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ABSTRACT 

 

A MULTI-CAMERA SYSTEM FOR AUTOMATION OF MOUSE GRIMACE 

SCALING USING CONVOLUTIONAL NEURAL NETWORKS 

 

Ağca, Ahmet 
Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 
 

September 2019, 127 pages 

 

Over the past decade, convolutional neural networks (CNNs) have gained great 

progress on the area of computer vision. Many problems related to automation of 

image recognition or classification are now possible to be solved using CNN with an 

accuracy much more than a human can achieve. One of these problems is the 

automation of Mouse Grimace Scaling (MGS). It is such a time consuming and error-

prone task even for an expert to classify the pain levels of a mouse for lots of images 

captured from videos. For this reason, it is essential to incorporate the benefits of 

popular machine learning algorithms into this research area. The purpose of this thesis 

is to achieve significant results for practical implementations along with improving 

the methodology for automation of MGS. In this thesis, a complete set of methodology 

starting from the mouse monitoring setup to building the neural network model for 

automation of MGS was studied and the results were compared with that of previous 

works. For detecting the mouse in video frames, the previously developed tracker 

algorithms and detection networks were used without change. The evaluation was 

performed by means of both classification and regression problem and transfer 

learning was adopted for the basis of the study. For regression, MAE of 0.226 was 

achieved for one cross-validation (CV) balanced set, and 0.26 was achieved for overall 

balanced sets (score range, 0 to 2). For binary-classification, 91.10% accuracy was 
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achieved for one CV balanced set, while 82.45% was achieved for overall balanced 

sets. 
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ÖZ 

 

EVRİŞİMSEL SİNİR AĞLARI KULLANARAK FARE YÜZ 

BURUŞTURMASI ÖLÇEKLENDİRME OTOMASYONU İÇİN ÇOKLU 

KAMERA SİSTEMİ 

 

Ağca, Ahmet 
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Uğur Halıcı 
 

Eylül 2019, 127 sayfa 

 

Geçtiğimiz 10 yıl içinde, Evrişimsel Sinir Ağları bilgisayarla görü alanında büyük 

ilerleme kaydetmiştir. Görüntü algılama veya sınıflandırma otomasyonu ile ilgili bir 

çok problemin çözümü evrişimsel sinir ağları kullanılarak bir insanın 

başarabileceğinden daha yüksek doğrulukla mümkün olmaktadır. Bu problemlerin bir 

tanesi de Fare Yüz Buruşturması Ölçeklendirme (Mouse Grimace Scaling, MGS) 

otomasyonudur. Videodan çıkartılmış bir sürü görüntü için deney faresinin ağrı 

seviyesini sınıflandırmak bir uzman için bile zaman alıcı ve hataya açık bir işlemdir. 

Bu nedenle popüler makina öğrenme algoritmalarını bu araştırmaya dahil etmek önem 

taşımaktadır. Bu tezin amacı MGS otomasyonunu uygulanabilir hale getirmek için 

kayda değer başarı elde etmenin yanı sıra, otomasyon için kullanılan metodolojiyi de 

geliştirmektir. Bu tezde, MGS için deney faresini gözlemleme düzeneğinden sinir 

ağlarını oluşturmaya kadar tam bir otomasyon metodu üzerine çalışılmış ve sonuçlar 

önceki çalışmaların sonuçlarıyla kıyaslanmıştır. Fare yüzü tespiti için daha önceki bir 

çalışmada geliştirilmiş fare yüzü takip algoritması ve fare yüzü tespit sinir ağı 

değiştirilmeden kullanılmıştır. MGS otomasyonu, hem sınıflandırma hem de 

regresyon problemi olarak ele alınmış ve transfer öğrenimi çalışmanın temelinde yer 

almıştır. Regresyon için, tek bir eşit ağırlıklandırılmış çapraz doğrulama setinde 0.226 



 

 
 

viii 
 

ortalama mutlak hata elde edilmiş, eşit ağırlıklandırılmış çapraz doğrulama ortalaması 

ise en iyi 0.26 olmuştur (ölçek aralığı 0-2). İkili sınıflandırmada ise, tek bir eşit 

ağırlıklandırılmış set için %91.10, eşit ağırlıklandırılmış tüm setlerin ortalamasında da 

%82.45 doğruluk değeri elde edilmiştir. 

 

 

Anahtar Kelimeler: Fare Yüz Buruşturma Derecelendirme, Evrişimsel Sinir Ağı, 

Transfer Öğrenimi, Regresyon, Otomasyon 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation 

Pain has always been one of the most popular subjects throughout the medical history. 

It is such an essential key factor that it provides clues to the health conditions of living 

creatures. Besides, the assessment of the pain in the time domain, such as the 

frequency of pain levels, can give additional medical information. For this reason, it 

is highly significant to use quantifiable methods for pain level assessments. As in most 

of the other medical studies, laboratory mouse is usually used in pain related medical 

researches. In 2010, the first quantifiable method called “Mouse Grimace Scale” 

(MGS) for scoring the pain level of a laboratory mouse was developed [1]. Despite 

being a quantifiable method, MGS still requires a highly-experienced coder (expert) 

in order to achieve an acceptable scoring accuracy. Moreover, the scoring process is a 

time consuming task and can be considerably subjective under certain conditions. 

Because of these limitations, it is highly desired to automate the scoring process that 

will provide cost-effective, fast, reliable, and accurate solution. 

In recent years, Convolutional Neural Network (CNN), one type of a deep neural 

network, has become so much popular in the area of machine learning, specifically in 

computer vision. In fact, CNNs deserve this popularity because they achieved better 

results far beyond the expectations for most of the machine learning problems. It is 

also important to note that the technological advances in integrating the Graphical 

Processor Units (GPUs) into the network training process made the CNNs feasible for 

practical implementations. Moreover, one can readily-use the convolutional layers of 

the popular and successful pre-trained models in order to solve other specific 
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classification problems. This is called the transfer learning method that also 

significantly shortens the training periods. 

In fact, MGS is an image classification or image regression problem. Combining the 

necessity of automation of MGS and the recent achievements of the CNNs in image 

classification problems, it is apparent that reliable and accurate results can be obtained 

for MGS automation using CNNs. Additionally, the results of the previous studies of 

MGS automation [2]–[5] have already proven the success of the CNNs.  

1.2. Contribution 

After D. J. Langford et al. [1] developed the first grimace scaling for laboratory mouse 

pain level assessment and published its manual [6], there have been several studies 

related to grimace scaling, and even for other animals such as rats [7], horses [8], 

piglets [9] and sheep [10].  

Some of the recent studies adopted directly the scoring method of the MGS and tried 

to automate the process using machine learning. In most of those studies, the 

evaluation of the network was performed using images taken from different moments. 

However, in this study, the scoring of the pain level was evaluated over the 6 images 

captured concurrently from the 6 camcorders placed equiangular in the mouse 

monitoring setup. Capturing images from different angles of the mouse made it 

possible to increase the number of training image data, increase the training set 

reliability and thus increase the accuracy of the network. 

The dataset was constructed automatically with the help of previous studies [2], [3], 

[11], [12] which were carried out within the scope of “Mice-Mimic” project. The 

tracking algorithm and mouse face detection network were directly adopted from those 

studies. However, on top of those, a decision algorithm was implemented to combine 

the results of 6 video files and to select the appropriate frames. Besides, some 

moments were duplicated in order to be able to analyze the internal MGS consistency 

of the expert for manual scoring. 
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In the previous studies, either custom CNNs were used or at most two pre-trained 

CNNs [4] were included. In our study, in the first phase of training task, the results of 

5 pre-trained CNNs were compared, and the one who had the best result was used for 

the rest of the work. 

Although the automation of MGS was addressed as a classification problem in the 

previous studies, in fact MGS is a regression problem since MGS score calculation [6] 

results in a continuous value representing how intense the pain level is. Moreover, the 

behavior of the dependent variables, five Action Units (AUs), can map to a continuous 

value although they were individually coded in three different groups. When 

compared multiple MGS scores, a higher value means higher pain level. For ease of 

application, the resulting scores could also be categorized (discretized) with 

compromising on accuracy. Thus, the result of a regression network, continuous score 

value, is much more valuable than that of a classification network. Therefore, in this 

study, a regression network was developed along with a classification network. 

1.3. Organization of the Thesis 

In the next chapter, a brief history of facial expression classification and the related 

studies are introduced. Besides, the summary of the MGS method is given and the 

milestones in the evaluation of the convolutional neural network are mentioned. A few 

studies related to the automation of mouse facial expression recognition are addressed 

with their corresponding performances. At the end of the chapter, the significance of 

dataset quality for the network performance is emphasized by referring related studies 

and their results. 

In Chapter 3, an overall information of artificial neural networks including most 

commonly used concepts and the backpropagation algorithm is introduced. Moreover, 

some specific features of the convolutional neural networks are described. 

In Chapter 4, the complete set of methods is explained in detail with a hierarchical 

way such that they constitute an input-output relationship. The proposed method starts 

with the mouse experiment and then continues with video processing, dataset 
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construction for manual coding, manual coding, image collection, and dataset 

construction for training tasks in order. Finally, training and evaluation methods are 

described. 

In Chapter 5, the experimental results of the proposed method described in Chapter 4 

are introduced. 

In the last chapter, the study is summarized including the method and the experimental 

results. The results are discussed by means of improvement, possible defects, and 

comparison with similar studies. The possible future works in order to achieve better 

results and enhance the methodology are also given. 
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CHAPTER 2  

 

2. LITERATURE SURVEY  

 

The potential to be able to classify the expressions of the emotions of man and animals 

was first stated in Darwin’s great study in 1872 [13]. Later, in 1970, Hjortsjö deepened 

the analysis of the human face that he came up with 23 different muscle groups of 

specifying facial expressions [14]. Then, his study was taken forward by Paul Ekman 

and Wallace V. Friesen, and Facial Action Coding System (FACS) [15] was 

developed in 1978 for classifying human facial expressions. Specifically, for pain 

intensity assessment, “Prkachin and Solomon Pain Intensity” (PSPI) metric was 

developed in 2008 on top of FACS.  

It is also desired to have such assessment methods for other species for various 

purposes such as analyzing drug effects and analyzing the correlation between pain 

levels and neural activity on laboratory animals. For rodents, there have been several 

methods developed for pain assessment such as conditioned place preference 

paradigm [16], operant response paradigm [17], self-administration [18], and 

behavioral-based assessment [19]. Those methods are time-consuming and includes 

complexity for implementation [20]. Apart from those methods, more recently, 

quantifying facial expression signatures of a laboratory mouse was also studied. As a 

result of those efforts, D. J. Langford et al. [1] developed the first standardized facial 

coding scale, MGS, for laboratory mouse pain assessment and published a manual [6] 

describing the usage of the MGS. The manual basically consists of 3 parts first of 

which is “Video & Frame Capture” procedure. In this part, the mouse monitoring 

setup, physical dimensions, and video frame capture method are described. In order to 

increase the probability of capturing the mouse face, the manual suggested two video 

cameras for recording at the same time. In the second part, the manual described the 

coding procedure including the pre-coding process and the five action units (AUs). 
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The AUs consist of “Orbital Tightening”, “Nose Bulge”, “Cheek Bulge”, “Ear 

Position”, and “Whisker Change”. Each of the AUs is scored independently with score 

values 0, 1, and 2 corresponding to the pain levels as Normal, Moderate, and High, 

respectively. The last part described the calculation and evaluation of the scores 

acquired in the second part. 

The introduction of the MGS provided an acceleration for the grimace studies on other 

species such as rats, rabbits, horses, piglets, and sheep [7]–[10], [21]. Despite the great 

contribution of those grimace scales to the medical studies, they all require experts for 

coding process resulting in a high-cost and a time-consuming task. Moreover, it is not 

possible to deploy on-line evaluation. 

On the other hand, the history of the computer vision dates back to late 1960s when 

the initial purpose was to build an algorithm to identify the objects in an image [22]. 

Although there were lots of efforts [23]–[25]  for the object recognition of computers, 

not much progress had been made in a few decades. The studies remained as an 

ambition rather than a practical implementation until 2001, when Paul Viola and 

Michael Jones published their studies [26] of real-time object detection using 

AdaBoost training algorithm. Although the proposed detection algorithm was able to 

detect several object classes, it was actually used for human face. After that time, 

various benchmark datasets were published and competitions were organized with 

those datasets in order to trace the performance of object recognition algorithms over 

the years. One of those competitions was the “ImageNet Large Scale Visual 

Recognition Challenge” (ILSVRC) using the subset of ImageNet [27] database as a 

benchmarking dataset. It is the first time in 2012 that a convolutional neural network 

showed its real power in the image classification challenge of ILSVRC. Krizhevsky 

et al. came up with a deep convolutional neural network called “AlexNet” [28] which 

performed significantly better than its competitors with the top-5 error rate of 15.3% 

in the image classification tasks. This success was again followed by three CNNs for 

the following years. VGGNet [29] achieved 7.3% and GoogleNet [30] achieved 6.7% 
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error rates in 2014 and ResNet [31] achieved 3.57% error rate in 2015 for the image 

classification tasks. 

As the CNNs have gained great improvements in the image classification tasks, they 

also made it possible to acquire significant results for the recognizing facial 

expressions. Specifically, for automation of the pain level recognition of humans using 

facial expressions, several methods had been studied before the rise of CNNs. In a 

study [32], the training dataset was constructed using the Psychophysiology 

Laboratory Database of University of Northern British Columbia (UNBC) and the 

multi-layer perceptron (MLP) was used as a classifier. The paper stated that 91.67% 

of average accuracy was achieved for the pain/no-pain classification. In another study 

[33], FACS was adopted as a coding method and 5000 images were trained for a 

nonlinear “Support Vector Machine” (SVM) classifier. The paper stated that 72% 

accuracy was achieved for 2-alternative forced choice. For a similar study in 2009 

[34], the training dataset was acquired from the UNBC-McMaster shoulder pain 

expression database and SVM was used as a classifier. The paper stated that 82.4% 

hit rate was achieved along with 30.1% false acceptance rate for the pain/no-pain 

classification. In a later work [35], the training dataset was constructed from scratch 

and FACS was used for coding the images. The paper stated that 81.2% classification 

accuracy was achieved along with a precision rate of 84% for 2-alternative forced 

classification. After the CNNs started to gain momentum, the direction of the networks 

used in pain recognition using human facial expressions changed to the CNN side as 

well. In 2016, for a different research [36], the source videos in order to generate 

training dataset were acquired from the UNBC-McMaster shoulder pain expression 

database. FACS was used to code each image and pain scores are calculated in 16 

discrete levels using PSPI method. They handled the pain level recognition as a 

regression problem and stated that the study achieved average mean squared error of 

1.54 for the 16-level PSPI metric. In one of the several similar recent studies [37], 3D 

CNN was used with a pre-trained 2D architecture. The paper stated that their 
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spatiotemporal CNN called “SCN” achieved average mean squared error of 0.32 for 

the 16-level PSPI metric. 

The studies for the automated mouse pain level recognition using mouse facial 

expressions are quite limited than that for humans, as the first study for automation of 

MGS was stated in 2016 [2]. In the study, the dataset was constructed from scratch 

using the videos of the medical experiments on the mice and the images were labeled 

by the experienced coders in accordance with the MGS manual [6]. It was stated that 

86% test accuracy (3-alternative forced output) was achieved for the samples of a new 

video [2]. One year later, a similar study was published  [5]. In this study, a pre-trained 

CNN, “InceptionV3” [38]  was used with unchanged weights for the convolutional 

layers and pain/no-pain classification was adopted contrary to its former study. The 

paper concluded that their network performed 84% accuracy for the validation set and 

this was increased to 94% if unreliable images were extracted from the validation set. 

A more recent study, published in 2019 [4], compared 3 CNN architectures, two of 

which were pre-trained networks, “ResNet50” and “InceptionV3”, and the other was 

a completely custom CNN. The study adopted MGS as a basis for manual scoring and 

increased the number of the samples according to the MGS scores according to the 

time points. The dataset was chosen to be classified as pain/no-pain and thus the last 

layers of the networks were adjusted to produce a binary classification instead of a 

regression. Three different types of pain were analyzed independently and the network 

performances were also evaluated over the averaged results of multiple images of the 

same moment. The paper concluded that an accuracy of 98.9% was achieved for 

“ketamine/xylazine anesthesia” (KXN) type of pain using pre-trained ResNet50 CNN 

architecture with the help of averaging process over multiple images of the same 

moment. The other results were stated as 89.8% and 90.1% for castration and 

“isoflurane anesthesia” (IN) types of pain, respectively, using the same network and 

evaluation method.    

