL tasks. It is shown that the extensive DD

search idea is able to find bottleneck regions of the problem [2]. However, some of

its drawbacks prevent its applicability to real life problems.

First of all, in order to calculate the DD values of each concept, the method uses a

similarity measure between concepts. McGovern et al. suggests a Gaussian distance

measure (for the term Pr(Bij ∈ ct)) which depends on the graph distances between

the observations [2]. The distances are precalculated and are provided to the agent

before the learning process starts. However, this means that the agent has a priori

knowledge about the structure (or transition dynamics, to be more accurate) of the

problem. It is arguable that providing this knowledge in advance conflicts with the

“learn-from-scratch” philosophy of RL.

Another drawback of the DD approach is that it takes each and every concept into

account for evaluation as a bottleneck candidate. Since an extensive DD search is

employed among the bags upon finishing every episode, this computation is very

time consuming. However, apparently not all of the observations are eligible for

candidacy and here is room for improvement by means of eliminating some of the

concepts through evaluation of certain graph features.

Besides the drawbacks, DD’s utility is not limited to fully observable problems. The

method does not depend on any of the features of an instance, but focuses the problem

on a bag-level. This approach is also useful in partially observable environments. As

an observation that plays role in reaching high rewards should also be seen in positive

bags, DD is a promising candidate for identifying bottleneck concepts, corresponding

to an observation, in partially observable problems where the agent cannot discover

them by analyzing their features.

43



4.3.1 Bridging and Clustering Coefficients

In this study, we utilized two graph metrics to form a new one suitable for concept

filtering.

Bridging Coefficient BC(v) of a vertex v in a graph is a local measure showing how

much connection v brings to its neighbours:

BC(v) =
d−1(v)∑

i∈N(v) d
−1(i)

(44)

where d(v) is the degree of v, N(v) is the set of direct neighbours of v.

Clustering Coefficient CC(v) of a vertex v is also a local measure determining how

well v is clustered [54]. A generalization ofCC(v) that extends the neighbourhood of

v to the neighbours at depth k, called the k-Clustering Coefficient, denoted CC(k)(v)

[55], and is formulated as;

CC(k)(v) =
2e(k)

n(k)(n(k) − 1)
(45)

where e(k) is the number of edges among k neighbours of v, and n(k) is the number

of nodes within k neighbourhood of v. Obviously, CC(v) = CC(1)(v).

Both BC(v) and CC(k)(v) require less time compared to their global counterparts

[56, 57] which span the entire graph of concern. On the other hand, they also have

certain disadvantages in terms of solution quality, depending on the structure of the

target graph [52].

4.3.2 Congestion Ratio

In order to use it in the concept filtering task, we define Congestion Ratio (CR(k)) for

a graph node v as;

CR(k)(v) =
BC(v)

CC(k)(v)
(46)

where BC(v) is the Bridging Coefficient of v, CC(k)(v) is the k-Clustering Coeffi-

cient of v and k is the neighborhood distance for k-Clustering Coefficient. This metric

highlights the nodes that connect different regions of the graph, but do not apparently

44



(a) BC (b) CR(3)

(c) 1/CC(2) (d) CR(2)

Figure 4.1: Sample graphs colored by (a)BC (b)CR(3) (c) 1/CC(2) (d)CR(2) values.

Brighter is better.

belong to a cluster. Thus, CR(k) can be said to pinpoint the most bridging and least

clustering nodes.

The need for CR(k) emerged on the inadequacy of BC and CC(k) on some certain

circumstances. For example, for a graph with an almost uniform degree distribution

among nodes, we expect the BC value to be more or less the same for each node.

Thus, it is highly probable that we can miss an apparent bottleneck node between

clusters because of this special formation (Figure 4.1a). The corresponding CR(3)

calculation clearly identifies the bridging nodes more accurately (Figure 4.1b). Sim-

ilarly, suppose 1/CC(k) is calculated for every node for a graph like the one given

in the Figure 4.1c so that the least clustering node gets a higher value. Note that,

the nodes around the apparent bottleneck node (i.e. the central node of this graph)

45



have higher values of 1/CC(2), which misleadingly means that they are less clus-

tered compared to the bottleneck state. CR(2), however, explicitly pinpoints the node

which does not belong to any cluster (Figure 4.1d). Note that brighter color is better

in Figure 4.1.

CR(k) can be thought of as a metric that not only unifies BC and CC(k), but also

overcomes their weaknesses.

4.3.3 Concept Filtering with Congestion Ratio

MDD method for subgoal discovery [2] classifies each episode either as a positive or

a negative bag. This decision can be made depending on whether the episode ends

with a goal state or not. Also, one may introduce a step threshold for a bag to be a

positive bag. Afterwards, the algorithm calculates DD values for each concept, and

updates the running averages ρ of the ones with the peak value. Finally, the concepts

passing the threshold θ are marked as targets (concept of interest). Possible noise in

the results are eliminated via a decay mechanism over the running averages of all the

concepts throughout the process.

The first improvement that our approach offers is that it removes the necessity to

have the shortest path distances between concepts to calculate DD values, by adding

a routine to calculate them incrementally. It keeps track of the transitions of the agent

via the interaction graph G [4], concurrently with the learning procedure.

Definition 4.4 An interaction graph G is a weighted directed graph where each ver-

tex v ∈ V corresponds to a state/observation obtained from the model and each edge

e = (v, v′) ∈ E corresponds to a transition from vertex v to vertex v′. A directed edge

e = (v, v′) is given with a weight of 1 if and only if the agent experiences a transition

from v to v′.

Whenever there is an update on the graph, the shortest path distance matrixDG is also

updated (line 8 of Algorithm 3), for which, Dijkstra’s shortest path algorithm [58] is

employed.

46



Algorithm 3 DD_WITH_CONCEPT_FILTERING
Require: λDD, θ, k

1: Initialize full trajectory database to ∅
2: Initialize running averages ρc to 0

3: G← ∅, DG ← ∅
4: C ← ∅
5: for each episode do

6: Interact with environment / Learn using RL

7: Add observed full trajectory to database

8: Update G and DG if necessary

9: Create positive or negative bag from filtered trajectory

10: Update the concept set C with new observations

11: Cf ← FILTER_CONCEPTS(C,G,DG, k)

12: Search for diverse density peaks in Cf

13: for each peak concept c found do

14: Update the running average by ρc ← ρc + 1

15: if ρc is above threshold θ then

16: if c passes static filter and c ∈ Cf then

17: Mark c as a target

18: end if

19: end if

20: end for

21: Decay all running averages by ρc ← λDD · ρc
22: end for

Definition 4.5 A graph distance matrix DG is a |V | × |V | matrix that contains the

shortest path distance d(vi, vj) between any two vertices vi and vj in the interaction

graph G.

Therefore, the method becomes free of the transition characteristics of the problem

domain. Even if the initial interaction graphs are incomplete and the initial short-

est path distances are noisy or inadequate, DG usually rapidly evolves to its actual

value in the early stages of learning as the graph gets completed throughout the ex-

47



Algorithm 4 FILTER_CONCEPTS
Require: C, G, DG, k

1: Cf ← ∅
2: for each concept c ∈ C do

3: Calculate BC(c) by using DG {Eqn. 44}

4: Calculate CC(k)(c) by using G, DG and k {Eqn. 45}

5: CR(k)(c)← BC(c)

CC(k)(c)
{Eqn. 46}

6: end for

7: for each concept c do

8: N(c)← immediate neighbors of c

9: if c has a peak value in N(c) then

10: Cf ← Cf ∪ {c}
11: end if

12: end for

13: return Cf

plorations, depending on the size of the problem.

The other contribution ensures that the search for DD peaks is employed only among

concepts that survive the concept filtering procedure, simply ignoring other concepts

that fail to pass the filter. The filtering procedure is given by Algorithm 4. It first

calculates CR(k) for each concept (lines 2-6). Afterwards, each concept is added

to the filtered concepts set (Cf ) provided that it has the peak CR(k) value among its

immediate neighbors. This way, neighboring concepts having the sameCR(k) are also

added to Cf , as long as they are the peaks among the concepts in the neighborhood.

Algorithm 4 ensures that DD method deals with significantly less amount of concepts

on the average, since only a small subset of concepts undergo the DD peak search (line

12 of Algorithm 3). The overall procedure is called Diverse Density with Concept

Filtering [52], and abbreviated as DDCF.

In this chapter, we exclude the option generation phase of the original algorithm be-

cause of two reasons: (1) We neither attempt to discover higher quality subgoals, nor

generate better options. Our contribution addresses discovery speed. (2) Our method

can effectively be used for problems with hidden state, but no profound approaches

48



exist that can generate options for non-Markovian environments.

For partially observable case, we make two assumptions for DDCF to work. First,

since DD itself requires good quality on positive bags in order to calculate accurate

DD values, the agent must be able to learn the problem at some level. Second, for

obvious reasons, we assume a bottleneck state yields a distinct observation so that

DDCF can identify it (as is usually the case in practical situations, like a “door” is

distinguished via visual sensory information).

4.6 Experiments

We have tested MDD and DDCF on both fully and partially observable problems

(Table 4.1) by comparing their time consumptions and identification performances.

We also tested another well known subgoal discovery method, Local Betweenness

(LoBet) [4], on POMDPs with hidden states. LoBet incorporates a graph metric

called betwenness [59] to find bottleneck states in the agent’s interaction graph, and

is shown to perform well under full observability.

4.6.1 Problem Domains

The experiments were carried out on two versions of the grid world domain with 2

rooms and 1 door. In the first version (2Rooms1DoorF) shown in Figure 4.2a, the

agent can fully observe the underlying states, and aims to identify the subgoal state.

In the second one (2Rooms1DoorP) given in Figure 4.2b, the agent tries to find the

bottleneck state through the limited observation semantics.

Table 4.1: Sizes and reference publications given with determinism status of the ac-

tion’s outcomes for the environments used in this chapter. The sub-scripts F and P

represents full and partial observability.

Problem |S| |A| |Ω| Action Noise Reference

2Rooms1DoorF 202 4 - Yes [36]

2Rooms1DoorP 212 4 11 No [36]

49



In 2Rooms1DoorF (Figure 4.2a), the agent is located in the grid cells and can em-

ploy four actions as north, east, south and west. Actions are non-deterministic, the

agent moves to the intended direction with a probability of 0.9 and randomly to any

of the movement directions with 0.1 probability. Initially, the agent is located at any

cell in the room on west. The agent receives a positive reward of 1.0 upon reaching

the goal state and no reward or punishment for any other movements.

Like in 2Rooms1DoorF, in 2Rooms1DoorP (Figure 4.2b), the agent can take four

actions as north, east, south and west. However, here, the actions are deterministic.

The agent is initially located randomly at any state of the left room. In this partially

observable problem, there is a punishment of −0.01 for each action, a higher punish-

ment of −0.1 for bumping into a wall and a positive reward of 1.0 for reaching the

goal state. The agent’s observation semantics is formed upon its noise-free sensing of

surrounding walls (whether its immediate neighboring cells are walls or not).

(a) 2Rooms1DoorF

(b) 2Rooms1DoorP

Figure 4.2: Domains used in the experiments where the goal states are marked as G.

Numbers in 2Rooms1DoorP indicate the identifiers of observations gathered by the

agent when it resides in the corresponding grid cell.

50



4.6.2 Settings

Throughout the experiments, MDD is provided with the shortest path distances be-

tween observations. For both versions of DD, a concept is presumed to be a single

observation under partial observability while it corresponds to a state in fully observ-

able environment.

The DD parameters are set as θ = 0.8 and λDD = 0.9 for both MDD and DDCF. For

DDCF, the clustering coefficient depth is set as k = 3 for the fully observable case,

and k = 2 for the partially observable case. For full observability, all of the successful

episodes were considered as positive, as suggested by [2]. On the other hand, a step

limit on episodes is used in the partially observable problem to guarantee that there

are equal number of positive and negative bags. In this setting, a bag is considered

positive if the episode lasts for number of steps less than the step limit, and negative

otherwise. Whenever a concept’s running average ρ passes θ, both algorithms mark

the concept as a subgoal. During the subgoal identification process, the agent employs

Q-Learning with ε-greedy action selection mechanism, using parameter values ε =

0.1, α = 0.05 and γ = 0.9. Each experiment lasted for 100 episodes and the results

are averaged over 50 runs.

4.6.3 Results and Discussion

Table 4.2: Reward per step results averaged over 50 experiments.

Problem MDD DDCF

2Rooms1DoorF 0.0018 0.0019

2Rooms1DoorP -0.0046 -0.0049

The experiment results are interpreted upon two aspects: (1) quality of discovered

subgoals, (2) computation performance. Since the problems have very obvious sub-

goal states, their quality can be visually verified by using gray-scale color coded

sketches, drawn according to how many times the state is identified as a subgoal

throughout the episodes, averaged over 50 experiments. For partially observable

problems, the states revealing the same observation are colored according to the cor-

51



responding observation’s relative value. Brighter color represents higher frequency

of identification. For the computation performance results, Table 4.2 is given, where

“reward-per-step” values are provided as an evidence that the modifications does not

have any effect on learning performance.

(a) MDD

(b) DDCF

(c) LoBet

Figure 4.3: Subgoals found in 2Rooms1DoorF domain. Brighter color means higher

number of identification as a subgoal.

52



Figure 4.3 shows the subgoal discovery performances in 2Rooms1DoorF domain.

All of the algorithms successfully find the states near doorway. While LoBet seems to

give the least noisy results, DDCF has also low noise compared to MDD algorithm.

As the concepts with lower CR(k) (like the ones near the doorway) are eliminated,

DDCF searches for a DD peak in a narrow and more meaningful concept set, leading

to less number of noisy results. Moreover, this improvement significantly reduces

the time required to find peak DD values through less number of candidate concepts

(Table 4.3).

(a) MDD

(b) DDCF

(c) LoBet

Figure 4.4: Subgoals found in 2Rooms1DoorP domain. Brighter color means higher

number of identification as a subgoal.

