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ABSTRACT

PREDICTION OF TRANSMEMBRANE REGIONS OF G
PROTEIN-COUPLED RECEPTORS USING MACHINE LEARNING

TECHNIQUES

Çınar, Muazzez Çelebi

M.S., Department of Molecular Biology and Genetics

Supervisor: Assoc. Prof. Dr. Çağdaş Devrim Son

Co-Supervisor
: Prof. Dr. Tolga Can

September 2019, 56 pages

G protein-coupled receptors (GPCRs) are one of the largest and the most significant

membrane receptor families in eukaryotes. They transmit extracellular stimuli to the

inside of the cell by undergoing conformational changes. GPCRs can recognize a

diversity of extracellular ligands including hormones, neurotransmitters, odorants,

photons, and ions. These receptors are associated with a variety of diseases in hu-

mans such as cancer and central nervous system disorders, and can be proclaimed as

one of the most important targets for the pharmaceutical industry. They have seven

transmembrane helices that contain essential regions such as ligand binding sites, ac-

tuator protein (e.g. G protein) binding sites and cholesterol binding sites. There is

a large gap in topology data for membrane proteins due to the experimental limita-

tions resulting from unstability of the membrane. In UniProt, which is a freely avail-

able database of protein sequences and structural and functional information, only 29

GPCRs among the thousands have experimentally solved transmembrane (TM) re-

gion data. The topology information of other membrane proteins is provided using
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the TMHMM prediction tool, which is based on hidden Markov models. However, it

incorrectly predicts the total number of TM regions for 6 of the 29 experimentally de-

termined GPCRs. With this study, we try to develop a GPCR-specific TM prediction

algorithm using machine learning techniques. The algorithm is based on hydropho-

bicity of each amino acid in the protein sequence and the secondary structure. As

hydrophobicity scale, both Moon-Fleming and Kyte-Doolittle hydrophobicity scales

are implemented separately. The secondary structures are derived from the JPred

server. With this algorithm, we obtain more than 85% accuracy with higher true pos-

itive rate. The results obtained could shed light on many other scientific researches

and facilitate structure-based drug discovery with further therapeutic opportunities

for many diseases.

Keywords: GPCR, transmembrane, hydrophobicity, classification
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ÖZ

ODTÜ TEZ ŞABLONU

Çınar, Muazzez Çelebi

Yüksek Lisans, Moleküler Biyoloji ve Genetik Bölümü

Tez Yöneticisi: Doç. Dr. Çağdaş Devrim Son

Ortak Tez Yöneticisi
: Prof. Dr. Tolga Can

Eylül 2019 , 56 sayfa

G proteine-kenetli reseptörler (GPKRler), ökaryotlardaki en büyük ve en önemli memb-

ran reseptörü ailelerinden biridir. Konformasyonel değişikliklerle hücre dışı uyarıcı-

ları hücrenin içine iletirler. GPKRler, hormonlar, nörotransmiterler, odorantlar, foton-

lar ve iyonlar dahil olmak üzere çeşitli hücre dışı ligandları tanıyabilir. Bu reseptör-

ler, kanser ve merkezi sinir sistemi bozuklukları gibi insanlarda çeşitli hastalıklarla

ilişkilendirilir ve farmasötik endüstrisi için en önemli hedeflerden biri olarak kabul

edilirler. Ligand bağlanma, aktüatör proteini (örneğin G proteini) bağlanma ve koles-

terol bağlanma bölgeleri gibi önemli bölgeleri içeren yedi adet transmembran helisi

vardır. Membranın dinamik yapısından kaynaklanan deneysel sınırlamalar nedeniyle,

membran proteinlerinin topoloji bilgisinde eksiklikler vardır. Ücretsiz bir protein ve-

ritabanı olan UniProtta, binlerce GPKR arasından sadece 29 tanesinin deneysel olarak

çözülmüş topoloji verisi mevcuttur. Diğer membran proteinlerinin topoloji bilgileri,

TMHMM tahmin aracı tarafından sağlanır. Ancak, bu 29 reseptör arasından 6 tane-

sinin toplam TM sayısını yanlış tahmin etmiştir. Bu çalışma ile, makine öğrenme

tekniklerini kullanarak GPKRye özgü bir TM tahmin algoritması geliştirmeye çalı-

vii



şıyoruz. Algoritma, protein sekansındaki her bir amino asidin hidrofobisite ve ikin-

cil yapısına dayanmaktadır. Hidrofobisite ölçeği olarak, hem Moon-Fleming hem de

Kyte-Doolittle hidrofobisite ölçekleri ayrı ayrı kullanılmıştır. İkincil yapılar JPred ile

üretilmiştir. Bu algoritma ile %85 gibi yüksek doğruluk oranının yanı sıra yüksek

gerçek pozitif oranı elde edebiliyoruz. Elde edilen sonuçlar birçok başka bilimsel

araştırmaya ışık tutabilir ve birçok hastalık için daha fazla tedavi imkânı içeren yapı

bazlı ilaç keşiflerini kolaylaştırabilir.

Anahtar Kelimeler: GPKR, transmembran, hidrofobisite, sınıflandırma
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CHAPTER 1

INTRODUCTION

1.1 G Protein-Coupled Receptors

Guanine nucleotide-binding protein (G-protein) coupled receptors (GPCRs) represent

a superfamily of cell membrane proteins in eukaryotes [1]. GPCRs are regarded as

the largest receptor family, which are encoded by about 2% of the coding genes, more

than 800 genes, in the human genome [2, 3].

GPCRs function in signal transduction. Upon activation by ligand binding, the recep-

tor transmits the signal through the cell membrane; as a result, synthesis rates of the

secondary messenger molecules inside the cell will be altered to initiate an array of

downstream signaling pathways [4].

Signal transfer is achieved by conformational changes in the receptor, which can

affect the spatial arrangement of the transmembrane regions of the protein [5]. G

protein-coupled receptors do not complex with only heterotrimeric G proteins, but

also increasing studies have shown that beta arrestins 1 and 2 act as multifunctional

partner proteins in signaling [6]. Different signaling pathways are triggered by dis-

tinct actuator types [7].

G protein-coupled receptors can be categorized into odorant/sensory and non-odorant.

As the name suggests, odorant GPCRs play roles in pheromone signaling and senso-

rial activities such as taste, light perception, and olfaction while non-odorant GPCRs

contribute to hemostasis, reproduction, metabolism, neurotransmission, and cardiac

and immune functions [8].

In contrary to those whose functions are characterized, there are some other GPCRs,

functions of which remain unknown. Orphan GPCRs are the GPCR molecules that

have not yet be associated with endogenous ligands [9]. Most of the orphan recep-
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tors act in the brain affecting cognition, mood, movement control, and reward-based

learning [10]. Apart from this, the most of the remaining orphan GPCRs affect vision

processes [11]. Exploring function and the physiological importance of the orphan

GPCRs elucidates which one is associated with which diseases, its exact role and po-

tential or novel therapeutic ways.

GPCRs can recognize a vast diversity of extracellular stimuli and these ligands can be

ions, amines, purines, chemokines, lipids, hormones, neurotransmitters, photons, and

even organic odorants; therefore, they are associated with a broad range of conditions

in the human, including central nervous system disorders such as Parkinson’s dis-

ease, depression, and schizophrenia, inflammatory diseases, metabolic imbalances,

cardiac diseases, monogenic diseases, chronic kidney disease, cancer as well as drug

addiction [3, 12, 13]. Moreover, they play essential roles in normal aging [14]. G

protein-coupled receptors serve as an important target for pharmaceutical industry. It

is estimated that a few GPCRs, as small as only 15% of all the GPCRs in human, are

targeted by 35% of the approved therapeutic drugs [15]. More studies in pharmaceu-

tical area can increase the number of GPCRs in terms of developing novel therapeutic

ways for treatment of various disorders.

GPCR superfamily consists of five families based on sequence and structural similar-

ities; rhodopsin, secretin, glutamate, adhesion, and frizzled/taste [16]. Despite differ-

ent families, G protein-coupled receptors share a common topology, a single polypep-

tide spanning the cell membrane seven times. With regard to this, they have seven

hydrophobic transmembrane domains (TM1-TM7), three intracellular loops (ICL1-

ICL3) and three extracellular loops (ECL1-ECL3) which link membrane-embedded

helices, an intracellular C-terminal tail and an extracellular N-terminus [17, 18]. Part-

ner protein binding site is involved in the intracellular side of transmembrane domain

[19]. The Figure 1.1 shows GPCR structure and how to be located in the cell mem-

brane.

