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ABSTRACT

VIBRATION REDUCTION OF STRUCTURES BY USING NONLINEAR
TUNED VIBRATION ABSORBERS

Dogan, Muhammed Emin
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Ender Cigeroglu

September 2019, 85 pages

Tuned Vibration Absorbers (TVA) are commonly used in reducing undesirable
vibrations of mechanical structures. However, TVAs work in a very limited frequency
range and if the excitation frequency is outside of this range, they become ineffective.
In order to solve this problem, researchers started to consider nonlinear TVAs for
vibration attenuation. In this study, dynamic behavior of a Linear systems coupled
with a nonlinear TVA is investigated. The system is subjected to sinusoidal base
excitation. Parameters of the nonlinear TVA is optimized to minimize vibration values
of the primary system. Assumed modes method is used to model the Euler-Bernoulli
beam. Nonlinear differential equations of motion are converted to a set of nonlinear
algebraic equations by using Harmonic balance Method (HBM). The resulting set of
nonlinear algebraic equations is solved by Newton’s Method with Arc-Length
continuation. Nonlinearities used in the TVA are cubic stiffness, which is referred as
Nonlinear Energy Sink (NES) in the literature; cubic damping and dry friction
damping. Hill’s method is used to evaluate stability of the solutions obtained. Results
of the system with optimum nonlinear TV As are compared with that of optimum linear
TVA. Although, NES show to exhibit good vibration reduction performance, which
is in parallel with the results given in literature, due to instability of the frequency



domain solutions, it is observed that, actually, it is not as effective as other nonlinear
TVA:s.

Keywords: Tuned Vibration Absorber, Nonlinear Energy Sink, Optimization, Friction
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0z

DOGRUSAL OLMAYAN AYARLI TITRESIM SONUMLEYIiCi
KULLANILARAK YAPI UZERINDEKI TITRESIMLERIN AZALTILMASI

Dogan, Muhammed Emin
Yiiksek Lisans, Makina Miihendisligi
Tez Danigmani: Prof. Dr. Ender Cigeroglu

Eyliil 2019, 85 sayfa

Ayarli Titresim Soniimleyicileri (ATS) mekanik yapilan {izerindeki istenmeyen
titresimi azaltmak i¢in kullanilir. Fakat ATS’ler sinith bir frekans araliginda ¢aligirlar.
Eger tahrik frekansi bu araligin digindaysa, ATS’ler etkili olmamaya baglar. Bu
problem ¢6zmek i¢in bircok arastirmacit dogrusal olmayan ATS’ler {izerinde
calismaya baslamistir. Bu ¢alismada, dogrusal olmayan ATS ile birlestirilmis dogrusal
bir sistemin dinamik davranisi incelenmektedir. Sistem tabandan tahrik edilmektedir.
Ana sistemin titresim seviyesini minimize edecek sekilde dogrusal olmayan ATS’nin
parametreleri optimize edilmektedir. Mod varsayim yontemi kullanilarak Euler-
Bernouli kirisi modellenmektedir. Dogrusal olmayan diferansiyel denklemler
harmonik denge metodu ile dogrusal olmayan cebirsel denklemlere ¢evrilmektedir.
Bu denklem seti de yay Devamli Yay Uzunlugu ve Newton metodu kullanilarak
¢oziilmektedir. Sistemde kullanilan dogrusal elemanlar kiibik katilik, kiibik damper
ve stirtinmedir. Hill metodu ile elde edilen ¢6ziimlerin kararliligi kontrol edilmistir.
Dogrusal olmayan katilik kullanilan ATS’ler literatiirde Dogrusal olmayan enerji
cukuru diye de gecer. Optimize edilmis dogrusal olmayan ATS’lerin performansi ile

optimum dogrusal ATS’lerin performansi karsilastirilir.
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Anahtar Kelimeler: Ayarli Titresim Sontimleyicisi, Dogrusal Olmayan Enerji Cukuru,

Optimizasyon, Siirtlinme
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CHAPTER 1

INTRODUCTION

Tuned Vibration Absorbers (TVA) are commonly used in reducing undesirable
vibrations of mechanical structures. It generally consists of a mass, a spring and a
damper which is attached to a structure. The aim is to reduce the dynamic response of
the primary system at a certain frequency by tuning the frequency of the TVA to that
frequency. It is especially useful when the inherent damping of the primary system is

low.

There are many application areas. It is widely used in civil engineering to eliminate
excessive response of towers. Similarly, it is used in bridges, wind turbine, etc. It is
also used in electric cables, which is known as Stockbridge damper. Moreover, it is

used in many mechanical systems to avoid excessive vibration response [1].

u=

TVA

- | = g

T— ™~ A o

Figure 1.1. Schematic of the TMD systems installed in Taipei 101, Taiwan.

Retrieved from [1]



In literature, Tuned Vibration Absorber is also referred, Tuned Mass Damper,
Dynamic Vibration Absorber ,and Frahm Damper. In this study, Tuned Vibration
Absorber is used. Notice, Tuned Liquid Column Damper, which is a form of TVA

with liquid columns, is not included in this study.

In this study, a base excited linear mechanical system connected to TVAs equipped
with linear and nonlinear elements is considered. Single and multiple TVAs are
optimized. By the use of multiple TVAs and nonlinear elements, it is aimed to

suppress the vibrations of the structures in a broader frequency range.

At the beginning of the study, a literature review is presented in CHAPTER 2.
Historical development and studies related to TVA for the undamped primary system
are presented in the first paragraph. In second paragraph, studies related to TVA for
the damped primary system are presented. In the third paragraph, the studies related
to the use of multiple TVAs for single resonance are presented. In the fourth
paragraph, the studies related to a continuous system coupled with TVAs are
presented. In the fifth paragraph, first nonlinear TV A studies are presented. In the sixth
paragraph, studies related to TVA with friction dampers are presented. Finally, in last

paragraph, studies related to TVA with cubic stiffness are presented.

In CHAPTER 3, methods, used in this study is represented. This chapter divided 4
subchapters. In the first subchapter, Harmonic Balance Method is presented. In the
second subchapter Newton Method with Arch-Length Continuation is represented. In
the third subchapter, Hill’s Method is presented. Lastly in the forth subchapter,
Assumed Modes Method is presented.

In CHAPTER 4, the mathematical modeling of the systems is presented. It is divided
into two subchapters, which are modeling in discrete and continuous system. The
behavior of different TVA configurations are investigated in a discrete system. The
nonlinear elements used in this study are cubic damping, cubic stiffness, dry friction

damping, and their combinations. Also, the linear system is studied in this chapter.



In CHAPTER 5, results are presented. In this chapter, optimum values for different
TVA configurations are presented. It is divided into two subchapters. In the first
subchapter, optimum results for discrete systems are presented. In the second chapter,

optimum results of TVA for continuous system is presented.

Finally, in the last chapter, CHAPTER 6, conclusion and future works are presented.
Studies and important findings are summed in the conclusion. In future work
subchapter, the subjects excluded in this study are discussed to further improve this

study.

In the appendix, optimum results for different boundary conditions are presented. For

clarity, they are not presented in CHAPTER 5.






CHAPTER 2

LITERATURE REVIEW

TVA like systems was first used by Watts [2] in 1883. In 1909, Frahm [3] patented
the classic TVA, which was consisted of a mass and a spring. Ormondroyd and Den
Hartog [4] carried out the first theoretical investigation on TVA. TVA without
damping can reduce the response of the main system to almost zero at the previous
resonance point under harmonic excitation. However the addition of TVA two new
resonance near the tuned frequency. Therefore, it is useful for a single stationary
frequency; however, excitation is rarely stationary in real applications. Viscous
damper is considered to reduce vibration response in a broader band [5]. The study is
that of a TVA with viscous damper attached an undamped SDOF system, which
subjected to harmonic excitation. It had been noticed, frequency response curves of
the main mass, which is plotted for different damping values pass through two
invariant points. Optimization is performed by using these invariant points. The ratio
of the natural frequencies of the TV A and the main system is altered until the response
of the invariant points is equal. Respectively, damping of TVA is adjusted such that
the slope of the frequency response curve at invariant points become zero. (See Figure

2.1). Researchers studied to obtain closed form solution for this optimization problem.

Real systems, however, contain damping and invariant points do not exist in the
frequency response curve. Bapat and Kumaraswamy [6] investigated an optimization
for the damped system. It has been noticed that fixed point optimization works for the
slightly damped system. Toshihiro and Ikeda [7] obtained empirical formulae for the
TVA parameters with the condition that damping is light. Randall, Halsted, and Taylor
[8] presented computational graphs that determine the optimum values of TVA for the
damped system. The represented solution offered much more accurate results than

those achieved by classical methods.



Suppression Ratio

Figure 2.1. Invariant Points and Change in Damping Value

To improve effective bandwidth, multiple TVA is considered. In such cases, More
than one TVAs are used to suppress a single resonance peak. lwanami and Seto [9]
investigated dual TVA. The study showed that dual TVA eliminates the drawback of
single TVA, which is very sensitive to the variation of parameters. Moreover, it
reduces transmissibility better in the resonance region. Igusa and Xu [10] showed that
multiple TVA is more effective and robust than single TVA, which has equal total
mass under harmonic excitation. Many researchers are still interested in multiple
TVA.

