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ABSTRACT

INVESTIGATION OF TECTONIC STRUCTURES IN THE AREA
BETWEEN MARMARIS AND FETHIYE BAY

Yavuzoglu, Ayhan
Master of Science, Geological Engineering
Supervisor: Prof. Dr. Erdin Bozkurt

September 2019, 145 pages

The relationship between, and continuum of, the Fethiye-Burdur Fault Zone
(FBFZ) and Pliny-Strabo STEP fault zone are still debated and different school
propose different models on the subject. The area between Finike Bay in the
east and Datca Bay in the west along the Mediterranean Sea coastline forms
one of the key locations because it lies at the linkage of the two major structures.
This research therefore aims to address the existing controversies, shed light on
the structural features in the northeastern part of the STEP fault zone and

enlighten tectonic evolution of the STEP fault zone and the Anatolian Plate.

Seven 2D seismic sections (352 km long marine seismic data collected by MTA
Sismik-1 ) are interpreted not only to explaining tectonic evolution of post-
Messinian succession but also for understanding the active tectonic structures
in the present area. Seismic interpretation revealed two main deformation
periods until recent tectonic regime and presence of NE-SW striking faults in

the region.

Focal mechanism solution of the most representative 6 (six) major earthquake
are also carried out and the results indicate presence of mostly dextral also

sinistral faulting as well in study area.



Correlation of focal mechanism solution and seismic interpretation indicate
right-lateral strike-slip faulting is not compatible with the regional constraints
that suggest left-lateral strike-slip faulting both in the FBFZ and the Pliny-
Strabo STEP fault zone. This brings more confusion about the nature of faulting
in the region. It is therefore suggest more detailed work is required for further

discussion.

Keywords: 2D Seismics, Marmaris-Fethiye Bay, Active Tectonic, Focal mechanism

solution, Fethiye-Burdur Fault Zone and Pliny-Strabo STEP fault zone
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MARMARIS VE FETHIYE KORFEZLERI ARASININ TEKTONIK
YAPILARININ ARASTIRILMASI

Yavuzoglu, Ayhan
Yiiksek Lisans, Jeoloji Miithendisligi
Tez Danismani: Prof. Dr. Erdin Bozkurt

Eyliil 2019, 145 sayfa

Fethiye-Burdur fay zonu ile Pliny Strabo fay zonu’nun iligkisi ve devamliligi
tartismali olmakla birlikte bu konu hakkinda degisik arastirmaci gruplar
tarafindan degisik modeller 6nerilmistir. Batida Dat¢a korfezi ile doguda Finike
korfezi arasinda kalan alan iki ana yapinin baglantisinin bulundugu en 6nemli
lokasyonlardan biridir. Bu ¢alisma, hélihazirda bulunan tartismalarin iizerine
egilerek STEP fay zonu’nun kuzeybati kesiminin yapisal ozelliklerine 1s1k
tutmayr ve STEP fay zonu ile Anadolu plakasinin tektonik evrimini

aydinlatmay1 amaglamaktadir.

Yedi tane 2 boyutlu (MTA Sismik 1 ile 352 km uzunlugunda deniz sismik
verisi) sismik kesit sadece Messiniyen sonrasi ¢okellerin tektonik evrimini
degil, ayn1 zamanda alanda bulunan aktif tektonik yapilar1 anlamak amaci ile
yorumlanmigtir. Sismik yorumlar ile giincel tektonik rejime kadar olan zaman
diliminde iki 6nemli deformasyon siireci ve KD-GB dogrultulu faylar ortaya

konulmustur.

Calisma alanini en iyi temsil eden alt1 (6) 6nemli depremin odak mekanizma
¢cozlimlerinin de yapilmasiyla ¢ogunlukla sag yanal atimli faylarin yaninda sol

yanal atiml1 faylarin varligin1 da ortaya koymustur.

vil



Odak mekanizma ¢oziimleri ile sismik yorumlarin denestirilmesi sonucunda
ortaya ¢ikan sag-yanal atimli faylar, FBFZ ve Pliny-Strabo STEP fay zonlarinin
sol-yanal atiml1 hareketlerinin alansal kisitlamalart ile belirtilen yapiyla uyumlu
degildir. Bu durum boélge’de ki faylarin dogasi hakkinda daha fazla karisiklik
olusturmaktadir. Bu nedenle, daha ileri tartisma i¢in daha ayrintili ¢alisma

yapilmasi gerektigi onerilmektedir.

Anahtar Kelimeler: 2B sismikler, Marmaris-Fethiye korfezleri, Aktif Tektonik, Odak

mekanizma ¢6ziimii, Fethiye-Burdur Fay zonu ve Pliny-Strabo STEP fay zonu
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represents a deformation zone marked by a series of faults with normal displacement.
The step like geometry and a small half graben are pronounced. Rectangle shows the
location of lower diagram, which represents a detailed view of the boundary between
units 1 and 2 (2). Unit 1 in yellow color and, unit 2 in purple. See Figure 3.1 for
location of the SEISMIC SECHION. .....cevuiiiiiiiiiiiieiie et 44
Figure 3.5. (1) Interpretation of the seismic unit 2 along 42-km-long E —W seismic
section G. Dashed rectangle shows area of landslide and the best location where
truncated (erosional) surface is well exposed. Note the dramatic decrease in the
thickness of the unit 2. (2) Sea-floor geometry in the area between Marmaris and
Finike bays. See Figure 3.4 for more explanation. Note abrupt break in the slope
immediately to the south of seismic section G line; The erosional surface is interpreted
as a regional unconformity and is well observable in the area to the south of the section
G. unit 1 in yellow colour and , unit 2 in purple. See Figure 3.1 for location of the
SCISINIIC SECLIOML. ..uteuitieuiieeuteetie ettt et e et eteeeate e bt e sate e bt e sabeeseesabeebeeenseebeesneeanbeeenseennes 45
Figure 3.6. (a) Interpretation of the seismic unit 2 along 42-km-long E —W seismic
section G. The area of landslide is marked by dashed rectangle. See Figure 3.4 for
more explanation about the section; (b) bathymetric map of the study area from
Ocakoglu (2002). Dark undulated lines corresponds to NE-SW-trending offshore
normal (?) faults. Note that the faults overlap and form well-developed relay-ramp (s)
(purple ellipse area). Note also curving of fault segments into one another to define a
corrugated geometry (red ellipse area). The faults and the landslide are marked by
abrupt break in seafloor bathymetry (slope). See Figure 3.1 for location of the seismic
Yot 10 4 OSSO PR P RRPR 46
Figure 3.7. Interpretation of the seismic unit 3 along ca. 58-km-long NE-SW seismic
section A. (a) uninterpreted and (b) interpreted section. Note that some of the faults

(F122, F124 and F125) cut and displace (normal slip) the horizon 2 (lower boundary
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of the seismic unit 1) while F123 terminates within the unit 2. It appears that the faults
do not deform the sea floor. These faults define a typical horst-and-graben structure;
the graben, bounded by faults F123 and F124, appears as a relatively large-scale
asymmetric structure tilted towards northwest while bounding horst are narrow
features. See Figure 3.1 for location of the seismic Section...........cccveeeveeerieeenneennn. 48
Figure 3.8. Interpretation of the upper boundary of the seismic basement (horizon 4)
along 58-km-long NE-SW seismic section B. (a) uninterpreted and (b) interpreted
section. The basement displays lower frequency reflections which distinctly differ
from that of other overlying seismic units. Note that there are several faults with
normal motion cut and displace the horizon 4 only; the horst-and-graben structure
controls post-basement sedimentary environment. Other faults (F102, F101, F10 and
F29 appear to cut and displace the sea floor, thus attesting their possibly Holocene
ACEIVIEY . 1ot eutieeeitie e ettt e et e eetee ettt e e sttt e estteeessaeeensaee e saaeensseeansaeeansaeeanseeeanaeeeanneeennseeennneeenns 49
Figure 3.9. Distribution of Messinian evaporates in the eastern Mediterrenean (from
Roveri €t al., 2014D)......cioiiieieeeeeeee et e 50
Figure 3.10. (a) Structural interpretation of ca. 22-km-long W—E-trending seismic
section E. Dashed rectangle shows location of Figure ‘c’; (b) Multibeam bathymetric
data for the area between Marmaris Bay in the west and Finike Basin in the east (from
Ocakoglu 2012) and (c) zoomed picture of the dashed rectangle in ‘a’. Yellow arrows
indicate Dalaman river-related fluvial deposits. Note that fault F-101 appears to cut
and displace the sea floor but not the fault F-102, thus attesting the
Pleistocene—Holocene activity of the former. The displacement of the units 2, 3 and 4
are evident; the area between the two faults appears as small graben structure. Some
artifact noise, which is not removed during seismic data processing, appears bettween
CDP 500 and CDP 100. See Figure 3.1 for location of the seismic section. ............. 52
Figure 3.11. (a) Structural interpretation of ca. 33-km-long W—E-trending seismic
section F. Dashed rectangle shows location of Figure ‘c’; (b) zoomed picture of the
dashed rectangle in ‘a’ and (c) dipping surface generated from horizon 3 (green area)
to indicate faults F101 and F102. It is dissected by the two faults. White rectangle

indicates surface and horizon 3 intersection area. There contours between two bold
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red lines indicate 50 ms. Note that fault F-101 appears to have reverse dip-slip
displacement while F-102, normal motion. The displacement of the unit 2 is evident;
the down-thrown area between the two faults appear to be filled by sediments of the
unit 1. See Figure 3.1 for location of the seiSMiC SECtION. ........ccevververueerierienieeienne. 54
Figure 3.12. (a) Structural interpretation of ca. 42-km-long W—E-trending seismic
section G. Dashed rectangle shows location of Figure ‘c’. Two fault zones (A and B)
in red and yellow are interpreted. Two black faults indicate inactive structures.
Seabottom deformation in this area is an artifact and produced by seismic data
processing error. (b) Surface generated from horizon 1 to indicate fault zone B and (c)
zoomed picture of the dashed rectangle in ‘a’. Fault sticks indicated with yellow color
also appear in seismic sections G, D and B. Note reverse dip-slip component of fault
F106 and F14 in fault zone B (c). Note also the drag folds in the hanging walls of
faults F-10 and F-45 and narrow horst in-between. The fault F-101 appears displacing
the sea floor while faults F-10 and F-45 terminates within seismic unit 2; the
relationships are consistent with active and inactive nature of these structures,
respectively. See Figure 3.1 for location of the seismic section...........cccccecveveeenennee. 56
Figure 3.13. (a) Structural interpretation of ca. 85-km-long NE-SE-trending seismic
section D. Three basins and intervening ridges/horsts are defined. The basins are
bounded by oppositely dipping faults. (b) Close-up view of the basin A. Note that the
basin is internally deformed and comprises several sub basins and intervening narrow
ridges/horsts. The ridges and bounding faults (blue in color) appear to deform the unit
1 (yellow in color) and the sea floor, attesting recent activity along these structures.
(c) Close-up view of two almost vertical fault segments located to the northwest of
basin A. They also appear to deform almost horizontal sea bottom, suggesting a
possibly Pleistocene—Holocene activity. See Figure 3.1 for location of the seismic
1 o5 10) | OO PUPR PSR 58
Figure 3.14. (a) Structural interpretation of ca. 85-km-long NE-SE-trending seismic
section D. See Figure 3.13 for more explanation. Close-up views of the basins C (b)

and B (c). Note that the basin-bounding faults cut and displace the different seismic
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units and the almost horizontal sea floor. See Figure 3.1 for location of the seismic
1 o5 10 4 O SO PO PSRUPRRON 60
Figure 3.15. (a) Structural interpretation of ca. 50-km-long NE-SE-trending seismic
section C. The interpreted faults define two basins, basin B and C. (b) Close-up views
of the basin C. Note narrow ridges at the center of basins B and C. The ridge and
bounding faults in both basins cut and displace the sea bottom and confirm their recent
activity. Note also that seabottom morphology appear to be carved by some active
channels at CDP 3700 and CDP 5300. Dark blue and white faults are interpreted
active, while black lines represent inactive faults. See Figure 3.1 for location of the
SCISITIIC SECLIOML. ..uvteutieiieeutieette et e ettt et e stee et e e e aeeeabeesbeeeabeesaeeeabeesbeeenbeenseeenbeabeesnneenees 62
Figure 3.16. (a) Structural interpretation of ca. 62-km-long NE-SE-trending seismic
section B. Six fault zones are interpreted and each is illustrated with different colors.
(b, ¢) Two basins (basin A and B), separated by a narrow ridge, are defined. Among
the fault segments, red, yellow and basin bounding (blue and navy) faults appear to
cut and displace the sea floor; they may represent active faults in the seismic section,
while black faults are inactive structures that deforms unit 3 only. Note that green fault
F-131 has a reverse displacement, but the rest appear to display normal motion. Note
also a narrow ridge within basin B; F-115 and F-116 form ridge-bounding faults.
Southwest extension of the basin B occurs in seismic section C. See Figure 3.1 for
location Of SEISIMIC SECLION. .....ev.eeruiriiriieiieierite ettt st eeees 64
Figure 3.17. (a) Structural interpretation of ca. 58-km-long NE—SE-trending seismic
section A. Basins A, B and C are also defined along this section. (b) Close-up view of
the basin B. Note that some faults have pronounced reverse dip-slip component (F-
132, F-117 and F-49) while the rest display normal motion. The basins are separated
by narrow ridges; their bounding structures deform the sea bottom and suggest that
they are active structures. See Figure 3.1 for location of seismic section. ................ 66
Figure 3.18. (a) Structural interpretation of ca. 58-km-long NE-SE-trending seismic
section A. Basins A, B and C are also defined along this section. Close-up view of the
basin B and (b) basin C; (c). Note a intrabasinal high in basin B; it is defined by a

relatively small-scale fault antithetic to the basin-bounding faults at the northwestern
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margin of the basin A. Similarly, the boundary between basins B and C is marked by
a narrow ridge and fault segments F-108 and F-123 are ridge-bounding structures.
Note also that these faults terminate against seismic unit 1. There appears another
small-scale ridge within basin C; the bounding fault segments F-124 and F-125 appear
not to cut sea floor but the pronounced deformation between two faults appear as a
ridge at sea floor. The basin-bounding structures of basins A, B, and C are represented
by light blue, navy and white lines, respectively. See Figure 3.1 for location of the
seismic section and Figure 3.17 caption for more information. ..........c.ccceceeverienncee 68
Figure 3.19. (a—c) Interpretation of Basin A in seismic sections A, B, and D; (c) basin
surface prepared from integration of horizon 3 from all sections. The basin is relatively
a narrow feature and is bounded by high-angle faults with considerable normal
component. The basin-bounding faults appear to deform the sea floor, thus suggesting
that these faults are active structure and that the basin growth still continues. Steep
basin margins attest their fault-controlled nature. There are also intrabasinal
highs/ridges within the basin as is seen in seismic section D (c). The horizon 3 surface
clearly illustrates that the basin becomes deeper towards southeast and that there are
several rather narrow intrabasinal highs/ridges. ..........ccceevvieeriieeniiiie e, 70
Figure 3.20. (a—c) Interpretation of Basin B in seismic sections A, C, and D; (c) basin
surface prepared from integration of horizon 3 from all sections. The basin is relatively
a wide feature and is bounded by high-angle faults with considerable normal
component. The basin-bounding faults appear to deform the sea floor, attesting their
recent activity. The northwestern margin appear steeper compared to its southeastern
margin. This may suggest that the former margin is relatively more active and that the
actively growing basin B is an asymmetric structure. There are also intrabasinal
highs/ridges within the basin as is seen in seismic section B (a). The horizon 3 surface
confirms deepining of the basin towards southeast. ...........cccceecvieriiieniiiencie e, 72
Figure 3.21. (a—c) Interpretation of Basin C in seismic sections A, C, and D; (c) basin
surface prepared from integration of horizon 4 from all sections. The basin is relatively
a wide structure with its northwestern margin defined in the seismic sections. The

seafloor at the northwestern margin appears not deformed along basin-bounding fault
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F-123.There are intrabasinal highs/ridges within the basins as illustrated in ‘a and c’.
The ridge-bounding faults in ‘c’ appear to cut and displace the seafloor while those in
‘a’ does not cut the seafloor but deform it to form a ridge. The sea floor appears almost
at the same elevation across the seismic sections. The horizon 3 surface confirms
deepening (not as pronounced in basins A and B) of the basin towards southeast....73
Figure 3.22. 3D structural interpretation of major faults in the study area. (a) view
from northwest, red letters indicate seismic section names; (b) view from southeast.
The diagram clearly illustrates how basin-bounding major faults and intervening
basins continues from one section to another. The diagram forms a base for the fault
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Figure 3.23. Major fault map of the study area based on seismic interpretation. The
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Figure 4.1. Location and name of seismic stations that are used in moment tensor
inversion method solution for sampled events in the study area. Recording seismic
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dated event. Figures are produced by using Hermann (2015) software..................... 81
Figure 4.2. Wvfgrd86 module is used to obtain best solution for given events; it
contains focal mechanism solution, depth and seismic moment (Mw) of the event.
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Figure 4.3. Best fit ratio vs depth graph for moment tensor inversion solution of two
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Figure 4.4. The comparison of the observed and predicted waveforms of selected
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and rake of two seismic nodal planes, yellow raw marks the principal plane for the
event; (d) focal mechanism solution of the event; yellow and gray planes represents
the principal plane that caused the event. Blue arrow shows the dip direction of the
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Figure 5.2. Focal mechanism solution of the events occurred in the study area from
Irmak et al (2015 and thesis study). Black lines with white balls show focal mechanism
solutions from Irmak et al (2015), blue-white color focal mechanism solutions
illustrates events M<4, red-white color illustrates M>4 events. Red lines with navy
color balls indicate focal mechanism solutions from the thesis study. Yellow arrow
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direction Of the faults. .........cooiriiiiiiii e 106
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CHAPTER 1

INTRODUCTION

1.1. Background

Anatolia is located within the Alpine-Himalayan mountain belt — orogenic belt along
the southern margin of Eurasia that formed by Mesozoic—Cenozoic to recent closure
of Tethyan ocean(s)and consequent continent-continent collision between the

northward-moving Africa, Arabia and India (Gondwanaland) in the south, and
the Asia-Europe (Laurasia) in the north. At present, Anatolia occurs within the
ongoing convergence zone of Arabian, African and Eurasian plates in the Eastern
Mediterranean (e.g., McKenzie, 1970, 1972; McKenzie et al., 1970; Dewey & Sengor,
1979; Dewey et al., 1986; Le Pichon & Kreemer, 2010) and takes place along the
southern margin of Eurasian Plate where intense deformation prevails due to
convergence of these plates. Anatolia also moves west- to southwest-ward and rotates
counterclockwise relative to Eurasia and Arabia along its bounding structures (North
Anatolian Fault, NAF in the north and East Anatolian Fault, EAF in the south) since
the complete demise of the southern Neotethyan Ocean along the Bitlis-Zagros Suture.
The suture has formed in response to early to middle Miocene continent-continent
collision between Arabian and Eurasian plates (e.g., Ketin, 1948; McKenzie, 1976;
Dewey & Sengor, 1979; Sengdr, 1979; Sengor et al., 1985; Dewey et al., 1986;
McClusky et al., , 2000; Faccenna et al., 2006; Reilinger et al., , 2006; Hollenstein et
al., 2008; Kaymake1 et al., 2010; Okay et al., 2010; Biryol et al., , 2011 Rolland et al.,
,2012; Miiller et al., 2013; McQuarrie & van Hinsbergen, 2013; Philippon et al., 2015;

Cawazza et al., 2018 and references therein) (Figure 1.1).


https://en.wikipedia.org/wiki/Eurasia
https://en.wikipedia.org/wiki/Mesozoic
https://en.wikipedia.org/wiki/Cenozoic
https://en.wikipedia.org/wiki/Tethys_Ocean
https://en.wikipedia.org/wiki/Indian_plate
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Figure 1.1. A simplified neotectonic map of Turkey with topographic relief. Arrows indicate the direction of plate
motions; half arrows, the fault motions. NAF, North Anatolian Fault; EAF, East Anatolian Fault; DSF, Dead Sea
Fault; BS, Bitlis Suture; PS, Pontide Suture; LC, Lesser Caucasus;, GC, Greater Caucasus (from Ozacar et al.,
2010).

