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ABSTRACT 

 
 

3D SPATIAL ORGANIZATION AND NETWORK-GUIDED COMPARISON OF 
MUTATION PROFILES IN GLIOBLASTOMA 

 
 

Dinçer, Cansu 
MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 
 

August 2019, 73 pages 
 
 
 
Glioblastoma multiforme (GBM) is the most aggressive and heterogeneous type of brain 
tumor. The heterogeneity of GBM is the main obstacle to develop effective treatment 
strategies. In this study, we aimed to decrease the heterogeneity among GBM patients 
from The Cancer Genome Atlas (TCGA), classify the patients and propose therapeutic 
hypothesis for patient groups by using patient mutation profiles. We therefore 
implemented a systems level approach to mutations using their biophysical characteristics 
and organization in patient-specific subnetworks. While 3D mutation patches decrease the 
heterogeneity among patients, network guided analysis classified patients into five groups. 
Since each patient group carries a set of signature 3D mutation patches, we collected GBM 
cell line mutation and drug sensitivity data to link GBM patient group to GBM cell lines 
and eventually drug responses through 3D patch mutations. Therefore, we can propose 
drug responses of specific patient group for specific drugs. As an example, by targeting 
CSF1R, Pazopanib can be effective for Group 3 yet Group 2 can be resistant to inhibition 
of ATM which is a mediator of PTEN phosphorylation. As a conclusion, from mutations 
to protein interaction networks and eventually to therapeutic data, this study is a new 
perspective for precision medicine. 

Keywords: Glioblastoma, 3D mutation patch, protein interactions, patient-specific 
network modeling, network-guided tumor grouping 



v 
 

 

ÖZ 

 
 

GLIOBLASTOMA HASTALARI MUTASYON PROFİLLERİNİN 3 BOYUTLU 
UZAMSAL ORGANİZASYONU VE AĞ GÜDÜMLÜ KARŞILAŞTIRILMASI 

 
 

Dinçer, Cansu 
Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Nurcan Tunçbağ 
 

Ağustos 2019, 73 sayfa 

 
 

 
Glioblastoma multiforme (GBM), en agresif seyirli, heterojen beyin tümörü çeşididir. Bu 
heterojenlik verimli tedavi yöntemlerinin geliştirilmesinin önündeki temel engeldir. Bu 
çalışmada, TCGA’ de bulunan GBM hastalarının mutasyon profillerini kullanarak, 
hastalar arasındaki çeşitliliği azaltmayı, hastaları gruplara ayırıp, gruplara has ilaçların ve 
grupların ilaca tepkilerinin çıkarımını yapabilmeyi amaçlıyoruz. Bu nedenle, hasta 
mutasyonlarına onların biyofiziksel karakterlerini ve hastaya özgü ağlardaki 
organizasyonlarını kullanan sistemsel bir yaklaşım uyguladık. Üç boyutlu mutasyon 
birikim bölgelerini belirleyerek hasta çeşitliliğini azaltırken, ağ temelli yaklaşımla 
hastaları beş farklı gruba ayırdık. Bu hasta gruplarından her biri belirli üç boyutlu 
mutasyon birikim bölgeleri taşıdıklarından, bu mutasyon birikim bölge bilgisini GBM 
hücre hattı mutasyon ve ilaç hassasiyet verileri ile birleştirerek, hasta gruplarımızı hücre 
hatlarına ve en son ilaçlara bağladık. Böylece hasta gruplarımızın belirli ilaçlara 
verebilecekleri tepkileri önerdik. Örneğin, CSF1R’ ı hedefleyen Pazopanib Grup 3 için 
etkili olabilecekken, Grup 2 ATM’ yi engelleyici ilaçlara karşı dirençli olabilir. Sonuç 
olarak, mutasyon, protein etkileşim ağları ve ilaç verileri kullanarak yapmış olduğumuz 
bu çalışma kişiye özel, hassa tıp çalışmalarına yeni bir bakış açısı olabilir. 

Anahtar Sözcükler: Glioblastoma, 3 Boyutlu mutasyon birikim bölgeleri, protein 
etkileşimleri, hastaya özgü ağ modelleme, ağ güdümlü tümör gruplama 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

 

 

Molecular alterations on genome accumulate through time and may disrupt cellular 
functions leading to cancer. Continuous accumulations of genomic alterations can result 
in elimination of cell due to deleterious mutations or turning into cancer cell by gaining 
advantages to proliferate, adapt, and metastasize (Stratton, Campbell, & Futreal, 2009). 
High-throughput next generation sequencing technologies as well as small scale targeted 
sequencing techniques provide vast amount of information for thousands of genes, 
transcripts and proteins at the same time. Therefore, identification of mutations providing 
advantages for tumorigenesis is one of the key focus since proteins having these mutations 
can be the favored molecular targets in drug discovery and cancer therapy. However, 
extreme heterogeneity in mutation profiles between and within tumors as well as among 
individuals of the same type of cancer obstructs direct identification. Further, mutations 
are also divided according to their impact on tumorigenesis, since not all mutations can 
result in transformation from normal to cancer cells. As an another barrier, cell has 
complex and dynamic nature and functions by interconnected cellular pathways. In 
addition to these barriers, epigenetic and post-translational factors are also important in 
cancer progression and therapeutic resistance. Thus, not all drugs would be effective for 
all patients. In order to improve the understanding of cancer and its causatives, 
components of the cellular mechanisms and their relations to each other are needed to be 
comprehensively analyzed.  

Molecular mechanism of cell is mainly carried out by proteins and their interactions. 
Through proteins functioning by interacting to each other, to nucleic acids and small 
compounds; a cellular network is created in which nearly every component is connected 
to each other directly or indirectly. While it is important to know who is connecting with 
who, questions as through where and how they are connecting are important as well. 
Accumulation of mutations on the proteins affect the interaction profile by disrupting the 
stability of the protein or only inhibiting or activating specific interfaces. It has already 
been reported that disease associated mutations are prone to affect protein interacting sites 
and perturb interactions (Sahni et al., 2015). If protein stability and folding are affected 
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dramatically, proteins disappear from rewired cellular network since they are become 
nonfunctional. Yet in some cases, mutations are happened on interacting site of the 
proteins which can lead to continuous activation of proteins related to growth, 
proliferation or resistance to apoptosis; or inhibition of specific interfaces which lead to 
disappearing of connections between mutated proteins and partners from affected 
interactions (Sahni et al., 2015). Different sets of mutations from different patients can 
form distinct profiles of interactions and eventually different phenotypes of disease (An, 
Gursoy, Gurgey, & Keskin, 2013; Engin, Kreisberg, & Carter, 2016; Ozdemir, Gursoy, & 
Keskin, 2018; Ozdemir, Halakou, Nussinov, Gursoy, & Keskin, 2019). Therefore, 
structural positions of mutations and interaction patterns of mutated proteins are critical 
for meaningful inference about the impact of the mutations on phenotypes.  

Genome-wide mutation profiles are promising resource to elucidate the underlying 
mechanism of cancer, to classify the patients according to their genetic backgrounds and 
to propose potential therapies when systems level strategies are applied. Considering the 
amount of omics data, computational approaches are essential for analyzing the effects of 
mutations on proteins, protein interactions and functional pathways in a patient-specific 
way. Several studies focus on impact of mutation on PPIs (An et al., 2013; Engin et al., 
2016; Ozdemir et al., 2018; Ozdemir et al., 2019), protein structures (Gao et al., 2017; 
Kamburov et al., 2015; Meyer et al., 2016; Niu et al., 2016; Ryslik et al., 2014; Tokheim 
et al., 2016) and interaction perturbations (Engin et al., 2016; Kar, Gursoy, & Keskin, 
2009; Porta-Pardo, Garcia-Alonso, Hrabe, Dopazo, & Godzik, 2015; Sahni et al., 2015). 
There are several studies concentrated on structural clustering of mutations by using 
physical contacts of mutated residues (Gao et al., 2017), distance between mutated 
residues or significant proximity of mutated residue pairs (Meyer et al., 2016; Niu et al., 
2016; Ryslik et al., 2014) to identify the marker mutations or affected pathways which 
leads to cancer formation and progression. On the other hand, there are also perturbation-
based approaches which rely on rewiring of cellular networks of tumorigenic cells. 
Incorporating different omics data together has been applied to identify the target 
mutations, proteins or pathways (Acuner Ozbabacan, Gursoy, Nussinov, & Keskin, 2014; 
Chuang, Lee, Liu, Lee, & Ideker, 2007; Ciriello, Cerami, Sander, & Schultz, 2012; Drake 
et al., 2016; Dutkowski & Ideker, 2011; Engin, Guney, Keskin, Oliva, & Gursoy, 2013; 
Hofree, Shen, Carter, Gross, & Ideker, 2013; Kim, Wuchty, & Przytycka, 2011; Vandin, 
Upfal, & Raphael, 2011; Wu, Dong, & Wei, 2018; Xi, Li, & Wang, 2017). The network-
based stratification (NBS) approaches to the heterogeneity problem with an integrative 
perspective and incorporates mutation profiles and molecular gene networks to classify 
the patients (Hofree et al., 2013). In order to utilize activity of proteins, Drake et al used 
mutations, transcriptional and phosphoproteomic data together (Drake et al., 2016). 
Distinctly, Engin et al integrate structural data with mutation and PPI information to 
highlight the mechanisms of metastasis (Engin et al., 2013).  

One of the deadliest type of brain tumor, Glioblastoma Multiforme (GBM) is well known 
for its aggressiveness, resistance and heterogeneity, which makes the disease as incurable. 
The average survival is between twelve to fifteen months despite great development in 
medicine (Bleeker, Molenaar, & Leenstra, 2012; Zong, Verhaak, & Canoll, 2012). By the 
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help of next generation sequencing, mutation screens became available, thus they 
indicated that GBM has enormous genomic heterogeneity which is the main obstacle to 
develop effective therapies. In this thesis, we aimed to decrease the heterogeneity among 
GBM patients whom data comes from The Cancer Genome Atlas (TCGA) (Tomczak, 
Czerwinska, & Wiznerowicz, 2015), to classify them, and to propose potential 
therapeutics and their responses. We started from finding the spatial arrangement of the 
mutations which are the clusters having mutated residues both in physical contacts or close 
proximity, then we continued with reconstruction of patient specific PPI subnetworks for 
each patient. Since cellular pathways are composed of several proteins interacting each 
other, we needed intermediate molecules which are connecting mutated proteins. We 
applied Forest module of Omics Integrator (Tuncbag et al., 2016) for network modelling 
and reconstructed patient specific subnetworks primarily affected by the set of mutations 
across patients. Since functional pathways were completed by the algorithm, we reduced 
networks into significantly enriched sets of pathways which were used to classify the 
patients into clinically similar groups. Each patient group was associated with the survival 
profile of the patients in the group significantly (P-value: 0.0408). Ultimately, we used 
mutation and drug response data of GBM cell lines in order to link patient groups with 
GBM cell lines, then propose hypothetical therapeutics on the basis of patch distribution 
of patient groups.  

In Chapter 2, we covered what is the impact of mutations on tumor formation and 
progression, how mutation profiles can be used to identify druggable targets or classify 
the patients by reviewing strategies in the literature focusing on both structural 
information and network-based approaches.  

In Chapter 3, we described both the data and methodology in detail. We started explaining 
data, then continued with how spatial organization of the mutations were found, how the 
structural and physicochemical characteristics of GBM mutations were evaluated, what is 
the algorithm based on to reconstruct patient sub-networks and how we implemented it, 
and lastly, how we connected GBM cell lines to patient groups and how we inferred the 
potential therapeutics.  

In Chapter 4, we explained how 3D patch organization of a mutation decreased the inter-
patient heterogeneity and how network guided analysis can stratify patients into five 
groups. Moreover, we described physicochemical and structural consequences of 
mutations on structures and behavior of cancer related mutations and proteins. Eventually, 
we explained how potential therapeutics were proposed for patient groups on the basis of 
3D patch profiles. 

In Chapter 5, we discussed our results and how they would contribute the perspective of 
mutation analysis. We also indicated the importance of network-based approach for 
integrating different data to infer biologically meaning outcome. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 

2.1.     Effects of mutations on tumorigenesis 

Cells are strictly controlled, complex and dynamical systems governed by the genome. 
Any alteration on DNA has the potential to affect the dynamical system, which leads to 
different diseases such as Mendelian and complex diseases (Amberger, Bocchini, & 
Hamosh, 2011; Hindorff et al., 2009) including different types of cancer. These alterations 
could be hereditary variations, acquisition of exogenous DNA or RNA sequences from 
viruses that are associated with various cancer types such as human papilloma viruses 
(HPVs), hepatitis-B virus (HBV), hepatitis-C virus (HCV), Epstein Barr virus (EBV), 
human T lymphotropic virus 1 (HTLV-1) and human herpesvirus 8 (Talbot & Crawford, 
2004; Walboomers et al., 1999), and somatic changes on the cancer genome such as 
substitutions, indels (insertions or deletions), DNA rearrangements and copy number 
changes. In addition to genomic alterations, an epigenetic mechanism could provide 
advantages for tumorigenesis by activating or deactivating cancer related genes through 
DNA methylation or histone modifications. Through these continuous accumulations of 
genomic alterations, some cells are eliminated due to deleterious mutations; yet some of 
them are selected due to their acquired capability to proliferate, adapt, and metastasize 
(Stratton et al., 2009).  

