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ABSTRACT 

 

 

POINCARÉ’S PHILOSOPHY OF MATHEMATICS AND THE IMPOSSIBILTY 

OF BUILDING A NEW ARITHMETIC 

 

 

AKÇAGÜNER, Koray 

M.A., Department of Philosophy 

Supervisor: Assoc. Prof. M. Hilmi Demir 

 

 

September 2019, 100 pages 

 

 

This thesis examines Poincaré’s philosophy of mathematics, in particular, his 

rejection of the possibility of building a new arithmetic. The invention of non-

Euclidean geometries forced Kant’s philosophy of mathematics to change, leading 

thinkers to doubt the idea that Euclidean postulates are synthetic a priori judgments. 

Logicism and formalism have risen during this period, and these schools aimed to 

ground mathematics on a basis other than the one that was laid down by Kant. With 

regards to the foundations of mathematics, Poincaré adopted Kant’s philosophy and 

remained an intuitionist, though naturally, he had to make significant changes in 

Kant’s thought. Poincaré argued that the branch of mathematics that contains 

synthetic a priori judgments is arithmetic, which is completely independent of 

experience and therefore pure. What gives arithmetic its object of knowledge and 

justifies the use of its fundamental principles is not experience, but a pure intuition. 

On the other hand, Poincaré claimed that our ideas about space and the geometric 

postulates are not imposed upon us, that they are not known a priori but are rather 

conventions – “definitions in disguise”. The role experience plays in the foundations 

of geometry has given us the possibility of building non-Euclidean geometries. 

However, since arithmetic is completely independent of experience, it is not possible 
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for a change similar to that in geometry to take place in arithmetic, which would alter 

its basic concepts or principles that we consider to be true. It is argued in this thesis 

that it is possible to develop the intuition which lies at the basis of arithmetic and this 

may become the starting point of a new arithmetic. It will be shown that this is what 

Cantor has actually achieved when establishing transfinite ordinal arithmetic.  

 

Keywords: Intuitionism, conventionalism, synthetic a priori, non-Euclidean 

geometries, transfinite arithmetic.   
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ÖZ 

 

 

POINCARÉ’NİN MATEMATİK FELSEFESİ VE YENİ BİR ARİTMETİK İNŞA 

ETMENİN OLANAKSIZLIĞI 

 

 

AKÇAGÜNER, Koray 

Yüksek Lisans, Felsefe Bölümü 

Tez Yöneticisi: Doç. Dr. M. Hilmi Demir 

 

 

Eylül 2019, 100 sayfa 

 

 

 Bu tez Poincaré’nin matematik felsefesini, özel olarak da kendisinin yeni bir 

aritmetik kurmanın imkanını reddedişini incelemektedir. Öklid-dışı geometrilerin 

icadı Kant’ın matematik felsefesini değişime zorlamış, düşünürleri Öklid 

postulatlarının sentetik a priori yargılar olduğu fikrinden şüphe duymaya itmiştir. 

Mantıkçılık ve biçimcilik okulları bu dönemde yükselmiş ve matematiği Kant’ın öne 

sürdüğü temellerden başka temellere oturtmayı amaçlamıştır. Poincaré ise 

matematiğin temellerine dair Kant’ın felsefesini benimsemiş ve sezgici kalmıştır; 

fakat elbette Kant’ın düşüncesinde köklü değişiklikler yapması gerekmiştir. Poincaré 

matematiğin sentetik a priori yargılar barındıran alanının, deneyimden tümüyle 

bağımsız ve dolayısıyla saf olan aritmetik olduğunu öne sürmüştür. Aritmetiğe bilgi 

nesnesini veren ve temel ilkelerinin kullanımını meşru kılan şey deneyim değil, saf 

bir sezgidir. Buna karşın Poincaré, uzaya dair fikirlerimizin ve geometrik 

postulatların ise bize dayatılmadığını, bunların a priori bilinmediğini ve aslında 

birtakım uzlaşımlar, “kılık değiştirmiş tanımlar” olduğunu söylemiştir. Deneyimin 

geometrinin temellerindeki payı bize Öklid-dışı geometriler kurmanın imkanını 

vermiştir; fakat aritmetik tümüyle deneyimden bağımsız olduğundan, geometridekine 

benzer bir değişimin aritmetikte yaşanması ve buradaki temel kavramların veya 

doğru kabul edilen ilkelerin değişmesi mümkün değildir. Bu tez, aritmetiğin 
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temelinde yatan sezginin geliştirilebileceğini ve bunun da yeni bir aritmetiğin 

başlangıç noktası olabileceğini öne sürmektedir. Cantor’un sonluötesi ordinal 

aritmetiği kurarken esasında bunu başardığı gösterilecektir.     

 

Anahtar Kelimeler: Sezgicilik, uzlaşımcılık, sentetik a priori, Öklid-dışı 

geometriler, sonluötesi aritmetik.  
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The Great book of nature can be read only by those who know 

the language in which it is written, and this language is 

mathematics. 

- Galileo 

 

 

In fine, it is our mind that furnishes a category for nature. But this 

category is not a bed of Procrustes into which we violently force 

nature, mutilating her as our needs require. We offer to nature a 

choice of beds among which we choose the couch best suited to 

her stature. 

- Poincaré
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Almost every philosopher who has questioned the value and certainty of the 

knowledge produced by humankind has written on mathematics. Unlike the physical 

sciences, the exactness found in mathematics and the fact that its truths are 

unassailable have always astonished philosophers. Many theories have been put 

forward to explain what the source of the fundamental difference between the two 

sciences is, and to what mathematics owes its certainty.  A great number of thinkers 

have portrayed the contrast between the object of mathematics and physics. 

Mathematics was said to be about ideal objects (such as numbers, points, and lines), 

whose properties are immediately conceived by the mind; whereas physics is about 

sensible objects (such as molecules, rocks, and planets), whose properties are 

perceived by the senses. The two kinds of objects have brought with them an idea of 

‘two worlds’: a world of forms, which is invisible and perfect; and a world of matter, 

which is visible and ephemeral. It is possible to find a similar terminology being used 

in almost every period in the history of philosophy, for since Plato, there has never 

been a time when this theory had difficulty in finding proponents. Though thinking 

about the nature of mathematics does not necessarily lead to such a duality, the idea 

has given rise to certain problems that still remain to be solved, and even today these 

questions continue to motivate thinkers to propose new theories. Some of these 

questions can be formulated as follows: How did the thought of ideal objects first 

emerged? What does it mean for such objects to exist? And more importantly, what 

is the nature of the agreement between the ideal and sensible, such that it makes the 

former essential in explaining and predicting the behavior of the latter? Every 

philosopher of mathematics must face these questions, and as we can see, these are 

linked to some fundamental problems in epistemology and ontology. This is 

unavoidable, because ultimately, what is questioned in philosophy of mathematics is 

the long sought relationship between mind and matter, thought and world. 
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French mathematician and philosopher of science Jules Henri Poincaré (1854-

1912) has dealt with these and other similar questions, and he has found reasonable 

explanations for almost all of them. He is a substantial figure in philosophy of 

mathematics, because different attitudes philosophers have today towards the nature 

of mathematical entities and mathematical knowledge1 were first rigorously outlined 

and separated from each other in his era, through debates between his contemporaries 

and of course himself. Poincaré based the existence of mathematical entities and the 

necessary character of their relations on the pure intuitions of the human mind and on 

the common nature of these minds which were trained in a similar environment. He 

is therefore considered a naturalist (see Folina, 2014; Stump, 1989) and an 

intuitionist regarding the foundations of mathematics, though his intuitionism differs 

from Brouwerian intuitionism, which is what many contemporary thinkers consider 

when it comes to intuitionism in mathematics. Poincaré was certainly not a platonist, 

and he has also defended his position against formalists such as David Hilbert (1862-

1943) and logicists such as Bertrand Russell (1872-1970). Not only mathematics but 

philosophy of science in general owes a lot to him. Some see Poincaré as the father 

of conventionalism, and many scientists today – those who question the essence of 

their practice at least – hold some form of conventionalism concerning the nature of 

scientific truth. 

The subject of this thesis is Poincaré’s philosophy of mathematics, more 

specifically, his rejection of the possibility of building a new arithmetic as in the case 

of non-Euclidean geometries. Poincaré’s intuitionism, which he built to a significant 

extent on Kant’s philosophy, has allowed him to give an account of how it was 

possible to build non-Euclidean geometries, but led him to deny the same possibility 

for arithmetic. In order to have a full grasp of Poincaré’s rejection, the thesis begins 

by presenting the key concepts in Kant’s philosophy of mathematics, namely, 

synthetic a priori and pure intuition. Then, in Chapter 3, Poincaré’s interpretation of 

these concepts is given and the main aspects of his idiosyncratic intuitionism are 

explained. This chapter closes with a clear demonstration of the difference between 

the foundations of arithmetic and geometry and Poincaré’s reasons for rejecting the 

possibility of a new arithmetic. Finally, in Chapter 4, Georg Cantor’s (1845-1918) 

                                                            
1 The most prominent of these schools are logicism, intuitionism, and formalism.  
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transfinite ordinal arithmetic is presented, and it is discussed from which aspects can 

this theory be considered a new arithmetic.  

Although the thesis largely adheres to Poincaré’s intuitionism, it adds 

something to it: the intuition which lies at the basis of arithmetic can be developed. 

According to Poincaré, the possibility of rejecting Euclidean postulates lies in the 

fact that geometry and experience are not completely independent. The principles of 

arithmetic – mainly, the principle of mathematical induction – however, are 

completely independent of experience; they originate from the affirmation of a power 

of the mind itself, and we have a direct intuition of this power. This power is 

basically the ability to conceive the idea of indefinite repetition. It is argued in this 

thesis that this power, and hence the intuition that corresponds to it, can be subject to 

improvement. It is claimed that this is what Cantor has achieved, and it became the 

starting point of a new arithmetic.  
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CHAPTER 2 

 

 

KANT’S PHILOSOPHY OF MATHEMATICS 

 

 

After Plato and Aristotle the third famous figure in Western philosophy is 

perhaps German philosopher Immanuel Kant (1724-1804). His influence in shaping 

the history of thought is certainly comparable to the two important thinkers of 

antiquity. Kant has synthesized the two prevalent schools of his day: Continental 

Rationalism and British Empiricism, among whose most celebrated proponents we 

can cite René Descartes (1596-1650) and David Hume (1711-1776) respectively. The 

name Kant gave to his doctrine was Transcendental Idealism. This doctrine was 

mainly put forward to explain the nature and origin of our knowledge, and it was an 

attempt to secure the objective knowledge of the empirical world, without adhering 

to the existence of a mind-independent intelligible world.  

Kant’s genius lies in his reformulation of a priori philosophy2. He observed 

that all knowledge begins with experience, but not all knowledge arises out of 

experience (1929/1781, p. 41, A1/B1). Since experience is the way it is, that is, 

organized and conceptualisable, Kant thought that there must be a certain framework 

that we impose upon experience in order to make it intelligible, and that this 

framework itself can be a source of knowledge. Such a framework, which is 

epistemologically prior to any conceptualisable experience and constitutive of it, is 

the condition of possibility of having an objective knowledge of the world, in other 

words, of doing science. The ‘lawful’ aspect of reality should be ascribed to the 

faculties of the human being which is experiencing it. Kant thought that if something 

is held as being valid universally and necessarily, then it must be known a priori, 

meaning that it is related to the active contribution of our minds: “We can know a 

priori of things only what we ourselves have put into them” (1929, p. 23, Bxviii). 

                                                            
2 The term a priori is of Latin origin and means “from the earlier”, which is opposed to a posteriori, 

meaning “from the later”. Before Kant, a priroi was used to indicate a reasoning that proceeds “from 

causes to the effect”, and a posteriori “from effects to causes”. Kant used a priori in order to specify 

knowledge that is independent of experience – knowledge that is universal and necessary – as opposed 

to a posteriori, i.e. knowledge that is derived from experience. 
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This shift of attention from the object of experience to the experiencing subject is the 

Copernican revolution in the history of philosophy. Even though some tenets of 

Kant’s philosophy are abandoned today, the idea that the subject must have a 

framework independent of and prior to experience in order to make experience 

intelligible, still finds many proponents. 

Kant’s epistemology, ethics, and aesthetics are all centered on his theory of 

the a priori, and at the heart of his theory we find arguments concerning the nature of 

mathematical knowledge. In his first Critique, Kant takes arithmetic and geometry as 

proper examples of a priori knowledge, and he often appeals to the epistemic status 

of their propositions to explain what it means for something to be known 

independently of experience and belong to the subjective constitution of our mind. 

According to Kant, mathematical propositions are synthetic a priori judgments, and 

what gives mathematics its object of knowledge is not experience, but pure 

intuitions.  

These two concepts, i.e. synthetic a priori and intuition, are essential in 

understanding Poincaré’s philosophy of mathematics, because Poincaré followed 

Kant and classified the propositions of arithmetic as synthetic judgments, whose 

truth is known a priori on the basis of a pure intuition. This, though, was a quite 

different intuition than the one Kant described. What really separates Poincaré from 

Kant, however, is Poincaré’s ideas on the nature of space and geometry. This does 

not change the fact that Poincaré remained Kantian to a significant degree, for he has 

certainly built his theory by adapting the Kantian perspective, and by using the 

concepts he introduced. These concepts will be examined in detail as they were first 

formulated by Kant, then in Chapter 3 we will see how they were revised by 

Poincaré. 

 

2.1 The Distinction between Analytic and Synthetic Judgments 

 

Kant argued that we possess two faculties, one passive and the other active; 

he referred to them as sensibility and understanding respectively3. He claimed that, 

                                                            
3 There is also a third faculty, i.e. imagination, but it will not be discussed in this thesis. Nevertheless, 

it is worth noting that for Kant, in addition to sensibility and understanding, imagination is essential in 

acquiring knowledge: “Synthesis in general [...] is the result of the power of imagination, a blind but 
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in the first place, we must have a capacity for being affected by objects, and 

sensibility is the faculty that grants us this capacity; it is the faculty through which 

objects are given to us (1929, p. 65, A19/B33). Our sensibility has a certain structure, 

a certain form, to which objects conform, and Kant referred to space and time as the 

forms of our sensibility (see. 2.4), which was a revolutionary idea. Through these 

forms, objects affect us, and we obtain intuitions of them. Kant described intuition as 

a means of cognition which relates to its object immediately (p. 65, A19/B33). He 

focused on intuition and not on perception of objects, because he thought that even 

perception involves a certain act of cognition: it is always found in a particular time 

and space, which means that it is received through the forms of our sensibility. All 

perceptions are therefore grounded on pure intuition (p. 141, A116).  

Kant argued that intuition is something that is not conceptualized, and so it 

cannot be an object of thought, because according to him, “thought is knowledge by 

means of concepts” (p. 106, A69/B94). By itself, intuition cannot yield knowledge: 

“Intuitions without concepts are blind”. In making something an object of thought, 

and therefore of knowledge, the mind must play an active role. For Kant, this role is 

played by the understanding; it conceptualizes the manifold given by sensibility. 

 There are some pure concepts in our understanding, i.e. categories, which are 

not derived from experience, but which, nevertheless, organize the manifold given by 

sensibility. We derive further concepts through the employment of these pure 

concepts (or rather these rules) accompanied by what is given through sensibility. 

Kant wrote, “The only use which the understanding can make of these concepts is to 

judge by means of them” (p. 105, A68/B93). The mind knows only through 

judgments, and in fact, “we can reduce all acts of understanding to judgments” (p. 

106, A69/B94). A judgment is the combining of two concepts in the subject-

predicate form, e.g. snow is white, some bodies are heavy, or in its general form, A is 

B. Kant observed that there are two kinds of judgments, two different ways of 

combining concepts: a judgment is either analytic, meaning that the concept of the 

predicate is already contained in the concept of the subject and logical analysis of the 

subject is sufficient for showing that the predicate is implied in it, e.g. all bachelors 

are unmarried; or a judgment is synthetic, meaning that the concept of the predicate 

                                                                                                                                                                         
indispensable function of the soul, without which we should have no knowledge whatsoever, but of 

which we are scarcely ever conscious” (1929, p. 112, A78/B103). 
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is not already contained in the concept of the subject and so the former cannot be 

deduced logically from the latter but must be added to it, which means that a 

synthesis between them is required, e.g. all bachelors are unhappy. 

 Kant has provided two criteria for distinguishing analytic and synthetic 

judgments. First, as we have mentioned, in analytical judgments the concept of the 

predicate is already thought in the concept of the subject. Kant’s example is “all 

bodies are extended”. He asserted that ‘to be extended’ is already thought in the 

concept ‘body’4, though obscurely. Thus, in making this judgment, “I do not require 

to go beyond the concept which I connect with ‘body’” (p. 49, A7/B11); what I do is 

rather to become conscious of what other concepts are already thought while I am 

thinking the concept of the subject. If through this method I find that the concept of 

the predicate is already thought in the concept of the subject, then the judgment is 

analytical. If not, then I must add the predicate synthetically to the subject5. Kant’s 

example is “some bodies are heavy”. He observed that he does not include the 

predicate of weight in the concept of a body at all6, but experience nevertheless 

teaches that the two concepts belong together. Heaviness can therefore be added to 

the concept of a body synthetically on the basis of what experience furnishes. 

 The second criterion to test a judgment and see whether it is analytical is to 

deny its truth and derive a contradiction. Kant argued that if denying the truth of a 

judgment, e.g. all bodies are extended, leads to a contradiction, then the judgment 

must be analytical, because “all analytic judgments rest entirely on the principle of 

contradiction” (2004/1783, p. 17, 4:267). Kant believed that we cannot judge that 

there is a body, perhaps a very strange one, which is not extended, because extension 

is found in the definition of body; if we judge otherwise, we would be contradicting 

                                                            
4 Together with impenetrability, shape, figure, etc. (1929, p. 49, A8/B12) 

 

 
5 Even though we can add synthetically any two concepts as long as they are not contradictory, not 

every synthetic judgment will have an object; there has to be a basis on which we can perform this 

synthesis. According to Kant, this basis is either experience or pure intuition. See 2.4. 

 

 
6 “I do not include in the concept of a body in general the predicate ‘weight’, nonetheless this concept 

indicates an object of experience through one of its parts, and I can add to that part other parts of this 

same experience, as in this way belonging together with the concept […] [L]ooking back on the 

experience from which I have derived this concept of body, and finding weight to be invariably 

connected with the above characters, I attach it as a predicate to the concept; and in doing so I attach it 

synthetically, and am therefore extending my knowledge” (1929, pp. 49-50, A8/B12) 
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ourselves. Similarly, we cannot judge that there is a bachelor who has a wife, 

because bachelor is defined as unmarried man. In both cases, the concept of the 

predicate can be deduced logically from the concept of the subject, and so denying 

their relation must inevitably lead to a contradiction. Notable that neither situation 

requires us to consult to experience in order to see whether we are judging right, 

whether there is a bachelor who has a wife, for instance, because logic already 

teaches us a priori that these concepts are contradictory. 

 Kant himself never actually referred to these two as two different criteria, he 

took them to be equivalent. It seems that for him, if a concept is implied in the 

definition of another, and so deducible from it by logic, this guaranteed that in 

thinking the former we also think the latter, and vice versa. But later philosophers, 

especially logicists like Gottlob Frege7 (1848-1925) and Alfred Jules Ayer8 (1910-

1989) criticized Kant’s view of analyticity and argued that these two criteria were not 

actually equivalent. Ayer (1964) wrote that a concept being already thought in 

another is a psychological criterion; whereas being deducible from another using the 

principle of contradiction is a logical one. If the concept of the predicate is deducible 

from the definition of the subject by simple rule following, then it is auxiliary 

whether our thinking accompanies this procedure or not. Therefore the two criteria 

cannot be used interchangeably as Kant did. These philosophers held that the 

psychological criterion was inadequate for showing whether a judgment was 

analytical; only the fact that the judgment cannot be denied without self-

contradiction – that is, resting on the principle of contradiction – is the proper 

criterion of analyticity. This debate will be relevant in Chapter 3.4 where Poincaré’s 

views about the epistemic status of arithmetical propositions are discussed. 

 

 

 

 

                                                            
7 See Frege (1960), §17; §88. “Kant obviously – as a result, no doubt, of defining them too narrowly – 

underestimated the value of analytic judgments” (p. 99). 

 

 
8 See Ayer (1964). “Kant does not give one straightforward criterion for distinguishing between 

analytic and synthetic propositions; he gives two distinct criteria, which are by no means equivalent” 

(p. 294). 
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2.2 Mathematical Propositions are Synthetic Judgments 

 

Kant claimed that unlike logical propositions, which are analytical and “can 

be entitled explicative” (1929, p. 48, A7/B11) for they add nothing new to our 

knowledge, mathematical propositions are synthetic judgments; we cannot expect to 

arrive at a mathematical truth simply by analyzing the concepts involved. This is true 

for propositions of both arithmetic and geometry. 

Kant appealed to the psychological criterion in order to demonstrate this 

result. He wrote: 

One might well at first think: that the proposition 7 + 5 = 12 is a 

purely analytic proposition that follows from the concept of a sum 

of seven and five according to the principle of contradiction. 

However, upon closer inspection, one finds that the concept of the 

sum of 7 and 5 contains nothing further than the unification of the 

two numbers into one, through which by no means is thought what 

this single number may be that combines the two. (2004, p. 18, 

4:268) 

And this “can be seen all the more plainly in the case of somewhat larger 

numbers” (p. 19, 4:269). Kant is drawing attention to the fact that when we are 

calculating a sum, the result is not known by us beforehand, and he is taking this 

as an indication that 12 is not derivable from 7 + 5 using the principle of 

contradiction alone. He never proved this though; he believed that having shown 

the predicate is not already thought in the subject implied that the judgment was 

synthetic. Kant concluded that propositions of arithmetic are not explicative but 

ampliative (p. 16, 4:266), the mere analysis of the subject does not give us the 

predicate, so we ‘go beyond’ the concept and perform a synthesis (p. 18, 4:269). 

 The same is true for geometric propositions. Propositions such as “in a 

triangle two sides together are greater than the third” or “the sum of interior angles of 

a triangle is equal to two right angles” are synthetic judgments according to Kant. He 

argued that neither conclusion could be derived simply by analyzing the concept of a 

figure enclosed by three straight lines; however long we meditate on this concept, we 

cannot discover what relation the sum of its angles bear to a right angle, or its sides 

to each other. Kant concluded that geometric propositions are synthetic. In the first 

Critique, Kant explains how the second proposition is proved by the geometer by 
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constructing a triangle. His geometer draws a triangle using straightedge and 

compass and derives the desired result with the help of Euclid’s postulates: 

He at once begins by constructing a triangle. Since he knows that 

the sum of two right angles is exactly equal to the sum of all the 

adjacent angles which can be constructed from a single point on a 

straight line, he prolongs one side of his triangle and obtains two 

adjacent angles, which together are equal to two right angles. He 

then divides the external angle by drawing a line parallel to the 

opposite side of the triangle, and observes that he has thus obtained 

an external adjacent angle which is equal to an internal angle – and 

so on. In this fashion, through a chain of inferences guided 

throughout by intuition, he arrives at a fully evident and universally 

valid solution of the problem. (1929, p. 579, A716/B744) 

The method of the geometer involves something else other than purely logical 

principles, and therefore it is synthetic. As in the case of arithmetic, in geometry we 

also go beyond the given concept to see what other concepts are in relation with it, 

and make a judgment accordingly.  

 

2.3 The Truth of Mathematical Propositions is Known A Priori 

 

 Now in ‘going beyond’ a concept we usually make use of what is given in 

experience.  Experience teaches us whether the sky is blue, or whether Earth is 

bigger than Venus. What guides us in amplifying our cognition regarding these 

concepts is the actual perception of objects, and judgments about them are 

therefore a posteriori, i.e. known through experience. But perception of objects 

can never be the basis of a mathematical judgment, because as Kant observed, 

“[Mathematical judgments] carry with them necessity, which cannot be derived 

from experience” (1929, p. 52, A10/B15). We can conceive the possibility of the 

sky being red for example (as in a sunset); the concepts sky and blue are not 

necessarily related, because what is taught by experience can someday be 

corrected by it. However, it seems that we cannot conceive 7 + 5 to be something 

different than 12; these concepts are related necessarily and experience cannot be 

the source of such necessity. According to Kant, what is taken as necessary must 

be known a priori, i.e. prior to the experience of objects, and as such, it must 

pertain to the subjective constitution of our minds. He concluded that the 

synthesis of mathematical concepts was performed a priori. 
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 Like many other philosophers, Kant also pointed out that the proper object of 

mathematics is not the objects given in experience. Counting either pebbles or sheep 

plays no role in determining the truth of a proposition in arithmetic. Similarly, a 

three-sided figure built out of wood or plastic can never be the basis of a geometric 

truth. Experiments done with pebbles or wood can only yield knowledge about the 

material with which the experiment is performed, and this always a posteriori. These 

experiments can never teach a purely mathematical relation, because mathematics is 

concerned with ideal objects (such as numbers and lines), which are not given in 

experience, and whose relations we conceive to be necessarily true. Even though 

sensible objects may exemplify mathematical objects, the former can never be the 

basis of the necessity and universality in mathematical sciences. Experience can 

therefore only serve as the ground of synthesis of judgments a posteriori; the 

synthesis of mathematical judgments, which express necessity, must be carried out a 

priori, i.e. independently of experience.  