For those studies, considering the various types of training datasets, evaluation 

metrics, precision metrics, labeling methods, and validation methods; it is better to 
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remark that it is almost not possible to make a truly fair comparison between them. 

This proves the necessity of a regulatory challenge like ILSVRC for mouse pain 

intensity recognition. 

It is also worthwhile to mention the effects of the quality of the training or testing 

dataset on the accuracy/performance result of an artificial neural network (ANN). 

Suppose that you have a network of 100% accuracy for the test set classification. If 

you mislabel the 10% of the dataset, it is obvious that you would get 10% less 

accuracy. Even this simple example shows that there is a strict correlation between the 

quality of the dataset and the resulting performance. In the paper published in 2015 

[39], the sensitivity of the SVM classifier with respect to the mislabeled training data 

was studied. It was shown that a decline of 8% accuracy was observed with 20% 

mislabeled training data. In other words, the accuracy of the classification declined to 

82.66% where the original result was 90.66%. Similarly, in a later study [40], the 

effect of the training label error was studied on a CNN using Modified National 

Institute of Standards and Technology (MNIST) database. Label error of 4% was 

randomly injected to the training dataset and the results were compared with the that 

of untouched training dataset. A decline of around 4%, from 99% to 95%, was 

observed. Those studies have shown that the reliability of the training dataset should 

be taken into consideration when evaluating the performance of a neural network. 

In this study, the mouse face detection and tracking models were directly used from 

the previous studies [11], [12]. Since those parts are not the main objective of this 

work, the corresponding literature reviews were not conducted. 
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CHAPTER 3  

 

3. BACKGROUND INFORMATION 

 

3.1. Overview 

If the machine is not told how to process the data, it would be totally useless even if 

you have a super powerful computer of today’s technology. Someone has to tell the 

machine how to process the data. In order to do that, first, the process should be 

modeled. It is a lot easier for mathematical calculations because they are already 

modeled processes. It becomes very hard to model the process of identifying an object 

from an image. On the other hand, it is quite an easy task for a human and even for 

some other biological creatures. However, it is assumed that the object itself or a 

similar one was introduced before. This proves the existence of a learning process for 

biological creatures. In Figure 3.1, a toddler recognizing a giraffe (even it is actually a 

mock-up) is shown.  

 

 

Figure 3.1. A Toddler Recognizing Giraffe 
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We, as humans, are not spending extra effort for the visual recognition tasks. It is 

something like an intuitive act for us. In fact, this is not the reality. Our brain handles 

this great job in a silent way. This inspired the researchers that they came up with an 

artificial neuron model and the rest of the computer vision. 

3.2. Artificial Neuron Model 

It is estimated that there are about ten billion neurons located in a human brain. The 

average power dissipation caused by the electrical activity of the overall nervous 

system is in the order of 10 watts. As shown in Figure 3.2, a biological neuron is 

composed of three main parts; cell body called soma, axon, and dendrites. 

   

 

Figure 3.2. Biological to Artificial Neuron [41] 

 

The electrical signal is generated in soma and transferred to other neurons via axon. 

Axon terminals are connected to other neurons’ dendrites with a junction called 

“synapses”. The signal transmission over the synapses is a complex chemical process 

that causes to raise or lower the electrical potential inside the soma of the receiving 

neuron. If the electrical potential reaches a threshold, the so-called firing action takes 

place in the receiving neuron. This process of a biological model was taken as a basis 

for the first artificial neuron model as shown in Figure 3.3.  
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Figure 3.3. Artificial Neuron Model 

 

 𝑎 = (∑(𝑢𝑗𝑤𝑗) + 𝜃

𝑁

𝑗=1

 (3.1) 

 

The activation of an artificial neuron is given in the equation (3.1). “𝜃" denotes the 

bias value for the activation. For the ease of use, it is usually included as the 0th element 

into the summation part. The output of the neuron is actually a function of the 

activation value. There are several types of activation functions such as; threshold, 

ramp, sigmoid, Gaussian, Rectified Linear Unit (ReLU), and softmax. The activation 

function can be included in the hyper-parameters of a neural network, since it effects 

the performance of the network quite much. 

3.3. Neural Network Architectures 

Depending on the connection styles of the neurons, different types of architectures are 

defined.  

In feedforward neural networks, the neurons are connected in a hierarchical way that 

they form layers as shown in Figure 3.4. The neurons in a layer are fed by the previous 

layer and feed their output to the next layer. In this type of network, connections to 

the neurons in the same or previous layers are not allowed. The layers are divided into 

3 groups. The first layer, input layer, transmits only the applied input to their outputs. 

The last layer is called the output layer and the layers in between the input layer and 

the output layer are called hidden layers. If a network consists of only the input and 
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the output layers, then this network is called single layer network. If at least one hidden 

layer exists, then the network is called multilayer network. 

 

 

Figure 3.4. Multilayer Feedforward Neural Network 

 

In recurrent neural networks, a connection to the same layer or a previous layer is 

allowed as shown in Figure 3.5. The idea behind the structure of this network is much 

closer to biological neuron connections than feedforward neural networks.  
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Figure 3.5. Recurrent Neural Network 

 

3.4. Image Classification Using Neural Networks 

Let’s think about the relation between the inputs and the outputs of a single layer 

network shown in Figure 3.6.  
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Figure 3.6. Single Layer Network Example 

 

Then, the network can be modeled using the equation given in (3.2) where 𝒙 denotes 

the input matrix of 4x1, 𝑾 denotes the weights as a matrix of 3x4 and 𝒚 denotes the 

output matrix of 3x1. 

 

 𝒚 = 𝑓(𝒙, 𝑾) = 𝑾𝒙 (3.2) 
 

The same equation can be used to classify an image by applying the pixel values as 

input and expect the output to be a value corresponding the classification of the image. 

In fact, the weight matrix is the only one determining the complete relation between 

the input space and the output space. But, the question here is, what the weights should 

be. Before that, someone has to tell how good or bad the weight matrix values are. For 
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this, we need to find a suitable metric called a “loss function” or a “cost function”. 

And, now comes the question, how can we find the perfect combination of weights 

according to the metric. In fact, this is an optimization problem, since it is not possible 

to try each and every combination of the weights. And this optimization problem is 

handled in the training process of the network along with the selected loss function.      

3.4.1. Loss Functions 

Selecting an appropriate loss function is important, since it is the main actor of the 

training process and the evaluation of the network model. It is generally a function 

taking two parameters, the predictions and the desired outputs. The common used loss 

functions are described in the following sub-sections. 

3.4.1.1. Mean Squared Error  

Mean Squared Error (MSE) loss is calculated as given in (3.3) that it is basically the 

average of the squared differences of the ground truth (𝑦𝑖) and the prediction (�̂�𝑖). 

MSE is generally used for regression outputs. 

 

 𝐿 =  
1

𝑁
∑(𝑦𝑖 −  �̂�𝑖)

2

𝑁

𝑖=1

 (3.3) 

 

3.4.1.2. Mean Absolute Error  

Mean Absolute Error (MAE) loss is calculated as given in (3.4) that it is basically the 

average of the absolute differences of the ground truth (𝑦𝑖) and the prediction (�̂�𝑖). 

MAE is generally used for regression outputs. 

 

 𝐿 =  
1

𝑁
∑ 𝑎𝑏𝑠(𝑦𝑖 − �̂�𝑖)

𝑁

𝑖=1

 (3.4) 
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3.4.1.3. Cross-Entropy Loss 

Cross entropy is calculated over two distribution vectors, the ground truth distribution 

and the predicted distribution.  Considering only one example of observation, the cross 

entropy loss function equation would be as in (3.5) where 𝒚 is the ground truth 

distribution vector, �̂� is the predicted distribution vector, and ⋅ is the dot product. If 

the cross entropy loss function is generalized over all the N observations, the loss 

function could be rewritten as given in (3.6). For a binary classification problem, the 

dot product part and write the loss function could be arranged as given in (3.7). 

 

 𝐿 =  −𝒚 ⋅ log(�̂�)  (3.5) 
 

 𝐿 =  −
1

𝑁
(∑ 𝒚𝒊 ⋅ log( �̂�𝒊)

𝑵

𝒊=𝟏

)  (3.6) 

 

 𝐿 =  −
1

𝑁
(∑(𝑦𝑖 log(�̂�𝑖) + 

𝑵

𝒊=𝟏

(1 − 𝑦𝑖) log(1 − �̂�𝑖))  (3.7) 

 

The main advantage of this loss function is that it extremely penalizes the case when 

the prediction is wrong but confident. The cross-entropy loss function and its varieties 

(binary cross-entropy, categorical cross-entropy, etc.) are generally used after a soft-

max layer and they are the most common losses used for classification problems. 

3.4.2. Regularization 

A general loss function is written with respect to inputs, outputs, and the weights as 

given in (3.8). This part ensures that the model predictions are close to the ground 

truth values. However, it is possible to include some other metric to the loss function 

to penalize some other conditions. For example, it may be desired to have smaller 

weight values along with ensuring the optimal predictions. In this case, a function of 
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the weight matrix can be included in the loss function as given in (3.9). This part, 

𝝀𝑅(𝑾), is called the regularization term while 𝝀 is the regularization factor. 

 

 𝐿(𝑾) =  
1

𝑁
∑ 𝐿𝑖(𝑓(𝒙𝒊, 𝑾), 𝒚𝒊)

𝑁

𝑖=1

 (3.8) 

    

 𝐿(𝑾) =  
1

𝑁
∑ 𝐿𝑖(𝑓(𝒙𝒊, 𝑾), 𝒚𝒊)

𝑁

𝑖=1

+  𝝀𝑅(𝑾) (3.9) 

 

Depending on the function of 𝑅(𝑾), the regularization is called with different names 

such as L1, L2, and Elastic net. 

There are some other regularization methods specifically used in deep learning. The 

most common one is the dropout which will be described in deep learning section. 

3.4.3. Optimization 

The objective of the optimization is nothing but to find the weights that make the loss 

function minimum for the training process. For a simpler function, f(x), in 1-D, it is 

much easier to find the minimum in analytical way. Taking the derivative, equating to 

zero, then checking the points satisfying this equation would probably give the answer. 

However, for a relatively complex loss function, especially for deeper networks, this 

analytical approach is not feasible to implement. Another approach to find a local 

minimum could be starting with an initial point, going towards to one of the sides by 

checking the derivative of the current point. This is similar to the strategy of a person, 

with closed eyes, trying to reach the bottom of a sloped land. Since this strategy is 

useful in practice, it is better to adopt this method for our optimization process. 

However, since we are dealing in multi-dimensional space, the gradient vector should 

be calculated rather than the derivative. Then, one can easily calculate the slope with 
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respect to any direction by taking the dot product of the gradient vector with the unit 

vector of that direction. 

3.4.3.1. Gradient Descent 

Gradient Descent (GD) is the simplest form of the optimization strategy described 

above. It is an iterative process of the network training. The weights are updated 

according to the equation given in (3.10). 

 

 𝑾𝑖+1 =  𝑾𝑖 − 𝜂𝛁𝑳(𝑾𝑖) (3.10) 
 

where 𝜂 corresponds to the learning rate and 𝛁𝑳(𝑾𝑖) corresponds to the gradient of 

the loss function at the current weights.  

3.4.3.2. Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is almost the same as GD that it uses the same 

formula to update the weights at each iteration. However, the update is executed more 

frequently because the loss function is calculated over the mini-batches of 

observations instead of using all observations at once. 

3.4.3.3. AdaGrad 

AdaGrad is an adaptive gradient method where the learning rate is modified for each 

parameter. It was first published in 2011 [42]. The learning rate update, given in the 

equation (3.12), is based on the history of the parameters of the gradient such that the 

learning rate decays slower for infrequent parameters whereas it decays faster for 

frequent parameters. 

 

 𝑮 =  ∑(𝛁𝑳(𝑾𝑖))(𝛁𝑳(𝑾𝑖))𝑇

𝑡

𝑖=1

 (3.11) 
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 𝑾𝑖+1 =  𝑾𝑖 −
𝜂

√𝑑𝑖𝑎𝑔(𝑮)
°𝛁𝑳(𝑾𝑖) (3.12) 

 

“diag(𝑮)” corresponds to the sum of the squares of the past gradients of the loss 

function and ° denotes element-wise multiplication.  

Although it is not required to manually adjust the learning rate parameter with the help 

of AdaGrad optimization, the convergence of the learning rate to zero is a handicap 

for finding the best solution. 

3.4.3.4. RMSProp 

RMSProp optimization method tried to eliminate the zero-convergence of learning 

rate of AdaGrad’s method when it was introduced in 2012 [43].  

  

 𝝑𝑖 =  𝛾𝝑𝑖−1 + (1 − 𝛾)(𝛁𝑳(𝑾𝑖))2 (3.13) 
 

 𝑾𝑖+1 =  𝑾𝑖 −
𝜂

√𝝑𝑖

𝛁𝑳(𝑾𝑖) (3.14) 

 

The technique divides the learning rate by the running average of the magnitude of the 

previous gradients for each weight. 𝛾 corresponds to the decay factor for the running 

average at each iteration. 

3.4.3.5. Adam Optimizer 

Adam optimizer, first published in 2014 [44], is one of the most popular optimization 

methods. It could be considered as an update to the RMSProp method that Adam 

optimizer uses the estimate of the first moment of the gradient along with the second 

moment estimate. 
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 𝒎𝑖 =  𝛽1𝒎𝑖−1 + (1 − 𝛽1)(𝛁𝑳(𝑾𝑖)) (3.15) 
 

 𝝑𝑖 =  𝛽2𝝑𝑖−1 + (1 − 𝛽2)(𝛁𝑳(𝑾𝑖))2 (3.16) 
 

 �̂�𝑖 =  
𝒎𝑖

(1 − 𝛽1)𝑖
 (3.17) 

 

 �̂�𝑖 =  
𝝑𝑖

(1 − 𝛽2)𝑖
 (3.18) 

 

 𝑾𝑖+1 =  𝑾𝑖 −
𝜂�̂�𝑖

√𝝑𝑖 + 𝜀
 (3.19) 

 

𝒎𝑖 and 𝝑𝑖  correspond to the running averages of the gradient and the second moment 

of the gradient, respectively. For the initial iterations, in order to correct the biasing 

factor, the results of the equations in (3.17) and (3.18) are used for the update of the 

weights as given in (3.19). 

3.4.4. Backpropagation Algorithm 

The main objective of the backpropagation algorithm is to find the gradient of the loss 

function with respect to the weights (𝛁𝑳(𝑾) 𝑜𝑟 𝛁𝒘𝑳) in order to use in the 

optimization process. Since there are lots of cascaded connections between the 

parameters of a network, it is not directly possible to calculate this gradient. Thanks 

to the chain rule, it made is possible to calculate the gradient of the loss function with 

respect to each of the weight parameters inside the network. 

Let’s think of a relatively simple equation given in (3.20) with a computational graph 

shown in Figure 3.7. It is desired to calculate the partial derivatives of function 𝑓 with 

respect to given inputs, at the initial conditions of, 𝑥 = 2, 𝑦 = −3 and 𝑧 = 5. 
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 𝑓 = 𝑥(𝑥𝑦 + 𝑧) (3.20) 
 

+
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Figure 3.7. Computational Graph of  𝑓 
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𝜕𝑓

𝜕𝑥
=  𝑦𝑥 + 𝑏 = −7 ,

𝜕𝑓

𝜕𝑦
=  𝑥2 = 4,

𝜕𝑓

𝜕𝑧
=  𝑥 = 5  (3.24) 

 

Using the internal derivatives, chain rule and product rule of derivatives, the partial 

derivatives of 𝑓 with respect to 𝑥, 𝑦, and 𝑧 can be calculated as given in (3.23). And 

the desired gradients at the given state can be found as given in (3.24). 

This method can be generalized for the gradient calculation of the loss function of a 

multi-layer network. We can summarize the training using backpropagation algorithm 

in 7 steps as given in Table 3.1. 
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Table 3.1. Backpropagation Training Steps 

Step# Description 

1 Initialize weights to random small values. 
2 Apply the input, calculate, and store the results of all the layers starting 

from the input layer to the output layer. (Forward Phase) 
3 Calculate the error term using the selected loss function at the output 

layer. 
4 Propagate the error terms for the hidden layers starting from the final 

hidden layer to the first hidden layer and evaluate the partial derivatives 
of the errors with respect to the weights at each hidden layer.  

