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ABSTRACT

ASSESSMENT OF SENSITIVITY OF DEPTH INTEGRATED SOLUTIONS
TO LONGITUDINAL DISCONTINUITIES ON THE CHANNEL BED

Mohammadi, Ramez
Master of Science, Civil Engineering
Supervisor: Prof. Dr. Ismail Aydin

September 2019, 103 pages

Depth integrated equations can be easily solved over large domains to provide flood
inundation maps. In urban and rural areas however, there may be numerous natural or
artificial bottom boundary discontinuities in the form of rapid variations in bed
elevation. Such discontinuities cause abrupt changes in the source terms of the
governing equations and can significantly affect stability and accuracy of the
numerical solution. This study concentrates on the assessment of sensitivity of the
governing equations to longitudinal discontinuities and proposes solutions to alleviate
associated numerical complications. The presence of dry regions in the domain is also
considered which requires additional modifications in the code to deal with the
wet/dry fronts.

In this thesis, Godunov’s type Finite Volume Method (FVM) is used for the numerical
solution of the shallow water equations. Weighted Averaged Flux (WAF) method, that
is 2nd order extension of the first order Godunov’s scheme, based on HLL Riemann
solver, is used to compute the fluxes. The source term treatment is based on the
“hydrostatic reconstruction” and first and second order well-balanced schemes are
obtained. Creation of probable negative water depths during linear piecewise
reconstruction of the water surface near dry areas has been prevented in the 2nd order

well-balanced scheme.



Eight test cases with their available analytical solutions that are widely used in the
literature are selected to validate the developed codes. The results of the developed
codes are also compared with sets of experimental data if available. Test cases are
solved by pure WAF method without well-balancing property, WAF method with first
order well-balanced scheme, and WAF method with second order well-balanced
scheme. Two test cases are specifically selected to show the capability of the
developed codes in solving flows in regions with wet and dry areas. In the end, a new
test case is introduced to observe behavior of the numerical solutions in a bed
consisting of a series of sharp corners due to positive and negative steps. It is observed
that well-balanced schemes can produce water surface profiles without spurious
oscillations and steady-state horizontal hydrostatic water surface is recovered without

noisy fluctuations.

Keywords: Shallow Water Equations, Well-balanced schemes, Weighted Average

Flux, Hyperbolic partial differential equations, Finite volume method
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Oz

DERINLIK INTEGRALLI COZUMLERIN KANAL TABANININDA
BOYUNA SUREKSIZLIKLERE DUYARLILIGININ BELIRLENMESI

Mohammadi, Ramez
Yiiksek Lisans, Insaat Miihendisligi
Tez Danismani: Prof. Dr. Ismail Aydin

Eyliil 2019, 103 sayfa

Derinlik integralli denklemler tagkin haritalari hazirlamak amaciyla biiyiik alanlar
tizerinde kolaylikla ¢oziilebilir. Bununla beraber, kirsal ve kentsel alanlarda yatak
yiiksekliginde hizli degisimlere neden olan sayisiz dogal veya yapay siireksizlikler
olabilir. Bu tiir siireksizlikler akim denklemlerinin kaynak terimlerinde ani
degisimlere neden olacagindan sayisal ¢6zlimiin stabilitesini ve hassasiyetini belirgin
sekilde etkileyebilir. Bu calisma, akim denklemlerinin boyuna siireksizliklere
duyarliliginin degerlendirilmesine ve ortaya ¢ikan sayisal sorunlarin giderilmesine

yonelik olacaktir.

Bu tezde s1g akim denklemlerinin sayisal ¢6zlimii i¢in Godunov tipi Sonlu Hacim
Metodu (FVM) kullanilmistir. Akilarin hesabinda Godunov metodunun ikinci
dereceden uzantis1 olan, HLL Riemann ¢6ziiciisiine dayandirilmis Agirlikli Ortalama
Akt (WAF) metodu kullanilmigtir. Kaynak teriminin degerlendirilmesinde
‘hidrostatik yeniden kurma’ yaklasimiyla birinci ve ikinci dereceden iyi-dengeli
semalar elde edilmistir. Kuru alanlar yakininda su yiizeyinin lineer parcali olarak
yeniden tanimlanmas1 asamasinda negatif su derinliklerinin olugsmasi olasilig1 ikinci

dereceden iyi-dengeli sema ile 6nlenmistir.

vil



Gelistirilen yazilimlar1 dogrulamak i¢in literatiirde yaygin olarak kullanilan sekiz adet
test vakasi analitik c¢oziimlerinden yararlanilmistir. Sayisal ¢6ziim sonuglari
literatiirde mevcut deneysel veri setleri ile de karsilastirilmistir. Test vakalar1 iyi-
dengeli 6zelligi olmadan yalin WAF metodu, birinci dereceden iyi-dengeli WAF
metodu ve ikinci dereceden iyi-dengeli WAF metodu ile ¢ozlilmiistiir. Yazilimlarin
1slak-kuru gecisli alanlardaki akimlarin ¢6ziimiindeki yeteneklerini sergilemek ig¢in
0zel iki vaka secilmistir. Ve son olarak sayisal ¢oziimlerin davranigsin1 degerlendirmek
i¢in pozitif ve negatif basamaklarin olusturdugu bir dizi keskin kdseler igeren yeni bir
test vakas1 tamimlanmustir. Iyi-dengeli semalarin su yiizii profillerini yapay salinimlara
neden olmadan {iiretebildigi ve zamandan bagimsiz yatay hidrostatik su yiiziiniin

sayisal calkantilar olmadan elde edilebildigi gdzlemlenmistir.

Anahtar Kelimeler: S1g Akim Denklemleri, Dengeli semalar, Agirlikli Ortalama Aki,

Hiperbolik kismi diferansiyel denklemler, Sonlu hacim metodudu
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CHAPTER 1

INTRODUCTION

Free surface flows are of particular interest to the many scientists and engineers in the
fields of hydraulic and ocean engineering. These flows consist of a wide range of
physical phenomena such as tsunamis, tides, and wind waves in the sea and oceans, and
river floods, dam-break flows, and open channel flows on the land. Since the exact
governing equations of these problems are usually too complex and may not be easily
applicable in engineering problems, these phenomena can be modeled and studied by

proper mathematical models with proper assumptions and modifications.

The behavior of the flow in a wide variety of the above mentioned problems can be
studied using the depth integrated equations, called Shallow Water Equations (SWE).
Shallow Water Equations are a set of partial differential equations which are derived
from the Navier-Stokes equations by assuming that the depth of water is small
compared with characteristic length in the horizontal direction, such as wave length.

This assumption leads to the hydrostatic pressure distribution in the flow.

One of the difficulties in numerical solving of the shallow water equations may arise
when the equations are solved in domains containing discontinuities in the channel
beds. These natural or artificial bottom boundary discontinuities can be in the form of
rapid variations in bed elevation. These discontinuities abruptly change the source
term of the governing equations and may adversely affect the stability and accuracy
of the numerical solutions. Another difficulty in the solution of the shallow water
equations appears in the presence of dry regions in the domain, which requires

additional modification in the numerical solution to deal with the wet/dry fronts.

In this thesis, Godunov’s type Finite Volume Method (FVM) will be used for the

numerical solution of the shallow water equations. Godunov’s type methods come up



with the solution of the Riemann problem- an initial value problem with two constant
states (left and right)- in each cell interface to calculate the fluxes. The solution of the
Riemann problem can be exact or approximate. An efficient exact Riemann solver has
been presented by (Toro, 1992) in which an iterative procedure is used to solve a single
algebraic equation. Since the exact solution of the Riemann problem may be
computationally expensive, approximate Riemann solvers are usually preferred due to
their simplicity and lower computational cost. Primitive Variable Riemann Solver,
Riemann Solver Based on Exact Depth Positivity, Two-Rarefaction Riemann Solver,
Two-Shock Riemann Solver, HLL (Harten Lax and van Leer) and HLLC Riemann
solver are examples of approximate Riemann solvers that are presented in (Toro,
2001). Primitive Variable Riemann Solver may give negative depth in very shallow
waters that are formed due to strong rarefactions. This problem is solved by
considering depth positivity condition in Riemann Solver Based on Exact Depth
Positivity and leads to a robust Riemann solver. Two Rarefaction Approximate
Riemann solver assumes that both left and right waves in the solution of the Riemann
problem are rarefaction waves and uses the exact Riemann solution for the case of two
rarefaction wave. Although this assumption is not always correct, it results in quite
accurate solutions (Toro, 1992). Two-Shock Riemann Solver is similar to the previous

one, but it assumes that both left and right waves are shock waves.

HLL Riemann solver is another well-known Riemann solver, which directly gives an
estimation for the numerical flux instead of depth and velocity in the star region. This
Riemann solver is appropriate to solve one-dimensional cases, where the intermediate
waves (i.e., contact discontinuities and shear waves) are ignored. HLLC Riemann
solver, on the other hand, is a modification of the HLL Riemann solver to include the

intermediate wave effects, and therefore, it is suitable for two-dimensional problem:s.

HLL and HLLC Riemann solvers are first order accurate methods to calculate the
fluxes. Higher order accuracy in calculation of the interface fluxes can be achieved by
extension of the first order Godunov upwind method to the higher order. Examples of

such schemes are MUSCL-Hancock scheme (van Leer, 1985) and Weighted Average



Flux (WAF) method. The second order accuracy in time and space in MUSCL-
Hancock scheme achieved by data reconstruction in cell interfaces using a piecewise
linear function, evolving the reconstructed data in time by half time step, and solving
the Riemann problem, based on the evaluated data from last step (Toro, 2001). WAF
method, on the other hand, reaches the higher order accuracy by integrating and
averaging the fluxes in time and space in cell interfaces, without necessarily need for

piece-wise reconstruction step.

In real life application of the shallow water equations, it is likely to have a flow with
irregular bed topography. Therefore, special attention should be paid to the numerical
treatment of the bed slope source term to get more accurate solutions. This is
especially important in stationary (constant water surface level and zero velocity) or
near stationary situation, where the numerical equilibrium between flux gradient and
the source term should be provided. To hold this equilibrium, Bermudez & Vazquez,
1994 suggested the upwind discretization of the source term in one dimensional cases
with constant breadth. In 1998, Bermudez, et al., 1998 applied the same idea to the
two dimensional problems with the constant breadth and unstructured meshes. Later,
M. Elena Vazquez-Cendon, 1999 used the idea to solve more general flow problems
in channels with irregular geometry, but locally rectangular cross section. Zhou, et al.,
2001 developed a simple and accurate method based on surface gradient method
(SGM) and centered discretization of the source term. Later, Zhou, et al., 2002
extended the SGM into the channel containing vertical step. Audusse, et al., 2004
obtained a fast and stable first order and second order well-balanced schemes, based
on the hydrostatic reconstruction and discontinuous discretization of the bed
topography, which guarantee the positivity of depth in the domain. Later, well-
balanced scheme of arbitrary order accuracy based on hydrostatic reconstruction is

proposed by Noelle, et al., 2006.

Finally, Bollermann, et al., 2013 proposed a second order well-balanced central-
upwind scheme that is positively preserving of the water depth. They suggested new

construction of the water surface near dry areas to prevent the creation of negative



water depths at the cell interfaces during the reconstruction step (i.e., reconstruction

of the water surface in each cell using slope limiters).

This study aims to investigate the solution of the depth averaged shallow water
equations in channels with irregular bed and step-like discontinuity on it. Various test
cases including smooth and sudden changes in the bed slope will be studied. The
numerical test cases will be generally solved with the pure WAF method without well-
balancing property, first order well-balanced scheme, and second order well-balanced
scheme. Two test cases will be studied specifically, to show the capability of the
developed codes in solving flows in regions with wet and dry areas. A special test case
will be introduced in a prismatic channel that contains a champion-stage like steps in
the middle of the channel, and one dimensional dam break flow and overtopping the
flow over the steps will be studied. The goal is to produce the water surface profile
without spurious oscillations and recover the steady-state flat hydrostatic water

surface at the end of the solution.