53



For partially observable case, we experienced that DD algorithm requires at least one

negative bag to distinguish the highly ambiguous observations from the observations

corresponding to the actual subgoal states. Otherwise, ambiguous observations (like

observation 0 in 2Rooms1DoorP) may yield high DD values since they are to be

more frequently observed by the agent.

Discovered subgoals in 2Rooms1DoorP are presented in Figure 4.4. Note that Lo-

Bet fails to find the actual subgoal states, since the agent’s interaction graph is entirely

different than the state transition graph due to perceptual aliasing. Betweenness met-

ric highlights the ambiguous observations, which misleadingly act like central nodes

for the interaction graph. In that sense, algorithms using graph based features seem

to have a certain disadvantage on the problems with hidden states.

On the other hand, using a more robust approach, DD algorithm performs well in gen-

eral under partially observability. Since ambiguous observations are also frequently

observed in negative bags, they achieve a lower DD value compared to the observa-

tions corresponding to the subgoal states. This distinction helps DD to identify the

actual subgoals of a partially observable environment.

Table 4.3: Number of used concepts and time results averaged over 50 experiments.

Problem
# concepts used time (msec)

MDD DDCF MDD DDCF

2Rooms1DoorF 198.96 55.90 252885.18 80170.94

2Rooms1DoorP 9.94 4.93 1436.82 939.98

In the both fully and partially observable cases, Tables 4.2 and 4.3 indicate that DDCF

produces fewer number of concepts and consumes less time to discover almost the

same subgoals as MDD without affecting the overall learning performance.

4.7 Summary and Discussion

In this chapter, a concept filtering method is proposed as a novel idea to improve

McGovern’s Diverse Density algorithm in terms of computation time for subgoal dis-

54



covery. The performance of the proposed method is empirically shown to outperform

its antecedent. To our knowledge, this is also the first study to explicitly handle an

automatic subgoal discovery technique to cover both fully observable and partially

observable problems.

The resulting algorithm, Diverse Density with Concept Filtering, makes use of a new

graph based metric called congestion ratio to reduce the number of concepts used

for subgoal identification. Moreover, it incrementally calculates the shortest path dis-

tances between concepts during learning, removing the implicit need to feed them to

the algorithm in advance. Empirical results indicate that MDD can be a step forward

in subgoal discovery challenge to cover a broader category of domains.

55



56



CHAPTER 5

AUTOMATIC LANDMARK DISCOVERY

Partial observability is a challenging characteristic of the environments that Rein-

forcement Learning algorithms operate on [1]. As the states of the environment are

not directly available, the learning agent has to cope with partial and possibly am-

biguous observations in order to learn the dynamics of the underlying environment.

Such a task is especially difficult when multiple states map to the same observation,

causing a fundamental problem called perceptual aliasing [60, 12]. Depending on

the degree of ambiguity on the observations, finding the optimal action for each state

may not be possible.

Landmarks, on the other hand, provide sufficient information to distinguish a prob-

lem state, so that they can help the agent in the learning phase. Providing a reliable

knowledge, landmarks can guide an agent in the learning task and hence speed up the

learning [8]. Although their presence are used in the literature, automatic identifica-

tion of landmarks is left unexplored.

In robotics, a landmark may correspond to a location or an object that is unique in

that environment. It may provide some insight to the robot about its progress and

guide it to complete the given task. Under partial observability, the robot may benefit

from the landmarks in order to locate itself in the environment. Thus, discovery of

the landmarks of an environment may be useful for planning in robotics domain,

especially for navigational tasks.

Making use of landmarks has been shown to improve learning performance for mem-

oryless RL agents in partially observable environments. We refer to this class of tasks

as Landmark-POMDPs. SarsaLandmark [8] enhances the classical Sarsa(λ) algo-

57



rithm [16] by skipping the non-landmark states in the eligibility trace mechanism, so

that a higher-level tracking of reliable observations (provided by landmarks) is pro-

moted. However, SarsaLandmark assumes that the agent knows in advance all of the

landmark states, which is not a realistic scenario both in real life, and in terms of

“learn-from-scratch” philosophy of RL.

In this chapter, we propose a RL framework to extend SarsaLandmark with auto-

matic landmark identification capability [61]. For this purpose, we utilize a statisti-

cal method that we introduced in Chapter 4, named Diverse Density (DD) [2]. DD

classifies instances based on raw experiences and ignores the direct features of the

states/observations, which makes it ideal for landmark identification since the state

space is hidden from the agent. The resulting framework succeeds to automatically

identify landmarks during learning, feed the identified landmarks to SarsaLandmark,

and achieves much the same learning performance with SarsaLandmark with manu-

ally provided landmarks.

A side contribution of the chapter is that it provides a deeper analysis on Diverse

Density with Concept Filtering (DDCF), which we proposed in Chapter 4, on the

task of finding landmarks. With DDCF, McGovern’s original DD algorithm (MDD)

[2] is significantly improved, in terms of both time and quality. We also show that,

DDCF can effectively be incorporated within the proposed framework.

In the following subsections, a novel framework that automatically identifies land-

marks and uses them in the learning process is incrementally presented. It starts by

explaining the notion of landmarks, the Landmark-POMDP model and SarsaLand-

mark. Then, a motivation is set on why Diverse Density can be used effectively for

discovering landmarks online. Finally, a novel framework which fuses SarsaLand-

mark with automatic landmark discovery is presented.

58



5.1 Landmarks and Landmark-POMDPs

A landmark has its obvious meaning in the real life as “a recognizable natural or arti-

ficial feature used for navigation, a feature that stands out from its near environment

and is often visible from long distances” [62]. In Artificial Intelligence (AI) literature,

landmark has different formal definitions and meanings.

Planning researchers define landmark states as those that lie on every optimal path to

the goal state [63, 64, 65, 66]. This is, in a sense, a strong definition of landmark,

restricting any solution to contain the landmark instance. In this setting, landmarks

are commonly assumed stationary.

In robotic navigation research, a landmark is usually defined over perceptions as

“locally distinctive features,” such as walls and doorways. In that sense, since the

identification is local, there is no theoretical need for the landmarks to be stationary,

although sensor aliasing due to noise is a major problem [67, 68, 69, 70].

In RL context, the use of landmarks dates back to mid-2000s, with James and Singh’s

studies. They prefer to make a weaker definition of landmark, in terms of state-

observation mapping, not restricting its existence in any policy, as in the planning

domain [8]. Our study follows their definition where a landmark is a state that has

a unique observation. Note that, this definition assumes that a landmark state is an

integral part of the problem structure, existing in the model without requiring any

other information.

Following the formal definition of a landmark state, Landmark-POMDP is a special

form of POMDP which contains at least one landmark state [8].

5.2 SarsaLandmark

SarsaLandmark [8] is an adaptation of Sarsa(λ) to handle Landmark-POMDPs. The

motivation behind SarsaLandmark is that in the presence of landmark states, skipping

over non-landmark states during the Q-value updates may help Sarsa(λ) to converge

faster. The method incorporates λ = 1 throughout learning, with the exception that

59



whenever the agent resides in a landmark state, λ is set to zero. With this adaptation,

upon experiencing a transition 〈xt, at, rt, xt+1〉 at time t between estimated states of

xt and xt+1, the agent executes the following update rules;

ηt(xt, at) = 1

∀(x 6= xt or a 6= at), ηt(x, a) =


0 if xt is given by

a landmark state

γ · ηt−1(x, a) otherwise

∀x, a, Qt+1(x, a) = Qt(x, a) + α · ηt(x, a) · δt

(51)

where the terms are defined as in Sarsa(λ). Note the differences between rules (24)

and (51) of the corresponding update sequences, and that λ is ignored in rule (51)

since it is ineffective to the result.

SarsaLandmark reduces to Sarsa(0) if every state is a landmark (full observability),

while it is equivalent to Sarsa(1) in a partially observable setting with no landmark

states. It is shown that SarsaLandmark is an improvement over Sarsa(λ), in terms of

fast policy convergence [8].

5.3 Diverse Density with Concept Filtering

In Chapter 4, we stated that McGovern’s Diverse Density (MDD) had some draw-

backs that makes it impractical for real life cases. First, it required the distances

between concepts as a priori knowledge in order to calculate the DD values. Second,

it considered every concept as a candidate while some of them are indeed redundant

in the exhaustive search of DD peaks. Our proposed method, Diverse Density with

Concept Filtering (DDCF), improved its original by calculating the distances between

concepts online and filtering concepts that are not real candidates. It showed a better

identification performance compared to its original version.

Furthermore, in Chapter 4, we showed that DD can work on both fully and partially

observable environments for finding important observations of the environment that

led the agent to success. Although Chapter 4 did not put a strict definition as a land-

60



Figure 5.1: SarsaLandmark with MDD/DDCF workflow. Shaded parts are the steps

that DDCF introduces to MDD.

mark to its target, DD can also be utilized for discovering landmarks during learning.

In a POMDP with hidden states, the agent operates on state estimations which may

be formed by the observations and actions of the agent. Due to perceptual aliasing,

many of the observations are gathered in different parts of the state space. Yet, an

observation provided by a landmark state, by definition, is unique to that state. Thus,

such an observation is expected to be seen less in an episode, compared to the am-

biguous observations. Besides, an observation by a useful landmark is more likely to

be seen on the successful episodes, causing a high Diverse Density value.

5.4 The Extended SarsaLandmark Framework

SarsaLandmark algorithm has a strong assumption stating that the agent will always

identify a landmark state upon reaching it. That is why the agent is assumed to know

in advance what observations are unique in the problem prior to learning.

A more realistic problem setting, however, will require the agent to also identify by

itself the “distinctive observational characteristics” of the overall problem, namely

landmarks. Automatic identification of the landmark states is a challenging task due

to perceptual aliasing for problems with hidden state. The observation transition se-

61



mantics of those problems are much different than state transition semantics. There-

fore, methods that make use of the features of observations for identification are likely

to fail. DD, on the other hand, is shown to work on partially observable environments,

thus, it is a suitable candidate for automatic landmark discovery [52].

In this section, we propose a novel framework that manages to automatically identify

the landmarks states of a problem with hidden states, which may later be used to

enhance learning performance.

Our proposal synthesizes two approaches, SarsaLandmark and Diverse Density, build-

ing up a complete framework. The main workflow of the overall framework has the

following steps (Figure 5.1):

• initially, SarsaLandmark starts with an empty set of landmarks,

• at the end of each episode, the episodic trajectory is fed to DD,

• DD classifies the given trajectory as either positive or negative according to a

success criteria,

• with the given set of bags, the method calculates the DD value for each concept

in the concept set,

• if a concept is a consistent peak in DD values, i.e. it has the highest DD value

among the other concepts for several number of episodes, it is marked as a

target, i.e. landmark for this setting,

• then, the landmark set of SarsaLandmark is updated and the algorithm uses this

set in its update rules.

The shaded regions in Figure 5.1 are extensions of DDCF on McGovern’s DD method

(MDD). Although SarsaLandmark can safely be coupled with MDD alone, due to

MDD requirements, the designer should also provide the distances between concepts.

DDCF not only incrementally calculates these distances, but also applies an effective

concept filtering mechanism, completing the framework by making all computations

free of designer’s intervention, without sacrificing quality and performance.

62



Table 5.1: Problem sizes, the number of landmarks in the problems (including the

goal states) and their reference publications. The problems marked with ∗ are modi-

fied versions of their originals and the sub-script P represents partial observability.

Problem |S| |A| |Ω|
Number of

Reference
landmarks

4Rooms4DoorsP∗ 404 4 40 4 [2]

ZigzagP 403 4 40 4 -

VirtualOfficeP∗ 262 4 40 4 [71]

LargeLandmarkGridP 1148 4 107 50 [8]

ElevatorEscapeP 674 5 245 12 -

5.5 Experiments

Since the contribution here is two-fold, the experiments were designed accordingly.

In one aspect, the experimentation needs to show that automatic landmark identifi-

cation framework (i.e SarsaLandmark with MDD or DDCF) not only just works, but

also performs no worse than its manual counterparts (i.e. Sarsa(λ) and SarsaLand-

mark). On the other hand, we also need to provide empirical evidence that DDCF

outperforms McGovern’s original DD heuristic (MDD) for non-Markovian problem

settings.

5.5.1 Problem Domains

SarsaLandmark with Automatic Landmark Identification using MDD/DDCF is exper-

imented on five problem domains. Three of them (4Rooms4DoorsP, Virtual-

OfficeP and LargeLandmarkGridP) are known benchmark problems from the

literature suitable to experiment for landmarks, while two of them (Elevator-

EscapeP and ZigzagP) are newly introduced to further analyze special charac-

teristics of the method. 4Rooms4DoorsP and VirtualOfficeP problems are

modified in such a way that they contain landmark states only on the doorways and

LargeLandmarkGridP is one of the large problems that was introduced in [8].

63



L

L G

L

(a) 4Rooms4DoorsP

L L

L G

(b) ZigzagP

L

G

G

L

(c) VirtualOfficeP

E
B S

E

(d) ElevatorEscapeP

L* L*
L* L*

L
L

L
L

L L L L
L*

L L
L L

L

L L* L L L

L L L
L L L L

L
L L L L

L*
L L

L

L*
L* L*

L L L L

L*

L L G

(e) LargeLandmarkGridP

Figure 5.2: Domain sketches. In ElevatorEscapeP, the light switch, the button

and the elevator positions are marked with S, B, E and the goal states and the landmark

states are marked with G and L in the other domains. The states marked as L* in

LargeLandmarkGridP are the additional landmark states, emerging due to the

observation semantics of the problem.

The problem sizes with the number of landmarks (including the goal states) and their

corresponding references are given in Table 5.1. To remind or give an idea of the do-

main characteristics, the domain illustrations and their observation transition graphs

are provided in Figures 5.2 and 5.3 5.4, respectively.