5 Combine the results of step 4 in order to get the overall gradient of the 
loss function with respect to each weight. 

6 Update the weights according to the selected optimization algorithm. 
7 Repeat steps 2-6 until the stop condition is satisfied. 

 

3.5. Convolutional Neural Networks 

3.5.1. Overview 

There are two main drawbacks of the classical neural network architecture. The first 

one is the power of its memorizing capability of the inputs for training. This is caused 

by the fully connectivity of the neurons between the layers. In other words, the 

network is not successful to generalize the input space. The other drawback is that 

each part of the input is treated equally such that spatial structure of the input is 

ignored. When the problem comes to visual recognition, the spatial structure of the 

input, usually the image, becomes significant.  

The realization of the importance of the spatial structure recognition for the visual 

system dates back to a study on monkeys in 1968 [45]. The study showed that some 

specific parts of the monkeys’ brains are sensitive when they are shown familiar faces. 

This fact inspired the existence of the receptive fields for neural networks, and thus 

the CNNs. In a CNN, the neurons are connected between layers such that they 

constitute a receptive field when looking from the neuron perspective towards to input.  
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Although the CNN architecture was not new, a feasible training method had not been 

developed until 1998, when LeCun et al. implemented the Gradient-based training 

method for CNN architecture [46]. Their network, LeNet-5, shown in Figure 3.8 was 

quite successful for recognizing the digits of the zip codes.    

 

 

Figure 3.8. LeNet-5 Network Architecture [46] 

 

To the contrary of being successful on digit recognition, the CNNs could not be 

extended for complex recognition tasks until the introduction of AlexNet [28] in 2012 

ILSVRC. 

3.5.2. Architecture 

Convolution layers have locally connected and shared weight structures like in Figure 

3.9. The weights on the arrows of the same color have same values. This provides 

much smaller number of parameters and local connectivity provides local receptive 

fields for spatial structure recognition. 
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Layer (n) Layer (n+1)
 

Figure 3.9. CNN Local Connectivity & Shared Weights 

 

The locally connected and shared weights actually behave like a filter (kernel) that 

results in an output similar to the input but having higher values where the input 

fragments are similar to the filter, and having lower values where the fragments are 

not similar.  

The filtering feature of a convolution layer is illustrated in Figure 3.10. In the example, 

the colored pixels correspond to a value 1, where the white pixels correspond to 0. 

The input is 16x16 pixel image displaying a smiley. The filter (kernel) is formed as 

3x3 array such that it tries to find a pattern similar to eye area. Applying the activation 

function and looking to the resulting image of 14x14 pixels, one can easily point out 

the locations close to the eye pattern. 
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input = 16x16

*

output = 14x14

Activation Function

filter = 3x3  

Figure 3.10. Convolution Layer Example 

 

As in the example, convolving the filter on the input image is actually sliding the filter 

over the image spatially while taking the dot product at each position. Thus, only one 

value is obtained at each position. In this example, the input image has one channel. 

For the cases of multi-channel input, the convention for 2D convolution is to extend 

the filter to the depth of the input. That is, if the input size was 16x16x3, then the filter 

size would extend to 3x3x3. Moreover, multiple filters can be applied in a 

convolutional layer. For instance, if six filters were applied instead of one for our 

example shown in Figure 3.10, then the output size would be 14x14x6. 

There are some options while executing the convolution operation. These options will 

be described in the following sub-sections. 

3.5.2.1. Stride 

Stride defines the step size while sliding the filter over the input. In the example given 

in Figure 3.10, the stride is chosen as 1. The stride determines the output size of the 

convolution as given in (3.25). It should be chosen such that the output size results in 

an integer value. 

 

 𝑀 =
𝑁 − 𝐹

𝑆
+ 1 (3.25) 
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Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the 

input size, 𝐹 denotes the filter size and 𝑆 denotes the stride value. 

3.5.2.2. Padding 

Padding provides the capability to extend the edges of the input by a desired number 

of pixels with a value determined by a method. For example, “zero padding” means 

filling the extended pixels with a value of zero. Including the padding amount to the 

equation (3.25), results in the equation given in (3.26). 

 

 𝑀 =
𝑁 + 2𝑃 − 𝐹

𝑆
+ 1 (3.26) 

   
 

Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the 

input size, 𝐹 denotes the filter size, 𝑆 denotes the stride value and 𝑃 denotes the 

padding amount. 

3.5.2.3. Pooling 

Pooling is actually a layer usually coming after a convolutional layer. It does not hold 

any parameter in the network model. The aim is to down-sample the size of the 

resulting activation map of the convolution layer in order to make the network more 

controllable with fewer parameters. Since it works as a filtering mechanism, “filter 

size” term is also used along with padding and stride terms. The most common 

filtering method is “max pooling” where the maximum value is taken within the 

filtering window. In the “average pooling” method, the average value within the 

window is taken as the result. The output size of a pooling layer is calculated as given 

in (3.27). 
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 𝑀 =
𝑁 + 2𝑃 − 𝐹

𝑆
+ 1 (3.27) 

 

Assuming all the sizes are equidimensional, 𝑀 denotes the output size, 𝑁 denotes the 

input size, 𝐹 denotes the filter size, 𝑆 denotes the stride value and 𝑃 denotes the 

padding amount. 
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CHAPTER 4  

 

4. PROPOSED METHOD 

 

4.1. Method Overview 

Since the main objective of this study is to come up with a more accurate and reliable 

solution for the automation of the MGS, building a complete set of methodology that 

is repeatable, manageable, scalable, modular, feasible, and objective is essential for 

the automation task and for the future works. For this purpose, a complete set of 

solutions was studied within the scope of this thesis. 

This study was carried out as an extension of the Mice-Mimic project. All but one of 

the mouse experiments (and the corresponding video recordings) used in this study 

were conducted within the scope of the Mice-Mimic project before the start of this 

work. In other words, most of the video files were ready-to-use at the beginning of 

this study. Two separate Master of Science (MSc) theses [2], [12], were already 

completed for the Mice-Mimic project. In one of those studies [12], mouse face tracker 

and detector models were developed for the Mice-Mimic project. Those ANN models 

were directly used for the video processing task of this study. In the other study of 

Mice-Mimic project [2], the main objective was same with this study and an ANN 

called “Mice-Mimic-Net” was developed for the automation of MGS. For the previous 

study [2], most of the times, it was hard for an expert to score the pain level by looking 

to a single view of a mouse. It was highly desired to take the advantage of the multi-

camera configuration for both manual scoring and prediction tasks. This would 

minimize the mislabeled data caused by optical-illusion of a single view, in particular. 

Moreover, evaluating the network results by using multiple frames would increase the 

prediction accuracy. In this manner, the main extension that was put forward in this 

study is to use multiple views (of the same moment) of a mouse for both manual 
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scoring and prediction of the pain level. It is also better to indicate that, throughout 

this study, “moment” term is used to describe a time instant including multiple frames 

captured by different camcorders.  

The block diagram of the overall system is given in Figure 4.1. The process starts with 

the motivation as described in section 1.1 and ends with the experimental results which 

are given in Chapter 5. The individual processes of the block diagram are described in 

detail in the following sections. 
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Figure 4.1. Proposed Method Block Diagram 
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4.2. Mouse Experiment 

The purpose of the mouse experiment is to obtain the videos of a mouse which make 

it possible to analyze the pain levels over a defined time interval. All the experiments 

were conducted in the Institute of Neurological Sciences and Psychiatry (INSP) of 

Hacettepe University (HU) laboratories according to the constructed procedures and 

animal testing regulations. In all experiments, Swiss-Albino mice are used. 

For each experiment, two separate recordings are taken for a mouse. The first one, 

called basal, includes the monitoring of the state of the mouse without pain stimulation 

and the second one, called pain, includes the monitoring of the pain stimulated mouse. 

4.2.1. Experiment Environment  

In the previous study of D. J. Langford et al., an experimental environment was 

proposed with two recorders in their manual [6]. However, this setup has some 

drawbacks. The most important drawback is the small size of the volume with respect 

to the size of the animal that may cause undesired stress on the mouse. In order to 

overcome this problem and to improve the solution approach, a new experimental 

setup with 6 recorders was developed. 

In this new setup shown at the right in Figure 4.2, the mouse is placed in a cylinder with 

a diameter of 18 cm made of glass. The 6 video recorders are placed around the 

cylinder at equal angles and the whole setup is enclosed with a hexagonal box made 

of acrylic glass. The hexagonal box is uniformly illuminated with LED strips in order 

to standardize the lighting levels among the recordings. 

Since combined assessment (for both manual coding process and evaluation of the 

network) is required for all 6 video recordings, a synchronization method should be 

used. For this purpose, switching the lighting on/off at the beginning of each recording 

is included as an additional step in the experiment procedure.  
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C C C C

(a) (b)  

Figure 4.2. Experiment Setup: a) Proposed in [6], b) Used setup in this study 

  

4.2.2. Pain Models  

There are several pain models suitable for analyzing the pain intensities of a laboratory 

mouse. Most of them use chemicals to stimulate the pain as the previous study [1] 

described some of them. On the other hand, there is another pain model that uses 

Traumatic Brain Injury (TBI) as pain stimulation.  

In this study, only the videos of the experiments conducted according to the traumatic 

brain injury (TBI) along with their basal videos are used.  

4.2.3. Process Output 

The output of this process, mouse experiment, is simply the video files. The videos 

are recorded with 1920x1080 (FHD) resolution, @ 50 fps. For this study, six 

experiments were conducted with an additional one, constituting a total of seven 

experiments. There are 2 groups (basal and pain) of 6 video files for each experiment. 

Thus, a total of 84 video files were obtained as a result of this process. 
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4.3. Video Processing 

The objective of this process is to construct a dataset including mouse face detection 

data for each video file received from the previous process, mouse experiment. For 

this purpose, a mouse face detection and tracking model along with an output data 

structure should be utilized. In the following sub-sections, these are described in detail. 

4.3.1.  Mouse Face Detection and Tracking Model 

Assuming a 60 minute-length FHD video @50 fps, there are 180.000 frames in total. 

At first, it may be desired to evaluate all video frames for mouse face detection. 

Considering all the video files, this operation would take much time and in fact not 

essential. For this reason, one out of every five frames was evaluated starting from the 

synchronization frame. In order to speed up the process further, a face tracking model 

was combined with a detection model. The combined models and their related 

algorithm were directly taken from the previous studies [11], [12], without any change.  

The complete algorithm including the combined model and synchronization process 

is given in Figure 4.3. The initial part of every video file contains a complete dark 

fragment of a few seconds as the experiment procedure includes a step that the lighting 

is required to be switched off and on for synchronization purposes. The algorithm 

starts with the starting frame, then checks the total number of bright pixels with a 

defined threshold value in the frame. The purpose of this check is to find the 

synchronization frame of that video file with an accuracy of around 20ms. The 

checking process is repeated for the next frames until the desired condition is satisfied. 

After determining the synchronization frame, the algorithm tries to find the detection 

data of the frames five-by-five. The region of interest (ROI) is easily found by 

searching the specific color density on the FHD image. Then the region is scanned 

while the image subarrays are being fed to the face detection network and the detection 

results are returned. This part (scanning-detection) is usually the most time-consuming 

part of the algorithm. If the detection is successful, the face tracking network is used 

for the next frame. The face tracking network feeds the detection network with only 



 

 
 

37 
 

one image that is cropped using predicted window. Thus, this process is a lot faster 

than scanning the ROI. The face tracking network continues to feed the detection 

network with the next frames until the detection is not successful. In such case, the 

process continues from the finding ROI part. In the meantime, a simple edge detection 

filter is applied on the full frame and the number of the pixels belonging to the edges 

are calculated that provides a simple understanding for the sharpness of the frame.   

The results of each processed frame are stored in a defined data structure whether the 

detection is successful or not. If the frame reaches to the end of the total frames, the 

algorithm stops. 
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Figure 4.3. Video Processing Algorithm 
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4.3.2. Process Output 

The output of the video processing is nothing but a data whose structure is called 

“Video Class” and defined in Table 4.1 . The “Video Class” data structure holds all the 

required information of both the video file itself and the detection information of all 

the processed frames including the detection box (detection coordinates), detection 

probability, etc. Thus, the image arrays are not necessarily to be carried within the 

data structure. In this way, the size of the output data was held at minimum while 

storing all the information and maximizing the flexibility for the next processes. 

 

Table 4.1. Video Class Data Structure 

Attribute Name Type Description 

dir String Full directory of the video file 
fr_list List List of the objects of Frame Class defined in Table 4.2 
frame_length Integer Total Frame Length of the video file 
name String Name of the video file 
path String Full path of the video file 
save_load_dir String Data structure save path 
sizeInBytes Integer Size of the video file in bytes 
sizeInMb Integer Size of the video file in megabytes 
synch_frame Integer Synchronization frame number 
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Table 4.2. Frame Class Data Structure 

Attribute Name Type Description 

det_box Ndrray Numpy array that holds the coordinates of the 
detection area 

det_lbl Integer Detection status 
det_prb Float Detection probability 
det_trd Integer Tracking detection status 
det_trf Integer Tracking failure status 
frame_num Integer Frame number 
sharpness Float Calculated sharpness level of the image (frame)  
 

4.4. Dataset Construction for Manual Scoring 

There are six camcorders monitoring the mouse during an experiment. In Mice-Mimic 

project, one of the six camcorders was used according to the detection results for 

scoring process. However, in this study, it is aimed to use all 6 frames for the manual 

assessment process. This strategy has some advantages. First, the number of data for 

training and test datasets would increase by including multiple frames for the same 

moment from different points of view. At this point, it is better to state that the 

maximum time difference is 20 ms among camcorder frames. Second, the manual 

scoring accuracy and thus the reliability would increase by presenting the six different 

views of the mouse to the expert. Moreover, if the overall face expression is desired 

for one moment rather than the expression from a single view, this method satisfies 

the needs best. Hence, the coder intuitively scores the average of the suitable views if 

there are natural minor differences between the views. For some cases, the mouse face 

expression of the same moment differs much while looking from a different 

perspective such that sometimes significant differences were observed between the 

left and right eyes of the mouse. 

Considering the conditions stated above, all the data of 6 camcorders received from 

the previous process should be fused (combined) properly. This operation should also 

include a selection algorithm because the number of frames are still much even one 
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fifth of the frames were iterated in the previous process. Besides, at some time 

intervals, the mouse does not move resulting in too much increase at the number of 

same images which is not desired. For this purpose, an algorithm that fuses and filters 

the received data from the previous process should be developed. 

4.4.1. Fuse and Filter Algorithm 

The block diagram of the developed algorithm is given in Figure 4.4. The moments 

(combined frames of 6 camcorders) are iterated by groups of maximum defined by 

“max_items_in_det_set” and minimum defined by “min_items_in_det_set”. The 

maximum limit ensures to select a moment within a maximum defined time. And the 

minimum limit ensures to select a moment among the minimum number of suitable 

candidates. During the iteration, if the end of any video frame is reached, the algorithm 

stops. In the iteration, the combined frame list (moment data) is created using the 

iteration number (idx) and the synchronization frame number of each video. Then, the 

average sharpness value is calculated over the detected frames (with a minimum 

defined detection probability, “min_prob”) of that moment. Comparing the sharpness 

and number of detections with the previous values of the group, the current moment 

is decided to be whether the best or not. It is desired to select the moment with the 

maximum number of detections. The minimum of that number is also defined by 

“min_det_num”. While maximizing the detection number, it is also desired to select 

the sharpest moment. For this purpose, the mean of the sharpness, denoted by “sh”, is 

calculated over the detected frames. The decay factor, “sh_decay”, is included for the 

case that the number of detections is increased. This is to ensure to accept the moment 

as best even if “sh” is lower to some extent. 