In this chapter, general information, the objective of the study, and a brief literature
review of the study are given. In chapter two, derivation of the governing equations
and numerical methods that are used to solve the equations are explained. Chapter
three introduces numerical test cases and corresponding analytical solutions.
Numerical solutions of each test case are given in chapter four, where they are
compared with the exact solution of them and with each other. Finally, the conclusions

of the study and recommendations to the future works are presented in chapter five.



CHAPTER 2

SHALLOW WATER EQUATIONS AND THEIR NUMERICAL SOLUTION

2.1. Governing Equations in a Free Surface Water Flow

In general, the conservation laws of mass and momentum, called Navier-Stokes
equations, are used to describe a Newtonian fluid flow. For an incompressible fluid

these equations may be written as

6u+6v+6w_0
ox dy 0z

FTRILE PR N whelaber M S I WL

ou ou ou ou 1dp 1[0t Jt at,
xXx | yX X (22)
at 0x dy 0z pox p

v v v v 1dp 1 <6rxy Lty +6fzy) 2.3)

ot T e eyt ez T Toay To\ax oy oz

aw aw ow adw 1dp 1(01,, 01y, 0T,
§+uax+ ay+W£ paZ+;< + +

poz ox dy 0z > —g9 (24

where u, v and w are the velocity components in x, y and z directions respectively, p
is pressure and 7;; represents the viscous terms acting in j — direction on the plane

with outward normal in i — direction.

However, these equations cannot be used directly for a free surface water flow and
they need to be modified. The reason for the modification is that the free surface is a
boundary, however, the location of the boundary itself is unknown and it may vary
with time. One assumption to deal with this difficulty is to assume that the depth of

water is small compared with horizontal length scale such as wave length or free



surface curvature. This assumption leads to non-linear initial value problem which is

called non-linear shallow water equations (Toro, 2001).
2.2. Derivation of Shallow Water Equations
2.2.1. Boundary Conditions

In derivation of SWE two kinds of boundary conditions are imposed, namely,
kinematic condition and dynamic condition. Kinematic boundary condition simply
says that there is no normal flow through the free surface. Therefore, the relative
normal velocity should vanish at the free surface; see equation (2.8). At the bottom
boundary, normal velocity itself should vanish, not the relative normal velocity; see
equation (2.9). Dynamic boundary condition is imposed on the free surface which

implies that the pressure is atmospheric at the free surface.

A schematic sketch of a free surface shallow water flow is depicted in Figure 2.1.

Z=n(xy,t)
=b(xy)+h(xy,t)

Z=b(xy)

Figure 2.1. Free Surface Water Flow. The x-y plane is taken parallel to undisturbed water surface and
z axis is in positive upward direction.



Mathematically, the kinematic boundary condition on the surface can be obtained by
computing the total accelerations of the water particles at the surface boundary which

is defined by the equation

z—n(x,y,t)=0 (2.5)

where n(x, y, t) shows surface boundary location. Total derivatives of equation (2.5)

can be written as
D
(7 —7) = 2.6
Dt(z n) =0 (2.6)

Expanding equation (2.6) yields
62+ OZ_I_ 0z+ 02_6n+ 677+ 677+ an 57
ot Yax T Vay T Vaz "ot Yox " Vay  Woz @.7)
Since z is independent variable, dz/dt, dz/0dt and dz/dt derivatives are equal zero,
and since 7 is independent of z, dn/0z is vanished. Thus, equation (2.7) is simplified
to

0 0 0
(—n+u—n+v—n—w>

ot “ox dy 2en (2.8)
Similarly, boundary condition for the bottom is obtained as
ob ob
(u&+v£—w) Z=b=0 (2.9)
Dynamic boundary condition is applied at the free surface as
Plz=n = Patm =0 (2.10)

where, for simplicity, the atmospheric pressure is taken as zero.



2.2.2. Continuity Equation

First step in derivation of the shallow water equations is integrating the continuity

equation (2.1) with respect to z from bed to free surface as follows

n
c')u v Jdw
= 2.11
f ay az)dz 0 ( )
b
| ot [ Pazt [(Paz=o 2.12
Wlz=y — Wlz=p baxz . 3y zZ = (2.12)

Substituting boundary conditions (2.8) and (2.9), into equation (2.12) gives

(6n+ 6n+ 6n>| (6b+ (’)b)| + ”E)ud +f p 0
ot " Yax Ty ax " ay)l ) Tt @)

Both integral terms in equation (2.13) can be simplified using Leibniz Rule. Leibniz
integral rule is about how to bring the partial derivative of a multivariable integral

inside the integral when the integral limits are functions of the differentiation variable.

Leibniz rule may be written as

0 b(x)
— f(x, t)dt
Ox a(x)

j ") db(x) da(x)

dt + f(xb(0)——— f(x,a(x) —
(%)

Integral terms of equation (2.13) using Leibniz rule become

Tou a (" on db
]b—dZ=—be udz—ulzzna+u|2=ba

(2.15)
an ab



Tov p d f” p | on ol db
—dz=—| vdz —v|,op=—+ V|op —
p Oy 0y, Moy = oy
(2.16)
Jd _ on db
= @ (vh) — vlz:n @ +v|,=p @
Substituting the results back into equation (2.13) and simplifying yields
oh 0 _ Jd _
E+a(uh)+£(vh)—0 (2.17)

Equation (2.17) is the continuity equation written in differential conservation law form
for shallow water equations. Note that overbars show the depth averaged values of u

and v, and

on _0b  oh_oh
ot 9t ot ot (2.18)

=0

2.2.3. Momentum Equations

One important assumption in derivation of the shallow water equations is that the
vertical acceleration of the flow particles can be assumed to be negligible, which leads
to a hydrostatic pressure distribution in z — direction. To prove, we can write the
total acceleration in z — direction and make it equal to zero as

Dw B ow ow ow ow _

E_E-Fua-"vﬁ-"w%_o (2.19)

Substituting equation (2.19) into momentum equation in z — direction (2.4) with
neglected viscous terms, integrating from the bed to the surface, and applying dynamic

boundary condition (2.10) yield

p=pg(n—2) (2.20)

which is nothing but the hydrostatic pressure distribution in z — direction.



According to equation (2.20), pressure gradients in x and y — directions become

dp  On
dp  0On
dy P9 3y (2.22)

Equations (2.21) and (2.22) show that the u and v velocities are independent of
variable z, since pressure gradients in x and y — directions are independent of z,

which means

Ju Jv 0
57 07 (2.23)
Therefore, x and y — momentum equations, (2.2) and (2.3) become
du du du 0N 1[0Ty, 0Ty 0Ty
— —+tv—=—g—+- 2.24
ot T TV g6x+p<6x+6y+az (2.24)
ov ov dv on 1[01, 01y, 01,
i — — = —g—L4+= 2.25
ot "' V% g6y+p<6x * oy Tz (2.25)

Now, the equations (2.24) and (2.25) should be integrated from bottom to free surface
as follows. Integrating equation (2.24) yields

Tou m du T ou
—dz+f u—dz+f v— dz

b 0x dy
o9 n1(9 ] ] (2:20)
n Txx Tyx Tzx
=| —g— - d
b gade-I_J;, p<6x + dy + 62) z
haa+ _h6ﬁ+ _haa
ac T Max Ty
(2.27)

ab Oh (M1 [0Tg 0Ty 0Ty
——gha—ghai'Jb ;( ax + ay + 97 dz

Note that
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M2 (2.28)
By multiplying the continuity equation (2.17) with @ and adding it up with equation
(2.27), the conservative form of the momentum equation in x — direction can be
obtained. With some simplification, the conservative form of the momentum equation

in x — direction becomes

.1
o@h) | o (nw? +5 gh?) , 0(huw)
Jt dx dy

T1(0Tyy OTyx 0Ty
—_ghSO‘x‘i'jb E( ox + ay + 97 dZ

(2.29)

Now, the viscous stresses integral term can be simplified further by integrating it over

depth as

f”l 0T,y N 0Ty N 0T,y iz
p P\ 0x ay dz

1/0 (" on db
= E ajb Tyx AZ — Txx’n& + Txx’b&

1/0 (" on db
+E @L Tyde_Tyx,nE'l'Tyx,b@

+ (sz,n - sz,b) (2'30)

19 (7 1" 1 on an
= ;& ] Ty AZ + Ejb Tyx dz _;(Txx,na + Tyxﬂ)@ - TZX.U)

1 db db
+ ; (Txx,b a + Tyx,b @ - sz,b)

10T 10T,

“pox p dy

1
+ '[_) (Tx,n + Tx,b)

where 7, , and 7, are the shear stresses tangent to the free surface and bottom

respectively,

11



an on
Tx,s = Txxy a + Tyxn @ — Tzxy

2.31
ob ob @31)

Teb = Txx,b & + Tyxb @ — Tzxb

Bottom shear stress in equation (2.31) can be estimated from

Tyep = PCrUy U? + 2 (2.32)

where Cf is the bed roughness coefficient and can be evaluated as

gn?

= (2.33)

Cr
where n is the Manning’s roughness coefficient at the bottom surface.

Repeating the same procedure in y-direction, 2D conservative shallow water equations

can be written as

h 9+ @ny =0 234
ot " ox Y Ty WY T (2.34)

1
o@h) 0 (hu2 + gghz) , 0(hw)

at ox dy
(2.35)
1(07 0Ty,
__ghSOx+ < axx a—;/;c+(‘[xs+":xb)>
1
ook o) 0 (hv?+5gh?)
+ +
at 0x dy
(2.36)
10Ty, 0Ty
= —ghSo,, + ;( pPa 5y + (tys + Typ)

These equations can be written in vector form as

12



oU  OF(U) , 3G(V)

ot 0x dy =5 (37)

where

h
hu] (2.38)
F(U) = [hu? + = gh? (2.39)

GWU) = (2.40)

S(U) = | —9hSox — Cfu\/uz + v?

arxx aryx
—ghSo, — Cfv u? 4+ v?

|
’ I (2.41)
|

In these equations, the overbars are eliminated for simplicity, assuming that all the
variables are depth-averaged. In above equations, U is the vector of conserved

variables, F(U) and G(U) are the fluxes vectors, and S(U) is the source term vector.

For homogeneous, incompressible and inviscid flow, source term vector (2.41) can

reduce to

0
S(U) = —ghSyx — Cruyu? + v? (2.42)
—ghSyy — Crvyu? + v?

13



2.3. Numerical Solution of Shallow Water Equations
2.3.1. Finite Volume Method

In Finite Volume Method (FVM) the domain is divided into the finite number of non-
overlapping cells, called control volumes (CV), at the centroid of which,
computational nodes are located. In 2D these cells are polygons, e.g., triangles,
quadrilaterals, etc. In FVM, the conservation laws are applied to each CV and the

equations are integrated over each cell and over each time step.

System of one-dimensional conservation laws, neglecting the source term, can be

written as

0 0

Integrating equation (2.43) over cell i, which is Ax; = [x;_1,x, 1] yields
2

2

aiUiAx =— [f(u(t,x, 1)) — f(u(t,x._l))] (2.44)
t i+5 i—5

And, integrating equation (2.44) over time step At, from [t", t"*1], gives

i—=

At
urtt =y - Ax [Fi+% - F. ;] (2.45)

In above equations, U]* and U** are the cell averaged of conserved variable u; over
Axi,
1 (%l

Ui=1n 3 u; dx (2.46)

1
2

at time levels n and n + 1, respectively, and F, 1 are the time average of the fluxes
-2

f;,1 over time interval At,
-2

14



tn+1

1

1= — f. 1
it3 At Jin ity

F (2.47)

One challenging step in schemes based on Finite Volume Method is the computation

of the interface fluxes F, 1 . Among several methods, the Weighted Averaged Flux
-2

(WAF) method is used in this study to calculate the fluxes, which will be discussed in

detail in section 2.3.4.
2.3.2. Godunov’s Method and Riemann Problem

The Godunov’s method is a first order upwind method which uses the piecewise cell-
averaged data (2.46) in each cell, to compute the interface fluxes by solving the
Riemann Problem, exactly or approximately, in that interface. First order Godunov’s
scheme can be extended to higher order of accuracy in time and space. Examples of
second order Godunov’s type schemes in time and space are Weighted Average Flux

(WAF) and MUSCL-Hancock schemes.

