
MINI AUTONOMOUS CAR ARCHITECTURE FOR URBAN DRIVING
SCENARIOS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN KARABULUT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

MINI AUTONOMOUS CAR ARCHITECTURE FOR URBAN DRIVING
SCENARIOS

submitted by GÖKHAN KARABULUT in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Tolga Can
Supervisor, Department of Computer Engineering, METU

Assist. Prof. Dr. Selim Temizer
Co-supervisor, Dept. of Computer Science, Nazarbayev Univ.

Examining Committee Members:

Assoc. Prof. Dr. Yusuf Sahillioğlu
Department of Computer Engineering, METU

Prof. Dr. Tolga Can
Department of Computer Engineering, METU

Assist. Prof. Dr. Mehmet Tan
Department of Computer Engineering, TOBB-ETU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Gökhan Karabulut

Signature :

iv

ABSTRACT

MINI AUTONOMOUS CAR ARCHITECTURE FOR URBAN DRIVING
SCENARIOS

Karabulut, Gökhan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Tolga Can

Co-Supervisor: Assist. Prof. Dr. Selim Temizer

September 2019, 70 pages

Autonomous cars capable of driving in city traffic have been long studied in archi-

tectures decomposed into perception, planning, and control components. Recent ad-

vances in deep learning techniques considerably contributed to the perception com-

ponent of this approach. These techniques also laid the groundwork for the progress

of other approaches such as end-to-end learning of steering commands and driving

affordances from camera images. Though these approaches are promising to simplify

the overall architecture, the decomposed architectures are found more persuasive,

constituting the majority of today’s state-of-the-art, market-oriented driverless cars.

However, studies on small-scale autonomous cars, which are considered low-cost and

rapid prototyping platforms, are not on a par with research on the modern decomposed

architectures. These studies often remain limited to end-to-end approaches or resort

to traditional image processing techniques in over-simplified traffic scenarios. In this

thesis, we present a decomposed architecture for small-scale cars covering extended

traffic scenarios with seven traffic signs, traffic lights, lane changes, cloverleaf inter-

change, pedestrian crossings, and parking. To realize this architecture, we created

v

segmentation and classification datasets. We trained two deep learning models for

learning lane semantics and classifying traffic signs and lights. We developed a be-

havior planner to decide on the best behavior primitives for traffic scenes. Based on

these behavior primitives, we implemented a trajectory planner to find optimal tra-

jectories along the lanes and a controller to follow these trajectories. With our novel

lane segmentation scheme, 97% accurate classifier, robust planner and controller al-

gorithms, we achieved successful drives on simulated and real courses.

Keywords: autonomous car, traffic scene parsing, traffic sign classification, optimal

trajectory planning, path tracking

vi

ÖZ

ŞEHİR İÇİ SÜRÜŞ SENARYOLARI İÇİN MİNİ OTONOM ARAÇ
MİMARİSİ

Karabulut, Gökhan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Can

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Selim Temizer

Eylül 2019 , 70 sayfa

Şehir trafiğinde sürüş yapabilen otonom araçlar algılama, planlama ve kontrol bile-

şenlerine ayrılan mimariler olarak uzun zamandır çalışılmaktadır. Derin öğrenme tek-

niklerindeki son gelişmeler bu yaklaşımın algılama bileşenine önemli ölçüde katkıda

bulunmuştur. Bu teknikler ayrıca kamera görüntüleri üzerinden uçtan uca yönelim ko-

mutlarının ve sürüş sağlarlıklarının öğrenilmesi gibi diğer yaklaşımların ilerleyişi için

de zemin hazırlamıştır. Her ne kadar bu yaklaşımlar genel mimariyi sadeleştirmek için

ümit verici olsa da bugünün en gelişmiş, pazara yönelik sürücüsüz araçlarının çoğun-

luğunu oluşturan ayrışmış mimariler daha ikna edici bulunmaktadır. Bununla birlikte,

düşük maliyetli ve hızlı prototip oluşturma platformları olarak düşünülen küçük öl-

çekli otonom araçlar üzerinde yapılan çalışmalar, modern ayrışmış mimariler üzerine

yapılan araştırmalarla aynı düzeyde değildir. Bu çalışmalar genellikle uçtan uca yak-

laşımlarla sınırlı kalmakta veya aşırı basitleştirilmiş trafik senaryoları içinde gelenek-

sel görüntü işleme yöntemlerine başvurmaktadır. Bu tezde, küçük ölçekli araçlar için

yedi trafik işareti, trafik ışıkları, şerit değişikliği, yonca yaprağı kavşağı, yaya geçit-

leri ve park işlemi ile genişletilmiş trafik senaryolarını kapsayan ayrışmış bir mimari

vii

sunuyoruz. Bu mimariyi gerçekleştirmek için bölütleme ve sınıflandırma veri setleri

oluşturduk. Şerit anlamlarını öğrenmek ve trafik levha ve ışıklarını sınıflandırmak için

iki derin öğrenme modeli eğittik. Trafik sahnelerine göre en iyi davranış temellerine

karar veren bir davranış planlayıcısı geliştirdik. Bu davranış temellerine dayanarak,

şerit boyunca en uygun yörüngeleri bulan bir yörünge planlayıcısı ve bu yörüngeleri

takip etmek için bir denetleyici gerçekledik. Özgün şerit bölümleme tasarımız, %97

doğru sınıflandırıcımız, dayanıklı planlayıcı ve kontrolcü algoritmalarımızla benze-

timli ve gerçek güzergahlarda başarılı sürüşler gerçekleştirdik.

Anahtar Kelimeler: otonom araç, trafik sahnesi ayrıştırma, trafik işareti sınıflandırma,

optimal yörünge planlama, yol takibi

viii

To those who cannot do without Vim key bindings.

ix

ACKNOWLEDGMENTS

I would like to start with the members of team Robocodes: Berkant Bayraktar, Berker

Acır, Ilker Ayçiçek, Yunus Emre Saçma, and Asst. Prof. Dr. Selim Temizer. Their

patience against all the odds made this thesis possible. Lack of space and budget to

build a race course did not stop them. They dared to develop a mini autonomous car

in a simulated environment and see it in a competition without ever testing in a real

environment against competition rules. Thank you all.

Supervisor of our team and co-supervisor of my thesis, Asst. Prof. Dr. Selim Tem-

izer, did more than supervising. I truly enjoyed the enlightenment moments of how

complicated-looking subjects turned into intuitive ideas after talking to him. I am

grateful to him for encouraging me to study autonomous cars in which I had the

chance to gain hands-on experience in both machine learning and robotics. Aside

from supervising the team and my thesis, I cannot thank him enough for his time and

effort to find a sponsor to afford a mini autonomous car platform.

I am thankful to our sponsor, Acasus, for providing us with a mini autonomous car

platform while we were desperately looking for a sponsor.

I would like to thank my supervisor, Prof. Dr. Tolga Can, for his support and help

with all the thesis procedures. It would not be easier without his support.

I also would like to thank my friends at Turkish Aerospace for tolerating my un-

planned absence when I had to take annual leave to work on my thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition . 2

1.2 Contributions . 4

1.3 Organization . 5

2 BACKGROUND AND RELATED WORK 9

3 ARCHITECTURAL OVERVIEW . 21

3.1 Hardware Configuration . 21

3.2 Software Architecture . 22

3.3 Simulation Environment . 24

4 SCENE INTERPRETATION . 27

xi

4.1 Environmental Perception . 27

4.1.1 Semantic Segmentation . 27

4.1.2 Lane Detection . 30

4.1.3 Sign Detection . 31

4.1.4 Obstacle Detection . 33

4.2 Behavior Planning . 34

5 NAVIGATION . 41

5.1 Trajectory Planning . 41

5.2 Trajectory Execution . 44

6 EXPERIMENTS AND RESULTS . 51

6.1 Race Courses and Datasets . 51

6.2 Perception Evaluation . 52

7 CONCLUSION . 63

REFERENCES . 65

xii

LIST OF TABLES

TABLES

Table 3.1 Hardware configuration . 22

Table 6.1 Traffic scene semantic segmentation dataset 53

Table 6.2 Traffic sign classification dataset 54

Table 6.3 Semantic segmentation test results 55

Table 6.4 Traffic sign classification test results 56

xiii

LIST OF FIGURES

FIGURES

Figure 1.1 OpenZeka 2019 MARC race course 4

Figure 1.2 Traffic signs and lights for mini cars 7

Figure 2.1 Stanley controller algorithm . 11

Figure 2.2 A*, Field D* and Hybrid A* algorithms 12

Figure 2.3 A sample optimal trajectory generated in Frenet frame 13

Figure 2.4 Autoware high level architecture 14

Figure 2.5 An example state lattice . 16

Figure 2.6 Apollo high level architecture 17

Figure 2.7 End-to-end training and inference 18

Figure 3.1 Hardware components of the mini autonomous car 21

Figure 3.2 Software architecture overview 23

Figure 3.3 Simulation environment . 25

Figure 3.4 Comparison of actual and simulated camera views 25

Figure 4.1 Visualization of semantic segmentation labels 28

Figure 4.2 Modified U-net semantic segmentation architecture 29

Figure 4.3 Visualization of inverse perspective mapping 31

xiv

Figure 4.4 Lane searching in birdseye view 32

Figure 4.5 Auto-cropped traffic signs and lights 33

Figure 4.6 Classification architecture . 34

Figure 4.7 Occupancy grids . 35

Figure 4.8 Hierarchical finite state machine 36

Figure 5.1 Frenet frame . 42

Figure 5.2 Example frenet frame optimal trajectories 47

Figure 5.3 Steering angle geometry in pure pursuit controller 48

Figure 5.4 Illustration of lookahead distance and feedback angle 48

Figure 5.5 Pure pursuit controller tuning 49

Figure 6.1 Real and simulated course scenes 52

Figure 6.2 Evaluation of traffic sign detection and recognition 56

Figure 6.3 True sign detections on real courses 57

Figure 6.4 False sign detections on real courses 58

Figure 6.5 Comparison between autonomous driving and a human driver . . 59

Figure 6.6 Straight road driving scenarios 60

Figure 6.7 Sharp turning scenarios . 60

Figure 6.8 Lane change scenarios . 61

Figure 6.9 Stop scenarios . 62

xv

LIST OF ABBREVIATIONS

ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

AP Average Precision

DARPA Defense Advanced Research Projects Agency

ESC Electronic Speed Controller

GPS Global Positioning System

IMU Inertial Measurement Unit

IoU Intersection over Union

LIDAR Light Detection and Ranging

mAP Mean Average Precision

MARC Mini Autonomous Racecar Competition

MIT Massachusetts Institute of Technology

RDDF Route Definition Data Format

RGB Red Green Blue

RNDF Route Network Definition File

ROS Robot Operating System

SSD Single Slot Detector

UKF Unscented Kalman Filter

YOLO You Only Look Once

xvi

CHAPTER 1

INTRODUCTION

Autonomous cars have received a great deal of attention over the last two decades

and started to be a reality in the last few years with several level of autonomy from

driving assistance level to full autonomy [1]. In quest of fully autonomous vehicles,

a number of competitions were organized to stimulate researchers’ interest [2, 3].