 The most important question now manifests itself: If mathematical judgments 

are synthetic, and it is shown that the objects we encounter in experience cannot be 

the basis of their synthesis, then what is the ground on which we make mathematical 

judgments? What guides us in arithmetic and geometry if not the familiar objects 

around us? Kant answered that rather than the objects given in experience, what 

guides us in these sciences are the forms to which every object of experience must 

conform. Space and time are these forms, and they are the forms of our sensibility. 

 

2.4 Forms of Sensibility: Space and Time 

 

Kant described sensibility as the faculty through which objects are given to 

us. As being forms of our sensibility, space and time are indispensable, and in fact, 

constitutive elements of experience. Every object (or to be more accurate, every 

appearance), without exception, is always found in a particular space and time. Kant 

argued that this was not because space and time had an objective reality independent 

of our cognition. There is not an absolute space and time in which objects reside 

when they are not perceived by us; rather, space and time pertain to the subjective 

constitution of our minds. These are frameworks which lie ready in the mind prior to 
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the experience of objects; they constitute and limit our experience. Space is the form 

of all outer experience, and time is the form of all inner experience (1929, §3; §6). 

Kant wrote that Space and Time are empirically real, meaning that their reality is 

necessarily recognized by every thinking, judging, experiencing human being. But at 

the same time they are transcendentally ideal, meaning that they have their seats in 

our subjective constitution, and in this respect they cannot be called objectively real 

(1929, p. 72, A28/B44). 

 In synthesizing concepts and making a judgment we usually make use of 

what is given in experience, and what is given in experience are sensible objects. 

These objects affect us, and we obtain intuitions of them. According to Kant, every 

concept that is not empty has a corresponding intuition, in other words a content, and 

this intuition is the ground on which a concept is added synthetically to another. 

What determines the truth of judgments a posteriori, such as ‘the sky is blue’, is the 

corresponding intuitions we have of the relevant concepts, and since these are 

obtained from sensible objects, Kant referred all such intuitions as sensible intuition. 

Sensible intuition cannot teach us something necessary, and so cannot serve as a 

basis for mathematical judgments. But Kant asserted that even without any sensible 

object to stir intuitions, we nevertheless possess an intuition of the framework to 

which every sensible object must conform; when everything sensible and intelligible 

is abstracted from the representation of an object9, the form of sensibility still 

remains, and what is intuited then is this form. In contrast to sensible intuition, Kant 

called the intuition of the form of our sensibility pure, and referred to space and time 

as pure intuitions10. According to him, it is these pure intuitions that serve as a basis 

for mathematical judgments; they allow us to construct (or represent to ourselves) 

mathematical objects. Since these forms lie ready in the mind prior to the experience 

of objects, they are a legitimate source of a priori knowledge, and hence the 

necessity and universality in mathematics can be explained.  

                                                            
9 “If, then, I take away from the representation of a body that which the understanding thinks in regard 

to it, substance, force, divisibility, etc., and likewise what belongs to sensation, impenetrability, 

hardness, colour, etc., something still remains over from this empirical intuition […].  These belong to 

pure intuition, which, even without any actual object of the senses or of sensations, exist in the mind a 

priori as a mere form of sensibility” (1929, p. 66, A21/B35) 

 

 
10 “This pure form of sensibility may also itself be called pure intuition” (1929, p. 66, B35/A21)  
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 In mathematics we go beyond the concepts by making use of what is given in 

pure intuition. According to Kant, in order to determine the truth of a proposition in 

arithmetic we call the aid of intuition of time, and in geometry the intuition of space. 

Mathematical objects are not given in experience, but they are not empty symbols 

devoid of content either. We are able to construct mathematical objects on the basis 

of pure intuition and become conscious of the relations these objects bear to each 

other. A number is constructed by a successive addition of units (1929, p. 134, 

A103)11. We can conceive the idea of succession, in other words we can count, 

because Kant argues that for us, time is a pure intuition. Similarly, we can represent 

to ourselves a line in space and go on to construct more complex figures in pure 

intuition, and thereby become conscious of yet unknown geometric relations. 

According to Kant, in both cases, that which guides us is pure intuition. 

 

2.4.1 Arithmetic and Time     

 

Kant thought that when we are asked to do the addition 7 + 5, “[We] use the 

intuition that corresponds to one of the two, such as one’s five fingers, or five points, 

and in that manner adding the units of the five given in intuition step by step to the 

concept of seven” (2004, p. 19, 4:269). Even though we may use fingers to represent 

the concept five, as sensible objects our fingers do not have a mathematical 

character. The intuition that corresponds to the number five is actually a successive 

addition of units: 1 + 1 + 1 + 1 + 1, and fingers are used only because they resemble 

the pure units whose addition we originally represent to ourselves in time. By adding 

the units of the five to the number seven (which is also represented as a successive 

addition of units), that is by counting, we “see the number 12 come into being” 

(1929, p. 53, B16). Kant argued that although it may seem as if by this method 

nothing new is said in the predicate (=12) which is not already thought in the subject 

(7 + 5), this is actually not the case. “That 7 should be added to 5, I have indeed 

already thought in the concept of a sum = 7 + 5, but not that this sum is equal to the 

                                                            
11 This is true for integers and rational numbers. But the construction of irrationals poses a serious 

problem. An irrational number cannot be constructed by a successive addition of units, because a 

‘unit’ by whose operations we can calculate an irrational number cannot be found. For a discussion 

about Kant and irrational numbers, see Van Atten (2012).    
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number 12” (p. 53, B16). In order to judge that 7 + 5 is 12, we must represent to 

ourselves the concept of the subject in pure intuition, and this is done simply by 

counting; only then can we decide whether the proposition 7 + 5 = 12 is true or not. 

For Kant, this was an indication that propositions of arithmetic were synthetic. He 

thought that they differed from logical propositions whose truth we can show only 

with the help of the principle of contradiction. There is something else in arithmetic 

other than logic, and Kant found this in the pure intuition of time. 

 

2.4.2 Geometry and Space     

 

Just like arithmetic, geometry also presupposes something else other than 

logic. Surely we make use of some fundamental logical propositions in geometry, 

such as a = a, the whole is equal to itself; or a + b > a, the whole is greater than its 

parts. Kant held that these propositions are analytic a priori and they rest on the 

principle of contradiction. But in geometry they “serve only as links in the chain of 

method and not as principles” (1929, p. 54, B17). We cannot constitute geometry 

using these propositions alone, because contrary to logic, which is devoid of content, 

geometry has a subject matter, i.e. space. We need principles other than purely 

logical ones that would describe space. In geometry we study lines, surfaces, figures, 

etc. It is evident that we have an intuition corresponding to each of these concepts. 

We know what a line or a point means; we can represent these to ourselves, or in 

Kantian terms, we can give to ourselves an object in intuition (p. 86, A48/B65). 

According to Kant, when we represent to ourselves two points, we immediately see 

that there can only be one straight line between the two; or similarly, that through 

any line and a point not on the line, only one parallel can be drawn passing through 

this point. Now for Kant, these results are not attained by logic alone, and they are 

not derived from experience either. Geometry is not the study of the relations 

between sensible objects, because if it were, then “that there should be one straight 

line between two points would not be necessary, but only what experience always 

teaches” (p. 69, A24) (we will see in Chapter 3.5 that for Poincaré this was more or 

less the case). Kant concluded that geometry is the study of the framework to which 

sensible objects must conform, and that this framework is given a priori, because it 
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is the form of our sensibility. Geometry owes its necessity and universality to this a 

priori framework. We construct lines and figures in space, and when we represent to 

ourselves a line, Kant believed that we immediately see only one parallel can be 

drawn to it from a given point. In this respect the parallel postulate and all the results 

that are derived thereof are intuitive results; they are grounded upon the pure 

intuition of space. 

 

2.5 Summary  

 

The key concepts in Kant’s philosophy of mathematics are outlined above. 

Kant classified mathematical propositions as synthetic a priori judgments. He called 

them synthetic, because he believed that in a mathematical proposition the result is 

not just a mere rephrasing of what is given (as in the case of analytical judgments), 

but it covers something more. Kant expressed this by saying that contrary to logical 

judgments, in mathematical judgments the concept of the predicate is not already 

thought in the concept of the subject. 

Moreover, the truth of mathematical propositions is known a priori, that is, 

prior to any particular experience and without consulting to them. Rather than 

investigating the relations between sensible objects, which, for Kant, are incapable of 

exhibiting the necessary character of mathematical relations, in mathematics we 

investigate ideal objects which we give to ourselves, or construct, in pure intuition. 

Mathematics is the study of the frameworks to which every object of experience 

must conform. These frameworks are called space and time and we have a pure 

intuition of them, because they pertain to our subjective constitution, i.e. they are the 

forms of our sensibility. 

As we can see from the preceding lines, Kant established mathematics as a 

science, even though he thought that its subject matter was not the objects given in 

experience. By determining the truth of a proposition in mathematics we learn 

something new; mathematics expands our knowledge. Thus it would be wrong to 

claim that mathematics is a branch of logic, which is no doubt an indispensable aid 

for mathematics, but actually a body of tautologies and therefore not a science. 

Besides, the truths of mathematics are conceived as laws; we hold them to be 
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inviolable and valid for every mind. Hence mathematics meets the requirements of 

being a science; it teaches us previously unknown laws, not of sensible objects but of 

our mode of perceiving them. Since our mode of perceiving objects is prior to their 

perception and a determining factor in it, all other sciences that aim to describe the 

perceived relations between these objects should be founded upon mathematics. 

Everything that has been said so far is essential in understanding Poincaré’s 

philosophy of mathematics, for he has taken a Kantian standpoint in the face of 

numerous problems concerning the foundations of mathematics. Poincaré thought, 

for example, that the propositions of arithmetic (but not all of them) are synthetic a 

priori judgments, and he found the justification for their truth in a pure intuition. He 

distinguished mathematics from logic and treated the former as a science. 

Furthermore, he agreed with Kant that space and time were not independent realities 

but frameworks that we impose upon nature to make it intelligible and suitable for 

experimenting. However, he disagreed with Kant on the idea that principles of 

geometry – or more precisely, postulates of Euclidean geometry – were synthetic a 

priori. The reason, as might be expected, is that Poincaré was exceedingly familiar 

with non-Euclidean geometries, where the truths Kant held as necessary and 

universal turn out to be false. Lalande (1954) wrote, “Nobody has done more than 

[Poincaré] in France to bring home to educated men the idea that Euclid's system of 

axioms is not endowed with metaphysical truth, and that on this point it does not 

differ in any way from Riemann’s or Lobachevski's axiomatic systems” (p. 598). 

Poincaré also disagreed with Kant on the nature of the intuition which lies at the 

basis of arithmetic, and exactly which propositions in arithmetic are synthetic.  

The next chapter is devoted to show how Poincaré transformed the Kantian 

outlook and established his original theory, which, I believe, was more accurate and 

in tune with the scientific discoveries of his day. Our principal aim will be to provide 

a firm basis on which we can make sense of the following claim asserted by 

Poincaré: Building a new arithmetic is not possible as in the case of non-Euclidean 

geometries. This is the central claim that this thesis aims to disprove. In Chapter 4, 

Georg Cantor’s theory of transfinite ordinal numbers is presented, which can be said 

to contain a new arithmetic. But let us first identify Poincaré’s position and 
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understand what he thinks the difference between geometry and arithmetic is; later, a 

detailed analysis of transfinite ordinal arithmetic will be given. 
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CHAPTER 3 

 

 

POINCARÉ’S PHILOSOPHY OF MATHEMATICS 

 

 

3.1 The Intellectual Climate after Kant 

 

Kant’s critical method and his ideas concerning almost every branch of 

philosophy have attracted much attention from subsequent philosophers. Naturally, 

his ‘intuitionistic’ philosophy of mathematics had its share of this attention. After all, 

Kant’s ideas about mathematics occupy a central place in his overall philosophy. 

However, over time the belief in the Kantian idea that there exist in our minds 

frameworks which are independent of experience was weakened in the light of new 

scientific evidence and the criticisms that followed. One of the principal reasons 

behind this weakening was the invention of non-Euclidean geometries. The first 

person to take the possibility of these geometries seriously and to work on them was 

Carl Freidrich Gauss (1777-1855). In 1792, when he was only 15 years old, Gauss 

started to work on the fifth postulate of Euclid12, and in 1817 he was convinced that 

this postulate was independent of the other four postulates, i.e. that it could not be 

derived from them. He then started to work on alternative geometries where this 

postulate was rejected, yet he never published these works. The first publication 

concerning non-Euclidean geometries came from Hungarian mathematician Janos 

Bolyai (1802-1860) in 1825, in the form of an appendix to his father Farkas Bolyai’s 

book, who was a close friend of Gauss. Russian mathematician Nikolai Lobachevsky 

(1792-1856), unaware of Bolyai’s work, published his own studies in Russian in 

1829, in a local university publication the Kazan Messenger. The works of these two 

mathematicians were discussed in a rather small circle, but this changed in 1854 

when Bernhard Riemann (1826-1866) gave an inaugural lecture about his works on 

                                                            
12 “If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one 

side is less than two right angles, then the two lines will intersect each other on that side if extended 

far enough”. This postulate is equivalent to what is known as the parallel postulate, which simply 

states that given a line and a point not on it, there exists only one line that passes through this point 

and never intersects the given line. 
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non-Euclidean geometries where he completely reformulated the notion of space. 

Finally in 1868, Eugenio Beltrami (1835-1900) set these non-Euclidean geometries 

on a firm basis and reduced the problem of their consistency to the problem of the 

consistency of Euclidean geometry.  

These mathematicians showed that Euclid’s postulates were not the only 

candidates for constituting a consistent system of geometry, and that it was possible 

to have different geometries that describe space, even though these may seem 

unintuitive. In these geometries the parallel postulate was replaced by other 

postulates13, and so the results derived from the parallel postulate were false. For 

instance, in non-Euclidean geometries, the sum of interior angles of a triangle adds 

up to something greater or less than two right angles. Furthermore, two triangles 

having the same interior angles but different side lengths cannot be drawn – in other 

words, there are no similar triangles in these geometries – yet they are as consistent 

and as rich as Euclidean geometry. Schiller (1896) wrote, “If it is a universal and 

necessary truth that the angles of a triangle are equal to two right angles, it cannot be 

an equally universal and necessary truth that they are greater” (p. 179). Philosophers 

were thus led into questioning the existence of an a priori framework that our minds 

imposed upon experience inexorably, giving rise to Euclid’s postulates, for non-

Euclidean geometries clearly showed that there were other logically possible 

frameworks for describing space. Naturally, the following questions were raised: 

What is it that has led us into treating Euclidean geometry as intuitive, that is, why 

this form of sensibility rather than another? And among these geometries, which one 

is the true geometry? 

Another factor that undermined Kant’s idea of a pure form of sensibility was 

that the theory of evolution of biological species by natural selection was becoming 

increasingly dominant14. The path that led to this theory was opened chiefly by 

                                                            
13 Lobachevsky’s and Riemann’s postulates. Lobachevsky’s postulate states that there exist two lines 

parallel to a given line through a given point not on the line. Riemann’s postulate states that there are 

no parallel lines. Riemann also had to reject the second postulate of Euclid, which states that a line 

segment can be extended indefinitely. Riemann assumed that it cannot, and on these suppositions he 

has laid the foundations of spherical geometry. 

 

 
14 In fact, in Critique of the Power of Judgment, Kant argues for something like a proto-Darwinian 

theory of evolution, although not yet for natural selection, which nevertheless shows how farsighted 

and exceptionally brilliant he was. He suggests that merely mechanical means can account for the 
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French biologist Jean-Baptiste Lamarck (1744-1829) and his theory of inheritance of 

acquired characteristics, which first appeared in 1801. But the theory of evolution by 

natural selection was first formulated after almost 60 years by Charles Darwin (1809-

1882) in his book On the Origin of Species (1859). With the help of the technological 

advancements of 19th and 20th century, but more importantly, with the establishment 

of modern biology and genetics, the number of observations confirming the idea that 

the different traits in biological species were the result of mutation, adaptation, and 

selection continued to grow. Philosophers then naturally questioned whether the 

frameworks we impose upon experience or the ‘pure’ intuitions we possess were 

shaped by such an evolution, as in the case of physical and behavioral traits, meaning 

that they were not that pure after all15. 

Seeing the problems with founding mathematics on our forms of sensibility 

and the pure intuitions of these forms which are supposedly independent of 

experience, thinkers sought another basis on which they can ground mathematics. 

This led some philosophers like Frege to reject Kant’s position and attempt to reduce 

mathematical principles to principles of logic. Others such as Hilbert held that 

mathematics was simply the study of formal systems whose principles are like the 

rules of a game which are otherwise meaningless. And there were still others who 

committed to intuitionism but sought to revise Kant’s original position. Poincaré was 

a member of the last group; he remained a Kantian and an intuitionist. He accepted 

that there are propositions in mathematics which are synthetic and known a priori on 

                                                                                                                                                                         
variation in biological species: “The agreement of so many genera of animals in a certain common 

schema [...] strengthens the suspicion of a real kinship among them in their generation from a 

common proto-mother, through the gradual approach of one animal genus to the other, from that in 

which the principle of ends seems best confirmed, namely human beings, down to polyps, and from 

this even further to mosses and lichens, and finally to the lowest level of nature that we can observe, 

that of raw matter: from which, and from its forces governed by mechanical laws [...] the entire 

technique of nature [...] seems to derive” (2000, p.287, 5:419). But apparently Kant did not consider 

the possibility that the form of our sensibility or understanding could have such an origin; the 

hypothesis can be used to explain only the physical constitution of living beings, and even this was 

regarded by Kant as a “daring adventure of reason”.  

 

 
15 A similar view was expressed by Poincaré in Science and Method, where he mentioned the role of 

adaptation and natural selection in acquiring the idea of space. According to him, the distinctive 

movements which allow us to parry incoming threats or reach desired objects are constitutive of 

space: “Certain hunters learn to shoot fish under the water, although the image of these fish is raised 

by refraction; and, moreover, they do it instinctively. Accordingly they have learnt to modify their 

ancient instinct of direction or, if you will, to substitute for the association A1, B1, another association 

A1, B2, because experience has shown them that the former does not succeed.” (2008, p. 116).  
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the basis of a pure intuition, but as Janet Folina (1986) writes, compared to Kant, 

“Poincaré’s theory of the synthetic a priori is much more minimal” (p. 30). 

 

3.2 Poincaré against Logicism and Formalism 

 

Poincaré presented his views in three books: Science and Hypothesis (1903), 

The Value of Science (1905), and Science and Method (1908). In these books he 

formulated and often defended his idiosyncratic intuitionism against Russell and 

Hilbert, the champions of logicism and formalism of his era. After Kant came the 

logicist attempts, mainly by Frege and Russell, to rid mathematics of any need of 

intuition and to reduce it to logic, thereby show that mathematical propositions are 

analytic a priori. These philosophers thought that something could be known a priori 

only in virtue of its lack of factual content; there were no a priori intuitions that 

could serve as a basis to synthetic propositions. In truth, mathematical reasoning was 

not different than logical reasoning and it had nothing to do with forms of sensibility 

or pure intuitions. A. J. Ayer (1910-1989), another important defender of logicism in 

the 20th century wrote, “To say that a proposition is true a priori is to say that it is a 

tautology” (1964, p. 301) and mathematics is only a “special class of analytic 

propositions, containing special terms” (p. 297). 

Poincaré was one of the fiercest opponents of this tradition. He believed that 

contrary to logic, mathematics was not a gigantic tautology but a science, and it had a 

“creative virtue” (2011, p. 3). In The Value of Science, Poincaré likens a logicist – 

whose only tool is analysis16 – to a person who checks whether each move is made in 

accordance with the rules of the game in order to understand a game of chess. He 

argues that the person must rather recognize the strategy and the plan behind every 

move in order to truly understand the game. “We need a faculty which makes us see 

the end from afar, and intuition is this faculty” (p. 22). There is a parallelism between 

chess and mathematics, in the sense that both are rule following procedures yet 

analysis alone is not sufficient for understanding either of them. Just like ascertaining 

the correctness of every move in a game of chess is not sufficient, so is ascertaining 

every step of a mathematical proof. 

                                                            
16 Referred to as “division and dissection” (1907, p. 23). 



 
 

22 

When we have examined these operations one after the other and 

ascertained that each is correct, are we to think we have grasped the 

real meaning of the demonstration? Shall we have understood it 

even when, by an effort of memory, we have become able to repeat 

this proof by reproducing all these elementary operations in just the 

order in which the inventor had arranged them? Evidently not; we 

shall not yet possess the entire reality; that I know not what which 

makes the unity of the demonstration will completely elude us. 

(1907, p. 22) 

The quote certainly ends in an obscure manner regarding what intuition is. But 

Poincaré clarified his views in the following chapters, and so will we. Here it is 

necessary to add that there is obviously a limit to the analogy between chess and 

mathematics: the former can “never become a science, for the different moves of the 

same piece are limited and do not resemble each other” (2011, p. 21). 

 Poincaré raised a similar criticism against Hilbert and his formalist program. 

Hilbert wished to reduce the number of the fundamental assumptions of geometry to 

a minimum. Some of these assumptions might be understood intuitively, but Hilbert 

held that in essence they were simply formal rules from which theorems could be 

deduced by purely analytic procedures. There were others such as Giuseppe Peano 

(1858-1932) who have tried to accomplish what Hilbert did in geometry for 

arithmetic and analysis. In the very beginning of his Foundations of Geometry, 

Hilbert (1950) wrote: 

Let us consider three distinct systems of things. The things 

composing the first system we will call points […] those of the 

second we will call straight lines […] and those of the third system 

we will call planes […] We think of these points, straight lines, and 

planes as having certain mutual relations, which we indicate by 

means of such words as “are situated”, “between”, “parallel”, 

“congruent”, “continuous”, etc. The complete and exact description 

of these relations follows as a consequence of the axioms of 

geometry. 

Even though Poincaré admitted that he thought very highly of Hilbert’s book, he still 

condemned Hilbert’s approach. Regarding the ‘things’ Hilbert considered at the 

beginning of his book, Poincaré writes: “What these ‘things’ are we do not know, 

and we do not need to know – it would even be unfortunate that we should seek to 

know; all that we have the right to know about them is that we should learn their 

axioms” (2008, p. 122). And again:  
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[In Hilbert’s Formalism] in order to demonstrate a theorem, it is 

neither necessary nor even advantageous to know what it means. 

The geometer might be replaced by the logic piano imagined by 

Stanley Jevons; or, if you choose, a machine might be imagined 

where the assumptions were put in at one end, while the theorems 

came out at the other, like the legendary Chicago machine where 

the pigs go in alive and come out transformed into hams and 

sausages. No more than these machines need the mathematician 

know what he does. (2014, Book II, Ch. 3) 

We can see from the above lines that Poincaré’s emphasis was principally on 

understanding. If we completely neglect our intuitions that play a role in 

mathematics and adopt a strong formalist standpoint, then we would sacrifice an 

integral part of mathematics: we would “not divine by what caprice all these 

[theorems] were erected in this fashion one upon another” (1907, p. 22), and we 

would not see why among countless possible assumptions these particular ones were 

judged preferable to others (2008, p. 148). It would therefore be very difficult, if not 

impossible, to learn and understand mathematics if it is presented to us as a purely 

formal practice, and this is why Poincaré wrote that he would not recommend 

Hilbert’s book to a schoolboy (2008, p. 122). 

 There is another, perhaps an even more serious criticism that Poincaré raised 

against Hilbert’s program, and consequently against every other program that aims to 

prove the consistency of mathematics within a formal system, such as Peano’s or 

Zermelo-Fraenkel’s Axiomatic Systems. Poincaré argued that the principle of 

mathematical induction is an indispensable tool for all branches of mathematics, 

which states that if a theorem is true for 𝛾 = 1 and if it is shown to be true for 𝛾 + 1 

when it is true for an arbitrary 𝛾, then the theorem is true for all natural numbers. 

Now where does this principle come from? If it is a purely logical principle, then its 

negation must be capable of being reduced to the principle of contradiction. But how 

can we be sure that this principle never leads to a contradiction? Poincaré maintained 

that every attempt to show mathematics is consistent needs to prove, at some point, 

that the principle of mathematical induction is exempt from contradiction. Since this 

principle states something about an infinite number of cases, a direct verification 

showing the principle is true for a finite number of cases would not suffice. “We 

must then have recourse to processes of demonstration, in which we shall generally 

be forced to invoke that very principle of complete induction that we are attempting 
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to verify” (2008, p. 153). Thus, every attempt to prove the consistency of the 

principle of induction will make use of the principle itself, “for that is the only 

instrument which enables us to pass from the finite to the infinite” (2011, p. 14). This 

poses a problem for formalists and logicists, yet it is not a problem for an intuitionist 

like Poincaré, because just like Kant, Poincaré thought that this principle is an a 

priori synthetic judgment and is grounded upon a pure intuition; we immediately 

become conscious of its validity because it pertains to the subjective constitution of 

our minds and we have a direct intuition of it (see Chapter 3.4). 