Across all of these mechanisms, somatic mutations are the major causative factor in most 
human cancers (Weir, Zhao, & Meyerson, 2004). However, not all somatic mutations 
result in cancer, thus mutations were conventionally divided into two categories as driver 
and passenger mutations. Driver mutations provide growth or drug resistance advantages 
to tumor cells while passenger mutations are not seemed beneficial for tumorigenesis or 
drug resistance. However, lately, another class of mutation has been also defined as latent 
mutation (Nussinov, Jang, Tsai, & Cheng, 2019). These mutations are passenger 
mutations until they transform into driver mutations in a specific context or under different 
factors such as environmental factors or conformational changes; or these mutations have 
not been discovered as driver yet. These disease causing driver somatic mutations can give 
advantages to the tumor cells by changing the expression of corresponding proteins, 
disrupting folding or stability of the protein or perturbation in the interaction profile of the 
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protein, which can be loss of all or specific interactions or rarely gains of interactions 
(Sahni et al., 2013). While activation of oncogenes by mutations is advantageous for 
tumorigenesis, repression of tumor suppressor genes leaves cells uncontrolled and 
unprotected for resistance to cell death, excessive proliferation, enhancement of 
invasiveness, and among others. In order to understand these complex molecular changes 
in cancer and design effective therapies, driver and passenger mutations should be 
distinguished.  

High-throughput next generation sequencing technologies, unlike small scale targeted 
sequencing techniques, provide information for thousands of genes, transcripts and 
proteins at the same time. The large-scale cancer genome sequencing projects including 
The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium 
(ICGC) (Zhang et al., 2011) provide a large amount of data that can help the development 
of different approaches for omics research. Rather than analyzing effects of individual 
mutation for genomic characterization, nowadays comprehensive mutation profiles of the 
patients can be obtained, and this brings a new precision medicine approach as treatments 
according to the genetic background of patients rather than only disease types (Drew, 
2016; T, M, Jose, Chandran, & Zachariah, 2009). Since molecular heterogeneity in 
mutation profiles between and within tumors as well as among individuals of the same 
type of cancer is enormous, classification of the patients is crucial for a better prognosis 
and an effective treatment.  

One mechanism through which cellular organization and tissue homeostasis are altered in 
the context of cancer is by disrupting interactions of proteins. Since proteins are not in 
isolation but function by interacting with each other rather than in isolation, studying 
individual mutations is not enough to understand their role in cancer formation and 
progression (Sahni et al., 2013). Additionally, cancer does not result from a specific 
mutation but a set of mutations that are changing the interaction profile (interactome) of 
the cell to become more proliferative and more resistant to apoptosis or drug. Therefore, 
cancer cells use different signaling pathways which lead to the same outcome. As a result, 
genome-wide mutation profiles from high-throughput sequencing technology is a 
promising resource to understand the underlying mechanism of cancer, classify the 
patients according to their genetic make-ups and propose effective therapies when systems 
level strategies are applied to analyze the overall changes in the dynamic signaling 
mechanism of the cell. 

The major questions in mutation analysis to guide the design of new therapeutics are how 
we can distinguish driver mutations from passenger mutations and how can we identify 
perturbed cellular pathways which lead to tumorigenesis. The most conventional approach 
for identification of driver mutations is a significant recurrence of the mutation based on 
the hypothesis that frequency of driver mutations will be higher than the random passenger 
mutations (Dees et al., 2012; Greenman et al., 2007; Wood et al., 2007). Dees et al uses 
this hypothesis and developed Mutational Significance in Cancer (MuSiC) algorithm to 
separate driver and passenger mutations by using the mutation rates (Dees et al., 2012). 
Additionally, in (Wood et al., 2007) they calculate cancer mutation prevalence (CaMP) 
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score which defined as the probability that the number of mutations in a gene having a 
frequency that is higher than that expected for each gene. They further continued with the 
genes having CaMP scores higher than 1 and labeled them as candidate cancer genes. 
While it is reported that driver genes have increased mutation frequency than passenger 
genes, yet a small range of mutations represents driver genes. By using only the frequency 
of mutation accumulation, functional but rare mutations are lost. However, researches 
based on more detailed and larger scale analysis of mutations are more informative in 
terms of identification of driver genes and mutations and the functional pathways that are 
affected. In the following sections, structural and network-based approaches and their 
applications to cancer studies are comprehensively explained. 

2.2.     Analysis of mutations by integrating structural information 

Whereby large-scale sequencing analysis, an enormous amount of genomic data is 
available. Moreover, development in crystallography and microscopy, as well as 
prediction methods, us to obtain a large amount of structural information for proteins. 
Merging three-dimensional (3D) structural information with large-scale mutation 
information has the potential to enlighten the impacts of cancer mutations on the 
biological functions of proteins and their physical interactions. In this section, studies 
focusing on structural analysis for the identification of mutation effects and their related 
pathways will be detailed.  

Several studies concentrated on the identification of cancer related mutations and 
pathways by utilizing structural aspects of mutational proteins coming from large-scale 
databases. There are plenty of researches based on the hypothesis that driver mutations 
may accumulate specific functional site on proteins and leads to tumorigenic cellular 
activities (Gao et al., 2017; Kamburov et al., 2015; Meyer et al., 2016; Niu et al., 2016; 
Ryslik et al., 2014; Tokheim et al., 2016). Conventional methods are mostly focused on 
frequency-based approaches. As an example, Buljan et al. collected all the mutations from 
TCGA and ICGC patients for 40 different cancer types to count how many mutations 
occur for each residue on protein sequences for all patients. By this way, they found that 
hotspot residues which can provide significant affinity to the interaction than other 
residues, accumulate a significantly higher number of mutations than their surrounding 
residues. Then, they found that these hotspot mutations are often located on interfaces 
which indicates that any changes in interaction profile could be the reason for tumorigenic 
switching in the cell (Buljan, Blattmann, Aebersold, & Boutros, 2018). Besides from 
sequence-based recurrence approaches, several studies extended this analysis, they 
focused on the accumulation of the mutations on protein structures. Gao et al. mapped 
mutations onto 3D structures of corresponding proteins in order to get mutation clustering. 
If residues are physically connected and both of them are mutated, then they can form a 
cluster in which recurrence is analyzed. By this method, they identified potential driver 
genes from rare mutations (Gao et al., 2017). With a similar perspective, Meyer et al. 
developed mutation3D method in order to identify genes in cancer formation and 
progression by using structural details of proteins. They again mapped mutated residues 
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on protein structures. Rather than physical contacts, they used the distance between alpha-
(α)-carbon atoms of mutated residues and complete-linkage clustering strategy which is a 
hierarchical clustering method. Within a specified maximum dissimilarity value which is 
the permitted maximum distance between α-carbon atoms, all mutated single elements are 
merging with their nearest neighboring clusters (Meyer et al., 2016). Additionally, another 
similar concept is also applied in (Ryslik et al., 2014) which is called Spatial Protein 
Amino Acid Clustering (SpacePAC). In this study, they used mutations from the 
Catalogue of Somatic Mutations in Cancer (COSMIC) and structures from only Protein 
Data Bank (PDB). They created three non-overlapping spheres with different radii 
corresponding protein, in which there are as many as mutations. After the normalization 
step, they obtained the most significant clusters which can identify the cancer related 
mutations. Niu et al. use spatial clustering of mutations by first calculating significant 
pairwise proximity of each residue in proteins (Niu et al., 2016). Then, they used these 
significant proximal pairs as seed nodes and iteratively added mutated residues if they are 
significantly paired with other mutated residues in these seed nodes. With this approach, 
they identified both mutation and mutation-drug clusters on 3D structures and proposed 
druggable mutations. Moreover, in order to better explain the molecular consequences of 
driving mutations on tumor cells, COSMIC (Futreal et al., 2004) started an effort as 
COSMIC-3D (Malhotra et al., 2019). The main difference in COSMIC-3D, they 
concentrated interface regions of protein-protein, protein-nucleic acid and protein-ligand 
interactions on which they analyzed the impact of mutations. They observed that the most 
recurrent mutations were clustered in binding sites which can make inhibitors less 
effective, reduces the DNA/RNA binding activity and change the cell signaling by 
changing interactions. Stehr et al. spatially clustered COSMIC mutation from eight cancer 
types (breast, prostate, stomach, colon, pancreas, thyroid, kidney, lung) (Stehr et al., 
2011). In order to understand the mechanism of gain and loss of functions, they 
functionally analyze the structural impact of the mutations on tumor suppressor and 
oncogenes and found that tumor suppressor lost their function generally by mutation 
destabilization on core regions yet, gain of function of oncogenes is often related with 
specific mutations on the functional sites of the proteins which are generally ATP or GTP 
binding sites. These methods can answer the questions asking which mutations are 
important and which residues are targetable. Since a cellular network composed of 
interacting molecules, a comprehensive understanding of interaction perturbations is 
critical for enlightening altered signaling mechanisms. Therefore, this understanding 
needs both structural aspects of proteins and their interaction, and network-based 
approaches. In the next section, different perspectives of network-based approaches will 
be discussed. 

2.3.     Analysis of mutations by integrating network-based approaches 

Cellular mechanism consists of direct and indirect interactions as we called interactome 
between proteins, nucleic acids, and metabolites. In the perspective of protein-protein 
interactions (PPIs), interactome is a network whose nodes are proteins and edges are the 
physical interactions between them and composed of functional cross-linked signaling 
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pathways. Characterization of these networks is critical for fully understanding the 
contribution of individual mutation to phenotype in a specific context since a mutation on 
a gene can have an impact larger than impact only on the protein by affecting cellular 
pathways. As an example, a mutation on Met receptor tyrosine kinase which is activated 
by hepatocyte growth factor and mediates the mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol-3 kinase (PI3K) pathways, results in loss of Cbl E3-ligase 
tyrosine kinase binding site in the juxtamembrane region and thus disruption of the 
ubiquitination process of the receptor. Mutation in this region induces continuous 
activation of MAPK and PI3K pathways in lung cancer which indicates significant tumor 
growth in vivo (Kong-Beltran et al., 2006; Pawson & Warner, 2007). There are different 
approaches using network-based strategy to reveal genotype-phenotype relation such as 
integrative and perturbation-based approaches. While perturbation studies focus on the 
rewiring of the cellular networks in order to highlight the affected key pathways, 
integrative studies try to elucidate hidden mechanisms by incorporating as much as data 
together. Moreover, focusing on interaction changes, it is inevitable to use structural 
details of the mutated proteins. Therefore, this section begins with studies based on 
integrative methods, then continue with the studies merging network-based approaches 
with structural information. 
 