Southwestern Turkey is placed at one of the most tectonically active areas in the
eastern Mediterranean region and has been experiencing approximately N-S
extension since, at least, latest Oligocene time. It forms part of Aegean-Anatolian
extensional domain that includes western Turkey, Cycladic islands and part of the
mainland Greece. The present-day configuration and different rates of active (back
arc) extensional tectonics of the region (e.g., Le Pichon & Angelier, 1979; McKenzie,
1978; Sengor et al., 1984; Meulenkamp et al., 1988; Yilmaz et al., 2000; Gessner et
al., 2013; Jolivet et al., 2015) result from combined effects of southward slab retreat
(roll back) along the Aegean-Cyprian subduction zone and westward-southwestward
escape of Anatolia (e.g., Le Pichon & Angelier, 1979; McKenzie, 1978; Sengor et al.,
1984; Seyitoglu & Scott, 1991; Meulenkamp et al., 1988; Jolivet et al., 1998, 2010a,
b, 2013, 2015, 2019; Kogyigit et al., 1999; Okay & Satir, 2000; Seyitoglu et al., 2002,
2004; Yilmaz et al., , 2000; Bozkurt, 2001a, 2004, 2007; Bozkurt & So6zbilir, 2004;
Catlos & Cemen, 2005; Ring & Collins, 2005; Thomson & Ring, 2006; Cawazza et
al., 2008; Ciftci & Bozkurt, 2008, 2009a, b, 2010; Bonev et al., 2009, 2015; Agostini



et al., 2010; Jolivet & Brun, 2010; Lecomte et al., 2010; Bozkurt et al., 2011; Sengdr
and Bozkurt, 2013; Philippon et al., 2014; Seyitoglu & Isik, 2015; Menant et al., 2016;
Bessiere et al., 2018; Rabillard et al., 2018; Roche et al., 2018, 2019).

In this model, Aegean (Hellenic) and Cyprus arcs are defined as active convergent
plate boundary of the Anatolian and African plates. Despite of their importance, there
is a long-lasting (for several decades) debate on the geometry and nature of Cyprian
and Aegean arcs since their first description (e.g., McKenzie et al., 1970, 1972; Dewey
etal., 1973, 1979; Smith et al., 1971; Woodside et al., 1977; Nur et al., 1978; Sengor
et al., 1979; Oral et al., 1995; Vidal et al., 2000). In the geodynamic development
process of the Aegean region, the Aegean arc system holds an important place. The
western extension of the arc is marked by lonic convergence between the Aegean
lithosphere and the Ionian Basin. The eastern part of the Aegean Arc serves as
transform fault (Le Pichon et al., 1979) where several trenches (Ptolemy, Pliny, and
Strabo trenches) are prominent along the eastern parts of the Arc (Jongsma et al.,

1977) (Figures 1.2 and 1.3).

Although the Aegean subduction zone is the main actor of the Mediterranean
tectonics, its kinematics is still not explained effectively. While several medium size
earthquakes (Ms> 6) have occurred along the Aegean Arc at intermediate depths, only
two large earthquakes with Mw> 8 have occurred in the last 2000 years (Becker &
Meier, 2010; Papazachos et al., 1999; Shaw & Jackson, 2010). The lacking of large
earthquakes at large subduction zone, along which rapid convergence takes place
between African and Anatolian plates, is a big question waiting for enlightenment

(Shaw & Jackson, 2010).

Furthermore, Aksu et al., (2004) published a map (compiled from Sengor & Yilmaz,
1981; Hancock & Barka, 1981; Jongsma et al., 1985, 1987; Dewey et al., 1986; Mascle
et al., 2000; Zitter et al., 2003; Salamon et al., 200) of major structures in the Eastern
Mediterrenean Sea (Figure 1.4); the authors pointed out that some of these structures

are controversial. Nevertheless, several ‘deformation zones’ such as the Misis-Kyrenia



Fault Zone, the Amanos-Larnaka Fault Zone and the Latakia-Tartus Ridge are
considered as major structures of the Eastern Mediterranean and they are attributed to

continuing convergence of the African and Anatolian plates (e.g., Aksu et al., 2005;

Hall et al., 2004a).
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Figure 1.2. Simplified tectonic map of the eastern Mediterranean Sea and surrounding regions, showing Aegean
(Hellenic) and Cyprus arcs along the margin between the African Plate and the Anatolian Plate (from Aksu et al.,
2019). AKM, Aksu-Kyrenia-Misis fold-thrust belt; ALTA, Amanos-Latakia-Troodos-Antalya fold-thrust belt;
BTFA, Bassit-Tartus-Florence Rise-Anaximander fold-thrust belt. Basins: Ad, Adana; Am, Anaximander; A,
Antalya (n, north; c, central; s, south); Ci, Cilicia; Cy, Cyprus; Fi, Finike; I, Iskenderun; La, Latakia; M, Mut;
Me, Mesaoria; Rh, Rhodes. Ridges/mountains: AM, Anaximander; T, Tartus.

Neotectonic features of eastern Mediterrenean are dominantly related to convergence
between African Plate and Eurasian Plate at rate of ~10 mm/yr (McClusky et al., 2000;
(Kahle et al., 2000; Reilinger et al., 2006, 2010; DeMets et al., 2010; Tiryakioglu et
al., 2013). Oceanic crust at the northern edge of African tectonic plate, possibly of
Paleozoic age (Granot, 2016), subducts northwards beneath the the southern edge of

the Eurasian Plate along Aegean (Hellenic) subduction zone (e.g., McKenzie, 1979;



Dewey & Sengor, 1979; Le Pichon et al., 1979; Chaumillon & Mascle, 1997) (Figure
1.5). The subduction zone therefore accommodates the convergence between the
Africa in the south and Anatolia in the north; southward rollback of the subduction
zone is considered as the main cause of N—S extension in the back region of Aegean
Sea and western Anatolia. Several deep focus (100—150 km) earthquakes indicate that
African oceanic crust subducts into the mantle (e.g., Caputo et al., 1970; Jackson &

McKenzie, 1984; Hatzfeld & Martin, 1992; Hatzfeld, 1994).
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Figure 1.3. Simplified tectonic map of the eastern Mediterranean Sea and surrounding regions, showing major
plate/microplate boundaries, ophiolitic rocks and major tectonic elements. AKMB, Aksu, Kdpriicay, Manavgat
basins; FBFZ, Fethiye—Burdur Fault Zone; IA, Isparta Angle; STEP, Subduction Transform Edge Propagator *,
Neogene—Quaternary volcanics. Half arrows indicate transform/strike—slip faults (from Hall et al., 2014a).

In this scenario, relative differential motion of Aegean and Cyprus arcs is attributed
to a tear (offset) along the subducting slab, termed the ‘subduction transform edge
propagator (STEP) fault’ — a high angle transfer zone to the trench that connects the
two arcs (Wortel and Spakman, 2000; Govers & Wortel, 2005; Faccenna et al., 2006;
van Hinsbergen et al., 2010; Biryol et al., 2011; Salaiin et al., 2012; Ozbakir et al.,
2013; Hall et al., 2014a). STEP fault is described as continual tearing of (oceanic)
lithosphere that marks the horizontal termination (lateral edges) of subduction zones
and enables subduction to continue while adjacent lithosphere remains at the surface.

Propagation of a tear along the edge of a subducting slab allows slab to retreat (roll



back) and facilitate back-arc extension while overriding lithosphere moves with the

trench.
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The STEP fault thus forms the contact zone (weakness zone) between the overriding
lithosphere and the adjacent non-subducted lithosphere. In this definition, STEP faults
are not transform plate boundaries. Once formed, STEP faults continue to propagate
through the landscape and may produce kilometer-scale major sedimentary basins (cf.
Govers & Wortel, 2005; Baes et al., 2011; Nijholt & Govers, 2015). STEP faults also
result in sharp changes in the lithospheric and crustal thickness and may trigger lateral

and/or near-vertical mantle flow (Hidas et al., 2019).

Pliny-Strabo trench in the eastern Mediterranean is interpreted as surface expression
of the STEP fault (here after named as Pliny-Strabo STEP fault zone) that connects
the Aegean and Cyprean arcs and accommodates oblique Africa-Anatolia
convergence (Figures 1.2 and 1.3; McKenzie, 1978a; Le Pichon & Angelier, 1979; Le
Pichon et al., 1979; Leite & Mascle, 1982; Mascle et al., 1982, 1986; de Boorder et
al., 1998; Huguen et al., 2001, 2006; Bohnhoff et al., 2005; Zachariasse et al., 2008;
van Hinsbergen et al., 2010; Ozbakir et al., 2013; Hall et al., 2009, 2014a, b; Aksu et
al., 2009, 2019; Hall et al., 2009, 2014a, b; Shaw & Jackson, 2010; Ocakoglu, 2012).
It was first described, based on the kinematic model of 1957 Rhodes earthquake, by
McKenzie (1978a), as a transform fault. Several papers about the results of marine
geophysical studies, land studies, and first motions of recent earthquakes have been
published; in these studies the Pliny-Strabo STEP fault zone is described as a ~50-km-
wide, NE-SW-trending transpressional or sinistrial strike-slip fault zone that extends
southwards into the Rhodes Basin (e.g., Le Pichon & Angelier, 1979; Woodsite et al.,
2000; Zachariasse et al., 2008; Hall et al., 2009, 2014a, b; Shaw & Jackson, 2010;
Ozbakir et al., 2013; Aksu et al., 2019). Initiation age of the STEP fault zone is under
discussion where claims range from 20 my to 4-5 my (e.g., ten Veen & Kleinspehn,
2002; Zitter et al., 2003; Zachariasse et al., 2008; Pe-Piper & Piper, 2007; van
Hinsbergen et al., 2010; Le Pourhiet et al., 2012; Jolivet et al., 2013). The Pliny-Strabo
STEP fault zone is interpreted to allow rollback of the Aegean subduction and back-
arc extension of the Aegean to be detached from the deformation of the Cyprus Arc

(Hall et al., 2014a). Upwelling asthenosphere (asthenospheric mantle window) below



western Anatolia (Dilek & Sandvol, 2009; van Hinsbergen et al., 2010; Biryol et al.,
2011; Mutlu & Karabulut, 2011; Gessner et al., 2013, 2018; Kaymakei et al., 2018)
(Figure 1.6) is also attributed to tearing along the Pliny-Strabo STEP fault zone.
Asthenospheric mantle flows vertically upwards and also westwards into the Aegean
region, presumably produces a thermal load, ultimately causes overall high heat flow

and high geothermal gradient in central western Anatolia (Gessner et al., 2018).
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Figure 1.6. Map showing the location of ca. 300 km wide ‘asthenospheric window’; a slow wave speed anomaly
that is commonly interpreted as a tear in the African plate (from Gessner et al., 2018).

Monitoring the STEP fault in the northeast is difficult. Northeastern continuation of
the Pliny-Strabo STEP fault zone on land is always disputed and formed the subject
of controversies over the last decade. NNE-SSW structures of the Rhodes Basin is
considered as the southwestward continuation of the STEP fault zone (Hall et al.,
2009, 2014a). Fethiye-Burdur Fault Zone (FBFZ) forms one of the most important
structural elements of southwest Anatolia and is interpreted as north-northeast

prolongation of the Pliny-Strabo STEP fault zone on land (cf. Taymaz & Price 1992;


https://www.sciencedirect.com/topics/earth-and-planetary-sciences/african-plate

Barka & Reilinger 1997; Woodside et al., 2000; Huguen et al., 2001; Zitter et al.,
2003; ten Veen, 2004; ten Veen et al., 2008; Aksu et al., 2009, 2019; Hall et al., 2009,
2014a; Ocakoglu, 2012; Elitez & Yaltirak, 2014b; Elitez et al., 2015, 2016a, b, 2017,
2018a, b; Kaymakci et al., 2018; Ozkaptan et al., 2018). It is a NE-SW-trending broad
fault zone (ca. 40—50 km wide) and forms a major boundary fault between western
Anatolian extensional province in the west and relatively stable central Anatolia in the
east; it also separates western Anatolia from the Isparta Angle (Barka et al., 1995;
Eyidogan & Barka 1996; Barka and Reilinger, 1997). Along most of its trace, the fault
cuts through the southernmost part of the Lycian Nappes (Senel, 1997a, b; Senel &
Boliikbasi, 1997; Algicek et al., 2006; Alcicek & ten Veen, 2008; ten Veen et al.,
2009). Different terminology is proposed to describe the for the FBFZ: Burdur Fault,
Fethiye-Burdur Fault, Fethiye-Burdur Fault Zone, Burdur-Fethiye Fault Zone (e.g.,
Price & Scott, 1994; Barka et al., 1995; Eyidogan & Barka, 1996; Akyliz & Altunel,
2001; Barka & Reilinger, 1997; Glover & Robertson, 1998; ten Veen, 2004; Verhaert
et al., 2004, 2006; Alcicek et al., 2006; Bozcu et al., 2007; ten Veen et al., 2008; Over
et al., 2010, 2013; Hall et al., 2014a, b; Aksu et al., 2019) or Burdur-Fethiye Shear
Zone (Elitez & Yaltirak, 2014, 2016; Hall et al., 2014a, b; Elitez et al., 2015, 20164,
b, 2017, 2018a, b).

The linkage of the Pliny-Strabo STEP fault zone and the Fethiye-Burdur Fault Zone
has always been debated. Ocakoglu (2012) attempted, based on multi-beam
bathymetric data and shallow reflection seismic profiles in the region of Fethiye and
Marmaris bays, to provide first insight into, and map, possible fault linkages between
two major structures. Several NE-SW-trending transtensional and normal faults
below Marmaris Bay, and transpressional faults below Fethiye Bay are mapped. Faults
below Fethiye Bay are interpreted to represent the northeastern extension of the Pliny-
Strabo STEP fault zone while faults of the Marmaris Bay are associated with the
FBFZ. The author also commented on the relationship between the STEP fault zone

and the FBFZ as a ‘missing link’.

10



Similarly, Hall et al. (2014a) interpreted two seismic profiles running parallel to the
present-day coastline between Dalyan River and Finike Basin (Figure 1.7). They
concluded that many NE—-SW-striking Pliocene—Quaternary high-angle faults with
extensional separations mapped offshere clearly link with the similarly trending strike-
slip faults onland in the Esen Valley, and that FBFZ represents onland continuum of
the of the STEP fault zone into the upper (Anatolian) plate. In this model, the STEP

fault zone is interpeted as a crustal-scale a flower structure.

The FBFZ is originally described as a left-lateral fault (with normal component) that
runs in the area between Burdur in the north and Fethiye in the south (Figure 1.8;
Dumont et al., 1979; Barka et al., 1995; Eyidogan & Barka 1996; Barka et al., 1997;
Reilinger et al., 2010) but others claim that the STEP fault is linked to Esen Fault
along the eastern margin of the Esen Cay Basin (Figure 1.9; Algigcek, 2007; ten Veen,
2004; ten Veen et al., 2009).

Recently, it is argued that the FBFZ is not a major single fault or a narrow fault zone
but a NE-SW-trending wide (75-90 km) sinistral transtensional zone that runs, for
about 300 km, from Suhut-Cay to the northeast to Sarigerme-Gelemis on land and to
the Pliny—Strabo STEP fault zone in the southwest (Figures 1.10 and 1.11); it is
therefore renamed as the Burdur-Fethiye Shear Zone that is composed of several
NE-SW-striking faults (1- to 10-km-long) of normal, sinistral and oblique character
(BFSZ, Elitez & Yaltirak, 2014; Hall et al., 2014a, b; Elitez et al., 2015, 2016a, b,
2017, 2018a, b). The shear zone is not a thoroughgoing structure but has ca. 20 km
sinistral offset (a bend along strike), some of which may be taken up by the Gokova-
Yesilliziimlii fault zone (Figure 11). The latter is interpreted as a prominent structural
element of the SW Turkey and is described to a major WNW-ESE-striking sinistral
fault zone of numerous en-échelon normal faults; the fault zone clearly transects the

NE-SW-striking basin-bounding strike-slip faults of the FBFZ (Hall et al., 2014a).

11
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Figure 1.7. Pliocene—Quaternary tectonic map of the Rhodes Basin and environs, showing the distribution of major
thrust and normal faults (ticks on hanging wall). N1-N6, normal faults; t1-t5, thrust faults (from Hall et al.,
2014a).

In a recent paleomagnetic work done by Kaymake1 et al. (2018), the results of more
than 200 samples from SW Anatolia and available paleomagnetic data in the literature
are combined to identify three main rotation domainst in the area between subducted
northern edge of the African Oceanic lithosphere and overriding south Anatolian plate
(Figure 1.12): two domains of counter-clockwise rotation in the south and a domain
of clockwise rotation in the north. The authors claimed that NW-SE-striking
Acipayam Transfer Zone form the boundary between two domains of counter-
clockwise rotation and that Pliny-Strabo STEP fault do not propagate into the
overriding plate in the SW Anatolia and paleomagnetic evidences does not support

existence of Fethiye-Burdur Fault/Shear Zone (Kaymakgr et al., 2018).