 After examining the quotations above, it might seem as if Poincaré used the 

term intuition in several different ways. In fact, he admitted that the meaning of this 

term was quite vague and he tried to elucidate it. In The Value of Science, he writes: 

“To make any science, something else than pure logic is necessary. To designate this 

something else we have no word other than intuition. But how many different ideas 

are hidden under this same word?” (1907, p. 19). We saw that he used the term 

intuition to designate the faculty “that which makes us see the end from afar”. For 

Poincaré, this faculty is an integral part of understanding. A person who has not 

developed this kind of intuition in a particular field will lack something very crucial 

in comparison to a person who has, even though both are bound by the same rules 

and doing the same operations. Seen under this light, intuition appears to be 

something psychological. This led some thinkers such as Warren Goldfarb (1988) to 

claim that Poincaré’s concern in invoking intuition in mathematics was to explain the 

psychology of mathematical thinking. However, though an accurate observation, this 

is only one-half of Poincaré’s intuitionism. Intuition understood this way is not 

exclusive to the mathematician; a chess player, a composer, and even a logicist 

requires its aid. What is intuited in all these practices is a certain strategy peculiar to 

that field. It is developed through many experiences and it allows the practitioner to 

immediately see beforehand what steps she should take. But Poincaré mentions 

another kind of intuition, one which is pure and reminiscent of Kant’s, which gives 

rise to mathematical reasoning. What is intuited here is not the strategy or the plan in 

this or that practice, and unlike Kant, Poincaré did not relate this to the intuition of 

the pure forms of our sensibility. This is rather the intuition of a certain power of the 

mind, which consists in “conceiving the indefinite repetition of the same act, when 
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the act is once possible. The mind has a direct intuition of this power, and experiment 

can only be for it an opportunity of using it” (2011, p. 16). This intuition is pure, and 

unlike the intuition a chess player has, it is given prior to all experience. This is 

actually the intuition we have mentioned in the previous paragraph, i.e. the one to 

which we owe the principle of mathematical induction. Let us now specify the two 

kinds of intuition as Poincaré formulated them, and distinguish the one that serves as 

a basis to synthetic judgments in arithmetic, giving rise to the ‘science of number’. 

 

3.3 Poincaré’s Intuitionism 

 

It is true that one of Poincaré’s intentions was to explain the psychology of 

the mathematician and that he used the term intuition in order to do this. There are 

many passages in which he described what goes on in the “soul” of a mathematician. 

The most detailed of these passages is found in Science and Method. In the third 

chapter of the first book, Poincaré explains the intuition that guides the 

mathematician in a mathematical invention by describing in detail the mental 

processes after which he managed to establish the existence of different classes of 

Fuchsian functions. Reflecting on his experiences, Poincaré concludes that both 

conscious and unconscious mental procedures play a role in mathematical invention. 

The conscious procedures consist of many trials with different combinations, carried 

out gropingly. These are indispensable for a mathematical proof, since through them 

the mathematician gains an acquaintance with his problem and becomes more 

competent. But more importantly, the conscious work of the mathematician “set[s] 

the unconscious machine in motion” (2008, p. 56). The unconscious procedures are 

reasonings that go on in the mind of the mathematician even after his focus is turned 

away from the problem. Among countless possible combinations, only a few can be 

constructed consciously by the mathematician, which, in most cases, will appear to 

be barren and useless in the beginning. But Poincaré observes that the unconscious 

ego, or the “subliminal ego”, once stirred by a conscious work, would keep reasoning 

about the problem by eliminating the useless and encumbering combinations among 

the extremely numerous possibilities, selecting the most fruitful ones. What guides 

the mathematician in this unconscious work is an intuition that is certainly not 
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operating arbitrarily, but following extremely subtle and delicate rules, which are 

practically impossible to be stated in precise language; “They must be felt rather than 

formulated” (2008, p. 57). What is felt here is the “mathematical beauty; of the 

harmony of numbers and forms and of geometric elegance. It is a real aesthetic 

feeling that all true mathematicians recognize” (p. 59). Poincaré states that the results 

of this unconscious work present themselves to the mind in moments of sudden 

illumination. He cites experiencing several of such instances; one when he was 

walking on the cliffs of Caen and another when he was serving his time in the army 

in Mont-Valérien. 

What we need to notice is that the intuition Poincaré described in these 

passages is not exclusive to the mathematician. In fact, there are other thinkers who 

have noted that this intuition is not limited to mathematics. Folina (1986) regards it 

as a faculty that glosses over the incomplete character of both mathematical and 

empirical experience (p. 86). Gerhard Heinzmann (1988) likens it to “the awareness 

of the mastery of a schema” (p. 48). We can easily assume the mathematician in the 

above paragraph to be replaced with a composer and the proof with a musical piece 

the composer is working on. Or similarly we can imagine it to be a chess player 

trying to devise a new and unheard strategy. Analogous to Poincaré’s mathematician, 

the composer would most likely say what guides her in her process of creation is a 

certain kind of intuition. We can imagine her saying that through this intuition, which 

is very difficult to elucidate, she appreciates harmony and able to recognize the 

patterns that arouse in her a feeling of beauty, and what she is looking for very often 

comes to her in moments of inspiration. 

This kind of intuition is also what distinguishes a professor from a student of 

mathematics. Surely what causes the difference between them is primarily 

experience, but the abundance of experiences would be useless if it did not help to 

develop in the mathematician a certain kind of intuition, i.e. the feeling towards 

mathematical beauty. Because this feeling is highly improved and polished in a 

professor, he would not waver in the face of a problem that would easily overwhelm 

a student.  

If intuition in mathematics was confined solely to what is described here, then 

it would truly be something entirely psychological, not something over and above the 
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intuition developed in a specialist concerning his or her particular field. However, 

even though the student of mathematics – or an amateur in any particular field – 

lacks this kind of intuition compared to a specialist, both the student and the 

professor of mathematics share something in common: both possess a mind that is 

capable of conceiving the idea of indefinite repetition, and therefore able to count. 

They both have a direct intuition of this capacity and as Poincaré wrote, experience is 

only an opportunity for them of using it. Because the student also has this capacity, 

he is able to construct numbers just like the professor, and the reasoning behind the 

method of proof by mathematical induction is not going to be a mystery for him. 

Through countless experiences the student would eventually develop the kind of 

intuition we described in the previous paragraphs. But he would never have learned 

mathematics and understood mathematical reasoning if he did not have an intuition 

of this distinctive mental capacity in the first place, which amounts basically to the 

ability to count indefinitely; without it, the concept of ‘number’ would be completely 

meaningless. 

Poincaré offered a reliable criterion for distinguishing these different kinds of 

intuition. He wrote that there are intuitions that may deceive us, and then there are 

intuitions that may never do so. For instance, the intuition a chess player has 

developed may sometimes deceive him. We can imagine the game he planned being 

outmaneuvered by a more brilliant strategy coming from his opponent. Also the 

mathematician guided by his feeling towards mathematical beauty “need[s] to work 

out the results of the inspiration” (2008, p. 56). A more striking example Poincaré 

gives of a deceptive intuition is geometric intuition. He writes: “If we try to imagine 

a line […] our representation must have a certain breadth. Two lines will therefore 

appear to us under the form of two narrow bands”. The geometer “[imagines] a line 

as the limit towards which tends a band that is growing thinner and thinner, and the 

point as the limit towards which is tending an area that is growing smaller and 

smaller” (2011, p. 31). On the basis of our representations we intuitively conclude 

that whenever we imagine a curve, there are going to be an infinite number of lines 

intersecting this curve at only one point, i.e. that the function this curve represents 

will be everywhere differentiable. By establishing the existence of functions which 

are continuous everywhere but differentiable nowhere, Karl Weierstrass (1815-1897) 
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has showed once again that we were mistaken in trusting our intuitions in geometry. 

What the chess player and the geometer have in common is the fact that the basis of 

their intuition is experience: the player’s intuition depends upon the countless games 

he played, and the geometer’s intuition depends upon the countless observations he 

had of the motion of the most notable objects around him, in our case, solid bodies. 

The role experience plays in geometry and how the motion of solid bodies relates to 

it are subjects of Chapter 3.5. At the moment it is sufficient to know that Poincaré 

asserted that geometry is not completely independent of experience and this is why 

geometric intuition sometimes deceives us.  

On the other hand, the intuition we have of our capacity to iterate indefinitely 

– consequently of the principle of mathematical induction – can never deceive us, 

because “it is only the affirmation of a property of the mind itself” (2011, p. 17). 

Poincaré called this “the intuition of pure number” (1907, p. 20). Nothing empirical 

plays a role in formulating the principle of mathematical induction; its truth is known 

a priori on the basis of a pure intuition and it is “imposed upon us with such an 

irresistible weight of evidence” (2011, p. 16), for what is intuited here is simply a 

mental capacity. The term intuition is used both for that which makes us conscious of 

a distinctive mental capacity and also that which makes us conscious of the strategy 

behind any practice, giving us competence, be it in chess, mathematics, or even 

logic. This is because in both cases we become conscious of the object of our inquiry 

immediately, without surveying all the intermediary steps. Our intuition is “an 

incomplete summary of a piece of true reasoning” (2011, p. 216), or in Folina’s 

words, a glossing-over faculty. The difference is that in pure intuition what is 

summarized is an a priori reasoning; whereas in the intuition a practitioner (or a 

geometer) develops what is summarized is a reasoning that is borrowed from 

experience. This is precisely the reason why we can never be deceived by pure 

intuition but may be misled by what we will call sensible intuition. However, when 

we use the term sensible intuition in the context of Poincaré’s philosophy, it should 

be noted that this is not perfectly in line with Kant’s conception. Both thinkers took 

this to mean an intuition which is derived from experience (though in Kant’s case, 

this already presupposes a pure, a priori form of sensibility) and as such, incapable 

of being a basis for necessary and universal truths. But unlike Kant, Poincaré thought 
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that the intuition which lies at the basis of geometry is not pure; it is to a certain 

degree sensible. He believed that the intuition we have of our forms of sensibility is 

not pure, because our forms of sensibility – the mental frameworks to which objects 

conform – are not given a priori; these are convenient frameworks invented by us 

under the guidance of experience. This is perhaps the fundamental difference that 

separates Poincaré from Kant and it is the origin of Poincaré’s stronger empiricist 

tendencies. How experience guides us in adopting the most convenient framework 

among other possible options is discussed in Chapter 3.5. 

One final remark on the difference between the intuition developed in a 

specialist and the intuition of pure number: it may be argued that this distinction is 

not really necessary, for these two intuitions can be reduced to one. In fact, there is 

no doubt that these intuitions are related to a certain degree. A very important 

element of the intuition that helps a professional – be it a chess player or a 

mathematician – in his or her particular field, is the recognition of patterns that are 

recurring. Recognition of these repeating patterns is actually constitutive of the 

‘feeling of beauty’ that guides a specialist. Thus, it would not be wrong to say that 

the idea of repetition is an integral part of the intuition developed in a specialist. How 

these two intuitions are related and whether they can be reduced to one is out of the 

scope of this paper. However, it is worth noting that we cannot fully explain the 

intuition in mathematics in terms of the intuition developed in a specialist, because as 

we have said, the latter is sometimes deceptive. Contrary to this, according to 

Poincaré, the intuition of pure number on which arithmetic is grounded can never 

deceive us. What this intuition amounts to is the capacity to conceive the idea of 

indefinite repetition. From repetition, number arises, and the principle of 

mathematical induction is simply the affirmation of this mental capacity. 

 

3.4 Mathematical Induction and the Intuition of Pure Number 

 

As we have mentioned above several times, Poincaré disagreed with Kant as 

to which propositions in arithmetic should be considered synthetic. According to 

Poincaré, propositions in the form 7 + 5 = 12 are not synthetic but analytic 

judgments. He wrote that the method for showing the truth of these propositions is 
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not a proof properly so called but verification.  “Verification differs from proof 

precisely because it is analytical, and because it leads to nothing” (2011, p. 5). For 

Poincaré, these are rather uninteresting for a mathematician. What is truly interesting 

and fruitful in mathematics are theorems, for example the proposition which states 

that every natural number is either even or odd. It is these propositions that needs to 

be proved, and in which “the conclusion is in a sense more general than the 

premises” (2011, p. 5).  

7 + 5 = 12 can be verified when the operation x + 1 (adding 1 to any given 

number) is defined. Poincaré wrote, “Whatever may be said of this definition [i.e. x + 

1], it does not enter into the subsequent reasoning” (2011, p. 7). 7 + 5 = 12 is simply 

a rule following procedure. Poincaré considered 7 + 5 to be an instance of the general 

formula x + a. He defined x + a as 

 

x + a = [x + (a - 1)] + 1 (1) 

 

“We can know what x+a is when we know what x+(a-1) is, and since I have 

assumed that to start with we know what x+1 is, we can define successively and ‘by 

recurrence’ the operations x+2, x+3, etc.” (2011, p. 8). Poincaré notes that (1) is not 

a purely logical definition, “It contains an infinite number of distinct definitions, 

each having only one meaning when we know the meaning of its predecessor” (p. 8). 

The general formula x + a is of a different character than 7 + 5, which is a particular 

instance of this formula. On the basis of the definitions above, we can reach 7 + 5 = 

12 after a finite number of syllogisms. We will know what 7 + 5 is when we know 

what 7 + 4 is. We know what 7 + 1 is from the definition of x + 1, it is 8. We know 

what 8 + 1 is, it is 9, and so on. 7 + 5 is only a logical step in this reasoning. 

As we can see that for Poincaré, the fact that the result of the sum 7 + 5 is not 

immediately recognized, or to express this in Kantian terms, the fact that the concept 

of the predicate is not already thought in the concept of the subject, does not 

necessarily make 7 + 5 = 12 a synthetic judgment. It is therefore accurate to say that 

Poincaré has sided with the logicists on this issue, that is, the psychological criterion 

not being satisfied does not indicate that the judgment is synthetic. Even though we 

may not immediately see the result of a sum, this does not mean that we cannot also 
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reach it by a purely analytical reasoning. Once x + 1 is defined, we can always verify 

in a finite number of syllogisms the truth of the sum of two numbers, however big 

the numbers may be. In order to calculate this sum we do not need to use intuition 

and find a correspondence for these concepts in terms of fingers or points added to 

each other in temporal succession. We can do that, but that is not what Poincaré 

thought the role of intuition in arithmetic was. 

“If mathematics could be reduced to a series of such verifications it would not 

be a science” (2011, p. 5). As we have said, what is truly valuable in mathematics for 

Poincaré are theorems. Theorems must be proved rather than verified. 7 + 5 = 12 is a 

verification, but the proposition, for instance, that every natural number is either even 

or odd is a theorem. The truth of any particular instance of this theorem such as (7 + 

5) can always be verified. By following the procedure described above, we can show 

by way of analysis that 7 + 5 is 12 and that this is an even number (assuming the 

definition of even and odd is given). We can do the same for any natural number say 

4, (11 + 8), 34, etc. We can easily verify that all of these numbers are either even or 

odd. But we can never reach our theorem by conjoining countless of such 

verifications. The list of our verifications will always be finite, so how to prove this 

theorem that states something about an infinite number of cases? Now for Poincaré 

this is where synthesis in mathematics comes in. Logical reasoning can only verify 

the particular instances of this theorem, but in order to reach the general theorem 

where an infinite number of verifications are contained in only a few lines, a 

synthesis is required, and this is carried out on the basis of the principle of 

mathematical induction, which, according to Poincaré, is “mathematical reasoning 

par excellence” (2011, p. 12). The principle of mathematical induction is an 

instrument which the logicist does not possess; it is the only instrument that enables 

us to pass from the finite to the infinite. “This instrument is always useful, for it 

enables us to leap over as many stages as we wish; it frees us from the necessity of 

long, tedious, and monotonous verifications which would rapidly become 

impracticable” (2011, p. 14). 

In order to formulate our theorem we first need to define what even and odd 

means. We suppose x + 1 is defined and properties of addition and multiplication are 
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given17. A natural number x is called even if it is a multiple of 2, in other words, if 

there is a natural number n where x = 2n. 

 

x = 2n  (2) 

 

A natural number x is called odd if it is not a multiple of 2, in other words, if 

there is a natural number n where x = 2n + 1.  

 

x = 2n + 1 (3) 

 

Together with (1) where the addition of any two numbers is defined, we now 

have three definitions. The theorem we wish to prove states that for every natural 

number x there is a natural number n such that either x = 2n or x = 2n + 1.  It is easy 

to verify this theorem for a particular number and increase the number of our 

verifications, but it is clear that none of these verifications will be considered a proof 

of the theorem. Rather, we must arrive at our result by reasoning inductively. First, 

we need to show that the theorem holds for the base case, x = 1. Next we need to 

assume that it holds for an arbitrary x and show that it holds for x + 1. If both 

conditions are satisfied, we can conclude that every natural number is either even or 

odd. The principle itself requires no proof, pure intuition of number guarantees its 

truth a priori. We assert without a doubt that the theorem will be true if it is true for x 

+ 1 when it is true for x, because we immediately recognize that there will be nothing 

that can disturb this reasoning at a later step. For Poincaré, this is neither a logical 

nor an empirical reasoning, but a mathematical reasoning, and as a matter of fact, 

mathematical reasoning par excellence. Let us see the proof in order to appreciate the 

value of this principle. 

 

Theorem: ∀x, x ∈ N [∃n, n ∈ N : x = 2n or x = 2n + 1] 

                                                            
17 In fact, in Science and Hypothesis, Poincaré (2011) treats each of these properties as a theorem and 

proves them using the definition of addition (1) and the principle of mathematical induction. For 

instance, with regards to associativity of addition, he considers a + (b + c) = (a + b) + c as a theorem 

and shows that this is true for c = 1, and then shows that when it is true for c = γ it is true for c = γ + 1 

(pp. 8-11). He states that this indicates even at such an early stage of arithmetic where the properties 

of the most basic operations are defined, we must appeal to the intuition of pure number. 
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Proof by induction 

Base Case: x = 1 

1 = (2 ⋅ 0) + 1, therefore odd (3) 

Successor Case: Assume x is either even or odd. Show (x + 1) is either even or odd. 

If x is odd, then (x + 1) is the sum of two odd numbers. The sum of two odd 

numbers is always even, because for every natural number a and b where a = 2n + 1 

and b = 2m + 1 

a + b = (2n + 1) + (2m + 1) 

a + b = 2n + 2m + 2 

a + b = 2(n + m + 1), therefore even (2) 

Hence if x is odd then x + 1 is even. 

If x is even, then (x + 1) is the sum of an even number and an odd number. 

The sum of an even number and an odd number is always odd, because for every 

natural number a and b where a = 2n and b = 2m + 1 

a + b = 2n + (2m + 1) 

a+b = 2n + 2m + 1 

a + b = 2(m + n) + 1, therefore odd (3) 

Hence if x is even then x + 1 is odd. 

Either way, x + 1 is either even or odd, which is what we needed to prove. We 

may thus conclude that every natural number x is either even or odd. 

Each step of this proof follows directly from a previous step (or from the 

definitions we have given) according to the principle of contradiction. For instance, 

while showing the sum of two odd numbers is always even we actually compared 

two definitions, one of which was only a little more complex than the other, and 

demonstrated that they were in fact identical. But in asserting that the theorem would 

hold for every natural number if it is shown to hold for an arbitrary number and its 

successor, we did not rely upon the principle of contradiction but on the principle of 

mathematical induction, and therefore on the intuition of pure number. This simple 
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proof then illustrates the role of intuition in establishing the truth of a mathematical 

proposition where a generalization is made over infinitely many elements. According 

to Poincaré it is these propositions where the conclusion is more general than the 

premises, and these are grasped intuitively. 

 

3.4.1 The Intuition of Pure Number and Time  

 

In the first pages of Science and Hypothesis, Poincaré gives (or rather proves) 

the rules of algebraic calculus and the definitions required to do elementary 

arithmetic on the supposition that x + 1 is given, in other words, that we already 

know what it means to add the number one to any given number. But can we not say 

that there is already a difficulty in defining x + 1? Looking from a Kantian point of 

view, we may argue that the concepts ‘addition’ and ‘number’ must have 

corresponding intuitions. Besides the principle of mathematical induction, and 

perhaps even prior to it, the basic concepts of arithmetic must be understood 

intuitively instead of as mere logical symbols without any significance. Poincaré 

would have certainly agreed. When he is arguing against logicists, Poincaré writes: 

“You give a subtle definition of numbers; then, once this definition given, you think 

no more of it; because, in reality, it is not it which has taught you what number is; 

you long ago knew that” (2014, Book II, Chapter 3). What has taught us what 

numbers are is the intuition of pure number, i.e. the ability to conceive the idea of 

indefinite repetition. But Poincaré separated himself from Kant by claiming that what 

is intuited in arithmetic is not the pure form of our sensibility. For Poincaré, space 

and time are mental frameworks which are imposed by us upon nature, yet they are 

not given a priori, because experience plays a certain role in their foundations. These 

frameworks are invented by us in order to accommodate our particular field of 

experience, and it is experience that guides us in choosing the most convenient 

framework for representing natural phenomena. If such a framework were to be a 

basis for the basic concepts and principles of arithmetic, then arithmetic would not be 

an a priori science, for experience would then have a determinant role in its 

foundations. Thus Poincaré was careful not to relate the intuition of pure number to 

the intuition of time as a form of sensibility. Although he did not say directly that the 
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ability to conceive the idea of indefinite repetition pertains to the form of our 

understanding, he did say that the idea of group18, which is given a priori and which 

“preexists in our minds, at least potentially […] is imposed on us not as a form of our 

sensitiveness, but as a form of our understanding” (2011, p. 82). We can infer that 

the ability to iterate indefinitely and hence the principle of mathematical induction is 

also imposed upon us by the form of our understanding. The intuition of pure number 

pertains not to sensibility but to understanding, because it seems that it is the form of 

the latter which Poincaré considered as being independent of experience. In this 

sense there is a significant deviance from the Kantian thought on Poincaré’s side. 

Poincaré has completely separated arithmetic from sensibility; both from sensible 

objects and from the forms of our sensibility.  

 It may sound odd to argue that there is absolutely no relationship between the 

intuition of pure number and time, since ‘succession’ and ‘repetition’ seem to be 

temporal concepts. In fact, in The Value of Science, Poincaré writes that it is 

repetition which gives space its quantitative character, and that “repetition supposes 

time; this is enough to tell that time is logically anterior to space” (1907, p. 72). But 

he did not recourse to the idea of time while explaining the foundations of arithmetic 

and the intuition of pure number. Especially in his paper “The measure of time”19, 

Poincaré treated time as a convenient framework just like space. He wrote, “We have 

not a direct intuition of simultaneity, nor of the equality of two durations” (1907, p. 

35). In order to measure time, we need to make use of certain means; these may 

include pendulums, the revolution of the Earth around itself, or the speed of light. In 

making one of these methods the standard way of measuring time, we need to adopt 

some rules whose truth we cannot know a priori but must choose in terms of 

                                                            
18 A group in mathematics is a set with a binary operation, which combines any two elements to create 

a third in such a way that group axioms are satisfied, namely, closure, associativity, identity, and 

invertability. Poincaré argued that not any particular group but the idea of group in general pre-exists 

in our minds as a form of our understanding. The concept of group and its role in the genesis of 

geometry is discussed in Chapter 3.5.1 (A). 

 

 
19 Poincaré (1898), Revue de Métaphysique et de Morale, 6, pp. 1-13. Also appears in The Value of 

Science (2008), Chapter II. 
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convenience and simplicity20. Nevertheless, Poincaré mentioned a psychological 

time, which indeed appears as a form pre-existing in our minds. He described this as 

the feeling by which we distinguish “present sensation from the remembrance of past 

sensations or the anticipation of future sensations” (1907, p. 26). It is also the feeling 

which informs us that between the memories we can recall, there always remain 

other instances of which we may not have a memory. Poincaré did not take 

psychological time into account in the foundations of arithmetic, nor did he refer to it 

when he is explaining the intuition of pure number. Moreover, he argued that 

psychological time alone is not sufficient for constructing the temporal framework in 

which we wish to put everything, including the phenomena of our consciousness, of 

other’s consciousness, and also the physical facts, “which no consciousness sees 

directly” (1907, p. 27). The construction of this framework requires certain 

assumptions whose truth we cannot know a priori. Contrary to this, the truth of the 

principle of mathematical induction is known a priori, because unlike our ideas 

about time, it involves nothing empirical; it is imposed on us directly by the form of 

our understanding and we have a pure intuition of this form. 

 

3.4.2 The Difference in the Foundations of Arithmetic and Geometry 

 

 But can we not raise to Poincaré the same criticism he raised against Kant? 

That is, could experience play a role in the form of our understanding as it does for 

our sensibility? Poincaré answers this in the negative and compares the principles of 

arithmetic with that of geometry to endorse his view. As we have said, Poincaré 

argued that experience cannot be the source of the principle of mathematical 

induction, but only an opportunity of using it; the principle is a perfect example of a 

synthetic a priori judgment and it is imposed on us with an irresistible weight of 

evidence by the very nature of our minds. This is why Poincaré believed that we can 

never conceive the rejection of this principle and construct a “false arithmetic” that 

                                                            
20 With respect to pendulums, and therefore to all sorts of clocks, it is assumed that all the beats of the 

pendulum are of equal duration. With respect to the revolution of the Earth, it is assumed that two 

complete rotations of the Earth about its axis have the same duration. And with respect to the speed of 

light, Poincaré claimed that it is assumed that light has a constant velocity and that it is the same in all 

directions: “This postulate could never be verified directly by experiment; it might be contradicted by 

it if the results of different measurements were not concordant” (1907, p. 34). 
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would follow from a contrary proposition (2011, p. 57). But there is something 

fundamentally different in geometry. According to Poincaré, principles of geometry 

are not given a priori but chosen conventionally under the guidance of experience, 

and this is exactly why it was possible to construct non-Euclidean geometries. 