While iterating the moments within the group, the detection boxes of each frames are 

appended to the multi-dimensional list, “det_box_list”, providing that the detection 

conditions are satisfied. Then, the mean standard deviation among the detection 

coordinates is calculated. An example for this calculation is given in Figure 4.5. 
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If the moment is not found inside the group iteration with the desired conditions stated 

above, the process is repeated for the next moment providing that the 

“max_items_in_det_set” is not reached. If the moment is found with the desired 

conditions, the moment data is stored. If the moment could not be found with the 

desired conditions and the “max_items_in_det_set” is reached, in this case the best 

moment (if exists) within the group is stored. Then, the process is repeated for the next 

group of iteration. 
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Figure 4.4. Fuse and Filter Algorithm 
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Figure 4.5. Average Standard Deviation Calculation Example 

 

4.4.2. Process Output 

The output of this process basically consists of the stored (selected) moments 

described in the algorithm in section 4.4.1. The number of moments depends on the 

level of activity of the mouse and the video length with the same parameters in the 

algorithm. Thus, even though the lengths of the experiments are same, the resulting 

number of moments could differ among different experiments. These moments are 

normally listed in time order in the output data structure. However, it is a better idea 

to present the moments to the expert with randomly shuffled. In this way, the biasing 

factor for the successive coding of the similar face expressions could be minimized. 

Another issue is being able to evaluate the internal consistency of a coder. For this 

purpose, 1 moment is duplicated for every 24 moments in the output dataset, and this 

information was not shared with the coders. The data structure of the output of this 

process, called “Experiment Class”, is given in Table 4.3. 
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Table 4.3. Experiment Class Data Structure 

Attribute Name Type Description 

videos List List of the objects of Video Class defined in Table 4.1 
moments List List of the objects of Moment Class defined in Table 

4.4 
name String Given name of the experiment  
 

 

Table 4.4. Moment Class Data Structure 

Attribute Name Type Description 

Cams List List of the objects of Frame Class defined in Table 4.2 
Score List List of the objects of Scoring Class defined in Table 

4.5 
bad_image Boolean Visual status of moment frames for coding 
 

 

Table 4.5. Scoring Class Data Structure 

Attribute Name Type Description 

Cheek Integer Cheek score value 
Done Boolean Scoring complete flag 
Ear Integer Ear score value 
Eye Integer Eye score value 
Nose Integer Nose score value 
Whiskers Integer Whiskers score value 
 

4.5. Manual Scoring 

Probably the most important part of the whole is the manual scoring process, since the 

accuracy of the training dataset has a significant role on the performance of the 

network as described in the previous studies [39], [40]. Moreover, the study in 2012 
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[47] stated that the global accuracy of a coder with one-year experience was 81% for 

MGS. The scoring process is also a cumbersome and time-consuming task and 

requires high concentration even for an expert. This means that it is essential to present 

a comfortable coding environment using a PC application with a user-friendly 

interface. For this reason, a PC application called “Label_6Cam” was developed with 

this perspective.    

All the prepared datasets were scored by two experts in INSP of HU. Since, the scoring 

task was heavy and the coder source was limited, each dataset was manually scored 

by only one expert. 

4.5.1. Scoring Application 

The general view of the scoring application, Label_6Cam, is given in Figure 4.6 and the 

description of the interface is given in Table 4.6.  

Python 2.6 is used as the development environment and “pyinstaller” package is used 

to build the executable (all included package) for Windows Operating System (OS). 

Thus, the application could run on any Windows machine (XP and later) 

recommended with an FHD resolution display without the need to install any other 

software or library.  

It only requires the data (.pkl format) received from the previous process to be placed 

in a subfolder of the application directory and the video path need to be written in the 

configuration file. 

It takes a little longer time while navigating through the items if the frame source is 

selected as video. In order to overcome this issue, one more feature is added such that 

all the required images can be captured from the videos and saved in a subfolder 

automatically with administrative rights. Once the images are captured, the application 

could use those images for display rather than the videos.  
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Figure 4.6. Label_6Cam Application 

 

Table 4.6. Label_6Cam Application Interface Description 

Item# Description 

1 Display windows (frames) of the 6 video source 
2 Scoring interface 
3 Overall zoom option 
4 General information area, log of the all actions with timestamps can be 

reached from this area 
5 Navigation tools 
6 Coding completion progress bar 
7 Display source selection interface 
8 Pop-quiz enable option for gathering more attention  
9 Manual save button 
 

By default, (at zero zoom level), the parts of the images defined by the detection values 

are displayed inside the display frames. Using the zoom scroll bar, the coder is able to 

fit the images to full size. 
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For scoring (coding) interface, there are 5 facial AUs as specified in [6]. Each of them 

can be scored separately as Normal, Medium and High. Additionally, the coder can 

also label the AU as “Not Observable”. If the coder is not comfortable with the images 

of the moment for scoring, the moment can be labeled as “Bad Image” or left as not 

evaluated. 

One additional feature is the pop-quiz, this feature pops up a window with a trivia 

question after a certain number of items are coded. The purpose is to gather the 

attention of the coder while encouraging the coding task. 

The coder does not need to worry about saving the current state manually, since there 

is an auto-save option at desired intervals, besides the application automatically saves 

the last state while it is being closed.  

The output of the application has exactly the same data structure with the output of 

the previous process. 

4.6. Manual Correction and Image Collection 

Another application that is very similar to the “Label_6Cam” is used for this step, and 

it is called “Create_Images” application. The scoring interface is disabled; however, 

it is possible to edit/correct the detection results of the frames. There are two main 

reasons to edit the detection results of the face detection network. The first one is to 

increase the number of training data for the situations that the detection algorithm was 

not able to detect the mouse event though it exists. Secondly, it is desired to decrease 

the number of unrelated data in the training dataset in order to maximize the quality 

of the dataset and thus to achieve maximum network performance. This corrected 

versions of the images were mainly used for training process. However, the results of 

the uncorrected datasets were considered as the primary result for the evaluation.  

Apart from the manual correction feature, the main purpose of the application is to 

collect the cropped images according to the detection coordinates. The collected 

images are named with a desired format inside a subfolder. This format can hold 
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almost all the information such that one can regenerate exactly the same image (except 

for the augmented images) by getting the name and the source video. An example of 

this naming format and the related descriptions are given in Figure 4.7. 

 

1

TBI_20180306_ORGN-S000180-%00011%-C1-F001224-BX1220BY0505BL0233-I0215.jpg

2 3 4 65 7 108 9

1: Value of the name attribute of the Experiment Class
2: Type of Creation: ORGN, CORR, SYMM, AXXY*
3: Frame number with respect to the synchronization frame
4: Score values of AUs: Eye, Ear, Nose, Cheek, Whiskers respectively. 0:Normal, 1:Medium, 
2:High, X:Other
5: Camera Number: C1, C2, C3, C4, C5, C6
6: Frame number with respect to original video start frame
7: Detection box X coordinate
8: Detection box Y coordinate
9: Detection box size
10: Item number in the manual coding dataset
* AXXY includes the augmentation information where XX denotes the number of 
augmentation for the image, and Y denotes the applied augmentation type. (R:Rotation, 
T:Translation, Z:Zoom In/Out, B:Brightness  

Figure 4.7. Cropped Image Naming Example 

 

By using such naming format, the output data becomes independent of any process. 

Any 3rd party could be able to use this data set to train and test their own networks. 

The detection boxes calculated from the face tracking and face detection process are 

too much focused on the mouse face. For this reason, a zoom out operation of 120% 

is applied while generating original dataset images. Construction of the original 

dataset results in a single folder with a suffix “_ORGN”; however, the construction of 

the corrected dataset results in 3 separate folders with suffixes “_CORR”, “_SYMM” 

and “_AUGM”. These folders and the number of images that they hold are illustrated 

in Figure 4.8. 
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EXP1_ORGN EXP1_CORR EXP1_SYMM EXP1_AUGM

# of images:
m

# of images:
n

# of images:
n

# of images:
8*n

 

Figure 4.8. An Example of Created Folders of Create Images Application 

 

4.6.1. Data Augmentation 

Augmenting data at the image collection step could be the best option since the full 

image is available with 1920x1080 resolution. Thus, some improved and more 

realistic methods can be applied such as zooming out and shifting methods using the 

actual footage. For this purpose, the required interface is also included to the 

application in order to generate augmented images. 

For generating augmented images, first, horizontal symmetry was applied which 

doubles the number of available data. Then, four types of data augmentation methods 

were used. These are; rotation, translation, zooming, and brightness change. For each 

augmentation iteration of each image (with its symmetry form), one of these four 

methods was chosen randomly with uniform distribution. The iteration number was 

chosen as 4 which provides an increase to 10 times of the initial number of images as 

shown in Figure 4.8 and an example of the total 11 generated images is shown in Figure 

4.9. 
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A01R

A00Z

A07B

A06T

A05T

A04R

A03B

A02RCORR

ORGN

SYMM  

Figure 4.9. Generated Images Example 

 

4.6.1.1. Rotation  

For rotation type of augmentation, first, an angle between -45° and 45° was selected 

randomly with uniform distribution. Then the rotation matrix was calculated and the 

resulting image was captured using the functions of the OpenCV API. For the cases 

that the resulting image contains undefined pixels, the repetition of the border pixel 

method was chosen. An example of this case is shown in Figure 4.10. 
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Figure 4.10. Repeated Pixels after Rotation 

  

4.6.1.2. Translation 

Translation was applied for both x and y axis of the detected frame. The displacement 

amount for both axes was chosen randomly from the uniform distribution of numbers 

between ±25% of image size. For the cases that the chosen linear displacement reaches 

the outside of the full frame, the displacement was limited to that border of the full 

frame. 

4.6.1.3. Zooming 

A zoom amount was chosen from the uniform distribution of the value range of 

between 75% and 125% of image size. For the cases that the chosen zoom value results 

in the outside part of the full frame, the zoom amount was limited to the corresponding 

limit value. 

4.6.1.4. Brightness 

In order to implement a brightness change to the images, the function called 

“convertScaleAbs” of the OpenCV API was used. The function takes the input 

argument “beta” and uses as an offset value for each 8-bit color channel of the pixels 

of the image. The beta value of the function was chosen randomly from the values 

between -50 and 50 of a uniform distribution. 
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4.7. Dataset Construction 

The output of the previous process is folders of images that are properly named 

including all the necessary information. In order to construct the dataset for training 

and testing, leave-one-subject-out cross validation (LOSOCV) method was adopted 

in the study. At each iteration of LOSOCV, the dataset belonging to one of the six 

experiments was excluded from the training dataset. The excluded dataset was used in 

the evaluation of the iteration.  

A separate validation set was also constructed by using the 7th experiment images. 

Since it is better to use a homogeneously classified (balanced) data also for the 

validation, some of the other basal experiment images were included in the validation 

dataset. In the same manner, neither of the validation data was included in any of the 

training datasets or test datasets. 

The images of six different experiments of pain were included to construct LOSOCV 

datasets. At this point, it is desired to have a homogeneous dataset as much as it could 

be. For this purpose, the image data (labeled as “Normal” pain intensity) generated 

from one of the basal experiments was included to all training datasets. 

4.7.1. Process Output 

The output of this process should include the image arrays and their corresponding 

score values (labels) at least. A different type of zipped archive file, “npz”, was chosen 

as dataset format. It is generally used as a dictionary-like object including several 

arrays. 

The image files are collected in organized folders as a result of the previous process 

described in Section 4.6, it may seem not necessary to include the individual image 

arrays into the  “npz” archive, at first. However, the IO operations between the CPU 

and the disk while feeding the training network could be the bottleneck of the training 

process. In order to overcome this problem, all the required image data were included 

into the “npz” archive with the cost of extreme RAM usage.  



 

 
 

54 
 

The dictionary-like data structure was used as given in Table 4.7 for the output of this 

process. And this structure was stored in “npz” format. 

 

Table 4.7. Dataset NPZ Archive Structure 

Array Name Description 

img Image data array 
file_path Array of relative file paths including the full name of the images 
exp_name Array of concatenation of 1 and 2 values described in Figure 4.7 
synch_frame Array of frame numbers with respect to synchronization frames 
score Array of average score values 
score_eye Array of individual eye scores 
score_ear Array of individual ear scores 
score_nose Array of individual nose scores 
score_cheek Array of individual cheek scores 
score_whiskers Array of individual whiskers scores 
camno Array of corresponding camera numbers 
video_frame Array of frame numbers with respect the start of video frame 
box_x Array of x-coordinates of detection boxes  
box_y Array of x-coordinates of detection boxes  
box_length Array of detection sizes 
itemno Array of item numbers in “Label_6Cam” application  
 

Although most of the arrays included in the dataset archive are not required for any 

training process, they were included for the sake of data completeness.  

Using LOSOCV method requires to generate 6 different groups of datasets each of 

which includes training, validation, and testing datasets. As described earlier, the 

validation dataset was prepared using the images of the 7th experiment and some 

images of one of the basal experiment. The same validation dataset was used for all 

the LOSOCV training iterations. Since it is useful to see both the corrected data 

evaluation and the original data evaluation, two separate datasets were constructed for 
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testing.  A naming convention was proposed for the constructed datasets, an example 

of this naming convention is given in Figure 4.11. 

 

2

LOSOCV-1-train.npz

3 4

1: Abbreviation of «leave-one-subject-out cross 
validation»
2: LOSOCV iteration identifier (1..6)
3: Subset type: Training/Testing/Validation set
4: Dataset format extension

1

 

Figure 4.11. Dataset Naming Convention Example 

 

In order to decrease the processing time during training operation, the image arrays 

were also resized according to the network requirements before inserting them into 

the “npz” archive files. However, the drawback here is that it is required to regenerate 

the group of datasets for a specific image size requirement. 

The contents of the LOSOCV datasets used in the training and the evaluation process 

are described in Figure 4.12. The different colors represent the different type of datasets 

constructed in the previous process. The names on the folders correspond to the 

experiments where “EXP” is a pain experiment and “BAS” is a basal experiment. 
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EXP2 EXP3 EXP5 EXP6EXP4 BAS2

EXP1 EXP3 EXP5 EXP6EXP4 BAS2

EXP1 EXP2 EXP5 EXP6EXP4 BAS2

EXP1 EXP2 EXP5 EXP6EXP3 BAS2

EXP1 EXP2 EXP4 EXP6EXP3 BAS2

EXP1 EXP2 EXP4 EXP5EXP3 BAS2

AUGMSYMM

EXP7 BAS1 EXP1 EXP1

TRAIN VALIDATION TEST1 TEST2

LOSOCV-2

LOSOCV-3

LOSOCV-4

LOSOCV-1

LOSOCV-6

LOSOCV-5

EXP7 BAS1 EXP2 EXP2

EXP7 BAS1 EXP3 EXP3

EXP7 BAS1 EXP4 EXP4

EXP7 BAS1 EXP5 EXP5

EXP7 BAS1 EXP6 EXP6

CORRORGNColor Representation:
 

Figure 4.12. LOSOCV Dataset Construction 

 

4.8. Training and Evaluation 

In this section, the proposed method for the training and testing process are described. 

As stated in section 3.5, CNNs are the best network option especially for visual 

recognition problems. Additionally, with the help of transfer learning, one can take 

the advantage of pre-trained weights of networks of larger datasets especially for the 

convolutional layers and by-pass the drawback of the insufficiency of the training 

dataset and the longer training times. For this purpose, transfer learning method was 

adopted in this study. 

The training process was divided into two phases. In the first phase, the objective was 

to select 1 out of 5 popular (proved to be successful) pre-trained networks. And in the 

second phase, the objective was to achieve the best network performance with fine 

tuning and other applicable methods. 

Since, several iterations of training processes are required, it is essential to use a highly 

manageable, powerful and user-friendly environment. This includes both software and 

hardware parts. In this study, all the training processes were executed in the cloud. 
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Working with large datasets requires to train and even evaluate the network using 

mini-batches, or simply batches. The algorithm/function that feeds the network with 

batches of data is called “Image Generator”. For this purpose, a custom image 

generator was developed which will be described in the following sub-sections. 

4.8.1. First Phase  

The performances of 5 popular pre-trained networks were compared with same and 

roughly defined hyper-parameters using same datasets. Also, identical fully connected 

network structure was used after those convolutional layers.  

Despite using the pre-trained networks, the training process for one epoch could take 

longer for a large training dataset of around 250k images. During dry-run training 

processes, it was observed that even a few training epochs are sufficient to get the best 

validation result. For this reason, it was decided to use a callback function that 

provides early stopping the training process for the condition that the validation set 

evaluation does not improve in a definite number of epochs.     

The most of the work will be analyzed within the scope of the regression output. 

However, the comparison of classification performances of these networks are also 

included in the study. 

