# NANOPARTICLE-STABILIZED CO2 FOAMS TO IMPROVE CONVENTIONAL CO2 EOR PROCESS AT BATI RAMAN FIELD

# A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAIBE ESRA SAFRAN

# IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PETROLEUM AND NATURAL GAS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

# NANOPARTICLE-STABILIZED CO2 FOAMS TO IMPROVE CONVENTIONAL CO2 EOR PROCESS AT BATI RAMAN FIELD

submitted by SAIBE ESRA SAFRAN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Petroleum and Natural Gas Engineering Department, Middle East Technical University by,

| Prof. Dr. Halil Kalıpçılar<br>Dean, Graduate School of <b>Natural and Applied Sciences</b>   |  |
|----------------------------------------------------------------------------------------------|--|
| Assoc. Prof. Dr. Çağlar Sınayuç<br>Head of Department, <b>Petroleum and Natural Gas Eng.</b> |  |
| Prof. Dr. Mustafa Verşan Kök<br>Supervisor, <b>Petroleum and Natural Gas Eng., METU</b>      |  |
| Examining Committee Members:                                                                 |  |
| Assoc. Prof. Dr. Çağlar Sınayuç<br>Petroleum and Natural Gas Eng., METU                      |  |
| Prof. Dr. Mustafa Verşan Kök<br>Petroleum and Natural Gas Eng., METU                         |  |
| Prof. Dr. Mahmut Parlaktuna<br>Petroleum and Natural Gas Eng., METU                          |  |
| Assoc. Prof. Dr. Gürşat Altun<br>Petroleum and Natural Gas Eng., ITU                         |  |
| Assoc. Prof. Dr. Emre Artun<br>Petroleum and Natural Gas Eng., METU NCC                      |  |
|                                                                                              |  |

Date: 04.09.2019

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Surname: Saibe Esra Safran

Signature:

### ABSTRACT

## NANOPARTICLE-STABILIZED CO2 FOAMS TO IMPROVE CONVENTIONAL CO2 EOR PROCESS AT BATI RAMAN FIELD

Safran, Saibe Esra Doctor of Philosophy, Petroleum and Natural Gas Engineering Supervisor: Prof. Dr. Mustafa Verşan Kök

September 2019, 111 pages

Because of the natural fractured characteristic of the B. Raman field which is the largest field of Turkey, already existing  $CO_2$  injection system does not work at desired efficiency. Thus, the main purpose of this project is to control  $CO_2$  mobility in the reservoir by creating nanoparticle stabilized  $CO_2$  foam using the property of nanoparticles to place at the gas-water interface permanently and to achieve additional oil recovery at B. Raman.

For this purpose, first nanoparticle dispersion stabilization and foamability were evaluated. Dealing with the nanoparticle due to their high surface energy is not easy as bulk material. They have high tendency to agglomerate and/or flocculate. Different type of nanosilica was considered. Effect of the nanoparticle concentration, salinity, temperature and pH on the foamability and dispersion stabilization were examined. This studies showed that half hydrophobicity, salt addition and increased concentration have positive effect on the foamability but salinity above 1% generated flocculation. Also, even if the 50 % hydrophobic nanosilica called H30 has better foamability, it could not be stabilized. The particle size of the silica in H30 dispersion was not small enough to flow through the B. Raman core sample. The effect of the

pressure, phase ratio and flow rate on the foam formation were also studied. Better foam was observed at the observation cell when CO<sub>2</sub>: nanodispersion phase ratio was 1. Also, it was found that the pressure should be above 1100 psi where CO<sub>2</sub> was in the supercritical phase to create foam with current core flooding system. The phase envelop of the Dodan gas was created by using PVTSim program. XRF test results before and after flooding showed that not any adsorption occurred into core sample. Then, the oil recovery test was conducted with suitable nanoparticles which were PEG and CC301. First, CO<sub>2</sub> injection and then WAG were applied to the core sample to express B. Raman field case and obtained extra production after CO<sub>2</sub> injection with WAG application. NWAG (nanoparticle dispersion alternating gas) at 650 psi and foam at 1200 psi was tested, later. The results indicated that foam application was successful if appropriate conditions existed. On the other hand, not a significant production was obtained with NWAG application. Interfacial measurements were also studied between both nanodispersion-CO<sub>2</sub> and nanodispersion-oil. Nanoparticles were not changing IFT markedly even if they were located at the interface of the water and CO<sub>2</sub> as the surfactant. However, a significant decrease of the IFT was obtained between water and oil in the presence of nanoparticles

Keywords: Nanoparticle, Foam, CO2 injection, Oil recovery, Batı Raman, EOR

## BATI RAMAN SAHASINDAKİ CO2 EOR PROSESİNİ NANOPARÇACIK İLE STABİL EDİLMİŞ CO2 KÖPÜĞÜ KULLANARAK İYİLEŞTİRME

Safran, Saibe Esra Doktora, Petrol ve Doğal Gaz Mühendisliği Tez Danışmanı: Prof. Dr. Mustafa Verşan Kök

Eylül 2019, 111 sayfa

Türkiye'nin en büyük petrol sahası olan B.Raman'ın doğal çatlaklı yapısından kaynaklı, halihazırda var olan  $CO_2$  enjeksiyon sistemi istenilen verimde çalışmamaktadır. Bu sebeple, çalışmanın amacı, nanoparçacıkların gaz-su arayüzeyine kalıcı tutunabilmeleri özelliklerini kullanarak, nanoparçacık ile stabil edilmiş  $CO_2$  köpüğü ile  $CO_2$ 'in mobilitesini kontrol etmek ve B. Raman'da ilave petrol kurtarımı sağlamaktır.

Bu amaçla, öncelikle, naoparçacık dispersiyonunun stabilitesi ve köpük yapma yetisi değerlendirilmiştir. Farklı yapıda nanoparçacık ile çalışılmıştır. Köpük yapma yetisi ve dispersiyon stabilizasyonu üzerine nanoparçacık konsantrasyonun, tuzluluğun, sıcaklığın ve pH'ın etkisi incelenmiştir. Bu çalışma, yarı hidrofobik özelliğin, tuz eklemesinin ve konsantrasyon artışının köpüklenme üzerine pozitif etki ettiğini göstermiştir. Ayrıca, H30 olarak adlandırılan ve %50 hidrofobik özelliğe sahip nanosilikanın en iyi köpük yaptığı tespit edilmesine karşın dispersiyonu stabil hale getirilememiştir. H30 içeren dispersiyonda silikanın parçacık boyutu B.Raman karotu içinde akabilecek kadar küçük değildir. Basınç, faz oranı ve toplam akış hızının köpük oluşumu üzerine etkileri de çalışılmıştır. CO<sub>2</sub>:nanodispersiyon faz oranının 1 olduğu noktada en iyi köpük elde edilmiştir. Ayrıca, mevcut karot öteleme sisteminde köpük

oluşturabilmek için basıncın karbondioksitin superkritik fazda olduğu 1100 psi'ın üzerinde olması gerektiği görülmüştür. Dodan gazının faz diagramı PVTSim programı kullanılarak oluşturulmuştur. Öteleme öncesi ve sonrasında XRF cihazı ile dispersiyonda silika konsantrasyonu test edilmiş ve karot içerisinde bir adsorbsiyonun olmadığı sonucuna varılmıştır. Sonrasında, uygun olan PEG ve CC301 dispersiyonları ile petrol kurtarım testleri yapılmıştır. Köpük enjeksiyonu öncesi, B. Raman saha koşullarını en iyi şekilde yaratabilmek için önce CO<sub>2</sub> sonra WAG uygulaması yapılmıştır ve WAG uygulaması ile CO<sub>2</sub> enjeksiyonu sonrasında ilave petrol üretimi elde edilmiştir. Son olarak 650 psi'da NWAG(nanoparçacık dispersiyonu ve gazın ardışık basımı) ve 1200 psi da köpük uygulanmıştır. Sonuçlar, eğer uygun ortam mevcut ise köpük uygulamasının başarılı olduğunu göstermiştir. Diğer taraftan, NWAG uvgulaması ile belirgin bir üretim yapılamamıştır. Nanodispersiyon-CO<sub>2</sub> ve nanodispersiyon - petrol arasındaki ara yüzey gerilimleri de ölçülmüştür. Nanoparçacıklar, su – gaz ara yüzeyine tutunmalarına karşın, sürfaktantlar gibi IFT değerlerinde önemli bir düşüşe neden olmamışlardır. Buna karşın, nanoparçacık varlığında, su - petrol ara yüzey geriliminde düşüş elde edilmiştir.

Anahtar Kelimeler: Nanoparçacık, Köpük, CO2 enjeksiyonu, Petrol kurtarımı, Batı Raman, Geliştirilmiş petrol kurtarımı To my lovely daughter, Eliz

### ACKNOWLEDGEMENTS

This study financed by Turkish Petroleum Corporation.

I would first like to show my sincere gratitude to my thesis advisor Dr. Mustafa Verşan KÖK for the continuous support and sharing expertise. He steered me in the right direction whenever he thought I needed it during this study.

Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Mahmut PARLAKTUNA and Dr. Gürşat ALTUN for their insightful comments and guidance.

I would also express my warm thanks to the whole member of the Reservoir Technology Department of the Turkish Petroleum Corporation R&D Center especially to Uğur KARABAKAL and Can ERCAN. During my research, they were always with me and shared their pearls of wisdom.

Moreover, I am thankful to Mustafa OYMAEL and Irem Yaşar BAYRAM for their supports during experimental studies.

I must also express my very profound gratitude to my family: my husband, my little angel and my friends for the unceasing encouragement and spiritual support.

Finally, many thanks to one and all, who directly or indirectly, have lent their hand in this study.

# **TABLE OF CONTENTS**

| ABSTRACT                                                             | V     |
|----------------------------------------------------------------------|-------|
| ÖZ                                                                   | vii   |
| ACKNOWLEDGEMENTS                                                     | X     |
| TABLE OF CONTENTS                                                    | xi    |
| LIST OF TABLES                                                       | XV    |
| LIST OF FIGURES                                                      | . xvi |
| LIST OF ABBREVIATIONS                                                | . xix |
| LIST OF SYMBOLS                                                      | . xxi |
| CHAPTERS                                                             |       |
| 1. INTRODUCTION                                                      | 1     |
| 2. LITERATURE REVIEW                                                 | 3     |
| 2.1. CARBON DIOXIDE ENHANCED OIL RECOVERY                            | 3     |
| 2.1.1. History of CO <sub>2</sub> EOR                                | 4     |
| 2.1.2. Properties of CO <sub>2</sub>                                 | 4     |
| 2.1.3. Mechanism                                                     | 5     |
| 2.1.3.1. Oil swelling and viscosity reduction in oil                 | 5     |
| 2.1.3.2. Reduction of the interfacial tension between oil and water  | 6     |
| 2.1.3.3. Solution gas drive                                          | 6     |
| 2.1.3.4. Extraction and vaporization of the light oil component      | 6     |
| 2.1.3.5. Effect of the weak acid                                     | 6     |
| 2.1.4. Techniques of CO <sub>2</sub> Injection Process               | 6     |
| 2.1.4.1. Continuous Miscible and Immiscible CO <sub>2</sub> Flooding | 7     |

|     | 2.1.4.2. Cyclic CO <sub>2</sub> Flooding                                | 8            |
|-----|-------------------------------------------------------------------------|--------------|
|     | 2.1.4.3. Water Alternating Gas (WAG)                                    | 8            |
|     | 2.1.4.4. CO <sub>2</sub> Foam                                           | 10           |
|     | 2.1.5. Worldwide CO <sub>2</sub> Flood Projects                         | 10           |
| 2   | 2.2. FOAM                                                               | 11           |
|     | 2.2.1. Surfactant Stabilized CO <sub>2</sub> Foam                       | 13           |
|     | 2.2.2. Particle Stabilized CO <sub>2</sub> Foam in Oil and Gas Industry | 14           |
| 2   | 2.3. BATI RAMAN FIELD                                                   | 19           |
| 3.  | STATEMENT OF THE PROBLEM                                                | 23           |
| 4.  | MATERIALS AND METHODS                                                   | 25           |
| Z   | 4.1. MATERIALS                                                          |              |
|     | 4.1.1. Nanoparticles                                                    | 25           |
|     | 4.1.2. Reservoir Fluids                                                 |              |
|     | 4.1.3. Core Samples                                                     | 27           |
| Z   | 4.2. EXPERIMENTAL SETUP AND PROCEDURE                                   | 27           |
|     | 4.2.1. Rock Samples Preparation and Routine Core Analysis               | 27           |
|     | 4.2.2. Zetasizer                                                        |              |
|     | 4.2.3. Core Flood System                                                |              |
|     | 4.2.4. Interfacial Tension (IFT)                                        |              |
|     | 4.2.5. X-Ray Floroscence Spectroscopy (XRF)                             |              |
|     | 4.2.6. Scanning Electron Microscope/ Energy Dispersive                  | Spectrometry |
| 5   | RESULTS AND DISCUSSION                                                  |              |
| J . |                                                                         |              |

| 5      | .1. NANOSILICA DISPERSION STABILIZATION, FOAMABILITY                       | AND       |
|--------|----------------------------------------------------------------------------|-----------|
| Р      | PARAMETERS EFFECT                                                          | 35        |
|        | 5.1.1. Stabilization and Foamability                                       | 35        |
|        | 5.1.2. Effect of the Salinity                                              | 38        |
|        | 5.1.3. Effect of the Concentration                                         | 38        |
|        | 5.1.4. Effect of the Temperature                                           | 39        |
|        | 5.1.5. Effect of the pH                                                    | 39        |
| 5<br>P | 2.2. NANOSILICA DISPERSION STABILIZATION, FOAMABILITY<br>PARAMETERS EFFECT | AND<br>44 |
| 5      | .3. PVT SIMULATION                                                         | 47        |
| 5      | .4. FOAM GENERATION FLOOD TEST                                             | 49        |
| 5      | .5. OIL RECOVERY                                                           | 61        |
|        | 5.5.1. Oil Recovery with CC301 Dispersion                                  | 61        |
|        | 5.5.2. Oil Recovery with PEG Dispersion                                    | 64        |
| 5      | .6. IFT MEASUREMENT                                                        | 70        |
|        | 5.6.1. IFT between Nanodispersion-CO <sub>2</sub>                          | 70        |
|        | 5.6.2. IFT between Nanodispersion-Oil                                      | 72        |
| 6.     | CONCLUSION AND RECOMMENDATION                                              | 73        |
| RE     | FERENCES                                                                   | 77        |
| A.     | Nanoparticle Data Sheet                                                    | 91        |
| B.     | Test Report of the B.Raman Formation Water and Dodan Gas                   | 97        |
| C.     | Test Report of Nanoparticle Size Distribution                              | 99        |
| D.     | Test Report of the XRF                                                     | 105       |
| E.     | Oil Recovery Test Results                                                  | 106       |

| CURRICULUM | VITAE | . 111 |
|------------|-------|-------|
|------------|-------|-------|

# LIST OF TABLES

# TABLES

| Table 2.1. Number of the worldwide $CO_2$ EOR applications (Koottungal, 2012)10         |
|-----------------------------------------------------------------------------------------|
| Table 2.2. Examples of foam in the oil and gas Industry (Shramm, 1994)15                |
| Table 4.1. Selected nanoparticles and their properties                                  |
| Table 4.2. Test results of B. Raman formation water                                     |
| Table 4.3. Test results of B. Raman oil                                                 |
| Table 4.4. Test results of Dodan gas    27                                              |
| Table 4.5. Experimental conditions of IFT                                               |
| Table 4.6. SEM/EDS experimental conditions                                              |
| Table 5.1. Prepared dispersions for early foam test                                     |
| Table 5.2. Particle size distribution of the dispersions                                |
| Table 5.3. Particle size distribution analysis results before and after pH adjustment43 |
| Table 5.4. Properties of B.Raman field core sample44                                    |
| Table 5.5. Properties of the core sample    45                                          |
| Table 5.6. Results of the XRF analysis    45                                            |
| Table 5.7. Particle size distribution analysis results before and after pH adjustment58 |
| Table 5.8. The properties and the picture of the core sample61                          |
| Table 5.9. Oil recoveries of each step for all experiments                              |
| Table 5.10. IFT between gas-liquid                                                      |
| Table 5.11. IFT between liquid-oil    72                                                |

# LIST OF FIGURES

# FIGURES

| Figure 2.1. Phase diagram of CO2 (Picha, 2007)5                                       |
|---------------------------------------------------------------------------------------|
| Figure 2.2. The process of miscible CO2 EOR process (Verma, 2015)                     |
| Figure 2.3. Illustration of a foam structure (Schramm, 1994)12                        |
| Figure 2.4. The shape of bubbles related to formation methods (Weaire, 1999) 13       |
| Figure 2.5. Foam flow through pores (Talebian, 2014)14                                |
| Figure 2.6. Estimated B. Raman field borders19                                        |
| Figure 2.7. Contour map of the B. Raman field                                         |
| Figure 2.8. Flow diagram of the CO2 injection system                                  |
| Figure 2.9. B. Raman production history                                               |
| Figure 4.1. Porosimeter and permeameter test system                                   |
| Figure 4.2. Core flood test system                                                    |
| Figure 4.3. IFT test system                                                           |
| Figure 4.4. XRF spectroscopy                                                          |
| Figure 4.5. SEM/EDS system                                                            |
| Figure 5.1. Dispersion A) before B) after the early foamability test                  |
| Figure 5.2. Foams after 16 hours of the early foam test                               |
| Figure 5.3. The effect of the NaCl concentration on the foam generated by 1% H30      |
| dispersion A) before B) after C) 1 hour later                                         |
| Figure 5.4. The effect of the NaCl concentration on the foam generated by 0.5% H30    |
| dispersion A) before B) after                                                         |
| Figure 5.5. Dispersion stabilization A) at 25 °C B) two days after at 25 °C) at 65 °C |
| D) 2 days after at 65 °C 40                                                           |
| Figure 5.6. H30 dispersion after 2 days at 65 °C40                                    |
| Figure 5.7. Zeta potential during acid titration41                                    |
| Figure 5.8. Zeta potential during base titration                                      |

| Figure 5.9. B. Raman pore throat size distribution (Karabakal, 2008)42                 |
|----------------------------------------------------------------------------------------|
| Figure 5.10. The effect of the pH on the foam generated by 1 % H30 dispersion A)       |
| before B) after43                                                                      |
| Figure 5.11. Pressure differences during dispersion flooding46                         |
| Figure 5.12. Phase diagram of the Dodan gas48                                          |
| Figure 5.13. Phase diagram of the pure CO248                                           |
| Figure 5.14. Flow diagram of the core flooding system for foam generation test49       |
| Figure 5.15. Pressure differences during simultaneous injection of the formation water |
| and CO <sub>2</sub> at 650 psi 65 °C50                                                 |
| Figure 5.16. Pressure differences during simultaneous injection of the formation water |
| and CO <sub>2</sub> at 1200 psi 65 °C51                                                |
| Figure 5.17. Pressure differences during simultaneous injection of the PEG and CO2     |
| at 650 psi 65 °C54                                                                     |
| Figure 5.18. Pressure differences during simultaneous injection of the PEG and CO2     |
| at 1200 psi 65 °C55                                                                    |
| Figure 5.19. Pressure differences during simultaneous injection of the CC301 and       |
| CO2 at 1200 psi 65 °C                                                                  |
| Figure 5.20. Pressure differences during simultaneous injection of the H30 and CO2     |
| at 1200 psi 65 °C                                                                      |
| Figure 5.21. Sapphire observation cell image A) during the simultaneous injection of   |
| CO2 and formation water B) during the simultaneous injection of CO2 and CC301          |
| dispersion                                                                             |
| Figure 5.22. Foam image A) during the simultaneous injection of CO2 and H30 B)         |
| when covered the observation cell C) when foam go out the system to the atmospheric    |
| condition                                                                              |
| Figure 5.23. Results of the SEM/EDS A) picture of the silica particles B) chemical     |
| analysis60                                                                             |
| Figure 5.24. Flow diagram of the core flooding system for oil recovery test            |
| Figure 5.25. The image of the production after centrifuge which was obtained when      |
| foam was applied64                                                                     |

| Figure 5.26. Oil recoveries in each step of the CC301 experiment                 | . 67 |
|----------------------------------------------------------------------------------|------|
| Figure 5.27. Oil recoveries in each step of the PEG experiment                   | . 68 |
| Figure 5.28. Oil recoveries in total recovery for both CC301 and PEG experiment. | . 69 |
| Figure 5.29. Temperature effect on the IFT                                       | .71  |
| Figure 5.30. Nanosilica effect on IFT                                            | .71  |

# LIST OF ABBREVIATIONS

# ABBREVIATIONS

| AERO    | : 100 % hydrophobic nanosilica dispersion             |
|---------|-------------------------------------------------------|
| B.Raman | : Batı Raman                                          |
| CC301   | : 100 % hydrophilic nanosilica dispersion             |
| $CO_2$  | : carbon dioxide                                      |
| EOR     | : enhanced oil recovery                               |
| H30     | : 50 % hydrophobic nanosilica in powder form          |
| HP      | : high pressure                                       |
| HSE     | : health and safety                                   |
| HT      | : high temperature                                    |
| IFT     | : interfacial tension                                 |
| IOR     | : improved oil recovery                               |
| MERLAB  | : Middle East Technical University Central Laboratory |
| MMP     | : minimum miscibility pressure                        |
| N20     | : 100 % Hydrophilic nanosilica in powder form         |
| Nano    | : nanoparticle                                        |
| NaCl    | : sodium chloride                                     |
| NaOH    | : sodium hydroxide                                    |
| NWAG    | : nanodispersion alternating gas                      |
| OOIP    | : original oil in place                               |
| PECNP   | : polyelectrolyte complex nanoparticles               |
| PEG     | : polyethylene glycol coated nanosilica dispersion    |
| PV      | : pore volume                                         |
| PVTSim  | : pressure volume temperature simulation program      |
| Si      | : silica                                              |
| SWAG    | : simultaneous water and gas                          |
| UNAM    | : National Nanotechnology Research Center             |

| USA | : the United States of Amer | ica |
|-----|-----------------------------|-----|
|-----|-----------------------------|-----|

- WAG : water alternating gas
- XRF : x-ray florescence
- ENG : engineering

# LIST OF SYMBOLS

# SYMBOLS

| C <sub>NaCl</sub>         | : NaCl concentration, % wt.                       |
|---------------------------|---------------------------------------------------|
| $C_{nano}$                | : nanoparticle concentration, % wt.               |
| d                         | : diameter, cm                                    |
| k                         | : effective permeability of reservoir rock, darcy |
| k <sub>air</sub>          | : air permeability, millidarcy                    |
| k <sub>w</sub>            | : water permeability, millidarcy                  |
| L                         | : length, cm                                      |
| Μ                         | : mobility ratio                                  |
| N <sub>ca</sub>           | : capillary number                                |
| Р                         | : pressure, psi                                   |
| Pc                        | : critical pressure, psi                          |
| Q <sub>total</sub>        | : total flow rate, cc/min                         |
| R                         | : particle radius, m                              |
| Tc                        | : critical temperature, °C                        |
| $\mathbf{V}_{\mathrm{p}}$ | : pore volume, cc                                 |
| Wr                        | adsorption energy, kT                             |
|                           |                                                   |

# GREEK SYMBOLS

| Φ          | : porosity, %               |  |
|------------|-----------------------------|--|
| $ ho_g$    | : grain density, g/cc       |  |
| ν          | : velocity, m/sec           |  |
| μ          | : fluid viscosity, cP       |  |
| σ          | : interfacial tension, mN/m |  |
| θ          | : contact angle, °          |  |
| γ          | : surface tension, mN/m     |  |
| $\Delta P$ | : pressure difference       |  |

#### **CHAPTER 1**

## **INTRODUCTION**

Batı Raman (B. Raman) is the biggest oil field of Turkey but it is not easy to produce oil from this field due to its nature. B. Raman has natural fractured carbonate reservoir with the low permeable matrix. Also, it has 12 API heavy oil and low pressure which is below 1000 psi (Issever, 1993). It is almost impossible to produce petroleum by originating from all these conditions, with the primary production method. As the Department of Energy and Natural Gas Resources of Turkey declared, above 90% of the oil still waiting to be produced (MAPEG, 2018). Therefore, many kind of improved oil recovery (IOR) and enhanced oil recovery (EOR) methods were tried in this field. Carbon dioxide (CO<sub>2</sub>) injection is one of these methods and more productive one. CO<sub>2</sub> injection is accepted by the whole world for oil production and is the most widely used method. However, due to its low density and viscosity, sweep efficiency cannot be effective especially if you have fractured reservoir (Verma, 2015). Because the fluids always choose the easiest way and early breakthrough occurs when high permeable zone exists. Therefore, mobility control of the CO<sub>2</sub> is crucial to increase oil production. In such a case, the increase of CO<sub>2</sub> density can be a solution. Scientists have studied on this subject for several years. The studied techniques to increase the density of the CO<sub>2</sub> also have some weakness, restriction or limitation for the reservoir.

Nanotechnology is an emerging technology of the last decades. Even if it has not been used effectively the oil and gas industry, for now, there has been a lot of progress in the last 10 years. One of areas that this technology can be used is the mobility control of the CO<sub>2</sub>. Nanoparticle can be used to create CO<sub>2</sub> foam which is denser than the gas form of CO<sub>2</sub>. This solid particles are at nanometer scale and has high surface energy. Because of this property, nanoparticles can adsorb at the interface of the water and gas

and can provide long term stabilization, even more, this adsorption can be permanent (Sheng, 2013). Then, this denser nanoparticle stabilized  $CO_2$  foam can penetrate the matrix and contact with the more oil to sweep.

Increasing the productivity of the  $CO_2$  injection system at B. Raman with nanoparticle stabilized  $CO_2$  foam is the main goal of this study. For this purpose, first, the nanoparticle dispersion stabilization was studied, extensively. The parameters effect which were concentration, salinity, temperature and pH on the foam generation and dispersion stabilization were examined. Afterward, the system was checked if plugging due to solid particles occurs. Then, nanoparticle stabilized  $CO_2$  foam was generated using core flooding system with appropriate nanosilica dispersions. Also, the effect of the pressure, flow rate and phase ratio were studied. Later, oil recovery test was evaluated to obtain extra oil production with the application of  $CO_2$  injection, water alternating gas (WAG), nanodispersion alternating gas (NWAG) and foam applications. Interfacial tension (IFT) measurement between nanodispersion- $CO_2$  and nanodispersion-oil was also determined.