Poincaré thought it was evident, for instance, that the fifth postulate of Euclid is not 

forced upon our minds, for we are able to reject it and construct alternative 

geometries using Riemann’s or Lobachevsky’s postulates (see footnote 14). For 

Poincaré this showed that the Euclidean framework, which we find intuitive and with 

the help of which we reason about physical phenomena, is not unique; there are 

different possible frameworks, equally conceivable and coherent. The reason we find 

the Euclidean framework intuitive is not because it is a form pre-existing in our 

minds prior to all experience, but because it is the simplest and the most convenient 

one that describes our particular field of experience. If we were taken to another 

world in which our impressions would change radically and where the motion of 

objects would follow altogether different laws from the ones we are accustomed, 

then, given enough time, our sensibility would adapt its form. Our straightedge and 

compass would no longer describe the lines we are familiar with, and so we would be 

forced to choose different principles describing different frameworks. In other words, 

we would be led to adopt different conventions, and it is going to be these 

conventions that we will be teaching in the geometry classes of our hypothetical 

secondary schools. “So that beings like ourselves, educated in such a world, will not 

have the same geometry as ours” (2011, p. 79). On the other hand, Poincaré believed 

that the same is not true for arithmetic. He held that no experience can render the 

principle of mathematical induction useless and compel us to abandon it; contrary to 

Euclid’s postulates, this principle is not a convention, but an affirmation of a 

property of the mind itself. Poincaré writes: “Let us next try to […] reject 

[mathematical induction] and let us construct a false arithmetic analogous to non-

Euclidean geometry. We shall not be able to do it” (2011, p. 57). Here for the first 

time we see clearly the reason behind Poincaré’s rejection of the possibility of 

constructing an alternative arithmetic. The reason is simply that arithmetic is a pure, 

a priori science, whose basic concepts and principles are known independently of 

experience by a pure intuition; whereas the postulates and the meaning of the basic 
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concepts of geometry cannot be known a priori, these are determined by convention: 

“It is impossible to discover in geometric empiricism a rational meaning” (2011, p. 

115). So far we have explained Poincaré’s views on the nature of arithmetic and 

specified briefly how it is different from geometry. But we have not yet elaborated 

on his ideas about how we have constructed geometry and what exactly is the role 

experience plays in its foundations. This will be our next subject.  

 

3.5 Conventionalism in Geometry 

 

 Poincaré argued that it is impossible to decide a priori whether the concept of 

straight line, whose definition is ‘the shortest distance between two points’, 

corresponds to a Euclidean or a non-Euclidean line, or how many ‘lines’ can pass 

through two points. There is not a rational decision to be made concerning these 

matters. Like Euclid, we may assume that lines can be extended indefinitely, that 

there is only one line passing through two points, and that there is only one line 

parallel to a given line. We would then be giving the name straight to the sides of 

Euclidean triangles and by accepting his other postulates we can derive the rest of 

Euclidean geometry. But we may equally assume, as Riemann did, that lines cannot 

be extended indefinitely, that there are more than one line passing through two 

points, and that there are no parallels. We would then be giving the name straight to 

the sides of spherical triangles and derive a body of geometry which is equally 

coherent and interesting as Euclidean geometry. Poincaré’s reasoning on this matter 

is straightforward: If Euclid’s postulates were a priori intuitions as Kant affirmed, 

“They would then be imposed upon us with such a force that we could not conceive 

of the contrary proposition, nor could we build upon it a theoretical edifice. There 

would be no non-Euclidean geometry” (2011, p. 57). Since there is, then the truth of 

Euclid’s postulates is not the result of an a priori reasoning, and this becomes even 

clearer when we compare them with what Poincaré called a true synthetic a priori 

judgment, i.e. the principle of mathematical induction.   

 What, then, is the source of these postulates, and why is it that we feel 

unwilling to oppose them? Is it because they are actually experimental facts? But as 

Kant has shown and later Poincaré confirmed, experience cannot be the basis of a 
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geometric truth: “We do not make experiments on ideal lines or ideal circles; we can 

only make them on material objects” (2011, p. 58). Experiments done with material 

objects will always remain approximate, whereas in geometry there is certainty. 

According to Poincaré, if someday we observe objects which are moving differently 

from what we are used to and whose movements more or less resemble non-

Euclidean motions, we would not conclude that this experiment refutes Euclidean 

geometry, but rather prefer to draw conclusions about these particular objects21; 

Euclidean geometry and all other geometries would remain unaffected by such an 

experiment. “No experiment will ever be in contradiction with Euclid’s postulate; 

but, on the other hand, no experiment will ever be in contradiction with 

Lobachevsky’s postulate” (2011, p. 86). Experience can neither directly verify nor 

refute geometric postulates. 

 The situation in geometry is rather peculiar. There are propositions in 

geometry whose truth we hold as self-evident and therefore consider as axioms, but 

the truth of these propositions cannot be shown by reasoning a priori (since we can 

equally conceive contrary propositions), neither by way of experience, and yet still, 

there is no doubt that geometry is in some connection with experience, for it lies in 

the foundations of almost all physical sciences. “It then follows for Poincaré […] that 

we have here – in this very special situation – a conventional choice or free 

stipulation” (Friedman, 1995, p. 312). The axioms of geometry belong to a new 

epistemic category: they are conventions. 

Conventions are “intermediary principles found in scientific disciplines that 

lie on the border between pure mathematics (the synthetic a priori) and the natural 

sciences (the synthetic a posteriori)” (Folina, 2014, p. 26). These are not forced upon 

us by the nature of our minds, nor are they experimental facts. Even though 

experience cannot directly refute a convention, it does guide us in choosing the most 

useful one among other possible hypotheses. This is exactly the situation in 

Euclidean geometry22. Contrary to spherical or hyperbolic geometries, Euclid’s 

                                                            
21 See Science and Hypothesis (2011), Chapter V. 

 

 
22 Conventions are not limited to geometry. According to Poincaré, they are found in physical sciences 

as well, e.g. the principle of least action, the principle of inertia, etc. For the discussion about the 

conventions in physical sciences, see Science and Hypothesis, Chapter VI.   
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geometry, in other words plane geometry, is the geometry that seems most intuitive 

to us, and it is this geometry that we consider as standard. Poincaré thought that this 

is because the framework built using Euclid’s axioms is the most convenient one that 

describes the movements of the most significant objects around us, including our 

own bodies, which are called solid objects. Poincaré defined them as “[the] objects 

whose displacements may be corrected by a correlative movement of our body”23 

(2011, p. 70). For us, these objects are such that they do not change their shape or 

size as they are moving. Euclid’s postulates provide us with the most simple and 

convenient framework for describing the movements of objects which are displaced 

without being deformed, and since this is characteristic of the most significant 

objects around us, it is not a mystery that we have intuitively adopted the Euclidean 

framework. However, this movement – a displacement without deformation – is 

never perfectly realized. We know that due to changes in pressure or heat, very small 

variations which are imperceptible by us occur in the shape and size of these objects. 

“But in laying the foundations of geometry we neglect these variations; for besides 

being but small they are irregular, and consequently appear to us to be accidental” 

(2011, p. 77).  

In Poincaré’s philosophy, experience is an integral part of geometry. 

According to him, we construct a framework of spatial associations “by studying the 

laws by which [sensation of objects] succeed one another” (2011, p. 67). For 

Poincaré, these associations are what we call the evidence for geometric truths – the 

repugnance we feel towards breaking very old habits (2008, p. 104). “It is just 

because this association is useful for the defense of the organism, that it is so old in 

the history of the species and that it seems to us indestructible” (1907, p. 71). But 

what is associated can be dissociated, though in the case of spatial associations this is 

very difficult, because “we have to overcome a multitude of associations of ideas 

which are the fruit of a long personal experience and of the still longer experience of 

                                                            
 

 
23 Correcting a displacement means to perform the movements that would establish the initial 

impressions of the object before its movement. If I see a car moving a meter to the left in front of me, 

I can trace its movement with my eye and by walking a meter to the left I can reestablish my 

impressions of the car. A detailed explanation of what a displacement is and what it means to correct 

it is given in 3.5.1. (B).  
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the race” (1907, p. 70). However, since the laws of succession of the sensation of 

objects is not something we can discover by reasoning a priori but by experience, 

Poincaré maintained that there is nothing preventing us from imagining these objects 

to be succeeding one another according to laws which differ from the ones we are 

accustomed. According to Poincaré, this is exactly what non-Euclidean geometries 

amount to – frameworks that describe objects which are moving according to 

unconventional laws. 

 

3.5.1 Conditions for Constituting Geometry 

 

 Poincaré cites both a priori and (unlike in the case of arithmetic) empirical 

conditions that play a role in the genesis of geometry, and according to him, these 

empirical conditions define the subject matter of geometry (Folina, 2014, p. 13). 

When I say a priori conditions, I mean that which is given prior to all experience and 

which pertains to the constitution of the mind; and when I say empirical conditions, I 

mean that which is given in experience and which a mind having the described 

constitution encounters. 

3.5.1.1 A priori Conditions 

First of all, in order to build the framework we call space an organism needs 

to have a mind that is capable of conceiving indefinite repetition. As we have said, 

Poincaré thought that only then can number be a part of geometry and space may 

have a quantitative character. The intuition of pure number is therefore necessary for 

constituting geometry. Besides, Poincaré argued that this intuition plays a very 

important role in the invention of the mathematical continuum, and the space of the 

geometer is actually a three dimensional mathematical continuum. The invention of 

the mathematical continuum deserves a detailed investigation on its own; here we 

can only deal with it briefly24. We can summarize Poincaré’s position in the 

following way: The rough data of our senses sometimes give us contradictory results. 

It may happen, for instance, that our sense of weight cannot distinguish two objects A 

                                                            
24 It will be explained how a continuum of the first-order – as Poincaré called it – is created. This is 

the continuum composed of integers and fractions. But the real continuum of the mathematician is a 

continuum of the second-order, which is composed of real numbers. For the creation of a second-

order continuum, see Science and Hypothesis (2011), Chapter II. 
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and B, weighing 10 and 11 grams respectively, while it can distinguish A from C, 

which is weighing 12 grams, but cannot distinguish B from C.  The results of our 

experience may then be expressed as “A = B, B = C, A < C, which may be regarded 

as the formula of the physical continuum. But here is an intolerable disagreement 

with the law of contradiction, and the necessity of banishing this disagreement has 

compelled us to invent the mathematical continuum” (2011, p. 28). Even though we 

may develop better and more delicate instruments, according to Poincaré we will 

never be able to escape from the inherent contradiction of the physical continuum by 

following such a method. There will come a time when we encounter again with a 

new, indistinguishable term. “We only escape from [this contradiction] by 

incessantly intercalating new terms between the terms already distinguished, and this 

operation must be pursued indefinitely” (2011, p. 29). Now since we can 

immediately become conscious of the possibility of such an operation on the basis of 

the intuition of pure number, we can create a mathematical continuum where every 

element is completely distinguishable from one another and therefore escape from 

the inherent contradiction of the physical continuum when experience gives us 

contradictory results. 

Another a priori condition for constituting geometry is for the mind to have 

the notion of group. A mathematical group is a set with a binary operation that 

combines any two elements to create a third in such a way that group axioms are 

satisfied (see footnote 19). Poincaré writes, “What mathematicians call a group is the 

ensemble of a certain number of operations and of all the combinations which can be 

made of them” (Poincaré, 1898, p. 13).  For instance, the set of all integers together 

with the addition operation forms a group. According to Poincaré, the general notion 

of group pre-exists in our minds, at least potentially, as a form of understanding, and 

“the object of geometry is the study of a particular ‘group’ […] only, from among all 

possible groups, we must choose one that will be the standard, so to speak, to which 

we shall refer natural phenomena” (2011, p. 82). Here ‘natural phenomena’ 

designates the observable motion of objects. Poincaré argues that we consider the 

displacements of the objects around ourselves as forming a group, and the object of 

geometry is the group of these displacements.  
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Displacements, which we shall soon discuss as an empirical condition for 

geometry, are movements performed by objects that can be corrected by a correlative 

movement of our body, and the objects that perform such a movement are called 

solid objects. For us, these objects move continuously without changing their shape 

or size; they do not go through sudden changes, shrink or extend. According to 

Poincaré, the possibility of such a motion is admitted implicitly in Euclid’s 

postulates, and the properties of the group describing this particular motion are used 

in his demonstrations25. But “the possibility of the motion of an invariable figure is 

not a self-evident truth” (2011, p. 53). Euclid adhered to the properties of a particular 

group intuitively, as we all do, not because it was the ‘pure’ form of his sensibility, 

but because it just happens that the objects whose movements we can correct with a 

corresponding movement of our body are those that do not change their shape as they 

are moving, and the displacements of these objects obey approximately to the 

properties of this particular group. This group already exists in our minds potentially, 

along with countless other possible groups, yet experience gives us the opportunity to 

reach it (2011, p. 82) and to employ it in explaining natural phenomena.  

Not all these groups are suitable for describing displacements. Poincaré 

believed that those that are suitable are determined by a theorem of Norwegian 

mathematician Sophus Lie (1842-1899), which characterizes all manifolds where 

free mobility of figures is possible26. Poincaré argued that Lie’s group-theoretic 

solution to Helmholtz’s problem of space27 shows that the number of geometries in 

                                                            
25 This point is mentioned in almost all of Poincaré’s writings on geometry, but the most detailed 

explanation is given in “On the foundations of geometry”. Poincaré (1898) writes, “When I pronounce 

the word ‘length’, a word which we frequently do not think necessary to define, I implicitly assume 

that the figure formed by two points is not always superposable upon that which is formed by two 

other points; for otherwise any two lengths whatever would be equal to each other. Now this is an 

important property of our group”. And again, “How do we proceed in our reasonings? By displacing 

our figures and causing them to execute certain movements. I wish to show that at a given point in a 

straight line a perpendicular can always be erected, and to accomplish this I conceive a movable 

straight line turning about the point in question. But I presuppose here that the movement of this 

straight line is possible, that it is continuous, and that in so turning it can pass from the position in 

which it is lying on the given straight line, to the opposite position in which it is lying on its 

prolongation. Here again is a hypothesis touching the properties of the group” (p. 33). 
 

 
26 In modern terms, free mobility amounts to constant Riemannian curvature. For Poincaré’s 

interpretation of Lie, see Poincaré (1898, p.37; 2011, p.55). 
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which free mobility is possible is limited, and for Poincaré, this amounts to saying 

that there are only a limited number of groups suitable for describing the 

displacements of objects. In all these geometries (1) space has n dimensions, (2) the 

movement of an invariable figure is possible, and (3) p conditions are necessary to 

determine the position of this figure in space. “The number of geometries compatible 

with these premises will be limited. I may even add that if n is given, a superior limit 

can be assigned to p” (2011, p. 55). When n is 3, only three systems of geometry can 

be established: flat, hyperbolic, and spherical; in other words, zero curvature, 

constant negative curvature, and constant positive curvature. A particular group of 

displacements corresponds to each of these geometries, and the choice as to which of 

these groups is going to refer to natural phenomena – the observable motion of 

objects – remains free. But the choice is not made arbitrarily; here it is experience 

that guides us. We have chosen the geometry of zero curvature, i.e. the Euclidean 

group, because, first of all, it is simpler28; and second, the most significant objects 

that approximate to what we call an invariable figure are such that they do not 

change their shape as they are moving, and this is the group that best describes such 

movements. But certain movements that may be described by other groups are not 

ruled out a priori. In Science and Hypothesis Poincaré imagines a hypothetical world 

whose inhabitants would most likely adopt a non-Euclidean group to refer to the 

phenomena of their world.  

Suppose, for example, a world enclosed in a large sphere and 

subject to the following laws:—The temperature is not uniform; it 

is greatest at the center, and gradually decreases as we move 

towards the circumference of the sphere, where it is absolute zero. 

The law of this temperature is as follows:—If R be the radius of the 

sphere, and r the distance of the point considered from the center, 

the absolute temperature will be proportional to𝑅2 − 𝑟2. Further, I 

shall suppose that in this world all bodies have the same co-

efficient of dilatation, so that the linear dilatation of any body is 

proportional to its absolute temperature. Finally, I shall assume that 

                                                                                                                                                                         
27 In Philosophy of geometry from Riemann to Poincaré, Roberto Torretti (1984) formulates 

Helmholtz’s problem of space as follows: “Which among the infinitely many geometries whose 

mathematical viability has been shown by Riemann's theory of manifolds are compatible with the 

general conditions of possibility of physical measurement” (p. 154). See Torretti (1984), Chapter 3.1 

for further discussion of Helmholtz’s problem of space and Lie’s solution of it. 

 

 
28 “It is the simplest in itself, just as a polynomial of the first degree is simpler than a polynomial of 

the second degree” (2011, p. 59). 



 
 

45 

a body transported from one point to another of different 

temperature is instantaneously in thermal equilibrium with its new 

environment. There is nothing in these hypotheses either 

contradictory or unimaginable. A moving object will become 

smaller and smaller as it approaches the circumference of the 

sphere29.   

To us who are living outside the sphere, the objects moving inside the sphere would 

no longer appear as invariable figures, for they would undergo deformations which 

we would be unable to correct by a corresponding movement of our body. An object 

O inside the sphere moving from point A to point B would shrink or expand, and no 

matter where we move around this sphere we will never be able to have the same 

impression of O when it was in A. But the creatures who are living inside the sphere 

and therefore subject to the same deformation O undergoes can reestablish their 

impressions by performing a corresponding movement with their bodies. They would 

therefore consider O as an invariable figure, and the movement it performs as a 

displacement. The object of their geometry would be the group of these particular 

displacements, i.e. “The laws of motion of solids deformed by the differences of 

temperature” (2011, p. 76). “Beings educated there would no doubt find it more 

convenient to create a geometry different from ours, and better adapted to their 

impressions” (p. 82), they would adopt a non-Euclidean group and this will be the 

one that they find intuitive. Poincaré treated these groups as models that lie ready in 

the mind: “We have within us, in a potential form, a certain number of models of 

groups, and experience merely assists us in discovering which of these models 

departs least from reality” (1898, p. 13). 

 The list of a priori conditions for establishing geometry can no doubt be 

extended. For example among these conditions we can cite the logical rules of 

inference, and perhaps self-awareness, for in order to establish a system of spatial 

associations the organism needs to have a certain degree of awareness of its own 

movements – these should be performed voluntarily. It also has to be able to recall 

these movements as well as the movements of other objects. These and a few other 

conditions were mentioned by Poincaré as well, but the two that are discussed above 

were the ones that interested him the most.      

                                                            
29 In the following paragraphs, Poincaré supplements this picture with hypotheses concerning the 

relationship between the laws of heat and the refraction of light, thereby altering the impressions of 

the inhabitants of this world even further. See (2011, pp. 75-79). 
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3.5.1.2 Empirical Conditions 

Like the list of a priori conditions, the list of empirical conditions is certainly 

much longer than what is written here. Only two of these conditions will be 

discussed, though these are the ones that were emphasized the most in Poincaré’s 

writings. 

 The first empirical condition that needs to be satisfied for an organism to 

establish geometry is for the organism to have mobility. According to Poincaré, a 

motionless being could have never acquired the idea of space (2011, p. 69). Space 

does not necessarily have to be a pure intuition, and in fact it is not, because there are 

other conceivable spaces than the one we find intuitive; rather, we are able to 

conceive a certain group of spatial relations simply because we are creatures who can 

perform certain movements. Mobility should be granted if an organism is to have an 

idea of space, otherwise the organism would have no means of discovering spatial 

relations; this is something it cannot do by reasoning alone. If the organism is 

motionless, then there is no way for it to correct the movements of objects by 

performing a corresponding movement with its own body. It will therefore be unable 

to distinguish changes of state from changes of position. Poincaré considered these 

as the two main changes that objects may undergo. An object can either change its 

state or it can change its position. If an object undergoes a change of position, we say 

that the object has been displaced. The possibility of making this distinction lies at 

the basis of geometry, and Poincaré argued that it is impossible for an immobile 

creature to make it. 

 But it is not enough for the creature to be mobile. In order to distinguish 

changes of state from changes of position the motion of objects must also meet 

certain criteria. Objects should move in such a way that we can correct them with a 

correlative movement of our body and restore our initial impressions of the objects; 

only then can we say that objects are displaced. This, then, is the second empirical 

condition for establishing geometry – the possibility of displacement. So far we have 

mentioned this concept several times, especially when explaining the concept of 

group, and there we gave its definition: Displacements are movements performed by 

objects that can be corrected by a correlative movement of our body. We have also 

said that objects capable of performing such a movement are called solid objects. 
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That there are such objects is not a self-evident truth, but an experimental fact, and 

Poincaré argued that from this experimental fact we are led to distinguish the two 

main classes of changes that objects may undergo:  

We see at first that our impressions are subject to change; but 

among the changes that we ascertain, we are very soon led to make 

a distinction. Sometimes we say that the objects, the causes of these 

impressions, have changed their state, sometimes that they have 

changed their position, that they have only been displaced. (2011, 

p. 68) 

We are able to make this distinction, because it just happens that there are objects 

whose changes are such that we can “restore the primitive aggregate of impressions 

by making movements which would confront us with the object in the same relative 

situation” (2011, p. 68). We classify the changes that can be corrected by this means 

as changes of position, and those that cannot be corrected are called changes of state. 

Objects which frequently experience displacements that may be thus corrected are 

called solid bodies. If “there were no solid bodies in nature there would be no 

geometry” (2011, p. 71), because we would not be able to distinguish changes of 

position from changes of state and so could not obtain the idea of space.  

A quick digression is necessary. We should notice that in claiming that there 

are ‘solid’ bodies in nature Poincaré is not actually affirming a property of the things 

in themselves30. Here solid body only refers to a relation being ensured between 

objects and ourselves, that a certain compensation is possible. Our classification of 

objects as solid does not directly concern what they are as they are in themselves; 

what distinguishes these objects is determined in relation to us. And in fact, an object 

that is considered solid by an observer and whose movements are recognized as 

displacements may not be considered solid by another observer. Remember the 

                                                            
30 Poincaré agreed with Kant on the idea that nothing concerning the things in themselves can be an 

object of knowledge; all that can be known is our specific relationship with objects. “[The physical 

theories] teach us now, as they did then, that there is such and such a relation between this thing and 

that thing; only, the something which we then called motion, we now call electric current. But these 

are merely names of the images we substituted for the real objects which Nature will hide for ever 

from our eyes. The true relations between these real objects are the only reality we can attain” (2011, 

p. 179) In fact, there are passages where Poincaré went even further and argued that the true reality is 

nothing but these relations; an investigation into the properties of things as they are in themselves 

actually has no object. “External objects, for instance, for which the word object was invented, are 

really objects and not fleeting and fugitive appearances, because they are not only groups of 

sensations, but groups cemented by a constant bond. It is this bond, and this bond alone, which is the 

object in itself, and this bond is a relation” (1907, p. 138). 
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hypothetical creatures living inside the sphere. The objects these creatures would 

consider solid and whose movements they would classify as displacements would not 

be considered solid by us, for there is no way for us to “restore the primitive 

aggregate of impressions by making movements which would confront us with the 

object in the same relative situation”. Thus, in saying an object is solid Poincaré is 

not pointing at an objective reality, but only stating that a certain relationship can be 

ensured between the observer and the object in question. Let us now return to our 

main subject. 

Assume that two objects, first 𝑂1and then 𝑂2 (let these be a red sphere and a 

blue cube), move from point A to point B. For the sake of the argument let us also 

assume that we do not yet know geometry, and so cannot relate the changes these 

objects are undergoing to points or to space in general. We can only ascertain 

that 𝑂1, which was causing the aggregate of impressions 𝛼, is now causing the 

impressions 𝛼′; and 𝑂2, which was causing the aggregate of impressions 𝛽, is now 

causing the impressions 𝛽′. Poincaré argues that in terms of sense data there is 

nothing in common between 𝛼 and 𝛽, and so between 𝛼′and 𝛽′; these are two 

completely different groups of sensations. But still, even without knowing geometry 

and having an idea of space, it is possible for us to assert that both 𝑂1and 𝑂2 merely 

changed their position and performed the same displacement. This is possible if, by 

the same correlative movement of our body, we can reestablish the initial 

impressions 𝛼 and 𝛽. If we can thus correct our impressions then we call both 

changes a displacement, and indeed, the same displacement. This possibility is 

granted to us by experience. We then consider all these displacements – that 

particular class of movements which can be corrected by a correlative movement of 

our body – as forming a group, and the true object of geometry is this group. 

According to Poincaré, when we represent an object in space, we are actually 

thinking about a certain group of displacements; when we say an object is at some 

point in space, “it simply means that we represent to ourselves the movements that 

must take place to reach that object” (2011, p. 67). So we may argue that what Kant 

thought was a pure form of sensibility – that which remains after everything sensible 

is abstracted from the representation of an object – was, in fact, a representation of a 
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certain group of movements, which are performed frequently by the most significant 

objects around us, including our bodies. 

According to Poincaré, the group that we have chosen which best describes 

displacements pre-exists in our minds potentially along with other groups, but we 

have chosen the one that helps us accommodate our particular field of experience. 

The choice cannot be made a priori but it is not arbitrary either; it is nature that 

shows us the couch best suited to her stature (1898, p. 43). The displacements of 

material objects only approximately obey to the properties of the group we have in 

mind. But Poincaré writes that this is enough for us to consider this displacement, by 

an artificial convention, as a change resulting from two other component changes: 

one that is obeying the properties of the group rigorously; and the other, which is 

small, is regarded as a qualitative alteration (1898, p. 11).  

