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ABSTRACT 

 

VIBRATION REDUCTION OF STRUCTURES BY USING NONLINEAR 

TUNED VIBRATION ABSORBERS 

 

Doğan, Muhammed Emin 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Ender Ciğeroğlu 

 

September 2019, 85 pages 

 

Tuned Vibration Absorbers (TVA) are commonly used in reducing undesirable 

vibrations of mechanical structures. However, TVAs work in a very limited frequency 

range and if the excitation frequency is outside of this range, they become ineffective. 

In order to solve this problem, researchers started to consider nonlinear TVAs for 

vibration attenuation. In this study, dynamic behavior of a Linear systems coupled 

with a nonlinear TVA is investigated. The system is subjected to sinusoidal base 

excitation. Parameters of the nonlinear TVA is optimized to minimize vibration values 

of the primary system. Assumed modes method is used to model the Euler-Bernoulli 

beam. Nonlinear differential equations of motion are converted to a set of nonlinear 

algebraic equations by using Harmonic balance Method (HBM). The resulting set of 

nonlinear algebraic equations is solved by Newton’s Method with Arc-Length 

continuation. Nonlinearities used in the TVA are cubic stiffness, which is referred as 

Nonlinear Energy Sink (NES) in the literature; cubic damping and dry friction 

damping. Hill’s method is used to evaluate stability of the solutions obtained. Results 

of the system with optimum nonlinear TVAs are compared with that of optimum linear 

TVA. Although, NES show to exhibit good vibration reduction performance, which 

is in parallel with the results given in literature, due to instability of the frequency 
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domain solutions, it is observed that, actually, it is not as effective as other nonlinear 

TVAs. 
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ÖZ 

 

DOĞRUSAL OLMAYAN AYARLI TİTREŞİM SÖNÜMLEYİCİ 

KULLANILARAK YAPI ÜZERİNDEKİ TİTREŞİMLERİN AZALTILMASI 

 

Doğan, Muhammed Emin 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. Ender Ciğeroğlu 

 

Eylül 2019, 85 sayfa 

 

Ayarlı Titreşim Sönümleyicileri (ATS) mekanik yapılan üzerindeki istenmeyen 

titreşimi azaltmak için kullanılır. Fakat ATS’ler sınıtlı bir frekans aralığında çalışırlar. 

Eğer tahrik frekansı bu aralığın dışındaysa, ATS’ler etkili olmamaya başlar. Bu 

problem çözmek için birçok araştırmacı doğrusal olmayan ATS’ler üzerinde 

çalışmaya başlamıştır. Bu çalışmada, doğrusal olmayan ATS ile birleştirilmiş doğrusal 

bir sistemin dinamik davranışı incelenmektedir. Sistem tabandan tahrik edilmektedir. 

Ana sistemin titreşim seviyesini minimize edecek şekilde doğrusal olmayan ATS’nin 

parametreleri optimize edilmektedir. Mod varsayım yöntemi kullanılarak Euler-

Bernouli kirişi modellenmektedir. Doğrusal olmayan diferansiyel denklemler 

harmonik denge metodu ile doğrusal olmayan cebirsel denklemlere çevrilmektedir. 

Bu denklem seti de yay Devamlı Yay Uzunluğu ve Newton metodu kullanılarak 

çözülmektedir. Sistemde kullanılan doğrusal elemanlar kübik katılık, kübik damper 

ve sürtünmedir. Hill metodu ile elde edilen çözümlerin kararlılığı kontrol edilmiştir. 

Doğrusal olmayan katılık kullanılan ATS’ler literatürde Doğrusal olmayan enerji 

çukuru diye de geçer. Optimize edilmiş doğrusal olmayan ATS’lerin performansı ile 

optimum doğrusal ATS’lerin performansı karşılaştırılır.  
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Anahtar Kelimeler: Ayarlı Titreşim Sönümleyicisi, Doğrusal Olmayan Enerji Çukuru, 

Optimizasyon, Sürtünme 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Tuned Vibration Absorbers (TVA) are commonly used in reducing undesirable 

vibrations of mechanical structures. It generally consists of a mass, a spring and a 

damper which is attached to a structure. The aim is to reduce the dynamic response of 

the primary system at a certain frequency by tuning the frequency of the TVA to that 

frequency. It is especially useful when the inherent damping of the primary system is 

low.  

There are many application areas. It is widely used in civil engineering to eliminate 

excessive response of towers. Similarly, it is used in bridges, wind turbine, etc. It is 

also used in electric cables, which is known as Stockbridge damper. Moreover, it is 

used in many mechanical systems to avoid excessive vibration response [1].  

 

Figure 1.1. Schematic of the TMD systems installed in Taipei 101, Taiwan. 

Retrieved from [1] 
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In literature, Tuned Vibration Absorber is also referred, Tuned Mass Damper, 

Dynamic Vibration Absorber ,and Frahm Damper. In this study, Tuned Vibration 

Absorber is used. Notice, Tuned Liquid Column Damper, which is a form of TVA 

with liquid columns, is not included in this study. 

In this study, a base excited linear mechanical system connected to TVAs equipped 

with linear and nonlinear elements is considered. Single and multiple TVAs are 

optimized. By the use of multiple TVAs and nonlinear elements, it is aimed to 

suppress the vibrations of the structures in a broader frequency range.  

At the beginning of the study, a literature review is presented in CHAPTER 2. 

Historical development and studies related to TVA for the undamped primary system 

are presented in the first paragraph. In second paragraph, studies related to TVA for 

the damped primary system are presented. In the third paragraph, the studies related 

to the use of multiple TVAs for single resonance are presented. In the fourth 

paragraph, the studies related to a continuous system coupled with TVAs are 

presented. In the fifth paragraph, first nonlinear TVA studies are presented. In the sixth 

paragraph, studies related to TVA with friction dampers are presented. Finally, in last 

paragraph, studies related to TVA with cubic stiffness are presented. 

In CHAPTER 3, methods, used in this study is represented. This chapter divided 4 

subchapters. In the first subchapter, Harmonic Balance Method is presented. In the 

second subchapter Newton Method with Arch-Length Continuation is represented. In 

the third subchapter, Hill’s Method is presented. Lastly in the forth subchapter, 

Assumed Modes Method is presented.  

In CHAPTER 4, the mathematical modeling of the systems is presented. It is divided 

into two subchapters, which are modeling in discrete and continuous system. The 

behavior of different TVA configurations are investigated in a discrete system. The 

nonlinear elements used in this study are cubic damping, cubic stiffness, dry friction 

damping, and their combinations. Also, the linear system is studied in this chapter.  
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In CHAPTER 5, results are presented. In this chapter, optimum values for different 

TVA configurations are presented. It is divided into two subchapters. In the first 

subchapter, optimum results for discrete systems are presented. In the second chapter, 

optimum results of TVA for continuous system is presented.  

Finally, in the last chapter, CHAPTER 6, conclusion and future works are presented. 

Studies and important findings are summed in the conclusion. In future work 

subchapter, the subjects excluded in this study are discussed to further improve this 

study.  

In the appendix, optimum results for different boundary conditions are presented. For 

clarity, they are not presented in CHAPTER 5. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

TVA like systems was first used by Watts [2] in 1883. In 1909, Frahm [3] patented 

the classic TVA, which was consisted of a mass and a spring. Ormondroyd and Den 

Hartog [4] carried out the first theoretical investigation on TVA. TVA without 

damping can reduce the response of the main system to almost zero at the previous 

resonance point under harmonic excitation. However the addition of TVA two new 

resonance near the tuned frequency. Therefore, it is useful for a single stationary 

frequency; however, excitation is rarely stationary in real applications. Viscous 

damper is considered to reduce vibration response in a broader band [5]. The study is 

that of a TVA with viscous damper attached an undamped SDOF system, which 

subjected to harmonic excitation. It had been noticed, frequency response curves of 

the main mass, which is plotted for different damping values pass through two 

invariant points. Optimization is performed by using these invariant points. The ratio 

of the natural frequencies of the TVA and the main system is altered until the response 

of the invariant points is equal. Respectively, damping of TVA is adjusted such that 

the slope of the frequency response curve at invariant points become zero. (See Figure 

2.1). Researchers studied to obtain closed form solution for this optimization problem.  

Real systems, however, contain damping and invariant points do not exist in the 

frequency response curve. Bapat and Kumaraswamy [6] investigated an optimization 

for the damped system. It has been noticed that fixed point optimization works for the 

slightly damped system. Toshihiro and Ikeda [7] obtained empirical formulae for the 

TVA parameters with the condition that damping is light. Randall, Halsted, and Taylor 

[8] presented computational graphs that determine the optimum values of TVA for the 

damped system. The represented solution offered much more accurate results than 

those achieved by classical methods.  
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Figure 2.1. Invariant Points and Change in Damping Value 

To improve effective bandwidth, multiple TVA is considered. In such cases, More 

than one TVAs are used to suppress a single resonance peak. Iwanami and Seto [9] 

investigated dual TVA. The study showed that dual TVA eliminates the drawback of 

single TVA, which is very sensitive to the variation of parameters. Moreover, it 

reduces transmissibility better in the resonance region. Igusa and Xu [10] showed that 

multiple TVA is more effective and robust than single TVA, which has equal total 

mass under harmonic excitation. Many researchers are still interested in multiple 

TVA. 