G protein-coupled receptors can present and function in the form of either homod-

imer, heterodimer, higher oligomer or monomer [21, 22]. The various studies assume

that the oligomerization is required for internalization and recycling of the GPCRs

while some others demonstrate that dimerization is necessary for many GPCRs to

appropriately localize in the membrane [23, 24]. It has been established that homo-

or hetero-dimerization of the glutamate family GPCRs is required for proper function
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Figure 1.1: GPCR positioned in the membrane

The figure is taken from [20].

[25]. A number of studies suggest that when constructing heterodimer structures,

GPCR complexes are likely to exhibit different functional properties compared with

monomeric or homo-dimeric states of each receptor, resulting in altered pharmacol-

ogy [26]. In addition to necessity for cellular organization and function, dimerization,

especially heterodimerization, and oligomerization of GPCRs can provide opportu-

nity for novel drug discoveries and therapeutic ways.

The interaction of membrane-embedded proteins is achieved along the axis parallel to

the membrane normal due to the limited rotations in the membrane [27]. Oligomer-

ization of G protein-coupled receptors mostly depends on the interaction of trans-

membrane regions. On the other hand, there are two possible scenarios of GPCR

dimerization, domain-swapped dimerization and contact dimerization. In the domain-

swapped dimerization, a conformational change occurs in each protein structure,

through which the substructure of one protein is replaced by that of the other protein.

In the contact dimerization, the proteins interact with each other through an interface

without any structural changes in the proteins [28]. A variety of experimental studies

indicate that it is the transmembrane regions of GPCRs that considerably take part in

dimerization and/or oligomerization [29, 30]. For example, adenosine (A2AR) and

dopamine (D2R) receptors are known to form heteromer structures [31, 32]. Vari-

ous experimental and computational studies carried out by different groups have in-

dicated potential roles of transmembrane domains of the receptors in the A2A- D2

heteromeric receptor complexes, especially TM 5 of D2R [33, 34, 35]. Furthermore,
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it has been shown that certain molecules which can be used as active ingredient of

certain drugs can bind to GPCR dimers through TM domains [36].

1.1.1 Transmembrane Regions of GPCRs

GPCR oligomerization is considerably achieved through TM interfaces [37]. Trans-

membrane regions of G protein-coupled receptors can take part in the receptor in-

teraction with ligand and membrane as well as dimerization and/or oligomerization.

Ligand binding sites of a vast number of GPCRs are located within their TM he-

lices [38]. A number of studies support that aromatic amino acids with the locations

on these regions mediate ligand binding [39]. On the other hand, the receptors can

contact with the plasma membrane consisting of hydrophobic lipid bilayer through

their hydrophobic transmembrane regions. This interaction type ranges from weak

to strong and contributes to the receptor stability and dynamics [40]. The transmem-

brane helices are oriented accordance with the membrane lipid bilayer thickness; in

return, the membrane can regulate its thickness for TM positioning [41]. Not only

with the lipid bilayer, but GPCRs can also directly interact with cholesterol embed-

ded in lipid bilayer through a group of residues on TM regions and some of them

have a well-defined cholesterol interaction site [42]. Moreover, studies conducted by

various researchers had elucidated that a group of hydrophobic residues on transmem-

brane helices of rhodopsin and secretin GPCRs are included in G protein binding site

[43, 44].

G protein-coupled receptors share a little sequence similarity within the same family

between species [45]. However, GPCRs with the same functions share a conserved

transmembrane topology pattern [46]. The sequence of transmembrane regions of

GPCRs is mostly constituted by hydrophobic amino acids since they are embedded

into the lipid membrane. On the other hand, the transmembrane regions also have

polar and/or charged amino acids which can allow water molecules to permeate in-

side these regions because water is required for biomolecules to properly function

[47]. Apart from interacting with water, polar amino acids within the transmembrane

domains mediate TM-TM interaction (helix-helix contact) as well [39]. Interhelical

interactions, supported by polar residues in TM regions, strongly influence the three-

dimensional structure of the receptor [48].
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Transmembrane regions of G protein-coupled receptors are probably the most sig-

nificant part of the receptor in terms of both structure and function. GPCRs have

a common secondary structure for their transmembrane regions dominated by hy-

drophobic residues in the core; alpha helices [49, 50]. This folding type is promoted

by hydrophobic nature of the membrane in order to substantially exclude water [51].

On the other hand, polar residues can locate within the core of the transmembrane

helices, which are moderately isolated from the membrane lipid [52].

1.2 Hydrophobicity Scales of Amino Acids

Each of all the amino acids has distinct hydrophobicity characteristics due to their

own unique side chain. Different hydrophobicity values for each amino acid can be

determined with different techniques because property of the amino acid is unique to

the environment provided by each of the techniques [53]. Different hydrophobicity

scales for the common twenty amino acids have been collected and published on the

Chimera page of the website of University of California, kdHydrophobicity, wwHy-

drophobicity, hhHydrophobicity, mfHydrophobicity, and ttHydrophobicity [54]. The

transfer free energy of each individual amino acid side chain between water and va-

por, and the tendency of each individual amino acid to locate near the interior or

the exterior of the protein structure have been used for the calculations of hydropa-

thy values of amino acids in kdHydrophobicity (Kyte-Doolittle hydrophobicity) [55].

wwHydrophobicity (Wimley-White hydrophobicity)scale depends on the interaction

energetics of each individual amino acid and lipid membrane, free energy of residue

partitioning into electrically neutral membrane interfaces [56]. The study carried out

by Wimley and White has also contributed to the determination of hhHydrophobicity

scale for which, experimentally determined transfer free energies of each individual

amino acid from water to POPC interface and to n-octanol, have been used separately

[57, 58, 59]. In mfHydrophobicity (Moon-Fleming hydrophobicity), the twenty nat-

ural amino acids have been assigned with a hydrophobicity scale, which regards the

transfer free energy of each amino acid side chain from water into lipid bilayer that

resembles in structure to the cell membrane [60]. For ttHydrophobicity (Transmem-

brane Tendency hydrophobicity) scale, alias TM tendency scale, distribution of each
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amino acid between soluble proteins and transmembrane sequences was examined by

analyzing whole genomic data, and then the results were compared to a number of

hydrophobicity scales [61]. Among all the hydrophobicity scales mentioned above,

in hhHydrophobicity and mfHydrophobicity scales, more negative values represent

the more hydrophobicity [54].

1.3 UniProt: Protein Database

UniProt (the Universal Protein Resource) is a freely accessible collection of datasets

belonging to protein sequences, structural and functional information, and supporting

data for proteins. The main dataset is UniProt Knowledgebase (UniProtKB) com-

posed of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. The former provides re-

viewed, meaning experimantally derived and manually annotated by experts, infor-

mation and the latter involves unreviewed, meaning computationally analyzed and

annotated, information [62, 63].

1.3.1 Prediction of Topology Data of Membrane Proteins in UniProt

Currently, Uniprot employs TMHMM, Memsat, Phobius and the hydrophobic mo-

ment plot method of Eisenberg and coworkers to predict alpha-helical transmembrane

regions of the proteins. UniProt annotates the predicted topology information of a he-

lical membrane protein only if at least two prediction tools’ outputs are consistent

[64].

1.4 Literature Review

There are several computational methodologies in order to predict topology informa-

tion of transmembrane proteins. Some of them utilize machine learning techniques

such as Hidden Markov Model (HMM) or neural networks.

Tusnády et. al. has proposed a method, named Hidden Markov Model for Topology

Prediction (HMMTOP) method, in order to predict the transmembrane topology of

helical membrane proteins, which provides localization of membrane proteins. This
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method is based on the hypothesis that there are different amino acid distributions

on different structural parts of the proteins. It employs Hidden Markov Model. The

model consists of five stages; inside loop, inside helix tail, membrane helix, outside

helix tail and outside loop. They are characterized according to the amino acid distri-

butions. The predictions are also constrained by the length of transmembrane region

according to the width of the cell membrane which is composed of phospholipid bi-

layer. Tusnády et. al. asserted 79% accuracy of HMMTOP [65].