We cannot disregard the role experience plays in the genesis of geometry; we 

cannot separate space from the distinctive movements of our bodies and of other 

objects. The primitive concepts of geometry, such as distance, point, and line are 

understood on the basis of these particular movements, to which geometric postulates 

are also fundamentally related. This is the empirical part of geometry, for the 

possibility of these movements is given to us by experience. Precisely for this reason, 

Poincaré stated that geometry is not as pure as arithmetic31. There is nothing 

preventing us from imagining the impressions of objects to be succeeding each other 

according to laws which differ from the ones we are accustomed, and in fact, as we 

have seen above, Poincaré imagined a world where such impressions would be actual 

when the given physical hypotheses are granted. The geometry of the inhabitants of 

such a world will be different from ours, and neither our, nor their geometry will be 

the true geometry. One geometry can only be more convenient than another. The 

principles which these creatures would find intuitive are going to be different from 

the ones we find intuitive, and these may even be contradicting with each other, yet 

neither group of principles would be imposed by the nature of the minds of those 

who follow them; these will be merely convenient hypotheses, or “definitions in 

disguise” (2011, p. 59). It is possible for experience to render one of these principles 

useless one day (though not by directly contradicting it) and lead its followers to 

                                                            
31 “We must seek mathematical thought where it has remained pure – i.e., in Arithmetic” (2011, p. 6) 
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adopt another convention. However, a similar situation cannot happen in arithmetic, 

for according to Poincaré, the principles of arithmetic are imposed directly by the 

nature of the mind; this is a pure, a priori science. 

 

3.6 Summary 

 

The distinction between arithmetic and geometry in Poincaré’s philosophy of 

mathematics is now clear. In order to give a detailed explanation of this distinction 

we first presented Poincaré’s criticisms to logicism and formalism that emerged after 

Kant. According to Poincaré, mathematics is neither a branch of logic, nor merely a 

formal game whose rules have no intrinsic meaning; mathematics is a science and it 

is based on the intuitions of the human mind. But contrary to what Kant believed, 

Poincaré held that the intuition underlying mathematics is not the intuition of the 

pure forms of our sensibility, in other words, of space and time. The idea that there 

are frameworks in our minds which are given prior to all experience but which, 

nevertheless, determine the spatial and temporal relations between objects was 

unacceptable for Poincaré. He maintained that these frameworks were invented by us 

under the guidance of experience. It is true that nature does not impose them upon us, 

we impose them upon nature, yet we do this under her guidance and counsel. 

Poincaré argued that we do not have a pure intuition of space and time, “the persons 

who believe they possess this intuition are dupes of an illusion” (1907, p. 27); there 

are no ‘pure’ frameworks in our minds which are completely independent of 

experience. The invention of non-Euclidean geometries showed that there are other 

conceivable, yet unintuitive spaces, and for Poincaré this was proof that our 

framework is not unique. He believed that the reason for choosing this particular 

framework among other possible options cannot be given entirely on rational 

grounds; experience must be playing a determinant role in making this decision. He 

argued that it does this by showing us the most convenient framework among the 

possible ones. 

According to Poincaré, the pure intuition underlying mathematics pertains not 

to sensibility but to the form of our understanding, and this means for him an 

intuition of a certain capacity, a power of the mind. This is not a mysterious power, 
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but simply the capacity to conceive indefinite repetition. This is the intuition that 

gives meaning to the concept of number, and the principle of mathematical induction 

is the formulation of this intuition. The truth of synthetic judgments in arithmetic is 

shown with the help of this principle, and the truth of the principle itself is known a 

priori, because it is simply the affirmation of a property of the mind itself. For 

Poincaré, nothing empirical plays a role in the formulation of this principle; 

experience is only an opportunity of using it. This is why he considered arithmetic 

pure and restricted solely by the mind itself. But in geometry there are other 

principles. Geometric proofs are based on certain axioms whose truth is considered 

self-evident, but which, according to Poincaré, are not imposed upon us by the nature 

of our minds; they are convenient hypotheses. Euclid’s axioms are not self-evident 

truths of reason. This point is almost indisputable, for it is possible to replace, for 

instance, the fifth postulate with a contrary proposition and still build a new, though 

‘unintuitive’ geometry. The choice as to which propositions should be considered as 

axioms of geometry remains – to a certain degree – free, yet our choice is guided by 

experience. We are confronted with certain objects and their motion (or more 

precisely, aggregates of impressions), and experience shows us which of the potential 

frameworks in our minds is best suited to describe their motion. The most 

remarkable objects around us are solid bodies – objects whose displacements we can 

correct with a corresponding movement of our body, and which do not change their 

shape or size (at least perceptibly) as they are moving. Euclid’s axioms seem 

intuitive to all of us, and for a long time no one has doubted the truth of these 

axioms, because the framework built on the basis of these axioms describes the 

motion of figures that undergo no deformation as they are being translated, which is 

what the solid bodies in our field of experience approximates to. If we accept that 

lines can be extended indefinitely, and from a point only one parallel can be drawn to 

a given line, then a figure drawn between these lines can be translated without being 

deformed, and this figure can also be superimposed with another figure so that their 

sizes can be easily compared. But as Poincaré said, the motion of an invariable figure 

is not a self-evident truth. This possibility is shown to us by experience, for it has 

confronted us with certain objects whose movements approximately agree with the 

movement of a perfectly invariable figure. But since the familiar movements of 
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objects is something taught by experience, there is nothing preventing us from 

imagining different kinds of movements. We can imagine the impressions of objects 

to be succeeding each other according to different laws, and for Poincaré this is the 

starting point of a non-Euclidean geometry. But he held that something similar 

cannot be accomplished for arithmetic, because the principle of mathematical 

induction involves nothing empirical; its truth is directly imposed upon us by the 

nature of our minds. Trying to reject this principle and build an alternative arithmetic 

based on an opposite proposition would be equivalent to trying to cease thinking 

mathematically, for what we are trying to reject is the basis of mathematical 

reasoning. Poincaré concluded that it is impossible to build a new arithmetic as in the 

case of non-Euclidean geometries.  
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CHAPTER 4 

 

 

CANTOR’S TRANSFINITE ORDINAL ARITHMETIC 

  

 

 Is rejecting the principle of mathematical induction the only way to build a 

new arithmetic? It seems reasonable that unless we want mathematical thinking to 

cease, we should not ignore the pure intuition that gives meaning to the concept of 

number. But could not this intuition itself give rise to new principles? Could it be 

possible to establish a new arithmetic by developing, not by rejecting this intuition, 

and refining the primitive notions of arithmetic? I maintain that this is possible, and 

that Georg Cantor’s transfinite ordinal arithmetic provides an adequate example.  

In his famous paper Grundlagen einer allgemeinen Mannigfaltigkeitslehre32 

(1976/1883), Georg Cantor introduced to the world an entirely new type of number 

called transfinite numbers. These numbers were neither absolutely infinite nor finite; 

they designated a ‘many’ which is infinite, but which, at the same time, could be 

thought of as ‘one’ – as a determinate, completed unit. Transfinite numbers had a 

peculiar arithmetic where, for example, the commutative law failed to be generally 

valid in the case of addition and multiplication. In order to build the theory of these 

numbers German mathematician adhered to a principle whose author was no one but 

himself: the second principle of generation33. On the basis of this principle he 

defined the first transfinite ordinal number34 ω (sometimes called the smallest limit 

                                                            
32 “Foundations of a General Theory of Manifolds”. 

 

 
33 This principle will be examined in detail in Chapter 4.2. Cantor’s formulation is as follows: “If any 

definite succession of defined whole real numbers is given of which there is no greatest, then on the 

basis of this second principle of generation a new number is created, which can be thought of as a 

limit of those numbers, i.e. can be defined as the next greater number to all of them” (1976, p. 87). For 

instance, when the sequence of natural numbers is given, i.e. 1, 2, 3, 4, …, Cantor asserts that a new 

number ω is created by which we can count all the elements of the sequence and which, therefore, is 

greater than all of them. See 4.2.  

 

 
34 The two primary types of number Cantor discusses in his theory of manifolds are cardinals and 

ordinals. Cardinal numbers are not in the scope of this paper, though for some mathematicians they 

are the true subject, and arguably constitute the more interesting part, of set theory. In simplest terms, 
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ordinal), and then by using the first and the second principles of generation (see 4.2) 

he defined ω + 1, ω + 2,…, ω ⋅ 2, ω ⋅ 3, …, 𝜔2,…, 𝜔𝜔,… etc. Furthermore, unlike 

what Poincaré proposed, instead of rejecting the principle of mathematical induction 

and replacing it with a contrary proposition, Cantor extended this principle so that it 

would be applicable to his new, transfinite numbers. This new principle is called the 

principle of transfinite induction. Underlying all of Cantor’s mathematical 

innovations was his unusual but groundbreaking conception of infinity. Cantor 

brought a new meaning to the concept of infinity, but more importantly, he managed 

to make this a subject of mathematical investigation. I contend that the basis of 

Cantor’s new principles and novelties is the same as that which grounds the principle 

of mathematical induction – it is what Poincaré called the intuition of pure number. 

On this view, what justifies the truth of Cantor’s principles is the intuition of a 

distinctive capacity of the mind, only that Cantor has improved this capacity and 

refined the primitive mathematical notions accordingly, which became the starting 

point of a new arithmetic. 

Poincaré praised Cantor for the services he rendered to science; nevertheless, 

he openly contested Cantor’s new conception of infinity, more precisely, his 

acceptance of the actual infinite. The distinction between potential and actual infinity 

was first put forward by Aristotle to designate the difference between an 

uncontainable, never-ending progression; and a containable, yet infinite progression 

(see 4.1.1). In Science and Method, Poincaré (2008) wrote: “There is no actual 

infinity. The Cantorians forgot this, and so fell into contradiction” (p. 195). Poincaré 

believed that Cantor’s treatment of ‘all’ real numbers as a completed totality was 

inherently flawed. The idea of actual infinity has given rise to impredicative 

definitions (see 4.3), which in turn resulted in what Poincaré called Cantorian 

Antinomies35. But a lot of his criticisms are mainly directed to transfinite cardinal 

numbers, not ordinals, and more generally to non-predicative definitions. With 

                                                                                                                                                                         
a cardinal number is how many of something there is, whereas an ordinal number is what the order of 

something is. If we have a set of five objects, e.g. {a, b, c, d, e}, then the cardinal number that 

corresponds to this set is 5, for the set has that many elements. But if we are discussing about the 

element ‘c’ in this set, this will have the ordinal number 3, for it is the third element in the set. 

 

 
35 Burali-Forti’s antinomy, The Zermelo-König antinomy, Richard’s antinomy. See Poincaré (2011), 

p.185. 



 
 

55 

regards to transfinite ordinals, Poincaré was content only with stating the Burali-Forti 

Paradox and asserting that it was wrong to think ‘all ordinal numbers’ as forming a 

set. We will clarify Poincaré’s reasons for rejecting the idea of actual infinity, though 

these reasons have not prevented Cantor’s theory from gaining even more popularity 

and becoming one of the most interesting fields of today’s mathematics. Today, 

students of mathematics in higher education are introduced with these unusual whole 

numbers. Students are expected to give up their intuitive idea of infinity, or rather to 

see this concept under a new light, which was handed down to us by Cantor. What is 

astonishing is that when this is achieved and the theory of transfinites is understood, 

it allows us to solve some problems that we can formulate in the old theory but 

cannot solve without accepting the new one36. Like the invention of non-Euclidean 

geometries, which once demanded interpretation, we now have a ‘non-standard’, 

seemingly unintuitive arithmetic that we need to make sense of. The origin and the 

justification of the principles of this new arithmetic requires clarification. Surely the 

emergence of transfinites and their peculiar arithmetic did not take place exactly in 

the same manner as that of non-Euclidean geometries. First of all, unlike in the case 

of Euclid’s postulates, Cantor did not replace the principle of mathematical induction 

with a contrary proposition, but he rather improved the principle itself. Thus, the 

results of transfinite arithmetic are not in contradiction with the results of our 

standard, finite arithmetic; the new arithmetic is more of an extension of our previous 

system. Furthermore, the possibility of rejecting Euclid’s postulates stems from the 

role experience plays in their foundations. We have arrived at the postulates of non-

Euclidean geometries by assuming the empirical conditions underlying Euclidean 

geometry to be different, in other words, by assuming the impressions of objects to 

be succeeding each other according to laws which differ from the ones we are 

accustomed. But a similar method cannot be adopted in arithmetic. If we believe that 

arithmetic is a pure, a priori science, and as such, independent of experience, then 

we must hold that changes in empirical conditions – either actual or hypothetical – 

cannot result in a refinement in the basic concepts and principles of arithmetic. But 

such a refinement should nevertheless be possible, for there is no doubt that Cantor 

has succeeded in making it. I maintain that this is possible, not by rejecting the 

                                                            
36 Defeating the Mathematical Hydra and Goodstein’s Theorem are examples of such problems. These 

are discussed in Chapter 4.3.  
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intuitive results but by developing intuition itself, and this is in fact what Cantor did. 

In spite of the fact that I find Poincaré’s intuitionistic philosophy of mathematics 

accurate and Cantor’s realism  a bit too overwhelmed with metaphysics37, unlike 

Poincaré I believe Cantor in no way contradicted the previously given definitions, or 

the pure intuition on which primitive notions are based; instead, he has naturally 

extended them. Poincaré was wrong only in thinking that the intuition of pure 

number is limited and that it compels us to work only with finite whole numbers. 

Cantor paved the way for the idea of ‘infinite whole numbers’ to gain recognition, 

and in order to do this he had to change the commonly held, intuitive understanding 

of mathematical infinity. Let us first see how Cantor had managed to do this; later his 

theory will be presented in more detail. 

 

4.1 Theory of the Actual Mathematical Infinite 

 

In a paper published in 1899, Poincaré wrote: “Before, one began with a large 

number of concepts regarded as primitive, irreducible and intuitive; such were the 

concepts of whole number, fraction, continuous magnitude, space, point, line, 

surface, etc. Today only one remains, that of whole number” (as cited in McLarty, 

1997). Unfortunately, a few years before this was written, Cantor had published his 

Grundlagen in which he was presenting a reformulation of the concept of whole 

number – the last remaining frontier. The first section begins with the following 

lines: 

[…] my investigations in the theory of manifolds38 has reached a 

point where its continuation becomes dependent upon an extension 

of the concept of a real whole number beyond the present 

boundaries; in particular, this extension goes in a direction in 

which, to my knowledge, no one has so far looked for it. (1976, 

p.70) 

                                                            
37 Cantor’s metaphysical and even religious views play a determinant role in his mathematical theory 

of the infinite. The arguments to which Cantor appeals in order to explain a detail in his theory are 

sometimes metaphysical in nature. For example, according to Cantor (1976), “The true infinite or 

absolute, which is in God, admits of no kind of determination” (p. 76). He also believed that a clearly 

conceived mathematical entity will always have a counterpart in the external world because of the 

principle of “the unity of the all, to which we ourselves belong as well” (p. 79). 
 

 
38 Also used as “set” or “aggregate”. 
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Cantor argued that the traditional understanding of ‘whole number’ admits only finite 

numbers. He held that this concept should be made more comprehensive so that it 

allows infinite numbers as well. According to Cantor, the reason no one had 

considered the possibility of an infinite whole number lies in the widely accepted but 

rather limited understanding of infinity. He cited many philosophers, such as 

Descartes, Locke, and Leibniz, whom he thought had this understanding, while at the 

same time tracing the idea back to Aristotle. Cantor claimed that with regards to 

mathematics, the majority of philosophers held the following as an incontestable 

proposition taken from Aristotle: infinitum actu non datur39 . They believed that 

infinity in mathematics is meaningful only when it is used to designate a procedure 

that continues without ever terminating – “a variable magnitude, either growing 

beyond all limits or diminishing to an arbitrary smallness, always, however 

remaining finite”40 (1976, p.70). The obvious example is the generation of natural 

numbers by constantly adding 1 to itself, in other words, counting. It is easy to see 

that this procedure is never complete; there is no last element and thus it must be 

called potentially infinite. Clearly none of the steps of this procedure is the ‘infinite’ 

step; the procedure is never actually infinite. If we follow this line of reasoning then 

we must accept that infinity cannot be thought of as a determinate number, but only 

as an indefinitely varying magnitude or a non-terminating, endless progression. In 

order to argue for the existence of his transfinite numbers which were actually 

infinite, Cantor felt compelled to defeat Aristotle’s arguments. He claimed that the 

misconception about the state of affairs concerning the finite and the infinite, which 

was rooted in Aristotle’s writings, led philosophers to assume that no modifications 

can exist between the absolute infinite and the finite. Cantor proved otherwise: 

                                                            
39 “Actual infinity does not exist”. This was used almost as a motto by scholastic philosophers. 

 

 
40 In truth, Cantor said that infinity in mathematics has occurred so far under not one but two different 

forms. He called the one we have cited the non-genuine infinite, and this was the prevailing 

understanding for a long time. Cantor argued that the other one emerged in modern times, in particular 

in function theory: “It has become necessary and in fact common practice to imagine in the plane 

representing the complex variable a single point at infinity, i.e. an infinitely distant but determinate 

point” (1976, p.70). Cantor called this the genuine infinite. In contrast to non-genuine infinite, which 

he characterized as “variable finitude”, the genuine infinite was not variable but determinate. 

However, Cantor claimed that his transfinite numbers can be captured by neither of these two. For 

more on this see Cantor (1976), Section 1. 
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What I maintain and believe I have proved in this paper as well as 

in my earlier endeavors is that after the finite there is a transfinitum 

(which also could be called suprafinitum), i.e. an unlimited 

gradation of determinate modes which in their nature are not finite 

but infinite, yet which, much as the finite, can be determined by 

determinate, well-defined and distinguishable numbers. I am 

convinced, therefore, that the domain of definable magnitudes is 

not limited to the finite magnitudes; accordingly, the limits of our 

cognition may be extended further without it being necessary to do 

any kind of violence to our nature. (1976, p.76) 

 

4.1.1 Cantor’s Response to Aristotle’s Rejection of Actual Infinity  

 

 In Grundlagen, Cantor discussed two arguments which were given by 

Aristotle against the existence of an infinite number. First, in Metaphysics Book XI, 

Aristotle argues that a number is that which is arrived at by counting, and (1) only 

finite numbers can be counted; therefore, only finite numbers exist. The second 

argument is that if an infinite number were to exist, then (2) it would annul the finite 

numbers; since finite numbers do exist, then an infinite number does not. We take (1) 

and (2) as the two main premises which were used by Aristotle to prove the non-

existence of actual mathematical infinity. Cantor believed that his theory of 

transfinites, in which he gave a proper definition of an infinite number and made it 

subject to mathematical investigation, is proof that both (1) and (2) are false. 

 Cantor claimed that (1) is an undemonstrated proposition; in taking this as a 

true premise and concluding that only finite numbers exist, Aristotle has committed a 

petitio principii. He thought that only finite numbers can be counted, “because only 

counting procedures with respect to finite aggregates were known to him” (1976, 

p.75). Cantor believed that there are counting procedures with respect to infinite 

aggregates as well, and he designed such a procedure on the basis of his second 

principle of generation (see 4.2). This principle allowed him to define first the 

smallest and then the rest of the transfinite ordinal numbers, which were required to 

count infinite aggregates. ω is defined by the second principle of generation as the 

next greater ordinal number to all finite ordinals41; this is a number that has no 

                                                            
41 More precisely, ω denotes the order type of a set in which there is a first element and after every 

element comes a next element in accordance with a certain rule. The obvious example is {0, 1, 2, 3, 
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immediate predecessor and is used to count all the elements of the set of natural 

numbers. Every ordinal number has an immediate successor; this is something we 

hold intuitively and it is explained in Chapter 3.4 how this is rooted in the intuition of 

pure number. But in Cantor’s theory we find that not all ordinals have an immediate 

predecessor, and ω is the smallest number having this property42. It is impossible to 

reach ω with a successive addition of units, in other words, by finite counting. For 

Cantor, however, this does not make transfinite ordinals less real than finite ordinals, 

for on the basis of his new generation principle he has succeeded in defining the 

former as determinate and precise as the latter, and extended counting beyond finite 

numbers, showing that number formation does not end with finite numbers. But how 

was Cantor able to arrive at this principle which was unnoticed by Aristotle? 

Everyone who has read Cantor and knows a little about his life should notice the 

theological motives behind his mathematical research. Cantor thought that his 

ambitious investigation into the concept of the infinite was inseparable from the 

study of God, i.e. the absolutely infinite being. In fact, throughout his investigations, 

Cantor believed that time to time, God was with him. In his book Georg Cantor: His 

Mathematics and Philosophy of the Infinite (1990) J. W. Dauben writes that Cantor 

believed the fundamentals of set theory were divinely inspired to him by God (p. 

298). I maintain that it is possible to free Cantor’s theory from these theological 

connotations and argue that what he has actually accomplished was to develop a pure 

intuition that was already present in him. On this view, it is the intuition of a mental 

capacity that underlies the second principle of generation. This capacity consists in 

conceiving an indefinitely repeating process as a single event and assigning to it a 

determinate number when a certain order can be found among its members. In the 

language of set theory this means well-ordering of a set that has infinitely many 

elements. This point will be elaborated in Chapter 4.2. 

 With respect to (2), Cantor did not deny that an infinite number annuls a finite 

number, but he held that this happens only under certain circumstances, and since 

                                                                                                                                                                         
…}, i.e. the set of all natural numbers. The set of all natural numbers is said have the order type ω, or 

similarly, ω is the ordinal number that corresponds to the set of all natural numbers. See 4.3. 

 
42 ∄x [x + 1 = ω], x ∈ N 
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Aristotle did not properly define an infinite whole number and gave it a determinate 

meaning, his intuitive reasoning cannot be accepted without criticism. In truth, 

Aristotle did not use (2) directly in order to show the non-existence of an infinite 

number, but rather to show that a body – “that which is bounded by planes” – or 

likewise any of the elements that make up a body – fire, water, earth, air – cannot be 

infinite. He wrote, “If one of the two bodies falls at all short of the other in potency, 

the finite will be destroyed by the infinite”; and similarly, if an element like fire or 

water were to be infinite, then “it would be the destruction of the contrary elements” 

(Aristotle, trans. 2015, p. 114). Cantor saw this argument as directly applicable to 

mathematics, and held that it is concerned not with the magnitude of a body or an 

element, but with numbers in general. This is quite understandable, for when we are 

first introduced with the idea of mathematical infinity in high school – which is 

shown with the symbol ∞43 – most of us are naturally led to think like Aristotle: we 

consider this in terms of potential infinity and believe that any finite number that 

goes into operation with it would be destroyed. ∞ is not a determinate number, it is 

rather thought of as a non-terminating process. This is why instead of writing x = ∞, 

we write x → ∞. Any finite number, however big it may be, would be utterly 

insignificant when it is standing next to ∞, and when such a number is added to or 

multiplied by ∞, it is unreasonable to think that the result would be something 

determinate: the finite number will always be annulled by the infinite. However, 

there is an error in this reasoning. ∞ cannot be used freely in arithmetical operations, 

because arithmetical operations for it are not defined. Surely there is an idea behind 

this term which we are all familiar with, but this is not enough to conceive it as a 

determinate number and make it subject to further mathematical investigation. 

Arithmetical operations with ∞ must therefore be left undefined, as is usually the 

case in calculus. On the other hand, contrary to ∞, Cantor defined ω as a determinate 

number and showed its relation to our traditional numbers, it is therefore possible to 

write x = ω. ω belongs to a class of a new type of numbers, namely, limit ordinals, 

which are defined by the second principle of generation. When Cantor defined 

arithmetical operations for limit ordinals, he saw that if ω is added to a finite number, 

                                                            
43 This symbol was first used by English mathematician John Wallis (1616-1703) in 1650s. 



 
 

61 

the result is ω: the finite number is destroyed by the infinite; but when a finite 

number is added to ω, the result is a new number. He expressed this as follows: 

1 + ω = ω 

On the other hand, 

ω + 1 ≠ ω 

 

ω + 1 is a whole new number, which is greater than ω, more precisely, its successor. 

Therefore, “We can very well adjoin a finite number to an infinite number (if the 

latter is thought of as determinate and complete) and unite the finite number with the 

infinite number without bringing about the annulment of the former” (1976, p. 75). 

This result will be explained in detail in Chapter 4.2.1, at the moment it is sufficient 

for appreciating Cantor’s reasons for rejecting Aristotle’s argument. 

 

4.1.2 The Intuition of Pure Number and Potential Infinity 

 

According to the theory suggested in this thesis, the affinity we feel for the 

idea of potential infinity is caused by the intuition of pure number. What has led 

Aristotle, and is leading us even today, to resist the idea of actual infinity in 

mathematics is the particular meaning that the concept of infinity acquires through 

the intuition of pure number.  

It is quite easy to relate this intuition to the idea of potential infinity. The 

intuition of pure number amounts simply to becoming conscious of mind’s ability to 

conceive indefinite repetition. When we want to express that a certain quantity is 

infinite (i.e. the number of elements in the set of natural numbers), or similarly a 

procedure is infinite (i.e. counting), we actually make use of this intuition, for what 

we mean is nothing other than that there is no end to what we are measuring; it can 

increase, or diminish, indefinitely. “Understanding indefinite iterability is what 

enables us to understand the potential infinity of a set like the natural numbers” 

(Folina, 1986, p. 35). 