The application absorber to a continuous system, which is more realistic and accurate,
has been studied extensively. Young [11] made the first study on the application of
TVA to the continuous system. Neubert [12] studied on axially excited beam with one

or two TVAs in steady state. It was stated that second TVA has an advantage if TVAs



are tuned for separated resonances. In addition, the effect of the location of the TVA
was studied. Jaquot [13] studied on optimization of TVA for Euler-Bernoulli beam
subjected to sinusoidal excitation. Assumed mode method for single mode
approximation is used to establish the analogy between SDOF system and beam.
Optimum TVA parameters is determined for the equivalent SDOF system by using
the theory in earlier works. Warburton and Ayorinde [14] extended Jaquet’s study for
plates and cylindrical shells and improved the accuracy for beams. Ozgiiven and
Candir [15] studied on structurally damped beam with two TVA, which is subjected
to harmonic excitation. TVAs were optimized to suppress first two resonance of the
beam. It had been noted that optimization parameters for TVA tuned to second
resonance are not affected the existence of the one tuned to first resonance. However,
the opposite is not true. Esmailzadeh and Jalili [16] extended the theory for

Timoshenko beams.

T T
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Figure 2.2. Suppression Zones with Linear and Nonlinear TVA

Although many researchers still interested in linear vibration absorber, there are many

researches on nonlinear vibration absorber to further improve the effectiveness of



TVA. Roberson [17] introduced nonlinear TVA. The study focused on improving
suppression bandwidth, which is the frequency bandwidth with amplitude less than
unity. (See Figure 2.2) In the study, undamped TVA with linear and nonlinear spring
was considered. Significant improvement is observed when comparing to the linear
one. Hunt and Nissen [18] studied on damped nonlinear TVA. The research
demonstrated that suppression band is twice as wide as which produced by a linear
TVA. Natsiavas [19] studied on stability of the nonlinear system to avoid dangerous

effects which are possible due to the presence of the nonlinearity.

Inaudi and Kelly [20] introduced TVA with friction dampers (FTVA). The system
exhibits both linear and hysteretic behavior. Statistical linearization method had been
used and optimum parameters were calculated for SDOF linear system. It is found out
that, FTVA exhibits convenient behaviors, achieves the same level of performance
that an optimized linear TVA would provide. The advantage of FTVA is its robustness
to environmental temperature change. Ricciardelli and Vickery [21] used FTMD.
They studied the response of a linear single DOF system, where FTMD is connected
by using an equivalent linearized damping for single harmonic motion. They also
obtained optimum slip parameters for harmonic excitation. Gewei and Basu [22]
studied the response of a linear SDOF system with FTMD under both harmonic and
random excitation. For harmonic excitation, harmonic balance method is used to
obtain a periodic response. In the case of random excitation, statistical linearization
method is used. Carmona, Avila and Dose [23] proposed an FTMD to control
excessive floor vibration. Linearized friction model is used. Linearized FTMDs are
attached to the floor. Analysis is carried out by using finite element method. They
suggested and optimized multi FTMDs for certain load cases. Pisal and Jangid [24]
studied on linear SDOF system with FTMD under both harmonic and earthquake
excitation. They used state-space method to solve the system. Sinha and Trikutam
[25] studied the optimization of a SDOF linear system with FTMD in steady state.
They used harmonic balance method to solve the nonlinear system. Genetic algorithm

with minimax approach is used for optimization.



Weakly nonlinear systems are not able to react effectively on a wide range of
frequency because of its dependency on amplitude level. However, strongly nonlinear
system reacts effectively on a broader frequency band. Systems with this consideration
bring a new concept, which is Nonlinear Energy Sink (NES). This concept also covers
grounded vibration absorber i.e. the nonlinear element is located between vibration
absorber and ground. It has been noticed that nonlinear attachment exhibits
irreversible transient energy transfer [26]-[27]. Jiang, McFarland, Bergman, and
Vakakis [28] studied NES in steady state dynamics. Gendelman, Gourdon, and
Lamarque [29] studied the effects of NES on the main system. They found out, system
under periodic excitation exhibits quasiperiodic behavior around the main resonance
of the system. Parseh, Morteza and, Ghasemi [30] studied steady state dynamics of
linear Euler-Bernouli beam with NES under harmonic forcing. The nonlinear element
in the NES is cubic stiffness. They stated that NES performs better than linear TVA if
the forcing is the same or less than designed force. Linear TVA performs better if the
forcing is above the design consideration. Gourc, Elce, Kercshen, Michon, Aridon,
and Hot [31] studied on performance comparison of linear TVA and NES. They stated
that properly tuned linear TVA outperforms NES. Moreover, they claim that in
previous studies, which compares linear TVA and NES, designing procedure was not
properly proposed






CHAPTER 3
METHODS

3.1. Harmonic Balance Method

Harmonic Balance Method (HBM) is used to calculate steady state response of
nonlinear differential equations. In HBM, responses and nonlinear forces are
represented in terms of Fourier series and substituted into nonlinear differential

equations which results in a set of nonlinear algebraic equations.

The idea is, to express periodic solution in the form

N

X; (wt) =x,° + ijs'p sin(powt) +x;*° cos(pwt) (3.1)

p=1

Consider equation of motion of a nonlinear system under harmonic excitation

MX(t)+(C+EjX(t)+ K () Fr0, (x(1)) = e (1) (3.2)

w

f _is nonlinear force vector. Elements in the nonlinear force vector can be expressed

non

as

fron; (6) = fa (% (6)) (3.3)

Where f,, is nonlinear transfer function, x, is the relative displacement between

rel
DOFs where nonlinear element is connected, and 6 =wr. Each element in the
nonlinear force vector calculated by HBM individually. As a result, amplitude
depended sine and cosine coefficients and bias term of the nonlinear internal forcing

are obtained. Governing equations are shown in the Equation (3.4)

11



AN

Y

o0 21 (7% (g)sin( po)do

nj _E.‘-o non,j( )Sln(p) (3.4)
S 1 2

f = j ., (0)cos(p0)do

Equation (3.1) is substituted into Equation (3.2) and coefficients of the nonlinear force
vector is obtained by Equation (3.4). As a result, nonlinear algebraic equation is
obtained. N+1 algebraic equation is obtained for each DOF.

K 0 0 x°] (£ 0
0 -o'M+K -H-oC |{x°b+{fst=1f ° (3.5)

exc

0 -H-wC -o’M+K||x| [f°] |f

exc

In this study, only first harmonics are considered. Bias term are not and higher

harmonics are neglected. Therefore, Equation (3.5) reduced to

~-0’M+K -H+oC |[[x*] [f° f.°
2 c + c = c (36)
H+oC —-o'M+K ||X f f

n exc

Details can be found in [32].
3.2. Newton’s Method with Arc-Length Continuation Method

In order to solve nonlinear algebraic Equation (3.5), a residual vector is defined as

follow

—o°’M+K -H+wC

HioC oMk < Tee =0 (37)

r(X, a)) :{
Due to the presence of the nonlinearity, a turning point may have appeared. In order
to overcome this situation, the new continuation parameter is defined. The arc-length
parameter is the radius of an n-dimensional sphere, which is centered at the previous

solution points (Figure 3.1). The new solution points are searched on the surface of

12



the sphere. The equation for n-dimensional sphere with radius s and located at the

previous solution point is

{qk _qk—l}T {qk _qk—l} =3

2

(3.8)

where s is the arch length parameter, k-1 is the previous solution points and k is the

current solution points. With the addition of this new equation, the new vector of

unknown becomes as follows

New equation is obtained

h(x,w) = {Qk _qk—l}T {Qk _qk—l} -5°=0

A single step of Newton’s Methods becomes

or
ol ox
| oh
ox

i+1 _

O =0

or

6w r(Xi’wi)
on h(x, )
Ow X; &,

Previous Solution

Next Solution

Figure 3.1. Arc-Length Continuation Method
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Details can be found in [33].
3.3. Hill’s Method

Arc-Length continuation algorithm provides the solution points on a solution branch.
It does not give information about the stability of the solution points. Due to the
presence of the nonlinearity, the stability problem may have occurred. Stability
analysis in the frequency domain can be performed with a Hill’s Method. Stability
analysis is carried out by investigating the effect of a perturbation around a periodic

solution. Perturbation is described as
o(t)=e"z(t) (3.12)

Where e” is decay term, and z(t) is periodic term i.e:

z(t)= D, z,e™ (3.13)
p=—N
New solution is written
X(t)=x(t)+a(t) (3.14)

Where %X(t) known solution. Substitute Equation (3.14) to Equation (3.2)

Mi(t)+(C+ﬂj§<(t)+ Ks+we" +f (x(t))-1,, (t1)=0 (3.15)
(4]

Where

w w

v :Mi(t)+(2M},2 +C+ﬂji(t)+(K+/12 (M+C+ﬂjjz(t) (3.16)

14



Fourier representations of the solution terms is substituted into the Equation (3.15).
Notice that, only first harmonics are considered in this study. Thus, Fourier

representation of solution is:

X(t)

o(t)= (zs sin(wt)+z° COS(a)t))eh

X° sin(wt)+X° cos(wt)
(3.17)

Substitute Equation (3.17) into Equation (3.15), we obtain

exc

Ali+(/12A2 +A, +Al)zeb +f, (i+ze“)—f =0 (3.8)

Where
H
C+— 2wM
_ 2 _,C— M 1
wC+H ~Mw M ci
w

Nonlinear term in Equation (3.15) can be written around known solution point X(t)

by Taylor series of expansion.

ze" (3.20)

Substitute Equation (3.20) into Equation (3.18),

A1i+fn(i)—fexc+(A2/12+A3/1+A1+fo" Jze’“:O (3.21)

Notice that A, X+f, (f() —f. is zero by the definition in Equation (3.21). In addition,

Jacobian matrix is defined

:g A+ of
OX OX

J (3.22)

15



Quadratic eigenvalue problem is obtained by substituting Equation (3.22) into
Equation (3.32), which is

AV +AL+T =0 (3.23)

Equation (3.23) can be rewritten in state space form. Linear eigenvalue problem is

obtained.