#### **CHAPTER 2**

#### LITERATURE REVIEW

#### 2.1. CARBON DIOXIDE ENHANCED OIL RECOVERY

According to the Department of Energy and Natural Gas Resources of Turkey, the amount of recoverable oil in Turkey is approx. 20% of the original oil in place (OOIP) (MAPEG, 2018). Also, two third of the worldwide oil is still waiting to be produced as the Department of Energy the United States of America (USA) declared (Tunio, 2011). Therefore, improved oil recovery (IOR) and enhanced oil recovery (EOR) methods applications were needed to produce more. IOR signifies any improvement of oil recoveries (Thomas, 2008). However, EOR is seen as a tertiary recovery process or in other word, an increase in oil recovery after primary or secondary recovery by improving mobility ratio and increasing capillary number. The capillary number is defined as the ratio of viscous to capillary forces.

$$Nca = \frac{Viscous Forces}{Capillary Forces} = \frac{v\mu}{\sigma \cos\theta}$$
(2.1)

where v and  $\mu$ , are the velocity and viscosity. Also, the interfacial tension and the contact angle between the oil-water interfaces are defined as  $\sigma$  and  $\theta$ . Furthermore, M is the mobility ratio of the displacing fluid to the displaced fluid and k is the relative or effective permeability (Elwy, 2012).

$$M = \frac{(k/\mu)displacing}{(k/\mu)displaced}$$
(2.2)

Despite, technical and economic challenges hampers oil companies, EOR methods application has been enlarging since the researchers focus on this subject for long years. Approx. 3% of the worldwide produced oil obtains from EOR methods (Taber,

1997). CO<sub>2</sub> injection is a proven, potential and well-known EOR process and going to be detailed since it's the main title of this study.

### 2.1.1. History of CO<sub>2</sub> EOR

Gas injection is one of the oldest methods used by engineers to improve oil recovery for more than 60 years. Usage of  $CO_2$  as a method of EOR has been mentioned as early as 1916 in the literature, but it was dismissed as a laboratory curiosity. The first patent of  $CO_2$  as injection gas for oil recovery was taken in 1952 by Whorton et al. (1952). Then, in 1964, the first pilot field test was performed at the Mead Strawn Field to figure out if  $CO_2$  injection process increases oil production (Holm, 1971). After these improvements, the real commercial  $CO_2$  injection project was started at the Kelly-Snyder Field in the United States (Langston, 1988). Since that day, its usage has increased significantly.

### 2.1.2. Properties of CO<sub>2</sub>

The physical properties of carbon dioxide are crucial parameters to understand the  $CO_2$  EOR process, exactly. At atmospheric temperature and pressure,  $CO_2$  is a colorless, odorless, inert, and non-combustible gas and about 1.5 times heavier than air. The molecular weight of  $CO_2$  is 44.01 g/mol and at 0 °C and 1.013 bar, its specific gravity, and density are 1.529 and 1.95 kg/m3, respectively. Figure 2.1 demonstrates the phase diagram of the  $CO_2$  clearly (Picha, 2007).

It can be figured out from Figure 2.1, critical properties of CO<sub>2</sub> are; Critical Temperature (Tc): 31.05 °C Critical Pressure (Pc): 72.9 atm  $\approx$  73.9 bar  $\approx$  1071 psi

At above critical pressures and temperatures,  $CO_2$  is in the supercritical state and behaves more like a liquid. It forms a phase in which density is close to that of a liquid and its viscosity stays low as 0.05 - 0.08 cp. This denser form of  $CO_2$  can extract hydrocarbon components from oil more easily than gas form  $CO_2$  (Jarrell, 2002). Even though the low  $CO_2$  viscosity is not beneficial to sweep efficiency, the oil viscosity is also going to decrease when  $CO_2$  dissolved in oil, which in turn helps increase oil production. (Verma, 2015).



Figure 2.1. Phase diagram of CO2 (Picha, 2007)

### 2.1.3. Mechanism

The mechanisms of  $CO_2$  EOR can be mainly attributed to a reduction of the interfacial tension between oil and water, reduction of mobility ratio, extraction and vaporization of the light oil component, oil swelling and viscosity reduction in oil, effect of a weak acid and solution gas drive (Haynes, 1990; Gozalpour, 2005; H.Feng 2016).

### 2.1.3.1. Oil swelling and viscosity reduction in oil

After an injection to the reservoir, the volume of the reservoir oil can be expanded due to dissolution. This swelling effect increases the oil mobility ratio, and the oil can flow easier from the reservoir to the production well. Additionally, the dissolved  $CO_2$  can reduce the oil viscosity and again increase the oil mobility. Studies show that the more percentage of viscosity reduction can be achieved for heavy oils. That is why  $CO_2$  flooding is choosing as an EOR technique mostly for high viscous oil.

### 2.1.3.2. Reduction of the interfacial tension between oil and water

When  $CO_2$  is injected into the reservoir,  $CO_2$  will reduce the interfacial tension of oil and water. This decrease promotes the reservoir oil flow mechanism positively and concludes with high oil production.

### 2.1.3.3. Solution gas drive

During the injection process, after  $CO_2$  breakthrough, the pressure of the reservoir can be decline to or below the saturation pressure. Then the dissolved  $CO_2$  in the crude oil is going to be separated from the oil and forms gas drive which supplies extra energy for the displacement of oil. This drive mechanism seems to be an important mechanism, however; early gas breakthrough can decrease the miscibility effect.

## 2.1.3.4. Extraction and vaporization of the light oil component

 $CO_2$  can extract and vaporize the light oil component from the reservoir oil when the pressure is higher than a certain value. This value depends on the oil properties. This mechanism is mostly correlated with light oil recovery.

## 2.1.3.5. Effect of the weak acid

When  $CO_2$  and water come together, they form carbonic acid and this acid can give a reaction with the carbonate rocks and corrode it which can increase the rock permeability. Also, this acid may help to clear the inorganic scale and to increase oil production.

### 2.1.4. Techniques of CO<sub>2</sub> Injection Process

There are some techniques to inject CO2 to the reservoir for increasing oil recovery and the advantages and disadvantages of the techniques will be evaluated in this section.

#### 2.1.4.1. Continuous Miscible and Immiscible CO<sub>2</sub> Flooding

 $CO_2$  EOR processes can be classified as immiscible or miscible, depending on reservoir pressure, temperature, injected gas composition and oil properties. These two processes have a different mechanism which is going to be detailed. According to literature, the miscible process is preferred more because higher recoveries can be achieved (Martin, 1992).

The pressure at which miscibility starts to occur is called the minimum miscibility pressure (MMP). MMP is also described as the pressure at which more than 80 % of OOIP is recovered at  $CO_2$  breakthrough (Holm & Josendal, 1974). There are some mechanisms which explain how miscible process is given an extra recovery. Primarily, CO<sub>2</sub> does not actually dissolve in the oil at the first contact in the reservoir. But then, at the multiple contact process, the intermediate and higher molecular weight hydrocarbons from the reservoir oil vaporize into the CO<sub>2</sub> which is called as vaporization gas drive process and part of the injected CO<sub>2</sub> dissolves into the oil which is called as condensation gas drive process (Merchant, 2010; Verma 2015). When miscibility is generated, the new mixture of CO<sub>2</sub> and reservoir oil can flow together because of the low interfacial tension and low viscosity and then oil recovery can be improved. The miscible  $CO_2$  EOR process is shown in Figure 2.2. If the reservoir pressure is lower than MMP, CO<sub>2</sub> is only partially dissolved in the reservoir oil so  $CO_2$  and oil will not generate a single phase and will not be miscible. This process is defined as the immiscible CO<sub>2</sub> process. Even if not exact dissolution may occur, the injected part of the CO<sub>2</sub> can cause oil swelling and viscosity reduction to improve oil recovery. Also, CO<sub>2</sub> can act as an artificial gas cap, giving extra force to the reservoir oil. Additionally, CO<sub>2</sub> may extract the light oil components which cause a reduction of density and viscosity and helps the oil production as well.



Figure 2.2. The process of miscible CO2 EOR process (Verma, 2015)

## 2.1.4.2. Cyclic CO<sub>2</sub> Flooding

The cyclic  $CO_2$  injection has been successfully applied to increase oil recovery during the past four decades and called the huff-n-puff process. In this injection system mainly involves 3 steps; injection phase, shut-in phase and production phase (Thomas 1990). The mechanisms during these steps can be count as oil swelling, viscosity and interfacial tension reduction, dissolved gas drive and vaporization of lighter oil components (Abedini, 2014). Moreover, generated carbonic acids when applied  $CO_2$ can improve the rock permeability related the ions in the brine (Mohamed, 2011).

The projects which were done to figure out the performance of cyclic injection process indicated that efficiency of this process was higher in the presence of gravity segregation, gas cap, higher residual oil saturation, long soaking period and large CO<sub>2</sub> slug size (Wolcott, 1995; Abedini, 2014).

## 2.1.4.3. Water Alternating Gas (WAG)

The main problem with both miscible and immiscible gas injection is poor volumetric sweep efficiency due to unfavorable mobility ratio of gas. Because of the low viscosity

and density of the  $CO_2$ , fingering and channeling through matrix may occur. Therefore, the main aim of the WAG system is to fill the channels with water and increase sweep efficiency (Dong, 2005; Verma, 2015: Nasir, 2009).

The first WAG operation was reported in Canada in 1957 and since that day, it has been commonly used as a worldwide EOR technique (Caudle, 1958; Jiang, 2012).

The WAG process involves two hydrocarbon recovery techniques in it as waterflooding and gas injection. Since it's a combination, it has the advantages of these two kinds of injections. The method of the WAG process is injecting a slug of  $CO_2$  in cycles alternating with equal volumes of water. The water is using here to control the mobility and to generate front stability. Christensen, J. R (1998) was reported a review of 60 field cases where WAG was applied and concluded the study that this process was successful and could obtain up to 20% extra oil recovery. The corrosion is the major problem of the WAG injection system. Also, the other issues during WAG injection are gradual oil response, gravity segregation and infectivity loss (Nasir, 2009).

The types of WAG injection can be classified in terms of injection property as miscible, immiscible, simultaneous, hybrid, foam assisted (Skauge, 2003). If water and gas are injected at the same time, then this process is called simultaneous water and gas injection (SWAG). The mixing of  $CO_2$  and water can be either in the well or surface. The objective of the system is to enhance the profile control in comparison with WAG and continuous injection. In other words, this process can reduce the capillary entrapment of oil and supply ahead of mobility control of gas relative to WAG (Nasir, 2009). The study which was practice by the P. Heidari et al. (2013) to make a comparison between WAG and SWAG injection indicated that SWAG can increase the speed of oil production compare to WAG injection.

One of the other types of WAG is Tapered/hybrid WAG. The main objective of this process is to enhance  $CO_2$  utilization because the design of the system increases the performance of the flood and preclude the early breakthrough of the  $CO_2$  so can obtain higher recovery (Verma, 2015). In Hybrid WAG, a large volume of the  $CO_2$  is continuously injected to about 20% to 40% PV pore volume followed by a small number of slugs of water and gas. The early production, higher injectivity, reduced water blocking, higher recovery, and  $CO_2$  utilization can be counted as the advantages of this system relative to the WAG process (Hadlow, 1992).

#### 2.1.4.4. CO<sub>2</sub> Foam

One of the techniques to overcome the low density of the  $CO_2$  is the foam. If foam form of the gas can be created, then this new dense form can control the mobility. Explanation of foam and solid particles usage for foam stability is the main subject of this study and going to be detailed in CHAPTER 3.

## 2.1.5. Worldwide CO<sub>2</sub> Flood Projects

Since positive outputs were taken from the  $CO_2$  floods trials in the USA,  $CO_2$  floods have been implemented outside of the USA such as Canada, Hungary, Turkey, Trinidad, and Brazil.

| Country  | Number of<br>Miscible CO2<br>Projects | Number of<br>Immiscible CO2<br>Projects | Total number of<br>CO2 Projects |
|----------|---------------------------------------|-----------------------------------------|---------------------------------|
| USA      | 112                                   | 9                                       | 121                             |
| Canada   | 6                                     | 0                                       | 6                               |
| Brazil   | 2                                     | 1                                       | 3                               |
| Trinidad | 0                                     | 5                                       | 5                               |
| Turkey   | 0                                     | 1                                       | 1                               |
| Total    | 120                                   | 16                                      | 136                             |

Table 2.1. Number of the worldwide CO<sub>2</sub> EOR applications (Koottungal, 2012)

Miscible CO<sub>2</sub> injection is much more prevalent than an immiscible system, as it appears from *Table 2.1*. Turkey has only one project which has been applied to the Bati

Raman (B.Raman) field. In this EOR technic, the problem is about the  $CO_2$  supply. USA has an adequate natural source of  $CO_2$  and that is why they have more projects than other countries.

### **2.2. FOAM**

Foams can be formed by an instantaneous increase in the contact area between water and air. In simple term, if a liquid and a gas come together and then a shear is applied, the gas phase is going to be bubbles dispersed in the liquid which are so-called foams as shown in Figure 2.3. The gas phases are drifted away by a film of liquid described as lamella as seen from the figure. Also, the plateau border has defined a connection of three lamellas at an angle of 120°. They are non-equilibrium systems and a very special kind of colloidal dispersions. All dispersion is listed below and foams commonly belong to the first group (Bikerman, 1973).

- Gases dispersed in the liquids (foam, gas emulsion)
- Liquids dispersed in the gases (mists, fogs, liquid aerosols)
- Gases dispersed in solids (solid foam)
- Solids dispersed in gases (fumes, smokes, solid aerosols)
- Liquids dispersed in liquids (emulsions)
- Liquids dispersed in solids (some gels)
- Solids dispersed in liquids (suspensions, sols)
- Solid dispersed in solids

First of all, it should be indicated that pure liquids cannot create foam because of their high surface tension (72 mNm-1). Gas bubbles will go up and fly off. For this reason, a surface active material should present to stabilization of bubbles such as surfactants, and solid particles etc. (Pugh, 1996; Stocco, 2013). These materials will accumulate at the liquid-gas interface and stabilize the foam.

The liquid designates the types of the foam which are wet and dry (The range is 1% - 30 %). On the other hand, gas content is used to specify the foam quality by the engineers. The small spherical bubbles separated by the thick layers of liquid called as wet (liquid fraction larger than 20%), while the thin layer of foam consisting of larger bubbles is referred to dry foam. (Sheng, 2013; Stevenson, 2012).



Figure 2.3. Illustration of a foam structure (Schramm, 1994)

The various shape of the ubbles is formed when different generation methods apply. All formation processes have two basic mechanisms: i) capturing gas bubbles from ambient air because of the turbulence of the liquid phase and ii) applying air bubbles by the chemical or physical way (Karakashev, 2012). Figure 2.4 gives the detailed of the shape of bubbles as results of formation methods. The faster process for gas bubbles formation flows through a porous plug. The only issue is the low controllability of this procedure.



Figure 2.4. The shape of bubbles related to formation methods (Weaire, 1999)

### 2.2.1. Surfactant Stabilized CO<sub>2</sub> Foam

As mentioned before, CO<sub>2</sub> suffers from its poor sweep efficiency due to low density and viscosity. Since the years of CO<sub>2</sub> EOR invention, big progress was made by the scientist. If foam form of the gas can be created, then this new dense form can overcome the mobility control problem. Surfactants are surface active agents. These chemicals accumulate at the gas-liquid interface which ended up the decrease in interfacial tension and generates stabilization of the foam. Thus, this stabilized foam can penetrate both low permeable and high permeable zones which give better recovery as shown in Figure 2.5. However, this method has some potential weaknesses; long term stability, adsorption at the rock surface e.g. There are several laboratory and field studies mostly related to foamability, foam stability and retention of the surfactant in the last four decades. (Chou, 1992; Harpole, 1994; Pugh, 1996; Schramn, 1994; 2000; 2005; Liu, 2005; Zuta, 2009; Adkins, 2009; Andrianov, 2011; Heetschap, 2015; Kanokkarn, 2017; Wang, 2019; Sun, 2019; Zeng, 2019)



Figure 2.5. Foam flow through pores (Talebian, 2014)

## 2.2.2. Particle Stabilized CO<sub>2</sub> Foam in Oil and Gas Industry

Although many industries generate foam as a purpose, it can be also unwanted for some of the petroleum and chemical industries. The studies for this kind of foams are about breaking them off. Examples of desirable and undesirable foams in the oil and gas industry are shown in Table 2.2.

In this study, particle stabilized foam to control CO<sub>2</sub> mobility in the reservoir will be examined. As mentioned before sections, CO<sub>2</sub> injection is a proven and potential EOR process but, the inherently poor volumetric sweep efficiency resulting from low viscosity and density of CO<sub>2</sub> is its critical weakness. Because of this, gravity segregation and viscous fingering and channeling through high permeable layers may occur. Therefore, the need for mobility control of the CO<sub>2</sub> in the reservoir is highly desirable. To overcome surfactant foam stability and retention problems, new studies are focused on the nanoparticle stabilized CO<sub>2</sub> foam. Similar to surfactants, particles also place at the gas-liquid interface but do not change the IFT and contrary to surfactant, solid particles adsorb permanently (Sheng, 2013). The adsorption energy (W<sub>r</sub>) depends on the contact angle ( $\theta$ ), particle radius (R) and surface tension of the CO<sub>2</sub> and the aqueous phase ( $\gamma$ ). (Dong, 2003; Hunter, 2008; Kruglyakov, 2011; Yu, 2012; Yekeen, 2018)

$$W = \gamma_{CO2-water} R^2 \pi \left(-|\cos \theta|\right)^2$$
(2.1)

Much higher energy needs to take out the particles from the adsorbed interface. Also, nanoparticle retention on the rock surface could be kept minimal (Zhang, 2015;
Arooonsri, 2013). Many studies demonstrated that the nanoparticle stabilized foams were a stable long time, on the other hand, surfactants can only stabilize a few hours (Binks, 2000; 2002; 2005; Sun, 2014; Yu, 2012a; Li 2016; Yekeen, 2018). Adhesion energy, electrostatic repulsion and van der Waals attraction between particles are the key parameters of the stability. The other supremacy of the nanoparticle is its durability against harsh reservoir conditions and may be produced from low-cost materials such as silica (Golomb, 2006; Arooonsri, 2013).

Table 2.2. Examples of foam in the oil and gas Industry (Shramm, 1994)

| <b>Undesirable Foams</b>                   | <b>Desirable Foams</b>       |
|--------------------------------------------|------------------------------|
| Producing oil well and well-head foams     | Foam drilling                |
| Oil flotation process front                | Foam fracturing liquid       |
| Distillation and fractionation tower foams | Foam acidizing fluid         |
| Fuel oil and jet fuel tank foam            | Blocking and diverting foams |
|                                            | Gas mobility control foams   |

Back in times, the first papers about nanoparticle stabilized foams were the studies of Dickson et al. (2004), Adkins et al (2007) and Martinez et al. (2008). They all declared that it was possible to create stable foam by using nanoparticles and this foam could last long. Scientists were first focused to create CO<sub>2</sub> foam and effect of the parameters on stability. Stability of CO<sub>2</sub> foam related to particles size, concentration, hydrophobicity, phase ratio, type of the particle, pressure, temperature and rock structure has been presented in several papers. Yu et al. (2012a) were investigated the particle concentration, pressure, temperature and surfactant impact during  $CO_2$  foam generation at static condition. The study showed that above the supercritical point of the CO<sub>2</sub>, even low nanosilica concentration (4000-6000 ppm) it was possible to create CO<sub>2</sub> foam and surfactant adding affected positively. The same group also worked with the dynamic process for generating foam and examined total flow rate and phase ratio relation (Yu, 2012b). Singh and Mohanty (2017) treated nanoparticle for high temperature (HT) and high pressure (HP) reservoirs. Zhu et al. (2017), Eide et al. (2018) and Bashir et al. (2018) also had the works on the nanoparticle stabilize  $CO_2$ 

foam application for tough reservoirs. At the end of the study, they saw that nanoparticle stabilized foam have some issue if you injected below 200 md permeability core sample. One of the key parameters is hydrophobicity of the nanoparticle for foam stability. The studies indicated that more stable foam could be achieved when half hydrophobic nanoparticle was used (Stocco, 2013; Zang, 2010). Similar results were obtained by Worthen et al. (2012a; 2012b) and Rognmo et al. (2018). Worthen et al. worked with hydrophilic, half hydrophobic and PEG coated nanosilica and indicated that 50 % hydrophobicity gave the best stable foam. The results of the Rognmo et al. study pointed at the different type of nanosilica particles gave different results. Furthermore, the measured pressure gradient showed that silica nanoparticle stabilized CO<sub>2</sub>-foam remain stable even though surfactant couldn't stabilize the foam as expected from the earliest projects. Yu et al. (2014) observed that the hydrophobic nanosilica created higher mobility reduction in porous media. Espinosa et al. (2010) were demonstrated the particle size effect on foam. According to authors, very low concentration (0.05 %) of the nanoparticles is enough to create foam but if the particle size was larger, this time, higher concentration (0.5 %) might need. Mohd et al. (2014) concluded their project with the same result as even %0.5 concentration could generate foam. They also obtained that increased salinity supported foaming but excessive concentration led to aggregation. The effect of sodium chloride and calcium chloride on the generation of the stable foam was also studied by San et al. (2016). They found that foam was denser with increased sodium chloride and calcium chloride.

Xue et al. (2016) presented a new model for stabilized CO<sub>2</sub> foam. The polymer was also added to surfactant and nanoparticle mixture to heighten continuous phase and surface viscosity which was caused the low lamellae drainage rates and inhibited coalescence. The studies which were done by Ermani et al. (2015; 2017a; 2017b) proved that the nanoparticles adding into surfactant solution gave more stable CO<sub>2</sub> foam. This group also compared foams of the nanoparticle-surfactant and polymer-surfactant mixture. The findings revealed that nanoparticle- surfactant foams are much

stable. Furthermore, they tested this nanoparticle stabilized  $CO_2$  foam as a fluid of hydraulic fracturing. Yusuf et al. (2013) also work with the nanosilica-surfactant mixture to create foam. The study indicated that the adsorption of the non-ionic surfactant (TX100) on the nanosilica particles depends on the silica concentration. Same studies had made by Farhadi et al. (2016) and Zhang et al. (2015). Ibrahim and Nasr-El-Din (2018) used a viscoelastic surfactant to increase the mobility of the foam for EOR.

Different nanoparticles also were evaluated as a CO<sub>2</sub> foam stabilizer instead of nanosilica by the researchers. Kalyanaraman et al. (2015) compared the polyelectrolytes and polyelectrolyte complex nanoparticles (PECNP) with surfactant about their oil recovery efficiency. The study indicated higher recovery could be obtained when PECNP-surfactant CO<sub>2</sub> foam applied. A similar study has been done by the Nazari et al. (2018). Also, results suggested that the best stable foam did not mean the highest oil recovery. Alargova et. al. (2004) used polymer microrods to stabilize aqueous foams in the absence of surfactant for the conditions which the common surfactant was not effective. In another study, micrometer-sized, sterically stabilized PS latex particles were used by Fujii et. al. (2006) to prepare highly stable aqueous foams. Fly ash performance for foam generation was also evaluated by the scientist. Lee et al. (2015) were one of them but they found that the fly ash could not be used as a stabilizer, alone. Contrary, the results of the Eftekhari et al. (2015) work showed that even very small amount of nano fly ash gave a more stable and stronger foam.

The second type of studies was about the foam flow through core samples and oil recovery increment. Nanoparticle stabilized  $CO_2$  foam flow through a sandstone core sample at 1200 psi where  $CO_2$  was in supercritical phase was studied by Mo et al. (2012). The same group also analyzed the other type of rocks potential for oil recovery increment which was limestone and dolomite (Mo, 2014). Higher oil recovery by foam was achieved when the sandstone core sample was used. Aminzadeh et. al.

(2012) saturated core samples with nanoparticle dispersion and brine then injected CO<sub>2</sub> into a saturated core and achieved increased sweep efficiency when nanoparticle was placed. Evaluation of the performance of the nanosilica and nanoclay on CO<sub>2</sub> foam stability and improvement of oil recovery inside a microfluidic device was conducted by Guo and Aryana (2016). This study results showed that CO<sub>2</sub> foams with increased stability by using nanoparticle gave a significantly increase oil recovery. AlYousef et al. (2017) had increased oil recovery when nanoparticle was placed into a surfactant mixture. Yu et al. (2013) also assessed the oil recovery increment and obtained higher recovery when applied low permeable reservoir as expected. The effect of pressure and temperature on the oil recovery by using nanoparticle stabilized CO<sub>2</sub> foam was studied by Fu (2018) et. al. The results suggested that oil recovery was increasing with increased pressure and decreased temperature. When applied foam, additional %17 IOIP after waterflood was obtained by Nguyeng et al. (2014). Rahmani (2018) developed nanosilica  $CO_2$  foam to oil recovery for fractured and unfractured carbonate reservoir. Aroonsri et al. (2013) also compare the foam in the fractured and unfractured sandstone core samples with a focus on the role of shear rate. The results indicated that in both conditions, a critical shear rate existed and the lower critical shear rate was achieved at low permeability.

Extensive researches have been conducted to generate  $CO_2$  foam and the effect of parameters on foam stability, but not enough researches have been done about  $CO_2$  foam used for EOR. Also, the studies are mostly for sandstone and very little work can be found for carbonate reservoirs. Furthermore, there is none of the study in the literature at the field where  $CO_2$  injection has already been applied. The all studies related to EOR aimed to examine the oil recovery after waterflood, only. Therefore, the objective of this work is to show any increased efficiency of the conventional  $CO_2$  injection system at B. Raman field by using nanoparticle stabilized  $CO_2$  foam.

### 2.3. BATI RAMAN FIELD

The B. Raman field located in the southeastern part of Turkey was discovered in 1961. The field is about 20 km long and 5 km wide (Figure 2.6), known as the largest oil field in Turkey, and having about 1.85 billion barrels of OOIP. Oil is produced from the Garzan Formation which is fractured, vuggy and heterogeneous limestone. The formation thickness is 210 ft and the average depth is 1300 m. The counter map of the field is shown in Figure 2.7. The average reservoir porosity is %18 and the matrix permeability is ranging from 10 to 100 md. On the hand, the effective porosity is in between 200 to 500 md due to fractures and vugs.