Poincaré stated that even though we may think ourselves very far from the 

idea of infinity while discussing the foundations of arithmetic, this idea is already 

playing a preponderating part, and in fact, what makes mathematics a science is for 
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the most part its relationship with infinity (2011, p. 14). A similar view was 

expressed by Hilbert (1964) with the famous phrase: “Mathematical analysis is a 

symphony of the infinite” (p. 138). I believe that the concept of infinity, like that of 

number, is principally understood in terms of the intuition of pure number. This 

intuition, taken simply as ordinary counting, gives us the natural numbers and 

warrants proofs by mathematical induction. But in doing so, it also attaches a 

meaning to the concept of infinity. By means of it, infinity is conceived as an 

indefinite progression, or similarly, as an ever growing quantity. This intuitive 

conception, however, does not let us treat infinity as a determinate number, for when 

we wish to determine it, we feel that we must stop the progression; and when we stop 

it, what we get is always a finite number. The progression in its entirety, which is 

what we really mean when we use the word infinite, remains as something 

indeterminate. Our intuitive ability of ordinary counting leads us into adopting the 

idea of potential infinity, and so like Aristotle, we naturally think that infinity is not a 

number. 

But is the possibility of accepting the proposition “infinity is a number” ruled 

out a priori? We have said that in arguing against the synthetic a priori status of 

Euclid’s postulates, Poincaré wrote: “Are they synthetic a priori intuitions, as Kant 

affirmed? They would then be imposed upon us with such a force that we could not 

conceive the contrary propositions, nor could we build upon it a theoretical edifice. 

There would be no non-Euclidean geometry” (2011, p. 57). By the same token, if the 

proposition “infinity is not a number” was known a priori, then Cantor could not 

have conceived the opposite proposition and built upon it a new arithmetic. But he 

did, and he was praised by many great mathematicians such as Hilbert and Gödel for 

doing so. This indicates that the meaning of the concept of infinity is not given a 

priori; it acquires a certain meaning through the intuition of pure number, but it is 

open for interpretation, because the intuition of pure number itself can be developed. 

 

4.2 Fundamentals of Transfinite Ordinal Arithmetic 

 

Cantor, just like Poincaré, thought that the sequence of natural numbers 1, 2, 

3, … has its origin in the repeated addition of units (Dauben, 1990, p.97). In 
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Grundlagen, Cantor called the process of defining numbers by a successive addition 

of units the first principle of generation (1976, p .87). This refers to ordinary 

counting and it is the most intuitive and straightforward way of generating new 

numbers. However, Cantor believed that number formation does not end here. There 

is a second, and even a third principle of generation44, by which infinite whole 

numbers are defined. After showing that Aristotle’s arguments are not strong enough 

to banish infinite whole numbers from mathematics, Cantor presented the principles 

and the conceptual framework required to establish the theory of these numbers. This 

conceptual framework was his theory of manifolds, sometimes called the naive set 

theory.  

Cantor did not define what a set is in a rigorous way, though it is not clear 

whether such a definition can be given at all. He was content with stating that a set is 

“a multiplicity that allows itself to be thought of as one”45 (1976, p. 93). We know, 

however, that there are some multiplicities that cannot be thought of as one, such as 

Ω, i.e. the ‘set’ of all ordinal numbers; or Russell’s famous example, “the set of all 

sets that are not members of themselves”. It has been shown that when we try to 

think of these multiplicities as one, we fall into contradiction. Cantor’s intuitive 

conception did not specify which multiplicities can be thought of as one, and this 

presented serious problems. This is why his theory is usually referred to as a naive 

set theory. 

Although Cantor’s definition of set was problematic, his definition of a well-

ordered set was rigorous and proved itself to be very useful. This concept played an 

                                                            
44 Cantor (1976) called the third principle of generation the principle of limitation, or inhibiting 

principle (p. 71). This principle allowed him to “produce natural breaks in the sequence of transfinite 

numbers” (Dauben, 1990, p. 98). With the use of the first and second principles of generation it is 

possible to create an unlimited sequence of transfinite ordinals. Cantor used the inhibiting principle to 

impose limits on the endless formation process and thus obtain distinct number classes. The first 

number class is simply the finite ordinals generated by the first principle of generation, and the second 

number class is the entire sequence of transfinite ordinals created by the first and second principles of 

generation. However, this principle was rather overlooked, because it was closely related with the 

continuum hypothesis (see footnote 51) and higher cardinalities. Cantor thought that the second 

number class was actually an infinity of ordinal numbers which belong to one and the same cardinal 

number, א
0
 (1915, p. 159), and higher cardinalities were in turn related to ordinals from higher 

number classes.   

 

 
45 Cantor also writes the following in Contributions to the Founding of the Theory of Transfinite 

Numbers: “By an ‘aggregate’ (Menge) we are to understand any collection into a whole 

(Zusammenfassung zu einen Ganzen) M of definite and separate objects m of our intuition or our 

thought” (1915, p. 85). 
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essential role in the generation of infinite whole numbers, for the second principle of 

generation creates a number that is used to count the elements of a set with infinitely 

many elements only when this set can be well-ordered. A well-ordered set is one in 

which “the elements are bound together by a specifically pre-assigned law of 

succession, according to which there exists both a first element […] and there 

follows after every single element another specific element” (Cantor, 1976, p.72). If 

we put aside the problems concerning the definition of set and assume that a whole 

composed of elements can be given, we can say that this is a well-ordered set when it 

is possible to arrange its elements in a specific order. Let us assume a set S is given 

which is composed of four elements, e.g. {4, 1, 3, 2}. We can arrange the elements 

of this set as {1, 2, 3, 4}, therefore give it an ascending order. We can also give it a 

descending order by arranging the elements as {4, 3, 2, 1}. Even {4, 1, 3, 2}, which 

appears to have no specific order, is a well-ordering of S. Here the order is simply the 

following: first element is 4, second element is 1, third element is 3, and last element 

is 2. Well-ordering of a set with finitely many elements is always possible, because 

even if there is not a practical way of arranging the elements we can always order 

them, however numerous they may be, by selecting one element at a time, and this 

will be our law of succession. The different orderings we have given of S does not 

change the order type of S. This is characteristic of finite sets: different orderings of 

the elements of a finite set does not change the order type of the set. In the case of S, 

the sets of all different orderings of S will be isomorphic to each other; they will all 

have a first element and the last element in each set will be the 4th element. While 

discussing transfinite ordinals we are going to see that different orderings of the 

elements of an infinite set changes the order type. 

Cantor thought that a set with infinitely many elements can also always be 

well-ordered, and he considered this as “a law of thought which seems to be basic 

and consequential” (1976, p.72). He wrote in Grundlagen that he will return to this 

law in a later treatise. However, he did not, and it was seen later that this should not 

be taken as a law but as a theorem that requires proof, which is today referred to as 

the well-ordering theorem46. There are some sets, like the set of all real numbers or 

                                                            
46 The well-ordering theorem states that every set can be well-ordered. This should not be confused 

with the well-ordering principle. The well-ordering principle states that every non-empty set of non-

negative integers contains a least element, and thus has a ‘natural’ order, which makes it a well-
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the set of points in space, in which it seems impossible to determine a first element 

and find a rule of succession that will order the rest of the elements. In 1904, Ernst 

Zermelo introduced the axiom of choice47 as an “unobjectionable logical principle” to 

prove the well-ordering theorem. This axiom basically states that there is always a 

function that selects one element at a time from a nonempty set even if the set has 

infinitely many elements, making it a well-ordered set. But since the axiom only 

states that such a function is possible and does not specify what this function is, it 

was not accepted by all mathematicians, for it was a paradigm of non-constructive 

mathematics. This axiom is still the subject of great controversy, and it plays the role 

of a catalyst in determining the different attitudes mathematicians have towards the 

nature of their art. 

If we put aside the problematic sets, there are a lot of sets with infinitely 

many elements which are fairly easy to be put in a well-ordered form. The obvious 

example is N, the set of all natural numbers. We simply start with 1 and arrange the 

rest of the elements in ascending order: {1, 2, 3, 4, …}. Similarly Z, the set of all 

integers can also be well-ordered in the following way: {0, -1, 1, -2, 2, -3, 3, …}. 

Notice that {…, -3, -2, -1, 0, 1, 2, 3, …} is not a well ordering of Z, for there is not a 

first element in this arrangement. Cantor proved with an ingenious method that Q, 

the set of all rational numbers, can also be well-ordered. This method is called 

diagonalization48. Cantor visualized a table that is supposed to contain all the rational 

numbers where the first row is composed of integers, the second row is composed of 

fractions with 2 as a denominator, the third row is composed of fractions with 3 as a 

denominator, etc. Starting with 0 which is in the left uppermost corner, Cantor 

                                                                                                                                                                         
ordered set. It has been proved that the well-ordering theorem is logically equivalent to the axiom of 

choice. In fact, there are numerous other mathematical statements, from both set theory and other 

branches of mathematics, which are logically equivalent to the well-ordering theorem, e.g. Zorn’s 

lemma. See Moore (2013), pp. 330-334. 

 

 
47 For every indexed family (𝑆𝑖)𝑖∈𝐼 of nonempty sets there exists an indexed family(𝑥𝑖)𝑖∈𝐼 of elements 

such that 𝑥𝑖 ∈ 𝑆𝑖 for every 𝑖 ∈ 𝐼. 

 

 
48 This should not be confused with the diagonalization used in proving the nonlistability of the set of 

real numbers. Cantor is the inventor of both proofs and he used diagonals in both of them. However, 

the only thing that is common for both is the visual method of diagonalization, what they demonstrate 

is completely different. For the diagonal proof of the nonlistability of real numbers, see Stillwell 

(2010), pp. 6-10. 
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moved on to 1, and then made a diagonal down to ½, and by following this ‘diagonal 

movement’ he has ordered all the elements of the set of rational numbers.  

 

0 1 -1 2 -2 -3 

1/2 -1/2 3/2 -3/2 5/2 … 

1/3 -1/3 2/3 -2/3 4/3 … 

1/4 -1/4 3/4 -3/4 … … 

1/5 -1/5 2/5 … … … 

… … … … … … 

     

Figure 1. Well-ordering of Q 

The diagonal method gives us the following set: {0, 1, 1/2, 1/3, -1/2, -1, 2, 3/2, …}. 

This is a well-ordering of Q. It should now be clear that many sets other than N, Z, 

and Q, such as the set of all even numbers, powers of 2, rationals between 1 and 2, 

etc. (mainly the subsets of N, Z, and Q) can also be well-ordered. 

 When Poincaré described the ‘mathematical spirit’, he wrote that it is this 

spirit “which has taught us to give name to things differing only in material, to call it 

by the same name” (1907, p. 77). As a mathematician in whom this spirit was highly 

matured, this was exactly what Cantor did with regards to sets similar to ones we 

mentioned above. He saw that all these sets could be well-ordered and that they had 

the same order type: (1) they all had a first element, (2) a rule with which the rest of 

the elements are ordered, (3) and no last element. “Cantor believed there was nothing 

improper in thinking of a new number ω, which expressed the natural, regular order 

of the entire set” (Dauben, 1990, p. 97). Cantor conceived a potentially infinite series 

as a completed totality, thus as actually infinite, under a new number that expressed 

the natural order of the series. He saw this as “an extension, or actually a 

continuation, of the sequence of real whole numbers beyond the infinite […] this 

extension will come to be regarded as a thoroughly simple, appropriate, and natural 

one” (1976,  p. 70). Not only Cantor but also Hilbert regarded it as a natural 

extension. He wrote: “When we have counted 1, 2, 3, … we can regard the objects 
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thus enumerated as an infinite set existing all at once in a particular order. If, 

following Cantor, we call the type of this order ω, then counting continues naturally 

with ω+1, ω+2 …”. And again, “We arrive at [transfinite numbers] simply by 

counting beyond the ordinarily enumerably infinite, i.e. by a natural and uniquely 

determined consistent continuation of ordinary finite counting” (1964, p. 140).  

Counting past the finite whole numbers requires admitting the second 

principle of generation. This principle is not a violation of our intuition but an 

extension of it. The second principle of generation suggests that  

If any definite succession of defined whole real numbers is given of 

which there is no greatest, then on the basis of this second principle 

of generation a new number is created, which can be thought of as 

a limit of those numbers, i.e. can be defined as the next greater 

number to all of them. (1976, p.87) 

Cantor tells us that it is possible to conceive the ever growing series of naturals, as 

long as they are well-ordered, as a distinct number, and simply go on counting with 

transfinite numbers. In Chapter 3, we have discussed Poincaré’s idea suggesting that 

we have a mind capable of conceiving indefinite repetition. Now Cantor is showing 

us that it can also conceive an indefinite repetition as a single event once it has found 

a way of arranging its steps, and can go on repeating this new event indefinitely. 

Once this is admitted, it then becomes possible to arrange the elements of an infinite 

set in infinitely many new ways, and thereby give it new order types. These new 

order types are what the unlimited gradation of transfinite ordinals amount to. For 

instance, it becomes possible to arrange the elements of N in the following way: {2, 

3, 4, …; 1}. This set would seem completely meaningless if the second principle of 

generation is not admitted, in other words, if it is rejected that our minds can 

conceive some form of actual infinity. We would then be unable to count past 

infinity, fall back to Aristotle’s reasoning and be compelled to oppose to the forming 

of such a set. But thanks to Cantor, this set now has a definite meaning, because we 

now know that the number 1 in this set can said to be in the 𝜔𝑡ℎ place. The sets {1, 2, 

3, 4, …} and {2, 3, 4, …; 1} have different order types. The former, as having a first 

and no last element, has the order type ω. The latter, however, has a last element, and 

this element is one that has no immediate predecessor; it is in the 𝜔𝑡ℎ place in this 

set. The order type of this set is ω + 1.  
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{1, 2, 3, 4, …} = ω 

 

{2, 3, 4, …; 1} = ω + 1 

 

We can also form a set in which the natural numbers are arranged as odd and 

even numbers, i.e. {1, 3, 5, 7, …; 2, 4, 6, 8, …}, whose order type will be ω ⋅ 2. Even 

a set can be formed where the powers of each prime number are arranged in 

ascending order, i.e. {2, 4, 8, …; 3, 9, 27,…; 5, 25, 125, …; 7, 49, 343, …; …}, and 

the order type of this set will be 𝜔2. 

 

4.2.1 Formal Notation49 

 

 The conceptual framework required to establish the theory of transfinite 

ordinals is set theory. There are, however, two main approaches to set theory, 

namely, naive set theory and axiomatic set theory. Naive set theory is primarily due 

to Cantor, and it has been discussed briefly in the previous chapter.  The main 

difference between the two approaches is that naive set theory does not include 

axioms or definitions which are given using formal logic, but is rather defined 

informally using natural language. Axiomatic set theories, on the other hand, begin 

by stating their axioms formally, and build the rest of the theory based upon the 

given axioms. The first axiomatization of set theory was given by Zermelo in 1908, 

though there are several other axiomatic systems used in set theory, e.g. NBG 

(Neumann-Bernays-Gödel set theory), MK (Morse-Kelley set theory), etc. The 

axioms of ZFC (Zermelo-Fraenkel set theory with the axiom of choice) will be used 

throughout this section. 

The building up of set theory is based first upon the Axiom of the Empty Set. 

This axiom states that there exists a set with no members: 

 

∃𝐴[∀𝑥, 𝑥 ∉ 𝐴] 

 

                                                            
49 The notation adopted in this section is from James Clark’s (2017) Transfinite Ordinal Arithmetic. 
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The empty set is represented symbolically as ∅. In order to create the rest of the 

ordinals we require another axiom, the Axiom of Infinity. We can treat this axiom as 

the refined and modernized version of Cantor’s second principle of generation. The 

Axiom of Infinity guarantees the existence of an infinite set I. Essentially, ordinals 

are specific combinations of members of the infinite set. I is a set that contains the 

empty set as a member, and for every x that is a member of I, the set formed by the 

union of x with its singleton {x} – a set that only contains x – is also a member of I. 

 

∃I[∅ ∈ I ∧ (∀𝑥 ∈ I)[𝑥 ∪ {𝑥} ∈ I]] 

 

This gives us the following set: 

 

I = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅,{∅}}, {∅, {∅}, {∅,{∅}}, {∅, {∅}, {∅, {∅}}}, ...}. 

 

Thanks to John von Neumann we have a simple way of relating the natural numbers 

with the members of I. Von Neumann (1976) defined an ordinal as “the set of all 

ordinals that precede it” (p. 347) and gave each ordinal a label from non-negative 

integers. With this method it becomes possible to relate ∅ to 0, {∅} to 1, {∅, {∅}} to 

2,  etc. To denote this labeling Clark (2017) used the delta-equal-to symbol (≜). 

 

0 ≜ ∅ 

 

1 ≜ {∅} = {0} 

 

2 ≜ {∅, {∅}} = {0,1} 

 

3 ≜ {∅, {∅}, {∅, {∅}} = {0, 1, 2} 

. 

. 

. 
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This notation is compatible with our intuitive results. Here it is easy to show, for 

instance, that the successor of 2 is 3. The successor relationship for ordinals is 

defined as follows: 

 

a + 1 ≜ a ∪ {a} 

 

This means having the union of a with its singleton {a}. Hence, 

 

2 + 1 = 2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2} = 3 

 

Every ordinal has an immediate successor, but we have said that in Cantor’s theory 

there are ordinals that have no immediate predecessor. The latter are called 

transfinite ordinals or limit ordinals. Clark formulates this by saying that every 

ordinal a falls into one of two classes, 𝐾𝐼 or 𝐾𝐼𝐼, which designate the non-limit 

ordinals and limit ordinals respectively. Symbolically this is represented as, 

 

𝛼 = 0 ∨ ∃𝛽[𝛽 + 1 = 𝛼], ∀𝛼 ∈  𝐾𝐼 

 

𝛼 ≠ 0 ∧ ∄𝛽[𝛽 + 1 = 𝛼], ∀𝛼 ∈ 𝐾𝐼𝐼 

 

Note that 𝐾𝐼 and 𝐾𝐼𝐼 are not sets but classes.This is in order to escape from paradoxes 

like that of Russell’s or Burali-Forti’s, though this approach has problems of its own. 

These will be discussed in the next chapter.  

The existence of the smallest limit ordinal ω is guaranteed by the Axiom of 

Infinity. ω is defined as the set of all finite ordinals as well as their supremum, ω ≜ 

{0, 1, 2, 3, …}. This limit ordinal also has an immediate successor, which is greater 

than it: 

 

ω + 1 = ω ∪ {ω} = {0, 1, 2, 3, …} ∪ {ω} = {0, 1, 2, 3, …, ω} 

 

We can now demonstrate why the commutative law fails in the addition of transfinite 

ordinals. In general, the addition of two ordinals 𝛼 + 𝛽 means that we count 𝛼 
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number of times and then count 𝛽 number of times afterwards. The most 

appropriate way of formalizing this is by using a Cartesian product. 

 

𝛼 + 𝛽 ≜ a × {0} ∪ 𝛽 × {1}50 

 

This formula tells us to count a times and then 𝛽 times. Therefore ω + 1 means that 

we count ω times and then 1 more. 

 

ω + 1 = ω × {0} ∪ 1 × {1} = {0, 1, 2, 3, …} × {0} ∪ {0} × {1} 

 

This gives us, 

 

= {(0,0), (1,0), (2,0), (3,0), ...} ∪ (0,1) 

 

= {(0,0), (1,0), (2,0), (3,0), ..., (0,1)} 

 

Notice that this set is isomorphic to {0, 1, 2, 3, ..., ω}, where there is a last element 

with no immediate predecessor. However, adding 1 to ω means that we count to one 

and then to ω. This gives a set where there are no limit ordinals, it is therefore of a 

different order type than the previous set. 

 

1 + ω = 1 × {0} ∪ ω × {1} = {0} × {0} ∪ {0, 1, 2, 3, ...} × {1} 

 

= (0,0) ∪ {(0,1), (1,1), (2,1), (3,1), ...} 

 

= {(0,0), (0,1), (1,1), (2,1), (3,1), ...} 

 

This set is isomorphic to {0, 1, 2, 3, ...}, hence to ω. Now we see why 1 + 𝜔 ≠ 𝜔 + 

1. Therefore we write, 

 

                                                            
50 Using a and b or any other symbol instead of 0 and 1 is unimportant. 0 and 1 are selected only for 

convenience. If we were to add 3 numbers we would then require 3 symbols: 0, 1, and 2; or a, b, and 

c. 
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1 + ω = ω 

 

1 + ω ≠ ω + 1 > ω 

 

Similar results are achieved in the case of multiplication. Multiplication with 

transfinite ordinals, like that of finite whole numbers, is understood in terms of 

repetitive addition. The formal definition of ordinal multiplication is the following: 

 

a ⋅ 𝛽 ≜ ∑ 𝑎γ<β  

 

Therefore if we take, for instance, the product of 2 ⋅ 3, this means to add 2 three 

times. 

 

2 ⋅ 3 = 2 + 2 + 2 

 

If we adopt the previous formalism we get the following: 

 

2 + 2 + 2 = 2 × {0} ∪ 2 × {1} ∪ 2 × {2} 

 

= {(0,0), (1,0), (0,1), (1,1), (0,2), (1,2)} 

 

This set is isomorphic to {0, 1, 2, 3, 4, 5} = 6. Thus 2 ⋅ 3 = 6. 

 

 If we take the product of 2 ⋅ ω, which means to add 2 indefinitely, this will be 

represented as, 

 

2 + 2 + 2 + ... = 2 × {0} ∪ 2 × {1} ∪ 2 × {2} ∪  ... 

 

= {(0,0), (1,0), (0,1), (1,1), (0,2), (1,2), ...} 

 

This set is isomorphic to {0, 1, 2, 3, ...} = ω. Thus 2 ⋅ ω = ω. However, if we take the 

product of ω ⋅ 2, which means to add ω two times, we get a different result: 
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ω ⋅ 2 = ω + ω = ω × {0} ∪ ω × {1} 

 

= {(0,0), (1,0), (2,0), (3,0), ...} ∪ {(0,1), (1,1), (2,1), (3,1), ...} 

 

= {(0,0), (1,0), (2,0), (3,0), ..., (0,1), (1,1), (2,1), (3,1), ...} 

 

This set is isomorphic to {0, 1, 2, 3, ...,  ω, ω+1, ω+2,  …} = ω ⋅ 2. That 2 ⋅ ω ≠ ω ⋅ 

2 is now clear. Therefore we write, 

 

2 ⋅ ω = ω 

 

2 ⋅ ω ≠ ω ⋅ 2 > ω 

 

It is possible to derive further and equally interesting results. For instance, from what 

has been demonstrated so far it is possible to show that the product of a transfinite 

ordinal with a finite ordinal will always be greater than a finite ordinal added to a 

transfinite ordinal. Thus, for instance, ω ⋅ 2 is greater than all of the following: ω + 

2, ω + 210, ω + 2100, ω + 21000, … Similarly, a finite power of a transfinite ordinal 

will always be greater than a product of a transfinite ordinal with a finite ordinal. For 

instance if we take 𝜔2, this is greater than all of the following: ω ⋅ 2, ω ⋅ 210, ω ⋅ 

2100, ω ⋅ 21000, … etc. (see Stillwell (2010) for details). 

 With respect to the principle of induction, since we now have new numbers, 

we need to extend this principle so that it becomes applicable to limit ordinals. We 

do this by adding a third step to standard induction, turning it into transfinite 

induction. There are two steps in standard induction. First, we verify that the theorem 

is true for the base case, 𝛾 = 0. Then we assume that the theorem is true for an 

arbitrary 𝛾 and show that it is also true for 𝛾 + 1. In addition to these two steps, in 

transfinite induction we assume that 𝛾 is a limit ordinal, i.e. 𝛾 ∈ 𝐾𝐼𝐼. We assume that 

the theorem is true for all the elements of 𝛾 and show that it is also true for 𝛾. As we 

have explained in the previous chapter, besides the capacity to conceive indefinite 

repitition, we have the capacity to conceive this entire repetition as a single event – a 

determinate number – once we find an order in it, and continue with our repetition 
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using this new number. We owe the concept of a limit ordinal to the intuition of this 

mental capacity. Since every ordinal is either a limit ordinal or a non-limit ordinal, a 

theorem holds for all ordinals if it holds for all three steps. 

 

4.3 Objections to Transfinite Arithmetic 

 

 There are three possible questions that can be raised against the use of 

transfinite numbers. First, is the theory of these numbers coherent, can we be sure 

that its results do not lead to a contradiction? Second, is it intuitive? Is it reasonable 

to expect for people to understand it with sufficient effort? Third, are these numbers 

useful? Do they help us in broadening our mathematical knowledge and present 

solutions to previously known problems? Poincaré raised the first two of these 

questions; here we are going to address all three of them.  

 Cantor’s theory stirred many controversies after it was made public. These 

were mainly about the transfinite cardinal numbers, the continuum hypothesis51, and 

most importantly, the definition of set. Cantor’s definition allowed for sets to be 

formed unrestrictedly, that is, a set could be formed of objects that satisfy any given 

property. Ironically, it was Cantor who first saw the problem with the unrestricted 

formation of sets. When he considered the entire set of ordinals Ω, he saw that this 

was a well-ordered set, so it must have had an order type δ greater than all ordinals.  

