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ABSTRACT 

ASSESSMENT OF SENSITIVITY OF DEPTH INTEGRATED SOLUTIONS 

TO LONGITUDINAL DISCONTINUITIES ON THE CHANNEL BED 

Mohammadi, Ramez 
Master of Science, Civil Engineering 
Supervisor: Prof. Dr. İsmail Aydın 

September 2019, 103 pages 

Depth integrated equations can be easily solved over large domains to provide flood 

inundation maps. In urban and rural areas however, there may be numerous natural or 

artificial bottom boundary discontinuities in the form of rapid variations in bed 

elevation. Such discontinuities cause abrupt changes in the source terms of the 

governing equations and can significantly affect stability and accuracy of the 

numerical solution. This study concentrates on the assessment of sensitivity of the 

governing equations to longitudinal discontinuities and proposes solutions to alleviate 

associated numerical complications. The presence of dry regions in the domain is also 

considered which requires additional modifications in the code to deal with the 

wet/dry fronts. 

In this thesis, Godunov’s type Finite Volume Method (FVM) is used for the numerical 

solution of the shallow water equations. Weighted Averaged Flux (WAF) method, that 

is 2nd order extension of the first order Godunov’s scheme, based on HLL Riemann 

solver, is used to compute the fluxes. The source term treatment is based on the 

“hydrostatic reconstruction” and first and second order well-balanced schemes are 

obtained. Creation of probable negative water depths during linear piecewise 

reconstruction of the water surface near dry areas has been prevented in the 2nd order 

well-balanced scheme.  
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Eight test cases with their available analytical solutions that are widely used in the 

literature are selected to validate the developed codes. The results of the developed 

codes are also compared with sets of experimental data if available. Test cases are 

solved by pure WAF method without well-balancing property, WAF method with first 

order well-balanced scheme, and WAF method with second order well-balanced 

scheme. Two test cases are specifically selected to show the capability of the 

developed codes in solving flows in regions with wet and dry areas. In the end, a new 

test case is introduced to observe behavior of the numerical solutions in a bed 

consisting of a series of sharp corners due to positive and negative steps. It is observed 

that well-balanced schemes can produce water surface profiles without spurious 

oscillations and steady-state horizontal hydrostatic water surface is recovered without 

noisy fluctuations. 

 

Keywords: Shallow Water Equations, Well-balanced schemes, Weighted Average 

Flux, Hyperbolic partial differential equations, Finite volume method  
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ÖZ 

DERİNLİK İNTEGRALLİ ÇÖZÜMLERİN KANAL TABANININDA 

BOYUNA SÜREKSİZLİKLERE DUYARLILIĞININ BELİRLENMESİ 

Mohammadi, Ramez 
Yüksek Lisans, İnşaat Mühendisliği 

Tez Danışmanı: Prof. Dr. İsmail Aydın 

Eylül 2019, 103 sayfa 

Derinlik integralli denklemler taşkın haritaları hazırlamak amacıyla büyük alanlar 

üzerinde kolaylıkla çözülebilir. Bununla beraber, kırsal ve kentsel alanlarda yatak 

yüksekliğinde hızlı değişimlere neden olan sayısız doğal veya yapay süreksizlikler 

olabilir. Bu tür süreksizlikler akım denklemlerinin kaynak terimlerinde ani 

değişimlere neden olacağından sayısal çözümün stabilitesini ve hassasiyetini belirgin 

şekilde etkileyebilir. Bu çalışma, akım denklemlerinin boyuna süreksizliklere 

duyarlılığının değerlendirilmesine ve ortaya çıkan sayısal sorunların giderilmesine 

yönelik olacaktır. 

Bu tezde sığ akım denklemlerinin sayısal çözümü için Godunov tipi Sonlu Hacim 

Metodu (FVM) kullanılmıştır. Akıların hesabında Godunov metodunun ikinci 

dereceden uzantısı olan, HLL Riemann çözücüsüne dayandırılmış Ağırlıklı Ortalama 

Akı (WAF) metodu kullanılmıştır. Kaynak teriminin değerlendirilmesinde 

‘hidrostatik yeniden kurma’ yaklaşımıyla birinci ve ikinci dereceden iyi-dengeli 

şemalar elde edilmiştir. Kuru alanlar yakınında su yüzeyinin lineer parçalı olarak 

yeniden tanımlanması aşamasında negatif su derinliklerinin oluşması olasılığı ikinci 

dereceden iyi-dengeli şema ile önlenmiştir. 
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Geliştirilen yazılımları doğrulamak için literatürde yaygın olarak kullanılan sekiz adet 

test vakası analitik çözümlerinden yararlanılmıştır. Sayısal çözüm sonuçları 

literatürde mevcut deneysel veri setleri ile de karşılaştırılmıştır. Test vakaları iyi-

dengeli özelliği olmadan yalın WAF metodu, birinci dereceden iyi-dengeli WAF 

metodu ve ikinci dereceden iyi-dengeli WAF metodu ile çözülmüştür. Yazılımların 

ıslak-kuru geçişli alanlardaki akımların çözümündeki yeteneklerini sergilemek için 

özel iki vaka seçilmiştir. Ve son olarak sayısal çözümlerin davranışını değerlendirmek 

için pozitif ve negatif basamakların oluşturduğu bir dizi keskin köşeler içeren yeni bir 

test vakası tanımlanmıştır. İyi-dengeli şemaların su yüzü profillerini yapay salınımlara 

neden olmadan üretebildiği ve zamandan bağımsız yatay hidrostatik su yüzünün 

sayısal çalkantılar olmadan elde edilebildiği gözlemlenmiştir. 

Anahtar Kelimeler: Sığ Akım Denklemleri, Dengeli şemalar, Ağırlıklı Ortalama Akı, 

Hiperbolik kısmi diferansiyel denklemler, Sonlu hacim metodudu 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Free surface flows are of particular interest to the many scientists and engineers in the 

fields of hydraulic and ocean engineering. These flows consist of a wide range of 

physical phenomena such as tsunamis, tides, and wind waves in the sea and oceans, and 

river floods, dam-break flows, and open channel flows on the land. Since the exact 

governing equations of these problems are usually too complex and may not be easily 

applicable in engineering problems, these phenomena can be modeled and studied by 

proper mathematical models with proper assumptions and modifications. 

The behavior of the flow in a wide variety of the above mentioned problems can be 

studied using the depth integrated equations, called Shallow Water Equations (SWE). 

Shallow Water Equations are a set of partial differential equations which are derived 

from the Navier-Stokes equations by assuming that the depth of water is small 

compared with characteristic length in the horizontal direction, such as wave length. 

This assumption leads to the hydrostatic pressure distribution in the flow. 

One of the difficulties in numerical solving of the shallow water equations may arise 

when the equations are solved in domains containing discontinuities in the channel 

beds. These natural or artificial bottom boundary discontinuities can be in the form of 

rapid variations in bed elevation. These discontinuities abruptly change the source 

term of the governing equations and may adversely affect the stability and accuracy 

of the numerical solutions. Another difficulty in the solution of the shallow water 

equations appears in the presence of dry regions in the domain, which requires 

additional modification in the numerical solution to deal with the wet/dry fronts. 

In this thesis, Godunov’s type Finite Volume Method (FVM) will be used for the 

numerical solution of the shallow water equations. Godunov’s type methods come up 
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with the solution of the Riemann problem- an initial value problem with two constant 

states (left and right)- in each cell interface to calculate the fluxes. The solution of the 

Riemann problem can be exact or approximate. An efficient exact Riemann solver has 

been presented by (Toro, 1992) in which an iterative procedure is used to solve a single 

algebraic equation. Since the exact solution of the Riemann problem may be 

computationally expensive, approximate Riemann solvers are usually preferred due to 

their simplicity and lower computational cost. Primitive Variable Riemann Solver, 

Riemann Solver Based on Exact Depth Positivity, Two-Rarefaction Riemann Solver, 

Two-Shock Riemann Solver, HLL (Harten Lax and van Leer) and HLLC Riemann 

solver are examples of approximate Riemann solvers that are presented in  (Toro, 

2001). Primitive Variable Riemann Solver may give negative depth in very shallow 

waters that are formed due to strong rarefactions. This problem is solved by 

considering depth positivity condition in Riemann Solver Based on Exact Depth 

Positivity and leads to a robust Riemann solver. Two Rarefaction Approximate 

Riemann solver assumes that both left and right waves in the solution of the Riemann 

problem are rarefaction waves and uses the exact Riemann solution for the case of two 

rarefaction wave. Although this assumption is not always correct, it results in quite 

accurate solutions (Toro, 1992). Two-Shock Riemann Solver is similar to the previous 

one, but it assumes that both left and right waves are shock waves. 

HLL Riemann solver is another well-known Riemann solver, which directly gives an 

estimation for the numerical flux instead of depth and velocity in the star region. This 

Riemann solver is appropriate to solve one-dimensional cases, where the intermediate 

waves (i.e., contact discontinuities and shear waves) are ignored. HLLC Riemann 

solver, on the other hand, is a modification of the HLL Riemann solver to include the 

intermediate wave effects, and therefore, it is suitable for two-dimensional problems.  

HLL and HLLC Riemann solvers are first order accurate methods to calculate the 

fluxes. Higher order accuracy in calculation of the interface fluxes can be achieved by 

extension of the first order Godunov upwind method to the higher order. Examples of 

such schemes are MUSCL-Hancock scheme (van Leer, 1985) and Weighted Average 
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Flux (WAF) method. The second order accuracy in time and space in MUSCL-

Hancock scheme achieved by data reconstruction in cell interfaces using a piecewise 

linear function, evolving the reconstructed data in time by half time step, and solving 

the Riemann problem, based on the evaluated data from last step (Toro, 2001). WAF 

method, on the other hand, reaches the higher order accuracy by integrating and 

averaging the fluxes in time and space in cell interfaces, without necessarily need for 

piece-wise reconstruction step. 

In real life application of the shallow water equations, it is likely to have a flow with 

irregular bed topography. Therefore, special attention should be paid to the numerical 

treatment of the bed slope source term to get more accurate solutions. This is 

especially important in stationary (constant water surface level and zero velocity) or 

near stationary situation, where the numerical equilibrium between flux gradient and 

the source term should be provided. To hold this equilibrium, Bermudez & Vazquez, 

1994 suggested the upwind discretization of the source term in one dimensional cases 

with constant breadth. In 1998, Bermúdez, et al., 1998 applied the same idea to the 

two dimensional problems with the constant breadth and unstructured meshes. Later, 

M. Elena Vázquez-Cendón, 1999 used the idea to solve more general flow problems 

in channels with irregular geometry, but locally rectangular cross section. Zhou, et al., 

2001 developed a simple and accurate method based on surface gradient method 

(SGM) and centered discretization of the source term. Later, Zhou, et al., 2002 

extended the SGM into the channel containing vertical step. Audusse, et al., 2004 

obtained a fast and stable first order and second order well-balanced schemes, based 

on the hydrostatic reconstruction and discontinuous discretization of the bed 

topography, which guarantee the positivity of depth in the domain. Later, well-

balanced scheme of arbitrary order accuracy based on hydrostatic reconstruction is 

proposed by Noelle, et al., 2006. 

Finally, Bollermann, et al., 2013 proposed a second order well-balanced central-

upwind scheme that is positively preserving of the water depth. They suggested new 

construction of the water surface near dry areas to prevent the creation of negative 
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water depths at the cell interfaces during the reconstruction step (i.e., reconstruction 

of the water surface in each cell using slope limiters).   

This study aims to investigate the solution of the depth averaged shallow water 

equations in channels with irregular bed and step-like discontinuity on it. Various test 

cases including smooth and sudden changes in the bed slope will be studied. The 

numerical test cases will be generally solved with the pure WAF method without well-

balancing property, first order well-balanced scheme, and second order well-balanced 

scheme. Two test cases will be studied specifically, to show the capability of the 

developed codes in solving flows in regions with wet and dry areas. A special test case 

will be introduced in a prismatic channel that contains a champion-stage like steps in 

the middle of the channel, and one dimensional dam break flow and overtopping the 

flow over the steps will be studied. The goal is to produce the water surface profile 

without spurious oscillations and recover the steady-state flat hydrostatic water 

surface at the end of the solution.  

In this chapter, general information, the objective of the study, and a brief literature 

review of the study are given. In chapter two, derivation of the governing equations 

and numerical methods that are used to solve the equations are explained. Chapter 

three introduces numerical test cases and corresponding analytical solutions. 

Numerical solutions of each test case are given in chapter four, where they are 

compared with the exact solution of them and with each other. Finally, the conclusions 

of the study and recommendations to the future works are presented in chapter five. 
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CHAPTER 2  

 

2. SHALLOW WATER EQUATIONS AND THEIR NUMERICAL SOLUTION 

 

2.1. Governing Equations in a Free Surface Water Flow  

In general, the conservation laws of mass and momentum, called Navier-Stokes 

equations, are used to describe a Newtonian fluid flow. For an incompressible fluid 

these equations may be written as 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (2.1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+

1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) (2.2) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+

1

𝜌
(
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
) (2.3) 

 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+

1

𝜌
(
𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) − 𝑔 (2.4) 

where 𝑢, 𝑣 and 𝑤 are the velocity components in 𝑥, 𝑦 and 𝑧 directions respectively, 𝑝 

is pressure and 𝜏𝑖𝑗 represents the viscous terms acting in 𝑗 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 on the plane 

with outward normal in 𝑖 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

However, these equations cannot be used directly for a free surface water flow and 

they need to be modified. The reason for the modification is that the free surface is a 

boundary, however, the location of the boundary itself is unknown and it may vary 

with time. One assumption to deal with this difficulty is to assume that the depth of 

water is small compared with horizontal length scale such as wave length or free 
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surface curvature. This assumption leads to non-linear initial value problem which is 

called non-linear shallow water equations (Toro, 2001). 

2.2. Derivation of Shallow Water Equations 

2.2.1. Boundary Conditions 

In derivation of SWE two kinds of boundary conditions are imposed, namely, 

kinematic condition and dynamic condition. Kinematic boundary condition simply 

says that there is no normal flow through the free surface. Therefore, the relative 

normal velocity should vanish at the free surface; see equation (2.8). At the bottom 

boundary, normal velocity itself should vanish, not the relative normal velocity; see 

equation (2.9). Dynamic boundary condition is imposed on the free surface which 

implies that the pressure is atmospheric at the free surface. 

A schematic sketch of a free surface shallow water flow is depicted in Figure 2.1. 

 

x

y

z

b(x,y)

h(x,y,t)

Z=η(x,y,t)

=b(x,y)+h(x,y,t)

Z=b(x,y)

 

Figure 2.1. Free Surface Water Flow. The x-y plane is taken parallel to undisturbed water surface and 
z axis is in positive upward direction. 
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Mathematically, the kinematic boundary condition on the surface can be obtained by 

computing the total accelerations of the water particles at the surface boundary which 

is defined by the equation  

 𝑧 − 𝜂(𝑥, 𝑦, 𝑡) = 0 (2.5) 

where 𝜂(𝑥, 𝑦, 𝑡) shows surface boundary location. Total derivatives of equation (2.5) 

can be written as 

 
𝐷

𝐷𝑡
(𝑧 − 𝜂) = 0 (2.6) 

Expanding equation (2.6) yields  

 
𝜕𝑧

𝜕𝑡
+ 𝑢

𝜕𝑧

𝜕𝑥
+ 𝑣

𝜕𝑧

𝜕𝑦
+ 𝑤

𝜕𝑧

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
+ 𝑤

𝜕𝜂

𝜕𝑧
 (2.7) 

Since 𝑧 is independent variable, 𝜕𝑧/𝜕𝑡, 𝜕𝑧/𝜕𝑡 and 𝜕𝑧/𝜕𝑡 derivatives are equal zero, 

and since 𝜂 is independent of 𝑧, 𝜕𝜂/𝜕𝑧 is vanished. Thus, equation (2.7) is simplified 

to 

 (
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
− 𝑤)|

𝑧=𝜂

= 0 (2.8) 

Similarly, boundary condition for the bottom is obtained as 

 (𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
− 𝑤)|

𝑧=𝑏

= 0 (2.9) 

Dynamic boundary condition is applied at the free surface as 

 𝑝|𝑧=𝜂 = 𝑝𝑎𝑡𝑚 = 0 (2.10) 

where, for simplicity, the atmospheric pressure is taken as zero. 
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2.2.2. Continuity Equation 

First step in derivation of the shallow water equations is integrating the continuity 

equation (2.1) with respect to z from bed to free surface as follows 

 ∫(
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) 𝑑𝑧 = 0

𝜂

𝑏

 (2.11) 

 𝑤|𝑧=𝜂 − 𝑤|𝑧=𝑏 + ∫
𝜕𝑢

𝜕𝑥
𝑑𝑧

𝜂

𝑏

+ ∫
𝜕𝑣

𝜕𝑦
𝑑𝑧

𝜂

𝑏

= 0 (2.12) 

Substituting boundary conditions (2.8) and (2.9), into equation (2.12) gives 

(
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
)|

𝑧=𝜂

− (𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
)|

𝑧=𝑏

+ ∫
𝜕𝑢

𝜕𝑥
𝑑𝑧

𝜂

𝑏

+ ∫
𝜕𝑣

𝜕𝑦
𝑑𝑧

𝜂

𝑏

= 0 (2.13) 

Both integral terms in equation (2.13) can be simplified using Leibniz Rule. Leibniz 

integral rule is about how to bring the partial derivative of a multivariable integral 

inside the integral when the integral limits are functions of the differentiation variable. 