The application absorber to a continuous system, which is more realistic and accurate, 

has been studied extensively. Young [11] made the first study on the application of 

TVA to the continuous system. Neubert [12] studied on axially excited beam with one 

or two TVAs in steady state. It was stated that second TVA has an advantage if TVAs 
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are tuned for separated resonances. In addition, the effect of the location of the TVA 

was studied. Jaquot [13] studied on optimization of TVA for Euler-Bernoulli beam 

subjected to sinusoidal excitation. Assumed mode method for single mode 

approximation is used to establish the analogy between SDOF system and beam. 

Optimum TVA parameters is determined for the equivalent SDOF system by using 

the theory in earlier works. Warburton and Ayorinde [14] extended Jaquet’s study for 

plates and cylindrical shells and improved the accuracy for beams. Özgüven and 

Çandır [15] studied on structurally damped beam with two TVA, which is subjected 

to harmonic excitation. TVAs were optimized to suppress first two resonance of the 

beam. It had been noted that optimization parameters for TVA tuned to second 

resonance are not affected the existence of the one tuned to first resonance. However, 

the opposite is not true. Esmailzadeh and Jalili [16] extended the theory for 

Timoshenko beams.  

 

Figure 2.2. Suppression Zones with Linear and Nonlinear TVA 

Although many researchers still interested in linear vibration absorber, there are many 

researches on nonlinear vibration absorber to further improve the effectiveness of 
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TVA. Roberson [17] introduced nonlinear TVA. The study focused on improving 

suppression bandwidth, which is the frequency bandwidth with amplitude less than 

unity. (See Figure 2.2) In the study, undamped TVA with linear and nonlinear spring 

was considered. Significant improvement is observed when comparing to the linear 

one. Hunt and Nissen [18] studied on damped nonlinear TVA. The research 

demonstrated that suppression band is twice as wide as which produced by a linear 

TVA. Natsiavas [19] studied on stability of the nonlinear system to avoid dangerous 

effects which are possible due to the presence of the nonlinearity.  

Inaudi and Kelly [20] introduced TVA with friction dampers (FTVA). The system 

exhibits both linear and hysteretic behavior. Statistical linearization method had been 

used and optimum parameters were calculated for SDOF linear system. It is found out 

that, FTVA exhibits convenient behaviors, achieves the same level of performance 

that an optimized linear TVA would provide. The advantage of FTVA is its robustness 

to environmental temperature change. Ricciardelli and Vickery [21] used FTMD. 

They studied the response of a linear single DOF system, where FTMD is connected 

by using an equivalent linearized damping for single harmonic motion. They also 

obtained optimum slip parameters for harmonic excitation. Gewei and Basu [22] 

studied the response of a linear SDOF system with FTMD under both harmonic and 

random excitation. For harmonic excitation, harmonic balance method is used to 

obtain a periodic response. In the case of random excitation, statistical linearization 

method is used. Carmona, Avila and Dose [23] proposed an FTMD to control 

excessive floor vibration. Linearized friction model is used. Linearized FTMDs are 

attached to the floor. Analysis is carried out by using finite element method. They 

suggested and optimized multi FTMDs for certain load cases. Pisal and Jangid [24] 

studied on linear SDOF system with FTMD under both harmonic and earthquake 

excitation.  They used state-space method to solve the system. Sinha and Trikutam 

[25] studied the optimization of a SDOF linear system with FTMD in steady state. 

They used harmonic balance method to solve the nonlinear system. Genetic algorithm 

with minimax approach is used for optimization. 
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Weakly nonlinear systems are not able to react effectively on a wide range of 

frequency because of its dependency on amplitude level. However, strongly nonlinear 

system reacts effectively on a broader frequency band. Systems with this consideration 

bring a new concept, which is Nonlinear Energy Sink (NES). This concept also covers 

grounded vibration absorber i.e. the nonlinear element is located between vibration 

absorber and ground. It has been noticed that nonlinear attachment exhibits 

irreversible transient energy transfer [26]-[27]. Jiang, McFarland, Bergman, and 

Vakakis [28] studied NES in steady state dynamics. Gendelman, Gourdon, and 

Lamarque [29] studied the effects of NES on the main system. They found out, system 

under periodic excitation exhibits quasiperiodic behavior around the main resonance 

of the system. Parseh, Morteza and, Ghasemi [30] studied steady state dynamics of 

linear Euler-Bernouli beam with NES under harmonic forcing. The nonlinear element 

in the NES is cubic stiffness. They stated that NES performs better than linear TVA if 

the forcing is the same or less than designed force. Linear TVA performs better if the 

forcing is above the design consideration. Gourc, Elce, Kercshen, Michon, Aridon, 

and Hot [31] studied on performance comparison of linear TVA and NES. They stated 

that properly tuned linear TVA outperforms NES. Moreover, they claim that in 

previous studies, which compares linear TVA and NES, designing procedure was not 

properly proposed 

 

Equation Chapter 3 Section 3 
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CHAPTER 3  

 

3. METHODS 

 

3.1. Harmonic Balance Method 

Harmonic Balance Method (HBM) is used to calculate steady state response of 

nonlinear differential equations. In HBM, responses and nonlinear forces are 

represented in terms of Fourier series and substituted into nonlinear differential 

equations which results in a set of nonlinear algebraic equations.  

The idea is, to express periodic solution in the form  

 
0 , ,

1

( ) sin( ) cos( )

N

s p c p

j j j j

p

x ωt x x pωt x pωt



    (3.1) 

Consider equation of motion of a nonlinear system under harmonic excitation 

           non exct t t t t
ω

 
     
 

H
Mx C x Kx f x f  (3.2) 

nonf  is nonlinear force vector. Elements in the nonlinear force vector can be expressed 

as  

     ,non j NL relf θ f x θ  (3.3) 

Where NLf  is nonlinear transfer function, relx  is the relative displacement between 

DOFs where nonlinear element is connected, and θ ωt . Each element in the 

nonlinear force vector calculated by HBM individually. As a result, amplitude 

depended sine and cosine coefficients and bias term of the nonlinear internal forcing 

are obtained. Governing equations are shown in the Equation (3.4)  
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 

   

   

2
0

, ,
0

2
,

, ,
0

2
,

, ,
0

1

2

1
sin

2

1
cos

2

π

n j non j

π
s p

n j non j

π
s p

n j non j

f f θ dθ

f f θ pθ dθ

f f θ pθ dθ













 (3.4) 

Equation (3.1) is substituted into Equation (3.2) and coefficients of the nonlinear force 

vector is obtained by Equation (3.4). As a result, nonlinear algebraic equation is 

obtained. N+1 algebraic equation is obtained for each DOF.  

 

0 0

2

2

n

s s s

n exc

c c c

n exc

ω ω

ω ω

      
      

           
               

K 0 0 x f 0

0 M K H C x f f

0 H C M K x f f

 (3.5) 

In this study, only first harmonics are considered. Bias term are not and higher 

harmonics are neglected. Therefore, Equation (3.5) reduced to 

 
2

2

s ss

n exc

c cc

n exc

ω ω

ω ω

         
       

         

f fM K H C x

f fH C M K x
 (3.6) 

Details can be found in [32]. 

3.2. Newton’s Method with Arc-Length Continuation Method 

In order to solve nonlinear algebraic Equation (3.5), a residual vector is defined as 

follow 

  
2

2
, 0n exc

ω ω
ω

ω ω

    
    

   

M K H C
r X x f f

H C M K
 (3.7) 

Due to the presence of the nonlinearity, a turning point may have appeared. In order 

to overcome this situation, the new continuation parameter is defined. The arc-length 

parameter is the radius of an n-dimensional sphere, which is centered at the previous 

solution points (Figure 3.1). The new solution points are searched on the surface of 
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the sphere. The equation for n-dimensional sphere with radius s and located at the 

previous solution point is 

     2

1 1

T

k k k k s   q q q q  (3.8) 

where s is the arch length parameter, k-1 is the previous solution points and k is the 

current solution points. With the addition of this new equation, the new vector of 

unknown becomes as follows 

 
ω

 
  
 

x
q  (3.9) 

New equation is obtained 

     2

1 1( , ) 0
T

k k k kh ω s     x q q q q  (3.10) 

A single step of Newton’s Methods becomes 

 
 

 
1

&

,

,

i i

i ii i

k k

i i

ω

ωω

h h h ω

ω



  
     

     
     
   x

r r
r xx

q q
x

x

 (3.11) 

 

Figure 3.1. Arc-Length Continuation Method 
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Details can be found in [33]. 

3.3. Hill’s Method 

Arc-Length continuation algorithm provides the solution points on a solution branch. 

It does not give information about the stability of the solution points. Due to the 

presence of the nonlinearity, the stability problem may have occurred. Stability 

analysis in the frequency domain can be performed with a Hill’s Method. Stability 

analysis is carried out by investigating the effect of a perturbation around a periodic 

solution. Perturbation is described as  

    λtt e tσ z  (3.12) 

Where 
λte  is decay term, and  tz  is periodic term i.e: 

  
N

ipωt

p

p N

t e


 z z
 (3.13) 

New solution is written 

      t t t x x σ  (3.14) 

Where  tx  known solution. Substitute Equation (3.14) to Equation (3.2) 

         0λt

non exct t e t t
ω

 
       
 

H
Mx C x Kx ψ f x f  (3.15) 

Where  

     2 22t λ t λ t
ω ω

    
           

    

H H
ψ Mz M C z K M C z  (3.16) 



 

 

 

15 

 

Fourier representations of the solution terms is substituted into the Equation (3.15). 