A2V+A3V+JV =0 (3.24)
T, v _— .
Where T = = .and V =e# which is defined as
T, v

ot
2 5—'[1 =-AT - JT,

% (3.25)

1
ot
Equation (3.24) can be rewritten as

A, 0], [A 3,
o 1|7 o7 (3:26)

This will give 4N eigenvalues for single harmonic solution. Only 2N eigenvalues are
valid solutions. Others have physically no meaning. For stability analysis, eigenvalues
with the smallest imaginary part in modulus are considered. For the solution points
where eigenvalues are greater than zero, it is unstable [34]. Details related to method
can be found in [35].

As an example, two DOF system with cubic stiffness is investigated. Stability
behavior is well known in the literature. Solid linear denotes stable solution, dotted

lines denotes for unstable solution in Figure 3.2.
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3.4. Assumed Modes Method

Exact solution of many continuous systems is sometimes difficult. In such cases,
approximate analytical methods are useful. For must system, only the first few natural
frequencies and natural mode have importance for the dynamic response. Contribution

of the higher modes are negligible.

L
L, N
M%t) Uniform Beam: EI, A, p E
IU Q) x krya N] Ll tqcrva
LS/ My a 1 tarya(t)

Figure 3.4 Linear Euler-Bernoulli Beam with Nonlinear TVA

Displacement of the beam (Fig. 3.3) is assumed as

w(yt) =24 ()% (1) -

Where, ¢ (y) is the known trial functions that satisfy boundary conditions and, x (t)

is the unknown function of time. The beam is subjected to base excitation, U (t).

There is a concentrated mass connected to beam with elastic and nonlinear element,
which is TVA. Beam with uniform cross-section is used. El is the modulus of

rigidity, A is cross-section of the beam and p the density of the beam. NLis the
nonlinear element between TVA and beam. k;,and c, the spring and damping

coefficients respectively.

Energy equations of the beam is

18



v=le(t MJZ dy + Ky (¥ () + [ Fu (%u (1))

2 Dol oy 2
2 2
_1 L 8W(y,t) 1 OXrva
T_EEI ol " +U(t)j dy+§mTVA£ - (3.28)

t

1 ox. )
D:— rel

o 2

Where X, (t)=U (t)+w(L,,t)— Xy, (t) ie. relative displacement between TVA

and point of the beam where TVA is connected. Nonlinear forces are added to the

potential energy equation.

In addition, inherent damping of the beam is considered. Rayleigh damping [1] is used
to obtained inherent damping matrix of the beam. Mass and stiffness matrix of the

beam without TVA is obtained (M, . &K ... ). Natural frequencies of the beam are

Beam Beam

obtained. Damping ratios are settled for selected natural frequencies. Rayleigh
coefficients are obtained for those frequencies. The formula for Rayleigh coefficients

are:

. —.
a 20,0, : <
Y. ;11
IB ;" -, . o fj (3.29)

j i

For this study, only first five mode taken into consideration. Displacement vector

becomes

.
X:{X1 X X X X XTVA} (3.30)

Mode shapes of the linear Euler Bernoulli Beam is used for trial functions. To obtain

equation of motion of the system, Lagrange equation is used.
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o dr _8T+6V+6D
ot\ox, ) o% 0% OX

(3.31)

System matrix are obtained by substituting Equation (3.28) into Equation (3.31)

System matrixes are

m;, m, m; m, m; O

m, M, My m, my 0

M = Mgy My My My, my 0
0

0

ol
ﬁg ﬁg
ERE
33
3333

Where
my = pA| ¢ ()4 (»)dy
_kll k12 k13 k14 k15 k66 |
k12 k22 k23 k24 k25 k26
K — k13 k23 k33 k34 k35 k36
k14 k24 k34 k44 k45 k46
k15 k25 k35 k45 k55 I<56
L k16 k26 k36 k46 k56 kTVA |
Where

kij:EIIOLazgy(Zy)ag;(zy)dy+kTVA¢iJ(La)¢}(La) it i&j<6

Kis = —Kruath (L) it i<6

20
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Cll C12 C13 Cl4 ClS CG6
C12 022 C23 C24 C25 C26

C= C13 C23 C33 C34 C35 C36 I\/IBeam 0 I'<Bea1m 0

“le e e oo oo |TH 0 o0 b 0 0 (3.36)
14 24 34 44 45 46

ClS C25 C35 C45 CSS CS6
L ClG C26 C36 C46 C56 CTVA a

Where

C; =Cradt(L)g (L) if 1&j<6
Co=Cratt(L,)  if <6 (3:37)

Due to orthogonality relation, i.e.

[ 4(9)(y)dy=0 if i+ ]
[ a4 (yy 0 if i=] 63%)

Equation (3.38) are used to reduce system matrixes. Equation (3.32) and Equation
(3.33) are reduced to

M:diag({ml m, m, m, my mTVA}) (3.39)

Where

L, .
mi:pAJ.0¢§dy:O if 1<6 (3.40)

Similarly, Equation (3.35) reduced to
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kij:IL[azgy(zy)jdy+kTVA¢§2(La) if i=j & i<6

kij:kTVAﬁ(La)%(La) it 1#) & 1,)<6 (3.41)

K = —Kruat (L) if j=6 & i<6

Equation (3.37) is reduced to

C; =Crvadt’ (L,) if i=] & i<6
cij:cTVA¢?(La)¢iJ(La) if i=z] & 1,]<6 (3.42)
C;=——Cwd(L,) If j=6 & <6

Similarly, input vectors are obtained. Component comes from kinetic energy equation

is
AT L A A A (3.43)
Where
M L . .
f." = pAIO gz?(y)dy If i<6 (3.44)

Component comes from energy loss equations is

T

fO={ft° £ £ 15 5 —c,| (3.45)

Where

i =cratt(Ls) if 1<6 (3.46)

Component comes from potential energy equations is
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T

= { flK fzK sz 1:4K 1:5K _kTVA} (3.47)

Where

1:iK = kTVA%(La) if 1<6 (3.48)

Nonlinear part is obtained

—

[\

[\

o (X(0).0 (1)) = Fo (0 (1)

—

QD

(3.49)

SS S
o~~~ o~~~
— ml_l_

Equation of motion is obtained by combining Equation (3.32), (3.34), (3.36), (3.43),
(3,45), (3,47) and (3,49).

M (t)+Cx (t) + Kx(t) +f, . (X (1)) =Fc (1) (3:50)
Where
f. (1)=F"U (t)+fU (t)+f U (1) (3.51)

Linear results is compared with FEM Software, ANSYS. Plane stress (2D) elements

are used. Parameters are

L=0.250m L,=0.125m p=7850kg/m* A=10"*m’
El =41.67Nm* k., =10°N/m m,, =0.05kg

Fixed-Fixed boundary conditions are applied. Trial function is

¢ (y)=cos(By)—cosh(By)—0 (sin(By)-sinh(By)) (352
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Where

. cos(B.L)—cosh(B.L)
' sin(BL)—sinh(BL)

(3.53)

Notice that, each mode has different g; value. 5; can be found

cos(B,L)cosh(BL)—-1=0 (3.54)

Equation (3.54) is nonlinear algebraic equation. g, values can be obtained

numerically. For initial value, B,L =(2i+1)x/2 can be used. Accurate values for g,

are obtained by using Newton method. These values are substituted into Equation

(3.45). Resulting mode shapes are substituted into Equation (3.44).

Modal analysis is performed and natural frequency results are compared.

0,000

-

0,045 0.090(re)

0,022 0,068

Figure 3.5 FEM Model

Table 3.1. Natural Frequency Comparison

Analytical ANSYS Error (%)
1% Mode 201.1 Hz 201.2 Hz 0.07
2"4 Mode 463.2 Hz 463.3 Hz 0.01
39 Mode 1144.2 Hz 1136.2 Hz 0.70
4™ Mode 2248.8 Hz 2235.1 Hz 0.61
5 Mode 3707.9 Hz 3630.0 Hz 2.10
6™ Mode 5547.7 Hz 5436.4 Hz 2.01
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7" Mode - 7296.8 Hz

Details related to assumed mode method can be found in [35].
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CHAPTER 4

MATHEMATICAL MODELLING

4.1. Discrete System

In this chapter, discrete linear system TVA utilized with linear and nonlinear elements
IS investigated. First, system with one TVA will be studied. The effects the change of
the TVA parameters will be observed. After having a general idea about the effect of

the linear and nonlinear elements, and then it is extended for double TVA

4.1.1. Single TVA

Kp
rérva
my, LL Mryy
hy | NL |—
— XTv4

U(t) be

Figure 4.1. Linear SDOF System with TVAS

TVAs equipped with linear and nonlinear elements is as shown inError! Reference s

ource not found. Figure 4.1. Where m,, is the mass of the main system. m,,, is the

mass of the TVA, k, andk,,, are linear springs h, is structural damping elements,
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Crya 1S Viscous damping elements. NL is the nonlinear element. As a result, two DOF

system is obtained. Several nonlinear elements will be investigated separately, and
their combination. In addition to nonlinear elements, linear TVAs are also investigated

for reference value.