Leibniz rule may be written as 

 

𝜕

𝜕𝑥
∫ 𝑓(𝑥, 𝑡)𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

 

= ∫
𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
𝑑𝑡

𝑏(𝑥)

𝑎(𝑥)

+ 𝑓(𝑥, 𝑏(𝑥))
𝑑𝑏(𝑥)

𝑑𝑥
− 𝑓(𝑥, 𝑎(𝑥))

𝑑𝑎(𝑥)

𝑑𝑥
 

(2.14) 

Integral terms of equation (2.13) using Leibniz rule become 

 
∫

𝜕𝑢

𝜕𝑥
𝑑𝑧

𝜂

𝑏

=
𝜕

𝜕𝑥
∫ 𝑢𝑑𝑧

𝜂

𝑏

− 𝑢|𝑧=𝜂

𝜕𝜂

𝜕𝑥
+ 𝑢|𝑧=𝑏

𝜕𝑏

𝜕𝑥
 

=
𝜕

𝜕𝑥
(𝑢̅ℎ) − 𝑢|𝑧=𝜂

𝜕𝜂

𝜕𝑥
+ 𝑢|𝑧=𝑏

𝜕𝑏

𝜕𝑥
 

(2.15) 
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∫

𝜕𝑣

𝜕𝑦
𝑑𝑧

𝜂

𝑏

=
𝜕

𝜕𝑦
∫ 𝑣𝑑𝑧

𝜂

𝑏

− 𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝑣|𝑧=𝑏

𝜕𝑏

𝜕𝑦
 

=
𝜕

𝜕𝑦
(𝑣̅ℎ) − 𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝑣|𝑧=𝑏

𝜕𝑏

𝜕𝑦
 

(2.16) 

Substituting the results back into equation (2.13) and simplifying yields 

 
𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢̅ℎ) +

𝜕

𝜕𝑦
(𝑣̅ℎ) = 0 (2.17) 

Equation (2.17) is the continuity equation written in differential conservation law form 

for shallow water equations. Note that overbars show the depth averaged values of 𝑢 

and 𝑣, and 

 
𝜕𝜂

𝜕𝑡
=

𝜕𝑏

𝜕𝑡⏟
=0

+
𝜕ℎ

𝜕𝑡
=

𝜕ℎ

𝜕𝑡
 (2.18) 

2.2.3. Momentum Equations 

One important assumption in derivation of the shallow water equations is that the 

vertical acceleration of the flow particles can be assumed to be negligible, which leads 

to a hydrostatic pressure distribution in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. To prove, we can write the 

total acceleration in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 and make it equal to zero as 

 
𝐷𝑤

𝐷𝑡
=

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 0 (2.19) 

Substituting equation (2.19) into momentum equation in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (2.4) with 

neglected viscous terms, integrating from the bed to the surface, and applying dynamic 

boundary condition (2.10) yield 

 𝑝 = 𝜌𝑔(𝜂 − 𝑧) (2.20) 

which is nothing but the hydrostatic pressure distribution in 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 
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According to equation (2.20), pressure gradients in 𝑥 and 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 become 

 
𝜕𝑝

𝜕𝑥
= 𝜌𝑔

𝜕𝜂

𝜕𝑥
 (2.21) 

 
𝜕𝑝

𝜕𝑦
= 𝜌𝑔

𝜕𝜂

𝜕𝑦
 (2.22) 

Equations (2.21) and (2.22) show that the 𝑢 and 𝑣 velocities are independent of 

variable 𝑧, since pressure gradients in 𝑥 and 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 are independent of 𝑧, 

which means 

 
𝜕𝑢

𝜕𝑧
=

𝜕𝑣

𝜕𝑧
= 0 (2.23) 

Therefore, 𝑥 and 𝑦 − momentum equations, (2.2) and (2.3) become 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑥
+

1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) (2.24) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑦
+

1

𝜌
(
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
) (2.25) 

Now, the equations (2.24) and (2.25) should be integrated from bottom to free surface 

as follows. Integrating equation (2.24) yields 

 

∫
𝜕𝑢

𝜕𝑡
 𝑑𝑧

𝜂

𝑏

+ ∫ 𝑢
𝜕𝑢

𝜕𝑥
 𝑑𝑧

𝜂

𝑏

+ ∫ 𝑣
𝜕𝑢

𝜕𝑦
 𝑑𝑧

𝜂

𝑏

 

= ∫ −𝑔
𝜕𝜂

𝜕𝑥

𝜂

𝑏

𝑑𝑧 + ∫
1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
)

𝜂

𝑏

𝑑𝑧 
(2.26) 

 
ℎ
𝜕𝑢̅

𝜕𝑡
+ 𝑢̅ℎ

𝜕𝑢̅

𝜕𝑥
+ 𝑣̅ℎ

𝜕𝑢̅

𝜕𝑦
 

= −𝑔ℎ
𝜕𝑏

𝜕𝑥
− 𝑔ℎ

𝜕ℎ

𝜕𝑥
+ ∫

1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
)

𝜂

𝑏

𝑑𝑧 
(2.27) 

Note that  
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 𝜕𝜂

𝜕𝑥
=

𝜕𝑏

𝜕𝑥
+

𝜕ℎ

𝜕𝑥
 (2.28) 

By multiplying the continuity equation (2.17) with 𝑢̅ and adding it up with equation 

(2.27), the conservative form of the momentum equation in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 can be 

obtained. With some simplification, the conservative form of the momentum equation 

in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 becomes  

 

𝜕(𝑢̅ℎ)

𝜕𝑡
+

𝜕 (ℎ𝑢̅2 +
1
2𝑔ℎ2)

𝜕𝑥
+

𝜕(ℎ𝑢𝑣̅̅̅̅ )

𝜕𝑦
 

= −𝑔ℎ𝑆0,𝑥 + ∫
1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
)

𝜂

𝑏

𝑑𝑧 

(2.29) 

Now, the viscous stresses integral term can be simplified further by integrating it over 

depth as 

 

∫
1

𝜌
(
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
)

𝜂

𝑏

𝑑𝑧 

=
1

𝜌
(

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥

𝜂

𝑏

𝑑𝑧 − 𝜏𝑥𝑥,𝜂

𝜕𝜂

𝜕𝑥
+ 𝜏𝑥𝑥,𝑏

𝜕𝑏

𝜕𝑥
) 

+
1

𝜌
(

𝜕

𝜕𝑦
∫ 𝜏𝑦𝑥

𝜂

𝑏

𝑑𝑧 − 𝜏𝑦𝑥,𝜂

𝜕𝜂

𝜕𝑦
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
) 

+(𝜏𝑧𝑥,𝜂 − 𝜏𝑧𝑥,𝑏) 

=
1

𝜌

𝜕

𝜕𝑥
∫ 𝜏𝑥𝑥 𝑑𝑧

𝜂

𝑏

+
1

𝜌
∫ 𝜏𝑦𝑥 𝑑𝑧

𝜂

𝑏

−
1

𝜌
(𝜏𝑥𝑥,𝜂

𝜕𝜂

𝜕𝑥
+ 𝜏𝑦𝑥,𝜂

𝜕𝜂

𝜕𝑦
− 𝜏𝑧𝑥,𝜂)

+
1

𝜌
(𝜏𝑥𝑥,𝑏

𝜕𝑏

𝜕𝑥
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
− 𝜏𝑧𝑥,𝑏) 

=
1

𝜌

𝜕𝜏𝑥𝑥̅̅ ̅̅

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑦𝑥̅̅ ̅̅

𝜕𝑦
+

1

𝜌
(𝜏𝑥,𝜂 + 𝜏𝑥,𝑏) 

(2.30) 

where 𝜏𝑥,𝜂 and 𝜏𝑥,𝑏 are the shear stresses tangent to the free surface and bottom 

respectively, 
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𝜏𝑥,𝑠 = 𝜏𝑥𝑥,𝜂

𝜕𝜂

𝜕𝑥
+ 𝜏𝑦𝑥,𝜂

𝜕𝜂

𝜕𝑦
− 𝜏𝑧𝑥,𝜂 

𝜏𝑥,𝑏 = 𝜏𝑥𝑥,𝑏

𝜕𝑏

𝜕𝑥
+ 𝜏𝑦𝑥,𝑏

𝜕𝑏

𝜕𝑦
− 𝜏𝑧𝑥,𝑏 

(2.31) 

Bottom shear stress in equation (2.31) can be estimated from 

 𝜏𝑥,𝑏 = 𝜌𝐶𝑓𝑢̅√𝑢̅2 + 𝑣̅2 (2.32) 

where 𝐶𝑓 is the bed roughness coefficient and can be evaluated as 

 𝐶𝑓 =
𝑔𝑛2

ℎ1/3
 (2.33) 

where n is the Manning’s roughness coefficient at the bottom surface. 

Repeating the same procedure in y-direction, 2D conservative shallow water equations 

can be written as 

 
𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢̅ℎ) +

𝜕

𝜕𝑦
(𝑣̅ℎ) = 0 (2.34) 

 

𝜕(𝑢̅ℎ)

𝜕𝑡
+

𝜕 (ℎ𝑢̅2 +
1
2
𝑔ℎ2)

𝜕𝑥
+

𝜕(ℎ𝑢𝑣̅̅̅̅ )

𝜕𝑦
 

= −𝑔ℎ𝑆0,𝑥 +
1

𝜌
(
𝜕𝜏𝑥𝑥̅̅ ̅̅

𝜕𝑥
+

𝜕𝜏𝑦𝑥̅̅ ̅̅

𝜕𝑦
+ (𝜏𝑥,𝑠 + 𝜏𝑥,𝑏)) 

(2.35) 

 

𝜕(𝑣̅ℎ)

𝜕𝑡
+

𝜕(ℎ𝑢𝑣̅̅̅̅ )

𝜕𝑥
+

𝜕 (ℎ𝑣̅2 +
1
2𝑔ℎ2)

𝜕𝑦
 

= −𝑔ℎ𝑆0,𝑦 +
1

𝜌
(
𝜕𝜏𝑥𝑦̅̅ ̅̅

𝜕𝑥
+

𝜕𝜏𝑦𝑦̅̅ ̅̅

𝜕𝑦
+ (𝜏𝑦,𝑠 + 𝜏𝑦,𝑏)) 

(2.36) 

These equations can be written in vector form as 
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𝜕𝑈

𝜕𝑡
+

𝜕𝐹(𝑈)

𝜕𝑥
+

𝜕𝐺(𝑈)

𝜕𝑦
= 𝑆(𝑈) (2.37) 

where  

 𝑈 = [
ℎ
ℎ𝑢
ℎ𝑣

] (2.38) 

 𝐹(𝑈) = [

ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

ℎ𝑢𝑣

] (2.39) 

 𝐺(𝑈) = [

ℎ𝑣
ℎ𝑣𝑢

ℎ𝑣2 +
1

2
𝑔ℎ2

] (2.40) 

 𝑆(𝑈) = [

0

−𝑔ℎ𝑆0,𝑥 − 𝐶𝑓𝑢√𝑢2 + 𝑣2

−𝑔ℎ𝑆0,𝑦 − 𝐶𝑓𝑣√𝑢2 + 𝑣2

] −

[
 
 
 
 

0
𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+ 𝜏𝑥,𝜂

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+ 𝜏𝑦,𝜂]

 
 
 
 

 (2.41) 

In these equations, the overbars are eliminated for simplicity, assuming that all the 

variables are depth-averaged. In above equations, U is the vector of conserved 

variables, F(U) and G(U) are the fluxes vectors, and S(U) is the source term vector. 

For homogeneous, incompressible and inviscid flow, source term vector (2.41) can 

reduce to 

 𝑆(𝑈) = [

0

−𝑔ℎ𝑆0,𝑥 − 𝐶𝑓𝑢√𝑢2 + 𝑣2

−𝑔ℎ𝑆0,𝑦 − 𝐶𝑓𝑣√𝑢2 + 𝑣2

] (2.42) 
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2.3. Numerical Solution of Shallow Water Equations 

2.3.1. Finite Volume Method 

In Finite Volume Method (FVM) the domain is divided into the finite number of non-

overlapping cells, called control volumes (CV), at the centroid of which, 

computational nodes are located. In 2D these cells are polygons, e.g., triangles, 

quadrilaterals, etc. In FVM, the conservation laws are applied to each CV and the 

equations are integrated over each cell and over each time step. 

System of one-dimensional conservation laws, neglecting the source term, can be 

written as  

 𝜕

𝜕𝑡
𝑢 +

𝜕

𝜕𝑥
𝑓(𝑢) = 0 (2.43) 

Integrating equation (2.43) over cell i, which is ∆𝑥𝑖 = [𝑥
𝑖−

1

2

 , 𝑥
𝑖+

1

2

 ] yields 

 
𝜕

𝜕𝑡
𝑈𝑖∆𝑥 = − [𝑓(𝑢(𝑡, 𝑥

𝑖+
1
2
)) − 𝑓(𝑢(𝑡, 𝑥

𝑖−
1
2
))] (2.44) 

And, integrating equation (2.44) over time step ∆𝑡, from [𝑡𝑛, 𝑡𝑛+1], gives 

 𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
[𝐹

𝑖+
1
2
− 𝐹

𝑖−
1
2
] (2.45) 

In above equations, 𝑈𝑖
𝑛 and 𝑈𝑖

𝑛+1 are the cell averaged of conserved variable 𝑢𝑖 over 

∆𝑥𝑖, 

 𝑈𝑖 =
1

∆𝑥𝑖
∫ 𝑢𝑖 𝑑𝑥

𝑥
𝑖+

1
2

𝑥
𝑖−

1
2

 (2.46) 

at time levels 𝑛 and 𝑛 + 1, respectively, and 𝐹
𝑖±

1

2

 are the time average of the fluxes 

𝑓
𝑖±

1

2

 over time interval ∆𝑡, 
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 𝐹
𝑖±

1
2
=

1

∆𝑡
∫ 𝑓

𝑖±
1
2

𝑡𝑛+1

𝑡𝑛
 (2.47) 

One challenging step in schemes based on Finite Volume Method is the computation 

of the interface fluxes 𝐹
𝑖±

1

2

 . Among several methods, the Weighted Averaged Flux 

(WAF) method is used in this study to calculate the fluxes, which will be discussed in 

detail in section 2.3.4. 

2.3.2. Godunov’s Method and Riemann Problem 

The Godunov’s method is a first order upwind method which uses the piecewise cell-

averaged data (2.46) in each cell, to compute the interface fluxes by solving the 

Riemann Problem, exactly or approximately, in that interface. First order Godunov’s 

scheme can be extended to higher order of accuracy in time and space. Examples of 

second order Godunov’s type schemes in time and space are Weighted Average Flux 

(WAF) and MUSCL-Hancock schemes. 