Considering discretized form of the equations (2.45), and assuming that the U;* are
piecewise constant data in each cell, that is integral averaged of the data over cell

Ax; = [x 1] at time t = t" as in equation (2.46), the flux value in each cell

i Xy
interface is computed by solving the initial value problem (2.48), where U}, (is equal
U{') and Uy (is equal U} ) are the constant cell-averaged data at the left and right of
the cell interface, respectively. Initial value problem of the form (2.48) is called
Riemann problem. In general, Godunov-type Methods are the methods which solve

the Riemann Problem

U +FEU)=0

(U if x <0 (2.48)
Ux,0) = {U,L2 if x>0

locally at each cell interfaces to calculate fluxes.

15



The schematic stencil of the first order Godunov’s scheme is depicted in Figure 2.2.
Solution of the Riemann problem is depended on the wave speeds x/t. First order
Godunov’s scheme uses the solution of the Riemann problem at x/t = 0, which is

U,,1(x/t) = U(x/t = 0), (see Figure 2.2) and flux function F (U) to evaluate the flux
2

value at each interface, i.e., F <Ui+1(x/t = 0)).
2

hA U,
11— tn
, Ul
a
@) o
» X
t
» X
tn+1
Ui_l(x/t =0)
2
» X

Figure 2.2. Stencil of first order Godunov’s method: a) cell average data at t = t" and, b) solution of
Riemann problem at t = t"*!

2.3.3. Approximate Riemann Solvers

The solution of Riemann Problem (2.48) consists of the left and right waves, which
are either shock waves or rarefaction waves. The middle wave is a share wave, which
appears in the presence of y-momentum equation, i.e., two-dimensional cases. There

are four possible wave patterns in x-t domain that are shown in Figure 2.3.

16



Figure 2.3. Four possible wave pattern in the solution of Riemann Problem for two dimensional
shallow water equations in x-direction. a) left wave is shock wave and right wave is rarefaction wave
b) left wave is rarefaction wave and right wave is shock wave c) left and right waves are rarefaction
waves and, d) left and right waves are shock waves

These waves divide the x-t domain into three regions: (i) The left region where U=UL,
(i) the right region where U=Ug and (iii) the middle region where U=U" which is

called star region.

U” data can be calculated using an exact or approximate Riemann solver. As an
example of exact Riemann solver, (Toro, 1992) proposed an efficient exact Riemann
solver which uses an iterative procedure to determine the wave patterns and the star

region data U”.

No matter how the exact solvers are efficient, there are still approximate Riemann
solvers, which are sufficiently accurate and can reduce the computation cost compared
with the exact solvers. These solvers are preferred due to their simplicity and

acceptable accuracy, alongside with their time and cost efficiency.
2.3.3.1. The HLL Approximate Riemann Solver

Harten, Lax, and van Leer (HLL) (Harten, et al., 1983) suggested an approximation to
calculate the numerical flux at the star region directly, instead of estimation for data
(i.e., depth and unit discharge (or speed)) in the star region. In HLL Riemann solver,
which is used in this study, intermediate waves are ignored, therefore, it is not
appropriate solver for two dimensional cases where there are contact shear waves due

to the presence of y-momentum equation. HLLC is the modified version of HLL

17



Riemann solver that takes account of the presence of shear waves and thus, it is

appropriate Riemann solver for two-dimensional problems (details can be found in

(Toro, 2001)).

HLL Riemann solver uses data U;, = U;, Ug = U;,4, and corresponding fluxes F; =
F(U.) and Fp = F(Ug), and assumes S; and Sy to be the left and right wave speeds

in the solution of the Riemann problem, and gives the numerical flux at cell interface

as
F, if S,>0
SeF, — S, Fp + SpS.(Ug = U
Foy = { g 2 SeFL = SuFe & Se5u.0Up = UL if S,<0<Sz  (2.49)
i3 Sr— 5L

The solution structure of the Riemann problem with HLL Riemann solver with two

waves (one dimensional case) is depicted in Figure 2.4.

AL

Sy Sk
FHLL
F, Fq
X

é . o >
; 4= i+1
l l+ >

Figure 2.4. Tllustration of the left and right waves in the solution of Riemann Problem and locations
corresponded to the left, right, and star region fluxes in the structure of HLL Riemann solver for one-
dimensional SWE.
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In the calculation of HLL fluxes, left and right wave speeds (S, and Sp) are needed.
Toro, 2001 suggests formula (2.52) ~ (2.55) for the wave speeds that lead to accurate
and robust scheme. In the corresponded approximations, the value of the depth at star
region ( h*) is also needed, which can be obtained approximately from other Riemann

solvers. Toro, 2001 recommends the following formula for the h*:

111 1 2
W= |5+ ) + 7 u — ug)] (2.50)

where, u; and uy are the speeds at the left and right of the interface and, c; and cg
are celerity according to the depths in the left and right of the cell interface,

respectively,

(2.51)

Wave speeds can be calculated as follows:

a) Left Wave Speed (Wet Bed): in the case of wet bed at both left and right sides
of the interface, if h* < h;, then the left wave is a rarefaction wave; otherwise,

the left wave is a shock wave. The speed is calculated from

SL:uL_CL lfh*ShL

S \/1 I(h* + hL)h*l . (2.52)

2| 2

b) Right Wave Speed (Wet Bed): similarly, if h* < hy then the right wave is a
rarefaction wave; otherwise the wave is a shock wave. Right wave speed is

calculated from

SR=uR+CR lfh*ShR

1{(h* + hg)h* 2.53
SR:uR-I_CR\/EI%l if h* > hg ( )
R
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In the presence of the dry region in the solution, the speeds are given as follow,
c) Dry Bed on the Right:

If the area at the right of the cell interface is dry, then the left and right waves are
estimated as

SL =u; —C
{SR =u + 2 (453 (254)

d) Dry Bed on the Right:
And, if the left region of the cell interface is dry then the speeds are

{SL=uR_2CR (255)

SR = uR + CR
2.3.4. Weighted Average Flux (WAF) Scheme

By integrating the set of one dimensional conservation laws, equations (2.43), over
time and space, the discretized version of the equations were obtained as (2.45), where

each particular scheme uses a particular method to calculate the interface fluxes F 1.
-2

Among the several choices, Weighted Averaged Flux (WAF) is proposed by Toro,
1989, which is a second order extension of the first order Godunov’s upwind method.
Original WAF method is oscillatory; therefore, TVD version of the method which is

oscillation-free must be used.

General structure of the Riemann problem and WAF method is depicted in Figure 2.5.
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Figure 2.5. Structure of the Riemann problem solution and illustration of the weights in WAF method.

The numerical interface flux using Weighted Average Flux, can be written in integral

average form as (Toro, 2001)

1 1 t+At ~Ax/2
F¥Y = j f F(U(x,t)) dx dt (2.56)
l+§ tz - tl Xy —Xq t Ax/2

By using the midpoint rule, the time integration can be approximated at t = %At as

1 Ax/2 1
FvY = — F(U. 1<x,—At)> dx (2.57)
1+ AX —AX/Z l+§ 2

2

The integral in equation (2.57) can be calculated with the summation

N+1

P = ok (2.58)
l+§ e l+§

where N is the number of waves in the solution of Riemann Problem and Fi(ki 1s the
2

flux value in the interval k. wj, are the weights (see Figure 2.5), which are defined as
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1
Wy = 2 (cx — Cr-1) (2.59)

fork = 1to N + 1. ¢ is the Courant number for wave k which is defined as

_AtS,

C = o (2.60)

where, ¢, = —1 and cy,; = 1. Putting all back into the equation (2.58) the weighted

averaged of the flux is obtain as

N
1 1
P = SR+ ) =5 ) bR .61)
l+§ — l+§
where
(k) (k+1) (k)
AFY{ =F —F
e i+a (2.62)

is the flux jump over wave k.
2.3.4.1. Total Variation Diminishing (TVD) and Monotonicity

First order upwind schemes are stable and non-oscillatory schemes, but they introduce
artificial and fallacious diffusivity into the solutions. On the other hand, higher order
schemes are more accurate, but they can be oscillatory. However, higher order
schemes based on the Total Variation Diminishing (TVD) exist, that although they

bring higher order accuracy, they are also oscillation free.

A scheme is said to be monotonicity preserving, if it holds two conditions, a) if it does
not create new minimums/maximums in the solution and b) if it does not amplify the
already existing minimums/maximums; In other word, if the scheme does not create
overshoots or undershoots. Monotonicity is related to “Total Variation (TV)” of a
discrete solution. Consider the arbitrary solution domain with the solution data ¢ as

in Figure 2.6.
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Figure 2.6. An arbitrary solution domain presentation.

Total variation of the variable ¢ can be written as a summation below,

N
TV = s = 0id = 192 = ol 4103 = 02l + [0y — @3]+ (263)
1

If the total variation (2.63) does not grow in time, then the monotonicity is preserved.

This property is guaranteed in TVD schemes.

TVD schemes uses limiters function . This function is defined according to the
definition r, which is the ratio of the upwind-side gradient to the downwind-side
gradient of the variable, as written in equation (2.64).

AQoupwind

r =

B A<pdownw1'nd (2.64)

According to Sweby, 1984, a scheme is TVD if the function i lies in the region in

1 — r diagram shown in Figure 2.7.
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Figure 2.7. First order TVD region

And, Sweby, 1984 showed that a TVD scheme is second order if it lies in region shown
in Figure 2.8.

W\’}A

2" Order TVDRegion

1 2 3 4

Figure 2.8. Second order TVD region

Among the several possibilities, some choices for TVD limiter function are

SUPERBEE, van Leer, van Albada and Min-Mod, which are defined as below:

Ysypereee (1) = max[0, min(1,2r), min(2,7)] (2.65)

24



r+ |r]

ll}Van Leer(r) = 1+r (2~66)
r+r?

l/JVan Albada(r) = 1+ 12 (2~67)

Umin-moa(r) = min(1,7) (2.68)

All the second order limiter functions pass through the point (1,1) in ¢ — r diagram
and they all are zero if the r value is negative. Comparison of some famous limiter

functions are illustrated in Figure 2.9.

3 | =r
B )/SUPERBEE
2 /( Van Leer
Sweby f=1.5
]‘[j ——————
—_——— Van Albada
1 1 | |
8

Figure 2.9. Illustration of some famous second-order limiter functions (Versteeg & Malalasekera,
2007).