Equation of motion of the general system is

m, X, +h>'<b + Ky X, + CryaXe + KryaXeer + Fron (Xre|)=£U +k.U
@ @

rel rel

) . (4.1)
MryaXrya = CryaXee — kTVAXreI - fnon (Xrel ) =0

Where X = X, — X;ya Also mass of the TVA is selected as ten percent of the main
mass, i.e My, =m, /10 Loss factor for the main system is taken as one percent.
Linear and nonlinear elements will be studied in individual chapters.

4.1.1.1. Linear System

In linear system, nonlinear elements are vanished. All free parameters are viscous
damping and the linear spring of the TVA. For better understanding, Equation (4.1) is

nondimensionalized.

o 2 . . 2
Xb + wb (1+ ly)xb + 2 € éwTVAxrel teow TVAxreI = ][exc

B _ ) (4.2)
Xiya = 280nyp Xy — @ ypXg =0
Where
Mrya L
e=—"*=0.1 y=0.01 o, =—
m m
b b (4.3)

k ‘ .
wTVAz _ Hva E= Crva fexc _ U(1+zy)a)b2

IT‘TVA 2 \/ I’nTVA I(TVA

Mass ratio, loss factor and excitation is specified. Only free parameters is natural

frequency and the damping ratio of the TVA.
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/wb =0.7
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Suppression Ratio X/Max( X
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Normalized Frequency w/wb

Figure 4.2. The Effect of TVA’s Natural Frequency
Damping Ratio, £ =0.11
As it is seen from Figure 4.2, optimum natural frequency ratio is around 0.9. This

values will be used later in optimization.

01 T T T T T T T T
——SDOF System
~0.09 |- _f =0.05 *
& —c=01
g 008r —c=0.15
< L —_—=02
?é, 0.07 —=0.25
S 0.06 |- £70.3
=
>~
o 0.05
2=
<
& 0.04
5
"3 0.03
w2
e
£.0.02
o
=
£ .01
0 1 1 1 1 1 1 1 1 1
05 06 07 08 09 1 1.1 1.2 1.3 1.4 1.5

Normalized Frequency w/wb
Figure 4.3. Effect of TVA’s Damping Ratio

The ratio of the natural frequencies, @y, /w, =0.9

Optimum damping ratio is around 0.2. This value will be used in optimization later.
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For low damping values, response at the previous resonance is low but two new
resonance points are introduced nearby. For high damping values, system behaves like
SDOF system.

Also, notice that, there is no invariant point in Figure 4.3 because the main system

contains damping.
4.1.1.2. System with Cubic Damping

Cubic damping is a nonlinear force, which is proportional to third power of the relative
velocity. To understand effect of the cubic damping, linear damping is vanished from

Equation (4.1). Nonlinear Force is expressed as

aXrel ’
fNL (Xrel ) = Cc (Ej (44)

Graphical demonstration is given in Figure 4.4

fNL (Xrel )

A

A

Figure 4.4 Graphical Demonstration of Cubic Damping

Equation (4.1) is rearraged to obtain generic form
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. 2 . .3 2
Xb +a)b (1+ ly)xb+ € gcxrel tew TVAxreI = fexc (4 5)

. .3 2 .
Xva =X = O ryaXpg =0

Nondimensional parameters are same as Equation (4.3), except nonlinear loss factor,

&=

IT]TVA

Since the equation of motion is nonlinear, it depends on input value. Input value is

specified.
U (t)=0.01sin () (4.6)

Relative displacement for single harmonic, from Equation (3.1)

ax%t(e):wxrels COS(Q)_wxreICSin(e) (47)

Equation (4.3) and Equation (4.7) are substituted into Equation (3.4). Nonlinear force

coefficients for single harmonic is obtained.

fns = _ﬂécwsxrelc (('xrels )2 + (xrelC )2 )

3
c 4 s s )2 ¢\? (4.8)
1:n :gfcaﬁxrel ((‘xrel ) +(xrel ) )
Equation (4.5) is substituted into Equation (3.6) f becomes
T
fo={ef’ —f° ef® —f°| (4.9)

Equation (4.5), (4.6), (4.7) and (4.9) are substituted into Equation (3.6). Nonlinear
algebraic equation sets are obtained.
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2
@y

~0’1+Q,° —H x° 0
@I / +f,=001] " (4.10)
yH -0’1+Q.° | |X° Yo,
0
Where
2 2 2 2
02- W, +EWryy  — E Wy, A=l 0
b — 2 2 ! - 0 0 (411)
~Wryp Orya

Ratio of natural frequency would be similar with Figure 4.2 Effect of the change of the

nonlinear loss factor is given in Figure 4.5.

01 T T T T T T T T
——SDOF System
—~0.09 |- —f =0.1 ]
% C
Q 008 L —fc :05 -
“ £ =09
50.07 - ¢ .
= —_—f =13
< C
g 0.06 |- _Ec =17 _
< —_— =2.1
o 0.05 ¢
=
&2 0.04
5
‘= 0.03
wn
ot
2.0.02
(o
=
A 0.01
0 | 1 | | | 1 | | |
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized Frequency w/wb

Figure 4.5. Effect of the Change of Nonlinear Damping Ratio

The ratio of the natural frequencies, @y, /w, =0.9

As it is seen from the Figure 4.5, optimum value for nonlinear damping ratio is

between 0.5 and 0.9. This information later will be used in optimization.
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For low nonlinear damping value, system behavior is similar to classic TVA i.e.
response at previous resonance is quite low, but two new resonance introduced nearby.
For high nonlinear damping values, the system starts to behave like SDOF system.
Behavior of a TVA with nonlinear damping seems similar to a TVA with linear
damping. Except, it is more sensitive in higher amplitudes. There are sharp changes

in frequency response.
4.1.1.3. System with Cubic Stiffness

Cubic stiffness is a nonlinear force, which is proportional to third power of the relative
displacement. It can be hardening or softening type. In this study, hardening type will
be explored. For a better understanding of the effect of the cubic stiffness, linear

stiffness vanishes from Equation (4.1).
fu (Xer ) = KXo (4.12)

crel

Graphical demonstration is given in Figure 4.6

fNL (Xrel )

A

kx 32

crel

A
v

rel

Figure 4.6. Graphical Demonstration of Cubic Stiffness
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Equation (4.1) is nondimensionalized. .Notice that, it is nonlinear equation, therefore,

it is input depended. Similar to cubic damping case, input value in Equation (4.6) is

used.
X, + a)nz (1+ iy)xb +2elw X+ € chrels = [
(4.13)
5(.TVA - Zé{wnxrel - chrel3 =0
Where
=T 001 0l =K
mb mb
‘ (4.14)
fm—a e e p 001(1+ )0,
2Myy 0, Mryp
Free parameters of TVA are damping ratio and the cubic spring parameter.
Relative displacement for single harmonic is
S a1 c
X1 (0) = Xy SIN(0) + x,,,° COS () (4.15)

Similarly nonlinear force coefficients are obtained by substituting Equation (4.12) and
Equation (4.15) into Equation (3.4)

4 ) ) (4.16)
fnc = chrelc ((xrels) +(xrelc) )
Nonlinear force vector is constructed by using Equation (4.16)
S S C C T
fo={ef’ —f° ef® —f°} 4.17)

Equation (4.9) rearranged by using Equation (4.16). As a result, nonlinear algebraic
equation is obtained by substituting Equations (4.6), (4.13), (4.15) and (4.17) into
Equation (3.6).
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w?,
~0*1+9Q? —H-oC |[X° 0
. . , ) rf =001 (4.18)
yH+oC -0’ 1+Q,° | (X Y@y,
0

Where

2 2
0 n 0 A 2elw. -2e€lw
Q2= C A=|T O < (4.19)
0 O 0 O —2¢w, 28w,
Since there is no linear stiffness element between masses, TVA does not have a natural
frequency. For same reason, definition of damping ratio in Equation (4.3) and

Equation (4.14) are different. Effects of the change of the cubic stiffness related
parameter and damping ratio are demonstrated in Figure 4.7 and Figure 4.8.

10()_ T T T T T 7]
L0012 ——SDOF System | ]
I Kk =0.10x10°| ]
. n
= F0.0115 k. =0.50x10°| |
A " |
2 K, =125x10°| |
0.011 5
k_ =3.50x10
A ]
—_— =10.0x10°
n

0.0105
0.25

0.3 0.35 0.4

Suppression Ratio X/Max( X

0.2 0.4 0.6 0.8 1 1.2 1.4
Normalized Frequency w/wb

Figure 4.7 The Effect of the Change of the Cubic Stiffness Parameter
Damping ratio is & =0.09 Dotted lines indicate unstable solution points.