Considering discretized form of the equations (2.45), and assuming that the 𝑈𝑖
𝑛 are 

piecewise constant data in each cell, that is integral averaged of the data over cell 

∆𝑥𝑖 = [𝑥
𝑖−

1

2

 , 𝑥
𝑖+

1

2

 ] at time  𝑡 = 𝑡𝑛 as in equation (2.46), the flux value in each cell 

interface is computed by solving the initial value problem (2.48), where 𝑈𝐿 (is equal 

𝑈𝑖
𝑛) and 𝑈𝑅 (is equal 𝑈𝑖+1

𝑛 ) are the constant cell-averaged data at the left and right of 

the cell interface, respectively. Initial value problem of the form (2.48) is called 

Riemann problem. In general, Godunov-type Methods are the methods which solve 

the Riemann Problem 

 
𝑈𝑡 + 𝐹𝑥(𝑈) = 0 

𝑈(𝑥, 0) = {
𝑈𝐿         𝑖𝑓 𝑥 < 0
𝑈𝑅         𝑖𝑓 𝑥 > 0

 
(2.48) 

locally at each cell interfaces to calculate fluxes. 
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The schematic stencil of the first order Godunov’s scheme is depicted in Figure 2.2. 

Solution of the Riemann problem is depended on the wave speeds 𝑥/𝑡. First order 

Godunov’s scheme uses the solution of the Riemann problem at 𝑥/𝑡 = 0, which is 

𝑈
𝑖+

1

2

(𝑥/𝑡) = 𝑈(𝑥/𝑡 = 0), (see Figure 2.2) and flux function 𝐹(𝑈) to evaluate the flux 

value at each interface, i.e., 𝐹 (𝑈
𝑖+

1

2

(𝑥/𝑡 = 0)). 

𝑡𝑛  

𝑡𝑛+1 

𝑥 

𝑈𝑖
𝑛  

𝑥 

ℎ 

ℎ 
 

𝑈
𝑖+

1
2

(𝑥/𝑡 = 0) 𝑈
𝑖−

1
2

(𝑥/𝑡 = 0) 

𝑈𝑖+1
𝑛  

𝑈𝑖−1
𝑛  

(𝑎) 

𝑥 
 

(𝑏) 

𝑡 

𝑡𝑛+1 

𝑡𝑛  

 

Figure 2.2. Stencil of first order Godunov’s method: a) cell average data at t = tn and, b) solution of 
Riemann problem at t = tn+1 

 

2.3.3. Approximate Riemann Solvers 

The solution of Riemann Problem (2.48) consists of the left and right waves, which 

are either shock waves or rarefaction waves. The middle wave is a share wave, which 

appears in the presence of y-momentum equation, i.e., two-dimensional cases. There 

are four possible wave patterns in x-t domain that are shown in Figure 2.3. 
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𝑥 

𝑡 
𝑡𝑛+1 

𝑡𝑛  𝑥 

𝑡 
𝑡𝑛+1 

𝑡𝑛  𝑥 

𝑡 

𝑡𝑛+1 

𝑡𝑛  𝑥 

𝑡 

𝑡𝑛+1 

𝑡𝑛  

(𝑎) (𝑏) (𝑐) (𝑑) 

 

Figure 2.3. Four possible wave pattern in the solution of Riemann Problem for two dimensional 
shallow water equations in x-direction. a) left wave is shock wave and right wave is rarefaction wave 
b) left wave is rarefaction wave and right wave is shock wave c) left and right waves are rarefaction 

waves and, d) left and right waves are shock waves 

 

These waves divide the x-t domain into three regions: (i) The left region where U=UL, 

(ii) the right region where U=UR and (iii) the middle region where U=U* which is 

called star region. 

U* data can be calculated using an exact or approximate Riemann solver. As an 

example of exact Riemann solver, (Toro, 1992) proposed an efficient exact Riemann 

solver which uses an iterative procedure to determine the wave patterns and  the star 

region data U*. 

No matter how the exact solvers are efficient, there are still approximate Riemann 

solvers, which are sufficiently accurate and can reduce the computation cost compared 

with the exact solvers. These solvers are preferred due to their simplicity and 

acceptable accuracy, alongside with their time and cost efficiency. 

2.3.3.1. The HLL Approximate Riemann Solver 

Harten, Lax, and van Leer (HLL) (Harten, et al., 1983) suggested an approximation to 

calculate the numerical flux at the star region directly, instead of estimation for data 

(i.e., depth and unit discharge (or speed)) in the star region. In HLL Riemann solver, 

which is used in this study, intermediate waves are ignored, therefore, it is not 

appropriate solver for two dimensional cases where there are contact shear waves due 

to the presence of y-momentum equation. HLLC is the modified version of HLL 
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Riemann solver that takes account of the presence of shear waves and thus, it is 

appropriate Riemann solver for two-dimensional problems (details can be found in 

(Toro, 2001)). 

HLL Riemann solver uses data 𝑈𝐿 = 𝑈𝑖,  𝑈𝑅 = 𝑈𝑖+1, and corresponding fluxes 𝐹𝐿 =

𝐹(𝑈𝐿) and 𝐹𝑅 = 𝐹(𝑈𝑅), and assumes 𝑆𝐿 and 𝑆𝑅 to be the left and right wave speeds 

in the solution of the Riemann problem, and gives the numerical flux at cell interface 

as 

 𝐹
𝑖+

1
2
=

{
 

 
𝐹𝐿                                                                          

𝐹𝐻𝐿𝐿 =
𝑆𝑅𝐹𝐿 − 𝑆𝐿𝐹𝑅 + 𝑆𝑅𝑆𝐿(𝑈𝑅 − 𝑈𝐿)

𝑆𝑅 − 𝑆𝐿
        

𝐹𝑅                                                                         

 

𝑖𝑓   𝑆𝐿 > 0 

𝑖𝑓   𝑆𝐿 ≤ 0 ≤ 𝑆𝑅 

𝑖𝑓   𝑆𝑅 < 0 

(2.49) 

The solution structure of the Riemann problem with HLL Riemann solver with two 

waves (one dimensional case) is depicted in Figure 2.4. 

 

𝑡 

𝑖 𝑖 +
1

2
 𝑖 + 1 

𝑥 

𝑆𝐿  𝑆𝑅  

𝐹𝐻𝐿𝐿  
𝐹𝑅  𝐹𝐿  

 

Figure 2.4. Illustration of the left and right waves in the solution of Riemann Problem and locations 
corresponded to the left, right, and star region fluxes in the structure of HLL Riemann solver for one-

dimensional SWE. 
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In the calculation of HLL fluxes, left and right wave speeds (𝑆𝐿 and 𝑆𝑅) are needed. 

Toro, 2001 suggests formula (2.52) ~ (2.55) for the wave speeds that lead to accurate 

and robust scheme. In the corresponded approximations, the value of the depth at star 

region ( ℎ∗) is also needed, which can be obtained approximately from other Riemann 

solvers. Toro, 2001 recommends the following formula for the ℎ∗: 

 ℎ∗ =
1

𝑔
[
1

2
(𝑐𝐿 + 𝑐𝑅) +

1

4
(𝑢𝐿 − 𝑢𝑅)]

2

 (2.50) 

where, 𝑢𝐿 and 𝑢𝑅 are the speeds at the left and right of the interface and,  𝑐𝐿 and 𝑐𝑅 

are celerity according to the depths in the left and right of the cell interface, 

respectively, 

 
𝑐𝐿 = √𝑔ℎ𝐿 

𝑐𝑅 = √𝑔ℎ𝑅 
(2.51) 

Wave speeds can be calculated as follows: 

a) Left Wave Speed (Wet Bed): in the case of wet bed at both left and right sides 

of the interface, if ℎ∗ ≤ ℎ𝐿, then the left wave is a rarefaction wave; otherwise, 

the left wave is a shock wave. The speed is calculated from 

 {

𝑆𝐿 = 𝑢𝐿 − 𝑐𝐿                                        𝑖𝑓 ℎ
∗ ≤ ℎ𝐿

 𝑆𝐿 = 𝑢𝐿 − 𝑐𝐿√
1

2
[
(ℎ∗ + ℎ𝐿)ℎ∗

ℎ𝐿
2 ]        𝑖𝑓 ℎ∗ > ℎ𝐿

 (2.52) 

b) Right Wave Speed (Wet Bed): similarly, if ℎ∗ ≤ ℎ𝑅 then the right wave is a 

rarefaction wave; otherwise the wave is a shock wave. Right wave speed is 

calculated from 

 {

𝑆𝑅 = 𝑢𝑅 + 𝑐𝑅                                        𝑖𝑓 ℎ
∗ ≤ ℎ𝑅

 𝑆𝑅 = 𝑢𝑅 + 𝑐𝑅√
1

2
[
(ℎ∗ + ℎ𝑅)ℎ∗

ℎ𝑅
2 ]        𝑖𝑓 ℎ∗ > ℎ𝑅

 (2.53) 
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In the presence of the dry region in the solution, the speeds are given as follow,  

c) Dry Bed on the Right: 

If the area at the right of the cell interface is dry, then the left and right waves are 

estimated as 

 {
𝑆𝐿 = 𝑢𝐿 − 𝑐𝐿     
𝑆𝑅 = 𝑢𝐿 + 2 𝑐𝐿

  (2.54) 

d) Dry Bed on the Right: 

And, if the left region of the cell interface is dry then the speeds are 

 {
𝑆𝐿 = 𝑢𝑅 − 2 𝑐𝑅
𝑆𝑅 = 𝑢𝑅 + 𝑐𝑅   

  (2.55) 

2.3.4. Weighted Average Flux (WAF) Scheme 

By integrating the set of one dimensional conservation laws, equations (2.43), over 

time and space, the discretized version of the equations were obtained as (2.45), where 

each particular scheme uses a particular method to calculate the interface fluxes 𝐹
𝑖±

1

2

. 

Among the several choices, Weighted Averaged Flux (WAF) is proposed by Toro, 

1989, which is a second order extension of the first order Godunov’s upwind method. 

Original WAF method is oscillatory; therefore, TVD version of the method which is 

oscillation-free must be used. 

General structure of the Riemann problem and WAF method is depicted in Figure 2.5.  
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𝑡 

𝑖 

 
 
 

 
 

 
∆𝑡

2
 

            

𝑖 +
1

2
 𝑖 + 1 

 
 
 
 
 

 
 
 
 

 ∆𝑡 

𝑥 

𝑆1 𝑆2 𝑆3 

 

Figure 2.5. Structure of the Riemann problem solution and illustration of the weights in WAF method. 

 

The numerical interface flux using Weighted Average Flux, can be written in integral 

average form as (Toro, 2001) 

 𝐹
𝑖+

1
2

𝑤𝑎𝑓
=

1

𝑡2 − 𝑡1

1

𝑥2 − 𝑥1
∫ ∫ 𝐹(𝑈(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

∆𝑥/2

−∆𝑥/2

𝑡+∆𝑡

𝑡

 (2.56) 

By using the midpoint rule, the time integration can be approximated at 𝑡 =
1

2
∆𝑡 as 

 𝐹
𝑖+

1
2

𝑤𝑎𝑓
=

1

∆𝑥
∫ 𝐹 (𝑈

𝑖+
1
2
(𝑥,

1

2
∆𝑡))  𝑑𝑥

∆𝑥/2

−∆𝑥/2

 (2.57) 

The integral in equation (2.57) can be calculated with the summation  

 𝐹
𝑖+

1
2

𝑤𝑎𝑓
= ∑ 𝜔𝑘𝐹

𝑖+
1
2

(𝑘)

𝑁+1

𝑘=1

 (2.58) 

where N is the number of waves in the solution of Riemann Problem and 𝐹
𝑖+

1

2

(𝑘) is the 

flux value in the interval 𝑘.  𝜔𝑘 are the weights (see Figure 2.5), which are defined as 
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 𝜔𝑘 =
1

2
(𝑐𝑘 − 𝑐𝑘−1) (2.59) 

for 𝑘 = 1 to 𝑁 + 1. 𝑐𝑘 is the Courant number for wave k which is defined as 

 𝑐𝑘 =
∆𝑡𝑆𝑘

∆𝑥
 (2.60) 

where, 𝑐0 = −1 and 𝑐𝑁+1 = 1. Putting all back into the equation (2.58) the weighted 

averaged of the flux is obtain as 

 𝐹
𝑖+

1
2

𝑤𝑎𝑓
=

1

2
(𝐹𝑖 + 𝐹𝑖+1) −

1

2
∑ 𝑐𝑘∆𝐹

𝑖+
1
2

(𝑘)

𝑁

𝑘=1

 (2.61) 

where 

 ∆𝐹
𝑖+

1
2

(𝑘)
= 𝐹

𝑖+
1
2

(𝑘+1)
− 𝐹

𝑖+
1
2

(𝑘) (2.62) 

is the flux jump over wave 𝑘. 

2.3.4.1. Total Variation Diminishing (TVD) and Monotonicity 

First order upwind schemes are stable and non-oscillatory schemes, but they introduce 

artificial and fallacious diffusivity into the solutions. On the other hand, higher order 

schemes are more accurate, but they can be oscillatory. However, higher order 

schemes based on the Total Variation Diminishing (TVD) exist, that although they 

bring higher order accuracy, they are also oscillation free. 

A scheme is said to be monotonicity preserving, if it holds two conditions, a) if it does 

not create new minimums/maximums in the solution and b) if it does not amplify the 

already existing minimums/maximums; In other word, if the scheme does not create 

overshoots or undershoots. Monotonicity is related to “Total Variation (TV)” of a 

discrete solution. Consider the arbitrary solution domain with the solution data 𝜑 as 

in Figure 2.6. 
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Φ1
Φ2

Φ3

Φ4

Φ5  

Figure 2.6. An arbitrary solution domain presentation.  

 

Total variation of the variable 𝜑 can be written as a summation below, 

 𝑇𝑉 = ∑|𝜑𝑖+1 − 𝜑𝑖| = |𝜑2 − 𝜑1| + |𝜑3 − 𝜑2| + |𝜑4 − 𝜑3| + ⋯

𝑁

1

 (2.63) 

If the total variation (2.63) does not grow in time, then the monotonicity is preserved. 

This property is guaranteed in TVD schemes. 

TVD schemes uses limiters function 𝜓. This function is defined according to the 

definition 𝑟, which is the ratio of the upwind-side gradient to the downwind-side 

gradient of the variable, as written in equation (2.64). 

 𝑟 =
∆𝜑𝑢𝑝𝑤𝑖𝑛𝑑

∆𝜑𝑑𝑜𝑤𝑛𝑤𝑖𝑛𝑑
 (2.64) 

According to Sweby, 1984, a scheme is TVD if the function 𝜓 lies in the region in 

𝜓 − 𝑟 diagram shown in Figure 2.7. 
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𝑟 

𝜓(𝑟) 
𝜓 = 2𝑟 

𝜓 = 2 

1𝑠𝑡  𝑂𝑟𝑑𝑒𝑟 𝑇𝑉𝐷𝑅𝑒𝑔𝑖𝑜𝑛 

1 2 3 4 5

1

2

  

Figure 2.7. First order TVD region 

 

And, Sweby, 1984 showed that a TVD scheme is second order if it lies in region shown 

in Figure 2.8. 

