

A MULTI-CAMERA SYSTEM FOR AUTOMATION OF MOUSE GRIMACE
SCALING USING CONVOLUTIONAL NEURAL NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

 AHMET AĞCA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

A MULTI-CAMERA SYSTEM FOR AUTOMATION OF MOUSE GRIMACE

SCALING USING CONVOLUTIONAL NEURAL NETWORKS

submitted by AHMET AĞCA in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Eng.

Prof. Dr. Uğur Halıcı
Supervisor, Electrical and Electronics Eng., METU

Examining Committee Members:

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Eng., METU

Prof. Dr. Uğur Halıcı
Electrical and Electronics Eng., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Eng., METU

Prof. Dr. Turgay Dalkara
Inst. of Neurological Sci. and Psychiatry, Hacettepe Uni.

Assoc. Prof. Dr. Emine Eren Koçak
Inst. of Neurological Sci. and Psychiatry, Hacettepe Uni.

Date: 17.09.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Ahmet Ağca

v

ABSTRACT

A MULTI-CAMERA SYSTEM FOR AUTOMATION OF MOUSE GRIMACE

SCALING USING CONVOLUTIONAL NEURAL NETWORKS

Ağca, Ahmet
Master of Science, Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur Halıcı

September 2019, 127 pages

Over the past decade, convolutional neural networks (CNNs) have gained great

progress on the area of computer vision. Many problems related to automation of

image recognition or classification are now possible to be solved using CNN with an

accuracy much more than a human can achieve. One of these problems is the

automation of Mouse Grimace Scaling (MGS). It is such a time consuming and error-

prone task even for an expert to classify the pain levels of a mouse for lots of images

captured from videos. For this reason, it is essential to incorporate the benefits of

popular machine learning algorithms into this research area. The purpose of this thesis

is to achieve significant results for practical implementations along with improving

the methodology for automation of MGS. In this thesis, a complete set of methodology

starting from the mouse monitoring setup to building the neural network model for

automation of MGS was studied and the results were compared with that of previous

works. For detecting the mouse in video frames, the previously developed tracker

algorithms and detection networks were used without change. The evaluation was

performed by means of both classification and regression problem and transfer

learning was adopted for the basis of the study. For regression, MAE of 0.226 was

achieved for one cross-validation (CV) balanced set, and 0.26 was achieved for overall

balanced sets (score range, 0 to 2). For binary-classification, 91.10% accuracy was

vi

achieved for one CV balanced set, while 82.45% was achieved for overall balanced

sets.

Keywords: Mouse Grimace Scaling, Convolutional Neural Network, Transfer

Learning, Regression, Automation

vii

ÖZ

EVRİŞİMSEL SİNİR AĞLARI KULLANARAK FARE YÜZ

BURUŞTURMASI ÖLÇEKLENDİRME OTOMASYONU İÇİN ÇOKLU

KAMERA SİSTEMİ

Ağca, Ahmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Tez Danışmanı: Prof. Dr. Uğur Halıcı

Eylül 2019, 127 sayfa

Geçtiğimiz 10 yıl içinde, Evrişimsel Sinir Ağları bilgisayarla görü alanında büyük

ilerleme kaydetmiştir. Görüntü algılama veya sınıflandırma otomasyonu ile ilgili bir

çok problemin çözümü evrişimsel sinir ağları kullanılarak bir insanın

başarabileceğinden daha yüksek doğrulukla mümkün olmaktadır. Bu problemlerin bir

tanesi de Fare Yüz Buruşturması Ölçeklendirme (Mouse Grimace Scaling, MGS)

otomasyonudur. Videodan çıkartılmış bir sürü görüntü için deney faresinin ağrı

seviyesini sınıflandırmak bir uzman için bile zaman alıcı ve hataya açık bir işlemdir.

Bu nedenle popüler makina öğrenme algoritmalarını bu araştırmaya dahil etmek önem

taşımaktadır. Bu tezin amacı MGS otomasyonunu uygulanabilir hale getirmek için

kayda değer başarı elde etmenin yanı sıra, otomasyon için kullanılan metodolojiyi de

geliştirmektir. Bu tezde, MGS için deney faresini gözlemleme düzeneğinden sinir

ağlarını oluşturmaya kadar tam bir otomasyon metodu üzerine çalışılmış ve sonuçlar

önceki çalışmaların sonuçlarıyla kıyaslanmıştır. Fare yüzü tespiti için daha önceki bir

çalışmada geliştirilmiş fare yüzü takip algoritması ve fare yüzü tespit sinir ağı

değiştirilmeden kullanılmıştır. MGS otomasyonu, hem sınıflandırma hem de

regresyon problemi olarak ele alınmış ve transfer öğrenimi çalışmanın temelinde yer

almıştır. Regresyon için, tek bir eşit ağırlıklandırılmış çapraz doğrulama setinde 0.226

viii

ortalama mutlak hata elde edilmiş, eşit ağırlıklandırılmış çapraz doğrulama ortalaması

ise en iyi 0.26 olmuştur (ölçek aralığı 0-2). İkili sınıflandırmada ise, tek bir eşit

ağırlıklandırılmış set için %91.10, eşit ağırlıklandırılmış tüm setlerin ortalamasında da

%82.45 doğruluk değeri elde edilmiştir.

Anahtar Kelimeler: Fare Yüz Buruşturma Derecelendirme, Evrişimsel Sinir Ağı,

Transfer Öğrenimi, Regresyon, Otomasyon

ix

To my dearest wife and beloved parents…

x

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Uğur Halıcı,

for her guidance through each step of this thesis study. She always welcomed me

whenever I ran into a trouble or had a question about my research. It was a great honor

for me to have the opportunity to work with her.

I would also like to thank to the members of Hacettepe University Institute of

Neurological Sciences and Psychiatry, Assoc. Prof. Dr. Emine E. Koçak and the

graduate students, Canan Ç. Aktaş and Aslıhan B. Varol, for their great collaboration

and passionate participation for constructing the dataset.

I would also like to acknowledge my colleague, Ömer Uğur Şahin, for his contribution

to the proofreading of all chapters of this work.

By all means, my greatest thanks goes to my spouse, İpek Sarıöz Ağca and my parents,

Kamil and Süheyla Ağca, for their continuous support and everlasting belief in me.

Last but not the least, I would like to thank to my company, Aselsan, for providing me

free time throughout my master’s study.

This study is a continuation of TUBITAK 115E248 - Automatic Evaluation of Pain

Related Facial Expressions in Mice (Mice-Mimic) Project.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xv

LIST OF FIGURES ... xviii

LIST OF ABBREVIATIONS .. xxi

CHAPTERS

1. INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Contribution ... 2

1.3. Organization of the Thesis .. 3

2. LITERATURE SURVEY .. 5

3. BACKGROUND INFORMATION ... 11

3.1. Overview ... 11

3.2. Artificial Neuron Model .. 12

3.3. Neural Network Architectures ... 13

3.4. Image Classification Using Neural Networks ... 15

3.4.1. Loss Functions .. 17

3.4.1.1. Mean Squared Error ... 17

3.4.1.2. Mean Absolute Error .. 17

3.4.1.3. Cross-Entropy Loss .. 18

xii

3.4.2. Regularization .. 18

3.4.3. Optimization ... 19

3.4.3.1. Gradient Descent ... 20

3.4.3.2. Stochastic Gradient Descent .. 20

3.4.3.3. AdaGrad ... 20

3.4.3.4. RMSProp ... 21

3.4.3.5. Adam Optimizer .. 21

3.4.4. Backpropagation Algorithm ... 22

3.5. Convolutional Neural Networks ... 24

3.5.1. Overview .. 24

3.5.2. Architecture .. 25

3.5.2.1. Stride .. 27

3.5.2.2. Padding .. 28

3.5.2.3. Pooling ... 28

4. PROPOSED METHOD ... 31

4.1. Method Overview ... 31

4.2. Mouse Experiment .. 34

4.2.1. Experiment Environment ... 34

4.2.2. Pain Models .. 35

4.2.3. Process Output .. 35

4.3. Video Processing... 36

4.3.1. Mouse Face Detection and Tracking Model .. 36

4.3.2. Process Output .. 39

4.4. Dataset Construction for Manual Scoring ... 40

xiii

4.4.1. Fuse and Filter Algorithm ... 41

4.4.2. Process Output .. 44

4.5. Manual Scoring ... 45

4.5.1. Scoring Application .. 46

4.6. Manual Correction and Image Collection ... 48

4.6.1. Data Augmentation ... 50

4.6.1.1. Rotation .. 51

4.6.1.2. Translation.. 52

4.6.1.3. Zooming ... 52

4.6.1.4. Brightness ... 52

4.7. Dataset Construction ... 53

4.7.1. Process Output .. 53

4.8. Training and Evaluation .. 56

4.8.1. First Phase ... 57

4.8.2. Second Phase .. 57

4.8.3. Image Generator ... 58

4.8.4. Evaluation Criteria .. 60

4.8.5. Software .. 62

4.8.6. Hardware ... 62

5. EXPERIMENTAL RESULTS ... 65

5.1. Mouse Experiment Outputs ... 65

5.2. Manual Coding Dataset ... 66

5.3. Manual Correction and Image Collection ... 73

5.4. Dataset Construction ... 76

xiv

5.5. Training and Evaluation .. 77

5.5.1. First Phase .. 77

5.5.2. Second Phase .. 83

5.5.2.1. Normalization .. 84

5.5.2.2. Fully Connected Layers ... 85

5.5.2.3. Learning Rate and Activation Function ... 86

5.5.2.4. Regression Network Results .. 88

5.5.2.5. Regression Network Multi-Camera Evaluation 92

5.5.2.6. Regression Output to Binary Classification Results 96

5.5.2.7. Binary Classification Network Results .. 97

5.5.2.8. Binary Classification Network Multi-Camera Evaluation 103

5.5.2.9. Overall Regression Networks Comparison 105

5.5.2.10. Overall Binary Classification Comparison 106

6. CONCLUSIONS .. 109

REFERENCES .. 117

APPENDICES ... 121

xv

LIST OF TABLES

TABLES

Table 3.1. Backpropagation Training Steps ... 24

Table 4.1. Video Class Data Structure ... 39

Table 4.2. Frame Class Data Structure... 40

Table 4.3. Experiment Class Data Structure .. 45

Table 4.4. Moment Class Data Structure ... 45

Table 4.5. Scoring Class Data Structure .. 45

Table 4.6. Label_6Cam Application Interface Description 47

Table 4.7. Dataset NPZ Archive Structure... 54

Table 4.8. Software Configuration ... 62

Table 4.9. VM Hardware Configuration .. 63

Table 5.1. Collected Video File Durations in Minutes (Frames in Parenthesis)........ 66

Table 5.2. Fuse and Filter Algorithm Parameter Values .. 67

Table 5.3. Number of Selected Moments for Manual Scoring 67

Table 5.4. Number of Images in Output Folders ... 76

Table 5.5. LOSOCV Dataset File Sizes in MB .. 77

Table 5.6. First Phase Regression Network Specification ... 78

Table 5.7. Dataset Image Generator Settings ... 79

Table 5.8. First Phase Regression Evaluation Results ... 80

Table 5.9. First Phase 3-Alternative Forced Classification Network Specification .. 81

Table 5.10. First Phase 3-Alternative Forced Classification Network Evaluation

Results .. 82

Table 5.11. LOSOCV Dataset Mean Proximity Evaluation 83

Table 5.12. Modified Network Parameters .. 84

Table 5.13. Different Normalization Performance Comparison of LOSOCV-5 85

Table 5.14. Fully Connected Layer Configuration Performances 86

xvi

Table 5.15. Learning Rate and Activation Function Combination Performances 87

Table 5.16. Learning Rate Decay Parameter Comparison .. 88

Table 5.17. 𝑁𝑅(1), Network Summary ... 89

Table 5.18. 𝑁𝑅(1), Cross Validation Results ... 89

Table 5.19. 𝑁𝑅(2), Cross Validation Results ... 90

Table 5.20. 𝑁𝑅(3), Network Summary ... 91

Table 5.21. 𝑁𝑅(3), Cross-Validation Results ... 91

Table 5.22. 𝑁𝑅(1), Multi-Camera Cross-Validation Results 92

Table 5.23. 𝑁𝑅(3), Multi-Camera Cross-Validation Results 93

Table 5.24. 𝑁𝑅(3), Multi-Camera Correlation Analysis .. 93

Table 5.25. 𝑁𝑅(1), Regression to Binary Classification, Multi-Camera Cross-

Validation Results .. 96

Table 5.26. 𝑁𝑅(3), Regression to Binary Classification, Multi-Camera Cross-

Validation Results .. 97

Table 5.27. 𝑁𝐵𝐶(1), Network Summary .. 98

Table 5.28. 𝑁𝐵𝐶(1), Cross Validation Results ... 98

Table 5.29. 𝑁𝐵𝐶(2), Network Summary .. 99

Table 5.30. 𝑁𝐵𝐶(2), Cross Validation Results ... 100

Table 5.31. 𝑁𝐵𝐶(2), Cross Validation Results, Discarded Score Range [0.5,1.0) . 100

Table 5.32. 𝑁𝐵𝐶(3), Network Summary .. 101

Table 5.33. 𝑁𝐵𝐶(3), Cross Validation Results ... 102

Table 5.34. 𝑁𝐵𝐶(3), Cross Validation Results, Discarded Score Range [0.5, 1.5) 102

Table 5.35. 𝑁𝐵𝐶(1), Multi-Camera Cross-Validation Results 103

Table 5.36. 𝑁𝐵𝐶(2), Multi-Camera Cross-Validation Results 104

Table 5.37. 𝑁𝐵𝐶(3), Multi-Camera Cross-Validation Results 104

Table 5.38. 𝑁𝐵𝐶(2), Multi-Camera Cross-Validation Results, Discarded Scores [0.5,

1.0) ... 105

Table 5.39. 𝑁𝐵𝐶(3), Multi-Camera Cross-Validation Results, Discarded Scores [0.5,

1.5) ... 105

xvii

Table 5.40. Overall Regression Networks Comparison ... 106

Table 5.41. Overall Binary Classification Comparison ... 107

xviii

LIST OF FIGURES

FIGURES

Figure 3.1. A Toddler Recognizing Giraffe ... 11

Figure 3.2. Biological to Artificial Neuron [41] .. 12

Figure 3.3. Artificial Neuron Model .. 13

Figure 3.4. Multilayer Feedforward Neural Network .. 14

Figure 3.5. Recurrent Neural Network .. 15

Figure 3.6. Single Layer Network Example .. 16

Figure 3.7. Computational Graph of 𝑓 ... 23

Figure 3.8. LeNet-5 Network Architecture [46] .. 25

Figure 3.9. CNN Local Connectivity & Shared Weights .. 26

Figure 3.10. Convolution Layer Example ... 27

Figure 4.1. Proposed Method Block Diagram ... 33

Figure 4.2. Experiment Setup: a) Proposed in [6], b) Used setup in this study 35

Figure 4.3. Video Processing Algorithm ... 38

Figure 4.4. Fuse and Filter Algorithm ... 43

Figure 4.5. Average Standard Deviation Calculation Example 44

Figure 4.6. Label_6Cam Application .. 47

Figure 4.7. Cropped Image Naming Example ... 49

Figure 4.8. An Example of Created Folders of Create Images Application 50

Figure 4.9. Generated Images Example ... 51

Figure 4.10. Repeated Pixels after Rotation .. 52

Figure 4.11. Dataset Naming Convention Example .. 55

Figure 4.12. LOSOCV Dataset Construction .. 56

Figure 4.13. Train Image Generator Algorithm ... 59

Figure 4.14. Mini-Batch Creation Example .. 60

Figure 4.15. Cloud Tools Connectivity (High Volume Data Sharing) 64

xix

Figure 5.1. Number of Moments by Groups (ORGN) ... 69

Figure 5.2. Number of Images by Groups (ORGN)... 69

Figure 5.3. Number of Overall Moments by Groups (ORGN) 69

Figure 5.4. Number of Overall Images by Groups (ORGN)...................................... 70

Figure 5.5. Number of Moments by Score Groups (ORGN) 70

Figure 5.6. Number of Images by Score Groups (ORGN) .. 71

Figure 5.7. Number of Overall EXP 1-6 Moments by Score Groups (ORGN) 71

Figure 5.8. Number of Overall EXP 1-6 Images by Score Groups (ORGN)............. 72

Figure 5.9. Manual Labeling Error Distribution .. 72

Figure 5.10. Number of Images by Groups (CORR) ... 73

Figure 5.11. Number of Overall Images by Groups (CORR) 74

Figure 5.12. Number of Images by Score Groups (CORR) 74

Figure 5.13. Number of Overall EXP 1-6 Images by Score Groups (CORR) 75

Figure 5.14. First Phase Regression Network General Structure............................... 77

Figure 5.15. Network Structure with Normalization ... 85

Figure 5.16. 𝑁𝑅(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 .. 95

Figure A.1. 𝑁𝑅(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 .. 122

Figure A.2. 𝑁𝑅(3) LOSOCV-2 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 .. 123

xx

Figure A.3. 𝑁𝑅(3) LOSOCV-3 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 ... 124

Figure A.4. 𝑁𝑅(3) LOSOCV-4 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 ... 125

Figure A.5. 𝑁𝑅(3) LOSOCV-5 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Groups

 ... 126

Figure A.6. 𝑁𝑅(3) LOSOCV-6 TEST-CORR Multi-Camera Statistics; (a) Moment

Score Distribution, (b) Moment Prediction Distribution, (c) MAE vs Score Groups

and Number of Moments Distribution, (d) ME vs Score Groups and Number of

Moments Distribution, (e) Error Distribution, (f) Error Distribution with Score Group

 ... 127

xxi

LIST OF ABBREVIATIONS

ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

ANN Artificial Neural Network

API Application Program Interface

AU Action Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Cross-validation

FACS Facial Action Coding System

FC Fully-connected

FHD Full High-Definition

FPS Frames per Second

GD Gradient Descent

GPU Graphical Processor Unit

HU Hacettepe University

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IN Isoflurane Anesthesia

INSP Institute of Neurological Sciences and Psychiatry

KXN Ketamine/Xylazine Anesthesia

LOSOCV Leave-one-subject-out Cross Validation

MAE Mean Absolute Error

ME Mean Error

MGS Mouse Grimace Scaling (or Scale)

MLP Multi-layer Perceptron

MNIST Modified National Institute of Standards and Technology

xxii

MSE Mean Squared Error

OS Operating System

PSPI Prkachin and Solomon Pain Intensity

RAM Random Access Memory

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

ROI Region of Interest

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TBI Traumatic Brain Injury

UNBC University of Northern British Columbia

1

CHAPTER 1

1. INTRODUCTION

1.1. Motivation

Pain has always been one of the most popular subjects throughout the medical history.