But since δ was an ordinal, it must have been contained in Ω, which results in δ < δ. 

Cantor concluded that Ω was not actually a set but an inconsistent multiplicity52. This 

contradiction is the main reason that in the previous chapter we treated 𝐾𝐼 and 𝐾𝐼𝐼 as 

                                                            
51 The continuum hypothesis states that there is no set whose cardinality is between the cardinality of 

the set of real numbers (א
1
) and the cardinality of the set of integers (א

0
), which means that א

1
is the 

next cardinal number to א
0
. For Gödel’s formulation of the hypothesis, see Gödel (1964b). In 1963 it 

was proved by Paul Cohen, who was complementing Gödel’s work of 1940, that the truth of the 

continuum hypothesis is independent of – or rather undecidable in – ZFC, thus either the hypothesis or 

its negation can be added as an axiom to ZFC. 

 

 
52 According to Cantor, an inconsistent multiplicity is still a multiplicity, a collection-like object, 

though in which it is impossible to “think without contradiction all its elements as being together, and 

consequently, of the set itself as a unified thing in itself” (as cited in Jané, 1995). In addition to the 

sequence of all ordinals, another clear example of an inconsistent multiplicity is the sequence of all 

cardinal numbers, i.e. the set of all alephs. Cantor claimed that neither could be an object of further 

mathematical consideration. For a more detailed account of inconsistent multiplicities, see Jané 

(1995). 
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classes of ordinals and not as sets. Because when they are taken as sets, they become 

subject to set-theoretical operations, which means we can take their union 𝐾𝐼 ∪ 𝐾𝐼𝐼 

and derive the set of all ordinals Ω – a set that is shown to be contradictory. By 

claiming that 𝐾𝐼 and 𝐾𝐼𝐼 are not sets but classes, we escape from this contradiction. 

There is, however, a strong disposition to treat this solution as a mere play of words. 

What are these ‘classes’ if not sets? It seems they are playing an integral role in our 

theory, yet we cannot make them subject to further mathematical investigation. This 

is still an ongoing debate and there is an extensive literature written on it53.  

Even though this contradiction was first noticed by Cantor, it has gained 

recognition with Russell and his famous paradox. Russell considered “the set of all 

sets which are not members of themselves” and showed that the idea was 

paradoxical; it exhibitied a similar contradiction with that of Ω. Russell concluded 

that the problem was with the naive set theory in which the definition of set was not 

given rigorously, where it was possible to form for any property a set of objects that 

satisfy it. He asserted that not every property defines a set; those definitions that 

define a set he called predicative, and those that do not impredicative. An 

impredicative definition is one where there is a generalization over the totality to 

which the entity being defined belongs. These definitions create a certain kind of 

circularity, for they define a totality “whose existence would entail the existence of 

certain new elements of the same totality, namely elements definable only in terms of 

the whole totality” (Gödel, 1964a, p. 217). Russell held that contradictions mainly 

occur in set theory when a set is defined impredicatively. In order to amend these 

problems he proposed three solutions: the zigzag theory, theory of limitation of size, 

and the no-class theory54. 

 Poincaré also considered impredicative definitions as a major problem with 

Cantor’s theory. He wrote, “It is the belief in the existence of the actual infinite 

which has given birth to those non-predicative definitions” (2008, p. 194). Poincaré 

saw the problem in the fact that an impredicatively defined set cannot be studied 

mathematically, because the classification would then be mutable, “The appearance 

                                                            
53 See Jané (1995) and Welch & Horsten (2016). 

 

 
54 See Russell (1906). Also see Gödel (1964a) for Gödel’s evaluation of Russell’s solutions.  
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of a new object [would] oblige us to modify the classification” (p. 195). In fact, 

Poincaré held that in his diagonal proof55 where Cantor showed that the set of real 

numbers have a higher cardinality than the set of natural numbers, he actually used 

an impredicative definition and mistook the fact that he failed to establish a one-to-

one correspondence between these sets for an indication that R has a higher 

cardinality than N. According to Poincaré, the reason that no one-to-one 

correspondence was found between these sets should be ascribed to Cantor’s way of 

defining R impredicatively: “To represent points in space by the sentences which 

serves to define them […] is to construct a classification which is not predicative, 

one which entails all the inconveniences” (1963, p. 61). Poincaré offered his own 

solution: “The important thing is never to introduce entities not completely definable 

in a finite number of words” (2008, p. 45). He thus rejected the use of infinite 

numbers and remained a finitist, because for him, 

[E]very mathematical theorem must be capable of verification […] 

and the verifications apply only to finite numbers, it follows that 

every theorem concerning infinite numbers or particularly what are 

called infinite sets, or transfinite cardinals, or transfinite ordinals, 

etc., can only be a concise manner of stating propositions about 

finite numbers. (1963, p. 62) 

 

Although concepts like Ω or א
1
 (the cardinal number that corresponds to the set of 

real numbers) were problematic, no one has seriously doubted the set of all natural 

numbers being well-ordered and having a certain order type, ω. Poincaré, for 

instance, did not devote a chapter to ordinals as he did to cardinals.  The second 

principle of generation works perfectly when the sequence of natural numbers is 

considered. It is not an impredicative definition of ω, for even though it generalizes 

over all finite ordinals, the principle is intended to define an infinite ordinal: “It [is] a 

uniquely determined extension of the concept of ‘number’ to the infinite sets” 

(Gödel, 1964b, p. 258). This extension is legitimate, but only when it is restricted. 

The need for such a restriction definitely needs explanation; it must be answered why 

is it that we are unable to use the principle in the case of Ω while it is possible to use 

it in the case of natural numbers. However, this alone should not be a reason for 

rejecting the theory of transfinite numbers completely, which, as we will see shortly, 

                                                            
55 This proof is the one that we have not mentioned; it is different than the diagonal proof that shows 

the well-ordering of Q. For details, see Stillwell (2010), pp. 6-10. 



 
 

77 

is very useful, even necessary for solving certain problems. In its restricted form, the 

theory of transfinite ordinals and their arithmetic remains intact. 

 But is defining something without contradiction necessarily implies its 

existence in mathematics? Should not the thing being defined have an intuitive 

aspect to it? Poincaré’s answer is quite complicated. When describing how 

Kronecker defined irrationals as a “particular method of division of commensurable 

numbers56” (2011, p. 26), Poincaré wrote: “Mathematicians do not  study objects, but 

the relations between objects […] If we did not remember it, we could hardly 

understand that Kronecker gives the name of incommensurable number to a simple 

symbol” (p. 25). What we should expect from a symbol is therefore to express a 

relation and not an object. If we remember that “‘possible’ in the language of 

geometers simply means exempt from contradiction” (p. 24), and if we have shown 

that our definition is non-contradictory, then we can say that the relation being 

defined ‘exists’. But how do we show that it is non-contradictory? For Poincaré, if 

the consequences of the definition are finite, we do this directly by giving (or 

constructing) a concrete example for which the consequences hold. However, if the 

consequences are infinite, then we have to recourse to mathematical induction, 

which, as we have explained, is based on a pure intuition. Thus, definitions that are 

intended to specify an infinite number of relations are always given in intuition. In 

this sense, Kronecker’s definition is not problematic. However, “in Poincaré’s view, 

set theory does ‘banish’ intuition, for it contradicts it” (Folina, 1986, p. 118). Thanks 

to our ability to iterate indefinitely, we have an intuition of a never ending sequence 

– a potential infinity – but not of an actually infinite set. Theorems can only be 

verified for finite numbers, even when we are using induction to prove for infinitely 

many of them, but never for an infinite number. Transfinite numbers, then, is “a 

violation of our prior conception of mathematical objects […] our glossing over 

faculties does not address such ‘objects’” (Folina, 1986, p. 119). Furthermore, 

against the set theorists who wanted to make the theory of finite numbers depend 

upon transfinites, Poincaré wrote, “This method is evidently contrary to all sane 

psychology; it is certainly not in this way that the human mind proceeded in 

constructing mathematics” (2008, p. 145). I grant that this is true, but there is nothing 

                                                            
56 Poincaré used the term commensurable for rational numbers and incommensurable for irrational 

numbers. 
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wrong in accepting that the mind is now advancing in a different way. Poincaré 

rejected the idea that we have an intuition of an infinite number. He argued that the 

intuition in mathematics – the intuition of pure number – gives only finite numbers 

and warrants proofs by mathematical induction. I have tried to show how it is 

possible to treat transfinite ordinals as being not in contradiction with the intuition of 

pure number, but rather as extensions of it. By examining our primitive conception of 

infinity, and with the help of the concept of a well-ordered set, it is possible to make 

our ‘glossing over’ faculties address infinite sets by their order types. Contrary to 

what some platonists believe, the fact that we can address these sets is not because 

they exist in a mysterious, set theoretical realm, and we can somehow interact with 

them; we rather construct these sets – or in Poincaré’s terms, these relations – with 

the help of a pure intuition, now adjusted to allow counting with infinite numbers.  

 As for the usefulness of transfinite arithmetic, I am going to choose a rather 

meaningful example. When he was criticizing the problems of set theory, Poincaré 

wrote: “We are sure to see [these problems] resurrected with insignificant alterations, 

and some of them have already risen several times from their ashes. Such long ago 

was the Lernaean hydra57 with its famous heads which always grew again” (2008, p. 

145). Today, there is a proof for slaying a mathematical hydra which is growing 

heads a lot more rapidly than the one in the myth, and funny that this proof uses 

transfinite ordinals. In 1982, mathematicians Laurie Kirby and Jeff Paris proposed a 

new variation of the story of the hydra where the creature is a mathematical beast. In 

their version the hydra is shaped like a tree: 

 

 

 

 

 

 

 

                                                            
57 The Lernaean Hydra is a monster in Greek mythology. The hydra has many heads, and when one of 

them is cut off, the creature grows two more heads. Killing the hydra was the second of the twelve 

labours of Hercules, and he managed to kill it with the help of his nephew Iolaus, who cauterized the 

wound every time Hercules cut off a head. 
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Figure 2. A mathematical hydra 

R is taken as the body of the hydra and all the dots above it – such as U, V, and H – 

are its heads. Our mathematical hydra grows heads out of its heads, and we can only 

chop off heads from which no heads are growing, for instance in the above case we 

can remove H but not V. Like the one in the myth, our hydra also grows new heads 

when one of its heads is removed, but it has a special rule for doing this, and this rule 

can be chosen arbitrarily as long as new heads are growing out from the head that is 

one level below the removed head (for instance the rule can be, “grow a copy of the 

decapitated portion of the hydra that remains below the removed head”. In this case, 

when H is removed, a copy of all the heads from V to R will grow out of U). The 

creature dies when there remains no heads that grow out of R. Now the question is: Is 

it possible for Hercules to kill a significantly tall mathematical hydra? Is there a way, 

a strategy for chopping off the heads of this creature so that he will eventually reach 

R, or is the beast destined to grow to infinity? Kirby and Paris proved that given any 

hydra with an initial composition and a rule for growing heads, we can always defeat 

it in a finite number of steps no matter the order we chop off the heads. This may 

sound counterintuitive. It is easy to see that after only a few decapitations the hydra 

will have a lot more heads compared to the original, and apparently with each 

decapitation it will continue to grow new heads. But Kirby and Paris showed that 

eventually the hydra will be defeated, and this is true regardless of the order of 

decapitations. They used transfinite ordinal arithmetic in their proof, and their 

R 

U 

V 

H 
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method is based on a special labeling of the complexity of the hydra in terms of limit 

ordinals. We will not go into the details of the proof, for a summary see Stillwell 

(2010), pp. 51-54. We can see that the theory of transfinite ordinals is not a useless 

occupation; it has helped us in solving a problem which is fairly easy to formulate in 

the language of ordinary mathematics. Besides, perhaps it might have given Hercules 

relief and motivation if he had known the theory of these numbers, then he wouldn’t 

need to call his nephew Iolaus for help to cauterize the wound each time a head was 

removed. 

 ‘Killing the Hydra’ is actually a special case derived from a more general 

theorem called the Goodstein’s theorem. This is a theorem about the natural numbers 

which was first put forward and proved by Reuben Goodstein in 1944. It states that 

every Goodstein sequence converges to zero. A Goodstein sequence is a certain class 

of integer sequences that grows very quickly. In order to create one, we take any 

positive integer and represent it in hereditary base 2 notation (which means basically 

to write it in base 2 where 2 is the largest number). For instance if we take 13, this 

will be represented as 

 

13 = 22+1 + 22 + 1 

 

 We then replace all 2s with 3s and subtract one to create the next term in the 

sequence. 

 

33+1 + 33 + 1 – 1 = 108 

 

We write this new number in hereditary base 3 notation, and then replace all 3s with 

4s and subtract one to create the third term in the sequence, etc. 

 

108 = 33+1 + 33 

 

44+1 + 44 – 1 = 1279 
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The first three terms of our Goodstein sequence are 13, 108, and 1279. The fourth 

term will be strictly larger. At first glance, the sequence seems to be growing very 

rapidly. However, Goodstein proved that this sequence, and every Goodstein 

sequence, eventually terminates. This is a stunning result. The base bumping 

operation gives us a much larger number, and it is highly suspicious that subtracting 

one from it will ever lead to the termination of the sequence. Nevertheless, this is 

indeed the case, and Goodstein proved it using transfinite ordinals. With a special 

labeling of the terms of this sequence with transfinite ordinals and exploiting the 

rules of their arithmetic, it is possible to show that just like in the case of the hydra, 

even though the terms seem to be growing very rapidly, subtracting one at each step 

gradually decomposes the entire structure (see Stillwell (2010), pp.47-51). What is 

even more astonishing is that Kirby and Paris have proved that Goodstein’s theorem 

is unprovable in Peano Arithmetic. This is a fairly simple theorem of number theory 

and it is easy even for a student to formulate it, yet it is unprovable in the basic 

language in which it is formulated58. This is because the terms become 

unmanageably big in no time when they are handled using only finite arithmetic. The 

Goodstein sequence that starts with 3 terminates in five steps. According to Kirby 

and Paris, the one that starts with 4, however, terminates in 3 ⋅  2402,653,211 − 1 

steps. Transfinite ordinals are not only useful but also necessary for showing that 

Goodstein’s theorem, a simple theorem found in number theory, is true.  

Although the benefits we have cited so far have only been valuable for pure 

mathematics, I do not see any serious obstacle to the use of transfinite numbers in the 

explanation of some phenomena that will be observed in the future. As in the case of 

imaginary numbers, finding an application for a subject of pure mathematics to 

observable phenomena sometimes takes centuries. 

  

                                                            
58 After Gödel’s incompleteness theorem and Gerhard Gentzen’s proof of the unprovability of ε0-

induction in Peano arithmetic, Goodstein’s theorem is the third example of a true statement that is 

unprovable in Peano arithmetic. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

  The examination of the theory of transfinite ordinals shows that it is possible 

to consider what Cantor achieved in arithmetic to be similar to what Riemann and 

Lobachevsky did in geometry, and thus we may argue that Cantor has laid the 

foundations of a new arithmetic. It follows that Poincaré was mistaken in rejecting 

the possibility of building a new arithmetic. Of course, we cannot treat Cantor as the 

Riemann of arithmetic; the building up of transfinite ordinals did not take place 

exactly in the same manner as that of non-Euclidean geometries, because there is a 

fundamental difference between both in the foundations and in the subject matter of 

arithmetic and geometry.  

In order to emphasize the difference between the two main branches of 

mathematics I have adopted Poincaré’s philosophy, and in most cases I adhered to 

his intuitionism, which is built to a significant extent on Kant’s philosophy. As we 

have seen in Chapter 3, for Poincaré, the difference between arithmetic and geometry 

lies in the fact that geometry and experience are inseparably bound; the observable 

motion of objects and the distinctive motion of our bodies play a constitutive role in 

the establishment of the framework we call space. However, experience has no such 

role in the foundations of arithmetic; the concept of ‘number’, and the fundamental 

rules that these objects obey, pertain nothing but to the subjective constitution of our 

minds, and these are given by a pure intuition, in other words, by a direct awareness 

of a mental capacity. Poincaré held that the affinity we feel for the postulates of 

Euclidean geometry is caused by the observation of solid objects, and assuming laws 

which are different from the ones we are accustomed has given us the postulates of 

non-Euclidean geometries. Neither group of postulates is imposed upon us directly 

by the nature of our minds; according to Poincaré, they are conventions, and not 

synthetic a priori judgments.  
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If it is admitted that arithmetic is independent of experience in the sense 

Poincaré described, then it is easy to see that something similar to what happened in 

geometry cannot take place in arithmetic. However, it is undeniable that today we 

have a new and unusual, yet a functioning arithmetic, whose details we have given in 

Chapter 4. Once it is admitted that the intuition underlying arithmetic can be 

developed, that our mental capacities can be subject to improvement, then it becomes 

possible to provide an intuitionistic basis to the theory of transfinite ordinals. On this 

view, transfinite ordinals and the principle of transfinite induction are grounded upon 

the same intuition that gives us natural numbers and justifies the use of standard 

induction – the intuition of the mind’s capacity to conceive indefinite repetition. 

Cantor has shown that our minds, which are capable of conceiving indefinite 

repetition, can also conceive such a repetition as a definite number once it has found 

an order among its steps. By carefully examining the common Aristotelian 

conception of infinity, and by supplementing this with his concept of ‘well-ordering’, 

Cantor showed that a mental capacity that already exists in all of us can be improved. 

He was able to establish a new type of number and the theory of its unordinary 

arithmetic, which is surprisingly useful, and appears quite meaningful to the 

mathematicians who are willing to follow his steps.  

 What is presented in this thesis can be considered as a defense of a slightly 

different version of Poincaré’s intuitionism. According to this view, empirical 

observation plays no role in the foundations of mathematics; this science is based 

upon the intuitions of the human being. Contrary to what some philosophers 

believed, mathematical intuition is not a mysterious faculty (Ayer, 1964); it is 

basically mind’s becoming conscious of its own constitution and capabilities. In the 

case of Poincaré, this amounts to the capacity of conceiving indefinite repetition – a 

quite ordinary and natural ability. What is suggested in this thesis is that this capacity 

can be developed, and this is the starting point of a new arithmetic. We have realized 

that geometric concepts were necessarily understood under the guidance of 

experience, and that the evidence for geometric postulates lies partly in observation. 

By imagining different laws for the motion of objects, in other words, by adopting 

new conventions, we were able to derive non-Euclidean geometries. Since 

experience plays no role in the foundations of arithmetic, we cannot expect for a new 
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observation, or a modification in the ordinary empirical conditions, to result in a 

change in the meaning of the basic concepts or principles of arithmetic. Here the 

thesis departs from the general Poincaréan picture and speculates that the possibility 

of such a change lies in the development of intuition. It suggests that Cantor had 

managed to do this, and thus he was able to establish the theory of transfinite ordinal 

arithmetic.  

In this picture, intuition in mathematics is not – as platonists such as Gödel 

like to think – something like a perception of physical objects. Mathematical objects 

such as transfinite numbers do not exist in a mind-independent mathematical realm, 

and our intuition is not a way of interacting with these mysterious objects; rather, our 

mind constructs these objects. In fact, these are not ‘objects’ in the ordinary sense 

but rather relations, which the mind is able to conceive within the limits of its 

capacities. The rules of transfinite ordinal arithmetic are not some arbitrary rules for 

manipulating meaningless symbols. The justification for these rules comes from the 

intuition of a mental capacity, just as in the case of natural numbers and finite 

arithmetic. It is therefore possible to make sense of transfinite ordinal arithmetic as 

an intuitionist, without committing to either platonism or nominalism regarding the 

existence of mathematical objects. 
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APPENDICES 

 

 

A. TURKISH SUMMARY/ TÜRKÇE ÖZET 

 

 

Bu tez Poincaré’nin matematik felsefesini konu almaktadır. Matematiğin 

temellerine, özellikle de uzaya ve geometrinin doğasına dair birçok problemde 

Poincaré’nin sezgiciliği ve uzlaşımcılığı savunulmakta, fakat Öklid-dışı geometrilere 

benzer yeni bir aritmetik kurulamayacağı savı eleştirilmektedir. Poincaré’nin yeni bir 

aritmetiği reddedişinin ardındaki temel sebep, aritmetiğin tümüyle deneyimden 

bağımsız olduğuna, geometrinin ise deneyim ile ayrılmaz bir biçimde bağlı olduğuna 

inanmasıdır. Öklid postulatlarını reddedip karşıt önermeler temelinde yeni 

geometrilerin inşa edilmesine imkan tanıyan, deneyimin geometrinin temellerindeki 

rolüdür. Buna karşın Poincaré’ye göre aritmetikte deneyimin hiçbir rolü yoktur. 

Aritmetik ilkelerin – ki ona göre bunların en öne çıkanı matematiksel tümevarım 

ilkesidir – doğruluğu bize bizzat zihnimiz tarafından dayatılır. Bunlar deneyim ile 

değil saf bir sezgi aracılığıyla bilinir ve belli başlı zihinsel kabiliyetlere indirgenir. 

Dolayısıyla aritmetikte Öklid postulatlarında olduğu gibi reddedilip yerine karşıtı 

konulabilecek bir ilke yoktur. Bu tezde, zihinsel kabiliyetlerimizin ve onlara dair 

sahip olduğumuz sezginin gelişebileceği savı öne sürülmekte, bunun da yeni bir 

aritmetiğin başlangıç noktası olabileceği iddia edilmektedir. Poincaré’ye eklenen tek 

şey, aritmetikte faydalandığımız sezginin gelişebileceği varsayımıdır. Cantor’un 

temellerini attığı, alışılmadık yeni tür sayıların ve ilkelerin bulunduğu sonluötesi 

ordinal aritmetik teorisi yeni bir aritmetiğe örnek olarak alınmış ve bu teoriyi 

kurarken Cantor’un esasında hepimizde olduğu gibi kendisinde de var olan zihinsel 

bir kabiliyeti geliştirdiği öne sürülmüştür. Böylece birebir aynı olmasa da Öklid-dışı 

geometrilere benzer yeni bir aritmetiğin sezgici bir temelde nasıl izah edilebileceği 

gösterilmiştir. 

Bu sonuca varmak için en başta Kant’ın matematik felsefesi özetlenmektedir, zira 

Poincaré tam bir Kantçı olmasa da görüşünü büyük ölçüde Kant’ın tanıttığı 
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kavramlar üzerine kurmuştur, ki bunların başlıcaları ‘sentetik a priori’ ve ‘saf 

sezgi’dir. Kant matematiğin, doğanın hakiki işleyişinde değil, esasında kendi 

zihinlerimizin yapısında temellendiğini öne sürmüştür. Bu bakımdan matematik tam 

anlamıyla nesnel değildir, çünkü nihayetinde fiziksel nesneler hakkında değil, bu 

nesneleri duyumsayan ve onlar hakkında düşünen zihin hakkındadır. Buna karşın 

yine de matematiksel bilgi zorunlu ve evrenseldir, çünkü zihinlerimizin hepimizce 

paylaşılan yapısı ile ilgilidir; matematiğe ancak bu bakımdan nesnel denebilir. 

2. Bölümde anlatıldığı gibi Kant’a göre bilişsel aktiviteyi mümkün kılan iki 

melekemiz vardır; bunlar duyarlılık ve anlama yetisidir. Duyarlılık, nesneleri 

sezmemize yarayan melekedir. Esasında bu bilişsel bir aktivitedir ve nesneler ile 

doğrudan ilişki kurmamıza yarar; fakat Kant’a göre sezgi kavramsallaşmamıştır ve 

dolayısıyla tek başına bilgi üretmek, yargıda bulunmak için yeterli değildir. 

Duyarlılık tarafından bize verilenlerin sınıflandırılması, organize edilmesi gerekir ve 

bu yolla kavramlar oluşturulur. Bunu gerçekleştiren ise anlama yetisidir. Anlama 

yetisinin kendine has bir yapısı, onda halihazırda bulunan birtakım saf kavramları 

vardır; bunlar kategorilerdir. Kategoriler bir bakıma duyarlılığın verdiklerini 

kavramsallaştırmanın kurallarıdır. Kavramlar yargılarımızın nihai öğeleridir ve biliş 

ancak yargılar aracılığıyla gerçekleşir. Bilgi üretmek için bu iki melekenin birlikte 

uyum içinde çalışması gerekir. 

Kant duyarlılığımızın da belli bir biçime, bir yapıya sahip olduğunu öne 

sürmüştür. Bu yapı deneyimden bağımsızdır; dahası, deneyimden önce verili böyle 

bir yapı anladığımız türden deneyimin de koşuludur. Nesnelerin tecrübe edilebilmesi 

için bu yapıya uymaları gerekir. Kant için uzay ve zaman işte bu tür yapılardır; 

Poincaré’nin deyimiyle onlar zihinsel çerçevelerdir. Kant’a göre hiçbir nesneyi 

sezmesek, çevremizden tamamıyla soyutlanmış olsak bile, duyarlılığımızın yapısını, 

yani deneyimden önce zihnimizde halihazırda bulunan bu çerçeveyi sezmek 

mümkündür. Uzay ve zaman saf sezgiler, veya kimilerinin deyişiyle saf görülerdir. 