𝑟 

𝜓(𝑟) 

𝜓 = 2𝑟 

𝜓 = 2 

2𝑛𝑑  𝑂𝑟𝑑𝑒𝑟 𝑇𝑉𝐷𝑅𝑒𝑔𝑖𝑜𝑛 

𝜓 = 𝑟 

𝜓 = 1 

1 2 3 4

1

2

  

Figure 2.8. Second order TVD region 

 

Among the several possibilities, some choices for TVD limiter function are 

SUPERBEE, van Leer, van Albada and Min-Mod, which are defined as below: 

 𝜓𝑆𝑈𝑃𝐸𝑅𝐵𝐸𝐸(𝑟) = max[0,min(1,2𝑟),min(2, 𝑟)] (2.65) 
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 𝜓𝑉𝑎𝑛 𝐿𝑒𝑒𝑟(𝑟) =
𝑟 + |𝑟|

1 + 𝑟
 (2.66) 

 𝜓𝑉𝑎𝑛 𝐴𝑙𝑏𝑎𝑑𝑎(𝑟) =
𝑟 + 𝑟2

1 + 𝑟2
 (2.67) 

 𝜓𝑀𝑖𝑛−𝑀𝑜𝑑(𝑟) = min(1, 𝑟) (2.68) 

All the second order limiter functions pass through the point (1,1) in 𝜓 − 𝑟 diagram 

and they all are zero if the 𝑟 value is negative. Comparison of some famous limiter 

functions are illustrated in Figure 2.9. 

 

Figure 2.9. Illustration of some famous second-order limiter functions (Versteeg & Malalasekera, 
2007). 

 

2.3.4.2. TVD Version of WAF and TVD Limiters 

Equation (2.61) is oscillatory near the high gradients (Toro, 1989) and should be 

modified with the Total Variation Diminishing constraint. TVD version of the 

equation (2.61) can be written as 

 𝐹
𝑖+

1
2

𝑤𝑎𝑓
=

1

2
(𝐹𝑖 + 𝐹𝑖+1) −

1

2
∑ 𝑠𝑖𝑔𝑛(𝑐𝑘)𝐴𝑘∆𝐹

𝑖+
1
2

(𝑘)

𝑁

𝑘=1

 (2.69) 
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where 𝐴𝑘 is the WAF limiter function. 𝐴𝑘 is defined as 

 𝐴𝑘 = 1 − (1 − |𝑐|)𝜓(𝑟) (2.70) 

where c is the Courant number, 𝜓 in the limiter function and 𝑟 is defined as 

 𝑟(𝑘) =

{
 
 

 
 𝑞𝑖

(𝑘)
− 𝑞𝑖−1

(𝑘)

𝑞𝑖+1
(𝑘)

− 𝑞𝑖
(𝑘)

       𝑖𝑓 𝑐𝑘 > 0

𝑞𝑖+2
(𝑘)

− 𝑞𝑖+1
(𝑘)

𝑞𝑖+1
(𝑘)

− 𝑞𝑖
(𝑘)

       𝑖𝑓 𝑐𝑘 < 0

 (2.71) 

For two-dimensional shallow water equations, in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑞 can be selected as 

𝑞 = ℎ for non-linear waves and 𝑞 = 𝑣 for the shear wave (Toro, 2001). 

2.3.5. Well-Balanced Hydrostatic Reconstruction 

A numerical scheme solving the shallow water equations is said to be well-balanced 

if the source term corresponding to the bed slope in the momentum equation is treated 

in such a way that it preserves exactly the water at rest or stationary solution, i.e., 

 
𝑢 = 0 

ℎ + 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (2.72) 

In stationary situation, the shallow water equations reduce to 

 (
1

2
𝑔ℎ2)

𝑥
= −𝑔ℎ𝑧𝑥 (2.73) 

To obtain a well-balanced scheme, the hydrostatic flux term in left hand side of the 

equation (2.73) should be numerically well-balanced with the bed slope source term 

in the right hand side. Among the several well-balanced schemes, (Audusse, et al., 

2004) propose “hydrostatic reconstruction scheme” and obtain first order and second 

order well-balanced schemes. Later, higher order well-balanced scheme called WENO 

is introduced by (Noelle, et al., 2006). 
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2.3.5.1. Discretization of the Source Term 

Semidiscrete finite volume form of the discretized equations can be written as 

 ∆𝑥𝑖 

𝜕

𝜕𝑡
 𝑈𝑖(𝑡) + (𝐹

𝑖+
1
2
− 𝐹

𝑖−
1
2
) = 𝑆𝑖 (2.74) 

where 𝑈𝑖 is the vector of cell-averaged variables (ℎ𝑖, 𝑞𝑖)
𝑇and 𝐹

𝑖±
1

2

 are the flux 

functions calculated from solving the Riemann problem according to the Riemann 

states at left and right of the cell interfaces as 

 

𝐹
𝑖+

1
2
= 𝐹 (𝑈

𝑖+
1
2

(𝑙) , 𝑈
𝑖+

1
2

(𝑟)) 

𝐹
𝑖−

1
2
= 𝐹 (𝑈

𝑖−
1
2

(𝑙) , 𝑈
𝑖−

1
2

(𝑟)) 

(2.75) 

where 𝑈
𝑖+

1

2

(𝑙) and 𝑈
𝑖+

1

2

(𝑟) stand for the 𝑈 at the left and right of the cell interface 𝑖 + 1

2
, 

respectively. For nearly stationary state, i.e. 𝑢 ≪ √𝑔ℎ , equation (2.73) is the 

necessary condition to hold the balance between hydrostatic pressure term and the bed 

slope source term. According to this equality, Audusse, et al., 2004 use the discrete 

gradient of the hydrostatic momentum flux (1

2
𝑔ℎ2)

𝑥
 instead of the bed slope source 

term. By integrating equation (2.73) over cell 𝑖 from 𝑥𝑖−1/2 to 𝑥𝑖+1/2, the source term, 

𝑆𝑖 in equation (2.74) can be obtained as 

 − ∫ 𝑔ℎ𝑧𝑥

𝑥 𝑖+1 2⁄
(𝑙)

𝑥 𝑖−1 2⁄
(𝑟)

= ∫
𝜕

𝜕𝑥
(
1

2
𝑔ℎ2) =

𝑔

2
(ℎ

 𝑖+1 2⁄
(𝑙)

2 − ℎ
𝑖−1 2⁄

(𝑟)
2 )

𝑥 𝑖+1 2⁄
(𝑙)

𝑥 𝑖−1 2⁄
(𝑟)

  

 𝑆𝑖 =
𝑔

2
(

0
ℎ
 𝑖+1 2⁄

(𝑙)
2 − ℎ

 𝑖+1 2⁄
(𝑟)

2 ) (2.76) 
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Indeed, with this kind of discretization, cell-averaged source term is distributed to the 

cell interfaces. The details are shown in equations (2.83) ~ (2.86) for the first order 

scheme and (2.98) ~ (2.102) for the second order scheme. 

Audusse, et al., 2004 suggest the following reconstructed value for h and z at cell 

interfaces 

 𝑧
𝑖+

1
2

∗ = 𝑚𝑎𝑥(𝑧𝑖,𝑟 , 𝑧𝑖+1,𝑙) (2.77) 

  ℎ
𝑖+

1
2

−
∗ = 𝑚𝑎𝑥 (0, 𝑧𝑖,𝑟 + ℎ𝑖,𝑟 − 𝑧

𝑖+
1
2

∗ ) (2.78) 

 ℎ
𝑖+

1
2

+
∗ = 𝑚𝑎𝑥 (0, 𝑧𝑖+1,𝑙 + ℎ𝑖+1,𝑙 − 𝑧

𝑖+
1
2

∗ ) (2.79) 

where 𝑧𝑖,𝑟 and 𝑧𝑖+1,𝑙 are the bed elevation at the right of the cell 𝑖 and the left of the 

cell 𝑖 + 1, respectively. ℎ𝑖,𝑟 and ℎ𝑖+1,𝑙 are defined at the same manner. Audusse, et al., 

2004 prove that this reconstruction of the variables provides non-negativity of the 

water height, even while cell starts to dry out. 

2.3.5.2. First Order Well-Balanced Scheme Based on Hydrostatic Reconstruction 

For the first order well-balanced scheme the reconstructed values become 

 𝑧
𝑖+

1
2

∗ = 𝑚𝑎𝑥(𝑧𝑖, 𝑧𝑖+1) (2.80) 

 ℎ
𝑖+1/2(𝑙)
∗ = 𝑚𝑎𝑥 (0, 𝑧𝑖 + ℎ𝑖 − 𝑧

𝑖+
1
2

∗ ) (2.81) 

 ℎ
𝑖+1/2(𝑟)
∗ = 𝑚𝑎𝑥 (0, 𝑧𝑖+1 + ℎ𝑖+1 − 𝑧

𝑖+
1
2

∗ ) (2.82) 

The location of the reconstructed variables is depicted in Figure 2.10. 
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ℎ
𝑖+

1
2

(𝑟)
∗  ℎ

𝑖+
1
2

(𝑙)
∗

 

ℎ
𝑖

 

𝑧
𝑖

 
𝑧
𝑖+1/2
∗

 

 

Figure 2.10. Illustration of the reconstructed variables for the first-order well-balanced scheme. 

 

The source term (2.76) can be rewritten as 

𝑆𝑖 = 𝑆
 𝑖+1 2⁄

(𝑙) + 𝑆
𝑖−1 2⁄

(𝑟) =
𝑔

2
(

0
ℎ
 𝑖+1 2⁄

(𝑙)
∗ 2 − ℎ𝑖

2) +
𝑔

2
(

0
ℎ𝑖

2 − ℎ
 𝑖−1 2⁄

(𝑟)
∗ 2 ) (2.83) 

Now, the equation (2.74) can be modified by distributing the source term (2.83) to left 

and right fluxes and can be rewritten as 

 ∆𝑥𝑖 

𝜕

𝜕𝑡
 𝑈𝑖(𝑡) + 𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡(𝑈𝑖, 𝑈𝑖+1, 𝑧𝑖 , 𝑧𝑖+1) − 𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡(𝑈𝑖−1, 𝑈𝑖, 𝑧𝑖−1, 𝑧𝑖) = 0 (2.84) 

with modified fluxes 

𝐹
𝑖+

1
2

𝑙𝑒𝑓𝑡(𝑈𝑖 , 𝑈𝑖+1, 𝑧𝑖 , 𝑧𝑖+1) = 𝐹
𝑖+

1
2
(𝑈

 𝑖+1 2⁄
(𝑙) , 𝑈

 𝑖+1 2⁄
(𝑟)) − 𝑆

𝑖+
1
2

(𝑙) 

                                      = 𝐹
𝑖+

1
2
(𝑈

 𝑖+1 2⁄
(𝑙) , 𝑈

 𝑖+1 2⁄
(𝑟)) +

𝑔

2
(

0
ℎ𝑖

2 − ℎ
 𝑖+1 2⁄

(𝑙)
∗ 2 ) 

(2.85) 
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𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡(𝑈𝑖−1, 𝑈𝑖, 𝑧𝑖−1, 𝑧𝑖) = 𝐹
𝑖−

1
2
(𝑈

 𝑖−1 2⁄
(𝑙) , 𝑈

 𝑖−1 2⁄
(𝑟)) + 𝑆

𝑖−
1
2

(𝑟)  

                                             = 𝐹
𝑖−

1
2
(𝑈

 𝑖−1 2⁄
(𝑙) , 𝑈

 𝑖−1 2⁄
(𝑟)) +

𝑔

2
(

0
ℎ𝑖

2 − ℎ
 𝑖−1 2⁄

(𝑟)
∗ 2 ) 

(2.86) 

where 𝐹(.)
𝑙𝑒𝑓𝑡 and 𝐹(.)

𝑟𝑖𝑔ℎ𝑡 are denoted to the F at the left and right of the cell interface 

(.) respectively. With the CFL condition of 𝐶𝐹𝐿 ≤ 1 and uniform mesh size, the fully 

discrete form of the equations can be written as 

 𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
[𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡(𝑈𝑖, 𝑈𝑖+1, 𝑧𝑖 , 𝑧𝑖+1) − 𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡(𝑈𝑖−1, 𝑈𝑖, 𝑧𝑖−1, 𝑧𝑖)] (2.87) 

where the fluxes are calculated from (2.85) and (2.86). 

 

2.3.5.3. Second Order Well-Balanced Scheme Based on Hydrostatic 

Reconstruction 

One way to reach the second order accuracy is to reconstruct the variables at the cell 

interfaces with a piecewise linear approximation and use those value as Riemann 

states to calculate interface fluxes. For uniformly discretized domain with constant 

mesh size, the interface values for water depth h and unit discharge q can be obtained 

by linear approximation as 

 ℎ
𝑖+

1
2

(𝑙) = max(0, 𝜂𝑖 +
1

2
𝛿𝜂𝑖∆𝑥 − 𝑧

𝑖+
1
2

∗ ) (2.88) 

 ℎ
𝑖+

1
2

(𝑟) = max(0, 𝜂𝑖+1 −
1

2
𝛿𝜂𝑖+1∆𝑥 − 𝑧

𝑖+
1
2

∗ ) (2.89) 

 𝑞
𝑖+

1
2

(𝑙) = 𝑞𝑖 +
1

2
𝛿𝑞𝑖∆𝑥 (2.90) 
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 𝑞
𝑖+

1
2

(𝑟) = 𝑞𝑖+1 −
1

2
𝛿𝑞𝑖+1∆𝑥 (2.91) 

where η shows the water surface elevation. Accordingly, the velocities at the left and 

right of the cell interfaces are calculated as 

 𝑢
𝑖+

1
2

(𝑙) = {
0                     
𝑞
𝑖+

1
2

−/ℎ
𝑖+

1
2

−         
𝑖𝑓 ℎ

𝑖+
1

2

(𝑙) < 𝜀

𝑒𝑙𝑠𝑒               
 (2.92) 

 𝑢
𝑖+

1
2

(𝑟) = {
0                    
𝑞
𝑖+

1
2

+/ℎ
𝑖+

1
2

+       
𝑖𝑓 ℎ

𝑖+
1

2

(𝑟) < 𝜀

𝑒𝑙𝑠𝑒               
 (2.93) 

where 𝜀 is the tolerance for the dry bed. In this study 𝜀 is chosen as 10-10. 

𝛿𝜂𝑖 and 𝛿𝑞𝑖 are the gradients of w and q in each cell. To avoid spurious oscillations, 

nonlinear slope limiters can be used to define 𝛿𝜂𝑖 and 𝛿𝑞𝑖 as 

 
𝛿𝜂𝑖 = 𝐿 (

𝜂𝑖 − 𝜂𝑖−1

𝑥𝑖 − 𝑥𝑖−1
,
𝜂𝑖+1 − 𝜂𝑖

𝑥𝑖+1 − 𝑥𝑖
) 

𝛿𝑞𝑖 = 𝐿 (
𝑞𝑖 − 𝑞𝑖−1

𝑥𝑖 − 𝑥𝑖−1
,
𝑞𝑖+1 − 𝑞𝑖

𝑥𝑖+1 − 𝑥𝑖
) 

(2.94) 

where L is the slope limiter function. One choice for L can be minmod function, which 

leads to second order accurate scheme (Randall J. Leveque, 2004).  

 𝐿(𝑎, 𝑏) = 𝑚𝑎𝑥[0,min (𝑎, 𝑏)] (2.95) 

Kurganov & Petrova, 2007 use generalized form of the minmod limiter which can be 

written as 

 
𝛿𝜂𝑖 = 𝐿 (𝜃

𝜂𝑖 − 𝜂𝑖−1

𝑥𝑖 − 𝑥𝑖−1
,
𝜂𝑖+1 − 𝜂𝑖−1

𝑥𝑖+1 − 𝑥𝑖−1
, 𝜃

𝜂𝑖+1 − 𝜂𝑖

𝑥𝑖+1 − 𝑥𝑖
) 

𝛿𝑞𝑖 = 𝐿 (𝜃
𝑞𝑖 − 𝑞𝑖−1

𝑥𝑖 − 𝑥𝑖−1
,
𝑞𝑖+1 − 𝑞𝑖−1

𝑥𝑖+1 − 𝑥𝑖−1
, 𝜃

𝑞𝑖+1 − 𝑞𝑖

𝑥𝑖+1 − 𝑥𝑖
) 

(2.96) 

where the function L is defined as 
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 𝐿(𝑎1, 𝑎2, 𝑎3) = {
min(𝑎𝑖)           𝑖𝑓 𝑎𝑖 > 0 𝑓𝑜𝑟 𝑖 = 1,2,3

max(𝑎𝑖)           𝑖𝑓 𝑎𝑖 < 0 𝑓𝑜𝑟 𝑖 = 1,2,3
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (2.97) 

and 𝜃 is the numerical viscosity amount which is in the interval of 𝜃 ∈ [1,2]. 