Figure 2.6. Estimated B. Raman field borders

The reservoir contains about 12 API heavy oil, and the viscosity ranging from 450 to 1000 cp at reservoir conditions. Reservoir fluids have low solution gas. The original reservoir pressure was 1800 psi but after 30 million stock tank barrel production, the pressure dropped to around 400 psi between the years of 1961 to 1989 (Issever, 1993). Therefore, the high production decline was observed. Dodan field is about 55 miles away from B.Raman field. Estimated total reserve is 383 Bscf and contains almost 90 % vol. CO<sub>2</sub>. Hydrogen Sulphur (almost 3500 ppm) and the trace amount of nitrogen and hydrocarbons also place in the gas composition (Sahin, 2010). The Dodan facility supplies 60 MMscfd gas. CO<sub>2</sub> injection as the huff-n-puff process at B. Raman was first introduced in 1986. Even though the incremental production was obtained, during injection, it was figured out that the effective mechanism was the gas drive. Therefore, the project was converted to continuous CO<sub>2</sub> injection.



Figure 2.7. Contour map of the B. Raman field

The pressure of the reservoir is well below the miscibility pressure of the  $CO_2$  so the injection at the B.Raman field is called as immiscible  $CO_2$  injection. Since  $CO_2$  injection process was exhibited significant performance, Turkish Petroleum Corporation decided to enlarge the process to all of the fields.

The process starts with the evaporation stage of the liquid  $CO_2$ . After that, two phase separators are using to remove water. Then, the hydrogen Sulphur content in gas is lessening with acid gas removal solvent. Finally, triethylene glycol is using to dehydrate the gas. The  $CO_2$  injection flow diagram is shown in Figure 2.8. At the beginning of the project, produced gas was released to the atmosphere but then,  $CO_2$  was captured and reinjected to decrease consumption and to ensure environmental safety.



Figure 2.8. Flow diagram of the CO2 injection system

Estimated recovery increase was 10% but it observed as half of this value to date. Because the B. Raman field is naturally fractured reservoir as mentioned before which causes the early breakthrough of the CO<sub>2</sub>. Therefore, low sweep efficiency was obtained. The polymer gel applied to the field to blockage of the fractures in the years of 2002 to 2004 (Karaoğuz, 2004). Also, surfactant foam was tested at the laboratory to control the mobility of the CO<sub>2</sub>. Although these methods gave high sweep efficiency, methods did not seem feasible. Consequently, conventional WAG has been applied since 2005 to control the mobility of the CO<sub>2</sub> (Sahin 2007). The all these production history was graphed in Figure 2.9. The production history of the CO<sub>2</sub> injection process was reported periodically (Kantar, 1985; Karaoğuz, 1989; Issever, 1993; Sahin, 2007; 2010; 2012).



Figure 2.9. B. Raman production history

### **CHAPTER 3**

## STATEMENT OF THE PROBLEM

There is not enough study in the literature about  $CO_2$  foam used in EOR. The existing studies are mostly for sandstone reservoir. On the other hand, B. Raman has a carbonate rock. Additionally, there is no study at the field where  $CO_2$  injection has already been applied. The studies in the literature aim to examine any production increase when foam applies after water flooding. However; this study shows the any increased efficiency of the conventional  $CO_2$  injection system.

Therefore, the aim of this study is creating nanoparticle stabilized  $CO_2$  foam at the reservoir condition to increase the sweep efficiency of the  $CO_2$  injection system at B. Raman Field. Nanoparticles can adsorb at the interface of the gas and water and can give permanent stabilization. When this stable foam is generated, this denser form will contact with oil over more and give incremental oil recovery

In parallel with this purpose, first nanoparticle dispersion stabilization will be focused on. Different type of nanosilica will be considered. These particles have a tendency to agglomerate and precipitate. It is important to stabilize nanoparticle dispersion before all studies to not plug the pore matrix. After making sure that the dispersions are stable and do not block the matrix, foam formation tests will be begun. In this experiment, nanodispersion and the  $CO_2$  will be injected to the core flooding system simultaneously and foam formation will be checked using the increase in pressure differences and observation cell. Effect of the pressure, phase ratio and total flow rate on foam generation will be examined to get the optimum condition. After conditions are noted, then the oil recovery test will be conducted with suitable nanoparticles. IFT measurement will be also studied for better understanding.

### **CHAPTER 4**

# MATERIALS AND METHODS

### 4.1. MATERIALS

#### **4.1.1.** Nanoparticles

Five different types of nanosilica were supplied from the chemical companies. These nanosilicas were detailed in Table 4.1. Detailed properties were given in APPENDIX A.

| Nanoparticl<br>e | Named as | Properties                                       | Physical<br>Form |
|------------------|----------|--------------------------------------------------|------------------|
|                  | PEG      | Polyethylene glycol coated, 100 %<br>hydrophilic | Dispersion       |
|                  | CC301    | 100 % Hydrophilic                                | Dispersion       |
| Silica           | N20      | 100 % Hydrophilic                                | Powder           |
|                  | H30      | Dimethylsiloxy coated, 50 %<br>Hydrophobic       | Powder           |
|                  | AERO     | 100 % Hydrophobic                                | Dispersion       |

Table 4.1. Selected nanoparticles and their properties

The different procedure was examined for the nanosilicas in powder form to disperse in the aqueous phase. The N20 was directly put in the water and stirred at high speed for 5 min to disperse because it's 100% hydrophilic. Then put into a sonic bath for an hour. On the other hand, H30 needs extra steps for dispersion preparation due to its partially hydrophobic properties and a procedure which were determined by DiCarlo et al. (2015) was used for this purpose. This time, nanosilica was first dispersed in ethanol, mixed then centrifuged and decanted the supernatant. This step was repeated until ethanol was removed. Then the particles were redispersed in water and sonicated 1 hour after high speed stirrer. The nanosilica in dispersion form were only diluted to the desired concentration and sonicated.

Health and Safety (HSE) procedures were crucial when dealing with nanoparticles. These particles can go into the body using the skin pores easily and can be harmful due to their very small origin. Also, again because of their particle size, the nanaoparticles can be inhaled and can cause lung damage. Because of all, while working on these little particles, the disposable lab coat which covers the whole body was used. Additionally, two layer lab gloves and appropriate mask were worn. Moreover, after the weighing of the nanoparticles for dispersion preparation, the ventilation was turned on to clean the air and spills were cleaned with water if any.

#### 4.1.2. Reservoir Fluids

The formation water and the oil was brought from B. Raman field and used for the tests. The main component of the B. Raman formation water which was analyzed by using ICP-OES and the properties of the B. Raman oil were demonstrated in Table 4.2 and *Table 4.3*, respectively. Detailed analysis results of the water and Dodan gas were given in APPENDIX B.

Pure CO<sub>2</sub> (99.9 %) was used for the foam generation tests as a CO<sub>2</sub> source because of the large quantities of the run. However, for the recovery test, Dodan gas was applied to make a better demonstration of the reservoir. The main components of the Dodan gas were given at the below table (*Table 4.4*).

| Analysis                         | Result  |
|----------------------------------|---------|
| рН, 25 °С                        | 6.51    |
| Specific Gravity, 15.6 °C        | 1.070   |
| Total Salinity (Sodium chloride, | 92 647  |
| NaCl), mg/l                      |         |
| Conductivity, 25 °C, µS/cm       | 127 800 |

Table 4.2. Test results of B. Raman formation water

Table 4.3. Test results of B. Raman oil

| Analysis                          | Result   |
|-----------------------------------|----------|
| Density, 25 °C, g/cm <sup>3</sup> | 0.987071 |
| Density, 65 °C, $g/cm^3$          | 0.957537 |
| API Gravity, 60 °F                | 10.82    |
| Kinematic Viscosity, 65 °C,       | 625.02   |

Table 4.4. Test results of Dodan gas

| Analysis              | Result |
|-----------------------|--------|
| Carbon dioxide, % mol | 86.878 |
| Nitrogen, % mol       | 3.562  |
| Methane, % mol        | 7.315  |
| Hydrogen Sulphur, ppm | 483.1  |

#### 4.1.3. Core Samples

All core samples belong to the B. Raman field which means they are the carbonate rock. 1.5 inch core plugs were used for the flooding tests. On the other hand, for recovery tests, 4.5 inch core sample was placed to the core holder. Properties of the samples which were analyzed by using porosimeter and permeameter were located on their own flood graph or under their own title in CHAPTER 5 because various core plug samples were used due to the high number of the run.

# 4.2. EXPERIMENTAL SETUP AND PROCEDURE

### 4.2.1. Rock Samples Preparation and Routine Core Analysis

Firstly, all of the plug samples were cleaned from hydrocarbon contents by using a Soxhlet toluene extraction system. Afterward, the samples were immersed in an alcohol bath and placed in a vacuumed-oven system to clean any possible salt remaining in the pores of the samples due to drilling fluid and formation water. Then they were dried in a temperature-controlled oven at 70°C and, finally, their weights and physical dimensions were measured.

Porosity values of core plug samples were measured by using a helium gas expansion porosimeter and the principle of "Boyle's Law". Plug samples were individually placed in the matrix cap connected to the porosimeter. Helium, at a known pressure of 100 psig from a reference cell of the known volume was allowed to expand into the matrix cap and into the available pore spaces. The volume of expansion was recorded and used to calculate the grain volume using the principle of Boyle's law. Bulk volumes of the samples were determined by measuring the length and diameter of the samples and then applying appropriate mathematical formulas.

For permeability measurements, clean and dry plug samples were placed in the "Hassler" type core holder of the "steady-state" air permeameter. The stabilized flow rate of dried air through the core sample was monitored and differential pressure across the plug sample was measured and used in conjunction with the measured sample length and cross-sectional area to calculate air permeability using "Darcy's Law". Calculated air permeability (kair) values were corrected by "Klinkenberg Correction" to obtain equivalent liquid permeability (kw). Systems were shown in Figure 4.1



Figure 4.1. Porosimeter and permeameter test system

#### 4.2.2. Zetasizer

Zetasizer system was used to measure size distribution from less than a nanometer to several microns and zeta potential of the particles. This system was performed to determine the stability of the nanoparticles in the dispersion. The tests were carried out by the laboratory of the National Nanotechnology Research Center (NNRC) and METU Central Laboratory. For bigger particles, Master Sizer was used.

When nanoparticles are dispersed in a liquid, opposite charged ions bounds to the surface of the nanoparticles and create a thin layer, called as 'Stern Layer'. This layer causes a second diffuse outer layer, consisted of loosely associated ions, known as "diffusive ion layer". This double layer of ions travels with the nanoparticle as it diffuses throughout the solution. The layers are called 'the electrical double layer' together. When the nanoparticles are put in a liquid, a boundary appears between the ions in the diffuse layer that move with the particle and ions that remain with the bulk dispersant. The electrical potential at this "slipping plane" boundary is known as the 'Zeta Potential' of the particle and has values ranging from +100 mV to -100 mV. The value of the zeta potential defines the colloidal stability of the nanoparticles. Nanoparticles with Zeta Potential values higher than +30 mV or lower than -30 mV typically have the best stability.

#### 4.2.3. Core Flood System

All flood tests were performed with a 'core flood system'. This system allows to reach 10000 psi fluid and confining pressure and 150°C temperature. The system includes gas, liquid and oil accumulator and a core holder (for 1.5 inch plugs) with the connected lines in an oven. An extra core holder was used for nanosilica dispersions. Also, a sapphire cell was inserted into the system to observe the foam during foam generation flooding test. Core holder for 4.5 inch core sample is at outside the oven and has own heating shells. This core holder was used during oil recovery tests. In all runs, core samples were placed vertically in the core holder and the flood was applied

at the bottom of the cores. Upstream and the downstream pressures and the differences between them were recorded by the pressure sensors. A dual pump which is capacity is 100 cc fluids and maximum 25cc/min flow rate was used. Confining pressure was applied by using another pump. The pressure was kept constant with a back pressure regulator. All system (pumps, valve etc.) is controlled with software and this software records all data. The system is shown in Figure 4.2.



Figure 4.2. Core flood test system

## 4.2.4. Interfacial Tension (IFT)

This test was performed to figure out interfacial tension between fluids. *Table 4.5* demonstrates the experimental condition of the IFT.

The test was conducted with IFT700 system which was displayed in Figure 4.3 and allow us to reach 10000 psi pressure and 175 °C temperature. The measurement range is 0.1-72 mN/m. The cell and drop fluids are placed into their own accumulators and heated up to the desired temperature. When the system reached the steady state then a drop is generated by using the drop fluid with a needle. While the drop wants to go up, the IFT between drop fluid and cell fluid precludes this motion. The camera which

is inserted to the test system is used to picture drop. The shape of this drop is analyzed to measure IFT. 'Rising Drop Method' is used if the fluids are oil and water and 'Pendant Drop Method' is selected for water and gas.



Figure 4.3. IFT test system

| Drop<br>Fluid                            | Bulk Fluid               | <b>Pressure</b><br>psi  | <b>Temperature</b><br>°C |
|------------------------------------------|--------------------------|-------------------------|--------------------------|
|                                          | %1 NaCl cözeltisi        | 600                     | 25                       |
| $\mathrm{CO}_{2}\left(\mathrm{g}\right)$ | 701 NaCı çözettisi       | 000                     | 65                       |
|                                          | %1 NaCl çözeltisi +      | %1 NaCl çözeltisi + 600 | 25                       |
|                                          | %1 Nanosilica dispersion | 000                     | 65                       |
| B.Raman<br>Oil                           | %1 Nanosilica Dispersion | 600                     | 65                       |

Table 4.5. Experimental conditions of IFT

## 4.2.5. X-Ray Floroscence Spectroscopy (XRF)

XRF was used to figure out the composition of the silica in the dispersions after and before the flooding tests. In this system, first, a source produces X-rays. The elements emit the radiation which is unique for each element and by measuring the energy of the emitted radiation, qualitative and quantitative results can be obtained. Figure 4.4 demonstrates the image of the XRF spectroscopy.



Figure 4.4. XRF spectroscopy

# 4.2.6. Scanning Electron Microscope/ Energy Dispersive Spectrometry (SEM/EDS)

A scanning electron microscope (SEM) is used to obtain surface topography and composition. The microscope creates images by scanning the sample surface with a high-energy beam of electrons. As the electrons interact with the sample, they produce secondary electrons, backscattered electrons, and X-rays are produced when electrons hit the surface. Then, signals are detected by the detectors to create images and this image is displayed by the computer. The SEM /EDS system which is shown in Figure 4.5 was used to picture of the foam in the core sample pores. For this purpose, the piece part of the selected core samples was placed on the sample carrier and dried in an oven

at 600 °C for 2 hours. The dried fragment was coated with 200 Å thick gold by using EMS-550X Coating Device. Then, IXRF-EDS-2004 system was used to analyze under the condition which was shown in *Table 4.6*.



Figure 4.5. SEM/EDS system

Table 4.6. SEM/EDS experimental conditions

| SEM accelerator voltage | 15 kV |
|-------------------------|-------|
| SEM beam current        | 1 µA  |
| EDS analysis program    | SQ    |
| EDS correction program  | ZAF   |

### **CHAPTER 5**

## **RESULTS AND DISCUSSION**

# 5.1. NANOSILICA DISPERSION STABILIZATION, FOAMABILITY AND PARAMETERS EFFECT

#### 5.1.1. Stabilization and Foamability

Nanosilica types and the dispersion preparation procedure were touched on CHAPTER 4. Adhering to this procedure, dispersions were prepared for the early foamability test by using pure water and used dispersions were provided in *Table 5.1*. For this basic test, the dispersion was placed in the glass tubes and shaken hard and fast for a minute. It was expected that nanoparticles placed at the interface of the air and the water and create foam. The purpose of this test was seeing the foam generation and life of the foam to select suitable nanosilica.

| Case<br>No | Nanoparticle | Nanoparticle<br>Concentration | NaCl<br>Concentration |
|------------|--------------|-------------------------------|-----------------------|
| 1          | PEG          | 1%                            | -                     |
| 2          | CC301        | 1%                            | -                     |
| 3          | AERO         | 1%                            | -                     |
| 4          | N20          | 1%                            | -                     |
| 5          | H30          | 0.5%                          | -                     |
| 6          | H30          | 1%                            | -                     |
| 7          | H30          | 1%                            | 1%                    |

Table 5.1. Prepared dispersions for early foam test

As mentioned in CHAPTER 2, half hydrophobic nanosilica proved itself as a better stabilizer of the foam. In light of this information, different concentration of the H30 and the salinity effects on the H30 foam were also examined. Designation of the dispersions before and after the early foamability test was in Figure 5.1.



Figure 5.1. Dispersion A) before B) after the early foamability test

As observed from the figure, N20 couldn't generate foam. On the contrary, the utmost foam was obtained with H30, as proof of the literature. This test also indicated that NaCl promoted foam formation as expected. After that stage, the dispersion was put aside to watch foams half-life as a proof of stability. Figure 5.2 represented the picture of the foams after 16 hours which was the half-life of the H30 dispersions. This result was much higher than the half-life of the surfactant foam which could be describe in minute or a few hours (Wang, 2017). The foam which was created with AERO dispersion was collapsed too fast. The half-life of the PEG and CC301 was around 10 h.



Figure 5.2. Foams after 16 hours of the early foam test

After the foamability test, N20 and AERO were eliminated. Then, before the final decision of nanodispersion selection for flood tests, the particle size of nanoparticles in dispersions was analyzed to figure out if the dispersions were stable or not. The dispersions, content %1 nanoparticle and %1 NaCl, by using PEG, CC301 and H30 and also %2 H30 was prepared to this end. The test was conducted by the Middle East Technical University Central Laboratory (MERLAB). The average results showed in *Table 5.2* and the analyses report were given in APPENDIX C. As could be seen from the table, H30 dispersions were not stable because its particle size was higher than expected which point out agglomeration.

|                             | PEG                       | CC301                     | H3                           | 0                |
|-----------------------------|---------------------------|---------------------------|------------------------------|------------------|
| Dispersion                  | 1% Nanosilica+<br>1% NaCl | 1% Nanosilica+<br>1% NaCl | 1%<br>Nanosilica+<br>1% NaCl | 2%<br>Nanosilica |
| Avarage<br>Particle<br>Size | 10.1 nm                   | 9.6 nm                    | 48.6 µm                      | 5.8 µm           |

Table 5.2. Particle size distribution of the dispersions

# 5.1.2. Effect of the Salinity

After seeing the positive effect of the NaCl, its different concentrations were tested. %1 H30 dispersion with 1%, 2% and 5% concentrated NaCl solutions were prepared and again shaken a minute hardly. The foam was obtained for all concentration of NaCl content but the particle agglomeration was visible with respect to the increased concentration of NaCl as observed from Figure 5.3. According to literature, NaCl content greater than 1.5% generates flocculation of the nanosilica particles (Metin, 2011). Also, the critical salt concentration was higher for small diameter nanoparticles (Azadgoleh, 2014).



*Figure 5.3.* The effect of the NaCl concentration on the foam generated by 1% H30 dispersion A) before B) after C) 1 hour later

# 5.1.3. Effect of the Concentration

The same test also was conducted with 0.5% H30 dispersion to compare the effect of the H30 concentration on foamability. The results suggested that the higher the concentration, the better the foamability (Figure 5.4). In that case, the cost of the nanoparticle should be thought and it was important to select the optimum concentration.



*Figure 5.4.* The effect of the NaCl concentration on the foam generated by 0.5% H30 dispersion A) before B) after

# 5.1.4. Effect of the Temperature

This time, the dispersion was prepared and just waited at 25 °C and 65 °C which was B.Raman reservoir temperature to see if flocculation or/and agglomeration was occurring or not. Figure 5.5 explained the dispersion stabilization when dispersions were exposed 25 °C and 65 °C for two days. It was not possible to see clearly from the figure that the H30 dispersion was not stable at 65°C after 2 days. The figure of the detailed photo of the H30 dispersion was placed below additionally for this reason (Figure 5.6). The other dispersions seemed stable even at 65 °C.

# 5.1.5. Effect of the pH

PH adjustment is one of the methods to stabilize nanoparticle dispersions. Therefore, zeta potential test by titrating acid and base was carried out at the laboratory of the National Nanotechnology Research Center (UNAM). The graphs were in Figure 5.7 and Figure 5.8. As explained in CHAPTER 4, nanoparticles with Zeta Potential values higher than +30 mV or lower than -30 mV have the best stability. Therefore, as figures indicated, dispersions should be stable at the pH above 9. For this reason, 1% H30 dispersions' pH was measured and adjusted 10 with sodium hydroxide (NaOH). After that, the particle size distribution analysis was performed again. All results were shown in *Table 5.3*.



*Figure 5.5.* Dispersion stabilization A) at 25 °C B) two days after at 25 °C) at 65 °C D) 2 days after at 65 °C



Figure 5.6. H30 dispersion after 2 days at 65 °C



Figure 5.7. Zeta potential during acid titration



Figure 5.8. Zeta potential during base titration





| Dispersion   | рН, 25°С | Average Particle<br>Size |
|--------------|----------|--------------------------|
| % 1 H30 + 1% | 6.09     | 48.6 µm                  |
| NaCl         | 10.02    | 122.7 nm                 |

Table 5.3. Particle size distribution analysis results before and after pH adjustment

The result at pH 10 showed that the dispersion was stabled. The particle size was enough small for B. Raman matrix as shown in *Figure 5.9*. It was proper for the flooding test if the particles in the dispersion were below 200 nm.

After this result, early foam tests at pH 9-10-11 were performed again to see foamability of the dispersion. As Figure 5.10 indicated, high pH has a negative impact on foam formation. In other words, the foam couldn't be seen when pH was increased. Therefore, it inferred that pH adjustment was not appropriate for this study, even though the positive results in the particle size analysis were achieved.



Figure 5.10. The effect of the pH on the foam generated by 1 % H30 dispersion A) before B) after

# 5.2. NANOSILICA DISPERSION STABILIZATION, FOAMABILITY AND PARAMETERS EFFECT

This test was performed for two objectives; 1) if there was any plugging due to the instability of the nanoparticle dispersions and 2) if any adsorption on the rock was occurring during dispersion flooding. For this purpose, first, the 1.5 inch carbonate core from B. Raman field was selected and analyzed by using permeameter and porosimeter. Then, the core was inserted to the core holder in the core flood system for flooding test. 1 % concentrated nanosilica dispersions for PEG, CC301 and H30 were prepared and placed into the accumulator. First core was saturated with B.Raman formation water then dispersions was flooded through the core sample each in turn to figure out whether or not nanosilica had an effect on core permeability. Flood test was performed by injection about 10 PV nanosilica dispersions at 600 psi and room temperature (~25 °C) and all pressure drops were recorded. Core sample information and the test results graph were shown in *Table 5.4* and Figure 5.11, respectively.

| PARAMETER                        | RESULT |
|----------------------------------|--------|
| Length (L), cm                   | 6.7    |
| Diameter (d), cm                 | 3.78   |
| Pore Volume $(V_p)$ , cc         | 15.56  |
| Grain Density ( $\rho_g$ ), g/cc | 2.71   |
| Porosity ( $\Phi$ ), %           | 20.8   |
| Permeability (kair), md          | 105.43 |

Table 5.4. Properties of B.Raman field core sample

As clearly depicted inFigure 5.11, the pressure drop was increased by increasing the injection of H30 dispersion which indicated a permeability decrease. On the other hand, other dispersions (PEG and CC301 dispersions) had a stable pressure drop as expected. These results were compatible with the results of B. Raman pore throat size distribution and dispersion stabilization studies. Because of all this, it was decided not to use H30 for further analyses due to the stability problem. This nanoparticle can be suitable for high permeable reservoirs but not for B. Raman field which have low permeability.

Additionally, the concentration of the silica in nanosilica dispersion was attempted to analyze before and after flooding for again proving if there was any adsorption in the matrix. XRF spectroscopy was used for this purpose. It was obvious that H30 dispersion plugged the system, so PEG dispersion was selected to analyze which had the same particle size as CC301. 0.6 % PEG dispersion was prepared. The core was saturated with formation water then the dispersion was flooded through the core. The properties of the core sample were listed in *Table 5.5*. First, 5 PV dispersion was flooded and then the output tube was changed and an extra 5 PV was injected. After that, the silica content of the fluid inside the output tube was analyzed by XRF. The results were given in *Table 5.6* and detailed analysis report was in APPENDIX D. A confusing results were obtained. The output fluids during analysis and standard deviation of the spectroscope. It could be said that no adsorption occurred during dispersion flooding with PEG.

Table 5.5. Properties of the core sample

| PARAMETER                        | RESULT |
|----------------------------------|--------|
| Length (L), cm                   | 5.22   |
| Diameter (d), cm                 | 3.80   |
| Pore Volume(V <sub>p</sub> ), cc | 4.3    |
| Grain Density ( $\rho_g$ ), g/cc | 2.68   |
| Porosity (Φ), %                  | 7.26   |
| Permeability (kair), md          | 13.52  |

| Table 5.6. | Results | of the | XRF | analysis |
|------------|---------|--------|-----|----------|
|------------|---------|--------|-----|----------|

|         | <b>CONCENTRATION, wt %</b> |                |  |  |
|---------|----------------------------|----------------|--|--|
| ELEMENT | Before Flooding            | After Flooding |  |  |
| Si      | 0.579                      | 0.599          |  |  |



Figure 5.11. Pressure differences during dispersion flooding

#### **5.3. PVT SIMULATION**

Before starting foam generation tests, Dodan gas's phase diagram was drawn by using Calsep's PVTSim Compositional Simulator. Because the critical pressure and temperature of the gases were crucial parameters for the generation of foam. In the supercritical region, the fluid acts as both a liquid and a gas. In other saying, supercritical fluids have liquid-like densities and gas-like diffusivities, particularly. In was our study, both gas and supercritical phase of CO<sub>2</sub> were used by changing pressure. was aimed to get a better interaction between CO<sub>2</sub> and nanodispersion when CO<sub>2</sub> at its supercritical phase. Therefore, PVTSim program and equation of Peng-Robinson (PR) were used to control the critical point of the Dodan gas.

Pure (99.9%) CO<sub>2</sub> was also studied to see the differences. The graphs were pictured in Figure 5.12 and Figure 5.13. The composition of the Dodan gas was detailed in CHAPTER 4 and this composition was inserted to the simulation program. Different vapor to liquid volume ratio was applied and the critical point found as 1030 psi and 82 °F. If the pure Dodan gas's graph was investigated, then it could be said that the location of the critical point was not too different. The critical point of the pure gas was seen as 1060 psi and 88 °F. The literature also checked (Voormeij, 2010) and it said that CO<sub>2</sub> gas critical point was 1050 psi and 31 °C (87.8 °F) as PVTsim results gave for pure CO<sub>2</sub>.