These events started with autonomous cars driving on desert roads with only static

obstacles and evolved to a point where the cars survived a simple form of everyday

traffic scenarios including highway driving, overtaking, intersections, and parking.

These challenges led to state-of-the-art software architectures which decompose the

driving problem into components such as perception, planner, and controller. Each of

these components was also powered by state-of-the-art algorithms that shaped today’s

autonomous vehicles.

Meanwhile, the progress in deep learning techniques along with the increase of stor-

age and computational power in the computer market made a breakthrough in com-

puter vision. These advances not only boosted the decomposition-based approaches

in perception side, but also revived the existing idea of learning a mapping from raw

camera images to steering commands [4], which is followed by the idea of learning

driving affordance indicators such as distance to the center of the ego lane, orientation

of the car relative to the road, and distance to the other cars so that steering and speed

commands can be computed with a dedicated controller based on these affordances

[5].

Being an elegant and promising solution, learning affordances from raw images re-

quires additional tooling for data acquisition in order to compute and record affor-

dance indicators per image. The choice of affordance indicators for a smooth driving

1

experience also presents its own challenges.

Learning a direct mapping to the steering commands quickly reaches its limit when

the driving scenario becomes more complicated than tracking a curvy road. Introduc-

tion of traffic regulations, overtaking, and lane keeping policies remain too abstract

to be captured in such a mapping. Furthermore, human drivers tend to take different

actions at different times even for the same scenarios. Different actions on similar

raw images in the training set easily confuses the model [5]. Last but not least, end-

to-end nature of this approach presents difficulties in understanding and debugging

the behavior of the vehicle.

Existing decomposition-based approaches heavily depend on a high-definition map of

the driving environment, which often loses its validity due to changing streets or con-

structions on the roads. Autonomous driving in urban scenarios without an accurate

map has been studied extending an existing traffic scene segmentation dataset with

ego lane, parallel lane, and opposite lane annotations [6], but it is yet to be deployed

and tested on a car. For novel methods like this instance, a low-cost and risk-free

solution for initial on-road testing could be the use of a small-scale car.

Present small-scale driverless car studies either focus on directly learning steering

commands from the images [7, 8] or implement a decomposed architecture using tra-

ditional computer vision techniques to detect ego lane lines and few traffic signs [9].

Despite the existence of powerful small-scale autonomous car platforms in the hard-

ware side [10], related studies in the software side fail to keep up with the advances

in self-driving car technologies. One possible reason behind this lag could be the lack

of datasets for mini cars.

1.1 Problem Definition

We seek autonomous driving solutions to a number of traffic scenarios specified by

a mini autonomous car competition, OpenZeka MARC 2019 [11]. Inspired by MIT

racecar platform [10], OpenZeka MARC is organized by OpenZeka and was held

in February 2018, May 2018, and April 2019 with increasingly complex rules. The

competition offers leagues for high schools, universities, and other hobbyists includ-

2

ing companies. Total of 13 teams took part in the competition in 2019. Being one of

the teams which completed the race in time, we won the third place in the university

league out of 7 teams.

Our requirements are mostly derived from the competition rules as follows:

• The mini car shall follow lanes at up to 0.9 m/s speed in a two-lane road as

depicted in Figure 1.1.

• The mini car shall detect traffic light and signs shown in Figure 1.2.

• The mini car shall overtake a waiting car on the right lane and steer back to the

right lane.

• The mini car shall reactively avoid obstacles.

• The car shall climb up and climb down the cloverleaf interchange given in

Figure 1.1.

• The mini car shall choose to go straight when it encounters straight or right turn

sign.

• The mini car shall stop on red light and move on green light.

• The mini car shall change to the left lane when it is close to a construction zone

on the right lane as indicated by keep-left signs.

• The mini car shall be capable of passing a rough road section indicated by a

loose gravel sign.

• The mini car shall wait for pedestrians on crosswalks indicated by pedestrian

crossing signs.

• The mini car shall turn right after parking sign into the parking lot given in

Figure 1.1.

• The mini car shall stop on any of the free parking slots.

3

Figure 1.1: OpenZeka 2019 MARC race course.

1.2 Contributions

The main contribution of our study is as follows:

• Pixel classification dataset for mini cars: Existing traffic scene datasets are

exclusively for real-scale cars [12, 13, 14, 15]. This poses a difficulty for on-

road testing of the novel methods on mini-cars. We present a dataset with

pixel-level annotations for mini cars.

• Extended traffic sign and signal classification dataset: We merge existing

traffic sign classification datasets [16, 17, 18, 19, 20] for our scenarios and

semi-automatically extend the dataset by cropping the segmented sign regions

from our camera images.

• Development of a novel lane detector: We build our lane detector on the

approach proposed by Meyer et al. [6]. This approach essentially segments the

road into ego lane, parallel lane, and opposite lane. It then extracts a center

line for the ego lane. For our scenarios, we skip the opposite lane and further

segment the parallel lane into right and left lanes. Unlike Meyer et al. [6], we

4

are interested in finding center line curves for neighboring parallel lanes along

with the ego lane. Our approach saves us from analyzing the parallel lane pixels

for right or left categorization.

• Local optimal trajectory planner for structured environments: It is com-

mon that state-of-the-art autonomous vehicles rely on detailed maps to provide

a reference line to their local planner for structural environments (i.e., envi-

ronments with explicit drivable corridors), often by means of a global planner

[21, 22, 23]. We implemented a Frenet optimal trajectory planner [24] without

a map using exclusively the online computed lane centers as a source of the

reference line.

• Decomposed architecture for autonomous driving: Autonomous vehicle ar-

chitectures span a wide range of computer science research areas including but

not limited to computer vision, path planning, automata theory, control theory,

and distributed systems. Each of these areas comes with many problems and

various alternative solutions to those problems. We put together a decomposed

architecture with a selected set of solutions from different domains.

1.3 Organization

The organization of this thesis as follows:

Chapter 2 discusses various autonomous driving approaches and algorithms used in

search of autonomy highlighting their advantages and disadvantages.

Chapter 3 presents our hardware configuration and software architecture at a high

level. In Chapter 3, we also introduce our simulation environment that accelerated

the development and verification processes.

Chapter 4 provides a detailed description of our scene interpretation module in which

we implement perception and behavior planning capabilities of the car. First, we

present our segmentation model which is used to parse the current scene into lanes and

traffic signs. Second, we introduce our lane center line extraction method based on the

parsed lane semantics. Third, we discuss our traffic sign classification approach on the

5

sign regions proposed by segmentation model. Next, we review our obstacle detection

method. Finally, we explain our behavioral layer that implements a hierarchical finite

state machine that regulates the decisions made by the car based on the perception

capabilities.

Chapter 5 is dedicated to our trajectory planner and control algorithms. We start with

introducing Frenet frame on a lane segment and then we explain how we plan an

optimal trajectory based on the lane center lines provided by the scene interpretation

module. In the second half of this chapter, we derive and tune pure pursuit control

algorithm that computes steering commands to execute our optimal trajectories.

Chapter 6 presents our datasets, experiments, and results. In Chapter 6, we evaluate

our segmentation and classification models. Then, we demonstrate the actions per-

formed by our car in response to various traffic scenarios and compare them with the

actions taken by a human driver.

Chapter 7 concludes our arguments by summarizing our approach to autonomous

driving, highlighting its limitations and suggesting directions for future work.

6

7.6 cm

20 cm

10.7 cm

10 cm

10 cm

10 cm

20 cm

1.8 cm

11 cm

20 cm

20 cm

5 cm

1 cm

0.8 cm

Figure 1.2: Traffic signs and light specifically designed for mini cars by OpenZeka.

7

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we review prominent autonomous driving architectures together with

the algorithms they are composed of. Along the way, we also briefly discuss the his-

torical development of self-driving cars, particularly two most significant self-driving

car competitions that paved the way for today’s driverless car technologies; DARPA

Grand Challenge and DARPA Urban Challenge.

In DARPA Grand Challenge 2004, none of the 15 teams saw the finishing line of

the race course. In DARPA Grand Challenge 2005, Stanley, a robot car developed

by Stanford Racing Team, was the first car to complete the race course. Thrun et al.

[21] presents the details of the competition rules and the software design of Stanley.

According to Thrun et al., a description of the race course was given to the participants

in a DARPA-defined format, namely RDDF, two hours before the race. The RDDF

contained a list of longitudes, latitudes, road segment widths and a list of speed limits

associated with the road segments. In addition, the autonomous cars didn’t need to

deal with dynamic obstacles.

The authors state that Stanley’s software is designed as a data processing pipeline

and processing nodes communicate through a publish/subscribe mechanism. Stanley

localizes itself on the RDDF by incorporating data from GPS, GPS compass, IMU,

and wheel encoders with UKF at 100 Hz. It performs terrain analysis based on laser

sensors and camera. For both data sources, the team automatically creates datasets

through human driving and apply machine learning algorithms to classify the terrain

into drivable and nondrivable regions. For the laser readings, a set of parameters such

as obstacle height threshold and acceptance probability along with the Markov model

parameters that capture the process and measurement noise covariances are learned

9

in a discriminative fashion by coordinate ascent algorithm.

As opposed to laser terrain analysis, Stanley uses generative learning algorithm for

camera based terrain analysis. Drivable quadrilaterals (ahead of the vehicle, extracted

from laser data) are projected onto the camera image. The pixels inside the quadri-

lateral are then used as training samples. From these samples, Stanley learns and

maintains a database of Gaussians in RGB space that corresponds to wide variety

of drivable surfaces. The range of a laser sensor is shorter than that of the camera.

On the other hand, vision based terrain analysis is susceptible to color and lighting

changes in the environment. Therefore, Stanley uses the laser based terrain analy-

sis for steering control and vision based analysis for speed control so that the vision

module acts as an early warning system when an obstacle is ahead but not within the

range of the lasers.

Because the detailed race track is provided in RDDF, Stanley’s main focus is local

obstacle avoidance rather than global planning. Though there are no lanes in the

course, Stanley introduces lateral offsets over the base trajectory which is a smoothed

path extracted from RDDF. Stanley basically plans a trajectory to smoothly change

into a lateral offset within the drivable path for obstacle avoidance similar to the

lane change in highway driving. The planner finds a minimum cost trajectory by

evaluating a cost function which is subject to kinematic and dynamic constraints of

the vehicle, distance to obstacles, distance from the center of the road, and being on

the course corridor.