Notice that, only first harmonics are considered in this study. Thus, Fourier 

representation of solution is: 

 

     

      

sin cos

sin cos

s c

s c λt

t ωt ωt

t ωt ωt e

 

 

x x x

σ z z
 (3.17) 

Substitute Equation (3.17) into Equation (3.15), we obtain 

    2

1 2 3 1

λt λt

n excλ λ e e      Δ x Δ Δ Δ z f x z f 0  (3.18) 

Where 

2

2 32

2

, ,

ω
ω ω ω

ω ω

ω

 
      

       
       

  

1

H
C M

M IM C H
Δ Δ Δ

I M HC H M
M C

 (3.19) 

Nonlinear term in Equation (3.15) can be written around known solution point  tx  

by Taylor series of expansion.  

     λtn
n n e




 

 x x

f
f x f x z

x
 (3.20) 

Substitute Equation (3.20) into Equation (3.18), 

   2

1 2 3 1 0λtn
n exc λ λ e



 
       

 x x

f
Δ x f x f Δ Δ Δ z

x
 (3.21) 

Notice that  1 n exc Δ x f x f  is zero by the definition in Equation (3.21). In addition, 

Jacobian matrix is defined 

 1
n

  
 

fr
J Δ

x x
 (3.22) 
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Quadratic eigenvalue problem is obtained by substituting Equation (3.22) into 

Equation (3.32), which is 

 
2

2 3λ λ  Δ Δ J 0  (3.23) 

Equation (3.23) can be rewritten in state space form. Linear eigenvalue problem is 

obtained.  

 2 3  Δ v Δ v Jv 0  (3.24) 

Where 
1

2

   
    

  

τ v
τ

τ v
, and λev  which is defined as  

 

1
2 1 1 2

2
1

t

t


  








τ
Δ Δ τ Jτ

τ
τ

 (3.25) 

Equation (3.24) can be rewritten as  

 

2 3   
    

   

Δ 0 Δ J
τ τ 0

0 I I 0  (3.26) 

This will give 4N eigenvalues for single harmonic solution. Only 2N eigenvalues are 

valid solutions. Others have physically no meaning. For stability analysis, eigenvalues 

with the smallest imaginary part in modulus are considered. For the solution points 

where eigenvalues are greater than zero, it is unstable [34]. Details related to method 

can be found in [35]. 

As an example, two DOF system with cubic stiffness is investigated. Stability 

behavior is well known in the literature. Solid linear denotes stable solution, dotted 

lines denotes for unstable solution in Figure 3.2. 



 

 

 

17 

 

 

Figure 3.2. Stability of the Solution 

 

Figure 3.3. Real Part of Eigenvalues for Frequency Response  
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3.4. Assumed Modes Method 

Exact solution of many continuous systems is sometimes difficult. In such cases, 

approximate analytical methods are useful. For must system, only the first few natural 

frequencies and natural mode have importance for the dynamic response. Contribution 

of the higher modes are negligible.  

 

Figure 3.4 Linear Euler-Bernoulli Beam with Nonlinear TVA 

Displacement of the beam (Fig. 3.3) is assumed as  

      
1

,
n

i i

i

w y t y x t


   (3.27) 

Where,  i y  is the known trial functions that satisfy boundary conditions and,  ix t  

is the unknown function of time. The beam is subjected to base excitation,  U t . 

There is a concentrated mass connected to beam with elastic and nonlinear element, 

which is TVA. Beam with uniform cross-section is used. EI  is the modulus of 

rigidity, A  is cross-section of the beam and   the density of the beam. NL is the 

nonlinear element between TVA and beam. andTVA TVAk c  the spring and damping 

coefficients respectively.  

Energy equations of the beam is 

    

    

  

 (t)

 

 (  𝑡)

𝑥   (𝑡)

  

 

      Uniform Beam:

𝑥
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 
     

 
 

2
2

2

20

2 2

0

2

,1 1

2 2

,1 1

2 2

1

2

L

TVA rel NL rel

L
TVA

TVA

rel
TVA

w y t
V EI dy k x t F x t

y

w y t x
T EI U t dy m

t t

x
D c

t

 
   

 

   
     

   

 
  

 

 

  (3.28) 

Where        ,rel a TVAx t U t w L t x t    i.e. relative displacement between TVA 

and point of the beam where TVA is connected. Nonlinear forces are added to the 

potential energy equation.  

In addition, inherent damping of the beam is considered. Rayleigh damping [1] is used 

to obtained inherent damping matrix of the beam. Mass and stiffness matrix of the 

beam without TVA is obtained ( &Beam BeamM K ). Natural frequencies of the beam are 

obtained. Damping ratios are settled for selected natural frequencies. Rayleigh 

coefficients are obtained for those frequencies. The formula for Rayleigh coefficients 

are: 

 2 2

2
1 1

j i

ii j

jj i
j i

ω ω
ξωωα

ξβ ω ω
ω ω

 
     

           

 (3.29) 

For this study, only first five mode taken into consideration. Displacement vector 

becomes 

  1 2 3 4 5

T

TVAx x x x x xx  (3.30) 

Mode shapes of the linear Euler Bernoulli Beam is used for trial functions. To obtain 

equation of motion of the system, Lagrange equation is used.  
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i i i i

T T V D

t x x x x

     
   

     
 (3.31) 

System matrix are obtained by substituting Equation (3.28) into Equation (3.31) 

System matrixes are  

 

11 12 13 14 15

12 22 23 24 25

13 23 33 34 35

14 24 34 44 45

15 25 35 45 55

0

0

0

0

0

0 0 0 0 0 TVA

m m m m m

m m m m m

m m m m m

m m m m m

m m m m m

m

 
 
 
 

  
 
 
 
  

M  (3.32) 

Where 

    
0

L

ij i jm ρA y y dy    (3.33) 

 

11 12 13 14 15 66

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 TVA

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

 
 
 
 

  
 
 
 
  

K
 (3.34) 

Where  

   
   

 

22

2 20

6

if & 6

if 6

L ji

ij TVA j a j a

i TVA i a

yy
k EI dy k L L i j

y y

k k L i


 




  

 

  


 (3.35) 
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11 12 13 14 15 66

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56

Beam Beam

TVA

c c c c c c

c c c c c c

c c c c c c
α β

c c c c c c

c c c c c c

c c c c c c

 
 
 
     

       
    

 
 
  

M 0 K 0
C

0 0 0 0  (3.36) 

Where  

 

   

 6

if & 6

if 6

ij TVA i a j a

i TVA i a

c c L L i j

c c L i

 



 

 
 (3.37) 

Due to orthogonality relation, i.e.  

 

   

   

0

0

0 if

0 if

L

i j

L

i j

y y dy i j

y y dy i j

 

 

 

 




 (3.38) 

Equation (3.38) are used to reduce system matrixes. Equation (3.32) and Equation 

(3.33) are reduced to 

   1 2 3 4 5diag TVAm m m m m mM  (3.39) 

Where  

 
2

0
0 if 6

L

i im A dy i     (3.40) 

Similarly, Equation (3.35) reduced to 
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 
 

   

 

2

2

20
if & 6

if & , 6

if 6 & 6

L
i

ij TVA i a

ij TVA i a j a

ij TVA i a

y
k dy k L i j i

y

k k L L i j i j

k k L j i




 



 
    

 

  

   



 (3.41) 

Equation (3.37) is reduced to 

 

 

   

 

2 if & 6

if & , 6

if 6 & 6

ij TVA i a

ij TVA i a j a

ij TVA i a

c c L i j i

c c L L i j i j

c c L j i



 



  

  

   
 (3.42) 

Similarly, input vectors are obtained. Component comes from kinetic energy equation 

is 

  1 2 3 4 5 0
T

M M M M M Mf f f f ff  (3.43) 

Where  

  
0

if 6
L

M

i if ρA y dy i   (3.44) 

Component comes from energy loss equations is 

  1 2 3 4 5

T
C C C C C C

TVAf f f f f c f  (3.45) 

Where  

   if 6C

i TVA i af c L i   (3.46) 

Component comes from potential energy equations is 
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  1 2 3 4 5

T
K K K K K K

TVAf f f f f k f  (3.47) 

Where  

   if 6K

i TVA i af k L i   (3.48) 

Nonlinear part is obtained 

 
       

 

 

 

 

 

1

2

3

4

5

,

1

a

a

a

non NL rel

a

a

L

L

L
t u t F t

L

L

 
 
 
  

  
 
 
 

  

f x x











 (3.49) 

Equation of motion is obtained by combining Equation (3.32), (3.34), (3.36), (3.43), 

(3,45), (3,47) and (3,49). 

           non rel exct t t t t   Mx Cx Kx f x f  (3.50) 

Where  

        M C K

exc t U t U t U t  f f f f  (3.51) 

Linear results is compared with FEM Software, ANSYS. Plane stress (2D) elements 

are used. Parameters are 

3 4 2

2 5

0.250 0.125 7850 10

41.67 10 0.05

a

TVA TVA

L m L m kg m A m

EI Nm k N m m kg

     

  
 

Fixed-Fixed boundary conditions are applied. Trial function is 

          cos cosh sin sinhi i i i i iy β y β y Q β y β y      (3.52) 
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Where 

 
   

   

cos cosh

sin sinh

i i

i

i i

β L β L
Q

β L β L





 (3.53) 

Notice that, each mode has different 𝛽𝑖 value. 𝛽𝑖 can be found 

    cos cosh 1 0i iβ L β L    (3.54) 

Equation (3.54) is nonlinear algebraic equation. 
iβ  values can be obtained 

numerically. For initial value,  2 1 2iβ L i π   can be used. Accurate values for 
iβ  

are obtained by using Newton method. These values are substituted into Equation 

(3.45). Resulting mode shapes are substituted into Equation (3.44).  