The gas's pressure should be over 1100 psi with a confidential interval within the framework of the knowledge up to this point to reach the supercritical point. The temperature was applied as 65 °C to express B. Raman field as much as it could be, so it has already above 31 °C.



Figure 5.12. Phase diagram of the Dodan gas



Figure 5.13. Phase diagram of the pure CO2

## 5.4. FOAM GENERATION FLOOD TEST

Flooding test was run by using the Core Flooding System which was described before. The flow diagram was shown in Figure 5.14. The aim of the test was seeing the pressure differences during flooding test and visualized foam. These differences were going to be used as a proof of the foam generation. Because this denser foam form will increase the differences between upstream and downstream pressure. In addition, a sapphire observation cell was inserted to the system to see whether or not foam could be generated.



Figure 5.14. Flow diagram of the core flooding system for foam generation test

All information which was obtained from the tests and literature designated the foam generation test conditions. That means, %1Nano+%1NaCl concentrated dispersions were prepared and the test conducted at 65 °C temperature and both 650 and 1200 psi pressure. Different flow ratio and flow rate were applied to find optimum condition for foam formation as well. 0.1% and 0.5 % concentration was also evaluated but no foam was visualized.








First of all, the core was saturated with B. Raman formation water at 1000 psi for 2 days. Then,  $CO_2$  and formation water was flooded simultaneously through the core sample at both 650 and 1200 psi as the bases. The graphs were demonstrated in Figure 5.15 and *Figure 5.16*.

At 650 psi,  $CO_2$  and water couldn't flow together as seen from the observation cell with the used core system. In other words,  $CO_2$  and water got into the core sample slug by slug. Because the gas form of the  $CO_2$  couldn't effort any pressure differences at the core entrance as much as water due to the compressibility of the gas phase. These sentences were proved by the fluctuation of the pressure differences in the graph of the flooding at 650 psi. However, when the pressure was increased to the 1200 psi,  $CO_2$ acted as both liquid and gas phase, then flowed together.

*Figure 5.16* demonstrated this scenario. When pressure differences reached a steady state then flow rate and phase ratio was changed. All steps were reached the steady state in 3 seconds. This was stated because when the foam was generated, it was expected to see long term increase in pressure differences.

After this stage, the core sample was changed and saturated with formation water. Then, PEG and  $CO_2$  were injected simultaneously. As told before, the properties of the core samples were given in their own graph. 650 psi was practiced first and the same result was attained again. The accumulation of the foam couldn't be displayed because it was not possible to see the top of the cell and also the shape of the sapphire cell (U shape) did not allow. Also, the graph of the pressure differences was pointed out in *Figure 5.17*. Now it was clear that it was not possible to inject gas and liquid form simultaneously with this system. Therefore, for CC301, 650 psi wouldn't be evaluated. Also, for recovery test step, it was decided to try a separate injection of the nanoparticle dispersion and  $CO_2$  at 650 psi as a WAG. This subject going to be detailed later. Thereafter, the pressure was increased up to 1200 psi and differences between

downstream and upstream pressure were recorded. Different phase ratio (CO<sub>2</sub>/Nano dispersion) was executed and the higher increase of the pressure differences was tracked. The phase ratios were indicated on the graph which was named as Figure 5.18. The literature stated that when foam quality was 0.75, higher viscosity was reached means higher pressure differences (Di Carlo, 2015). On the other hand, they mostly used the phase ratio as 1. In this study, the viscosity of the foam didn't measure. The foam generation was detected with the increase in pressure differences as mentioned before. Foam quality describes as the fraction of the CO<sub>2</sub> to total CO<sub>2</sub>-nano dispersion mixture. In this study, the higher slope of pressure differences line was acquired when foam quality was 0.5 where the phase ratio was 1 and the total flow rate was 8 cc/min. Di Carlo et al. (2015) also couldn't see the foam at the lower total flow rate in their study as expected. Because the higher flow rate is going to create a higher shear rate and this shear will cause foam generation. Therefore higher value was selected this time, just to be on the safe side, because the main aim of this study was visualizing the foam. This much flow rate couldn't be used during recovery test due to high pressure generation anyway.

Afterward, the system was dismantled, the dispersion accumulator was cleaned and the core sample was changed. This time, CC301 dispersion was put into the accumulator and system was again heated to 65 °C. Then formation water was flooded through the core to saturate and later, CC301 and CO<sub>2</sub> were flooded together at 1200 psi. The graph was demonstrated in Figure 5.19. For this case, the total flow rate was also changed. The foam was visualized when passing through the sapphire observation cell. As expected, the foam was more visible with increased flow rate.

It was not planned to do this experiment with H30 due to the stability problem. But, as the literature stated, better foam formation was expected with this dispersion. Therefore, the plan was changed and 2% H30 dispersion was prepared with 1% NaCl. Then, this dispersion was filtered by using a 200 nm filter. It was pursued that after this filtration, nanoparticles did not plug the matrix. The reason why 2% concentrated dispersion was prepared was effluent after filtration might have enough silica content to generate foam. It was known that the graph of this run was not too meaningful because the pressure differences could be due to both plugging and foam formation. The graph (Figure 5.20) was given just for the information.















Figure 5.20. Pressure differences during simultaneous injection of the H30 and CO2 at 1200 psi 65 °C

Visualizing the foam in the observation cell was the purpose of H30 dispersion flooding. The foam with H30 was seen more visible than other flood experiments. The observation cell was filled with foam quickly. This study also had the same results; hydrophobicity effect to foamability positively. However, due to the stability problem, this nanoparticle is not going to be used for the recovery test. All input and the output of the flooding experiments were listed in *Table 5.7*. Moreover, Figure 5.21 and Figure 5.22 picturized the foam with CC301 and H30, respectively. The video of the foam during tests will be provided with a CD named as APPENDIX F.

| Name               | k <sub>w</sub><br>mD | Ф<br>% | P<br>psi | C <sub>nano</sub><br>% | C <sub>NaCl</sub> | Phase Ratio (CO <sub>2</sub> :liquid) | Q <sub>Total</sub><br>cc/mi<br>n | Foam<br>Visual | Statement                 |   |   |
|--------------------|----------------------|--------|----------|------------------------|-------------------|---------------------------------------|----------------------------------|----------------|---------------------------|---|---|
| Formation<br>water | 22                   | 19.6 - | 650      | -                      | 9                 | 5:1                                   | 6                                | Ν              | couldn't be<br>coinjected |   |   |
|                    |                      |        |          |                        |                   | 2:3                                   | 5                                | Ν              |                           |   |   |
|                    |                      |        |          |                        |                   | 1:4                                   | 5                                | Ν              |                           |   |   |
|                    | LL                   |        | 1200     | _                      | 9                 | 5:1                                   | 6                                | Ν              |                           |   |   |
|                    |                      |        |          |                        |                   | 3:2                                   | 5                                | Ν              |                           |   |   |
|                    |                      |        |          |                        |                   | 1:4                                   | 5                                | Ν              |                           |   |   |
| PEG                | 96                   |        |          |                        |                   |                                       | 4:4                              | 8              | Ν                         |   |   |
|                    |                      | 22.5   | 650      | 1                      | 1                 | 3:5                                   | 8                                | Ν              | couldn't be<br>coinjected |   |   |
|                    |                      |        |          |                        |                   | 2:5                                   | 7                                | Ν              |                           |   |   |
|                    |                      |        |          |                        |                   | 3:6                                   | 9                                | Ν              |                           |   |   |
|                    |                      |        |          |                        |                   | 4:8                                   | 12                               | Ν              |                           |   |   |
|                    |                      |        | 1200     | 1                      | 1                 | 4:4                                   | 8                                | Y              |                           |   |   |
|                    |                      |        |          |                        |                   | 5:3                                   | 8                                | Y              |                           |   |   |
|                    |                      |        |          |                        |                   | 3:5                                   | 8                                | Y              |                           |   |   |
| CC301              | 46                   |        |          |                        |                   |                                       |                                  | 3:4            | 7                         | Y |   |
|                    |                      | 22.0   | 1200     | 1                      | 1                 | 4:5                                   | 9                                | Y              |                           |   |   |
|                    |                      |        |          |                        |                   | 4:6                                   | 10                               | Ν              | Low<br>quality            |   |   |
|                    |                      |        |          |                        |                   | 6:4                                   | 10                               | Y              |                           |   |   |
| H30                | 21                   | 1 165  | 1000     | . 0                    | 1                 | 4:4                                   | 8                                | Y              |                           |   |   |
|                    | H30                  | 21     | 21 16    | 16.5                   | 16.5              | 1200                                  | < 2                              | 1              | 5:3                       | 8 | Y |

Table 5.7. Particle size distribution analysis results before and after pH adjustment



*Figure 5.21.* Sapphire observation cell image A) during the simultaneous injection of CO2 and formation water B) during the simultaneous injection of CO2 and CC301 dispersion



*Figure 5.22.* Foam image A) during the simultaneous injection of CO2 and H30 B) when covered the observation cell C) when foam go out the system to the atmospheric condition

The foam in the core sample was visualized by using SEM/EDS system. The used silica nanoparticles are amorphous. The SEM system is not perfect for picturized these type of particles but at least give a rough picture. The image and EDS results were given in Figure 5.23. The reservoir of the B. Raman field has 100% carbonate rock. Thus, the display from the SEM and the silica peak from the EDS indicated the silica existing in the rock.



Figure 5.23. Results of the SEM/EDS A) picture of the silica particles B) chemical analysis

# **5.5. OIL RECOVERY**

This study was performed to reveal extra oil production when the foam was applied.  $CO_2$  injection and WAG application were run before foam to better representation of the B. Raman field case. Additionally, nanodispersions and  $CO_2$  was also injected separately at 650 psi before foam application which was named as NWAG as declared before. 4.5 inch carbonate core and Dodan gas sample were used for oil recovery tests. The properties and the picture of the core sample were placed in the below table (*Table 5.8*). Dodan gas sample properties were also touched on CHAPTER 4.

| PARAMETERS                        | RESULTS |  |  |
|-----------------------------------|---------|--|--|
| Length (L), cm                    | 14.02   |  |  |
| Diameter (d), cm                  | 8.75    |  |  |
| Pore volume (V <sub>p</sub> ), cc | 136.13  |  |  |
| Grain density ( $\rho_g$ ), g/cc  | 2.68    |  |  |
| Porosity (Φ), %                   | 16.1    |  |  |
| Permeability (kw), md             | 10.08   |  |  |

Table 5.8. The properties and the picture of the core sample

As mentioned early section, only PEG and CC301 was evaluated due to the instability of the H30 dispersion. Again, %1NaCl+%1 nanoparticle concentrated dispersion was used. System temperature was 65 °C and the phase ratio was 1. Flow diagram of the core flooding system was also demonstrated in Figure 5.24. The test will be detailed step by step for both PEG and CC301 dispersions.

#### 5.5.1. Oil Recovery with CC301 Dispersion

1% NaCl + 1% CC301 dispersion was prepared first. All fluids (nanodispersion, Dodan gas and B. Raman oil) were placed into accumulators and core sample was inserted into core holder. After all, the system was heated up to 65 °C. Recovery test steps were listed below.



Figure 5.24. Flow diagram of the core flooding system for oil recovery test

- When the system reached the desired temperature, formation water was flooded through the core and saturated for two days at 1000 psi. Then, 2 PV B. Raman oil were injected till the residual water saturation and it was calculated as 10 %.
- After, CO<sub>2</sub> was flowed at 650 psi to reflect B. Raman field case. Because at this field, CO<sub>2</sub> injection has already been applied at this pressure. 28% of OOIP was produced at this step.
- At B. Raman field, CO<sub>2</sub> injection cuts and water injects to the system at regular intervals. Therefore, again to the better projection of the field, WAG was applied at 650 psi as another step. The flow was stopped when no more oil production was detected after 6 cycles of injection. Each cycle includes gas and water flow. The flooding was made at a flow rate of 0.25 cc/min and each was 0.2 PV. After this process, approximately 18% additional recovery was provided. It was also observed that the WAG system was more effective

than continuous CO<sub>2</sub> injection for a carbonate reservoir and provided extra recovery.

- After this step, the CO<sub>2</sub> and nanodispersion were injected sequentially (NWAG) at 650 psi as touched on before. Again, the flow was made at a flow rate of 0.25 cc/min and each of 0.2 PV. Although 3 cycles were applied, no significant production was observed. Even, foam formation was noticed barely in the sapphire observation cell, they were not of expected quality. Additional production in this step was below 1%.
- Finally, the system was pressurized to 1200 psi and the nanodispersion was coinjected with supercritical CO<sub>2</sub>. CO<sub>2</sub> / Nano phase ratio of 1: 1 was used. In this case, foam formation was observed in the production cell. The video of the oil that comes with the foam is added to the report with a CD named as APPENDIX F. The resulting oil was taken up in an emulsion form with foam as seen in Figure 5.25. The breaker was added to the emulsion and centrifuged. Then, the volume of the separated oil from emulsion was noted and calculated. An additional 25% recovery was obtained. After this result, it could be stated that CO<sub>2</sub> mobility was controlled with the formation of nanoparticle stabilized foam and this denser form penetrated to the matrix and swept the oil better than the gas form of the CO<sub>2</sub>.

After all these steps, total oil recovery was approximately 71 % of the OOIP. The graph of the experiment which includes all stages were shown in Figure 5.26.



*Figure 5.25.* The image of the production after centrifuge which was obtained when foam was applied **5.5.2. Oil Recovery with PEG Dispersion** 

This time dispersion included 1% NaCl + 1% PEG. The system was again set up the same conditions.

- The same core sample was used for this experiment also. For this reason, formation water was injected first to clean core. Then, again, 2 pore volume reservoir oil was flooded through the core at 1000 psi. The pressure was decreased to 650 psi.
- First of all, CO<sub>2</sub> was injected to the core at 650 psi and 65 °C and 16% of the OOIP was produced. This amount is too smaller than the production with CC301. This may be due to aging or plugging during the oil recovery test using the dispersion of the CC301.

- Then, WAG was applied. After 6 cycles, each of them was 2PV, was introduced, 9% extra production was observed. Again, the flow rate of each application was 0.25 cc/min.
- The next was NWAG at 650 psi. After this application, extra oil production was noted as 4%. This time 5 cycle was enough. Again 0.2 PV and 0.25 cc/min fluids were flooded. This amount was higher than CC301 NWAG application.
- While working with the CC301, it was noticed that CO<sub>2</sub> injection at 1200 psi was not studied. However, some part of the extra oil recovery which was gained from the foam application could be achieved by only 1200 psi CO<sub>2</sub> injection. Another word, if CO<sub>2</sub> injection could produce to that much oil recovery which was obtained from foam application alone at that pressure. Therefore, at this step, only CO<sub>2</sub> at 1200 psi was flooded. Almost 8 PV of CO<sub>2</sub> was injected and only 1% of OOIP could be recovered.
- Lastly, PEG dispersion and CO<sub>2</sub> were flooded simultaneously at 1200 psi. This foam application was ended with an extra 7% oil recovery. Again the phase ratio was 1:1.

The graph of this experiment was demonstrated in Figure 5.27. When the amount of oil production in each step was evaluated, it could be stated that all steps of the PEG dispersion study were almost half of the CC301 dispersion case. As mentioned, these differences could be due to aging or plugging. Because the same core samples were used, so, a long time oil contamination has occurred before the PEG application. Also, CC301 could plug some tiny pores which led us to a low recovery. But, it can be declared that foam application is successful if the conditions are suitable. All results of each step for both CC301 and PEG studies were listed below table (*Table 5.9*). Also,

making more meaningful of these numerical values, the production of each step in total production was graphed and showed in *Figure 5.28*.

| Oil Recovery, % OOIP |                            |                |                 |                             |                  |       |  |
|----------------------|----------------------------|----------------|-----------------|-----------------------------|------------------|-------|--|
| Dispersion           | 650 psi<br>CO <sub>2</sub> | 650 psi<br>WAG | 650 psi<br>NWAG | 1200 psi<br>CO <sub>2</sub> | 1200 psi<br>Foam | Total |  |
| CC301                | 28                         | 18             | <1              | -                           | 25               | 71    |  |
| PEG                  | 16                         | 9              | 4               | 1                           | 7                | 37    |  |

Table 5.9. Oil recoveries of each step for all experiments

The production data was provided as APPENDIX E and the live data of the recovery experiment was handed in a CD named as APPENDIX F.

Core saturation was calculated after the tests by using a Dean-Stark test system to verify the first condition and check the results of the tests. After, PEG experiment, the core was inserted to the Dean-Stark system and saturation was checked.







Figure 5.27. Oil recoveries in each step of the PEG experiment

68





## 5.6. IFT MEASUREMENT

IFT between the nanodispersion -  $CO_2$  and nanodispersion-oil were also evaluated to figure out if IFT was changing or not. As stated before, according to literature, the adsorption of the nanoparticle between the gas-liquid interfaces do not change the interfacial tension as a surfactant. It changes the contact angle (Sheng, 2013).

## 5.6.1. IFT between Nanodispersion-CO<sub>2</sub>

The cell was loaded with the nanodispersion and the CO<sub>2</sub> was sent to the cell. The system was heated and pressurized. The IFT700 system was used to analyze the IFT between these liquids by using the pendant drop method. CC301dispersion was used for this experiment. The IFT of the NaCl solution was also measured to make a comparison if IFT was changing when nanodispersion was used. Moreover, the pressure effect of the temperature was evaluated. The before experiments show that the pressure does not change the IFT too much. Therefore, the pressure was kept in 600 psi. All results were given in *Table 5.10*. As seen from the table, not a significant change of IFT was obtained with the presence of nanoparticles as expected. Also, IFT was decreasing with the increase of the temperature. In order to see the temperature and nanoparticle effects on the IFT, Figure 5.29 and Figure 5.30 were plotted, respectively.

| Cell Fluid                              | T (°C) | IFT<br>(mN/m) |
|-----------------------------------------|--------|---------------|
| 1. 0/ NaCl solution                     | 25     | 37            |
| 1 % NaCI solution                       | 65     | 30            |
| $1.0$ NoCl $\pm 1.0$ CC201 dispersion   | 25     | 30            |
| $1.70$ mach $\pm 1.70$ CC301 dispersion | 65     | 24            |

Table 5.10. IFT between gas-liquid



Figure 5.29. Temperature effect on the IFT



Figure 5.30. Nanosilica effect on IFT

## 5.6.2. IFT between Nanodispersion-Oil

The interfacial tension between nanodispersions and B. Raman oil was also conducted. Because if the foam decomposes in the reservoir, then nanodispersion will be release and contact with the reservoir fluids. This experiment will be an answer for this case.

The cell was again loaded with nanodispersion and oil drop was injected into the cell. Rising drop method was used this time and the shape of the drop was analyzed to measure IFT. Pressure again kept at 600 psi and the analysis temperature was 65 °C. The results indicated that IFT was decreasing significantly when nanosilica was used as shown in *Table 5.11*. Sedaghat et al. (2018) also stated the same result. Therefore, it was deduced that nanosilica can act as a surfactant in the reservoir, gladsomely.

| Table 5.11 | IFT | between | liquid-oil |
|------------|-----|---------|------------|
|------------|-----|---------|------------|

| Cell Fluid              | T (°C) | IFT<br>(mN/m) |
|-------------------------|--------|---------------|
| B.Raman formation water |        | 30-35         |
| 1 % CC301 dispersion    | 65     | 4.5           |
| 1% PEG dispersion       |        | 1.4           |

## **CHAPTER 6**

## **CONCLUSION AND RECOMMENDATION**

The whole of the studies was performed to increase the productivity of the already existing CO<sub>2</sub> injection system at B. Raman field. Nanoparticles were used to create foam to control CO<sub>2</sub> mobility in the reservoir. Therefore, the first different type of nanoparticles' dispersion stabilization and their foamability were evaluated. After this step two of them was eliminated due to lack of ability of foam generation. Also, H30 was found as better foamability dispersion. Then the dispersions were sent for particle size distribution analyses. H30 was at the nanoscale as results showed. The effect of the salinity, concentration, temperature and pH was studied on the foamability and stabilization. It was found that NaCl content has improved foam generation however higher concentration caused instability. The concentration of the nanoparticle was also important for stabilization and foamability. The higher the nanoparticle concentration, the higher the ability of foam formation. But, in that case, the cost of the application should be thought. Thus, 1% of concentrated nanoparticle dispersion was applied as the optimum value. Also, it wondered if the dispersion were stable at 65 °C which was B. Raman reservoir temperature. The results indicated that PEG and CC301 dispersions were stable but H30 dispersion was not. The pH adjustment was also conducted to stabilize H30 dispersion. For this purpose, the zeta potential was measured for every pH change. Form this experiment, it was figured out that above 9 H30 dispersions should be stable. Then, the pH of the dispersion was adjusted to 10 and the particle size was analyzed again. In that case, particle size was found below 200 nm which was appropriate for B. Raman reservoir.

Even it seemed all dispersion were stabilized, the dispersions were flooded through the B. Raman core samples for ensuring if plugging occurred or not. Then, plugging existed during H30 dispersion flooding. Therefore, it was planned that H30 was not going to be used for later tests. Before starting foam generation tests, PVTSim program was run for graphing the phase diagram of the Dodan gas which was the source of B. Raman  $CO_2$  injection system and pure  $CO_2$ . The supercritical point was found as approximately above 1100 psi and 30 °C for both.

Then the test system was designed for foam generation flooding. The effect of the pressure, phase ratio and flow rate on the foam formation were also studied. Better foams were obtained when pressure differences were evaluated at  $CO_2$ : nanodispersion phase ratio was 1. Also, it was found that the pressure should be above 1100 psi where  $CO_2$  was in the supercritical phase to create foam with current core flooding system. Silica particle in the core was picturized with SEM/EDS system.

After, PEG and CC301 dispersion were used for oil recovery test. First, CO<sub>2</sub> injection and then WAG were studied to express B. Raman field case and it was found that WAG gave an extra oil production after the production with CO<sub>2</sub> injection stopped. NWAG at 650 psi and foam at 1200 psi was tested, later. It could be stated that the foam application was successful if appropriate conditions existed. On the other hand, not a significant production was obtained with NWAG application at 650 psi. Almost 35% of the total recovery was recovered with nanoparticles.

Interfacial measurements were also studied to evaluate the working principle of the nanoparticles. Nanoparticles were not changing IFT markedly even if they were located at the interface of the water and CO<sub>2</sub> as the surfactant. However, a significant decrease in the IFT was obtained between water and oil in the presence of nanoparticles.

After these whole results, it can be said that the injection of the nanoparticle stabilized  $CO_2$  foam to B. Raman reservoirs where the pressure is above 1100 psi can be ended with a higher production.

As mentioned before, oil recovery test results were different for PEG and CC301 dispersion application. Tests were conducted with the same core but the PEG was applied after CC301 which means core samples was exposed to the oil longer. The differences were not only at the foam application but also the  $CO_2$  injection. Therefore, these differences could be due to aging or plugging after CC301 dispersion was used. This test may study again by using different but same structure core samples. At the same time, the repeatability should also be made.

Additionally, the literature and the results of this study indicated that the dispersion of H30 had the best ability to form foam. On the other hand, the stability problem was observed about this dispersion and couldn't be solved during the study. It is recommended that this stability problem should be studied more and oil production with H30 dispersion should be seen.

Lastly, the viscosity measurement of the foam by adding a capillary tube to the system can be done as future work for better understanding. Any increase in the viscosity can be proof of foam generation. Also, it can be figured out which foam has better quality with this examination.

The importance of the field studies which reflects the reality is obvious in the oil and gas industry. Thus, the results of the application of this method should be seen in the field after all the question marks are answered.

#### REFERENCES

Abedini, A., & Torabi F. (2014). On the CO<sub>2</sub> Storage Potential of Cyclic CO<sub>2</sub> Injection Process for Enhanced Oil Recovery. Fuel, 124: 14-27.

Adkins, S.S., Chen, X., Chan, I., Torino, E., Nguyen, Q.P., Sanders, A.W., & Johnston, K.P. (2009) Morphology and Stability of CO<sub>2</sub>-in-Water Foams with Nonionic Hydrocarbon Surfactants. Langmuir. 26(8): 5335–5348.

Alargova, R.G., Warhadpande, D.S., Paunov V.N., & Velev, O.D. (2004). Foam Superstabilization by Polymer Microrods. Langmuir. 20: 10371-10374.

AlYousef, A., Almobarky, M., & Schechter, D. (2017). Enhancing the Stability of Foam by the Use of Nanoparticles. Energy Fuels. 31: 10620-10627.

Aminzadeh-Goharrizi, B., DiCarlo, D. A., Chung, D. H., Kianinejad, A., Bryant, S. L., & Huh, C. (2012). Effect of Nanoparticles on Flow Alteration during CO<sub>2</sub> Injection. Society of Petroleum Engineers. doi:10.2118/160052-MS.

Andrianov, A., Farajzadeh, R., Nick, M. M., Talanana, M., & Zitha, P. L. J. (2011). Immiscible Foam for Enhancing Oil Recovery: Bulk and Porous Media Experiments. Society of Petroleum Engineers. doi:10.2118/143578-MS.

Aroonsri, A., Worthen, A. J., Hariz, T., Johnston, K. P., Huh, C., & Bryant, S. L. (2013). Conditions for Generating Nanoparticle-Stabilized CO<sub>2</sub> Foams in Fracture and Matrix Flow. Society of Petroleum Engineers. doi:10.2118/166319-MS.

Azadgoleh, J.E, Kharrat, R., Barati, N., & Sobhani, A. (2014). Stability of Silica Nanoparticle Dispersion in Brine Solution: an Experimental Study. Iranian Journal of Oil & Gas Science and Technology, 3(4): 26-40

Bashir, A., Sharifi Haddad, A., & Rafati, R. (2018). Experimental Investigation of Nanoparticles/Polymer Enhanced CO<sub>2</sub>- Foam in the Presence of Hydrocarbon at High-Temperature Conditions. Society of Petroleum Engineers. doi:10.2118/193802-MS.

Bhattacharjee, S. (2016). DLS and Zeta Potential – What They Are and What They Are Not. Journal of Controlled Release. 235: 337-351.

Bikerman, J.J. (1973). Foams. Springer-Verlag. ISBN: 0387061088.

Binks, B.P., & Lumsdon, S.O. (2000). Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions. Langmuir. 16(23): 8622-8631.