12
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Figure 1.8. A simplified map showing the Fethiye-Burdur fault zone (FBFZ) in the neotectonic framework of
Turkey and surrounding areas (modified from Barka et al., 1995; Reilinger et al., 2010). Redrawn from Aksoy &
Aksart (2016).
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The long-standing tectonic activity of the Pliny-Strabo STEP fault zone and Fethiye-
Burdur Fault Zone is well illustrated by several historical (1500 and 1800 A.D.) and
instrumental earthquakes (e.g., 1971 May 12 Burdur earthquake) (Ambraseys, 1962;
Taymaz & Price, 1992; Ambraseys et al., 1994; Ambraseys & Finkel, 1995; Akyiiz &
Altunel, 2001; Benetatos et al., 2004; Tohon et al., 2006; Yolsal et al., 2007;
Karabacak, 2011). Possible kinematic relationship between Fethiye-Burdur Fault
Zone and Aegean Arc is investigated by focal mechanism solution of major
earthquakes (Figure 1.13; Canbay, 2009). The similarity of focal mechanism solution
between two earthquakes (24.04.1957 M= 6.8 and 30.01.1964 M= 5.2 events)
occurred in southwest of Fethiye Bay and 25.04.1957 M= 7.2 event placed at
northwest of the Aegean Arc is considered to suggest that left-lateral strike-slip
faulting occurred at left wing of Aegean Arc link the southern part of the FBFZ. The
moderate to high tectonic activity of the Fethiye-Burdur Fault Zone is also indicated
by several geomorphological indices within the Burdur and Yarish basins (Coskuner

etal., 2019).
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Figure 1.9. Active fault map of Esen Fault from 1/250.0000 scale Active Fault Map of Turkey published by MTA
(from Emre et al., 2013).
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Figure 1.10. (a) Simplified tectonic map of Turkey. TEF, Thrace-Eskisehir Fault; NAF, North Anatolian
Transform Fault; EAFZ, East Anatolian Fault Zone; DSFZ, Dead Sea Fault Zone; IA, Isparta Angle; BFSZ,
Burdur-Fethiye Shear Zone; RB, Rhodes Basin; GA, Gulf of Antalya; FB, Finike Basin; AM, Anaximander
Mountain; SEP, Surrt Ering Plateau. Rectangle indicates the location of Figure 1b. (b) Regional fault map of
southwestern Anatolia. Dark-blue region denotes the NE-SW extensional domain (MRB, Marmaris-Rhodes Block;
MB, Menderes Block; BMB, Biiyiik Menderes Block; UB, Usak Block; GG,Gediz Graben, BMG, Biiyiik Menderes
Graben; GNKG, Gdékova-Nisyros-Karpathos Graben). Green region denotes the NNE-SSW compressional
domain (WTB, Western Taurides Block; 1A, Isparta Angle; WTTF, Western Taurides Thrust Fault). BFSZ, Burdur-
Fethiye Shear Zone; PSFZ, Pliny-Strabo Fault Zone; GYFZ, Gokova-Yesiliiziimlii Fault Zone; AB, Acigol Basin;
BB, Burdur Basin; TB, Tefenni Basin, EGB, Egirdir Basin, EB, Esen Basin (from Elitez & Yaltirak, 2016a).
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Figure 1.11. Structural map of SW Anatolia showing the relationship between the Burdur Fethiye Fault Zone
(FBFZ) and Gékova—Yesiliiziimlii fault zone (GYFZ). C, ancient town of Cibyra; PSFZ, Pliny-Strabo fault zone
(from Hall et al., 2014a).
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Figure 1.12. (a) Simplified map that indicate tectonic features and rotational blocks in SW Anatolia; (b) Cross
section X=X"; (¢) simplified map for rotational block and amount from (Kaymakg et al., 2018).
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Figure 1.13. Major earthquakes focal mechanism solution eastern Mediterranean region (from Canbay, 2009).
Crossbar at the right indicates depth of the earthquakes.

Although the FBFZ has been studied intensely during the last two decades; presence,
geometry and kinematics (strike-slip nature) of the fault zone and its relation/linkage
to the Pliny-Strabo STEP fault zone have been the subject of intense discussion during
the last decade. GPS-based geodetic studies suggest a slip rate of 1.5-2 cm/yr along
the BFSZ (Barka & Reilinger, 1997; Kahle et al., 2000; Reilinger et al., 2006, 2010;
DeMets et al., 2010; Tiryakioglu et al., 2013), there is however no strong evidence for
considerable amount of sinistral strike-slip offset (cf. Hall et al., 2014a). Accordingly,
Hall et al. (2014a) argued that the BFSZ comprises several smaller dominantly normal

faults and that it is unlikely for the BFSZ to accommodate 60 km of sinistral
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displacement required in models by van Hinsbergen (2010) and van Hinsbergen et al.,

(2010a).

It is also claimed that kinematic evidence (fault slip data, earthquake moment tensor
solutions, and GPS velocities) in favor of sinistral FBFZ (Barka and Reilinger, 1997,
Elitez et al., 2016a, b) is rather consistent with extensional nature of the FBFZ and
that there is no significant evidence for strike-slip faulting (Gtirer et al., 2004; Algigek
et al., 2005, 2013; Alcicek & Ten Veen, 2008; Over et al., 2010; Algicek 2015, 2018;
Kaymaker et al., 2018; Ozkaptan et al., 2018). It is also concluded, based on
paleomagnetic analyses of several samples and kinematic analyses of several fault
planes from SW Anatolia, that the Pliny-Strabo STEP fault zone have not propagated
into the overriding plate as a shear zone and that there is no evidence to support the
presence of alleged Fethiye—Burdur Fault Zone, and its existence is dubious (quoted
from Kaymake1 et al., 2018). This is consistent with earlier contention that the FBFZ
is not a transform fault and that the dominant motion is dip-slip normal, not sinistral
(e.g., Kogyigit 2000; Algicek et al., 2006). Furthermore, earthquake focal mechanism
solution does not indicate strike-slip motion for BFFZ (e.g., Taymaz & Price 1992;
Shaw & Jackson, 2010). More recent study of the Burdur Basin, based on rock
magnetic experiments, Anisotropy of Magnetic Susceptibility (AMS) measurements,
magnetostratigraphy and kinematic analyses of fault-slip data, shows that SW

Anatolia is dominated by NW-SE-directed extensional forces that cause to form

NE-SW-striking normal faults from late Miocene to Recent (Ozkaptan et al., 2018).

The seismic activity within the so-called Fethiye-Burdur Shear Zone (FBSZ) still
continues as indicated by recent earthquakes in Acipayam (Denizli) province. Focal
mechanism solutions for this event indicate an almost pure normal faulting; the results
are not compatible with sinistral nature of the FBSZ (Figure 1.14) and supports the
contention that the dominant motion is dip-slip normal, not sinistral (e.g., Kogyigit

2000; Algigek et al., 2006; Kaymakci et al., 2018; Ozkaptan et al., 2018).

19



—

" 100 km

—— Political boundaries
— Tectonic plates boundaries

Figure 1.14. Focal mechanism solutions of the Acipayam (Denizli) earthquake; Magnitude: 5.5 (Mw), Epicenter
Coordinates: 37.4401N, 29.4335E; Earthquake Depth: 10.8 km. Earthquake Date and Time: 2019-03-20 06:34:27

(GMT) from https://www.emsc-csem.org/Earthquake/earthquake.php?id=752096#

1.2. Purpose and Scope

Active tectonics (neotectonics) of Anatolia is dominated by convergence of the
Arabian and African (Nubia) plates with the Eurasian Plate (McKenzie, 1972; Dewey
& Sengdr, 1979; Dewey et al., 1986; Le Pichon & Kreemer, 2010). The Aegean
(Hellenic) and Cyprus arcs represent the convergent boundary between the Anatolia
in the north and Africa in the South (Figures 1.1-1.3). Offset along Aegean subduction
zone (relative differential motion of Aegean and Cyprus arcs) correspond to NE-SW-
trending Pliny-Strabo STEP fault zone (cf. Hall et al., 2014a). The Fethiye-Burdur
Fault Zone (FBFZ) on land is considered as northeastern prolongation of the STEP
fault. The continuum and linkage of the STEP fault zone and the FBFZ have always
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been the subject of controversy among researchers. The presence and sinistral nature
of the FBFZ have also been debated by many researchers and formed the subject of

several recent ‘comment and reply’ papers (see Section 1.1 for details).

Although there are several structural works along the Fethiye-Burdur Fault Zone on
land, less is known about the presence, nature and linkage of offshore structures along
Mediterranean coastline (Ocakoglu, 2012; Hall et al., 2014a). Present study therefore
aims to: (i) address existing controversies (as outlined above), (ii) shed light on the
structural features in the northeastern part of the Pliny-Strabo STEP fault zone and

(ii1) enlighten tectonic evolution of the STEP fault zone and the Anatolian Plate.

In order to address the main objectives of this research, a key area along Mediterranean
coastline between Dalyan and Fethiye bays (Figure 1.15) is chosen and the following

studies were carried out:

(1) structural interpretation of seven 2D seismic lines (360 km long, 120-96
channel seismic data) collected by the General Directorate of Mineral
Research and Exploration of Turkey (MTA) Sismik-1 Research Vessel in 1996
and 1997. The seismic data is processed at MTA and the software PETREL
E@P is used for seismic interpretation to analyse main structural elements and
stratigraphical framework of the study area; this provides furher information
to better understand the region’s overall structural framework (see Chapter 3
for more information and the results);

(2) focal mechanism solution of six (6) major shallow earthquakes occurred in the
study area; moment tensor inversion solution of these events provide important
data about the source fault characteristics (see Chapter 4 for more information
and the results);

* integration of the main results from seismic interpretation and focal
mechanism solution in order to define event (earthquake) and fault

correlation;

21



= classification of the interpreted structural elements and discussion of

the main conclusions (see Chapter 5 for more information).

Google Earth

Figure 1.15. Google Earth image showing location of the study area.

1.3. Study Area

Geographically, the study area is located in southwest Anatolia in the area between
Fethiye Bay in the east and Dalyan Bay in the west along the Mediterranean Sea
coastline (Figure 1.15). Geologically, Cameli-G6lhisar, Kasaba, Esen and Gdkova
basins line in the north of, Fethiye and Finike basins within, and Rhodes Basin in the

southwest of, the study area (Figures 1.7 and 1.11).
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CHAPTER 2

DATA AND METHOD

In order to address the main objectives of this research, two types of dataset have been

used to interpret and map the structural features in the study area.

Seismic waveforms generated by an earthquake and recorded by local and global
seismic networks are analyzed and evaluated to calculate focal mechanism solution
by using moment tensor inversion method. This method therefore provides valuable
information about origin time, epicenter location, focal depth, magnitude (Mw), and
seismic moment (Mo) for a given earthquake. Reasonable focal mechanism
(beachball) diagrams are produced where fault-plane solutions (geometry and sense

of slip of the fault) are also resolved.

The recognition of geological structures within the waters of Mediterranean Sea in the
area between Dalyan Bay in the west and Finike Bay in the east is largely based on
the structural interpretation of ca. 352-km-long 2D marine seismic data collected by
MTA Sismik-1 in 1996-1997. Seismic data is processed by using SeisSpace ProMAX
seismic software at MTA Marine Data Processing Laboratory. After data processing,
stratigraphic horizons are picked and finally faults are interpreted with

Schlumberger’s Petrel E@P.

The detail information about the different methods employed will be provided in the

following subsections.

23



2.1. Moment Tensor Inversion Method

Moment tensor is a mathematical description of seismic source that depends on wave
propagation, Earth Model and synthetic seismograms. Moment tensor solution method
1s used for determination of fault type that caused an earthquake. Moment magnitude
(Mw), Seismic Moment (Mo) and data for seismic source process are also obtained by
this method. Least square fitting of amplitude and/or waveform data can be derived

from seismograms moment tensor components (Dahm, 1996).

Inversion analysis of seismic waveforms recorded by local and global seismic
networks lead to estimate moment tensor solution (Dziewonski et al., 1981; Kikuchi
& Kanamori, 1991; Kawakatsu, 1995). Amplitude data for mutual ray path from
various clustered seismic sources has been used for relative moment tensor inversion
method. For moment tensor inversion method, some assumptions, for instance station

velocity structure, are needed (Dahm, 1993 in Dahm, 1996).

Inversion of Green’s function of surface-wave data supplied by earthquake clusters is
described by Patton (1980). By using radiation pattern of one reference event, Green’s
function can be estimated from seismograms (Dahm, 1993 in Dahm, 1996). By using
acquired Green’s functions, radiation patterns of different earthquake from the same
source area are studied by several researches (e.g., Strelitz, 1980; Oncescu, 1986;

Oncescu & Trifu, 1987).

Main difficulties of Patton (1980) and Strelitz (1980) approaches are about their
solution method, which is largely based on precise knowledge of radiation pattern of
a reference event. Radiation patterns error may cause two-sided moment tensor
solution for other events and it is resulted in remarkable deviations from double couple
radiation pattern (Dahm, 1993 in Dahm, 1996). This problem can be solved by using
non-double-couple components (cf. Vasco, 1990; Kawakatsu, 1991; Kuge &
Kawakatsu, 1992; Foulger & Julian, 1993).
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2.1.1. Application of Moment Tensor Inversion Method

Software for moment tensor inversion is prepared by Prof. Robert B. Hermann from
Natural Sciences Department of Earth and Atmospheric Sciences at Saint Louis
University and it is based on Linux operating system. This software has following

paths used for calculations.

Moment tensor inversion method has a ‘to-do-list’ of eight steps, which are performed
by software as indicated in Figure 2.1. First step involves selection of event and
related seismic stations. Mostly, choosing nearest seismic stations provides good data
quality and accordingly better solution(s). Second step is about gathering and selecting
the data from seismic stations; it implements election and elimination of bad quality
data recorded at seismic stations. Third and fourth stages are about the quality control
of both the data and related stations. Third step requires filtering of seismic stations;
stations presenting poor quality data is determined and then avoided in the subsequent
stages. In the Fourth stage, data is filtered by using band pass filter to eliminate
pointless data in waveform. Processing the data by the software forms the main theme
of the fifth stage. Sixth stage involves evaluation of the results. If the best fit ratio is
fulfilling, there is no need for the seventh step; this stage requires improvement,
optimization and reprocessing of the results to obtain the best fit solution(s). Finally,
moment inversion method provides the best fit solution for a given event. It is
important to emphasize that all these steps at the flow chart (Figure 2.1) should
carefully be fulfilled to find the best solution for a given earthquake. Because of their
occurrence rate, moment tensor solution of middle-size earthquakes needs to be used

for understanding of stress field and faulting system in regional aspect.

The first step of the moment tensor inversion method is about selecting events
(earthquakes) and observer seismic stations. Selection of the closest seismic record
stations always provides more accurate solutions for given events. Thus, event-data
supplied by seismic stations settled near and/or at the study area are selected (Figure

2.2) for further analyses.
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Final Solution

Figure 2.1. Figure illustrating flow chart of moment tensor inversion method. Compiled from Hermann (2015)
tutorial.

26.00° 2800° 3000 200 34.00° 28.00° 30.00° 3200°

Figure 2.2. Seismic stations that are used for moment tensor inversion method solution for sampled events in the
study area. Seismic station locations used for solving (a) 2018/09/12 (18:13:26) event and (b) 2019/04/15
(17:42:25) event. These figures are produced by using Hermann (2015) software.
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Filtering seismic station data forms important part of the process: data quality must be
checked and examined in detail. If the data supplied by seismic stations have not
enough quality and accuracy, it should be eliminated by user; otherwise this may lead
to wrong calculation for the final solution. The seismic data used for moment tensor
inversion method contains BHZ and HHZ channels from broadband sensors and the

HNZ sensor from an accelerometer (Figure 2.3; Herrmann, 2015).
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Figure 2.3. Filtering process of seismic stations data that contains components of events from Hermann (2015)
software.

Filtering good quality data from seismic stations can be done by using low and/or high
filter band pass methods. These methods are placed in the script name ‘Do’. This script
will get raw waveform data from seismic stations and deconvolve the data to ground
velocity in units of m/s, rotate to vertical, radial and transverse components, place
theoretical P- and S-wave first arrival times into the Sac file headers using the velocity
model, and then select those waveforms at short distance for quality control. Checking

for the same P-wave polarity on the vertical and radial component, little or no P-wave
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on the transverse, and Rayleigh wave particle motion on vertical and radial axis at
great distance is highly required because this process may help to identify any signal

in the presence of noise (Figure 2.3).

Band pass filter is implemented for event data to supply more accuracy for solution.
For example, low band filter pass 0.04 and high band filter pass 0.06 can be applied
to the data; thus program only use data between 0.04 and 0.06. For filtered data
processing, the software uses short distance stations’ data, which contains good traces
to define depth, focal mechanism, seismic moment (Mo) of event. In order to find best
solution, software needs to use well-determined velocity model for Green’s functions,

high quality signal.

The program wvfgrd96 is used with good traces observed at short distance to
determine the focal mechanism, depth and seismic moment (Mo) of a given event.
This technique requires a high quality signal and well-determined velocity model for
the Green’s functions. To the extent that quality data is available, this type of
mechanism should be preferred over the radiation pattern technique which requires
the separate step of defining the pressure and tension quadrants and the correct strike.
Software generates the best fitting source depth, strike and rake angles, magnitude
(Mw) and gives the best solution in a table (Table 2.1). The best solution has the largest
value for the fit. The software therefore accepts the best solution, whichever gives the

largest fit value.

For example, moment tensor inversion methods supply the highest best fit value of
0.77 for 2012/06/25 (13:05:28) dated event in the study area; where this ratio occurs
in the table (Table 2.1) is picked up as a main solution for the event. The results given

in Table 2.1 can be drawn in a binary plot of the best fit value vs depth (Figure 2.4).

In the evaluation step, the software picks up the best fit solution, draw the best moment
tensor solution and calculate values (such as, depth, magnitude, nodal planes, strike,
dip, rake, principal axis value, plunge azimuth) related with the event (Figure 2.5).

The evaluation of the results should be performed carefully.
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Table 2.1. All solutions generated by the software for given events. Red raw indicates the largest best fit value
(0.7676) for event solution. This solution is accepted as a main solution for a given event. Table is generated for
2012/06/25 (13:05:28) dated event in the study area; moment tensor inversion solution is from Herrmann (2015)

software.