Other methods developed by Pasquier and Hamodrakas, which are PRED-TMR and

PRED-TMR2, are available for prediction of transmembrane segments of the pro-

teins. The algorithms are based on a standard hydrophobicity analysis which is for

detecting potential termini of transmembrane regions. The propensity of each residue

in the protein to be in a transmembrane segment is calculated using a statistical anal-

ysis with the frequency of the residue derived from the known protein data. The

algorithm requires only sequence information. Unlike PRED-TMR, PRED-TMR2

has a pre-processing stage in which protein sequences are classified into membrane

or non-membrane proteins. The classification is achieved by an artificial neural net-

work. They have asserted 100% accuracy of the classification [66, 67].

Another method, named MEMSAT as old version and MEMSAT2 as a new version,

has been proposed by Jones et. al. for prediction of helical membrane protein topol-

ogy. The algorithm is based on dynamic programming. Expectation maximization is

performed for each given model, through which the probability of the model to fit the

known membrane protein data is calculated. Propensity of each amino acid to be in a

helical transmembrane segment is calculated using the known protein database. They

have established a 86-87% accuracy for G-protein coupled receptors by correctly pre-

dicting 13 out of 15 GPCRs [68].

Hirokawa et. al. have developed a method, named SOSUI, for prediction of trans-

membrane helices of membrane proteins and for discrimination of membrane and

soluble proteins. The algorithm is based on hydrophobicity and uses Kyte-Doolittle

hydropathy scale for calculations. It takes into account the average hydrophobicity

of helix segments and the index of polar residues in those segments. They assume

that amphiphilic residues are required for stabilization of the transmembrane regions.

They have asserted more than 99% accuracy for classification of the proteins as mem-

brane or soluble, and 97% accuracy for transmembrane helix prediction [69].
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Bernhofer et. al. have proposed another method, named TMSEG, for prediction

of transmembrane helices and and for discrimination of transmembrane helices and

other proteins. This method combines evolutionary and empirical information of the

proteins and machine learning algorithms which are Random Forest and neural net-

work. The machine learning algorithms constitutes sliding windows of 19 consecutive

residues from the protein sequences and predicts the central residue of each window

to be either TM residue or non-TM residue or signal peptide residue. The formed

windows are undergone multiple sequence alignment to obtain homology-based in-

formation. Empirical information used in the work involves average hydrophobic-

ity value (i.e. Kyte-Doolittle hydrophobicity) of each window, and the percentages

of positively charged, hydrophobic and polar residues in each window. They have

claimed to have around 65% accuracy [70].

Another method, named TMpred, proposed by Hofmann and Stoffel, is used for pre-

diction of transmembrane regions of the proteins and their orientation. The algorithm

is based on sequence similarity and on grouping of the protein sequences according

to the similarity. Similarity is calculated using statistical analysis with the known

transmembrane proteins building weight-matrices for scoring. The method can be

performed for not only cell membrane proteins, but also proteins of organelle mem-

branes [71].

Kall et. al. have proposed the method, named Phobius, for prediction of transmem-

brane topology and signal peptide. One of the aims is the ability of the algorithm to

discriminate hydrophobic transmembrane regions and hydrophobic signal peptides.

The method is based on a Hidden Markov Model. The model is made up of three

compartments; helix core, helix cytoplasmic end, and helix non-cytoplasmic end with

different amino acid distributions. It takes into account helix length. The predictions

are achieved by comparing amino acid distribution of the query sequence with those

of the known transmembrane helices [72].

Sonnhammer et. al. have proposed another method, named TMHMM, for prediction

of transmembrane protein topology. It is based on a Hidden Markov Model (HMM).

The model is composed of the seven states; one for the helix core, two for caps on

either side, one for loop on the cytoplasmic side, two for short and long loops on the

non-cytoplasmic side, and one for globular domains in the middle of each loop, which

have different amino acid distributions. The method combines HMM with TM hy-
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Table 1.1: Available tools for prediction of topology information of the proteins

Tool URL

HMMTOP http://www.enzim.hu/hmmtop/

PRED-TMR http://athina.biol.uoa.gr/PRED-TMR/

MEMSAT http://bioinf.cs.ucl.ac.uk/software_downloads/memsat/

SOSUI http://harrier.nagahama-i-bio.ac.jp/sosui/

TMSEG https://www.predictprotein.org/

TMpred https://embnet.vital-it.ch/software/TMPRED_form.html

Phobius http://phobius.sbc.su.se/

TMHMM http://www.cbs.dtu.dk/services/TMHMM/

drophobicity, expected charged residues on TM helix and helix length. The method

is trained with exact transmembrane helix boundaries. They have asserted 97-98%

accuracy for the transmembrane helices [73, 74, 75].

The table 1.1 offers currently available tools which can be performed for prediction

of helical transmembrane region of the proteins, and their urls.

1.5 Proposed Method

Within the study, the aim is the prediction of transmembrane alpha helices of G

protein-coupled receptors.The proposed method uses hydrophobicity and secondary

structures information about GPCRs. The reason for focusing on hydrophobicity is

hydrophobic nature of the membrane; hence, naturally hydrophobic characteristics

of the membrane proteins embedded in it [76]. Because mfHydrophobicity and kd-

Hydrophobicity scales are graphically shown to be ones the most compatible with

the actual transmembrane regions of the GPCRs with the known topology, they are

used for estimation of each individual amino acid hydrophobicity, separately. For

secondary structures of each protein, JPred is performed. The method is trained with

the GPCRs with experimentally solved topology data derived from Uniprot. Its per-

formance is evaluated both using cross validation and test data. Although the scientist
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group developing TMHMM assert that its accuracy over the transmembrane helices

is 97-98%, it fails to predict TM numbers of 6 proteins when we try it over the 29

GPCRs with known topology data, which causes low accuracy and low true positive

rate [73]. With this study, we demonstrate that we can obtain more than 85% accuracy

with higher true positive rate.

1.5.1 The Objective of the Proposed Method

The proposed method was developed for the prediction of transmembrane alpha he-

lices of G protein-coupled receptors. Correctly predicting the transmembrane regions

of the GPCRs can considerably contribute to the modelling the whole structure of

those proteins. Moreover, the results can be utilized for studies on drug development

and drug-protein interactions; hence, novel therapeutic ways. The method outputs

can be used for protein-protein and protein-drug docking studies.

1.6 Contributions and Novelties

Our contributions with this study can be summarized as follows:

• Effects of hydrophobicity and secondary structures on determination of trans-

membrane regions of GPCRs were assessed.

• The distinct hydrophobicity scales in the literature were compared.

• The performances of the two machine learning algorithms, SMO and Random

Forest, were compared and evaluated.

• An approach for prediction of GPCR transmembrane helices was developed.

1.7 The Outline of the Thesis

The thesis proceeds as follows. Chapter 1 gives general information about G protein-

coupled receptors, and their characteristics. In the Chapter 2, the proposed method
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was explained in detail. Chapter 3 involves the results with the discussions. The last

chapter adresses conclusion and potential future works.
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CHAPTER 2

MATERIALS AND METHOD

2.1 Background

In UniProt, the topology information of the unknown membrane proteins is supplied

by the prediction tools. UniProt employs a number of prediction tools involving

TMHMM, Memsat, Phobius and the hydrophobic moment plot method of Eisenberg

and coworkers for prediction of helical transmembrane regions [64]. It was stated that

TMHMM tool has a high accuracy, above 90% [73].

UniProt involves records for about 219000 proteins which are classified as G-protein-

coupled receptor. However, only 29 of them have experimentally solved topology

information. When running TMHMM with those 29 known GPCRs, we observed

that it failed to predict the total number of transmembrane regions, which is normally

expected to be 7 for GPCRs. The TMHMM tool gave 6 as the prediction output for 5

out of the known GPCRs while it determined to be 8 for one GPCR.

In this thesis study, the aim is to develop a more efficient algorithm for GPCR-specific

TM prediction. We focused on the hydrophobicity of primary sequences and the sec-

ondary structures since it is known that alpha helical membrane proteins such as G

protein-coupled receptors have long hydrophobic transmembrane helices [77].

The workflow of the study can be generalized as in the Figure 2.1.

2.2 Data Selection

To develop a prediction algorithm, a dataset is required as a reference. In this thesis

study, the dataset was built with the G-protein-coupled receptors with experimentally

13



Figure 2.1: The workflow

solved topology information. They were used to train the proposed prediction algo-

rithm. The proteins were selected from the UniProt database with the filters shown

below:

"protein family: "g protein-coupled receptor" AND

subcellular location > topological domain evidence: "experimental" AND

reviewed: yes"

The 29 different GPCRs retrieved by the query above are shown in Table 2.1.