When cubic stiffness value is low, suppression ratio is also low. The reason is, at low

amplitudes, nonlinear spring behaves like soft spring. As the stiffness parameters
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increase, amplitude decrease up to certain value. After certain threshold value, jump
phenomena is observed. After that point, increase in cubic stiffness parameter does

not affect the maximum amplitude, but the characteristic of the FRF changes.

In addition, there is no stable solution in certain frequency range for some cubic
stiffness values. Response for those regions are not harmonic, it is chaotic or quasi-

periodic [29]. This phenomenon will be investigated in later in this study.

T T T T
——SDOF System | ]|
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N
-2 | ] | | | 1 | 1
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Normalized Frequency w/wb

Figure 4.8 The Effect of the Change of the Damping Ratio

Cubic Stiffness is x, =3.50x10° . Dotted lines indicate unstable solution points.

From Figure 4.8, at low damping values, jump is observed. After certain damping
value, jump is disappeared. As damping gets higher and higher, amplitudes are
increased, system starts to behave like SDOF system. Also, unstable region is affected
by damping value. At low damping values, wide frequency region is unstable. As
damping increase, the unstable region gets narrower. After certain damping value,

unstable region is not observed.

Also, notice that, damping values are lower than the Linear System when considering

preferable solutions.
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4.1.1.4. Dry Friction Damping

Friction force is defined as the resistance of the motion when one body is tangentially
in contact with another body [37]. Macro-slip friction model is used in this study due
to its mathematical simplicity. Details of the model used in this study is given in the
papers [38], [39]. Macro-slip friction model is shown in Figure 4.8. Hysteresis curve

for single harmonic motion is shown in the Figure 4.9.

Xrel N

Figure 4.9. Macro-slip Friction Model

Where k, is contact stiffness, N is the normal load acting upon the contact surface,u is

the friction coefficient, and x,.; is the relative displacement between terminals.

t FNL (Xrel )

Figure 4.10. Hysteresis Curve for Single Harmonic Motion
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When the force on the nonlinear element is less than slip force, xN it stick and acts
like stiffness element. When the force on the nonlinear elements reaches to slip force,

4N it starts to slip until relative velocity becomes zero (i.e %, =0). The point, where

the slip starts, is breaking point, ¢&.

Nonlinear force can be expressed as follows

if 0 <x,,,
—,uN+kt(xre, (9)+5) if w, <0<y,
—uN if W, <0<y +m
fu (0)= _
UN =k (xq(0)+5) if y+r<O<y,+7 (4.20)
uUN if y,+r<0<y, +27
if 0> x,,
fNL (0) = ktxrel (9)
Where
2 2 2uN —k.x,_ ..
Ximax :\/(Xrels) +(Xrelc) J 5:%
t
4.21
— -1 XreIs _ -1 0 ( )
y, =tan | — , W,=C0S | — |+y,
Xrel Xmax

X (0), x,° @ndx,, are introduced in Equation (4.15).

Friction will act as damper element. Therefore, to see the effect of the dry friction
better, linear damping elements are vanished. Equation (4.1) is nondimensionalized.

Input value in Equation (4.6) is used.

. 2 . 2 g
Xb + wb (1+ly)xb+ € wTVA xrel +€ fNL (xrel ) = fexc

) R (4.22)
Xrva = @rya X — S (xrel ) =0

Where
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Mrya K

e=

, =001 w,? =2
m m
E f ° (4.23)
2 TVA 7 NL 7 ; 2
o =2 L= , [ =001(1+iy)w,
Ty, T my,
In addition, parameters of the friction force F (x,, ) are nondimensionalized
k UN
2
o =—— , {y="— (4.24)
mTVA mTVA

Similarly, nonlinear force coefficients are obtained by substituting Equation (4.15),
Equation (4.20) and Equation (4.14) into Equation (3.4)

fS= %(Za)tzxmax (cos(y, ) —cos () —4¢,, cos (v, ))) +o’x T, +0’x T, )
f,° = %(waxmax (sin (wy ) —sin(, ) +4¢,, sin (v, ))) +ox, T, +ox, T, |
Where
I = 2—1”(2w2 — 2y, +sin (2y, ) —sin(2y, )
I, = %(cos(h//l)—cos(m//z)) (4.26)
I, = %(2% — 2y, —sin 2y, ) +sin 2y, )
Nonlinear force vector is constructed by using Equation (4.25)
f=(ef® —f° ef® —f°) (4.27)

Equation (4.9) rearranged by using Equation (4.22). As a result, nonlinear algebraic

equation is obtained by substituting Equations (4.6), (4.15) and (4.27) into Equation
(3.6).
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—0?1+Q 2 —yH X 0
@A / +f, =001 (4.28)
yH ~0’1+Q. 2 | |X° Yo,
Where

2, 2 2 A 2
sz _ |:a)b = a)ZTVA € COT;/A :| Cf= |:Va)b (4.29)
—Wryp WOrya 0 0

There are three free parameters. These are the linear spring between TVA and the
main system, contact stiffness and slip force. Natural frequency ratios would be
similar with Figure 4.1 therefore, effect of the change of the natural frequency ratio is
not plotted.

10° | | .
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>
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&~ 107 S 3
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A —&,\ =500
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10-5 | | | 1 | | | | |
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Normalized Frequency w/wn .

Figure 4.11. Effect of the Change of the Normal Load Parameter
Wryp = Opys = 0.9,
From the Figure 4.11, it is seen that, low slip load cannot suppress the amplitude levels
effectively. Adequate suppression level is observed for friction values around
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¢ =150-250 For higher friction values, it starts to stick and acts like just stiffness

element. These values will be used in optimization later.
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Figure 4.12 Effect of the Change of the Contact Stiffness
@, = 0.9, and £, =200

From Figure 4.12, for low contact stiffness value, suppression level is also quite low,
because relative displacement cannot exceed breaking point,  nonlinear elements
behaves like a linear soft spring. As the contact stiffness value increases, relative
displacement more easily reach the breaking point, and nonlinear elements start to slip
and exert friction force on the system. In addition, second natural frequency shifts to
right with lower amplitude value in higher contact stiffness value. After certain value,

contact stiffness does not have significant importance on the suppression level.
4.1.1.5. Cubic Stiffness and Dry Friction Damping

Combination of nonlinear elements may have also distinct behavior. Viscous elements
are removed from Equation (4.9) and friction force is added in Equation (4.20). Same

nondimensionalization procedure is applied.
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5(.b +wb (1+iy)xb+ € ﬁNL (xrel )+ € chreI3 = fexc

. A (4.30)
3
XTVA - |:NL (Xrel )_ KXl = 0

There are three free parameter, which are normal load, contact stiffness and cubic

stiffness.
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Figure 4.13. The Effect of the Change of the Normal Load

x, =10° and e, = 0.9, . Dotted lines indicate unstable solution points.

When the slip force is zero, since no other damping element attached on the system,
peculiar behavior observed in frequency response. As normal load increased, better

suppression performance is observed.

Notice that, there was a frequency interval with no stable solution in cubic stiffness
case. In this case, however, there is no frequency region with unstable region is

observed.
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Further increase in slip force decreases suppression levels. It starts to stick and acts
like stiffness element. When full stuck is occurred, the system behaves like TVA with

cubic and linear stiffness with no damping.

These values will be used in optimization later.
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Figure 4.14. The Effect of the Change of the Cubic Stiffness Parameter.

&y =250and o, =090, Dotted lines indicate unstable solution points.

For low cubic stiffness values, suppression level is low. Since dry friction damper
element contains stiffness element, certain level of suppression is observed. As the

cubic stiffness increased, adequate suppression is observed.

Further increase in cubic stiffness value badly affect the suppression level. After
certain level, maximum amplitude value does not change, however topology of the
frequency response is changing. Unlike Figure 4.6 changes in FRF by changing cubic

stiffness parameter is smoother.

Frequency interval with no stable solution is observed high cubic stiffness parameters.

That region is not observed for moderate level cubic stiffness parameters. Therefore,
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stability behavior makes it more useful when comparing TVA with cubic stiffness and

viscous damping.

These values later used in optimization.

T T T T T T T T T
—SDOF System

~ 10’ —fw, =05 |7
. - 1
é —wt/wb :1.0

v —Lut/mb =1.5

E —wt/wb =2.0

= 107! _wt/wb =3.0

~

>

.2

=

[a

5

‘% 1072

w2

)

$d

Q

Q

=]

951

102
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized Frequency w/wb

Figure 4.15. The Effect of the Change of the Contact Stiffness Parameter

x, =10° and ¢, =250 Dotted lines indicate unstable solution points.

For low contact stiffness value, the effect of the friction damper is low because relative
displacement is not big enough to exceed braking point. Thus friction damping is act
likes soft spring. As contact stiffness value goes higher, adequate suppression level is
observed. Further increase in contact stiffness value, reduces suppression level also

shifts second natural frequency to right.
Moreover, for contact stiffness values, unstable solution is observed.
4.1.1.6. Cubic Stiffness and Cubic Damping

Combination of nonlinear elements may have also distinct behavior. Viscous elements
are removed from Equation (4.9) and cubic damping in Equation (4.4) is added. After

non-dimensional procedure is applied.
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¥ 2 . . 3 3
Xb +a)b (1+ly)xb+ € cxrel + € chrel = fexc

3_0 (4.31)

. 3
Xrva ~6cXpe KX

rel

There are two free parameter, which are cubic stiffness and cubic damping.
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Figure 4.16. The Effect of the Change of the Cubic Stiffness Parameter

&, =0.09 Solid lines indicates stable solution points; dotted lines indicate unstable solution points.