Depth | Strike | Dip |Rake |Mw |Fit Depth | Strike |Dip |Rake |Mw |Fit
1 (0,50 [275,00[45,00[90,00 |4,34[0,25] [26]25,00[225,00(70,00-30,00 [4,81]0,74
2 [1,00 [275,00[45,00[90,00 |4,37[0,25| [27]26,00 [225,00]70,00]-30,00 [4,82]0,75
3 12,00 [95,00 [45,00[90,00 [4,5 [0,35| [28]27,00 [225,00(70,00(-30,00 [4,82]0,75
4 3,00 [280,00[45,00[95,00 [4,56]0,36 | |29]28,00 [225,00(70,00]-30,00 [4,83]0,75
5 14,00 [60,00 |65,00(30,00 [4,49[0,36 | [30[29,00 [225,00]70,00]-30,00 |4,840,76
6 5,00 [60,00 [65,00[30,00 [4,52]0,39 [ [31]30,00 [225,00]70,00]-30,00 [4,85]0,76
7 16,00 [60,00 [70,00[30,00 [4,54]0,42 32__
8 7,00 [60,00 [70,00(30,00 [4,56]0,44 | [33]32,00 |225,00]70,00]-30,00 |4,87|0,76
9 8,00 [60,00 [70,00]35,00 [4,61]0,46 | [34]33,00[225,0070,00]-30,00 [4,88]0,76
10[9,00 [60,00 |70,00(35,00 [4,63]0,48 | [35[34,00|225,00(70,00]-30,00 [4,89]0,75
1110,00 [ 60,00 |75,00(35,00 |4,64]0,50 | [36[35,00 [225,00]70,00]-30,00 [4,9 [0,75
12 11,00 [ 60,00 |75,00(35,00 |4,65]0,52 | [37(36,00 |225,00]70,00]-30,00 [4,91]0,75
13 12,00 [ 60,00 |75,00(35,00 |4,66]0,54 | [38[37,00 [225,00(70,00]-30,00 [4,92]0,74
14 13,00 [225,00(70,00|-35,00 [4,68]0,57 | [3938,00 [225,00]70,00-30,00 [4,93]0,73
15 14,00 [225,00(70,00[-35,00 [4,7 [0,59 | [4039,00 [230,00]75,00[-25,00 [4,95]0,73
16 15,00 225,00 70,00 |-30,00 [4,71]0,61 | [4140,00 [225,00(65,00[-35,00 [5,01]0,72
17 16,00 230,00 70,00 [-30,00 [4,72]0,64 | [42]41,00 [225,00]65,00[-35,00 [5,02]0,72
18 17,00 230,00 70,00 [-30,00 [4,73]0,65 | |43 42,00 [225,00{65,00[-35,00 [5,03]0,72
19 18,00 230,00 | 70,00 [-30,00 |4,74]0,67 | |44 43,00 [225,00]65,00-35,00 [5,03]0,71
20{19,00 230,00 [ 70,00 [-30,00 [4,75[0,69 | |45]44,00 [225,00]65,00-35,00 [5,04]0,71
2120,00 230,00 70,00 |-30,00 [4,76 0,70 | [46]45,00 |225,00(65,00(-35,00 |5,05[0,70
22{21,00 230,00 [ 70,00 [-30,00 [4,77]0,71 | [47]46,00 [225,00]70,00-35,00 [5,06]0,69
23(22,00 230,00 (70,00 [-30,00 [4,78 [0,72 | [48]47,00 [225,00(70,00-35,00 [5,07 0,68
24123,00 [225,00(70,00[-30,00 [4,79]0,73 | [49]48,00 [225,0070,00-35,00 [5,08]0,67
25(24,00 [225,00(70,00[-30,00 [4,8 [0,74 | [50]49,00 [225,00]70,00-35,00 [5,08]0,66
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Figure 2.4. Figure illustrating the best fit as a function of depth for 2011/04/03 (23:42:18) dated event in the study
area. For this event, the best fit value is 0.7131 and indicates a depth of 8 km. Moment tensor inversion solution
is from Herrmann (2015) software.

Before getting into the final solution, the software also provides comparison between

observed and predicted waveforms. Each observed (red traces)-predicted (blue traces)

components are plotted using the same scale and peak amplitudes are indicated by the

numbers to the left of each trace (Figure 2.6). Figure 2.6 also contains pair of numbers

that indicate the time shift required for maximum correlation between the observed

and predicted traces and percentage of variance reduction to characterize the

individual goodness of fit (100% indicates a perfect fit).
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Figure 2.6. Figure indicating correlation and percentages between observed (red traces) and predicted (blue
traces) for 2011/04/03 (23:42:18) dated event in the study area. Three components of seismic record are R
(Radial), Z (Vertical), and T (Transverse). Each observed-predicted component is plotted using the same scale and
peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers given in black at the
right of each predicted traces indicates: (i) the upper number, the time shift required for maximum correlation
between the observed and predicted traces and (ii) percentage of variance reduction to characterize the individual
goodness of fit. Solution is from Herrmann (2015) software.

Furthermore removing seismic record, which has not good correlation between
predicted and observed, gives more dependable solutions. In order to find good
correlation, elimination of the seismic stations that present low correlation value
and/or band pass filter can be applied to waveforms. This is one important way of
improvement and optimization of reprocess as indicated in Figure 2.1. Before second
data processing, band filter is being optimized as part of the second improvement and

optimization of reprocess.

Time shift between predicted and observed waveform traces is required because the
synthetics are not computed at exactly the same distance as the observed and because
the velocity model used in the predictions may not be perfect. A positive time shift
indicates that the prediction is too fast and should be delayed to match the observed
trace (Figure 2.6). A negative value indicates that the prediction is too slow. The time

shifts are used to test the epicenter and origin time parameters that started the process.
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A large change may indicate the need to relocate the event and rerun the processing.
The time shifts for waveform matching may arise from several reasons. (i) Firstly,
origin time and epicentral distance are incorrect. (ii) Secondly, velocity model used
for the inversion is incorrect. (iii) Thirdly, velocity model used to define the P-arrival
time is not the same as the velocity model used for the waveform inversion (assuming
that the initial trace alignment is based on the P arrival time). By using one
mislocation, time shift can be fitted a functional form by using equation 1. By using
this formula, time shifts for this inversion lead to the next figure (Figure 2.7). The red

color indicates good fit to the waveforms.
Time shift = A + B cos Azimuth + C Sin Azimuth equation 1

Estimate of Location Error
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Figure 2.7. The time shifts between predicted and observed waveform traces for inversion calculations of the

2012/06/25 (13:05:28) dated event in the study area. Moment tensor inversion solution from Hermann (2015)
software.
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2.2. Seismic Data Acquisition and Processing

In order to recognize geological structures (faults) within the study area, 2D seismic
profiles are interpreted, faults are mapped. All seismic reflection data (352-km long)
were acquired during a research cruise in 1996 and 1997, by the MTA Sismik-1, which
belongs to General Directorate of Mineral Research (MTA).

Seismic data acquisition parameters are decided to observe main target(s) that
researchers want to investigate. Optimization of shot interval, group interval, number
of channel and sample interval parameters supply more resolution at researcher’s
target area. The main acquisition parameters of these seismic data are given in Table

2.2.

Table 2.2. Table indicate shot interval, group interval, number of channel, sample interval record length which
were applied during data acquisition.

Line Name (Year) Mar96 (1996) | Mar97 (1997)
Shot Interval (m) 50 50

Group Interval (m) 12.5 12.5

Number of Channel 96 120

Sample Interval (ms) 2 2

Record Length (ms) 5000 5000

All seismic data were processed by using SeisSpace ProMAX Seismic Processing
Software in the MTA Marine Data Processing Laboratory, Department of Marine
Research. A conventional seismic data processing flow (Figure 2.8) was applied to the
data until stack section step. In the stack section step, specific stacking method

(Common Reflection surface stack) is applied to the data to increase the signal content.
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Figure 2.8. Data processing step applied to Mar96 and Mar97 seismic data acquired by MTA RV Sismik-1 at
1996-1997.

The processing stream (Figure 2.8) was as follows: raw data importation, static,
geometry definition, bandpass filter, F-K filter, kill trace, mute, sort, NMO analysis
and CRS stack and time domain Kirchoff migration, frequency filtering, and finally
automatic gain correction. No multiple elimination methods were used to remove

multiples from the real reflections.
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The first step of seismic processing is loading SEGY raw data to processing software.
After this step, seismic data acquisition parameters are entered to processing program,;
this means Geometry. In the other words, Geometry definition is design of source-
receiver geometry and it is completed by using real coordinates of the sources and
receiver for each shot location (Dondurur, 2018). Seismic data may have some
different noise types, which needs to be removed by filtering. Frequency filtering is
an operation of directly changing the amplitude range of the seismic data. Also trace
edit is one of the earliest methods to remove noise from the seismic data. Muting is

used to remove direct waves, refractions, etc. in the seismic data.

Seismic data consists of noise and reflection with different dips. The most important
purpose of f-k filter is generally to removing the linear events, such as tail buoy noise,

bird noise, or cable noise.

After f- k filter, all traces are sorted into a single gather; this step is called CDP sort.
The traces are sorted by offset because of performing velocity analysis for data
processing and moveout correction (http://subsurfwiki.org/wiki/Gather). For velocity
analysis, the most important step is NMO flow; the reflection from horizon arrives
receivers through the length of streamer with different travel time. However, if the
velocity is known, the arrival time difference (moveout) at each receiver can be

predicted. (https://wiki.aapg.org/Seismic_processing_basics)

In the stack section step, instead of traditional NMO stacking method, CRS (Common
Reflection Surface) stacking method was preferred and applied to the data set to
increase the signal content on the wavelet. CRS gets a clearer image and coherent
structures reflected from the ground (http:/geoprocesados.com/english/nuestros-
servicios/procesamiento-sismico-crs/index.html). CRS-stack method produces better

reflector continuities over the NMO stacking method.

Finally, Kirchoff migration is applied to stacked data. Seismic migration is a process
for moving the reflection events in the seismic data to their true subsurface locations

(Dondurur, 2018). It is a process that suppresses the diffractions and dipping reflecting
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events on a stacked section to their supposedly true locations
(https://wiki.seg.org/wiki/Basic_data processing sequence). After Migration
bandpass filter is used to improve the clarity of the seismic section. The last step
seismic section interpretation is final top mute for removing the noisy area just above

the seabed and is to get a clearer final seismic section.

The results of seismic interpretation and moment tensor inversion method will be

presented in Chapters 3 and 4, respectively.
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CHAPTER 3

SEISMIC INTERPRETATION

This chapter contains structural and seismic stratigraphical interpretation of 2D
seismic data (120-96 channel) acquired by the General Directorate of Mineral
Research and Exploration of Turkey (MTA) Sismik-1 Research Vessel during a
research cruise in 1996 and 1997. The data is processed by using SeisSpace ProMAX
Seismic Processing Software in the MTA Marine Data Processing Laboratory, Marine
Research Department. The software used to define main tectonic structures of the

study area during seismic interpretation is PETREL E@P.

A total of 360-km-long 7 seismic sections are interpreted; they are renamed as section
A thorough section G (Figure 3.1; Table 3.1). Four sections are oriented almost
parallel to the coastline in NW—SE direction (sections A, B, C and D); a direction
being almost perpendicular to expected fault’s strike in the Pliny-Strabo STEP fault
zone. Three seismic lines (sections E, F and G) trend in W—E direction (Figure 3.1).
Longest seismic section is line D with a length of 84.87 km and the shortest, line E
with a length of 84.87 km. Both seismic lines are the nearest to shoreline among

NW-SE and W-E seismic lines, respectively (Figure 3.1; Table 3.1).

Main purpose of this chapter is therefore to intepret, define and map major tectonic
and seismic stratigraphical features of the thesis study area; main faults’ strike and dip
directions will also be studied. Furthermore interpreted fault strike and dip direction
will be used and compared with the results of moment tensor inversion solutions of
the selected events occurred in the study area (see Chapter 5). Finally, strurctural and

stratigraphical framework of the study area will be established.

39



Figure 3.1. Location map of seismic lines acquired by MTA Sismik-1 in 1996-1997. Seismic lines are renamed as
A, B, C, etc.

Table 3.1. Length and direction of seismic sections.

Section Name Length Direction
Seismic Line E | 21.70 km W-E
Seismic Line F | 32.80 km W-E
Seismic Line G | 42.08 km W-E
Seismic Line D | 84.87 km NW-SE
Seismic Line B | 61.62 km NW-SE
Seismic Line C | 50.24 km NW-SE
Seismic Line A | 58.11 km NW-SE
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3.1. Seismic Horizon Identification

Seismic sections are geologically interpreted; four (4) seismic stratigraphic horizons
that bounds 3 (three) main units are picked based on seismic stratigraphical features
like, erosional truncation, uncomformities, initial surface of deposition, etc. Main
reason of horizon identification is neither clarifying stratigraphical and lithological
distinction between various rock units in the study area nor attempting to make
correlation with other rock units identified and madded in the onshore. Actually, it is
aimed at indicating tectonic structures more accurately and effectively; finally faults
are interpreted. The description of the seismic units will be given in the following

subsections.
3.1.1. Seismic Unit 1

Horizon 1 represents a sea-bottom layer where seismic sections have strong and
continous reflections that can be trace all along each seismic sections. Reflection
coefficient of seafloor, P wave, is an unique parameter for acquisition interpretation
and processing of seismic data (cf. Schneider & Backus, 1964; Amundsen & Reitan,
1995; Sheriff & Geldart, 1995; Caldwell, 1999; Stewart et al., 2002; Edme & Singh,
2008). Seafloor model (a simple shallow-water model) depends on an isospeed water
column (homogenous acoustic water layer) over homogenous elastic half-space (cf.

Etter, 2018). Sharp connection between two media creates significant seismic traces.

Bathymetric data between Fethiye-Marmaris bays is also important for the
identification of horizon 1 and active tectonic structures as indicated in Figure 3.2.

Upper boundary of the unit 1 marks the seabottom surface in the study area.

Furthermore deformation (offset) of Horizon 1 as the upper boundary of the unit 1 is
also important to identify and locate active tectonic structures in the study area and to
interpret Holocene and Pliostecene activity of these faults (Figure 3.3). Some lanslides
also ocuured in unit 1 that cause thickening dominantly high slope area. Lower
boundary of seismic unit 1 is defined by horizon 2. Unit 1 can therefore be identified

with acoustically strong, high reflective continous seismic reflectors. The thickness of
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the Pleistocene—Holocene unit 1 ranges between 35 ms and 75 ms. Depending on
sedimentation rate in the study area, thickness may correspond to only Holocene age
of the sediments. Furthermore, there is also a possibility that as active sedimentation
continues, the unit 1 may cover inffered active tectonic structures; in this case, the
lower boundary of the unit 1 becomes very important. The possible deformation
(offset) of this boundary then may define Pliostecene—Holocene activity of tectonic

structures.

28°30'E 29°0'E 29°30'E

Bathymetry (m)  Topography (m)

- -5 -3000
. -2800 - 0

Figure 3.2. Multibeam bathymetric data for the area between Marmaris Bay in the west and Finike Basin in the
east. The date is obtained by TCG Cesme and TCG Meseah-2 research vessels in 2009 and belongs to Turkish
Navy, Department of Navigation, Hydrography and Oceanography (from Ocakoglu, 2012).

3.1.2. Seismic Unit 2

Seismic unit 2 is interpreted below surface where strong sea bottom (unit 1) reflection
does not occur. Horizon 2 therefore forms the upper boundary of the unit 2. It is

interpreted as a regional unconformity which is regional landslide’s upper surface as
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it truncates and covers the upper surface of the unit 2; the Horizon 2 is well illustrated
along seismic section G (Figure 3.4). Seismic horizon just below the truncation
(erosional) surface, where relatively strong reflections occur, is interpreted as a
horizon 3. Seismic unit limited by horizon 2 and horizon 3 is defined as unit 2 and this
unit is marked by relatively low reflective laterally non-continous seismic reflectors

(Figure 3.4).

Thickness of the unit 2 is variable because of the geometry of the erosional surface.
Local landslide is interpreted as possible cause of this truncation and it is observable
only along section G (Figure 3.4). Similar submarine landslide is described as giant
feature in the South China Sea and its length may reach up to 250 km along the
continental slope (cf. Zhu, 2019). Regional erosional surface indicating upper
boundary of the unit 2 is well presented in Figure 3.5 where truncation can be
observable significantly. The landslide is interpreted to be triggered by earthquake and
is marked by a sudden break in the seabottom morphology (Figure 3.6).

N . - COP Number _ SE

Time (ms)

Figure 3.3. Seismic section illustrating seismic unit located between yellow and blue lines. Blue line (‘a’) indicates
seabottom and the upper boundary of the unit 1; yellow line marks the lower boundary of the unit 1. Seismic section
is cut from seismic line B. The distance between two CDP is 6.25 meters. Note the offset of both lower and upper
boundaries along interpreted fault F1 that suggest the recent (Holocene, and possibly Pleistocene) activity of the
fault. Note also that, some faults (F2, F3 and F4) offset the lower boundary (line b) of the unit 1, while fault F5
appears terminate against the same boundary. This suggests possibly Pliocene—Holocene activity of the first group
of faults and that the fault F5 may not be an inactive structure. See Figure 3.1 for location of the seismic section.
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3.1.3. Seismic Unit 3

Seismic unit 3 is identified between horizon 3 and horizon 4 (Figure 3.7). Horizon 3
is interpreted as a conformable boundary between unit 2 and unit 3. Seismic unit 3,
when compared with the seismic unit 2, has relatively strong and non-continuous
seismic reflectivity. Lateral continuity of seismic reflections in seismic unit 3 is less

observable compared to the seismic unit 2.

The lower boundary of the seismic unit 3 is identified by seismic horizon 4 and it
forms the upper boundary of seismic basement in the seismic sections (Figure 3.7).
The style and pattern of deformation in the seismic basement differs clearly from other
horizons described above; it is well illustrated in seismic section B (Figure 3.8). In
this figure, some inactive faults intersect the upper boundary of the seismic basement
(horizon 4); it appears that these structures control the upper boundary of seismic
basement in the NW of the study area. Relatively high amplitude and continuous
parallel reflections indicate low energy depositional environment for the unit 3

(Posamentier et al., 1992a, 1999a; Vail et al., 1991; Van Wagoner et al., 1990)
3.1.4. Seismic Unit 4 (Seismic Basement)

The seismic unit 4 constitutes the deepest stratigraphic unit in the study area. The
lower frequency reflections of this seismic unit terminate along the upper surface of
the seismic basement with downlap and onlap structures. The upper boundary is
prominent and interpreted as an erosional surface covered unconformably by the
seismic unit 3 (Figure 3.8). Lower boundary of the seismic basement is not imaged in
the seismic sections because penetration of the seismic waves is not satisfactory at

greater depths.