2.3 Smoothing the Data Set

At the beginning of the study, we had to determine which hydrophobicity scale to

be used in the algorithm for further analyses. Therefore, we constructed a diagram

for each known GPCR and examined the compatibility of the hydrophobicity scales

with the actual hydrophobic transmembrane regions by plotting. Each residue in the

protein sequence was replaced by the corresponding hydrophobicity constant so that a
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Table 2.1: GPCRs with experimentally solved topology information

Entry Organism Protein names

Q96PE1 Homo sapiens (Human) Adhesion G protein-coupled receptor A2 (G-protein coupled receptor 124) (Tumor endothelial marker 5)

P29274 Homo sapiens (Human) Adenosine receptor A2a

P07700 Meleagris gallopavo (Wild turkey) Beta-1 adrenergic receptor (Beta-1 adrenoreceptor) (Beta-1 adrenoceptor) (Beta-T)

P51686 Homo sapiens (Human) C-C chemokine receptor type 9 (C-C CKR-9) (CC-CKR-9) (CCR-9) (G-protein coupled receptor 28) (GPR-9-6) (CD antigen CDw199)

P08483 Rattus norvegicus (Rat) Muscarinic acetylcholine receptor M3

P21554 Homo sapiens (Human) Cannabinoid receptor 1 (CB-R) (CB1) (CANN6)

P41595 Homo sapiens (Human) 5-hydroxytryptamine receptor 2B (5-HT-2B) (5-HT2B) (Serotonin receptor 2B)

P32300 Mus musculus (Mouse) Delta-type opioid receptor (D-OR-1) (DOR-1) (K56) (MSL-2)

P42866 Mus musculus (Mouse) Mu-type opioid receptor (M-OR-1) (MOR-1)

P41146 Homo sapiens (Human) Nociceptin receptor (Kappa-type 3 opioid receptor) (KOR-3) (Orphanin FQ receptor)

P61073 Homo sapiens (Human) C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (FB22) (Fusin) (HM89) (LCR1) (Leukocyte-derived seven transmembrane domain receptor) (LESTR) (Lipopolysaccharide-associated protein 3) (LAP-3) (LPS-associated protein 3) (NPYRL) (Stromal cell-derived factor 1 receptor) (SDF-1 receptor) (CD antigen CD184)

P20789 Rattus norvegicus (Rat) Neurotensin receptor type 1 (NT-R-1) (NTR1) (High-affinity levocabastine-insensitive neurotensin receptor) (NTRH)

P21453 Homo sapiens (Human) Sphingosine 1-phosphate receptor 1 (S1P receptor 1) (S1P1) (Endothelial differentiation G-protein coupled receptor 1) (Sphingosine 1-phosphate receptor Edg-1) (S1P receptor Edg-1) (CD antigen CD363)

P31356 Todarodes pacificus (Japanese flying squid) (Ommastrephes pacificus) Rhodopsin

O43614 Homo sapiens (Human) Orexin receptor type 2 (Ox-2-R) (Ox2-R) (Ox2R) (Hypocretin receptor type 2)

P08100 Homo sapiens (Human) Rhodopsin (Opsin-2)

P43220 Homo sapiens (Human) Glucagon-like peptide 1 receptor (GLP-1 receptor) (GLP-1-R) (GLP-1R)

P55085 Homo sapiens (Human) Proteinase-activated receptor 2 (PAR-2) (Coagulation factor II receptor-like 1) (G-protein coupled receptor 11) (Thrombin receptor-like 1) [Cleaved into: Proteinase-activated receptor 2, alternate cleaved 1; Proteinase-activated receptor 2, alternate cleaved 2]

P47900 Homo sapiens (Human) P2Y purinoceptor 1 (P2Y1) (ADP receptor) (Purinergic receptor)

P02699 Bos taurus (Bovine) Rhodopsin

Q13255 Homo sapiens (Human) Metabotropic glutamate receptor 1 (mGluR1)

P41594 Homo sapiens (Human) Metabotropic glutamate receptor 5 (mGluR5)

O43613 Homo sapiens (Human) Orexin receptor type 1 (Ox-1-R) (Ox1-R) (Ox1R) (Hypocretin receptor type 1)

P21730 Homo sapiens (Human) C5a anaphylatoxin chemotactic receptor 1 (C5a anaphylatoxin chemotactic receptor) (C5a-R) (C5aR) (CD antigen CD88)

P35462 Homo sapiens (Human) D(3) dopamine receptor (Dopamine D3 receptor)

P21917 Homo sapiens (Human) D(4) dopamine receptor (D(2C) dopamine receptor) (Dopamine D4 receptor)

O14842 Homo sapiens (Human) Free fatty acid receptor 1 (G-protein coupled receptor 40)

P47871 Homo sapiens (Human) Glucagon receptor (GL-R)

P35367 Homo sapiens (Human) Histamine H1 receptor (H1R) (HH1R)
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numerical array was obtained for each protein sequence. Due to 5 different hydropho-

bicity scales, we generated 5 separate numerical arrays for each protein sequence. In

the diagram, x-axis refers residue number in the protein sequence, y-axis refers the

hydrophobicity constant of each residue. However, since the output was too noisy to

infer any biological result, smoothing method was implemented.

Smoothing is a method decreasing sampling error by reduction in noisy data and

variation; moreover, sliding window one residue by one residue allows to evaluate

all possible arrays of given size in the sequence [78]. The hydrophobicity data was

smoothed by assigning the sum of the hydrophobicity values in a sliding window of

size k to the amino acid centered in that window. Smoothing method is schematically

represented in the Figure 2.2.

Figure 2.2: Smoothing method

For smoothing, we defined the window size as 3-residue, 5-residue, 7-residue, 15-

residue, and 20-residue and found that a window size of k = 7 worked best in our

study.

On each diagram, individual hydrophobicity scale, the actual TM regions derived

from UniProt, and the TM regions predicted by TMHMM were depicted along each

sequence. Therefore, such issues as which parts of the protein sequence are hydropho-

bic, how the actual TMs and the predicted TMs are compatible with each other, how

the hydrophobicity scales are consistent with the hydrophobic TM regions and which

hydrophobicity scale is the most appropriate for further analysis could be observed.

The results indicated that mfHydrophobiciy and kdHydrophobicity are the most com-

patible scales with the actual hydrophobic TM regions.
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2.4 Data Preparation

A specific group of features must be identified for training a machine learning al-

gorithm. Hydrophobicity and secondary structure were determined as features in this

thesis study because it is known that G protein-coupled receptors have long hydropho-

bic transmembrane helices [77].

FASTA format of each protein sequence was retrieved from UniProtKB. We assigned

the corresponding hydrophobicity constant to each individual amino acid along the

sequence; therefore, each residue in the sequence was represented by an associated

numerical value. A numerical array was formed instead of protein sequence. Using

both kdHydrophobicity and mfHydrophobicity scales separately, we could obtain two

separate numerical arrays for each protein sequence.

The secondary structures of the proteins were formed using the JPred prediction

server, because it has a high accuracy with 82% [79]. In the JPred prediction re-

sults, each residue building an alpha helix structure is depicted by ’H’, those involved

in extended structures are symbolized by ’E’, and all remaining residues are denoted

by dashed lines, ’-’ [80, 81]. We marked each residue,which is observed to be a com-

ponent of helix regions, as ’1’ and the remaining part as multiple ’0’s [82]. Therefore,

a binary array was obtained with the same size of the protein sequence.

We tried to learn machine learning algorithms with the quantitative data.

The data preparation is schematically represented in the Figure 2.3. In the figure, a

feature vector which was constructed of 17-residue sliding window is exemplified.

2.5 Baseline Method

Before running the proposed method with the data set, a baseline method was per-

formed. A threshold was set to the hydrophobicity values which were smoothed.

In our study, baseline method is the most basic method taking into account only hy-

drophobicity. TM start points were detected, whose hydrophobicity values were value

of the threshold. The results of the proposed method were compared with the output

of the baseline method.
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Figure 2.3: The data preparation

2.6 Method

A sliding window approach was used because sliding window one residue by one

residue allows to evaluate all possible arrays of given size in the sequence [78]. Given

a specific size of a window as an input (i.e., as a parameter), the window was moved

across the whole protein sequence one residue by one residue. Thus, (N − k + 1)

windows can be obtained if the sequence has N residues and the subsequence, or

window, size is k.