Modal analysis is performed and natural frequency results are compared.  

  

Figure 3.5 FEM Model 

 

Table 3.1. Natural Frequency Comparison 

 Analytical ANSYS Error (%) 

1st Mode 201.1 Hz 201.2 Hz 0.07 

2nd Mode 463.2 Hz 463.3 Hz 0.01 

3rd Mode 1144.2 Hz 1136.2 Hz 0.70 

4th Mode 2248.8 Hz 2235.1 Hz 0.61 

5th Mode 3707.9 Hz 3630.0 Hz 2.10 

6Th Mode  5547.7 Hz 5436.4 Hz 2.01 
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7th Mode - 7296.8 Hz - 
 

Details related to assumed mode method can be found in [35]. 

 

Equation Chapter (Next) Section 4Equation Chapter 4 Section 1 
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CHAPTER 4  

 

4. MATHEMATICAL MODELLING  

 

4.1. Discrete System 

In this chapter, discrete linear system TVA utilized with linear and nonlinear elements 

is investigated. First, system with one TVA will be studied. The effects the change of 

the TVA parameters will be observed. After having a general idea about the effect of 

the linear and nonlinear elements, and then it is extended for double TVA  

4.1.1. Single TVA 

  

Figure 4.1. Linear SDOF System with TVAs 

TVAs equipped with linear and nonlinear elements is as shown inError! Reference s

ource not found. Figure 4.1. Where  𝑏 is the mass of the main system. TVAm  is the 

mass of the TVA, andb TVAk k  are linear springs bh  is structural damping elements, 

 𝑏
    

 𝑏

 𝑏

    

𝑥𝑏

𝑥   

 𝑡
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TVAc  is viscous damping elements. NL  is the nonlinear element. As a result, two DOF 

system is obtained. Several nonlinear elements will be investigated separately, and 

their combination. In addition to nonlinear elements, linear TVAs are also investigated 

for reference value.  

Equation of motion of the general system is 

 

  0

b b b b b TVA rel TVA rel non rel b

TVA TVA TVA rel TVA rel non rel

h h
m x x k x c x k x f x U k U

ω ω

m x c x k x f x

      

   
 (4.1) 

Where rel b TVAx x x   Also mass of the TVA is selected as ten percent of the main 

mass, i.e 10TVA bm m  Loss factor for the main system is taken as one percent.  

Linear and nonlinear elements will be studied in individual chapters.  

4.1.1.1. Linear System 

In linear system, nonlinear elements are vanished. All free parameters are viscous 

damping and the linear spring of the TVA. For better understanding, Equation (4.1) is 

nondimensionalized. 

 
 2 2

2

1 2

2 0

b b b TVA rel TVA rel exc

TVA TVA rel TVA rel

x ω iγ x ξω x ω x f

x ξω x ω x

     

  
 (4.2) 

Where 

 

 

2

2 2

0.1 0.01

1
2

TVA b
b

b b

TVA TVA
TVA exc b

TVA TVA TVA

m k
γ ω

m m

k c
ω ξ f U iγ ω

m m k

   

   

 (4.3) 

Mass ratio, loss factor and excitation is specified. Only free parameters is natural 

frequency and the damping ratio of the TVA.  
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Figure 4.2. The Effect of TVA’s Natural Frequency 

Damping Ratio, 0.11ξ   

As it is seen from Figure 4.2, optimum natural frequency ratio is around 0.9. This 

values will be used later in optimization.  

  

Figure 4.3. Effect of TVA’s Damping Ratio 

The ratio of the natural frequencies, 0.9TVA bω ω    

Optimum damping ratio is around 0.2. This value will be used in optimization later. 
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For low damping values, response at the previous resonance is low but two new 

resonance points are introduced nearby. For high damping values, system behaves like 

SDOF system.  

Also, notice that, there is no invariant point in Figure 4.3 because the main system 

contains damping.  

4.1.1.2. System with Cubic Damping 

Cubic damping is a nonlinear force, which is proportional to third power of the relative 

velocity. To understand effect of the cubic damping, linear damping is vanished from 

Equation (4.1). Nonlinear Force is expressed as  

  
3

rel
NL rel c

x
f x c

t

 
  

 
 (4.4) 

Graphical demonstration is given in Figure 4.4 

 

Figure 4.4 Graphical Demonstration of Cubic Damping 

Equation (4.1) is rearraged to obtain generic form 

 NL relf x
3

rel
c

x
c

t

 
 
 

relx

t




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 2 3 2

3 2

1

0

b b b c rel TVA rel exc

TVA c rel TVA rel

x ω iγ x ξ x ω x f

x ξ x ω x

    

  
 (4.5) 

Nondimensional parameters are same as Equation (4.3), except nonlinear loss factor, 

c
c

TVA

c
ξ

m
  

Since the equation of motion is nonlinear, it depends on input value. Input value is 

specified.  

    0.01sinU t ωt  (4.6) 

Relative displacement for single harmonic, from Equation (3.1) 

 
 

   cos sin
rel s c

rel rel

x θ
ωx θ ωx θ

t


 


 (4.7) 

Equation (4.3) and Equation (4.7) are substituted into Equation (3.4). Nonlinear force 

coefficients for single harmonic is obtained.  

 

    

    

2 2
3

2 2
3

4

3

4

3

s c s c

n c rel rel rel

c s s c

n c rel rel rel

f ξ ω x x x

f ξ ω x x x

  

 
 (4.8) 

Equation (4.5) is substituted into Equation (3.6) 
nf  becomes 

  
T

s s c c

n n n n nf f f f    f  (4.9) 

Equation (4.5), (4.6), (4.7) and (4.9) are substituted into Equation (3.6). Nonlinear 

algebraic equation sets are obtained. 
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 

I Ω H x
f

xH I Ω
 (4.10) 

Where  

 

2 2 2 2

2

2 2

0ˆ,
0 0

b TVA TVA b

b

TVA TVA

ω ω ω γω

ω ω

    
    

   
Ω H  (4.11) 

Ratio of natural frequency would be similar with Figure 4.2 Effect of the change of the 

nonlinear loss factor is given in Figure 4.5. 

 

Figure 4.5. Effect of the Change of Nonlinear Damping Ratio 

The ratio of the natural frequencies, 0.9TVA bω ω    

As it is seen from the Figure 4.5, optimum value for nonlinear damping ratio is 

between 0.5 and 0.9. This information later will be used in optimization.  
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For low nonlinear damping value, system behavior is similar to classic TVA i.e. 

response at previous resonance is quite low, but two new resonance introduced nearby. 

For high nonlinear damping values, the system starts to behave like SDOF system. 

Behavior of a TVA with nonlinear damping seems similar to a TVA with linear 

damping. Except, it is more sensitive in higher amplitudes. There are sharp changes 

in frequency response.  

4.1.1.3. System with Cubic Stiffness 

Cubic stiffness is a nonlinear force, which is proportional to third power of the relative 

displacement. It can be hardening or softening type. In this study, hardening type will 

be explored. For a better understanding of the effect of the cubic stiffness, linear 

stiffness vanishes from Equation (4.1).  

   3

N rel c relf x k x  (4.12) 

Graphical demonstration is given in Figure 4.6 

 

Figure 4.6. Graphical Demonstration of Cubic Stiffness 

 NL relf x
3

c relk x

relx
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Equation (4.1) is nondimensionalized. .Notice that, it is nonlinear equation, therefore, 

it is input depended. Similar to cubic damping case, input value in Equation (4.6) is 

used. 

 
 2 3

3

1 2

2 0

b n b n rel c rel exc

TVA n rel c rel

x ω iγ x ξω x κ x f

x ξω x κ x

     

  
 (4.13) 

Where  

 

 

2

2

, 0.01 ,

, , 0.01 1
2

TVA b
b

b b

TVA c
c exc n

TVA b TVA

m k
γ ω

m m

c k
ξ κ f iγ ω

m ω m

  

   

 (4.14) 

Free parameters of TVA are damping ratio and the cubic spring parameter. 

Relative displacement for single harmonic is 

      sin coss c

rel rel relx θ x θ x θ   (4.15) 

Similarly nonlinear force coefficients are obtained by substituting Equation (4.12) and 

Equation (4.15) into Equation (3.4) 

 

    

    

2 2

2 2

4

3

4

3

s s s c

n c rel rel rel

c c s c

n c rel rel rel

f κ x x x

f κ x x x

 

 
 (4.16) 

Nonlinear force vector is constructed by using Equation (4.16) 

  
T

s s c c

n n n n nf f f f    f  (4.17) 

Equation (4.9) rearranged by using Equation (4.16). As a result, nonlinear algebraic 

equation is obtained by substituting Equations (4.6), (4.13), (4.15) and (4.17) into 

Equation (3.6).  
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      

         
 
 

I Ω H C X
f

XH + C I Ω
 (4.18) 

Where  

2 2

2
2 20 0 ˆˆ, ,

2 20 0 0 0

b bb b

b

b b

ξω ξωω γω

ξω ξω

       
       

    
Ω H C  (4.19) 

Since there is no linear stiffness element between masses, TVA does not have a natural 

frequency. For same reason, definition of damping ratio in Equation (4.3) and 

Equation (4.14) are different. Effects of the change of the cubic stiffness related 

parameter and damping ratio are demonstrated in Figure 4.7 and Figure 4.8. 