It is such an essential key factor that it provides clues to the health conditions of living

creatures. Besides, the assessment of the pain in the time domain, such as the

frequency of pain levels, can give additional medical information. For this reason, it

is highly significant to use quantifiable methods for pain level assessments. As in most

of the other medical studies, laboratory mouse is usually used in pain related medical

researches. In 2010, the first quantifiable method called “Mouse Grimace Scale”

(MGS) for scoring the pain level of a laboratory mouse was developed [1]. Despite

being a quantifiable method, MGS still requires a highly-experienced coder (expert)

in order to achieve an acceptable scoring accuracy. Moreover, the scoring process is a

time consuming task and can be considerably subjective under certain conditions.

Because of these limitations, it is highly desired to automate the scoring process that

will provide cost-effective, fast, reliable, and accurate solution.

In recent years, Convolutional Neural Network (CNN), one type of a deep neural

network, has become so much popular in the area of machine learning, specifically in

computer vision. In fact, CNNs deserve this popularity because they achieved better

results far beyond the expectations for most of the machine learning problems. It is

also important to note that the technological advances in integrating the Graphical

Processor Units (GPUs) into the network training process made the CNNs feasible for

practical implementations. Moreover, one can readily-use the convolutional layers of

the popular and successful pre-trained models in order to solve other specific

2

classification problems. This is called the transfer learning method that also

significantly shortens the training periods.

In fact, MGS is an image classification or image regression problem. Combining the

necessity of automation of MGS and the recent achievements of the CNNs in image

classification problems, it is apparent that reliable and accurate results can be obtained

for MGS automation using CNNs. Additionally, the results of the previous studies of

MGS automation [2]–[5] have already proven the success of the CNNs.

1.2. Contribution

After D. J. Langford et al. [1] developed the first grimace scaling for laboratory mouse

pain level assessment and published its manual [6], there have been several studies

related to grimace scaling, and even for other animals such as rats [7], horses [8],

piglets [9] and sheep [10].

Some of the recent studies adopted directly the scoring method of the MGS and tried

to automate the process using machine learning. In most of those studies, the

evaluation of the network was performed using images taken from different moments.

However, in this study, the scoring of the pain level was evaluated over the 6 images

captured concurrently from the 6 camcorders placed equiangular in the mouse

monitoring setup. Capturing images from different angles of the mouse made it

possible to increase the number of training image data, increase the training set

reliability and thus increase the accuracy of the network.

The dataset was constructed automatically with the help of previous studies [2], [3],

[11], [12] which were carried out within the scope of “Mice-Mimic” project. The

tracking algorithm and mouse face detection network were directly adopted from those

studies. However, on top of those, a decision algorithm was implemented to combine

the results of 6 video files and to select the appropriate frames. Besides, some

moments were duplicated in order to be able to analyze the internal MGS consistency

of the expert for manual scoring.

3

In the previous studies, either custom CNNs were used or at most two pre-trained

CNNs [4] were included. In our study, in the first phase of training task, the results of

5 pre-trained CNNs were compared, and the one who had the best result was used for

the rest of the work.

Although the automation of MGS was addressed as a classification problem in the

previous studies, in fact MGS is a regression problem since MGS score calculation [6]

results in a continuous value representing how intense the pain level is. Moreover, the

behavior of the dependent variables, five Action Units (AUs), can map to a continuous

value although they were individually coded in three different groups. When

compared multiple MGS scores, a higher value means higher pain level. For ease of

application, the resulting scores could also be categorized (discretized) with

compromising on accuracy. Thus, the result of a regression network, continuous score

value, is much more valuable than that of a classification network. Therefore, in this

study, a regression network was developed along with a classification network.

1.3. Organization of the Thesis

In the next chapter, a brief history of facial expression classification and the related

studies are introduced. Besides, the summary of the MGS method is given and the

milestones in the evaluation of the convolutional neural network are mentioned. A few

studies related to the automation of mouse facial expression recognition are addressed

with their corresponding performances. At the end of the chapter, the significance of

dataset quality for the network performance is emphasized by referring related studies

and their results.

In Chapter 3, an overall information of artificial neural networks including most

commonly used concepts and the backpropagation algorithm is introduced. Moreover,

some specific features of the convolutional neural networks are described.

In Chapter 4, the complete set of methods is explained in detail with a hierarchical

way such that they constitute an input-output relationship. The proposed method starts

with the mouse experiment and then continues with video processing, dataset

4

construction for manual coding, manual coding, image collection, and dataset

construction for training tasks in order. Finally, training and evaluation methods are

described.

In Chapter 5, the experimental results of the proposed method described in Chapter 4

are introduced.

In the last chapter, the study is summarized including the method and the experimental

results. The results are discussed by means of improvement, possible defects, and

comparison with similar studies. The possible future works in order to achieve better

results and enhance the methodology are also given.

5

CHAPTER 2

2. LITERATURE SURVEY

The potential to be able to classify the expressions of the emotions of man and animals

was first stated in Darwin’s great study in 1872 [13]. Later, in 1970, Hjortsjö deepened

the analysis of the human face that he came up with 23 different muscle groups of

specifying facial expressions [14]. Then, his study was taken forward by Paul Ekman

and Wallace V. Friesen, and Facial Action Coding System (FACS) [15] was

developed in 1978 for classifying human facial expressions. Specifically, for pain

intensity assessment, “Prkachin and Solomon Pain Intensity” (PSPI) metric was

developed in 2008 on top of FACS.

It is also desired to have such assessment methods for other species for various

purposes such as analyzing drug effects and analyzing the correlation between pain

levels and neural activity on laboratory animals. For rodents, there have been several

methods developed for pain assessment such as conditioned place preference

paradigm [16], operant response paradigm [17], self-administration [18], and

behavioral-based assessment [19]. Those methods are time-consuming and includes

complexity for implementation [20]. Apart from those methods, more recently,

quantifying facial expression signatures of a laboratory mouse was also studied. As a

result of those efforts, D. J. Langford et al. [1] developed the first standardized facial

coding scale, MGS, for laboratory mouse pain assessment and published a manual [6]

describing the usage of the MGS. The manual basically consists of 3 parts first of

which is “Video & Frame Capture” procedure. In this part, the mouse monitoring

setup, physical dimensions, and video frame capture method are described. In order to

increase the probability of capturing the mouse face, the manual suggested two video

cameras for recording at the same time. In the second part, the manual described the

coding procedure including the pre-coding process and the five action units (AUs).

6

The AUs consist of “Orbital Tightening”, “Nose Bulge”, “Cheek Bulge”, “Ear

Position”, and “Whisker Change”. Each of the AUs is scored independently with score

values 0, 1, and 2 corresponding to the pain levels as Normal, Moderate, and High,

respectively. The last part described the calculation and evaluation of the scores

acquired in the second part.

The introduction of the MGS provided an acceleration for the grimace studies on other

species such as rats, rabbits, horses, piglets, and sheep [7]–[10], [21]. Despite the great

contribution of those grimace scales to the medical studies, they all require experts for

coding process resulting in a high-cost and a time-consuming task. Moreover, it is not

possible to deploy on-line evaluation.

On the other hand, the history of the computer vision dates back to late 1960s when

the initial purpose was to build an algorithm to identify the objects in an image [22].

Although there were lots of efforts [23]–[25] for the object recognition of computers,

not much progress had been made in a few decades. The studies remained as an

ambition rather than a practical implementation until 2001, when Paul Viola and

Michael Jones published their studies [26] of real-time object detection using

AdaBoost training algorithm. Although the proposed detection algorithm was able to

detect several object classes, it was actually used for human face. After that time,

various benchmark datasets were published and competitions were organized with

those datasets in order to trace the performance of object recognition algorithms over

the years. One of those competitions was the “ImageNet Large Scale Visual

Recognition Challenge” (ILSVRC) using the subset of ImageNet [27] database as a

benchmarking dataset. It is the first time in 2012 that a convolutional neural network

showed its real power in the image classification challenge of ILSVRC. Krizhevsky

et al. came up with a deep convolutional neural network called “AlexNet” [28] which

performed significantly better than its competitors with the top-5 error rate of 15.3%

in the image classification tasks. This success was again followed by three CNNs for

the following years. VGGNet [29] achieved 7.3% and GoogleNet [30] achieved 6.7%

7

error rates in 2014 and ResNet [31] achieved 3.57% error rate in 2015 for the image

classification tasks.

As the CNNs have gained great improvements in the image classification tasks, they

also made it possible to acquire significant results for the recognizing facial

expressions. Specifically, for automation of the pain level recognition of humans using

facial expressions, several methods had been studied before the rise of CNNs. In a

study [32], the training dataset was constructed using the Psychophysiology

Laboratory Database of University of Northern British Columbia (UNBC) and the

multi-layer perceptron (MLP) was used as a classifier. The paper stated that 91.67%

of average accuracy was achieved for the pain/no-pain classification. In another study

[33], FACS was adopted as a coding method and 5000 images were trained for a

nonlinear “Support Vector Machine” (SVM) classifier. The paper stated that 72%

accuracy was achieved for 2-alternative forced choice. For a similar study in 2009

[34], the training dataset was acquired from the UNBC-McMaster shoulder pain

expression database and SVM was used as a classifier. The paper stated that 82.4%

hit rate was achieved along with 30.1% false acceptance rate for the pain/no-pain

classification. In a later work [35], the training dataset was constructed from scratch

and FACS was used for coding the images. The paper stated that 81.2% classification

accuracy was achieved along with a precision rate of 84% for 2-alternative forced

classification. After the CNNs started to gain momentum, the direction of the networks

used in pain recognition using human facial expressions changed to the CNN side as

well. In 2016, for a different research [36], the source videos in order to generate

training dataset were acquired from the UNBC-McMaster shoulder pain expression

database. FACS was used to code each image and pain scores are calculated in 16

discrete levels using PSPI method. They handled the pain level recognition as a

regression problem and stated that the study achieved average mean squared error of

1.54 for the 16-level PSPI metric. In one of the several similar recent studies [37], 3D

CNN was used with a pre-trained 2D architecture. The paper stated that their

8

spatiotemporal CNN called “SCN” achieved average mean squared error of 0.32 for

the 16-level PSPI metric.

The studies for the automated mouse pain level recognition using mouse facial

expressions are quite limited than that for humans, as the first study for automation of

MGS was stated in 2016 [2]. In the study, the dataset was constructed from scratch

using the videos of the medical experiments on the mice and the images were labeled

by the experienced coders in accordance with the MGS manual [6]. It was stated that

86% test accuracy (3-alternative forced output) was achieved for the samples of a new

video [2]. One year later, a similar study was published [5]. In this study, a pre-trained

CNN, “InceptionV3” [38] was used with unchanged weights for the convolutional

layers and pain/no-pain classification was adopted contrary to its former study. The

paper concluded that their network performed 84% accuracy for the validation set and

this was increased to 94% if unreliable images were extracted from the validation set.

A more recent study, published in 2019 [4], compared 3 CNN architectures, two of

which were pre-trained networks, “ResNet50” and “InceptionV3”, and the other was

a completely custom CNN. The study adopted MGS as a basis for manual scoring and

increased the number of the samples according to the MGS scores according to the

time points. The dataset was chosen to be classified as pain/no-pain and thus the last

layers of the networks were adjusted to produce a binary classification instead of a

regression. Three different types of pain were analyzed independently and the network

performances were also evaluated over the averaged results of multiple images of the

same moment. The paper concluded that an accuracy of 98.9% was achieved for

“ketamine/xylazine anesthesia” (KXN) type of pain using pre-trained ResNet50 CNN

architecture with the help of averaging process over multiple images of the same

moment. The other results were stated as 89.8% and 90.1% for castration and

“isoflurane anesthesia” (IN) types of pain, respectively, using the same network and

evaluation method.

For those studies, considering the various types of training datasets, evaluation

metrics, precision metrics, labeling methods, and validation methods; it is better to

9

remark that it is almost not possible to make a truly fair comparison between them.

This proves the necessity of a regulatory challenge like ILSVRC for mouse pain

intensity recognition.

It is also worthwhile to mention the effects of the quality of the training or testing

dataset on the accuracy/performance result of an artificial neural network (ANN).

Suppose that you have a network of 100% accuracy for the test set classification. If

you mislabel the 10% of the dataset, it is obvious that you would get 10% less

accuracy. Even this simple example shows that there is a strict correlation between the

quality of the dataset and the resulting performance. In the paper published in 2015

[39], the sensitivity of the SVM classifier with respect to the mislabeled training data

was studied. It was shown that a decline of 8% accuracy was observed with 20%

mislabeled training data. In other words, the accuracy of the classification declined to

82.66% where the original result was 90.66%. Similarly, in a later study [40], the

effect of the training label error was studied on a CNN using Modified National

Institute of Standards and Technology (MNIST) database. Label error of 4% was

randomly injected to the training dataset and the results were compared with the that

of untouched training dataset. A decline of around 4%, from 99% to 95%, was

observed. Those studies have shown that the reliability of the training dataset should

be taken into consideration when evaluating the performance of a neural network.

In this study, the mouse face detection and tracking models were directly used from

the previous studies [11], [12]. Since those parts are not the main objective of this

work, the corresponding literature reviews were not conducted.

11

CHAPTER 3

3. BACKGROUND INFORMATION

3.1. Overview

If the machine is not told how to process the data, it would be totally useless even if

you have a super powerful computer of today’s technology. Someone has to tell the

machine how to process the data. In order to do that, first, the process should be

modeled. It is a lot easier for mathematical calculations because they are already

modeled processes. It becomes very hard to model the process of identifying an object

from an image. On the other hand, it is quite an easy task for a human and even for

some other biological creatures. However, it is assumed that the object itself or a

similar one was introduced before. This proves the existence of a learning process for

biological creatures. In Figure 3.1, a toddler recognizing a giraffe (even it is actually a

mock-up) is shown.

Figure 3.1. A Toddler Recognizing Giraffe

12

We, as humans, are not spending extra effort for the visual recognition tasks. It is

something like an intuitive act for us. In fact, this is not the reality. Our brain handles

this great job in a silent way. This inspired the researchers that they came up with an

artificial neuron model and the rest of the computer vision.

3.2. Artificial Neuron Model

It is estimated that there are about ten billion neurons located in a human brain. The

average power dissipation caused by the electrical activity of the overall nervous

system is in the order of 10 watts. As shown in Figure 3.2, a biological neuron is

composed of three main parts; cell body called soma, axon, and dendrites.

Figure 3.2. Biological to Artificial Neuron [41]

The electrical signal is generated in soma and transferred to other neurons via axon.

Axon terminals are connected to other neurons’ dendrites with a junction called

“synapses”. The signal transmission over the synapses is a complex chemical process

that causes to raise or lower the electrical potential inside the soma of the receiving

neuron. If the electrical potential reaches a threshold, the so-called firing action takes

place in the receiving neuron. This process of a biological model was taken as a basis

for the first artificial neuron model as shown in Figure 3.3.

13

a = activation
w2

w1

wj

wN

x=f(a)

u1

u2

uj

uN

Figure 3.3. Artificial Neuron Model

 𝑎 = (∑(𝑢𝑗𝑤𝑗) + 𝜃

𝑁

𝑗=1

 (3.1)

The activation of an artificial neuron is given in the equation (3.1). “𝜃" denotes the

bias value for the activation. For the ease of use, it is usually included as the 0th element

into the summation part. The output of the neuron is actually a function of the

activation value. There are several types of activation functions such as; threshold,

ramp, sigmoid, Gaussian, Rectified Linear Unit (ReLU), and softmax. The activation

function can be included in the hyper-parameters of a neural network, since it effects

the performance of the network quite much.

3.3. Neural Network Architectures

Depending on the connection styles of the neurons, different types of architectures are

defined.

In feedforward neural networks, the neurons are connected in a hierarchical way that

they form layers as shown in Figure 3.4. The neurons in a layer are fed by the previous

layer and feed their output to the next layer. In this type of network, connections to

the neurons in the same or previous layers are not allowed. The layers are divided into

3 groups. The first layer, input layer, transmits only the applied input to their outputs.

The last layer is called the output layer and the layers in between the input layer and

the output layer are called hidden layers. If a network consists of only the input and

14

the output layers, then this network is called single layer network. If at least one hidden

layer exists, then the network is called multilayer network.

Figure 3.4. Multilayer Feedforward Neural Network

In recurrent neural networks, a connection to the same layer or a previous layer is

allowed as shown in Figure 3.5. The idea behind the structure of this network is much

closer to biological neuron connections than feedforward neural networks.

15

Figure 3.5. Recurrent Neural Network

3.4. Image Classification Using Neural Networks

Let’s think about the relation between the inputs and the outputs of a single layer

network shown in Figure 3.6.

16

x1

x2

x3

x4

w11

w12

w21

w31

w13

w23

w33

w14

w24

w34

w22

w32

y1

y2

y3

input layer weights output layer

Figure 3.6. Single Layer Network Example

Then, the network can be modeled using the equation given in (3.2) where 𝒙 denotes

the input matrix of 4x1, 𝑾 denotes the weights as a matrix of 3x4 and 𝒚 denotes the

output matrix of 3x1.

 𝒚 = 𝑓(𝒙, 𝑾) = 𝑾𝒙 (3.2)

The same equation can be used to classify an image by applying the pixel values as

input and expect the output to be a value corresponding the classification of the image.

In fact, the weight matrix is the only one determining the complete relation between

the input space and the output space. But, the question here is, what the weights should

be. Before that, someone has to tell how good or bad the weight matrix values are. For

17

this, we need to find a suitable metric called a “loss function” or a “cost function”.

And, now comes the question, how can we find the perfect combination of weights

according to the metric. In fact, this is an optimization problem, since it is not possible

to try each and every combination of the weights. And this optimization problem is

handled in the training process of the network along with the selected loss function.

3.4.1. Loss Functions

Selecting an appropriate loss function is important, since it is the main actor of the

training process and the evaluation of the network model. It is generally a function

taking two parameters, the predictions and the desired outputs. The common used loss

functions are described in the following sub-sections.

3.4.1.1. Mean Squared Error

Mean Squared Error (MSE) loss is calculated as given in (3.3) that it is basically the

average of the squared differences of the ground truth (𝑦𝑖) and the prediction (�̂�𝑖).

MSE is generally used for regression outputs.

 𝐿 =
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

 (3.3)

3.4.1.2. Mean Absolute Error

Mean Absolute Error (MAE) loss is calculated as given in (3.4) that it is basically the

average of the absolute differences of the ground truth (𝑦𝑖) and the prediction (�̂�𝑖).

MAE is generally used for regression outputs.

 𝐿 =
1

𝑁
∑ 𝑎𝑏𝑠(𝑦𝑖 − �̂�𝑖)

𝑁

𝑖=1

 (3.4)

18

3.4.1.3. Cross-Entropy Loss

Cross entropy is calculated over two distribution vectors, the ground truth distribution

and the predicted distribution. Considering only one example of observation, the cross

entropy loss function equation would be as in (3.5) where 𝒚 is the ground truth

distribution vector, �̂� is the predicted distribution vector, and ⋅ is the dot product. If

the cross entropy loss function is generalized over all the N observations, the loss

function could be rewritten as given in (3.6). For a binary classification problem, the

dot product part and write the loss function could be arranged as given in (3.7).