Integrative approaches can complete the hidden components of the network by using 
mutation, clinical, gene interaction, gene expression or phosphorylation data (Acuner 
Ozbabacan et al., 2014; Chuang et al., 2007; Ciriello et al., 2012; Drake et al., 2016; 
Dutkowski & Ideker, 2011; Engin et al., 2013; Hofree et al., 2013; Kim et al., 2011; 
Vandin et al., 2011; Wu et al., 2018; Xi et al., 2017). As an example, the network-based 
stratification (NBS) tried to overcome the heterogeneity problem by integrating mutation 
profiles with molecular gene network. After constructing a binary matrix for mutation 
profiles of each patient as 1 and 0 representing mutated and non-mutated genes, 
respectively, these matrices were projected on a gene interaction network. By network 
propagation followed by non-negative matrix factorization and consensus clustering, 
patients were classified. According to this classification, the group showing the worst 
survival has 20 genes for fibroblast growth factor (FGF) signaling pathway, which causes 
resistance for platinum and anti-VEGF (Vascular Endothelial Growth Factor) therapy. 
Therefore, besides classification, network-based stratification method can identify the 
affected cellular pathways which can be used for drug targets (Hofree et al., 2013). 
Further, Wu et al. use another network-based method to integrate mutation and gene 
expression data in GBM for elucidating dysregulated pathways in the disease and found 
there are two main dysregulated pathways (epidermal growth factor receptor related 
pathways and TP53 associated pathways) both represent different subtypes of GBM (Wu 
et al., 2018). In another integrative network-based approach, mutations, transcriptional 
and phosphoproteomic data were used together to model patient-specific pathways in 
prostate cancer. By using control and metastatic prostate cancer, they identified the 
activity of a protein from differential expression and phosphorylation of its targets. Then 
these activated regulators integrated with somatic mutation data from various resources in 
order to understand if these regulators are significantly related with the mutated genes and 
found that kinases are nearby in the common pathways with mutated genes. They also 
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found sub networks for each group which is enriched in AKT/mTOR/MAPK signaling, 
nuclear receptor signaling and the cell cycle (Drake et al., 2016). Kim et al. utilized the 
integration of phenotypic, genomic and interaction data to identify disease associated 
genes and dysregulated pathways by applying network-based strategy. They first selected 
target genes which are differentially expressed genes, then found the associations between 
mutated genomic loci and expression level changes of target genes with an expression 
quantitative trait loci (eQTL) analysis. Additionally, Engin et al, integrated PPIs, 
mutations and structural details of the protein interfaces together in order to enlighten 
genotype-phenotype association of metastasis process. They applied reverse engineering 
by using guilt-by-association principle and built the phenotype specific PPIs for both 
breast and lung cancer metastasis from the primary tumor in breast cancer. In order to 
understand the mutation effects, mutations were also mapped on these phenotype specific 
networks. As a result, they found lung metastasis progression has a relationship with the 
immune system and infectious diseases, yet this association was not found in brain 
metastasis. This is a good example of reverse engineering approach with integrative 
strategy (Engin et al., 2013). Ciriello et al. identified driver networks rather than driver 
mutations or driver genes by using Mutual Exclusivity Modules (MEMo) algorithm which 
can merge copy number variation and somatic mutation information (Ciriello et al., 2012). 
These driver networks composed of proteins having mutation recurrently, function in the 
same biological process and have mutually exclusive genetic alteration. Application of 
this algorithm to GBM data highlighted several core modules involving TP53, RB, PI3K 
signaling. Finally, they tried to find putative causal genes by utilizing pathways between 
causal and target genes through molecular interaction network created by PPIs, 
phosphorylation, and gene regulatory networks (Kim et al., 2011). Consequently, in order 
to overcome the obstacles of heterogeneity in tumors and develop personalized therapeutic 
strategies, reverse engineering from mutations to networks and eventually pathways is one 
of the promising approach. 
 
Mutations in the same protein may result in different interaction profiles and eventually 
different disease phenotypes. While mutations changing the stability of the protein can 
result in severe alterations in its overall interactions, mutations affecting only one interface 
of a protein having several interfaces can change the interaction profile of the protein by 
lost and gained interaction partners. Both Meyer et al. (Meyer et al., 2018) and Mosca et 
al (Mosca, Ceol, & Aloy, 2013) developed structurally enriched protein interface 
databases. While Interactome3D (Mosca et al., 2013) has 3D coordinate information, 
Interactome Insider (Meyer et al., 2018) only provides Uniprot indices of interacting 
residues. Comprehensive structural information of protein-protein interaction networks 
provides analysis of mutation impact on interactions and cellular pathways. Moreover, it 
is reported in (Sahni et al., 2015) that disease associated mutations are generally affecting 
protein interactions leading to changes in the cellular functions. Thereof, several studies 
focused on the impact of disease associated mutations on interaction profiles (Engin et al., 
2016; Kar et al., 2009; Porta-Pardo et al., 2015; Sahni et al., 2015). For the perturbation 
analysis, it is critical to know the interface regions, thus studies based on perturbation 
approach enriches network-based approaches with structural information. Sahni et al. give 
importance to rewiring nature of the network (Sahni et al., 2015). They compare the 
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mutated and non-mutated interactome and found that nearly 60% of disease-associated 
missense mutations perturb protein-protein interactions by complete or partial loss of 
interactions. While mutations can induce complete loss of interactions by affecting the 
folding and stability of the proteins, they can also affect only one interface site of the 
protein and the other interfaces can still bind to their partners which they called this 
phenomenon as “edgotype”. Thus, different mutations on the gene can affect different 
interfaces on corresponding protein, which creates different interaction profiles and thus 
different disease phenotypes. Therefore, affected interactions should be taken into account 
for an appropriate evaluation of the rewiring of cellular networks of tumor cells. As an 
additional benefit of considering edgotype, this analysis can elucidate specific targets for 
both prognosis and personalized therapy. In the study of Engin et al. (Engin, Hofree, & 
Carter, 2015), they tried to create a method which can find the candidate cancer pathways 
by using mutations, protein structures, and PPIs. They first mapped the mutation on 
protein structures and took the mutations on interface and core regions. According to the 
location of the mutation, they erased the edges of the protein. If a mutation is on the core, 
they assumed that it will affect the protein stability and deleted all the edges of the protein 
from structurally resolved protein-protein interaction network. Yet they erased only the 
edges on which interface mutation is found if a mutation is not on core region. With this 
study, the researchers showed that somatic mutations can have differential consequences 
even in the same protein.  
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CHAPTER 3 

 

3. MATERIALS AND METHOD 

 

3.1.    Overview of the Method 

GBM patients have extremely heterogeneous mutation profiles which is an obstacle to 
develop effective therapies. In order to overcome the heterogeneity, to group the GBM 
patients and to propose potential targeted therapies for the patient groups; we applied a 
systems level approach using (i) three dimensional (3D) spatial organization of the 
mutations, (ii) organization of mutated proteins in patient specific networks and (iii) drug 
responses of the GBM cell lines. We proceed in two ways: first one is to calculate mutation 
patches (3D spatial clusters) for all mutated proteins, and second is to reconstruct patient 
specific networks and group patients according to their pathway similarities. Then, we 
found the signature 3D mutation patches for each patient group and used this information 
to link GBM cell lines and patient groups to infer drug responses of patient groups. The 
overview of the method is indicated in Figure 3.1. 

 

Figure 3.1. Overview of the methodology. TCGA-GBM mutation profiles of the patients 
were retrieved. The 3D organization of each mutation was found. Each cancer related 
driver protein having at least one mutation was used to reconstruct patient-specific sub-
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networks. Finally, the sub-networks were used to classify the patients, to find signature 
patches in each patient group and to demonstrate the help of 3D organization in 
overcoming heterogeneity. Eventually, we investigated whether patient groups have any 
association with the clinical outcome by using cell line drug sensitivity data. 
 

3.2.    Data 

In this section, we described all the information used for this study in detail. 

3.2.1 The Cancer Genome Atlas (TCGA) 
 

The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research et al., 2013) is a 
project which generates the cancer -omics data such as genomic, epigenomic, 
transcriptomic and proteomic data in 33 cancer types. In this study, we downloaded 
protected maf files including mutation profiles of 290 GBM patients from TCGA-GBM 
project (Brennan et al., 2013). We filtered 15399 missense, nonsense and frameshift 
mutations and their changes on the protein sequences in order to use in our further 
analysis. Additionally, we collected survival data of each patient in order to perform 
survival analysis between patient groups. 

3.2.2 The Universal Protein Resource (UniProt) 
 

The Universal Protein Resource (UniProt) (UniProt, 2008) is a platform having protein 
sequence and annotation such as function, subcellular localization, interaction, 3D 
structure etc. Its databases are the UniProt Reference Clusters (UniRef), the UniProt 
Archive (UniParc), the UniProt Knowledgebase (UniProtKB) and Uniprot Proteomes. 
UniRef was created by clustering protein sequences or sequence fragments from both 
UniprotKB and UniParc in all organisms deposited in Uniprot as sets of sequences 
containing 100%, 90% and 50% sequence similarities (UniRef100, UniRef90, UniRef50, 
respectively) to the longest sequence in order to decrease the database size and increase 
the transfer speed. UniParc stores all the protein sequences form variety of sources to 
prevent the redundancy by giving an unique identifier for all the identical sequences 
regardless of being proteins of different species. As an important information, Uniprot 
also deposists complete sets of proteins in organisms which is called proteome of the 
organism. This, Uniprot Proteome stores 228,004 proteomes for different species 
including all the information from UniprotKB. From them, 16,485 proteomes were 
manually and algorithmically selected as reference to cover well-studied organisms. 
Lastly, UniProtKB deposits the annotation data about proteins from amino acid sequence 
to structural data coming from different publications and databases. It consists of two 
different sections: UniProtKB/Swiss-Prot which is manually curated and other is 
UniProtKB/TrEMBL which consists of computationally analyzed information. We 
retrieved Homo sapiens proteome in 20.11.2018 to get amino acid sequences, related gene 
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names and their synonyms, and also their status if corresponding Uniprot ID is reviewed 
or not (Proteome ID: UP000005640). 

3.2.3 Protein Structure Databases 
 

Since amino acid sequences of the proteins fold to be stable and functional with covalent 
and non-covalent bonds, every protein has its own 3D structure. Moreover, proteins work 
by interacting each other by their specific sites called “interfaces” and these interacting 
proteins also have unique structures. The structures of proteins and interacting proteins 
deposited in the databases and they can be both experimental or computationally 
predicted. While experimental structures are more accurate, the ratio of proteins having 
experimentally determined structures to proteins in the human proteome is very low. Also, 
experimental structures may not cover all the corresponding sequences fully. Therefore, 
we need computational methods to predict structures for filling the gaps. In this study, we 
retrieved experimental structures from Protein Data Bank (PDB) and computationally 
predicted structures from various resources. Since residue indices of the structure files 
generally do not follow the indices of Uniprot sequences, we aligned protein sequences of 
all structure files having at least one mutation to corresponding reference proteins’ 
canonical sequences in order to obtain the structural positions of the mutated residues for 
further analysis (Figure 3.2). 

 

Figure 3.2. Mapping mutated residues on 3D protein structures. Mutations that are far 
away from each other in sequence may have in close proximity in 3D structure. Therefore, 
we mapped sequence indices of mutated residues on 3D structure of the corresponding 
protein. 

 

a) RCSB Protein Data Bank (PDB) 
 

Protein Data Bank (Berman, Kleywegt, Nakamura, & Markley, 2014) is an open achieve 
stored experimentally determined 3D structures of biological molecules/macromolecules. 
It consists of more than 150000 structures of proteins, nucleic acids, protein-nucleic acid 
interactions, and also protein-small molecule complexes. 3D structures are the results of 
mainly X-ray diffraction, nuclear magnetic resonance (NMR) and cyro-electron 
microscopy experiments. In this study, we collected 1865 experimentally determined PDB 
structures having at least one GBM mutation. 

1D Information 3D Information
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b) Modbase 
 

Modbase (Pieper et al., 2011) is a database deposits computationally predicted protein 
structures. It uses Modeller algorithm (Fiser & Sali, 2003) based on homology 
(comparative) modelling which takes the sequence of target protein and searches for 
sequence similarity between all possible template proteins having 3D structures in order 
to identify the best structural template. This template is then used for formation of 3D 
structural model of the target protein. In this study, we retrieved 2430 computationally 
predicted structures from Modbase database. 

c) Interactome3D 
 

Interactome3D (Mosca et al., 2013) is a database for single and interacting protein 
structures constructed by both retrieving structural data from various databases and 
modeling protein interaction structures with its workflow. While it stores structures from 
both PDB and Modbase for single proteins, for interacting proteins it deposits all available 
PDB structures and predicts the missing structures by homology modeling using globular 
(PDB) and domain-domain (3did- Database of three-dimensional interacting domains 
(Mosca, Ceol, Stein, Olivella, & Aloy, 2014)) templates. Totally, it consists of more than 
12000 structures for interacting proteins. In this study, we collected all PDB, Modbase 
and Interactome3D data from Interactome3D, only 74 structures of interacting proteins 
come from Interactome3D modeling algorithm. 

d) Protein Interactions by Structural Matching (PRISM) 
 

Protein Interactions by Structural Matching (PRISM) (Tuncbag, Gursoy, Nussinov, & 
Keskin, 2011) is a method for prediction of protein-protein interactions and also 
construction of their structures computationally. While most homology modeling method 
hypothesizes that protein structures are more conserved than protein sequences, PRISM 
hypothesizes that interacting site of proteins (which are called “interfaces”) are more 
conserved than globular structures of the proteins. Therefore, it assumes that proteins can 
have similar interface motifs while they have different globular structures. The algorithm 
has four steps which are surface extraction of all target proteins, structural alignment of 
target surfaces and template interacting surfaces to find the best representative interface 
for target proteins, transformation for creation of structural file of interacting proteins, 
then filtering, flexible refinement and energy calculation both to eliminate structures 
having colliding residues and optimize the structure according to its energy. PRISM can 
be used in Linux environment for specified target proteins or pre-runned structures can be 
downloaded from PRISM web server. In this study, we retrieved 60 precalculated 
structures. Since their residue indices do not track with the indices of Uniprot, we did 
alignment to obtain Uniprot indices of interface residues. 
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e) Interactome Insider 
 

Interactome Insider (Meyer et al., 2018) is a tool which connects genomic variants to 
structural interactome. They retrieved 3D structure information of interactomes of seven 
species and calculated their interacting sites, interfaces, in order to annotate whether or 
not a given genomic variant is on interface. Experimental and homology modeling 
structures, however, are limited. Thus, they developed Ensemble Classifier Learning 
Algorithm to predict Interface Residues (ECLAIR) classifier which is a machine learning 
algorithm based on ensemble of eight random forest classifiers for interface prediction. 
The distinction from the above algorithms is that ECLAIR does not produce structure, it 
only predicts sequence indices of interacting residues. They enriched the interactome with 
185,957 more interaction having known interface by the help of ECLAIR. In this study, 
we collected Uniprot indices of interfaces in the database which covers PDB (340), 
Interactome3D (74) and ECLAIR (283). 