Tüm nesneler bir uzayda ve zamanda tecrübe edilir; uzayda ve zamanda olmayan bir 

nesne olanaklı değildir. Kant’a göre bundan çıkarılacak sonuç, uzay ve zamanın 

nesnelere değil, zihnimize, daha doğrusu duyarlılığımızın yapısına atfedilmesi 

gerektiğidir. 
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Duyarlılığımızın yapıları olarak uzay ve zaman Kant için matematiksel 

önermelere de gereken temeli sağlar. Matematiksel bir önermenin doğruluğunu 

araştırırken fiziksel nesnelerle ilgilenmeyiz, çünkü Kant’a göre bu nesneler 

matematiksel önermelerde bulunan zorunluluğun ve evrenselliğin kaynağı olamazlar. 

Böyle bir zorunuluğu ve evrenselliği ancak deneyimden bağımsız, ondan önce 

verilen, yani a priori bir zeminde bulabiliriz. İşte uzay ve zaman Kant için bu zemini 

sağlar. Aritmetik bir önermenin – Kant’ın örneğini alırsak 7 + 5 = 12’nin – 

doğruluğunu araştırırken zaman sezgisinden faydalanırız. En başta böyle bir önerme 

Kant’a göre analitik değil sentetik bir yargıdır, yani verilenlerin başka bir biçimde 

ifade edilişi değil, onlarla yapılan bir sentez, bilgimize katılan yeni bir şeydir. 

Mantıksal önermelerin tümü analitik yargılardır ve bu yargıların doğruluğu 

nihayetinde çelişmezlik ilkesine indirgenir, bir başka deyişle onlar totolojilerdir. 

Matematik ise mantık değildir; matematikte sentetik yargılar da bulunur. İşte bu tür 

yargıların zemini alışılmışın aksine tecrübe ettiğimiz nesneler değil, bizzat kendi 

duyarlılığımızın yapısı, bu yapıya dair sahip olduğumuz saf sezgidir. Kant’a göre 12, 

7 + 5’ten analitik olarak çıkan bir sonuç değildir. 7 + 5’i düşündüğümüzde sonucun 

12 olduğunu doğrudan söyleyemeyiz; bu toplama işlemini yapmamız, yani saymamız 

gerekir ki bu da Kant için bir sentezi işaret eder. Bu sentezi yapmamızı sağlayan 

zaman sezgimizdir. Toplama işlemi, daha da temelde sayı kavramı, yineleme 

fikrinden türer. Kant’a göre bir sayı soyut birimlerin art arda eklenmesidir ve bu ‘art 

arda eklenme’ fikrinin kaynağı tecrübe edilen nesneler değil, duyarlılığımızın bir 

yapısı olarak zamandır. Özetle 7 + 5 = 12 önermesi sentetik bir önermedir ve zaman 

sezgisi aracılığıyla a priori bilinir.  

 Geometrik önermeler için de benzer bir durum söz konusudur. ‘İki noktadan 

yalnız bir doğru geçer’ önermesi de Kant için sentetik bir yargıdır ve deneyime 

dayanmadan, a priori bilinir. Bu yargının doğruluğunu bize gösteren gözlemlenen 

nesneler değil, bu nesnelerin uymak zorunda olduğu zihinsel yapı, yani uzaydır. 

Noktalar, doğrular ve şekiller bizce tasarlanır; Kant’a göre bu kavramlara karşılık 

gelen sezgiler duyarlılığımızın yapısı tarafından sağlanır, bu sebeple de a priori 

bilinirler. Kant uzayda iki nokta tasarladığımızda aralarından bir doğru 

geçebileceğini doğrudan gördüğümüzü söyler. Bu doğruyu bir noktanın etrafında 

döndürebileceğimizin; belli kurallara uyarak çemberler, üçgenler inşa 
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edebileceğimizin bilgisini bize veren duyumsanan nesneler değil, duyarlılığın 

yapısıdır. Bu bakımdan geometrik önermeler ve en başta da Öklid postulatları Kant 

için sentetik a priori yargılardır. Salt mantık bu önermeleri doğrulamaktan aciz, 

deneyim de onlardaki kesinliği vermek için yetersizdir; bu önermelerin doğruluğunu 

bize gösteren, aynı zamanda deneyimin de koşulu olan, duyarlılığımızın yapısıdır. 

 Bolyai, Lobachevsky ve Riemann gibi 19. yüzyıl matematikçileri Öklid 

postulatlarının bazılarını karşıtlarıyla değiştirerek yeni geometriler kurmayı 

başarmış, böylece Öklid uzayının olanaklı tek uzay olmadığını göstermiştir. Bu 

sonuç Kant’ın Öklid postulatlarının a priori sentetik yargılar olduğu fikrini oldukça 

şüpheli bir hâle getirmiştir ve düşünürleri geometrik postulatların mahiyetini bir kez 

daha sorgulamaya itmiştir. Öklid-dışı geometrilere hayli aşina olan Poincaré de Öklid 

postlatlarının a priori bilindiği fikrini reddetmiştir. Eğer duyarlılığımızın gerçekten 

de Kant’ın inandığı gibi bize Öklid uzayını dayatan a priori bir yapısı varsa nasıl 

olmuş da Riemann gibi matematikçiler bu dayatmadan sıyrılmış ve Öklid 

postulatlarının karşıtlarıyla değiştirildiği uzaylar düşünebilmiştir? Poincaré için bu, 

deneyimin geometride bir rolü olduğunun göstergesidir. Olanaklı uzaylar arasından 

Öklid uzayının seçilmesi a priori bir seçim değildir; bu spesifik uzayı tanımlayan 

önermeleri doğru kabul edişimizde deneyimin bir rolü olmalıdır.    

  Buna rağmen Poincaré matematikte sentetik a priori yargılar bulunuyor 

olduğu fikrini tümden dışlamamıştır; yalnızca bunların geometride değil, 

matematiksel düşüncenin en saf kaldığı alanda, aritmetikte olduğunu söylemiştir. 

Tıpkı Kant gibi Poincaré de matematikte mantıktan öte bir şey olduğu fikrindedir; 

ona göre mantığın aksine matematik bir bilimdir ve yaratıcı bir güce sahiptir, yani 

yalnız analitik yargılar barındıran dev bir totolojiye indirgenemez. Fakat burada da 

Kant ile bir anlaşmazlık vardır. Poincaré’ye göre 7 + 5 = 12 gibi önermeler analitik 

yargılardır; hakiki sentetik a priori yargılar ise tümevarımın kullanıldığı, sonsuz 

durum için geçerli olan genel teoremlerdir. Bu teoremlere bir örnek 3.4 numaralı 

bölümde verilmiş ve ispatının nasıl yalnız çelişmezlik ilkesine dayanarak 

verilemeyeceği gösterilmiştir. Poincaré’ye göre 7 + 5 = 12 önermesinin analitik bir 

yargı olmasının sebebi önermenin doğruluğunun verilen bir kuralın (bu durumda x + 

1) sonlu kez uygulanması sonucu bulunabilmesidir. Toplama bir kez tanımlandığında 

yalnızca çelişmezlik ilkesine dayanarak yapacağımız sonlu tane kıyas sonucu 7 + 
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5’in 12 ettiğini doğrulayabiliriz; birbirine eklenen parmakları veya taşları 

düşünmeden, işin içine sezgi katmadan bu ifadenin doğruluğunu gösterebiliriz. 

Poincaré’ye göre 7 + 5 = 12 gibi tekil önermeler ispatlanmaz, bunlar doğrulanır ve 

bir doğrulama da Poincaré için analitik bir iştir; sonuçta verilenlerden öte bir şey 

bulunmaz.  

‘Bütün doğal sayılar ya tek ya çifttir’ gibi bir önermeyi aldığımızda ise bunun 

7 + 5 = 12 durumunda olduğu gibi doğrulanamayacağını görürüz; bu önermenin 

ispatlanması gerekir. Verili bir sayı için, hatta verilecek tüm sayılar için önerme 

doğrulanabilir; fakat bu doğrulamalardan hiçbiri tüm doğal sayılar hakkında bir yargı 

belirten bu önermenin ispatı olarak alınamaz. Eğer matematik yalnızca 

doğrulamalardan ibaret olsaydı mantıktan bir farkı kalmaz ve bir bilim olmazdı, bu 

tür önermelerin doğruluğu da bizim için erişilemez olurdu, zira bunları ancak sonsuz 

doğrulama yaparak gösterebiliriz. İşte Poincaré için matematikte sezginin rol 

oynadığı, bir sentezin söz konusu olduğu yerler bu teoremlerin ispatlarıdır. Bu 

teoremlerin ispatı için çelişmezlik ilkesinden başka bir ilkeye ihtiyaç duyarız, bu da 

matematiksel tümevarım ilkesidir. Bu ilke bize bir teoremin herhangi bir n doğal 

sayısı için doğruyken n + 1 için de doğru olduğu gösterilirse teoremin tüm doğal 

sayılar için doğru olduğunu söyler. İşte bu ilke Poincaré için mantığın alanının 

dışındadır; o salt matematiksel bir ilke, hatta matematiksel akıl yürütmenin temelidir. 

Poincaré bu noktada Kantçı davranmış ve bu ilkenin deneyimden öğrenilmediğini, 

tersine onun deneyime dayatıldığını ve deneyimi mümkün kıldığını söylemiştir. 

Matematiksel tümevarım ilkesi hakiki bir a priori sentetik yargı örneğidir. Fakat 

Poincaré bunu duyarlılığımızın yapılarıyla veya zaman ile ilişkilendirmemiştir. Ona 

göre ne uzaya ne de zamana ilişkin saf bir sezgimiz vardır. Doğru, bunlar birtakım 

zihinsel çerçevelerdir ve duyarlılığımızın yapıları olduğu kabul edilebilir; fakat onlar 

deneyimden tümüyle bağımsız değildir. Poincaré için deneyimden tümüyle bağımsız 

olan, ancak yine de bize nesneler arasındaki uzamsal ve zamansal ilişkilerin nasıl 

olması gerektiğini söyleyen zihinsel bir yapının varlığı kabul edilebilir bir fikir 

değildir. Bu yapılar veya çerçeveler a priori verilmez, Poincaré’ye göre onlar 

deneyimin rehberliğinde icat edilir. Bu bakımdan nesneleri içine oturttuğumuz uzay 

ve zaman denen çerçeveler sentetik yargılar için a priori bir temel olamazlar.  
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Matematiksel tümevarım duyarlılığımızın değil, anlama yetimizin yapısında 

temellenmiştir ve bizim bu yapıya dair doğrudan bir sezgimiz vardır. Poincaré için 

anlama yetisinin bu yapısı basitçe bir olayın sonsuz defa yinelenmesini kavrama 

gücüdür. Bizim zihnimiz öyledir ki bir kere gerçekleşen bir olayı sonsuz kez tekrar 

ettirmeye muktedirdir. İşte sayma kabiliyetimizin de temeli budur. Poincaré için bu 

saf bir sezgidir, fakat kendisi bunu zamanla ilişkilendirmemiştir. Poincaré burada 

Kant’tan ayrılmış ve aritmetiği hem duyulur nesnelerden, hem de duyarlılığımızın 

yapılarından ayırmıştır. Matematiksel tümevarım ilkesi anlama yetimizle ilişkilidir 

ve bu belli bir zihinsel kapasiteye işaret etmektedir. Bu ilkenin doğruluğu zihnimize 

bizzat kendi yapısı tarafından dayatılır. Matematikçinin gerçekten ilgisini çeken 

teoremlere matematiksel tümevarım ilkesiyle varılır ve bunlar sentetik a priori 

yargılardır. 

Geometrik postulatlar ise matematiksel tümevarım ilkesi ile aynı mahiyeti 

taşımaz. Poincaré’ye göre Öklid postulatlarının reddedilebilmesi Öklid uzayının 

zihnimize dayatılan bir çerçeve olmadığının göstergesidir. Nesneleri içine 

yerleştireceğimiz uzamsal bir çerçeve için birden fazla olasılık vardır; tıpkı Öklid 

uzayı gibi hiperbolik ve küresel uzaylar da düşünülebilir. Bizim bu uzaylar arasından 

Öklid uzayını seçmemizin ardında yatan sebep ise bu çerçevenin çevremizdeki en 

dikkate değer nesnelerin hareketlerini en uygun ve kolay şekilde tarif etmemize 

yarayan çerçeve olmasıdır. Çevremizdeki en dikkate değer nesneler katı cisimlerdir. 

Bu cisimler hareket ederken şekil değiştirmeyen ve izlenimlerini vücudumuzun 

karşılıklı bir hareketiyle düzeltebildiğimiz cisimlerdir. Katı cisimlerin hareketi Öklid 

uzayında kolayca tarif edilir. Diğer postulatlarla beraber iki noktadan yalnızca bir 

doğru geçtiği ve verili bir doğruya ancak bir paralel çizilebildiği kabul edilirse, bu 

uzayda inşa edilecek şekiller biçim değiştirmeden, uzayıp kısalmadan bir yerden bir 

yere taşınabilir. Poincaré’ye göre diğer geometrilerin değil de Öklid geometrisinin 

standart kabul edilmesinin nedeni katı cisimlerin hareketinin gözlenmesine 

dayanmaktadır. Fakat katı cisimlerin hareketi – yani şekil değiştirmenin eşlik 

etmediği bir hareket – a priori vardığımız bir sonuç değildir, Poincaré için bu 

deneysel bir olgudur. Tam da bu sebeple deneyimin bize verdiği kuralların aksini 

düşünerek, yani cisimlerin alışılmadık kurallara göre hareket ettiğini varsayarak, yeni 

geometriler inşa etmek mümkün olmuştur. Örneğin Riemann postulatında olduğu 
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gibi iki noktadan birden fazla, hatta kimi zaman sonsuz doğru geçtiğinin 

varsayılması, Poincaré için cisimlerin alışıldık hareketlerinin değişikliğe uğradığının 

düşünülmesidir; bu postulatların tarif ettiği uzaylarda artık bir cisim şekil 

değiştirmeden yer değiştiremeyecektir. Nihayetinde Poincaré’ye göre uzay yalnızca 

bir hareketler grubudur; uzayda bir nokta tasarlarsak bu yalnızca o noktaya varmak 

için yapmamız gereken hareketleri tasarlıyoruz anlamına gelir. Uzayı vücudumuzun 

ve gözlemlediğimiz cisimlerin alışıldık hareketlerinden koparmak mümkün değildir; 

fakat bu hareketlerin imkanı bize deneyim tarafından verildiğinden, farklı tür 

hareketler ve bu hareketleri tarif eden uzayları düşünmenin önünde bir engel de 

yoktur. Öklid postulatları bu yeni uzayları tarif edecek postulatlardan daha doğru 

değil, yalnızca daha kullanışlıdır. Bu postulatlar Poincaré için nihayetinde birtakım 

uzlaşımlara, kılık değiştirmiş tanımlara indirgenir. 

3. Bölüm aritmetik ve geometrinin temelleri arasındaki bu farkın açıkça 

belirtilmesiyle kapanmaktadır. Özetle aritmetik, geometriden farklı olarak 

deneyimden tümüyle bağımsızdır. Öklid postulatlarının nihayetinde deneysel bir yanı 

olduğundan bunları karşıtlarıyla değiştirmek mümkün olmuştur; fakat matematiksel 

tümevarım ilkesinin deneysel hiçbir yanı yoktur. Poincaré için bu ilkenin doğruluğu 

bize zihnimiz tarafından dayatılır, çünkü aslında bu ilke zihinsel bir kabiliyetin 

doğrudan sezilmesidir – sonsuz yineleme kabiliyeti. Poincaré Öklid postulatlarında 

olduğu gibi bu ilkeyi reddedip yeni bir aritmetik kurmaya çalışılırsa bunun 

başarılamayacağını söylemiştir; bunu yapmak bizzat matematiksel düşünmeyi yok 

saymak anlamına gelecektir. 

4. Bölüm Cantor’un sonluötesi ordinal aritmetik teorisine adanmıştır. 

Cantor’un teorisi yeni bir aritmetik olarak alınmakta ve bunun hangi yönlerden 

Öklid-dışı geometrilere benzediği soruşturulmaktadır. Sonluötesi aritmetiği yeni bir 

aritmetik olarak görmek yanlış olmaz, zira bu teoride tamamiyle yeni tür sayılar ve 

bunların tabi olduğu, ilk bakışta yabancı gelen birtakım kurallar bulunur. Cantor 

tümevarım ilkesini reddetmemiştir, fakat bu ilkeyi geliştirmiş ve ondan sonluötesi 

tümevarım ilkesini çıkarmıştır. Aynı şekilde alışılmış sayı kavramının da anlamını 

genişletmiş ve sonsuz sayıları matematiğin bir konusu hâline getirmiştir. Cantor 

sonsuz büyüklüklerin nasıl birer sayı olarak düşünülebileceğini göstermiş ve bunların 

alışkın olduğumuz doğal sayılar ile ilişkisini ortaya koymuştur. Sonluötesi aritmetik 
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bu yeni tür sayıların aritmetiğidir ve sonluötesi tümevarım ilkesi bu teorideki 

birtakım ispatları yapmak için kullanılır. Bu aritmetikte toplamanın ve çarpmanın 

değişme özelliği yoktur, üstelik sonluötesi sayıların büyüklük ve küçüklük ilişkileri 

de alıştığımızdan farklıdır; örneğin sonluötesi ordinal bir sayıyı iki ile çarpmak, ne 

kadar büyük olursa olsun sonlu bir sayıyı bu sayıya eklemekten her zaman daha 

büyük bir sayı verecektir (ω ⋅ 2 > ω + 21000). Bu teori ve özellikle de sonluötesi 

sayılar bize ne kadar yabancı gelse de, bugün matematiğin en heyecan verici ve 

yeniliklere gebe alanlarından biridir. Dahası, birtakım problemlerin çözümünde bu 

sayıların yalnızca faydalı değil, aynı zamanda gerekli de olduğu gösterilmiştir ve bu 

mesele 4.3 numaralı bölümde detaylıca anlatılmaktadır. 

Cantor sayarak ulaşılamayacak bir sayının varlığını kabul etmiştir. Bir başka 

deyişle bu öyle bir sayıdır ki kendisinden hemen önce gelen bir sayı bulmak 

imkansızdır. Yine de bu Cantor için bu sayıyı bir hayal ürünü, bir kuruntu yapmaz. 

Bu sayı doğal sayılar kadar gerçektir, yalnızca ona erişmek için bildiğimiz sayma 

prosedüründen farklı bir prosedür izlememiz gerekir ki bu da Cantor’un ikinci 

üretme ilkesinde tarif edilmiştir. Bu ilkede Cantor sonsuz elemana sahip fakat 

aralarında hiç bozulmayan bir sıralamanın olduğu kümelere bitmiş, tamamlanmış 

birer nesne, bir sayı olarak bakmanın mümkün olduğunu söyler. Doğal sayılar 

kümesi sonsuz elemana sahiptir ve asla kapanmayacaktır, çünkü ‘en büyük doğal 

sayı’ yoktur. Buna rağmen elemanlar arasında bir sıra vardır. İşte Cantor bu sıraya 

bir sayı atfetmiş ve buna ω, en küçük sonluötesi ordinal sayı demiştir. Böylece doğal 

sayılar kümesinin elemanlarını, hatta daha da ötesini saymak mümkün olmuştur. Bu 

ilkenin kabul edilmesi bize sonluötesi sayıları, sonluötesi tümevarım ilkesini ve bu 

sayıların kendilerine has aritmetiğini vermiştir. Başlarda kimi çelişkilere yol açmış 

olsa da bugün bu ilke kusursuzlaştırılmıştır ve sınırlandırılmış bir hâlde geçerliliği 

sağlanmıştır, üstelik son derece de faydalı olduğu gösterilmiştir. Peki nasıl olmuş da 

Cantor bu ilkeyi öne sürebilmiştir? Bu tezde bu soruya bir cevap verilmektedir: 

Cantor, Poincaré’nin tarif ettiği son derece anlaşılır ve doğal olan bir zihinsel 

kabiliyeti, yani sonsuz yineleme kabiliyetini geliştirmiştir. Cantor bize, sonsuz 

tekrarı kavramaya muktedir olan zihnilerimizin, yaptığı bu tekrarda bir sıra 

bulabildiği taktirde bütün bu süreci tek bir olay gibi kavramaya da muktedir 

olduğunu göstermiştir. Sonluötesi sayıların ve yeni aritmetik ilkelerin doğuşu Öklid-
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dışı geometrilerde olduğu gibi deneysel koşulların farazi bir şekilde 

değiştirilmesinden kaynaklanmamaktadır; bunlar bizzat zihinsel yetilerimizin 

geliştirilmesi ile ortaya çıkmıştır. 

Eğer aritmetiğin Poincaré’nin tarif etiği gibi deneyimden tümüyle bağımsız 

olduğu kabul edilirse, geometridekine benzer bir durumun aritmetikte 

gerçekleşemeyeceğini görmek kolaydır. Yine de bugün yeni ve alışılmadık, üstelik 

son derece faydalı olan ve işleyen bir aritmeğimiz olduğu yadsınamaz. Bu teorinin 

saf matematiğe faydaları 4.3’te anlatılmaktadır. Eğer aritmetiğin temelinde yatan 

sezginin gelişebileceği, zihinsel yetilerimizin ilerlemeye tabi olabileceği kabul 

edilirse, o zaman sonluötesi ordinal teorisine sezgici bir temel öne sürmek mümkün 

olur. Bu görüşte sonluötesi ordinaller ve sonluötesi tümevarım ilkesi bize doğal 

sayıları veren ve standart tümevarım ilkesinin kullanımını meşru kılan aynı sezgide 

temellenmiştir – zihnin sonsuz yineleme kabiliyeti. Cantor bu tür bir tekrarı 

kavrayabilen zihnin, bir sıra bulduğu taktirde bu tekrarın bütününü belirli bir sayı 

olarak düşünebildiğini göstermiştir. Aristoteles’in uzun süre matematiğe hakim 

olmuş sonsuzluk anlayışını dikkatle analiz ederek ve bunu kendi öne sürdüğü ‘iyi-

sıralama’ kavramı ile destekleyerek Cantor hepimizde bulunan bir zihinsel yetinin 

geliştirilebileceğini göstermiştir. Kendisi yeni tür sayılar ve bunların sıradışı 

aritmetiğini kurmayı başarmıştır, ki bunlar şaşırtıcı derecede faydalı olmuştur ve 

Cantor’un adımlarını takip etmeye razı olan matematikçilere oldukça anlamlı 

gelmektedir. 

Bu tezde sunulana, Poincaré’nin sezgiciliğinin bir miktar değiştirilmiş bir 

versiyonunun savunulması olarak bakılabilir. Bu görüşe göre empirik gözlemin 

matematiğin temellerinde hiçbir rolü yoktur; bu bilim insanoğlunun sezgilerinde 

temellenmiştir. Bazı filozofların (Ayer, 1964) düşündüğünün aksine matematiksel 

sezgi gizemli bir meleke değildir, o basitçe zihnin kendi yapısı ve kabiliyetleri 

hakkında doğrudan bir kavrayışa sahip olmasıdır. Poincaré’nin durumunda bu sonsuz 

yineleme kabiliyetine tekabül eder. Bu tezde öne sürülen, bu kabiliyetin 

gelişebileceği ve bunun da yeni bir aritmetiğin başlangıç noktası olabileceğidir. 

Geometrideki kavramların deneyimin rehberliğinde anlaşıldığı ve geometrik 

postulatlara dair delillerin kısmen gözlemde bulunduğu görülmüştür. Cisimlerin 

hareketi için alışılmışın dışında kurallar varsayarak, bir başka deyişle yeni uzlaşımlar 



 
 

99 

benimseyerek, Öklid-dışı geometrileri kurmak mümkün olmuştur. Deneyim 

aritmetiğin temellerinde hiçbir rol oynamadığından, yeni bir gözlemin veya alışıldık 

deneysel koşullarda meydana gelecek gerçek veya farazi bir değişikliğin aritmetiğin 

temel kavramlarında veya ilkelerinde bir değişikliğe sebep olması beklenemez. Bu 

noktada tez genel Poincaréci görüşten ayrılmakta ve böyle bir değişikliğin sezginin 

geliştirilmesinde bulunabileceğini iddia etmektedir. Cantor’un bunu başardığı ve 

böylece sonluötesi ordinal aritmetik teorisini kurduğu savunulmaktadır. 

Bu görüşe göre matematikteki sezgi, Gödel gibi bazı filozofların 

düşündüğünün aksine fiziksel nesnelerin duyumsanmasına benzeyen bir şey değildir. 

Sonluötesi sayılar gibi matematiksel nesneler zihinden bağımsız matematiksel bir 

diyarda değildirler ve sezgimiz de bu gizemli nesnelerle etkileşime geçmek için bir 

yöntem değildir. Daha ziyade zihnimiz bu nesneleri inşa eder. Aslında bunlar 

alışıldık anlamıyla ‘nesne’ değil, zihnin kendi yetileri çerçevesinde kavramaya 

muktedir olduğu birtakım ilişkiler, bağıntılardır. Sonluötesi ordinal aritmetiğin 

kuralları anlamsız birtakım sembolleri işlemek için ortaya koyulmuş keyfi ve boş 

kurallar değildir. Bu kuralların meşruiyeti tıpkı doğal sayılar ve sonlu aritmetikte 

olduğu gibi belli bir zihinsel kabiliyetin sezilmesine dayanır, yalnızca bu kabiliyetin 

geliştirildiği kabul edilmelidir. Dolayısıyla sonluötesi ordinal aritmetiği platonizm 

veya nominalizme düşmeden, bir sezgici olarak anlamlandırmak mümkündür. 
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