4.8.2. Second Phase 

With the selected convolutional neural network in the first phase, it is desired to 

achieve the best performance using alternative methods. One of them is the selection 

of hyper-parameters such as learning rate and activation function. The other one could 

be applying normalization after fully connected layers or before input layer. 

The fully connected network structure could be another key factor and thus different 

structures of fully connected layers are studied. 

The last option is to train the convolution layers with a lower learning rate along with 

the fully connected ones. 
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The binary (pain/no-pain) classification performances of the network are also included 

in this final phase. Having the advantage of the multi-camera system, the final 

evaluation also includes multi-camera based (multiple frames of the same moment) 

evaluation results.  

4.8.3. Image Generator 

The main purpose of an image generator is to feed the network in small groups of data 

during the training or evaluation process. This necessity actually rises from the limited 

sources of the hardware. For large datasets, it may not be possible to load the required 

data at once even for the initial processing. Considering the training process, trying to 

include all the training data at once would not be a feasible approach. For this reason, 

image generators are essential, not an option, for large dataset training processes with 

limited hardware sources. However, still there are other problems related to IO 

operations while trying to massively read individual image files from the disks. 

Although some alternative methods exist such as multiprocessing, the fastest and most 

reliable way is to directly feed the data to the training process from RAM content. For 

this purpose and having the advantage of cloud computing, virtual machines with 

higher RAM capacities were used in order to make the image generator possible to 

read any desired data in the fastest way.  

Image generators can also have side functions such as shuffling dataset, balancing 

dataset, and augmenting data. For the test or validation datasets, those functions may 

not be required except for balancing dataset. Thus, in this study, two different image 

generators were developed one of which is capable of shuffling and balancing dataset 

(called IMGEN1) and the other does not have any auxiliary function (called 

IMGEN2). The function of the latter is to split the dataset into small chunks with 

defined batch size and feed the related process with those chunks. Similarly, the 

function of the former is also to create mini-batches. In addition to the main function, 

batches can be arranged in such a balanced way that there would be equal number of 

data from different score ranges (classes). For the cases that the number of data differs 



 

 
 

59 
 

among classes, some of the data are repeated inside the classes in which there are less 

data. Moreover, IMGEN1 is capable of shuffling at two different steps. First, the 

complete dataset can be shuffled initially (at the start of each epoch) and then, the 

created mini-batches can also be shuffled (at the end of each batches) just before 

feeding the process. These two shuffling methods ensure the complete randomness 

especially for the training network. 

The algorithm of the IMGEN1 is given in Figure 4.13. And a simple example of mini-

batch creation of IMGEN1 is given in Figure 4.14. 

 

START

Shuffle the Dataset

idx < steps

Create Separate Data Lists for Each Class

idx=0

Calculate the Number of Steps:
steps=ceil[max(# data in classes)/batch_size * 

num_of_classes]

Create Mini-Batch Using «idx» and the 
Data Lists of Classes

Yes

No

Shuffle the Mini-Batch

Yield the Mini-Batch
idx=idx+1

 

Figure 4.13. Train Image Generator Algorithm 
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Figure 4.14. Mini-Batch Creation Example 

 

4.8.4. Evaluation Criteria 

For classification type output, the selection of the evaluation criteria is quite 

straightforward. It is the “accuracy” that is defined as the fraction of the successfully 

classified inputs to the total number of inputs. Although the performance evaluation 

metric of the classification type network was the “accuracy”, the metric chosen for the 

early stopping callback was either the “loss function” or the “accuracy” in this study.  

When it comes to regression type of networks, it is not meaningful to use the accuracy 

as the performance criteria, instead the loss function can be used. MSE and MAE are 

the most common loss functions for regression outputs. If the square domain is not 

desired, Root Mean Square Error (RMSE) can also be used as an alternative of MSE 

function. Selecting one of them was not an easy choice in this study since there is no 

correct answer for that in general. MSE/RMSE is useful if we are more interested in 
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the less frequent unexpected values. Thus, the drawback is that the error gets worse 

even if there is a single very bad prediction. In other words, this method is sensitive 

to the less frequent large errors. On the other hand, MAE gives an intuition on how 

the network performs, easily. This is because it behaves linearly to each of the error 

values. It can be stated that MAE is not that sensitive to the individual large errors as 

MSE/RMSE does. 

In some previous studies [48], [49], MSE/RMSE was not recommended as an 

evaluation metric for the average model performance. It was claimed that RMSE adds 

an ambiguity to the average error evaluation process since it is dependent on the three 

different characteristics of the errors rather than one. On the other hand, in a later study 

[50], it was suggested that using RMSE as an evaluation criteria is more suitable than 

MAE if the error distribution of the system is close to Gaussian. 

Combining all the information above, in this study, it was decided to choose the loss 

function by analyzing the error distribution of manual coding process (duplicated 

moments were presented to the experts without they were informed as it was explained 

in Section 4.4). If the manual coding error distribution reflects a similar distribution 

to a Gaussian one, it would be better to choose the MSE or RMSE rather than MAE. 

However, a question arises that how the error distribution could be compared to a 

Gaussian one. It is known that the maximum value of (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) is equal to 1, where the 

error is distributed uniformly. Perturbing this uniform distribution causes an increase 

in the ratio of  (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
). The ratio converges to a fixed value of ( 1

0.8
), which is 1.25, if 

the distribution is Gaussian as stated in the previous study [50]. Perturbing the 

Gaussian distribution by adding outliners causes a further increase in the ratio. Thus, 

the ratio can give an understanding on how much outliners exist in a distribution with 

respect to a Gaussian or uniform distribution.  

Considering the facts stated above, a threshold value for (
𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) of manual coding 

errors is determined using that of the Gaussian distribution with a tolerance of +10%, 
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which equals to 1.375. If the ratio, (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
), calculated from the manual coding errors 

is less than 1.375, MSE or RMSE will be selected, otherwise MAE will be used.       

4.8.5. Software 

There are lots of frameworks available for machine learning development such as 

TensorFlow, Caffe2, PyTorch, MXNet, CNTK. The additional software and their 

versions are generally dependent on the selected framework. In this study, TensorFlow 

framework was used to build the network and the other software information is given 

in Table 4.8. 

 

Table 4.8. Software Configuration 

Name Version Description 

Python 3.6.8 Programming Language Environment 
TensorFlow 1.14.0 Machine Learning Framework 
Keras NA Machine Learning High Level API for Tensorflow 

1.14 
NumPy 1.16.4 Scientific Computing Package 
Opencv-Python 4.1.0 Python Library for Computer Vision 
 

4.8.6. Hardware 

Training large networks with large datasets is a time-consuming task for a standard 

CPU. Higher capacity RAMs are also required. In order to decrease the computation 

time, GPU support can be used within the limitations of the selected framework. 

Since, several training runs will be executed in this study, it is highly required to have 

a powerful hardware configuration, and even multiple instances of it if possible. For 

this purpose, Google Cloud Platform was used for all the training processes. Multiple 

virtual machine instances were used with the hardware configuration given in Table 

4.9. 
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Table 4.9. VM Hardware Configuration 

Name Description 

CPU 2 x vCPU (3.5 GHz, Single-Core Max Turbo frequency) 
RAM 52 GB 
GPU NVIDIA Tesla P100 (16 GB HBM2 RAM) 
HDD 30 GB 
SSD 375 GB (Shared among VM instances) 
 

Since there are multiple instances running for a common purpose, they should be 

managed in a centralized way such that they should share the common sources like 

datasets and executable codes. Besides, the outputs of the VM instances should be 

saved in a common data storage. For this purpose, Google Storage Buckets were used. 

The main advantage of this is that one single storage bucket can be mounted to 

multiple VM instances. Similarly, read only disks can also be mounted to multiple 

instances.  By this way, the input and output data could be easily managed among the 

compute engine instances. Furthermore, data transfers between the Storage Buckets 

and Google Drive could also be easily achieved through the help of Google 

Colaboratory environment with a few line of codes. These connectivity features of 

different types of tools in the cloud made them appealing to be used in this study. 

These connectivity features are illustrated in a block diagram given in Figure 4.15. 
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Local PC

Storage Bucket

Compute Engine VM Instances

Google Drive

Shared Disk

 

Figure 4.15. Cloud Tools Connectivity (High Volume Data Sharing) 
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CHAPTER 5  

 

5. EXPERIMENTAL RESULTS 

 

5.1. Mouse Experiment Outputs 

In this study, the videos collected in six experiments with an additional one experiment 

were used in order to construct a validation dataset. There are 2 groups (basal and 

pain) of 6 video files for each experiment. However, only 2 basal parts of the 

experiments were used. The durations and the total frame numbers of the video files 

used in this study are given in Table 5.1. All the videos were recorded in FHD resolution 

@50 fps. 
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 Table 5.1. Collected Video File Durations in Minutes (Frames in Parenthesis) 

Name CAM1 CAM2 CAM3 CAM4 CAM5 CAM6 

EXP1 
94.30 

(282912) 

94.30 

(282912)  
94.40 

(283200)  
94.46  

(283392)  
94.52 

(283560)  
94.46 

(283392)  

EXP2 
65.74 

(197232) 
65.82 

(197472)  
65.77 

(197304)  
65.78 

(197352)  
65.79  

(197376)  
65.79 

(197376)  

EXP3 
65.54 

(196608) 
65.57 

(196704)  
65.62 

(196848)  
65.62 

(196848)  
65.62 

(196848)  
65.59 

(196776)  

EXP4 
65.66 

(196992)  
65.60 

(196800)  
65.72 

(197160)  
65.61 

(196824)  
65.60 

(196800)  
65.50 

(196488)  

EXP5 
68.07 

(204216)  
67.99 

(203976)  
68.01 

(204024)  
68.12 

(204360)  
68.07 

(204216)  
68.08 

(204240)  

EXP6 
77.34 

(232032)  
77.31 

(231936)  
77.31 

(231936)  
77.30 

(231912)  
77.30 

(231912)  
77.26 

(231792)  

EXP7 
61.22 

(183672)  
61.17 

(183504)  
61.17 

(183504)  
61.19 

(183576)  
61.10 

(183312)  
61.18 

(183528)  

BAS1 
45.42 

(136248)  
45.34 

(136032)  
45.46 

(136392)  
45.69 

(137064)  
45.62 

(136872)  
45.43 

(136296)  

BAS2 
28.36 

(85080)  
28.22 

(84672)  
28.30 

(84912)  
28.36 

(85080)  
28.37 

(85104)  
28.37 

(85104)  

 

5.2. Manual Coding Dataset 

A total of 7 different datasets were constructed for manual coding of pain experiments 

and 2 different datasets were constructed for manual coding of basal experiments. The 

algorithm described in section 4.4.1 was used to construct each dataset with the 

parameters given in Table 5.2.  
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Table 5.2. Fuse and Filter Algorithm Parameter Values 

Parameter Value (Pain) Value (Basal) 

min_det_num 3 3 
min_items_in_det_set 8 20(BAS1), 16(BAS2) 

max_items_in_det_set 100 100 
min_prob 0.95 0.95 
threshold 12 12 
sh_decay 0.9 0.9 

 

The resulting number of moments selected for each dataset and the corresponding 

scorers are given in Table 5.3. 

 

Table 5.3. Number of Selected Moments for Manual Scoring 

Name Number of Moments Scorer(s) 

EXP1 1031 Expert#1 
EXP2 911 Expert#1 
EXP3 728 Expert#1 
EXP4 848 Expert#1 and Expert#2 
EXP5 598 Expert#2 
EXP6 1002 Expert#2 
EXP7 468 Expert#2 
BAS1 956 Expert#1 
BAS2 818 Expert#2 
TOTAL 7360  

 

A selected moment can be labeled as “Bad” if the expert considers that the quality of 

the frames captured for that moment is insufficient for manual scoring. In this case, 

the moment data was ignored for the next process. The expert can also label an AU as 
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“Not Observable”. If there are more than two AUs that are not labeled or labeled as 

“Not Observable”, the corresponding moment data was ignored for the next process 

as in the case of “Bad” moments. Those moments are called “unaccepted” moments. 

In addition to those, since 4% of the moments were duplicated inside the dataset for 

the consistency analysis, one moment of each duplication was also ignored. In the next 

process, it will be possible to modify mouse face detection values (detection status, 

detection coordinates). In order to prevent any ambiguity, the dataset without the 

manual correction is called “original” (ORGN) and the same dataset with applied 

manual correction is called “corrected” (CORR).  

The number of moments by groups for each original experiment is given in Figure 5.1 

and the corresponding number of images by groups is given in Figure 5.2. The overall 

statistics are given in Figure 5.3 and Figure 5.4. 
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Figure 5.1. Number of Moments by Groups (ORGN) 

 

Figure 5.2. Number of Images by Groups (ORGN) 

 

 

 

Figure 5.3. Number of Overall Moments by Groups (ORGN) 
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Figure 5.4. Number of Overall Images by Groups (ORGN) 

 

The number of moments by score groups for each original experiment is given in Figure 

5.5 and the corresponding number of images by score groups is given in Figure 5.6. The 

overall statistics of experiments from 1 to 6 are given in Figure 5.7 and Figure 5.8. 

 

Figure 5.5. Number of Moments by Score Groups (ORGN) 
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Figure 5.6. Number of Images by Score Groups (ORGN) 

 

 

 

Figure 5.7. Number of Overall EXP 1-6 Moments by Score Groups (ORGN) 
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Figure 5.8. Number of Overall EXP 1-6 Images by Score Groups (ORGN) 

 

At this step, it was possible to extract the internal error values of the manual coding 

process by calculating the differences of each duplicate moments. It is shown in Figure 

5.3 that there are 299 repeated moments, however 21 of them were excluded since they 

were coded as bad or more than two AUs were not coded. Since MAE and RMSE are 

concerned, it is not essential how the difference (e.g. A-B or B-A) is calculated among 

duplicate moments’ scores. The extracted error distribution of manual coding is given 

in Figure 5.9. It was calculated from the errors that MAE is equal to 0.169 and RMSE 

is 0.251.  

 

 

Figure 5.9. Manual Labeling Error Distribution 
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As the ratio of (𝑅𝑀𝑆𝐸

𝑀𝐴𝐸
) is equal to 1.485 which is higher than the threshold value, 1.375, 

(described in section 4.8.4) it was decided to use MAE as the loss function and the 

evaluation criteria for the regression outputs. 

5.3. Manual Correction and Image Collection 

The moment statistical data given in the previous section, 5.2, is also applicable for 

the manual correction process since the moment scores were not modified in this step. 

However, the statistical data of the images may differ from the original. 

The number of images by groups after manual correction is given in Figure 5.10. The 

overall statistics are given in Figure 5.11. 

 

Figure 5.10. Number of Images by Groups (CORR) 
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Figure 5.11. Number of Overall Images by Groups (CORR) 

 

The number of images by score groups for each experiment after correction is given 

in Figure 5.12. The overall statistics of experiments from 1 to 6 are given in Figure 5.13. 

 

 

Figure 5.12. Number of Images by Score Groups (CORR) 
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Figure 5.13. Number of Overall EXP 1-6 Images by Score Groups (CORR) 

 

For each of the experiments, “Pain and Basal”, four different folders were able to be 

created with the corresponding images as described in Section 4.6. However, the 

proposed cross-validation method as shown in Figure 4.12 requires a total of 29 

subfolders belonging to 9 experiment datasets. Since BAS2 was included in only 

training data, the ORGN folder was not necessary. Similarly, only ORGN folders of 

EXP7 and BAS1 are needed as they were used as validation data. An extra filtering 

was applied only for collecting BAS1 images such that 200 moments were selected 

from the score range 0-0.49, 100 moments were selected from the score range 0.5-

0.99 and 50 moments were selected from the score range 1.0-1.49.  

The number of images collected for the output folders is summarized in Table 5.4. 
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Table 5.4. Number of Images in Output Folders 

Name ORGN CORR SYMM AUGM TOTAL 

EXP1 3968 3968 3968 31744 43648 

EXP2 3282 3668 3668 29344 39962 

EXP3 2659 2810 2810 22480 30759 

EXP4 3393 3570 3570 28560 39093 

EXP5 2103 2294 2294 18352 25043 

EXP6 3912 3741 3741 29928 41322 

EXP7 - 1843 - - 1843 

BAS1 - 1597 - - 1597 

BAS2 - 3286 3286 26288 32860 

TOTAL 19317 26777 23337 186696 256127 

 

5.4. Dataset Construction 

Six groups of LOSOCV datasets were prepared each of which has four different 

subsets (“npz” archive files); training, validation, test#1 (test_orgn) and test#2 

(test_corr). The content of each LOSOCV datasets is given in Figure 4.12. The size of 

all the collected images summarized in  is around 5.35 GB, however storing those 

images within “numpy” arrays could take several multiples of that size. 