 

Figure 4.7 The Effect of the Change of the Cubic Stiffness Parameter 

Damping ratio is 0.09ξ   Dotted lines indicate unstable solution points. 

When cubic stiffness value is low, suppression ratio is also low. The reason is, at low 

amplitudes, nonlinear spring behaves like soft spring. As the stiffness parameters 
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increase, amplitude decrease up to certain value. After certain threshold value, jump 

phenomena is observed. After that point, increase in cubic stiffness parameter does 

not affect the maximum amplitude, but the characteristic of the FRF changes.  

In addition, there is no stable solution in certain frequency range for some cubic 

stiffness values. Response for those regions are not harmonic, it is chaotic or quasi-

periodic [29]. This phenomenon will be investigated in later in this study.  

 

Figure 4.8 The Effect of the Change of the Damping Ratio 

Cubic Stiffness is 53.50 10cκ   . Dotted lines indicate unstable solution points. 

From Figure 4.8, at low damping values, jump is observed. After certain damping 

value, jump is disappeared. As damping gets higher and higher, amplitudes are 

increased, system starts to behave like SDOF system. Also, unstable region is affected 

by damping value. At low damping values, wide frequency region is unstable. As 

damping increase, the unstable region gets narrower. After certain damping value, 

unstable region is not observed.  

Also, notice that, damping values are lower than the Linear System when considering 

preferable solutions.  
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4.1.1.4. Dry Friction Damping 

Friction force is defined as the resistance of the motion when one body is tangentially 

in contact with another body [37]. Macro-slip friction model is used in this study due 

to its mathematical simplicity. Details of the model used in this study is given in the 

papers [38], [39]. Macro-slip friction model is shown in Figure 4.8. Hysteresis curve 

for single harmonic motion is shown in the Figure 4.9. 

 

Figure 4.9. Macro-slip Friction Model 

Where  𝑡 is contact stiffness,   is the normal load acting upon the contact surface,𝜇 is 

the friction coefficient, and 𝑥𝑟𝑒𝑙 is the relative displacement between terminals.  

 

Figure 4.10. Hysteresis Curve for Single Harmonic Motion 

𝑥𝑟𝑒𝑙  

𝜇

 𝑡

 NL relF x

relx

μN

μN

tk
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When the force on the nonlinear element is less than slip force, N  it stick and acts 

like stiffness element. When the force on the nonlinear elements reaches to slip force, 

N , it starts to slip until relative velocity becomes zero (i.e 0relx  ). The point, where 

the slip starts, is breaking point,  . 

Nonlinear force can be expressed as follows 

 

  

  

   

max

1 2

2 1

1 2

2 1

max

if  

if

if

if

if 2

if  

t rel

NL

t rel

NL t rel

δ x

μN k x θ δ ψ θ ψ

μN ψ θ ψ π
f θ

μN k x θ δ ψ π θ ψ π

μN ψ π θ ψ π

δ x

f θ k x θ



    


   
 

     
    





 (4.20) 

Where  

 

   
2 2

max
max

1 1

1 2 1

max

2
,

tan , cos

s c t
rel rel

t

s

rel

c

rel

μN k x
x x x δ

k

x δ
ψ ψ ψ

x x

 


  

   
     

   

 (4.21) 

  , ands c

rel rel relx θ x x are introduced in Equation (4.15).  

Friction will act as damper element. Therefore, to see the effect of the dry friction 

better, linear damping elements are vanished. Equation (4.1) is nondimensionalized. 

Input value in Equation (4.6) is used. 

 
   

 

2 2

2

ˆ1

ˆ 0

b b b TVA rel NL rel exc

TVA TVA rel NL rel

x ω iγ x ω x f x f

x ω x f x

    

  
 (4.22) 

Where  
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 

2

2 2

, 0.01 ,

ˆ ˆ, , 0.01 1

TVA b
b

b b

TVA NL
TVA NL n

TVA TVA

m k
γ ω

m m

k f
ω f f iγ ω

m m

  

   

 (4.23) 

In addition, parameters of the friction force  N relF x  are nondimensionalized  

 
2 ,t

t μN

TVA TVA

k μN
ω ξ

m m
   (4.24) 

Similarly, nonlinear force coefficients are obtained by substituting Equation (4.15), 

Equation (4.20) and Equation (4.14) into Equation (3.4) 

       

       

2 2 2

max 2 1 2 1 2

2 2 2

max 1 2 2 2 3

1
2 cos cos 4 cos Γ Γ

1
2 sin sin 4 sin Γ Γ

s s c

N t μN t rel t rel

c s c

N t μN t rel t rel

f ω x ψ ψ ξ ψ ω x ω x
π

f ω x ψ ψ ξ ψ ω x ω x
π

    

    

 (4.25) 

Where 

 

    

    

    

1 2 1 1 2

2 1 2

3 2 1 1 2

1
Γ 2 2 sin 2 sin 2

2

1
Γ cos 2 cos 2

2

1
Γ 2 2 sin 2 sin 2

2

ψ ψ ψ ψ
π

ψ ψ
π

ψ ψ ψ ψ
π

   

 

   

 (4.26) 

Nonlinear force vector is constructed by using Equation (4.25) 

  
T

s s c c

n n n n nf f f f    f  (4.27) 

Equation (4.9) rearranged by using Equation (4.22). As a result, nonlinear algebraic 

equation is obtained by substituting Equations (4.6), (4.15) and (4.27) into Equation 

(3.6). 
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Where  

 

2 2 2 2

2

2 2

0ˆ,
0 0

b TVA TVA b

b

TVA TVA

ω ω ω γω

ω ω

    
    

   
Ω H  (4.29) 

There are three free parameters. These are the linear spring between TVA and the 

main system, contact stiffness and slip force. Natural frequency ratios would be 

similar with Figure 4.1 therefore, effect of the change of the natural frequency ratio is 

not plotted.  

 

Figure 4.11. Effect of the Change of the Normal Load Parameter 

0.9TVA TVA bω ω ω   

From the Figure 4.11, it is seen that, low slip load cannot suppress the amplitude levels 

effectively. Adequate suppression level is observed for friction values around 
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150 250μNξ    For higher friction values, it starts to stick and acts like just stiffness 

element. These values will be used in optimization later.  

 

Figure 4.12 Effect of the Change of the Contact Stiffness 

0.9TVA bω ω  and 200μNξ   

From Figure 4.12, for low contact stiffness value, suppression level is also quite low, 

because relative displacement cannot exceed breaking point, δ  nonlinear elements 

behaves like a linear soft spring. As the contact stiffness value increases, relative 

displacement more easily reach the breaking point, and nonlinear elements start to slip 

and exert friction force on the system. In addition, second natural frequency shifts to 

right with lower amplitude value in higher contact stiffness value. After certain value, 

contact stiffness does not have significant importance on the suppression level.  

4.1.1.5. Cubic Stiffness and Dry Friction Damping 

Combination of nonlinear elements may have also distinct behavior. Viscous elements 

are removed from Equation (4.9) and friction force is added in Equation (4.20). Same 

nondimensionalization procedure is applied. 



 

 

 

42 

 

 

   

 

3

3

ˆ1

ˆ 0

b b b NL rel c rel exc

TVA NL rel c rel

x ω iγ x F x κ x f

x F x κ x

    

  
 (4.30) 

There are three free parameter, which are normal load, contact stiffness and cubic 

stiffness. 

 

Figure 4.13. The Effect of the Change of the Normal Load 

510 and 0.9c t bκ ω ω  . Dotted lines indicate unstable solution points. 

When the slip force is zero, since no other damping element attached on the system, 

peculiar behavior observed in frequency response. As normal load increased, better 

suppression performance is observed. 

Notice that, there was a frequency interval with no stable solution in cubic stiffness 

case. In this case, however, there is no frequency region with unstable region is 

observed.  
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Further increase in slip force decreases suppression levels. It starts to stick and acts 

like stiffness element. When full stuck is occurred, the system behaves like TVA with 

cubic and linear stiffness with no damping. 

These values will be used in optimization later. 

 

Figure 4.14. The Effect of the Change of the Cubic Stiffness Parameter. 

250and 0.9μN t nξ ω ω  Dotted lines indicate unstable solution points. 

For low cubic stiffness values, suppression level is low. Since dry friction damper 

element contains stiffness element, certain level of suppression is observed. As the 

cubic stiffness increased, adequate suppression is observed.  

Further increase in cubic stiffness value badly affect the suppression level. After 

certain level, maximum amplitude value does not change, however topology of the 

frequency response is changing. Unlike Figure 4.6 changes in FRF by changing cubic 

stiffness parameter is smoother.  

Frequency interval with no stable solution is observed high cubic stiffness parameters. 

That region is not observed for moderate level cubic stiffness parameters. Therefore, 
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stability behavior makes it more useful when comparing TVA with cubic stiffness and 

viscous damping.  

These values later used in optimization.  

 

Figure 4.15. The Effect of the Change of the Contact Stiffness Parameter 

510 and 250c μNκ ξ   Dotted lines indicate unstable solution points. 

For low contact stiffness value, the effect of the friction damper is low because relative 

displacement is not big enough to exceed braking point. Thus friction damping is act 

likes soft spring. As contact stiffness value goes higher, adequate suppression level is 

observed. Further increase in contact stiffness value, reduces suppression level also 

shifts second natural frequency to right. 

Moreover, for contact stiffness values, unstable solution is observed.  