 𝐿 = −𝒚 ⋅ log(�̂�) (3.5)

 𝐿 = −
1

𝑁
(∑ 𝒚𝒊 ⋅ log(�̂�𝒊)

𝑵

𝒊=𝟏

) (3.6)

 𝐿 = −
1

𝑁
(∑(𝑦𝑖 log(�̂�𝑖) +

𝑵

𝒊=𝟏

(1 − 𝑦𝑖) log(1 − �̂�𝑖)) (3.7)

The main advantage of this loss function is that it extremely penalizes the case when

the prediction is wrong but confident. The cross-entropy loss function and its varieties

(binary cross-entropy, categorical cross-entropy, etc.) are generally used after a soft-

max layer and they are the most common losses used for classification problems.

3.4.2. Regularization

A general loss function is written with respect to inputs, outputs, and the weights as

given in (3.8). This part ensures that the model predictions are close to the ground

truth values. However, it is possible to include some other metric to the loss function

to penalize some other conditions. For example, it may be desired to have smaller

weight values along with ensuring the optimal predictions. In this case, a function of

19

the weight matrix can be included in the loss function as given in (3.9). This part,

𝝀𝑅(𝑾), is called the regularization term while 𝝀 is the regularization factor.

 𝐿(𝑾) =
1

𝑁
∑ 𝐿𝑖(𝑓(𝒙𝒊, 𝑾), 𝒚𝒊)

𝑁

𝑖=1

 (3.8)

 𝐿(𝑾) =
1

𝑁
∑ 𝐿𝑖(𝑓(𝒙𝒊, 𝑾), 𝒚𝒊)

𝑁

𝑖=1

+ 𝝀𝑅(𝑾) (3.9)

Depending on the function of 𝑅(𝑾), the regularization is called with different names

such as L1, L2, and Elastic net.

There are some other regularization methods specifically used in deep learning. The

most common one is the dropout which will be described in deep learning section.

3.4.3. Optimization

The objective of the optimization is nothing but to find the weights that make the loss

function minimum for the training process. For a simpler function, f(x), in 1-D, it is

much easier to find the minimum in analytical way. Taking the derivative, equating to

zero, then checking the points satisfying this equation would probably give the answer.

However, for a relatively complex loss function, especially for deeper networks, this

analytical approach is not feasible to implement. Another approach to find a local

minimum could be starting with an initial point, going towards to one of the sides by

checking the derivative of the current point. This is similar to the strategy of a person,

with closed eyes, trying to reach the bottom of a sloped land. Since this strategy is

useful in practice, it is better to adopt this method for our optimization process.

However, since we are dealing in multi-dimensional space, the gradient vector should

be calculated rather than the derivative. Then, one can easily calculate the slope with

20

respect to any direction by taking the dot product of the gradient vector with the unit

vector of that direction.

3.4.3.1. Gradient Descent

Gradient Descent (GD) is the simplest form of the optimization strategy described

above. It is an iterative process of the network training. The weights are updated

according to the equation given in (3.10).

 𝑾𝑖+1 = 𝑾𝑖 − 𝜂𝛁𝑳(𝑾𝑖) (3.10)

where 𝜂 corresponds to the learning rate and 𝛁𝑳(𝑾𝑖) corresponds to the gradient of

the loss function at the current weights.

3.4.3.2. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is almost the same as GD that it uses the same

formula to update the weights at each iteration. However, the update is executed more

frequently because the loss function is calculated over the mini-batches of

observations instead of using all observations at once.

3.4.3.3. AdaGrad

AdaGrad is an adaptive gradient method where the learning rate is modified for each

parameter. It was first published in 2011 [42]. The learning rate update, given in the

equation (3.12), is based on the history of the parameters of the gradient such that the

learning rate decays slower for infrequent parameters whereas it decays faster for

frequent parameters.

 𝑮 = ∑(𝛁𝑳(𝑾𝑖))(𝛁𝑳(𝑾𝑖))𝑇

𝑡

𝑖=1

 (3.11)

21

 𝑾𝑖+1 = 𝑾𝑖 −
𝜂

√𝑑𝑖𝑎𝑔(𝑮)
°𝛁𝑳(𝑾𝑖) (3.12)

“diag(𝑮)” corresponds to the sum of the squares of the past gradients of the loss

function and ° denotes element-wise multiplication.

Although it is not required to manually adjust the learning rate parameter with the help

of AdaGrad optimization, the convergence of the learning rate to zero is a handicap

for finding the best solution.

3.4.3.4. RMSProp

RMSProp optimization method tried to eliminate the zero-convergence of learning

rate of AdaGrad’s method when it was introduced in 2012 [43].

 𝝑𝑖 = 𝛾𝝑𝑖−1 + (1 − 𝛾)(𝛁𝑳(𝑾𝑖))2 (3.13)

 𝑾𝑖+1 = 𝑾𝑖 −
𝜂

√𝝑𝑖

𝛁𝑳(𝑾𝑖) (3.14)

The technique divides the learning rate by the running average of the magnitude of the

previous gradients for each weight. 𝛾 corresponds to the decay factor for the running

average at each iteration.

3.4.3.5. Adam Optimizer

Adam optimizer, first published in 2014 [44], is one of the most popular optimization

methods. It could be considered as an update to the RMSProp method that Adam

optimizer uses the estimate of the first moment of the gradient along with the second

moment estimate.

22

 𝒎𝑖 = 𝛽1𝒎𝑖−1 + (1 − 𝛽1)(𝛁𝑳(𝑾𝑖)) (3.15)

 𝝑𝑖 = 𝛽2𝝑𝑖−1 + (1 − 𝛽2)(𝛁𝑳(𝑾𝑖))2 (3.16)

 �̂�𝑖 =
𝒎𝑖

(1 − 𝛽1)𝑖
 (3.17)

 �̂�𝑖 =
𝝑𝑖

(1 − 𝛽2)𝑖
 (3.18)

 𝑾𝑖+1 = 𝑾𝑖 −
𝜂�̂�𝑖

√𝝑𝑖 + 𝜀
 (3.19)

𝒎𝑖 and 𝝑𝑖 correspond to the running averages of the gradient and the second moment

of the gradient, respectively. For the initial iterations, in order to correct the biasing

factor, the results of the equations in (3.17) and (3.18) are used for the update of the

weights as given in (3.19).

3.4.4. Backpropagation Algorithm

The main objective of the backpropagation algorithm is to find the gradient of the loss

function with respect to the weights (𝛁𝑳(𝑾) 𝑜𝑟 𝛁𝒘𝑳) in order to use in the

optimization process. Since there are lots of cascaded connections between the

parameters of a network, it is not directly possible to calculate this gradient. Thanks

to the chain rule, it made is possible to calculate the gradient of the loss function with

respect to each of the weight parameters inside the network.

Let’s think of a relatively simple equation given in (3.20) with a computational graph

shown in Figure 3.7. It is desired to calculate the partial derivatives of function 𝑓 with

respect to given inputs, at the initial conditions of, 𝑥 = 2, 𝑦 = −3 and 𝑧 = 5.

23

 𝑓 = 𝑥(𝑥𝑦 + 𝑧) (3.20)

+

X

x=2

y=-3

z=5

Xa=-6

b=-1

f

Figure 3.7. Computational Graph of 𝑓

 𝑎 = 𝑥𝑦,
𝜕𝑎

𝜕𝑥
= 𝑦,

𝜕𝑎

𝜕𝑦
= 𝑥 (3.21)

 𝑏 = 𝑎 + 𝑧,
𝜕𝑏

𝜕𝑥
=

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥
,

𝜕𝑏

𝜕𝑦
=

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑦
,

𝜕𝑏

𝜕𝑧
= 1 (3.22)

 𝑓 = 𝑏𝑥,
𝜕𝑓

𝜕𝑥
=

𝜕𝑏

𝜕𝑥
𝑥 + 𝑏 ,

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑦
,

𝜕𝑓

𝜕𝑧
=

𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑧
 (3.23)

𝜕𝑓

𝜕𝑥
= 𝑦𝑥 + 𝑏 = −7 ,

𝜕𝑓

𝜕𝑦
= 𝑥2 = 4,

𝜕𝑓

𝜕𝑧
= 𝑥 = 5 (3.24)

Using the internal derivatives, chain rule and product rule of derivatives, the partial

derivatives of 𝑓 with respect to 𝑥, 𝑦, and 𝑧 can be calculated as given in (3.23). And

the desired gradients at the given state can be found as given in (3.24).

This method can be generalized for the gradient calculation of the loss function of a

multi-layer network. We can summarize the training using backpropagation algorithm

in 7 steps as given in Table 3.1.

24

Table 3.1. Backpropagation Training Steps

Step# Description

1 Initialize weights to random small values.
2 Apply the input, calculate, and store the results of all the layers starting

from the input layer to the output layer. (Forward Phase)
3 Calculate the error term using the selected loss function at the output

layer.
4 Propagate the error terms for the hidden layers starting from the final

hidden layer to the first hidden layer and evaluate the partial derivatives
of the errors with respect to the weights at each hidden layer.

5 Combine the results of step 4 in order to get the overall gradient of the
loss function with respect to each weight.

6 Update the weights according to the selected optimization algorithm.
7 Repeat steps 2-6 until the stop condition is satisfied.

3.5. Convolutional Neural Networks

3.5.1. Overview

There are two main drawbacks of the classical neural network architecture. The first

one is the power of its memorizing capability of the inputs for training. This is caused

by the fully connectivity of the neurons between the layers. In other words, the

network is not successful to generalize the input space. The other drawback is that

each part of the input is treated equally such that spatial structure of the input is

ignored. When the problem comes to visual recognition, the spatial structure of the

input, usually the image, becomes significant.

The realization of the importance of the spatial structure recognition for the visual

system dates back to a study on monkeys in 1968 [45]. The study showed that some

specific parts of the monkeys’ brains are sensitive when they are shown familiar faces.

This fact inspired the existence of the receptive fields for neural networks, and thus

the CNNs. In a CNN, the neurons are connected between layers such that they

constitute a receptive field when looking from the neuron perspective towards to input.

25

Although the CNN architecture was not new, a feasible training method had not been

developed until 1998, when LeCun et al. implemented the Gradient-based training

method for CNN architecture [46]. Their network, LeNet-5, shown in Figure 3.8 was

quite successful for recognizing the digits of the zip codes.

Figure 3.8. LeNet-5 Network Architecture [46]

To the contrary of being successful on digit recognition, the CNNs could not be

extended for complex recognition tasks until the introduction of AlexNet [28] in 2012

ILSVRC.

3.5.2. Architecture

Convolution layers have locally connected and shared weight structures like in Figure

3.9. The weights on the arrows of the same color have same values. This provides

much smaller number of parameters and local connectivity provides local receptive

fields for spatial structure recognition.

26

Layer (n) Layer (n+1)

Figure 3.9. CNN Local Connectivity & Shared Weights

The locally connected and shared weights actually behave like a filter (kernel) that

results in an output similar to the input but having higher values where the input

fragments are similar to the filter, and having lower values where the fragments are

not similar.

The filtering feature of a convolution layer is illustrated in Figure 3.10. In the example,

the colored pixels correspond to a value 1, where the white pixels correspond to 0.

The input is 16x16 pixel image displaying a smiley. The filter (kernel) is formed as

3x3 array such that it tries to find a pattern similar to eye area. Applying the activation

function and looking to the resulting image of 14x14 pixels, one can easily point out

the locations close to the eye pattern.

27

input = 16x16

*

output = 14x14

Activation Function

filter = 3x3

Figure 3.10. Convolution Layer Example

As in the example, convolving the filter on the input image is actually sliding the filter

over the image spatially while taking the dot product at each position. Thus, only one

value is obtained at each position. In this example, the input image has one channel.

For the cases of multi-channel input, the convention for 2D convolution is to extend

the filter to the depth of the input. That is, if the input size was 16x16x3, then the filter

size would extend to 3x3x3. Moreover, multiple filters can be applied in a

convolutional layer. For instance, if six filters were applied instead of one for our

example shown in Figure 3.10, then the output size would be 14x14x6.

There are some options while executing the convolution operation. These options will

be described in the following sub-sections.

3.5.2.1. Stride

Stride defines the step size while sliding the filter over the input. In the example given

in Figure 3.10, the stride is chosen as 1. The stride determines the output size of the

convolution as given in (3.25). It should be chosen such that the output size results in

an integer value.

 𝑀 =
𝑁 − 𝐹

𝑆
+ 1 (3.25)

28

Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the

input size, 𝐹 denotes the filter size and 𝑆 denotes the stride value.

3.5.2.2. Padding

Padding provides the capability to extend the edges of the input by a desired number

of pixels with a value determined by a method. For example, “zero padding” means

filling the extended pixels with a value of zero. Including the padding amount to the

equation (3.25), results in the equation given in (3.26).

 𝑀 =
𝑁 + 2𝑃 − 𝐹

𝑆
+ 1 (3.26)

Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the

input size, 𝐹 denotes the filter size, 𝑆 denotes the stride value and 𝑃 denotes the

padding amount.

3.5.2.3. Pooling

Pooling is actually a layer usually coming after a convolutional layer. It does not hold

any parameter in the network model. The aim is to down-sample the size of the

resulting activation map of the convolution layer in order to make the network more

controllable with fewer parameters. Since it works as a filtering mechanism, “filter

size” term is also used along with padding and stride terms. The most common

filtering method is “max pooling” where the maximum value is taken within the

filtering window. In the “average pooling” method, the average value within the

window is taken as the result. The output size of a pooling layer is calculated as given

in (3.27).

29

 𝑀 =
𝑁 + 2𝑃 − 𝐹

𝑆
+ 1 (3.27)

Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the

input size, 𝐹 denotes the filter size, 𝑆 denotes the stride value and 𝑃 denotes the

padding amount.

31

CHAPTER 4

4. PROPOSED METHOD

4.1. Method Overview

Since the main objective of this study is to come up with a more accurate and reliable

solution for the automation of the MGS, building a complete set of methodology that

is repeatable, manageable, scalable, modular, feasible, and objective is essential for

the automation task and for the future works. For this purpose, a complete set of

solutions was studied within the scope of this thesis.

This study was carried out as an extension of the Mice-Mimic project. All but one of

the mouse experiments (and the corresponding video recordings) used in this study

were conducted within the scope of the Mice-Mimic project before the start of this

work. In other words, most of the video files were ready-to-use at the beginning of

this study. Two separate Master of Science (MSc) theses [2], [12], were already

completed for the Mice-Mimic project. In one of those studies [12], mouse face tracker

and detector models were developed for the Mice-Mimic project. Those ANN models

were directly used for the video processing task of this study. In the other study of

Mice-Mimic project [2], the main objective was same with this study and an ANN

called “Mice-Mimic-Net” was developed for the automation of MGS. For the previous

study [2], most of the times, it was hard for an expert to score the pain level by looking

to a single view of a mouse. It was highly desired to take the advantage of the multi-

camera configuration for both manual scoring and prediction tasks. This would

minimize the mislabeled data caused by optical-illusion of a single view, in particular.

Moreover, evaluating the network results by using multiple frames would increase the

prediction accuracy. In this manner, the main extension that was put forward in this

study is to use multiple views (of the same moment) of a mouse for both manual

32

scoring and prediction of the pain level. It is also better to indicate that, throughout

this study, “moment” term is used to describe a time instant including multiple frames

captured by different camcorders.

The block diagram of the overall system is given in Figure 4.1. The process starts with

the motivation as described in section 1.1 and ends with the experimental results which

are given in Chapter 5. The individual processes of the block diagram are described in

detail in the following sections.

33

MOUSE
EXPERIMENT

PROCEDURE &
REGULATIONS

VIDEO
PROCESSING

FACE
TRACKING &
DETECTION

Video

DATASET
CONSTRUCTION

FOR MANUAL
SCORING

Detection data

MANUAL
SCORING
PROCESS

Data structure

MANUAL
CORRECTION &

IMAGE COLLECTION

DECISION
ALGORITHM

Data structure

DATASET
CONSTRUCTION

Image

TRAINING &
EVALUATION

TRAINING &
EVALUATION

Selected
Network

RESULTS RESULTS

PRE-TRAINED
NETWORKS

Training & Test Dataset

HYPERPARAMETERS

MOTIVATION

Figure 4.1. Proposed Method Block Diagram

34

4.2. Mouse Experiment

The purpose of the mouse experiment is to obtain the videos of a mouse which make

it possible to analyze the pain levels over a defined time interval. All the experiments

were conducted in the Institute of Neurological Sciences and Psychiatry (INSP) of

Hacettepe University (HU) laboratories according to the constructed procedures and

animal testing regulations. In all experiments, Swiss-Albino mice are used.

For each experiment, two separate recordings are taken for a mouse. The first one,

called basal, includes the monitoring of the state of the mouse without pain stimulation

and the second one, called pain, includes the monitoring of the pain stimulated mouse.

4.2.1. Experiment Environment

In the previous study of D. J. Langford et al., an experimental environment was

proposed with two recorders in their manual [6]. However, this setup has some

drawbacks. The most important drawback is the small size of the volume with respect

to the size of the animal that may cause undesired stress on the mouse. In order to

overcome this problem and to improve the solution approach, a new experimental

setup with 6 recorders was developed.

In this new setup shown at the right in Figure 4.2, the mouse is placed in a cylinder with

a diameter of 18 cm made of glass. The 6 video recorders are placed around the

cylinder at equal angles and the whole setup is enclosed with a hexagonal box made

of acrylic glass. The hexagonal box is uniformly illuminated with LED strips in order

to standardize the lighting levels among the recordings.

Since combined assessment (for both manual coding process and evaluation of the

network) is required for all 6 video recordings, a synchronization method should be

used. For this purpose, switching the lighting on/off at the beginning of each recording

is included as an additional step in the experiment procedure.

35

C C C C

(a) (b)

Figure 4.2. Experiment Setup: a) Proposed in [6], b) Used setup in this study

4.2.2. Pain Models

There are several pain models suitable for analyzing the pain intensities of a laboratory

mouse. Most of them use chemicals to stimulate the pain as the previous study [1]

described some of them. On the other hand, there is another pain model that uses

Traumatic Brain Injury (TBI) as pain stimulation.

In this study, only the videos of the experiments conducted according to the traumatic

brain injury (TBI) along with their basal videos are used.

4.2.3. Process Output

The output of this process, mouse experiment, is simply the video files. The videos

are recorded with 1920x1080 (FHD) resolution, @ 50 fps. For this study, six

experiments were conducted with an additional one, constituting a total of seven

experiments. There are 2 groups (basal and pain) of 6 video files for each experiment.

Thus, a total of 84 video files were obtained as a result of this process.

36

4.3. Video Processing

The objective of this process is to construct a dataset including mouse face detection

data for each video file received from the previous process, mouse experiment. For

this purpose, a mouse face detection and tracking model along with an output data

structure should be utilized. In the following sub-sections, these are described in detail.

4.3.1. Mouse Face Detection and Tracking Model

Assuming a 60 minute-length FHD video @50 fps, there are 180.000 frames in total.

At first, it may be desired to evaluate all video frames for mouse face detection.