In order to decrease the data processing time during training, the images were resized 

to 224x224 which is the default size of most of the pre-trained networks in this study. 

This size was also a reasonable value when compared to the average size of collected 

images. The file sizes of each archive files used in LOSOCV datasets are summarized 

in Table 5.5. 
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Table 5.5. LOSOCV Dataset File Sizes in MB 

LOSOCV# train validation test_orgn test_corr TOTAL 

1 17909 326 375 375 18985 
2 18190 326 310 346 19172 
3 18991 326 250 265 19832 
4 18367 326 311 328 19332 
5 19485 326 196 215 20222 
6 18118 326 368 353 19165 

TOTAL 111060 1956 1810 1882 116708 
 

5.5. Training and Evaluation 

5.5.1. First Phase 

In the first phase, 5 pre-trained CNNs were compared for both regression and 

classification outputs. The pre-trained CNNs built up the bottom part of the resulting 

network, on top of them 2 fully connected layers along with and a final 1-node output 

layer were added. For classification output, the output layer was changed to 3-node 

with a “softmax” activation function.  

The general structure of the used model for regression output is shown in Figure 5.14. 

 

PRE-TRAINED CNN
(INCV3, RES50, VGG16, 

VGG19, XCEPT)

224x224x3image
224x224x3224x224x3image
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Figure 5.14. First Phase Regression Network General Structure 
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No pooling was applied after the last layer of the CNN, thus a flattening layer was 

added between CNN and FC-1. For both FC layers, ReLU is used as the activation 

function and dropout layers were added just after them. The specification of the used 

network for regression output is given in Table 5.6. 

 

Table 5.6. First Phase Regression Network Specification 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: No 
FC-1 Size:256, Activation: ReLU, Dropout=0.15 
FC-2 Size:256, Activation: ReLU, Dropout=0.15 

Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0) 
Loss Function MAE 

Early Stop Callback Monitor: Validation Loss, Patience:5 
BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0] 

 

There are two different train datasets for each LOSOCV iteration which are composed 

of either ORGN or CORR images. Besides, the image generator, IMGEN1, has a 

feature for balancing the dataset with the given BINS and IMGEN2 feeds a process 

without balancing (an image appears only once in an epoch). Thus, four different 

evaluation values were calculated for each LOSOCV iteration. These were 

represented as ORGN, ORGN-B, CORR, CORR-B where the suffix, “B”, represents 

the balanced version. The used image generators and their settings for each dataset 

used in a LOSOCV iteration is given in Table 5.7. 
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Table 5.7. Dataset Image Generator Settings 

Dataset Image Generator 

Train IMGEN1 (Shuffle: Yes) 
Validation IMGEN1 (Shuffle: No) 

Test (ORGN) IMGEN2 
Test (ORGN-B) IMGEN1 (Shuffle: No) 

Test (CORR) IMGEN2 
Test (CORR-B) IMGEN1 (Shuffle: No) 

 

The evaluation results of the first phase for regression network are given Table 5.8. 
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Table 5.8. First Phase Regression Evaluation Results 

  TEST LOSS (MAE) 

LOSOCV# Eval. Type INCV3 RES50 VGG16 VGG19 XCEPT 

1 

ORGN 0.507 0.774 0.303 0.319 0.470 
ORGN-B 0.443 0.573 0.321 0.316 0.441 

CORR 0.502 0.785 0.276 0.299 0.471 
CORR-B 0.425 0.571 0.300 0.297 0.430 

2 

ORGN 0.483 0.552 0.324 0.334 0.466 
ORGN-B 0.468 0.520 0.315 0.324 0.466 

CORR 0.479 0.561 0.310 0.306 0.458 
CORR-B 0.459 0.522 0.302 0.296 0.451 

3 

ORGN 0.362 0.626 0.275 0.291 0.406 
ORGN-B 0.383 0.637 0.280 0.294 0.435 

CORR 0.370 0.639 0.253 0.265 0.405 
CORR-B 0.387 0.640 0.253 0.265 0.427 

4 

ORGN 0.442 0.494 0.377 0.356 0.446 
ORGN-B 0.476 0.566 0.372 0.358 0.480 

CORR 0.432 0.495 0.343 0.334 0.445 
CORR-B 0.469 0.565 0.340 0.338 0.471 

5 

ORGN 0.553 0.792 0.351 0.368 0.545 
ORGN-B 0.462 0.643 0.319 0.341 0.479 

CORR 0.559 0.797 0.306 0.325 0.520 
CORR-B 0.461 0.644 0.283 0.305 0.461 

6 

ORGN 0.728 0.899 0.452 0.432 0.599 
ORGN-B 0.564 0.660 0.404 0.412 0.529 

CORR 0.746 0.938 0.426 0.397 0.601 
CORR-B 0.540 0.661 0.362 0.353 0.486 

Mean 

ORGN 0.513 0.690 0.347 0.350 0.489 
ORGN-B 0.466 0.600 0.335 0.341 0.472 

CORR 0.515 0.702 0.319 0.321 0.483 
CORR-B 0.457 0.601 0.307 0.309 0.454 
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It is seen in Table 5.8 that the VGGNets, VGG16 and VGG19, performed far better than 

the other networks for regression type evaluation. The reason for this could be 

overfitting of the deeper networks. 

The specification of the used network for 3-alternative forced classification output is 

given in Table 5.9. 

 

Table 5.9. First Phase 3-Alternative Forced Classification Network Specification 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 36 

CNN Trainable: No 
FC-1 Size:256, Activation: ReLU, Dropout=0.15 
FC-2 Size:256, Activation: ReLU, Dropout=0.15 

Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0) 
Loss Function Sparse Categorical Crossentropy 

Early Stop Callback Monitor: Validation Loss, Patience:5 
BINS for Image Generators [0, 0.5, 1.5, 2.0] 

 

As in the regression network, four different evaluation values were calculated for each 

LOSOCV iteration. The image generators and the settings were used as the same  

which is given in Table 5.7. 

The evaluation results of the first phase for 3-alternative forced network are given in 

Table 5.10. 

  



 

 
 

82 
 

Table 5.10. First Phase 3-Alternative Forced Classification Network Evaluation Results 

  TEST ACCURACY (%) 

LOSOCV# Eval. Type INCV3 RES50 VGG16 VGG19 XCEPT 

1 

ORGN 53.02 7.81 65.05 65.35 40.32 
ORGN-B 40.45 33.33 63.75 61.00 38.70 

CORR 51.74 7.69 67.94 67.31 42.67 
CORR-B 42.31 33.33 66.78 62.19 41.12 

2 

ORGN 45.58 17.46 58.74 58.32 44.15 
ORGN-B 37.42 33.33 65.86 65.80 38.25 

CORR 45.91 17.23 61.29 60.03 46.43 
CORR-B 38.52 33.33 69.14 67.77 40.51 

3 

ORGN 57.43 22.79 66.53 64.57 55.43 
ORGN-B 44.27 33.33 69.42 67.99 42.47 

CORR 57.40 22.53 68.26 66.33 55.59 
CORR-B 44.80 33.33 73.01 71.68 43.91 

4 

ORGN 55.32 33.78 62.95 62.60 53.73 
ORGN-B 41.65 33.33 64.05 63.57 41.37 

CORR 56.72 34.37 65.35 66.97 55.32 
CORR-B 43.71 33.33 66.40 67.15 43.61 

5 

ORGN 49.12 25.11 74.80 75.65 44.84 
ORGN-B 45.32 33.33 74.50 74.42 41.96 

CORR 48.95 26.02 78.99 77.33 49.08 
CORR-B 46.06 33.33 78.75 76.31 46.40 

6 

ORGN 43.89 12.32 63.14 65.44 43.69 
ORGN-B 40.37 33.33 60.14 58.30 37.37 

CORR 42.72 11.82 69.07 74.26 49.59 
CORR-B 43.90 33.33 66.85 67.63 45.96 

Mean 

ORGN 50.73 19.88 65.20 65.32 47.03 
ORGN-B 41.58 33.33 66.29 65.18 40.02 

CORR 50.57 19.94 68.48 68.71 49.78 
CORR-B 43.22 33.33 70.15 68.79 43.59 
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The results presented in Table 5.10 describe that VGGNets performed far better than 

the other networks for classification type evaluation. This result is in parallel with the 

regression type evaluation given in Table 5.8, as expected. 

5.5.2. Second Phase 

The results in the first phase showed that VGG16 is the winner by far among the other 

pre-trained networks (except VGG19) for both regression and classification tasks. 

Although the observations showed a slight difference between VGG16 and VGG19, 

the first place is not questionable in favor of VGG16. For this reason, VGG16 was 

used throughout this phase as the pre-trained CNN. 

The fine tuning was the major objective of this phase. For the sake of simplicity, the 

parameter search was carried out for regression type with only one LOSOCV dataset. 

The selection among the LOSOCV datasets was not performed in a random fashion. 

The dataset which has loss values closer to the mean loss of all datasets was chosen. 

The proximity evaluation was done by calculating the RMSE between the loss and the 

mean loss value. Since there are four different types of test, the average of the 

calculated proximities was performed over 4 different test types. Those calculated 

values are given in Table 5.11. 

 

Table 5.11. LOSOCV Dataset Mean Proximity Evaluation 

  TEST LOSS ROOT SQUARE OF (LOSS-MEAN LOSS) 

LOSOCV# ORGN ORGN-B CORR CORR-B ORGN ORGN-B CORR CORR-B MEAN 

1 0.303 0.321 0.276 0.300 0.044 0.014 0.043 0.006 0.027 
2 0.324 0.315 0.310 0.302 0.023 0.020 0.009 0.005 0.015 
3 0.275 0.280 0.253 0.253 0.072 0.055 0.065 0.054 0.062 
4 0.377 0.372 0.343 0.340 0.030 0.037 0.024 0.033 0.031 
5 0.351 0.319 0.306 0.283 0.004 0.016 0.013 0.024 0.014 

6 0.452 0.404 0.426 0.362 0.105 0.068 0.107 0.056 0.084 
Mean Loss 0.347 0.335 0.319 0.307           
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It was observed that the dataset, LOSOCV-5, is the winner of the six in the competition 

of closeness to the mean. For this reason, LOSOCV-5 dataset was used for fine tuning 

network parameters. 

5.5.2.1. Normalization 

The original paper of VGGNet [29] suggested to use input normalization per channel. 

This was implemented in this step by taking the average of each channel among all 

the training images. Then, the difference between image data and mean value was fed 

to the processes. 

Since the images are the inputs of the network in this study, standardization was not 

used and in fact it is not required since the input values are already restricted. 

Adding a batch normalization layer after each fully connected layer was also studied. 

The default parameters of batch normalization layer of “Keras API” were not 

modified. Then, the training performance was also compared after implementing both 

input and batch normalization.  

For this step, some parameters of the training process are also modified compared to 

the first phase. The modified parameters are given in Table 5.12. 

 

Table 5.12. Modified Network Parameters 

Feature Value 

FC-1 Size:256, Activation: ReLU, Dropout=0.20 
FC-2 Size:256, Activation: ReLU, Dropout=0.20 

Early Stop Callback Monitor: Validation Loss, Patience:8 
 

The result comparison between “no normalization” and several normalization 

combinations for LOSOCV-5 dataset is given in Table 5.13.   
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Table 5.13. Different Normalization Performance Comparison of LOSOCV-5 

TEST LOSS (MAE) 

Eval. Type NN IN BN IN + BN 

ORGN 0.351 0.388 0.330 0.324 

ORGN-B 0.319 0.343 0.330 0.309 

CORR 0.306 0.359 0.294 0.279 

CORR-B 0.283 0.318 0.298 0.273 
NN: No Normalization, IN: Input Normalization, BN: Batch Normalization 

 

It was observed that implementing both input and batch normalization increased the 

performance of the network. Applying a single normalization did not perform better. 

This makes sense in such a way that normalization takes effect when implemented in 

all applicable layers. Thus, it was decided to use both normalizations for the next step. 

The resulting network structure is illustrated in Figure 5.15. 
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Figure 5.15. Network Structure with Normalization 

 

5.5.2.2. Fully Connected Layers 

Up to this point, the general structure of fully connected layers was not modified such 

that two FC layers were used with number of nodes, 256. In this step, the performances 

of some other combinations of FC layers were studied. 
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The results of 9 different configurations of FC layers are given in Table 5.14. 

 

Table 5.14. Fully Connected Layer Configuration Performances  

FC Layer Configuration LOSOCV-5 TEST LOSS (MAE) 

# Layers Layer Size ORGN ORGN-B CORR CORR-B 

1 128 0.343 0.320 0.300 0.287 
1 256 0.325 0.313 0.292 0.285 
1 512 0.320 0.317 0.284 0.289 
2 128 0.353 0.327 0.308 0.291 
2 256 0.324 0.309 0.279 0.273 

2 512 0.321 0.312 0.281 0.279 
3 128 0.391 0.351 0.351 0.319 
3 256 0.314 0.311 0.273 0.279 
3 512 0.312 0.315 0.268 0.281 

 

Although small differences were observed on the performances of different fully 

connected layer structures, the configuration of 2-layer with 256 nodes structure was 

still the best one. For this reason, this configuration was chosen for the next step.  

5.5.2.3. Learning Rate and Activation Function 

Up to this step, ReLU had been used for the activation functions of fully connected 

layers, and a fixed value of 1e-4 had been used for the learning rate of Adam optimizer. 

In this step, some other combinations of activations functions and learning rate 

parameters were studied. For learning rate, 4 different values (1e-2, 1e-3, 1e-4, 1e-5 

and 1e-6) and for activation function, 3 different Leaky ReLU functions with alpha 

(slope of negative range) values of 0, 0.1 and 0.2 were used. It is better to state that a 

Leaky ReLU with alpha equals to zero corresponds to classical ReLU function. 

The results of 15 different combinations of learning rate and activation functions are 

given in Table 5.15. 
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Table 5.15. Learning Rate and Activation Function Combination Performances 

PARAMETERS LOSOCV-5 TEST LOSS (MAE) 

Adam 

Optimizer 

Learning Rate 

Leaky 

ReLU 

Alpha 

ORGN ORGN-B CORR CORR-B 

1.E-02 0.0 0.331 0.324 0.294 0.294 
1.E-02 0.1 0.317 0.298 0.292 0.280 
1.E-02 0.2 0.311 0.300 0.280 0.276 
1.E-03 0.0 0.359 0.328 0.316 0.296 
1.E-03 0.1 0.293 0.292 0.258 0.265 

1.E-03 0.2 0.304 0.295 0.268 0.266 
1.E-04 0.0 0.324 0.309 0.279 0.273 
1.E-04 0.1 0.291 0.297 0.262 0.273 
1.E-04 0.2 0.323 0.301 0.290 0.274 
1.E-05 0.0 0.360 0.331 0.324 0.304 
1.E-05 0.1 0.315 0.296 0.278 0.266 
1.E-05 0.2 0.355 0.330 0.305 0.290 
1.E-06 0.0 0.359 0.334 0.316 0.298 
1.E-06 0.1 0.350 0.325 0.303 0.288 
1.E-06 0.2 0.361 0.328 0.309 0.289 

 

It was observed that the best result was achieved with the learning rate of 1e-3 and 

Leaky ReLU alpha parameter of 0.1. This configuration was also compared with 2 

different configurations in which learning decay parameter was set to 5e-5 value 

instead of using default 0.0 value. 

The results of inserting learning rate decay and performance comparison of 3 different 

configurations are given in Table 5.16. 
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Table 5.16. Learning Rate Decay Parameter Comparison 

PARAMETERS LOSOCV-5 TEST LOSS (MAE) 

Adam 

Optimizer 

Learning 

Rate 

Leaky 

ReLU 

Alpha 

Learning 

Rate 

Decay 

ORGN ORGN-B CORR CORR-B 

1.E-03 0.1 0.0E+00 0.293 0.292 0.258 0.265 

1.E-03 0.1 5.0E-05 0.314 0.307 0.283 0.281 
1.E-02 0.1 5.0E-05 0.305 0.292 0.272 0.269 

 

It was observed that inserting learning rate decay did not change the best result. Thus, 

1e-3 was used for learning rate without additional decay parameter for the next step 

and also Leaky ReLU with an alpha value of 0.1 was used as an activation function. 