In second order scheme, 𝑧𝑖,𝑟 and 𝑧𝑖,𝑙 should also be defined and to preserve 

consistency, cell-centered source term 𝑆𝑐𝑖 should also be added to the discretized 

equation (Audusse, et al., 2004). 

Second order well balanced scheme can be summarized as 

∆𝑥𝑖 

𝜕

𝜕𝑡
 𝑈𝑖(𝑡) + (𝐹

𝑖+
1
2
− 𝐹

𝑖−
1
2
) = 𝑆𝑖 + 𝑆𝑐𝑖 (2.98) 

∆𝑥𝑖 

𝜕

𝜕𝑡
 𝑈𝑖(𝑡) + 𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡
(𝑈𝑖,𝑟, 𝑈𝑖+1,𝑙, 𝑧𝑖,𝑟, 𝑧𝑖+1,𝑙) − 𝐹

𝑖−
1
2

𝑟𝑖𝑔ℎ𝑡
(𝑈𝑖−1,𝑟, 𝑈𝑖,𝑙 , 𝑧𝑖−1,𝑟, 𝑧𝑖,𝑙) = 𝑆𝑐𝑖 (2.99) 

where 

𝐹
𝑖+

1
2

𝑙𝑒𝑓𝑡
(𝑈𝑖,𝑟 , 𝑈𝑖+1,𝑙, 𝑧𝑖,𝑟 , 𝑧𝑖+1,𝑙) = 𝐹

𝑖+
1
2
(𝑈

 𝑖+1 2⁄
(𝑙) , 𝑈

 𝑖+1 2⁄
(𝑟)) − 𝑆

𝑖+
1
2

(𝑙) 

= 𝐹
𝑖+

1
2
(𝑈

 𝑖+1 2⁄
(𝑙) , 𝑈

 𝑖+1 2⁄
(𝑟)) +

𝑔

2
(

0
ℎ𝑖,𝑟

2 − ℎ
 𝑖+1 2⁄

(𝑙)
∗ 2 ) 

(2.100) 

𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡
(𝑈𝑖−1,𝑟, 𝑈𝑖,𝑙, 𝑧𝑖−1,𝑟 , 𝑧𝑖,𝑙) = 𝐹

𝑖−
1
2
(𝑈

 𝑖−1 2⁄
(𝑙) , 𝑈

 𝑖−1 2⁄
(𝑟)) + 𝑆

𝑖−
1
2

(𝑟) 

= 𝐹
𝑖−

1
2
(𝑈

 𝑖−1 2⁄
(−) , 𝑈

 𝑖−1 2⁄
(+)) +

𝑔

2
(

0
ℎ𝑖,𝑙

2 − ℎ
 𝑖−1 2⁄

(𝑟)
∗ 2 ) 

(2.101) 

Cell-centered source term is defined as 

 𝑆𝑐𝑖 = [
0

𝑔ℎ𝑖(𝑧𝑖,𝑙 − 𝑧𝑖,𝑟)
] (2.102) 

The location of the reconstructed variables in the second-order scheme is depicted in 

Figure 2.11. 
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ℎ
𝑖+

1
2

(𝑟)
∗  

ℎ
𝑖+

1
2

(𝑙)
∗

 

ℎ
𝑖

 

𝑧
𝑖

 𝑧
𝑖+1/2
∗

 

𝜂
𝑖

 𝜂
𝑖+1

 

𝜂
𝑖−1

 

𝑧
𝑖,𝑟

 

𝑧
𝑖,𝑙

 

 

Figure 2.11. Illustration of the reconstructed variables for the second-order well-balanced scheme. 

 

Fully discrete form of the equations can be written as 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
[𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡
(𝑈𝑖,𝑟 , 𝑈𝑖+1,𝑙, 𝑧𝑖,𝑟 , 𝑧𝑖+1,𝑙)

− 𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡
(𝑈𝑖−1,𝑟 , 𝑈𝑖,𝑙, 𝑧𝑖−1,𝑟, 𝑧𝑖,𝑙)] +

∆𝑡

∆𝑥
𝑆𝑐𝑖 

(2.103) 

 

2.3.6. Reconstruction of the Wet/Dry Fronts 

Second order reconstruction of the water surface elevation using piecewise linear 

function may lead to negative depth near dry area. Therefore, special treatments are 

needed to prevent creation of negative depths, since they will destroy the computation. 

Illustration of such situation is depicted in Figure 2.12.  
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𝜂
𝑖+1

 

𝜂
𝑖

 

ℎ
𝑖−1/2(𝑟)<0

 

𝑖 

𝑖 + 1 
 

Figure 2.12. Creation of negative depth during piecewise reconstruction step. 

 

To prevent such situation, the water surface slope should be corrected in the cases that 

𝜂
𝑖−

1

2

+ < 𝑧
𝑖−

1

2

 or 𝜂
𝑖+

1

2

− < 𝑧
𝑖+

1

2

. In this study, the corrections are done according to 

Kurganov & Petrova, 2007, as follows:  

Case 1: if the negative depth appears at the left edge of the cell, i.e., 𝜂
𝑖−

1

2

+ < 𝑧
𝑖−

1

2

, then 

the water surface slope will be corrected as 

 𝛿𝜂𝑖 =

𝜂𝑖 − 𝑧
𝑖−

1
2

∆𝑥/2
 (2.104) 

and therefore 

 {

𝜂
𝑖−

1
2

+ = 𝑧
𝑖−

1
2
           

𝜂
𝑖+

1
2

− = 2𝜂𝑖 − 𝑧
𝑖−

1
2

 (2.105) 

Then, the depth at the left and right of the cell will be 
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 {

ℎ
𝑖−

1
2

+ = 0    

ℎ
𝑖+

1
2

− = 2ℎ𝑖
 (2.106) 

Case 2: if the negative depth appears at the right edge of the cell, i.e., 𝜂
𝑖+

1

2

− < 𝑧
𝑖+

1

2

, then 

the water surface slope will be corrected as 

 𝛿𝜂𝑖 =

𝑧
𝑖+

1
2
− 𝜂𝑖

∆𝑥/2
 (2.107) 

and therefore 

 {

𝜂
𝑖−

1
2

+ = 2𝜂𝑖 − 𝑧
𝑖+

1
2
    

𝜂
𝑖+

1
2

− = 𝑧
𝑖+

1
2
               

 (2.108) 

Then, the depth at the left and right of the cell will be 

 {

ℎ
𝑖−

1
2

+ = 2ℎ𝑖     

ℎ
𝑖+

1
2

− = 0        
 (2.109) 

The correction procedure is depicted in Figure 2.13. 

𝜂
𝑖

 

𝑖 
  2ℎ𝑖  

𝜂
𝑖

 

𝑖 
{  

 

2ℎ𝑖  

 

Figure 2.13. correction procedure of the negative depth at the left edge of the cell (left) and right edge 
of the cell (right). Dotted line and solid lines represent the water surface before and after correction, 

respectively. 
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2.3.7. Adopted Numerical Solutions and Developed Codes in FORTRAN 

Three codes are developed in FORTRAN to solve the shallow water equations. One 

of the codes is written to solve the discretized equation (2.45). In equation (2.45), the 

source term is neglected; therefore, the source term is added to the right-hand side of 

it as 

 𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
[𝐹

𝑖+
1
2
− 𝐹

𝑖−
1
2
] + ∆𝑡 𝑆𝑖

𝑛 (2.110) 

where 𝑈 = [ℎ , 𝑞]𝑇, and the source term is defined as 

 𝑆𝑖
𝑛 = [

0
−𝑔ℎ𝑖(𝑆0 𝑖 + 𝑆𝑓 𝑖)

] (2.111) 

𝑆0 𝑖 is the bed slope of the cell 𝑖, and 𝑆𝑓 𝑖 is the friction source term and is defined as 

 𝑆𝑓 𝑖 =
𝑛2𝑢|𝑢|

𝑅ℎ
4/3

 (2.112) 

where 𝑅ℎ= hydraulic radius. Hereafter, this code will be referred as WAF code for 

simplicity. The WAF code does not have well-balanced property. In the WAF code, 

fluxes are calculated using equation (2.69), where 𝐹𝐿 = 𝐹𝑖 and 𝐹𝑅 = 𝐹𝑖+1. 

Another code is developed to solve the 1st order well-balanced scheme, and hereafter 

will be called WAF1WB. WAF1WB solves equation (2.87) with included friction 

source term as 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 −
∆𝑡

∆𝑥
[𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡(𝑈𝑖, 𝑈𝑖+1, 𝑧𝑖, 𝑧𝑖+1) − 𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡(𝑈𝑖−1, 𝑈𝑖 , 𝑧𝑖−1, 𝑧𝑖)]

+ ∆𝑡 [
0

−𝑔ℎ𝑖𝑆𝑓 𝑖
] 

(2.113) 

where 𝑆𝑓 𝑖 is defined by equation (2.112). 
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Beside WAF and WAF1WB, another code, which will be referred hereafter as 

WAF2WB, is written to solve second order well-balanced scheme, the discretized 

form of which is like equation (2.103) with added friction source term as 

 
𝑈𝑖

𝑛+1 = 𝑈𝑖
𝑛 −

∆𝑡

∆𝑥
[𝐹

𝑖+
1
2

𝑙𝑒𝑓𝑡
(𝑈𝑖,𝑟 , 𝑈𝑖+1,𝑙, 𝑧𝑖,𝑟 , 𝑧𝑖+1,𝑙)

− 𝐹
𝑖−

1
2

𝑟𝑖𝑔ℎ𝑡
(𝑈𝑖−1,𝑟, 𝑈𝑖,𝑙, 𝑧𝑖−1,𝑟 , 𝑧𝑖,𝑙)] + ∆𝑡 [

0
−𝑔ℎ𝑖(𝑆0 𝑖 + 𝑆𝑓 𝑖)

] 
(2.114) 

Again 𝑆0 𝑖 is the bed slope of the cell 𝑖 and 𝑆𝑓 𝑖 is calculated using equation (2.112). 

Modifications of the wet/dry fronts are done according to equations (2.104) ~ . 

Nine test cases will be used to validate the developed codes. Definition of the test 

cases is given in chapter 3 and the corresponding numerical solutions using WAF, 

WAF1WB, and WAF2WB are given in chapter 4. 
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CHAPTER 3  

 

3. DEFINITION OF NUMERICAL TEST CASES 

 

3.1. Test Case 1: Subcritical Flow in a Rectangular Channel with Various Bed 

Slope  

Test case 1 is selected to evaluate the developed codes in solving steady-state 

subcritical flow with smoothly varying bed slope. This test case is a steady-state flow 

problem and is introduced by I. MacDonald, et al., 2002. According to Ian 

MacDonald, 1996, corresponding bed slope to a given smooth water surface profile  

ℎ(𝑥) can be obtained by  

 𝑆0(𝑥) = 𝑓1ℎ
′(𝑥) + 𝑓2  (3.1) 

where 

 

𝑓1 = 1 −
𝑄2𝑇

𝑔𝐴3
= 1 − 𝐹𝑟2 

𝑓2 =
𝑄2𝑛2𝑃4/3

𝐴10/3
−

𝑄2

𝑔𝐴3

𝜕𝐴

𝜕𝑥
  

(3.2) 

and T = Top Width, n = Manning’s Roughness Coefficient, and P = Wetted Perimeter. 

Test case 1 has a rectangular cross section 10 m wide and the channel is 1000 m long. 

Flow is subcritical in the whole channel with a discharge equal to 20 m3/s. Manning’s 

roughness coefficient is 0.03. Water depth profile is given by 

  ℎ(𝑥) = (
4

𝑔
)
1/3

{1 +
1

2
exp [−16 (

𝑥

1000
−

1

2
)
2

]} (3.3) 

Corresponding bed slope to the water depth profile (3.3) is obtained using (3.1) and 

(3.2) as  
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 𝑆0(𝑥) = (1 −
4

𝑔[ℎ(𝑥)]3
) ℎ′(𝑥) + 0.36

(2ℎ(𝑥) + 10)4/3

(10ℎ(𝑥))
10/3

 (3.4) 

The exact water surface and water depth profiles are depicted in Figure 3.1 and Figure 

3.2, respectively. 

 

Figure 3.1. Exact water surface and critical flow elevations for Test Case 1: Subcritical Flow in a 
Rectangular Channel with Various Bed Slope. 

 

Figure 3.2. Exact water depth and critical flow depth for Test Case 1: Subcritical Flow in a 
Rectangular Channel with Various Bed Slope. 
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3.2. Test Case 2: Various Bed Slope with Subcritical Inflow and Hydraulic Jump 

Test cases 2 is also introduced by Ian MacDonald, 1996 and is considered by many 

authors; for example Delis & Skeels, 1998. This test case is selected to see how the 

developed codes deal with the transition from subcritical flow to supercritical flow, 

and contrariwise, the transition from supercritical flow to subcritical flow, i.e., 

hydraulic jump, in a steady-state flow problem. 

Test case 2 starts with subcritical inflow and enters to supercritical region. A hydraulic 

jump occurs at the middle section of the channel and flow regime changes to 

subcritical again. Water surface profile is given by 

ℎ(𝑥) =

{
 
 
 

 
 
 (

4

𝑔
)
1/3

(
4

3
−

𝑥

100
) −

9𝑥

1000
(

𝑥

100
−

2

3
)                                       𝑥 ≤

200

3

(
4

𝑔
)

1
3
(0.674202 (

𝑥

100
−

2

3
)
4

+ 0.674202 (
𝑥

100
−

2

3
)
3

      𝑥 >
200

3

−21.7112 (
𝑥

100
−

2

3
)
2

+ 14.492 (
𝑥

100
−

2

3
) + 1.4305                       

 (3.5) 

Channel has a rectangular cross section with a constant width equal to 10 m. Length 

of the channel is 100 m, and Manning’s roughness coefficient is 0.03. Bed slope 

corresponded to the water depth profile defined by (3.5) is again obtained using 

equation (3.1) and (3.2) as 

 𝑆0(𝑥) = (1 −
4

𝑔[ℎ(𝑥)]3
) ℎ′(𝑥) +

9

2500[ℎ(𝑥)]2
(
1

5
+

1

ℎ(𝑥)
)
4/3

 (3.6) 

Inflow discharge of the channel is 20 m³/s, and the Manning’s roughness coefficient 

is equal 0.03. The exact water surface elevation and exact water depth are plotted in 

Figure 3.3 and Figure 3.4, respectively. 
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Figure 3.3. Exact water surface and critical flow elevations for Test Case 2: Various Bed Slope with 
Subcritical Inflow and Hydraulic Jump. 

 

Figure 3.4. Exact water depth and critical flow depth for Test Case 2: Various Bed Slope with 
Subcritical Inflow and Hydraulic Jump. 
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3.3. Test Case 3: Various Bed Slope with Supercritical Inflow and Hydraulic 

Jump 

This test case is also introduced by Ian MacDonald, 1996 and considered  by Delis & 

Skeels, 1998. The channel is 100 m long and 10 m wide, and the Manning’s roughness 

coefficient of the channel is 0.03 as same as the previous test case. In this case, the 

bed slope of the channel is given by 

 𝑆0(𝑥) = (1 −
4

𝑔[ℎ(𝑥)]3
) ℎ′(𝑥) +

9

2500[ℎ(𝑥)]2
(
1

5
+

1

ℎ(𝑥)
)
4/3

       (3.7) 

where water depth ℎ(𝑥) is defined by 

ℎ(𝑥) =

{
 
 
 
 

 
 
 
 
(
4

𝑔
)

1
3
(−10.7872 (

𝑥

100
−

1

3
)
4

+ 18.8777 (
𝑥

100
−

1

3
)
3

        𝑥 ≤
200

3

+17.9329 (
𝑥

100
−

1

3
)
2

+ 3.1725 (
𝑥

100
−

1

3
) + 0.850042)             

                   

(
4

𝑔
)

1
3
(
5

6
+

(100 − 𝑥)

200
) +

4

10
(

𝑥

100
−

1

3
) (

𝑥

100
− 1)              𝑥 >

200

3
 

   (3.8) 

This case is also selected to evaluate the behavior of the numerical solutions near the 

discontinuity in the water surface, i.e., hydraulic jump. The differences between this 

test case and the previous one are in the sequence of changes in flow regime and 

boundary conditions. Here, flow is supercritical at the inflow with a discharge of 20 

m³/s. Flow regime changes to subcritical at the central section of the channel by a 

hydraulic jump and then turns back into supercritical at the outflow section again. The 

exact water surface elevation and water depth are shown in Figure 3.5 and Figure 3.6, 

respectively. 