Binks, B.P. (2002). Particles as Surfactants—Similarities and Differences. Current Opinion in Colloid & Interface Science. 7(1): 21–41.

Binks, B.P., & Horozov, T.S. (2005). Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angewandte Chemie. 117(24): 3788–3791.

Caudle, B. H., & Dyes, A. B. (1958). Improving Miscible Displacement by Gas-Water Injection. Society of Petroleum Engineers.

Chou, S. I., Vasicek, S. L., Pisio, D. L., Jasek, D. E., & Goodgame, J. A. (1992). CO<sub>2</sub> Foam Field Trial at North Ward-Estes. Society of Petroleum Engineers. doi:10.2118/24643-MS.

Christensen, J. R., Stenby, E. H., & Skauge, A. (1998). Review of WAG Field Experience. Society of Petroleum Engineers. doi:10.2118/39883-MS.

DiCarlo, D.A., Huh, C., & Johnston, K.P. (2015). Use of Engineered Nanoparticle-Stabilized CO<sub>2</sub> Foams to Improve Volumetric Sweep Efficiency of CO<sub>2</sub>-EOR Processes. U.S. Department of Energy-NETL. DE-FE0005917. Dickson, J.L., Binks, B.P., Johnston, K.P. (2004). Stabilization of Carbon Dioxide-in-Water Emulsions with Silica Nanoparticles. Langmuir. 20 (19): 7976–7983.

Dong, L., & Johnson D. (2003). Surface Tension of Charge-Stabilized Colloidal Suspensions at the Water-Air Interface. Langmuir. 19: 10205-10209.

Dong, M., Foraie, J., Huang, S., & Chatzis, I. (2005). Analysis of Immiscible Water-Alternating-Gas (WAG) Injection Using Micromodel Tests. Petroleum Society of Canada. doi:10.2118/05-02-01.

Eftekhari, A. A., Krastev, R., & Farajzadeh, R. (2015). Foam Stabilized by Fly-Ash Nanoparticles for Enhancing Oil Recovery. Society of Petroleum Engineers. doi:10.2118/175382-MS.

Eide, Ø., Føyen, T., Skjelsvik, E., Rognmo, A., & Fernø, M. (2018). Nanoparticle Stabilized Foam in Harsh Conditions for CO<sub>2</sub> EOR. Society of Petroleum Engineers. doi:10.2118/193212-MS.

Elwy, M., Zekri, A. Y., Almehaideb, R. A., & Al-Attar, H. H. (2012). Optimization of CO<sub>2</sub> WAG Processes in Carbonate Reservoirs-An Experimental Approach. Society of Petroleum Engineers. doi:10.2118/161782-MS.

Emrani, A. S., & Nasr-El-Din, H. A. (2015). Stabilizing CO<sub>2</sub>-Foam using Nanoparticles. Society of Petroleum Engineers. doi:10.2118/174254-MS.

Emrani, A.S., & Nasr-El-Din H.A. (2017a). An Experimental Study of Nanoparticle-Polymer-Stabilized CO<sub>2</sub> Foam. Colloids and Surfaces A. 524: 17-37.

Emrani, A. S., Ibrahim, A. F., & Nasr-El-Din, H. A. (2017b). Mobility Control using Nanoparticle-Stabilized CO2 Foam as a Hydraulic Fracturing Fluid. Society of Petroleum Engineers. doi:10.2118/185863-MS.

Espinoza, D. A., Caldelas, F. M., Johnston, K. P., Bryant, S. L., & Huh, C. (2010). Nanoparticle-Stabilized Supercritical CO<sub>2</sub> Foams for Potential Mobility Control Applications. Society of Petroleum Engineers. doi:10.2118/129925-MS.

Farhadi, H., Riahi, S., Ayatollahi, S., & Ahmadi, H. (2016). Experimental Study of nanoparticle-Surfactant-Stabilized CO<sub>2</sub> Foam: Stability and Mobility Control. Chemical Engineering Research and Design 111: 449–460.

Feng H, Haidong H., Yanqing W., Jianfeng R., Liang Z., Bo R., Butt H., Shaoran R., & Guoli C. (2016). Assessment of Miscibility Effect for CO<sub>2</sub> Flooding EOR in a Low Permeability Reservoir. Journal of Petroleum Science and Engineering. 145: 328-335.

Fu, C., Yu J., & Liu, N. (2018). Nanoparticle-Stabilized CO<sub>2</sub> Foam for Waterflooded Residual Oil Recovery. Fuel. 234: 809-813.

Fujii, S., Ryan, A.J., & Armes, S.P. (2006). Long-Range Structural Order, Moire' Patterns, and Iridescence in Latex-Stabilized Foams. Journal of the American Chemical Society . 128(24): 7882-7886.

General Directorate of the Mining and Oil Works (MAPEG). (2018). 2017 Yıl Sonu İtibari ile Türkiye Ham Petrol Rezervleri. Retrieved from <u>http://www.mapeg.gov.tr/petrol\_istatistik.aspx</u>.

Golomb, D., Barry, E., Ryan, D., Swett P., & Duan, H. (2006). Macroemulsions of Liquid and Supercritical CO<sub>2</sub>-in-Water and Waterin-Liquid CO<sub>2</sub> Stabilized by Fine Particles. Industrial & Engineering Chemistry Research. 45(8): 2728-2733.

Gozalpour, F., Ren, S.R., & Tohidi, B. (2005). CO<sub>2</sub>-EOR and Storage in Oil Reservoirs. Oil & Gas Science and Technology. Rev.IFP, 60(3): 537-546.

Guo, F., & Aryana, S. (2016). An Experimental Investigation of Nanoparticle-Stabilized CO<sub>2</sub> Foam Used in Enhanced Oil Recovery. Fuel. 186: 430-442 Hadlow, R. E. (1992). Update of Industry Experience With CO<sub>2</sub> Injection. Society of Petroleum Engineers. doi:10.2118/24928-MS.

Harpole, K. J., Siemers, W. T., & Gerard, M. G. (1994). CO<sub>2</sub> Foam Field Verification Pilot Test at EVGSAU: Phase IIIC--Reservoir Characterization and Response to Foam Injection. Society of Petroleum Engineers. doi:10.2118/27798-MS.

Haynes, S., & Alston, R. B. (1990). Study of the Mechanisms of Carbon Dioxide Flooding and Applications to More Efficient EOR Projects. Society of Petroleum Engineers. doi:10.2118/20190-MS.

Heerschap, S., Marafino, J.N., Mckenna, K., Caran, K.L., & Fetosa, K. (2015). Foams Stabilized by Tricationic Amphiphilic Surfactants. Colloids and Surfaces A: Physicochemical Engineering Aspects. 487:190–197.

Heidari, P., Kharrat, R., Alizadeh, N., & Ghanzanfari, M.H. (2013). A Comparison of WAG and SWAG Processes: Laboratory and Simulation Studies. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 35(23): 2225-2232.

Holm, L. W., & Josendal, V. A. (1974). Mechanisms of Oil Displacement by Carbon Dioxide. Society of Petroleum Engineers. doi:10.2118/4736-PA.

Hunter, T.N., Pugh, R.J., Franks, G.V., & Jameson, G.J. (2008). The Role of Particles in Stabilizing Foams and Emulsions. Advances in Colloid and Interface Science. 137: 57–81.

Ibrahim, F. A., & Nasr-El-Din, H. (2018). Stability Improvement of CO2 Foam for Enhanced Oil Recovery Applications Using Nanoparticles and Viscoelastic Surfactants. Society of Petroleum Engineers. doi:10.2118/191251-MS.

Issever, K., Pamir, A. N., & Tirek, A. (1993). Performance of a Heavy-Oil Field Under CO<sub>2</sub> Injection, Bati Raman, Turkey. Society of Petroleum Engineers. doi:10.2118/20883-PA

Jarrell, P.M., Fox, C.E., Stein, M.H., & Webb, S.L. (2002). Practical Aspects of CO<sub>2</sub> Flooding. Society of Petroleum Engineers. ISBN: 978-1-55563-096-6.

Jiang, H., Nuryaningsih, L., & Adidharma, H. (2012). The Influence of  $O_2$  Contamination on MMP and Core Flood Performance in Miscible and Immiscible  $CO_2$  WAG. Society of Petroleum Engineers. doi:10.2118/154252-MS.

Kalyanaraman, N., Arnold, C., Gupta, A., Tsau, J. S., & Barati, R. (2015). Stability Improvement of CO2 Foam for Enhanced Oil Recovery Applications Using Polyelectrolytes and Polyelectrolyte Complex Nanoparticles. Society of Petroleum Engineers. doi:10.2118/174650-MS.

Karabakal, U. (2008). B. Raman Sahasi Karot Analizi Verilerinin Rezervuar Simulasyonuna Yönelik Olarak Değerlendirilmesi. TPAO Ar-Ge Merkezi Arşivi. Rapor No: 3341

Karakashev, S. I., & Grozdanova, M.V. (2012). Foams and Antifoams. Advances in Colloid and Interface Science. 176–177: 1–17.

Karaoguz, O. K., Topguder, N. N. S., Lane, R. H., Kalfa, U., & Celebioglu, D. (2007). Improved Sweep in Bati Raman Heavy-Oil CO<sub>2</sub> Flood: Bullhead Flowing Gel Treatments Plug Natural Fractures. Society of Petroleum Engineers. doi:10.2118/89400-PA

Kanokkarna, P., Shiina T., Santikunapornc M., & Chavadeja, S. (2017). Equilibrium and Dynamic Surface Tension in Relation to Diffusivity And Foaming Properties: Effects of Surfactant Type and Structure. Colloids and Surfaces A. 524: 135–142.

Kantar, K., Karaoguz, D., Issever, K., & Varana, L. (1985). Design Concepts of a Heavy-Oil Recovery Process by an Immiscible CO<sub>2</sub> Application. Society of Petroleum Engineers. doi:10.2118/11475-PA

Koottungal, L. (2012). General interest: 2012 Worldwide EOR Survey. Oil and Gas Journal. 110. 57-69.

Kruglyakov, P.M., Elaneva, S.I., & Vilkova, N.G. (2011). About Mechanism of Foam Stabilization by Solid Particles. Advances in Colloid and Interface Science. 165: 108-116.

Langston, M. V., Hoadley, S. F., & Young, D. N. (1988). Definitive CO<sub>2</sub> Flooding Response in the SACROC Unit. Society of Petroleum Engineers. doi:10.2118/17321-MS.

Lee, D., Cho, H., Lee, J., Huh, C., & Mohanty, K. (2015). Fly Ash Nanoparticles as a CO<sub>2</sub> Foam Stabilizer. Powder Technology. 283: 77-84.

Li, S., Li, Z., & Wang, P. (2016). Experimental Study of the Stabilization of CO<sub>2</sub> Foam by Sodium Dodecyl Sulfate and Hydrophobic Nanoparticles. Industrial & Engineering Chemistry Research. 55(5): 1243–1253.

Liu, Y., Grigg, R. B., & Bai, B. (2005). Salinity, pH, and Surfactant Concentration Effects on CO<sub>2</sub>-Foam. Society of Petroleum Engineers. doi:10.2118/93095-MS.

Martin, D. F., & Taber, J. J. (1992). Carbon Dioxide Flooding. Society of Petroleum Engineers. doi:10.2118/23564-PA.

Martinez, A.C., Rio, E., Delon, G., Saint-Jalmes, A., Langevin, D., Binks, B.P. (2008). On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter. 4 (7): 1531–1535.

Metin, C., Lake, L., Miranda, C., & Nguyen, Q. (2011). Stability of Aqueous Silica Nanoparticle Dispersions. Journal of Nanoparticle Research. 13: 839-850

Mo, D., Yu, J., Liu, N., & Lee, R. L. (2012). Study of the Effect of Different Factors on Nanoparticle-Stabilized CO<sub>2</sub> Foam for Mobility Control. Society of Petroleum Engineers. doi:10.2118/159282-MS.

Mo, D., Jia, B., Yu, J., Liu, N., & Lee, R. (2014). Study Nanoparticle-stabilized CO<sub>2</sub> Foam For Oil Recovery At Different Pressure, Temperature, And Rock Samples. Society of Petroleum Engineers. doi:10.2118/169110-MS.

Mohamed, I. M., He, J., & Nasr-El-Din, H. A. (2011). Permeability Change during  $CO_2$  injection in Carbonate Rock: A Coreflood Study. Society of Petroleum Engineers. doi:10.2118/140943-MS.

Mohd, T.A.T., Muhayyidi, A.H.M., Ghazali, N.A., Shahruddin, M.Z., Alias, N., Arina, S., Ismail, S.N., & Ramlee N.A. (2014). Carbon Dioxide (CO<sub>2</sub>) Foam Stability Dependence on Nanoparticle Concentration for Enhanced Oil Recovery (EOR). Applied Mechanics and Materials. 548-549: 1876-1880.

Nasir, F.M., & Chong, Y.Y. (2009). The Effect of Different Carbon Dioxide Injection Modes on Oil Recovery. International Journal of Engineering & Technology IJET-IJENS. 9(10): 54-60.

Nazari, N., Tsau, J.-S., & Barati, R. (2018). Improving CO<sub>2</sub> Foam for EOR Applications Using Polyelectrolyte Complex Nanoparticles Tolerant of High Salinity Produced Water. Society of Petroleum Engineers. doi:10.2118/190179-MS.

Nguyen, P., Fadaei, H., & Sinton, D. (2014). Nanoparticle Stabilized CO<sub>2</sub> in Water Foam for Mobility Control in Enhanced Oil Recovery via Microfluidic Method. Society of Petroleum Engineers. doi:10.2118/170167-MS

Picha, M. S. (2007). Enhanced Oil Recovery by Hot CO<sub>2</sub> Flooding. Society of Petroleum Engineers. doi:10.2118/105425-MS.

Pugh R.J. (1996). Foaming, Foam Films, Antifoaming and Defoaming. Advances in Colloid and Interface Science. 64: 67-142.

Rahmani, O. (2018). Mobility Control in Carbon Dioxide-Enhanced Oil Recovery Process Using Nanoparticle-Stabilized Foam for Carbonate Reservoirs. Colloids and Surface A. 550: 245-255 Rognmo, A.U., Heldal, S., & Ferno, M.A. (2018). Silica Nanoparticles to Stabilize CO<sub>2</sub>-Foam for Improved CO<sub>2</sub> Utilization: Enhanced CO<sub>2</sub> Storage and Oil Recovery from Mature Oil Reservoirs. Fuel. 216: 621-626.

Sahin, S., Kalfa, U., & Celebioglu, D. (2007). Bate Raman Field Immiscible CO<sub>2</sub> Application: Status Quo and Future Plans. Society of Petroleum Engineers. doi:10.2118/106575-MS

Sahin, S., Kalfa, U., & Celebioglu, D. (2010). Unique CO<sub>2</sub> -Injection Experience in the Bati Raman Field May Lead to a Proposal of EOR/Sequestration CO<sub>2</sub> Network in the Middle East. Society of Petroleum Engineers. doi:10.2118/139616-MS

Sahin, S., Kalfa, U., Celebioglu, D., Duygu, E., & Lahna, H. (2012). A Quarter Century of Progress in the Application of CO<sub>2</sub> immiscible EOR Project in Bati Raman Heavy Oil Field in Turkey. Society of Petroleum Engineers. doi:10.2118/157865-MS

San, J., Wang, S., Yu, J., Lee, R., & Liu, N. (2016). Nanoparticle Stabilized CO<sub>2</sub> Foam: Effect of Different Ions. Society of Petroleum Engineers. doi:10.2118/179628-MS.

Schramm L.L. (2000). Surfactants: Fundamentals and Applications in the Petroleum Industry. Cambridge University Press. ISBN: 0521640679.

Schramm L.L. (2005). Emulsions, Foams and Suspensions: Fundemantals and Applications. Wiley. ISBN: 9783527307432.

Schramm L.L., & Wassmuth F. (1994) Foams: Fundamentals and Applications in the Petroleum Industry, Advances in Chemistry; American Chemical Society. Chapter 1 Foams: Basic Principles. 242: 3-45. ISBN: 9780841227194.

Sedaghat, M., Azdarpour, A., Sadr Nafisi, M. & Esfandiarian, A. (2018). Experimental Investigation of Using SDBS and SiO<sub>2</sub> Nanoparticle as a Novel Chemical EOR Process in a Micromodel System. Presented at the EAGE Conference and Exhibition, Denmark Sheng J.J. (2013). Enhanced Oil Recovery Field Case Studies. Elsevier. ISBN: 9780123865458.

Singh, R., & Mohanty, K. K. (2017). Nanoparticle-Stabilized Foams for High-Temperature, High-Salinity Oil Reservoirs. Society of Petroleum Engineers. doi:10.2118/187165-MS.

Skauge, A., & Stensen, J.A. (2003). Review of the WAG Field Experience. Presented at 1<sup>st</sup> International Conference an Exhibition Modern Challenges in Oil Recovery, Russia.

Stevenson, P. (2012). Foam Engineering: Fundamentals and Applications. Wiley. ISBN: 0470660805.

Stocco, A., Rio, E., Binks B.P., & Langevin D. (2013). Aqueous Foams Stabilized Solely by Particles. Soft Matter, Royal Society of Chemistry. 7(4): 1260-1267.

Sun, Q., Li, Z., Li, S., Jiang, L., Wang, J., & Wang, P. (2014). Utilization of Surfactant Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. Energy Fuel. 28: 2384–2394.

Taber, J. J., Martin, F. D., & Seright, R. S. (1997). EOR Screening Criteria Revisited—Part 2: Applications and Impact of Oil Prices. Society of Petroleum Engineers. doi:10.2118/39234-PA.

Talebian, S.H., Masoudi, R., Tan, I.M., & Zitha, P.L.J. (2014). Foam Assisted CO<sub>2</sub> - EOR: A Review of Concept, Challenges, and Future Prospects. Journal of Petroleum Science and Engineering. 120: 202-215.

Thomas, J., Berzins, T. V., Monger, T. G., & Bassiouni, Z. A. (1990). Light Oil Recovery From Cyclic  $CO_2$  Injection: Influence of Gravity Segregation and Remaining Oil. Society of Petroleum Engineers. doi:10.2118/20531-MS.
Thomas, S. (2007). Enhanced Oil Recovery - An Overview. Oil & Gas Science and Technology - Rev.IFP. 63(1): 9-19.

Tunio, S. Q., Tunio, A. H., Ghirano, N. A., & El Adawy, Z. M. (2011). Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity. International Journal of Applied Science and Technology. 1(5): 143–153.

Verma, M.K. (2015). Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (CO<sub>2</sub>-EOR)—A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using CO<sub>2</sub>-EOR Associated with Carbon Sequestration. U.S. Geological Survey Open-File Report 2015–1071.

Voormeij, D. A., & Simandl, G.J. (2004) Geological, Ocean and Mineral CO<sub>2</sub> Sequestration Options: A Technical Review. Geoscience Canada. 31(1): 11-22

Wang, Y., Zhang, Y., Liu, Y, Liang, Z. Ren, S., Lu, J., Wang, X., Fan, N. (2017). The Stability Study of CO<sub>2</sub> Foams at High Pressure and High Temperature. Journal of Petroleum Science and Engineering. 154: 234-243.

Wang, Z., Ren, G., Yang, J., Xu, Z., & Sun D. (2019). CO<sub>2</sub> -Responsive Aqueous Foams Stabilized by Pseudogemini Surfactants. Journal of Colloid and Interface Science. 536: 381-388.

Weaire, D., & Hutzler, S. (1999). The Physics of Foams. Oxford University Press, ISBN: 0198510977.

Whorton L.P., Brownscombe E.R., & Dyes A.B. (1952). Method for Producing Oil by Means of Carbon Dioxide. U.S, Patent 2,623,596.

Wolcott, J., Schenewerk, P., Berzins, T., & F. Brim (1995). A Parametric Investigation of the Cyclic CO<sub>2</sub> Injection Process. Journal of Petrol Science and Engineering, 14: 35-44.

Worthen, A., Bagaria, H., Chen, Y., Bryant, S. L., Huh, C., & Johnston, K. P. (2012a). Nanoparticle Stabilized Carbon Dioxide in Water Foams for Enhanced Oil Recovery. Society of Petroleum Engineers. doi:10.2118/154285-MS.

Worthen A.J., Bagaria H.G., Chen Y., Bryant S.L., Huh C., & Johnston K.P. (2012b). Nanoparticle-Stabilized Carbon Dioxide-in-Water Foams with Fine Texture. Journal of Colloid and Interface Science. 391: 142-151.

Xue, Z., Worthen, A., Qajar, A., Robert, I., Bryant, S.L., Huh C., Prodanovic', M., & Johnston, K.P. (2016). Viscosity and Stability of Ultra-High Internal Phase CO<sub>2</sub>-in-Water Foams Stabilized with Surfactants and Nanoparticles with or without Polyelectrolytes. Journal of Colloid and Interface Science. 461: 383-395.

Yekeen, N., Manan, M.A., Idris, A.K., Padmanabhan, E., Junin, R., Samin, A. M., Gbadamosi, A.O., & Oguamah, I. (2018). A Comprehensive Review of Experimental Studies of Nanoparticles-Stabilized Foam for Enhanced Oil Recovery. Journal of Petroleum Science and Engineering. 164: 43-74.

Yu, J., Liu, N., Li, L., & Lee, R. L. (2012a). Generation of Nanoparticle-Stabilized Supercritical CO<sub>2</sub> Foams. Carbon Management Technology Conference. doi:10.7122/150849-MS.

Yu, J., An, C., Mo, D., Liu, N., & Lee, R. L. (2012b). Foam Mobility Control for Nanoparticle-Stabilized Supercritical CO<sub>2</sub> Foam. Society of Petroleum Engineers. doi:10.2118/153336-MS.

Yu, J., Mo, D., Liu, N., & Lee, R. (2013). The Application of Nanoparticle-Stabilized CO<sub>2</sub> Foam for Oil Recovery. Society of Petroleum Engineers. doi:10.2118/164074-MS.

Yu, J., Wang, S., Liu, N., & Lee, R. (2014). Study of Particle Structure and Hydrophobicity Effects on the Flow Behavior of Nanoparticle-Stabilized CO<sub>2</sub> Foam in Porous Media. Society of Petroleum Engineers. doi:10.2118/169047-MS.

Yusuf, S., Manan, M., & Jaafar, M.Z. (2013). Aqueous Foams Stabilized by Hydrophilic Silica Nanoparticles via In-Situ Physisorption of Nonionic TX100 Surfactant. Iranica Journal of Energy & Environment 4 (1) Special Issue on Nanotechnology: ISSN 2079-2115.

Zang, D.Y., Rio, E., Delon, G., Langevin, D., Wei B., & Binks B.P. (2010). Influence of the Contact Angle of Silica Nanoparticles at the Air-Water Interface on the Mechanical Properties of the Layers Composed of These Particles. Molecular Physics, 109(7-10); 1057-1066.

Zhang, C., Li, Z., Sun, Q., Wang, P., Wang, S., & Liu, W. (2015). CO<sub>2</sub> Foam Properties and the Stabilizing Mechanism of Sodium Bis(2-Ethylhexyl) Sulfosuccinate and Hydrophobic Nanoparticle Mixtures. Soft Matter. DOI: 10.1039/C5SM01408E.

Zhang, T., Murphy, M. J., Yu, H., Bagaria, H. G., Yoon, K. Y., Nielson, B. M., & Bryant, S. L. (2015). Investigation of Nanoparticle Adsorption during Transport in Porous Media. Society of Petroleum Engineers. doi:10.2118/166346-PA.

Zhu, Y., Tian, J., Hou, Q., Luo, Y., & Fan, J. (2017). Studies on Nanoparticle-Stabilized Foam Flooding EOR for a High Temperature and High Salinity Reservoir. Society of Petroleum Engineers. doi:10.2118/188964-MS.

Zeng, Y., Farajzadeh, R., Biswala, S.L., & Hirasakia, G.J. (2019). A 2-D Simulation Study on CO<sub>2</sub> Soluble Surfactant for Foam Enhanced Oil Recovery. Journal of Industrial and Engineering Chemistry. 72: 133-143.