Stanley uses its own steering control algorithm to track the optimal trajectory pro-

posed by the path planner. Relying on the geometrical relation between the car pose

and the trajectory, Stanley minimizes the cross-track error, which measures the lateral

distance between the center of front axle and the nearest point on the target trajectory.

The geometrical relation is illustrated in Figure 2.1.

Nonlinear feedback function of cross-track error is given by the equation

δ(t) = ψ(t) + arctan
kx(t)

u(t)
, (2.1)

where k is a gain parameter, u(t) is the car speed, and ψ(t) denotes the orientation of

10

Figure 2.1: The geometrical relation between the trajectory and the car used by Stan-

ley controller algorithm. Image from Thrun et al. [21].

the nearest trajectory segment relative to the car’s orientation. The intuition behind

the controller is that as the cross-track error x(t) increases, the controller produces

stronger steering angle δ(t) towards the trajectory. Likewise, as the speed u(t) in-

creases, the controller avoids sudden strong maneuvers. Hoffmann et al. studies the

Stanley controller algorithm in greater detail [25].

In 2007, DARPA Urban Challenge took place. Montemerlo et al. [22] present the

competition details and the software architecture of Junior, Stanford’s another robot

car and the second best car in the challenge. This time rules were more complex

including overtaking parking or moving vehicles, precedence handling at intersec-

tions possibly with stop signs, merging into fast moving traffic, left turns, parking

and U-turns when the road is completely blocked. Participants were provided with a

road network description file, or RNDF, which contained lane information, stop signs,

parking lots, and special checkpoints. In addition, the teams were also provided with

a high resolution aerial image of the race course so that they can further improve the

RNDF. In the competition, the vehicles were given multiple missions as a sequence

of checkpoints in the RNDF.

Like Stanley, Junior’s software architecture is made of sensor interfaces, perception,

navigation, and drive-by-wire interfaces at the core. The design is again based on data

processing endpoints communicating with publish/subscribe paradigm. Unlike Stan-

11

ley, Junior’s modules are far more advanced. Junior’s perception module segments the

environment data into moving vehicles and static obstacles. Its navigation features a

global path planner based on dynamic programming to find an optimum path to the

mission checkpoints from the current location of the car. Moreover, the navigation

module handles different driving scenarios with different planning algorithms.

It performs free-form navigation in parking lots, at U-turns or whenever the car gets

stuck for extended period of time. The free-form planner is specifically developed

for Junior and named hybrid A* by the Stanford Racing Team. Hybrid A* associates

discrete search space of regular A* with a continuous state by performing forward

simulations with different steering angles and computes a score based on the contin-

uous state. The continuous state is represented by x-y position of the car, heading

direction, and the direction, either forward or reverse. Whereas the path found by the

regular A* and Field D* algorithms cannot be executed due to their discrete nature,

hybrid A* can find executable paths that accounts for the nonholonomic constraints

of the vehicle. Hybrid A* uses dual admissible heuristics. One heuristic is nonholo-

nomic without obstacles, and the other is holonomic with obstacles. Once a solution

is found, it is smoothed for a better driving experience. Extensive study and ex-

periments show that hybrid A* produces near-optimal solutions [26, 27]. Figure 2.2

demonstrates the difference between regular A*, Field D*, and hybrid A* algorithms.

Figure 2.2: Left: Regular A* solutions pass through only the center of grids. Center:

Field D* solutions can have arbitrary linear paths from cell to cell. Right: Hybrid A*

associates a continuous state with each cell and computes a score for the continuous

state. Image from Dolgov et al. [26].

Junior uses a different planner for normal on-road navigation. It performs internal

simulations with different steering parameters. The internal simulations generate can-

12

didate trajectories with respect to a reference path. This reference path is essentially

the smoothed center of the lane obtained from RNDF. The planner evaluates the can-

didate trajectories by a cost function and finally selects the best trajectory. The cost

function also regulates the lane change or overtaking behavior of Junior. When the

right lane is blocked, the car chooses to shift left. When overtaking is complete, it

steers back to the right lane as it would be more costly to occupy the left lane.

Driving behavior of Junior is governed by a hierarchical finite state machine. The

state machine decides on the U-turns, handles intersection precedence and stop signs,

prevents the car from getting stuck, switches to parking navigation in a parking lot or

chooses the true planner for the current scenario in general.

Werling et al. [24] report that they generated optimal trajectories in Frenet frame and

tested on Junior without obstacles. They also present their obstacle avoidance exper-

iments in simulation. In their method, they suggest integrating trajectory generation

with a behavioral layer that decides on the high level as to whether the car should

keep a constant velocity, follow the car in front with a constant distance, merge into

traffic or stop at a point. Figure 2.3 demonstrates a velocity keeping instance in this

approach.

Figure 2.3: A sample optimal trajectory generated in Frenet frame in velocity keeping

mode. Colors from red to yellow represent increasing lateral cost. Colors from grey

to black represent increasing longitudinal cost. Green and light grey colors represent

the optimal trajectory, which leads the car to the reference line and desired speed.

Image from Werling et al. [24].

Yoneda et al. [28] further extend the method developed by Werling et al. [24] in-

13

troducing an additional adjust mode while switching from velocity keeping mode to

distance keeping in an effort to eliminate strong acceleration and deceleration during

the mode switching in quest of a more natural driving experience.

Fast forward to the present day, Autoware [23], being one of the modern open source

self-driving car platforms is based on ROS [29]. ROS is a commonly used, extensible,

component based, highly modular middleware framework with many reusable pack-

ages and visualization tools that dramatically accelerated today’s robot development

and prototyping processes. Unsurprisingly, publish/subscribe mechanism is at the

core of ROS communication patterns. Autoware implements perception, decision-

making, planning and path tracking capabilities. Figure 2.4 illustrates the Autoware

architecture at a high level.

Figure 2.4: Autoware high level architecture and data flow. Image from Kato et al.

[23].

Perception capabilities are made of localization, detection, and prediction modules.

For the localization, Autoware relies on high definition 3D maps. It localizes itself by

applying scan matching between the 3D map and LiDAR scans. Therefore, a 3D map

of the environment should be created beforehand using SLAM techniques, in which

scan matching is applied against previous LiDAR scans instead of a 3D map such

that a transformation between the LiDAR scans are obtained and a cumulative point

cloud is continually updated. Other perception modules also rely on the localization.

14

For example, the car is localized in the 3D map, it projects 3D map features into the

front view camera images to define a ROI for traffic light detection and classification

in order to eliminate full image search on every image frame. The detection module

supports both deep learning and traditional image processing and machine learning

techniques. It features YOLO2 [30] and SSD [31] models for detecting objects in

the traffic such as traffic signals, pedestrians, and other vehicles. In the prediction

module, Autoware associates detected objects with time, so that it estimates trajecto-

ries for the moving objects which are then used in the planning modules. Based on

the perception modules, Autoware makes decisions in response to the environmental

changes. The decision-making scheme is captured in a finite state machine similar to

Junior.

Autoware features two sets of planners, a mission planner and motion planners. The

mission planner is responsible for creating a rough global path from the current loca-

tion to the destination in the map. Motion planners, on the other hand, generate local

trajectories taking the global plan as a reference. In unstructured environments such

as parking lots, hybrid A* is used similar to Junior. For well-structured environment

scenarios such as navigating on the lanes, state lattice based algorithms are preferred.

Pivtoraiko et al. [32] introduce space lattice based planning. The state lattice is made

of motion primitives of a specific car. The motion primitives are generated offline

by a precise trajectory generator respecting the mobility model of the vehicle such

as steering limits and wheelbase. Then, the lattice search space could be searched

by D* algorithms for optimal trajectories. This method was also successfully used in

DARPA Urban Challenge by the winner vehicle, Carnegie Mellon University’s Tar-

tan Racing for navigating in unstructured environments [33]. Figure 2.5 illustrates a

state lattice. McNaughton et al. [34] later extended this approach and applied it to

structural environments.

Autoware uses pure pursuit controller to generate low level steering commands to

execute the given trajectory from the motion planners. Kim et al. [35] studies the

controller with its geometrical derivation and also give some useful pointers on tun-

ing.

Backed by Baidu, Apollo is another open source autonomous driving platform with

15

Figure 2.5: An example state lattice without reverse motions. Image from Pivtoraiko

et al. [32].

its giant dataset [12]. Similar to other decomposed architectures, Apollo is also made

of localization, perception, prediction, routing, motion planner, and vehicle control

components as shown in Figure 2.6. Like Autoware, Apollo also relies on high defi-

nition 3D maps for location and perception [36].

The routing component finds a global plan from the current location to a destination

in the map like previous architectures; however, Apollo’s lane-based motion planner

is quite different. Apollo does not directly use this global plan as a reference path

for trajectory generation, but rather it generates multiple lane level reference lines

from it taking traffic regulations (e.g., traffic signs, signals and lane markings) and

safety measures into account. During lane level motion planning, Frenet frames are

constructed based on the given reference lines. Lane level path and speed optimizers

generate the optimal trajectories in Frenet frame for each lane. Finally, a trajectory

16

Figure 2.6: Apollo high level architecture and data flow. Image from Fan et al. [36].

decider chooses the best trajectory for the maneuver given the cost of each trajectory,

car status, traffic regulations. This approach allows for dealing with different traffic

regulations that apply for different lanes of the same road [36].

A different approach to autonomous cars is to learn a mapping from input images

to steering angle and speed commands in an end-to-end manner. Bojarski et al. [4]

were the first to apply this method to a real-sized car with the modern deep learning

techniques. They collected 72 hours data with different cars in different weather and

lighting conditions from various places. For the data acquisition, they installed three

cameras on the car behind the windshield and recorded timestamped videos from

the left, right and center cameras along with the steering commands controlled by a

human driver. During training, they augmented the dataset by random shifting and

rotating the images and adjusting the recorded commands accordingly. The trained

17

model then successfully steered the car by using the images only from the central

camera. Figure 2.7 demonstrates the training and testing steps of this approach.

(a)

(b)

Figure 2.7: (a) End-to-end training scheme. (b) Steering command inference from

raw camera images. Image from Bojarski et al. [4].

Bechtel et al. [7] replicated the study [4] with a small-scale, low-cost platform us-

ing a web camera and a Raspberry Pi 3 for inference. They conducted successful

experiments in a specially built test course for their RC car.