4.1.1.6. Cubic Stiffness and Cubic Damping 

Combination of nonlinear elements may have also distinct behavior. Viscous elements 

are removed from Equation (4.9) and cubic damping in Equation (4.4) is added. After 

non-dimensional procedure is applied. 
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 2 3 3

3 3

1

0

b b b c rel c rel exc

TVA c rel c rel

x ω iγ x ξ x κ x f

x ξ x κ x

    

  
 (4.31) 

There are two free parameter, which are cubic stiffness and cubic damping. 

 

Figure 4.16. The Effect of the Change of the Cubic Stiffness Parameter 

0.09cξ  Solid lines indicates stable solution points; dotted lines indicate unstable solution points. 

Behaviour of the TVA with cubic stiffness and cubic damping is similar with TVA 

with cubic stiffness and linear damping. For small cubic stiffness values, suppression 

level is low. The suppression level gets better with increase in cubic stiffness until it 

reach a threshold value. Jump phenomena is observed. After that point, maximum 

value does not change. Increase in cubic stiffness changes the topology of the 

frequency response curve.  

Stability behavior is similar to TVA with cubic stiffness with viscous damper. There 

is a frequency internal with no stable solution. This region is located around previous 

resonance point.  

This values will be used in optimization later.  
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Figure 4.17 The Effect of the Change of the Cubic Damping Parameter 

52.5 10cκ    Dotted lines indicate unstable solution points. 

The effect of the change of the cubic damping parameter is similar to change in viscous 

damping. Increase in cubic damping value cancels out the jump. Further increase in 

cubic damping parameter increases amplitude levels.  

For low cubic damping values, there is a frequency interval with no stable solution. 

This interval vanishes by increasing cubic damping values.  

Notice that, unlike Figure 4.8, increase in cubic damping does not suddenly increases 

the maximum value. However, unstable frequency interval vanished. This values and 

this information might be used later in optimization. 

4.1.2. Double TVA 

By the use of multiple TMDs and nonlinear elements, it is aimed to suppress the 

vibrations of the structures in a broader frequency range.  
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Figure 4.18. SDOF Systems with Two TMDs Utilizing Dry Friction Dampers 

Single DOF linear system equipped with two nonlinear TVAs is shown in Chapter 

5.1.1. Where 
bm  is the mass of the main system. ,TVA jm  are the masses of the TVSs. 

bk  and ,TVA jk  are linear springs 
bh  is structural damping elements. ,TVA jc  are viscous 

dampers. jNL  are nonlinear elements. 

Equation of motion of the general system is 
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 
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j

TVA TVA TVA rel TVA rel NL rel

TVA TVA TVA rel TVA rel NL rel

m x h ω x k x c x k x f x f

m x c x k x f x

m x c x k x f x



     

   

   



 (4.32) 

Where , ,rel j b TVA jx x x  .total mass of the TVA is selected as ten percent of the main 

mass, i.e , 20TVA j bm m  Loss factor for the main system is taken as one percent and 

exc b bf h ωU k U   

Nonlinear force vector would be  

 𝑏

      

      

 𝑏

 𝑏

      

      

𝑥𝑏
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,1 ,2

,1

,2

NL NL

non NL

NL

f f

f

f

 
 

  
 
 

f  (4.33) 

Linear and nonlinear elements will not be studied individually in this chapter. 

4.2. Continuous System 

Response of a linear Euler-Bernoulli beam with TVA with equipped with linear and 

nonlinear elements is investigated. Equation (3.50) is used. Topology is similar with 

ones, shown in previous chapter.  

Equation (3.50) is further extended for multi TVAs for first and second mode 

cancelation is considered 

Equation Chapter (Next) Section 1 
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CHAPTER 5  

 

5. RESULTS 

 

TVAs parameters are optimized by genetic algorithm (GA) of MATLAB. Optimum 

values are used as an initial guess in gradient based optimization, fminunc of 

MATLAB.  

Different cost functions are considered. The first is the maximum response value 

because the aim of the vibration suppression is to minimize maximum value. The 

second cost function is the area of the response above unity. It is shown in Figure 5.1. 

When the system contains a lot of DOF or subjected to random excitation, considering 

only the resonance point might not give desired suppression characteristic. [40]. 

 

Figure 5.1. Definition of Cost Functions 
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Also combination of normalized maximum values and normalized areas are used. The 

results are compared in Figure 5.2 and Figure 5.3. In Figure 5.2, single TVA is 

optimized, in Figure 5.3, two TVAs are optimized. 

The maximum value is used because one of the aim in the vibration suppression is 

essentially to reduce maximum vibration amplitude. 

The system is excited by unity base excitation. Every value above unity is 

amplification. It is also desired to minimize all those amplified values. Therefore, the 

area above unity is defined. 

 

Figure 5.2 Comparison of Cost Functions in single TVA Optimization 

Normalized response of the system with single TVA is shown in Figure 5.2. When the 

weight of the integral of the displacement amplitude is zero, i.e 100% Max, second 

resonance peak occurs. This is due to the fact that only the maximum displacement 

amplitude is used as the cost function and hence, optimization resulted in two peaks 
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with equal amplitudes. When the weight of the maximum displacement of the main 

system is zero, i.e 100% Area, amplitude of the resonance peak is larger. This is due 

to the fact that the area under the frequency response function is minimized without 

considering the amplitudes of the resonance peaks.  

The differences in maximum values are mathematical. It is seen that 100 % of 

maximum is not preferable. However, for other cost functions, the difference is not 

clear. Therefore, cost function are compared in multi TVA optimization.  

 

Figure 5.3 Comparison of Cost Functions in two TVAs Optimization 

When the weight of the integral of the displacement amplitude is zero, i.e 100% Max, 

This is due to the fact that only the maximum displacement amplitude is used as the 

cost function and hence, optimization resulted in three peaks with equal amplitudes. 

When the weight of the maximum displacement of the main system is zero, i.e 100% 

Area, amplitude of the first resonance peak is larger. This is due to the fact that the 
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area under the frequency response function is minimized without considering the 

amplitudes of the resonance peaks.  

Combinations of normalized area and normalized amplitude are also considered. 

Notice that, between 100% of Max & 0% of Area and 50% of Max & 50% of Area, 

the differences are mathematical. Amplitude level in 25% of Max, slightly higher than 

the 50 % of Max.  

When considering the general physical behavior, combination of area and maximum 

value is more effective. It is selected as ultimate cost function in further analysis. 

5.1. Discrete System 

Parameters of the system under investigation are 1bm kg , 3948bk N m , 

39.5bh N m  and 0.01U m . Mass of TVA is ten percent of the total mass. 

Remaining parameters are optimized. 

5.1.1. Single TVA 

Mass of the TVA is taken as 0.1TVA bm m  

 

Figure 5.4 Comparison of single TVA Configurations. 

Dotted lines denote unstable solutions. Solid lines denote stable solutions. 
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Linear TVA has good suppression behavior. It suppress more than 95% of vibration 

amplitude. When comparing the system without TVA, It has a higher vibration 

amplitude between normalized frequencies of 0.5 to 0.85. It has very effective 

suppression around resonance of the main.  

TVA equipped with friction damper has also effective. It has higher vibration 

amplitude than linear TVA between normalized frequencies of 0.8 to 0.95. After that 

frequency, it has more effective suppression performance.  

TVA with cubic stiffness and viscous damping i.e. Nonlinear Energy Sink (NES) has 

lower amplitude except between normalized frequency of 1.1 to 1.35. However, there 

is a frequency interval with no stable solution. It indicates that, at those frequencies, 

there are different solution point, which will be investigated later.  

TVA with cubic damping quite similar to linear TVA. The difference is mathematical. 

TVA with cubic stiffness and dry friction damper has similar behavior with linear 

TVA. Its performance slightly worse. Notice that, there is no frequency interval with 

unstable solutions. Adding friction damper solves the stability problem in cubic 

stiffness.  

TVA with cubic stiffness and cubic damper has the worst suppression performance 

when comparing the others. It has a frequency interval with no stable solution; also, it 

has a dual solution before the normalized frequency of 0.75.  

The other cost function parameter is the area which defined in Figure 5.1. 
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Figure 5.5 Comparison of single TVA Configurations in Terms of Defined Area 

*Area of NES is calculated with including unstable frequency region 

All parameters are given in Table 5.1. Parameters of Single TVA Configurations 

Table 5.1. Parameters of Single TVA Configurations 

Configuration Parameters 

Linear TVA 316. 2.0TVA TVAk N m c Ns m   

TVA with Dry Friction Damping 
270 598.5

12.95

TVA tk N m k N m

N N

 


 

TVA with Cubic Stiffness and 

Viscous Damping (NES) 
4 33.2 10 0.6c TVAk N m c Ns m    

TVA with Cubic Damping 3 3322.8 0.061TVA ck N m c Ns m   

TVA with Cubic Stiffness and 

Friction Damping 

4 31.13 10 24

324.4

c

t

k N m N N

k

  




 

TVA with Cubic Stiffness and 

Cubic Damping 

4 3 3 32.36 10 0.045c ck N m c Ns m    

Notice that, for linear TVA 𝜔   = 57.1  𝑟𝑎𝑑 𝑠⁄   𝜔   𝜔𝑏 = 0.91  and  𝜉 = 0.18⁄  
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5.1.2. Multi TVAs 

Dual TVAs are also considered.  

 

Figure 5.6 Comparison of multi TVAs Configurations. 