Zuta, J., Fjelde, I., & Berenblyum R. (2009). Oil Recovery during CO<sub>2</sub>-Foam Injection in Fractured Chalk Rock at Reservoir Conditions. Presented at the International Symposium of the Society of Core Analysts, The Netherlands

# APPENDICES

# A. Nanoparticle Data Sheet

|                                                                                                                                                                                                                                                                                                                                     | Product Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Updated: May 19, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2. EW                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Akc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zoNobel<br>pw's Answers Today                                                                                                                                                                                                                                                    |
| Bindzi                                                                                                                                                                                                                                                                                                                              | I <sup>®</sup> CC301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                  |
| Bindzil® CC 3<br>amorphous sil<br>surface modif<br>liquid, slightly                                                                                                                                                                                                                                                                 | 801 is a neutral, aqueous dispersion<br>lica particles are discrete, spherical<br>ied by silane and have a slightly ne<br>more viscous than water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of colloidal silica at a 30 % conc<br>and mono-dispersed. The partic<br>gative surface charge. Bindzil® (                                                                                                                                                                                                                                                                                                                                                                                                                                  | entration. The<br>les have been<br>CC 301 is a clear                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                     | Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | Silica, wt%:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | Average particle size, nm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | pH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | Viscosity, mPas (20°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | Density g/cm <sup>3</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                     | Reactive hydroxyl groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45 mole per ka product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                  |
| End Uses<br>Bindzil <sup>®</sup> CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br>Chemical Sto                                                                                                                                                                                                       | 01 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>cation / product recommendations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gned for the use in waterborne of<br>es in most latex coating compos<br>reduced tackiness and drying tim<br>please refer to our web site or                                                                                                                                                                                                                                                                                                                                                                                                  | coatings. Bindzil <sup>®</sup> CC<br>itions and enhances<br>ne. Because colloidal<br>contact us below for                                                                                                                                                                        |
| End Uses<br>Bindzil <sup>®</sup> CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br>Chemical Sto<br>Bindzil® CC 3<br>95°F). Bindzi<br>plastic, fibergi<br>should be avo                                                                                                                                | 01 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>sation / product recommendations.<br><b>Drage</b><br>301 is freeze sensitive and has a rei<br>@ CC301 is best stored in a dark c<br>lass reinforced plastic, or stainless<br>olded. Bindzil@ CC 301 stored unders                                                                                                                                                                                                                                                                                                                                                                                            | gned for the use in waterborne of<br>es in most latex coating compos<br>reduced tackiness and drying tim<br>please refer to our web site or<br>commended storage temperature<br>losed tank made of non-rusting m<br>steel. Aluminum, copper or non-s<br>r recommended conditions has a                                                                                                                                                                                                                                                       | coatings. Bindzil <sup>®</sup> CC<br>itions and enhances<br>le. Because colloidal<br>contact us below for<br>of 5-35°C (40-<br>naterials such as<br>stainless steel<br>shelf life of at least                                                                                    |
| End Uses<br>Bindzil <sup>®</sup> CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br><b>Chemical Sto</b><br>Bindzil <sup>®</sup> CC 3<br>95°F). Bindzi<br>plastic, fibergj<br>should be avo<br>twelve monthe<br><b>Packaging</b><br>Bindzil <sup>®</sup> CC 3<br>sizes, net wei                         | 01 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>cation / product recommendations.<br><b>brage</b><br>301 is freeze sensitive and has a re-<br>I® CC301 is best stored in a dark c<br>lass reinforced plastic, or stainless i<br>oided. Bindzil® CC 301 stored unde<br>s.<br>301 is available in bulk tankers or<br>ghts, etc., will vary by region.                                                                                                                                                                                                                                                                                                          | gned for the use in waterborne of<br>es in most latex coating composi-<br>reduced tackiness and drying tim-<br>please refer to our web site or of<br>commended storage temperature<br>losed tank made of non-rusting m<br>steel. Aluminum, copper or non-st<br>r recommended conditions has a<br>IBCs / poly drum packages. Ex-                                                                                                                                                                                                              | coatings. Bindzil <sup>®</sup> CC<br>itilons and enhances<br>the Because colloidal<br>contact us below for<br>of 5-35°C (40-<br>naterials such as<br>stainless steel<br>shelf life of at least                                                                                   |
| End Uses<br>Bindzil <sup>®</sup> CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br>Chemical Sto<br>Bindzil® CC 3<br>95°F). Bindzi<br>plastic, fibergl<br>should be avo<br>twelve monthe<br>Packaging<br>Bindzil <sup>®</sup> CC 3<br>sizes, net wei<br>Health, Safet<br>Before handl<br>misplaced you | 101 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>cation / product recommendations.<br><b>Drage</b><br>301 is freeze sensitive and has a rei<br>® CC301 is best stored in a dark c<br>lass reinforced plastic, or stainless s<br>olded. Bindzil® CC 301 stored under<br>s.<br>301 is available in bulk tankers or<br>ghts, etc., will vary by region.<br><b>ty, and Environment</b><br>ing this material, read the correst<br>ur copy, please contact Eka Chemic                                                                                                                                                                                              | gned for the use in waterborne of<br>es in most latex coating compose<br>reduced tackiness and drying tim<br>please refer to our web site or<br>commended storage temperature<br>losed tank made of non-rusting m<br>steel. Aluminum, copper or non-s<br>r recommended conditions has a<br>IBCs / poly drum packages. Ex-<br>sponding Material Safety Data<br>cals for a replacement via informa                                                                                                                                             | coatings. Bindzil <sup>®</sup> CC<br>itions and enhances<br>le. Because colloidal<br>contact us below for<br>of 5-35°C (40-<br>naterials such as<br>stainless steel<br>shelf life of at least<br>act packaging types,<br>Sheet. If you have<br>tion below.                       |
| End Uses<br>Bindzil <sup>®</sup> CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br>Chemical Std<br>Bindzil® CC 3<br>95°F). Bindzi<br>plastic, fibergl<br>should be avc<br>twelve monthe<br>Packaging<br>Bindzil <sup>®</sup> CC 3<br>sizes, net wei<br>Health, Safet<br>Before handl<br>misplaced you | 101 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>cation / product recommendations.<br><b>Drage</b><br>301 is freeze sensitive and has a rei<br>® CC301 is best stored in a dark c<br>lass reinforced plastic, or stainless i<br>bided. Bindzil® CC 301 stored unde<br>s.<br>301 is available in bulk tankers or<br>ghts, etc., will vary by region.<br><b>Exp, and Environment</b><br>ing this material, read the correi<br>ur copy, please contact Eka Chemic<br>/ebsite: <u>http://www.colloidalsilica.com</u>                                                                                                                                             | gned for the use in waterborne of<br>es in most latex coating compose<br>reduced tackiness and drying tim<br>please refer to our web site or<br>commended storage temperature<br>losed tank made of non-rusting m<br>steel. Aluminum, copper or non-s<br>r recommended conditions has a<br>IBCs / poly drum packages. Ex-<br>sponding Material Safety Data<br>cals for a replacement via information<br>Email: <u>colloidal.silica@akzo</u>                                                                                                  | coatings. Bindzil <sup>®</sup> CC<br>itions and enhances<br>ie. Because colloidal<br>contact us below for<br>a of 5-35°C (40-<br>naterials such as<br>stainless steel<br>shelf life of at least<br>act packaging types,<br>Sheet. If you have<br>tion below.<br>nobel.com        |
| End Uses<br>Bindzil® CC 3<br>301 offers su<br>properties like<br>silica can be<br>specific applic<br>Chemical Std<br>Bindzil® CC 3<br>95°F). Bindzi<br>plastic, fiberg<br>should be avo<br>twelve monthe<br>Packaging<br>Bindzil® CC 3<br>sizes, net wei<br>Health, Safet<br>Before handl<br>misplaced you<br>N                     | 101 is specially developed and desi<br>perior stability and binding properti<br>e abrasion and scratch resistance,<br>applied to several different uses,<br>cation / product recommendations.<br>Drage<br>100 is freeze sensitive and has a rei<br>100 CC301 is best stored in a dark c<br>lass reinforced plastic, or stainless i<br>oided. Bindzil® CC 301 stored unde<br>s.<br>201 is available in bulk tankers or lights, etc., will vary by region.<br>Ty, and Environment<br>ing this material, read the correction<br>copy, please contact Eka Chemic<br>/ebsite: http://www.colloidalsilica.com<br>is accurate to the best of our knowledge. Sugg<br>nine the suitability of the product for his intendee<br>ation of any existing patents or give permission 1 | gned for the use in waterborne of<br>es in most latex coating composi-<br>reduced tackiness and drying tim-<br>please refer to our web site or of<br>commended storage temperature<br>losed tank made of non-rusting m<br>steel. Aluminum, copper or non-s<br>r recommended conditions has a<br>IBCs / poly drum packages. Ex-<br>sponding Material Safety Data<br>cals for a replacement via informa<br>Email: <u>colloidal silica@akzo</u><br>estions are made without warranty or guaran<br>d use and user assumes the fisk and liability | coatings. Bindzil <sup>®</sup> CC<br>itions and enhances<br>the Because colloidal<br>contact us below for<br>a of 5-35°C (40-<br>naterials such as<br>stainless steel<br>shelf life of at least<br>act packaging types,<br>Sheet. If you have<br>tion below.<br><u>nobel.com</u> |

## HDK®

## HDK® N20

PYROGENIC SILICA

### **Product description**

Synthetic, hydrophilic, amorphous silica, produced via flame hydrolysis. Standard product for industrial applications.

### Special features

White colloidal powder of high purity.

#### Application

HDK® N20 is applied as a thickening and thixotropic agent in many organic systems, e.g. in unsaturated polyesters, coatings, printing inks, adhesives, cosmetics and others. HDK® N20 is used as a reinforcing filler in elastomers, mainly silicone-elastomers. HDK® N20 acts as a free flow additive in the production of technical powders. HDK® N20 is not suitable for pharmaceuticals, food and feed.

#### Processing

A good dispersion of HDK® N20 is a must to assure optimum performance.

More detailed information about the application and processing of HDK® N20 is available in our HDK-brochures and on the WACKER web site (http://www.wacker.com/hdk).

#### Storage

The 'Best use before end' date of each batch is shown on the shipping label and the certificate of analysis.

HDK® N20 should be stored in the original packaging in dry storage areas.

Storage beyond the date specified on the label does not necessarily mean that the product is no longer usable. In this case however, the properties required for the intended use must be checked for quality assurance reasons.

Technical data sheet for HDK® N20 / Version: 1.14 / Date of last alteration: 26.03.2018

Due to the high surface area HDK<sup>®</sup> adsorbs volatiles and should be protected from humidity and volatiles. If single bags are taken away from an original pallet, the remaining bags of this pallet must again be protected against humidity and volatiles.

#### Packaging

HDK® N20 is offered in following packaging:

pallet with paper bags:
 10 kg bags

 Big bags: 150 kg (big bags on pallets)

 Silotruck: depending on size of truck, approx. 3.5 to 5 tons

Details about packaging and handling: (http://www.wacker.com/hdk).

## Safety notes

Comprehensive instructions are given in the corresponding Material Safety Data Sheets. They are available on request from WACKER subsidiaries or may be printed via the WACKER web site (http://www.wacker.com/hdk).

During transportation and processing HDK® N20 may cause electrostatic charges. Like other amorphous silicas HDK® N20 does not show either carcinogenic (IARC classification, Volume 68, 1997) or mutagenic properties.

1/2

# HDK®

| Product data                                                                |                         | A PARTY AND A PARTY         |
|-----------------------------------------------------------------------------|-------------------------|-----------------------------|
| Typical general characteristics                                             | Inspection Method       | Value                       |
| SiO <sub>2</sub> content (based on the substance heated at 1000 °C for 2 h) | DIN EN ISO 3262-19      | > 99,8 %                    |
| Loss of weight at 1000 °C / 2h                                              | DIN EN ISO 3262-19      | < 2 %                       |
| (based on the substance dried at 105 °C for 2 h)                            |                         |                             |
| Density at 20 °C (SiO <sub>2</sub> )                                        | DIN 51757               | approx. 2,2 g/cm3           |
| Refraction index at 20 °C                                                   |                         | 1,46                        |
| Silanol group density                                                       |                         | 2 SiOH/nm <sup>2</sup>      |
| INCI name                                                                   |                         | Silica                      |
| Physical-chemical properties                                                |                         |                             |
| BET surface                                                                 | DIN ISO 9277            | 175 - 225 m <sup>2</sup> /g |
|                                                                             | DIN 66132               |                             |
| pH-Value                                                                    | <b>DIN EN ISO 787-9</b> | 3,8 - 4,3                   |
| Tamped density                                                              | DIN EN ISO 787-11       | approx. 40 g/l              |
| Loss on drying , ex works (2 h at 105 °C)                                   | <b>DIN EN ISO 787-2</b> | < 1,5 %                     |
| Sieve residue , acc. to Mocker > 40 µm                                      | DIN EN ISO 787-18       | < 0,03 %                    |

These figures are only intended as a guide and should not be used in preparing specifications.

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies' raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of rhingment of third parties' rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.

The management system has been certified according to DIN EN ISO 9001 and DIN EN ISO 14001

Wacker Chemie AG. HDK® is a trademark of Wacker Chemie AG.

DIN EN ISO 9001 and DIN EN ISO 14001 Wacker Hanns-WACKER® is a trademark 817371 of

For technical, quality, or product safety questions, please contact: Wacker Chemie AG

Wacker Chemie AG Hanns-Seidel-Platz 4 81737 München, Germany hdk@wacker.com

www.wacker.com/hdk

Technical data sheet for HDK® N20 / Version: 1.14 / Date of last alteration: 26.03.2018

2/2



## HDK® H30

PYROGENIC SILICA

### Product description

Synthetic, hydrophobic, amorphous silica, produced via flame hydrolysis.

## Special features

White colloidal powder of high purity.

## Application

HDK® H30 is applied as a thickening and thixotropic agent in coatings, printing inks, adhesives, cosmetics and others. HDK® H30 is used as a reinforcing filler in elastomers, mainly silicone-elastomers. HDK® H30 acts as a free flow additive in the production of powder coatings.

HDK® H30 is not suitable for pharmaceuticals, food and feed.

### Processing

A good dispersion of HDK® H30 is a must to assure optimum performance.

More detailed information about the application and processing of HDK® H30 is available in our HDK-brochures and on the WACKER web site (http://www.wacker.com/hdk).

#### Storage

The 'Best use before end' date of each batch is shown on the shipping label and the certificate of analysis. HDK® H30 should be stored in the original packaging in dry storage areas.

Storage beyond the date specified on the label does not necessarily mean that the product is no longer usable. In this case however, the properties required for the intended use must be checked for quality assurance reasons.

### Packaging

HDK® H30 is offered in following packaging:

 pallet with paper bags: 10 kg bags

Details about packaging and handling: (http://www.wacker.com/hdk).

### Safety notes

Comprehensive instructions are given in the corresponding Material Safety Data Sheets. They are available on request from WACKER subsidiaries or may be printed via the WACKER web site (http://www.wacker.com/hdk).

During transportation and processing HDK® H30 may cause electrostatic charges. Like other amorphous silicas HDK® H30 does not show either carcinogenic (IARC classification, Volume 68, 1997) or mutagenic properties.

Technical data sheet for HDK® H30 / Version: 1.11 / Date of last alteration: 18.01.2018

1/2

# HDK®

| Product data                                                                                                    |                           |                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|
| Typical general characteristics                                                                                 | Inspection Method         | Value                         |
| SiO <sub>2</sub> content (based on the substance heated at 1000 °C for 2 h)                                     | DIN EN ISO 3262-19        | > 99.8 %                      |
| Density at 20 °C (SiO <sub>2</sub> )                                                                            | DIN 51757                 | approx. 2,2 g/cm <sup>3</sup> |
| Residual silanol content                                                                                        |                           | 50 %                          |
| (relative silanol content in relation to the hydrophilic silica, which shows approv<br>2 SiOH/nm <sup>2</sup> ) | κ.                        |                               |
| BET surface of the hydrophobic silica                                                                           | DIN ISO 9277<br>DIN 66132 | approx. 250 m <sup>2</sup> /g |
| INCI name                                                                                                       |                           | Silica Dimethyl Silylate      |
| Physical-chemical properties                                                                                    |                           |                               |
| BET surface of the hydrophilic silica                                                                           | DIN ISO 9277<br>DIN 66132 | 270 - 330 m²/g                |
| Carbon content                                                                                                  | DIN ISO 10694             | 1,4 - 2,6 %                   |
| pH-Value in 4 % dispersion (1 : 1 mixture of water-methanol)                                                    | DIN EN ISO 787-9          | 3,8 - 4,5                     |
| Tamped density                                                                                                  | DIN EN ISO 787-11         | approx. 40 g/l                |
| Loss on drying , ex works (2 h at 105 °C)                                                                       | <b>DIN EN ISO 787-2</b>   | < 0,6 %                       |
| Sieve residue , acc. to Mocker > 40 µm                                                                          | DIN EN ISO 787-18         | < 0,05 %                      |
| Surface modification                                                                                            | Dimethylsiloxy            |                               |

These figures are only intended as a guide and should not be used in preparing specifications.

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies' raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties rights and, if necessary, clarifying the position. Recommendations for use do not constitute avarranty, either express or implied, of the finess or suitability of the product for a particular purpose.

#### The management system has been certified according to DIN EN ISO 9001 and DIN EN ISO 14001

WACKER® is a trademark of

of Wacker Chemie AG. HDK® is a trademark of Wacker Chemie AG.

Technical data sheet for HDK® H30 / Version: 1.11 / Date of last alteration: 18.01.2018

2/2

For technical, quality, or product safety questions, please contact:

Wacker Chemie AG Hanns-Seidel-Platz 4 81737 München, Germany hdk@wacker.com

www.wacker.com/hdk

# AERODISP®

Product information

# **AERODISP® WR 8520**

Aqueous dispersion of hydrophobic fumed silica

## Characteristic physico-chemical data

| Properties and test methods                                          | Unit              | Value   |
|----------------------------------------------------------------------|-------------------|---------|
| pH value                                                             |                   | 10-11   |
| Density<br>20 °C                                                     | g/cm <sup>3</sup> | 1.13    |
| Stabilizing agent                                                    |                   | DMEA    |
| Solids content<br>based on the ignition residue of the dispersion    | %                 | 19 - 21 |
| Mean aggregate size<br>d-50 value                                    | μm                |         |
| Viscosity<br>measured at a shear rate of 100 s <sup>-1</sup> , 23 °C | mPas              |         |
| The data represents typical values (no product sp                    | ecification).     | 1       |

## Registrations (substance or product components) AERODISP\* WR 8520

| CAS-No.                                                                                                                 | 68611-44-9                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| EINECS (Europe),<br>FSCA (USA),<br>DSL (Canada),<br>AICS (Australia),<br>ENCS (Japan),<br>ECSC (China),<br>KECI (Korea) | All components of this dispersion are<br>registered in the mentioned inventories. |  |

AERODISP® WR 8520 is a special, structured, highly filled dispersion of hydrophobic AEROSIL®.

## Applications and properties

### Applications

In waterbased pigmented coatings or in waterbased clear coatings:

- Rheology control Anti-settling
- Pigment stabilization
  Improvement of mechanical properties

## Recommendations for waterbased coatings

Addition: 5-10% dispersion (respect. 1-2% AEROSIL<sup>\*</sup>) calculated on total coating formulation. The dispersion should be added into the coating while stirring under low or medium shear forces (e.g. dissolver)

## Safety and handling

A safety data sheet will be provided with your first delivery and A safety data sheet will be provided with your first delivery and with subsequent revisions. Additionally, the Product Safety Department of Evonik Resource Efficiency GmbH can be contacted via mail at sds-hu@evonik.com for specific questions. We recommend to reach the safety data sheer carefully prior to use of the product.

## Packaging and storage

Depending on the region, AERODISP" WR 8520 is available in 60 kg containers, 220 kg drums, 1000 kg intermediate bulk containers, 220 kg or uns, 1000 kg interineutate out containers (IBC's). All dispersions must be protected from extreme heat and frost. The product should be used within twelve months from the date of production.

Evonik Resource Efficiency GmbH | Product information AERODISP\* WR 8520 | Jan 2018 Page 1/2

# **B.** Test Report of the B.Raman Formation Water and Dodan Gas

| TP                                                   | Ŭ <b>RETÍM</b> I | ΓΡ AR-GE<br>ΓΕΚΝΟLΟ<br>ANALİZ | MERKEZİ<br>DJİSİ MÜDÜ<br>RAPORU | RLÜĞÜ       |                                        |
|------------------------------------------------------|------------------|-------------------------------|---------------------------------|-------------|----------------------------------------|
|                                                      |                  |                               |                                 |             | 06.16                                  |
| Numune Kodu                                          | : 16.02          | .055-2                        |                                 |             | τ                                      |
| Numunenin Üniteye Geliş Tarih<br>Vapılan Analiz(ler) | i: 27.06         | .2016<br>alizlari             |                                 |             |                                        |
| Analizin Yapıldığı Tarih                             | : 27-30          | .06.2016                      |                                 |             |                                        |
|                                                      | B.RAM/           | AN 3TP2                       | ATIK SU                         |             |                                        |
|                                                      | ANAL             | iz sonu                       | ÇLARI                           |             |                                        |
| ÇÖZÜNMÜŞ KATILAR                                     |                  |                               |                                 |             |                                        |
| KATYONLAR                                            | mg/l             | ppm                           | epm                             | epm(%)      |                                        |
| Botocyum                                             | 26.270,00        | 24.551,63                     | 1.068,00                        | 36,10       |                                        |
| Kalsiyum                                             | 4 647 00         | 4 343 03                      | 10,49                           | 0,00        |                                        |
| Magnesyum                                            | 1 141 00         | 1 066 37                      | 87 76                           | 2 97        |                                        |
| Demir (Toplam)                                       | 37.75            | 35.28                         | 1.89                            | 0.06        |                                        |
| Stronsivum                                           | 246.90           | 230.75                        | 5.26                            | 0.18        |                                        |
| Baryum                                               | 0,24             | 0,23                          | 0,00                            | 0,00        |                                        |
| ANYONLAR                                             |                  |                               |                                 |             |                                        |
| Klorür                                               | 58.610.00        | 54,776,21                     | 1,544,69                        | 52.21       |                                        |
| Sulfat                                               | 525,00           | 490,66                        | 10,21                           | 0.34        |                                        |
| Karbonat                                             | 0,00             | 0,00                          | 0,00                            | 0,00        |                                        |
| Bikarbonat                                           | 480,00           | 448,60                        | 7,36                            | 0,25        |                                        |
| DİĞER                                                |                  |                               | Norma                           | LOGARITHMIC | C1                                     |
| PARAMETRELER                                         |                  |                               | and might i may                 |             | i i i i i i i i i i i i i i i i i i i  |
| pH                                                   | 6,51             | /25.7°C                       | Ca 211 11 1111 111              |             | -11-1116-1-12 458 + 4 588 HCO3         |
| Sp.Gravite                                           | 1,070            | /15,6°C                       | Marmhur Hunder                  |             | ulan ulan usin sha                     |
| Resistivite (25,4°C)                                 | 0,08             | ohm-m                         |                                 |             | · ··[································· |
| Top. Cözünen Katı Madde                              | 92.647           | ma/l                          | Felancin Lindir chu             |             | 2 0 0 CO3                              |
| Toplam Tuzluluk (NaCl)                               | 06 592           | mg/l                          | 20 20 21                        |             | 0 00 000                               |
| Toplari Tuziuluk (NaCi)                              | 90.000           | ing/i                         | ÷.                              |             | - ·                                    |
| Kondaktivite (25,4°C)                                | 127800           | µS/cm                         |                                 |             |                                        |
| NALİZİN YAPILDIĞI ÜNİTE                              |                  | YAZA                          | N                               | (           | DNAYLAYAN                              |
|                                                      |                  |                               |                                 |             |                                        |
| ÜRETİM TEKNOLOJİSİ<br>MÜDÜRLÜĞÜ                      | k                | Bund<br>Beril Al              | HOS<br>RAÇ<br>Mühendis          |             | Selçuk SALDI<br>Ünite Müdürü           |
| MUDURLUGU                                            | ŀ                | Beril Al<br>Ald. Uzman        | <b>AÇ</b><br>Mühendis           | 1           | Selçuk SALDI<br>Ünite Müdürü           |

| ÜR ÜR                                           | TP AR-<br>ETİM TEKN<br>ANAI | LÜĞÜ                           |                           |                 |  |
|-------------------------------------------------|-----------------------------|--------------------------------|---------------------------|-----------------|--|
| "ויוות כב                                       | ANA                         | 06-16                          |                           |                 |  |
| Vumune Kodu :                                   | 16.02.055-3                 |                                |                           |                 |  |
| Numunenin Üniteye Geliş Tarihi :                | 27.06.2016                  |                                |                           |                 |  |
| apılan Analiz(ler) :                            | Gaz numunes                 | inde hidrokarbon bile          | ışen analizi, kükürt bile | eşen analizi ve |  |
| Analizin Yapıldığı Tarih :                      | 29-30.06.201                | 6                              |                           |                 |  |
|                                                 | CAZ ANAL                    | iz sonucu                      |                           |                 |  |
| Örnekleme Yeri: DODAN                           | GAZ ANAI                    | Analiz Tarihi                  | : 29-30.06.2016           |                 |  |
| Sicaklik (°C): -                                |                             | Örnekleme Tarihi               | k.                        |                 |  |
| Ünite Numune Numarası: 16.2.05                  | 5                           | Derinlik/Aralik (m)            |                           |                 |  |
|                                                 |                             |                                | Yöntem                    |                 |  |
| Bileşenler<br>H <sub>2</sub> Hidrojen           | Mol, %<br>0.000             | <u> Olçüm Belirsizliği (±)</u> | ASTM D-1945               |                 |  |
| Ar/O <sub>2</sub> Argon/Oksijen                 | 0,000                       |                                |                           |                 |  |
| N <sub>2</sub> Azot                             | 3,562                       |                                |                           |                 |  |
| CO <sub>2</sub> Karbondioksit                   | 86,878                      |                                |                           |                 |  |
| C <sub>2</sub> Etan                             | 0,469                       |                                |                           |                 |  |
| C <sub>3</sub> Propan                           | 0,518                       |                                |                           |                 |  |
| iC <sub>4</sub> iso-Butan                       | 0,204                       |                                |                           |                 |  |
| nC₄ n-Butan                                     | 0,590                       |                                |                           |                 |  |
| iC₅ iso-Pentan                                  | 0,173<br>0.133              |                                |                           |                 |  |
| nC <sub>5</sub> n-Hekzan                        | 0,157                       |                                |                           |                 |  |
| Toplam                                          | 100.000                     |                                |                           |                 |  |
|                                                 | 100,000                     |                                |                           |                 |  |
| Diger Sundr Dieşikleri                          | ppm                         |                                | ASTM D-5504               |                 |  |
| H <sub>2</sub> S Hidrojen Sülfür                | 483,1                       |                                |                           |                 |  |
| COS Karboni Sultur<br>CH₂SH Metil Merkaptan     | 8,1                         |                                |                           |                 |  |
| C <sub>2</sub> H <sub>5</sub> SH Etil Merkaptan | 0,9                         |                                |                           |                 |  |
| Bazı Gaz Özellikleri                            |                             |                                |                           |                 |  |
|                                                 |                             |                                | ISO 6976                  |                 |  |
| Pseudo Kritik Basınç,psia :                     | 1010,0                      |                                |                           |                 |  |
| Mol Ağırlık,g/mol                               | 524,9<br>41,594             |                                |                           |                 |  |
| Özgül Ağırlık (25 °C-1 atm)                     | 1,443                       |                                |                           |                 |  |
| Alt Isi Değeri,kcal/sm <sup>3</sup>             | 1262,99                     |                                |                           |                 |  |
| Wobbe Sayısı,kcal/sm <sup>3</sup> :             | 1051                        |                                |                           |                 |  |
| Sikiştirma ⊢aktorü :                            | 0,9947                      |                                |                           |                 |  |
| NALİZİN YAPILDIĞI ÜNİTE                         | Y                           | AZAN                           | ONAYLA                    | YAN             |  |
|                                                 |                             |                                | - X- X-                   | ٨               |  |
|                                                 | 1                           | 1 1                            |                           | ha              |  |
| ÜRETİM TEKNOLOJİSİ                              | un                          | /druc                          | (MON                      |                 |  |
| MÜDÜRLÜĞÜ                                       | Sem                         | a ÇETİN                        | Selcuk SA                 | LDI             |  |
|                                                 | М                           | ühendis                        | Ünite Müd                 | lürü            |  |
|                                                 |                             |                                |                           |                 |  |

C. Test Report of Nanoparticle Size Distribution

- Size Statistics Report by Volume v2.0 Malvern Malvern Instruments Ltd - Copyright 2008 Sample Details Sample Name: 16923-05 1 File Name: Ocak-Mayıs 2016.dts SOP Name: mansettings.dat Measurement Date and Time: 05 Nisan 2016 Salı 11:10:30 Z-Average (nm): 10,07044 Derived Count Rate (kcps): 49,012931823... Standard Deviation (nm): 0 Standard Deviation (kc... 0 %Std Deviation: 0 %Std Deviation: 0 Variance: 0 Variance: 0 
   Mean
   Std Dev.