Behaviour of the TVA with cubic stiffness and cubic damping is similar with TVA
with cubic stiffness and linear damping. For small cubic stiffness values, suppression
level is low. The suppression level gets better with increase in cubic stiffness until it
reach a threshold value. Jump phenomena is observed. After that point, maximum
value does not change. Increase in cubic stiffness changes the topology of the

frequency response curve.

Stability behavior is similar to TVA with cubic stiffness with viscous damper. There

is a frequency internal with no stable solution. This region is located around previous

resonance point.

This values will be used in optimization later.
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Figure 4.17 The Effect of the Change of the Cubic Damping Parameter

%, = 2.5x10° Dotted lines indicate unstable solution points.

The effect of the change of the cubic damping parameter is similar to change in viscous
damping. Increase in cubic damping value cancels out the jump. Further increase in

cubic damping parameter increases amplitude levels.

For low cubic damping values, there is a frequency interval with no stable solution.

This interval vanishes by increasing cubic damping values.

Notice that, unlike Figure 4.8, increase in cubic damping does not suddenly increases
the maximum value. However, unstable frequency interval vanished. This values and

this information might be used later in optimization.
4.1.2. Double TVA

By the use of multiple TMDs and nonlinear elements, it is aimed to suppress the

vibrations of the structures in a broader frequency range.
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Figure 4.18. SDOF Systems with Two TMDs Utilizing Dry Friction Dampers

Single DOF linear system equipped with two nonlinear TVAs is shown in Chapter

5.1.1. Where m, is the mass of the main system. m,,, , are the masses of the TVSs.

k, and Ky, ; are linear springs h, is structural damping elements. c,,, ; are viscous

dampers. NL; are nonlinear elements.

Equation of motion of the general system is

2
m, X, + hb/a)xb +kyx, +Z(CTVA,jxrel,j +kTVA,jxreI,j +fNL,j (xrel,j )) = foxc
=1

mTVA,lx.TVA,l - CTVA,lxreI 17 kTVA,lxreI 17 fNL,l (Xrel ,1) =0 (4-32)

Mrva2Xrva2 = Crva2Xrel 2 — kTVA,ZXreI,Z - fNL,Z (Xrel,z ) =0

Where X ; =X, — X, ; -total mass of the TVA is selected as ten percent of the main
mass, i.e My, ; =m,/20 Loss factor for the main system is taken as one percent and

f.=h/oU+kU

Nonlinear force vector would be
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f
fo=1fus (4.33)
f

Linear and nonlinear elements will not be studied individually in this chapter.

4.2. Continuous System

Response of a linear Euler-Bernoulli beam with TVA with equipped with linear and
nonlinear elements is investigated. Equation (3.50) is used. Topology is similar with

ones, shown in previous chapter.

Equation (3.50) is further extended for multi TVAs for first and second mode

cancelation is considered
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CHAPTER 5

RESULTS

TVAs parameters are optimized by genetic algorithm (GA) of MATLAB. Optimum
values are used as an initial guess in gradient based optimization, fminunc of

MATLAB.

Different cost functions are considered. The first is the maximum response value
because the aim of the vibration suppression is to minimize maximum value. The
second cost function is the area of the response above unity. It is shown in Figure 5.1.
When the system contains a lot of DOF or subjected to random excitation, considering

only the resonance point might not give desired suppression characteristic. [40].

6

Max. Value

IS

Area

Normalized Amplitudes
N w

0,5 0,6 0,7 0,8 09 1 1,1 1,2 13 1,4 15
Normalized Frequency

Figure 5.1. Definition of Cost Functions
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Also combination of normalized maximum values and normalized areas are used. The
results are compared in Figure 5.2 and Figure 5.3. In Figure 5.2, single TVA is

optimized, in Figure 5.3, two TVAs are optimized.

The maximum value is used because one of the aim in the vibration suppression is

essentially to reduce maximum vibration amplitude.

The system is excited by unity base excitation. Every value above unity is
amplification. It is also desired to minimize all those amplified values. Therefore, the

area above unity is defined.

6 T T T T T T T T T
100% of Max & 0% of Area
w7594 of Max & 25% of Area
m—50% of Max & 50% of Area
St ——0% of Max & 100% of Area | |

N

Normalized Amplitude
[\ w

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Normalized Frequency w/wn

Figure 5.2 Comparison of Cost Functions in single TVA Optimization
Normalized response of the system with single TVA is shown in Figure 5.2. When the
weight of the integral of the displacement amplitude is zero, i.e 100% Max, second

resonance peak occurs. This is due to the fact that only the maximum displacement

amplitude is used as the cost function and hence, optimization resulted in two peaks
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with equal amplitudes. When the weight of the maximum displacement of the main
system is zero, i.e 100% Area, amplitude of the resonance peak is larger. This is due
to the fact that the area under the frequency response function is minimized without

considering the amplitudes of the resonance peaks.

The differences in maximum values are mathematical. It is seen that 100 % of
maximum is not preferable. However, for other cost functions, the difference is not

clear. Therefore, cost function are compared in multi TVA optimization.

5.5 T T T T | | I I I
0% of Max & 100% of Area
5+ = 50% of Max & 50% of Area H
m— 5% of Max & 75% of Area
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T T N
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(%)
T
|

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Normalized Frequency w/wn

Figure 5.3 Comparison of Cost Functions in two TVAs Optimization

When the weight of the integral of the displacement amplitude is zero, i.e 100% Makx,
This is due to the fact that only the maximum displacement amplitude is used as the
cost function and hence, optimization resulted in three peaks with equal amplitudes.
When the weight of the maximum displacement of the main system is zero, i.e 100%

Area, amplitude of the first resonance peak is larger. This is due to the fact that the
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area under the frequency response function is minimized without considering the

amplitudes of the resonance peaks.

Combinations of normalized area and normalized amplitude are also considered.
Notice that, between 100% of Max & 0% of Area and 50% of Max & 50% of Area,
the differences are mathematical. Amplitude level in 25% of Max, slightly higher than
the 50 % of Max.

When considering the general physical behavior, combination of area and maximum

value is more effective. It is selected as ultimate cost function in further analysis.
5.1. Discrete System

Parameters of the system under investigation are m, =1kg, k, =3948N/m,
h,=39.5N/m and U =0.01m. Mass of TVA is ten percent of the total mass.

Remaining parameters are optimized.
5.1.1. Single TVA

Mass of the TVA is taken as m,,,, =0.1m,
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Figure 5.4 Comparison of single TVA Configurations.

Dotted lines denote unstable solutions. Solid lines denote stable solutions.
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Linear TVA has good suppression behavior. It suppress more than 95% of vibration
amplitude. When comparing the system without TVA, It has a higher vibration
amplitude between normalized frequencies of 0.5 to 0.85. It has very effective

suppression around resonance of the main.

TVA equipped with friction damper has also effective. It has higher vibration
amplitude than linear TVA between normalized frequencies of 0.8 to 0.95. After that

frequency, it has more effective suppression performance.

TVA with cubic stiffness and viscous damping i.e. Nonlinear Energy Sink (NES) has
lower amplitude except between normalized frequency of 1.1 to 1.35. However, there
Is a frequency interval with no stable solution. It indicates that, at those frequencies,
there are different solution point, which will be investigated later.

TVA with cubic damping quite similar to linear TVA. The difference is mathematical.

TVA with cubic stiffness and dry friction damper has similar behavior with linear
TVA. Its performance slightly worse. Notice that, there is no frequency interval with
unstable solutions. Adding friction damper solves the stability problem in cubic
stiffness.

TVA with cubic stiffness and cubic damper has the worst suppression performance
when comparing the others. It has a frequency interval with no stable solution; also, it
has a dual solution before the normalized frequency of 0.75.

The other cost function parameter is the area which defined in Figure 5.1.
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Figure 5.5 Comparison of single TVA Configurations in Terms of Defined Area

*Area of NES is calculated with including unstable frequency region

All parameters are given in Table 5.1. Parameters of Single TVA Configurations

Table 5.1. Parameters of Single TVA Configurations

Configuration Parameters
Linear TVA Krya =316.N/m ¢, =2.0Ns/m
Ko =270N/m  k, =598.5N/m

TVA with Dry Friction Damping
uN =12.95N

TVA with Cubic Stiffness and

_ 4 3 _
Viscous Damping (NES) k,=3.2x10'N/m* ¢, =0.6Ns/m

TVA with Cubic Damping ko, =322.8N/m ¢, =0.061Ns®/m®
TVA with Cubic Stiffness and k =1.13x10% N/m3 uN = 24N
Friction Damping k. =324.4

TVA with Cubic Stiffness and

_ _ k. =2.36x10*N/m* c_=0.045Ns*/m’
Cubic Damping

Notice that, for linear TVA wyy4 = 57.1 rad/s, wrys/wp = 0.91 and & = 0.18
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5.1.2. Multi TVAs

Dual TV As are also considered.
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Figure 5.6 Comparison of multi TVAs Configurations.

Dotted lines denote unstable solutions. Solid lines denote stable solutions.