Considering all the video files, this operation would take much time and in fact not

essential. For this reason, one out of every five frames was evaluated starting from the

synchronization frame. In order to speed up the process further, a face tracking model

was combined with a detection model. The combined models and their related

algorithm were directly taken from the previous studies [11], [12], without any change.

The complete algorithm including the combined model and synchronization process

is given in Figure 4.3. The initial part of every video file contains a complete dark

fragment of a few seconds as the experiment procedure includes a step that the lighting

is required to be switched off and on for synchronization purposes. The algorithm

starts with the starting frame, then checks the total number of bright pixels with a

defined threshold value in the frame. The purpose of this check is to find the

synchronization frame of that video file with an accuracy of around 20ms. The

checking process is repeated for the next frames until the desired condition is satisfied.

After determining the synchronization frame, the algorithm tries to find the detection

data of the frames five-by-five. The region of interest (ROI) is easily found by

searching the specific color density on the FHD image. Then the region is scanned

while the image subarrays are being fed to the face detection network and the detection

results are returned. This part (scanning-detection) is usually the most time-consuming

part of the algorithm. If the detection is successful, the face tracking network is used

for the next frame. The face tracking network feeds the detection network with only

37

one image that is cropped using predicted window. Thus, this process is a lot faster

than scanning the ROI. The face tracking network continues to feed the detection

network with the next frames until the detection is not successful. In such case, the

process continues from the finding ROI part. In the meantime, a simple edge detection

filter is applied on the full frame and the number of the pixels belonging to the edges

are calculated that provides a simple understanding for the sharpness of the frame.

The results of each processed frame are stored in a defined data structure whether the

detection is successful or not. If the frame reaches to the end of the total frames, the

algorithm stops.

38

START
frame = start_frame

Number of Bright Pixels
> pxlimit

frame += 1

Yes

No

synch_frame = frame

Find ROI

Scan ROI Face Detection
CNNimage

probability

frame >
total frame

Store the results
frame += 5

Face Tracking
CNN

Face Detection
CNN

image
p > plimit

probability

Store the results
frame += 5

Yes

No

frame += 5

END

pmax> plimit

No

Yes

Yes

frame >
total frameNo

Yes

frame >
total frameNo

Yes

No

pxlimit = 1000 (pixels)
plimit = 0.5 (probability)

Figure 4.3. Video Processing Algorithm

39

4.3.2. Process Output

The output of the video processing is nothing but a data whose structure is called

“Video Class” and defined in Table 4.1 . The “Video Class” data structure holds all the

required information of both the video file itself and the detection information of all

the processed frames including the detection box (detection coordinates), detection

probability, etc. Thus, the image arrays are not necessarily to be carried within the

data structure. In this way, the size of the output data was held at minimum while

storing all the information and maximizing the flexibility for the next processes.

Table 4.1. Video Class Data Structure

Attribute Name Type Description

dir String Full directory of the video file
fr_list List List of the objects of Frame Class defined in Table 4.2
frame_length Integer Total Frame Length of the video file
name String Name of the video file
path String Full path of the video file
save_load_dir String Data structure save path
sizeInBytes Integer Size of the video file in bytes
sizeInMb Integer Size of the video file in megabytes
synch_frame Integer Synchronization frame number

40

Table 4.2. Frame Class Data Structure

Attribute Name Type Description

det_box Ndrray Numpy array that holds the coordinates of the
detection area

det_lbl Integer Detection status
det_prb Float Detection probability
det_trd Integer Tracking detection status
det_trf Integer Tracking failure status
frame_num Integer Frame number
sharpness Float Calculated sharpness level of the image (frame)

4.4. Dataset Construction for Manual Scoring

There are six camcorders monitoring the mouse during an experiment. In Mice-Mimic

project, one of the six camcorders was used according to the detection results for

scoring process. However, in this study, it is aimed to use all 6 frames for the manual

assessment process. This strategy has some advantages. First, the number of data for

training and test datasets would increase by including multiple frames for the same

moment from different points of view. At this point, it is better to state that the

maximum time difference is 20 ms among camcorder frames. Second, the manual

scoring accuracy and thus the reliability would increase by presenting the six different

views of the mouse to the expert. Moreover, if the overall face expression is desired

for one moment rather than the expression from a single view, this method satisfies

the needs best. Hence, the coder intuitively scores the average of the suitable views if

there are natural minor differences between the views. For some cases, the mouse face

expression of the same moment differs much while looking from a different

perspective such that sometimes significant differences were observed between the

left and right eyes of the mouse.

Considering the conditions stated above, all the data of 6 camcorders received from

the previous process should be fused (combined) properly. This operation should also

include a selection algorithm because the number of frames are still much even one

41

fifth of the frames were iterated in the previous process. Besides, at some time

intervals, the mouse does not move resulting in too much increase at the number of

same images which is not desired. For this purpose, an algorithm that fuses and filters

the received data from the previous process should be developed.

4.4.1. Fuse and Filter Algorithm

The block diagram of the developed algorithm is given in Figure 4.4. The moments

(combined frames of 6 camcorders) are iterated by groups of maximum defined by

“max_items_in_det_set” and minimum defined by “min_items_in_det_set”. The

maximum limit ensures to select a moment within a maximum defined time. And the

minimum limit ensures to select a moment among the minimum number of suitable

candidates. During the iteration, if the end of any video frame is reached, the algorithm

stops. In the iteration, the combined frame list (moment data) is created using the

iteration number (idx) and the synchronization frame number of each video. Then, the

average sharpness value is calculated over the detected frames (with a minimum

defined detection probability, “min_prob”) of that moment. Comparing the sharpness

and number of detections with the previous values of the group, the current moment

is decided to be whether the best or not. It is desired to select the moment with the

maximum number of detections. The minimum of that number is also defined by

“min_det_num”. While maximizing the detection number, it is also desired to select

the sharpest moment. For this purpose, the mean of the sharpness, denoted by “sh”, is

calculated over the detected frames. The decay factor, “sh_decay”, is included for the

case that the number of detections is increased. This is to ensure to accept the moment

as best even if “sh” is lower to some extent.

While iterating the moments within the group, the detection boxes of each frames are

appended to the multi-dimensional list, “det_box_list”, providing that the detection

conditions are satisfied. Then, the mean standard deviation among the detection

coordinates is calculated. An example for this calculation is given in Figure 4.5.

42

If the moment is not found inside the group iteration with the desired conditions stated

above, the process is repeated for the next moment providing that the

“max_items_in_det_set” is not reached. If the moment is found with the desired

conditions, the moment data is stored. If the moment could not be found with the

desired conditions and the “max_items_in_det_set” is reached, in this case the best

moment (if exists) within the group is stored. Then, the process is repeated for the next

group of iteration.

43

sel_idx = -1
next_idx+=1

Create Combined Frame List

End of Any Frames?

No

Evaluate Sharpness &
Number of Detections

num>max_num &&
sh>sh_decay*max_sh

num=max_num &&
sh>max_sh No

max_num=num
max_sh=sh
sel_idx=idx

Yes Yes

Evaluate the mean «stdev» among the detection
coordinates of detected frames using detbox_list

No

idx+=1

detbox_list[camno].append(det_box[camno])

det[camno]=1 &&
det_prb>min_prob

Yes

std_dev < threshold ||
detbox_list[camno].len() < min_items_in_det_set

START
next_idx =0

idx < st_idx+max_items_in_det_set

Yes

Yes

sel_idx=-1
No

Store all the
moment data

belonging to sel_idx

idx = next_idx
st_idx=next_idx
detbox_list=[]

max_num=min_det_num

No

Yes

ENDYes

Store all the
moment data

belonging to sel_idx

No

Figure 4.4. Fuse and Filter Algorithm

44

Figure 4.5. Average Standard Deviation Calculation Example

4.4.2. Process Output

The output of this process basically consists of the stored (selected) moments

described in the algorithm in section 4.4.1. The number of moments depends on the

level of activity of the mouse and the video length with the same parameters in the

algorithm. Thus, even though the lengths of the experiments are same, the resulting

number of moments could differ among different experiments. These moments are

normally listed in time order in the output data structure. However, it is a better idea

to present the moments to the expert with randomly shuffled. In this way, the biasing

factor for the successive coding of the similar face expressions could be minimized.

Another issue is being able to evaluate the internal consistency of a coder. For this

purpose, 1 moment is duplicated for every 24 moments in the output dataset, and this

information was not shared with the coders. The data structure of the output of this

process, called “Experiment Class”, is given in Table 4.3.

45

Table 4.3. Experiment Class Data Structure

Attribute Name Type Description

videos List List of the objects of Video Class defined in Table 4.1
moments List List of the objects of Moment Class defined in Table

4.4
name String Given name of the experiment

Table 4.4. Moment Class Data Structure

Attribute Name Type Description

Cams List List of the objects of Frame Class defined in Table 4.2
Score List List of the objects of Scoring Class defined in Table

4.5
bad_image Boolean Visual status of moment frames for coding

Table 4.5. Scoring Class Data Structure

Attribute Name Type Description

Cheek Integer Cheek score value
Done Boolean Scoring complete flag
Ear Integer Ear score value
Eye Integer Eye score value
Nose Integer Nose score value
Whiskers Integer Whiskers score value

4.5. Manual Scoring

Probably the most important part of the whole is the manual scoring process, since the

accuracy of the training dataset has a significant role on the performance of the

network as described in the previous studies [39], [40]. Moreover, the study in 2012

46

[47] stated that the global accuracy of a coder with one-year experience was 81% for

MGS. The scoring process is also a cumbersome and time-consuming task and

requires high concentration even for an expert. This means that it is essential to present

a comfortable coding environment using a PC application with a user-friendly

interface. For this reason, a PC application called “Label_6Cam” was developed with

this perspective.

All the prepared datasets were scored by two experts in INSP of HU. Since, the scoring

task was heavy and the coder source was limited, each dataset was manually scored

by only one expert.

4.5.1. Scoring Application

The general view of the scoring application, Label_6Cam, is given in Figure 4.6 and the

description of the interface is given in Table 4.6.

Python 2.6 is used as the development environment and “pyinstaller” package is used

to build the executable (all included package) for Windows Operating System (OS).

Thus, the application could run on any Windows machine (XP and later)

recommended with an FHD resolution display without the need to install any other

software or library.

It only requires the data (.pkl format) received from the previous process to be placed

in a subfolder of the application directory and the video path need to be written in the

configuration file.

It takes a little longer time while navigating through the items if the frame source is

selected as video. In order to overcome this issue, one more feature is added such that

all the required images can be captured from the videos and saved in a subfolder

automatically with administrative rights. Once the images are captured, the application

could use those images for display rather than the videos.

47

1

2

5

3

4

7
6

8

9

Figure 4.6. Label_6Cam Application

Table 4.6. Label_6Cam Application Interface Description

Item# Description

1 Display windows (frames) of the 6 video source
2 Scoring interface
3 Overall zoom option
4 General information area, log of the all actions with timestamps can be

reached from this area
5 Navigation tools
6 Coding completion progress bar
7 Display source selection interface
8 Pop-quiz enable option for gathering more attention
9 Manual save button

By default, (at zero zoom level), the parts of the images defined by the detection values

are displayed inside the display frames. Using the zoom scroll bar, the coder is able to

fit the images to full size.

48

For scoring (coding) interface, there are 5 facial AUs as specified in [6]. Each of them

can be scored separately as Normal, Medium and High. Additionally, the coder can

also label the AU as “Not Observable”. If the coder is not comfortable with the images

of the moment for scoring, the moment can be labeled as “Bad Image” or left as not

evaluated.

One additional feature is the pop-quiz, this feature pops up a window with a trivia

question after a certain number of items are coded. The purpose is to gather the

attention of the coder while encouraging the coding task.

The coder does not need to worry about saving the current state manually, since there

is an auto-save option at desired intervals, besides the application automatically saves

the last state while it is being closed.

The output of the application has exactly the same data structure with the output of

the previous process.

4.6. Manual Correction and Image Collection

Another application that is very similar to the “Label_6Cam” is used for this step, and

it is called “Create_Images” application. The scoring interface is disabled; however,

it is possible to edit/correct the detection results of the frames. There are two main

reasons to edit the detection results of the face detection network. The first one is to

increase the number of training data for the situations that the detection algorithm was

not able to detect the mouse event though it exists. Secondly, it is desired to decrease

the number of unrelated data in the training dataset in order to maximize the quality

of the dataset and thus to achieve maximum network performance. This corrected

versions of the images were mainly used for training process. However, the results of

the uncorrected datasets were considered as the primary result for the evaluation.

Apart from the manual correction feature, the main purpose of the application is to

collect the cropped images according to the detection coordinates. The collected

images are named with a desired format inside a subfolder. This format can hold

49

almost all the information such that one can regenerate exactly the same image (except

for the augmented images) by getting the name and the source video. An example of

this naming format and the related descriptions are given in Figure 4.7.

1

TBI_20180306_ORGN-S000180-%00011%-C1-F001224-BX1220BY0505BL0233-I0215.jpg

2 3 4 65 7 108 9

1: Value of the name attribute of the Experiment Class
2: Type of Creation: ORGN, CORR, SYMM, AXXY*
3: Frame number with respect to the synchronization frame
4: Score values of AUs: Eye, Ear, Nose, Cheek, Whiskers respectively. 0:Normal, 1:Medium,
2:High, X:Other
5: Camera Number: C1, C2, C3, C4, C5, C6
6: Frame number with respect to original video start frame
7: Detection box X coordinate
8: Detection box Y coordinate
9: Detection box size
10: Item number in the manual coding dataset
* AXXY includes the augmentation information where XX denotes the number of
augmentation for the image, and Y denotes the applied augmentation type. (R:Rotation,
T:Translation, Z:Zoom In/Out, B:Brightness

Figure 4.7. Cropped Image Naming Example

By using such naming format, the output data becomes independent of any process.

Any 3rd party could be able to use this data set to train and test their own networks.

The detection boxes calculated from the face tracking and face detection process are

too much focused on the mouse face. For this reason, a zoom out operation of 120%

is applied while generating original dataset images. Construction of the original

dataset results in a single folder with a suffix “_ORGN”; however, the construction of

the corrected dataset results in 3 separate folders with suffixes “_CORR”, “_SYMM”

and “_AUGM”. These folders and the number of images that they hold are illustrated

in Figure 4.8.

50

EXP1_ORGN EXP1_CORR EXP1_SYMM EXP1_AUGM

of images:
m

of images:
n

of images:
n

of images:
8*n

Figure 4.8. An Example of Created Folders of Create Images Application

4.6.1. Data Augmentation

Augmenting data at the image collection step could be the best option since the full

image is available with 1920x1080 resolution. Thus, some improved and more

realistic methods can be applied such as zooming out and shifting methods using the

actual footage. For this purpose, the required interface is also included to the

application in order to generate augmented images.

For generating augmented images, first, horizontal symmetry was applied which

doubles the number of available data. Then, four types of data augmentation methods

were used. These are; rotation, translation, zooming, and brightness change. For each

augmentation iteration of each image (with its symmetry form), one of these four

methods was chosen randomly with uniform distribution. The iteration number was

chosen as 4 which provides an increase to 10 times of the initial number of images as

shown in Figure 4.8 and an example of the total 11 generated images is shown in Figure

4.9.

51

A01R

A00Z

A07B

A06T

A05T

A04R

A03B

A02RCORR

ORGN

SYMM

Figure 4.9. Generated Images Example

4.6.1.1. Rotation

For rotation type of augmentation, first, an angle between -45° and 45° was selected

randomly with uniform distribution. Then the rotation matrix was calculated and the

resulting image was captured using the functions of the OpenCV API. For the cases

that the resulting image contains undefined pixels, the repetition of the border pixel

method was chosen. An example of this case is shown in Figure 4.10.

52

Figure 4.10. Repeated Pixels after Rotation

4.6.1.2. Translation

Translation was applied for both x and y axis of the detected frame. The displacement

amount for both axes was chosen randomly from the uniform distribution of numbers

between ±25% of image size. For the cases that the chosen linear displacement reaches

the outside of the full frame, the displacement was limited to that border of the full

frame.

4.6.1.3. Zooming

A zoom amount was chosen from the uniform distribution of the value range of

between 75% and 125% of image size. For the cases that the chosen zoom value results

in the outside part of the full frame, the zoom amount was limited to the corresponding

limit value.

4.6.1.4. Brightness

In order to implement a brightness change to the images, the function called

“convertScaleAbs” of the OpenCV API was used. The function takes the input

argument “beta” and uses as an offset value for each 8-bit color channel of the pixels

of the image. The beta value of the function was chosen randomly from the values

between -50 and 50 of a uniform distribution.

53

4.7. Dataset Construction

The output of the previous process is folders of images that are properly named

including all the necessary information. In order to construct the dataset for training

and testing, leave-one-subject-out cross validation (LOSOCV) method was adopted

in the study. At each iteration of LOSOCV, the dataset belonging to one of the six

experiments was excluded from the training dataset. The excluded dataset was used in

the evaluation of the iteration.

A separate validation set was also constructed by using the 7th experiment images.

Since it is better to use a homogeneously classified (balanced) data also for the

validation, some of the other basal experiment images were included in the validation

dataset. In the same manner, neither of the validation data was included in any of the

training datasets or test datasets.

The images of six different experiments of pain were included to construct LOSOCV

datasets. At this point, it is desired to have a homogeneous dataset as much as it could

be. For this purpose, the image data (labeled as “Normal” pain intensity) generated

from one of the basal experiments was included to all training datasets.

4.7.1. Process Output

The output of this process should include the image arrays and their corresponding

score values (labels) at least. A different type of zipped archive file, “npz”, was chosen

as dataset format. It is generally used as a dictionary-like object including several

arrays.

The image files are collected in organized folders as a result of the previous process

described in Section 4.6, it may seem not necessary to include the individual image

arrays into the “npz” archive, at first. However, the IO operations between the CPU

and the disk while feeding the training network could be the bottleneck of the training

process. In order to overcome this problem, all the required image data were included

into the “npz” archive with the cost of extreme RAM usage.

54

The dictionary-like data structure was used as given in Table 4.7 for the output of this

process. And this structure was stored in “npz” format.

Table 4.7. Dataset NPZ Archive Structure

Array Name Description

img Image data array
file_path Array of relative file paths including the full name of the images
exp_name Array of concatenation of 1 and 2 values described in Figure 4.7
synch_frame Array of frame numbers with respect to synchronization frames
score Array of average score values
score_eye Array of individual eye scores
score_ear Array of individual ear scores
score_nose Array of individual nose scores
score_cheek Array of individual cheek scores
score_whiskers Array of individual whiskers scores
camno Array of corresponding camera numbers
video_frame Array of frame numbers with respect the start of video frame
box_x Array of x-coordinates of detection boxes
box_y Array of x-coordinates of detection boxes
box_length Array of detection sizes
itemno Array of item numbers in “Label_6Cam” application

Although most of the arrays included in the dataset archive are not required for any

training process, they were included for the sake of data completeness.