In the problems with multiple connected rooms (all problems except Elevator-

64



EscapeP), the doorways are the natural landmark states, yielding unique observa-

tions. Moreover, in LargeLandmarkGridP, there are additional landmark states

which were not addressed in the original paper [8]. Whenever the agent is at equal

distances to the surrounding walls of the room, or if the current observation distin-

guishes that part of the room from any other rooms in the domain, due to the observa-

tion semantics of the environment, the corresponding state is a landmark (see Figure

5.2e).

In 4Rooms4DoorsP, ZigzagP and VirtualOfficeP problems, the agent is ini-

tially at a random point in the westernmost room(s), and it can execute four deter-

ministic move actions to four neighboring directions; north, east, south and west.

Arriving at a goal state is rewarded with 1.0 while every other transition is punished

by −0.01. The agent receives an observation depending on the distance of it to the

surrounding walls in the four compass directions [8]: one step from the wall, two

steps from the wall, closer to the wall in this direction than the other, further from the

wall in this direction than the other.

LargeLandmarkGridP possesses the same action and observation semantics, but

the initial states and the rewarding mechanism is different. As in the experiments of

the original paper, initially, the agent is located in any of the landmark states (the ones

in the original study, marked with L in Figure 5.2e). Upon reaching the goal state, it

gathers a reward of 20, and other movements does not have a reward or a punishment.

ElevatorEscapeP is a domain that we propose, which contains an inherent parti-

tioning in terms of its observation space, as three sub-regions separated by landmarks.

The goal of the agent is to escape from a 11× 11 grid (Figure 5.2d) by using an ele-

vator. In order to call an elevator, it needs to press the button, and in order to see the

button, it needs to turn on the lights by the light switch. The locations of the elevators,

the button and the light switch are marked by E, B and L respectively. When the agent

presses the button, randomly only one of the elevator doors open. Button press and

light switch actions are irreversible, i.e. the agent can not turn off the lights once they

are on and pressing the button when the elevator door is open has no effect. With

this structure, a state in this problem is formed by 4 features: agent’s position, the

light state (on or off), the button state (pressed or not pressed) and the position of the

65



(a) 4Rooms4DoorsP

(b) ZigzagP

(c) VirtualOfficeP

Figure 5.3: Observation transition graphs of the smaller domains. The goal states and

landmark states are labeled as G and L, respectively.

elevator whose door is to open. The agent starts from any position in the grid (except

the elevator positions) with the lights off, and the button unpressed. The goal state

is defined as: the lights are on, the button is pressed and the agent is in the elevator

position with the door open.

66



(a) LargeLandmarkGridP

(b) ElevatorEscapeP

Figure 5.4: Observation transition graphs of the larger domains. The goal states and

landmark states are labeled as G and L, respectively.

The actions are deterministic. In addition to the movement actions north, east, south

and west, the agent can take an interact action for both turning the lights on and

pressing the elevator button. Reaching to the goal state is rewarded by 100.0 while

67



the agent gets a −1.0 punishment for any other action.

The observation semantics of the problem is as follows: in the first observational

sub-region, the lights are off and the agent only possesses a basic vision of observing

whether there is a wall in any of the four directions or not. After the lights are turned

on, which is the second sub-region, the agent acquires an improved vision, allowing it

to get an observation according to the distance to the walls in each of the four compass

directions (just like in the other grid world domains). Finally, in the third sub-region,

the pressing of the elevator button opens one of the elevator doors, and the agent starts

to hear the music playing in the elevator, in addition to its improved vision. However,

the agent’s hearing sensor is noisy. It gives the correct direction of the elevator with

probability 0.8 and a random direction with probability 0.2. In addition to this obser-

vation semantics, the agent achieves a unique observation when it is in the cells E, B

and L, which are, by definition, the landmarks of the problem. Consequently, there

are 12 landmarks including the goal states. The observation transition graph of the

problem is given in Figure 5.4b.

Each problem domain has its own characteristics providing a different aspect to show

the impact of landmarks on learning performance. 4Rooms4DoorsP problem is,

compared to the others, an easy task since the goal state resides in a doorway, lead-

ing to an early convergence of a policy. ZigzagP is of a similar size in terms of

state and observation sets, however, an ordered visitation to the landmarks is neces-

sary to reach the goal state. Additionally, the agent should devise a different policy

for every room, by overcoming the challenge that each room yields almost the same

observation semantics. LargeLandmarkGridP is the largest problem in our prob-

lem set, with plenty of landmarks. VirtualOfficeP contains multiple goal states

which is another challenge for the agent. Unlike a bottleneck state in a state transi-

tion graph, the observation transition graphs clearly illustrate how a landmark can be

located as if it is redundant on the way to goal, which makes its identification much

more challenging (Figures 5.3a, 5.3b, 5.4a and 5.3c). On the other hand, observation

transition graph of ElevatorEscapeP domain has a structure where the observa-

tions of the landmark states act as bottlenecks, diving the problem into sub-problems

(Figure 5.4b), although this scenario is usually unlikely in real world situations. Note

that, none of the problems tested here has a memoryless policy solution.

68



5.5.2 Settings

SarsaLandmark with DDCF was tested against SarsaLandmark with MDD, while

maintaining Sarsa(λ) and the original SarsaLandmark results as baselines. The re-

sults are averaged over 50 experiments where each episode ended with either the

agent’s arrival to a goal state, or upon reaching 5000 action steps. The experiments

for 4Rooms4DoorsP and VirtualOfficeP were run for 2000 episodes, and ex-

periments for the other domains were run for 10000 episodes.

For both Diverse Density heuristics (i.e. MDD and DDCF), a single observation was

considered as a concept. MDD was provided the shortest path distances between

the concepts before learning, while DDCF calculated them throughout learning. We

employed a step threshold for a bag to be positive so that the methods managed to

collect enough number of positive and negative bags. Also, we used θ = 8.8 and

λDD = 0.9. In the DD search, we preferred to pick the concepts acting as peak values

in the resulting DD distribution, instead of simply selecting the maximum value. In

all experiments, both DD versions were executed in the initial 200 episodes.

In order to test the landmark identification performance of both MDD and DDCF,

we have compared precision and recall values by using the set of landmarks in the

problems as ground truth. Here, precision is defined as the ratio of the number of true

landmarks in the identified set to the size of the identified set where recall is defined

as the ratio of the number of true landmarks in the identified set to the total number

of landmarks in the problem. That is, precision and recall represent accuracy and

coverage of the identification, respectively.

For Sarsa(λ), λ = 0.9 is used as in [16]. To ensure enough exploration, an ε-greedy

action selection mechanism was used, where the agent takes a random action with

probability ε and an action according to the current policy with probability (1 − ε).

All of the Sarsa algorithms incorporated α = 0.01, γ = 0.9 and employed a linear

ε decay, starting from 0.5 down to 0. While SarsaLandmark extended with MDD

and DDCF identified the landmarks online, SarsaLandmark was provided with the

landmarks in advance. In LargeLandmarkGridP, however, only the landmarks

marked with L in Figure 5.2e were used, even though there are additional ones in the

problem, as described in previous sections.

69



5.5.3 Results and Discussion

Table 5.2: Average number of steps taken in the problem domains. The values are

given with their %95 confidence interval.

Problem

Without With landmarks With landmarks

landmarks provided automatically identified

Sarsa(λ) SarsaLandmark
SarsaLandmark SarsaLandmark

with MDD with DDCF

4Rooms4DoorsP 84.54± 6.69 71.25± 4.92 72.22± 5.11 70.55± 5.30

ZigzagP 3006.68± 30.34 335.79± 8.10 593.43± 10.63 455.25± 10.45

VirtualOfficeP 150.08± 8.29 48.76± 2.45 85.21± 7.73 61.83± 5.27

LargeLandmarkGridP 1543.29± 12.89 621.79± 4.43 416.45± 3.70 419.88± 3.66

ElevatorEscapeP 963.70± 14.64 412.35± 7.20 376.78± 5.97 379.10± 6.00

Table 5.2 shows the average number of steps during learning for each algorithm of

discourse. Sarsa(λ) acts as a baseline and it is clear that SarsaLandmark significantly

improves learning performance (by a factor ranging from 1.2 to 8.9) by means of the

additional landmark information. The landmark information which is provided by

the designer before learning improves the policy update mechanism and accelerates

learning, verifying the effectiveness of SarsaLandmark.

However, when SarsaLandmark is coupled with a DD mechanism, not only the land-

marks are identified automatically throughout learning, but also a similar learning

performance is achieved compared to SarsaLandmark. This result indicates that, DD

can effectively be incorporated in identification of landmarks for problems with hid-

den states, without sacrificing solution quality. Moreover, we can argue that DD is

more focused on useful landmarks on the way to a goal state, so that it reaches to

the goal states much faster than SarsaLandmark with provided landmarks in the large

problems. Overall, in all of the domains, SarsaLandmark with automatic landmark

identification outperforms Sarsa(λ), in terms of policy convergence.

Moreover, there is no significant difference between learning performances of Sarsa-

Landmark, SarsaLandmark with MDD and SarsaLandmark with DDCF. So, we can

comfortably conclude that automatic landmark identification framework removes the

necessity to identify the landmarks by analyzing the problem beforehand. Sarsa-

70



Landmark with automatic landmark identification is clearly a forward step to adopt

the landmark idea to more realistic problems.

4Roo
msP

Zigz
agP

Virt
ualO

ffic
eP

Larg
eLan

dmar
kGri

dP

Elev
ator

Esca
peP

0

5

10

15

20

T
im

e(
se
c)

MDD

DDCF

Figure 5.5: Average CPU time usage for DD approaches.

Table 5.3: Number of concepts used for automatic landmark identification.

Problem MDD DDCF

4Rooms4DoorsP 37 15

ZigzagP 37 11

VirtualOfficeP 30 11

LargeLandmarkGridP 104 53

ElevatorEscapeP 59 31

Focusing on automatic landmark identification approaches, it can be clearly seen in

Figure 5.5 that DDCF significantly outperforms MDD in terms of computation time.

For all problem domains, DDCF requires much less time to identify landmarks, sim-

ply because the size of the DD search concept set is reduced, thanks to the concept fil-

tering heuristic (Table 5.3). Additionally, as the observation transition graph matures

by the early phases of learning, calculation of shortest path distances takes relatively

less time compared to the DD calculations of the remaining concepts.

DDCF not also operates faster than MDD, but also seems to produce higher qual-

ity solutions. Figure 5.6a shows that DDCF is more precise in finding landmarks

71



4Roo
msP

Zigz
agP

Virt
ualO

ffic
eP

Larg
eLan

dmar
kGri

dP

Elev
ator

Esca
peP

0

0.2

0.4

0.6

0.8

1

P
re
ci
si
on

MDD

DDCF

(a) Precision

4Roo
msP

Zigz
agP

Virt
ualO

ffic
eP

Larg
eLan

dmar
kGri

dP

Elev
ator

Esca
peP

0

0.2

0.4

0.6

0.8

1

R
ec
al
l

MDD

DDCF

(b) Recall

Figure 5.6: Precision and recall comparisons of DDCF against MDD.

for all problem domains, that is, DDCF’s resulting set of identified states contains

more of the real landmarks of the problems, compared to MDD. This means that the

concept filtering heuristic eliminates some of the concepts that create noise. More-

over, the recall performance of DDCF is also generally higher than MDD, showing

a bigger coverage of the true landmark set and meaning that DDCF has a tendency

to identify more of the landmarks that the problems contain. The recall value for

LargeLandmarkGridP is low for both of the DD methods. What we observe here

is that the agent is more directed to the goal state as the learning proceeds, causing

72



less exploration. In order to identify a bigger set of landmarks, DD requires more

data covering these landmarks. Also DD tends to favor the concepts that are seen in

the path to a goal state and some of the landmarks in LargeLandmarkGridP do

not play a key role in such paths. We argue that the performance of DD is dependent

on the way the agent traverses the environment, i.e. the agent has to visit a landmark

frequently in order for DD to identify it.

For ZigzagP and VirtualOfficeP domains, for example, the observation tran-

sition structure seems to cause static filter of the DD mechanism to fail, since all

landmark observations are in the same observational distance to the goal observa-

tion, including both the distant landmark states and the landmark states that are close

to the goal state (although they are all in different locations in terms of the underlying

state transition graph). This is why, using a relatively high static filter eliminates use-

ful landmarks, while a low static filter introduces noise to the results. DDCF seems

to get rid of this problem via its concept filtering heuristic, since it eliminates those

observations yielded by the states closer to the goal state(s).

Another interesting aspect of DDCF worth mentioning is that its identification cov-

ers more landmarks than MDD in all of the domains except ElevatorEscapeP.

In ElevatorEscapeP domain (Figure 5.4b), the local comparison of our concept

filtering guides the method to pick the observation of only one of the landmarks in

between the observational sub-regions since only one of them has the observation

with the maximum congestion ratio value within its neighborhood.

5.6 Summary and Discussion

The contribution of this chapter is two-fold: As the primary contribution, we pro-

pose a Reinforcement Learning framework, called SarsaLandmark with Automatic

Landmark Identification, for problems with hidden states. The proposed framework

enhances its predecessor [8] (which is an adaptation of a well known on-policy learn-

ing algorithm Sarsa(λ) to Landmark-POMDPs), so that it removes the necessity to

provide the landmarks of the domain prior to learning, since they are automatically

identified online. For this purpose, we incorporate Diverse Density (DD) approach

73



[2], which has been known to effectively identify bottleneck regions in solution space.

To our knowledge, this is the first study in Reinforcement Learning literature that

manages to automatically identify landmarks online, and use them in the learning

procedure for problems with hidden states.

As a secondary contribution, we elaborate on the Chapter 4 which introduces concept

filtering by using a novel graph based metric, congestion ratio. We not only show

DD with Concept Filtering (DDCF) to be applicable in Landmark-POMDPs, but also

provide empirical evidence that it significantly improves landmark identification per-

formance and quality, with much less computation effort compared to the original DD

method, without any prior information about the problem.

The resulting algorithm, SarsaLandmark with Automatic Landmark Discovery re-

moves the necessity for the agent to know in advance when it is in a landmark state.