We used three different window sizes of 11-residue, 17-residue, and 21-residue in

order to be able to compare them and to select the best size for further analysis. For

each protein in the data set, we performed the sliding window method along the re-

lated numerical arrays, one of which was composed of hydrophobicity constants and

the other of which was the associated binary array representing the secondary struc-

ture. We implemented each of the three sliding windows with different sizes for each

of the two hydrophobicity scales. We classified samples whose center residue was

the actual starting point of the GPCR transmembrane region as "True" and all other

samples as "False". It was expected that there are totally 203 "True"s in each data set

due to existence of the 29 GPCRs with 7 TM regions.

We repeated the procedure for TM end points with optimal features involving 17-

residue windows and mfHhydrophobicity to create a separate database.
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The training sets of TM start points built using 11-residue windows were composed of

13499 samples, i.e., subsequences, 203 of which were True as expected. The training

sets built using 17-residue windows were composed of 13325 samples, 202 of which

were True. The training sets constructed using 21-residue windows were composed

of 13209 samples, 201 of which were True.

The number of "True" samples was less than the expected in the cases of 17-residue

windows and 21-residue windows, because the indexes of some TM start residues did

not match those of center residues of the windows due to length of the window sizes;

thus, they could not be involved in any window center. Different from TM start data

sets, the number of minority classes in TM end data sets was as expected, 203.

Taking into account any potential experimental error rates, we created additional

training sets by classifying the subsequences whose center residue was either the ac-

tual TM start point or the next residues on the both sides of the actual TM start point

as "True" and the others as "False". In this scenario, 21 True samples for each protein

was expected. In order to obtain more balanced classes, another training set was built.

We classified subsequences whose centered residue is either the actual starting point

of TM or one of the two residues next to the actual start residue of TM as "True" on

both sides and the others as "False". In this scenario, 35 True samples for each protein

was expected. We performed this procedure only on TM start data sets.

The training sets consisted of "True" and "False" classes. The machine learning algo-

rithms, SMO and Random Forest, were run with the training data sets. The confusion

matrices were created.

In the study, we generated 18 different training sets with different feature vectors for

TM start point prediction and 6 different training sets with different feature vectors

for TM end point prediction.The training sets are described in the Table 2.2 and the

Table 2.3.

2.6.1 Cost Matrix

In this thesis study, totally 24 distinct training sets were created, all of which had a

"True" class with much fewer samples than the "False" class since sliding window

method generated thousands of samples but only a few of them could be classified as
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Table 2.2: The training sets generated for the TMstart prediction algorithms

Training set Hydropathy Scale Secondary Structure Window Size True Class Size

Training set 1 mf jPred 11 203

Training set 2 mf jPred 11 609

Training set 3 mf jPred 11 1015

Training set 4 kd jPred 11 203

Training set 5 kd jPred 11 609

Training set 6 kd jPred 11 1015

Training set 7 mf jPred 17 202

Training set 8 mf jPred 17 606

Training set 9 mf jPred 17 1010

Training set 10 kd jPred 17 202

Training set 11 kd jPred 17 606

Training set 12 kd jPred 17 1010

Training set 13 mf jPred 21 201

Training set 14 mf jPred 21 603

Training set 15 mf jPred 21 1006

Training set 16 kd jPred 21 201

Training set 17 kd jPred 21 603

Training set 18 kd jPred 21 1006

"True". A classifier is biased toward the minority class [83]. In the literature, there

are two ways to compensate imbalanced classification; resampling and cost-sensitive

approaches. In our study, due to the inadequate amount of data, we preferred to use

a cost-sensitive technique to manage highly imbalanced data [84]. Most standard

classification algorithms have poor performance in detection of the minority class.

Cost-sensitive learning assigns different weights to each data point to minimize the

failure in prediction [85]. In this thesis study, the majority class was the "False"

class and the algorithm might tend to predict any given instance as False. Therefore,

we introduced a penalty for prevention of any misclassification by using the cost

matrix. We determined the penalty values according to rate of the sizes of majority

and minority classes. For example, in the data set with 1 True per TM, we described

the penalty as 65 for misclassification of any instance in the actual "True" class while
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Table 2.3: The training sets generated for the TMend prediction algorithms

Training set Hydropathy Scale Secondary Structure Window Size True Class Size

Training set 1 mf jPred 11 203

Training set 2 mf jPred 17 203

Training set 3 mf jPred 21 203

Training set 4 kd jPred 11 203

Training set 5 kd jPred 17 203

Training set 6 kd jPred 21 203

we determined the penalty as 1 for misclassification of any instance in the actual

"False" class since the size of the actual "False" class is 65-times of the actual "True"

class.

2.7 WEKA

Machine learning is a computation type that can promptly characterize patterns in

given data. WEKA is an open-source data-mining software tool that includes a vast

number of machine learning algorithms for classification, regression, clustering, and

association mining problems [86].

2.7.1 Classification Methods

Classification strategies can be described as solving the given problem by training

themselves with a training data set, predicting the test set using the solution and as-

signing it to one of the predefined classes. Logistic regression, SVM, Random Forest

and Decision Tree can be given as examples of the most popular classification meth-

ods [87].
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Table 2.4: The cost matrices

(a) The cost matrix for 1 True per TM

Actual TMs

TM non-TM

Predicted TMs
TM 0 1

non-TM 65 0

(b) The cost matrix for 3 True per TM

Actual TMs

TM non-TM

Predicted TMs
TM 0 1

non-TM 21 0

(c) The cost matrix for 5 True per TM

Actual TMs

TM non-TM

Predicted TMs
TM 0 1

non-TM 12 0

2.7.1.1 SMO and Random Forest as Classification Approaches

SMO (Sequential Minimal Optimization) is a SVM (Support Vector Machine), which

is mostly performed for the problems with two classes [88, 89]. SVM creates the

solution with a weighted linear combination of the samples in the training set [90].

Therefore, it can recognize irrelevant attributes and increase the final accuracy of the

algorithm [89]. SMO can deal with the Quadratic Programming (QP) problem, which

is the minimization of a quadratic functional subject to linear constraints, arising dur-

ing training [91]. SMO partitions the large QP problem into the smaller sub-problems

and solves the smallest one at every step [92, 93]. On the other hand, Random Forest

is another classification algorithm which consists of many weakly-correlated decision
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trees. Each individual tree predicts, or votes, the possible classification of a given in-

put, and then the final result is identified as the correct classification [94, 95]. Random

Forest is capable of balancing error in unbalanced data sets [96].

2.7.2 Evaluation of Algorithm Performance

Cross validation is an evaluation method applied for assessing performance of a clas-

sifier. For N -fold cross validation, the whole data is split into N components. The

classifier is trained with (N − 1) parts and the left one part is used as test set to eval-

uate the trained classifier. This is repeated N times unless any data the in test set is

remained as unpredicted [97]. In this thesis study, 10-fold cross validation was an

evaluation method. We permitted the Weka to randomly split the training set. Apart

from cross validation, the other method was using test set. We divided the data set

into training and test sets. For each time, the test set was made up of the subsequences

of one of the GPCR which was incorrectly predicted by TMHMM. We evaluated the

resultant confusion matrices.

The structure of a confusion matrix is illustrated in the Table 2.5 [98].

Table 2.5: The representation of a confusion matrix

Actual classes

True False

Predicted classes
True TP FP

False FN TN

2.7.2.1 Parameters for Evaluating Algorithm Performance

In order to assess the model performance, there are a number of parameters involving

true positive, true negative, false positive, false negative, and accuracy [99, 98].

• True positive (TP) is the outcome which is the real positive and predicted as

positive.
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• True negative (TN) is the outcome which is the real negative and predicted as

negative.

• False positive (FP) is the outcome which is the real negative but predicted as

positive.

• False negative (FN) is the outcome which is the real positive but predicted as

negative.

• Accuracy is the rate of total true positive and true negative instances to total

sample number.

• Recall, true positive rate (TPR), or sensitivity, is the proportion of total true

positives to sum of total true positives and total false negatives.

• False positive rate (FPR) is the proportion of total false positives to sum of total

true negatives and total false positives.