Dotted lines denote unstable solutions. Solid lines denote stable solutions. 

Linear multi TVA configuration has similar suppression ratio when comparing to 

linear single TVA configuration. Therefore, for linear system, usage of multiple TVA 

is not advantageous.  

Configuration of multi TVAs equipped with dry friction damper is advantageous when 

comparing to single TVA with dry friction damper. It has also slightly better 

suppression regime than linear configuration. Multiple TVAs with dry friction 

dampers are more advantageous than single TVA configuration. 

Configuration of multi TVAs with cubic stiffness and viscous damping has more 

complex behavior than single. It has four peaks and frequency intervals with no stable 

solutions.  
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Configuration of multi TVA with cubic damping is similar with linear multi TVA 

configuration but it is slightly worse. In addition, adding another TVA with cubic 

damper does not improve suppression level.  

Configuration of multi TVAs with cubic stiffness and dry friction is worse than single 

TVA configuration. It has a higher amplitude between normalized frequency of 1.15 

to 1.25. It has also frequency intervals with no stable solution. 

Configuration of multi TVAs with cubic stiffness and cubic damper has the worst 

suppression performance when comparing the others.  

 

Figure 5.7 Comparison of multi TVAs Configurations. Dashed lines denote unstable solutions. Solid 

lines denote stable solutions. 

From Figure 5.7, it is seen that, adding another cubic stiffness to the system does not 

improve suppression behavior.  

Table 5.2. Parameters of Multi TVA Configurations 

Configuration Parameters 

Linear TVAs 
,1 ,1

,2 ,2

193.7 0.87

140.7 0.74

TVA TVA

TVA TVA

k N m c Ns m

k N m c Ns m

 

 
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TVAs with Dry Friction Damping 

,1 ,2

,1 ,2

1 2

183.8 138.9

430.4 558.6

5.6 4.2

TVA TVA

t TVA

k N m k N m

k N m k N m

μN N μN N

 

 

 

 

TVAs with Cubic Stiffness and 

Viscous Damping (NES) 

3

,1 ,1

3

,2 ,2

11487.3 0.42

6718.1 0.20

c TVA

c TVA

k N m c Ns m

k N m c Ns m

 

 
 

TVAs with Cubic Damping 

3 3

,1 ,1

3 3

,2 ,2

178.2 0.015

121.0 0.058

TVA c

TVA c

k N m c Ns m

k N m c Ns m

 

 
 

TVAs with Cubic Stiffness and 

Friction Damping 

3 3

,1 ,2

,1 ,2

1 2

2920.0 11802.1

154.9 259.8

11.21 5.03

c c

t TVA

k N m k N m

k N m k N m

μN N μN N

 

 

 

 

TVAs with Cubic Stiffness and 

Cubic Damping 

3 3 3

,1 ,1

33 3

,2 ,2

14990.8 0.051

12626.3 0.020

c c

c c

k N m c Ns m

k N m c Ns m

 

 
 

 

Notice that, for linear system, 
,1 ,262.6 , 56.0 ,TVA TVAω rad s ω rad s 

,1 0.99TVA bω ω  , 𝜔     𝜔𝑏 = 0.84  𝜉 = 0.14  and  𝜉 = 0.13⁄  

To sum up, multiple TVAs is not effective except ones with dry friction dampers. 

Adding TVA with cubic stiffness increases the complexity of the system and does not 

improve the suppression level.  

5.1.3. Comparison and Further Comments 

Best configurations are single linear TVA, single TVA with NES and configuration 

of multi TVAs with dry friction damping. 
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Figure 5.8. Best Configurations. Dashed lines denote unstable solutions. Solid lines denote stable 

solutions. 

Configuration of multi TVAs with dry friction damping is slightly better when 

comparing with single linear TVA. It has lower amplitude except between normalized 

frequency of 0.9 to 0.95.  

NES seems effective. However, due to stability behavior, further investigation is 

required.  

Time domain solution is performed at certain frequencies. ODE45 of MATLAB is 

used to solve nonlinear differential equation in time domain. All initial values are take 

as zero and solution is performed for 100 seconds. Last one seconds are investigated. 

Maximum and minimum values are taken.  max min 2x x  is displayed. In 

addition, time history is investigated and periodicity is checked. This process is 

applied at specified frequencies.  
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Figure 5.9. Comparison of Time Domain Solution and Frequency Domain Solution. 

Solid lines denote stable solutions. Dashed Lines denotes unstable solution. 

From Figure 5.9, it is seen that, there is another solution after normalized frequency 

of 0.8. There is a bifurcation at some frequency. Solution points with no periodic 

solution is marked with black diamonds. These points will be investigated later.  

The points obtained by time domain solution is used as an initial guess to follow other 

solution paths.  

 

Figure 5.10 Comparison of Time Domain Solution and Extended Frequency Domain Solution. 

Solid lines denote stable solutions. Dashed Lines denotes unstable solution. 
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There is a bifurcation before normalized frequency of 0.42. These points can be seen 

more clearly in Figure 5.12, i.e. response of the TVA.  

Figure 5.8 is updated as  

 

Figure 5.11. Best Configurations Updated. 

Dotted lines denote unstable solutions. Solid lines denote stable solutions. 

In addition, the solution point around resonance does not converge to another solution 

curve. There are no harmonic solution at those frequencies. Vibration at those 

frequencies might be chaotic. There are several ways to identify chaotic vibration. [41] 

 Sensitive to initial condition (Butterfly Effect): Different initial values 

results different steady state solution.  

 Frequency Spectrum: Broadband frequency excitation is observed.  

 Phase Plane: If the response is periodic, phase plane orbits traced out a closed 

curve. 
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Figure 5.12 Response of the TVA. Solid lines denote stable solutions. 

Dotted lines denote unstable solutions. Solid lines denote stable solutions. 

Time response is obtained at normalized frequency 1, i.e. 10 Hz for 100 s for 

different initial conditions. Last second is presented in Figure 5.13 

 

Figure 5.13: Time History with Different Initial Guesses 

Change in initial guess, changes the steady state solution as it is seen in Figure 5.13.  
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At same frequency, i.e. 10 Hz, frequency spectrum is obtained by using FFT of 

MATLAB.  

 

Figure 5.14: Single Sided Amplitude Spectrum of 𝑥𝑏(𝑡) when excitation frequency is 10 Hz 

The excitation frequency is 10 Hz. In frequency spectrum, excitation frequency and 

its higher harmonics are expected (See Figure 5.15). However, broadband frequency 

excitation is observed. The values are higher around excitation frequency.  

  

Figure 5.15: Single Sided Amplitude Spectrum of 𝑥𝑏(𝑡) when excitation frequency is 8 Hz 
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Finally, phase plan is obtained. 

 

Figure 5.16: Phase Plane of 𝑥𝑏(𝑡) when excitation frequency is 10 Hz 

Trajectory does not follow a closed loop. The solution at that frequency is chaotic. 

Normally trajectory follows a closed loop, like in Figure 5.17. 
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Figure 5.17: Phase Plane of 𝑥𝑏(𝑡) when excitation frequency is 8 Hz 

In conclusion, NES is not effective in vibration suppression under harmonic excitation 

due to stability problem. Some studies in literature [30] claim that NES is more 

effective than linear TVA under harmonic excitation. However, this study claims 

opposite. 

Notice that damping values in the linear system is quite higher when comparing to 

NES. For same damping value, the suppression performance of the NES might be 

better [42]. However, in this study, best parameter is selected. Such comparisons and 

analogies are not considered.  
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5.1.4. Effects of Mistuning 

TVAs are generally effective when the all values are optimum. However, if values 

diverges from optimum value, suppression of TVA is worsened. In this chapter, effects 

of mistuning will be investigated.  

Mistuning can be observed in both primary system and TVA. In primary system, 

natural frequency might be differed from the design value. In TVA, elastic element 

and dissipative element might be different from optimum value. Finally, input value 

can be differed.  

Parameters are changed from 80 % to 120 %. Normalized maximum values are 

presented.  

 

Figure 5.18: Effect of the Mistuning of the Natural Frequency of the Primary System 

In Figure 5.18, natural frequency of the primary system is reduced and increased 20%. 

TVAs optimized for design value is used. It is seen that TVA with cubic damping have 

similar performance when comparing to linear TVA when system is detuned. TVA 
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with dry friction damper is more sensitive to change in natural frequency. Amplitude 

of the system increase more drastically with increasing natural frequency. If friction 

is considered as equivalent viscous damping, it is inversely proportional with 

frequency [43]. Thus, performance of TVA with friction damping is worse when the 

system frequency is increased. NES is the most sensitive TVA configuration. After 

certain parameter exceed, it jumps.  

 

Figure 5.19: Effect of the Mistuning of the Elastic Elements in TVA 

In Figure 5.19, elastic member in TVA is changed. In NES, elastic member is cubic 

stiffness. In all other configuration, it is linear stiffness. The configuration is similar 

with Figure 5.18. Behavior of the TVA with cubic damping is similar with linear one. 

TVA with dry friction damper is more sensitive to parameter change. The reason is 

similar with previous case.  .NES is the most sensitive configuration.  
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Figure 5.20: Effect of the Mistuning of the Dissipative Elements in TVA 

In Figure 5.20, dissipative elements in TVA are changed. In linear TVA and NES, 

dissipative element is linear damping. In TVA with cubic damping, dissipative 

element is cubic damping and in TVA with dry friction damping, dissipative element 

is dry friction. Linear TVA and TVA with cubic damping have similar behavior. TVA 

with dry friction damping is more sensitive in lower values.  
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Figure 5.21: Effect of the Mistuning of the Input 

In Figure 5.21, input value is changed. Performance of linear TVA does not change 

because the system is linear. TVA with dry friction damper is similar to TVA with 

cubic damping when the input is lower than design value. When input is higher, 

performance of TVA with dry friction damper is worse. NES sensitive to parameter 

change, it jumps.  