3.2.4 Disease Association of Mutations 
 

a) Evmutation 
 

EVmutation (Hopf et al., 2017) is a statistical method which predicts the effects of 
mutations using epistatic information with evolutionary conservation. The method gives 
a damage score for which each position in a Uniprot sequence is substituted by the 
remaining 19 amino acid. The more negative values of the calculated score means the 
more damaging the corresponding mutation. In this study, we collected precalculated data. 

b) Polymorphism Phenotyping v2 (PolyPhen-2) 
 

Polyphen2 (Adzhubei et al., 2010) is a tool which uses a learning based strategy to predicts 
the effect of mutations and then, interprets results as benign, possibly damaging or 
probably damaging. It uses structural and evolutionary considerations by using eight 
sequence- and three structure-based features. We retrieved again the precalculated 
mutation effect data for this study. 

3.2.5 Cancer Driver Effects of Mutation and Mutated Genes 
 

a) The Network of Cancer Genes (NCG) 
 

The Network of Cancer Genes (Repana et al., 2019) is a database for genes whose 
mutations have cancer driver effect to cells. The database consists of manually curated 
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information from publications and cancer sequencing screens. In this study, we collected 
only the known cancer genes and their tumor suppressor/oncogene annotations. 

b) The Catalogue of Somatic Mutations in Cancer (COSMIC) 
 

The Catalogue of Somatic Mutations in Cancer (COSMIC) (Tate et al., 2019) is a 
repository of somatic mutation effect in cancer. However, COSMIC includes data from 
targeted screens and genome screens for mutation data, structural genomic 
rearrangements, fusion, copy number variation, methylation etc. In this study, we only 
focused on COSMIC Cancer Gene Census (Sondka et al., 2018) project and its data which 
is a list of all cancer genes in COSMIC database. 

c) Cancer Genome Interpreter 
 

Cancer Genome Interpreter (Tamborero et al., 2018) is a platform which takes cancer 
genome and annotates its alterations for identifying if they have any driver effect for 
tumorigenesis or if they have any impact on response of treatments. Cancer Genome 
Interpreter consists of two parts: one is analysis which users can submit their list of 
alterations and interested cancer type and, obtain the results; other is the pre-runned 
datasets including Cancer Biomarkers, Cancer Genes (both prediction and literature-
based), Cancer Bioactivities and Validated Oncogenic Mutations. In this study, we only 
collected validated oncogenic mutations which was created by combining the data in 
Database of Curated Mutations (DoCM)⁠ (Ainscough et al., 2016), ClinVar (Landrum et 
al., 2016)⁠, Oncology Knowledge Base (OncoKB)⁠ (Chakravarty et al., 2017), The 
International Agency for Research on Cancer (IARC) (Petitjean et al., 2007) databases, 
and published experimental assays. We, then add the genes having validated oncogenic 
mutations to our cancer driver gene lists to enrich it. 

d) FireBrowse of Broad Institute 
 

Firebrowse of the Broad Institute is a platform providing Firehose analysis pipeline results 
on TCGA data. For each TCGA cancer type, FireBrowse gives results for clinical, copy 
number, methylation, micro RNA sequencing (miRseq), messenger ribonucleic acid 
(mRNA), RNA sequencing (RNAseq), mutation and pathway analyses. In this study, we 
used the results of mutation analysis on GBM cancer type from three different mutation 
analysis methods as Mutation Significance (MutSig) 2CV (Lawrence et al., 2013), 
Mutation Assessor (Reva, Antipin, & Sander, 2011) and Cancer-Specific High-throughput 
Annotation of Somatic Mutations (Wong et al., 2011) (CHASM) 1.0.5. MutSig 2CV 
calculates the gene significance by taking number of non-silent and silent mutations in the 
gene and, covariant space of neighboring genes. In this project, we took the genes whose 
P-value is smaller than 0.05 as significant genes. The more significant P-value means 
more probability to be a cancer driver gene. In this study, we only considered genes having 
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P-value smaller than 0.05 as cancer driver genes. Mutation Assessor calculates the 
functional impact scores for missense mutations by using evolutionary conservative 
patterns and provides these functional impacts as high, medium, neutral and low. In our 
analysis, we only considered genes having high and medium functional impact as 
significant genes. CHASM uses machine learning strategy to distinguish between driver 
and passenger missense mutations and gives the probability for each mutation according 
to selective survival advantage that is provided to the cancer cells by the mutation. In this 
analysis, we only considered mutations having P-value smaller than 0.05. 

3.2.6 PFAM 
 

Pfam (El-Gebali et al., 2019) is a depository for functional domains. Each protein consists 
of domain information for each index of its Uniprot sequence and also annotation of the 
functional domains. In this study, we retrieved domain information of each Uniprot 
sequence index of corresponding proteins. 

3.2.7 Cell Model Passports 
 

Cell model passports (van der Meer et al., 2019) is a database for 1634 cell lines and 
organoids from various type of cancers. It provides clinical and genomic data such as 
mutation profiles, gene expression (microarray/RNAseq), copy number variation, 
Clustered Regularly Interspaced Short Palindromic Repeats-Knock Out (CRISPR-KO) 
based essentiality, fusion, drug response and methylation data of models. While user can 
download the processed raw data from Cell Model Passports, they can also be directed to 
the raw data. In this study, we collected processed mutation profiles of GBM models. 

3.2.8 Genomics of Drug Sensitivity in Cancer (CancerRxGene) 
 

Genomics of Drug Sensitivity in Cancer (Yang et al., 2013) developed by screening 
models (cell lines) with different compounds to find drug response data and genomic 
markers of sensitivity of cancer models. For drug response, they use half maximal 
inhibitory concentration (IC50) which indicates in which concentration drug can reduced 
the activity of the cell in half. Additionally, they applied Z-transformation on the natural 
logarithm (ln) of IC50 values in each cell line screen. Therefore, each drug has a specific 
Z-value for each cell line. In this study, we downloaded drug screening results of GBM 
models and use Z-scores of drugs for corresponding cell lines. 

3.2.9 Interaction Reference Index (iRefWeb) 
 

iRefWeb (Turner et al., 2010) is a reference protein interaction data (interactome). It 
collects protein interaction information from various database: The Biomolecular 
Interaction Network Database (BIND) (Bader et al., 2001), Biological General Repository 
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for Interaction Datasets (BioGRID) (Stark et al., 2006), The Comprehensive Resource of 
Mammalian Protein Complexes (CORUM) (Ruepp et al., 2008), Database of Interacting 
Proteins (DIP) (Salwinski et al., 2004), IntAct (Hermjakob et al., 2004), The Human 
Protein Reference Database (HPRD) (Peri et al., 2003), Molecular Interaction Database 
(MINT) (Chatr-aryamontri et al., 2007), MPact (Guldener et al., 2006), Mammalian 
Protein-Protein Interaction Database (MPPI) (Pagel et al., 2005) and The Online Predicted 
Human Interaction Database (OPHID) (Brown & Jurisica, 2005). The weight of 
interaction represents by MINT-inspired score (MI score) which based on evidence that 
the interaction has such as publications, experimental method used for identification of 
the interaction. In this study, we used iRefWeb as weighted interactome in network 
reconstruction and filtered interactions having a MI score less than 0.4 and also the 
proteins such as UBC, APP, ELAVL1, SUMO2, CUL3 and the proteins huge in size 
(TTN, MUC16, SYNE1, NEB, MUC19, CCDC168, FSIP2, OBSCN, GPR98) to limit the 
noise coming from random mutations on these proteins as in (Hristov & Singh, 2017). 
Since they are huge and have very high degrees, they prone to have large number of 
mutations by chance and it may affect network construction. Moreover, we further filtered 
the interactions if they have structural information or not. 

3.3.   Identification of the 3D spatial clusters 

After collecting all cancer related/driver protein structures and protein complexes having 
at least one GBM mutation, we constructed a residue-residue interaction network for each 
structure. In order to construct residue-residue network, we first defined each amino acid 
of the structure as a node and added peptide bond between each of them as edge. Due to 
the nature of protein folding, residues who are distant to each other in sequence could be 
in close proximity in 3D space. Considering this situation, we calculated the distance 
between all atoms of each residue to all atoms of another residue to find the residues who 
are in close proximity with a distance formula (Equation 1). If the calculated distance is 
less than 5A, we considered these residues as interacting residues and added edge between 
them. Thus, we created residue-residue networks R(v,e) of all driver proteins having 
structure information and at least one GBM mutation as shown in Figure 3.3. In order to 
identify the 3D spatial clusters/patches, we mapped all mutated residues of a protein from 
all patients on each corresponding residue-residue network and searched for shortest paths 
between each mutated residue pairs with a length less than 3. After gathering all shortest 
paths in each residue network, we revealed mutation clusters which we named as patches 
where mutated residues are connected each other either directly or by the help of one 
residue between them, and singleton mutations which stay outside of any mutation 
clusters.  

𝑑 = 	$(𝑥' − 𝑥))' + (𝑦' − 𝑦))' + (𝑧' − 𝑧))'    (1) 
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Figure 3.3. Identification of 3D spatial organization of mutations on proteins. We started 
with considering all amino acid residues as nodes in residue-residue network of the 
protein. Then, we calculated the distance between each atom in each residue. If any of the 
calculated distance between amino acids is lower than 5Å, we added an edge between 
corresponding amino acids in residue-residue network in addition to peptide bond between 
amino acids. Afterwards, we mapped all mutated amino acids on corresponding protein 
across all the patients on to these constructed residue-residue network. Lastly, we searched 
shortest pathways between each mutated residue on the network in order to identify 3D 
spatial organization of the mutations: patch or singleton. 
 

In order to analyze preliminary if mutation patches decrease the heterogeneity, we 
grouped patients according to presence of each patch in these patients. First, we ranked 
the patches from most frequent one to lowest. Then, we took the most frequent patch and 
patients having mutation in this patch as our first group. Other groups were formed in the 
same way following the ranking order yet there are no common patients across the groups. 
When all the group has at least ten patients, grouping stopped. 

Peptide bonds are the 
main edges. (dark blue)

If residues are closer than 
5Å, an edge is added (red)

Final residue network of the 
protein

Graph : R(v,e)

Amino acid Mutated amino acid

Mutation as 
singleton

Mutations in 
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3.4.    Identification of protein regions and the effect of the mutations 

Proteins have unique 3D structures having different regions as core, surface and interface. 
While core regions buried inside, surfaces are the regions covering structures. Yet 
interfaces are on the surfaces, they are the regions where proteins interact with other 
proteins or nucleic acids. To identify where GBM mutations located, we firstly collected 
interface information from Interactome Insider which includes PDB, Interactome3D and 
ECLAIR data, and PRISM and found interface mutations. We then used FreeSASA 
software (Mitternacht, 2016), which can calculate solvent accessible surface area at 
residue level, in order to differentiate surface and core regions of the proteins. We labelled 
residues as surface residues if calculated relative solvent accessible surface area of the 
residue in its monomer state is greater than or equal to 5% and labelled as core residues if 
not. Since interfaces are on the surface regions, we also excluded interface residues from 
surface residue set. Figure 3.4 indicates the steps for identification of the protein regions. 
In this study, we only considered the structure files whose length greater than 50 residues 
for identification of protein regions. After finding location of the mutations, we classified 
the patches as intra- and inter-patches. While former intra-patches do not include interface 
mutations, inter-patches have at least one interface mutations. As an alternative scenario 
for the inter-patches is that mutations in the patches could elongate to partner protein by 
interface residues of both proteins.  

 

Figure 3.4. Identification of different protein regions on 3D structures. Firstly, we 
collected interface residues of all mutated proteins. Then, we used FreeSASA algorithm 
in order to differentiate buried residues than non-buried residues. While buried residues 
are core residues, non-buried of them could be surface or interface residues. When we 
excluded interface residues coming from various databases, we differentiated surface 
residues from the interface residues. 
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While non-synonymous mutations change the protein sequence and, thus the structure and 
function, impact of these mutations varies. Position of the mutation, cancerogenicity of 
the gene having the mutation or environmental factor can affect the disease association of 
the mutation. In order to calculate the effect of mutations as disease causing or neutral, we 
used EVmutation and PolyPhen-2 and compared the damage of the mutations based on 
their localization, spatial organization and their role in the cancer progression (tumor 
suppressors or oncogenes).   