It also possesses a learning performance very close to SarsaLandmark, for which the

designer ought to provide all landmarks prior to learning. Experiment results indi-

cate that the combination of SarsaLandmark with Diverse Density is a step forward

to apply SarsaLandmark to real life problems.

74



CHAPTER 6

ANCHOR BASED GUIDANCE

As stated in Chapter 5, the learning capabilities of an agent are diminished under

partial observability. Since the true states of the task are hidden from the agent, there

is no guarantee of forming an optimal policy that can ensure highest returns. Under

such circumstances, an agent can only be expected to be rational given these limited

sensations from the world.

In order to overcome the uncertainty of the environment, the agent can devise mech-

anisms; such as leaving eligibility traces to improve the convergence speed of a good

policy or keeping a state estimate to distinguish the true state that it is in. Although

the idea of eligibility traces seems simple, it is shown to be practical and useful.

Faster propagation of the temporal difference error can improve convergence to a

policy. However, there may be some domains that have no good policy that can be

formed upon the pure observations. In such a case, the agent has to move the learning

problem to a higher dimension by introducing a state estimation to overcome percep-

tual aliasing. By keeping a memory, it may distinguish one experience from another,

leading to a more effective policy. Yet, finding a good estimation is the challenge in a

partially observable environment and mostly problem specific.

In this chapter, we further dive into the definition of state estimation. But we do not

suggest a way to find a good one. Our focus is on the case where the state estimation

is true. We put a formal definition for the state estimates that can distinguish a true

state clearly and propose a method on using these dependable estimations to improve

learning speed.

75



6.1 State Estimation

An agent can keep a state estimate x by using its previous experiences in the envi-

ronment. A straightforward example can be using the past k observations and ac-

tions, creating an estimated state of xt = ot−kat−k...ot−1at−1ot for the time step t.

Regardless of the state estimate’s structure, the set of estimated states X , then, be-

comes the plane that the agent forms its policy upon, i.e. the policy is now formed as

π : X × A→ [0, 1]. As a natural result, the relation M : X → S emerges and deter-

mines the mapping between the two sets (Figure 6.1). Note that, M is not a function

because a state estimate can map to multiple true states.

x

x′

x′′

s

s′

s′′

X S

Figure 6.1: An example mapping from the set of estimated states X to the set of true

states S in a POMDP with hidden states.

If there is a one-to-one mapping between X and S, there is no ambiguity and all the

state estimates are clear so that the agent can separate all the states from each other.

But this is hardly the case since finding a clear state estimation is a challenging task.

On the other hand, one may not need to separate all the states clearly, it is enough to

separates the ones having different optimal actions. In fact, the perfect scenario would

be to have a smaller set of state estimates, making abstraction over the states that

have the same optimal action. Methods like USM [24], somewhat aims such abstract

representation by determining the distinctions based on the return distributions where

a branch in a USM tree can be considered as an estimated state.

76



6.2 Anchors

In Chapter 5, we experimented with eligibility traces in POMDPs with hidden states

and showed that some states, called landmark states (Section 5.1), can contribute to

learning as they provide unique observations. It is natural to assume that not all of the

sensations of the environment have ambiguity, yet there are few that can be dependent

upon. Although proved useful, the definition of a landmark state, being a state that

provides a unique observation, has some drawbacks [8].

First, the term “landmark” is misleading. A landmark has a basic meaning of a unique

structure that one can use to locate itself in an environment. Therefore, observing a

landmark from distance can still be useful to get position. However, in RL setting, an

agent can only be in a landmark state for a time step, yet, in the next step it may be

lost due to the ambiguity of perceptions coming from the environment.

Second, the definition of a landmark state [8] is strict to a state with a unique obser-

vation. The agent may keep a state estimate with an extended memory, formed by

more than one observation and in this configuration, there may be clear estimates that

can completely distinguish a true state but not formed by a unique observation. That

is, the model may not have a landmark state, yet the set of estimated states which the

agent keeps can contain some estimated states causing no aliasing.

For the reasons before, we propose the term “anchor” having the basic meaning of

“a thing that provides stability or confidence in an otherwise uncertain situation” and

put a formal definition for Reinforcement Learning setting as in Definition 6.3.

Definition 6.3 The state estimate x ∈ X is an anchor if

P (st = s|xt = x) = 1,

and

∀s′ 6= s, P (st = s′|xt = x) = 0.

Definition 6.3 states that an anchor is an estimated state mapping to only one state,

so that there is no ambiguity of the current true state of the agent when it resides in

77



an anchor. By Bayes rule;

∀s′ 6= s, P (st = s′|xt = x) =
P (xt = x|st = s′) · P (st = s′)

P (xt = x)
= 0

Since this definition is meaningful when there exists a x ∈ X , P (xt = x) = 0 is

unlikely. Then, either ∀s′ 6= s, P (st = s′) = 0 or P (xt = x|st = s′) = 0 should be

true. Therefore, we conclude that there is no other state that can be represented with

this estimate x, that is x can only map to one true state.

Considering the mapping M : X → S, a state estimate x is an anchor if |M(x)| =

1. In the example of Figure 6.1, the estimated states x and x′′ are anchors since

M(x) = {s} and M(x′′) = {s} but x′ is not since M(x′) = {s′, s′′}. Note that the

definition does not require a one-to-one mapping, the agent may have more than one

representation of the same true state as in the case of x and x′′. Although they may

be redundant, they still act as anchors. Moreover, Definition 6.3 does not put any

restrictions on the structure of the estimated states as long as the representations map

to only one true state. Also, the definition is for a state estimate, not the true state that

it maps to. That is, we call an estimated state as an anchor, unlike landmark states.

G

Figure 6.2: Example 2D grid world domain where the agent can take four navigational

actions and gets observations based on the presence of a wall in those directions. The

goal state is marked as G.

To make it more clear, let us put an example on the difference between a landmark

state and an anchor. In the example problem given in Figure 6.2, the perceptions of the

agent is limited to whether there is a wall in the next cell in four directions and only

the goal state provides a unique observation. For the rest of the observations, there

are at least two states giving them. Therefore, there is only one landmark state, which

is the goal state. Now, lets say our agent aims to learn a policy on the estimations

78



formed as x = ot−1ot, that is, it keeps the previous observation in memory. In such

a setting, observing a top-right corner and a bottom-left corner in this order, can only

happen when the agent makes a transition as shown in the figure. Although these

observations by themselves do not clear ambiguity (as they can be seen on three

states), such a combination can determine the location of the agent clearly, therefore,

creating an anchor.

It is natural to think that the agent will have a set of anchors A in its representation

of the world, the set of estimated states X . These anchors carry the same features

of a true state, making them dependable parts of an uncertain environment. There-

fore, their presence can be further utilized to inform the agent while learning. In this

chapter, we argue that we can apply additional rewards based on anchors to guide the

agent towards reward peaks.

On the other hand, the agent has to know which of the state estimates are anchors, in

order to use them. Therefore, a method to discover them while learning is necessary.

Here, the core idea of Diverse Density seems to hold. Since an anchor can be visited

when the agent is located in a singular true state, we expect it to be seen less, com-

pared to an aliased estimated state mapping to multiple states. Also, a useful anchor

should be uniquely seen in successful episodes of the agent. Thus, we believe that

DD is a still good candidate for automatic anchor discovery task. In this chapter, we

couple DD with applying guiding rewards to lead to a better learning under partial

observability.

6.4 Reward Shaping

One way to introduce additional rewards to the reinforcement learning agent is called

Reward Shaping. It has been used so that the learning process is further improved. RL

with reward shaping operates on the new reward function R′ where R′ = R + F and

F represents the shaping reward. It was noticed earlier that greedy reward shaping

may lead to poor results as in the case of learning how to ride a bicycle [72]. Ng

et al. showed that policy invariance with reward shaping can be guaranteed in an

MDP by proposing a potential based reward shaping (PBRS) approach where the

79



arbitrary potential function Φ is defined for each state and the shaping reward function

is formed as F (s, a, s′) = γΦ(s′)−Φ(s) [73]. PBRS is further extended with potential

based advice by forming the potential function with the actions as Φ(s, a) [74].

Most of the time, knowledge about a domain is more comprehensive and abstract

compared to specific potentials of the individual states. Studies on how to inject the

abstract domain knowledge to the underling model via reward shaping exist. Plan

based reward shaping uses a STRIPS plan where each state maps to an abstract state

and the current step in the plan is used for the potential of a state [75, 76]. Such an

approach is further used on a real time strategy game and shown to outperform its

competitors without plan based reward shaping [77]. Efthymiadis et al. introduced

knowledge revision to plan based reward shaping when the plan is inconsistent or

wrong [78]. Another form of reward shaping is used in a real time strategy game by

forming an abstract model and using a time based punishment for each action taken

[79]. When a hierarchy exists in the task and it is known beforehand, it is shown that

reward shaping approach can be formulated into MAX-Q, a well known hierarchical

RL (HRL) algorithm, and can outperform its predecessor [80].

PBRS, on the other hand, can be applied for both model-free and model-based RL

[81], and its effects are further analyzed. Grzes et al. employed parameter analysis

and argued that PBRS should conform several conditions in order to form a consistent

advice to the agent [82, 76]. Wiewiora proved that a RL agent with reward shaping

shows equivalent performance with a RL agent with Q-values initialized using the

same potential function [74]. Devlin et al. also showed that dynamic reward shap-

ing, where the potential function is not fixed, can maintain the guarantees of policy

invariance [83]. More recently, Grzes stated that the potential value of any terminal

state must be zero in order to keep the policy guarantees of PBRS [84] and Marom

et al. proposed an algorithm that decays the effect of shaping rewards by experience

so that any possible convergence problem can be avoided [85]. Reward shaping idea

also found itself a place in multi-agent RL and it has been shown that potential based

reward shaping does not alter the Nash equilibria [86, 87, 88, 89, 90].

Automatic learning of the potential function turns out to be an interesting problem and

gained attention. Marthi proposed an algorithm that completely solves an abstract

80



model with macro actions formed by sampling from the task and using the value

function of this abstract model as the potential function [91]. Grzes et al. adopted a

similar abstraction idea which learns the values of the abstract states by value iteration

while acting in the environment [92].

Although most related work focused on MDP models, there are very few that take par-

tial observability into account. In [93], PBRS is applied to online POMDP planning

so that the shaping reward function is defined via the belief states of the agent.

6.5 Intrinsic Motivation

Another way to introduce additional rewards in RL is called intrinsic motivation. In-

trinsic motivation comes internally and an intrinsically motivated action is employed

for its own sake, not to active a certain goal. Unlike extrinsic motivation, intrinsic

motivation does not require to have a climax. An example for intrinsic motivation

would be the rats choosing to explore rather than eat under certain situations. This

kind of behaviour is explained by the intrinsic motivation towards novelty. In a evo-

lutionary perspective, notions like discovery and playing are important for survival,

thus related actions are intrinsically motivated [94].

RL framework started to adopt the psychological perspective by making a distinction

between the sensations from the environment and the reward signal [95, 94, 96, 97].

In this new framework, all the reward signals are internal, yet they are combinations of

intrinsic and extrinsic motivations given by an internal critic. This way, the framework

aligns with the reinforcement learning in real life more clearly and enables an agent to

not only learn a specific task but also to adopt to different situations since its intrinsic

motivation rewards behaviours such as exploration.

Since this new framework, many employed intrinsic motivation to find more effective

ways of exploration in RL by providing additional internal rewards for novel states

[98, 99, 100]. Moreover, there are studies which aim to learn skills to solve tasks with

hierarchy and use intrinsic motivations within the hierarchies [101, 102, 103].

81



6.6 Anchor Based Guidance

Anchors, by definition, are dependable parts of an uncertain situation. Under partial

observability, they carry reliable information. They pinpoint to only one location in

the state space and they carry the potential of a singular state, unlike uncertain esti-

mations mapping to multiple states. If the agent makes a set of primitive transitions

from a low-potential anchor to a high-potential one, it can be rewarded for this ab-

stract move, utilizing the anchors to inform the agent about its progress. Such rewards

can be very helpful in partially observable problems with delayed or sparse rewards

[104].

One may simply propose to give a bonus for reaching an anchor. Yet, such a bonus

under partial observability may cause the agent to get stuck on an anchor. As visiting

an anchor would be rewarded, the agent may prefer such actions rather than stepping

up towards uncertainty. That is why, the agent must be rewarded based on whether

its actions leading it to high rewards or not, suggesting a check on the differences

between the potentials of anchors.

We argue that applying additional rewards for problems with hidden states can be

meaningful if only the transitions among the anchors are taken into account. Since

a potential value assigned to an ambiguous state estimate is unreliable, providing an

additional reward to a transition including an ambiguous state estimate will not be

beneficial in a partially observable environment. The agent might be encouraged to

take an action at a state, based on the potential value of its current ambiguous state

estimate, and the action might thus mislead the agent away from a goal state. On the

other hand, assuming that the state transitions between two anchors form a temporal

abstraction, one can define a meta-level transition among two anchors in an abstract

level. This meta-level transition may correspond to a series of primitive actions in

the underlying model but the additional reward is provided only when these actions

complete a transition between two anchors.

Note that, this approach does not align with idea of the potential based reward shap-

ing and benefit from the guarantees of it since it does not shape the reward in each

transition and changes the return of the sequence of states that the agent follows. On

the other hand, policy invariance is obviously not a concern in a non-Markovian envi-

82



ronment since an optimal or even a “good enough” deterministic memoryless policy

is not guaranteed at all [105]. We avoid using the term “reward shaping” due to

these differences. Moreover, this idea cannot be considered as an intrinsic motiva-

tion. Although we provide additional and internal rewards to the learning algorithm,

our rewards are not intrinsically motivated. They are given to increase the learning

speed on a specific task, that is to maximize the external rewards.