• MCC (Matthews correlation coefficient) is the correlation between actual and

predicted classifications and ranges from -1 to +1. The worst value is 1 and the

best value is +1. The Equation 21 shows how to calculate MCC.

MCC =
(TP ∗TN)− (FP ∗ FN)

√

(TP+ FP) ∗ (FN+ FP) ∗ (TN+ FP) ∗ (FN+TN)
(21)

In this thesis study, a true positive could be identified as the sample, or subsequence,

whose centered residue was an actual TM start point and the algorithm also predicted

it as actual TM start point. A true negative could be identified as the sample, or sub-

sequence, whose centered residue was not an actual TM start point and the algorithm

also predicted it as non-TM start point. A false positive could be identified as the

sample, or subsequence, whose centered residue was not an actual TM start point but

the algorithm also predicted it as TM start point. A false negative could be identified

as the sample, or subsequence, whose centered residue was an actual TM start point

but the algorithm also predicted it as non-TM start point.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Data

For the this thesis study, we identified the GPCRs with the experimentally solved

topology information, totally 29 GPCRs. We used these receptors as the dataset to

train the machine learning algorithms. Because the aim of the study is to develop

a more efficient algorithm than TMHMM to predict the topology information for

GPCRs, we run TMHMM prediction tool with these known GPCRs to observe its

efficiency. Although a GPCR has naturally 7 transmembrane regions, TMHMM gave

6 as the prediction output for 5 out of them while it determined to be 8 for one of

these GPCRs.

3.2 Smoothing Data

We constructed graphics for the known GPCRs showing the hydrophobicity scales,

the TM regions as output of TMHMM and the actual TM regions to be able to

clearly observe which hydrophobicity scales are consistent with the actual hydropho-

bic TM regions, and to compare the actual TM areas and the predicted TM areas

by TMHMM. Each residue in the protein sequence was replaced by the hydropho-

bicity value of each scale and the graphics consists of these one residue by one

residue values. The graphics can be found in https://github.com/mzzclb/

GPCR-TM-Prediction/issues/6. However, they were too noisy to infer any

biological result. That is why to use smoothing method. Smoothing is a method de-

creasing sampling error by reduction in noisy data and variation [78]. To find the most
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suitable and informative one, we tried different window sizes; 3-residue, 5-residue,

7-residue, 15-residue, and 20-residue, and the graphics were constructed using these

window sizes for smoothing and the graphics for all of the proteins are available in

the following links:

• https://github.com/mzzclb/GPCR-TM-Prediction/issues/2

• https://github.com/mzzclb/GPCR-TM-Prediction/issues/3

• https://github.com/mzzclb/GPCR-TM-Prediction/issues/4

• https://github.com/mzzclb/GPCR-TM-Prediction/issues/5

The graphics can be examined in detail and the window sizes can be compared. 7-

residue was the most informative graphics so we used the graphics with 7-residue

windows. The sliding windows whose sizes are less than 7 lead to noisy data and

variation, and those whose sizes are larger than 7 may result in lack of data observed

in the graphics.

3.2.1 Hydrophobicity Scales

Numerical values of the hydrophobicity scales which are kdHydrophobicity, mfHy-

drophobicity, ttHydrophobicity, wwHydrophobicity, and hhHydrophobicity are given

in the Table A.1 in the Appendix A.

3.3 Mispredictions of TMHMM

The proteins with the experimentally solved topology information were displayed as

graphical representations. Each individual graphic includes information of actual TM

regions derived from UniProt, TMHMM prediction results, helix regions as secondary

structures and the hydrophobicity scales along each protein sequence. On the other

hand, the graphics of the GPCRs whose total TM number is incorrectly predicted

contain also the results of the proposed algorithms. TMHMM incorrectly predicted

the total TM number of 6 GPCRs.
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There are several reasons for incorrect identification of the prediction tools, stated in

literature. Firstly, the last TM regions of GPCRs are relatively less hydrophobic than

the other TM domains; thus, the prediction tools may fail to detect the last TM [100].

On the other hand, according to the study mentioned in [101], presence of signal

peptides considerably affects TM prediction, and it was observed that TMHMM ac-

curacy increased after removal of signal peptide sequence from the protein sequence

in that study. Signal peptides are short hydrophobic sequences of amino acids located

at N-terminus of the protein, which play role in trafficking of the protein to its des-

tination, cell membrane for GPCRs, and is cleaved after localization [102]. Besides,

some GPCR molecules have an eighth amphipathic helix located at the C-terminus.

They have a hydrophobic core. The functional role of these short helices is recogni-

tion of membrane surface, stabilization and orientation [103]. Presence of this helix

may misguide the prediction tools. It is stated that most of the TM prediction tools,

including TMHMM, tend to incorrectly identify hydrophobic residue clusters in pro-

tein sequences as helical transmembrane segments, that can increase false positive

rate [104]. After all, another reason for the failure of TMHMM predictions may be

that TMHMM has an inclination to describe TM length as 21 residues [77]. There-

fore, it can fail to identify transmembrane regions with larger lengths.

3.4 Baseline Method

A threshold was set as a hydrophobicity value for a residue to be a TM start point.

This threshold was applied in the smoothed data. In this thesis study, the baseline

method takes into account only hydrophobicity. We tried to determine how hydropho-

bicity alone has effect on determination of transmembrane regions; thus, to determine

how many actual transmembrane start point has the threshold as the hydrophobicity

value.

To determine the best threshold, we tried different threshold values. The threshold

and their evaluation parameters can be observed in the Table 3.1. Both mfHydropho-

bicity and kdHydrophobicity were utilized separately. For mfHydrophobicity, -4 was

the threshold providing the highest MCC, 0.042 while for kdHydrophobicity, 5 was
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Table 3.1: Evaluation results of the baseline

Hydrophobicity Threshold MCC TP rate Accuracy

kd 5 0.043 0.089 95.8%

kd 6 0.000 0.035 95.2%

kd 7 0.008 0.039 95.7%

kd 8 0.039 0.089 95.5%

kd 9 0.033 0.069 96.1%

kd 10 0.009 0.0394 95.9%

mf -5 0.005 0.035 95.8%

mf -4 0.042 0.044 94.9%

mf -3 0.032 0.089 94.9%

mf 3 0.007 0.064 93.6%

mf 4 0.001 0.049 93.9%

mf 5 0.011 0.079 93.0%

the threshold providing the highest MCC, 0.043. MCC was required to evaluate the

thresholds because the data was highly imbalanced.

Generally, accuracy was high. The reason could be high true negatives.

3.5 Parameters and Algorithms for TM Start Residue

In order to develop an efficient prediction algorithm, a number of parameters was

used. Firstly, mfHydrophobicity and kdHydrophobicity were determined to be the

most significant as the hydrophobicity scale after examining all of the graphics of

the known GPCRs, and it was decided to use them separately. The second parameter

was optimal length of subsequences creating feature vectors. We used 11-residue, 17-

residue, and 21-residue, separately, and the most effective one to find a pattern was

17-residue. Determination of the size is critical for the algorithm performance. Al-

though small window accelerates the algorithm, accuracy performance may decreases

due to lack of data; on the contrary, large window may increase latency [105]. In gen-

eral, TP rate was the highest for 11-residue of window size due to lack of data and
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21-residue of window size led noisy data for a pattern. A feature vector for the optimal

method is composed of 17-residue of window from numerical hydrophobicity array

and 17-residue of window from binary secondary structure array. After determination

of optimal feature vector size, it was noticed that any experimental error could result

in miscalculation of TM start point. By taking into account any errors, we decided to

identify the residues next to the TM start point as "True", that means they also can be

TM start point. The next residues on the both sides and the next two residues on the

both sides were used separately. We run the machine learning algorithms, SMO and

Random Forest, with the models derived from the different combinations of these pa-

rameters separately. In order to evaluate the algorithms, 10-fold cross validation was

performed, in which the training sets were randomly split. The Tables 3.4, 3.5 and

3.6 show the cross-validation results for each model with cost-sensitive approach.

Due to highly imbalanced data and minority of "True" class, MCC is one of the most

important evaluation parameters [106]. The machine learning algorithms have a ten-

dency to predict any given instance to be "False" since they aim to minimize the

overall error rate without paying any special attention to the minority class [107].

Therefore, true positive rate might be more important than total accuracy for our

study. Another performance metric is false positive rate. How many of non-TM

residues were predicted as TM start point is important. Penalty should not negatively

affect decision making mechanism of the algorithm. However, in this study, highly

imbalanced data forced us to take into consideration only MCC.