5.5.2.4. Regression Network Results 

The summary of the resulting regression network, designated as 𝑁𝑅
(1), after studying 

different network parameters is given in Table 5.17. 
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Table 5.17. 𝑁𝑅

(1)
, Network Summary 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: No 
FC-1 Size:256, Activation: Leaky ReLU(α=0.1) 

Dropout=0.2 
FC-2 Size:256, Activation: Leaky ReLU(α=0.1) 

Dropout=0.2 
Optimizer Adam (𝜂=1e-3, β1=0.9, β2=0.999, decay=0) 

Loss Function MAE 
Early Stop Callback Monitor: Validation Loss, Patience:8 

BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0] 
Normalization Input Normalization, Batch Normalization 

 

 

The other LOSOCV datasets were also trained with the network 𝑁𝑅
(1) in order to get 

the mean cross-validation result. These results are given in Table 5.18. 

 

Table 5.18. 𝑁𝑅

(1)
, Cross Validation Results 

LOSOCV# 

TEST LOSS (MAE) 

ORGN ORGN-B CORR CORR-B 

1 0.304 0.343 0.284 0.317 
2 0.300 0.297 0.284 0.280 
3 0.307 0.307 0.294 0.289 
4 0.426 0.406 0.386 0.366 
5 0.293 0.292 0.258 0.265 
6 0.376 0.396 0.324 0.324 

MEAN 0.334 0.340 0.305 0.307 
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It was observed that even though the results of LOSOCV-5 had shown an 

improvement, overall results did not show any improvement. This is an indication that 

the fine-tuning of the fully-connected layers has limited impact and is highly specific 

to the selected test dataset.     

The BINS of the image generator of the network 𝑁𝑅
(1) were changed to 8 divisions ([0, 

0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]) and the resulting network is called 𝑁𝑅
(2). The 

cross-validation results of 𝑁𝑅
(2) are given in Table 5.19. 

 

Table 5.19. 𝑁𝑅

(2)
, Cross Validation Results 

LOSOCV# 

TEST LOSS (MAE) 

ORGN ORGN-B CORR CORR-B 

1 0.288 0.353 0.270 0.327 
2 0.313 0.325 0.297 0.306 
3 0.306 0.307 0.291 0.289 
4 0.363 0.344 0.330 0.315 
5 0.319 0.293 0.284 0.270 
6 0.396 0.385 0.352 0.333 

MEAN 0.331 0.335 0.304 0.307 
 

No remarkable improvement was observed by increasing the divisions of the BIN list 

of the image generator. This shows that four divisions used for balancing the mini-

batches are sufficient for our dataset. 

The convolutional layers of the networks 𝑁𝑅
(1) and 𝑁𝑅

(2) are not trainable. A different 

network configuration, designated as 𝑁𝑅
(3), was also studied with changing the 

property of the convolutional layers as trainable. The summary of 𝑁𝑅
(3) is given in 

Table 5.20. 
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Table 5.20. 𝑁𝑅

(3)
, Network Summary 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: Yes 
FC-1 Size:256, Activation: Leaky ReLU(α=0.1) 

Dropout=0.2 
FC-2 Size:256, Activation: Leaky ReLU(α=0.1) 

Dropout=0.2 
Optimizer Adam (𝜂=1e-5, β1=0.9, β2=0.999, decay=0) 

Loss Function MAE 
Early Stop Callback Monitor: Validation Loss, Patience:8 

BINS for Image Generators [0, 0.5, 1.0, 1.5, 2.0] 
Normalization Input Normalization, Batch Normalization 

 

The cross-validation results of 𝑁𝑅
(3) are given in Table 5.21. 

 

Table 5.21. 𝑁𝑅

(3)
, Cross-Validation Results 

LOSOCV# 

TEST LOSS (MAE) 

ORGN ORGN-B CORR CORR-B 

1 0.272 0.314 0.256 0.294 
2 0.274 0.276 0.264 0.266 
3 0.272 0.271 0.265 0.259 
4 0.309 0.316 0.277 0.286 
5 0.296 0.276 0.269 0.253 
6 0.331 0.355 0.295 0.310 

MEAN 0.293 0.301 0.271 0.278 
 

A performance increase was achieved by setting convolutional layers as trainable. 

This is an expected result since the dataset used in this study is dissimilar to the 

ImageNet dataset which was used to train the VGG16 network. 
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5.5.2.5. Regression Network Multi-Camera Evaluation 

For multi-camera evaluation, the average value of the prediction values belonging to 

the same moment was calculated. Then, the MAE of each LOSOCV dataset was 

calculated. The equal-weighted (balanced) MAE (designated with suffix, “B”) was 

also calculated by grouping the scores first, calculating the MAE within the groups 

and then taking the average of the MAEs of the groups. 

The multi-camera cross-validation results of 𝑁𝑅
(1) are summarized in Table 5.22. 

 

Table 5.22. 𝑁𝑅

(1)
, Multi-Camera Cross-Validation Results 

  TEST LOSS (MAE) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 0.252 0.322 0.240 0.295 
2 0.255 0.268 0.241 0.254 
3 0.268 0.271 0.264 0.267 
4 0.404 0.361 0.369 0.332 
5 0.253 0.244 0.222 0.226 
6 0.316 0.354 0.279 0.301 

MEAN 0.291 0.303 0.269 0.279 
 

The multi-camera cross-validation results of 𝑁𝑅
(3) are summarized in Table 5.23. 
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Table 5.23. 𝑁𝑅

(3)
, Multi-Camera Cross-Validation Results 

  TEST LOSS (MAE) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 0.229 0.296 0.220 0.272 
2 0.237 0.254 0.235 0.250 
3 0.247 0.250 0.245 0.245 
4 0.277 0.269 0.254 0.251 
5 0.285 0.252 0.260 0.235 
6 0.297 0.337 0.278 0.307 

MEAN 0.262 0.276 0.249 0.260 
 

The multi-camera cross-validation results of  𝑁𝑅
(2) are not given, since no considerable 

performance change was observed compared to the network, 𝑁𝑅
(1). 

As expected, performance increase was achieved using multi-camera method for 

regression type evaluation. The reason is that taking average of the predictions of 

multiple frames leads to a decrease in error. 

The correlation coefficient, “Pearson’s r”,  analysis was carried out for the network, 

𝑁𝑅
(3), using the multi-camera method predictions. The results of this study are 

presented in Table 5.24. 

 

Table 5.24. 𝑁𝑅

(3)
, Multi-Camera Correlation Analysis 

LOSOCV# 1 2 3 4 5 6 Overall 

Pearson's r 0.80 0.86 0.86 0.87 0.92 0.86 0.86 

 

A complete set of statistics belonging to TEST-CORR dataset for multi-camera 

evaluation of the network, 𝑁𝑅
(3), is given in Appendix A. For clarification, the 

prediction related statistics of LOSOCV-1 TEST-CORR is given as an example in 

Figure 5.16. The distribution of both manual scores and the predictions are given in 



 

 
 

94 
 

Figure 5.16(a) and Figure 5.16(b). The calculated MAE and the number of moments within 

different score groups along with the overall MAE are given in Figure 5.16(c). The 

calculated ME and the number of moments within different score groups along with 

the overall ME are given in Figure 5.16(d). In Figure 5.16(e) and Figure 5.16(f), the error 

distribution is given in two different ways. In the former one, a probabilistic histogram 

is used with 20 divisions. However, in the latter one, a stacked histogram with 12 

divisions is used to give more detail for the error based on score groups.    
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.16. 𝑁𝑅

(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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5.5.2.6. Regression Output to Binary Classification Results 

Since the result of the regression network is a scalar value, it may be desired to analyze 

the classification performance of the regression network by mapping the scalar to the 

classification score ranges. For this purpose, the multi-camera results of two 

regression networks, 𝑁𝑅
(1) and 𝑁𝑅

(3), were mapped to the binary (pain/no-pain) 

classification ranges (scores lower than 0.5 were designated as no-pain and scores 

higher than or equal to 0.5 were designated as pain).  

The multi-camera cross-validation results of 𝑁𝑅
(1) after regression to binary conversion 

are summarized in Table 5.25. 

 

Table 5.25. 𝑁𝑅

(1)
, Regression to Binary Classification, Multi-Camera Cross-Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 92.00 55.57 92.10 61.07 
2 84.44 66.69 85.71 69.51 
3 82.92 62.35 85.82 70.83 
4 70.78 54.59 73.51 59.51 
5 86.45 73.81 90.91 84.85 
6 90.26 54.66 91.49 64.27 

MEAN 84.48 61.28 86.59 68.34 
 

The multi-camera cross-validation results of 𝑁𝑅
(3) after regression to binary conversion 

are summarized in Table 5.26. 
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Table 5.26. 𝑁𝑅

(3)
, Regression to Binary Classification, Multi-Camera Cross-Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 92.615 58.622 92.718 63.438 
2 85.830 70.455 86.063 73.232 
3 86.107 71.527 87.844 76.973 
4 80.519 71.885 82.468 76.335 
5 86.096 72.214 88.770 78.844 
6 89.922 52.597 90.370 55.663 

MEAN 86.848 66.217 88.039 70.747 
 

For all networks, discretizing regression to binary output presented very poor 

performance considering the balanced test cases. The reason is that the slight output 

value change of regression network may easily cause a wrong prediction for 

classification evaluation after discretizing. The higher results of the other two test 

cases were not taken into consideration here, since the accuracy differences between 

them and their corresponding balanced test cases are quite much.  

5.5.2.7. Binary Classification Network Results 

Different score mappings were studied for binary (pain/no-pain) classification. In 

other words, different separations from the linear pain scale were used in order to 

match scores to binary designation.  

For the network, designated as 𝑁𝐵𝐶
(1), no gap is used for binary-score mapping. In other 

words, all the images are used while training without any filtering based on scores. 

The summary of the network, 𝑁𝐵𝐶
(1), is given in Table 5.27.  
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Table 5.27. 𝑁𝐵𝐶

(1)
, Network Summary 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: No 
FC-1 Size:128, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
FC-2 Size:18, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0) 

Loss Function Binary Cross-entropy 
Early Stop Callback Monitor: Validation Accuracy, Patience:8 

Binary-Score Mapping No-Pain(0): score<0.5     Pain(1): score≥0.5 
Normalization - 

 

The binary classification performance summary of the network 𝑁𝐵𝐶
(1) for all cross-

validation tests is given in Table 5.28. 

 

Table 5.28. 𝑁𝐵𝐶

(1)
, Cross Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 80.90 73.57 83.72 76.61 
2 72.49 76.43 73.17 78.57 
3 79.54 78.46 80.46 80.79 
4 75.83 73.52 77.11 76.23 
5 82.79 83.02 84.09 85.92 
6 79.98 69.61 82.52 75.47 

MEAN 78.59 75.77 80.18 78.93 
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The images having the scores in the range, [0.5, 1.0), were discarded in training for a 

different network configuration designated as 𝑁𝐵𝐶
(2).  The summary of the network, 

𝑁𝐵𝐶
(2), is given in Table 5.29. 

 

Table 5.29. 𝑁𝐵𝐶

(2)
, Network Summary 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: No 
FC-1 Size:128, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
FC-2 Size:18, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0) 

Loss Function Binary Cross-entropy 
Early Stop Callback Monitor: Validation Accuracy, Patience:8 

Binary-Score Mapping No-Pain(0): score<0.5     Pain(1): score≥1.0 
Normalization - 

 

The binary classification performance summary of the network 𝑁𝐵𝐶
(2) for all cross-

validation tests is given in Table 5.30. 
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Table 5.30. 𝑁𝐵𝐶

(2)
, Cross Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 81.43 74.28 83.34 74.75 
2 68.46 77.80 68.92 79.16 
3 79.58 79.27 80.21 80.84 
4 76.04 72.63 77.06 74.80 
5 77.98 82.78 80.25 85.35 
6 73.65 71.78 77.36 80.01 

MEAN 76.19 76.42 77.86 79.15 
 

The network, 𝑁𝐵𝐶
(2), was also tested with discarding the images having the scores in the 

range, [0.5, 1.0), as in its training process. The binary classification performance 

summary of the network 𝑁𝐵𝐶
(2) for all cross-validation tests with discarding those 

images is given in Table 5.31. 

 

Table 5.31. 𝑁𝐵𝐶

(2)
, Cross Validation Results, Discarded Score Range [0.5,1.0)  

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 85.53 76.65 87.30 77.04 
2 80.26 84.49 80.95 85.93 
3 87.29 84.87 88.44 86.57 
4 78.17 77.10 81.16 80.46 
5 85.52 87.55 88.09 90.34 
6 76.91 73.72 81.34 82.25 

MEAN 82.28 80.73 84.55 83.77 
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The ignored score region was widened for a different network configuration 

designated as  𝑁𝐵𝐶
(3), the images having the scores in the medium score range [0.5, 1.5) 

were discarded in training process.   

The summary of the network, 𝑁𝐵𝐶
(3), is given in Table 5.32.  

 

Table 5.32. 𝑁𝐵𝐶

(3)
, Network Summary 

Feature Value 

Input Size n x 224 x 224 x 3 
Batch Size 32 

CNN Trainable: No 
FC-1 Size:128, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
FC-2 Size:18, Activation: Leaky ReLU(α=0.1) 

Dropout=0.5 
Optimizer Adam (𝜂=1e-4, β1=0.9, β2=0.999, decay=0) 

Loss Function Binary Cross-entropy 
Early Stop Callback Monitor: Validation Accuracy, Patience:8 

Binary-Score Mapping No-Pain(0): score<0.5     Pain(1): score≥1.5 
Normalization - 

 

 

The binary classification performance summary of the network 𝑁𝐵𝐶
(3) for all cross-

validation tests is given in Table 5.33. 
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Table 5.33. 𝑁𝐵𝐶

(3)
, Cross Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 67.04 75.18 70.46 78.74 
2 60.94 73.52 62.21 75.92 
3 66.57 75.79 69.07 78.53 
4 66.25 72.30 67.28 73.85 
5 72.56 79.73 74.54 82.14 
6 59.76 70.10 62.82 76.86 

MEAN 65.52 74.44 67.73 77.67 
 

The network, 𝑁𝐵𝐶
(3), was also tested with discarding the images having the scores in the 

range, [0.5, 1.5), as in its training process. The binary classification performance 

summary of the network 𝑁𝐵𝐶
(3) for all cross-validation tests with discarding those 

images is given in Table 5.34. 

 

Table 5.34. 𝑁𝐵𝐶

(3)
, Cross Validation Results, Discarded Score Range [0.5, 1.5) 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 87.34 86.34 90.77 89.86 
2 89.12 89.84 91.17 92.34 
3 93.63 93.70 96.20 96.23 
4 90.89 90.87 94.90 94.92 
5 94.28 94.26 96.97 97.13 
6 85.77 85.09 90.89 92.49 

MEAN 90.17 90.02 93.48 93.83 
 

It is seen that the classification performance increases if the images within the medium 

score range are discarded for test dataset. This indicates that the network could 

perform better if the ambiguous images are removed.   
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5.5.2.8. Binary Classification Network Multi-Camera Evaluation 

For multi-camera evaluation, the average value of the prediction values (probabilities 

for pain/no-pain) belonging to the same moment was calculated. Then, the overall 

accuracy of each LOSOCV dataset was calculated. The equal-weighted (balanced) 

accuracy (designated with suffix, “B”) was also calculated by first grouping the scores, 

calculating the accuracy within the groups and then taking the average of the accuracy 

values of the groups. 

The multi-camera cross-validation results of 𝑁𝐵𝐶
(1), 𝑁𝐵𝐶

(2), and 𝑁𝐵𝐶
(3) are summarized in 

Table 5.35, Table 5.36, and Table 5.37, respectively. 