2.3.4.2. TVD Version of WAF and TVD Limiters

Equation (2.61) is oscillatory near the high gradients (Toro, 1989) and should be
modified with the Total Variation Diminishing constraint. TVD version of the

equation (2.61) can be written as
N

waf __ 1 . 9]
F. 1 ——(F + Fip1) — sign(ci)AAF, (2.69)
*2 k=1 2
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where A, is the WAF limiter function. Ay, is defined as

A =1—(1—|chp() (2.70)

where C is the Courant number, 1 in the limiter function and r is defined as

(k) (k)

Y

p00 = )T T
q-(k) _ q-(k) (2.71)
Ti+1 — 9;

For two-dimensional shallow water equations, in x — direction, q can be selected as

q = h for non-linear waves and q = v for the shear wave (Toro, 2001).
2.3.5. Well-Balanced Hydrostatic Reconstruction

A numerical scheme solving the shallow water equations is said to be well-balanced
if the source term corresponding to the bed slope in the momentum equation is treated

in such a way that it preserves exactly the water at rest or stationary solution, i.e.,

u=20
h + z = constant. 2.72)
In stationary situation, the shallow water equations reduce to
1.2 _
(igh )x = —ghz, (2.73)

To obtain a well-balanced scheme, the hydrostatic flux term in left hand side of the
equation (2.73) should be numerically well-balanced with the bed slope source term
in the right hand side. Among the several well-balanced schemes, (Audusse, et al.,
2004) propose “hydrostatic reconstruction scheme” and obtain first order and second
order well-balanced schemes. Later, higher order well-balanced scheme called WENO

is introduced by (Noelle, et al., 2006).
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2.3.5.1. Discretization of the Source Term

Semidiscrete finite volume form of the discretized equations can be written as

0
Axiézlh(0-+<FHl——FF%>::Si (2.74)

2

where U; is the vector of cell-averaged variables (h;, q;)Tand F ;41 are the flux
-2

functions calculated from solving the Riemann problem according to the Riemann

states at left and right of the cell interfaces as

F 1=F <Ui+1(l),U_ l(r))

2 2 l+2

(2.75)
Fi_l = F<U' non'a 1(r)>

2 l_i l_i

where U ;@ and U ) stand for the U at the left and right of the cell interface i + %,
i+= i+=

2 2
respectively. For nearly stationary state, i.e. u < ,/gh , equation (2.73) is the
necessary condition to hold the balance between hydrostatic pressure term and the bed

slope source term. According to this equality, Audusse, et al., 2004 use the discrete

gradient of the hydrostatic momentum flux G ghz) instead of the bed slope source
X

term. By integrating equation (2.73) over cell i from x;_1/, to Xx;44/,, the source term,

S; in equation (2.74) can be obtained as

xi+1/2® xi+1/2®
d /1 g
_ — O 2N\ Y (2 32
f ghas = f 0x <2gh > 2 (hi+1/2(l) hi—1/2(r))
xi-1/2® xi-1/20
S g( 0 ) (2.76)

= = 2 2 .
b2 hi+1/2(l) B hi+1/2(r)
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Indeed, with this kind of discretization, cell-averaged source term is distributed to the
cell interfaces. The details are shown in equations (2.83) ~ (2.86) for the first order

scheme and (2.98) ~ (2.102) for the second order scheme.

Audusse, et al., 2004 suggest the following reconstructed value for h and z at cell

interfaces

Z;% = max(zi,r,ziﬂ,l) (2.77)
hi+%_ = max <O, Zir + hi,r — Zi+%> (2.78)
hi+%+ = max (0, Ziy1g T hiv1g — zi%) (2.79)

where z; - and z;;,; are the bed elevation at the right of the cell i and the left of the
cell i + 1, respectively. h; - and h; 1 ; are defined at the same manner. Audusse, et al.,
2004 prove that this reconstruction of the variables provides non-negativity of the

water height, even while cell starts to dry out.
2.3.5.2. First Order Well-Balanced Scheme Based on Hydrostatic Reconstruction

For the first order well-balanced scheme the reconstructed values become

Zi+% = max(z;, Zi41) (2.80)
h;‘+1/2(z> = max <O, zi+ h; — Z;l) (2.81)
2
h:+1/2(r) = max <0, Ziyq + hi+1 - Zl:_l) (282)
2

The location of the reconstructed variables is depicted in Figure 2.10.
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Figure 2.10. Illustration of the reconstructed variables for the first-order well-balanced scheme.

The source term (2.76) can be rewritten as

g 0 g 0
Si = Si+1/2(l) + Si—1/2(r) ) h*? h? )+ o\h -1 2 (2.83)

i+1/2®0 i—1/2M

Now, the equation (2.74) can be modified by distributing the source term (2.83) to left

and right fluxes and can be rewritten as

d .
Bt = Uy(0) + F 0 Ui Uiy, 20, 2200) = F S Wi, Up 20, 2) =0 (2.84)
l+§ =5
with modified fluxes

left
FHe_]lc (Ui' Ui+11 Ziy Zi+1) = FH_% (U i+1/2(l)' U i+1/2(7‘)) - Si+1(l)
2 2
2.
. (2.85)

_ g
- Fi+% (U i+1/2® u i+1/2(r)) + P <hl2 —h*? )

i+1/2®
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igh
Fr" Uiy, Uy zio1,2) = F, 1 (Ui—1/z(”' Ui_l/z(r)) +S5 o

l—i l 2 1_7
(2.86)
= Fi—% (U i—1/20 U i—1/2(r)) + E <h12 - h*:l/z(r)>

where F(l_ ;f " and F{ )ig "t are denoted to the F at the left and right of the cell interface

(.) respectively. With the CFL condition of CFL < 1 and uniform mesh size, the fully

discrete form of the equations can be written as

At l 5 h
UMY = U = —|F* U3, Upir, 20 2i40) — FT9 Uiny, Uy 204, 20) (2.87)
AX l+§ l_i

where the fluxes are calculated from (2.85) and (2.86).

2.3.5.3. Second Order Well-Balanced Scheme Based on Hydrostatic

Reconstruction

One way to reach the second order accuracy is to reconstruct the variables at the cell
interfaces with a piecewise linear approximation and use those value as Riemann
states to calculate interface fluxes. For uniformly discretized domain with constant
mesh size, the interface values for water depth h and unit discharge q can be obtained

by linear approximation as

1 *
hi%a) = max (0,m + E&]iAx — zi%) (2.88)
h = 0 ! 6N 1A -
i+%(r) = max| 0,741 = 5 0Nip1AX = ZH% (2.89)
1
q 0 =¢q;+506q;Ax (2.90)
i+> 2

2
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1
q 1) =qi+1— Edqux (2.91)
l+E

where 77 shows the water surface elevation. Accordingly, the velocities at the left and

right of the cell interfaces are calculated as

0 ifh ,0<e
u = — - t+s 292
i*%(l) {q”% /h”% else ’ (292
0 ifh »<e
u m= {q_ +/h g+ 2 (2.93)
l+E l+§ l+§ else

where ¢ is the tolerance for the dry bed. In this study ¢ is chosen as 1071°.

6m; and &q; are the gradients of W and q in each cell. To avoid spurious oscillations,

nonlinear slope limiters can be used to define d7; and dq; as

N —MNi—1 MNi+1 — Ui)
Xp = Xi_q Xip1 — X
qi — q9i-1 9i+1 — CIi)
Xp = Xi_q1 Xix1 — X

on; = L(
(2.94)

5Qi=L<

where L is the slope limiter function. One choice for L can be minmod function, which
leads to second order accurate scheme (Randall J. Leveque, 2004).
L(a,b) = max[0, min(a, b)] (2.95)

Kurganov & Petrova, 2007 use generalized form of the minmod limiter which can be

written as

) '9
Xi —Xi—1 Xijy1 —Xj—1  Xjy1 — X

qi — 9i-1 9i+1 — 49i-1 , 9i+1 — Qi)

&n; = L (0 Ni —Ni—1 MNi+1 —Ni-1 ,Ni+1 — 77i>

(2.96)

,0

)
Xi —Xi—1 Xiy1 —Xj—1  Xjy1 —X;

where the function L is defined as
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min(a;) ifa,>0fori=123
L(ay,az,a3) = {max(a;) ifa; <0 fori=1,23 (2.97)
0 otherwise.

and 6 is the numerical viscosity amount which is in the interval of 6 € [1,2].

In second order scheme, z;, and z;; should also be defined and to preserve
consistency, cell-centered source term S,; should also be added to the discretized

equation (Audusse, et al., 2004).

Second order well balanced scheme can be summarized as

0
Axi % Ul(t) + (FH_% - Fi—%) = Si + SCi (298)

d ! igh
A Ui (o) + F:?(Ui,r: Uiirp Zirr Zie11) = F;_Li ‘Uiz Uipy Zima g0 200) = Sei (2.99)
2 2

xia

where

left —_ -
Fi+% (Ul,r' Uit Zirs Zl+1,l) = Fi+% (U i+1/2® U i+1/2(r)) Si+l(l)

(2.100)
- Fi+% (Ui+1/2(l)’ Ui+1/2(r)) + E(hiz,r - h*i-|2-1/2(l)>
igh
Flrjz t(Ui—l,T' Ui,l’ Zi—1,r: Zi,l) = Fi_% (U i—l/Z(Z)’ U i—l/Z(r)) + Si_l(r)
(2.101)
=F 1(U -, U (+))+g 2 (12
i\ i-1/27" Y im1/2 2\hii =2, 0
Cell-centered source term is defined as
S = [ 0 ] (2.102)
e = |ghi(zi, — ziy) '

The location of the reconstructed variables in the second-order scheme is depicted in

Figure 2.11.
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Figure 2.11. Illustration of the reconstructed variables for the second-order well-balanced scheme.

Fully discrete form of the equations can be written as

t
n+1 n left
U™ =U; Y F* (Uir Uisr Zir Zivr))
l+§
(2.103)
Fright U U AtS
—r3 ( i—1,rs i,l'Zi—l,r'Zi,l) +—35;
i Ax

2

2.3.6. Reconstruction of the Wet/Dry Fronts

Second order reconstruction of the water surface elevation using piecewise linear
function may lead to negative depth near dry area. Therefore, special treatments are
needed to prevent creation of negative depths, since they will destroy the computation.

[Mustration of such situation is depicted in Figure 2.12.

33



"i—1/2M<0

3’{ ;

Figure 2.12. Creation of negative depth during piecewise reconstruction step.

To prevent such situation, the water surface slope should be corrected in the cases that
77;_1 <z_1or nl__+l <z, 1. In this study, the corrections are done according to
2 2 2 2
Kurganov & Petrova, 2007, as follows:
Case 1: if the negative depth appears at the left edge of the cell, i.e., 77;“_1 <z,_1,then
2 2

the water surface slope will be corrected as

ni—z_1
o = ——2 (2.104)
! Ax /2

and therefore

(2.105)

Then, the depth at the left and right of the cell will be
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= 2n, (2.106)

Case 2: if the negative depth appears at the right edge of the cell, i.e., M., <Z,1 then
2 2
the water surface slope will be corrected as

Z . 1=
T = " Ax/2 (2.107)

and therefore

o
n1=2n;—2.1
12 2 2

- _ (2.108)
ni+% Zi+%
Then, the depth at the left and right of the cell will be
h+ 1 = Zhl
)
h1=0 (2.109)
i+5

) (

2h 2h |

Figure 2.13. correction procedure of the negative depth at the left edge of the cell (left) and right edge
of the cell (right). Dotted line and solid lines represent the water surface before and after correction,
respectively.
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2.3.7. Adopted Numerical Solutions and Developed Codes in FORTRAN

Three codes are developed in FORTRAN to solve the shallow water equations. One
of the codes is written to solve the discretized equation (2.45). In equation (2.45), the
source term is neglected; therefore, the source term is added to the right-hand side of

itaS
' ' Ax L 2 L 2 ' .

where U = [h, q]7, and the source term is defined as

0
St = [ ] 2.111
£ =ghi(Soi + Sr i) @111

So i 1s the bed slope of the cell i, and S¢; is the friction source term and is defined as
_ nulul

S, =
fi 4/3
Rh

(2.112)

where R,= hydraulic radius. Hereafter, this code will be referred as WAF code for
simplicity. The WAF code does not have well-balanced property. In the WAF code,

fluxes are calculated using equation (2.69), where F; = F; and Fg = Fj,;.

Another code is developed to solve the 1% order well-balanced scheme, and hereafter
will be called WAF1WB. WAF1WB solves equation (2.87) with included friction

source term as

i+5 i—5

2 2 (2.113)
+ At[ 0 ]
—gh;Ss i

where S¢; is defined by equation (2.112).