Using LOSOCV method requires to generate 6 different groups of datasets each of

which includes training, validation, and testing datasets. As described earlier, the

validation dataset was prepared using the images of the 7th experiment and some

images of one of the basal experiment. The same validation dataset was used for all

the LOSOCV training iterations. Since it is useful to see both the corrected data

evaluation and the original data evaluation, two separate datasets were constructed for

55

testing. A naming convention was proposed for the constructed datasets, an example

of this naming convention is given in Figure 4.11.

2

LOSOCV-1-train.npz

3 4

1: Abbreviation of «leave-one-subject-out cross
validation»
2: LOSOCV iteration identifier (1..6)
3: Subset type: Training/Testing/Validation set
4: Dataset format extension

1

Figure 4.11. Dataset Naming Convention Example

In order to decrease the processing time during training operation, the image arrays

were also resized according to the network requirements before inserting them into

the “npz” archive files. However, the drawback here is that it is required to regenerate

the group of datasets for a specific image size requirement.

The contents of the LOSOCV datasets used in the training and the evaluation process

are described in Figure 4.12. The different colors represent the different type of datasets

constructed in the previous process. The names on the folders correspond to the

experiments where “EXP” is a pain experiment and “BAS” is a basal experiment.

56

EXP2 EXP3 EXP5 EXP6EXP4 BAS2

EXP1 EXP3 EXP5 EXP6EXP4 BAS2

EXP1 EXP2 EXP5 EXP6EXP4 BAS2

EXP1 EXP2 EXP5 EXP6EXP3 BAS2

EXP1 EXP2 EXP4 EXP6EXP3 BAS2

EXP1 EXP2 EXP4 EXP5EXP3 BAS2

AUGMSYMM

EXP7 BAS1 EXP1 EXP1

TRAIN VALIDATION TEST1 TEST2

LOSOCV-2

LOSOCV-3

LOSOCV-4

LOSOCV-1

LOSOCV-6

LOSOCV-5

EXP7 BAS1 EXP2 EXP2

EXP7 BAS1 EXP3 EXP3

EXP7 BAS1 EXP4 EXP4

EXP7 BAS1 EXP5 EXP5

EXP7 BAS1 EXP6 EXP6

CORRORGNColor Representation:

Figure 4.12. LOSOCV Dataset Construction

4.8. Training and Evaluation

In this section, the proposed method for the training and testing process are described.

As stated in section 3.5, CNNs are the best network option especially for visual

recognition problems. Additionally, with the help of transfer learning, one can take

the advantage of pre-trained weights of networks of larger datasets especially for the

convolutional layers and by-pass the drawback of the insufficiency of the training

dataset and the longer training times. For this purpose, transfer learning method was

adopted in this study.

The training process was divided into two phases. In the first phase, the objective was

to select 1 out of 5 popular (proved to be successful) pre-trained networks. And in the

second phase, the objective was to achieve the best network performance with fine

tuning and other applicable methods.

Since, several iterations of training processes are required, it is essential to use a highly

manageable, powerful and user-friendly environment. This includes both software and

hardware parts. In this study, all the training processes were executed in the cloud.

57

Working with large datasets requires to train and even evaluate the network using

mini-batches, or simply batches. The algorithm/function that feeds the network with

batches of data is called “Image Generator”. For this purpose, a custom image

generator was developed which will be described in the following sub-sections.

4.8.1. First Phase

The performances of 5 popular pre-trained networks were compared with same and

roughly defined hyper-parameters using same datasets. Also, identical fully connected

network structure was used after those convolutional layers.

Despite using the pre-trained networks, the training process for one epoch could take

longer for a large training dataset of around 250k images. During dry-run training

processes, it was observed that even a few training epochs are sufficient to get the best

validation result. For this reason, it was decided to use a callback function that

provides early stopping the training process for the condition that the validation set

evaluation does not improve in a definite number of epochs.

The most of the work will be analyzed within the scope of the regression output.

However, the comparison of classification performances of these networks are also

included in the study.

4.8.2. Second Phase

With the selected convolutional neural network in the first phase, it is desired to

achieve the best performance using alternative methods. One of them is the selection

of hyper-parameters such as learning rate and activation function. The other one could

be applying normalization after fully connected layers or before input layer.

The fully connected network structure could be another key factor and thus different

structures of fully connected layers are studied.

The last option is to train the convolution layers with a lower learning rate along with

the fully connected ones.

58

The binary (pain/no-pain) classification performances of the network are also included

in this final phase. Having the advantage of the multi-camera system, the final

evaluation also includes multi-camera based (multiple frames of the same moment)

evaluation results.

4.8.3. Image Generator

The main purpose of an image generator is to feed the network in small groups of data

during the training or evaluation process. This necessity actually rises from the limited

sources of the hardware. For large datasets, it may not be possible to load the required

data at once even for the initial processing. Considering the training process, trying to

include all the training data at once would not be a feasible approach. For this reason,

image generators are essential, not an option, for large dataset training processes with

limited hardware sources. However, still there are other problems related to IO

operations while trying to massively read individual image files from the disks.

Although some alternative methods exist such as multiprocessing, the fastest and most

reliable way is to directly feed the data to the training process from RAM content. For

this purpose and having the advantage of cloud computing, virtual machines with

higher RAM capacities were used in order to make the image generator possible to

read any desired data in the fastest way.

Image generators can also have side functions such as shuffling dataset, balancing

dataset, and augmenting data. For the test or validation datasets, those functions may

not be required except for balancing dataset. Thus, in this study, two different image

generators were developed one of which is capable of shuffling and balancing dataset

(called IMGEN1) and the other does not have any auxiliary function (called

IMGEN2). The function of the latter is to split the dataset into small chunks with

defined batch size and feed the related process with those chunks. Similarly, the

function of the former is also to create mini-batches. In addition to the main function,

batches can be arranged in such a balanced way that there would be equal number of

data from different score ranges (classes). For the cases that the number of data differs

59

among classes, some of the data are repeated inside the classes in which there are less

data. Moreover, IMGEN1 is capable of shuffling at two different steps. First, the

complete dataset can be shuffled initially (at the start of each epoch) and then, the

created mini-batches can also be shuffled (at the end of each batches) just before

feeding the process. These two shuffling methods ensure the complete randomness

especially for the training network.

The algorithm of the IMGEN1 is given in Figure 4.13. And a simple example of mini-

batch creation of IMGEN1 is given in Figure 4.14.

START

Shuffle the Dataset

idx < steps

Create Separate Data Lists for Each Class

idx=0

Calculate the Number of Steps:
steps=ceil[max(# data in classes)/batch_size *

num_of_classes]

Create Mini-Batch Using «idx» and the
Data Lists of Classes

Yes

No

Shuffle the Mini-Batch

Yield the Mini-Batch
idx=idx+1

Figure 4.13. Train Image Generator Algorithm

60

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

1
2
3
4
5
6
7

Class Lists
R G B Y

Batch#1
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Batch#2
5
6
7
8
5
6
1
2
5
6
7
8
5
6
7
1

1
2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

5

6

7

8

5

6

1

2

5

6

7

8

5

6

7

1

Batch Size: 16

Figure 4.14. Mini-Batch Creation Example

4.8.4. Evaluation Criteria

For classification type output, the selection of the evaluation criteria is quite

straightforward. It is the “accuracy” that is defined as the fraction of the successfully

classified inputs to the total number of inputs. Although the performance evaluation

metric of the classification type network was the “accuracy”, the metric chosen for the

early stopping callback was either the “loss function” or the “accuracy” in this study.

When it comes to regression type of networks, it is not meaningful to use the accuracy

as the performance criteria, instead the loss function can be used. MSE and MAE are

the most common loss functions for regression outputs. If the square domain is not

desired, Root Mean Square Error (RMSE) can also be used as an alternative of MSE

function. Selecting one of them was not an easy choice in this study since there is no

correct answer for that in general. MSE/RMSE is useful if we are more interested in

61

the less frequent unexpected values. Thus, the drawback is that the error gets worse

even if there is a single very bad prediction. In other words, this method is sensitive

to the less frequent large errors. On the other hand, MAE gives an intuition on how

the network performs, easily. This is because it behaves linearly to each of the error

values. It can be stated that MAE is not that sensitive to the individual large errors as

MSE/RMSE does.

In some previous studies [48], [49], MSE/RMSE was not recommended as an

evaluation metric for the average model performance. It was claimed that RMSE adds

an ambiguity to the average error evaluation process since it is dependent on the three

different characteristics of the errors rather than one. On the other hand, in a later study

[50], it was suggested that using RMSE as an evaluation criteria is more suitable than

MAE if the error distribution of the system is close to Gaussian.

Combining all the information above, in this study, it was decided to choose the loss

function by analyzing the error distribution of manual coding process (duplicated

moments were presented to the experts without they were informed as it was explained

in Section 4.4). If the manual coding error distribution reflects a similar distribution

to a Gaussian one, it would be better to choose the MSE or RMSE rather than MAE.

However, a question arises that how the error distribution could be compared to a

Gaussian one. It is known that the maximum value of (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) is equal to 1, where the

error is distributed uniformly. Perturbing this uniform distribution causes an increase

in the ratio of (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
). The ratio converges to a fixed value of (1

0.8
), which is 1.25, if

the distribution is Gaussian as stated in the previous study [50]. Perturbing the

Gaussian distribution by adding outliners causes a further increase in the ratio. Thus,

the ratio can give an understanding on how much outliners exist in a distribution with

respect to a Gaussian or uniform distribution.

Considering the facts stated above, a threshold value for (
𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) of manual coding

errors is determined using that of the Gaussian distribution with a tolerance of +10%,

62

which equals to 1.375. If the ratio, (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
), calculated from the manual coding errors

is less than 1.375, MSE or RMSE will be selected, otherwise MAE will be used.

4.8.5. Software

There are lots of frameworks available for machine learning development such as

TensorFlow, Caffe2, PyTorch, MXNet, CNTK. The additional software and their

versions are generally dependent on the selected framework. In this study, TensorFlow

framework was used to build the network and the other software information is given

in Table 4.8.

Table 4.8. Software Configuration

Name Version Description

Python 3.6.8 Programming Language Environment
TensorFlow 1.14.0 Machine Learning Framework
Keras NA Machine Learning High Level API for Tensorflow

1.14
NumPy 1.16.4 Scientific Computing Package
Opencv-Python 4.1.0 Python Library for Computer Vision

4.8.6. Hardware

Training large networks with large datasets is a time-consuming task for a standard

CPU. Higher capacity RAMs are also required. In order to decrease the computation

time, GPU support can be used within the limitations of the selected framework.

Since, several training runs will be executed in this study, it is highly required to have

a powerful hardware configuration, and even multiple instances of it if possible. For

this purpose, Google Cloud Platform was used for all the training processes. Multiple

virtual machine instances were used with the hardware configuration given in Table

4.9.

63

Table 4.9. VM Hardware Configuration

Name Description

CPU 2 x vCPU (3.5 GHz, Single-Core Max Turbo frequency)
RAM 52 GB
GPU NVIDIA Tesla P100 (16 GB HBM2 RAM)
HDD 30 GB
SSD 375 GB (Shared among VM instances)

Since there are multiple instances running for a common purpose, they should be

managed in a centralized way such that they should share the common sources like

datasets and executable codes. Besides, the outputs of the VM instances should be

saved in a common data storage. For this purpose, Google Storage Buckets were used.

The main advantage of this is that one single storage bucket can be mounted to

multiple VM instances. Similarly, read only disks can also be mounted to multiple

instances. By this way, the input and output data could be easily managed among the

compute engine instances. Furthermore, data transfers between the Storage Buckets

and Google Drive could also be easily achieved through the help of Google

Colaboratory environment with a few line of codes. These connectivity features of

different types of tools in the cloud made them appealing to be used in this study.

These connectivity features are illustrated in a block diagram given in Figure 4.15.

64

Local PC

Storage Bucket

Compute Engine VM Instances

Google Drive

Shared Disk

Figure 4.15. Cloud Tools Connectivity (High Volume Data Sharing)

65

CHAPTER 5

5. EXPERIMENTAL RESULTS

5.1. Mouse Experiment Outputs

In this study, the videos collected in six experiments with an additional one experiment

were used in order to construct a validation dataset. There are 2 groups (basal and

pain) of 6 video files for each experiment. However, only 2 basal parts of the

experiments were used. The durations and the total frame numbers of the video files

used in this study are given in Table 5.1. All the videos were recorded in FHD resolution

@50 fps.

66

 Table 5.1. Collected Video File Durations in Minutes (Frames in Parenthesis)

Name CAM1 CAM2 CAM3 CAM4 CAM5 CAM6

EXP1
94.30

(282912)

94.30

(282912)
94.40

(283200)
94.46

(283392)
94.52

(283560)
94.46

(283392)

EXP2
65.74

(197232)
65.82

(197472)
65.77

(197304)
65.78

(197352)
65.79

(197376)
65.79

(197376)

EXP3
65.54

(196608)
65.57

(196704)
65.62

(196848)
65.62

(196848)
65.62

(196848)
65.59

(196776)

EXP4
65.66

(196992)
65.60

(196800)
65.72

(197160)
65.61

(196824)
65.60

(196800)
65.50

(196488)

EXP5
68.07

(204216)
67.99

(203976)
68.01

(204024)
68.12

(204360)
68.07

(204216)
68.08

(204240)

EXP6
77.34

(232032)
77.31

(231936)
77.31

(231936)
77.30

(231912)
77.30

(231912)
77.26

(231792)

EXP7
61.22

(183672)
61.17

(183504)
61.17

(183504)
61.19

(183576)
61.10

(183312)
61.18

(183528)

BAS1
45.42

(136248)
45.34

(136032)
45.46

(136392)
45.69

(137064)
45.62

(136872)
45.43

(136296)

BAS2
28.36

(85080)
28.22

(84672)
28.30

(84912)
28.36

(85080)
28.37

(85104)
28.37

(85104)

5.2. Manual Coding Dataset

A total of 7 different datasets were constructed for manual coding of pain experiments

and 2 different datasets were constructed for manual coding of basal experiments. The

algorithm described in section 4.4.1 was used to construct each dataset with the

parameters given in Table 5.2.

67

Table 5.2. Fuse and Filter Algorithm Parameter Values

Parameter Value (Pain) Value (Basal)

min_det_num 3 3
min_items_in_det_set 8 20(BAS1), 16(BAS2)

max_items_in_det_set 100 100
min_prob 0.95 0.95
threshold 12 12
sh_decay 0.9 0.9

The resulting number of moments selected for each dataset and the corresponding

scorers are given in Table 5.3.

Table 5.3. Number of Selected Moments for Manual Scoring

Name Number of Moments Scorer(s)

EXP1 1031 Expert#1
EXP2 911 Expert#1
EXP3 728 Expert#1
EXP4 848 Expert#1 and Expert#2
EXP5 598 Expert#2
EXP6 1002 Expert#2
EXP7 468 Expert#2
BAS1 956 Expert#1
BAS2 818 Expert#2
TOTAL 7360

A selected moment can be labeled as “Bad” if the expert considers that the quality of

the frames captured for that moment is insufficient for manual scoring. In this case,

the moment data was ignored for the next process. The expert can also label an AU as

68

“Not Observable”. If there are more than two AUs that are not labeled or labeled as

“Not Observable”, the corresponding moment data was ignored for the next process

as in the case of “Bad” moments. Those moments are called “unaccepted” moments.

In addition to those, since 4% of the moments were duplicated inside the dataset for

the consistency analysis, one moment of each duplication was also ignored. In the next

process, it will be possible to modify mouse face detection values (detection status,

detection coordinates). In order to prevent any ambiguity, the dataset without the

manual correction is called “original” (ORGN) and the same dataset with applied

manual correction is called “corrected” (CORR).

The number of moments by groups for each original experiment is given in Figure 5.1

and the corresponding number of images by groups is given in Figure 5.2. The overall

statistics are given in Figure 5.3 and Figure 5.4.

69

Figure 5.1. Number of Moments by Groups (ORGN)

Figure 5.2. Number of Images by Groups (ORGN)

Figure 5.3. Number of Overall Moments by Groups (ORGN)

70

Figure 5.4. Number of Overall Images by Groups (ORGN)

The number of moments by score groups for each original experiment is given in Figure

5.5 and the corresponding number of images by score groups is given in Figure 5.6. The

overall statistics of experiments from 1 to 6 are given in Figure 5.7 and Figure 5.8.

Figure 5.5. Number of Moments by Score Groups (ORGN)

71

Figure 5.6. Number of Images by Score Groups (ORGN)

Figure 5.7. Number of Overall EXP 1-6 Moments by Score Groups (ORGN)

72

Figure 5.8. Number of Overall EXP 1-6 Images by Score Groups (ORGN)

At this step, it was possible to extract the internal error values of the manual coding

process by calculating the differences of each duplicate moments. It is shown in Figure

5.3 that there are 299 repeated moments, however 21 of them were excluded since they

were coded as bad or more than two AUs were not coded. Since MAE and RMSE are

concerned, it is not essential how the difference (e.g. A-B or B-A) is calculated among

duplicate moments’ scores. The extracted error distribution of manual coding is given

in Figure 5.9. It was calculated from the errors that MAE is equal to 0.169 and RMSE

is 0.251.

Figure 5.9. Manual Labeling Error Distribution

73

As the ratio of (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) is equal to 1.485 which is higher than the threshold value, 1.375,

(described in section 4.8.4) it was decided to use MAE as the loss function and the

evaluation criteria for the regression outputs.

5.3. Manual Correction and Image Collection

The moment statistical data given in the previous section, 5.2, is also applicable for

the manual correction process since the moment scores were not modified in this step.

However, the statistical data of the images may differ from the original.

The number of images by groups after manual correction is given in Figure 5.10. The

overall statistics are given in Figure 5.11.

Figure 5.10. Number of Images by Groups (CORR)

74

Figure 5.11. Number of Overall Images by Groups (CORR)

The number of images by score groups for each experiment after correction is given

in Figure 5.12. The overall statistics of experiments from 1 to 6 are given in Figure 5.13.

Figure 5.12. Number of Images by Score Groups (CORR)

75

Figure 5.13. Number of Overall EXP 1-6 Images by Score Groups (CORR)

For each of the experiments, “Pain and Basal”, four different folders were able to be

created with the corresponding images as described in Section 4.6. However, the

proposed cross-validation method as shown in Figure 4.12 requires a total of 29

subfolders belonging to 9 experiment datasets. Since BAS2 was included in only

training data, the ORGN folder was not necessary. Similarly, only ORGN folders of

EXP7 and BAS1 are needed as they were used as validation data. An extra filtering

was applied only for collecting BAS1 images such that 200 moments were selected

from the score range 0-0.49, 100 moments were selected from the score range 0.5-

0.99 and 50 moments were selected from the score range 1.0-1.49.

The number of images collected for the output folders is summarized in Table 5.4.