Do et al. [8] also implemented a similar approach in another RC car platform using

Pi camera and Raspberry Pi 3 for inference. Instead of learning steering angles in

a regression model, they learned a steering angle probability for discretized steering

angle space. In addition to basic lane following, they also learned to turn left or right

when the corresponding traffic sign is encountered. The traffic sign diameter was 15

cm in their experiments.

18

There are several traffic scene segmentation datasets available. Currently, the largest

and the most comprehensive one is ApolloScape [12]. It is followed by Cityscapes

[13], KITTI [14], and Mapillary Vistas [15] datasets. Because these datasets are

created for real-sized cars on real roads, they were not suitable for us, so we had to

create our own segmentation dataset. The existing traffic sign and signal classification

datasets [16, 17, 18, 19, 20], on the other hand, was useful to train an initial classifier

as they are mostly independent of the scene and car size.

Sakai et al. [35] present a collection of various autonomous navigation algorithms

implemented in Python Programming Language in their basic forms. The collection

includes aforementioned hybrid A*, Frenet optimal trajectory planner, state lattice

planner, Stanley controller, and pure pursuit controller algorithms.

Unlike Stanley, Junior, Autoware and Apollo, we don’t have a detailed map of the

driving course. As a result, our best option is to follow the lanes unless a traffic

sign or some other condition mandates otherwise. For the same reason, we have to

create our reference paths for our local trajectory generation either from the online

detected lane centers or according to the traffic regulations. Meyer et al. [6] study

semantic lane segmentation for mapless driving, which bears similarities to our lane

detection approach. Authors’ motivation is the fact that as the high definition maps

quickly get out of date due to constructions an autonomous car should also be able to

perform basic navigation tasks without a precise map, but possibly with a coarse map,

specifically for intersections. They start with creating their own dataset by extending

Cityscape [13]. Their approach is to annotate the road surface as ego lane, parallel

lane, and opposite lane and learn these regions with a semantic segmentation model.

Stanley controller algorithm is weak to discontinuities along the trajectory as it di-

rectly drives towards the closest point on the trajectory. Stanley and Junior guaran-

tees a smooth trajectory by smoothing already known center reference lines or post

processing the output of hybrid A*. We cannot guarantee a smooth path as we use

discontinuous predefined path in response to traffic signs and signals or due to in-

stantaneous segmentation errors in the lane detection. Conversely, as pure pursuit

controller drives along an arc it is less likely to be affected by discontinuities.

19

20

CHAPTER 3

ARCHITECTURAL OVERVIEW

In this chapter, we introduce our proposed architecture of the mini driverless car with

its hardware and software components. We also present our simulation environment,

which was implemented to speed up the development and verification processes.

3.1 Hardware Configuration

Autonomous cars are equipped with a powerful central computer, actuators and many

sensors such as IMU, Camera, and LIDAR. Our mini driverless car also has the equiv-

alent hardware components as shown in Figure 3.1. Details of these components are

given in Table 3.1.

Stereo	Camera

LIDAR
Central	Computer

ESC

IMU

DC	Motor

Servo	Motor

NiMH	Battery

LiPo	Battery

Figure 3.1: Hardware components of the mini autonomous car.

The central computer runs various sophisticated algorithms to fuse raw data from sen-

sors to achieve environmental perception, select the best possible action accordingly,

and finally send speed and steering angle commands to the ESC in order to execute

the action. The ESC generates necessary electronic signals from the commands and

21

Table 3.1: Mini autonomous car hardware configuration details.

Component Description

Vehicle TRAXXAS SLASH 4X4 PLATINUM EDITION

Central Computer NVIDIA Jetson TX2 Developer Kit

Stereo Camera Stereolabs ZED Camera

2D LIDAR Scanse Sweep LIDAR

ESC Vedder Electronic Speed Controller

IMU SparkFun 9 DoF Razor IMU M0

USB3.0 Hub USB 3.0 7-Port Hub with 2 Charging Ports UH720

Joystick Logitech F710 Wireless Gamepad (940-000142)

LiPo Battery 4200 mAh 7,4V 25C

NiMH Battery MARC Power Lite 3400 mAh 16V and 12V outputs

feeds them to servo and DC motors to control steering angle and speed, respectively.

We replace the stock ESC that ships with the vehicle with a different speed controller

known as VESC, an open source ESC, since it is highly configurable and thus sup-

ports full control at lower speeds [37]. The hardware setup also provides a joystick

control in order to acquire dataset from a human driver and take over the control dur-

ing the autonomous drive in case of an emergency. We use two different batteries

to power the vehicle. While NiMH battery powers the central computer and sensors

through the USB 3.0 Hub, LiPo battery supplies current to the actuators as they need

a more consistent power source.

3.2 Software Architecture

We use ROS [29] to implement our architecture. ROS defines notion of nodes and al-

lows nodes to communicate through publish/subscribe and reply/request mechanisms.

Similar to previous studies [21, 22, 23], we also rely on publish/subscribe mechanism

for the data flow between our nodes. Nodes subscribe to the message streams from

other nodes. The result of the computation of a node is then published to the other

nodes. This asynchronous messaging allows the software to act as a data processing

22

pipeline. The architecture is roughly grouped into four modules.

• sensor interface – The sensor interface reads raw data from individual sensors,

converts them to meaningful engineering data, then feeds them to the other

modules.

• scene interpretation – The scene interpretation module makes sense of the

environment by finding traffic lanes, detecting obstacles, and classifying the

traffic signs. Once the objects of interests are detected and classified, the mod-

ule also locates these objects in the real world coordinates with respect to car’s

body frame. Then it decides on a high-level behavior that best fits to its current

perception of the environment such as keeping a lane or stopping on a red light.

• navigation – The navigation module first takes the kinematic constraints, traffic

rules, and nearby obstacles into account and generates an optimal trajectory

to realize the high-level behavior. Then it computes steering angle and speed

values in order to follow the optimal trajectory as close as possible.

• actuator – A pre-configured firmware in the VESC that converts steering and

speed commands into electronic signals to drive the motors.

Figure 3.2 illustrates the overall data flow in the software modules. Out of these

modules, nodes in sensor interface and actuator modules are already provided as ROS

packages. They are not implemented but configured within the scope of this thesis.

SENSOR
INTERFACE

SCENE
INTERPRETATION NAVIGATION ACTUATOR

electronic	signals

Electronic	Speed
Controller

trajectory

Trajectory
Planning

speed,
	steering	angle

Trajectory
Execution

DC	&	Servo
Motors

interpretation

Behavior
Planning

lanes,	local	map,
	traffic	signs

local	mapPerception
odom,	rgb,	depth

odom

Stereo	Camera

scan

LIDAR

odomodom

Figure 3.2: Software architecture overview.

Zed camera node is configured to publish visual odometry, RGB, and depth topics

at a rate of 15 Hz. Message types that flow through these topics are well-defined

23

in ROS. An odometry message contains position, orientation, and linear and angular

velocities with respect to the starting point. RGB image message is a rectified color

image from the zed camera, which is used for image segmentation and classification.

Because zed camera features stereo images, it can also publish a depth image, which

is used to locate the traffic signs with respect to the body frame.

LIDAR node is configured to provide scan data to the costmap nodes in the scene

interpretation module at 5 Hz rotational speed. The costmap nodes then publish local

occupancy grid maps that indicate nearby objects. Scene interpretation maintains

two local maps in different sizes. The small map is used in navigation module for

collision avoidance. The larger map is internally used by the scene interpretation

module for behavior planning to guide the trajectory planner before the navigation

module observes the obstacles.

Behavior planner component decides if the car should stop or in which speed range

it should move, whether it should track the lanes or follow a predefined path. At the

end, the behavior planner captures the current desired behavior in an interpretation

message and publishes to the trajectory planner.

Trajectory planner subscribes to the odometry, 3×3 local map, and interpretation

topics so as to find a collision-free, kinematically feasible, smooth, and optimal tra-

jectory. The trajectory message contains waypoint locations in the odometry frame

and a recommended speed for each waypoint.

Finally, given the odometry and optimal trajectory, the trajectory execution node com-

putes steering angles to closely follow the optimal trajectory and publishes the rec-

ommended speed and steering commands to the actuator module.

3.3 Simulation Environment

It is not always practical to try new ideas on the target platform for several reasons.

First, it is too risky to run an updated version of the software in the target platform

as it might crash into an obstacle. Second, the batteries have certain life time and

we do not want to drain them for each immature update to the code base. Third,

24

deploying and testing the software on the car is time consuming. Last but not least,

running the software on the car requires a large enough space with various traffic

signs, lanes, a bridge and many other urban conditions, which we could barely afford

a few, therefore, we had no better option than creating a simulated environment.

We used Gazebo to model our simulation world and robot car. Figure 3.3 shows the

simulated urban area. It simulates every case in OpenZeka MARC 2019 except that

we have to manually toggle red and green lights, and manually walk the pedestrian

out of the scene.

(a) (b)

Figure 3.3: (a) Gazebo simulation environment top view. (b) The car, traffic signs,

and the bridge in the simulation environment.

Simulated sensors were also carefully tuned to reflect actual sensor behaviors, but

still actual camera images look blurrier. Moreover, we did not simulate the changing

lighting conditions and vibrations from the actuators. Figure 3.4 gives the actual and

simulated camera views for comparison.

(a) (b)

Figure 3.4: (a) Actual camera view. (b) Simulated camera view.

25

Despite all the peculiarities of the simulation environment, it made it possible to

quickly collect datasets without needing any additional hardware, not even a joystick

as it supports keyboard commands. We trained our segmentation and classification

models on those datasets and tested in the simulation environment. We also developed

our trajectory planning and control algorithms in the simulation, which drastically re-

duced the risk of damaging any equipment. In a nutshell, the simulation was not a

replacement for the real world, but rather served as a flexible testbed.

26

CHAPTER 4

SCENE INTERPRETATION

In this chapter, we present our mini driverless car’s perception capabilities and how

it draws on these capabilities to interpret the current scene into high-level driving be-

haviors by means of a rule-based system. We first discuss our semantic segmentation

model and semantic segmentation classes. Second, we explain the methods we used

to locate the right and left lanes with respect to the body frame. Third, we describe

our relatively small classification model that runs on top of the segmentation results

to classify traffic signs and lights. Then, we demonstrate our local maps that are used

for locating nearby obstacles. Finally, we introduce our behavior planner, which re-

lates the given environmental perception with the traffic rules and picks a primitive

driving pattern accordingly.