The basement unit may be correlated with variably thick Messinian evaporites in the
Eastern Mediterranean that form a prominent seismic marker succession in the Finike
and Antalya bays (Aksu et al., 2009; Isler et al., 2005). Messinian evaporites are
however absent in the study area because the Rhodes Basin remained above the

depositional evaporite environment during the Messinian (cf. Woodside et al., 2000;
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Aksu et al., 2009; Hall et al., 2009; Roveri et al., 2014a, b). The contention that
Messinian evaporites are not present in the area of interest is also supported by a map
that shows distribution of Messinian evaporates in the Mediterranean (Figure 3.9;
Roveri et al., 2014). The seismic basement therefore must be represented by pre-
Messinian rocks that forms the basement of onland Cameli-Golhisar, Esen, Kasaba,

Aksu, Kopriigay and Manavgat basins.

horizon 1
horizon

horizon 3

horizon 4

Figure 3.7. Interpretation of the seismic unit 3 along ca. 58-km-long NE-SW seismic section A. (a) uninterpreted
and (b) interpreted section. Note that some of the faults (F122, F124 and F125) cut and displace (normal slip) the
horizon 2 (lower boundary of the seismic unit 1) while F123 terminates within the unit 2. It appears that the faults
do not deform the sea floor. These faults define a typical horst-and-graben structure; the graben, bounded by faults
F123 and F124, appears as a relatively large-scale asymmetric structure tilted towards northwest while bounding
horst are narrow features. See Figure 3.1 for location of the seismic section.
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Figure 3.8. Interpretation of the upper boundary of the seismic basement (horizon 4) along 58-km-long NE-SW
seismic section B. (a) uninterpreted and (b) interpreted section. The basement displays lower frequency reflections
which distinctly differ from that of other overlying seismic units. Note that there are several faults with normal
motion cut and displace the horizon 4 only; the horst-and-graben structure controls post-basement sedimentary
environment. Other faults (F102, F101, F10 and F29 appear to cut and displace the sea floor, thus attesting their
possibly Holocene activity.

Some faults (F106 and F35) appear to deform the post-basement sedimentary
succession (seismic units 1 thorough 3) but terminates against sea floor and thus
suggest their presumably Pleistocene activity. See Figure 3.1 for location of the

seismic section.
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Figure 3.9. Distribution of Messinian evaporates in the eastern Mediterrenean (from Roveri et al., 2014b).

3.2. Seismic and Structural Interpretation of the Study Area

Seismic structural interpretation of the study area is performed by using seven (7)
main seismic sections acquired in the area Fethiye and Datga bays (Figure 3.1).
Seismic sections E, F and G are oriented in E-W direction and used to interpret and
identify N—S-trending faults. These seismic sections are respectively shorter and
crosscut the Datca Bay. Whereas seismic sections A, B, C and D are respectively
longer profiles and crosscut both the Fethiye and Datga bays. They are oriented in a
WNW-ESE direction and used to interpret and identify SW—-NE-trending tectonic
structures. During structural interpretation of the seismic sections, all possible faults
are picked up and identified; their geometry (dip direction) and dip-slip components

(normal or reverse) are also discussed.

Furthermore, in our seismic sections, tectonic structures are classifed as (i) faults
responsible for opening of main basins (margin-bounding faults) and (ii) intra-basinal
fault. Basin-bounding faults are considered as a main faults that caused events
(earthquakes) occured in the study area. If continuity of these faults appear in at least

two seismic sections, they are labelled with numbers, like F100 and F102 (Figures 3.7
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and 3.8). All seismic sections are viewed at 3D window (Petrel software) iteratively
to trace and understand continuation of these faults along the next seismic section.

Otherwise, the fault names are not labelled.
3.2.1. Seismic and Structural Interpretation of Seismic Section E

W-E-oriented seismic section E has a total length of 21.7 km (Table 3.1) and is the
closest seismic section to the Mediteranean shore line in the study area (Figure 3.1).
Section E is placed at the centre of the Marmaris Bay where sea bottom is almost
horizontal and water depth may reach up to 200 m. At the east of the section E below
the unit 1, there is a seismic succession which is presumably different the unit 2
(Figure 3.10a, c). This unit appears to display coastal onlap, which in turn indicates
that deposit are transported from the land. This succession is included within the
seismic unit 2 because it only appears in this particular area only where Dalaman river
is very close section E (Figure 3.10). Seismic package is therefore interpreted as
deltaic deposits accumulated by the Dalaman River and/or related river system in the
study area. The seismic basement (unit 4) is cut and displaced by near vertical faults
in this particular area (Figure 3.10a, c) whereas the horizon 4 is smooth and appears
not deformed in other parts of the seismic section E in Marmaris Bay area where close

to the shoreline.

Faults F-102 and F-101 are interpreted as major structures in this section; they also
appear in seismic sections F, G and B. Fault F-102 appears as almost vertical
structure; its relationship with the seabottom is not possible to observe and it is not

clear if this structure deforms the sea floor or not (Figure 3.10c).

The dip direction of the fault F-102 appears changing at different seismic sections
that indicates presume strike-slip nature of faulting. F-101 1is also interpreted in
seismic sections E, F, G and B; it appears to deform seabottom that may indicate recent
activation of the fault. Last event caused from the fault F-101 may be of
Pleistocene—Holocene age. The fault F-101 appears almost vertical or dipping steeply

westwards in all seismic sections
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3.2.2. Seismic and Structural Interpretation of Seismic Section F

W-E-oriented seismic section F has a total length of 32.8 km (Table 3.1) and is the
second closest seismic section to the Mediteranean shore line in the study area (Figure
3.1). Section E is also placed at the centre of the Marmaris Bay where water depth

may reach up to 250 m.

There appears that the thickness of the unit 1 in areas close Dalaman river system is
relatively greater than that of the other parts along the profile; this may suggest higher
sedimentation rate related to deposition by river system (Figure 3.11). The upper
bundary of the seismic basement, the horizon 4, appears almost straight and suggests
that, like in seismic section E, deformation of the seismic basement deformation is not

observable along seismic section F.

Two faults labelled F-102 and F-101 are interpreted along this profile (Figure 3.11);
these structures are also apparent in seismic sections E, G, and B. Fault F-101 appears
almost vertical or dips east with very high angle whereas fault F-102 is subvertical
and dips east. Horizon 3, cut and displaced by the faults F-101 and F-102, creates a
dipping surface (Figure 3.11c). As it stands, the Fault F-101 appears to have reverse
component where horizon 3 is clearly cut and displaced upward in the eastern block
(Figire 3.11b). The area between the two faults appear to move downward and is filled

with sediments of the unit 1; it is much thicker in the downthrown area.

Similar to seismic profile E, the fault F-102 appear not cutting the sea floor but it
diplaces the lower boundary of the unit 1. Whereas the fault F-101 appears to displace
(normal  motion) the seabottom, attesting its recent, presumably

Pleistocene—Holocene, activity.
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3.2.3. Seismic and Structural Interpretation of Seismic Section G

W-E-oriented seismic section G has a total length of 42.08 km (Table 3.1 ) and is the
third closest seismic section to the Mediteranean shore line in the study area (Figure
3.1). It is placed at the end of Marmaris Bay where sea bottom is almost horizontal

and water depth may reach up to 400 m.

There appears deformation of the see bottom in the eastern part of the seismic section
G; it is intepreted as an artifact that arises from approaching continental slope and
faulting and is produced by seismic data processing error (Figure 3.12). The unit 2 is
interpreted by using seismic stratigraphical relationship from seismic section F. West
of the section is marked by a regional landslide (see Section 3.1.2. for more

information; Figures 3.4 — 3.5).

Two main active fault zones are interpreted and labelled as fault zone A and B (Figure
3.12). Fault zone A is observed between CDP 3100 and CDP 2300 and comprises
faults F-104, F-103, F-102 and F-101. Furthermore fault F-18 described in in section
B only is included in this fault zone (Figure 3.12). The step-like geometry and a small
half graben bounded by these faults are pronounced. Main strike direction of the fault
zone A is approximately N40°E. Dip direction and minor dip-slip component of the
fault segments change from one section to another; this phenomenan is attributed to
the strike-slip dominant natiure of the fault zone. As described in other seismic
sections, the strike of the fault segments is also variable from one section to another;
the amount varies between 5° and 20°. Faults F-103 and F-104 are also defined in

seismic sections G and B.

The second fault zone (fault zone B) comprises faults F-14, F-100 and F-106 (Figure
3.12); they also appear in seismic sections B, D, and G: faults F-106 and F-100 in
section B, F-100 and F-106 in section D, F-14, F-106 and F-100 in section G. Main
strike direction is approximately N65°E. Seabottom deformation along fault F-100 is
consistent with reverse dip-slip component (Figure 3.12); reverse component is also

observed in seismic sections D and B.
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Change in dip direction of fault F-100 is pronounced and may used as evidence to
support dominant strike-slip (with minor reverse component) nature of fault segments
in fault zaone A. Similarly, deformation of the sea floor along fault F-101 confirm

recent, possible Pleistocene —Holocene, activity of the fault zone.

In addition to fault zone A and B; two more structures are also interpreted; faults F-
10 and F-45 (Figure 3.12a, c). They dip away from each other and define a narrow-
horst structure in-between. The hanging walls seem to move downward and this is
well illustrated by the normal draging of horizon 3, the upper boundary of the seismic
unit 3. The faults cut and displace the horizon 3 and 4 but seems not affecting horizon
2, the upper boundary of the unit 2. The contact relationhips between the fault and

seismic units supports the contention that they are inactive structures.
3.2.4. Seismic and Structural Interpretation of Seismic Section D

NW-SE-oriented seismic section D has a total length of 84.87 km (Table 3.1) and is
the first seismic section between Marmaris and Fethiye bays. It is the closest section
to the shoreline among NW—SE seismic sections (Figure 3.1). The seismic section is
the longest among others. Sea bottom is almost horizontal until the Basin A, which is

located at the continental slope where sea bottom gets lowered up to 2000 ms.

Three major fault zones are identified and they display a typical horst-and-graben
structure. The faults appear to bound three basins and interveining relatively narrow
horst areas in-between; the basins are labelled as basin A, B and C (Figure 3.13). In
addition to the basin-bounding faults, there is a fourth group of structures (labelled
fault zone B) that comprises two steeply-dipping to almost vertical fault segments, F-
100 and F-106. They appear to be active structures and deform almost horizontal sea
bottom (Figure 3.13a, b). The almost vertical geometry is interpreted to relate a strike

slip fault character.
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Basin A is bounded by two main fault segments: N66°E-oriented SE-dipping F-111
in the northwest and N70°E-oriented NW-dipping F-112 in the southeast. They are
interpreted as basin-bounding stuctures. Basin A also appears in seismic sections D,
B, and A. The basin A itself comprises several subbasins and interveining narrow
horsts/ridges in-between. Three main ridges occur at CDP 9546, CDP 9000, and CDP
8747, and they all clearly deform the sea bottom (Figure 3.13b). The offset of sea floor

along ridge-bounding faults suggest that these structures are active.

Second basin is observed at middle parts of the seismic section D; the basin B is
relatively wider and deeper relative to other two basins (Figures 3.13a and 3.14c).
These two basins, basin A and B, are seperated by a ridge area bounded by faults F-
112 and F-114 (Figures 3.13a and 3.14a, c). In seismic section C, seabottom
morphology is deformed by some active channels at CDP 2350. The channel system
creates sea bottom deformation in a zone of about 250 m wide (Figure 3.15). Basin B
bounded by F-116 in the northwest and at the fault F-108 in the southeast (Figure
3.14c¢). There appears a considerable vertical elevation difference between the top of
the bounding ridges (ca. 500 ms) and the deepest part of the basin (ca. 2250 ms). Basin
B is a prominent structure and appears in seismic sections A, B, C, and D. Two
boundary faults, F-114 and F-116, are observable in seismic sections A and D.
Bounding fault F-116 in the northwest also appear in section B. Whereas bounding

fault F-108 in the southeast occur in seismic section C.

Basin C is placed at southeastern flank of the Basin B where sea floor appears almost
horizontal (Figure 3.14b). It occurs at continental shelf where sea bottom depth is
400-500 ms. Observable width of the basin C in section D is almost 23 km. Basin C
is bounded by fault F-123 in the northwest whereas southeastern boundary fault does
not occur in seismic sections of the present study. The bounding fault F-123 also occur
in seismic sections A, C, and D. Intense internal deformation of the basins A and B
appear not obvious in Basin C; this may be due to inactive nature of bounding fault(s)

along the SE of the basin.
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The faults bounding three basins are oriented in NE-SW direction (Figures 3.13 and
3.14); a direction perpendicular to seismic section D orientation. The section D is

therefore important for interpretation of all basins and bounding fault zones.
3.2.5. Seismic and Structural Interpretation of Seismic Section C

NW-SE-oriented seismic section D has a total length of 50.24 km (Table 3.1) and is
the first seismic section between Marmaris and Fethiye bays. It is the second closest
section to the Fethiye Bay shoreline among NW—SE seismic sections (Figure 3.1).
Two basins, basin B and C, are interpreted at the continental shelf (Figure 3.15). Sea
bottom is almost horizontal until the basins; basin C occurs between 900 ms and 1250
ms whereas basin B is relatively depper and occurs between 1250 ms and 3000 ms. In

the section, the width of the basin C is almost 17.5 km (Figure 3.15).

Basin C is bounded by SE-dipping fault F-123, like in other seismic sections A and D.
Along this section, basin C appears relatively more deformed and is dissected by a
number fault segments that bound a narrow ridge. The ridge bounding faults F-124,
F-125, F-46 and F-5 appear to cut and displace the sea floor (Figure 3.15b), attesting
their recent activity. Similar ridge structure bounded by the similar faults also occur

in seismic section A (see Section 3.2.7).

There are also relatively smaller fault segments, F-3, F-2, and F-8; as they do not reach
the sea bottom and appear to deform unit 3 only (Figure 3.15b), these faults are

interpreted as inactive structures.

Basin B is bounded by NW-dipping fault F-108 like in other sections A and D. There
appears a narrow ridge at the center of the basin; the ridge is bounded by fault
segments F-121 and F-122 (Figure 3.15a). Similar ridge is also defined in seismic
sections A and D (see Sections 3.2.6 and 3.2.7). The ridge and bounding faults appear
to deform and displace the seabottom and indicate their recent activity. In seismic
section C, seabottom morphology also appear to be carved by some active channels

observed at CDP 5300 and CDP 3700 (Figure 3.15b).
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3.2.6. Seismic and Structural Interpretation of Seismic Section B

NW-SE-oriented seismic section D has a total length of 61.62 km (Table 3.1) and is
the one of the farthest seismic section to the shoreline in the Fethiye bay among
NW-SE seismic sections (Figure 3.1). Sea bottom occurs at 200 ms and 2600 ms in

the northwest and southeast parts of the seismic section B, respectively.

Six different fault groups are identified and they are all shown in different colours
(Figure 3.16). Red faults occur at CDP 3200 and consist of 5 segments (F-104, F-103,
F-18, F-102 and F-101). Change dip direction of the fault F-102 is pronounced and
suggest strike-slip nature of these fault segments. Similar character of the F-102 is
also reported in seismic section E (Figure 3.10). Black faults occur between CDP
3700 and CDP 5200; eight faults (F-21, F17, F-11, F-40, F-31, F-32, F-33 and F-30)
are intepreted as inactive faults. They might have played important role in deformation

of seismic unit 3 only (see Discussion Chapter for more information).

Light green faults occur between CDP 5250 and 5600 placed between continental
shelf and slope. This fault zone consists of there fault segments (F-131, F-132 and F-
28) and also appear in seismic section A between continental shelf and slope (see
Section 3.2.7). F-28 occurs in seismic section B. Reverse component of fault F-131
and normal component of fault F-132 appear clearly in seismic sections A and B
(Figures 3.16a and 3.17a). This fault zone forms boundary between continental shelf
and transition zone (Figure 3.16a). Yellow faults at CDP 4300 and consist of 3
segments (F-106, F-35, and F-100); they occur between two clusters of black faults.
Among fault segments, fault F-100 appear to cut and displace the sea floor whereas
the other two segments terminate within seismic unit 1 (Figure 3.16a). This

relationship between the yellow faults and sea bottom is attributed to their activity.
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Two major basins, basins A and B, are defined; they are bounded by two sets of faults
(blue and navy coloured faults) in Figure 3.16). The two basins are separated by a
narrow ridge that deforms the sea floor (Figure 3.16b, c). The bounding fault segments
F-111 and F-114 also occur in seismic section B (see Section 3.2.7). Width of the
Basin A is narrower than the one desribed in seismic section D (Figures 3.13 and 3.14).
The northwestern margin of the basin B appears in the seismic section and is bounded
by fault F-114 (Figure 3.16). The basin extends towards SE, which is observable in
seismic section C. The basin B is also dissected by a narrow ridge; faults F-115 and

F-116 occur as ridge-bounding structures (Figure 3.16c¢).
3.2.7. Seismic and Structural Interpretation of Seismic Section A

NW-SE-oriented section-C total length is 58.11 km (Table 3.1) and is the one of the
farthest seismic section to the shoreline in the Fethiye bay among NW—SE seismic
sections (Figure 3.1). Sea bottom occurs at 900 ms, 4400 ms and 2500 ms in the

northwest, centeral and southeast parts of the seismic section A, respectively.

Basins A, B and C also occur in seismic section A. The width of basins is different
than in other seismic sections. For example, the width of the basin A is almost 8.5 km
and is much narrower than what is in all other sections. Basin A is bounded by fault
segments F-111 and F-114 (blue coloured faults in Figure 3.17a). The northwestern
margin of the basin is steeper and bounded by fault segments F-111 and F-112 with a
normal dip-slip component. Change in dip direction of the fault F-102, as shown in
section E (Figure 3.10), is important for describing the basin-bounding fault zone and
suggest strike- slip faulting with normal dip-slip component. To northwestern margin
of the basin A, there is another fault zone (light green coloured faults in Figure 3.17a
and 3.18b) being interpreted at CDP 8600; these faults (F-132 and F-131) are placed
between continental shelf and slope. Reverse dip-slip component of the fault F-131

and normal component of the fault F-132 are also reported in seismic section B (Figure

3.16).
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The fault zone bounds continental shelf at the northwestern part of the seismic section

A (Figure 3.17).