76

Table 5.4. Number of Images in Output Folders

Name ORGN CORR SYMM AUGM TOTAL

EXP1 3968 3968 3968 31744 43648

EXP2 3282 3668 3668 29344 39962

EXP3 2659 2810 2810 22480 30759

EXP4 3393 3570 3570 28560 39093

EXP5 2103 2294 2294 18352 25043

EXP6 3912 3741 3741 29928 41322

EXP7 - 1843 - - 1843

BAS1 - 1597 - - 1597

BAS2 - 3286 3286 26288 32860

TOTAL 19317 26777 23337 186696 256127

5.4. Dataset Construction

Six groups of LOSOCV datasets were prepared each of which has four different

subsets (“npz” archive files); training, validation, test#1 (test_orgn) and test#2

(test_corr). The content of each LOSOCV datasets is given in Figure 4.12. The size of

all the collected images summarized in is around 5.35 GB, however storing those

images within “numpy” arrays could take several multiples of that size.

In order to decrease the data processing time during training, the images were resized

to 224x224 which is the default size of most of the pre-trained networks in this study.

This size was also a reasonable value when compared to the average size of collected

images. The file sizes of each archive files used in LOSOCV datasets are summarized

in Table 5.5.

77

Table 5.5. LOSOCV Dataset File Sizes in MB

LOSOCV# train validation test_orgn test_corr TOTAL

1 17909 326 375 375 18985
2 18190 326 310 346 19172
3 18991 326 250 265 19832
4 18367 326 311 328 19332
5 19485 326 196 215 20222
6 18118 326 368 353 19165

TOTAL 111060 1956 1810 1882 116708

5.5. Training and Evaluation

5.5.1. First Phase

In the first phase, 5 pre-trained CNNs were compared for both regression and

classification outputs. The pre-trained CNNs built up the bottom part of the resulting

network, on top of them 2 fully connected layers along with and a final 1-node output

layer were added. For classification output, the output layer was changed to 3-node

with a “softmax” activation function.

The general structure of the used model for regression output is shown in Figure 5.14.

PRE-TRAINED CNN
(INCV3, RES50, VGG16,

VGG19, XCEPT)

224x224x3image
224x224x3224x224x3image
224x224x3224x224x3image
224x224x3224x224x3images
224x224x3

FC
-1

 (
2

5
6)

FC
-2

 (
2

5
6)

Figure 5.14. First Phase Regression Network General Structure

78

No pooling was applied after the last layer of the CNN, thus a flattening layer was

added between CNN and FC-1. For both FC layers, ReLU is used as the activation

function and dropout layers were added just after them. The specification of the used

network for regression output is given in Table 5.6.

Table 5.6. First Phase Regression Network Specification

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: No
FC-1 Size:256, Activation: ReLU, Dropout=0.15
FC-2 Size:256, Activation: ReLU, Dropout=0.15

Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0)
Loss Function MAE

Early Stop Callback Monitor: Validation Loss, Patience:5
BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0]

There are two different train datasets for each LOSOCV iteration which are composed

of either ORGN or CORR images. Besides, the image generator, IMGEN1, has a

feature for balancing the dataset with the given BINS and IMGEN2 feeds a process

without balancing (an image appears only once in an epoch). Thus, four different

evaluation values were calculated for each LOSOCV iteration. These were

represented as ORGN, ORGN-B, CORR, CORR-B where the suffix, “B”, represents

the balanced version. The used image generators and their settings for each dataset

used in a LOSOCV iteration is given in Table 5.7.

79

Table 5.7. Dataset Image Generator Settings

Dataset Image Generator

Train IMGEN1 (Shuffle: Yes)
Validation IMGEN1 (Shuffle: No)

Test (ORGN) IMGEN2
Test (ORGN-B) IMGEN1 (Shuffle: No)

Test (CORR) IMGEN2
Test (CORR-B) IMGEN1 (Shuffle: No)

The evaluation results of the first phase for regression network are given Table 5.8.

80

Table 5.8. First Phase Regression Evaluation Results

 TEST LOSS (MAE)

LOSOCV# Eval. Type INCV3 RES50 VGG16 VGG19 XCEPT

1

ORGN 0.507 0.774 0.303 0.319 0.470
ORGN-B 0.443 0.573 0.321 0.316 0.441

CORR 0.502 0.785 0.276 0.299 0.471
CORR-B 0.425 0.571 0.300 0.297 0.430

2

ORGN 0.483 0.552 0.324 0.334 0.466
ORGN-B 0.468 0.520 0.315 0.324 0.466

CORR 0.479 0.561 0.310 0.306 0.458
CORR-B 0.459 0.522 0.302 0.296 0.451

3

ORGN 0.362 0.626 0.275 0.291 0.406
ORGN-B 0.383 0.637 0.280 0.294 0.435

CORR 0.370 0.639 0.253 0.265 0.405
CORR-B 0.387 0.640 0.253 0.265 0.427

4

ORGN 0.442 0.494 0.377 0.356 0.446
ORGN-B 0.476 0.566 0.372 0.358 0.480

CORR 0.432 0.495 0.343 0.334 0.445
CORR-B 0.469 0.565 0.340 0.338 0.471

5

ORGN 0.553 0.792 0.351 0.368 0.545
ORGN-B 0.462 0.643 0.319 0.341 0.479

CORR 0.559 0.797 0.306 0.325 0.520
CORR-B 0.461 0.644 0.283 0.305 0.461

6

ORGN 0.728 0.899 0.452 0.432 0.599
ORGN-B 0.564 0.660 0.404 0.412 0.529

CORR 0.746 0.938 0.426 0.397 0.601
CORR-B 0.540 0.661 0.362 0.353 0.486

Mean

ORGN 0.513 0.690 0.347 0.350 0.489
ORGN-B 0.466 0.600 0.335 0.341 0.472

CORR 0.515 0.702 0.319 0.321 0.483
CORR-B 0.457 0.601 0.307 0.309 0.454

81

It is seen in Table 5.8 that the VGGNets, VGG16 and VGG19, performed far better than

the other networks for regression type evaluation. The reason for this could be

overfitting of the deeper networks.

The specification of the used network for 3-alternative forced classification output is

given in Table 5.9.

Table 5.9. First Phase 3-Alternative Forced Classification Network Specification

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 36

CNN Trainable: No
FC-1 Size:256, Activation: ReLU, Dropout=0.15
FC-2 Size:256, Activation: ReLU, Dropout=0.15

Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0)
Loss Function Sparse Categorical Crossentropy

Early Stop Callback Monitor: Validation Loss, Patience:5
BINS for Image Generators [0, 0.5, 1.5, 2.0]

As in the regression network, four different evaluation values were calculated for each

LOSOCV iteration. The image generators and the settings were used as the same

which is given in Table 5.7.

The evaluation results of the first phase for 3-alternative forced network are given in

Table 5.10.

82

Table 5.10. First Phase 3-Alternative Forced Classification Network Evaluation Results

 TEST ACCURACY (%)

LOSOCV# Eval. Type INCV3 RES50 VGG16 VGG19 XCEPT

1

ORGN 53.02 7.81 65.05 65.35 40.32
ORGN-B 40.45 33.33 63.75 61.00 38.70

CORR 51.74 7.69 67.94 67.31 42.67
CORR-B 42.31 33.33 66.78 62.19 41.12

2

ORGN 45.58 17.46 58.74 58.32 44.15
ORGN-B 37.42 33.33 65.86 65.80 38.25

CORR 45.91 17.23 61.29 60.03 46.43
CORR-B 38.52 33.33 69.14 67.77 40.51

3

ORGN 57.43 22.79 66.53 64.57 55.43
ORGN-B 44.27 33.33 69.42 67.99 42.47

CORR 57.40 22.53 68.26 66.33 55.59
CORR-B 44.80 33.33 73.01 71.68 43.91

4

ORGN 55.32 33.78 62.95 62.60 53.73
ORGN-B 41.65 33.33 64.05 63.57 41.37

CORR 56.72 34.37 65.35 66.97 55.32
CORR-B 43.71 33.33 66.40 67.15 43.61

5

ORGN 49.12 25.11 74.80 75.65 44.84
ORGN-B 45.32 33.33 74.50 74.42 41.96

CORR 48.95 26.02 78.99 77.33 49.08
CORR-B 46.06 33.33 78.75 76.31 46.40

6

ORGN 43.89 12.32 63.14 65.44 43.69
ORGN-B 40.37 33.33 60.14 58.30 37.37

CORR 42.72 11.82 69.07 74.26 49.59
CORR-B 43.90 33.33 66.85 67.63 45.96

Mean

ORGN 50.73 19.88 65.20 65.32 47.03
ORGN-B 41.58 33.33 66.29 65.18 40.02

CORR 50.57 19.94 68.48 68.71 49.78
CORR-B 43.22 33.33 70.15 68.79 43.59

83

The results presented in Table 5.10 describe that VGGNets performed far better than

the other networks for classification type evaluation. This result is in parallel with the

regression type evaluation given in Table 5.8, as expected.

5.5.2. Second Phase

The results in the first phase showed that VGG16 is the winner by far among the other

pre-trained networks (except VGG19) for both regression and classification tasks.

Although the observations showed a slight difference between VGG16 and VGG19,

the first place is not questionable in favor of VGG16. For this reason, VGG16 was

used throughout this phase as the pre-trained CNN.

The fine tuning was the major objective of this phase. For the sake of simplicity, the

parameter search was carried out for regression type with only one LOSOCV dataset.

The selection among the LOSOCV datasets was not performed in a random fashion.

The dataset which has loss values closer to the mean loss of all datasets was chosen.

The proximity evaluation was done by calculating the RMSE between the loss and the

mean loss value. Since there are four different types of test, the average of the

calculated proximities was performed over 4 different test types. Those calculated

values are given in Table 5.11.

Table 5.11. LOSOCV Dataset Mean Proximity Evaluation

 TEST LOSS ROOT SQUARE OF (LOSS-MEAN LOSS)

LOSOCV# ORGN ORGN-B CORR CORR-B ORGN ORGN-B CORR CORR-B MEAN

1 0.303 0.321 0.276 0.300 0.044 0.014 0.043 0.006 0.027
2 0.324 0.315 0.310 0.302 0.023 0.020 0.009 0.005 0.015
3 0.275 0.280 0.253 0.253 0.072 0.055 0.065 0.054 0.062
4 0.377 0.372 0.343 0.340 0.030 0.037 0.024 0.033 0.031
5 0.351 0.319 0.306 0.283 0.004 0.016 0.013 0.024 0.014

6 0.452 0.404 0.426 0.362 0.105 0.068 0.107 0.056 0.084
Mean Loss 0.347 0.335 0.319 0.307

84

It was observed that the dataset, LOSOCV-5, is the winner of the six in the competition

of closeness to the mean. For this reason, LOSOCV-5 dataset was used for fine tuning

network parameters.

5.5.2.1. Normalization

The original paper of VGGNet [29] suggested to use input normalization per channel.

This was implemented in this step by taking the average of each channel among all

the training images. Then, the difference between image data and mean value was fed

to the processes.

Since the images are the inputs of the network in this study, standardization was not

used and in fact it is not required since the input values are already restricted.

Adding a batch normalization layer after each fully connected layer was also studied.

The default parameters of batch normalization layer of “Keras API” were not

modified. Then, the training performance was also compared after implementing both

input and batch normalization.

For this step, some parameters of the training process are also modified compared to

the first phase. The modified parameters are given in Table 5.12.

Table 5.12. Modified Network Parameters

Feature Value

FC-1 Size:256, Activation: ReLU, Dropout=0.20
FC-2 Size:256, Activation: ReLU, Dropout=0.20

Early Stop Callback Monitor: Validation Loss, Patience:8

The result comparison between “no normalization” and several normalization

combinations for LOSOCV-5 dataset is given in Table 5.13.

85

Table 5.13. Different Normalization Performance Comparison of LOSOCV-5

TEST LOSS (MAE)

Eval. Type NN IN BN IN + BN

ORGN 0.351 0.388 0.330 0.324

ORGN-B 0.319 0.343 0.330 0.309

CORR 0.306 0.359 0.294 0.279

CORR-B 0.283 0.318 0.298 0.273
NN: No Normalization, IN: Input Normalization, BN: Batch Normalization

It was observed that implementing both input and batch normalization increased the

performance of the network. Applying a single normalization did not perform better.

This makes sense in such a way that normalization takes effect when implemented in

all applicable layers. Thus, it was decided to use both normalizations for the next step.

The resulting network structure is illustrated in Figure 5.15.

VGG16
CONV. LAYERS

224x224x3image
224x224x3224x224x3image
224x224x3224x224x3image
224x224x3224x224x3images
224x224x3

FC
-1

 (
2

5
6)

FC
-2

 (
2

5
6)

B
at

ch
 N

o
rm

al
iz

at
io

n

B
at

ch
 N

o
rm

al
iz

at
io

n

In
p

u
t N

o
rm

al
iz

a
ti

on

Figure 5.15. Network Structure with Normalization

5.5.2.2. Fully Connected Layers

Up to this point, the general structure of fully connected layers was not modified such

that two FC layers were used with number of nodes, 256. In this step, the performances

of some other combinations of FC layers were studied.

86

The results of 9 different configurations of FC layers are given in Table 5.14.

Table 5.14. Fully Connected Layer Configuration Performances

FC Layer Configuration LOSOCV-5 TEST LOSS (MAE)

Layers Layer Size ORGN ORGN-B CORR CORR-B

1 128 0.343 0.320 0.300 0.287
1 256 0.325 0.313 0.292 0.285
1 512 0.320 0.317 0.284 0.289
2 128 0.353 0.327 0.308 0.291
2 256 0.324 0.309 0.279 0.273

2 512 0.321 0.312 0.281 0.279
3 128 0.391 0.351 0.351 0.319
3 256 0.314 0.311 0.273 0.279
3 512 0.312 0.315 0.268 0.281

Although small differences were observed on the performances of different fully

connected layer structures, the configuration of 2-layer with 256 nodes structure was

still the best one. For this reason, this configuration was chosen for the next step.

5.5.2.3. Learning Rate and Activation Function

Up to this step, ReLU had been used for the activation functions of fully connected

layers, and a fixed value of 1e-4 had been used for the learning rate of Adam optimizer.

In this step, some other combinations of activations functions and learning rate

parameters were studied. For learning rate, 4 different values (1e-2, 1e-3, 1e-4, 1e-5

and 1e-6) and for activation function, 3 different Leaky ReLU functions with alpha

(slope of negative range) values of 0, 0.1 and 0.2 were used. It is better to state that a

Leaky ReLU with alpha equals to zero corresponds to classical ReLU function.

The results of 15 different combinations of learning rate and activation functions are

given in Table 5.15.

87

Table 5.15. Learning Rate and Activation Function Combination Performances

PARAMETERS LOSOCV-5 TEST LOSS (MAE)

Adam

Optimizer

Learning Rate

Leaky

ReLU

Alpha

ORGN ORGN-B CORR CORR-B

1.E-02 0.0 0.331 0.324 0.294 0.294
1.E-02 0.1 0.317 0.298 0.292 0.280
1.E-02 0.2 0.311 0.300 0.280 0.276
1.E-03 0.0 0.359 0.328 0.316 0.296
1.E-03 0.1 0.293 0.292 0.258 0.265

1.E-03 0.2 0.304 0.295 0.268 0.266
1.E-04 0.0 0.324 0.309 0.279 0.273
1.E-04 0.1 0.291 0.297 0.262 0.273
1.E-04 0.2 0.323 0.301 0.290 0.274
1.E-05 0.0 0.360 0.331 0.324 0.304
1.E-05 0.1 0.315 0.296 0.278 0.266
1.E-05 0.2 0.355 0.330 0.305 0.290
1.E-06 0.0 0.359 0.334 0.316 0.298
1.E-06 0.1 0.350 0.325 0.303 0.288
1.E-06 0.2 0.361 0.328 0.309 0.289

It was observed that the best result was achieved with the learning rate of 1e-3 and

Leaky ReLU alpha parameter of 0.1. This configuration was also compared with 2

different configurations in which learning decay parameter was set to 5e-5 value

instead of using default 0.0 value.

The results of inserting learning rate decay and performance comparison of 3 different

configurations are given in Table 5.16.

88

Table 5.16. Learning Rate Decay Parameter Comparison

PARAMETERS LOSOCV-5 TEST LOSS (MAE)

Adam

Optimizer

Learning

Rate

Leaky

ReLU

Alpha

Learning

Rate

Decay

ORGN ORGN-B CORR CORR-B

1.E-03 0.1 0.0E+00 0.293 0.292 0.258 0.265

1.E-03 0.1 5.0E-05 0.314 0.307 0.283 0.281
1.E-02 0.1 5.0E-05 0.305 0.292 0.272 0.269

It was observed that inserting learning rate decay did not change the best result. Thus,

1e-3 was used for learning rate without additional decay parameter for the next step

and also Leaky ReLU with an alpha value of 0.1 was used as an activation function.

5.5.2.4. Regression Network Results

The summary of the resulting regression network, designated as 𝑁𝑅
(1), after studying

different network parameters is given in Table 5.17.

89

Table 5.17. 𝑁𝑅

(1)
, Network Summary

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: No
FC-1 Size:256, Activation: Leaky ReLU(α=0.1)

Dropout=0.2
FC-2 Size:256, Activation: Leaky ReLU(α=0.1)

Dropout=0.2
Optimizer Adam (𝜂=1e-3, β1=0.9, β2=0.999, decay=0)

Loss Function MAE
Early Stop Callback Monitor: Validation Loss, Patience:8

BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0]
Normalization Input Normalization, Batch Normalization

The other LOSOCV datasets were also trained with the network 𝑁𝑅
(1) in order to get

the mean cross-validation result. These results are given in Table 5.18.

Table 5.18. 𝑁𝑅

(1)
, Cross Validation Results

LOSOCV#

TEST LOSS (MAE)

ORGN ORGN-B CORR CORR-B

1 0.304 0.343 0.284 0.317
2 0.300 0.297 0.284 0.280
3 0.307 0.307 0.294 0.289
4 0.426 0.406 0.386 0.366
5 0.293 0.292 0.258 0.265
6 0.376 0.396 0.324 0.324

MEAN 0.334 0.340 0.305 0.307

90

It was observed that even though the results of LOSOCV-5 had shown an

improvement, overall results did not show any improvement. This is an indication that

the fine-tuning of the fully-connected layers has limited impact and is highly specific

to the selected test dataset.

The BINS of the image generator of the network 𝑁𝑅
(1) were changed to 8 divisions ([0,

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]) and the resulting network is called 𝑁𝑅
(2). The

cross-validation results of 𝑁𝑅
(2) are given in Table 5.19.

Table 5.19. 𝑁𝑅

(2)
, Cross Validation Results

LOSOCV#

TEST LOSS (MAE)

ORGN ORGN-B CORR CORR-B

1 0.288 0.353 0.270 0.327
2 0.313 0.325 0.297 0.306
3 0.306 0.307 0.291 0.289
4 0.363 0.344 0.330 0.315
5 0.319 0.293 0.284 0.270
6 0.396 0.385 0.352 0.333

MEAN 0.331 0.335 0.304 0.307

No remarkable improvement was observed by increasing the divisions of the BIN list

of the image generator. This shows that four divisions used for balancing the mini-

batches are sufficient for our dataset.

The convolutional layers of the networks 𝑁𝑅
(1) and 𝑁𝑅

(2) are not trainable. A different

network configuration, designated as 𝑁𝑅
(3), was also studied with changing the

property of the convolutional layers as trainable. The summary of 𝑁𝑅
(3) is given in

Table 5.20.