4.1 Environmental Perception

4.1.1 Semantic Segmentation

Semantic segmentation is the backbone of our visual perception component. We de-

ploy a semantic segmentation deep learning model for which we manually annotate

each camera image into ego lane, right lane, left lane, roadside and traffic sign classes

using an image annotation tool, namely labelme [38]. Once trained, the segmentation

model classifies each pixel of the input image into these classes. In order to visualize

the labels, we assign a color for each class. Figure 4.1 illustrates segmentation labels

blended on the camera images. We annotate traffic lights and traffic signs with green,

ego lane with blue, left lane with yellow, right lane with red, roadside with pink and

all other pixels are considered background and assigned black color.

27

(a) (b)

(c) (d)

Figure 4.1: (a) Traffic light, ego lane, left lane, and roadside labels. (b) Traffic signs,

ego lane, left lane, and roadside labels. (c) Ego lane, right lane, and roadside labels.

(d) Labels on a curvy road segment.

We adopt U-net architecture for our traffic scene segmentation task inspired by Sri-

hari Humbarwadi [39]. U-net works well with a few training images and yields fast

and precise segmentation results. [40]. As shown in Figure 4.2, the U-net architec-

ture is in shape of U, thus the name U-net. Our slightly modified architecture inputs

an RGB image of size 128×128×3 and encodes it in the contraction side through

applying multiple blocks of layers. Each block takes an input and applies two 3×3

convolutions, each followed by a batch normalization, ReLU activation, and a 2×2

max pooling with stride 2 for downsampling. After each downsampling step, we

double the number of feature maps (i.e., the number of filters or channels). Expan-

sive side decodes the captured features in the bottleneck section and also is made of

multiple blocks. Each expansive block applies a 2×2 up-convolution for upsampling,

halves the number of feature maps, concatenates the corresponding feature maps from

contracting and expansive sides, and finally applies two 3×3 convolutions, each fol-

lowed by a batch normalization and ReLU activation. At the output layer, we use a

28

1×1 convolution followed by a batch normalization and softmax to map the resulting

16 feature maps to the desired number of classes, which is 6 in our case including the

background class.
12
8x
12
8

64
x6
4

32
x3
2

16
x1
6

8x
8

16
x1
6

32
x3
2

64
x6
4

12
8x
12
8

input
image

output
map

conv	3x3,	batch	norm,	ReLU
dropout	0.5	prob.
concat
up-conv	2x2
max	pool	2x2
conv	1x1,	batch	norm,	softmax

3 1616

16 32 32

32 64 64

64 128 128

128 256 256 256 256

256 128 128 128

128 64 64 64

64 32 32

32 1616 6

Figure 4.2: Modified U-net architecture for semantic segmentation. Each feature map

is represented by a blue box. The number of channels in each feature map is given

on top of its corresponding box. The width and height dimensions are given at the

lower-left edge of each block of layers. White boxes denote the concatenated feature

maps from the contracting side. The operations are depicted by the arrows.

In order to meet smooth driving experience requirements, the segmentation inference

shall run at 10 Hz and share the limited resources on the central computer, which sets

an upper bound for the size of our segmentation model. Therefore, we resize down

the camera images from 672×376 to 128×128. We also lower the initial number

of filters to 16, which is 64 as described in the original U-net paper. Note that as

opposed to the original architecture, we use paddings for the convolutional layers so

that the output of a convolution layer has the same width and height as the input.

As a result, we don’t crop contracting feature maps before concatenating them with

the corresponding feature maps on the expanding side. Another deviation from the

original architecture is that we train the model in batches (batch size of 8), so we

29

apply batch normalization following each 3×3 and 1×1 convolutional layer. We also

place additional dropout layers to the bottleneck section and expansive side. We use

Adam optimizer with sparse categorical cross entropy loss function from Keras which

ships with TensorFlow as a high-level API [41, 42].

4.1.2 Lane Detection

Because we are trying to navigate without a prior map of the environment as in the

study of Meyer et al. [6], the lane detection is used not only for adhering to the traffic

rules, but also for the whole navigation task until the car encounters a traffic sign to

change direction.

Our strategy for the lane detection is based on the semantic segmentation. We first run

an argmax on the output segmentation map across the channel axis and assign a color

to each channel as shown in Figure 4.1. Then we apply inverse perspective mapping

to obtain birdseye view as in Figure 4.3. The corners of the quadrilaterals in Figure

4.3 are selected such that each pixel in the birdseye view represents a 1×1 cm2 in the

world. Finally, we create a point cloud from the birdseye view by downsampling it

by a factor of 2 for faster second order polynomial fitting to the lanes. The resultant

birdseye point cloud is also given in Figure 4.3.

In order to find midpoints along the lanes and make it more robust to erroneous seg-

mentation patches, we apply sliding window and guided searches for each lane. Both

search types are illustrated in Figure 4.4 for the ego lane. It is straightforward to apply

the same procedure for the right and left lanes. While the sliding window search uses

histogram to find starting lane locations, guided search relies on the previous polyno-

mial fits with some margin. Every time we lose a lane, we initiate a sliding window

search for that particular lane. Once the lane is found, we switch to the guided search

as it is computationally less demanding. For each lane, we average the coefficients of

up to last 5 polynomial fits and obtain the linearly spaced 9 points along the average

polynomial curve. These 9 midpoints for each lane are the waypoints that describe

the lanes on the road.

30

(a) (b)

(c)

Figure 4.3: (a) Before inverse perspective mapping. (b) Birdseye view after inverse

perspective mapping. (c) Birdseye view point cloud with ego and right lane curves in

orange.

4.1.3 Sign Detection

Traffic signs and lights regulate the car’s behavior on certain conditions and ensure

the car travels the entire course with appropriate direction indications. We treat the

traffic lights the same way as the traffic signs, so the methods used for the traffic signs

also apply to the traffic lights.

Though there exist multiple well-established object detection deep learning architec-

tures with different size, performance and accuracy trade-offs [43, 44], our limited

resources in memory and computational power as well as the soft real-time require-

ments at 10 Hz challenge us to use a more resource-friendly approach. Instead of

running an object detection model, we run a much simpler classifier model on the

segmented traffic sign patches. This approach also saves us from labelling the whole

dataset for the object detection in addition to the semantic segmentation annotations.

31

(a) (b) (c)

Figure 4.4: (a) Segmentation birdseye view image. (b) Sliding window search for the

ego lane. (c) Guided search for the ego lane on the next image frame after the sliding

window search. The green color denotes the sliding windows and guided search area.

The orange color denotes the averaged polynomial curve.

On the downside, we cannot detect the signs in an end-to-end fashion without resort-

ing to computer vision techniques for finding bounding rectangles for each sign patch

in the segmentation output [45].

We first create a classification dataset selecting applicable signs from existing datasets

[16, 17]. Because these are small image patches irrespective of the scene, they worked

well for our miniature world. Having trained the classifier with existing datasets, we

run the classifier model along with the segmentation on our training courses, which

contain more traffic signs than usual. Then, we semi-automatically create a new

classification dataset by cropping and saving the classified traffic sign patches. We

later manually go through the saved image patches and ensure they are in the correct

class folder. Whenever an inappropriate image patch is mistakenly classified as a

traffic sign, we also put them into a special negative class folder. Augmenting our

classification dataset in this manner significantly improves our classifier as it learns

from its own mistakes.

We use PedestrianCrossing, KeepLeft, LooseGravel, NoEntry, Parking, ParkingSlot,

RoadWork, StraightOrRight, TrafficLightGreen, TrafficLightRed, TurnLeft, and Neg-

ative classes. Figure 4.5 illustrates these classes with image patches automatically

cropped from the training courses. The patches are converted to grayscale and re-

sized to 32×32 before being fed into the classification model. The classification

architecture is depicted in Figure 4.6. We train the model using Adam optimizer with

cross entropy loss in 32 batches applying shift, rescale, shear, zoom, and brightness

32

augmentation methods from Keras during training [41, 42]. Algorithm 1 explains the

overall classification process on a traffic sign segmentation mask.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.5: Classified and saved traffic sign images from real and simulation training

courses. (a) PedestrianCrossing, (b) KeepLeft, (c) LooseGravel, (d) NoEntry, (e)

Parking, (f) ParkingSlot, (g) RoadWork, (h) StraightOrRight, (i) TrafficLightGreen,

(j) TrafficLightRed, (k) TurnLeft, and (l) Negative.

4.1.4 Obstacle Detection

We maintain two different local occupancy grids in size and resolution in the per-

ception component. Each occupancy grid is driven by the same laser scan message.

While 3×3 grid with 0.1 meter/cell resolution is passed to the trajectory planner, 4×4

grid with 0.2 meter/cell resolution is used to analyze obstacle in the neighborhood

that could change the current driving behavior such as speed profile, which is also

a parameter to the trajectory planner. Figure 4.7 demonstrates the local occupancy

grids in action. The car is always centered on the grids; therefore, the grids also move

as the car moves.

We generate two events from the large occupancy grid. The first event, ObstacleA-

head indicates there is an obstacle ahead of the car within a range of 2 meters. The

33

input
patch

conv	2x2,	ReLU
dropout
max	pool	2x2
dense

32x32x1

32x32x64

16x16x64 16x16x64
16x16x32

8x8x32 8x8x32

256 256
12

ReLU

softm
ax

0.3	drop	prob.

0.5	drop	prob.

0.3	drop	prob.

output	class
probabilities

Figure 4.6: Classification architecture. Layer shapes are given on the corresponding

layers.

other event, DangerousObstacle alerts that there is an obstacle dangerously too close

to the car within 0.7 meters. Algorithm 2 gives the steps for generating these events.

4.2 Behavior Planning

Behavior planner consumes the events generated by the perception component. It

transitions the car into appropriate states depending on the hierarchical finite state

machine given in Figure 4.8 as the events arrive. When the car is in WAIT state,

if there is no obstacle ahead and red light is not observed, transition 1 is executed

and the car starts driving itself. While the car is moving, if it observes a pedestrian

crossing sign or a red light, it performs transition 2 and starts waiting until transition 1

conditions are satisfied. In DRIVE state, the default behavior is to follow the lanes at

normal speed, 0.9 m/s. When the car comes across any of straight-or-turn-right, turn-

left, or park signs, it stops lane following by sourcing predefined waypoints for these

signs to the trajectory planner instead of the waypoints extracted from the lanes. In

the case that the last predefined waypoint is reached or a manual intervention through

a joystick for an emergency while following a predefined path occurs, it executes

transition 4 to put the car back into the lane following state. If any of LooseGravel,

KeepLeft, RoadWork or DangerousObstacle events is reported while driving at the

34

Figure 4.7: The small and large local occupancy grids.

normal speed, the car goes into SLOW SPEED state through transition 5 and starts

driving at 0.5 m/s. When none of these events are reported, the car switches back to

the NORMAL SPEED state. Finally, when the car sees a parking slot frame on the

ground, it performs transition 7 into the PARK state, in which the car moves into the

parking slot and stops.