To apply additional rewards, one needs to calculate the potentials of the anchors. This

study is influenced by [92] (the value iteration approach on the abstract model) for

the abstraction and value iteration ideas. In [92], an abstraction over the set of states

of an MDP is created and an online method for learning the potentials of these ab-

stract states is proposed. Similarly, the set of anchors form an abstract model where

the agent takes abstract actions lasting more than one time step between these an-

chors. However, our study differs from theirs because we assume the problem model

is a POMDP with hidden states and we do not make further abstractions over the set

of observations. We follow their value iteration approach on the abstract model of

anchors since it catches the reward mechanism of the problem unlike other heuris-

tic. The abstract model is in fact an SMDP [10] and we will call it Anchor-SMDP.

Figure 6.3 depicts how the Anchor-SMDP of the 6RoomsP domain looks like, also

indicating which true problem state each anchor corresponds to.

Definition 6.7 An Anchor-SMDP is a SMDP whose set of states S is formed by the

anchors in the formed state estimation set.

The Anchor-SMDP is inherently composed of less number of states compared to the

set of estimated states of the POMDP since most states are perceptually aliased in

a partially observable environment. Therefore, the potentials of these anchors can

be easily calculated by means of value iteration and then used for applying internal

rewards in the underlying POMDP while acting in the environment.

The overall algorithm for Anchor Based Guidance (ABG) is given in Algorithm

5. The algorithm assumes that the anchors of the estimated state set are known.

It requires as input the learning rate αv and the discount rate γv for the Anchor-

SMDP value iteration. The algorithm starts by initializing the value function V of the

Anchor-SMDP, the time index t, the previous and the current anchor variables a and

83



Figure 6.3: An illustration of an abstract model for a sample grid world domain (6-

RoomsP, see Figure 6.5a for the original sketch). The anchors correspond to the

doorways and the goal state is marked withGwhere circles and dashed lines represent

the anchors and transitions between anchors in the abstract model.

a ′, the previous and the current time variables τ and τ ′ that keep the time that a and

a ′ are seen and the short history H (Lines 1-3). It checks if the initial estimated state

is an anchor and if so, sets a and τ (Lines 4-5). Then, it goes into the regular loop

of interacting with its environment and observing transitions between the estimated

states xt and xt+1. It keeps track of a transition in H to check if there is an anchor

previously observed, in order to be able to calculate the discounted sum of rewards

that is used in the Line 18.

As the precondition to provide anchor based reward through to the anchor abstrac-

tion, the algorithm checks if the agent lands in an anchor. If this is the case, it sets

the current anchor a ′ and the current anchor time τ ′ (Lines 13-14). If there is a an-

chor previously observed, then it is possible to provide the additional reward. The

algorithm calculates the reward to be provided to the learning algorithm in Line 16.

Following the internal reward calculation, the algorithm calculates the sum of dis-

counted rewards, gathered between the previous anchor a and the current anchor a ′

by using H and applies value update (Line 18), where n represents the number of

steps taken between the two (Line 17).

The algorithm continues by shifting the previous anchor variables with the current

anchor variables (Line 20) and resetting the current anchor variables and the history

H (Lines 21-22). Finally, it provides the updated reward to the underlying learning

84



Algorithm 5 Reinforcement Learning with Anchor Based Guidance
Require: γ,A, αv, γv

1: ∀a ∈A, V (a)← 0, t← 0

2: a ← ∅, τ ← ∅, a ′ ← ∅, τ ′ ← ∅
3: H ← ∅
4: if xt ∈A then

5: a ← xt, τ ← t

6: end if

7: repeat

8: Observe transition 〈xt, at, rt, xt+1〉
9: if a 6= ∅ then

10: H ← H ∪ 〈xt, at, rt, xt+1〉 {Save the transition if necessary}

11: end if

12: if xt+1 ∈A then {Check if the reached estimated state is an anchor}

13: a ′ ← xt+1

14: τ ′ ← t+ 1

15: if a 6= ∅ then {Check if there is a previous anchor}

16: ft = V (a ′)− V (a)

17: n = τ ′ − τ
18: V (a) = (1−αv)·V (a)+αv ·(rτ +γv ·rτ+1+ ...+γn−1v ·rτ ′−1+γnv ·V (a ′))

19: end if

20: a ← a ′, τ ← t+ 1

21: a ′ ← ∅, τ ′ ← ∅
22: H ← ∅
23: end if

24: Learn by using R′(xt, at, xt+1) = rt + 1ft>0 · ft
25: until episode ends

algorithm and continues to interact with the environment. Here, the internal reward

is used only if it is positive. As the agent is aiming to learn a policy over a somewhat

uncertain state estimation set, using a punishment over them may not be beneficial.

On the other hand, rewarding the right way is enough to guide the agent towards high

rewards.

85



6.8 Automatic Anchor Discovery

Algorithm 5 requires the set of anchors beforehand. Yet, in a realistic setting, the

agent has no prior knowledge about which state estimates are true and clear. In fact,

the anchor set must be discovered as the learning continues.

In Chapter 5, we showed that Diverse Density is a good candidate to work under

partial observability. Its performance on automatic landmark discovery makes it a

promising method for online anchor identification too.

episode
threshold

 met

identify
anchors

by DDCF

calculate f

form
estimated state

f = 0
use anchor set

found by DDCF

update
abstract model

learn by using R’
select next action

environment

R’ = r + 1
f>0

 . f

no yes

ABG

RL algorithm

actionobservation

re
w

ar
d 

r
agent

episode
endedyes no

Figure 6.4: The workflow of Reinforcement Learning when the agent is equipped

with the coupling of DDCF and ABG.

The idea of Diverse Density is to check the unique points in history that led to success.

It requires a bag level classification to have successful and unsuccessful episodes.

Then, it checks the instances that are uniquely seen on positive bags but not on nega-

tive ones. By definition, an anchor maps to only one state, unlike other unclear state

86



estimations that can be visited on multiple states. Hence, in a successful episode,

visiting an ambiguous state estimation is more likely than an anchor, causing a useful

anchor to be seen more diversely in an episode yet more densely on successful ones.

With this motivation, we can employ DD, especially our version DDCF, to identify

the anchors during learning to form an overall framework that can run in a realistic

Reinforcement Learning setting. Then, the identified ones can be used to provide

guiding rewards to the agent. However, these two processes should not be run at

the same time, since a newly identified anchor may disrupt the value iteration and

cause false guiding rewards. That is why, we first employ DDCF to find a set of

anchors to be used in guiding the agent. After a certain episode threshold is met, the

Anchor-SMDP is formed by the found anchors and used by ABG to introduce guiding

rewards. The overall framework is given in Figure 6.4.

6.9 Experiments

In the experiments, we employed two well known algorithms with eligibility traces,

Q(λ) and Sarsa(λ), due to their effectiveness in POMDPs with hidden states. We

implemented Watkins’ Q(λ) to keep it truly off-policy.

The aforementioned algorithms are tested against two proposed methods; Anchor

Based Guidance with the anchors given beforehand and its variant coupled with

DDCF for automatic anchor identification task. We experimented with different forms

of estimated states because higher level of representations are required for some do-

mains in order to contain a good policy. Note that, our aim is not to find the best

state estimation, yet to show that ABG can be helpful on different levels of estimated

states.

In the results, we showed the discovery performance of DDCF, learning performances

of all the methods and further analyzed the learning performances of ABG with sub-

sets of anchors. The results are presented and discussed extensively on several prob-

lems.

87



6.9.1 Problem Domains

Experiments are made on three domains two of which (6RoomsP and 4Rooms4-

HallwaysP) are grid world domains and one (ToH3P) is a puzzle. The sketches and

the size characteristics of the problems are shown in Figure 6.5 and Table 6.1.

6RoomsP and 4Rooms4HallwaysP are navigational tasks where the agent can take

four actions as north, east, south, west. Actions are stochastic, resulting in the in-

tended direction with 0.95 probability and either left or right of the intended direction

with 0.025 probability.

Table 6.1: Details of the domains used in the experiments for Anchor Based Guid-

ance. The sub-script P represents partial observability.

Problem |S| |A| |Ω| Action Noise Reference

6RoomsP 564 4 43 Yes [3]

4Rooms4HallwaysP 374 4 12 Yes [2]

ToH3P 161 4 31 No [51]

In 6RoomsP, the agent’s observations are formed according to its distance to the walls

in four compass directions (one step from the wall, two steps from the wall, closer to

the wall in this direction than the other, further from the wall in this direction than the

other). Additionally, the doorways of 6RoomsP provide unique observations. On the

other hand, 4Rooms4HallwaysP limits the perceptions to the presence of a wall in

the next cell in four directions. In both of the navigational domains, the agent starts

from the upper left room and aims to reach to uniquely observable goal state (marked

as G in Figures 6.5a and 6.5b) where each regular action is punished by −0.01 and

reaching the goal state is rewarded by 1.

ToH3P is a classical puzzle that contains m rods and n disks where initially, the disks

are placed either on the left-most or the middle rod in the increasing size order. The

goal of the agent is to move the disks one at a time so that eventually they are placed

on the right-most rod with the same order. In this version of the problem, the agent

has an arm that can employ four actions as left, right, pick up and put down. The

actions are deterministic and an action yields a reward of 10 upon reaching to the

88



G

(a) 6RoomsP

G

(b) 4Rooms4HallwaysP

(c) ToH3P

Figure 6.5: Sketches of the domains used in the experiments for Anchor Based Guid-

ance. The goal states are marked with G in the grid world domains.

uniquely visible goal state, no reward or punishment otherwise. ToH3P contains 3

disks and 3 rods where the middle rod has an additional shape that is visible by the

89



?
=

(a) An observation on the middle rod with the smallest disk, corresponding to four different states.

?
=

(b) An observation on a rod with the disks except the smallest one, corresponding to four different

states.

left
=

(c) The anchor generated by the transition between the observations via left action, mapping to only

one state.

Figure 6.6: A simple example in ToH3P problem where seeing only one rod may

correspond to multiple configurations but a transition from one to another with left

action is specific to a single state, creating an anchor formed as x = ot−1at−1ot.

agent. The agent’s perception is limited to the contents of the rod that the arm is on,

whether the current rod is the middle one or not and whether the arm is holding a disk

or not. Due to this partial observability, the agent has to keep some sort of memory

to form a good policy on the task.

This study focuses on the domains that may lead to anchors in different forms of

state estimation. 6RoomsP contains anchors in pure observational level since the

doorways provide unique observations. On the other hand, the observation in 4-

Rooms4HallwaysP are highly ambiguous but the keeping a memory can create

unique estimations. As in the example in Figure 6.2, observing top-right and bottom-

90



(a) 6RoomsP

(b) 4Rooms4HallwaysP

(c) ToH3P

Figure 6.7: Observation transition graphs of the domains. The goal states are labeled

as G.

91



left corners in an order can happen in only one state while these observations map to

three states individually. For the case of ToH3P, the agent may further improve its

memory to contain the action between the previous observation and the current one,

creating anchors as shown in Figure 6.6.

Table 6.2: Details of the estimated state space with different state estimation forms

where κ is the average aliasing ratio.

State Estimate
6RoomsP 4Rooms4HallwaysP ToH3P

|X| |A| κ |X| |A| κ |X| |A| κ

x = ot 43 7 14.09 12 1 34.66 31 6 5.16

x = ot−1ot 305 125 6.28 69 21 12.58 153 20 3.15

x = ot−1at−1ot 1010 418 6.23 244 76 12.85 286 179 2.25

As it can be seen from Figure 6.7, the transition semantics of observations do not

represent the structure of the problems. Moreover, Table 6.2 shows how the size of

the set of estimated states X and the number of anchors, change with different forms

of state estimates. To further understand the how ambiguous the estimated states are,

we propose a metric called aliasing ratio, which is defined as;

κ =

∑
x∈X |M(x)|
|X|

(61)

where |M(x)| represents the number of true states that the state estimate x maps to.

Note that, this metric does not directly shows how difficult a problem is, yet it gives an

idea about the uncertainty. It can be seen in Table 6.2, having memory can decrease

the aliasing ratio on all of the problems, yet including the action between observations

is only useful for ToH3P due to nondeterminism on the outcomes of actions in other

problems.

6.9.2 Settings

Q(λ) and Sarsa(λ) algorithms are compared to their versions with ABG and the

coupling of DDCF and ABG, in terms of the number of steps to reach the goal

state. The main experiments are performed with different forms of state estima-

tion for 6RoomsP, 4Rooms4HallwaysP and ToH3P as x = ot, x = ot−1ot and

92



x = ot−1at−1ot, respectively. Optimal MDP policy performance for the problems are

also plotted as a baseline.

In the experiments, an episode starts at a randomly selected initial state of the problem

and ends either when the agent reaches a goal state or after 5000 steps are taken. The

results are averaged over 50 experiments, each of which took 25000 episodes.

For the learning parameters, we used the values that are previously used for these

algorithms. λ = 0.9 is used for the main experimentation. For both RL algorithms

and all of the domains, α = 0.01, γ = 0.9 are used, and an ε-greedy action selec-

tion method is employed with ε starting at 0.2 and linearly decaying down to 0.0001

throughout an experiment (until the last episode).

The value iteration of the Anchor-SMDP used γv = 0.99 and αv = 0.05 in all of

the domains which give the best results for ABG. For ABG, we assumed that the

anchor set A is provided beforehand, that is the agent is capable of perfectly sensing

whether it is in an anchor or not. On the other hand, for the coupling of DDCF

and ABG, we let DDCF to run for 2000 episodes, then employed ABG with the

identified set of anchors. For DDCF, we used θ = 10.0 and λDD = 0.95 where

an episode is considered successful if it ends with a peak reward and lasts shorter

than a determined step threshold. We used a static filter of 2 steps in 6RoomsP

and 4Rooms4HallwaysP where it is set to 3 for ToH3P problem. Moreover, we

employed concept filtering by setting k = 2 in the congestion ratio metric.

6.9.3 Learning Performances

For the main experiments, we reported the average number of steps taken to reach

the goal state with the 95% bootstrapped confidence intervals. The agent used differ-

ent forms of state estimation so that we can show the performance of our proposed

method with different forms of anchors.

