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ABSTRACT

GENOME- AND TISSUE-WIDE ANALYSIS OF ALTERNATIVE
POLYADENYLATION EVENTS USING CLUSTERING AND FEATURE

LEARNING METHODS

Yılmazer, Pınar
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Tolga Can

September 2019, 73 pages

Alternative polyadenylation (APA) is a biological process that takes places during

gene transcription and recent studies relate APA events with gene expression regu-

lation and with diseases such as cancer. Studying gene expression across tissues for

various conditions is crucial guiding scientists to work on biomarker discoveries and

treatment options of the transcriptomic diversity related diseases. In this thesis, sev-

eral novel genes and tissues that are more prone to 3’UTR shortening, which is an

APA event, in diseased state are presented by analyzing significant proximal APA

events across human tissues. Most of the identified genes are also validated by ex-

isting studies. Furthermore, we demonstrate that hierarchically closer tissues share

similar gene set or interactions according to APA events, and tissue hierarchy can be

built by just considering top affected genes. Overall, this work covers creation of

biological tissue hierarchy, comparison of tissue networks in normal/diseased states

and feature learning analysis of protein-protein networks using APA events. To the

best of our knowledge, no such human genome- and tissue-wide analysis, based on

APA events, has been conducted before. Therefore, our multidisciplinary work may
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guide researchers to the next step of genomics studies on diseases.

Keywords: Feature Learning, Hierarchical Clustering, Alternative Polyadenylation,

3’UTR Shortening, Cancer, Gene, Disease
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ÖZ

ALTERNATİF POLİADENİLASYON OLAYLARININ KÜMELEME VE
ÖZNİTELİK ÖĞRENME YÖNTEMLERİ İLE GENOM VE DOKU ÇAPLI

ANALİZİ

Yılmazer, Pınar
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Can

Eylül 2019 , 73 sayfa

Alternatif poliadenilasyon (APA), gen transkripsiyonu sırasında gerçekleşen biyolo-

jik bir süreçtir ve son çalışmalar APA olaylarını gen ekspresyonu regülasyonu ve

kanser gibi hastalıklar ile ilişkilendirmektedir. Çeşitli durumlar için dokular arasında

gen ekspresyonunun incelenmesi, bilim insanlarının, transkriptomik çeşitlilikle ilgili

hastalıkların biyobelirteç keşifleri ve tedavi seçenekleri üzerinde çalışmak için çok

önemli bir rehberdir. Bu tezde, hastalıklı bir durumda bir APA olayı olan 3’UTR kı-

salmasına daha yatkın olan bazı yeni genler ve dokular, insan dokularında önemli

proksimal APA olayları analiz edilerek sunulmuştur. Tanımlanan genlerin çoğu, mev-

cut çalışmalarla da doğrulanmaktadır. Ayrıca, hiyerarşik olarak daha yakın dokuların

APA olaylarına göre benzer gen setini veya etkileşimleri paylaştığını ve doku hiye-

rarşisinin sadece en iyi etkilenen genler göz önüne alınarak oluşturulabileceğini gös-

termekteyiz. Genel olarak, bu çalışma biyolojik doku hiyerarşisinin oluşturulmasını,

normal / hastalıklı durumlarda doku ağlarının karşılaştırılmasını ve APA olaylarını

kullanarak protein-protein ağlarının öğrenme analizini içerir. Bildiğimiz kadarıyla,
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APA olaylarına dayanan böyle bir insan genomu ve doku çapında analiz yapılma-

mıştır. Bu nedenle, bu tezdeki disiplinerarası çalışmamız, araştırmacıları hastalıklar

konusundaki genomik araştırmaların bir sonraki adımına yönlendirebilir.

Anahtar Kelimeler: Öznitelik Öğrenme, Hiyerarşik Kümeleme, Alternatif Poliadeni-

lasyon, 3’UTR Kısalması, Kanser, Gen, Hastalık
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CHAPTER 1

INTRODUCTION

Alternative polyadenylation (APA) has emerged as a novel mechanism which pro-

duces several isoforms of a gene with different 3’ UTR length and increases diversity

of gene expression. It is a commonly observed phenomenon affecting most of the

genes in many different species. Although the role of RNA 3’end formation in regu-

latory variation remains mostly unexplored, it is known that it can affect the stability,

translation efficiency and binding sites of microRNAs. Due to its critical regulatory

effects, a lot of research is being conducted to characterize the underlying mechanism

for different species and to advance controlling of gene activity.

Studies report that proliferation signals, differentiation factors and hormones lead to

proximal APA. The resulting shorter mRNA isoforms are associated with rapid cell

proliferation across various cell types and tissues, and may be the basis of some of

the pathological events [11, 12, 13]. Although most of such events are unknown,

proto-oncogene activation cases, observed in breast and lung cancer cells, and several

disease signatures affecting heart, endocrine and hematology are likely to be corre-

lated with alternative polyadenylation [14, 15, 16].