Linear multi TVA configuration has similar suppression ratio when comparing to

linear single TVA configuration. Therefore, for linear system, usage of multiple TVA

is not advantageous.

Configuration of multi TVAs equipped with dry friction damper is advantageous when
comparing to single TVA with dry friction damper. It has also slightly better
suppression regime than linear configuration. Multiple TVAs with dry friction

dampers are more advantageous than single TVA configuration.

Configuration of multi TVAs with cubic stiffness and viscous damping has more

complex behavior than single. It has four peaks and frequency intervals with no stable

solutions.
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Configuration of multi TVA with cubic damping is similar with linear multi TVA
configuration but it is slightly worse. In addition, adding another TVA with cubic

damper does not improve suppression level.

Configuration of multi TVAs with cubic stiffness and dry friction is worse than single
TVA configuration. It has a higher amplitude between normalized frequency of 1.15

to 1.25. It has also frequency intervals with no stable solution.

Configuration of multi TVAs with cubic stiffness and cubic damper has the worst

suppression performance when comparing the others.

0.45
c 04 H Linear TVA
[5)
2035 R .
n = TVA with Friction Damping
LL
a 0.3
8 ® TVA with Cubic Damping and
0.25 ; ;
4 Linear Spring
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Ir'JI:J Viscous Damping (NES)
< 0.15 = TVA with Cubic Stiffness and
< o1 Friction
',3':J B TVA with Cubic Stiffness and
<€ 0.05 Cubic Damping

o

Figure 5.7 Comparison of multi TVAs Configurations. Dashed lines denote unstable solutions. Solid

lines denote stable solutions.

From Figure 5.7, it is seen that, adding another cubic stiffness to the system does not

improve suppression behavior.

Table 5.2. Parameters of Multi TVA Configurations

Configuration Parameters

Kryar =193.7N/m ¢, =0.87 Ns/m

Linear TVAs Krva, =140.7N/m  Cr0, =0.74Ns/m
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Krea, =183.8N/m Ky, , =138.9N/m

TVAs with Dry Friction Damping k., =4304N/m  k;,,=558.6N/m
uUN, =56 N uN,=42N

TVAs with Cubic Stiffness and k., =11487.3 N/m® c,, =0.42Ns/m

Viscous Damping (NES) k., =6718.1N/m* c,,=0.20Ns/m

Kra: =178.2N/m ¢, =0.015Ns*/m®

TVAs with Cubic Damping K _121.0N/m ¢, =0.058 Ns3/m3
TVA,2 — ) c2 — Y

K., =2920.0N/m* kK, ,=11802.1N/m’

TVAs with Cubic Stiffness and
k., =154.9N/m k., =259.8N/m

Friction Damping

uN, =11.21N uN, =5.03N
TVAs with Cubic Stiffness and k., =14990.8 N/m* c_, =0.051Ns*/m®
Cubic Damping k., =12626.3 N/m® c_, =0.020Ns*/m’

Notice that, for linear system,  wy,, =62.6 rad/s, wy,, =56.0 radls,

a)TVA,l/COb =0.99 , wTVA,Z/wb = 084‘, fl = 0.14 and 52 = 0.13

To sum up, multiple TVAs is not effective except ones with dry friction dampers.
Adding TVA with cubic stiffness increases the complexity of the system and does not

improve the suppression level.
5.1.3. Comparison and Further Comments

Best configurations are single linear TVA, single TVA with NES and configuration
of multi TVAs with dry friction damping.
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Figure 5.8. Best Configurations. Dashed lines denote unstable solutions. Solid lines denote stable

solutions.

Configuration of multi TVAs with dry friction damping is slightly better when
comparing with single linear TVA. It has lower amplitude except between normalized
frequency of 0.9 to 0.95.

NES seems effective. However, due to stability behavior, further investigation is
required.

Time domain solution is performed at certain frequencies. ODE45 of MATLAB is
used to solve nonlinear differential equation in time domain. All initial values are take

as zero and solution is performed for 100 seconds. Last one seconds are investigated.
Maximum and minimum values are taken. (Xmax = Xmin )/2 is displayed. In

addition, time history is investigated and periodicity is checked. This process is

applied at specified frequencies.
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Figure 5.9. Comparison of Time Domain Solution and Frequency Domain Solution.

Solid lines denote stable solutions. Dashed Lines denotes unstable solution.
From Figure 5.9, it is seen that, there is another solution after normalized frequency
of 0.8. There is a bifurcation at some frequency. Solution points with no periodic

solution is marked with black diamonds. These points will be investigated later.

The points obtained by time domain solution is used as an initial guess to follow other

solution paths.
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Figure 5.10 Comparison of Time Domain Solution and Extended Frequency Domain Solution.

Solid lines denote stable solutions. Dashed Lines denotes unstable solution.
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There is a bifurcation before normalized frequency of 0.42. These points can be seen

more clearly in Figure 5.12, i.e. response of the TVA.

Figure 5.8 is updated as

Normalized Amplitude X/Max(X SDOF)
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Figure 5.11. Best Configurations Updated.

Dotted lines denote unstable solutions. Solid lines denote stable solutions.

In addition, the solution point around resonance does not converge to another solution

curve. There are no harmonic solution at those frequencies. Vibration at those

frequencies might be chaotic. There are several ways to identify chaotic vibration. [41]

e Sensitive to initial condition (Butterfly Effect): Different initial values

results different steady state solution.

e Frequency Spectrum: Broadband frequency excitation is observed.

e Phase Plane: If the response is periodic, phase plane orbits traced out a closed

curve.

60



1.2 T T T T T T T

g e
o 0
T T

Amplitude, m

<
~
T

0.2

@
"SsnnssmmmEmEEsE
|

X: 0.4204 .
) LR
Y: 0.05426 ---.....nlnl“‘-.-I “‘Illl

*
.

] L e —— | — L ]

0.2 0.4 0.6 0.8 1 1.2 1.4
Normalized Frequency w/wn

Figure 5.12 Response of the TVA. Solid lines denote stable solutions.

Dotted lines denote unstable solutions. Solid lines denote stable solutions.
Time response is obtained at normalized frequency 1, i.e. 10 Hz for 100 s for

different initial conditions. Last second is presented in Figure 5.13
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Figure 5.13: Time History with Different Initial Guesses

Change in initial guess, changes the steady state solution as it is seen in Figure 5.13.
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At same frequency, i.e. 10 Hz, frequency spectrum is obtained by using FFT of
MATLAB.
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Figure 5.14: Single Sided Amplitude Spectrum of x;,(t) when excitation frequency is 10 Hz
The excitation frequency is 10 Hz. In frequency spectrum, excitation frequency and

its higher harmonics are expected (See Figure 5.15). However, broadband frequency

excitation is observed. The values are higher around excitation frequency.
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Figure 5.15: Single Sided Amplitude Spectrum of x, (t) when excitation frequency is 8 Hz
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Finally, phase plan is obtained.
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Figure 5.16: Phase Plane of x, (t) when excitation frequency is 10 Hz

Trajectory does not follow a closed loop. The solution at that frequency is chaotic.

Normally trajectory follows a closed loop, like in Figure 5.17.
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Figure 5.17: Phase Plane of x, (t) when excitation frequency is 8 Hz

In conclusion, NES is not effective in vibration suppression under harmonic excitation
due to stability problem. Some studies in literature [30] claim that NES is more
effective than linear TVA under harmonic excitation. However, this study claims

opposite.

Notice that damping values in the linear system is quite higher when comparing to
NES. For same damping value, the suppression performance of the NES might be
better [42]. However, in this study, best parameter is selected. Such comparisons and

analogies are not considered.
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5.1.4. Effects of Mistuning

TVAs are generally effective when the all values are optimum. However, if values
diverges from optimum value, suppression of TVA is worsened. In this chapter, effects

of mistuning will be investigated.

Mistuning can be observed in both primary system and TVA. In primary system,
natural frequency might be differed from the design value. In TVA, elastic element
and dissipative element might be different from optimum value. Finally, input value

can be differed.

Parameters are changed from 80 % to 120 %. Normalized maximum values are

presented.
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Figure 5.18: Effect of the Mistuning of the Natural Frequency of the Primary System

In Figure 5.18, natural frequency of the primary system is reduced and increased 20%.
TVAs optimized for design value is used. It is seen that TVA with cubic damping have

similar performance when comparing to linear TVA when system is detuned. TVA
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with dry friction damper is more sensitive to change in natural frequency. Amplitude
of the system increase more drastically with increasing natural frequency. If friction
is considered as equivalent viscous damping, it is inversely proportional with
frequency [43]. Thus, performance of TVA with friction damping is worse when the
system frequency is increased. NES is the most sensitive TVA configuration. After

certain parameter exceed, it jJumps.
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Figure 5.19: Effect of the Mistuning of the Elastic Elements in TVA

In Figure 5.19, elastic member in TVA is changed. In NES, elastic member is cubic
stiffness. In all other configuration, it is linear stiffness. The configuration is similar
with Figure 5.18. Behavior of the TVA with cubic damping is similar with linear one.
TVA with dry friction damper is more sensitive to parameter change. The reason is

similar with previous case. .NES is the most sensitive configuration.
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Figure 5.20: Effect of the Mistuning of the Dissipative Elements in TVA

In Figure 5.20, dissipative elements in TVA are changed. In linear TVA and NES,
dissipative element is linear damping. In TVA with cubic damping, dissipative
element is cubic damping and in TVA with dry friction damping, dissipative element
is dry friction. Linear TVA and TVA with cubic damping have similar behavior. TVA

with dry friction damping is more sensitive in lower values.
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Figure 5.21: Effect of the Mistuning of the Input

In Figure 5.21, input value is changed. Performance of linear TVA does not change
because the system is linear. TVA with dry friction damper is similar to TVA with
cubic damping when the input is lower than design value. When input is higher,
performance of TVA with dry friction damper is worse. NES sensitive to parameter

change, it jumps.
5.2. Continuous System

To obtain more realistic and accurate results, TVA configurations with continuous
system is studied. In this chapter linear Euler-Bernoulli beam under harmonic
excitation. Both ends are fixed supported. Solution for other boundary condition is

given in the appendix.