At l 5 h
Ut =uft - ElF. LU Uis1, 20 2041) = F4 (Ui_1, Uy 2021, 22)
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Beside WAF and WAF1WB, another code, which will be referred hereafter as
WAF2WB, is written to solve second order well-balanced scheme, the discretized

form of which is like equation (2.103) with added friction source term as

At |
Uin+1 = Uln - A_ F e{t(Ui,T’ Ui+1,l, Ziry Zi+1,l)
x| i+3 (2.114)

; 0
__ ppright ] ] ] ]
Fi—% (Ul—l,‘r; Ul,ll Zi—1,r» Zl,l)l + At [_ghi(so i+ Sf l)]
Again S ; is the bed slope of the cell i and Sy ; is calculated using equation (2.112).
Modifications of the wet/dry fronts are done according to equations (2.104) ~ .

Nine test cases will be used to validate the developed codes. Definition of the test
cases is given in chapter 3 and the corresponding numerical solutions using WAF,

WAF1WB, and WAF2WB are given in chapter 4.
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CHAPTER 3

DEFINITION OF NUMERICAL TEST CASES

3.1. Test Case 1: Subcritical Flow in a Rectangular Channel with Various Bed

Slope

Test case 1 is selected to evaluate the developed codes in solving steady-state
subcritical flow with smoothly varying bed slope. This test case is a steady-state flow
problem and is introduced by I. MacDonald, et al., 2002. According to Ian
MacDonald, 1996, corresponding bed slope to a given smooth water surface profile

h(x) can be obtained by

So(x) = fih'(x) + f> 3.1
where
2T
fi= 1—%: 1 - Fr2
(3.2)

f B QZn2P4/3_ QZ G_A
SRR gA3 ox

and T = Top Width, n = Manning’s Roughness Coefficient, and P = Wetted Perimeter.

Test case 1 has a rectangular cross section 10 m wide and the channel is 1000 m long.
Flow is subcritical in the whole channel with a discharge equal to 20 m®/s. Manning’s

roughness coefficient is 0.03. Water depth profile is given by

h(x) = G)m {1 + %exp I—16 (1;% — %)21} (3.3)

Corresponding bed slope to the water depth profile (3.3) is obtained using (3.1) and
(3.2) as
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(2h(x) + 10)*/3
(10h(x))"" (3.4)

—_ 1 4 hl
So(x)—( —m) (x) +0.36

The exact water surface and water depth profiles are depicted in Figure 3.1 and Figure

3.2, respectively.
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Figure 3.1. Exact water surface and critical flow elevations for Test Case 1: Subcritical Flow in a
Rectangular Channel with Various Bed Slope.
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Figure 3.2. Exact water depth and critical flow depth for Test Case 1: Subcritical Flow in a
Rectangular Channel with Various Bed Slope.
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3.2. Test Case 2: Various Bed Slope with Subcritical Inflow and Hydraulic Jump

Test cases 2 is also introduced by Ilan MacDonald, 1996 and is considered by many
authors; for example Delis & Skeels, 1998. This test case is selected to see how the
developed codes deal with the transition from subcritical flow to supercritical flow,
and contrariwise, the transition from supercritical flow to subcritical flow, i.e.,

hydraulic jump, in a steady-state flow problem.

Test case 2 starts with subcritical inflow and enters to supercritical region. A hydraulic
jump occurs at the middle section of the channel and flow regime changes to

subcritical again. Water surface profile is given by

f<4>1/3 (4 x ) 9x ( x 2) _ 200
) \37 100/ 1000\100 " 3 ¥=73
1

4\3 x  2\* x 2\ 200
h(x) =4 (—) 0.674202 (———) 0.674202 (———) >— (3

g/ " 100 3) 77 100 3/ *773

X 2\? X 2
| —21.7112 (— - —) +14.492 (———) +1.4305

100 3 100 3

Channel has a rectangular cross section with a constant width equal to 10 m. Length
of the channel is 100 m, and Manning’s roughness coefficient is 0.03. Bed slope
corresponded to the water depth profile defined by (3.5) is again obtained using
equation (3.1) and (3.2) as

4/3

4 1 1
2500[h(0)]2 (E + h(x)) (3.6)

SO(X) = (1 - m) h,(X) +

Inflow discharge of the channel is 20 m?*/s, and the Manning’s roughness coefficient

is equal 0.03. The exact water surface elevation and exact water depth are plotted in

Figure 3.3 and Figure 3.4, respectively.
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Figure 3.3. Exact water surface and critical flow elevations for Test Case 2: Various Bed Slope with
Subcritical Inflow and Hydraulic Jump.
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Figure 3.4. Exact water depth and critical flow depth for Test Case 2: Various Bed Slope with
Subcritical Inflow and Hydraulic Jump.

42



3.3. Test Case 3: Various Bed Slope with Supercritical Inflow and Hydraulic
Jump

This test case is also introduced by Ian MacDonald, 1996 and considered by Delis &
Skeels, 1998. The channel is 100 m long and 10 m wide, and the Manning’s roughness
coefficient of the channel is 0.03 as same as the previous test case. In this case, the

bed slope of the channel is given by

4/3

4 9 1 1
50 = (1~ 57 ¥ @ * ss00mer G+ i) G-9

where water depth h(x) is defined by

(&) (rommra( - ) +roarm (- d) 22
g . 100 3 ' 100 3 -3
X 1\° x 1
h(x) =  +17.9329 (W - 5) +3.1725 (W - 5) + 0.850042) (3.9)
(00 4 x yx o 200
\g 6 200 10\100 3/\100 3

This case is also selected to evaluate the behavior of the numerical solutions near the
discontinuity in the water surface, i.e., hydraulic jump. The differences between this
test case and the previous one are in the sequence of changes in flow regime and
boundary conditions. Here, flow is supercritical at the inflow with a discharge of 20
m?/s. Flow regime changes to subcritical at the central section of the channel by a
hydraulic jump and then turns back into supercritical at the outflow section again. The
exact water surface elevation and water depth are shown in Figure 3.5 and Figure 3.6,

respectively.
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Figure 3.5. Exact water surface and critical flow elevations for Test Case 3: Various Bed Slope with
Supercritical Inflow and Hydraulic Jump.
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Figure 3.6. Exact water depth and critical flow depth for Test Case 3: Various Bed Slope with

Supercritical Inflow and Hydraulic Jump.
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3.4. Test Case 4: Steady Flow over a Bump; Transcritical Flow with Hydraulic

Jump

Test cases 3.4, 3.5, and 3.6 are a set of steady state flow over a bump with different
boundary conditions and flow situations. These test cases are well-known test cases
and are considered by several authors, for example by Maria Elena Vazquez-Cendon,
1999. These test cases are considered to study the behavior of the numerical solutions
used in this thesis in dealing with obstacle in the channel bed, in the presence of

different flow situations in the channel.

The computational domain is a frictionless channel with a rectangular cross section.
The length and breadth of the channel are 25 m and 1 m, respectively. A bump with a
maximum height of 0.2 m is located at the bottom of the channel from x = 8 m to

x = 12 m. Channel bed elevation is defined by

0.2 — 0.05(x — 10)?, for8<x <12
0, otherwise

2(x) = { (3.9)

Depending on the initial and boundary conditions, the flow in the channel may be a)
transcritical with a hydraulic jump, b) subcritical all over the domain (see section 3.5),
and c) transcritical without hydraulic jump (see section 3.6). In the case of transcritical
flow with a hydraulic jump, flow is subcritical at inflow, it passes through the critical
depth at the top of the bump and the flow regime changes to supercritical, and finally,
at the end region of the bump, a hydraulic jump occurs and flow regime changes back

to subcritical again.

Discharge of the channel is 0.18 m3 /s and the depth of the flow at the downstream
end of the channel is 0.33 m.

The exact solution to this problem is obtained by using the hydraulic principles. At
the top of the bump, flow passes through the critical depth. Specific energy of the flow

is minimum in that point and is equal to
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| W

Emin

3 qz
= j: =0.22338m (3.10)
29

Thus, the specific energy before the bump is

Eupstream = Emin + AZgenien = 0.42338m (3.11)

Therefore, the exact depth of the water before the hydraulic jump can be obtained by

solving the equation

2

Y+ 3457 0.42338 — Az (3.12)

where Az; is the height of the cell i with respect to the channel bed before the bump.
Before the zenith of the bump, flow is subcritical, and after that, flow is supercritical.
Therefore, before the zenith, the roots corresponding to the subcritical flow and after

the zenith, the roots corresponding to the supercritical flow should be selected.

The flow depth at the downstream end of the channel is 0.33 m, and specific energy

of the flow at the downstream of the channel is

2

q
Eqownstream =Y + 29 X 32 = 0.34516m (3.13)

Since there is no head loss in the channel after the hydraulic jump, depth of the flow

after the jump can be obtained by solving the equation

2

Y+ 5457 0.34516 — Az (3.14)

Flow regime after the bump is subcritical; therefore, the roots corresponding to the

subcritical flow should be selected.

Location of the hydraulic jump can be determined by using the specific force concept

of the flow. The hydraulic jump occurs at a point that the specific forces of the flow
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before and after the jump are equal. Specific force for a rectangular channel can be

written as

=—y2 4 — (3.15)

2
F_1,..4
b 2 gy

The specific force before and after the jump should be equal as

1 q° q°
leaya 1, 4@ (3.16)
27 T T2 T gy,

By solving the equations (3.12), (3.14), and (3.16) simultaneously, the location of the
jump is obtained at the point with x = 11.6677 m, and the height of the hump is
Az = 0.0613 m at the jump location.

Exact solution of this test case is plotted in Figure 3.7.
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Figure 3.7. Exact water surface and critical flow elevations for Test Case 4: Steady Flow over a

Bump (Transcritical Flow with a Hydraulic Jump).
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3.5. Test Case 5: Steady Flow over a Bump; Subcritical Flow All over the Domain

In this case, flow is subcritical in the whole domain. The bed elevation is defined by
equation (3.9), as same as the previous test case. The discharge of the channel is

4.42 m3 /s and the downstream water depth is 2 m.

Specific energy at the downstream boundary of the channel is calculated as

2

q
Edownstream =y+ W = 2.24893 m (317)

The exact solution for this case can be obtained by solving the equation

2
y+ ZZyZ — 2.24893 — Az (3.18)

and selecting the roots corresponding to the subcritical flow. Exact solution of this

problem is plotted in Figure 3.8.
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Figure 3.8. Exact water surface and critical flow elevations for Test Case 5: Steady Flow over a

Bump (Subcritical Flow All over the Domain).
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3.6. Test Case 6: Steady Flow over a Bump; Transcritical Flow without

Hydraulic Jump

In this case, the bed elevation is also defined by equation (3.9). The discharge in the
channel is equal to 1.53 m3/s. Flow regime changes from subcritical to supercritical

over the zenith of the bump and flow remains supercritical until the end of the channel.

The exact solution to this problem is again obtained by using the specific energy
concepts. Flow passes through the critical depth at the zenith of the bump and specific

energy is minimum there. The specific energy of the flow at the zenith is equal to

3 2
’% — 0.93038 m (3.19)

Therefore, the specific energy before and after the bump is

Enmin =

N w

E = Emin + Azzem-th = 1.13038 m (320)

and the depths can be obtained by solving the equation

2
v+ zgyz = 1.13038 — Az (3.21)

Flow before the climax of the bump is subcritical and after that is supercritical.
Therefore, before the climax, the roots corresponding to the subcritical flow and after

the climax, the roots corresponding to the supercritical flow should be selected.

The exact solution to this problem is plotted in Figure 3.9.
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Figure 3.9. Exact water surface and critical flow elevations for Test Case 6: Steady Flow over a

Bump (Transcritical Flow without Hydraulic Jump).

3.7. Test Case 7: Surge Crossing a Step

This is an unsteady test case and is used by Hu, et al., 2000. This test case is selected
to see the capability of the numerical solutions in this study in solving an unsteady
state flow problem with a step-like discontinuity in the channel bed. The length of the
channel is 10 km. Channel is assumed to be frictionless. A step of the height 2 m is
located at x = 5 km. Initially, water is at rest in the whole channel with water surface
elevation of 5 m with respect to the channel bed before the step. A 10 m high surge
enters from the left boundary and travels to the downstream. The velocity of the surge

is obtained from equation (3.22) as 6.065 m/s.