In Table 6.3, the identification performance of DDCF + ABG is given when the agent

used state estimates as x = ot, x = ot−1ot and x = ot−1at−1ot for 6RoomsP, 4-

Rooms4HallwaysP and ToH3P respectively. As stated earlier, DDCF was run for

the first 2000 episodes to find the anchors in the task. In case of accuracy, DDCF is

93



Table 6.3: Anchor identification performance of DDCF under different learning algo-

rithms. Values are given with their lower and upper bound of confidence intervals.

Problem
Q(λ) Sarsa(λ)

Precision Recall Precision Recall

6RoomsP 1.000 (1.000, 1.000) 0.631 (0.586, 0.674) 1.000 (1.000, 1.000) 0.703 (0.657, 0.743)

4Rooms4HallwaysP 1.000 (1.000, 1.000) 0.402 (0.383, 0.427) 1.000 (1.000, 1.000) 0.412 (0.388, 0.442)

ToH3P 0.979 (0.965, 0.990) 0.058 (0.054, 0.062) 0.974 (0.961, 0.985) 0.054 (0.050, 0.058)

shown to perform well on different levels of state estimation. It resulted in noise free

sets of anchors in almost all of the problems. On the other hand, the table shows that

DDCF does not cover all the anchors. This behaviour originates from the focus of

DDCF on the anchors that are most useful for success. Especially in ToH3P, there

are 179 anchors in the form x = ot−1at−1ot (Table 6.2), yet only a few of them causes

the highest DD values and are enough for guiding the agent.

Figure 6.8 shows the learning performances in 6RoomsP. Learning a policy based

on the pure observations (x = ot) seems to work in this domain. Although it is not

optimal, all of the algorithms can find a good policy that can lead the agent towards

high rewards. It is clear from the figure that ABG dramatically improves the learn-

ing performance since it guides the agent to the goal state from the beginning of the

learning with the anchor set provided beforehand. Likewise, the agent’s performance

improves when the set of anchors found by DDCF is fed to ABG and guidance starts.

Around the episode 2000, the number of steps to the goal state start to decrease sig-

nificantly. This shows that the prior knowledge of the anchor set is not necessary, yet

it can be found online. Although DDCF does not discover all the anchors, the found

ones are sufficient for improving the learning speed.

For 4Rooms4HallwaysP domain, keeping a memory may be required in order to

observe some sort of learning. In Figure 6.9, it is shown that keeping the previous

observation in the estimated state form can improve the performance of the baseline

algorithms, Q(λ) and Sarsa(λ). In this level of state estimation, Figure 6.10 shows

a similar result. Both baseline algorithms gives a slow learning sign where Sarsa(λ)

performs better compared to Q(λ). On the other hand, ABG improves both of the

underlying algorithms. Moreover, DDCF + ABG has a similar sudden effect on the

94



0 5000 10000 15000 20000 25000
Number of Episodes

0

200

400

600

800

1000

1200

1400

St
ep

s

Q(0.9) + ABG
Q(0.9)
Q(0.9) w/ DDCF + ABG
MDP Baseline

(a) Q(λ)

0 5000 10000 15000 20000 25000
Number of Episodes

0

200

400

600

800

1000

1200

1400

St
ep

s

Sarsa(0.9) + ABG
Sarsa(0.9)
Sarsa(0.9) w/ DDCF + ABG
MDP Baseline

(b) Sarsa(λ)

Figure 6.8: Average number of steps taken to reach the goal state in 6RoomsP do-

main where the state estimation has the form of x = ot. The dashed line represents

the best value from the MDP version of the problem and shaded areas are the 95%

bootstrapped confidence intervals.

0 5000 10000 15000 20000 25000
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

St
ep

s

Q(0.9) with ot

Sarsa(0.9) with ot

Q(0.9) with ot 1ot

Sarsa(0.9) with ot 1ot

Figure 6.9: Average number of steps taken to reach the goal state in 4Rooms4-

HallwaysP domain with different state estimation forms. Shaded areas are the 95%

bootstrapped confidence intervals.

95



learning performance after the guidance begins. This shows that the overall algorithm

is also helpful when more complex anchors are present.

0 5000 10000 15000 20000 25000
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

4000

St
ep

s

Q(0.9) + ABG
Q(0.9)
Q(0.9) w/ DDCF + ABG
MDP Baseline

(a) Q(λ)

0 5000 10000 15000 20000 25000
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

St
ep

s

Sarsa(0.9) + ABG
Sarsa(0.9)
Sarsa(0.9) w/ DDCF + ABG
MDP Baseline

(b) Sarsa(λ)

Figure 6.10: Average number of steps taken to reach the goal state in 4Rooms-

4HallwaysP domain where the state estimation has the form of x = ot−1ot. The

dashed line represents the best value from the MDP version of the problem and shaded

areas are the 95% bootstrapped confidence intervals.

Figure 6.11 shows that the baseline algorithms cannot learn by using the single obser-

vations from the environment, yet including the actions between the previous and the

current observations seems to make the agent solve the task in ToH3P. It can be seen

in Figure 6.12, all of the algorithms almost converge to the best value taken from the

MDP version of the problem when the state estimation is formed as x = ot−1at−1ot.

Again, anchor based guidance led the agent towards the best policy much sooner. Al-

though DDCF’s coverage on the anchors is low, its improvement over the baseline

algorithms are significant. This proves that not all of the anchors are to be used to

achieve good guidance.

96



0 5000 10000 15000 20000 25000
Number of Episodes

0

1000

2000

3000

4000

5000

St
ep

s Q(0.9) with ot

Sarsa(0.9) with ot

Q(0.9) with ot 1at 1ot

Sarsa(0.9) with ot 1at 1ot

Figure 6.11: Average number of steps taken to reach the goal state in ToH3P do-

main with different state estimation forms. Shaded areas are the 95% bootstrapped

confidence intervals.

0 5000 10000 15000 20000 25000
Number of Episodes

0

250

500

750

1000

1250

1500

1750

2000

St
ep

s

Q(0.9) + ABG
Q(0.9)
Q(0.9) w/ DDCF + ABG
MDP Baseline

(a) Q(λ)

0 5000 10000 15000 20000 25000
Number of Episodes

0

250

500

750

1000

1250

1500

1750

2000

St
ep

s

Sarsa(0.9) + ABG
Sarsa(0.9)
Sarsa(0.9) w/ DDCF + ABG
MDP Baseline

(b) Sarsa(λ)

Figure 6.12: Average number of steps taken to reach the goal state in ToH3P domain

where the state estimation has the form of x = ot−1at−1ot. The dashed line represents

the best value from the MDP version of the problem and shaded areas are the 95%

bootstrapped confidence intervals.

97



6.9.4 Analysis on Guidance with Subsets of Anchors

We further analyzed the learning performance of Anchor Based Guidance when only

a subset of the true anchor set is provided to the agent. This way, we can demonstrate

the effect of the anchor set on the guidance method.

At the beginning of each experiment, we take a random subset of anchors and run

ABG with this subset. We experimented with four percentages as 20%, 40%, 60%

and 80% and compared the results to ABG with all the anchors given (100%) and the

baseline algorithm without any guidance (0%), which is Sarsa(λ) for this setting. In

the experiments, we used 4Rooms4HallwaysP domain with the state estimation

x = ot−1ot where there are 21 anchors in this form (Table 6.2).

0 5000 10000 15000 20000 25000
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

St
ep

s

Sarsa(0.9) + ABG
Sarsa(0.9)
Sarsa(0.9) + ABG(20%)
Sarsa(0.9) + ABG(40%)
Sarsa(0.9) + ABG(60%)
Sarsa(0.9) + ABG(80%)

Figure 6.13: Average number of steps to goal in 4Rooms4HallwaysP when ABG

is fed with the different subsets of the anchor set. The percentage of the provided

subsets are given in parentheses and the confidence intervals are omitted for better

view.

Figure 6.13 shows the number of steps taken to the goal averaged over 50 experi-

ments. As expected, knowing a bigger subset of the anchors leads to a better learning

performance since the agent can depend on more anchors and rewarded more fre-

quently. Additionally, we compared these results to the performance of DDCF +

ABG where the method scored 0.41 recall, which is nearly 40% of the anchors. It can

be seen in Figure 6.14 that the performance of DDCF + ABG matches to having a

random subset of 80%, even though it had a late start on guidance due to the episode

threshold. This supports our claim that DDCF is more focused on anchors that are

useful for learning the task at hand.

98



0 5000 10000 15000 20000 25000
Number of Episodes

0

500

1000

1500

2000

2500

3000

3500

St
ep

s

Sarsa(0.9) + ABG
Sarsa(0.9) + ABG(40%)
Sarsa(0.9) + ABG(80%)
Sarsa(0.9) w/ DDCF + ABG

Figure 6.14: Comparison of DDCF + ABG to ABG with the subsets of anchors in

terms of average number of steps to goal in 4Rooms4HallwaysP. The percent-

age of the provided subsets are given in parentheses and shaded areas are the 95%

bootstrapped confidence intervals.

6.10 Summary and Discussion

In this chapter, an anchor based guidance approach is applied to the partially ob-

servable problem setting, where the states are hidden from the agent. The proposed

method, ABG, makes use of anchors to baseline a potential function for introduc-

ing additional rewards. ABG approach argues that the RL agent can achieve a bet-

ter solution by applying internal rewards whenever a transition is completed among

two anchors at the abstract level. Experiments on several problems show that ABG

can significantly improve the learning performance of well known off-policy and on-

policy learning algorithms, like Q(λ) and Sarsa(λ). ABG can be further coupled with

DDCF to remove the necessity of having anchors beforehand by discovering them

online. DDCF + ABG performed significantly better than the baselines yet close to

the case where all the anchors are given a priori.

The study shows that anchors can be found on different levels of state estimation

forms. Their natural presence can be utilized by guiding with additional rewards.

Both the anchors and their potentials can be found online and DDCF + ABG is a

complete algorithm that combines discovery and usage of anchors.

99



100



CHAPTER 7

CONCLUSION

This chapter summarizes the attacked problem, the work in the thesis and discusses

possible future ways to continue.

7.1 Summary

Reinforcement Learning aims to maximize the rewards taken from an environment

while interacting with it. Each experience in the world may be costly. Hence, the

agent needs to learn efficiently, that is, solve the task in a small amount of time while

avoiding harmful consequences. One way to accelerate Reinforcement Learning is to

look for the clues of the environment. Such clues may correspond to the bottleneck

regions of the state space, defined as subgoals, or unique experiences in uncertainty

which may be defined as landmarks or anchors to be more general. A Reinforcement

Learning agent with the capability of identifying these clues while learning can indeed

learn the problem much faster by taking advantage of their presence.

This thesis focuses on the clues of a world in terms of their automatic discovery and

usage in Reinforcement Learning. It covers a wide range of models such as MDP,

SMDP and POMDP.

Firstly, Chapter 3 attacks the problem of automatic option generation and aims to

develop the common method to create initiation sets for subgoal driven options in

MDPs. This greedy heuristic includes all the states visited before the subgoal state

to the initiation set of the option reaching it. However, this idea ends up adding

redundant states to the initiation set, creating less effective options. The agent may

101



have a shorter path to high rewards on some states and employing an option to reach a

subgoal from these may send the agent further away from a goal state, causing a waste

of time. Our proposed heuristic, history tree, forms a tree where a parent state is the

best state to go from a child according to their values. Then, our algorithm employs a

search in the tree and only includes the states that are below the target subgoal. This

way, the created option is goal oriented and redundant states are avoided to be added

to the initiation set. In the study, we coupled our heuristic with well known online

subgoal discovery methods to form a complete online framework. The experiments

showed that the options created with history tree heuristic are more effective to lead

the agent towards high rewards and our heuristic provide a better set of options.

Secondly, in Chapter 4, we studied on a multiple instance learning algorithm adopted

to subgoal identification, called Diverse Density, since there is a room for improve-

ment and it is a good candidate to work under partial observability. We proposed

a novel metric named congestion ratio to eliminate redundant candidates from the

exhaustive search for diverse density values. Our version of the algorithm includ-

ing concept filtering mechanism, Diverse Density with Concept Filtering, requires

less time to identify the subgoals since it uses a local metric to filter out unnecessary

concepts. Moreover, the original Diverse Density algorithm requires the distances

between concepts beforehand in order to calculate a similarity value. Our modi-

fied algorithm removes this necessity by keeping an interaction graph formed during

learning. Hence, this improvement enables Diverse Density to be more suitable for re-

alistic tasks. In this chapter, we experimented on both fully and partially observable

problems. We showed that Diverse Density, unlike other online subgoal discovery

methods, is able to identify bottleneck regions in POMDPs with hidden states, which

is a promising step towards an unexplored field.

Thirdly, we further dived into problems with hidden states in Chapter 5 and focused

on the definition of a landmark which found some ground in the field. A landmark

is a state that provides a unique observation and can be used to accelerate the speed

of well known algorithms such as Sarsa(λ). It has been shown that the modification

of Sarsa(λ) to problems with landmarks, called SarsaLandmark, can converge to a

good policy faster. However, the algorithm assumes that the landmarks are known

in advance. We employ Diverse Density for online landmark discovery task as its

102



idea still holds in this model. Our detailed experiments shows that Diverse Den-

sity is able to find the landmarks in a POMDP with hidden states and the overall

framework of SarsaLandmark with Automatic Landmark Discovery outperforms its

baseline Sarsa(λ) while performing similarly to SarsaLandmark with landmark pro-

vided beforehand. In case of identification, DDCF performs more accurately and has

a wider coverage compared to the McGovern’s original Diverse Density.