 

 
 

44 
 

 

Figure 3.5. Exact water surface and critical flow elevations for Test Case 3: Various Bed Slope with 
Supercritical Inflow and Hydraulic Jump. 

 

Figure 3.6. Exact water depth and critical flow depth for Test Case 3: Various Bed Slope with 

Supercritical Inflow and Hydraulic Jump. 
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3.4. Test Case 4: Steady Flow over a Bump; Transcritical Flow with Hydraulic 

Jump 

Test cases 3.4, 3.5, and 3.6 are a set of steady state flow over a bump with different 

boundary conditions and flow situations. These test cases are well-known test cases 

and are considered by several authors, for example by Marı́a Elena Vázquez-Cendón, 

1999. These test cases are considered to study the behavior of the numerical solutions 

used in this thesis in dealing with obstacle in the channel bed, in the presence of 

different flow situations in the channel. 

The computational domain is a frictionless channel with a rectangular cross section. 

The length and breadth of the channel are 25 m and 1 m, respectively. A bump with a 

maximum height of 0.2 𝑚 is located at the bottom of the channel from 𝑥 = 8 𝑚 to 

𝑥 = 12 𝑚. Channel bed elevation is defined by 

 𝑧(𝑥) = {
0.2 − 0.05(𝑥 − 10)2,         𝑓𝑜𝑟 8 < 𝑥 < 12
0 ,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3.9) 

Depending on the initial and boundary conditions, the flow in the channel may be a) 

transcritical with a hydraulic jump, b) subcritical all over the domain (see section 3.5), 

and c) transcritical without hydraulic jump (see section 3.6). In the case of transcritical 

flow with a hydraulic jump, flow is subcritical at inflow, it passes through the critical 

depth at the top of the bump and the flow regime changes to supercritical, and finally, 

at the end region of the bump, a hydraulic jump occurs and flow regime changes back 

to subcritical again. 

Discharge of the channel is 0.18 𝑚3/𝑠 and the depth of the flow at the downstream 

end of the channel is 0.33 𝑚. 

The exact solution to this problem is obtained by using the hydraulic principles. At 

the top of the bump, flow passes through the critical depth. Specific energy of the flow 

is minimum in that point and is equal to 
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 𝐸𝑚𝑖𝑛 =
3

2
√
𝑞2

𝑔

3

= 0.22338 𝑚 (3.10) 

Thus, the specific energy before the bump is 

 𝐸𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝐸𝑚𝑖𝑛 + ∆𝑧𝑧𝑒𝑛𝑖𝑡ℎ = 0.42338 𝑚 (3.11) 

Therefore, the exact depth of the water before the hydraulic jump can be obtained by 

solving the equation 

 𝑦 +
𝑞2

2𝑔𝑦2
= 0.42338 − ∆𝑧𝑖 (3.12) 

where ∆𝑧𝑖 is the height of the cell 𝑖 with respect to the channel bed before the bump. 

Before the zenith of the bump, flow is subcritical, and after that, flow is supercritical. 

Therefore, before the zenith, the roots corresponding to the subcritical flow and after 

the zenith, the roots corresponding to the supercritical flow should be selected. 

The flow depth at the downstream end of the channel is 0.33 m, and specific energy 

of the flow at the downstream of the channel is 

 𝐸𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑦 +
𝑞2

2𝑔 × 𝑦2
= 0.34516 𝑚 (3.13) 

Since there is no head loss in the channel after the hydraulic jump, depth of the flow 

after the jump can be obtained by solving the equation 

 𝑦 +
𝑞2

2𝑔𝑦2
= 0.34516 − ∆𝑧𝑖 (3.14) 

Flow regime after the bump is subcritical; therefore, the roots corresponding to the 

subcritical flow should be selected. 

Location of the hydraulic jump can be determined by using the specific force concept 

of the flow. The hydraulic jump occurs at a point that the specific forces of the flow 
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before and after the jump are equal. Specific force for a rectangular channel can be 

written as 

 
𝐹

𝑏
=

1

2
𝑦2 +

𝑞2

𝑔𝑦
 (3.15) 

The specific force before and after the jump should be equal as 

 
1

2
𝑦1

2 +
𝑞2

𝑔𝑦1
=

1

2
𝑦2

2 +
𝑞2

𝑔𝑦2
 (3.16) 

By solving the equations (3.12), (3.14), and (3.16) simultaneously, the location of the 

jump is obtained at the point with 𝑥 =  11.6677 𝑚, and the height of the hump is 

∆𝑧 = 0.0613 𝑚 at the jump location. 

Exact solution of this test case is plotted in Figure 3.7. 

 

Figure 3.7. Exact water surface and critical flow elevations for Test Case 4: Steady Flow over a 

Bump (Transcritical Flow with a Hydraulic Jump). 
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3.5. Test Case 5: Steady Flow over a Bump; Subcritical Flow All over the Domain 

In this case, flow is subcritical in the whole domain. The bed elevation is defined by 

equation (3.9), as same as the previous test case. The discharge of the channel is 

4.42 𝑚3/𝑠 and the downstream water depth is 2 𝑚.  

Specific energy at the downstream boundary of the channel is calculated as 

 𝐸𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑦 +
𝑞2

2𝑔 × 𝑦2
= 2.24893 𝑚 (3.17) 

The exact solution for this case can be obtained by solving the equation 

 𝑦 +
𝑞2

2𝑔𝑦2
= 2.24893 − ∆𝑧𝑖 (3.18) 

and selecting the roots corresponding to the subcritical flow. Exact solution of this 

problem is plotted in Figure 3.8. 

 

Figure 3.8. Exact water surface and critical flow elevations for Test Case 5: Steady Flow over a 

Bump (Subcritical Flow All over the Domain). 
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3.6. Test Case 6: Steady Flow over a Bump; Transcritical Flow without 

Hydraulic Jump 

In this case, the bed elevation is also defined by equation (3.9). The discharge in the 

channel is equal to 1.53 𝑚3/𝑠. Flow regime changes from subcritical to supercritical 

over the zenith of the bump and flow remains supercritical until the end of the channel. 

The exact solution to this problem is again obtained by using the specific energy 

concepts. Flow passes through the critical depth at the zenith of the bump and specific 

energy is minimum there. The specific energy of the flow at the zenith is equal to 

 𝐸𝑚𝑖𝑛 =
3

2
√
𝑞2

𝑔

3

= 0.93038 𝑚 (3.19) 

Therefore, the specific energy before and after the bump is 

 𝐸 = 𝐸𝑚𝑖𝑛 + ∆𝑧𝑧𝑒𝑛𝑖𝑡ℎ = 1.13038 𝑚 (3.20) 

and the depths can be obtained by solving the equation 

 𝑦 +
𝑞2

2𝑔𝑦2
= 1.13038 − ∆𝑧𝑖 (3.21) 

Flow before the climax of the bump is subcritical and after that is supercritical. 

Therefore, before the climax, the roots corresponding to the subcritical flow and after 

the climax, the roots corresponding to the supercritical flow should be selected. 

The exact solution to this problem is plotted in Figure 3.9. 



 

 
 

50 
 

 

Figure 3.9. Exact water surface and critical flow elevations for Test Case 6: Steady Flow over a 

Bump (Transcritical Flow without Hydraulic Jump). 

 

3.7. Test Case 7: Surge Crossing a Step 

This is an unsteady test case and is used by Hu, et al., 2000. This test case is selected 

to see the capability of the numerical solutions in this study in solving an unsteady 

state flow problem with a step-like discontinuity in the channel bed. The length of the 

channel is 10 km. Channel is assumed to be frictionless. A step of the height 2 𝑚 is 

located at 𝑥 = 5 km. Initially, water is at rest in the whole channel with water surface 

elevation of 5 𝑚 with respect to the channel bed before the step. A 10 m high surge 

enters from the left boundary and travels to the downstream. The velocity of the surge 

is obtained from equation (3.22) as 6.065 𝑚/𝑠. 

 𝑣1 =
(𝑑1 − 𝑑2)

𝑑1

√
𝑔𝑑1(𝑑1 + 𝑑2)

2𝑑2
 (3.22) 
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where 𝑑1 and 𝑑2 are the height of the surge (i.e., 𝑑1 = 10 𝑚) and the initial height of 

water before the step (i.e., 𝑑2 = 5 𝑚), respectively. Due to the presence of the step, 

the incoming surge splits into the two new surges when it crosses over the step; one 

travels in the upstream direction, and the other travels to the downstream. The 

analytical solution to this problem can be obtained following Chow, 1959, by solving 

the equations (3.23), simultaneously (Hu, et al., 2000) (see Figure 3.10). 

 

Figure 3.10. Schematic view of a surge crossing a step. 

 

 

(𝑣2 − 𝑣2
′ )2 = (𝑑2 − 𝑑2

′ )2
(𝑑2 + 𝑑2

′ )𝑔

2𝑑2𝑑2
′  

(𝑣1 − 𝑣1
′)2 = (𝑑1 − 𝑑1

′ )2
(𝑑1 + 𝑑1

′ )𝑔

2𝑑1𝑑1
′  

𝑑1
′ +

𝑣1
′2

2𝑔
− ∆𝑧 −

𝑣2
′2

2𝑔
= 𝑑2

′  

𝑣1
′𝑑1

′ = 𝑣2
′𝑑2

′  

(3.23) 

The analytical solutions are obtained as 𝑑1
′ = 11.094 𝑚, 𝑣1

′ = 5.009 𝑚/𝑠, 𝑑2
′ =

7.756 𝑚, and 𝑣2
′ = 7.163 𝑚/𝑠. The exact water surface profile and velocity field after 

t = 600.5 s are plotted in Figure 3.11 and Figure 3.12.  
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Figure 3.11. Exact water surface and critical flow elevations at t = 600.5 s for Test Case 7: Surge 

Crossing a Step. 

 

 

Figure 3.12. Exact velocity at t = 600.5 s for Test Case 7: Surge Crossing a Step. 

 

3.8. Test Case 8: Oscillation on a Parabolic Bed 

This is another unsteady test case problem with an oscillatory water surface profile in 

a parabolic basin. This problem is chosen to demonstrate the ability of the numerical 

solutions in dealing with wet/dry areas. The parabolic bed is defined as 

 𝑧 =
𝐷0

𝐿2
(𝑥 − 2𝐿)2 (3.24) 
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where 𝐷0 = maximum water depth, and 2𝐿 = water surface length when the it is 

horizontal. The initial velocity is 𝑢 = 0 and initial water surface is 

 𝜂 = 𝐷0 +
2𝐴𝐷0

𝐿2
(𝑥 − 2𝐿 −

𝐴

2
) (3.25) 

where A = amplitude of the oscillation. The analytical solution at time t is obtained 

following Thacker, 1981 (Mungkasi & Roberts, 2010), as 

 𝜂 = 𝐷0 +
2𝐴𝐷0

𝐿2
cos(𝜔𝑡) (𝑥 − 2𝐿 −

𝐴

2
cos (𝜔𝑡)) (3.26) 

where 𝜔 = frequency and T = period of oscillation and are defined as 

 
𝜔 =

√2𝑔𝐷0

𝐿
 

𝑇 =
2𝜋

𝜔
 

(3.27) 

The parameters used in this test case are 𝐷0 = 10 m, 𝐿 = 2500 m, 𝐴 = 𝐿/2, and 

computational domain is considered as [0,4𝐿]. 

Analytical water surface elevation at time t = T (1121.425 s) is plotted in Figure 3.13. 
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Figure 3.13. Exact water surface for Test Case 8: Oscillation on a Parabolic Bed at t = T (1121.425s). 

 

3.9. Test Case 9: Comparison with Experimental Data; Dam-Break Flood Waves 

in a Dry Channel with a Hump 

The purpose of this test case is to verify the developed codes with experimental data. 

This is a suitable test problem since it contains both dry regions and discontinuity on 

the channel bed. In this case, experimental data on the evolution of dam-break flow in 

a dry channel with a triangular hump are compared with the numerical solutions. The 

experiments have been done by Ozmen-Cagatay, et al., 2014 in a smooth rectangular 

channel with 0.30 × 0.34 m2 dimensions and the channel length of 8.90 m. Channel 

geometry and location of the reservoir and the hump are shown in Figure 3.14. 

Experimental data in dimensionless form are plotted in at different dimensionless 

times T = 15.16, 17.54, 20.67, 23.05, 29.69, 35.83, 41.84, 49.99, and 62.77, where the 

origin of the x-axis is located at the location of the plate keeping the water in the 

reservoir. Dimensionless time is calculated by 
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 𝑇 = 𝑡√
𝑔

ℎ0
 (3.28) 

where, 𝑡 is the actual time.  

 

Figure 3.14. Channel geometry; cross-section view (up), and plan view (dawn) (Ozmen-Cagatay, et 

al., 2014). 

 

 

 

Figure 3.15. Measured water surface profile at different dimensionless times. 
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Figure 3.15 (Continued) Measured water surface profile at different dimensionless times. 
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Figure 3.15 (Continued) Measured water surface profile at different dimensionless times. 

 

3.10. Dam Break Flow over Champion-Stage like Step 

At the end, a new test problem is introduced to test the robustness of the numerical 

solution in dealing with a more challenging problem. The proposed problem forces 

the numerical solution to confront with many difficulties, such as the presence of dry 

area, sudden discontinuity in the channel bed with positive and negative slopes, and 

moving of the wet/dry fronts.  

The domain is a prismatic channel with unit width and the length of the channel is 100 

m. The Manning’s roughness coefficient is taken as 0.03. Discontinuity in the channel 
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bed is considered as champion-stage like step, which is located in the channel from 

𝑥 = 40 m to 𝑥 = 90 m. The height of the first step is 1 𝑚, the second step is 1 𝑚 

higher than the first step, and the third one is 1 𝑚 higher than the second step. The 

fourth and fifth steps are 1 𝑚 and 2 𝑚 lower than the highest step, respectively. The 

channel geometry is defined as follows: 

 𝑧 =

{
 
 

 
 
1                  𝑖𝑓 40 ≤ 𝑥 < 50
2                  𝑖𝑓 50 ≤ 𝑥 < 60
3                  𝑖𝑓 60 ≤ 𝑥 < 70
2                  𝑖𝑓 70 ≤ 𝑥 < 80
1                  𝑖𝑓 80 ≤ 𝑥 < 90
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.29) 

Dam-break flow and overtopping of the flow over the steps will be simulated in the 

channel. The reservoir is considered at the left of the channel from 𝑥 = 0 to 𝑥 = 10 

m. The height of the water is 10 𝑚 in the reservoir. The left and right ends of the 

channel are considered to be walls. 

At time 𝑡 = 0 the imaginary wall keeping the water in the reservoir will be suddenly 

removed and dam-break flow will occur. The geometry of the channel and the initial 

condition are illustrated in Figure 3.16. 
rese
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       Figure 3.16. Geometry and initial condition of the test case 10.          
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CHAPTER 4  

 

4. NUMERICAL SOLUTIONS OF THE TEST CASES 

 

In this chapter numerical solutions of the test cases are compared with the exact and 

analytical solutions of them to assess the capability of the developed codes and 

numerical solutions in solving the test cases. 