(dy —dy) |gdi(dy +dy) (3.22)

1= 2d,
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where d; and d, are the height of the surge (i.e., d; = 10 m) and the initial height of
water before the step (i.e., d, = 5 m), respectively. Due to the presence of the step,
the incoming surge splits into the two new surges when it crosses over the step; one
travels in the upstream direction, and the other travels to the downstream. The
analytical solution to this problem can be obtained following Chow, 1959, by solving

the equations (3.23), simultaneously (Hu, et al., 2000) (see Figure 3.10).
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Figure 3.10. Schematic view of a surge crossing a step.

, . (dy+dy)g
(v, = v))? = (d; = dp)* — o=
d, +d,
(vy —v1)? = (d; - di)z—( 12d dll)g
14y (3.23)
2 2
T N B
di + 29 Az 29 d;

vid] = v5d,

The analytical solutions are obtained as d; = 11.094 m, v; = 5.009 m/s, d; =
7.756 m, and v; = 7.163 m/s. The exact water surface profile and velocity field after

t=600.5 s are plotted in Figure 3.11 and Figure 3.12.
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Figure 3.11. Exact water surface and critical flow elevations at t = 600.5 s for Test Case 7: Surge

Crossing a Step.
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Figure 3.12. Exact velocity at t = 600.5 s for Test Case 7: Surge Crossing a Step.

3.8. Test Case 8: Oscillation on a Parabolic Bed

This is another unsteady test case problem with an oscillatory water surface profile in
a parabolic basin. This problem is chosen to demonstrate the ability of the numerical

solutions in dealing with wet/dry areas. The parabolic bed is defined as

D
z= L—;’ (x — 2L)? (3.24)
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where Dy, = maximum water depth, and 2L = water surface length when the it is

horizontal. The initial velocity is u = 0 and initial water surface is

2AD A
n=Dy+ =2 (x—21-7) (3.25)

where A = amplitude of the oscillation. The analytical solution at time t is obtained

following Thacker, 1981 (Mungkasi & Roberts, 2010), as

AD,

2
77=DO-I_ LZ

cos(wt) (x — 2L — %cos(wt)) (3.26)

where w = frequency and T = period of oscillation and are defined as

_ V29D,
L
_n

(3.27)

T
W

The parameters used in this test case are Dy = 10 m, L = 2500 m, A = L/2, and

computational domain is considered as [0,4L].

Analytical water surface elevation at time t =T (1121.425 s) is plotted in Figure 3.13.
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Figure 3.13. Exact water surface for Test Case 8: Oscillation on a Parabolic Bed at t =T (1121.425s).

3.9. Test Case 9: Comparison with Experimental Data; Dam-Break Flood Waves

in a Dry Channel with a Hump

The purpose of this test case is to verify the developed codes with experimental data.
This is a suitable test problem since it contains both dry regions and discontinuity on
the channel bed. In this case, experimental data on the evolution of dam-break flow in
a dry channel with a triangular hump are compared with the numerical solutions. The
experiments have been done by Ozmen-Cagatay, et al., 2014 in a smooth rectangular
channel with 0.30 X 0.34 m? dimensions and the channel length of 8.90 m. Channel
geometry and location of the reservoir and the hump are shown in Figure 3.14.
Experimental data in dimensionless form are plotted in at different dimensionless
times T =15.16, 17.54, 20.67, 23.05, 29.69, 35.83, 41.84, 49.99, and 62.77, where the
origin of the x-axis is located at the location of the plate keeping the water in the

reservoir. Dimensionless time is calculated by
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T=t e (3.28)
where, t is the actual time.
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Figure 3.14. Channel geometry; cross-section view (up), and plan view (dawn) (Ozmen-Cagatay, et

al., 2014).
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Figure 3.15. Measured water surface profile at different dimensionless times.
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Figure 3.15 (Continued) Measured water surface profile at different dimensionless times.
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Figure 3.15 (Continued) Measured water surface profile at different dimensionless times.

3.10. Dam Break Flow over Champion-Stage like Step

At the end, a new test problem is introduced to test the robustness of the numerical
solution in dealing with a more challenging problem. The proposed problem forces
the numerical solution to confront with many difficulties, such as the presence of dry

area, sudden discontinuity in the channel bed with positive and negative slopes, and

moving of the wet/dry fronts.

The domain is a prismatic channel with unit width and the length of the channel is 100

m. The Manning’s roughness coefficient is taken as 0.03. Discontinuity in the channel
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bed is considered as champion-stage like step, which is located in the channel from
x =40 m to x = 90 m. The height of the first step is 1 m, the second step is 1 m
higher than the first step, and the third one is 1 m higher than the second step. The
fourth and fifth steps are 1 m and 2 m lower than the highest step, respectively. The

channel geometry is defined as follows:

1 if 40 < x < 50
2 if 50 < x < 60
I if 60 < x <70
2 if 70 < x < 80 (3.29)
1 if 80 < x <90
\0 otherwise

Dam-break flow and overtopping of the flow over the steps will be simulated in the
channel. The reservoir is considered at the left of the channel from x = 0 tox = 10
m. The height of the water is 10 m in the reservoir. The left and right ends of the

channel are considered to be walls.

At time t = 0 the imaginary wall keeping the water in the reservoir will be suddenly
removed and dam-break flow will occur. The geometry of the channel and the initial

condition are illustrated in Figure 3.16.
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Figure 3.16. Geometry and initial condition of the test case 10.
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CHAPTER 4

NUMERICAL SOLUTIONS OF THE TEST CASES

In this chapter numerical solutions of the test cases are compared with the exact and
analytical solutions of them to assess the capability of the developed codes and

numerical solutions in solving the test cases.

Test case 1, test case 2, test case3, test case 4, test case 5, test case 6, and test case 7
are solved with pure WAF (WAF code), 1* order well-balanced (WAF1WB code) and
2" order well-balanced (WAF1WB code) methods. Test case 8, test case 9, and test
case 10 are only solved with well-balanced methods (i.e., WAFIWB and WAF2WB

codes).

There are some additional modifications in solving the test cases with the 2" order
well-balanced scheme. First, in reconstructing the variables at cell interfaces by using
the piecewise linear function (i.e., slope limiters), to avoid probable oscillations and
to allow for the use of higher CFL number, a relaxation factor is applied to the slope

limiters. The relaxation factor, «, is defined as

on = a 6n™% + (1 — a)én°k

4.1)
85q =adq™ + (1—a)dq°

old old

where, 61n°*¢ and §q°** are the value of them from the previous time step. 6w and 6q
are defined by equations (2.96) and (2.97). The relaxation factor is in the range of 0 <
a < 1. This modification is only applied to the steady-state problems and for unsteady

problems « is taken equal to 1.

Another modification is applied in the presence of partially flooded cells, inside which
there is no sufficient water to fill the cell with a flat water surface. Those cells may

need very small time step to prevent the creation of negative depths. Therefore, instead
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of restricting the general CFL condition, the draining time step, in the cells that are in
the risk of draining out, is defined following Bollermann, et al., 2011. The idea behind
this definition is that there will be no flux going out of a cell if it is empty (Bollermann,

et al., 2013). Draining time step can be obtained as follows

At
n+l _ pn _ 7~ h _ ph >
Kl R — <Fi+% Fi_%> >0 (4.2)
and
Atgirain — AXh{l
: oh_ph (4.3)
i i

where F" is the flux function in the continuity equation. Now, Equation (4.2) is

modified as

Dtip1pFliin — Dty fpFlLy ) (4.4)
Ax

where the time steps at cell interfaces are selected as

h?+1 — h:l _

; 1 sign(F
At 1 =min(At, ALFUM),  k=i+-- sign(Fiia o)
l+z 2 2
( n ) (4.5)
i 1 sign(F;_
At,_1 = min(At,AtfTM), k=i S+ %
2

In addition, to have an idea about the number of iteration required for the convergence
of the numerical solutions in steady-state test cases, the average residuals for the depth

and the unit discharge are calculated using

1 M
Ry =) |nt = |
M (4.6)

where M is the number of computational cells.
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4.1. Numerical Solution of Test Case 1: Subcritical Flow in a Rectangular
Channel with Various Bed Slope

This test case is solved using the WAF, WAFIWB, WAF2WB codes. In all methods,
the initial water depth is equal 1 m and the discharge in the channel is initially equal
to zero. The problem is solved in 1000 computational cells with the grid size of 1 m.
Two ghost cells at the left and two ghost cells at the right of the domain are added to
imply the boundary conditions. Manning’s roughness coefficient is set to 0.03. CFL
number is set to 0.9 for all methods. WAF2WB code, the relaxation factor a is set to

0.1. Boundary conditions at the inflow are implied as

(-1 =2
o) =2 (4.7)
H(—1)=H(1)
H() =H()
and at the outflow are implied as
QM+ 1) =Q(M)
QM +2) =Q(M)
(4.8)

H(M + 1) = 0.748409
H(M + 2) = 0.748409
where M shows the number of computational cells, —1 and 0 denote to the ghost cells
at the left of the channel, and M + 1 and M + 2 denote to the ghost cells at the right

of the domain. Q and H represent the unit discharge and the depth, respectively.

Numerical and analytical water surface elevation, water depth, and the unit discharge

of the channel are shown in Figure 4.1, Figure 4.2, and Figure 4.3, respectively.
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Figure 4.1. Comparison between numerical and analytical water surface elevations for test case 1:

Rectangular Channel with Various Bed Slope and Subcritical Flow
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Figure 4.2. Comparison between numerical and analytical water depths for test case 1: Rectangular

Channel with Various Bed Slope and Subcritical Flow
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Figure 4.3. Comparison between numerical and analytical unit discharges for test case 1: Rectangular

The numerical residuals of the numerical depth and unit discharge are depicted in

Figure 4.4.
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Figure 4.4. Residuals for Test Case 1: Rectangular Channel with Various Bed Slope and Subcritical
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For this test case, numerical solutions using all three schemes are compared with the
analytical solution and the results are presented. From the residuals presented in Figure
4.4, it can be seen that the problem is converged after almost 6000 iterations. All the
three schemes have excellent agreement with the analytical solutions by the use of
1000 number of grids, which confirms that all three schemes used in this thesis solve
the subcritical flow problems in channels with smooth variation in the bed slope with
sufficient accuracy. However, it can be seen from Figure 4.3 that the 1 order well-
balanced scheme calculates the unit discharge not as accurate as the WAF and 2™

order well-balanced scheme.

4.2. Numerical Solution of Test Case 2: Various Bed Slope with Subcritical

Inflow and Hydraulic Jump

Here, numerical solutions of the test case 2 using pure WAF, 1* order well-balanced,
and 2" order well-balanced methods are compared with the analytical solution. To be
coincident with results of Delis & Skeels, 1998, the computational domain is divided
into 100 cells with the constant grid size of 1 m. Initially, water depth is equal 1 m and
discharge is equal zero in the whole domain. Manning’s roughness coefficient is 0.03
for this case. CFL number of 0.9 is selected for all methods. For 2™ order well-

balanced method the relaxation factor « is set to 0.1.

Inflow boundary conditions are applied as inflow unit discharge of 2 m3/s/m and

depth of the ghost cells equal to the one in cell 1 as in equations (4.9).