   Volume %
   Volume %

   17,9
   11,9

   6,7
   3,2

   1,3
   0,5

   0,2
   0,1

   0,1
   0,1

   0,1
   0,1

   0,1
   0,1

   0,1
   0,1

   0,0
   0,0

   0,0
   0,0

   Mean
   Std Dev

   0,0
   Volume %

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   0,0
   0,0

   Mean
   Std Dev

   Volume %
   Volume %

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   0.0
   0.0

   Mean
   Std Dev

   Volume %
   Volume %

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0

   0,0
   0
   Size d.nm 1106 1281 1484 1718 1990 2305 2669 3091 3580 4145 4801 5560 6439 7456 8635 Size d.nm 5,615 6,503 7,531 8,721 10,10 11,70 13,569 18,17 21,04 24,369 18,17 21,04 24,26 32,67 37,84 43,82 50,77 68,06 Size d.nm 78,82 91,28 105,7 122,4 141,8 164,2 190,1 220,2 255,0 295,3 342,0 396,1 458,7 531,2 615,1 712,4 Size Size d.nm 0,4000 0,4632 0,5365 0,6213 0,7195 0,8332 0,9649 1,117 1,294 1,499 1,736 2,010 2,328 2,696 3,122 3,615 4,187 4,849 1,000e 20,4 22,0 825,0 955,4 Statistics Graph (1 measurements) 25 20 (% 15 Volum 10 5 0 10 100 1000 10000 Size (d.nm) Mean with +/-1 Standard Deviation error bar Malvern Instruments Ltd www.malvern.com DTS Ver. 5.10 Serial Number : MAL500109 File name: Ocak-Mayıs 2016 Record Number: 1333 05 Nis 2016 16:30:52
- 1% PEG + 1 % NaCl



## • 1% CC301 + 1 % NaCl





# • 1% H30 + 1% NaCl

|                                               |                      | Res                               | sult A           | nalysi                   | s Re                                     | port                        |                      |             |                                                     |             |  |
|-----------------------------------------------|----------------------|-----------------------------------|------------------|--------------------------|------------------------------------------|-----------------------------|----------------------|-------------|-----------------------------------------------------|-------------|--|
| Sample Name:<br>6923-02 (%1 hydrophobic, %1 N | SOP                  | SOP Name:                         |                  |                          | Measured:<br>05 Nisan 2016 Salı 10:46:40 |                             |                      |             |                                                     |             |  |
| Sample Source & type:                         | Meas                 | Measured by:                      |                  |                          |                                          | Analysed:                   |                      |             |                                                     |             |  |
| PAR-GE Merkezi                                | PBA                  | PBA<br>Result Source:<br>Averaged |                  |                          |                                          | 05 Nisan 2016 Salı 10:46:41 |                      |             |                                                     |             |  |
| sample bulk for ref.                          | Aver                 |                                   |                  |                          |                                          |                             |                      |             |                                                     |             |  |
| Particle Name:                                | Acce                 | Accessory Name:                   |                  |                          |                                          | Analysis model:             |                      |             | Sensitivity:                                        |             |  |
| Particle RI:                                  | Abso                 | orption:                          | (~)              |                          |                                          | Size range:                 | pose                 |             | Obscuratio                                          | on:         |  |
| 1.487                                         | 0                    |                                   |                  |                          |                                          | 0.020                       | to 2000.00           | 00 um       | 3.03 %                                              | 5           |  |
| Dispersant Name:<br>Nater                     | <b>Disp</b><br>1.330 | ersant R                          | 1:               |                          |                                          | Weighted F<br>0.625         | tesidual:<br>%       |             | Result Emulation:<br>Off<br>Result units:<br>Volume |             |  |
| Concentration:                                | Spar<br>1 41         | 1:<br>7                           |                  |                          |                                          | Uniformity:                 |                      |             |                                                     |             |  |
| Specific Surface Area:                        | Surf.                | ace Weig                          | ihted Me         | an D[3 21.               |                                          | Vol Weight                  | ed Mean Di           | 4 31        | 2010111C                                            |             |  |
| 0.156 m²/g                                    | 38.50                | 05 ur                             | n                | <b>D[</b> 0, <b>2</b> ]. |                                          | 53.486 um                   |                      |             |                                                     |             |  |
| d(0.1): 22.965 um                             |                      |                                   | d(0.5):          | 48.608                   | um                                       |                             |                      | d(0.9):     | 91.856                                              | um          |  |
| 12                                            |                      | 1.111                             | Partic           | le Size Dist             | ribution                                 |                             |                      |             | 1                                                   |             |  |
| 10                                            |                      |                                   |                  |                          |                                          | A                           |                      |             |                                                     |             |  |
| (%)                                           |                      |                                   |                  |                          |                                          |                             |                      |             |                                                     |             |  |
| e (                                           |                      |                                   |                  |                          |                                          |                             |                      |             |                                                     |             |  |
| un 6                                          |                      |                                   |                  |                          | 1                                        |                             |                      |             |                                                     |             |  |
| S 4                                           |                      |                                   |                  |                          | 1                                        |                             |                      |             |                                                     |             |  |
| 2                                             |                      |                                   |                  |                          | /                                        |                             |                      |             |                                                     |             |  |
| 8 01                                          | 0.1                  |                                   | 1                | 1                        | 0                                        | 100                         |                      | 1000 3      |                                                     |             |  |
| 0.01                                          | 0.1                  |                                   | Par              | ticle Size (             | μm)                                      | 100                         |                      | 1000 5      | 000                                                 |             |  |
| -16923-02 (%1 hydr                            | ophobic, %1          | NaCl, pl                          | H 9), 05         | Nisan 201                | 6 Salı 1                                 | 0:46:40                     |                      |             |                                                     |             |  |
| -16923-02 (%1 hydr                            | ophobic, %1          | NaCl, pl                          | H 9), 05         | Nisan 201                | 6 Salı 1                                 | 0:46:52                     |                      |             |                                                     |             |  |
|                                               | ophobic, %1          | NaCl, pl                          | H 9), 05         | Nisan 201                | 6 Salı 10                                | 0:47:04                     | . 46.40              |             |                                                     |             |  |
| Size (µm)   Volume In %                       | Size (µm) Volun      | nein %]                           | Size (um)        | Vel age, 05              | Size (um                                 | Volume In %                 | Size (um)            | Volume In % | Size (um)                                           | Volume In % |  |
| 0.010 0.00                                    | 0.105                | 0.00                              | 1.096            | 0.00                     | 11.482                                   | 0.54                        | 120.226              | 1.74        | 1258.925<br>1445.440                                | 0.00        |  |
| 0.013 0.00                                    | 0.138                | 0.00                              | 1.445            | 0.00                     | 15.136                                   | 0.90                        | 158.489              | 0.38        | 1659.587                                            | 0.00        |  |
| 0.015 0.00                                    | 0.158<br>0.182       | 0.00                              | 1.660<br>1.905   | 0.00                     | 17.378                                   | 2.22                        | 181.970<br>208,930   | 0.00        | 1905.461<br>2187.762                                | 0.00        |  |
| 0.020 0.00                                    | 0.209                | 0.00                              | 2.188            | 0.00                     | 22.909                                   | 3.23                        | 239.883              | 0.00        | 2511.886                                            | 0.00        |  |
| 0.023 0.00                                    | 0.240                | 0.00                              | 2.512            | 0.00                     | 30.200                                   | 5.85                        | 275.423<br>316.228   | 0.00        | 2884.032<br>3311.311                                | 0.00        |  |
| 0.030 0.00                                    | 0.316                | 0.00                              | 3.311            | 0.04                     | 34.674                                   | 4 7.26                      | 363.078              | 0.00        | 3801.894                                            | 0.00        |  |
| 0.035 0.00                                    | 0.363                | 0.00                              | 3.802<br>4.365   | 0.12                     | 39.81                                    | 9.52                        | 416.869              | 0.00        | 4365.158<br>5011.872                                | 0.00        |  |
| 0.046 0.00                                    | 0.479                | 0.00                              | 5.012            | 0.14                     | 52.48                                    | 10.04                       | 549.541              | 0.00        | 5754.399                                            | 0.00        |  |
| 0.052 0.00                                    | 0.550                | 0.00                              | 5.754            | 0.16                     | 60.256                                   | 9.33                        | 630.957              | 0.00        | 6606.934                                            | 0.00        |  |
| 0.069 0.00                                    | 0.724                | 0.00                              | 7.586            | 0.16                     | 79.43                                    | 8.17                        | 724.436<br>831.764   | 0.00        | 7585.776<br>8709.636                                | 0.00        |  |
| 0.079 0.00                                    | 0.832                | 0.00                              | 8.710            | 0.17                     | 91.20                                    | 6.62                        | 954.993              | 0.00        | 10000.000                                           | 0.00        |  |
| 0.091 0.00                                    | 0.955                | 0.00                              | 10.000<br>11.482 | 0.33                     | 104.713                                  | 3.26                        | 1096.478<br>1258.925 | 0.00        |                                                     |             |  |
| Operator notes:                               |                      | I                                 |                  | 1                        |                                          |                             |                      |             |                                                     |             |  |

# • 2% H30

| Sample I                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 16923-112                             | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rophobic) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOP Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measured:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 Salı 11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Source & type: Measu           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured by:<br>PBA<br>Result Source:<br>Averaged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysed:<br>05 Nisan 2016 Salı 11:11:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample bulk lot ref: Resul<br>Average |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PBA<br>Result So<br>Averaged                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Particle Name: Acces                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Accessory Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysis model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sensitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sensitivity:                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Particle                              | RI:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Absorptic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ius (A)<br>on:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Size range:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Normal<br>Obscuratio                                                                                                                                                                                                | on:                                                                                                                                                                                                                                                                                                                                                                                 |  |
| .487                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 2000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.36 %                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Dispersa<br>Nater                     | ant Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dispersar<br>1.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt RI:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | esidual:<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result Emulation:<br>Off                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Concent                               | t <b>ration:</b><br>%Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Span:         Uniformity:         Result           1.737         1.94         Volur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uniformity: Result units:<br>1.94 Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Specific<br>1.13                      | Surface<br>m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface V<br>5.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Veighted N<br>um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lean D[3,2]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Vol. Weight</b><br>15.353 ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed Mean D<br>um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [4,3]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| d(0.1):                               | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d(0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ): 5.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d(0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ): 13.147                                                                                                                                                                                                           | um                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Γ                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | icle Size Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       | /olu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the state of the state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>vdronhobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>Pa<br>n 2016 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | article Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>(μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01<br>-04 (%2 h<br>-04 (%2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.<br>ydrophobi<br>ydrophobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>c), 05 Nisa<br>c), 05 Nisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>Pa<br>n 2016 Sa<br>n 2016 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | article Size<br>alı 11:11:04<br>alı 11:11:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>(μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | article Size<br>alı 11:11:04<br>alı 11:11:16<br>alı 11:11:28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>(μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                   |  |
| -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Averaç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>Pa<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | article Size<br>alı 11:11:04<br>alı 11:11:16<br>alı 11:11:28<br>an 2016 Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>(μm)<br>h 11:11:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Render                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                     |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>Size (µr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>ydrophobi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Avera <u>c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisi<br>Size (µm<br>1.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | article Size<br>alı 11:11:04<br>alı 11:11:16<br>alı 11:11:28<br>an 2016 Sa<br>Volume In %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>(μm)<br>h 11:11:1<br>Size (μm<br>11.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04<br>0 <u>Volume In %</u><br>2 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Size (µm)<br>120.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000<br>Volume in %<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3000<br>Size (µm) 1<br>1258,025                                                                                                                                                                                     | /olume In %                                                                                                                                                                                                                                                                                                                                                                         |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>)<br>Volume in %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br><u>ydrophobi</u><br>0.12<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Averac<br>0 Volume In %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisi<br>1.25<br>1.25<br>1.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br><u>) Volume in %</u><br><u>3 0.00</u><br>5 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>(μm)<br>li 11:11:0<br>Size (μm<br>11.48;<br>13.18;<br>15.136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04<br>Volume in %<br>3 3.10<br>3 0.80<br>0 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Size (µm)<br>120.226<br>138.038<br>158.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000<br>Volume In %<br>0.65<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1258 925<br>1445 440<br>1659 587                                                                                                                                                             | /olume In %<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                         |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 00°<br>00°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-01 %<br>-01 %<br>-01 %<br>-01 %<br>-01 %<br>-01 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>-04 %<br>- | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.12<br>0.13<br>0.15<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>0 Volume In %<br>0 0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 0000<br>0 000<br>0 0000<br>0 0000   | 1<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisi<br>1.09<br>1.250<br>1.444<br>1.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0.00<br>5 0.00<br>5 0.00<br>5 0.01<br>5 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>(μm)<br>h 11:11:1<br>Size (μm<br>11.48<br>13.18<br>15.13<br>17.37<br>19.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 04<br>Volume in %<br>3 3.10<br>3 0.87<br>3 0.87<br>3 0.87<br>3 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Size (µm)<br>120.226<br>138.038<br>158.489<br>181.970<br>208.930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000<br>Volume in %<br>0.65<br>0.71<br>0.72<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1259 925<br>1455 440<br>1659,587<br>1905,461<br>2167 762                                                                                                                                     | /olume In %<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                         |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.12<br>0.13<br>0.15<br>0.12<br>0.13<br>0.15<br>0.12<br>0.13<br>0.15<br>0.12<br>0.13<br>0.15<br>0.13<br>0.15<br>0.14<br>0.10<br>0.12<br>0.13<br>0.15<br>0.14<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15        | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Averac<br>v Volume In %<br>0 0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0000<br>0 000<br>0 000<br>0000<br>0 0000<br>0000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>Pi<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisi<br>1.099<br>1.256<br>1.444<br>1.666<br>1.900<br>2.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0.00<br>5 0.00<br>5 0.01<br>5 0.38<br>1.27<br>2.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>(µm)<br>h 11:11:<br>Size(µm)<br>11.483<br>13.183<br>17.377<br>19.955<br>22.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04<br>Volume in %<br>3 3.10<br>3 0.87<br>3 0.30<br>9 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Size (µm)<br>120 226<br>138 038<br>158 489<br>181.970<br>208.930<br>239.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000<br>Volume In %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.51<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1259 925<br>1445 540<br>1659 587<br>1905 491<br>2167 762<br>2511 886                                                                                                                         | /olume in %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                 |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h)<br>-04 (%2 h<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-04 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00 (%2 h)<br>-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br><u>vdrophobi</u><br>0.10<br>0.12<br>0.13<br>0.15<br>0.14<br>0.20<br>0.24<br>0.22<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.24<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25<br>0.25 | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Averac<br>volume in %<br>5 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.000<br>0 0.00<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.0000<br>0 0.000<br>0 0.0000<br>0 0.0000<br>0 0.0000<br>0 0.000                                                                                                                  | 1<br>Pi<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nis:<br>Size(µm<br>1.255<br>1.444<br>1.600<br>2.188<br>2.512<br>2.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 1.27<br>2 2.52<br>4 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>(μm)<br>k 11:11:1<br>Size (μm<br>11.48<br>13.18<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15.13<br>15     | 04<br>0 Volume in %<br>0 Volume in %<br>0 1.80<br>3 0.30<br>3 0.30<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.   | Size (µm)<br>120226<br>138.038<br>158.489<br>181.970<br>239.883<br>275.423<br>346.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000<br>Volume In %<br>0.65<br>0.71<br>0.65<br>0.51<br>0.31<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1258 925<br>1445 440<br>1655 587<br>1905 461<br>2187 762<br>2511 886<br>2814 032<br>3311 341                                                                                                 | Zolume In %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                 |  |
| -                                     | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %<br>0 (%00m ln %)<br>0 (%00m ln %<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)<br>0 (%00m ln %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.12<br>0.13<br>0.16<br>0.12<br>0.13<br>0.16<br>0.12<br>0.13<br>0.16<br>0.12<br>0.13<br>0.16<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14     | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c) - Averac<br>0 Vetune in %, 0<br>0 0<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000   | 1<br>P,<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nis;<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.100<br>2.1000<br>2.1000<br>2.1000<br>2.1000<br>2.10000<br>2.10000000000 | article Size<br>alt 11:11:04<br>alt 11:11:16<br>alt 11:11:28<br>an 2016 Sa<br>Votume in %<br>5 0.00<br>0 0.01<br>0 0.08<br>5 0.00<br>0 0.03<br>0 0.00<br>0 0.03<br>0 0.00<br>0 0.03<br>0 0.00<br>0 0.03<br>0 0.00<br>0 0.03<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.000<br>0 00<br>0 0.000<br>0 0.000<br>0 00<br>0 0.00000000                               | 10<br>(μm)<br>k 11:11:1<br>Size (μm<br>11:48<br>13:18<br>15:13<br>19:55<br>22:90<br>26:30<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30:20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                 | 04<br>Volume in %<br>3 3.10<br>3 1.80<br>3 0.30<br>3 0.04<br>9 0.00<br>0 0.01<br>4 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Size (µm)<br>120 226<br>138 028<br>158 489<br>181 970<br>208 930<br>239 883<br>275 423<br>316 228<br>363 078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000<br>Volume In %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.51<br>0.31<br>0.19<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1259 925<br>1445 440<br>1655 587<br>1905 461<br>2187 762<br>2511 886<br>2844 032<br>3311.311<br>3801.894                                                                                     | /olume in %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                           |  |
| -                                     | 16923<br>16923<br>16923<br>16923<br><u>Size(µ</u><br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.12<br>0.13<br>0.14<br>0.22<br>0.33<br>0.33<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45     | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 000<br>0, 00                                                                     | 1<br>P,<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nis;<br>1.444<br>1.099<br>1.225<br>2.099<br>3.311<br>3.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.0000<br>4.00000<br>4.00000<br>4.00000<br>4.00000<br>4.00000<br>4.00000000             | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>000<br>0 000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>(μm)<br>k 11:11:<br>Sze (μm<br>11.48<br>15.13<br>15.13<br>15.13<br>15.13<br>15.29<br>00<br>26.30<br>30.20<br>30.20<br>30.20<br>30.20<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>30.30<br>3  | 04<br>Volume in %<br>Volume in %<br>3 3.10<br>5 1.80<br>3 0.30<br>3 0.30<br>3 0.30<br>4 0.10<br>1 0.10<br>1 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Size (µm)<br>120 226<br>138 032<br>156 489<br>181 970<br>208 930<br>239 883<br>275 423<br>316 228<br>336 278<br>416 889<br>470 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000<br>Volume In %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.51<br>0.31<br>0.19<br>0.07<br>0.01<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000<br>Size (µm) 1<br>1259 925<br>1445 440<br>1650,587<br>1905 461<br>2187 762<br>2511 886<br>2894,032<br>3311,311<br>3001,894<br>4355,158<br>504 477                                                              | 70ume in %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                            |  |
|                                       | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000 | 8.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.12<br>0.13<br>0.15<br>0.12<br>0.24<br>0.27<br>0.33<br>0.41<br>0.41<br>0.42<br>0.34<br>0.41<br>0.42<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44     | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), - Averacy<br>Volume in %<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000<br>0 000<br>0 0000<br>0 0000<br>0 0000<br>0 000   | 1<br>Pr<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>je, 05 Nisi<br>256<br>1256<br>1266<br>1266<br>1266<br>1266<br>1266<br>1266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>Volume in %<br>0 0.00<br>0 0.01<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.000<br>0 0.000<br>0 0.000<br>0 0.0000<br>0 0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>(μm)<br>k 11:11:<br>Sze (μm<br>11.48<br>15.13<br>18:<br>15.13<br>19.953<br>22.900<br>26.303<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.203<br>30.                                                                                                                                                  | 04<br>0 Volume In %<br>3 3.10<br>3 1.80<br>3 0.87<br>3 0.30<br>4 0.04<br>3 0.00<br>4 0.05<br>1 0.10<br>0 0.20<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0.22<br>1 0 | Size (µm)<br>120 226<br>138 038<br>158 489<br>181 570<br>206 530<br>239 883<br>275 423<br>336 628<br>333 078<br>416 889<br>478 630<br>549 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000<br>Volume In %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.51<br>0.31<br>0.19<br>0.07<br>0.01<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3000<br>Size (µm) 1<br>1259 925<br>1445 440<br>1659 587<br>1905 461<br>2167 762<br>2511 886<br>2894 032<br>3311.311<br>3901,894<br>4365 158<br>5011.672<br>5754.399                                                 | fotume in %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                           |  |
|                                       | - 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 16923<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000<br>- 000 | 8.01<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h<br>-04 (%2 h))))))))))))))))))))))))))))))))))))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10<br>0,10     | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), - Averacy<br>Volume In %<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 0000<br>0 0000<br>0 0000<br>0 000<br>0 0000<br>0 0000<br>0 000<br>0 00 | 1<br>Pr<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nisc<br>1256<br>1256<br>1256<br>1266<br>1266<br>1266<br>1266<br>1266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0 000<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.000<br>5 0.000<br>5 0.000<br>5 0.000<br>5 0.0000<br>5 0.0000000 | 10<br>(µm)<br>k<br>11:11:11:1<br>Size(µm)<br>11:42:10<br>13:18:<br>15:13:<br>19:55:<br>22:90;<br>22:90;<br>22:90;<br>23:90;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30:20;<br>30;<br>30;<br>30;<br>30;<br>30;<br>30;<br>30;<br>30;<br>30;<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04<br>0 Volume In %<br>3 3.10<br>3 3.00<br>3 0.00<br>4 0.05<br>1 0.10<br>0 0.22<br>9 0.27<br>5 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Size (µm)<br>120226<br>138.038<br>166.469<br>121.0268<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>208.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>209.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.930<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.9300<br>200.93000<br>200.93000<br>200.930000000000000000000000000000000000 | 1000<br>Volume in %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.07<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.0000<br>0.000000<br>0.00000<br>0.0000000<br>0.00000000                                                                     | 3000<br>Size (µm) 1<br>1259.925<br>1445.400<br>1656.567<br>1905.461<br>2167.762<br>2511.886<br>2284.032<br>3311.311<br>3901.894<br>4365.158<br>5011.672<br>5754.399<br>6606.934<br>6606.934                         | Zolume In %           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00                               |  |
|                                       | 16923<br>16923<br>16923<br>16923<br>16923<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>0.10<br>0.12<br>0.13<br>0.15<br>0.14<br>0.22<br>0.33<br>0.44<br>0.27<br>0.33<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44     | 1<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), 05 Nisa<br>c), - Average<br>0 Volume In %<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000<br>0 000<br>0 000<br>0 0000<br>0 000<br>0 0000<br>0 000 | 1<br>Pr<br>n 2016 Sa<br>n 2016 Sa<br>n 2016 Sa<br>je, 05 Nisi<br>Size (µm<br>1256<br>1.444<br>1.066<br>2.615<br>2.886<br>3.313<br>3.800<br>4.505<br>5.757<br>6.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | article Size<br>ali 11:11:04<br>ali 11:11:16<br>ali 11:11:28<br>an 2016 Sa<br>0 000<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.00<br>5 0.000<br>5 0.000<br>5 0.000<br>5 0.000<br>5 0.0000<br>5 0.0000000 | 10<br>(µm)<br>k<br>11:11:11:1<br>Sze(µm)<br>11:14:11:1<br>13:18:<br>15:19:<br>17:373<br>19:55<br>22:90<br>22:90<br>34:677<br>39:811<br>45:707<br>52:84<br>60:255<br>60:255<br>60:18:<br>79:43:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Size (µm)<br>120 226<br>138,038<br>166 489<br>138 1970<br>208 930<br>275 423<br>316 628<br>333 75 423<br>343 778<br>446 869<br>478 630<br>579 544<br>446 869<br>772 4436<br>831 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000<br>Volume in %<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.65<br>0.71<br>0.72<br>0.01<br>0.05<br>0.71<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000000<br>0.0000<br>0.000000<br>0.0000000 | 3000<br>Size (µm) 1<br>1259 825<br>1445.440<br>1656.567<br>1905.461<br>2167.762<br>2511.886<br>2984.032<br>3311.311<br>3901.894<br>4355.158<br>5011.872<br>5754.399<br>9606.394<br>7985.776<br>8700.639             | Zotume In %           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00 |  |
|                                       | 16923<br>16923<br>16923<br>16923<br>16923<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.<br>ydrophobi<br>ydrophobi<br>ydrophobi<br>010<br>012<br>013<br>015<br>018<br>010<br>022<br>024<br>027<br>031<br>038<br>044<br>028<br>044<br>028<br>044<br>038<br>044<br>045<br>046<br>046<br>046<br>046<br>046<br>046<br>046<br>046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 c), 05 Nisa c), 05 Nisa c), 05 Nisa c), 05 Nisa c), 05 Nisa c) - Averac o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in % o volume in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>Pr<br>n 2016 Sa<br>n 2016 Sa<br>ge, 05 Nis:<br>Sze(mon<br>1255<br>1.444<br>1.600<br>1.251<br>2.481<br>2.511<br>2.481<br>3.300<br>3.517<br>5.575<br>6.600<br>7.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | article Size<br>all 11:11:04<br>all 11:11:16<br>all 11:11:28<br>an 2016 Sa<br>an 2016 Sa<br>b Volume in %<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.00<br>b 0.0 | 10<br>(µm)<br>11.45<br>11.45<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>13.86<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.85<br>14.8 | 04<br>Volume in %<br>2 3.10<br>3 1.80<br>3 0.87<br>3 0.30<br>0 0.04<br>0 0.05<br>3 0.30<br>0 0.04<br>0 0.05<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.00<br>0 0.0 | Size (µm)<br>120 226<br>138 038<br>186 439<br>181 970<br>239 883<br>275 423<br>316 228<br>303 078<br>416 859<br>418 630<br>549 541<br>630 557<br>724 436<br>831 764<br>854 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000<br>Size (µm) 1<br>1258,925<br>1445,440<br>1656,587<br>1905,461<br>2167,762<br>2511,886<br>2684,032<br>3311,311<br>301,894<br>4365,158<br>5011,872<br>5754,339<br>6606,394<br>7965,776<br>8700,636<br>10000,000 | (otume in %<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                           |  |