Polyadenylation events are also studied across tissues and tissue specific signatures

are found in different species. Among many eukaryotes, we focused on researches

working on human genome and performed this thesis study on a large gene expression

dataset of normal and diseased human tissues. According to previous studies, some

tissues were shown to produce overall longer or shorter mRNA isoforms. For in-

stance, although tissues in central nervous system hierarchy express longer isoforms,

placenta, blood, testis and ovaries are tend to show shorter isoforms [17, 18]
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Because of all the reasons specified above, alternative polyadenylation has been re-

ceiving increasing interest in disease research. Moreover, prognostic predictions,

treatment options and diagnostics are the top topics for current studies. In this thesis,

we developed a strategy to analyze APA shortening events and identify several candi-

date genes in an organism-wide fashion using human tissues gene expression dataset

with proximal to distal site ratios (SLR) for each gene. Since we were interested in

shorter mRNA isoforms, we filtered the gene set, selected genes with higher SLR val-

ues compared to a threshold and organized tissue sets in different states accordingly.

For this research, we performed three different analyses.

In the first analysis, normal, diseased, and mutual tissues were processed and dendro-

gram structures were constructed by using a distance matrix computed using SLR val-

ues. Comparing generated trees with a literature curated tissue hierarchy, we showed

that hierarchically closer tissues contain similar gene sets filtered by SLR values and

cluster similarly. Analogous tissue hierarchies can be constructed by just considering

genes with high SLR values.

In the second analysis, PPI network of different tissues were processed and feature

embeddings of each gene were created by modeling a multiscale tissue hierarchy. Two

different embeddings have been created, one having all PPI data and other having fil-

tered PPI data according to SLR values. Genes were mapped into low dimensional

network to make an inference about similarity of tissues before and after filtering.

We showed that proteins activated in similar tissues indicate correlation and clustered

better in SLR based feature extraction. Although filtering performed with SLR in-

formation does not affect members of main tissue clusters, it changes surrounding

neighbours.

In the third analysis, diseased and normal samples of tissues were processed accord-

ing to gene-SLR based criteria. Tissues more prone to proximal APA were identified

and several prominent genes showing significant 3’UTR shortening were proposed.

We saw that tissues with similar APA differentiation in either disease or normal con-

ditions are also positioned closer in the hierarchy. Also, we verified that many of the

proposed genes were categorized as disease or cancer related.
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1.1 Related Works

A lot of research conducted on quantitative and global analysis of APA try to de-

velop a new reliable sequencing-based method for profiling RNA polyadenylation

at the transcriptome level to overcome limitations of widely profiled RNA-seq and

microarray methods [19, 20, 21, 22]. They follow various RNA-biochemical experi-

mental steps to advance prevalent methods and promote prediction of greater number

of expressed genes in diverse cell-types, stages, and species.

Apart from next generation sequencing methods, there are many studies working on

previously detected APA sites and protein databases [23, 13, 24]. Achieving more

comprehensive sets of genes, these methods generally focus on specific species or

genes to characterize the diversity of polyadenylation and analyze different develop-

mental or disease stages. Researches target not only mammals but also many other

animal and plant species. However, they mostly do not make additional analysis in

terms of tissue-specific gene expressions and differences across tissues and cell types.

Our genome-wide APA analysis overcomes this limitation and provides a perspective

by studying genes that undergo significant APA related changes in human tissues.

Some existing works, similar to our research, investigate alternative polyadenylation

in tissue specific manner in mammalians[25, 17]. They compare genomic regions of

tissues surrounded by polyadenylation sites and determine cis-regulatory elements.

However, they experiment with a limited set of tissues and do not consider relation-

ships between tissues. Among the ones modeling multiscale tissue hierarchy, Ohmnet

provides a feature learning approach for multi-layer networks [26]. Yet, it mainly fo-

cuses on cellular function prediction and does not work on alternative polyadenylation

events specifically.

1.2 Contributions

The main motivations of this thesis are to determine proteins showing APA shorten-

ing event across tissues and investigate whether hierarchically similar tissues share

similar genes or interactions according to SLR values. Moreover, we aim to ana-
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lyze mutual/differentiated genes by processing tissue samples of diseased and normal

states and reveal common biological pathways, if there are any. To the best of our

knowledge, such kind of genome-wide analysis covering construction of actual tis-

sue hierarchies, comparison of tissue networks and feature learning analysis based on

activated genes and SLR values has not been conducted before. Our work may lead

to new insights for discovering the links between alternative polyadenylation and dis-

ease states of tissues sharing similar characteristics and may improve understanding

in a genome-scale fashion.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we briefly summarize bi-

ological and mathematical background related to our work. In Chapter 3, we present

the structural comparison of the actual tissue hierarchy and the dendrograms, which

were constructed by hierarchical clustering methods. In Chapter 4, we describe the

feature learning approach to find feature embeddings of proteins in a multi-layer tis-

sue network and the tissue hierarchy and then compare tissue similarities in different

networks. In Chapter 5, we analyze diseased/normal tissues with respect to genes

which demonstrates significant 3’ UTR shortening and report some candidate genes.