Finally, Chapter 6 examines the cases where the agent requires additional memory,

forming a state estimate, to solve a given partially observable task. In such a case,

there may be no landmark states, yet some of the agent’s experiences can clear am-

biguity. We put a new definition, anchor, for the experiences that constitutes no

uncertainty about the current state of the agent. Then, we devised a new method to

inform the agent about its progress by providing additional rewards. These rewards

are applied when the agent completes an abstract transition between two anchors, that

is, two dependable estimated states. To calculate the potentials of the anchors, we fol-

lowed a similar study in the reward shaping field and formed the potential function

during learning. Furthermore, we again used Diverse Density with Concept Filtering

to identify the anchors while learning. Our results demonstrate that applying guiding

rewards based on anchors dramatically improves the performance of two well known

algorithms, Q(λ) and Sarsa(λ). Although not optimal, the algorithms coupled with

Anchor Based Guiding converges to a good policy much faster. Also, the complete

algorithm of DDCF and ABG again outperforms the baselines and gives a close per-

formance to ABG with anchors provided beforehand. The experiments with DDCF

+ ABG showed that DDCF is definitely more focused on useful anchors due to its

performance almost matching with the best scenario of knowing all the anchors.

7.2 Future Work

The work proposed in this thesis has several follow up directions.

History tree heuristic given in Chapter 3, like possibly any other option initiation set

generation heuristic, is expected to suffer from dynamically changing environments.

In other words, one of the assumptions these heuristics make is that the environment

103



is non-stationary. Although the learning agent will adapt to the change after a while,

the previously constructed history tree structure will remain, without being re-used.

In that sense, to handle non-stationary problems, a mechanism is needed to forget

options that are not used for a long time. Since many problems contain more than one

goal state, another future work can be exploring the improvement opportunities for the

selection of the root state (among many goal states) which determines the direction

of the generated options. It can be reasonable to choose a root state that an identified

subgoal is most useful to reach, or choose multiple roots causing multiple options

aiming to go to the same terminal state through different directions. Moreover, the

generated tree can also directly be used for construction of the option policy. The

only missing parts are the actions that lead the agent through the paths in the tree.

The artificial rewards used in experience replay mechanism can be modified so that

best target for each state corresponds to the parent of that state in the tree.

We believe that the congestion ratio metric, introduced in Chapter 4, can be useful in

other areas like social networks. A possible follow up to DDCF can focus on improv-

ing the DD’s identification performance further. Another apparent future work for

Chapter 5 involves making use of temporal ordering of identified landmarks to im-

prove learning performance. Moreover, DDCF can be adapted for continuous spaces

with a proper discretization method, which seems to be an immediate extension.

As a follow-up work to Anchor Based Guiding in Chapter 6, one can experiment with

algorithms that devise their state estimations while learning, rather than having a fixed

form at the beginning. Methods like USM, extend the memory whenever necessary,

causing a set of estimated states with different sizes. The proposed framework of

DDCF + ABG is still a good candidate to work under such circumstances. DDCF can

pick the anchors among the set of estimated states and ABG can fuse them to provide

guiding rewards.

7.3 Final Remarks

Identifying clues while learning is a challenging task but it benefits the agent a great

deal. Additionally, operating under partial observability comes with its own difficul-

104



ties. In fact, it is always possible to create problems with hidden states, that allows no

learning. When the information about the problem is so limited, it may seem as if the

future is completely unpredictable. It resembles a situation of having more unknowns

than the number of equations. One may need to have more information to solve the

system. Finding that information plays a crucial role under such circumstances.

105



106



REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT

Press, second ed., 2018.

[2] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in reinforce-

ment learning using diverse density,” in Proceedings of the Eighteenth Inter-

national Conference on Machine Learning, ICML ’01, pp. 361–368, Morgan

Kaufmann Publishers Inc., 2001.

[3] I. Menache, S. Mannor, and N. Shimkin, “Q-Cut—Dynamic Discovery of Sub-

goals in Reinforcement Learning,” in Machine Learning: ECML 2002: 13th

European Conference on Machine Learning Proceedings, vol. 2430 of LNCS,

pp. 295–306, Springer-Verlag, 2002.

[4] Ö. Şimşek, Behavioral Building Blocks for Autonomous Agents: Descrip-

tion, Identification, and Learning. Ph.D. thesis, University of Massachusetts

Amherst, 2008.

[5] S. J. Kazemitabar and H. Beigy, “Automatic discovery of subgoals in rein-

forcement learning using strongly connected components,” in Advances in

Neuro-Information Processing: ICONIP ’08 Revised Selected Papers, Part I,

vol. 5506 of LNCS, pp. 829–834, Springer-Verlag, 2008.

[6] F. Chen, S. Chen, Y. Gao, and Z. Ma, “Connect-based subgoal discovery for

options in hierarchical reinforcement learning,” in Proceedings of the Third In-

ternational Conference on Natural Computation, vol. 4 of ICNC ’07, pp. 698–

702, IEEE, 2007.

[7] S. Mannor, Ishai Menache, Amit Hoze, and Uri Klein, “Dynamic abstraction

in reinforcement learning via clustering,” in Proceedings of the Twenty-first

International Conference on Machine Learning, ICML’04, pp. 71–78, ACM,

2004.

107



[8] M. R. James and S. P. Singh, “Sarsalandmark: an algorithm for learning

in pomdps with landmarks,” in 8th International Joint Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2009), pp. 585–591, 2009.

[9] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for

continuous-time markov decision problems,” in Advances In Neural Informa-

tion Processing Systems, vol. 7 of NIPS 1994, (Cambridge, MA), pp. 393–400,

MIT Press, 1994.

[10] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: a

framework for temporal abstraction in reinforcement learning,” Artificial Intel-

ligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[11] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting

in partially observable stochastic domains,” Artificial Intelligence, vol. 101,

no. 1-2, pp. 99–134, 1998.

[12] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by trial and

error,” Machine Learning, vol. 7, no. 1, pp. 45–83, 1991.

[13] R. S. Sutton, “Learning to predict by the methods of temporal differences,”

Machine Learning, vol. 3, pp. 9–44, 1988.

[14] C. Watkins, Learning from Delayed Rewards. Ph.D. thesis, Cambridge Uni-

versity, 1989.

[15] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist sys-

tems, vol. 37. University of Cambridge, Department of Engineering Cam-

bridge, England, 1994.

[16] J. Loch and S. P. Singh, “Using eligibility traces to find the best memory-

less policy in partially observable markov decision processes,” in Proceedings

of the Fifteenth International Conference on Machine Learning, ICML’98,

pp. 323–331, Morgan Kaufmann Publishers Inc., 1998.

[17] A. McGovern, R. S. Sutton, and A. H. Fagg, “Roles of macro-actions in accel-

erating reinforcement learning,” Proceedings of the 1997 Grace Hopper Cele-

bration of Women in Computing, pp. 13–18, 1997.

108



[18] K. J. Astrom, “Optimal control of markov processes with incomplete state in-

formation,” Journal of mathematical analysis and applications, vol. 10, no. 1,

pp. 174–205, 1965.

[19] M. O. Duff and A. Barto, Optimal Learning: Computational procedures for

Bayes-adaptive Markov decision processes. PhD thesis, University of Mas-

sachusetts at Amherst, 2002.

[20] R. Jaulmes, J. Pineau, and D. Precup, “Active learning in partially observable

markov decision processes,” in European Conference on Machine Learning,

pp. 601–608, Springer, 2005.

[21] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive pomdps,” in Advances

in neural information processing systems, pp. 1225–1232, 2008.

[22] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann, “A bayesian approach

for learning and planning in partially observable markov decision processes,”

Journal of Machine Learning Research, vol. 12, pp. 1729–1770, 2011.

[23] N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart, “Bayesian reinforce-

ment learning,” in Reinforcement learning, pp. 359–386, Springer, 2012.

[24] A. McCallum, Reinforcement Learning with Selective Perception and Hidden

State. Ph.D. thesis, University of Rochester, 1996.

[25] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Learning without state-estimation

in partially observable markovian decision processes,” in Machine Learning

Proceedings 1994, pp. 284–292, Elsevier, 1994.

[26] L. J. Lin and T. M. Mitchell, Memory approaches to reinforcement learning in

non-Markovian domains. Citeseer, 1992.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value

function decomposition,” Journal of artificial intelligence research, vol. 13,

pp. 227–303, 2000.

109



[29] R. Parr and S. Russell, “Reinforcement learning with hierarchies of machines,”

in Advances In Neural Information Processing Systems, vol. 10 of NIPS ’97,

pp. 1043–1049, MIT Press, 1998.

[30] A. Demir, E. Çilden, and F. Polat, “Generating effective initiation sets for

subgoal-driven options,” Advances in Complex Systems, vol. 22, 2019.

[31] B. Hengst, “Hierarchical approaches,” in Reinforcement Learning: State-of-

the-Art, vol. 12 of Adaptation, Learning, and Optimization, pp. 293–323,

Springer Berlin Heidelberg, 2012.

[32] B. L. Digney, “Learning hierarchical control structures for multiple tasks and

changing environments,” in Proceedings of the fifth international conference

on simulation of adaptive behavior on From animals to animats, pp. 321–330,

MIT Press, 1998.

[33] M. Stolle and D. Precup, “Learning options in reinforcement learning,” in Pro-

ceedings of the 5th International Symposium on Abstraction, Reformulation,

and Approximation, vol. 2371 of LNCS, pp. 212–223, Springer Berlin / Hei-

delberg, 2002.

[34] S. Goel and M. Huber, “Subgoal discovery for hierarchical reinforcement

learning using learned policies,” in In Proceedings of the 16th International

FLAIRS Conference (I. Russell and S. M. Haller, eds.), FLAIRS’03, pp. 346–

350, AAAI Press, 2003.

[35] D. Xiao, Y.-t. Li, and C. Shi, “Autonomic discovery of subgoals in hierarchi-

cal reinforcement learning,” The Journal of China Universities of Posts and

Telecommunications, vol. 21, pp. 94–104, Oct. 2014.

[36] Ö. Şimşek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in re-

inforcement learning by local graph partitioning,” in Proceedings of the 22nd

international conference on Machine Learning, ICML’05, pp. 816–823, ACM,

2005.

[37] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of

Mathematical Sociology, vol. 25, pp. 163–177, June 2001.

110



[38] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–

905, 2000.

[39] Y. A. Wei and C. Cheng, “Ratio cut partitioning for hierarchical designs,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 10, no. 7, pp. 911–921, 1991.

[40] T. Yoshikawa and M. Kurihara, “An acquiring method of macro-actions in rein-

forcement learning,” in IEEE International Conference on Systems, Man, and

Cybernetics, vol. 6 of SMC’06, pp. 4813–4817, 2006.

[41] N. K. Jong, T. Hester, and P. Stone, “The utility of temporal abstraction in re-

inforcement learning,” in Proceedings of the 7th International Conference on

Autonomous Agents and Multiagent Systems, vol. 1 of AAMAS ’08, pp. 299–

306, International Foundation for Autonomous Agents and Multiagent Sys-

tems, May 2008.

[42] Ö. Şimşek and A. G. Barto, “Using relative novelty to identify useful temporal

abstractions in reinforcement learning,” in Proceedings of the Twenty-first In-

ternational Conference on Machine Learning, ICML ’04, pp. 95–102, ACM,

2004.

[43] E. A. McGovern, Autonomous Discovery of Temporal Abstractions from In-

teraction with an Environment. Ph.D. thesis, University of Massachusetts

Amherst, 2002.

[44] S. Girgin, F. Polat, and R. Alhajj, “Improving reinforcement learning by using

sequence trees,” Machine Learning, vol. 81, no. 3, pp. 283–331, 2010.

[45] G. Konidaris and A. S. Barreto, “Skill discovery in continuous reinforcement

learning domains using skill chaining,” in Advances in Neural Information

Processing Systems, pp. 1015–1023, 2009.

[46] A. Jonsson and A. Barto, “Causal graph based decomposition of factored

MDPs,” Journal of Machine Learning Research, vol. 7, pp. 2259–2301, Nov.

2006.

111



[47] O. Kozlova, O. Sigaud, and C. Meyer, “Automated discovery of options in fac-

tored reinforcement learning,” in Proceedings of the ICML/UAI/COLT work-

shop on abstraction in reinforcement learning, pp. 24–29, 2009.

[48] L. J. Lin, “Self-improving reactive agents based on reinforcement learning,

planning and teaching,” Machine Learning, vol. 8, pp. 293–321, 1992.

[49] A. Demir, E. Çilden, and F. Polat, “A history tree heuristic to generate better

initiation sets for options in reinforcement learning (extended abstract),” in

ECAI 2016 - 22nd European Conference on Artificial Intelligence, pp. 1644–

1645, 2016.

[50] L. T. Dung, T. Komeda, and M. Takagi, “Solving POMDPs with Automatic

Discovery of Subgoals,” in Theory and Novel Applications of Machine Learn-

ing, pp. 229–238, InTech, 2009.

[51] D. R. Hofstadter, Metamagical Themas: Questing for the Essence of Mind and

Pattern. Basic Books, Inc., 1985.

[52] A. Demir, E. Çilden, and F. Polat, “A concept filtering approach for diverse

density to discover subgoals in reinforcement learning,” in Proceedings of the

29th IEEE International Conference on Tools with Artificial Intelligence, IC-

TAI ’17, pp. pp. 1–5, (Short Paper), Nov. 2017.

[53] O. Maron and T. Lozano-Pérez, “A framework for multiple-instance learning,”

in Proceedings of the 1997 conference on Advances in Neural Information Pro-

cessing Systems 10, NIPS’97, pp. 570–576, MIT Press, 1998.

[54] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ net-

works,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[55] B. Jiang and C. Claramunt, “Topological Analysis of Urban Street Networks,”

Environment and Planning B: Planning and Design, vol. 31, no. 1, pp. 151–

162, 2004.

[56] W. Hwang, T. Kim, M. Ramanathan, and A. Zhang, “Bridging centrality: graph

mining from element level to group level,” in Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 336–344, ACM, 2008.

112



[57] B. Yang and J. Liu, “Discovering global network communities based on local

centralities,” ACM Transactions on the Web, vol. 2, no. 1, pp. 1–32, 2008.

[58] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-

merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[59] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-

ciometry, vol. 40, pp. 35–41, Mar. 1977.