The basin B forms the most prominent feature of seismic section A. Wide basin
(almost 32 km) is bounded by fault segments F-114 in the northwest and F-108 in the
southeast (Figure 3.17). Faults F-122 and F-121 appear to define a narrow ridge within
the ridge; they also occur in seismic sections C and D (Figures 3.13 and 3.14) but
associated seabottom deformation is more significant in this section (Figure 3.17b).
The two fault segments and interveining narrow ridge are also described in seismic
section A (Figure 3.167). Two more faults (F-115 and F-116) are interpreted along the
northwestern margin of the basin A; these structures appear to deform sea bottom as
in seismic sections B and D (Figures 3.13 and 3.14). Navy fault segments (F-49 and
F-117), that occur between CDP 5400 and 6200 within the basin B, display a
pronounced reverse component and deform all of the seismic units, but not unit 1
(Figures 3.17 and 3.18). These structures are defined only in seismic section A. Black
faults that occur between CDP 3700 and 5200 within the basin B are inactive faults;
they might have played important role in deforming the seismic unit 3 (See Discussion

Chapter for more information).

Basin C occurs at the southeastern part of the seismic section A and is bounded by
fault segment F-123. There is a narrow ridge bounded by faults F-124 and F-125 near
northwestern margin of the basin. The ridge is also described in C (Figure 3.14); it
appears to create relaticely less sea bottom deformation at CDP 2000 (Figure 3.17).

3.3. 3D Structural Interpretation and Basin Analysis

3D sections provide the opportunity to see the extension and character of faults
separately in each seismic section at the same time. For that reason in structural
interpretation, using 3D seismic sections gives better results. Basin analysis and
relationship between each other are investigated at this part. Basins are already

mentioned chapter 3 going to be discussed and analyzed.
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3.3.1. Seismic Interpretation of the Basin A

Basin A is interpreted in seismic sections A, B, and D and occurs at continental slope
bounded by faults F-111 in the northwest and F-112 in the southeast. The basin-
bounding faults F-111 and F-112 dip southeast and northwest, respectively; both
display normal dip-slip component. They are interpreted as normal faults with a strike-
slip component; this is also supported by moment tensor inversion solutions of the

events related with these two faults (see Chapter 4 for more information).

Width of the basin A is variable from one section to another; it is about 8.5 km, 10 km
and 12.5 km in seismic sections A, B, and D, respectively. Basin center line trends
almost in NE-SW direction, almost parallel to the bounding structures. It seems to
have rather wedge-shape geometry where basin width increases from northwest to

southeast.

Depositional sequence in the basin A consists, form the bottom to the top, of seismic
units 3, 2 and 1, respectively. When basin A started to form, seismic unit 3 was
deposited unconformably above the basement; this erosional surface is labelled as

horizon 4, which forms the upper boundary of the seismic basement (seismic unit 4).

Total thickness of the seismic units in the basin A also differs from one seismic section
to another. Maximum and minimum total thickness observed in sections A, B and D
are 350 ms and 200 ms, 1050 ms and 500 ms, and 600 ms and 330 ms, respectively
(Figure 3.19). 330 ms thickness is measured at the top of the ridge in section D at CDP
9400 (Figure 3.19d). Basin A is therefore placed at the continental slope and is
bounded by faults with normal component; there are also characteristic intrabasinal

high(s)/ridge(s) within the basin.
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Width of the basin A is variable from one section to another; it is about 32, 28, 22.5
and 4 in seismic sections A, B, C, and D, respectively. Basin center line trends almost
in NE-SW direction, almost parallel to the bounding structures. Unlike basin A, the

width of the basin B increases from southeast to northwest (Figure 3.20).
3.3.2. Seismic Interpretation of the Basin B

Depositional sequence in the basin B comprises, form the bottom to the top, seismic
units 3, 2 and 1. Seismic unit 3 forms the first and oldest unit that marks the
commencement of the basin B. Unit 3 overlies the erosional surface horizon 4 above
the seismic basement. Thus the lower boundary of the unit 3 is a regional
unconformity. The basement boundary (horizon 4) appears to be affected, at least,
more than one phase of deformation; and this is totally different from horizons 1, 2,

and 3. This issue is going to be discussed in Discussion Chapter.

Total thickness of the seismic units in the basin B also differs from one seismic section
to another. Maximum and minimum total thickness observed in sections A, B, C and
D are 750 ms and 500 ms, 1000 ms and 400 ms, 1500 ms and 600 ms, 1500 ms and
600 ms, respectively (Figure 3.19). 600 ms thickness is measured at the top of the
ridge in sections C and D at CDP 1500 (Figure 3.20a) and CDP 8300 (Figure 3.13a),
respectively (Figure 3.19d). Basin B therefore occurs at the continental slope and is
bounded by faults with normal component; intrabasinal high(s)/ridge(s) form

characteristic features within the basin.
3.3.3. Seismic Interpretation of the Basin C

Basin C is interpreted in seismic sections A, C, and D at the continental slope; the
basin is bounded by fault F-123 in the northwest whereas the southeastern boundary
of the basin is not observed in any 7 seismic sections. The basin-bounding fault F-123
dips southeast and has normal dip-slip component (Figure 3.21). The fault F-123 is
interpreted as normal faults with a strike-slip component, which is also supported
moment tensor inversion solutions of the events related to the fault (see Chapter 4 for

more information).
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Observed width of the basin C is also variable from one section to another; it is 12,
17.5, 23 km in the seismic sections A, C, and D, respectively. Basin center line trends

almost in NE—SW direction, similar to basins A and B.

Depositional sequence in the basin C comprises, form the bottom to the top, seismic
units 3, 2 and 1. Seismic unit 3 forms the first and oldest unit in the basin and it dates
the initiation of basin formation. Like in other basins, unit 3 overlies the erosional
surface of horizon 4 above the seismic basement. Thus horizon 4 is a regional

unconformity.

Total thickness of the seismic units in the basin C also differs from one seismic section
to another. Maximum and minimum total thickness observed in sections A, C and D
are 1000 ms and 900 ms, 1200 ms and 400 ms, 950 ms and 750 ms, respectively
(Figure 3.19). It appears that there is dramatic difference (about 800 m) in thickness
of the basin fill along seismic section C and this arises from a ridge at CDP 4900

(Figure 3.21a).

It appears that there is a considerable variation in the total thickness of the basin fill
in all basins; this occurs because of intrabasinal high(s) within each basin and will be

discussed in Discussion Chapter.
3.3.4. 3D Structural Interpretation of Faults

The 3D structural interpretation allows the faults interpreted in all of the 7 seismic
sections to be assembled in a single diagram. First, all seismic sections are placed in
three dimensions according to their latitudes and longitudes (Figure 3.22). All faults
in seismic sections are transferred to 3D environment. It is therefore easier to monitor
the continuity of faults in this window. The character and dip direction of faults and
location of fault-bounded basins are used to determine the continuity of each
interpreted fault; the result is a 3D structural map of the study area (Figure 3.22). To
provide better images, the figure contains major faults only; major fault means any
structure that occurs in at least two seismic sections. The fault-bounded basins and

their continuity are more obvious in these diagrams (Figure 3.22).
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The continuum of each major fault is now shown by a line and are all transferred into
a fault map (Figure 3.23). It is therefore possible to determine the geometry (strike
and dip direction) of faults. The meaning of each fault and their correlation with the
results of moment tensor inversion solution of the events occurred in the study area

will be evaluated in Discussion Chapter.

In Figure 3.23, Bing maps Hybrid images are used as map base. Spatial on demand’s
color-hillshade representation of TCarta’s and 1/60,000 scale coastline from Landsat
imagery Seafloor resolution is 90 m (www.spatialenergy.com). Spatial on demands
Global Coverage Bing Maps 30 cm+ imagery is updated in real-time; they are

available at the same scale at website www.bingmaps.com.
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CHAPTER 4

EVENT MOMENT TENSOR INVERSION SOLUTION

In this chapter moment tensor inversion solution of selected events occurred in the
study area are presented. Strike and dip direction of the interpreted faults are already
defined by using 2D seismic sections in Chapter 3. Moment tensor inversion solutions

of selected events need to be carried in order to clarify type of faulting.

The results of the seismic interpretation and moment tensor inversion solutions will
be integrated and evaluated in order to enlighten tectonic structures of the study area

(see Chapter 5 for more information).
4.1. Event Date and Location

Events occurred after year 2005 are selected because they are thought to have high
quality waveforms recorded by local and global seismic networks. Six (6) shallow
main events (Table 4.1; Figure 4.1), with magnitudes (Mw) greater than 4 events,
occurred near the main faults are chosen to obtain focal mechanism solutions of, and
calculate values, such as depth, magnitude, nodal planes, strike, dip, rake, principal
axis value, plunge azimuth for a given earthquake. The focal mechanism solutions are
obtained by using broadband seismic waveforms. Beachball diagrams are produced

and fault-plane solutions (geometry and sense of slip of the fault) are resolved.
4.2. Broadband Stations Selection

Waveforms are supplied by national and international seismic recording stations
(Figure 4.1): (i) International Federation of Digital Seismograph Networks (FDSN)
partners like National Seismic Network of Turkey (DDA), National Observatory of
Athens Seismic Network and (i) Bogazi¢i University Kandilli Observatory and
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Earthquake Research Institute (KOERI). Location of selected events and and relevant

stations are given in Figure 4.1.

Table 4.1. Information about six events used for moment tensor inversion solutions Data is from USGS/SLU
Moment Tensor Solution Institute.

Event Date | Hour Latitude | Longitude | Magnitude

2011/04/03 | 23:42:18 | 36.4938 28.7715 4.0

2018/09/12 | 18:13:26 | 36.4453 28.7325 4.2

2012/06/25 | 13:05:28 | 36.4422 28.9422 5.0

2019/02/11 16:38:03 | 36.5225 28.8355 4.0

2018/10/24 | 02:36:13 | 36.4774 28.7423 4.1

2019/04/15 | 17:42:25 | 36.4777 28.7332 5.0
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Figure 4.1. Location and name of seismic stations that are used in moment tensor inversion method solution for
sampled events in the study area. Recording seismic station locations for (a) 2011/04/03 (23:42:18) dated event;
(b) 2012/06/25 (13:05:28) dated event. Figures are produced by using Hermann (2015) software.

4.3. Apllied Bandpass Filter to Event Waveforms

Observed and predicted traces must be filtered by GSAC programme with band-pass
filter command. These commands are used for noise filtering of traces. Filtered data
gives more dependable solution for a given event. Event date and type of band-pass

filters are given in Table 4.2.
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Table 4.2. Filter pass limitations applied on event waveform (HP: High pass filter LP: Low pass filter).

Event date HP LP Event Date | HP LP

2018/09/12 | 0.04 | 0.06 |2011/04/03 |0.05 |0.07

2012/06/25 |0.04 |0.06 |2019/02/11 |0.08 |0.10

2018/10/24 | 0.07 |0.09 |2019/04/15 |0.04 |0.06

4.4. Calculation of Depth and Focal Mechanism Solution of Events

Wvfgrd86 is a module running on the main software; it is used for good traces
monitored at short distance to calculate focal mechanism, depth and seismic moment
of a given event. In order to find best solution, this software requires high quality
signals and well-determined velocity model for Green’s functions. These modules are
used to determine best fit solution that represent focal mechanism, depth and seismic

moment of given events (Figure 4.2).

Wvfgrd86 module is also used to prepare a figure that illustrates: (i) depth of event
vs fitting ratio and (ii) focal mechanism solution at any depth vs the fit. Figure 4.3

illustrates depth sensivity for waveform mechanism.
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DEPTH STK DIP RAKE MW FIT DEPTH ST DIP RAKE MW FIT
WVFGRDS6 0.5 25 45 95 3.65 0.4254 WVFGRD96 0.5 335 60 25 3.81 0.3866
WVFGRD96 1.0 0 80 15 3.63 0.3950 WVFGRD96 1.0 330 85 0 3.80 0.4163
WVFGRD96 2.0 180 65 20 3.78 0.5439 WVFGRD96 2.0 335 80 -15 3.91 0.5429
WVFGRD96 3.0 175 65 5 3.82 0.5750 WVFGRD96 3.0 155 85 35  3.99 0.5936
WVFGRD96 4.0 5 75 50 3.89 0.5930 WVFGRD96 4.0 160 80 40 4.03 0.6343
WVFGRD96 5.0 20 65 75 3.95 0.6408 WVFGRD96 5.0 160 75 40 4.05 0.6579
WVFGRDS6 6.0 25 60 80 3.97 0.6765 WVFGRD96 6.0 160 75 35 4.05 0.6684
WVFGRD96 7.0 210 35 85 3.99 0.6875 WVFGRD96 7.0 160 75 30 4.05 0.6714
WVFGRD96 8.0 30 55 85 4.03 0.7131 WVFGRD96 8.0 160 75 35 4.09 0.6740
WVFGRD96 9.0 190 35 70 4.01 0.6994 WVFGRD96 9.0 160 75 30 4.09 0.6714&
WVFGRDS6 10.0 185 40 65 4.00 0.6898 WVFGRDS6  10.0 160 75 25 4.09 0.6651
WVFGRD96  11.0 170 60 -10 3.96 0.6780 WVFGRD96 11.0 160 80 25 4.09 0.6586
WVFGRDS6 2.0 17 65 -5  3.96 0.6772 WVFGRDS6  12.0 160 80 25 4.10 0.6512
WVFGRD96  13.0 17 65 -5  3.97 0.6764 WVFGRDS6  13.0 160 80 20  4.10 0.6440
WVFGRD96  14.0 17 65 -5  3.98 0.6739 WVFGRDS6  14.0 160 80 20 4.11 0.6360
WVFGRD96 15.0 170 65 -5 3.98 0.6695 WVFGRDS6  15.0 160 80 20 4.12 0.6274
WVFGRDS6 16.0 170 70 -5  3.99 0.6642 WVFGRD96  16.0 160 80 20 4.12 0.6181
WVFGRD96 17.0 170 70 -5  4.00 0.6599 WVFGRDS6 17.0 155 75 =20 4.13 0.6142
WVFGRD96  18.0 17 70 -10 4.00 0.6549 WVFGRDS6  18.0 155 75 =20 4.13 0.6086
WVFGRD96  19.0 170 70 -10 4.01 0.6502 WVFGRDS6  19.0 155 75 =20 4.14 0.6031
WVFGRDS6  20.0 170 70 -10 4.02 0.6443 WVFGRDS6  20.0 155 75 =20 4.15 0.5968
WVFGRD96  21.0 165 65 -15 4.02 0.6370 WVFGRDS6 21.0 155 75 =20 4.16 0.5911
WVEGRD96  22.0 165 65 -15 4.03 0.6310 WVFGRDS6  22.0 155 75 =20 4.16 0.5839
WVFGRD96 23.0 165 65 -15 4.04 0.6233 WVFGRDS6 23.0 155 80 =20 4.17 0.5766
WVFGRD96  24.0 165 65 -20 4.04 0.6161 WVFGRD96  24.0 155 80 -20 4.17 0.5690
WVFGRD96  25.0 165 65 -20 4.05 0.6085 WVFGRD96 25.0 155 80 -15 4.18 0.5625
WVFGRDS6 26.0 165 70 =20 4.06 0.6006 WVFGRD96 26.0 155 80 =15 4.18 0.5562
WVFGRD96  27.0 165 70 -20 4.06 0.5932 WVFGRDS6  27.0 160 85 15  4.20 0.5470
WVEGRDS6 28.0 165 70 =20 4.07 0.5846 WVFGRDY6 28.0 155 80 -10 4.20 0.5404
WVFGRDS6  29.0 165 70 =25  4.07 0.5773 WVFGRDS6  29.0 160 90 15  4.21 0.5348
The best solution is a The best solution is b
WVFGRD96 8.0 30 55 85 4.03 0.7131 WVFGRDS6 8.0 160 75 35  4.09 0.6740

Figure 4.2. Wvfgrd86 module is used to obtain best solution for given events; it contains focal mechanism solution,
depth and seismic moment (Mw) of the event. Best solutions for (a) 2011/04/03 (23:42:18) dated event; (b)
2012/06/25 (13:05:28) dated event. Figure is produced by using Hermann (2015) software.

4.5. Accuracy Parameter of Moment Inversion Solutions

Comparison of observed and predicted waveforms is an important parameter for
reliability of the moment inversion solutions (Figure 4.3). Observed (red traces) and
predicted (blue traces) components are plotted using the same scale and peak
amplitudes are indicated by numbers to the left of each trace (Figure 4.4). This
comparison contains time shift required for maximum correlation between the
observed and predicted traces and is written in numbers (Figure 4.4). Adding and
extracting waveforms that represent good correlation between predicted and observed
waveforms provide more reliable solutions. This method eventually leads to the best

solution for given events (see section 2.1 for more information).
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Three components of wave forms are Z (Vertical), R (Radial) and T (Transverse)
(Figure 4.4). The correlation of observed and predicted waves rate is also indicated in
percentage of variance reduction; higher value means better fit and supply more

dependable solution for a given event.
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Figure 4.3. Best fit ratio vs depth graph for moment tensor inversion solution of two events in the study area. (a)
2011.04.03 dated event and (b) 2018.09.12 dated event. Figures are produced by using Hermann (2015) software.
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Figure 4.4. The comparison of the observed and predicted waveforms of selected events in the study area. (a)
2011.04.03 dated event and (b) 2018.09.12 dated event. Red traces represent observed waveforms, blue, predicted
waveforms. Figures are produced by using Hermann (2015) software.

The time shift between observed and predicted waveforms indicate that synthetics are

not computed strictly at the same distance because velocity model used in calculations



may not be perfect. Positive time shifts indicate that prediction trace is too fast for
observed one whereas a negative value means a slow prediction (Figure 4.6). Time
shifts between predicted and observed waveforms are used to estimate and calculate
location errors. Time shift between waveforms may rise when: (i) origin time and
epicentral distance are incorrect, (i1) velocity model used for the inversion is incorrect,
(ii1) velocity model used to define the P-arrival time is not the same as the velocity
model used for the waveform inversion. By using a formula of mislocation, the time
shifts can be fitted to a functional form (see section 2.1.1 for more information). Once
derived shift in origin time and epicentral coordinates are calculated in the safe zone,

reliable solutions may be generated (Figure 4.5).

Velocity models used for inversion cause of changes for a given event moment tensor
inversion solution. In order to find most reliable moment tensor inversion solution,
accuracy of the velocity model is important. Velocity model used in this thesis is given
in Table 4.3. For a given depth inerval (H), VP (P wave velocity) , Vs (S wave
velocity) and RHO (Density) are used in the velocity model.