3.5.    Reconstruction of patient-specific sub-networks and grouping of the patients 

3.5.1 Network reconstruction 
 

In this study, we used Forest module of Omics Integrator (Tuncbag et al., 2016) in order 
to construct patient specific sub-networks. It solves the prize-collecting steiner forest 
problem for a given reference graph G(V, E, w) where V is the node set {v|v ∈V}, E is 
the edge set {e|e ∈ E} and w is the edge weights. Prize collecting steiner forest problem 
tries to take as much as terminal nodes with additional proteins to connect them and as 
less as unreliable edge to produce optimum network from predefined input and parameters 
(Figure 3.5). The algorithm firstly uses the prize and cost functions in (Equation 2) and 
(Equation 3) respectively. (Equation 2) gives each node a prize on the basis of predefined 
weight p(v), beta (β), mu (μ) parameters, and the degree of the node in assigned reference 
interactome degree (v). By prize function, the algorithm can decrease the dominance of 
the hub proteins. (Equation 3) takes the interactome weight of each interaction as edge 
confidence p(e) and gives its edge cost c(e). 

                                                𝑝′(𝑣) = 	𝛽. 𝑝(𝑣) − 	𝜇. 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)                    (2) 

																																																																						𝑐(𝑒) = 1 − 𝑝(𝑒)                                       (3) 

 

Figure 3.5. Identification of affected protein-protein interactions and biological 
pathways.  
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After determining prize and cost functions, forest tries to minimize its objective function 
which is (Equation 4). The main idea is to pay penalty for each terminal if it is not 
included in the final network and pay the cost for each edge to connect nodes depends on 
its cost. Thus, algorithm tries to balance selecting and eliminating a set of nodes to 
decrease the penalty and the cost of their edges. Moreover, since Omics Integrator uses 
the Prize-Collecting Steiner Forest (PCSF) problem for a given set of terminal nodes with 
predefined prizes/weights, it is also important to adjust the function with suitable 
parameters which are µ (mu), ω (omega), β (beta) and D (depth). While µ is for scaling 
factor for hub proteins, ω is for tuning the number of trees in the final network. While β 
is scaling factor for adjusting dominance of terminal nodes in the final networks, D 
determines the number of edges from the root to the leaf nodes. 

																																																𝑓′(𝐹) 	= 	∑ 𝑝′(𝑣) + ∑ 𝑐(𝑒) + 	𝜔. 𝜅=∈?@A∉C@           (4) 

As an input of the algorithm, we provided filtered iRefWeb probability weighted protein-
protein interactions as the reference interactome for all patients, yet for each patient we 
prepared a list of driver genes having at least one non-synonymous mutation in the patient 
as terminal nodes. We also weighted each terminal node in each patient with the number 
of passenger and driver mutation it has since it is reported in (Burke, Perisic, Masson, 
Vadas, & Williams, 2012; Kan et al., 2010; Porta-Pardo et al., 2017), not all mutation on 
a driver gene have the same effect. For each passenger mutation, the weight increased 
with 0.5, however for each driver mutation we added 1 to the weight. In this study, 
different combinations of parameters were tried in order to include highest fraction of 
terminal (input) nodes in the final networks for each patient. Then, we used the parameter 
set as ω (omega) = 10.0, depth (D) = 6 and β (beta) = 10 and µ (mu) = 0.005 and µ = 0.01. 
Thus, we used two different µ values to recover the canonical pathways and more specific 
ones. Then we merged the node and edge set of the reconstructed networks to come up 
with a single network for each patient. 

3.5.2 Network-guided grouping of the patients 
 

Each patient specific sub-network consists of nodes and edges constructed by Omics 
Integrator. Rather than using mutated genes on each patient, we used node list of the 
reconstructed networks for pathway enrichment analysis with WebgestaltR (Wang, 
Vasaikar, Shi, Greer, & Zhang, 2017) package. WebgestaltR executes different 
enrichment analysis algorithm such as Over-Representation Analysis (ORA), Gene Set 
Enrichment Analysis (GSEA) (Subramanian et al., 2005) and Network Topology Analysis 
(NTA). It also uses different enrichment databases such as Kyoto Encyclopedia of Genes 
and Genomes (KEGG) (Kanehisa & Goto, 2000), Reactome (Joshi-Tope et al., 2005) and 
Wikipathways (Slenter et al., 2018). In our case, we used node list of our patient networks 
as input gene lists in “rnk” format and KEGG knowledgebase for enrichment database, 
and program gave overrepresented KEGG pathways and their enrichment scores for each 
patient. From them, we filtered the pathways which have False Discovery Rate (FDR) less 
than 0.1 as enriched pathways in the sub-network. We then eliminated disease pathways 
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including infections, cancer, addiction related pathways from resulting list. After having 
enriched pathways and their enrichment scores, we prepared a matrix where rows are 
union set of enriched pathways from all patients, columns are patient labels, and the entries 
are the enrichment scores of corresponding pathways in the corresponding patient. If the 
pathway is not enriched than 0 was put to that entry. We then used matrix for 
implementing non-negative matrix factorization (NMF) (Paatero & Tapper, 1994) which 
is an unsupervised approach to decompose matrix 𝑋 into individual elements 𝑊 and 𝐻 
(Equation 5).  

𝑋	 ≈ 𝑊.𝐻      (5) 

With a p x n dimensional matrix, 𝑋, has components: 𝑊 (p x r) which represents basis 
elements in its columns and 𝐻 (r x n) indicating the coordinates of the data points for the 
basis elements in W. H indicates the way to reconstruct the approximation as an linear 
combination of basis elements. We implemented this algorithm without a network 
regularizer and then consensus clustering from pyNBS package which is a Python 
implementation of Network Based Stratification (NBS) (Huang, Jia, Carlin, & Ideker, 
2018). In this package, NMF is applied for thousand times on subsamples of the real data. 
Sampling is random through 80% of the patients and genes are selected without 
replacement. The latent feature is the number of dimensions we reduced the initial matrix. 
In our study, we used it as 5. Then, from a thousand clustering results, a list of 𝐻 data 
frames are created. The consensus clustering (Monti, Tamayo, Mesirov, & Golub, 2003) 
uses these data frames and forms co-clustering matrix. This co-clustering represents the 
similarity of the patients which has been used to classify the patients. In order to determine 
if patient groups and survival information of their patients has a significant relationship, 
we implement survival analysis based on cox-proportional hazards model (Andersen & 
Gill, 1982) providing a P-value from comparison of whole model. Lastly, the patient 
groups were searched for whether any identified spatial patch has tendency to represent a 
group by using Hypergeometric Test. With this statistical approach, we will get how 
significantly mutations in specific patch occur in corresponding patient group. 

3.6.    Linking the patient groups to drug response 

In order to predict therapeutic responses of patient groups, we linked patient groups to 
GBM cell lines and then to drug responses. Firstly, we connected patient groups to cell 
lines using mutation information of cell lines from Cell Model Passports. If at least one 
mutation belonging to a predominant patch in a group is also present in the GBM cell line 
then the patient group is associated with that cell line. We then connected patient groups 
to drugs and responses. Yet, in order to connect them, we followed two steps: for the first 
step, we connected cell lines to drugs using drug sensitivity data from CancerRxGene; for 
the second one, we also collected target proteins for each drug, and connected patient 
groups to drug targets. If any drug target is also significantly enriched in sub-network of 
any patient group, and if the drug has already been associated with any cell line that has 
been associated with the patient group, then we linked the drug with the patient group. In 



26 
 

this study, we inferred drug responses of patient groups from the drug responses of the 
connected cell lines. We used Z-score of natural logarithm of (ln) IC50 values of each cell 
line to specified drugs. Due to the nature of Z distribution, we accepted values outside of 
(-1.96, 1.96) interval as significant values with a 95% significance. Drug responses of 
patient groups predicted from their corresponding cell line drug partners, whose Z-scores 
of ln(IC50) values below than -1.96 were labelled as sensitive and above than 1.96 labelled 
as resistant. This step is summarized in Figure 3.6.  
 

 
Figure 3.6. Summary of GBM cell lines patient group linkage. Patient specific 
subnetworks were used to identify 3D patch enrichment in each patient group. 
Additionally, merged networks of patient groups were used to obtain the overrepresented 
proteins in each group. Mutation data of GBM cell lines and signature 3D patches of 
patient groups were used to link the patient groups to cell lines. After having 
representative cell lines for each group, drug targets were used to connect patient groups 
to drugs. If a patient group is linked with a cell line and target of a drug which has a 
response information from the representative cell line, is overrepresented in merged 
network of patient group, then, the hypothetical therapeutics can be proposed. 
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CHAPTER 4 

 

4. RESULTS 

 

4.1.    3D Spatial Organization of GBM Mutations  

Out of 15,399 unique non-synonymous (missense, nonsense and frameshift) mutations 
across 290 TCGA-GBM patients, only 14,308 mutations are mapped on manually curated 
canonical UniProt entries of Homo sapiens proteome from which 697 of them are 
frameshift mutations and 13,611 of them are nonsense and missense mutations. We used 
UniProt sequences as the references for each protein in order to map mutations on to 3D 
structures. Since indices in protein 3D structure files do not track with UniProt sequences, 
we aligned each 3D structure sequence to corresponding reference UniProt sequence and 
found 4702 mutations were aligned to at least one protein structure either from PDB or 
from ModBase. Through residue-residue networks of 3D structures having at least one 
mutation, the spatial organization of 4702 mutations were calculated as described in 3.3. 
and, as a result we obtained 220 3D spatial patches comprised of 580 mutations and 4122 
singleton mutations which stay outside of patches. Thus, most mutations were found as 
singletons, while approximately 10% of the mutations are in close proximity to each other 
and form mutation patches. Additionally, we grouped precalculated patches as 160 intra-
patches which do not include any interface mutation and 60 inter-patches which have at 
least one interface mutation.  

We initially checked whether 3D spatial organization of mutations (patches) can affect the 
heterogeneity of mutation profiles by calculating and comparing the frequencies of 
mutations alone and in patches, separately. Despite the fact that the mean value of 
mutations in each patient is 50.43, only 213 mutations are present in at least two patients. 
If we increase the number to three patients, the common mutation number decreased to 
44. Thus, approximately 5% of the patients have the most common mutations which are 
289th position of EGFR from Alanine to Valine and 132nd position of IDH1 form 
Arginine to Histidine. On the other hand, we also tried to find the commonalities resulting 
from mutation patches in the patients. If a patient has a mutation in any precalculated 
patch, we evaluated that the patient has the patch mutation. While the mean value of 
patients sharing a mutation is 1.13, the value increases to 3.5 patients with at least one 
mutation in the same patch. When we sorted all patches based on their patient frequencies, 



28 
 

we found that TP53 and PTEN patches are the most prevalent among 20 percent of all 
patients resulting in better detection of commonality. Moreover, we also sorted all 
mutations in 3D patches, and we found that 289th and 598th positions of EGFR from 
Alanine to Valine and Glycine to Valine respectively are the most common the patients. 
In Figure 4.1 and Figure 4.2 that are the mutation and patch profiles of the patients, 
respectively; each column indicates a patient and each row shows a mutation in mutation 
profile and a patch in patch profile that are present in at least 2 percent of patients in both 
figures.  

 

Figure 4.1. Mutation profile of GBM patients. While each column represents a GBM 
patient, each row indicates mutation in any 3D patch that is present at least 2% of patients. 
 

 

Figure 4.2. 3D Patch profile of GBM patients. While each column represents a GBM 
patient, each row indicates 3D patch that is present in at least 2% of patients. 
 

On the basis of their most common mutations and patches, we divided patients into 
mutually exclusive groups and tried to assess the significance of association between 
patient groups and their survival data. While grouping based on mutation profile cannot 
show any significant result (P-value: 0.5115, Figure 4.3), grouping based on patches 
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indicates the advantages of spatial organization with a P-value as 0.0001 as shown in 
Figure 4.4. 

 

Figure 4.3. Kaplan-Meier survival curves of the patient groups in the mutation profile in 
Figure 4.1. 
 

 

Figure 4.4. Kaplan-Meier survival curves of the patient groups in the patch profile in 
Figure 4.2. 
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Afterwards, we mapped mutation patches of frequently mutated hub proteins to their 
functional domains in order to interpret the significance of association between clinical 
data and patient groups. As shown in Figure 4.5, different patches are mainly located in 
different functional domains of corresponding proteins.  

 

Figure 4.5. Mapping patches of frequently mutated hub proteins to their functional 
domains. Red colors represent the overrepresentation of patches in the corresponding 
domains. 
 