[60] L. Chrisman, “Reinforcement learning with perceptual aliasing: the perceptual

distinctions approach,” in Proc. of the Tenth National Conf. on AI, AAAI’92,

pp. 183–188, AAAI Press, 1992.

[61] A. Demir, E. Çilden, and F. Polat, “Automatic landmark discovery for learn-

ing agents under partial observability,” The Knowledge Engineering Review,

vol. 34, 2019.

[62] Wikipedia, “Landmark,” 2018.

[63] M. Elkawkagy, P. Bercher, B. Schattenberg, and S. Biundo, “Improving Hier-

archical Planning Performance by the Use of Landmarks,” in Proceedings of

the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1763–1769,

2012.

[64] J. Hoffmann, J. Porteous, and L. Sebastia, “Ordered landmarks in planning,”

Journal of Artificial Intelligence Research, vol. 22, pp. 215–278, 2004.

[65] E. Karpas, D. Wang, B. C. Williams, and P. Haslum, “Temporal Landmarks:

What Must Happen, and When,” in Proceedings of the Twenty-Fifth Interna-

tional Conference on Automated Planning and Scheduling, pp. 138–146, 2015.

[66] A. Lazanas and J. C. Latombe, “Motion planning with uncertainty: a landmark

approach,” Artificial Intelligence, vol. 76, no. 1-2, pp. 287–317, 1995.

[67] L. Frommberger, “Representing and selecting landmarks in autonomous learn-

ing of robot navigation,” in Intelligent Robotics and Applications, First Inter-

national Conference, ICIRA 2008, pp. 488–497, 2008.

[68] A. Howard and L. Kitchen, “Navigation using natural landmarks,” Robotics

and Autonomous Systems, vol. 26, no. 2-3, pp. 99–115, 1999.

113



[69] S. Koenig and R. G. Simmons, “Xavier: A robot navigation architecture based

on partially observable markov decision process models,” in Artificial Intelli-

gence and Mobile Robots, pp. 91–122, MIT Press, 1998.

[70] T. Välimäki and R. Ritala, “Optimizing gaze direction in a visual navigation

task,” in IEEE International Conference on Robotics and Automation, ICRA,

pp. 1427–1432, IEEE, 2016.

[71] L. T. Dung, T. Komeda, and M. Takagi, “Reinforcement learning in non-

markovian environments using automatic discovery of subgoals,” in SICE,

2007 Annual Conference, pp. 2601–2605, 2007.

[72] J. Randløv and P. Alstrøm, “Learning to Drive a Bicycle Using Reinforcement

Learning and Shaping,” in ICML 1998, Madison, Wisconsin, USA, July 24-27,

1998, pp. 463–471, 1998.

[73] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under reward trans-

formations: Theory and application to reward shaping,” in Proceedings of

the Sixteenth International Conference on Machine Learning (ICML 1999),

pp. 278–287, 1999.

[74] E. Wiewiora, “Potential-based shaping and q-value initialization are equiva-

lent,” Journal of Artificial Intelligence Research, vol. 19, pp. 205–208, 2003.

[75] M. Grzes and D. Kudenko, “Plan-based reward shaping for reinforcement

learning,” in 2008 4th International IEEE Conference Intelligent Systems,

vol. 2, pp. 10–22, IEEE, 2008.

[76] M. Grzes, Improving exploration in reinforcement learning through domain

knowledge and parameter analysis. PhD Thesis, University of York, 2010.

[77] K. Efthymiadis and D. Kudenko, “Using plan-based reward shaping to learn

strategies in starcraft: Broodwar,” in 2013 IEEE Conference on Computational

Inteligence in Games (CIG), pp. 1–8, IEEE, 2013.

[78] K. Efthymiadis, S. Devlin, and D. Kudenko, “Overcoming incorrect knowl-

edge in plan-based reward shaping,” The Knowledge Engineering Review,

vol. 31, no. 1, pp. 31–43, 2016.

114



[79] M. Midtgaard, L. Vinther, J. R. Christiansen, A. M. Christensen, and Y. Zeng,

“Time-based reward shaping in real-time strategy games,” in International

Workshop on Agents and Data Mining Interaction, pp. 115–125, Springer,

2010.

[80] Y. Gao and F. Toni, “Potential Based Reward Shaping for Hierarchical Rein-

forcement Learning,” in Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, pp. 3504–3510, 2015.

[81] J. Asmuth, M. L. Littman, and R. Zinkov, “Potential-based Shaping in Model-

based Reinforcement Learning,” in AAAI 2008, Chicago, Illinois, USA, July

13-17, 2008, pp. 604–609, 2008.

[82] M. Grzes and D. Kudenko, “Theoretical and empirical analysis of reward shap-

ing in reinforcement learning,” in 2009 International Conference on Machine

Learning and Applications, pp. 337–344, IEEE, 2009.

[83] S. M. Devlin and D. Kudenko, “Dynamic potential-based reward shaping,” in

Proceedings of the 11th International Conference on Autonomous Agents and

Multiagent Systems, pp. 433–440, IFAAMAS, 2012.

[84] M. Grzes, “Reward shaping in episodic reinforcement learning,” in Proceed-

ings of the 16th Conference on Autonomous Agents and MultiAgent Systems,

AAMAS 2017, pp. 565–573, 2017.

[85] O. Marom and B. Rosman, “Belief reward shaping in reinforcement learning,”

in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[86] M. Babes, E. M. De Cote, and M. L. Littman, “Social reward shaping in the

prisoner’s dilemma,” in Proceedings of the 7th international joint conference

on Autonomous agents and multiagent systems-Volume 3, pp. 1389–1392, In-

ternational Foundation for Autonomous Agents and Multiagent Systems, 2008.

[87] X. Lu, H. M. Schwartz, and S. N. Givigi, “Policy invariance under reward

transformations for general-sum stochastic games,” Journal of Artificial Intel-

ligence Research, vol. 41, pp. 397–406, 2011.

115



[88] S. Devlin, D. Kudenko, and M. Grześ, “An empirical study of potential-based

reward shaping and advice in complex, multi-agent systems,” Advances in

Complex Systems, vol. 14, no. 02, pp. 251–278, 2011.

[89] S. Devlin and D. Kudenko, “Theoretical considerations of potential-based re-

ward shaping for multi-agent systems,” in The 10th International Conference

on Autonomous Agents and Multiagent Systems-Volume 1, pp. 225–232, Inter-

national Foundation for Autonomous Agents and Multiagent Systems, 2011.

[90] S. Devlin and D. Kudenko, “Plan-based reward shaping for multi-agent re-

inforcement learning,” The Knowledge Engineering Review, vol. 31, no. 1,

pp. 44–58, 2016.

[91] B. Marthi, “Automatic shaping and decomposition of reward functions,”

in Proceedings of the 24th International Conference on Machine learning,

pp. 601–608, ACM, 2007.

[92] M. Grzes and D. Kudenko, “Online learning of shaping rewards in reinforce-

ment learning,” Neural Networks, vol. 23, no. 4, pp. 541–550, 2010.

[93] A. Eck, L.-K. Soh, S. Devlin, and D. Kudenko, “Potential-based reward shap-

ing for finite horizon online POMDP planning,” Auton. Agent. Multi Agent

Syst., vol. 30, no. 3, pp. 403–445, 2016.

[94] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically Motivated Re-

inforcement Learning: An Evolutionary Perspective,” IEEE Transactions on

Autonomous Mental Development, vol. 2, no. 2, pp. 70–82, 2010.

[95] P. Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? A typology of

computational approaches,” Frontiers in Neurorobotics, vol. 3, no. NOV, p. 6,

2009.

[96] A. G. Barto and Ö. Şimşek, “Intrinsic motivation for reinforcement learning

systems,” in Proceedings of the Thirteenth Yale Workshop on Adaptive and

Learning Systems, pp. 113–118, 2005.

[97] A. G. Barto, “Intrinsic motivation and reinforcement learning,” in Intrinsically

Motivated Learning in Natural and Artificial Systems, pp. 17–47, Springer,

2013.

116



[98] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and

R. Munos, “Unifying count-based exploration and intrinsic motivation,” in Ad-

vances in Neural Information Processing Systems, pp. 1479–1487, Curran As-

sociates, Inc., 2016.

[99] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman,

F. De Turck, and P. Abbeel, “Exploration: A study of count-based exploration

for deep reinforcement learning,” in Advances in Neural Information Process-

ing Systems, pp. 2754–2763, Curran Associates, Inc., 2017.

[100] G. Ostrovski, M. G. Bellemare, A. Van Den Oord, and R. Munos, “Count-

based exploration with neural density models,” in 34th International Confer-

ence on Machine Learning, ICML 2017, vol. 6, pp. 4161–4175, JMLR. org,

2017.

[101] C. M. Vigorito and A. G. Barto, “Intrinsically Motivated Hierarchical Skill

Learning in Structured Environments,” IEEE Transactions on Autonomous

Mental Development, vol. 2, no. 2, pp. 132–143, 2010.

[102] G. Baldassarre and M. Mirolli, “Deciding which skill to learn when: Temporal-

difference competence-based intrinsic motivation (TD-CB-IM),” in Intrinsi-

cally Motivated Learning in Natural and Artificial Systems, pp. 257–278,

Springer, 2013.

[103] T. D. Kulkarni, “Deep Reinforcement Learning with Temporal Abstraction and

Intrinsic Motivation,” in Advances in neural information processing systems,

vol. 48, pp. 3675–3683, 2016.

[104] A. Demir, E. Çilden, and F. Polat, “Landmark based reward shaping in rein-

forcement learning with hidden states,” in Proceedings of the 18th Interna-

tional Conference on Autonomous Agents and MultiAgent Systems, AAMAS

’19, Montreal, QC, Canada, May 13-17, 2019, pp. 1922–1924, 2019.

[105] M. L. Littman, “Memoryless policies: theoretical limitations and practical re-

sults,” in From Animals to Animats 3: Proceedings of the third International

Conference on Simulation of Adaptive Behavior, pp. 238–245, MIT Press,

1994.

117



118



CURRICULUM VITAE

Personal Information

Surname, Name : Demir, Alper

Nationality : Turkish

Date and Place of Birth : 22 March 1991, Kocaeli

Phone : +90 505 395 39 37

Email : alper91demir@gmail.com

Education

Degree Institution Year of Graduation

M.Sc. METU Computer Engineering 2016

B.Sc. METU Computer Engineering 2014

Work Experience

Year Place Enrollment

2013-2014 BTT Inc. Software Developer

2012 September Turkish Aerospace Industries (TAI) Intern

Foreign Languages

Advanced English, Beginner Russian

119



Publications

1. Demir, Alper, Erkin Çilden, and Faruk Polat. "A history tree heuristic to gen-

erate better initiation sets for options in reinforcement learning." In Proceed-

ings of the Twenty-second European Conference on Artificial Intelligence, pp.

1644-1645. IOS Press, 2016.

2. Demir, Alper, Erkin Çilden, and Faruk Polat. "Local roots: A tree-based sub-

goal discovery method to accelerate reinforcement learning." In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pp.

361-376. Springer, Cham, 2016.

3. Demir, Alper, Erkin Çilden, and Faruk Polat. "A Concept Filtering Approach

for Diverse Density to Discover Subgoals in Reinforcement Learning." In 2017

IEEE 29th International Conference on Tools with Artificial Intelligence (IC-

TAI), pp. 1-5. IEEE, 2017.

4. Demir, Alper, Erkin Çilden, and Faruk Polat. "Generating Effective Initiation

Sets For Subgoal-Driven Options." Advances in Complex Systems 22, no. 02

(2019): 1950001.

5. Demir, Alper, Erkin Çilden, and Faruk Polat. "Landmark Based Reward Shap-

ing in Reinforcement Learning with Hidden States." In Proceedings of the 18th

International Conference on Autonomous Agents and MultiAgent Systems, pp.

1922-1924. International Foundation for Autonomous Agents and Multiagent

Systems, 2019.

6. Demir, Alper, Erkin Çilden, and Faruk Polat. "Automatic landmark discovery

for learning agents under partial observability." The Knowledge Engineering

Review 34 (2019).

Interests and Hobbies

Basketball, Photography, Movies

120


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Clues of the Environment
	Subgoals
	Landmarks
	Anchors


	Proposed Methods
	Contributions and Novelties
	The Outline of the Thesis

	Background and Related Work
	Markov Decision Processes
	Semi Markov Decision Processes
	Partially Observable Markov Decision Processes
	Reinforcement Learning
	Q-Learning
	Sarsa
	Eligibility Traces
	Q(lambda)
	Sarsa(lambda)


	Abstractions in Reinforcement Learning
	Options
	Macro-Q Learning

	Reinforcement Learning with Hidden States

	Generating Effective Initiation Sets
	Automatic Subgoal Identification
	Automatic Option Generation
	History Tree Heuristic
	Experiments
	Problem Domains
	Settings
	Results and Discussion

	Summary and Discussion

	A Concept Filtering Approach for Diverse Density
	Diverse Density
	Diverse Density for Automatic Subgoal Identification
	Diverse Density with Concept Filtering
	Bridging and Clustering Coefficients
	Congestion Ratio
	Concept Filtering with Congestion Ratio

	Experiments
	Problem Domains
	Settings
	Results and Discussion

	Summary and Discussion

	Automatic Landmark Discovery
	Landmarks and Landmark-POMDPs
	SarsaLandmark
	Diverse Density with Concept Filtering
	The Extended SarsaLandmark Framework
	Experiments
	Problem Domains
	Settings
	Results and Discussion

	Summary and Discussion

	Anchor Based Guidance
	State Estimation
	Anchors
	Reward Shaping
	Intrinsic Motivation
	Anchor Based Guidance
	Automatic Anchor Discovery
	Experiments
	Problem Domains
	Settings
	Learning Performances
	Analysis on Guidance with Subsets of Anchors

	Summary and Discussion

	Conclusion
	Summary
	Future Work
	Final Remarks

	REFERENCES
	CURRICULUM VITAE