35

PREDEFINED
PATH

3

4

LANE
FOLLOW

SLOW
SPEED

NORMAL
SPEED

PARK

1

WAIT

6

5

DRIVE

2

7

Figure 4.8: Hierarchical finite state machine that governs the high-level behavior of

the car. The numbered arrows 1 to 7 denote the transitions between states. DRIVE

state has two sub-states to control speed profile and waypoint source to the navigation

module. PARK is the terminal state.

36

Algorithm 1 Classification of segmented traffic signs.
1: procedure PARSE-TRAFFIC-SIGNS(mask, rgb, depth, intrinsic, record,

classes)

2: cx, cy, fx, fy ← intrinsic . Unpack camera intrinsic parameters

3: rects← list()

4: k ← 8 . Some pixel margin to the sign patch

5: contours← cv2.f indContours(mask) . Use OpenCV to get traffic sign

contours

6: for contour in contours do

7: rect← cv2.boundingRect(contour) . Use OpenCV to get a bounding

rectangle of each contour

8: if distance(rect, rects[i]) < 48 then

9: rects[i]← merge(rect, rects[i]) . Merge rectangles if they are too

close

10: end if

11: rects.append(rect)

12: end for

13: t← currentT ime()

14: for class in classes do

15: events[class]← False

16: if t− last(detections[class]).t > 2 then

17: del detections[class] . Remove more than 2 second old detections

18: end if

19: end for

37

Algorithm 1 Classification of segmented traffic signs (continued)
20: for u, v, w, h in rects do

21: sign← rgb[v − k : v + h+ k, u− k : u+ w + k]

22: class, confidance← classify(sign) . Run inference

23: if confidance > 0.8 then

24: z ← mean(depth[v : v + h, u : u+ w])

25: x← z u−cx
fx

26: y ← z v−cy
fy

27: detections[class].append(x, y, z, t)

28: if len(detections[class]) > 3 and last(detections[class]).x < 2.

then . We see the sign more than 3 times with enough confidence within a range

of 2 meters, so we can safely report that we are tracking it

29: objects[class]← (x, y, z, t)

30: events[class]← True

31: if record is True then

32: name← unique()

33: save(sign, class, name) . Record the sign to further enrich

the dataset

34: end if

35: end if

36: end if

37: end for

38: return detections, objects, events

39: end procedure

38

Algorithm 2 Obstacle events.
Require: Pose x, y, θ extracted from the latest odometry message. θ is the yaw angle

in radian.

1: procedure PARSE-OBSTACLES(grid, x, y, θ)

2: nonzeroy, nonzerox← nonzero(grid) . Get nonzero cells (i.e., the

obstacle cells)

3: obstaclex← nonzerox ∗ grid.resolution+ grid.origin.x

4: obstacley ← nonzeroy ∗ grid.resolution+ grid.origin.y

5: diffx, diffy ← obstaclex− x, obstacley − y
6: angles← arctan(diffy

diffx
)

7: angles← rad2deg(θ − angles)
8: mask = (angles < 10)&(angles > −10)

9: events[ObstacleAhead]← count_nonzero(mask) > 0

10: distances←
√
diffx2 + diffy2

11: mask = (angles < 10)&(angles > −10)&(distances < 0.7)

12: events[DangerousObstacle]← count_nonzero(mask) > 0

13: return events

14: end procedure

39

40

CHAPTER 5

NAVIGATION

In this chapter, we focus on our trajectory planning and control algorithms. The

trajectory planner receives a primitive behavior mode, for our case, either stop or

cruise mode, along with a set of waypoints as a reference path and delivers a safe,

feasible trajectory consisting of another set of waypoints each with a recommended

speed to the control block. The control block executes the trajectory by adjusting the

steering angle in order to closely follow the waypoints at recommended speeds.

5.1 Trajectory Planning

We build cubic spline curves from reference waypoints to represent reference paths.

Because the map of the environment is not known a priori for our scenarios, the

reference waypoints are either extracted from the lanes or predefined for a specific

traffic sign. In order to generate trajectories along a reference path, we use Frenet

frame [24, 28] defined by normal and tangential vectors ~nr, ~tr on the reference path.

We define normal trajectory d(t) and tangential trajectory s(t) to the reference path

~r(s) as shown in Figure 5.1. To use the same convention as Yoneda et al. [28], we also

let d(t) and s(t) be offset pattern and distance pattern, respectively. While the offset

pattern corresponds to lateral displacement, distance pattern corresponds to longi-

tudinal acceleration and deceleration. In order to obtain a trajectory ~x in Cartesian

coordinates, we combine the two patterns by the equation

~x(s(t), d(t)) = ~r(s(t)) + d(t)~nr(s(t)). (5.1)

41

(�, �)�⃗
�⃗

�

� ⃗
�

�(�)

(�)� ⃗
�(�)

Reference Path
Trajectory
Distance Pattern
Offset Pattern

Figure 5.1: Frenet frame based on the right reference path extracted from the right

lane.

Offset and distance patterns are represented by 5-degree polynomials as given by the

equations

d(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (5.2)

s(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5. (5.3)

We generate a set of trajectories forward simulating various terminal conditions for

offset and distance patterns. ai and bi are calculated using initial conditions [d0, ḋ0, d̈0],

[s0, ṡ0, s̈0] at t0 and terminal conditions [d1, ḋ1, d̈1], [s1, ṡ1, s̈1] at t1 = t0 + ∆T , where

∆T is a preview time in seconds. We use 4 < ∆T < 6 with 0.2 second increments

for our offset and distance patterns. The offset pattern is defined as a quintic function

to control the lateral position. The distance pattern is defined using quartic and quin-

42

tic functions for cruise mode and stop mode, respectively. In cruise mode, we don’t

pay attention to the terminal conditions at longitudinal positions, but rather we focus

on keeping the speed constant around the speed profile set by the behavior planner;

therefore, we set b5 = 0. On the other hand, we specify a longitudinal position as a

terminal condition for the stop mode expecting the car to comfortably slow down and

eventually stop at the specified position.

For the offset pattern, minimizing the lateral speed and acceleration leads to a more

comfortable driving experience, so we choose the terminal conditions [∆d, 0, 0] for

the candidate trajectories, where ∆d = {−0.1, 0, 1.0}m. For cruise mode, we choose

[ṡ1 + ∆ṡ1, s̈1], where ∆ṡ1 = {−0.1, 0, 0.1} m/s and ṡ1 is the target speed set by the

behavior planner. For stop mode, we choose [s1, 0, 0] terminal conditions, where s1

is the stop position.

For all candidate trajectories, we apply a sanity check to see if the candidate is actu-

ally drivable. If there is an overlap between an obstacle grid of the occupancy grid

map and the car’s bounding circle along a trajectory, we conclude that the trajectory

is not drivable. Non-drivable trajectories are eliminated from the trajectory set. If

no drivable trajectory is left, we set the speed to zero until a valid trajectory is found

again. Otherwise, the trajectory with the minimum cost is selected among the surviv-

ing trajectories as the best trajectory and forwarded to the controller for execution.

The cost function C is defined by the equations

C = kpathC
i
path + kdCd + ksCs, (5.4)

Cd = kj

∫ t1

t0

...
d (t)dt+ kx∆T + ky∆d

2, (5.5)

Cs =

kj
∫ t1
t0

...
s (t)dt+ kx∆T + ky∆s

2, if stop mode;

kj
∫ t1
t0

...
s (t)dt+ kx∆T + ky∆ṡ

2, if cruise mode,
(5.6)

where Cd and Cs are the costs from offset and distance patterns, respectively. Both

terms include integral of jerks, preview times, and displacement of terminal condi-

43

tions. In multi-lane settings, Ci
path is the lane cost for ith lane. For our scenarios, we

have only two lanes; therefore, we assign a higher cost to the left lane so as to prevent

the car from occupying the left lane when the right lane is free as shown in Figure 5.2.

In this way, the car automatically shifts to the left lane when the right lane is blocked.

Similarly, the car chooses the right lane when it is available as it would be less costly

than driving on the left lane. We use kj = kx = 0.1 and kd = ks = kpath = 1.0 for

our cost evaluations.

5.2 Trajectory Execution

We use pure pursuit control algorithm to track the given optimal trajectory. The al-

gorithm relies on the nonholonomic constraints of the car. Let car configuration be

q = [x y θ]T , where (x, y) is the position and θ is the orientation of the car. Nonholo-

nomic constraints satisfy the equation

ẋ sin(θ)− ẏ cos(θ) = 0 (5.7)

such that longitudinal and lateral forces applied on the car tires are always smaller

than the maximum friction between the tires and the ground [35]. In other words we

assume the car does not slip. With these constraints, we estimate the steering angle

in terms of turning radius R and the wheelbase of the car Lb from Figure 5.3 by the

equation

δ = tan−1(
Lb
R

). (5.8)

Given an optimal trajectory, we first find a point ahead of the car on the trajectory

such that the distance between the point and the car is the smallest distance greater

than a lookahead distance L. This is illustrated in Figure 5.4.

From the figure, we write down the following equations:

L2 = x2L + y2L, (5.9)

44

R2 = a2 + x2L, (5.10)

R = a+ yL, (5.11)

sinα =
yL
L
. (5.12)

Combining (5.9), (5.10), and (5.11), we obtain

R =
L2

2yL
. (5.13)

Substituting (5.12) in (5.13), we obtain turning radius R in terms of feedback angle

α and lookahead distance L as given by the equation

R =
L

2 sinα
. (5.14)

Feedback angle α is computed using the car configuration q = [x y θ]T and the

position of the lookahead point (xp, yp) in the world coordinates by the equation

α = tan−1(
yp − y
xp − x

)− θ. (5.15)

Note that we take the midpoint of the front axle as the car position in the world

coordinates.

Finally, using (5.8) and (5.14), we derive steering angle δ in terms of feedback angle

alpha, constant wheelbase Lb, and lookahead distance L given by

δ = tan−1(
2Lb sinα

L
). (5.16)

In order to tune the controller, we need to choose a lookahead distance L. Kim et

al. suggests L = 2Rmin, where Rmin = Lb

tan(δmax)
[35]. For our car, the max steering

45

angle δmax = 0.558 radians and the wheelbase Lb = 0.325 meters. Therefore, we use

L = 1.04 meters. Figure 5.5 illustrates the relation between Rmin and L.

One problem with (5.16) is that it does not account for the speed. As the speed

increases, steering angle δ becomes more sensitive to the feedback angle α [35]. We

address this problem by adding a speed factor to lookahead distance L in the equation

δ = tan−1(
2Lb sinα

L+ kv
), (5.17)

where v is the recommended speed by the trajectory planner, k is the look forward

gain. We use k = 1.