# **D.** Test Report of the XRF

| TP                                                                              |                                                                     |                                                            |                              |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|------------------------------|--|--|--|
| - minee                                                                         | 111010                                                              |                                                            |                              |  |  |  |
| Vumune Kodu<br>Vumunenin Üniteye<br>Zapılan Analiz(ler)<br>Analizin Yapıldığı T | : 17.02.0<br>Geliş Tarihi : 18.08.2<br>: Sıvı nun<br>arih : 18.08.2 | 78<br>017<br>nunelerde XRF element analizi.<br>017         |                              |  |  |  |
|                                                                                 | XRF AN                                                              | NALİZ SONUÇLARI                                            |                              |  |  |  |
|                                                                                 | Nano                                                                | çözelti tapa giriş numunesi                                |                              |  |  |  |
|                                                                                 | Element                                                             | Konsantrasyor<br>(% ağırlık)                               | 1                            |  |  |  |
|                                                                                 | Si                                                                  | 0,5791                                                     |                              |  |  |  |
|                                                                                 | Nano (                                                              | özelti tapa çıkış numunesi<br>Konsantrasyor<br>(% ağırlık) | 1                            |  |  |  |
|                                                                                 | Si                                                                  | 0,5991                                                     |                              |  |  |  |
|                                                                                 |                                                                     |                                                            |                              |  |  |  |
|                                                                                 |                                                                     |                                                            |                              |  |  |  |
| ANALİZİN YA                                                                     | PILDIĞI ÜNİTE                                                       | YAZAN                                                      | UNAYLAYAN                    |  |  |  |
| ANALİZİN YA<br>ÜRETİM TI<br>MÜDÜ                                                | PILDIĞI ÜNİTE<br>EKNOLOJİSİ<br>IRLÜĞÜ                               | YAZAN<br>Irem Yaşar AKSU<br>Mühendis                       | Selçuk SALDI<br>Ünite Müdürü |  |  |  |

# E. Oil Recovery Test Results

# • Recovery Test Results with CC301 Dispersion

| Applicatio<br>n | Ru<br>n | Fluid           | Time<br>, min | Flow<br>Rate,<br>cc/min | Cum.<br>pumped<br>, cc | Pore<br>volume | Production<br>, cc | Recovery,<br>%OOIP |
|-----------------|---------|-----------------|---------------|-------------------------|------------------------|----------------|--------------------|--------------------|
|                 |         |                 |               |                         | 0                      | 0.00           | 0.0                | 0.0                |
|                 |         |                 |               |                         | 22                     | 0.16           | 4.0                | 3.2                |
|                 |         |                 |               |                         | 50                     | 0.36           | 8.0                | 6.4                |
| 600 psi         |         |                 |               |                         | 250                    | 1.81           | 25.0               | 20.1               |
| $\dot{CO_2}$    |         | CO <sub>2</sub> |               |                         | 500                    | 3.61           | 31.0               | 24.9               |
| Injection       |         | _               |               |                         | 980                    | 7.08           | 33.5               | 26.9               |
|                 |         |                 |               |                         | 1030                   | 7.44           | 34.1               | 27.4               |
|                 |         |                 |               |                         | 1080                   | 7.80           | 34.8               | 27.9               |
|                 |         |                 |               |                         | 1100                   | 7.94           | 35.0               | 28.1               |
|                 |         | water           | 30            | 0.25                    | 1107.5                 | 8.00           | 35.0               | 28.1               |
|                 | 1       | water           | 30            | 0.25                    | 1115                   | 8.05           | 36.0               | 28.9               |
|                 | 1       | water           | 30            | 0.25                    | 1122.5                 | 8.11           | 40.0               | 32.1               |
|                 |         | water           | 20            | 0.25                    | 1127.5                 | 8.14           | 46.0               | 36.9               |
|                 |         | CO <sub>2</sub> | 30            | 0.25                    | 1135                   | 8.20           | 46.0               | 36.9               |
|                 | 2       | CO <sub>2</sub> | 30            | 0.25                    | 1142.5                 | 8.25           | 46.0               | 36.9               |
|                 |         | CO <sub>2</sub> | 30            | 0.25                    | 1150                   | 8.30           | 46.0               | 36.9               |
|                 |         | CO <sub>2</sub> | 20            | 0.25                    | 1155                   | 8.34           | 46.0               | 36.9               |
|                 |         | water           | 30            | 0.25                    | 1162.5                 | 8.39           | 46.0               | 36.9               |
|                 | 3       | water           | 30            | 0.25                    | 1170                   | 8.45           | 47.0               | 37.7               |
|                 |         | water           | 30            | 0.25                    | 1177.5                 | 8.50           | 49.0               | 39.3               |
|                 |         | water           | 20            | 0.25                    | 1182.5                 | 8.54           | 50.0               | 40.1               |
|                 |         | CO <sub>2</sub> | 30            | 0.25                    | 1190                   | 8.59           | 50.0               | 40.1               |
| WAC             | 4       | CO <sub>2</sub> | 30            | 0.25                    | 1197.5                 | 8.65           | 50.0               | 40.1               |
| WAG             | 4       | CO <sub>2</sub> | 30            | 0.25                    | 1205                   | 8.70           | 50.0               | 40.1               |
|                 |         | CO <sub>2</sub> | 20            | 0.25                    | 1210                   | 8.74           | 50.2               | 40.3               |
|                 |         | water           | 30            | 0.25                    | 1217.5                 | 8.79           | 50.3               | 40.4               |
|                 | 5       | water           | 30            | 0.25                    | 1225                   | 8.85           | 51.3               | 41.2               |
|                 | 5       | water           | 30            | 0.25                    | 1232.5                 | 8.90           | 52.5               | 42.1               |
|                 |         | water           | 20            | 0.25                    | 1237.5                 | 8.94           | 53.5               | 42.9               |
|                 |         | CO <sub>2</sub> | 30            | 0.25                    | 1245                   | 8.99           | 53.5               | 42.9               |
|                 | 6       | CO <sub>2</sub> | 30            | 0.25                    | 1252.5                 | 9.04           | 53.5               | 42.9               |
|                 | 0       | CO <sub>2</sub> | 30            | 0.25                    | 1260                   | 9.10           | 54.0               | 43.3               |
|                 |         | CO <sub>2</sub> | 20            | 0.25                    | 1265                   | 9.13           | 54.0               | 43.3               |
|                 |         | water           | 30            | 0.25                    | 1272.5                 | 9.19           | 54.0               | 43.3               |
|                 | 7       | water           | 30            | 0.25                    | 1280                   | 9.24           | 55.3               | 44.4               |
|                 | /       | water           | 30            | 0.25                    | 1287.5                 | 9.30           | 55.5               | 44.5               |
|                 |         | water           | 20            | 0.25                    | 1292.5                 | 9.33           | 55.5               | 44.5               |

|       |    | CO <sub>2</sub> | 30 | 0.25 | 1300   | 9.39  | 55.5 | 44.5 |
|-------|----|-----------------|----|------|--------|-------|------|------|
|       |    | $CO_2$          | 30 | 0.25 | 1307.5 | 9.44  | 55.6 | 44.6 |
|       | 8  | $CO_2$          | 30 | 0.25 | 1315   | 9.50  | 55.6 | 44.6 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1320   | 9.53  | 55.7 | 44.7 |
|       |    | water           | 30 | 0.25 | 1327.5 | 9.59  | 56.2 | 45.1 |
|       |    | water           | 30 | 0.25 | 1335   | 9.64  | 56.8 | 45.6 |
|       | 9  | water           | 30 | 0.25 | 1342.5 | 9.69  | 56.8 | 45.6 |
|       |    | water           | 20 | 0.25 | 1347.5 | 9.73  | 56.8 | 45.6 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1355   | 9.78  | 56.8 | 45.6 |
|       | 10 | CO <sub>2</sub> | 30 | 0.25 | 1362.5 | 9.84  | 56.8 | 45.6 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1370   | 9.89  | 56.8 | 45.6 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1375   | 9.93  | 56.8 | 45.6 |
|       |    | water           | 30 | 0.25 | 1382.5 | 9.98  | 56.8 | 45.6 |
|       | 11 | water           | 30 | 0.25 | 1390   | 10.04 | 57.0 | 45.7 |
|       | 11 | water           | 30 | 0.25 | 1397.5 | 10.09 | 57.0 | 45.7 |
|       |    | water           | 20 | 0.25 | 1402.5 | 10.13 | 57.0 | 45.7 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1410   | 10.18 | 57.0 | 45.7 |
|       | 10 | CO <sub>2</sub> | 30 | 0.25 | 1417.5 | 10.24 | 57.1 | 45.8 |
|       | 12 | CO <sub>2</sub> | 30 | 0.25 | 1425   | 10.29 | 57.1 | 45.8 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1430   | 10.33 | 57.1 | 45.8 |
|       |    | Nano            | 30 | 0.25 | 1437.5 | 10.38 | 57.1 | 45.8 |
|       | 1  | Nano            | 30 | 0.25 | 1445   | 10.43 | 57.1 | 45.8 |
|       | 1  | Nano            | 30 | 0.25 | 1452.5 | 10.49 | 57.3 | 46.0 |
|       |    | Nano            | 20 | 0.25 | 1457.5 | 10.52 | 57.4 | 46.1 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1465   | 10.58 | 57.4 | 46.1 |
|       | 2  | CO <sub>2</sub> | 30 | 0.25 | 1472.5 | 10.63 | 57.4 | 46.1 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1480   | 10.69 | 57.4 | 46.1 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1485   | 10.72 | 57.4 | 46.1 |
|       |    | Nano            | 30 | 0.25 | 1492.5 | 10.78 | 57.4 | 46.1 |
|       | 3  | Nano            | 30 | 0.25 | 1500   | 10.83 | 57.5 | 46.1 |
|       | 5  | Nano            | 30 | 0.25 | 1507.5 | 10.89 | 57.5 | 46.1 |
| NWAG  |    | Nano            | 20 | 0.25 | 1512.5 | 10.92 | 57.5 | 46.1 |
| INWAU |    | CO <sub>2</sub> | 30 | 0.25 | 1520   | 10.98 | 57.5 | 46.1 |
|       | 1  | CO <sub>2</sub> | 30 | 0.25 | 1527.5 | 11.03 | 57.5 | 46.1 |
|       | 4  | CO <sub>2</sub> | 30 | 0.25 | 1535   | 11.08 | 57.5 | 46.1 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1540   | 11.12 | 57.5 | 46.1 |
|       |    | Nano            | 30 | 0.25 | 1547.5 | 11.17 | 57.5 | 46.1 |
|       | 5  | Nano            | 30 | 0.25 | 1555   | 11.23 | 57.5 | 46.1 |
|       | 5  | Nano            | 30 | 0.25 | 1562.5 | 11.28 | 57.5 | 46.1 |
|       |    | Nano            | 20 | 0.25 | 1567.5 | 11.32 | 57.5 | 46.1 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1575   | 11.37 | 57.5 | 46.1 |
|       | 6  | CO <sub>2</sub> | 30 | 0.25 | 1582.5 | 11.43 | 57.5 | 46.1 |
|       |    | CO <sub>2</sub> | 30 | 0.25 | 1590   | 11.48 | 57.5 | 46.1 |
|       |    | CO <sub>2</sub> | 20 | 0.25 | 1595   | 11.52 | 57.5 | 46.1 |

|      | $\mathbf{)}_2$ |  | 1655 | 11.95 | 61.0 | 48.9 |
|------|----------------|--|------|-------|------|------|
| Foam | C              |  | 1845 | 13.32 | 70.0 | 56.2 |
|      | +u             |  | 2095 | 15.13 | 83.5 | 67.0 |
|      | rsic           |  | 2345 | 16.93 | 86.5 | 69.4 |
|      | ano dispe      |  | 2595 | 18.74 | 88.5 | 71.0 |
|      |                |  | 2795 | 20.18 | 89.0 | 71.4 |
|      |                |  | 2895 | 20.90 | 89.5 | 71.8 |
|      | Ž              |  | 2995 | 21.63 | 89.5 | 71.8 |

# • Recovery Test Results with PEG Dispersion

| Application                    | Run | Fluid           | Time,<br>min | Flow<br>rate,<br>cc/min | Cum.<br>pumped,<br>cc | Pore<br>Volume | Production,<br>cc | Recovery,<br>%OOIP |
|--------------------------------|-----|-----------------|--------------|-------------------------|-----------------------|----------------|-------------------|--------------------|
|                                |     | CO <sub>2</sub> |              |                         | 0                     | 0.00           | 0                 | 0.00               |
|                                |     | $CO_2$          |              |                         | 22                    | 0.16           | 0                 | 0.00               |
|                                |     | $CO_2$          |              |                         | 50                    | 0.36           | 1                 | 1.08               |
| $500 \text{ psi } \text{CO}_2$ |     | CO <sub>2</sub> |              |                         | 250                   | 1.81           | 8                 | 8.61               |
| Injection                      |     | CO <sub>2</sub> |              |                         | 500                   | 3.61           | 13                | 13.99              |
|                                |     | CO <sub>2</sub> |              |                         | 750                   | 5.42           | 14.5              | 15.61              |
|                                |     | CO <sub>2</sub> |              |                         | 1000                  | 7.22           | 15                | 16.14              |
|                                |     | water           | 30           | 0.25                    | 1007.5                | 7.28           | 15                | 16.14              |
|                                | 1   | water           | 30           | 0.25                    | 1015                  | 7.33           | 15.5              | 16.68              |
|                                | 1   | water           | 30           | 0.25                    | 1022.5                | 7.38           | 16.1              | 17.33              |
|                                |     | water           | 20           | 0.25                    | 1027.5                | 7.42           | 16.9              | 18.19              |
|                                | 2   | $CO_2$          | 30           | 0.25                    | 1035                  | 7.47           | 16.9              | 18.19              |
|                                |     | CO <sub>2</sub> | 30           | 0.25                    | 1042.5                | 7.53           | 16.9              | 18.19              |
|                                |     | CO <sub>2</sub> | 30           | 0.25                    | 1050                  | 7.58           | 17                | 18.30              |
|                                |     | CO <sub>2</sub> | 20           | 0.25                    | 1055                  | 7.62           | 17                | 18.30              |
|                                |     | water           | 30           | 0.25                    | 1062.5                | 7.67           | 17                | 18.30              |
|                                | 3   | water           | 30           | 0.25                    | 1070                  | 7.73           | 17.3              | 18.62              |
| WAG                            |     | water           | 30           | 0.25                    | 1077.5                | 7.78           | 17.8              | 19.16              |
| WAG                            |     | water           | 20           | 0.25                    | 1082.5                | 7.82           | 18.4              | 19.80              |
|                                | 4   | CO <sub>2</sub> | 30           | 0.25                    | 1090                  | 7.87           | 18.4              | 19.80              |
|                                |     | CO <sub>2</sub> | 30           | 0.25                    | 1097.5                | 7.93           | 18.4              | 19.80              |
|                                |     | CO <sub>2</sub> | 30           | 0.25                    | 1105                  | 7.98           | 18.7              | 20.13              |
|                                |     | CO <sub>2</sub> | 20           | 0.25                    | 1110                  | 8.02           | 19.1              | 20.56              |
|                                | 5   | water           | 30           | 0.25                    | 1117.5                | 8.07           | 19.3              | 20.77              |
|                                |     | water           | 30           | 0.25                    | 1125                  | 8.12           | 19.7              | 21.20              |
|                                |     | water           | 30           | 0.25                    | 1132.5                | 8.18           | 20.2              | 21.74              |
|                                |     | water           | 20           | 0.25                    | 1137.5                | 8.21           | 20.7              | 22.28              |
|                                | 6   | CO <sub>2</sub> | 30           | 0.25                    | 1145                  | 8.27           | 20.8              | 22.39              |
|                                | 0   | $CO_2$          | 30           | 0.25                    | 1152.5                | 8.32           | 20.9              | 22.49              |

|      | I  |                 | 20 | 0.25 | 1100   | 0.20  | 01           | 22.00 |
|------|----|-----------------|----|------|--------|-------|--------------|-------|
|      |    | $CO_2$          | 30 | 0.25 | 1160   | 8.58  | 21           | 22.60 |
|      |    | $CO_2$          | 20 | 0.25 | 1165   | 8.41  | 21.1         | 22.71 |
|      |    | water           | 30 | 0.25 | 11/2.5 | 8.4/  | 21.3         | 22.93 |
|      | 7  | water           | 30 | 0.25 | 1180   | 8.52  | 21.6         | 23.25 |
|      |    | water           | 30 | 0.25 | 1187.5 | 8.57  | 21.8         | 23.46 |
|      |    | water           | 20 | 0.25 | 1192.5 | 8.61  | 22.1         | 23.79 |
|      |    | CO <sub>2</sub> | 30 | 0.25 | 1200   | 8.67  | 22.1         | 23.79 |
|      | 8  | CO <sub>2</sub> | 30 | 0.25 | 1207.5 | 8.72  | 22.3         | 24.00 |
|      | 0  | CO <sub>2</sub> | 30 | 0.25 | 1215   | 8.77  | 22.5         | 24.22 |
|      |    | CO <sub>2</sub> | 20 | 0.25 | 1220   | 8.81  | 22.5         | 24.22 |
|      |    | water           | 30 | 0.25 | 1227.5 | 8.86  | 22.7         | 24.43 |
|      | 0  | water           | 30 | 0.25 | 1235   | 8.92  | 22.8         | 24.54 |
|      | 7  | water           | 30 | 0.25 | 1242.5 | 8.97  | 23           | 24.76 |
|      |    | water           | 20 | 0.25 | 1247.5 | 9.01  | 23.1         | 24.86 |
|      |    | CO <sub>2</sub> | 30 | 0.25 | 1255   | 9.06  | 23.1         | 24.86 |
|      | 10 | CO <sub>2</sub> | 30 | 0.25 | 1262.5 | 9.12  | 23.2         | 24.97 |
|      | 10 | CO <sub>2</sub> | 30 | 0.25 | 1270   | 9.17  | 23.4         | 25.19 |
|      |    | $CO_2$          | 20 | 0.25 | 1275   | 9.21  | 23.4         | 25.19 |
|      |    | water           | 30 | 0.25 | 1282.5 | 9.26  | 23.4         | 25.19 |
|      |    | water           | 30 | 0.25 | 1290   | 9.32  | 23.4         | 25.19 |
|      | 11 | water           | 30 | 0.25 | 1297.5 | 9.37  | 23.5         | 25.29 |
|      |    | water           | 20 | 0.25 | 1302.5 | 9.41  | 23.5         | 25.29 |
|      |    | $CO_2$          | 30 | 0.25 | 1310   | 9.46  | 23.5         | 25.29 |
|      |    | $CO_2$          | 30 | 0.25 | 1317.5 | 9.51  | 23.5         | 25.29 |
|      | 12 | $CO_2$          | 30 | 0.25 | 1325   | 9.57  | 23.6         | 25.40 |
|      |    | $CO_2$          | 20 | 0.25 | 1330   | 9.60  | 23.6         | 25.40 |
|      |    | Nano            | 30 | 0.25 | 1337.5 | 9.66  | 23.6         | 25.40 |
|      | 1  | Nano            | 30 | 0.25 | 1345   | 9.71  | 23.6         | 25.40 |
|      |    | Nano            | 30 | 0.25 | 1352.5 | 9.77  | 23.7         | 25.51 |
|      |    | Nano            | 20 | 0.25 | 1357.5 | 9.80  | 23.7         | 25.51 |
|      |    | CO <sub>2</sub> | 30 | 0.25 | 1365   | 9.86  | 23.7         | 25.51 |
|      | _  | CO <sub>2</sub> | 30 | 0.25 | 1372.5 | 9.91  | 23.7         | 25.51 |
|      | 2  | $CO_2$          | 30 | 0.25 | 1380   | 9.97  | 23.8         | 25.62 |
|      |    | $CO_2$          | 20 | 0.25 | 1385   | 10.00 | 23.8         | 25.62 |
|      |    | Nano            | 30 | 0.25 | 1392.5 | 10.06 | 23.9         | 25.72 |
| NWAG |    | Nano            | 30 | 0.25 | 1400   | 10.11 | 23.5         | 25.83 |
|      | 3  | Nano            | 30 | 0.25 | 1407 5 | 10.11 | 24.1         | 25.03 |
|      |    | Nano            | 20 | 0.25 | 1412.5 | 10.10 | 24.3         | 26.15 |
|      |    | COa             | 30 | 0.25 | 142.5  | 10.20 | 24.3         | 26.15 |
|      |    | $CO_2$          | 30 | 0.25 | 1427 5 | 10.23 | 24.3<br>24.4 | 26.15 |
|      | 4  | $CO_2$          | 30 | 0.25 | 1/25   | 10.31 | 24.4         | 26.20 |
|      |    | $CO_2$          | 20 | 0.25 | 1433   | 10.30 | 24.4         | 20.20 |
|      | 5  | Nono            | 20 | 0.25 | 1440   | 10.40 | 24.4         | 20.20 |
|      |    | Nana            | 20 | 0.23 | 1447.3 | 10.43 | 24.0         | 20.40 |
|      | 1  | inano           | 50 | 0.25 | 1433   | 10.31 | 24.9         | ∠0.80 |

|           |    | Nano            | 30 | 0.25 | 1462.5 | 10.56 | 25   | 26.91 |
|-----------|----|-----------------|----|------|--------|-------|------|-------|
|           |    | Nano            | 20 | 0.25 | 1467.5 | 10.60 | 25.1 | 27.02 |
|           |    | CO <sub>2</sub> | 30 | 0.25 | 1475   | 10.65 | 25.2 | 27.12 |
|           |    | CO <sub>2</sub> | 30 | 0.25 | 1482.5 | 10.71 | 25.4 | 27.34 |
|           | 0  | CO <sub>2</sub> | 30 | 0.25 | 1490   | 10.76 | 25.7 | 27.66 |
|           |    | CO <sub>2</sub> | 20 | 0.25 | 1495   | 10.80 | 25.7 | 27.66 |
|           |    | Nano            | 30 | 0.25 | 1502.5 | 10.85 | 25.8 | 27.77 |
|           | 7  | Nano            | 30 | 0.25 | 1510   | 10.90 | 26   | 27.98 |
|           | /  | Nano            | 30 | 0.25 | 1517.5 | 10.96 | 26.3 | 28.31 |
|           |    | Nano            | 20 | 0.25 | 1522.5 | 10.99 | 26.5 | 28.52 |
|           |    | CO <sub>2</sub> | 30 | 0.25 | 1530   | 11.05 | 26.6 | 28.63 |
|           | 0  | CO <sub>2</sub> | 30 | 0.25 | 1537.5 | 11.10 | 26.8 | 28.85 |
|           | 8  | CO <sub>2</sub> | 30 | 0.25 | 1545   | 11.16 | 26.9 | 28.95 |
|           |    | CO <sub>2</sub> | 20 | 0.25 | 1550   | 11.19 | 26.9 | 28.95 |
|           |    | Nano            | 30 | 0.25 | 1557.5 | 11.25 | 27   | 29.06 |
|           | 0  | Nano            | 30 | 0.25 | 1565   | 11.30 | 27.1 | 29.17 |
|           | 9  | Nano            | 30 | 0.25 | 1572.5 | 11.36 | 27.2 | 29.28 |
|           |    | Nano            | 20 | 0.25 | 1577.5 | 11.39 | 27.3 | 29.38 |
|           |    | CO <sub>2</sub> | 30 | 0.25 | 1585   | 11.45 | 27.3 | 29.38 |
|           | 10 | CO <sub>2</sub> | 30 | 0.25 | 1592.5 | 11.50 | 27.3 | 29.38 |
|           | 10 | CO <sub>2</sub> | 30 | 0.25 | 1600   | 11.55 | 27.4 | 29.49 |
|           |    | CO <sub>2</sub> | 20 | 0.25 | 1605   | 11.59 | 27.4 | 29.49 |
| 1000      |    |                 |    |      | 1825   | 13.18 | 27.4 | 29.49 |
| 1200 psi  |    | <u> </u>        |    |      | 2100   | 15.16 | 28.5 | 30.67 |
| $CO_2$    |    | $CO_2$          |    |      | 2500   | 18.05 | 28.6 | 30.78 |
| injection |    |                 |    |      | 2700   | 19.50 | 28.6 | 30.78 |
|           |    | +               |    |      | 2800   | 20.22 | 29.9 | 32.18 |
|           |    | von             |    |      | 2900   | 20.94 | 31.4 | 33.80 |
|           |    | rsiy            |    |      | 3000   | 21.66 | 32.2 | 34.66 |
| Foam      |    | Spe<br>CO2      |    |      | 3100   | 22.39 | 33   | 35.52 |
|           |    | di<br>(         |    |      | 3200   | 23.11 | 33.8 | 36.38 |
|           |    | anc             |    |      | 3300   | 23.83 | 34.2 | 36.81 |
|           |    | Z               |    |      | 3400   | 24.55 | 34.5 | 37.13 |

## **CURRICULUM VITAE**

## PERSONAL INFORMATION

| : Safran, Saibe Esra  |
|-----------------------|
| : Turkish (TC)        |
| : 13 Oct 1984         |
| : +90 5412531811      |
| : e183746@metu.edu.tr |
|                       |

# EDUCATION

| Degree     | Institution                     | Year of Graduation |
|------------|---------------------------------|--------------------|
| ME         | Stevens Ins.of Tech. Chem. Eng. | 2010               |
| BS         | Ankara Uni. Chemical Eng.       | 2006               |
| High Schoo | l Niksar Danişment Gazi Lisesi  | 2002               |

# WORK EXPERIENCE

| Year         | Place                      |
|--------------|----------------------------|
| 2010-Present | <b>TPAO</b> Reserch Center |
| 2006-2007    | Niksar Su Şişeleme A.Ş.    |
| 2005 Temmuz  | MKE                        |

**Enrollment** Senior Engineer Quality Control Eng. Intern Engineering Student

## FOREIGN LANGUAGES

Advanced English

# PUBLICATIONS

1. Calisgan, H.; Karabakal, U.; Babadagli, T.; Turkmenoglu, A.; **Yildirim, S.E.**; Ercan, C; Gozel, M.E. Wettability alteration potential of caustic to improve waterflooding efficiency: a laboratory scale analysis for the Garzan field, Turkey. 20th IPETGAS Ankara. 2015

2. Conference Poster: " Evaluation of scale type in Batı Raman and Garzan field production wells and comparision of possible scale inhibitor performance" (26. National Chemistry Conference, 2012, Muğla)

# HOBBIES

Sports, Designing, Theater