91

Table 5.20. 𝑁𝑅

(3)
, Network Summary

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: Yes
FC-1 Size:256, Activation: Leaky ReLU(α=0.1)

Dropout=0.2
FC-2 Size:256, Activation: Leaky ReLU(α=0.1)

Dropout=0.2
Optimizer Adam (𝜂=1e-5, β1=0.9, β2=0.999, decay=0)

Loss Function MAE
Early Stop Callback Monitor: Validation Loss, Patience:8

BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0]
Normalization Input Normalization, Batch Normalization

The cross-validation results of 𝑁𝑅
(3) are given in Table 5.21.

Table 5.21. 𝑁𝑅

(3)
, Cross-Validation Results

LOSOCV#

TEST LOSS (MAE)

ORGN ORGN-B CORR CORR-B

1 0.272 0.314 0.256 0.294
2 0.274 0.276 0.264 0.266
3 0.272 0.271 0.265 0.259
4 0.309 0.316 0.277 0.286
5 0.296 0.276 0.269 0.253
6 0.331 0.355 0.295 0.310

MEAN 0.293 0.301 0.271 0.278

A performance increase was achieved by setting convolutional layers as trainable.

This is an expected result since the dataset used in this study is dissimilar to the

ImageNet dataset which was used to train the VGG16 network.

92

5.5.2.5. Regression Network Multi-Camera Evaluation

For multi-camera evaluation, the average value of the prediction values belonging to

the same moment was calculated. Then, the MAE of each LOSOCV dataset was

calculated. The equal-weighted (balanced) MAE (designated with suffix, “B”) was

also calculated by grouping the scores first, calculating the MAE within the groups

and then taking the average of the MAEs of the groups.

The multi-camera cross-validation results of 𝑁𝑅
(1) are summarized in Table 5.22.

Table 5.22. 𝑁𝑅

(1)
, Multi-Camera Cross-Validation Results

 TEST LOSS (MAE)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 0.252 0.322 0.240 0.295
2 0.255 0.268 0.241 0.254
3 0.268 0.271 0.264 0.267
4 0.404 0.361 0.369 0.332
5 0.253 0.244 0.222 0.226
6 0.316 0.354 0.279 0.301

MEAN 0.291 0.303 0.269 0.279

The multi-camera cross-validation results of 𝑁𝑅
(3) are summarized in Table 5.23.

93

Table 5.23. 𝑁𝑅

(3)
, Multi-Camera Cross-Validation Results

 TEST LOSS (MAE)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 0.229 0.296 0.220 0.272
2 0.237 0.254 0.235 0.250
3 0.247 0.250 0.245 0.245
4 0.277 0.269 0.254 0.251
5 0.285 0.252 0.260 0.235
6 0.297 0.337 0.278 0.307

MEAN 0.262 0.276 0.249 0.260

The multi-camera cross-validation results of 𝑁𝑅
(2) are not given, since no considerable

performance change was observed compared to the network, 𝑁𝑅
(1).

As expected, performance increase was achieved using multi-camera method for

regression type evaluation. The reason is that taking average of the predictions of

multiple frames leads to a decrease in error.

The correlation coefficient, “Pearson’s r”, analysis was carried out for the network,

𝑁𝑅
(3), using the multi-camera method predictions. The results of this study are

presented in Table 5.24.

Table 5.24. 𝑁𝑅

(3)
, Multi-Camera Correlation Analysis

LOSOCV# 1 2 3 4 5 6 Overall

Pearson's r 0.80 0.86 0.86 0.87 0.92 0.86 0.86

A complete set of statistics belonging to TEST-CORR dataset for multi-camera

evaluation of the network, 𝑁𝑅
(3), is given in Appendix A. For clarification, the

prediction related statistics of LOSOCV-1 TEST-CORR is given as an example in

Figure 5.16. The distribution of both manual scores and the predictions are given in

94

Figure 5.16(a) and Figure 5.16(b). The calculated MAE and the number of moments within

different score groups along with the overall MAE are given in Figure 5.16(c). The

calculated ME and the number of moments within different score groups along with

the overall ME are given in Figure 5.16(d). In Figure 5.16(e) and Figure 5.16(f), the error

distribution is given in two different ways. In the former one, a probabilistic histogram

is used with 20 divisions. However, in the latter one, a stacked histogram with 12

divisions is used to give more detail for the error based on score groups.

95

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.16. 𝑁𝑅

(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

96

5.5.2.6. Regression Output to Binary Classification Results

Since the result of the regression network is a scalar value, it may be desired to analyze

the classification performance of the regression network by mapping the scalar to the

classification score ranges. For this purpose, the multi-camera results of two

regression networks, 𝑁𝑅
(1) and 𝑁𝑅

(3), were mapped to the binary (pain/no-pain)

classification ranges (scores lower than 0.5 were designated as no-pain and scores

higher than or equal to 0.5 were designated as pain).

The multi-camera cross-validation results of 𝑁𝑅
(1) after regression to binary conversion

are summarized in Table 5.25.

Table 5.25. 𝑁𝑅

(1)
, Regression to Binary Classification, Multi-Camera Cross-Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 92.00 55.57 92.10 61.07
2 84.44 66.69 85.71 69.51
3 82.92 62.35 85.82 70.83
4 70.78 54.59 73.51 59.51
5 86.45 73.81 90.91 84.85
6 90.26 54.66 91.49 64.27

MEAN 84.48 61.28 86.59 68.34

The multi-camera cross-validation results of 𝑁𝑅
(3) after regression to binary conversion

are summarized in Table 5.26.

97

Table 5.26. 𝑁𝑅

(3)
, Regression to Binary Classification, Multi-Camera Cross-Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 92.615 58.622 92.718 63.438
2 85.830 70.455 86.063 73.232
3 86.107 71.527 87.844 76.973
4 80.519 71.885 82.468 76.335
5 86.096 72.214 88.770 78.844
6 89.922 52.597 90.370 55.663

MEAN 86.848 66.217 88.039 70.747

For all networks, discretizing regression to binary output presented very poor

performance considering the balanced test cases. The reason is that the slight output

value change of regression network may easily cause a wrong prediction for

classification evaluation after discretizing. The higher results of the other two test

cases were not taken into consideration here, since the accuracy differences between

them and their corresponding balanced test cases are quite much.

5.5.2.7. Binary Classification Network Results

Different score mappings were studied for binary (pain/no-pain) classification. In

other words, different separations from the linear pain scale were used in order to

match scores to binary designation.

For the network, designated as 𝑁𝐵𝐶
(1), no gap is used for binary-score mapping. In other

words, all the images are used while training without any filtering based on scores.

The summary of the network, 𝑁𝐵𝐶
(1), is given in Table 5.27.

98

Table 5.27. 𝑁𝐵𝐶

(1)
, Network Summary

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: No
FC-1 Size:128, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
FC-2 Size:18, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0)

Loss Function Binary Cross-entropy
Early Stop Callback Monitor: Validation Accuracy, Patience:8

Binary-Score Mapping No-Pain(0): score<0.5 Pain(1): score≥0.5
Normalization -

The binary classification performance summary of the network 𝑁𝐵𝐶
(1) for all cross-

validation tests is given in Table 5.28.

Table 5.28. 𝑁𝐵𝐶

(1)
, Cross Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 80.90 73.57 83.72 76.61
2 72.49 76.43 73.17 78.57
3 79.54 78.46 80.46 80.79
4 75.83 73.52 77.11 76.23
5 82.79 83.02 84.09 85.92
6 79.98 69.61 82.52 75.47

MEAN 78.59 75.77 80.18 78.93

99

The images having the scores in the range, [0.5, 1.0), were discarded in training for a

different network configuration designated as 𝑁𝐵𝐶
(2). The summary of the network,

𝑁𝐵𝐶
(2), is given in Table 5.29.

Table 5.29. 𝑁𝐵𝐶

(2)
, Network Summary

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: No
FC-1 Size:128, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
FC-2 Size:18, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0)

Loss Function Binary Cross-entropy
Early Stop Callback Monitor: Validation Accuracy, Patience:8

Binary-Score Mapping No-Pain(0): score<0.5 Pain(1): score≥1.0
Normalization -

The binary classification performance summary of the network 𝑁𝐵𝐶
(2) for all cross-

validation tests is given in Table 5.30.

100

Table 5.30. 𝑁𝐵𝐶

(2)
, Cross Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 81.43 74.28 83.34 74.75
2 68.46 77.80 68.92 79.16
3 79.58 79.27 80.21 80.84
4 76.04 72.63 77.06 74.80
5 77.98 82.78 80.25 85.35
6 73.65 71.78 77.36 80.01

MEAN 76.19 76.42 77.86 79.15

The network, 𝑁𝐵𝐶
(2), was also tested with discarding the images having the scores in the

range, [0.5, 1.0), as in its training process. The binary classification performance

summary of the network 𝑁𝐵𝐶
(2) for all cross-validation tests with discarding those

images is given in Table 5.31.

Table 5.31. 𝑁𝐵𝐶

(2)
, Cross Validation Results, Discarded Score Range [0.5,1.0)

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 85.53 76.65 87.30 77.04
2 80.26 84.49 80.95 85.93
3 87.29 84.87 88.44 86.57
4 78.17 77.10 81.16 80.46
5 85.52 87.55 88.09 90.34
6 76.91 73.72 81.34 82.25

MEAN 82.28 80.73 84.55 83.77

101

The ignored score region was widened for a different network configuration

designated as 𝑁𝐵𝐶
(3), the images having the scores in the medium score range [0.5, 1.5)

were discarded in training process.

The summary of the network, 𝑁𝐵𝐶
(3), is given in Table 5.32.

Table 5.32. 𝑁𝐵𝐶

(3)
, Network Summary

Feature Value

Input Size n x 224 x 224 x 3
Batch Size 32

CNN Trainable: No
FC-1 Size:128, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
FC-2 Size:18, Activation: Leaky ReLU(α=0.1)

Dropout=0.5
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0)

Loss Function Binary Cross-entropy
Early Stop Callback Monitor: Validation Accuracy, Patience:8

Binary-Score Mapping No-Pain(0): score<0.5 Pain(1): score≥1.5
Normalization -

The binary classification performance summary of the network 𝑁𝐵𝐶
(3) for all cross-

validation tests is given in Table 5.33.

102

Table 5.33. 𝑁𝐵𝐶

(3)
, Cross Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 67.04 75.18 70.46 78.74
2 60.94 73.52 62.21 75.92
3 66.57 75.79 69.07 78.53
4 66.25 72.30 67.28 73.85
5 72.56 79.73 74.54 82.14
6 59.76 70.10 62.82 76.86

MEAN 65.52 74.44 67.73 77.67

The network, 𝑁𝐵𝐶
(3), was also tested with discarding the images having the scores in the

range, [0.5, 1.5), as in its training process. The binary classification performance

summary of the network 𝑁𝐵𝐶
(3) for all cross-validation tests with discarding those

images is given in Table 5.34.

Table 5.34. 𝑁𝐵𝐶

(3)
, Cross Validation Results, Discarded Score Range [0.5, 1.5)

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 87.34 86.34 90.77 89.86
2 89.12 89.84 91.17 92.34
3 93.63 93.70 96.20 96.23
4 90.89 90.87 94.90 94.92
5 94.28 94.26 96.97 97.13
6 85.77 85.09 90.89 92.49

MEAN 90.17 90.02 93.48 93.83

It is seen that the classification performance increases if the images within the medium

score range are discarded for test dataset. This indicates that the network could

perform better if the ambiguous images are removed.

103

5.5.2.8. Binary Classification Network Multi-Camera Evaluation

For multi-camera evaluation, the average value of the prediction values (probabilities

for pain/no-pain) belonging to the same moment was calculated. Then, the overall

accuracy of each LOSOCV dataset was calculated. The equal-weighted (balanced)

accuracy (designated with suffix, “B”) was also calculated by first grouping the scores,

calculating the accuracy within the groups and then taking the average of the accuracy

values of the groups.

The multi-camera cross-validation results of 𝑁𝐵𝐶
(1), 𝑁𝐵𝐶

(2), and 𝑁𝐵𝐶
(3) are summarized in

Table 5.35, Table 5.36, and Table 5.37, respectively.

Table 5.35. 𝑁𝐵𝐶

(1)
, Multi-Camera Cross-Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 87.20 75.40 87.40 75.50
2 79.20 83.50 78.20 83.80
3 86.40 85.30 85.40 84.60
4 80.40 75.80 79.90 77.30
5 90.00 91.10 88.80 91.10
6 88.40 70.00 88.90 79.70

MEAN 85.27 80.18 84.77 82.00

104

Table 5.36. 𝑁𝐵𝐶

(2)
, Multi-Camera Cross-Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 87.10 80.10 87.50 77.60
2 72.80 83.20 71.80 82.60
3 85.40 85.10 84.40 84.80
4 81.30 75.70 80.10 76.70
5 83.40 88.70 83.20 88.80
6 82.20 77.80 82.60 84.20

MEAN 82.03 81.77 81.60 82.45

Table 5.37. 𝑁𝐵𝐶

(3)
, Multi-Camera Cross-Validation Results

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 72.10 83.00 74.40 82.10
2 62.10 77.20 63.10 77.70
3 68.90 79.60 70.00 80.10
4 67.30 75.50 67.40 75.70
5 75.60 83.90 75.60 83.90
6 64.20 78.60 62.60 77.70

MEAN 68.37 79.63 68.85 79.53

As expected, performance increase was achieved using multi-camera method for

classification type evaluation (similar to regression case). The reason is that taking

average of the predictions of multiple frames leads to an overall increase in prediction

accuracy.

The network, 𝑁𝐵𝐶
(2) is also tested with discarding the moments having the scores in the

range, [0.5, 1.0), as in its training process. Similarly, the network, 𝑁𝐵𝐶
(3), is tested with

discarding the moments having the scores in the range [0.5, 1.5). The binary

classification multi-camera performance summary of the networks, 𝑁𝐵𝐶
(2) and 𝑁𝐵𝐶

(3),

105

for all cross-validation tests with discarding those moments are given in Table 5.38 and

Table 5.39, respectively.

Table 5.38. 𝑁𝐵𝐶

(2)
, Multi-Camera Cross-Validation Results, Discarded Scores [0.5, 1.0)

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 90.60 82.10 90.90 79.60
2 85.60 90.40 84.50 89.80
3 92.80 90.30 92.40 90.20
4 81.40 79.30 83.40 81.80
5 91.20 93.50 91.40 93.90
6 84.60 79.30 86.60 86.40

MEAN 87.70 85.82 88.20 86.95

Table 5.39. 𝑁𝐵𝐶

(3)
, Multi-Camera Cross-Validation Results, Discarded Scores [0.5, 1.5)

 TEST ACCURACY (%)

LOSOCV# ORGN ORGN-B CORR CORR-B

1 93.10 94.20 94.20 92.90
2 92.90 94.50 93.60 95.00
3 98.30 98.30 98.00 97.90
4 98.20 98.10 98.70 98.70
5 97.50 97.90 98.60 98.80
6 94.40 95.30 93.80 95.00

MEAN 95.73 96.38 96.15 96.38

5.5.2.9. Overall Regression Networks Comparison

The overall regression output performance comparison between the developed

network models is given in Table 5.40.

106

Table 5.40. Overall Regression Networks Comparison

 TEST MAE (%)

Network Multi-Camera ORGN ORGN-B CORR CORR-B

𝑁𝑅
(3) Yes 0.262 0.276 0.249 0.260

𝑁𝑅
(3) No 0.293 0.301 0.271 0.278

𝑁𝑅
(1) Yes 0.291 0.303 0.269 0.279

𝑁𝑅
(1) No 0.334 0.34 0.305 0.307

𝑁𝑅
(2) No 0.331 0.335 0.304 0.307

As seen in Table 5.40, the network, 𝑁𝑅
(3), performed better than the others. The most

important difference of this network is that the convolutional layers were set as

trainable. Additionally, it is observed that multi-camera method is useful to increase

the performance of the network one step further.

5.5.2.10. Overall Binary Classification Comparison

The overall binary classification performance comparison between the developed

network models is given in Table 5.41.

107

Table 5.41. Overall Binary Classification Comparison

TEST ACCURACY (%)

Network Multi-Camera
Discarded

Scores
ORGN ORGN-B CORR CORR-B

𝑁𝐵𝐶
(3) Yes [0.5, 1.5) 95.73 96.38 96.15 96.38

𝑁𝐵𝐶
(3) No [0.5, 1.5) 90.17 90.02 93.48 93.83

𝑁𝐵𝐶
(2) Yes [0.5, 1.0) 87.70 85.82 88.20 86.95

𝑁𝐵𝐶
(2) No [0.5, 1.0) 82.28 80.73 84.55 83.77

𝑁𝐵𝐶
(2) Yes - 82.03 81.77 81.60 82.45

𝑁𝐵𝐶
(1) Yes - 85.27 80.18 84.77 82.00

𝑁𝐵𝐶
(3) Yes - 68.37 79.63 68.85 79.53

𝑁𝐵𝐶
(2) No - 76.19 76.42 77.86 79.15

𝑁𝐵𝐶
(1) No - 78.59 75.77 80.18 78.93

𝑁𝐵𝐶
(3) No - 65.52 74.44 67.73 77.67

𝑁𝑅
(3) Yes - 86.85 66.22 88.04 70.78

𝑁𝑅
(1) Yes - 84.48 61.28 86.59 68.34

It is seen from the Table 5.41 that discarding the medium score range from the test

dataset provides a great increase in the binary classification accuracy. However, for

most practical implementations, this evaluation type (discarding some images from

test dataset) may not be desired or may not be a valid method. For this reason, more

emphasis was given on the other evaluation results within this study. Among those,

the network, 𝑁𝐵𝐶
(2), achieved the best accuracy, 82.45%, using the multi-camera

method for one of the balanced test cases. This result also proved that using multi-

camera method could provide a considerable increase in the classification

performance of the network.

109

CHAPTER 6

6. CONCLUSIONS

The automation of the MGS does not have a long history, since MGS was first

introduced in 2012 [1]. For this reason, there have been only a few studies in this area.

This study is one of those studies starting with a motivation that the power of

convolutional neural networks could perfectly fit the automation task of MGS.

As similar to other image recognition tasks, the most important part of this study is to

collect the dataset required for training. Most of the workload was spent on the dataset

construction in order to come up with a reliable and feasible solution. The tasks were

separated such that they could be considered as building blocks of a complete solution.

First, the procedure and the physical environment of the mouse experiment were

described including how the video recordings were taken. Then, the video processing

task was explained in detail. The algorithms and methods for the automation of the

dataset construction for manual coding were given. After that, manual coding process

was introduced. Having the coded moments, image generation task including the data

augmentation function was described. The method for validating the results and

constructing the training datasets according to this method were stated just before

describing proposed training and evaluation plan.

In the experimental results, first, the specifications of the 9 video files of 7 different

experiments used in this study were given. Then, the general statistics of the

constructed datasets for manual scoring process were included. After manual scoring,

the statistical data dependent on the scores were also given for each experiment.