We compute a steering angle δ every time we receive an odometry message, which is

published at 15 Hz and contains the current car configuration information.

46

(a)

(b)

(c)

Figure 5.2: Example multi-lane driving scenarios. The thick blue trajectory is the

optimal trajectory for different cases. (a) The right lane is blocked, so the car attempts

to change lane to the left for overtaking. (b) The right lane is still blocked, so the car

keeps occupying the left lane. (c) Because the right lane is less costly when both lanes

are available, the car shifts back to right lane.

47

�

�

��
�

�

Figure 5.3: Estimation of steering angle in terms of turning radius R and wheelbase

Lb.

��

�

�
�� �����

�����

������

������

�

�

�

(,)�� ��

(�, �)

Figure 5.4: Illustration of lookahead distance L and feedback angle α.

48

����

�

����
Look-
ahead
point B

Look-
ahead
point A

�����

�����

Figure 5.5: Illustration of lookahead distance L and minimum turning radius Rmin

for tuning the pure pursuit controller.

49

50

CHAPTER 6

EXPERIMENTS AND RESULTS

We conducted various experiments for different scenarios in the simulation and real

miniature courses. In this chapter, we introduce our courses and datasets collected

from the courses. We evaluate our semantic segmentation and classification deep

learning models based on these datasets. We then demonstrate the behavior of our car

on different traffic scenarios.

6.1 Race Courses and Datasets

Our experiments are based on four different courses. The first course is the course

provided by OpenZeka two days before the competition, so it was not available for

use during the development. The second course is the one we constructed in our lab-

oratory, which is spatially no larger than the bridge area of the actual competition

course. We used it to collect simple images and test our hardware setup to ensure

the car is functioning properly. The third one was developed in Gazebo simulation

environment similar to the competition course. We developed the fourth course in the

simulation to semi-automatically collect extra traffic sign images. Figure 6.1 illus-

trates the courses with semantic segmentation annotations.

We split semantic segmentation dataset into training and testing sets as shown in Table

6.1. For classification dataset, we started with a collection of relevant signs from

existing datasets [16, 17, 18, 19, 20]. Then, we expand the dataset by automatically

cropping the sign patches from the images collected from all our four courses as the

car drives itself. The new sign patches are manually arranged and merged into the

existing classification dataset. Details of the final classification dataset is presented in

51

(a) Course 1 (b) Course 2

(c) Course 3 (d) Course 4

Figure 6.1: Example scenes from the courses. Course 1 is the official competition

course. Course 2 is a small track constructed in the laboratory. Course 3 is a simu-

lation of Course 1. Course 4 is used to semi-automatically collect extra traffic sign

images. It is not used for training or testing the semantic segmentation model.

Table 6.2.

6.2 Perception Evaluation

We evaluate our semantic segmentation model using IoU, Precision, Recall, and F1

scores for each class given in Table 6.3. Despite the fact that we used our own dataset,

we compare our lane segmentation results to the results reported by Barnes et al. [46]

and Meyer et al. [6] as they are mostly relevant. For ego lane, which is the main

enabler for driving, Barnes et al. [46] achieve up to 85% IoU and Meyer et al. [6]

achieve 80% IoU. We achieved 88% IoU on our dataset. However, note that our lanes

are more obvious compared to real traffic scenes. In real scenes, lane lines are often

obscured or worn-out. For the same reason, our results for neighboring lanes (i.e.,

52

Table 6.1: Traffic scene semantic segmentation dataset.

Course Training Testing

Course 1 2249 212

Course 2 169 10

Course 3 230 29

Total 2648 251

right and left lanes) are better than the corresponding results presented by Meyer et

al. [6] for opposite and parallel lanes. Our ego lane precision, recall, and F1 scores

are also comparable to the results provided by these studies.

One can notice from Table 6.3 that the right lane IoU is considerably smaller than

that of the other lanes and road side. This is because right lane is underrepresented in

the dataset as we most of the time drive the car on the right lane, effectively using it

as the ego lane. The same reason is also applicable for traffic signs. Traffic signs are

small, rare, and often located towards the edge of the images.

For traffic sign detection, we run a classification model on top of the semantic seg-

mentation that proposes regions to the classification network. Table 6.4 presents the

detailed performance metrics of our 97.45% accurate classifier.

We find adding an extra negative class helpful to improve overall classification per-

formance. Nonetheless, Negative class also has false negatives lowering its recall as

given in Table 6.4. In other words, a non-traffic sign region can still be classified as a

traffic sign as shown in Figure 6.4.

In order to evaluate our traffic sign detection performance we use mAP measure de-

fined in PASCAL VOC 2012 competition [47]. Detected signs are first sorted by

decreasing classification confidence and matched up with ground truth signs. If the

matched pair achieves IoU≥ 0.5 and has the same class label, the match is considered

to be a true positive. Then using this information, we build a precision/recall curve

with monotonically decreasing precision. Next, AP for the class label is computed

by numerically integrating the area under the curve. Finally, we compute mAP as the

53

Table 6.2: Traffic sign classification dataset.

Class Training Testing Auto-cropped

PedestrianCrossing 704 89 470

KeepLeft 844 83 594

LooseGravel 533 60 593

NoEntry 502 83 306

Parking 497 90 237

ParkingSlot 1730 60 1790

RoadWork 1741 86 237

StraightOrRight 1106 89 848

TrafficLightGreen 422 76 192

TrafficLightRed 1147 72 1095

TurnLeft 817 93 502

Negative 984 60 1044

Total 11027 961 7908

mean of all APs [48]. Figure 6.2 shows APs for all classes and their false positive

rates excluding Negative class.

Figure 6.3 and Figure 6.4 visualize segmentation and sign detection results on the test

images taken from real courses, Course 1 and Course 2.

Figure 6.5 presents plots to compare autonomous driving with a manual drive on

Course 3. When the car sees a red light it decelerates and stops at time t = 20s.

Sudden speed jump during the deceleration is due to an instantaneous lose of the red

light. When it gets closer to the red light, it detects it back and finally stops. At

t = 40s the car detects road work and transitions to its slow speed state and performs

a left lane change. At t = 60s, it reaches back to the right lane and starts to take a

left turn. At t = 70s, it once more transitions to slow speed due to a loose gravel sign

detection. Between 85s and 95s, the car overtakes a static obstacle blocking the left

lane and it is manually stopped when it is back to the right lane.

Figures 6.6, 6.7, 6.8, and 6.9 further illustrate various driving scenarios by providing

54

Table 6.3: Semantic segmentation test results.

Class IoU Precision Recall F1

Background 94.43% 97.81% 96.43% 97.12%

Ego Lane 88.48% 92.29% 93.18% 92.73%

Left Lane 83.52% 87.83% 94.49% 91.04%

Road Side 71.97% 78.49% 89.58% 83.67%

Right Lane 51.32% 55.60% 90.19% 68.79%

Traffic Sign 58.12% 79.52% 71.81% 75.47%

All 74.64% 81.92% 89.28% 84.80%

3D point cloud of traffic scenes and processed front view camera images.

55

Table 6.4: Traffic sign classification test results.

Class Precision Recall F1-score

KeepLeft 100.00% 100.00% 100.00%

LooseGravel 100.00% 100.00% 100.00%

NoEntry 95.40% 100.00% 97.65%

Parking 98.86% 96.67% 97.75%

ParkingSlot 84.51% 100.00% 91.60%

PedestrianCrossing 97.72% 69.63% 97.17%

RoadWork 95.50% 98.84% 97.14%

StraightOrRight 100.00% 97.75% 98.86%

TrafficLightGreen 98.68% 97.37% 98.01%

TrafficLightRed 100.00% 97.22% 98.60%

TurnLeft 98.91% 97.85% 98.37%

Negative 100.00% 85.00% 91.90%

(a) (b)

Figure 6.2: (a) Average precision for traffic sign detection. (b) True and false predic-

tion rates for each sign class.

56

Figure 6.3: Sample true sign detections on real courses.

57

Figure 6.4: Sample false sign detections on real courses.

58

(a) Speed vs. time plot. (b) Steering vs. time plot.

(c) Position x-y plot.

Figure 6.5: Comparison between autonomous driving and a human driver.

59

Figure 6.6: Straight road driving scenarios. For the first row, the car is configured

to follow lanes and detect signs without taking any action for detections. Note that

the perception component is not trained to drive on this course, but it still manages to

drive.

Figure 6.7: Sharp turning scenarios.

60

Figure 6.8: Lane change scenarios.

61

Figure 6.9: Stop scenarios.

62

CHAPTER 7

CONCLUSION

This thesis aimed to investigate autonomous car software architectures for urban driv-

ing scenarios. Based on the existing studies, decomposed architectures prove to be

more successful in city traffic compared to end-to-end solutions. As a budget-friendly

alternative, we developed a mini autonomous car with a decomposed architecture for

urban scenarios including seven different traffic signs, traffic signals, bridge, over-

taking a stationary car, and parking with no predefined map. These scenarios to-

gether makes the problem too complicated to be addressed with the existing mini

autonomous car solutions.

Due to lack of traffic scene segmentation datasets for mini cars, we started with cre-

ating a dataset. Then we trained a U-net based model to learn ego lane, right lane,

left lane, road side, and traffic signs semantics from the camera images. Learning

lane semantics for right and left lanes along the with ego lane enabled the trajectory

planner to implement a lane change policy such that it assigns more cost to occupying

left lane when the right lane is available. We showed that we achieved 88% IoU for

the ego lane, which is comparable to the related work.

For the traffic sign and signal classification, we first implemented a region proposal

algorithm relying on precision of the traffic sign segmentation. Then we merged

existing relevant datasets for our scenarios and augmented it by cropping the sign

region proposals. Finally, we trained another relatively small deep learning model

with the final dataset and achieved 97% accuracy.

We implemented a finite state machine for invoking different behaviors of our car.

This behavior planner interprets environmental perception for the trajectory planner.

63

The trajectory planner finds an optimum trajectory for desired behavior such as target

speed or target point to stop, for example, due to a red light.

Our work can be improved in a number of ways. For the perception side, the sign

detection clearly has room for improvement. There are many different approaches

to sign detection with varying resource demands. These approaches can be evalu-

ated on the target platform, by modifying the approaches if necessary. An interesting

approach would be to train a multi-task model for learn lane semantics as well as

detecting and classifying traffic signs. For the planning side, although our trajectory

planner works well for structural environments, it is not suitable for unstructured envi-

ronments such as parking lots. Algorithms such as hybrid A* and state lattice planner

would be better choices for parking lot navigation. In addition, we only deal with

static obstacles in the current study. For responding to dynamic obstacles, we need

an additional prediction component that estimates the trajectories of moving objects.