4.6. Event Moment Tensor Inversion Solutions

Moment tensor inversion of solutions of six (6) main events are preformed; the results
will be presented for each event. The method supplies dependable results about

character of the related fault.
4.6.1. Mo, Mw, Z Values of Moment Tensor Inversion Solution Events

Moment tensor inversion solution of events that occured in our study area suppy
significant data about the fault that cause the event. Magnitude, depth and moment of
events are calculated by sofware (Table 4.4). Events are selected based on their
magnitude, location and depth, in order to supply reasonable moment tensor inversion

solutions.
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Figure 4.5. Estimate of location error calculation for selected events in the study area. (a) 2018.09.12 dated event
and (b) 2011.04.03 dated event. Figures are produced by using Hermann (2015) software.

Size of an earthquake is indicated by number that is called magnitude. Magnitude
measurements are calculated from the maximum movements recorded by
seismograph. Several type of measurement method, like Ml local magnitude (Richter
Magnitude), Ms (Surface-wave magnitude), body-wave magnitude (Mb) and Moment
magnitude (Mw), are used for calculations. Another important parameter related with
moment is Mo (seismic moment) and it is calculated from parameters, such as
earthquake rupture surface, average fault displacement, shear modulus of the crustal

volume containing the fault.
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Table 4.3. Table indicate velocity model parameters (Vp,Vs, RHO) for moment tensor inversion solution in study
area.

H(km) |Vp (km/s) Vs (km/s) | RHO(GM/CC)
1,90 3,41 2,01 2,21
6,10 5,54 3,30 2,61
13,00  |6,27 3,73 2,78
19,00  |6,41 3,77 2,82
0,00 7,90 4,62 3,27

Events’ solution indicates predominantly shallow earthquake epicenter in the study
area. Seismic interpretation presented in Chapter 3 also corresponds to shallow depths
up to 3 seconds from seabed. Correlation between epicenter of an earthquake and
related fault interpreted from seismic section is possible. Medium-sized magntitude
(Mo and Mw) earthquakes area selected (Table 4.4) for better focal mechanism

solutions and to clarify better tectonic settlement.

Table 4.4. Date, Mo (Seismic Moment), Mw (Moment Magnitude) and Z (Depth) values of six events used in
moment tensor inversion solution.

Mo (Seismic Mw (Moment
Event Date Z (Depth)
Moment) Magnitude)
2018/09/12 | 1.72e+22 dyne-cm | 4.09 8 km
2011/04/03 | 1.40e+22 dyne-cm | 4.03 8 km
2012/06/25 | 2.54e+23 dyne-cm | 4.87 32 km
2019/02/11 | 1.06e+22 dyne-cm | 3.95 16 km
2018/10/24 | 1.06e+22 dyne-cm | 3.95 10 km
2019/04/15 | 1.22e+22 dyne-cm | 3.99 10 km
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4.6.2. Nodal Planes, Dip and Strike Values From Moment Tensor Inversion

Solution Events

Moment tensor inversion method solution of events supply two possible seismic nodal
planes that are responsible for each event. One of them is paralel to main fault that
cause the event, while the other is called auxiliary plane. In order to decide which of
these nodal planes are responsible for a given event, geometry (strike and dip
direction) of the faults need to be known. In this study, the information about the main
faults is obtained by structural interpretation of seismic sections (see Chapter 3 for
more information). Strikes of the faults varies between N745°E to N32°E. Dip
directions are also variable; depending on the strike of the fault as towards South,
North, Southeast and Northwest. Nodal planes for each event are presented in Table

4.5.

Table 4.5. Strike, dip, rake of selected events in study area. Blue raws indicate principal plane axes responsible
from a given event. The fault data is based on seismic interpretation presented in Chapter 3.

Event Date | Plane Strike (°N) | Dip (°) Rake (°)

Nodal Plane 1 | 160 75 35
12.09.2018

Nodal Plane 2 | 60 56 162

Nodal Plane 1 |30 55 85
03.04.2011

Nodal Plane 2 [219 35 97

Nodal Plane 1 |225 70 -30
25.06.2012

Nodal Plane 2 | 326 62 -157

Nodal Plane 1 | 125 70 -45
11.02.2019

Nodal Plane 2 |234 48 -153

Nodal Plane 1 |239 60 -145
24.10.2018

Nodal Plane 2 | 130 60 -35

Nodal Plane 1 |230 81 -150
15.04.2019

Nodal Plane 2 | 135 60 -10
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4.6.3. 2018/09/12 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2018/10/24 (18.13.26) (GMT) dated event
provides two seismic nodal planes (Figure 4.6; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
060°N and dips at 56° towards SE; the rake angle is 162°. The solution of this event
therefore is consistent with a right-lateral strike-slip fault with relatively minor reverse
component. Plunges and azimuths P and T axes are 12°/286°N and 35°/025°N,
respectively. Direction of pressure axis that creates this fault strike should be in
NE-SW direction (Figure 4.6). The moment magnitude (Mw) of this event is 4.09
and the depth is 8 km; one of the shallowest event presented in the thesis (Table 4.4).

Moment Tensor Inversion Method Solution of 2018/09/12 Dated Event

N
Event Date Mo (Seismic Mw (Moment Z (Depth)
Moment) Magnitude)
2018/09/12 1.72e+22 4.09 8 km
dyne-cm
a

Axis Azimuth (°) Plunge (°)
P-axes 286 12 W

T-axes 25 35

Strike Dip Rake

Event Date Plane
™ (deg®)  (deg®)
Nodal Plane 1 160 75 35
0208 Nodal Plane 2 60 56 162

C

Figure 4.6. Moment tensor inversion solution of 2018/09/12 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow plane represents the principal
plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.4. 2012/06/25 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2012/06/25 (13.05.28) (GMT) dated event
provides two seismic nodal planes (Figure 4.7; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
225°N and dips at 70° towards NW; the rake angle is —30°. The solution of this event
therefore is consistent with a left-lateral strike-slip fault with relatively minor normal
component. Plunges and azimuths P and T axes are 35°/183°N and 05°/277°N,
respectively. Direction of pressure axis that creates this fault strike should be in
NE-SW direction (Figure 4.7). The moment magnitude (Mw) of this event is 4.87 that
correspond to a moderate earthquake. The depth of the event is 32 km; deepest event
presented in the thesis (Table 4.4).

Moment Tensor Inversion Method Solution of 2012/06/25 Dated Event

| Event Date Mo (Seismic Mw (Moment Z (Depth)
Moment) Magnitude)

2.54e+23 487 32 km
dyne-cm

| 2012/06/25

Axis Azimuth (%) Plunge (°)

P-axes 183 35
T-axes 277 5
Strike Dip Rake
Event Date Plane
™ (deg®)  (deg”)
Nodal Plane 1 225 70 -30
2012/06/25
Nodal Plane 2 326 62 -157

d

C

Figure 4.7. Moment tensor inversion solution of 2012/06/25 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow plane represents the principal
plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.5. 2019/02/11 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2019/02/11 (16.38.03) (GMT) dated event
provides two seismic nodal planes (Figure 4.8; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
234°N and dips at 48° towards NW; the rake angle is —153°. The solution of this event
therefore is consistent with a right-lateral strike-slip fault with relatively minor normal
component. Plunges and azimuths P and T axes are 45°/0803°N and 13°/184°N,
respectively. Direction of pressure axis that creates this fault strike should be in
NE-SW direction (Figure 4.8). The moment magnitude (Mw) of this event is 3.95 that
correspond to a moderate earthquake. The depth of the event is 16 km (Table 4.4).

Moment Tensor Inversion Method Solution 2019/02/11 Dated Event

N
Event Date Mo (Seismic Mw (Moment Z (Depth)
Moment) Magnitude)
2019/02M1 |y g6 100 3.95 16 km
dyne-cm
a
Axis Azimuth (° Plunge (°
ge () W E
P-axes 80 45
T-axes 184 13
Strike Dip Rake
Event Date Plane
™) (deg®)  (deg®)
Nodal Plane 1 5 45
2012/06/25 2 i i
Nodal Plane 2 234 48 -153 d
¢ S

Figure 4.8. Moment tensor inversion solution of 2019/02/11 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow plane represents the principal
plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.6. 2019/04/15 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2019/04/15 (17.42.25) (GMT) dated event
provides two seismic nodal planes (Figure 4.9; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
230°N and dips at 81° towards NW; the rake angle is —150°. The solution of this event
therefore is consistent with a right-lateral strike-slip fault with relatively minor normal
component. Plunges and azimuths P and T axes are 27°/097°N and 14°/359°N,
respectively. Direction of pressure axis that creates this fault strike should be in
NE-SW direction (Figure 4.9). The moment magnitude (Mw) of this event is 3.99 that
correspond to a moderate earthquake. The depth of the event is 10 km (Table 4.4).

Moment Tensor Inversion Method Solution 2019/04/15 Dated Event

| Event Date Mo (Seismic Mw (M t Z (Depth) N
Moment) Magnitude)
ZOL/04A5H B 9)e 197 3.99 10 km
dyne-cm
a

Axis Azimuth (%) Plunge (%)

P-axes 97 27 W
T-axes 359 14
Strike Dip Rake
Event Date Plane
™ (deg®)  (deg”)
Nodal Plane 1 230 81 -150
2019/04/15 =
Nodal Plane 2 135 60 -10

C

Figure 4.9. Moment tensor inversion solution of 2019/04/15 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow plane represents the principal
plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.7. 2018/10/24 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2018/10/24 (02.36.13) (GMT) dated event
provides two seismic nodal planes (Figure 4.10; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
239°N and dips at 60° towards NW; the rake angle is —145°. The solution of this event
therefore is consistent with a right-lateral strike-slip fault with normal component.
Plunges and azimuths P and T axes are 45°/095°N and 00°/005°N, respectively.
Direction of pressure axis that creates this transtensional fault strike should be in
NE-SW direction (Figure 4.10). The moment magnitude (Mw) of this event is 3.95
that correspond to a moderate earthquake. The depth of the event is 10 km (Table 4.4).

Moment Tensor Inversion Method Solution 2018/10/24 Dated Event

N

Event Date Mo (Seismic Mw (Moment Z (Depth)
Moment) Magnitude)

| 201871024 o647 3.95 10km
dyne-cm

Axis Azimuth (°) Plunge (°)

P-axes 95 45
T-axes 5 0
i Strike Dip Rake
Event Date Plane ™ (deg?) (deg?)
Nodal Plane 1 239 60 -145
2012/06/25
Nodal Plane 2 130 60 -35
C S

Figure 4.10. Moment tensor inversion solution of 2018/10/24 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow plane represents the principal
plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.8. 2011/04/03 Dated Event Moment Tensor Inversion Solution

Moment tensor inversion solution of 2011/04/03 (23.42.18) (GMT) dated event
provides two seismic nodal planes (Figure 4.11; Table 4.5). Comparison with the
information from the seismic interpretation indicates that principal plane strikes in
219°N and dips at 35° towards NW; the rake angle is 97°. The solution of this event
therefore is consistent with a reverse fault with very minor right-lateral component.
Plunges and azimuths P and T axes are 79°/281°N and 10°/124°N, respectively.
Direction of pressure axis that creates this fault strike should be in NE-SW direction
(Figure 4.11). The moment magnitude (Mw) of this event is 4.03 that correspond to a
moderate earthquake. The depth of the event is 8 km; one of the shallowest event
presented in the thesis (Table 4.4). There isnt any interpreted pure reverse fault near
that event because of seismic data gap between Section B and C . Therefore two
nodal planes whose strike almost paralel each other can be acceptable as a main

solution.

Moment Tensor Inversion Method Solution of 2011/04/03 Dated Event

Event Date Mo (Seismic Mw (Moment Z (Depth)
Moment) Maguitude) N

201104003 ) 4pei2) 4.03 8 km

dyne-cm

Axis Azimuth () Plunge ()
P-axes | 281 79
T-axes 124 10

Strike Dip Rake

Event Date Plane ) (deg?) (deg?)
Nodal Plane 1 30 55 85

2011/08/03 d
Nodal Plane 2 219 35 97

C

Figure 4.11. Moment tensor inversion solution of 2011/04/03 dated event. (a) Mo, Mw, Z values for the event; (b)
Azimuth and plunge of P- and T-axes; (c) strike, dip and rake of two seismic nodal planes, yellow raw marks the
principal plane for the event; (d) focal mechanism solution of the event; yellow and gray planes represents the
principal plane that caused the event. Blue arrow shows the dip direction of the fault.
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4.6.9. Location of Moment Tensor Inversion Solutions of All Events

The results of focal mecahanism solutions of six events and their beachballs are
combined into one diagram and presented in Figure 4.12. The correlation of each event
with the faults interpreted from seismic sections will be discussed in Discussion

Chapter.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The main objectives of the present thesis are interpret, identify and map major
structural elements (faults) in a key area along Mediterranean coastline between Datga
and Finike bays and define the basic characteristics of these structures. Two main
methods have been applied in order to achieve these objectives: structural
interpretation of seven seismic sections acquired by MTA Sismik-1 Research Vessel
in 1996 and 1997 and moment tensor inversion solutions of six (selected) main events

occurred in the area of interest.

This chapter is about the integration and interpretation of the main results obtained
from the two methods (see Chapters 3 and 4 for details). Fault and event correlation
will be performed, and basin evolution, be discussed. A comparison with the results

of similar previous studies will also be made.
5.1. Fault and Event Correlation

Correlation between major (basin-bounding) faults and events would provide
important insights into better understanding of structural styles and evolution in a
given region; the geometry of faults (strike and dip direction) obtained from the
seismic sections (Table 5.1) and orientation, dip direction and location of events

presented in Figure 4.13 will form the base for this correlation.

Moment tensor inversion solution of a given event provides two possible seismic
nodal planes (strike, dip and rake of possible fault planes) that are responsible for the
event. The solution should be compatible with strike and dip direction of the structures
identified in the seismic sections. Thus, one of those nodal planes will be eliminated

to reach a compatible result.
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Magnitude and depth of the earthquakes are taken into consideration when selecting
the events; relatively shallow-to-moderate magnitude recent (after year 2005)
earthquakes are chosen as they have most high quality reliable waveforms. The results
of the movement tensor inversion method (the strike, dip and rake of the fault planes
and the type of faulting; Table 5.2) are then compared and correlated to that of seismic

interpretation (Table 5.3 and Figure 5.1).

Table 5.1. Faults strike and dip direction inferred from seismic sections. Red colour in dip direction column means
faults with almost vertical geometry or and changing dip direction. Blue refers faults with slight strike changes.

Fault Orientation | Dip Fault Orientation | Dip
Name (Strike) Direction | Name (Strike) Direction
F-104 NI0°E SE F-114 N70°E SE
F-103 N28°E NwW F-115 N69°E NW
F-102 N36°E SE F-116 N65°E SE
F-101 N42°E NwW F-117 N64°E NW
F-106 N74°E SE F-122 N37°E NW
F-100 N77°E NwW F-121 N32°E SE
F-131 N47°E NwW F-108 N72°E NW
F-132 N48°E SE F-123 N70°E SE
F-111 N68°E SE F-124 N65°E NwW
F-113 N72°E SE F125 N66°E SE
F-112 N70°E NW

100



Table 5.2. Type of faulting occurred in the study area.

Event Date Type of Faulting

2018-09-12 Right-lateral strike-slip fault with reverse component
2018-10-24 Right-lateral strike-slip fault with normal component
2019-04-15 Right-lateral strike-slip fault with normal component
2011-04-03 Reverse fault

2019-02-11 Right-lateral strike-slip fault with normal component
2012-06-25 Left-lateral strike-slip fault with normal component
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The main conclusions derived from Table 5.3 and Figure 5.1 are summarized as

follows:

(1) The source of the 2018-09-12 dated event, is interpreted as SE-dipping fault
F-116 that bounds the basin B in seismic sections B and D. Fault F-116 is
defined as a right-lateral strike-slip fault with reverse component. The fault
displays changes in strike and dip direction; this geometry is attributed to
strike-slip nature of the structure (Figure 5.1). The reverse component of the
fault from the moment tensor solution appears not compatible with the normal

faulting in the seismic interpretation.

(2) 2018-10-24 and 2019-04-15 dated events are interpreted to source from NW-
dipping fault F-117; a stucture that forms at the central part of the basin B. It

is defined as right-lateral strike-slip fault with a normal component (Table 5.2).

(3) 2019-02-11 dated event is caused by NW-dipping fault F-115; it occurs within
the basin B and bounds an intrabasinal high/ridge-bounding structure in
seismic sections A, B, and D. Fault F-115 is defined as a right-lateral strike-

slip fault with normal component.

(4) NW-dipping fault F-122 is interpreted as the source structure for 2012-06-25
dated event. The fault also occurs in the basin B and bounds a intrabasinal
high/ridge within the basin in seismic sections A and C (Figure 5.1). Fault F-

122 is defined as a left-lateral strike-slip fault with normal component.

(5) Moment tensor solution of the 2011-04-03 dated event suggest reverse fault
with very minor dextral component; it is not possible to correlate this event
with any of the faults from the seismic interpretation. This may be a fault which

is not possible to interpret in the seismic section.

(6) The difference in strike of fault from moment tensor solutions and seismic

interpretations may arise from corrugated nature of the faults.
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It is important to emphasize that basin B is completely covered at seismic sections A

and D, respectively at the west and east of the study area. Sections B and C are placed

between A and D where basin B cannot be observable because approximately 8-km-

long seismic data was not acquired by RV MTA Sismik-1 between sections B and C.

Thus, the correlation of events occurred in the gap area with possible responsible fault

is not possible.

To test the result of the present thesis and, to make a robust interpretation and

correlation of faults and events, moment tensor inversion solutions of other events

from the literature are studied (Table 5.4). The final fault-event correlation map is

illustrated in Figure 5.2. The final solutions are broadly consistent with thesis study.

Table 5.4. Moment tensor inversion solution of earthquakes occurred in the study area (from Irmak et al.,
2015).Moment tensor inversion solutions from the thesis study are marked with (*) and italic bold character.