Test case 1, test case 2, test case3, test case 4, test case 5, test case 6, and test case 7 

are solved with pure WAF (WAF code), 1st order well-balanced (WAF1WB code) and 

2nd order well-balanced (WAF1WB code) methods. Test case 8, test case 9, and test 

case 10 are only solved with well-balanced methods (i.e., WAF1WB and WAF2WB 

codes). 

There are some additional modifications in solving the test cases with the 2nd order 

well-balanced scheme. First, in reconstructing the variables at cell interfaces by using 

the piecewise linear function (i.e., slope limiters), to avoid probable oscillations and 

to allow for the use of higher CFL number, a relaxation factor is applied to the slope 

limiters. The relaxation factor, 𝛼, is defined as 

 
𝛿𝜂 = 𝛼 𝛿𝜂𝑛𝑒𝑤 + (1 − 𝛼)𝛿𝜂𝑜𝑙𝑑  

𝛿𝑞 = 𝛼 𝛿𝑞𝑛𝑒𝑤 + (1 − 𝛼)𝛿𝑞𝑜𝑙𝑑 
(4.1) 

where, 𝛿𝜂𝑜𝑙𝑑 and 𝛿𝑞𝑜𝑙𝑑 are the value of them from the previous time step. 𝛿𝑤 and 𝛿𝑞 

are defined by equations (2.96) and (2.97). The relaxation factor is in the range of 0 ≤

𝛼 ≤ 1. This modification is only applied to the steady-state problems and for unsteady 

problems 𝛼 is taken equal to 1. 

Another modification is applied in the presence of partially flooded cells, inside which 

there is no sufficient water to fill the cell with a flat water surface. Those cells may 

need very small time step to prevent the creation of negative depths. Therefore, instead 
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of restricting the general CFL condition, the draining time step, in the cells that are in 

the risk of draining out, is defined following Bollermann, et al., 2011. The idea behind 

this definition is that there will be no flux going out of a cell if it is empty (Bollermann, 

et al., 2013). Draining time step can be obtained as follows 

 ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 −
∆𝑡

∆𝑥
(𝐹

𝑖+
1
2

ℎ −𝐹
𝑖−

1
2

ℎ ) ≥ 0 (4.2) 

and 

 
∆𝑡𝑖

𝑑𝑟𝑎𝑖𝑛 =
∆𝑥ℎ𝑖

𝑛

( 𝐹
𝑖+

1
2

ℎ −𝐹
𝑖−

1
2

ℎ )

 
(4.3) 

where 𝐹ℎ is the flux function in the continuity equation. Now, Equation (4.2) is 

modified as 

 ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 −
∆𝑡𝑖+1/2𝐹𝑖+1/2

ℎ − ∆𝑡𝑖−1/2𝐹𝑖−1/2
ℎ

∆𝑥
 (4.4) 

where the time steps at cell interfaces are selected as 

 
∆𝑡

𝑖+
1
2
= min(∆𝑡, ∆𝑡𝑘

𝑑𝑟𝑎𝑖𝑛) , 𝑘 = 𝑖 +
1

2
−

sign(𝐹𝑖+1/2
ℎ )

2
 

∆𝑡
𝑖−

1
2
= min(∆𝑡, ∆𝑡𝑘

𝑑𝑟𝑎𝑖𝑛) , 𝑘 = 𝑖 −
1

2
+

sign(𝐹𝑖−1/2
ℎ )

2
 

(4.5) 

 

In addition, to have an idea about the number of iteration required for the convergence 

of the numerical solutions in steady-state test cases, the average residuals for the depth 

and the unit discharge are calculated using  

 
𝑅ℎ =

1

𝑀
∑|ℎ𝑖

𝑛+1 − ℎ𝑖
𝑛|

𝑀

1

 

𝑅𝑞 =
1

𝑀
∑|𝑞𝑖

𝑛+1 − 𝑞𝑖
𝑛|

𝑀

1

 

(4.6) 

where M is the number of computational cells.  
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4.1. Numerical Solution of Test Case 1: Subcritical Flow in a Rectangular 

Channel with Various Bed Slope  

This test case is solved using the WAF, WAF1WB, WAF2WB codes. In all methods, 

the initial water depth is equal 1 m and the discharge in the channel is initially equal 

to zero. The problem is solved in 1000 computational cells with the grid size of 1 m. 

Two ghost cells at the left and two ghost cells at the right of the domain are added to 

imply the boundary conditions. Manning’s roughness coefficient is set to 0.03. CFL 

number is set to 0.9 for all methods. WAF2WB code, the relaxation factor 𝛼 is set to 

0.1. Boundary conditions at the inflow are implied as 

 

𝑄(−1) = 2 

𝑄(0)    = 2 

𝐻(−1) = 𝐻(1) 

 𝐻(0)    = 𝐻(1) 

(4.7) 

and at the outflow are implied as 

 

𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 0.748409 

𝐻(𝑀 + 2) = 0.748409 

(4.8) 

where 𝑀 shows the number of computational cells, −1 and 0 denote to the ghost cells 

at the left of the channel, and 𝑀 + 1 and 𝑀 + 2 denote to the ghost cells at the right 

of the domain. 𝑄 and 𝐻 represent the unit discharge and the depth, respectively. 

Numerical and analytical water surface elevation, water depth, and the unit discharge 

of the channel are shown in Figure 4.1, Figure 4.2, and Figure 4.3, respectively. 
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Figure 4.1. Comparison between numerical and analytical water surface elevations for test case 1: 

Rectangular Channel with Various Bed Slope and Subcritical Flow 

  

Figure 4.2. Comparison between numerical and analytical water depths for test case 1: Rectangular 

Channel with Various Bed Slope and Subcritical Flow 
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Figure 4.3. Comparison between numerical and analytical unit discharges for test case 1: Rectangular 

Channel with Various Bed Slope and Subcritical Flow 

 

The numerical residuals of the numerical depth and unit discharge are depicted in 

Figure 4.4. 

  

Figure 4.4. Residuals for Test Case 1: Rectangular Channel with Various Bed Slope and Subcritical 

Flow 
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For this test case, numerical solutions using all three schemes are compared with the 

analytical solution and the results are presented. From the residuals presented in Figure 

4.4, it can be seen that the problem is converged after almost 6000 iterations.  All the 

three schemes have excellent agreement with the analytical solutions by the use of 

1000 number of grids, which confirms that all three schemes used in this thesis solve 

the subcritical flow problems in channels with smooth variation in the bed slope with 

sufficient accuracy. However, it can be seen from Figure 4.3 that the 1st order well-

balanced scheme calculates the unit discharge not as accurate as the WAF and 2nd 

order well-balanced scheme.  

4.2. Numerical Solution of Test Case 2: Various Bed Slope with Subcritical 

Inflow and Hydraulic Jump 

Here, numerical solutions of the test case 2 using pure WAF, 1st order well-balanced, 

and 2nd order well-balanced methods are compared with the analytical solution. To be 

coincident with results of Delis & Skeels, 1998, the computational domain is divided 

into 100 cells with the constant grid size of 1 m. Initially, water depth is equal 1 m and 

discharge is equal zero in the whole domain. Manning’s roughness coefficient is 0.03 

for this case. CFL number of 0.9 is selected for all methods. For 2nd order well-

balanced method the relaxation factor 𝛼 is set to 0.1. 

Inflow boundary conditions are applied as inflow unit discharge of 2 𝑚3/𝑠/𝑚 and 

depth of the ghost cells equal to the one in cell 1 as in equations (4.9). 

 

𝑄(−1) = 2 

𝑄(0)    = 2 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.9) 

At the downstream of the channel outflow boundary conditions are applied and the 

depth of the ghost cells are taken as 2.877056 𝑚 as 
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𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 2.877056 

𝐻(𝑀 + 2) = 2.877056 

(4.10) 

Numerical results and analytical solution of water surface elevation, water depth, and 

unit discharge of the channel are plotted in Figure 4.5, Figure 4.6, and Figure 4.7, 

respectively. The solutions of the water depth are also compared with the results 

presented in Delis & Skeels, 1998 for the shock region in Figure 4.8. 

  

Figure 4.5. Comparison between numerical and analytical water surface elevations for test case 2: 

Various Bed Slope with Subcritical Inflow and Hydraulic Jump 
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Figure 4.6. Comparison between numerical and analytical water depths for test case 2: Various Bed 

Slope with Subcritical Inflow and Hydraulic Jump 

 

  

Figure 4.7. Comparison between numerical and analytical unit discharges for test case 2: Various Bed 

Slope with Subcritical Inflow and Hydraulic Jump 
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Figure 4.8. comparison of the magnified shock region with the results in Delis & Skeels, 1998 

 

The calculated residuals of the depth and the unit discharge are plotted in Figure 4.9. 

  

Figure 4.9. Residuals for Test Case 2: Various Bed Slope with Subcritical Inflow and Hydraulic Jump 

 

 As expected, the second order well-balanced scheme gives the best results for 

numerical solution to the depth and unit discharge compared with the first order well-

balanced and pure WAF schemes, due to the better approximation of the Riemann 

states (by using linear piecewise function in the flux calculations), and linear definition 

of the bed. Numerical solutions of the depth by the pure WAF and the second order 

well-balanced schemes have excellent agreements with the exact depth profile (see 
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Figure 4.6). First order well-balanced scheme has also very good results for the depth, 

but not as much good as the pure WAF and the second-order scheme. However, the 

comparison of the numerical solutions for the unit discharge (see Figure 4.7) shows 

that first order well-balanced scheme gives better results compared with the WAF 

method due to the well-balancing property of the scheme.  

4.3. Numerical Solution of Test Case 3: Various Bed Slope with Supercritical 

Inflow and Hydraulic Jump 

The numerical comparison with the exact solution of the water surface elevation, water 

depth, and unit discharge of the channel has been done by solving the problem with 

the WAF, WAF1WB, and WAF2WB codes. Time steps are calculated with the CFL 

condition of 0.9 in the WAF and WAF1WB codes and 0.6 in the WAF2WB code. 

Relaxation factor is set to 0.4 for 2nd order well-balanced scheme. Initial conditions 

with velocities equal to zero and water depth equal to 1 m are used in all methods. The 

computational domain is divided for 100 cells for all cases as in (Delis & Skeels, 

1998). Boundary conditions are implied as 

 

𝑄(−1) = 2 

𝑄(0)    = 2 

𝐻(−1) = 0.70303 

𝐻(0)    = 0.70303 

(4.11) 

at the inflow (left) , and 

 

𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 𝐻(𝑀) 

𝐻(𝑀 + 2) = 𝐻(𝑀) 

(4.12) 

at the outflow (right). 

Numerical results for water surface elevation, water depth, and unit discharge of the 

channel are shown in Figure 4.10, Figure 4.11, and Figure 4.12, respectively. 
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Figure 4.10. Comparison between numerical and analytical water surface elevations for test case 3: 

Various Bed Slope with Supercritical Inflow and Hydraulic Jump 

 

Figure 4.11. Comparison between numerical and analytical water depths for test case 3: Various Bed 

Slope with Supercritical Inflow and Hydraulic Jump 
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Figure 4.12. Comparison between numerical and analytical unit discharges for test case 3: Various 

Bed Slope with Supercritical Inflow and Hydraulic Jump 

 

Numerical residuals for this case are plotted in Figure 4.13. 

  

Figure 4.13. Residuals for Test Case 3: Various Bed Slope with Supercritical Inflow and Hydraulic 

Jump 
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1st order well-balanced scheme did not predict the location of the jump exactly in this 

test case. It is also less accurate in computing the depth and the unit discharge of the 

channel compared with the pure WAF and 2nd order well-balanced method. Pure WAF 

method and 2nd order well-balanced scheme compute the flow depth in the channel 

accurately. Figure 4.12 shows the general agreement between the numerical and 

analytical solutions. However, it can be seen that the numerical solution of the unit 

discharge is more challenging where the channel bed slope is much steeper. 

4.4. Numerical Solution of Test Case 4: Steady Flow over a Bump; Transcritical 

Flow with Hydraulic Jump 

As mentioned in the previous chapter, based on the initial and boundary condition, 

three flow conditions may occur in the channel (see sections 3.4, 3.5, and 3.6). In the 

numerical solutions presented here, transcritical flow with hydraulic jump occurs 

when the initial flow velocity and initial flow depth are equal zero and 0.5 𝑚, 

respectively, and boundary conditions are inflow discharge of 0.18 𝑚3/𝑠 and flow 

depth of 0.33 𝑚 at the end of the channel. The channel assumed to be frictionless and 

is divided to 200 number of control volumes. Boundary conditions at the inflow are 

applied as 

 

𝑄(−1) = 0.18 

𝑄(0)    = 0.18 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.13) 

and the outflow boundary conditions are applied as 

 

𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 0.33 

𝐻(𝑀 + 2) = 0.33 

(4.14) 

Numerical results obtained by pure WAF, 1st order well-balanced, and 2nd order well-

balanced approaches are plotted in Figure 4.14 and Figure 4.15. Results are obtained 
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with CFL number equal to 0.9 for all cases and relaxation factor of 0.1 for the 2nd order 

well-balanced scheme. 

 

Figure 4.14. Comparison between numerical and analytical water surface elevations for test case 4: 

Steady Flow over a Bump; Transcritical Flow with Hydraulic Jump 

 

Figure 4.15. Comparison between numerical and analytical unit discharges for test case 4: Steady 

Flow over a Bump; Transcritical Flow with Hydraulic Jump 
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Average residuals for depth and unit discharge are plotted in Figure 4.16.  

 

Figure 4.16. Residuals for Test Case 4: Steady Flow over a Bump; Transcritical Flow with Hydraulic 
Jump 

 

Figure 4.14 shows that all methods used to solve this problem predict the water surface 

elevation accurately. Figure 4.15 shows excellent agreement between the result of the 

2nd order well-balanced scheme and analytical value for unit discharge. However, 

there is a jump on calculated unit discharge near the hydraulic jump. The computing 

of the unit discharge by Pure WAF and first order well-balanced scheme is more 

challenging over the bump as it is obvious in Figure 4.15. 

4.5. Numerical Solution of Test Case 5: Flow over a Bump; Subcritical Flow All 

over the Domain 

Subcritical flow in the channel with the hump defined by  happens when the incoming 

flow discharge is set to 4.42 𝑚3/𝑠 and the flow depth at the end of the channel 

imposed as 2 𝑚. These boundary conditions are applied as (4.15) and (4.16). Initially, 

the water depth and the flow velocity are equal 2 𝑚 and zero, respectively. Problem 

is solved in a domain with 200 number of cells with the cell size of ∆𝑥 = 0.125 𝑚. 

Manning’s roughness coefficient is equal to zero. Time steps are calculated by setting 
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CFL number equal to 0.9 in all schemes. In the 2nd order well-balanced scheme, the 

relaxation factor 𝛼 is taken as 0.05. 

 

𝑄(−1) = 4.42 

𝑄(0)    = 4.42 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.15) 

and  

 

𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 2 

𝐻(𝑀 + 2) = 2 

(4.16) 

Numerical results of the water surface elevation and unit discharge of the channel are 

shown in Figure 4.17 and Figure 4.18. The calculated residuals for depth and unit 

discharge are plotted in Figure 4.19. 

 

Figure 4.17. Comparison between numerical and analytical water surface elevations for test case 5: 
Flow over a Bump; Subcritical Flow All over the Domain 
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Figure 4.18. Comparison between numerical and analytical unit discharges for test case 5: Flow over 
a Bump; Subcritical Flow All over the Domain 

 

  

Figure 4.19. Residuals for Test Case 5: Flow over a Bump; Subcritical Flow All over the Domain 
 

Same as the previous test case, the water surface elevations are perfectly calculated by 

all three schemes, and the challenging part is in predicting the unit discharge over the 

bump (see Figure 4.17).  2nd order well-balanced scheme calculates the unit discharge 
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precisely, nevertheless, there is an underestimating near the beginning of the bump 

and an overestimating at the end of the bump (see Figure 4.18). Compared with well-

balanced schemes, pure WAF method gives the less accurate solution over the bump, 

where the unit discharge varies between 4.373 ~ 4.463 𝑚3/𝑠/𝑚, while the variation 

in unit discharge over the bump is in the range of 4.412 ~ 4.429 𝑚3/𝑠/𝑚 for the 1st 

order well-balanced scheme. As it is obvious in Figure 4.19, all numerical solutions 

converged after around 10000 iterations. 