The trajectory planner should also take these trajectories into account. Moreover, the

trajectory planner should be extended with distance keeping mode so that the behav-

ior planner can choose to follow moving vehicles with a safety margin. Last, we only

follow lanes and directions provided by traffic signs with no sense of global direction.

Integration of a coarse map would enable the car to make global plans between cur-

rent and destination locations so that it could evaluate multiple directions to find the

shortest path to the destination.

64

REFERENCES

[1] T. Holstein, G. Dodig-Crnkovic, and P. Pelliccione, “Ethical and social aspects

of self-driving cars,” ArXiv, vol. abs/1802.04103, 2018. 1

[2] M. Buehler, K. Iagnemma, and S. Singh, “The 2005 darpa grand challenge: The

great robot race,” 2007. 1

[3] M. Buehler, K. Iagnemma, and S. Singh, “The darpa urban challenge: Au-

tonomous vehicles in city traffic, george air force base, victorville, california,

usa,” in The DARPA Urban Challenge, 2009. 1

[4] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End

to end learning for self-driving cars,” ArXiv, vol. abs/1604.07316, 2016. 1, 17,

18

[5] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao, “Deepdriving: Learning af-

fordance for direct perception in autonomous driving,” 2015 IEEE International

Conference on Computer Vision (ICCV), pp. 2722–2730, 2015. 1, 2

[6] A. Meyer, N. O. Salscheider, P. F. Orzechowski, and C. Stiller, “Deep semantic

lane segmentation for mapless driving,” 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pp. 869–875, 2018. 2, 4, 19, 30,

52, 53

[7] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, “Deeppicar: A low-cost

deep neural network-based autonomous car,” 2018 IEEE 24th International

Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pp. 11–21, 2017. 2, 18

[8] T.-D. Do, M.-T. Duong, Q.-V. Dang, and M.-H. Le, “Real-time self-driving car

navigation using deep neural network,” 2018 4th International Conference on

Green Technology and Sustainable Development (GTSD), pp. 7–12, 2018. 2, 18

65

[9] B.-C.-Z. Blaga, M.-A. Deac, R. W. Y. Al-Doori, M. Negru, and R. Danescu,

“Miniature autonomous vehicle development on raspberry pi,” 2018 IEEE 14th

International Conference on Intelligent Computer Communication and Process-

ing (ICCP), pp. 229–236, 2018. 2

[10] S. Karaman, A. Anders, M. T. Boulet, J. R. Connor, K. Gregson, W. Guerra,

O. Guldner, M. Mohamoud, B. Plancher, R. T. Shin, and J. Vivilecchia, “Project-

based, collaborative, algorithmic robotics for high school students: Program-

ming self-driving race cars at mit,” 2017 IEEE Integrated STEM Education

Conference (ISEC), pp. 195–203, 2017. 2

[11] “Openzeka marc.” https://openzeka.com/marc/. Accessed: 2019-07-

31. 2

[12] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang,

“The apolloscape dataset for autonomous driving,” 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1067–

10676, 2018. 4, 16, 19

[13] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban

scene understanding,” 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3213–3223, 2016. 4, 19

[14] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

kitti vision benchmark suite,” 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 3354–3361, 2012. 4, 19

[15] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The mapillary vistas

dataset for semantic understanding of street scenes,” 2017 IEEE International

Conference on Computer Vision (ICCV), pp. 5000–5009, 2017. 4, 19

[16] R. Timofte, K. Zimmermann, and L. V. Gool, “Multi-view traffic sign detection,

recognition, and 3d localisation,” 2009 Workshop on Applications of Computer

Vision (WACV), pp. 1–8, 2009. 4, 19, 32, 51

[17] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Bench-

marking machine learning algorithms for traffic sign recognition,” Neural net-

66

https://openzeka.com/marc/

works : the official journal of the International Neural Network Society, vol. 32,

pp. 323–32, 2012. 4, 19, 32, 51

[18] V. Shakhuro and A. Konushin, “Russian traffic sign images dataset,” Computer

Optics, vol. 40, pp. 294–300, 2016. 4, 19, 51

[19] C. G. Serna and Y. Ruichek, “Classification of traffic signs: The european

dataset,” IEEE Access, vol. 6, pp. 78136–78148, 2018. 4, 19, 51

[20] S. Maldonado-Bascón, S. Lafuente-Arroyo, P. Gil-Jiménez, H. Gómez-Moreno,

and F. López-Ferreras, “Road-sign detection and recognition based on support

vector machines,” IEEE Transactions on Intelligent Transportation Systems,

vol. 8, pp. 264–278, 2007. 4, 19, 51

[21] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. M. Oakley,

M. Palatucci, V. R. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,

C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini,

G. R. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. V. Nefian, and P. Mahoney,

“Stanley: The robot that won the darpa grand challenge,” J. Field Robotics,

vol. 23, pp. 661–692, 2006. 5, 9, 11, 22

[22] M. Montemerlo, J. U. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,

D. Hähnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,

D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,

I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and

S. Thrun, “Junior: The stanford entry in the urban challenge,” in The DARPA

Urban Challenge, 2009. 5, 11, 22

[23] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,

A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on board: Enabling au-

tonomous vehicles with embedded systems,” 2018 ACM/IEEE 9th International

Conference on Cyber-Physical Systems (ICCPS), 2018. 5, 14, 22

[24] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory genera-

tion for dynamic street scenarios in a frenét frame,” 2010 IEEE International

Conference on Robotics and Automation, pp. 987–993, 2010. 5, 13, 41

67

[25] G. M. Hoffmann, C. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous au-

tomobile trajectory tracking for off-road driving: Controller design, experimen-

tal validation and racing,” 2007 American Control Conference, pp. 2296–2301,

2007. 11

[26] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for au-

tonomous vehicles in unknown semi-structured environments,” I. J. Robotics

Res., vol. 29, pp. 485–501, 2010. 12

[27] J. Petereit, T. Emter, C. W. Frey, T. Kopfstedt, and A. Beutel, “Application of

hybrid a* to an autonomous mobile robot for path planning in unstructured out-

door environments,” in Robotics; Proceedings of ROBOTIK 2012; 7th German

Conference on, pp. 1–6, 2012. 12

[28] K. Yoneda, T. Iida, T. Kim, R. Yanase, M. A. Aldibaja, and N. Suganuma, “Tra-

jectory optimization and state selection for urban automated driving,” Artificial

Life and Robotics, vol. 23, pp. 474–480, 2018. 13, 41

[29] M. Quigley, B. P. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating system,” 2009.

14, 22

[30] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 15

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in ECCV, 2016. 15

[32] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile

robot motion planning in state lattices,” J. Field Robotics, vol. 26, pp. 308–333,

2009. 15, 16

[33] C. Urmson, J. Anhalt, D. Bagnell, C. R. Baker, R. A. Bittner, J. M. Dolan,

D. Duggins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,

M. Hebert, T. Howard, A. Kelly, D. Kohanbash, M. Likhachev, N. W. Miller,

K. M. Peterson, R. Y. Rajkumar, P. E. Rybski, B. Salesky, S. Scherer, Y. Woo-

Seo, R. G. Simmons, S. Singh, J. M. Snider, A. Stentz, R. Whittaker, J. Ziglar,

H. Bae, B. Litkouhi, J. Nickolaou, V. Sadekar, S. Zeng, J. Struble, and M. D.

68

Taylor, “Tartan racing: A multi-modal approach to the darpa urban challenge,”

2007. 15

[34] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning

for autonomous driving with a conformal spatiotemporal lattice,” 2011 IEEE

International Conference on Robotics and Automation, 2011. 15

[35] D. Kim, C.-S. Han, and J. Y. Lee, “Sensor-based motion planning for path track-

ing and obstacle avoidance of robotic vehicles with nonholonomic constraints,”

Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-

chanical Engineering Science, 2013. 15, 19, 44, 45, 46

[36] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and

Q. Kong, “Baidu apollo em motion planner,” ArXiv, vol. abs/1807.08048, 2018.

16, 17

[37] “Vesc – open source esc.” http://vedder.se/2015/01/

vesc-open-source-esc/. Accessed: 2019-07-01. 22

[38] K. Wada, “labelme: Image Polygonal Annotation with Python.” https://

github.com/wkentaro/labelme, 2016. 27

[39] S. Humbarwadi, “Street Scene Parsing Using Semantic Segmen-

tation.” https://github.com/srihari-humbarwadi/

street-scene-parsing-using-semantic-segmentation,

2018. 28

[40] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for

biomedical image segmentation,” ArXiv, vol. abs/1505.04597, 2015. 28

[41] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-

sorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Soft-

ware available from tensorflow.org. 30, 33

69

http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/01/vesc-open-source-esc/
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://github.com/srihari-humbarwadi/street-scene-parsing-using-semantic-segmentation
https://github.com/srihari-humbarwadi/street-scene-parsing-using-semantic-segmentation

[42] F. Chollet et al., “Keras.” https://keras.io, 2015. 30, 33

[43] A. Gupta, R. Puri, M. K. Verma, S. Gunjyal, and A. Kumar, “Performance com-

parison of object detection algorithms with different feature extractors,” 2019

6th International Conference on Signal Processing and Integrated Networks

(SPIN), pp. 472–477, 2019. 31

[44] S. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. D. Reid, and S. Savarese,

“Generalized intersection over union: A metric and a loss for bounding box

regression,” ArXiv, vol. abs/1902.09630, 2019. 31

[45] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

32

[46] D. Barnes, W. P. Maddern, and I. Posner, “Find your own way: Weakly-

supervised segmentation of path proposals for urban autonomy,” 2017 IEEE

International Conference on Robotics and Automation (ICRA), pp. 203–210,

2016. 52

[47] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisser-

man, “The pascal visual object classes (voc) challenge,” International Journal

of Computer Vision, vol. 88, pp. 303–338, 2010. 53

[48] K. Wada, “Mean Average Precision.” https://github.com/Cartucho/

mAP, 2019. 54

70

https://keras.io
https://github.com/Cartucho/mAP
https://github.com/Cartucho/mAP

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition
	Contributions
	Organization

	Background and Related Work
	Architectural Overview
	Hardware Configuration
	Software Architecture
	Simulation Environment

	Scene Interpretation
	Environmental Perception
	Semantic Segmentation
	Lane Detection
	Sign Detection
	Obstacle Detection

	Behavior Planning

	Navigation
	Trajectory Planning
	Trajectory Execution

	Experiments and Results
	Race Courses and Datasets
	Perception Evaluation

	Conclusion
	REFERENCES