Most standard classification algorithms have a poor performance in detection of the

minority class. Cost-sensitive learning assigns different weights to each data point

to minimize the failure in prediction [85]. In this thesis study, the majority class is

the "False" class and the algorithm may tend to predict any given instance as False.

Therefore, we introduced a penalty for prevention of any misclassification by using

the cost matrix. The effect of cost-sensitive approach on the proposed algorithm can

be observed in Table 3.2. The cost-sensitive approach was implemented to the model

having mfHydrophobicity, 17-residue as window size and 1 "True" for each TM start

residue. Without any penalty for misclassification, the algorithm tended to predict

any given instance as "False" and none of given samples as "True"; thus, the algo-

rithm without cost-sensitive approach has 0 TP rate despite of higher accuracy than

that with cost-sensitive approach. It can be inferred that cost-sensitive approach is a
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Table 3.2: Effect of cost-sensitive approach

With Cost-sensitive Without Cost-sensitive

TPR 0.891 0.000

Accuracy 86.57% 98.48%

significant method for handling with imbalanced data.

We tried to evaluate TMHMM results performing the proposed method. We used the

optimal model having mfHydrophobicity, 17-residue as window size and 1 True for

each TM start residue with cost-sensitive approach. The resultant confusion matrix

is given in the Table 3.3. According to the outcomes, the reason for very low true

positive rates despite of the high accuracy can be clarified with the large number of

true negative instances. TMHMM also has a tendency to identify a given instance as

in the majority, "False" class.

When observing the Table 3.4, a number of inferences can be made. Several stud-

ies claim that Random Forest has a high prediction performance [108, 109]. The

Figure 3.1 shows Matthews correlation coefficients of the Random Forest and SMO

performed with the models. MCC is a significant parameter to evaluate performance

of a prediction algorithm trained with a imbalanced data and our data set is highly

imbalanced. In general, Random Forest had a higher MCC value, which means that

Random Forest can more efficiently handle imbalanced data. The reason why false

positive rate was higher in SMO can be that giving penalty for misclassification of

Table 3.3: Evaluation of TMHMM results with our algorithm

Actual TMs

TM non-TM

Predicted TMs
TM 48 149

non-TM 154 12974

TP rate = 0.238, accuracy = 97.7%, MCC = 0.231
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Figure 3.1: MCC of SMO and Random Forest

minority class negatively affected the predictions of the algorithm. SMO avoided to

identify the given sample as "False". MCC increased as minority class size increases,

and Random Forest had a higher MCC for all the models. This can be explained with

that Random Forest, comprised of many decision trees, had efficient tree classifiers in

this study and good classification results could be obtained [109]. However, because

it is unknown that any mistake during experimental procedures of hydrophobicity

scales, identifying the next residues as "True" may misguide the algorithm.

When comparing the Table 3.4 with the Table 3.5, it can be proposed that mfHy-

drophobicity could better reflect the natural hydrophobic environment of the proteins

embedded in the membrane. The experimental procedure for calculation of mfHy-

drophobicity took into account both hydrophilic and hydrophobic environment and

this scale was calculated with transient of amino acid between water and lipid bilayer

which can mimic the cell membrane.

The results of Random Forest are more practical and promising in our study.

TM end points were used as the other training set for learning algorithms. In the

results, it can be observed that both SMO and Random Forest have less accuracy

and true positive rates for TM end residues. The transmembrane start point can be

characterized as the residue where the protein sequence enters the cell membrane

from the extracellular environment and the end point of the transmembrane area is

the residue where the protein sequence passes from the cell membrane inside the cell.
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Table 3.4: Cross-validation results of the models with mf for TM starts

TPR FPR Accuracy MCC

mf+11-residue+1True+SMO 0.877 0.150 85.08% 0.241

mf+11-residue+1True+RF 0.192 0.003 98.46% 0.294

mf+17-residue+1True+SMO 0.891 0.135 86.57% 0.262

mf+17-residue+1True+RF 0.213 0.004 98.46% 0.314

mf+21-residue+1True+SMO 0.881 0.132 86.79% 0.261

mf+21-residue+1True+RF 0.199 0.003 98.48% 0.309

mf+11-residue+3True+SMO 0.846 0.134 86.50% 0.397

mf+11-residue+3True+RF 0.470 0.020 95.66% 0.472

mf+17-residue+3True+SMO 0.894 0.135 86.62% 0.421

mf+17-residue+3True+RF 0.535 0.022 95.81% 0.515

mf+21-residue+3True+SMO 0.900 0.136 86.57% 0.424

mf+21-residue+3True+RF 0.556 0.022 95.90% 0.531

mf+11-residue+5True+SMO 0.842 0.140 85.85% 0.469

mf+11-residue+5True+RF 0.640 0.036 94.00% 0.584

mf+17-residue+5True+SMO 0.901 0.123 87.84% 0.533

mf+17-residue+5True+RF 0.708 0.037 94.39% 0.628

mf+21-residue+5True+SMO 0.902 0.123 87.86% 0.534

mf+21-residue+5True+RF 0.726 0.036 94.59% 0.644

This difference could yield a different pattern for TM end prediction. The proposed

algorithm is more successful in TM start residue prediction in overall appearance.

3.6 Baseline, TMHMM and the Proposed Method

In order to compare baseline, TMHMM, SMO and RF, we used the same model to

perform them separately. The model involved 17-residue windows, mfHydrophobic-

ity and regarded only the actual TM start points as "True", not the next residues. The

Figure 3.2 clearly demonstrates the comparison of true positive rates of them. Ac-

cording to the results, Random Forest has the highest MCC while the baseline method
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Table 3.5: Cross-validation results of the models with kd for TM starts

TPR FPR Accuracy MCC

kd+11-residue+1True+SMO 0.877 0.153 84.72% 0.238

kd+11-residue+1True+RF 0.212 0.004 98.46% 0.310

kd+17-residue+1True+SMO 0.901 0.141 85.99% 0.259

kd+17-residue+1True+RF 0.193 0.003 98.48% 0.304

kd+21-residue+1True+SMO 0.891 0.140 86.00% 0.256

kd+21-residue+1True+RF 0.204 0.003 98.50% 0.319

kd+11-residue+3True+SMO 0.831 0.139 86.00% 0.383

kd+11-residue+3True+RF 0.504 0.019 95.97% 0.510

kd+17-residue+3True+SMO 0.891 0.138 86.38% 0.416

kd+17-residue+3True+RF 0.551 0.021 95.96% 0.532

kd+21-residue+3True+SMO 0.896 0.139 86.21% 0.416

kd+21-residue+3True+RF 0.526 0.020 95.90% 0.518

kd+11-residue+5True+SMO 0.834 0.143 85.52% 0.460

kd+11-residue+5True+RF 0.652 0.034 94.24% 0.599

kd+17-residue+5True+SMO 0.893 0.126 87.53% 0.523

kd+17-residue+5True+RF 0.709 0.035 94.52% 0.634

kd+21-residue+5True+SMO 0.901 0.129 87.35% 0.525

kd+21-residue+5True+RF 0.720 0.036 94.56% 0.641

has the lowest one. It can be said that hydrophobicity alone is not sufficient to de-

termine transmembrane regions. On the other hand, when examining RF and SMO

more closely, it can be noticed that RF can more efficiently handle the imbalanced

data than SMO. Apart from these, the diagram reveals that TMHMM performs with

the imbalanced data less efficiently than our methods, SMO and RF, but much more

efficiently than the baseline method. It can be deduced that like stated in literature,

TMHMM does not regard only hydrophobicity for predictions.
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Figure 3.2: MCC of baseline, TMHMM, SMO and RF

3.7 The Known GPCRs

The graphics constructed for each known GPCR have all of the hydrophobicity scales

in different colors, actual TM regions as dark blue lines, TM regions predicted by

TMHMM as red lines, and secondary structures; helices as blue circles and the other

secondary structures as pink dots along the sequence. We performed the proposed

method, SMO and Random Forest, with the 6 GPCRs whose total TM number was

mispredicted by TMHMM. In the graphics, right-facing purple triangles represent

TM start points predicted by SMO. Left-facing triangles represent TM end points pre-

dicted by SMO. Upside down green triangles represent TM start points predicted by

Random Forest. The black triangles represent TM end points predicted by Random

Forest. In general, Random Forest tended to make less TM predictions which was

forced by penalty. All the graphics of the known GPCRs are available in https://

github.com/mzzclb/GPCR-TM-Prediction/issues/1. Hydrophobicity

Table 3.6: Cross-validation results of the models with mf for TM ends

TPR FPR Accuracy MCC

mf+11-residue+1True+SMO 0.803 0.195 80.51% 0.184

mf+17-residue+1True+SMO 0.808 0.178 82.17% 0.198

mf+21-residue+1True+SMO 0.852 0.173 82.74% 0.216
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of the proteins was generated using 7-residue sliding windows. The graphics can be

examined in detail.