Parameters of the system is L=1m, El =9Nm?, A=60mm?, p =7850 kg/m® and

u=1mm,
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Inherit damping of the beam is calculated by using Equation (3.29). Base excitation

cannot excite second mode. Therefore, first and second mode is considered.

97.80
269.5
(’ob = \/elg (KBeam ' MBeam) = 5285
873.6
1306
Damping ratio is taken as one percent for both mode.
& =¢,=001
20,00,
a=001——=1.65
W, + ,
2 5
£ =0.01 =3.19x10
w, + W,
Inherit damping of the beam is constructed as
C:Beam = OCM Beam + ﬁKBeam

rad/s

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Base excitation cannot excite second mode. Therefore, first and the third mode

cancelation is considered. Ineffective TVA configurations are excluded. Single and

multi linear TVA configurations, single and multi TVA with dry friction

configurations are studied. In addition, NES are also studied.

Location for TVA is selected for maximum suppression.
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Figure 5.22 Effect of the Location of the TVA on Suppression Ratio

From Fig. 5.18, it is seen that, optimum location is L, =0.5L

T
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Figure 5.23 Effect of the Location of the TVA on Suppression Ratio

To cancel out third mode, TVA can also locate L/2 However, for optimization,

other locations, which has a peak, are also checked. These locations are 0.21L, and
0.79L. Single the beam is symmetric and TVA is located at the middle, only one of
the is considered. Response of these two are same.

5.2.1. First Mode Cancelation

Total mass of the TVAs are ten percent of the main system, i.e. m,,, =0.1pAL. For

double TVAs, masses are equal to each other.
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Selected TVA configurations are optimized:
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Figure 5.24 TVA Configurations to Cancel Out First Mode

Single TVA with friction damper has higher amplitude than linear response between
normalized frequencies 0.7 to 0.95. After that value, it has better suppression regime.

Configuration of double TVAs with friction dampers has higher amplitude between
normalized frequencies 0.8 to 0.95. For other frequency region, it has slightly better
suppression regime.

Single TV A with cubic damping, single linear TV A and multi linear TVA have similar
suppression behavior.

NES seems effective; however, it is ineffective due to its stability behavior. It is

studied in previous chapter in detail.

Parameters are given in Table 5.3.
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Table 5.3. Parameters of TVA Configuration to Cancel Out First Mode

Configuration Parameters

Single Linear TVA kyya =300.8 N/m ¢, =2.08Ns/m

Kryar =177.9N/m ¢, =1.18Ns/m

Double Linear TVAs Krya, =131.4N/m  cp,, =0.88Ns/m

Single TVA with Dry Friction Krya =156.7N/m  uN =1.45N
Damping k, =700.0N/m

Ky =129.8N/m ki, =189.4N/m
_ uN,=034N  uN,=0.62N
Damping k,=599.9N/m k., =9955N/m

Double TVAs with Dry Friction

TVA with Cubic Stiffness and

k. =93.2x10° N/m? =0.68Ns/m
Viscous Damping (NES) / roa /

TVAs with Cubic Damping Kns =297.2N/m ¢, =8.19Ns®/m°

5.2.2. First and Third Modes Cancelation

Base excitation cannot excite second mode of the fixed -fixed beam. The next mode,

which can be excited by base excitation, is the third mode.

By designing TVAs for the first mode, response of the third mode can be also reduced,
because, overall damping of the system is increased.
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Figure 5.25 Effect of Previous TVA Configurations at Third Mode.

In previous chapter, TVA configurations are optimized to cancel out first mode. Their
effect on third mode is given in Fig. 5.18. It is seen that, configurations of TVA with
friction dampers do not contribute suppression. The reason is friction is not effective
in higher frequencies. Consider friction damper as an equivalent viscous damper. The

damping coefficient is proportional to 1/w [43]. Therefore, it is lower in high
frequencies.

Linear TVA configurations have a contribution because overall damping of the system

is increased. Similar suppression behavior is observed in NES. They act as low spring
with high damping.

Best suppression is observed in cubic damping. Because overall damping of the
system is increased and damping force is proportional to third power of the velocity.
Therefore, it is more effective when compare to others

In the next study, two TV As with different configurations are optimized. Each of them
is optimized to suppress one mode.
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Total mass of the TVAs are kept same. In first optimization, mass of the first and
second TVA is equal.
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Figure 5.26 Suppression in First Mode at L/2

In Figure 5.26, frequency values are normalized with the first natural frequency of the

beam without TVA. The amplitudes are normalized with the response of the beam at
the first resonance.

TVA with friction damper has higher value than linear system between normalized
frequencies 0.75 to 0.9.

Behavior of the TVA with cubic damping is similar to linear one.
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Figure 5.27 Suppression in Third Mode at L/2

TVA with friction damper has higher value than linear system between normalized
frequencies 1.05 to 1.15. After that frequency, it is slightly lower.

Table 5.4. Parameters of TVA Configuration to Cancel Out First Two Mode

Configuration Parameters

kTVA,l =136.0 N/m kTVA,Z =5114.9 N/m
TVA with Dry Friction Damper | k;; = 416.0 N/m ke, =93926 N/m

uN; = 0.75N uN, = 856 N

R . R kTVA1:163'7 N/m CC1:1'05 1\]53/7’7’1.3
TVA with Cubic Dampin ' '
p g kTVA,Z = 4‘8527 N/m CC,Z = 064‘ ]VSS/Tn3

L_ TVA kTVA,l == 1634 N/m CTVA,I = 082 NS/m
inear kTVA,Z = 54‘592 N/m CTVA,Z = 50 NS/m
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Figure 5.28 Vibration Suppression at L/2

Vibration suppression performance is generally better in first mode. In higher mode,

amplitude level decrease due to the nature of the structure.

)
5
o
=
=
a
g
<
” —— without TVA
107 F == Double Linear TVAs E

=====Double TVAs with Cubic Damping
=====Double TVAs with Friction Damper

- 1 Il 1 1 1 1 1
0 100 200 300 400 500 600 700
Frequency [rad/s]

Figure 5.29 Vibration Suppression at 0.21L
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

In this study, vibration reduction of structures by using Tuned Vibration Absorber is
studied. Linear primary structure is considered. Both linear and nonlinear TVAs are
studied.

For primary structure, discrete and continuous systems are considered. The continuous
system is linear Euler Bernoulli Beam. TVA is investigated. The system is subjected
to sinusoidal base excitation. Parameters of the nonlinear TVA is optimized to
minimize vibration values of the primary system. Assumed modes method is used to
model the Euler-Bernoulli beam. Nonlinear differential equations of motion are
converted to a set of nonlinear algebraic equations by using Harmonic balance Method
(HBM). The resulting set of nonlinear algebraic equations is solved by Newton’s
Method with Arc-Length continuation. Hill’s method is used to evaluate stability of
the solutions obtained. Genetic Algorithm (GA) of MATLAB is used. Results comes
from genetic algorithm is used as initial guess for gradient base optimization

algorithm. For gradient base optimization, fminunc of MATLAB is used.

For discrete system, SDOF lightly damped structure is considered. Linear and
nonlinear TVA configurations are optimized to reduce vibration response of the
primary structure. The nonlinear elements considered in this study are cubic damping,
dry friction damper and cubic stiffness. TV A with cubic stiffness and viscous damping
is names as NES in this study, similar with literature. Besides single TVA, use of
multiple TVAs is considered. The optimum results are obtained and results are
compared. NES seems very effective in terms of vibration suppression however; there

are unstable regions in frequency response. Further investigation is carried out and it

77



Is found out that, there is another solution branch with higher amplitude, and a
frequency region with chaotic solutions. Therefore, NES is not as effective as it seems
under harmonic base excitation. The configurations are close to each other.

Differences are slight.

For continuous system, lightly damped Euler Bernoulli beam is considered. First and
third mode cancelation is considered. Results are presented. It is seen that, viscous and

cubic damping is slightly better when first and third mode cancelation is considered.
6.1.1. Future Work

In this study, optimization is carried out for harmonic base excitation. It is not quite
realistic in real case. Optimization can be extend for different type of loading such as

random.

The primary systems in this study are simple system. However, in real engineering
applications, primary system is more complex. Such systems are generally modelled
by using Finite element methods. Coupling methods can be used to combine complex
primary structure and nonlinear TVA. As a results, TVA is optimized for more

realistic system.
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APPENDICES

A. Beam with Simply Supported at Both End
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