For example, P85α which is the protein encoded by phosphoinositide-3-kinase regulatory 
subunit 1 (PIK3R1) gene has two patches on different domains having different biological 
functions. While PIK3R1 Patch 1 is on inter-SH2 (iSH2) domain having the inhibitory 
function on phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
(PIK3CA) by binding p110 catalytic domain, Patch 2 is on SH2 domain where the protein 
binds to phosphorylated residues of activated tyrosine kinases which causes 
conformational change to relieve the inhibition of p110 (Liu, Knapp, & Ahmed, 2014; 
Thorpe et al., 2017) as shown in Figure 4.6. Clustered mutations on iSH2 domain of p85α 
was reported in GBM patients that can weaken the inhibition and resulting in a gain of 
function in PI3K activity (Sun, Hillmann, Hofmann, Hart, & Vogt, 2010). Another 
important tumor suppressor, PTEN has also two patches and these two patches are on 
different functional units. PTEN Patch 1 is on Dual specificity phosphatase (DSPc) which 
is Serine-Threonine and Tyrosine protein phosphatases and the catalytic domain. On the 
other hand, PTEN Patch 2 is on C2 domain where PTEN binds the phospholipid 
membrane. Phosphatase domain can get into contact with plasma membrane and then be 
activated by the help of C2 domain. Studies reported that mutations on C2 domain 
affecting PTEN-membrane affinity suppress the inhibition function of PTEN in GBM 
(Lee et al., 1999) and mutations in DSPc domain cause tumor progression by disrupting 
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the phosphatase function which results in PIP3 accumulation (Chalhoub & Baker, 2009; 
Georgescu, 2010)  in cells and thus the activation of AKT pathway. As a last example, 
PIK3CA which is a very well-known oncogene, has four different domains. However, two 
of them are mainly located in functional domains of PIK3CA. Patch 1 is located in P85 
binding domain and Patch 2 is on accessory domain (PIK domain) of PIK3CA. P85 
binding domain is important in inhibition of PIK3CA by regulatory unit. However, role 
of PIK domain has not been unresolved yet it is suggested that it may have a role in 
substrate presentation (Flanagan et al., 1993).  

 

Figure 4.6. Example of different domains of protein of PIK3R1 gene. P85 which is the 
protein of PIK3R1 has two functional domains as SH2 and iSH2. iSH2 domain can bind 
to p110 catalytical domain of PI3KCA and inhibits its function, while SH2 domain binds 
to phosphorylated residues of activated tyrosine kinases resulting in conformational 
change in the protein and relieves the inhibition of p110. 

Heretofore, we used all missense and nonsense mutations for identification of patches 
without differentiate driver and passenger mutations. Since driver genes are the propulsive 
force of tumor formation and progression, we prioritized only the mutations of driver 
genes and eliminated the noise of passenger mutations. We herewith collected cancer gene 
and mutation information from various sources as detailed in 3.2.5. We retrieved 6270 
driver mutations and 3789 driver genes in total. Yet, only 6278 of TCGA GBM mapped 
mutations are in list of collected driver genes and 2072 of them are on proteins having 
structural information. When we only focused on these driver genes having GBM 
mutations, we obtained 112 intra- and 32 inter-patches. 

Moreover, we investigated whether there is any association between properties of genes 
and patches on them. As in Figure 4.7, there are many intra-patches formed by less 
amount of mutations, yet the central proteins generally have larger inter-patches such as 
TP53 Patch 1 with 41, PTEN Patch 1 with 43 residues. Additionally, in Figure 4.8, PTEN, 
EGFR and PIK3CA patches are shown with their patch residues. While some proteins 
have patches on their own structures, some of them have patches shared by partner 
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proteins as in the case of PIK3CA and PIK3R1. We further compared the differences 
between tumor suppressors and oncogenes in terms of 3D spatial organization of their 
mutations. Analyzing spatial organization of tumor suppressors and oncogenes are 
important since they act oppositely such as oncogenes provide advantages to tumor cells 
by gain-of-function, yet tumor suppressors lose their ability to inhibit tumor cell formation 
or progression by loss-of-function. We found that driver mutations of tumor suppressors 
are significantly located in patches whereas diver mutations of oncogenes choose to stay 
as singletons (P-value = 8.33 x 10-6/ Fisher’s Exact Test). As an example of well-known 
tumor suppressors, PTEN has two patches consisting of 43 and 2 residues, TP53 has only 
one patch with 41 residues. On the other hand, oncogenes PIK3CA has three patches with 
10, 3, 2 and residues, respectively, EGFR has also three patches composed of 11, 14 and 
5 resides. While tumor suppressors have bigger patches, oncogenes tend to have relatively 
smaller patches and many singletons. This can be explained by the differences of 
underlying logic of loss-of-function and gain-of-function terms. The gain-of-function 
mutations are limited to very specific sites, whereas proteins can be inactivated variety of 
ways. These results agree with the previous studies. As an example, in (Fujimoto et al., 
2016), it is discussed that mutations in oncogenes tend to be clustered in a few regions but 
mutations in tumor suppressor can be distributed over functional domains. Moreover, we 
compared the types of non-synonymous mutations between oncogenes and tumor 
suppressors and found that frameshift and nonsense mutations are significantly more 
frequent in tumor suppressors (P-value = 1.84x10-15/ Fisher’s Exact Test). Both frameshift 
and nonsense mutations may result in abnormal proteins. In case of tumor suppressors, 
these types of mutations can disrupt the suppressor proteins completely, making cells 
more vulnerable to cancer. 

 

Figure 4.7. Histogram of the patch sizes for intra- and inter- patches. While many intra-
patches formed by less amount of mutations, the central proteins generally have inter-
patches consisting of larger number of mutations. 
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Figure 4.8. Examples of 3D mutation patches on protein structures. PTEN Patch 1 has 
43 residues and it is an example for mutations forming a residue network from the 
surface to the core. EGFR has three patches with different sizes: 11, 14 and 5 residues, 
respectively and EGFR is an example for protein having multiple patches. Lastly, 
PIK3R1-PIK3CA complex has three inter-patches and they are an example for proteins 
having common patches. 
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4.2.   Characteristics of the GBM mutations from the structural and chemical 
perspectives  

4.2.1. Structural positions and chemical characteristics of the GBM mutations 
 

Structural locations and physicochemical properties of the mutated residues can enlighten 
the molecular mechanisms which are affected by them in tumor cells.  We thus divided 
mutations according to their locations into three groups (surface, interface and core) as 
detailed in 3.4. While surface and interface are on the regions where there is solvent 
accessibility, core regions are buried inside of the structure and there is no solvent 
accessibility. The difference of interface over surface is having residues which are 
physically contacting to a partner protein. In our study, we found that most of the 
mutations (65.6%) are located in surface regions of corresponding structures although 
only 18.3% and 16.1% of the mutations are on core and interface respectively. The 
detailed numbers of mutations mapped to protein structural regions are indicated in Table 
4.1. Since interface mutations can change the interaction profile of proteins and thus 
change the wiring of cell networks, we also investigated whether mutations of interface 
region significantly tend to form spatial patches or stay as singleton. Then, we found that 
interface mutations are statistically more populated in spatial patches than non-interface 
mutations with a P-value smaller than 0.0001 (Fisher’s Exact Test). A graphical 
representation for fraction of patch and singleton mutations according to their locations is 
shown in Figure 4.9. 

Table 4.1. Number of mutations mapped to protein structural regions. 

 

Number of mutations from TCGA: 15399 

Structural Region All PDB Models 

Core 861 372 ModBase: 489 

Surface 3084 1153 ModBase: 1931 

Interface 757 340 Interactome3D: 74 

PRISM: 60 

éclair: 283 

Total 4702 1865 2837 
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Figure 4.9. Fraction of core, interface and surface mutations according to their 3D spatial 
organizations. 

Chemical properties of the residues in an amino acid sequence determine the final folded 
structure of protein. These properties were defined as hydrophobic, charged and polar. 
Any changes in the DNA sequence may change the amino acid in protein and thus the 
chemical property of the residue which may result in disruption of overall or partial protein 
function. For example, while proteins with larger core region are generally robust to 
mutation (Faure & Koonin, 2015), it is reported in (Guo, Choe, & Loeb, 2004) that core 
region is sensitive to non-hydrophobic changes due to their disruptive effect on the 
structure. Since the changes are important in protein function, we also analyzed switches 
or preservation of wild type chemical classes in each mutated residue on driver proteins 
according to their 3D locations. As indicated in Figure 4.10, surface and interface 
mutations demonstrate similar pattern, yet core mutations are slightly different from those. 
Overall, surface and interface residues are more open to change their chemical properties 
with a P-value as 1.81 x 10-11 (Chi-square test). While core residues mostly preserve their 
hydrophobic character, surface and interfaces are more prone to change their character 
from charged to charged and to polar. There are also changes hydrophobic to polar and to 
charged, yet they are less frequent. While Figure 4.10 indicates a high frequency in 
changes from hydrophobic to hydrophobic in surface and interface residues, this is less 
than expected frequency with a P-value as 2.29 x 10-42 (Chi-square test). Additionally, we 
found that mostly changed interface residues are the charged ones and in (Nishi et al., 
2013), they found that GBM mutations are mostly altering the electrostatic component of 
binding energy with a destabilizing effect. As a result, chemical class changes are 
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expected to be functionally critical and alter the protein binding or solubility 
characteristics. 

 

 

Figure 4.10. Fraction of chemical property changes of mutated driver proteins according 
to their physical locations. 

While positions of mutated residues can be same between patients, they can be mutating 
to different amino acids. We also investigated these kinds of alterations between patients 
and we found 70 unique positions. As an example, Proline appeared to be mutated to 
Arginine at 596th position of EGFR in one patient while it is mutated to Leucine or Serine 
in other patients. We also checked whether their chemical properties are also changing 
differently, or they are mainly located in specific protein location. We found that they are 
mostly located in surface and interface residues and 63% of all them were originally 
charged amino acids which are altering generally to polar or preserving charged class. 

4.2.2. 3D mutation patches and disease association 

Heretofore, we analyzed locations and chemical properties of mutated residues, Since all 
alterations do not have the same impact on protein structures, we further assessed the 
effect of mutations on their disease-causing potential. We applied two different methods 
to the mutations by separating them according to their locations. Evmutation is the first 
method which uses an unsupervised statistical method inferring the impacts of mutations 
via taking into account co-evolution and epistasis. The latter one is PolyPhen-2 which uses 
a learning-based strategy to infer the impact of mutation by incorporating sequence and 
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structure based properties. Since these methods have not been trained for cancer 
mutations, we first applied them on to all mutations whether they can differentiate cancer 
driver gene mutations than passenger mutations and we found that both methods classified 
the mutations on driver genes as more damaging (P-value according to EVMutation = 6 
x10-44/Student’s t-test, P-value according to Polyphen2 = 2 x10-64/Chi-square test). In 
addition to driver genes, we also found that mutations on tumor suppressors are slightly 
more damaging than oncogenes with a P-value as 0.015 (Student’s t-test) according to 
EVmutation.  

We, then focused on impacts of mutations based on their structural locations and found 
that core and interface mutations are more damaging than surface mutations. As shown in 
Figure 4.11 (PolyPhen-2) and Figure 4.12 (EVMutation), both methods identified that 
surface mutations are the least damaging mutations yet only PolyPhen-2 found mutations 
in core region as the most damaging ones across all of them (P-value = 0.004/Chi-square). 
When we integrated the spatial organization information with 3D location, we also found 
that interface mutations in patches are more damaging compared to singleton mutations 
with a P-value as 0.002 (Chi-square test). Afterwards, we analyzed 487 interface 
mutations on driver genes and having PolyPhen-2 results. Since some proteins are more 
central than other ones and mutations on their interface regions can affect much more 
interactions, we further divided driver proteins having interface mutations into two classes 
which are frequently mutated proteins and the rest. As detailed in Table 4.2, 81% and 
93% of singletons and patch mutations are damaging, respectively. While both 
percentages are relatively high, the impacts of mutations on frequently mutated proteins 
and the rest are different. Patch mutations are more damaging in frequently mutated 
proteins with a P-value as 0.00028 (Chi-square test) yet singleton mutations are more 
damaging in the rest of the proteins with a P-value as 0.00029 (Chi-square test).  As a 
result, cancer mutations on interface region of central proteins are significantly located in 
mutation patches while interface mutations in other proteins stay as singletons. 

Table 4.2. Disease association of singleton and patch mutations in the interface region of 
the hubs and the rest. 

 Frequently mutated 
proteins 

Rest Total 

Patch Singleton Patch Singleton Patch Singleton 
Benign 1 5 7 67 8 72 
Possibly 
Damaging 

11 0 2 63 13 63 

Probably 
Damaging 

69 1 21 240 90 241 

Total 81 6 30 370 111 376 
 



38 
 

 

Figure 4.11. Fraction of mutations according to their PolyPhen-2 disease association in 
different locations (Chi-square test). 