3.7.1 GPCRs Having 8 TMs as TMHMM Result

Human proteinase-activated receptor 2 (P55085) is a GPCR molecule whose topology

information is experimentally solved. It belongs to the rhodopsin family. TMHMM

gave 8 as total TM number for those proteins. The predicted extra TM was found to be

located at the precedent site of the actual first TM. Around the predicted region, there

is a very short, less hydrophobic, helix. On the other hand, the proposed method

performing SMO identified a TM start point at the beginning of that region while

Random Forest made no prediction around that region. The predicted TM region and

the results of the proposed method can be observed in the Figure 3.3.

Figure 3.3: GPCR with an extra TM predicted by TMHMM

3.7.2 GPCRs Having 6 TMs as TMHMM Result

TMHMM identified 6 TM regions for 5 GPCRs out of the known GPCRs.

3.7.2.1 The Last TM Missing

Human orexin receptor type 1 (O43613), todpa rhodopsin (P31356) and human P2Y

purinoceptor (P47900) are GPCR molecules whose topology information is experi-
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mentally solved. These proteins belong to the rhodopsin family. TMHMM failed to

predict the last actual TM region. Although at least a helix structure is observed in that

region, they are less hydrophobic according to the hydrophobicity scales. Therefore,

TMHMM could not predict them as TM, meaning that TMHMM does not take into

account only secondary structure. For human orexin receptor type 1 and human P2Y

purinoceptor, SMO achieved to detect TM7 start and end points, separately, while

Random Forest could identify only actual TM7 start point of the former receptor and

only actual TM7 end point of the latter. For todpa rhodopsin, SMO achieved to detect

actual TM7 start and end points. However, it identified the start and end points of

other 2 non-TM helices located at the end of the protein sequence. Random Forest

failed to make any predictions for the actual last TM region. The graphics of all the

three proteins can be found in the Figure 3.5.

3.7.2.2 The Third TM Missing

Rat neurotension receptor type 1 (P20789) and human metabotropic glutamate recep-

tor 5 (P41594) are GPCR molecules whose topology information is experimentally

solved. While neurotension receptor type 1 is a rhodopsin family protein, metabotropic

glutamate receptor 5 belongs to the glutamate family. When examining closely, it can

be observed that TMHMM predictions lacks the actual third TM region for both of

the proteins. According to the JPred results, a long helix structure is present in that

region of each protein but they are less hydrophobic. On the other hand, for both the

proteins, SMO achieved to detect TM3 start and end points, separately, while Ran-

dom Forest could identify only TM3 end point. The Figure 3.5 includes the graphics

of both of the proteins to be able to examine in detail.

3.7.3 GPCR with Incorrect Prediction of TM Region Locations

Human D(4) dopamine receptor (P21917) is a GPCR molecule whose topology in-

formation is experimentally solved. This protein is also a member of the rhodopsin

family. TMHMM gave 7 as total TM number for it. However, there is a mistake about

the locations of the predicted transmembrane regions. TMHMM failed to identify the
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Figure 3.4: GPCRs, the last TM missed by TMHMM
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Figure 3.5: GPCRs, the third TM missed by TMHMM

actual TM6 but it predicted another TM region following the actual last TM. Actually,

that region is less hydrophobic but has a long helix interrupted 2 times. On the other

hand, there is short helix in the actual TM6 region. It can be deduced that TMHMM

tends to predict regions of helix with a particular size as transmembrane region. In

the Figure 3.6, the difference between the actual TM regions and the predicted TM

regions can be more clearly observed.
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Figure 3.6: GPCR with incorrect prediction of TM region locations
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

With this thesis study, we have made a number of contributions. Firstly, it is em-

phasized that hydrophobicity and secondary structures are key characteristics of the

transmembrane regions of GPCRs. In literature, the segments of GPCRs which are

embedded in the cell membrane are described as transmembrane helix. Because the

cell membrane is hydrophobic due to the lipid building blocks, the proteins embedded

in it are naturally expected to be hydrophobic. Hydrophobicity is required for adapta-

tion of the protein to the membrane but according to the baseline method, it alone is

not adequate. A pattern for transmembrane regions of GPCRs can be described using

hydrophobicity and secondary structures.

Secondly, despite of presence of a variety of hydrophobicity scales in the literature,

Moon-Fleming hydrophobicity and Kyte-Doolittle hydrophobicity are the most con-

sistent scales with the real hydrophobic segments in the GPCRs and with the hy-

drophobic nature of the cell membrane.

Thirdly, SMO and Random Forest are compared with this study. According to the

MCC results, it can be said that Random Forest is more efficient with an imbalanced

data than SMO.

It is shown that a cost-based approach is an effective way to tackle imbalanced data.

On the other hand, accuracy should not be the only parameter for evaluation of a clas-

sifier. True positive and false positive rates are as significant as accuracy.

MCC is the most important parameter to evaluate performance of an algorithm trained

with an imbalanced data. The proposed method is more efficient for TM-start.
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4.2 Future Work

This proposed study can be improved with some future works. First of all, increase

in the experimental data will inevitably provide more reliable results and more effi-

cient performance. The proposed method will be performed with the other unknown

GPCRs. Moreover, the training data set does not need to be limited to GPCRs. It

can be extended to the other membrane proteins. Variety and increase in the data set

may give opportunity for a resampling approach which is another way to cope with

imbalanced data. Therefore, performance of cost-based approach can be evaluated.

SMO made multiple TM predictions. The successive predictions can be evaluated

and the centered one can be regarded as ‘True’.

TM start and TM end predictions will be merged to achieve identification of a TM

region as a post-process approach.

In order to constraint TM number of prediction, we can use SVM, another ML al-

gorithm, which assigns confidence score to prediction results and the results can be

ranked.

In Random Forest, we can analyze the prediction result of each decision-tree and can

consider the percentage of the trees which agree on the same class.

Increase in the volume of feature vectors may enhance the accuracy. New features

can be added.

TM region prediction can provide accessible surface area calculation and flexibility

information.

Amino acid propensities can be used to construct a more improved feature vector.
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HYDROPHOBICITY SCALES
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Table A.1: Numerical Values of Hydrophobicity Scales

Letter Residue type kdHydrophobicity wwHydrophobicity hhHydrophobicity mfHydrophobicity ttHydrophobicity

I Isoleucine 4.5 0.31 -0.60 -1.56 1.97

V Valine 4.2 -0.07 -0.31 -0.78 1.46

L Leucine 3.8 0.56 -0.55 -1.81 1.82

F Phenylalanine 2.8 1.13 -0.32 -2.20 1.98

C Cysteine 2.5 0.24 -0.13 0.49 -0.30

M Methionine 1.9 0.23 -0.10 -0.76 1.40

A Alanine 1.8 -0.17 0.11 0.0 0.38

G Glycine -0.4 -0.01 0.74 1.72 -0.19

T Threonine -0.7 -0.14 0.52 1.78 -0.32

S Serine -0.8 -0.13 0.84 1.83 -0.53

W Tryptophan -0.9 1.85 0.30 -0.38 1.53

Y Tyrosine -1.3 0.94 0.68 -1.09 0.49

P Proline -1.6 -0.45 2.23 -1.52 -1.44

H Histidine -3.2 -0.96 2.06 4.76 -1.44

E Glutamic Acid -3.5 -2.02 2.68 1.64 -2.90

Q Glutamine -3.5 -0.58 2.36 3.01 -1.84

D Aspartic Acid -3.5 -1.23 3.49 2.95 -3.27

N Asparagine -3.5 -0.42 2.05 3.47 -1.62

K Lysine -3.9 -0.99 2.71 5.39 -3.46

R Arginine -4.5 -0.81 2.58 3.71 -2.57
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