Q(-1) =2
°0) =2 (4.9)
H(-1) = H(1)
H(0) =H(1)

At the downstream of the channel outflow boundary conditions are applied and the

depth of the ghost cells are taken as 2.877056 m as
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QM +1) = QM)
QM +2) = QM)
H(M + 1) = 2.877056
H(M + 2) = 2.877056

Numerical results and analytical solution of water surface elevation, water depth, and

(4.10)

unit discharge of the channel are plotted in Figure 4.5, Figure 4.6, and Figure 4.7,
respectively. The solutions of the water depth are also compared with the results

presented in Delis & Skeels, 1998 for the shock region in Figure 4.8.
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Figure 4.5. Comparison between numerical and analytical water surface elevations for test case 2:

Various Bed Slope with Subcritical Inflow and Hydraulic Jump
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Figure 4.6. Comparison between numerical and analytical water depths for test case 2: Various Bed

Slope with Subcritical Inflow and Hydraulic Jump
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Figure 4.7. Comparison between numerical and analytical unit discharges for test case 2: Various Bed

Slope with Subcritical Inflow and Hydraulic Jump
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The calculated residuals of the depth and the unit discharge are plotted in Figure 4.9.
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Figure 4.9. Residuals for Test Case 2: Various Bed Slope with Subcritical Inflow and Hydraulic Jump

As expected, the second order well-balanced scheme gives the best results for
numerical solution to the depth and unit discharge compared with the first order well-
balanced and pure WAF schemes, due to the better approximation of the Riemann
states (by using linear piecewise function in the flux calculations), and linear definition
of the bed. Numerical solutions of the depth by the pure WAF and the second order

well-balanced schemes have excellent agreements with the exact depth profile (see
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Figure 4.6). First order well-balanced scheme has also very good results for the depth,
but not as much good as the pure WAF and the second-order scheme. However, the
comparison of the numerical solutions for the unit discharge (see Figure 4.7) shows
that first order well-balanced scheme gives better results compared with the WAF

method due to the well-balancing property of the scheme.

4.3. Numerical Solution of Test Case 3: Various Bed Slope with Supercritical

Inflow and Hydraulic Jump

The numerical comparison with the exact solution of the water surface elevation, water
depth, and unit discharge of the channel has been done by solving the problem with
the WAF, WAF1IWB, and WAF2WB codes. Time steps are calculated with the CFL
condition of 0.9 in the WAF and WAFIWB codes and 0.6 in the WAF2WB code.
Relaxation factor is set to 0.4 for 2" order well-balanced scheme. Initial conditions
with velocities equal to zero and water depth equal to 1 m are used in all methods. The
computational domain is divided for 100 cells for all cases as in (Delis & Skeels,

1998). Boundary conditions are implied as

Q(-1) =2
0y =2 (4.11)
H(—1) =0.70303
H(0) =0.70303
at the inflow (left) , and
QM +1) =Q(M)
QM +2) =Q(M) “.12)

HM+1)=H(M)
H(M +2)=H(M)
at the outflow (right).

Numerical results for water surface elevation, water depth, and unit discharge of the

channel are shown in Figure 4.10, Figure 4.11, and Figure 4.12, respectively.
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Figure 4.10. Comparison between numerical and analytical water surface elevations for test case 3:

Various Bed Slope with Supercritical Inflow and Hydraulic Jump

08

. WAF
- 1% Order Well Balanced
. 2" Order Well Balanced
Exact

0.85

o
o

0.65

o
(&)

o LULINLIL N L L [ O

20 40 60 80 100
X (m)

Figure 4.11. Comparison between numerical and analytical water depths for test case 3: Various Bed

Slope with Supercritical Inflow and Hydraulic Jump

69



22

N + WAF
215 v 1 Order Well Balanced
N . 2™ Order Well Balanced
- Exact
211
205

)

g (m’/s)

*

-
w
]

-
w0

1.856

-
o]

O\\|||\|\\|\\|\|||\\

20 40 60 80 100
X (m)

Figure 4.12. Comparison between numerical and analytical unit discharges for test case 3: Various

Bed Slope with Supercritical Inflow and Hydraulic Jump

Numerical residuals for this case are plotted in Figure 4.13.

10" 10°

WAF
1st Order Well Balanced
2nd Order Well Balanced

WAF
1st Order Well Balanced
2nd Order Well Balanced

102

107

10"

10°

10°

Residuals for Depth

107

Residuals for Unit Discharge

10°

AL IR BRI B EL \Mlmﬂ many

1 . 1 1 . . 1
2000 4000 2000 4000
Iteration Iteration

Figure 4.13. Residuals for Test Case 3: Various Bed Slope with Supercritical Inflow and Hydraulic

Jump

70



1% order well-balanced scheme did not predict the location of the jump exactly in this
test case. It is also less accurate in computing the depth and the unit discharge of the
channel compared with the pure WAF and 2™ order well-balanced method. Pure WAF
method and 2" order well-balanced scheme compute the flow depth in the channel
accurately. Figure 4.12 shows the general agreement between the numerical and
analytical solutions. However, it can be seen that the numerical solution of the unit

discharge is more challenging where the channel bed slope is much steeper.

4.4. Numerical Solution of Test Case 4: Steady Flow over a Bump; Transcritical

Flow with Hydraulic Jump

As mentioned in the previous chapter, based on the initial and boundary condition,
three flow conditions may occur in the channel (see sections 3.4, 3.5, and 3.6). In the
numerical solutions presented here, transcritical flow with hydraulic jump occurs
when the initial flow velocity and initial flow depth are equal zero and 0.5 m,
respectively, and boundary conditions are inflow discharge of 0.18 m3/s and flow
depth of 0.33 m at the end of the channel. The channel assumed to be frictionless and

is divided to 200 number of control volumes. Boundary conditions at the inflow are

applied as
Q(-1)=0.18
0) =0.18
e (4.13)
H(—-1) =H(Q)
H(0) =H(1)
and the outflow boundary conditions are applied as
QM +1) =Q(M)
M+2)=QWM
QM +2) =Q(M) “.14)

H(M+ 1) =0.33
H(M + 2) = 0.33
Numerical results obtained by pure WAF, 1%t order well-balanced, and 2" order well-

balanced approaches are plotted in Figure 4.14 and Figure 4.15. Results are obtained
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with CFL number equal to 0.9 for all cases and relaxation factor of 0.1 for the 2" order

well-balanced scheme.
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Figure 4.14. Comparison between numerical and analytical water surface elevations for test case 4:

Steady Flow over a Bump; Transcritical Flow with Hydraulic Jump
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Figure 4.15. Comparison between numerical and analytical unit discharges for test case 4: Steady

Flow over a Bump; Transcritical Flow with Hydraulic Jump
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Average residuals for depth and unit discharge are plotted in Figure 4.16.
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Figure 4.16. Residuals for Test Case 4: Steady Flow over a Bump; Transcritical Flow with Hydraulic
Jump

Figure 4.14 shows that all methods used to solve this problem predict the water surface
elevation accurately. Figure 4.15 shows excellent agreement between the result of the
2" order well-balanced scheme and analytical value for unit discharge. However,
there is a jump on calculated unit discharge near the hydraulic jump. The computing
of the unit discharge by Pure WAF and first order well-balanced scheme is more

challenging over the bump as it is obvious in Figure 4.15.

4.5. Numerical Solution of Test Case 5: Flow over a Bump; Subcritical Flow All

over the Domain

Subcritical flow in the channel with the hump defined by happens when the incoming
flow discharge is set to 4.42 m3/s and the flow depth at the end of the channel
imposed as 2 m. These boundary conditions are applied as (4.15) and (4.16). Initially,
the water depth and the flow velocity are equal 2 m and zero, respectively. Problem
is solved in a domain with 200 number of cells with the cell size of Ax = 0.125 m.

Manning’s roughness coefficient is equal to zero. Time steps are calculated by setting
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CFL number equal to 0.9 in all schemes. In the 2™ order well-balanced scheme, the

relaxation factor « is taken as 0.05.

and

Q(~1) = 4.42
Q(0) =4.42 wis)
H(-1) = HQ1)
H() =H(1)

QM + 1) = QM)

QM +2) = QM) 4.16)
HM+1) =2
HM+2) =2

Numerical results of the water surface elevation and unit discharge of the channel are

shown in Figure 4.17 and Figure 4.18. The calculated residuals for depth and unit

discharge are plotted in Figure 4.19.
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Figure 4.17. Comparison between numerical and analytical water surface elevations for test case 5:
Flow over a Bump; Subcritical Flow All over the Domain
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Figure 4.18. Comparison between numerical and analytical unit discharges for test case 5: Flow over

a Bump; Subcritical Flow All over the Domain

107 g 10°¢
F F WAF
10?2 ; WAF Al 1st Order Well Balanced
F 1st Order Well Balanced 107 F 2nd Order Well Balanced
2nd Order Well Balanced @ E
107 2
s F £ 107
=4 F ] F
8 10‘4 .;_ a 3 i \\
= f = 10°F y\ﬂ
] L F
@ 10°F 5
— E . f?
3 S 10tk H,‘L
B 10tk o
7 10°¢ 2 L{L
x I B 10°F ”'r‘n
107 " »
E & b‘ﬂtq
10.3;_ 10°F 'kn_ TS
10-9 TS TN ST [N TR S T [N S N L - 10-7 L L1 L | I L L
5000 10000 15000 20000 5000 10000 15000 20000
Iteration lteration

Figure 4.19. Residuals for Test Case 5: Flow over a Bump; Subcritical Flow All over the Domain

Same as the previous test case, the water surface elevations are perfectly calculated by
all three schemes, and the challenging part is in predicting the unit discharge over the

bump (see Figure 4.17). 2" order well-balanced scheme calculates the unit discharge
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precisely, nevertheless, there is an underestimating near the beginning of the bump
and an overestimating at the end of the bump (see Figure 4.18). Compared with well-
balanced schemes, pure WAF method gives the less accurate solution over the bump,
where the unit discharge varies between 4.373 ~ 4.463 m3 /s /m, while the variation
in unit discharge over the bump is in the range of 4.412 ~ 4.429 m3/s/m for the 1%
order well-balanced scheme. As it is obvious in Figure 4.19, all numerical solutions

converged after around 10000 iterations.

4.6. Numerical Solution of Test Case 6: Steady Flow over a Bump; Transcritical

Flow without Hydraulic Jump

Here, initial and boundary conditions that cause the flow to be transcritical without
hydraulic jump are initial water elevation of 0.25 m, initial velocity of zero, and the
inflow discharge of 1.53 m3/s. Again, channel assumed to be frictionless with
Manning’s roughness coefficient of zero. The boundary conditions for the unit

discharge and depth are imposed as

Q(—1)=1.53
Q(0) =1.53 “17)
H(-1) =H(1)
H(0) =H()
at the start of the channel, and
QM +1) =QM)
QM +2) =QM) @.18)

HM+1)=H(M)

HM +2) =H(M)
at the end of the channel. For all cases, the CFL number is set to 0.9. Relaxation factor
is set to 0.1 for the 2" order well-balanced scheme. The domain is again divided to
200 cells with the mesh size of Ax = 0.125 m. The numerical results are plotted in

Figure 4.20 and Figure 4.21.
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Figure 4.20. Comparison between numerical and analytical water surface elevations for test case 6:
Steady Flow over a Bump; Transcritical Flow without Hydraulic Jump
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Figure 4.21. Comparison between numerical and analytical unit discharges for test case 6: Steady
Flow over a Bump; Transcritical Flow without Hydraulic Jump
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Numerical residuals of calculated depth and unit discharge are plotted in Figure 4.22.
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Figure 4.22. Residuals of depth for Test Case 6: Steady Flow over a Bump; Transcritical Flow
without Hydraulic Jump

From residuals in Figure 4.22, it is obvious that the numerical solutions have
converged after around 3000 iterations. Same as the last two steady flows over the
bump, for all cases, there are excellent agreement between the numerical water surface
elevations and exact solution (see Figure 4.21). Numerical unit discharge calculated
by the 2™ order well-balanced scheme is very accurate (see Figure 4.21). Unit
discharge calculated from the pure WAF and the 1% order well-balanced scheme vary
between the ranges 1.497 ~ 1.539 m3/s/m and 1.526~1.533 m3/s/m over the

bump, respectively.
4.7. Numerical Solution of Test Case 7: Surge Crossing a Step

This case is solved by pure WAF, 1% order well-balanced, and 2" order well-balanced
codes and the results for water surface elevations and the velocities are compared with
the analytical results. The CFL number is set to 0.9, 0.9, and 0.4 for pure WAF, 1%
order well-balanced and 2™ order well-balanced schemes, respectively. Relaxation
factor is not applied here (i.e., « is teken 1). Initial conditions are imposed as water

surface elevation of 5 m and zero velocity in the whole domain. Incoming surge is
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imposed as a boundary condition at the left. Boundary conditions are implied as (4.19)

and (4.20) for left and right of the channel respectively. Incoming unit discharge of

the surge is obtained by multiplying the velocity obtained from (3.22) by the depth of

the surge at the entrance.