 

 

Figure 4.12. EVmutation disease association score distribution of mutations on different 
locations. The more negative score implies that the mutation is more damaging (Student’s 
t-test). 
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4.2.3. Characteristics of interface mutations 
 

While some proteins interact with only one partner protein, others can interact with several 
proteins through using same or different interfaces. We classified interfaces into 3 groups 
as namely ‘one interface, one partner’, ‘one interface, shared by multiple partners’ and 
‘multiple interfaces, used by different subsets of partners. Corresponding numbers of each 
group are represented in Table 4.3. In our study, most of the proteins including interface 
mutations have multiple partners and affect 6144 interactions in total. When we 
investigated tendency of their spatial organizations, we found that mutations on proteins 
having multiple interfaces are mostly located in patches yet interface mutations on 
proteins with a single interface stay as a singleton (P-value = 5.32 x10-43/Chi-aquare test).  

Two of the interface groups are shown as examples in Figure 4.13. The first one represents 
‘multiple interfaces used by different subsets of partners’ with PTPN11 protein interacting 
with both GRB2 and ERBB2 proteins through different interfaces. There are two different 
mutations on 510th and 69th position of PTPN11 on different interface surfaces. On the 
other hand, in the second one, we represented ‘one interface used by one partner’ group 
with TP53 protein which interacts both TP53BP2 and BCL2L1 through a shared interface. 
There is a mutation on 178th position of TP53 which can affect both of the interactions.  

In order to better demonstrate the affected interfaces, we used network representation as 
in Figure 4.14. In this figure, there are two types of edges: one is between mutations which 
corresponds that they are on the same or overlapping interfaces, the second one is between 
protein and mutation which represents the interface of the protein. Therefore, mutations 
on 436th and 395th position of RB1 are on the same interface yet, mutation on 556th 
position is on different interface. While interface 1 of PIK3CA has so many mutations, 
interface 3 of PIK3CA has only one mutation. However, none of the mutations in PIK3CA 
and RB1 is used exclusively for binding to a single partner.  

Table 4.3. Numerical information of mutations in each interface type. 

 Number of 
mutations 

Number of 
genes 

Number of 
cancer genes 

One interface, one partner 241 216 117 

One interface, shared by multiple 
partners 361 325 206 

Multiple interfaces, used by different 
subsets of partners 155 35 23 
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Figure 4.13. Representation of two types of proteins having one or multiple interface 
regions. The left part represents proteins having multiple interfaces (PTPN11) with 
different subset of partners and the right part represents proteins having one interface 
(TP53) shared by different partners. 
 

 

Figure 4.14. Network representation of RB1 and PIK3CA interface mutations. In the 
networks, mutations and proteins are nodes and edges symbolize both shared partner 
between mutations, interface between mutations and proteins. 
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Several previous studies have been reported that interface mutations are more likely to 
disrupt protein interactions in different diseases. Chen et al. studied interface mutations in 
autism disorder and compared siblings with and without the disease (Chen et al., 2018). 
They found that interaction disrupting mutations in sibling with autism have generally 
impact on central proteins and affect significantly high number of interactions compared 
to unaffected sibling. Raimondi et al. found that there are also distinct differences in these 
disrupting interactions between different cancer and histological subtypes (Raimondi et 
al., 2016). Additionally, Sahni et al. also reported that mutations in healthy individuals 
rarely affect interactions yet approximately 65% of disease related variants perturb 
protein-protein interactions (Sahni et al., 2015). Besides this information, they also 
integrated mutation information with protein networks and found that these variants are 
generally affecting only some of the interactions rather than disrupt all the interactions. 
Therefore, these kinds of integrative approaches have potential to enhance genotype-to-
phenotype relations. Thus, we also checked the GBM mutations having structure 
information and we found that GBM mutations are also significantly more frequent in the 
interface region than the rest with a P-value far smaller than 0.0001. We then analyzed if 
there is also any tendency for hub protein interactions. In our dataset, there is 87 highly 
connected proteins with 1263 interactions which is 14.5 interaction in average yet 
remaining 3013 proteins only have 4412 interactions with an average as 1.47 per protein. 
Our result represents that these highly connected hub proteins (TP53, EGFR, PTEN, 
PIK3CA) are likely to have multiple patches in their interface regions and interface 
mutations are mostly located in the patches of these hubs as indicated in Figure 4.15. 

A 
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Figure 4.15. 3D spatial organization of interface mutations. A. Proteins having at least one 
interface mutation are classified as “proteins having multiple patches”, “proteins having 
single patch” and “proteins without any patch”. High degree proteins (hubs) in the 
interactome prone to include multiple patches on their interface regions. B. Hub proteins 
prone to have interface mutations locating on patches. For this graph, only the proteins 
having at least one patch on their interface regions are shown. 
 

4.3.    Patient specific sub-networks from mutation profiles and patient groups from  
pathway similarities 

Mutations on distinct proteins may alter same pathways yet mutations on same protein but 
on different interfaces may change different pathways. This behavior can alter the wiring 
of interactions between proteins thus may change the signaling propagation. Since 
functional pathway information cannot be uncovered by comparing only mutated proteins, 
we used network modeling approach by implementing Forest module of Omics Integrator 
to reconstruct patient specific sub-networks. By prioritizing mutated proteins, the 
algorithm connects them to intermediate ones and thus reveals affected biological 
pathways. As a result, sub-networks for 205 patients were reconstructed and reduced into 
137 unique KEGG pathways in total. We then grouped the patients according to 
corresponding set of overrepresented pathways and their enrichment scores. In this way, 
we have used affected biological functions which reveal the disease phenotype. When we 
applied consensus clustering (Figure 4.16) followed by non-negative matrix factorization 
(NMF), patients were classified into five groups on the basis of their pathway similarities. 
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Figure 4.16. Co-clustering frequency matrix. 

 

In addition to enrichment analysis on patient specific subnetworks, we performed 
enrichment analysis for each patient to their list of mutated proteins in order to indicate 
the advantages of network-guided analysis. As a result of this analysis, we obtained six 
significantly enriched pathways for only 11 patients. These pathways include EGFR 
signaling and Glioma pathways which are not informative enough for further analysis to 
stratify the patients. 

In order to assert an association between patient groups and clinical outcome, we 
performed survival analysis for each group. As indicated in Figure 4.17, there is a 
significant difference between the survival plot of each groups with a multi class log-rank 
P-value as 0.0408. Across patient groups, Group 5 has the highest survival with 450.09 
days yet, survival of Group 4 is only 259.75 days as the lowest. Additionally, we compared 
the three known GBM transcriptomic subtypes which are classical, preneural and 
mesenchymal (Q. Wang et al., 2017), only Group 2 shows significant enrichment in 
classical subtype (P-value = 0.016/ Hypergeometric test).  
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Figure 4.17. Kaplan-Meier survival plots of the patient groups classified with NMF and 
consensus clustering. 

While some pathways are significantly active across all patient groups, some of them are 
enriched in specific patient groups or specific set of patient groups since groups were 
classified according to their overrepresented pathways. Predominant pathways for each 
patient group were indicated in Figure 4.18 except Group 4 which did not enriched in any 
pathway. While Rap1, EGFR, and TNF signaling pathways are common in all groups, 
TGF-beta signaling and Hippo signaling are predominant in Groups 5 and Group 2, 
respectively. Jak-Stat pathway is present in all except Group 5. While mTOR and Hif-1 
signaling pathways are enriched in Groups 2 and 3. In addition to enriched pathways, we 
calculated overrepresented 3D patches in each patient group as indicated in Figure 4.19.  
PTEN Patch 1 and TP53 Patch 1 are found in all patient groups except Group 3 and Group 
4, respectively. While there are less amount of patches are found in two patient group 
concurrently, a high fraction of patches are mainly found in specific patient groups such 
as EGFR Patch 3, BRAF Patch 1, PTEN Patch 2, PIK3R1 Patch 1, RB1 Patch 1 and Patch 
1,3 and 4 of PIK3CA. Moreover, we observed that different patches of same protein can 
be enriched in different patient groups as in the case of EGFR and PTEN patches. 
Additionally, BRAF mutations V600E and G596D form a 3D patch in only Group 5.  

When we focused on interface mutations, we found that totally 318 interactions in patient 
networks were affected. For each patient group, number of affected interactions are 23 for 
Group 1, 82 for Group 2, 36 for Group 3, 8 for Group 4 and lastly 223 for Group 5. When 
we deeply analyzed, we found interaction of EGFR to MAPK8IP1, CAV1, RIN1 and 
SHC1 are the most common ones in 34 patients. 
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Thereafter, we merged the patients in each patient group in order to obtain union networks. 
We illustrated a sample merged network of Group 1 in Figure 4.20. Since groups were 
formed according to pathway similarity, mutated proteins in each patient are not the same. 
We indicated this difference by using pie chart for each node. This pie charts indicate the 
ratio of being mutated as red and not mutated as blue. Some nodes are fully blue since 
they were added to the network as intermediate nodes to connect the mutated proteins. For 
example, NFKBIA is intermediate proteins that do not have a mutation in any patient in 
Group 1, yet it connects mutated proteins including IKBKB, TP53, NFKB1. Another 
example is CTNNB1 which is an intermediate protein found in Group 3 to connect 
proteins such as PIK3R1, AKT1, LRP2. In this way, mutated and intermediate proteins 
complete the signaling propagation thus pathways can be detected in enrichment analysis. 
Additionally, not every protein is included in each patient group, hence we indicated the 
frequency of the protein through size of the node. Similarly, edge thickness represents the 
frequency of that edge in group.  

When we investigated common nodes in each union network, TP53 which is a very well-
known hub protein comes to the forefront. However, other central proteins such as IKBKG 
and MDM2 are specific to Group 1 and Group 2, respectively. In general, there are 971 
total proteins in the union networks. From them only 17 proteins are common in all groups 
(Group 4 was excluded due to its small size) whereas 685 proteins are present only in one 
group. 

4.4.    Potential therapeutic targets for each patient group  

According to result of section 4.3 represented in Figure 4.17, there is a significant relation 
among patient groups and survivals which indicates that patient groups may have similar 
clinical background and thus similar response to therapies. In order to analyze drug 
response of patient groups, we collected 37 GBM cell lines deposited in Cell Model 
Passports which both have mutation and drug sensitivity data. These cell lines have 13,243 
unique mutations and only 16 of the mutations are located in pre-calculated 3D spatial 
patches on proteins such as RB1, BRAF, EGFR, PTEN and TP53 which are also present 
significantly in one or more patient groups. However, the reduction in the quantity of 
remaining mutations decreases the number of cell lines that we can use to link patient 
groups to cell line to 17. Moreover, we collected 73 drugs, their targets and responses of 
these 17 cell lines to them. In order to infer potential therapeutic responses of patient 
groups, first we found the best representative set of cell lines for each patient group and, 
all drugs that are targeting proteins which are significantly present on corresponding 
patient group’s network and have drug sensitivity data for at least one representative cell 
line. 
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Figure 4.18. Enrichment of KEGG pathways across the patient groups. Reds indicate the 
enrichment of corresponding KEGG pathway in corresponding patient group (except 
Group 4 which does not have any KEGG pathway dominantly enriched in its patients). 
 

 

Figure 4.19. Predominant 3D patches in each patient group. Red indicates 
overrepresentation of the patches in corresponding patient group. 
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Figure 4.20. Merged network of Group 1. While red color represents how many patients 
in the patient group has corresponding protein as mutated, and blue color represent how 
many patients in the patient group has corresponding protein as non-mutated which means 
being an intermediate protein connecting mutated proteins. Node size and edge thickness 
are the frequency of the corresponding node and edge in the patient networks in the group 
 

In Figure 4.19, all the overrepresented 3D patches are indicated for each patient group 
such that RB1, TP53, PTEN, patches are enriched in Group 2 yet TP53, PTEN patches 
without RB1 are significantly present in Group 1. At the same time, PTEN, TP53 and 
BRAF have a strong tendency to be present in Group 5. Moreover, two patches of PTEN 
are significantly represented in different groups. Through these signature 3D patches 
intersected with cell line mutations, we linked patient groups to cell lines. According to 
our results as represented in Figure 4.21, Group 1 is connected to cell lines which are 
linked to TP53 Patch 1 and PTEN Patch 1, while Group 3 and Group 4 are connected to 
cell lines that have at least one mutation in TP53 Patch 1 and PTEN Patch 1, respectively. 
Group 2 linked to cell lines using TP53 Patch1, PTEN Patch 1 and RB Patch 1 patches 
yet Group 5 does not use RB1 Patch 1. After obtaining drugs which were exposed to linked 
cell lines and targets of them, we first checked if these targets are present in networks of 
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patient groups. As represented in Figure 4.21, only Group 2, Group 3 and Group 5 include 
drug targets in their networks. With this study, from mutation patches and group networks 
to drug responses, we can connect patient groups to drug with specifying their response 
information. Below each connection will be detailed. 