Since each moment was scored by only one expert, determining the manual coding

error rate is significant. For this purpose, the error distribution was analyzed using

110

duplicated moments’ scores, then MAE and RMSE were calculated as 0.169 and

0.251, respectively.

For the first phase of the training process, 5 different CNN architectures were

compared with roughly-defined parameters. For regression type, the cross-validation

results of VGG16 and VGG19 were way ahead of the others and VGG16 was slightly

better than VGG19 with overall MAE (test loss) of 0.335.

After regression type comparison, these 5 CNN architectures were also compared by

means of classification performances. 3-Alternative forced network architecture were

created and trained with rough parameters. The winner of the five was observed as

VGG16 with overall cross-validation test accuracy of 66.3%.

All the five CNNs were previously trained using the same database, ImageNet. The

reason that VGGNets performed far better than the others may be deeper networks are

not required for the dataset used in this study. Another reason could be the selected

parameters well-suited to the VGGNets by chance. This case has too little possibility

as several training iterations were executed with different parameters.

At the initial part of the second phase, the performances of several different network

configurations were compared using single cross-validation set. Normalization

options (input normalization and batch normalization), the size of the fully connected

layers, learning rate, and different activation functions were studied. Although some

improvement was achieved by changing hyper-parameters for this single cross-

validation set, it was observed that overall cross-validation result did not show any

improvement. Then, a different configuration was implemented that the convolutional

layers were also trained along with the fully connected layers. A performance increase

was observed with this configuration that the overall CV MAE was improved to 0.278

for one of the balanced test cases. This value was further improved to 0.26 by

incorporating the multi-camera method. If a single CV set is considered, a minimum

MAE of 0.226 was achieved for one of the balanced test cases with multi-camera

method.

111

Even though an improvement was observed for the selected CV dataset by fine tuning

parameters, the overall CV results did not improve until the convolutional layers were

set as trainable. In fact, this is an indication of dissimilarity between the two datasets,

ImageNet and the one used in this study.

Among all the previous studies related to the automation of MGS, regression analysis

was not carried out. For this reason, it is not possible to make a comparison in this

manner. However, the internal scoring consistency of an expert could be used as a

reference of how the network performs. As stated before, each data was scored by

only one expert and the average MAE of the manual scoring was calculated as 0.169

using randomly chosen duplicated data. On the other hand, the analysis of inter-scorer

reliability was not performed by any means. It is possible that the manual scoring

consistency may worsen if multiple scorers were considered. For this reason,

achieving an overall CV MAE of 0.26 is quite promising for practical implementations

of MGS automation.

Within the four test cases, even though the unbalanced test data presents the best

performance, the balanced one should be taken account. This is because a higher

performance of an imbalanced dataset may hide its poor performance when faced with

a different dataset. Moreover, it is also desired to have the numbers (performances of

different test cases) closer to each other, since distant results may be an indication of

poor performance specific to some input space.

Considering the full automation of MGS, the results of the original test dataset is more

important than that of corrected, because human intervention was required to construct

the corrected version of the dataset even it stayed at the lowest level. However, the

intervention in this study was limited to the detection results. This means that, it is

possible to achieve better results by enhancing the mouse face detection process.

For the regression results, using the multi-camera method improved the performance

slightly. Even this slight improvement worth using multi-camera method, this is

because it was usually hard or not possible to improve the network performance

112

beyond some value by fine tuning hyper-parameters. Additionally, it is possible that

the behavior of the network might prevent the overall result benefiting from the multi-

camera method partially. It was observed by analyzing the ME and MAE distributions

that the regression networks usually tried to squeeze the outputs into the middle score

range which results in biased errors rather than a uniformly distributed errors. As a

result, the multi-camera method lacks improving the performance when it faces with

biased errors.

The outputs of the regression networks were also discretized in order to obtain binary

classification result. Using this method, a maximum overall CV accuracy of 70.75%

was achieved with a balanced test dataset for binary classification.

The result of this method ranked at the bottom for binary classification performance.

It was also observed that the gap between the results of the balanced dataset and its

unbalanced one is quite much which may indicate that one of the classes is poorly

handled by the model. The poor performance of this method may be caused by the

training process that the cost function of the regression network does not take a higher

value when the output slightly exceeds the classification border.

For binary classification network, three different configurations were implemented. In

the first one, all the images are used in training without any filtering based on scores.

Using this network with multi-camera method, 82% overall CV accuracy was

achieved for one of the balanced test cases. Considering a single CV set, a maximum

of 91.10% accuracy was observed for the balanced test cases with multi-camera

method.

In the second binary network configuration, the images belonging to the score ranges

[0.5, 1.0) were discarded. Using this configuration with multi-camera method, 82.45%

overall CV accuracy was achieved.

For the last binary network configuration, the medium pain score range, [0.5, 1.5), was

discarded while training. With this configuration, 79.53% overall CV accuracy was

achieved.

113

For the binary classification results, the performance improvement using the multi-

camera method is much more apparent than that of regression results. An accuracy

increase of almost 3% was observed for most of the cases. It is estimated that the

increase amount would go up if the overall accuracy without multi-camera method is

further improved acting as a positive feedback.

It was observed that, discarding a specific score range for training may improve the

overall performance of the classification. With discarding a score range around the

classification border, the ambiguous data would have been removed for the

classification task. Thus, it would become easier for the network to separate the input

space into desired classes.

In the previous study [2], classification was performed for three classes and it was

stated that 86% accuracy was achieved with a new test data. Considering the 91.10%

binary classification accuracy of a single CV set in this study, the both results could

be in a competence. It should be better to note that, in this study, the maturity of the

trained network was always decided with a separate validation dataset. Thus, the

resulting network was not positively biased against the test data in any circumstances.

However, in the previous study [2], validation data was not used and the specifications

of the stated test data was not given.

In a later study [5], it was stated that 84% binary classification accuracy was achieved

for a dataset that was not used in training. It was also reported that the accuracy was

increased to 94% if low-confidence images were discarded from the dataset. On the

other hand, none of the cross-validation methods was mentioned in the study. Thus,

the binary classification accuracy, 91.10%, achieved for the LOSOCV-5 with multi-

camera method can be compared with the 84% accuracy of the study [5] and can be

commented as a better result. Moreover, in our study, it was observed that discarding

the medium score region from the test dataset provided an increase in the overall CV

accuracy up to 96.38% for binary classification. For the same case, if the evaluation

114

is carried out on a single CV dataset, the best achieved binary classification accuracy

was observed as 98.8%.

In the latest work [4], some similar methods were adopted as in this study. It was stated

that 10-fold cross-validation and leave-one-animal-out-cross validation methods were

used. However, the dataset was split into two without having a separate validation

dataset in contrast to this study. Multiple frame evaluation was mentioned like the

multi-camera method, however, the required details (number of cameras, time

accuracy, limitations, etc.) were not given in the paper. On the other hand, constructing

and labeling the dataset was handled in a different way such that a minor group of

images were manually labeled according to MGS. Then the major part of the dataset

was automatically collected and labeled based on the specific time points rather than

random time points. In this sense, the suitability of the resulting network for most of

the practical implementations would become arguable. The study stated that 98.9%

binary classification CV accuracy was achieved for one type of pain stimulation while

the second best accuracy was achieved as 90.1% for another pain type. Assuming that

similar cross-validation methods were implemented, the achieved binary classification

overall CV accuracy in this study, 82.45%, is far behind the results given in that

previous study [4]. However, considering the other differences such as dataset, pain

stimulation and labeling methods, it would be unfair to state such a clear comparison.

For one of the future works, the effect of the individual scores of the AUs on the

prediction performance could be analyzed and the AUs having the worst performance

would be discarded. As a second future work, the number of the experiments could be

increased in order to totally eliminate the need of data augmentation and if possible,

each data would be scored by multiple scorers. Similarly, training data could be

increased by synthetically generating intermediate frames using multiple frames of six

camcorders. For another future work, particularly for the regression network, the

discontinuity problem for the scores of around 0 and 2 could be investigated and

possible solutions could be implemented. Besides, mouse face detector and tracker

models could be improved by using the ready-to-use data collected within the scope

115

of this study. In addition to those, the network structure could be altered such that

multiple face images (belong to same instant) are fed simultaneously as input rather

than applying them individually to the network. And as a final future work, an online

scoring tool could be developed using the trained regression network in this study.

117

REFERENCES

[1] D. J. Langford et al., “Coding of facial expressions of pain in the laboratory
mouse,” Nat. Methods, 2010.

[2] M. Eral, “Deep learning approach for Laboratory mice grimace scaling,”
Middle East Technical University, 2016.

[3] M. Eral, C. C. Aktas, E. E. Kocak, T. Dalkara, and U. Halici, “Assessment of
pain in mouse facial images,” 2017.

[4] N. Andresen et al., “Towards a fully automated surveillance of well-being
status in laboratory mice using deep learning,” bioRxiv, 2019.

[5] A. H. Tuttle et al., “A deep neural network to assess spontaneous pain from
mouse facial expressions,” Mol. Pain, 2018.

[6] J. . Langford, D.J., Bailey, A.L., Chanda, M.L., Clarke, S.E., Drummond, T.E.,
Echols, S., Glick, S., Ingrao, J., Klassen-Ross, T., LaCroix-Fralish, M.L.,
Matsumiya, L., Sorge, R.E., Sotocinal, S.G., Tabaka, J.M., Wong, D., van den
Maagdenberg, A.M.J.M., Ferra, “Mouse Grimace Scale: The manual,” Nat.

Methods, 1920.

[7] S. G. Sotocinal et al., “The Rat Grimace Scale: A partially automated method
for quantifying pain in the laboratory rat via facial expressions,” Mol. Pain,
2011.

[8] E. Dalla Costa, M. Minero, D. Lebelt, D. Stucke, E. Canali, and M. C. Leach,
“Development of the Horse Grimace Scale (HGS) as a pain assessment tool in
horses undergoing routine castration,” PLoS One, 2014.

[9] A. V. Viscardi, M. Hunniford, P. Lawlis, M. Leach, and P. V. Turner,
“Development of a Piglet Grimace Scale to Evaluate Piglet Pain Using Facial
Expressions Following Castration and Tail Docking: A Pilot Study,” Front.

Vet. Sci., 2017.

[10] C. Häger et al., “The Sheep Grimace Scale as an indicator of post-operative
distress and pain in laboratory sheep,” PLoS One, 2017.

[11] B. Akkaya, Y. R. Tabar, F. Gharbalchi, İ. Ulusoy, and U. Halıcı, “Tracking
mice face in video,” in 2016 20th National Biomedical Engineering Meeting

(BIYOMUT), 2016, pp. 1–4.

[12] İ. B. Akkaya, “Mouse face tracking using convolutional neural networks,”
Middle East Technical University, 2016.

[13] C. Darwin and F. Darwin, The expression of the emotions in man and animals.

118

2009.

[14] C.-H. Hjortsjö, Man’s face and mimic language. Lund: student literature, 1970.

[15] P. Ekman and W. V. Friesen, The Facial Action Coding System. 1978.

[16] K. J. Sufka, “Conditioned place preference paradigm: a novel approach for
analgesic drug assessment against chronic pain,” Pain, 1994.

[17] K. A. Grimm, L. A. Lamont, W. J. Tranquilli, S. A. Greene, and S. A.
Robertson, Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb

and Jones. 2015.

[18] F. C. Colpaert, J. P. Tarayre, M. Alliaga, L. A. Bruins Slot, N. Attal, and W.
Koek, “Opiate self-administration as a measure of chronic nociceptive pain in
arthritic rats,” Pain, 2001.

[19] J. V. Roughan and P. A. Flecknell, “Evaluation of a short duration behaviour-
based post-operative pain scoring system in rats,” Eur. J. Pain, 2003.

[20] A. L. Miller and M. C. Leach, “The mouse grimace scale: A clinically useful
tool?,” PLoS One, 2015.

[21] M. Leach, “Rabbit Grimace Scale (RbtGS) Manual,” PLoS One, 2012.

[22] S. A. Papert, “The summer vision project,” 1966.

[23] R. A. Brooks, R. Creiner, and T. O. Binford, “The ACRONYM Model-based
Vision System,” in Proceedings of the 6th International Joint Conference on

Artificial Intelligence - Volume 1, 1979, pp. 105–113.

[24] M. A. Fischler and R. A. Elschlager, “The Representation and Matching of
Pictorial Structures,” IEEE Trans. Comput., vol. 22, no. 1, pp. 67–92, 1973.

[25] D. G. Lowe, “Three-dimensional object recognition from single two-
dimensional images,” Artif. Intell., 1987.

[26] P. Viola and M. J. Jones, “Robust Real-time Object Detection,” 2001.

[27] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in ImageNet Classification with Deep

Convolutional Neural Networks, 2012.

[29] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” CoRR, vol. abs/1409.1, 2014.

[30] C. Szegedy et al., “GoogLeNet Going Deeper with Convolutions,” arXiv Prepr.

119

arXiv1409.4842, 2014.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2016.

[32] M. Monwar and S. Rezaei, “Pain Recognition Using Artificial Neural
Network,” 2006, pp. 28–33.

[33] G. Littlewort, M. Stewart Bartlett, and K. Lee, “Faces of pain: automated
measurement of spontaneousallfacial expressions of genuine and posed pain,”
in Proceedings of the International Conference on Multimodal Interfaces,
2007, pp. 15–21.

[34] A. Ashraf et al., “The Painful Face - Pain Expression Recognition Using Active
Appearance Models,” Image Vis. Comput., vol. 27, pp. 1788–1796, 2009.

[35] Z. Hammal and M. Kunz, “Pain monitoring: A dynamic and context-sensitive
system,” Pattern Recognit., vol. 45, pp. 1265–1280, 2012.

[36] J. Zhou, X. Hong, F. Su, and G. Zhao, “Recurrent Convolutional Neural
Network Regression for Continuous Pain Intensity Estimation in Video,” in
IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, 2016.

[37] M. Tavakolian and A. Hadid, “A Spatiotemporal Convolutional Neural
Network for Automatic Pain Intensity Estimation from Facial Dynamics,” Int.

J. Comput. Vis., 2019.

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
Inception Architecture for Computer Vision,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,
2016.

[39] G. M. Foody, “The effect of mis-labeled training data on the accuracy of
supervised image classification by SVM,” in 2015 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), 2015, pp. 4987–4990.

[40] E. Lebeau, “Study of label errors on a convolutional neural network,” UCL,
2017.

[41] “Biological to Artificial Neuron.” [Online]. Available:
https://upload.wikimedia.org/wikipedia/commons/4/44/Neuron3.png.
[Accessed: 04-Jul-2019].

[42] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization,” JMLR, 2011.

[43] T. Tieleman, G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6.5-
rmsprop: Divide the gradient by a running average of its recent magnitude,”

120

COURSERA Neural Networks Mach. Learn., 2012.

[44] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Int.

Conf. Learn. Represent., 2014.

[45] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of
monkey striate cortex.,” J. Physiol., 1968.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, 1998.

[47] S. E. Clarke et al., “Coding of facial expressions of pain in the laboratory
mouse,” Nat. Methods, 2010.

[48] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model
performance,” Clim. Res., 2005.

[49] C. J. Willmott, K. Matsuura, and S. M. Robeson, “Ambiguities inherent in
sums-of-squares-based error statistics,” Atmos. Environ., 2009.

[50] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute
error (MAE)? – Arguments against avoiding RMSE in the literature,” Geosci.

Model Dev., vol. 7, no. 3, pp. 1247–1250, 2014.

121

APPENDICES

A. TEST-CORR Multi-Camera Dataset and the Network, 𝑵𝑹
(𝟑)

, Prediction

Statistics

122

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.1. 𝑁𝑅

(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

123

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.2. 𝑁𝑅

(3) LOSOCV-2 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

124

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.3. 𝑁𝑅

(3) LOSOCV-3 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

125

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.4. 𝑁𝑅

(3) LOSOCV-4 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

126

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.5. 𝑁𝑅

(3) LOSOCV-5 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Groups

127

(a)

(b)

(c)

(d)

(e)

(f)

Figure A.6. 𝑁𝑅

(3) LOSOCV-6 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution,
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution,

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error
Distribution with Score Group

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1. INTRODUCTION
	1.1. Motivation
	1.2. Contribution
	1.3. Organization of the Thesis

	2. LITERATURE SURVEY
	3. BACKGROUND INFORMATION
	3.1. Overview
	3.2. Artificial Neuron Model
	3.3. Neural Network Architectures
	3.4. Image Classification Using Neural Networks
	3.4.1. Loss Functions
	3.4.1.1. Mean Squared Error
	3.4.1.2. Mean Absolute Error
	3.4.1.3. Cross-Entropy Loss

	3.4.2. Regularization
	3.4.3. Optimization
	3.4.3.1. Gradient Descent
	3.4.3.2. Stochastic Gradient Descent
	3.4.3.3. AdaGrad
	3.4.3.4. RMSProp
	3.4.3.5. Adam Optimizer

	3.4.4. Backpropagation Algorithm

	3.5. Convolutional Neural Networks
	3.5.1. Overview
	3.5.2. Architecture
	3.5.2.1. Stride
	3.5.2.2. Padding
	3.5.2.3. Pooling

	4. PROPOSED METHOD
	4.1. Method Overview
	4.2. Mouse Experiment
	4.2.1. Experiment Environment
	4.2.2. Pain Models
	4.2.3. Process Output

	4.3. Video Processing
	4.3.1. Mouse Face Detection and Tracking Model
	4.3.2. Process Output

	4.4. Dataset Construction for Manual Scoring
	4.4.1. Fuse and Filter Algorithm
	4.4.2. Process Output

	4.5. Manual Scoring
	4.5.1. Scoring Application

	4.6. Manual Correction and Image Collection
	4.6.1. Data Augmentation
	4.6.1.1. Rotation
	4.6.1.2. Translation
	4.6.1.3. Zooming
	4.6.1.4. Brightness

	4.7. Dataset Construction
	4.7.1. Process Output

	4.8. Training and Evaluation
	4.8.1. First Phase
	4.8.2. Second Phase
	4.8.3. Image Generator
	4.8.4. Evaluation Criteria
	4.8.5. Software
	4.8.6. Hardware

	5. EXPERIMENTAL RESULTS
	5.1. Mouse Experiment Outputs
	5.2. Manual Coding Dataset
	5.3. Manual Correction and Image Collection
	5.4. Dataset Construction
	5.5. Training and Evaluation
	5.5.1. First Phase
	5.5.2. Second Phase
	5.5.2.1. Normalization
	5.5.2.2. Fully Connected Layers
	5.5.2.3. Learning Rate and Activation Function
	5.5.2.4. Regression Network Results
	5.5.2.5. Regression Network Multi-Camera Evaluation
	5.5.2.6. Regression Output to Binary Classification Results
	5.5.2.7. Binary Classification Network Results
	5.5.2.8. Binary Classification Network Multi-Camera Evaluation
	5.5.2.9. Overall Regression Networks Comparison
	5.5.2.10. Overall Binary Classification Comparison

	6. CONCLUSIONS
	REFERENCES
	APPENDICES