Q(~1) =60.65269986
Q(0) =60.65269986

D) 10 (4.19)
H(0) =10

QM+ 1) = -Q(M)

QM +2) = -Q(M) 4.20)

HM + 1) = H(M)
H(M +2) = H(M)

The computational domain is divided for 400 cells in all solutions with the grid size

ofdx = 25 m.

Comparisons of the numerical results with exact solutions are shown in Figure 4.23

and Figure 4.24.
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Figure 4.23. Comparison between numerical and analytical water surface elevations at t = 600.5 s for

test case 7: Surge Crossing a Step
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Figure 4.24. Comparison between numerical and analytical velocities at t = 600.5 s for test case 7:

Surge Crossing a Step

Solving this test case with pure WAF results in some unrealistic waves that are
initiated over the cell at the beginning of the vertical step and they travel to the left
and right of the domain. Those waves are visible in Figure 4.24 near x = 2000 m and

~ 8200 m. That is because the pure WAF scheme is not well-balancing the bed
slope source term with the numerical fluxes. On the other hand, both 1° order and 2"
order well-balanced schemes solve the problem perfectly and predict the velocity and

height of the surges accurately.
4.8. Numerical Solution of Test Case 8: Oscillation on a Parabolic Bed

1%t order and 2" order well-balanced schemes are used to solve this problem. 10000
number of grids with dx = 1 m are used in both schemes. Initially, the lake is
stationary with zero velocity everywhere and the initial water surface profile is defined
by (3.25). Wall boundary conditions are imposed on both end of the computational

domain using ghost cells as

Q=1 =-() (4.21)
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Q(0) =—-0(1)
H(-1) = H(1)
H(0) = H(1)

QM +1)=-QM)
QM +2)=-QM)
HM + 1) = HM) (4.22)
H(M + 2) = H(M)

Time steps are calculated using the CFL number 0.9 for both 1°! order and 2" order

schemes.

The numerical results are compared with the analytical solution in Figure 4.25 and
Figure 4.26. The results of the numerical solutions after one oscillation show general
agreement between the numerical and analytical solutions. Although there still
remains unrealistic unit discharge in both schemes, the range of error in computed unit
discharge is narrower in the 2™ order scheme rather than the one in the 1% order
scheme. Also, 2" order well-balanced scheme acts better in the prediction of the water

surface elevations compared with the 1% order well-balanced scheme.
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Figure 4.25. Comparison between numerical and analytical water surface elevations for test case 8:
Oscillation on a Parabolic Bed; Up) full plot and dawn) magnified regions.
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Figure 4.26. Comparison between numerical and analytical unit discharges for test case 8: Oscillation
on a Parabolic Bed

4.9. Numerical Solution of Test Case 9: Comparison with Experimental Data;

Dam-Break Flood Waves in a Dry Channel with a Hump

In this case, the computational domain is divided into 1780 computational cells. The
size of each grid is equal to 0.005 m. Manning’s roughness coefficient is taken equal
to 0.01. Wall boundary condition at the left and outflow boundary condition at the

right are imposed as

Q(—1) =-Q(1)

Q(0) =-0Q()

H(_1) = H(D) (4.23)
H(0) =H(1)

QM +1) =QM)

QM +2) =QM) (4.24)

H(M + 1) = H(M)
H(M +2) = H(M)
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The numerical results using CFL number of 0.9 for 1% order scheme and 0.45 for 2"

order well-balanced schemes are plotted in Figure 4.27.
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Figure 4.27. Comparison between numerical and experimental water surface elevation in different
dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump
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Figure 4.27 (Continued) Comparison between numerical and experimental water surface elevation in
different dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump
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Figure 4.27 (Continued) Comparison between numerical and experimental water surface elevation in
different dimensionless times for test case 9: Dam-Break Flood Waves in a Dry Channel with a Hump

The verification of the developed well-balanced codes shows very good agreement
between the experimental measurements and numerical solutions. After the dame
break flood wave passes over the obstacle a bore wave is generated at dimensionless
time T = 15.16 and moves in the negative direction. Shallow water equations
simulate the bore vertically as a shock wave and predict the location of the negative
bore satisfactorily. One noticeable difference between the experimentally measured
water surface profile and the one obtained by solving the shallow water equations
numerically is that the shallow water equations compute the negative bore much
steeper than the one obtained by experimental data. This situation is apparent at

dimensionless times 20.67, 23.05, 29.69, and 35.83.

This test case is also solved with coarser meshes to see the effects of the mesh sizes in

the numerical solutions. In addition to the grid size of Ax = 0.005m with 1780
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number of grids, 2 coarser grids with 178 and 89 number of grids are also selected,
which produce 10 and 20 times coarser meshes with the sizes of Ax = 0.05m and
Ax = 0.1 m, respectively. The results are presented in Figure 4.28 for both WAF1WB
and WAF2WB codes at the dimensionless time T = 35.33 only. The results show that
the general forms of the water surface profiles for this problem are also obtained with
coarser grids. However, as the meshes get coarser, the negative wave gets milder

angles.
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Figure 4.28. Comparison between the numerical water surface elevations obtained by WAF1WB (up)
and WAF2WB (down) codes using different mesh sizes for test case 9.
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4.10. Numerical Solution of Test Case 10: Dam Break Flow over Champion-Stage
like Step

This problem is solved by the WAF1WB and WAF2WB codes. The domain is divided
into 200 computational cells. Wall boundary conditions are considered at left and right

of the domain as

Q-1 = —Q(V)
Q(0) =-0(1) w2
H(-1) = H(1)
H(0) =H(1)
QM +1) = —Q(M)
QM +2) = —Q(M) w2

HM + 1) = HM)
H(M +2) = H(M)

The code has run until ¢ = 1000 s with the CFL number of 0.9 for both codes. Dam
break flow starts by removing the imaginary wall at time = 0 s and it reaches the first
step at t = 2.2 s, approximately. Then, the flow crosses over the steps one by one.
By hitting the flow with the positive steps, waves are created that travels in the
negative direction. The incoming flow is divided into two portions; one portion crosses
over the steps and goes to the right of the stage, and the other portion remains in the
left side of the stage. The goal was to recover the hydrostatic water surface without
any noise and discontinuity on it, specially over the sharp corners, after the waves
disappeared and water reached the nearly stationary state. This goal is achieved using
both WAFIWB and WAF2WB codes. The results of the simulation are presented in

a set of screenshots at different time steps in Figure 4.29.
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Figure 4.29. Solution of test case 10 at different time steps using WAF1WB (dashed line) and
WAF2WB (solid line) codes.
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line)
and WAF2WB (solid line) codes.
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line)
and WAF2WB (solid line) codes.
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line)
and WAF2WB (solid line) codes.
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Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line)
and WAF2WB (solid line) codes.

93



TIME =1000.00 s

0_ 1
0 20 40  ym 60 80 100

Figure 4.29 (continued) Solution of test case 10 at different time steps using WAF1WB (dashed line)
and WAF2WB (solid line) codes.

One important feature of numerical solutions of shallow water equations is how much
accurate they are in preserving the amount of fluid in the domain or in another word,
the accuracy in ensuring the continuity condition. To evaluate the performance of the
scheme in preserving the continuity and effects of the mesh sizes on it, the amount of
water at each time step is calculated. Different mesh sizes with 200, 400, 800, 1600,
and 3200 number of grids are selected to see the effects of the mesh size. The results
for the first order and second order well-balanced schemes are presented in Figure

4.30.
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Figure 4.30. The calculated amount of water in the domain at each time step using WAF1WB (up)
and WAF2WB (down) codes, and different mesh sizes.

Initially, there is 100 m3/m water in the domain. After the dam break flow occurs

however, it reduces unreallasticly. Although, the finer grids yelds in less error.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

Numerical solutions of shallow water equations which are widely used in tsunamis,
tides, wind waves, river floods, dam-break flows and open channel flows have been
studied in this thesis. Numerical solution of the shallow water equations can be
challenging when the equations are solved in domains containing discontinuities in
the channel beds which cause abrupt change in the source term of the governing
equations. Another difficulty in the solution of the shallow water equations appears in

the presence of dry regions in the domain.

Three schemes have been used as numerical solutions of shallow water equations in
this study, namely 1) pure WAF method without well-balancing property, where the
finite volume method has been used to discretize the governing equations, HLL
method has been used as an approximate Riemann solver, and the fluxes have been
computed by the TVD version of Weighted Average Flux (WAF) method, 2) first
order well-balanced method, which is the same as the pure WAF scheme, but the
source term has been treated by the use of first order “Hydrostatic Reconstruction”
method, and 3) second order well-balanced scheme, which is the same as the first order
well-balanced scheme, but the piecewise linear function has been used to define the
water surface slope in each cell to provide better approximation for Riemann states

used in the Riemann solver and the bottom has been defined linearly.

Three codes have been developed in FORTRAN based on the above mentioned
schemes. The programs have been called WAF, WAF1WB, and WAF2WB for the
pure WAF scheme, first order well-balanced scheme, and second order well-balanced
scheme, respectively. These codes have been validated by using nine well-known

steady and unsteady test cases in the literature and the results of each are compared
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with each other and with the available analytical solutions or experimental data.
Although distinctions between the accuracy of the numerical results have been
observed, more or less, in the studied test cases, the general agreement between the
numerical results and analytical solutions or experimental data has been obtained for
all test cases. Generally, predicting the water surface profile was not challenging part
for all three schemes. However, there were distinguishable differences in the
numerical unit discharges that are calculated by solving the momentum equation. As
expected, the WAF2WB was more accurate in solving the shallow water equations
compared with the other two methods since in the second order scheme, the bed is
defined with better accuracy and fluxes are calculated in each cell interface by more
accurately defined Riemann states that are obtained by the use of piecewise linear
function. Nevertheless, using the piecewise linear function has introduced oscillations
in some steady state cases. Those oscillations have been prevented by the use of
relaxation factor that has been applied to the piecewise linear function (see equations

4.1).

A new test case (Test Case-10) has been introduced in chapter three, numerical
solutions of which are given in chapter four. The idea behind defining this test case
was to examine the developed codes in solving a problem that contains numerically
challenging situations in solving of the shallow water equations namely, sharp changes
in bed elevation and existing of the dry area in the domain. To do this, a champion-
stage like discontinuity was located in the middle of the channel and a dam-break flow
and overtopping of it over the stages was studied. The goal was to see the flow
behavior when it collided to the steps, overtopped from it, and after a certain time that
all the waves disappeared, to observe a flat and smooth water surface, especially over
the sharp edges. This goal was achieved by both well-balanced codes, WAF1WB and
WAF2WB. Flow divided into two portions, one portion overtopped the stage and one
portion remained at the left of the stage. Flat and smooth water surface profile was
observed at the left and right of the stage in the results of both WAF1IWB and
WAF2WB.
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All three codes in this study have been developed to solve one-dimensional problems.
Extension of the developed codes to solve two-dimensional shallow water equations
can be interesting topic for the future studies. One of the difficulties in the numerical
solutions of the test cases was the oscillations caused by linear piecewise
reconstruction technique in the 2™ order well-balanced scheme, that have been averted
by applying relaxation factor to the limiter function. However, in some test cases, there
was a need for very small relaxation factor. The reason for these unwanted oscillations

also can be studied elaborately in the future studies.
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