No.  Date (dd/mm/yyyy)  Orvigin time (hemmes)  Location () Lat-Lon.  Depth(km) Mag  Sinike” Dip® Rake” P I
Az PI Az Pl
1 10062012 12:44:16 364528 289160 K1) 6.1" 212 7 3 167 6 76 11
2 250062012 13:05.30 36,4422 289422 49 s0° 21 57 -57 175 62 278 7
3 100062012 18:28:33 36,4622 28 9398 20 45 201 62 - 106 78 60 302 16
B 12062012 21:58:12 36,4585 289157 30 44" 261 35 -~33 252 $3 131 21
5 11062012 19:51:08 36,4315 289633 10 43° 349 s ~90 79 80 259 10
6 1 11062012 02:06:35 36,3858 28 9552 10 43> 229 S0 4 184 B 93 10
7 11062012 17:35:38 36,4022 289815 10 42° m2 81 S 187 3 96 10
8 11062012 14:00:18 36,4045 289762 20 39 328 42 ~104 134 80 247 4
9 100062012 22:31:45 36,4343.28 9337 15 39 234 76 S 189 6 98 13
10 23062012 04:26:06 36,4468 289178 i) 3’ 344 42 93 110 86 256 3
1 10062012 18:42:28 36,4385 28 9398 20 37 201 62 106 78 M 302 16
12 25062012 14:33:30 36,4467 28 9350 2 355 24 76 S 189 6 98 13
*13  2012/06/25 13:05:28 36,4422-28,9422 32 49 225 70 -30 183 35 277 5
*14  2019/02/11 16:38:03 36,5225-28,8355 16 39 234 48 -153 184 13 80 45
15 04082008 08:01:50 36.5587-28.7372 18 35° 223 62 -110 95 67 327 15
*16  2011/04/03 23:42:18 36,4938-28,7715 8 40 219 35 97 124 10 281 79
M7  2018/09/12 18:13:26 36,4453-28,7325 8 4.1 60 56 162 286 12 25 35
18 122122000 15:23:16 36,5342 28 6402 57 4 198 46 <90 108 89 288 |
*19  2018/10/24 02:36:13 36,4774-28,7423 10 39 239 60 -145 5 0 95 45
20 2504/1957 02:25:36 36.4700 28 5600 53 71 128 73 7 73 26 212 58
21 140062012 16:46:06 36,3907 29 0558 197 48 91 47 2 179 2 44 87
22 13062012 08:59:06 36,4488 289263 238 44 125 48 121 14 1 107 67
23 1M062012 12:49:36 36.4707-289145 216 49 133 51 101 215 § 93 80
*24  2019/04/15 17:42:25 36,4777-28,7332 10 4.0 230 81 -150 359 14 97 27
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Right-lateral strike-slip faulting is not only compatible with Fethiye-Burdur Fault
Zone (FBFZ) and Pliny-Strabo STEP fault zone which are identified as a left-lateral
strike-slip faults. The general orientation of the faults from the seismic interpretation
is consistent with the fault segments in the FBFZ and STEP fault zone but not the
sense of motion. The results of the present study therefore brings more confusion and
makes the present case more complex. That is why, the accuracy of the moment tensor
solutions are also checked; accuracy of the solutions is indicated by best fit value
between green function and real seismic wave forms which is given in Table 5.5.
These numbers change between 1.0 and 0.0 (minimum best fit value is 0,6680 and
maximum best fit value is 0,7676) and indicate that reliability of the moment tensor
inversion solutions of events is within accepted limits. Thus, it is concluded that the

event solutions are rebost and that there are right-lateral faults in the study area.

Moment tensor inversion solution uses velocity model, which is supplied by the
software. If more accurate velocity model(s) for the study area and its nearby regions
is produced by future researchers, the results would be more accurate and reliable.
Seismic stations used in thesis are mostly located in Anatolia. Data from stations in

the Aegean Sea may supply more reliable solutions.

Table 5.5. Table indicate events, responsible faults and best fit value that indicate reliability of the solution.

Event Date | Responsible Fault | Best Fit Value
2018-09-12 | F-116 0,6740
2018-10-24 | F-117 0.6680
2019-04-15 | F-116 0.7413
2011-04-03 | F-116 0,7131
2019-02-11 | F-115 0.7378
2012-06-25 | F-122 0,7676
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The nature of the faults in the study area casts more questions between the correlation
of the FBFZ and STEP fault zone. That is why moment tensor inversion solutions of
more events should be performed to obtain more reliable results. The results of present
study therefore suggest that It may be wrong to correlate the FBFZ and the Pliny-
Strabo STEP fault zone.

5.2. Basin Analysis

Interpretation of 2D seismic sections has revealed existence of three NE-SW trending
basins in the area between Marmaris and Finike bays; basins A, B and C. Basin A
occurs at the continental slope. There occur some irregularities along sea bottom
morphology in all of these basins. They are interpreted as fault-bounded intrabasinal

highs/ridges (Figure 5.3).

Formation time of ridges is a question waiting for clarification. Thickness of seismic
units on top of the ridges and within the deepest floor of the basins can be used as a
good indicator. As expected, the thickness is minimum at top of the ridges and
maximum above the basin floor (Figure 5.3). This arises from accommodation space

where it is limited above ridges.

Until the deposition of the unit 3, these ridges were formed under contractional
tectonic regime. The deposition of the units 1, 2 and 3 has occurred under regional
extensional regime, as suggested by the nature of bounding faults. Deposition
continued as basins become deepened in the downthrown hanging-wall of the faults.
Consequently, basins accommodated relatively thick basin-fill while deposition at top
of the ridges is limited because of limited accommodation space. Focal mechanism
solutions of the events that occurred in and around the study area on land mostly
indicate almost pure normal faulting. Although F-116 interpreted as a fault with
normal component in seismic sections that indicate a possibly transtensional or
extensional tectonic regime, focal mechanism solutions of the events related with F-
116 indicate dextral faulting with minor reverse component (Table 5.3, Figure 5.1).

The reverse component is not compatible with the observed offset in the seismic

108



sections. Thickness of seismic horizon 1 changes between 5 — 7.5 ms. Total thickness
of this horizon may reach up to 15 meters at the interpreted sesimic sections.
Therefore, sea bottom should be deformed at least 10—15 meters in order to define
recognizable recent deformation at seismic sections. The controversy between the
focal mechanism solutions and the normal faulting interpreted from the seismic
sections can therefore by explained by two different ways: (i) recent reverse faulting,
which is indicated by focal mechanism solutions, should be the youngest (Holocene
or Pleistocene?) event and has very limited deformation on the sea floor and is
therefore different from phase 2; or (ii) the earthquake is sourced from a different fault

which is not possible to interpreted at seismic sections.
5.3. Tectonic Evolution of Study Area

Tectonic evolution of the study area commenced by the deformation of the seismic
basement (unit 4) as illustrated by deformation of its upper boundary, the horizon 4
(Figure 5.4). Horizon 4 also indicates a deformation style, which is different from
horizons 3 and 2, which are lower boundary of the unit 1 and unit 2, respectively.
Deformation style of the horizon 4 suggests reverse faulting and indicates
compressional or transpressional tectonic environment. This phase ended prior to the

deposition of seismic unit 3 in the study area.

The second phase is represented by the deposition of seismic units 3, 2 and 1 within
fault-controlled basins (labelled as basin A, B and C). During this phase, the reverse
faults are inverted and reactivated as normal structures. As the faults continued their
activity, the NE-SW trending basins deepened and accommodated sedimentation of
seismic units 3, 2 and 1, respectively. The faults also controlled the formation of

several intrabasinal highs/ridges.

Recent tectonic setting of the study area is observed especially along the continental
shelf and is dominated by strike-slip faults with reverse and/normal components.

Although it is difficult to distinguish the effects of recent tectonics setting in highly
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deformed basins, the right- and left-lateral strike-slip faults appear to effect seismic
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unit 1 and the sea floor.



Figure 5.4. Three surfaces created from horizons defined in the study area: (a) bottom boundary surface of the
seismic unit 1; (b) upper boundary surface seismic unit 3; and (c) upper boundary surface of seismic unit 4 (seismic
basement).

Focal mechanism solutions of the earthquakes support this contention. The strike-slip
nature of the basin bounding structures may suggest a second phase reactivation of
tectonic structures, during which normal faults have reactivated as strike-slip

structures with mostly normal component.
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One of the objectives of the study area is to assess presence and/or continuum of Pliny-
Strabo STEP fault zone within the study area and into the Fethiye-Burdur Fault Zone.
The available evidence may support the contention that the NE-SW trending fault
zone affecting Pleistocene—Quaternary sediments and the sea floor in the study area
may be may represent northeastern continuation of the similarly trending faults
defined in the Rhodes Basin to the south (cf. Hall et al., 2014a). The linkage of these
faults to the Fethiye-Burdur Fault Zone is not possible to clarify; this needs more

detailed survey in the area.

Nevertheless, Seismic profiles from the study area therefore include tri-partite
prominent seismic stratigraphic units, separated from one another by conspicuous
angular unconformities. Two prominent seismic reflectors define the top and bottom
of these sedimentary successions. The seismic unit 1 is the youngest succession in the
study area and is presumably tentatively correlated with Pleistocene—Holocene
sediments of the onland Cameli-Golhisar, Esen, Kasaba, Aksu, Kopriicay and
Manavgat basins. The erosional surface may be correlated with Pleistocene angular
unconformity defined in onland basins (Cameli, GSlhisar, Esen and Kasaba basins; cf.

Algicek, 2007).

The second succession comprises seismic units 2 and 3 and is overlain by the unit 1
along a local unconformity; this package is correlated with either (i) middle Miocene—
Pliocene sediments of the onland basins if present or (ii) Post- Messinian possibly
Pliocene sediments. The oldest seismic unit 4 forms the basement to the overlying
sedimentary succession; its upper boundary also appears as a regional unconformity.
The seismic unit 4 is therefore correlated with the basement of the onland basins. The
seismic basement must be represented by pre-Miocene rocks (lower Mesozoic to
Oligocene) that form the basement of, and/or Miocene—Pleistocene basin-fill of,

onland Cameli, Golhisar, Esen and Kasaba basins.

It is therefore concluded, based on the information from the intrabasinal highs/ridges,

that the region has experienced three distinct phases of deformation: (1) a
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contractional regime prior to the deposition of unit 3. This phase may be associated
with continent-continent collision between the Anatolide-Tauride platform in the
south and Sakarya Continent in the north and the Miocene emplacement of the Lycian
Nappes; (2) extensional or transtensional regime during which three NE-SW-trending
basins (A, B and) and intrabasinal highs/ridges commenced — the basins deepened,
ridges become pronounced as similarly trending bounding faults continued to move.
The reverse faults have reactivated as similarly trending high-angle normal faults, thus
defining NE-SW-trending fault zone; this geological process is described as part of
‘reactivation of tectonic structures’ that occurred in the eastern Mediterranean
(Williams et al., 2009). This phase may be related to either (i) gravitational collapse
of the hinterland zone of the Lycian Nappes in response to the lithospheric thickening
subsequent to continent-continent collision or (ii) southward rollback of the Aegean
arc; (3) recent strike-slip regime as suggested by focal mechanism solutions of events

occurred along these faults.

It is suggested that the basin evolution is presumably very similar to those of onland
Miocene—Pleistocene basins to the north of the study area, like Cameli, G6lhisar, Esen
and Kasaba basins to the north of the study area. The tectonic evolution of these basins

may therefore form a reference framework for the study area.
5.4. A Review and Comparison of the Literature

Interpretation of seismic sections in and around the study area was also performed by
other researchers (Ocakoglu, 2012; Hall et al., 2014a; Aksu et al., 2019). In fact, in
many of these studies seismic sections acquired by MTA Sismik 1 and RV Piri Reis
are used in these studies (Figure 5.5). This means many of the seismic sections
intepreted during thesis research were already interpreted by others. That is why a
comparison of the results from the present work and from others deserves a discussion.
One of the main and common conclusions of all of these studies (including the present

thesis) is about the structural complexity of the study area and its nearby region.
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Figure 5.5. Map showing approximate location of the seismic sections studied by Ocakoglu (2012), Hall et al.,
(2014a), and Aksu et al., (2019). Yellow lines indicate interpreted seismic lines in Hall et al., (2014a); red lines,
interpreted seismic lines in Aksu et al., (2019); black dashed lines, interpreted common seismic lines in Ocakoglu
(2012). White lines shows interpreted seismic lines in thesis study. Red and yellow arrows indicate extension of
seismic sections.

Ocakoglu (2012) has already used the same seismic sections. Ocakoglu (2012)
described two seismic units as seismic basement (Cretaceous and Miocene rocks) and
overlying Plio—Quaternary basin fill (Figure 5.5 and 5.6.d). The present work defines
there seismic units (units 1, 2 and 3) above the basement; these units are defined and
differentiated by using seismic stratigraphical features like, erosional truncation,
unconformities, initial surface of deposition, etc. The identification of 3 seismic
sections contributes to better understanding of fault activity in the study area so that it
becomes more obvious and easy to comment on the reactivation of faults. This further
means a different structural interpretation of common seismic sections, like seismic
section G. For example, delta deposits described in Ocakoglu (2012) are reinterpreted
as a regional landslide. Furthermore at parellel sections E, F and G, respectively at
CDP 3400-2500, 0-1500, 6800-5600 points, the delta deposits of Ocakoglu (2012)

are not observable.
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Figure 5.7. Correlation of the seismic stratigraphy in four studies; they propose different stratigraphic successions.
Blue question mark (?) indicates that geologic timing is not precise; black question mark (?), not only geologic
timing but also boundary type are not precise.

This interpretation may arise from a confusion of laterally terminating seismic
horizons; this relationship is explained by a regional landslide as explained in Figures
3.6, 3.5 and 3.4. Ocakoglu (2012) also mentioned about sliding blocks in section A;
this will be discussed latter (see discussion on work by Aksu et al., 2019) (Figure 5.6
d).

Ocakoglu (2012) interpreted the Marmaris fault zone (MFZ) and {-3 faults as
synthetic ruptures of the faults that may belong to Pliny-Strabo STEP fault zone.
These structures are also interpreted as submarine extension of the FBFZ which goes
through the Rhodes island (Figures 5.6d and 5.8d). Whereas moment tensor inversion
solution of the events indicates right-lateral motion and this is not compatible with

left-lateral strike-slip faulting.

Yellow B, C, D, E lines in Figure 5.5 represent seismic sections interpreted in Hall et
al. (2014a). These seismic sections are acquired by RV Koca Piri Reis of the Institute
of Marine Sciences and Technology (IMST), Dokuz Eyliil University in 2001, 2007,
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2008 and 2010. Seismic sections are paralel to sections A, B, C, D seismic lines
interpreted in this study. Two seismic units are described by Hall et al. (2014a): a
bottom unit of pre-Messinian rocks and a top unit consisting of Plio—Quaternary
succesion (Figures 5.6¢ and 5.7). Normal faults are described as bounding structures
of ridges; these faults are interpreted as reactivitated reverse faults. Extension of the
basin and basin bounding faults described in this study are also observable in Hall et

al. (2014a) sections (Figures 5.6c and 5.8).

Many of the SW—-NE-trending faults have been interpreted as dip-slip faults with
variable amounts of sinistral strike-slip component (Hall et al., 2014a). These authors
also mentioned about existence of faults with dextral component (in addition to
sinistral structures) and discussed their role in recent tectonic regime. Upper crustal-
scale traces (ofsets, releasing bends, etc that are interpreted to relate the FBFZ)
mention in Hall et al. (2014a) can not be observable in the study area. The authors
interpreted, based on magnetotelluric studies by Giirer et al. (2004), the faults in the
study area as part of a flower structure along the crustal-scale extension of a STEP
fault. This is not compatible with the model of the present work as many of the faults
are described to have normal components and to control the formation of three
subbasins A, B and C. They also provide a fault map with structures aligned in the
same direction with those described during this study (Figure 5.6). Likely, many right-
to left lateral strike-slip faults with reverse and normal component have been described
in Hall et al. (2014a), similar to present study (Table 5.2). It may therefore be wrong

to interpret such a deformation zone as a offshore extension of FBFZ in a crustal scale.

Red M, K seismic lines where M extends out of study area (Figure 5.5) are interpreted
in Aksu et al. (2019). These seismic sections are acquired by RV Koca Piri Reis of the
Institute of Marine Sciences and Technology (IMST), Dokuz Eyliil University in
1992, 2001, 2007, 2008 and 2010. E-W-oriented seismic section K crosscuts section
C of the present study (Figure 5.5). NW—SE-oriented seismic section extends out of
study area and is also almost parallel to seismic section A (Figure 5.5) interpreted by

Ocakoglu (2012).
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Two seismic units are described as a bottom unit of pre-Messinian rocks and top unit
of Upper Messinian—Quaternary succesion by Aksu et al. (2019). Upper
Messinian—Quaternary succesion, Unit 1 is divided into two subunits as bottom unit
1b and Pliocene—Quaternary top unit la by (Figure 5.7). Seismic horizons are
interpreted as a unit 1a corelates unit 1 of this study. This kind of seismic horizons are
also interpreted as a landslides in seismic section A between 4600 and 6200 CDP
points. Seismic unit 1a of Aksu et al. (2019) are interpreted as part of slide blocks,
like in Ocakoglu (2012) (Figure 5.6a, d). These areas are explained as: ‘decapitated
nearly the entire uppermost Messinian—Quaternary sub-unit la by profound
unconformity indicated a-reflector at norheastern margin of Rhodes basin’ by Aksu
et al., (2019). ‘Profound o—reflector’ can not observable in thesis seismic sections
where water depth is lower than section M (Figure 5.6b). Aksu et al. (2019) did not
mentioned about reactivation of tectonic structures in the Rhodes Basin though they
suggest existence of reactivation of tectonic structures in Antalya Basin and
Anaximander Mountain. These authors also confirmed the existence of NE-SW-

trending faults in the study area (Figure 5.8).

Aksu et al. (2019) intepreted the FBFZ as a zone bounded by two major left-lateral
strike-slip faults; these faults has almost the same orientation with right-lateral strike-
slip faults described in this study. They suggest that FBFZ is onland extension of the
Pliny-Strabo STEP fault zone (Figure 5.8). Although the general trend of the faults
share similar orinetations, the nature of the faults interpreted in Aksu et al. (2019) and

the present study are contrasting.

Furthermore subsidence that occured in the study area was also explained with
‘reactivation of tectonic structures occured during time of deposition unit 3,2 and 1 in
theisis study. Observed relative subsidence up to reach 3000 ms at occured section A-

B in also huge amount to take place only in short time period defined by Aksu et al.

(2019).
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It is not possible to observe the traces of the prograde shelf edge delta interpreted in
Figure 20 at Aksu et al. (2019), at thesis seismic sections which are closer to the
shoreline. Considering that the prograding delta feeding is from the shore to the sea,
the structures of this delta development which can be observed in NW-SE direction

are not observed in our sections (Figures 3.15b, 3.17b and 3.14b).

Existence of the right-lateral strike-slip faults and their parallelism with already
defined left- lateral strike-slip faults in a same are define unexplainable case. A
possible explanation requires a more detailed work and may be moment tensor
solution of many earthquakes from the same area. Structural complexity of the study
area needs to be examined more detailed in future surveys. For example, 3D seismic
surveys can be performed to be ensure fault extension and direction in the study area.
Regional velocity model, which is used in moment tensor inversion, should be

obtained by further research.
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