 

 

Figure 4.21. Patient groups, cell line and drug linkages. Yellow box represents patient 
groups, pink triangles are drug representations. Blue box is shared patched, green eclipse 
connected cell lines and purples are targets of the drugs. The color of the edges between 
cell lines and drugs represent the drug response: blue as resistant and red as sensitive. 
 

We connected Group 2 to CP466722 by ATM, to RO3306, CGP-60474 and AT7519 by 
CDK1 and, to AZD7762 by CHEK2. Moreover, we linked Pazopanib with Group 3 and 
Group 5 via CSF1R and PDGFRB, respectively. Additionally, Group 5 can also be linked 
to AZD7762 with CHEK2 and, to WZ3105, Saracatinib and WH-4-023 by SRC protein.  

CP466722 is an inhibitor of ATM (ataxia telangiectasia-mutated) protein kinase which 
has a role in repairment of double-strand break induced by ionizing irradiation. Since the 
blood brain barrier limits the chemotherapeutic options, radiation therapy is considered as 
a primary option. However, most of the patients develop resistance to radiation and 
disease recurrence happens. It is reported that ATM may be linked with radiotherapy 
resistance (Estiar & Mehdipour, 2018), and several studies have indicated that ATM 
inhibition can make cell sensitive to radiation (Li et al., 2017; Rainey, Charlton, Stanton, 
& Kastan, 2008). Li et al. (Li et al., 2017) used shRNA to inhibit ATM expression with 
radiation therapy on glioma stem cells and found weakening in cell proliferation and 
lowering in survival. Yet in our study, we found that Group 2 may be resistance to ATM 
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inhibition as indicated in Figure 4.22. In overrepresented pathways, Group 2 also shows 
a resistance profile to platinum-based drugs which create breaks on DNA and lead to 
apoptosis in tumor cells. As a result of these profiles, Group 2 GBM patients may develop 
another DNA repair mechanism to escape from damages.  

 

Figure 4.22. Hypothetical therapeutic proposal for Group 2 patients by using ATM as 
target protein. 

Additionally, RO3306, CGP-60474 and AT7519 are both cyclin dependent kinase (CDK) 
inhibitors. While RO3306 is specifically inhibits CDK1 which is responsible for the G2/M 
phase transition, others are not specific to any CDK. Moreover, Group 2 only sensitive to 
RO3306 (Figure 4.23), yet resistant to CGP-60474 and AT7519. In cell, CDK1 binds to 
cyclin B and accumulates during G2 phase in an inactive phosphorylated position. G2/M 
transition is mediated by cell division cycle 25 (CDC25) phosphatase which activates 
CDK1-cyclin b complex by dephosphorylation and thus starts mitosis in the cell (Vassilev, 
2006). Selectively inhibiting CDK1 is important since non selective inhibiting has been 
reported as causing significant cytotoxic effects resulting from loss of CDK7 and CDK9 
in vivo (Bose, Simmons, & Grant, 2013). Based upon the information form recent study 
(Jorda et al., 2018) which compared several inhibitors and found RO3306 as the most 
suitable compound for inhibition of CDK1, we may assert that RO3306 can be a potential 
therapeutic for Group 2 patients due to its selectivity to CDK1.  
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Figure 4.23. Hypothetical therapeutic proposal for Group 2 patients by using CDK1 as target protein.  

Further, AZD7762 is a selective checkpoint kinase inhibitor (CHK1 and CHK2) 
(Zabludoff et al., 2008). CHK2 is the product of CHEK2 gene and acts as tumor 
suppressor by inhibiting CDC25 which activates CDKs to enter mitosis phase, in case of 
double stranded breaks on DNA. It has role in DNA repair, cell cycle arrest and apoptosis 
(Sallinen, Ikonen, Haapasalo, & Schleutker, 2005). However, both Group 2 and Group 5 
represented a profile as resistant to AZD7762 (Figure 4.24).  

 

Figure 4.24. Hypothetical therapeutic proposal for Groups 2 and 5 patients by using 
CHEK2 as target protein. 

Pazopanib which is a multi-targeted receptor tyrosine kinase inhibitor, is linked to Group3 
and Group 5 through its targets Colony Stimulating Factor 1 Receptor (CSF1R) and 
Platelet Derived Growth Factor Receptor Beta (PDGFRB), respectively. Colony 
Stimulating Factor 1 (CSF1) binds to CSF1R and activates several signaling pathways, 
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including Ras/Raf/Mitogen-Activated Protein Kinase (Ras/Raf/MAPK), 
Phosphatidylinositol-3-Kinase (PI3K) and Janus Kinase/Signal Transducers and 
Activators of Transcription (JAK/STAT) pathways which are important mainly in 
proliferation and dysregulation of these pathways results in tumor formation/progression. 
Moreover, CSF1R and CSF1 have a role in migration, differentiation, and survival of 
Tumor-Associated Macrophages and Microglia (TAMs) which have tumor permissive 
and immunosuppressive characteristics and they are highly available in glioma 
microenvironment. CSF1, the ligand of CSF1R, is responsible for the differentiation of 
TAMs to pro-tumorigenic. Therefore, inhibition of CSF1R results in the differentiation of 
the macrophages and makes them more anti-tumorigenic (Cannarile et al., 2017; Ries et 
al., 2014). As another target of Pazopanib, Platelet Derived Growth Factor Receptor Beta 
(PDGFRB) protein is a receptor tyrosine kinase and functions as a cell surface receptor. 
It activates cell proliferation and survival. Additionally, it is proven that PDGFRB is 
overexpressed in GBM cells and very important for self-renewal (Papadopoulos & 
Lennartsson, 2018). Therefore, as shown in Figure 4.25, we suggest that Group 3 and 
Group 5 might be sensitive to a treatment based on Pazopanib. 

 

Figure 4.25. Hypothetical therapeutic proposal for Groups 3 and 5 by using CSF1R and 
PDGFRB as target proteins, respectively. 

As a last example, SRC protein is a target of WZ3105, Saracatinib and WH-4-023 in 
Group 5, and a non-receptor protein tyrosine kinase playing an important role in growth, 
adhesion, and differentiation (Roskoski, 2015). It is also a component of several cell 
signaling pathways including Epidermal Growth Factor Receptor (EGFR), ERBB, and 
Ras-Associated Protein-1 (Rap1) signaling pathways. WZ3105 which is a kinase-
inhibitor, targets SRC. The cell line D-452MG connecting with Group 5 is resistant to this 
compound, thus we suggest that Group 5 might be possibly resistant to WZ3105 (Figure 
4.26). 
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Figure 4.26. Hypothetical therapeutic proposal for Group 5 patients by using SRC as target protein. 
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

 

GBM has remained an incurable form of brain tumor by the reason of molecular 
heterogeneity which is the main obstacle to development of efficient therapies for each 
particular patient context. In this study, we concentrated on organization of GBM 
mutations both in protein structures and protein-protein interaction networks to uncover 
differences and commonalities across patients. Thus, we used a systems level approach 
from mutation profiles to patient-specific subnetworks and clinical outcome. Firstly, we 
analyzed individual mutations of 290 GBM patients coming from TCGA on basis of their 
spatial organization on 3D structures of proteins and interactions, physicochemical 
characteristics, oncogenic properties, and disease associations. Then, we continued with 
unearthing the affected functional pathways from network arrangements of mutated 
proteins, and classification of the patients based on their overrepresented pathways. 
Lastly, we linked each patient group to related drugs and responses of these drugs in order 
to propose hypothetical therapeutics.  

From structural point of view, out of 15399 mutations, 4702 mutations have structural 
information and only 10% of them are on spatial 3D groups. Although there is a small 
portion of all mutations, we realized that different 3D patches of a protein are located in 
distinct domains that could have distinct functional consequences and also different 
phenotypic impacts for patients. By using this information, we grouped the patients into 
mutually exclusive groups based on their most common patches. We reduced the 
heterogeneity across patients through 3D spatial organization according to statistically 
significant association between patient groups and their survival curves. While patient 
group included at least one mutation in TP53 patch or EGFR patch shows a better survival 
than patient group having at least one mutation in PI3K patches. Therefore, the strong 
association between patient groups and their survivals indicates that patients with similar 
3D spatial organization in their proteins may have similar disease phenotypes which may 
represent similar affected functions and pathways in the tumor cells and this result 
suggests that 3D spatial organization of mutations can help to overcome the obstacle 
resulting from molecular heterogeneity. 
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Moreover, we found an association between protein oncogenicity and spatial organization 
or their mutations. We found that driver mutations of tumor suppressors and oncogenes 
act statistically different. While tumor suppressor driver mutations tend to be in patches, 
driver mutations in oncogenes tend to be singletons. Further, patches of tumor suppressor 
are statistically larger than the patches on oncogenes. This result agrees with the idea that 
tumor suppressors can be functionally damaged in several ways thus their mutations could 
be distributed however, making a protein active needs specific alteration. When we 
analyzed the types of mutations in different oncogenic proteins, we found that nonsense 
and frameshift mutations are more frequent in tumor suppressors which could make them 
unfunctional. 

By using structural information of the mutations, we divided them as core, surface and 
interface mutations and found that GBM mutations are more frequently located on 
interface regions. We further found that these interface mutations are mostly populated in 
spatial patches. As a physicochemical point of view, changes in the chemical properties is 
functionally critical and alter the protein binding or solubility characteristics. Thus, we 
also analyzed switches or preservation of wild type chemical classes in each mutated 
residue on proteins according to their 3D locations. While core mutations tend to preserve 
their hydrophobic characters, interface and surface mutations are significantly more tend 
to change. Charged interface mutations are more prone to change and our study agrees 
with the result of previous study about interface mutations and their impacts on altering 
the electrostatic component of binding energy with a destabilizing effect (Nishi et al., 
2013). As disease association point of view, the most damaging mutations are the core 
ones followed by interface and the least damaging one is the surface mutations. When we 
integrated spatial organization, interface mutations in patches show more damaging 
characteristics compared to singleton mutations.  

Further, we investigated the proteins having one or multiple interfaces. Interface 
mutations in proteins with a single interface tend to be singletons while interface 
mutations in proteins having multiple interfaces are mostly located in patches. Moreover, 
interfaces can be used specifically by one partner or shared by multiple partners. Proteins 
having multiple partners are called hubs and these highly connected hub proteins (TP53, 
EGFR, PTEN, PIK3CA) are likely to have multiple patches in their interface regions. 
These patches are prone to be larger in tumor suppressor and smaller in oncogenes. When 
we analyzed the disease association of mutations on hub proteins, we found that patch 
mutations on hub proteins are more disease-causing although singleton mutations of rest 
of the proteins are more disease-causing.  

Applying network-based approach to driver mutated proteins, we reconstructed patient-
specific subnetworks and reduced each network into enriched pathways to uncover the 
potentially affected pathways in patients. With this strategy, we stratified the patients into 
5 groups and each patient group has a set of signature 3D spatial patches and significant 
association between survivals of the patients in corresponding group. Among these patient 
groups, Group 5 has the highest survival while Group 4 has the lowest one. Additionally, 
some pathways are commonly overrepresented in a set of patient groups, some of them 
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are specific for one patient groups. For example, Rap1, EGFR, and TNF signaling 
pathways are common in all groups, NOD-like receptor signaling pathway and Hippo 
signaling pathway are specific to Group 1 and Group 2, respectively. In addition to this 
analysis, we also applied the same pathway enrichment analysis to mutated gene lists and 
did not get a meaningful result which highlighted the importance of a network-based 
approach to enlighten the hidden molecular mechanisms of the cell. 

Since there are functional similarities between patients in the same group and differences 
between inter groups, we integrated available drug treatment data to our patient groups by 
using mutation profiles of GBM cell lines. Each group of patients is linked to each GBM 
cell line through its predominant patches. A multi-targeted receptor tyrosine kinase 
inhibitor, Pazopanib is linked to Group 3 patients through its target CSF1R and both 
Group 3 and GI-1 GBM cell line have TP53 Patch 1 as the connection marker. By this 
way, we hypothetically proposed Pazopanib as an effective therapeutic for Group 3 
patients. 

As a conclusion, we integrated non-synonymous mutations of patients to structural 
information through a network-based approach which reduced the molecular 
heterogeneity across patients. Our approach from mutations to protein interactions and 
eventually to signaling networks and pathways let us to connect pharmacological 
information of cell lines to hypothetical clinical outcomes for patients. We believe that 
this study indicates a new perspective for application of network-based analysis for the 
precision medicine. 
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