4.6. Numerical Solution of Test Case 6: Steady Flow over a Bump; Transcritical 

Flow without Hydraulic Jump 

Here, initial and boundary conditions that cause the flow to be transcritical without 

hydraulic jump are initial water elevation of 0.25 𝑚, initial velocity of zero, and the 

inflow discharge of 1.53 𝑚3/𝑠. Again, channel assumed to be frictionless with 

Manning’s roughness coefficient of zero. The boundary conditions for the unit 

discharge and depth are imposed as 

 

𝑄(−1) = 1.53 

𝑄(0)    = 1.53 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.17) 

at the start of the channel, and 

 

𝑄(𝑀 + 1) = 𝑄(𝑀) 

𝑄(𝑀 + 2) = 𝑄(𝑀) 

𝐻(𝑀 + 1) = 𝐻(𝑀) 

𝐻(𝑀 + 2) = 𝐻(𝑀) 

(4.18) 

at the end of the channel. For all cases, the CFL number is set to 0.9. Relaxation factor 

is set to 0.1 for the 2nd order well-balanced scheme. The domain is again divided to 

200 cells with the mesh size of ∆𝑥 = 0.125 𝑚. The numerical results are plotted in 

Figure 4.20 and Figure 4.21. 
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Figure 4.20. Comparison between numerical and analytical water surface elevations for test case 6: 
Steady Flow over a Bump; Transcritical Flow without Hydraulic Jump 

   

Figure 4.21. Comparison between numerical and analytical unit discharges for test case 6: Steady 
Flow over a Bump; Transcritical Flow without Hydraulic Jump 
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Numerical residuals of calculated depth and unit discharge are plotted in Figure 4.22. 

  

Figure 4.22. Residuals of depth for Test Case 6: Steady Flow over a Bump; Transcritical Flow 

without Hydraulic Jump 

 

From residuals in Figure 4.22, it is obvious that the numerical solutions have 

converged after around 3000 iterations. Same as the last two steady flows over the 

bump, for all cases, there are excellent agreement between the numerical water surface 

elevations and exact solution (see Figure 4.21). Numerical unit discharge calculated 

by the 2nd order well-balanced scheme is very accurate (see Figure 4.21). Unit 

discharge calculated from the pure WAF and the 1st order well-balanced scheme vary 

between the ranges 1.497 ~ 1.539 𝑚3/𝑠/𝑚 and 1.526~1.533 𝑚3/𝑠/𝑚 over the 

bump, respectively. 

4.7. Numerical Solution of Test Case 7: Surge Crossing a Step 

This case is solved by pure WAF, 1st order well-balanced, and 2nd order well-balanced 

codes and the results for water surface elevations and the velocities are compared with 

the analytical results. The CFL number is set to 0.9, 0.9, and 0.4 for pure WAF, 1st 

order well-balanced and 2nd order well-balanced schemes, respectively. Relaxation 

factor is not applied here (i.e., 𝛼 is teken 1). Initial conditions are imposed as water 

surface elevation of 5 m and zero velocity in the whole domain. Incoming surge is 



 

 
 

79 
 

imposed as a boundary condition at the left. Boundary conditions are implied as (4.19) 

and (4.20) for left and right of the channel respectively. Incoming unit discharge of 

the surge is obtained by multiplying the velocity obtained from (3.22) by the depth of 

the surge at the entrance. 

 

𝑄(−1) =60.65269986 

𝑄(0)    =60.65269986 

𝐻(−1) = 10 

𝐻(0)    = 10 

(4.19) 

   

 

𝑄(𝑀 + 1) = −Q(𝑀) 

𝑄(𝑀 + 2) = −Q(𝑀) 

𝐻(𝑀 + 1) = 𝐻(𝑀) 

𝐻(𝑀 + 2) = 𝐻(𝑀) 

(4.20) 

The computational domain is divided for 400 cells in all solutions with the grid size 

of 𝑑𝑥 = 25 𝑚. 

Comparisons of the numerical results with exact solutions are shown in Figure 4.23 

and Figure 4.24. 

 

Figure 4.23. Comparison between numerical and analytical water surface elevations at t = 600.5 s for 

test case 7: Surge Crossing a Step 
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Figure 4.24. Comparison between numerical and analytical velocities at t = 600.5 s for test case 7: 

Surge Crossing a Step 

 

Solving this test case with pure WAF results in some unrealistic waves that are 

initiated over the cell at the beginning of the vertical step and they travel to the left 

and right of the domain. Those waves are visible in Figure 4.24 near 𝑥 ≈ 2000 𝑚 and 

𝑥 ≈ 8200 𝑚. That is because the pure WAF scheme is not well-balancing the bed 

slope source term with the numerical fluxes. On the other hand, both 1st order and 2nd 

order well-balanced schemes solve the problem perfectly and predict the velocity and 

height of the surges accurately. 

4.8. Numerical Solution of Test Case 8: Oscillation on a Parabolic Bed 

1st order and 2nd order well-balanced schemes are used to solve this problem. 10000 

number of grids with 𝑑𝑥 = 1 𝑚 are used in both schemes. Initially, the lake is 

stationary with zero velocity everywhere and the initial water surface profile is defined 

by (3.25). Wall boundary conditions are imposed on both end of the computational 

domain using ghost cells as 

 

 𝑄(−1) = −𝑄(1) (4.21) 
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𝑄(0) = −𝑄(1) 

𝐻(−1) = 𝐻(1) 

𝐻(0) = 𝐻(1) 
   

 

𝑄(𝑀 + 1) = −𝑄(M) 

𝑄(𝑀 + 2) = −𝑄(M) 

𝐻(𝑀 + 1) = 𝐻(M) 

𝐻(𝑀 + 2) = 𝐻(M) 

 

(4.22) 

Time steps are calculated using the CFL number 0.9 for both 1st order and 2nd order 

schemes.  

The numerical results are compared with the analytical solution in Figure 4.25 and 

Figure 4.26. The results of the numerical solutions after one oscillation show general 

agreement between the numerical and analytical solutions. Although there still 

remains unrealistic unit discharge in both schemes, the range of error in computed unit 

discharge is narrower in the 2nd order scheme rather than the one in the 1st order 

scheme. Also, 2nd order well-balanced scheme acts better in the prediction of the water 

surface elevations compared with the 1st order well-balanced scheme. 
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Figure 4.25. Comparison between numerical and analytical water surface elevations for test case 8: 
Oscillation on a Parabolic Bed; Up) full plot and dawn) magnified regions. 
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Figure 4.26. Comparison between numerical and analytical unit discharges for test case 8: Oscillation 
on a Parabolic Bed 

 

4.9. Numerical Solution of Test Case 9: Comparison with Experimental Data; 

Dam-Break Flood Waves in a Dry Channel with a Hump 

In this case, the computational domain is divided into 1780 computational cells. The 

size of each grid is equal to 0.005 m. Manning’s roughness coefficient is taken equal 

to 0.01. Wall boundary condition at the left and outflow boundary condition at the 

right are imposed as 

 

𝑄(−1) = −𝑄(1) 

𝑄(0)    = −𝑄(1) 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.23) 

   

 

𝑄(𝑀 + 1) = 𝑄(M) 

𝑄(𝑀 + 2) = 𝑄(M) 

𝐻(𝑀 + 1) = 𝐻(M) 

𝐻(𝑀 + 2) = 𝐻(M) 

(4.24) 
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The numerical results using CFL number of 0.9 for 1st order scheme and 0.45 for 2nd 

order well-balanced schemes are plotted in Figure 4.27. 

 

Figure 4.27. Comparison between numerical and experimental water surface elevation in different 
dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump 
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Figure 4.27 (Continued) Comparison between numerical and experimental water surface elevation in 
different dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump 
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Figure 4.27 (Continued) Comparison between numerical and experimental water surface elevation in 
different dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump 

 

The verification of the developed well-balanced codes shows very good agreement 

between the experimental measurements and numerical solutions. After the dame 

break flood wave passes over the obstacle a bore wave is generated at dimensionless 

time 𝑇 = 15.16 and moves in the negative direction. Shallow water equations 

simulate the bore vertically as a shock wave and predict the location of the negative 

bore satisfactorily. One noticeable difference between the experimentally measured 

water surface profile and the one obtained by solving the shallow water equations 

numerically is that the shallow water equations compute the negative bore much 

steeper than the one obtained by experimental data. This situation is apparent at 

dimensionless times 20.67, 23.05, 29.69, and 35.83. 

This test case is also solved with coarser meshes to see the effects of the mesh sizes in 

the numerical solutions. In addition to the grid size of ∆𝑥 = 0.005 𝑚 with 1780 
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number of grids, 2 coarser grids with 178 and 89 number of grids are also selected, 

which produce 10 and 20 times coarser meshes with the sizes of ∆𝑥 = 0.05 𝑚 and 

∆𝑥 = 0.1 𝑚, respectively. The results are presented in Figure 4.28 for both WAF1WB 

and WAF2WB codes at the dimensionless time T = 35.33 only. The results show that 

the general forms of the water surface profiles for this problem are also obtained with 

coarser grids. However, as the meshes get coarser, the negative wave gets milder 

angles. 

 

Figure 4.28. Comparison between the numerical water surface elevations obtained by WAF1WB (up) 
and WAF2WB (down) codes using different mesh sizes for test case 9. 
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4.10. Numerical Solution of Test Case 10: Dam Break Flow over Champion-Stage 

like Step 

This problem is solved by the WAF1WB and WAF2WB codes. The domain is divided 

into 200 computational cells. Wall boundary conditions are considered at left and right 

of the domain as 

 

𝑄(−1) = −𝑄(1) 

𝑄(0)    = −𝑄(1) 

𝐻(−1) = 𝐻(1) 

𝐻(0)    = 𝐻(1) 

(4.25) 

   

 

𝑄(𝑀 + 1) = −𝑄(M) 

𝑄(𝑀 + 2) = −𝑄(M) 

𝐻(𝑀 + 1) = 𝐻(M) 

𝐻(𝑀 + 2) = 𝐻(M) 

(4.26) 

 

The code has run until 𝑡 = 1000 𝑠 with the CFL number of 0.9 for both codes. Dam 

break flow starts by removing the imaginary wall at time = 0 s and it reaches the first 

step at 𝑡 ≈  2.2 𝑠, approximately. Then, the flow crosses over the steps one by one. 

By hitting the flow with the positive steps, waves are created that travels in the 

negative direction. The incoming flow is divided into two portions; one portion crosses 

over the steps and goes to the right of the stage, and the other portion remains in the 

left side of the stage. The goal was to recover the hydrostatic water surface without 

any noise and discontinuity on it, specially over the sharp corners, after the waves 

disappeared and water reached the nearly stationary state. This goal is achieved using 

both WAF1WB and WAF2WB codes. The results of the simulation are presented in 

a set of screenshots at different time steps in Figure 4.29. 
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Figure 4.29.  Solution of test case 10 at different time steps using WAF1WB (dashed line) and 
WAF2WB (solid line) codes. 
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line) 
and WAF2WB (solid line) codes. 
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line) 
and WAF2WB (solid line) codes. 
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line) 
and WAF2WB (solid line) codes. 
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line) 
and WAF2WB (solid line) codes. 
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line) 
and WAF2WB (solid line) codes. 

 

One important feature of numerical solutions of shallow water equations is how much 

accurate they are in preserving the amount of fluid in the domain or in another word, 

the accuracy in ensuring the continuity condition. To evaluate the performance of the 

scheme in preserving the continuity and effects of the mesh sizes on it, the amount of 

water at each time step is calculated. Different mesh sizes with 200, 400, 800, 1600, 

and 3200 number of grids are selected to see the effects of the mesh size. The results 

for the first order and second order well-balanced schemes are presented in Figure 

4.30. 
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Figure 4.30.  The calculated amount of water in the domain at each time step using WAF1WB (up) 
and WAF2WB (down) codes, and different mesh sizes. 

 

Initially, there is 100 𝑚3/𝑚 water in the domain. After the dam break flow occurs 

however, it reduces unreallasticly. Although, the finer grids yelds in less error. 
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CHAPTER 5  

 

5. CONCLUSION AND RECOMMENDATION 

 

Numerical solutions of shallow water equations which are widely used in tsunamis, 

tides, wind waves, river floods, dam-break flows and open channel flows have been 

studied in this thesis. Numerical solution of the shallow water equations can be 

challenging when the equations are solved in domains containing discontinuities in 

the channel beds which cause abrupt change in the source term of the governing 

equations. Another difficulty in the solution of the shallow water equations appears in 

the presence of dry regions in the domain. 

Three schemes have been used as numerical solutions of shallow water equations in 

this study, namely 1) pure WAF method without well-balancing property, where the 

finite volume method has been used to discretize the governing equations, HLL 

method has been used as an approximate Riemann solver, and the fluxes have been 

computed by the TVD version of Weighted Average Flux (WAF) method, 2) first 

order well-balanced method, which is the same as the pure WAF scheme, but the 

source term has been treated by the use of  fırst order “Hydrostatic Reconstruction” 

method, and 3) second order well-balanced scheme, which is the same as the first order 

well-balanced scheme, but the piecewise linear function has been used to define the 

water surface slope in each cell to provide better approximation for Riemann states 

used in the Riemann solver and the bottom has been defined linearly. 

Three codes have been developed in FORTRAN based on the above mentioned 

schemes. The programs have been called WAF, WAF1WB, and WAF2WB for the 

pure WAF scheme, first order well-balanced scheme, and second order well-balanced 

scheme, respectively. These codes have been validated by using nine well-known 

steady and unsteady test cases in the literature and the results of each are compared 
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with each other and with the available analytical solutions or experimental data. 

Although distinctions between the accuracy of the numerical results have been 

observed, more or less, in the studied test cases, the general agreement between the 

numerical results and analytical solutions or experimental data has been obtained for 

all test cases. Generally, predicting the water surface profile was not challenging part 

for all three schemes. However, there were distinguishable differences in the 

numerical unit discharges that are calculated by solving the momentum equation. As 

expected, the WAF2WB was more accurate in solving the shallow water equations 

compared with the other two methods since in the second order scheme, the bed is 

defined with better accuracy and fluxes are calculated in each cell interface by more 

accurately defined Riemann states that are obtained by the use of piecewise linear 

function. Nevertheless, using the piecewise linear function has introduced oscillations 

in some steady state cases. Those oscillations have been prevented by the use of 

relaxation factor that has been applied to the piecewise linear function (see equations 

4.1). 

A new test case (Test Case-10) has been introduced in chapter three, numerical 

solutions of which are given in chapter four. The idea behind defining this test case 

was to examine the developed codes in solving a problem that contains numerically 

challenging situations in solving of the shallow water equations namely, sharp changes 

in bed elevation and existing of the dry area in the domain. To do this, a champion-

stage like discontinuity was located in the middle of the channel and a dam-break flow 

and overtopping of it over the stages was studied. The goal was to see the flow 

behavior when it collided to the steps, overtopped from it, and after a certain time that 

all the waves disappeared, to observe a flat and smooth water surface, especially over 

the sharp edges. This goal was achieved by both well-balanced codes, WAF1WB and 

WAF2WB. Flow divided into two portions, one portion overtopped the stage and one 

portion remained at the left of the stage. Flat and smooth water surface profile was 

observed at the left and right of the stage in the results of both WAF1WB and 

WAF2WB. 
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All three codes in this study have been developed to solve one-dimensional problems. 

Extension of the developed codes to solve two-dimensional shallow water equations 

can be interesting topic for the future studies. One of the difficulties in the numerical 

solutions of the test cases was the oscillations caused by linear piecewise 

reconstruction technique in the 2nd order well-balanced scheme, that have been averted 

by applying relaxation factor to the limiter function. However, in some test cases, there 

was a need for very small relaxation factor. The reason for these unwanted oscillations 

also can be studied elaborately in the future studies.  
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