 

Table 5.35. 𝑁𝐵𝐶

(1)
, Multi-Camera Cross-Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 87.20 75.40 87.40 75.50 
2 79.20 83.50 78.20 83.80 
3 86.40 85.30 85.40 84.60 
4 80.40 75.80 79.90 77.30 
5 90.00 91.10 88.80 91.10 
6 88.40 70.00 88.90 79.70 

MEAN 85.27 80.18 84.77 82.00 
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Table 5.36. 𝑁𝐵𝐶

(2)
, Multi-Camera Cross-Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 87.10 80.10 87.50 77.60 
2 72.80 83.20 71.80 82.60 
3 85.40 85.10 84.40 84.80 
4 81.30 75.70 80.10 76.70 
5 83.40 88.70 83.20 88.80 
6 82.20 77.80 82.60 84.20 

MEAN 82.03 81.77 81.60 82.45 
 

 

Table 5.37. 𝑁𝐵𝐶

(3)
, Multi-Camera Cross-Validation Results 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 72.10 83.00 74.40 82.10 
2 62.10 77.20 63.10 77.70 
3 68.90 79.60 70.00 80.10 
4 67.30 75.50 67.40 75.70 
5 75.60 83.90 75.60 83.90 
6 64.20 78.60 62.60 77.70 

MEAN 68.37 79.63 68.85 79.53 
 

As expected, performance increase was achieved using multi-camera method for 

classification type evaluation (similar to regression case). The reason is that taking 

average of the predictions of multiple frames leads to an overall increase in prediction 

accuracy. 

The network, 𝑁𝐵𝐶
(2) is also tested with discarding the moments having the scores in the 

range, [0.5, 1.0), as in its training process. Similarly, the network, 𝑁𝐵𝐶
(3), is tested with 

discarding the moments having the scores in the range [0.5, 1.5). The binary 

classification multi-camera performance summary of the networks, 𝑁𝐵𝐶
(2) and  𝑁𝐵𝐶

(3),  
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for all cross-validation tests with discarding those moments are given in Table 5.38 and 

Table 5.39, respectively. 

 

Table 5.38. 𝑁𝐵𝐶

(2)
, Multi-Camera Cross-Validation Results, Discarded Scores [0.5, 1.0)  

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 90.60 82.10 90.90 79.60 
2 85.60 90.40 84.50 89.80 
3 92.80 90.30 92.40 90.20 
4 81.40 79.30 83.40 81.80 
5 91.20 93.50 91.40 93.90 
6 84.60 79.30 86.60 86.40 

MEAN 87.70 85.82 88.20 86.95 
 

 

Table 5.39. 𝑁𝐵𝐶

(3)
, Multi-Camera Cross-Validation Results, Discarded Scores [0.5, 1.5) 

  TEST ACCURACY (%) 

LOSOCV# ORGN ORGN-B CORR CORR-B 

1 93.10 94.20 94.20 92.90 
2 92.90 94.50 93.60 95.00 
3 98.30 98.30 98.00 97.90 
4 98.20 98.10 98.70 98.70 
5 97.50 97.90 98.60 98.80 
6 94.40 95.30 93.80 95.00 

MEAN 95.73 96.38 96.15 96.38 
 

5.5.2.9. Overall Regression Networks Comparison 

The overall regression output performance comparison between the developed 

network models is given in Table 5.40. 
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Table 5.40. Overall Regression Networks Comparison 

    TEST MAE (%) 

Network Multi-Camera ORGN ORGN-B CORR CORR-B 

𝑁𝑅
(3) Yes 0.262 0.276 0.249 0.260 

𝑁𝑅
(3) No 0.293 0.301 0.271 0.278 

𝑁𝑅
(1) Yes 0.291 0.303 0.269 0.279 

𝑁𝑅
(1) No 0.334 0.34 0.305 0.307 

𝑁𝑅
(2) No 0.331 0.335 0.304 0.307 

 

As seen in Table 5.40, the network, 𝑁𝑅
(3), performed better than the others. The most 

important difference of this network is that the convolutional layers were set as 

trainable. Additionally, it is observed that multi-camera method is useful to increase 

the performance of the network one step further.  

5.5.2.10. Overall Binary Classification Comparison 

The overall binary classification performance comparison between the developed 

network models is given in Table 5.41. 
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Table 5.41. Overall Binary Classification Comparison 

     
TEST ACCURACY (%) 

Network Multi-Camera 
Discarded 

Scores 
ORGN ORGN-B CORR CORR-B 

𝑁𝐵𝐶
(3) Yes [0.5, 1.5) 95.73 96.38 96.15 96.38 

𝑁𝐵𝐶
(3) No [0.5, 1.5) 90.17 90.02 93.48 93.83 

𝑁𝐵𝐶
(2) Yes [0.5, 1.0) 87.70 85.82 88.20 86.95 

𝑁𝐵𝐶
(2) No [0.5, 1.0) 82.28 80.73 84.55 83.77 

𝑁𝐵𝐶
(2) Yes - 82.03 81.77 81.60 82.45 

𝑁𝐵𝐶
(1) Yes - 85.27 80.18 84.77 82.00 

𝑁𝐵𝐶
(3) Yes - 68.37 79.63 68.85 79.53 

𝑁𝐵𝐶
(2) No - 76.19 76.42 77.86 79.15 

𝑁𝐵𝐶
(1) No - 78.59 75.77 80.18 78.93 

𝑁𝐵𝐶
(3) No - 65.52 74.44 67.73 77.67 

𝑁𝑅
(3) Yes - 86.85 66.22 88.04 70.78 

𝑁𝑅
(1) Yes - 84.48 61.28 86.59 68.34 

 

It is seen from the Table 5.41 that discarding the medium score range from the test 

dataset provides a great increase in the binary classification accuracy. However, for 

most practical implementations, this evaluation type (discarding some images from 

test dataset) may not be desired or may not be a valid method. For this reason, more 

emphasis was given on the other evaluation results within this study. Among those, 

the network, 𝑁𝐵𝐶
(2), achieved the best accuracy, 82.45%, using the multi-camera 

method for one of the balanced test cases. This result also proved that using multi-

camera method could provide a considerable increase in the classification 

performance of the network.  
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CHAPTER 6  

 

6. CONCLUSIONS 

 

The automation of the MGS does not have a long history, since MGS was first 

introduced in 2012 [1]. For this reason, there have been only a few studies in this area. 

This study is one of those studies starting with a motivation that the power of 

convolutional neural networks could perfectly fit the automation task of MGS. 

As similar to other image recognition tasks, the most important part of this study is to 

collect the dataset required for training. Most of the workload was spent on the dataset 

construction in order to come up with a reliable and feasible solution. The tasks were 

separated such that they could be considered as building blocks of a complete solution. 

First, the procedure and the physical environment of the mouse experiment were 

described including how the video recordings were taken. Then, the video processing 

task was explained in detail. The algorithms and methods for the automation of the 

dataset construction for manual coding were given. After that, manual coding process 

was introduced. Having the coded moments, image generation task including the data 

augmentation function was described. The method for validating the results and 

constructing the training datasets according to this method were stated just before 

describing proposed training and evaluation plan. 

In the experimental results, first, the specifications of the 9 video files of 7 different 

experiments used in this study were given. Then, the general statistics of the 

constructed datasets for manual scoring process were included. After manual scoring, 

the statistical data dependent on the scores were also given for each experiment. 

Since each moment was scored by only one expert, determining the manual coding 

error rate is significant. For this purpose, the error distribution was analyzed using 
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duplicated moments’ scores, then MAE and RMSE were calculated as 0.169 and 

0.251, respectively.  

For the first phase of the training process, 5 different CNN architectures were 

compared with roughly-defined parameters. For regression type, the cross-validation 

results of VGG16 and VGG19 were way ahead of the others and VGG16 was slightly 

better than VGG19 with overall MAE (test loss) of 0.335. 

After regression type comparison, these 5 CNN architectures were also compared by 

means of classification performances. 3-Alternative forced network architecture were 

created and trained with rough parameters. The winner of the five was observed as 

VGG16 with overall cross-validation test accuracy of 66.3%. 

All the five CNNs were previously trained using the same database, ImageNet. The 

reason that VGGNets performed far better than the others may be deeper networks are 

not required for the dataset used in this study. Another reason could be the selected 

parameters well-suited to the VGGNets by chance. This case has too little possibility 

as several training iterations were executed with different parameters. 

At the initial part of the second phase, the performances of several different network 

configurations were compared using single cross-validation set. Normalization 

options (input normalization and batch normalization), the size of the fully connected 

layers, learning rate, and different activation functions were studied. Although some 

improvement was achieved by changing hyper-parameters for this single cross-

validation set, it was observed that overall cross-validation result did not show any 

improvement. Then, a different configuration was implemented that the convolutional 

layers were also trained along with the fully connected layers. A performance increase 

was observed with this configuration that the overall CV MAE was improved to 0.278 

for one of the balanced test cases. This value was further improved to 0.26 by 

incorporating the multi-camera method. If a single CV set is considered, a minimum 

MAE of 0.226 was achieved for one of the balanced test cases with multi-camera 

method. 
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Even though an improvement was observed for the selected CV dataset by fine tuning 

parameters, the overall CV results did not improve until the convolutional layers were 

set as trainable. In fact, this is an indication of dissimilarity between the two datasets, 

ImageNet and the one used in this study. 

Among all the previous studies related to the automation of MGS, regression analysis 

was not carried out. For this reason, it is not possible to make a comparison in this 

manner. However, the internal scoring consistency of an expert could be used as a 

reference of how the network performs. As stated before, each data was scored by 

only one expert and the average MAE of the manual scoring was calculated as 0.169 

using randomly chosen duplicated data. On the other hand, the analysis of inter-scorer 

reliability was not performed by any means. It is possible that the manual scoring 

consistency may worsen if multiple scorers were considered. For this reason, 

achieving an overall CV MAE of 0.26 is quite promising for practical implementations 

of MGS automation.  

Within the four test cases, even though the unbalanced test data presents the best 

performance, the balanced one should be taken account. This is because a higher 

performance of an imbalanced dataset may hide its poor performance when faced with 

a different dataset. Moreover, it is also desired to have the numbers (performances of 

different test cases) closer to each other, since distant results may be an indication of 

poor performance specific to some input space. 

Considering the full automation of MGS, the results of the original test dataset is more 

important than that of corrected, because human intervention was required to construct 

the corrected version of the dataset even it stayed at the lowest level. However, the 

intervention in this study was limited to the detection results. This means that, it is 

possible to achieve better results by enhancing the mouse face detection process.      

For the regression results, using the multi-camera method improved the performance 

slightly. Even this slight improvement worth using multi-camera method, this is 

because it was usually hard or not possible to improve the network performance 
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beyond some value by fine tuning hyper-parameters. Additionally, it is possible that 

the behavior of the network might prevent the overall result benefiting from the multi-

camera method partially. It was observed by analyzing the ME and MAE distributions 

that the regression networks usually tried to squeeze the outputs into the middle score 

range which results in biased errors rather than a uniformly distributed errors. As a 

result, the multi-camera method lacks improving the performance when it faces with 

biased errors. 

The outputs of the regression networks were also discretized in order to obtain binary 

classification result. Using this method, a maximum overall CV accuracy of 70.75% 

was achieved with a balanced test dataset for binary classification. 

The result of this method ranked at the bottom for binary classification performance. 

It was also observed that the gap between the results of the balanced dataset and its 

unbalanced one is quite much which may indicate that one of the classes is poorly 

handled by the model. The poor performance of this method may be caused by the 

training process that the cost function of the regression network does not take a higher 

value when the output slightly exceeds the classification border.  

For binary classification network, three different configurations were implemented. In 

the first one, all the images are used in training without any filtering based on scores. 

Using this network with multi-camera method, 82% overall CV accuracy was 

achieved for one of the balanced test cases. Considering a single CV set, a maximum 

of 91.10% accuracy was observed for the balanced test cases with multi-camera 

method. 

In the second binary network configuration, the images belonging to the score ranges 

[0.5, 1.0) were discarded. Using this configuration with multi-camera method, 82.45% 

overall CV accuracy was achieved. 

For the last binary network configuration, the medium pain score range, [0.5, 1.5), was 

discarded while training. With this configuration, 79.53% overall CV accuracy was 

achieved. 
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For the binary classification results, the performance improvement using the multi-

camera method is much more apparent than that of regression results. An accuracy 

increase of almost 3% was observed for most of the cases. It is estimated that the 

increase amount would go up if the overall accuracy without multi-camera method is 

further improved acting as a positive feedback. 

It was observed that, discarding a specific score range for training may improve the 

overall performance of the classification. With discarding a score range around the 

classification border, the ambiguous data would have been removed for the 

classification task. Thus, it would become easier for the network to separate the input 

space into desired classes. 

In the previous study [2], classification was performed for three classes and it was 

stated that 86% accuracy was achieved with a new test data. Considering the 91.10% 

binary classification accuracy of a single CV set in this study, the both results could 

be in a competence. It should be better to note that, in this study, the maturity of the 

trained network was always decided with a separate validation dataset. Thus, the 

resulting network was not positively biased against the test data in any circumstances. 

However, in the previous study [2], validation data was not used and the specifications 

of the stated test data was not given.  

In a later study [5], it was stated that 84% binary classification accuracy was achieved 

for a dataset that was not used in training. It was also reported that the accuracy was 

increased to 94% if low-confidence images were discarded from the dataset. On the 

other hand, none of the cross-validation methods was mentioned in the study. Thus, 

the binary classification accuracy, 91.10%, achieved for the LOSOCV-5 with multi-

camera method can be compared with the 84% accuracy of the study [5] and can be 

commented as a better result. Moreover, in our study, it was observed that discarding 

the medium score region from the test dataset provided an increase in the overall CV 

accuracy up to 96.38% for binary classification. For the same case, if the evaluation 
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is carried out on a single CV dataset, the best achieved binary classification accuracy 

was observed as 98.8%.      

In the latest work [4], some similar methods were adopted as in this study. It was stated 

that 10-fold cross-validation and leave-one-animal-out-cross validation methods were 

used. However, the dataset was split into two without having a separate validation 

dataset in contrast to this study. Multiple frame evaluation was mentioned like the 

multi-camera method, however, the required details (number of cameras, time 

accuracy, limitations, etc.) were not given in the paper. On the other hand, constructing 

and labeling the dataset was handled in a different way such that a minor group of 

images were manually labeled according to MGS. Then the major part of the dataset 

was automatically collected and labeled based on the specific time points rather than 

random time points. In this sense, the suitability of the resulting network for most of 

the practical implementations would become arguable. The study stated that 98.9% 

binary classification CV accuracy was achieved for one type of pain stimulation while 

the second best accuracy was achieved as 90.1% for another pain type. Assuming that 

similar cross-validation methods were implemented, the achieved binary classification 

overall CV accuracy in this study, 82.45%, is far behind the results given in that 

previous study [4]. However, considering the other differences such as dataset, pain 

stimulation and labeling methods, it would be unfair to state such a clear comparison. 

For one of the future works, the effect of the individual scores of the AUs on the 

prediction performance could be analyzed and the AUs having the worst performance 

would be discarded. As a second future work, the number of the experiments could be 

increased in order to totally eliminate the need of data augmentation and if possible, 

each data would be scored by multiple scorers. Similarly, training data could be 

increased by synthetically generating intermediate frames using multiple frames of six 

camcorders. For another future work, particularly for the regression network, the 

discontinuity problem for the scores of around 0 and 2 could be investigated and 

possible solutions could be implemented. Besides, mouse face detector and tracker 

models could be improved by using the ready-to-use data collected within the scope 
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of this study. In addition to those, the network structure could be altered such that 

multiple face images (belong to same instant) are fed simultaneously as input rather 

than applying them individually to the network. And as a final future work, an online 

scoring tool could be developed using the trained regression network in this study.  
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A. TEST-CORR Multi-Camera Dataset and the Network, 𝑵𝑹
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Figure A.1. 𝑁𝑅

(3) LOSOCV-1 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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Figure A.2. 𝑁𝑅

(3) LOSOCV-2 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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Figure A.3. 𝑁𝑅

(3) LOSOCV-3 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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Figure A.4. 𝑁𝑅

(3) LOSOCV-4 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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Figure A.5. 𝑁𝑅

(3) LOSOCV-5 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Groups 
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Figure A.6. 𝑁𝑅

(3) LOSOCV-6 TEST-CORR Multi-Camera Statistics; (a) Moment Score Distribution, 
(b) Moment Prediction Distribution, (c) MAE vs Score Groups and Number of Moments Distribution, 

(d) ME vs Score Groups and Number of Moments Distribution, (e) Error Distribution, (f) Error 
Distribution with Score Group
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