5.2. Continuous System 

To obtain more realistic and accurate results, TVA configurations with continuous 

system is studied. In this chapter linear Euler-Bernoulli beam under harmonic 

excitation. Both ends are fixed supported. Solution for other boundary condition is 

given in the appendix.  

Parameters of the system is 2 2 31 , 9 , 60 , 7850L m EI Nm A mm ρ kg m     and 

1u mm . 
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Inherit damping of the beam is calculated by using Equation (3.29). Base excitation 

cannot excite second mode. Therefore, first and second mode is considered.  

  

97.80

269.5

, 528.5

873.6

1306

b Beam Beameig rad s

 
 
  

   
 
 
  

ω K M  (5.1) 

Damping ratio is taken as one percent for both mode. 

 1 3 0.01ξ ξ   (5.2) 

 
1 3

1 3

2
0.01 1.65

ωω
α

ω ω
 


 (5.3) 

 
5

1 3

2
0.01 3.19 10β

ω ω

  


 (5.4) 

Inherit damping of the beam is constructed as  

 Beam Beam Beamα β C M K  (5.5) 

Base excitation cannot excite second mode. Therefore, first and the third mode 

cancelation is considered. Ineffective TVA configurations are excluded. Single and 

multi linear TVA configurations, single and multi TVA with dry friction 

configurations are studied. In addition, NES are also studied. 

Location for TVA is selected for maximum suppression. 
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Figure 5.22 Effect of the Location of the TVA on Suppression Ratio 

From Fig. 5.18, it is seen that, optimum location is 0.5aL L  

 

Figure 5.23 Effect of the Location of the TVA on Suppression Ratio 

To cancel out third mode, TVA can also locate 2L  However, for optimization, 

other locations, which has a peak, are also checked. These locations are 0.21L, and 

0.79L. Single the beam is symmetric and TVA is located at the middle, only one of 

the is considered. Response of these two are same.  

5.2.1. First Mode Cancelation 

Total mass of the TVAs are ten percent of the main system, i.e. 0.1TVAm ρAL . For 

double TVAs, masses are equal to each other.  
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Selected TVA configurations are optimized: 

 

Figure 5.24 TVA Configurations to Cancel Out First Mode 

Single TVA with friction damper has higher amplitude than linear response between 

normalized frequencies 0.7 to 0.95. After that value, it has better suppression regime.  

Configuration of double TVAs with friction dampers has higher amplitude between 

normalized frequencies 0.8 to 0.95. For other frequency region, it has slightly better 

suppression regime.  

Single TVA with cubic damping, single linear TVA and multi linear TVA have similar 

suppression behavior. 

NES seems effective; however, it is ineffective due to its stability behavior. It is 

studied in previous chapter in detail.  

Parameters are given in Table 5.3. 
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Table 5.3. Parameters of TVA Configuration to Cancel Out First Mode 

Configuration Parameters 

Single Linear TVA 300.8 2.08TVA TVAk N m c Ns m   

Double Linear TVAs 
,1 ,1

,2 ,1

177.9 1.18

131.4 0.88

TVA TVA

TVA TVA

k N m c Ns m

k N m c Ns m

 

 
 

Single TVA with Dry Friction 

Damping 

156.7 1.45

700.0

TVA

t

k N m μN N

k N m

 


 

Double TVAs with Dry Friction 

Damping 

,1 ,2

1 2

,1 ,2

129.8 189.4

0.34 0.62

599.9 995.5

TVA TVA

t t

k N m k N m

μN N μN N

k N m k N m

 

 

 

 

TVA with Cubic Stiffness and 

Viscous Damping (NES) 

5 393.2 10 0.68c TVAk N m c Ns m    

TVAs with Cubic Damping 
3 3297.2 8.19TVA ck N m c Ns m   

 

5.2.2. First and Third Modes Cancelation 

Base excitation cannot excite second mode of the fixed -fixed beam. The next mode, 

which can be excited by base excitation, is the third mode.  

By designing TVAs for the first mode, response of the third mode can be also reduced, 

because, overall damping of the system is increased.  
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Figure 5.25 Effect of  Previous TVA Configurations at Third Mode.  

In previous chapter, TVA configurations are optimized to cancel out first mode. Their 

effect on third mode is given in Fig. 5.18. It is seen that, configurations of TVA with 

friction dampers do not contribute suppression. The reason is friction is not effective 

in higher frequencies. Consider friction damper as an equivalent viscous damper. The 

damping coefficient is proportional to 1/𝜔 [43]. Therefore, it is lower in high 

frequencies. 

Linear TVA configurations have a contribution because overall damping of the system 

is increased. Similar suppression behavior is observed in NES. They act as low spring 

with high damping.  

Best suppression is observed in cubic damping. Because overall damping of the 

system is increased and damping force is proportional to third power of the velocity. 

Therefore, it is more effective when compare to others  

In the next study, two TVAs with different configurations are optimized. Each of them 

is optimized to suppress one mode.  
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Total mass of the TVAs are kept same. In first optimization, mass of the first and 

second TVA is equal.  

 

Figure 5.26 Suppression in First Mode at 2L  

In Figure 5.26, frequency values are normalized with the first natural frequency of the 

beam without TVA. The amplitudes are normalized with the response of the beam at 

the first resonance.  

TVA with friction damper has higher value than linear system between normalized 

frequencies 0.75 to 0.9. 

Behavior of the TVA with cubic damping is similar to linear one. 
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Figure 5.27 Suppression in Third Mode at 2L  

TVA with friction damper has higher value than linear system between normalized 

frequencies 1.05 to 1.15. After that frequency, it is slightly lower.   

Table 5.4. Parameters of TVA Configuration to Cancel Out First Two Mode 

Configuration Parameters 

TVA with Dry Friction Damper 

      = 136.0   ⁄       = 5114.9   ⁄

 𝑡  = 416.0   ⁄  𝑡  = 93926   ⁄

𝜇  = 0.75  𝜇  = 8.56  

 

TVA with Cubic Damping 
      = 163.7   ⁄  𝑐  = 1.05  𝑠3  3⁄

      = 4852.7   ⁄  𝑐  = 0.64  𝑠3  3⁄
 

Linear TVA 
      = 163.4   ⁄       = 0.82  𝑠  ⁄

      = 5459.2   ⁄       = 5.0  𝑠  ⁄
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Figure 5.28 Vibration Suppression at 2L  

Vibration suppression performance is generally better in first mode. In higher mode, 

amplitude level decrease due to the nature of the structure. 

 

Figure 5.29 Vibration Suppression at 0.21L 
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CHAPTER 6  

 

6. CONCLUSION AND FUTURE WORK 

 

6.1. Conclusion 

In this study, vibration reduction of structures by using Tuned Vibration Absorber is 

studied. Linear primary structure is considered. Both linear and nonlinear TVAs are 

studied.  

For primary structure, discrete and continuous systems are considered. The continuous 

system is linear Euler Bernoulli Beam. TVA is investigated. The system is subjected 

to sinusoidal base excitation. Parameters of the nonlinear TVA is optimized to 

minimize vibration values of the primary system. Assumed modes method is used to 

model the Euler-Bernoulli beam. Nonlinear differential equations of motion are 

converted to a set of nonlinear algebraic equations by using Harmonic balance Method 

(HBM). The resulting set of nonlinear algebraic equations is solved by Newton’s 

Method with Arc-Length continuation. Hill’s method is used to evaluate stability of 

the solutions obtained. Genetic Algorithm (GA) of MATLAB is used. Results comes 

from genetic algorithm is used as initial guess for gradient base optimization 

algorithm. For gradient base optimization, fminunc of MATLAB is used.  

For discrete system, SDOF lightly damped structure is considered. Linear and 

nonlinear TVA configurations are optimized to reduce vibration response of the 

primary structure. The nonlinear elements considered in this study are cubic damping, 

dry friction damper and cubic stiffness. TVA with cubic stiffness and viscous damping 

is names as NES in this study, similar with literature. Besides single TVA, use of 

multiple TVAs is considered. The optimum results are obtained and results are 

compared. NES seems very effective in terms of vibration suppression however; there 

are unstable regions in frequency response. Further investigation is carried out and it 
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is found out that, there is another solution branch with higher amplitude, and a 

frequency region with chaotic solutions. Therefore, NES is not as effective as it seems 

under harmonic base excitation. The configurations are close to each other. 

Differences are slight. 

For continuous system, lightly damped Euler Bernoulli beam is considered. First and 

third mode cancelation is considered. Results are presented. It is seen that, viscous and 

cubic damping is slightly better when first and third mode cancelation is considered. 

6.1.1. Future Work 

In this study, optimization is carried out for harmonic base excitation. It is not quite 

realistic in real case. Optimization can be extend for different type of loading such as 

random. 

The primary systems in this study are simple system. However, in real engineering 

applications, primary system is more complex. Such systems are generally modelled 

by using Finite element methods. Coupling methods can be used to combine complex 

primary structure and nonlinear TVA. As a results, TVA is optimized for more 

realistic system.  
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APPENDICES 

 

A. Beam with Simply Supported at Both End 
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