We empirically evaluate our results in Chapter 6 and conclude with directions for

future work.
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CHAPTER 2

BACKGROUND

2.1 Biological Background

High-throughput data-generating genomics experiments, development in the gene se-

quencing techniques and high demand of the analysis and interpretation of various

types of genomic data have given rise to the interdisciplinary field, bioinformatics,

which primarily combines molecular biology and computer science as well as var-

ious subfields. It processes the structure of biomolecules on a large scale by using

wide range of computational techniques [27]. Although comprised fields have been

increasing each day, bioinformatics mainly focuses on sequence alignment, protein

structure and interaction predictions, noble gene identification and drug discovery.

Gene expression data is one of the most fundamental and valuable resource to dis-

cover biological characteristics of the organism. It gives information regarding tran-

scriptional, translational, folding and splicing phases. There are many techniques per-

forming transcriptome analysis such as qPCR, expression microarrays and RNAseq

[28]. They enable researchers tackling a wide range of biological problems by exam-

ining the expression levels of vast number of distinct genes simultaneously. Differen-

tiating biologically critical isoforms, detection of genetic modifications, identification

of novel transcripts and post transcriptional variations are main fields studied in gene

expression analysis [29]. Alternative polyadenylation (APA) and alternative splicing

are two main processes which lead to post transcriptional variations and play impor-

tant role during eukaryotic gene expression by increasing coding potential. Most of

the protein coding transcripts in eukaryotic cells excluding histone are affected by al-

ternative polyadenylation. It has functional roles in tissue specific differentiation and

activation of different physiological and disease states. Understanding APA mech-
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anism contributes to numerous advances in human health and gains popularity each

day. The importance of the APA motivated us to analyze organism-wide APA events

and to study tissue-tissue and tissue-disease relationships with respect to gene data

showing APA shortening events and tissue based protein to protein interaction net-

works, in this thesis. In the following section, basic concepts of molecular biology

are reviewed to get acquainted with related concepts.

Studying genome sequence is crucial for scientists to figure out how genes direct the

growth, development and maintenance of all biological contexts, including prokary-

otic and eukaryotic organisms, as well as viruses. It also helps scientists to iden-

tify mutations in genes and diseases which makes possible to deliver more effective

and personalized treatments. Genes are the sections of deoxyribonucleic acid, DNA,

which contains biological and functional instructions. It is responsible of building

proteins, developing physical characteristics and providing backup information of

every piece of data in cellular level. Recent studies found that specific to human

genome, there are 20,687 known protein coding genes which corresponds to 2.94%

of genome. Remaining 97% represent gene regulatory regions and nonsense DNA

whose functionality has not known yet [30, 31]. DNA is a continuous chain of nu-

cleotide subunits, each composed of a five-carbon sugar, at least one phosphate group,

and one of the four nitrogenous bases adenine, cytosine, guanine, and thymine which

determines the nucleotide type [32]. Different combinations of nucleotides affect the

information for building and sustaining an organism. The structure of DNA is three

dimensional double helix with two strands connected by hydrogen bonds and twisted

around each other like a spiral. DNA strands are non symmetrical and have two ends,

phosphate-bearing (5’), and hydroxyl-bearing (3’). Two complementary strands run

in opposite directions and 5’ end aligns with 3’ end. Upstream and downstream terms

are used to identify relative positions of RNA and DNA strands such that while area

towards to five prime end is called upstream, area towards to three prime end is called

downstream.

As a part of DNA, genes hold the instructions for the synthesis of proteins which or-

ganize the cells, transmit messages, manage chemical reactions and responsible from

many other vital functionalities of the tissues and organs. Protein synthesis from

genes is a complex process and requires lots of modules to work together. It be-
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gins with translation procedure which is performed by RNA polymerase enzyme and

pre-mature mRNA is constructed from specific transcription unit of DNA. RNA poly-

merase recognizes starting and finishing point on genome and creates RNA strand by

adding RNA nucleotide one at a time. RNA and DNA nucleotides differ in the type of

the nitrogenous base they use. RNA uses Uracil instead of Thymine as complemen-

tary to Adenine. During transcription, DNA is copied from 3’ end to 5’ end which

yields RNA polymerase to add nucleotides to the 3’ end of complementary mRNA

strand. The transcribed pre-mature RNA has untranslated regions at both ends as well

as introns and exons [33].

2.1.1 Post-transcriptional modification

Maturing process has three major modification steps which occur almost simultane-

ously. The first step is addition of a 7-methyl guanosine cap to the 5’-end to handle

recognition and attachment to ribosome. Remaining steps are 3’ polyadenylation and

splicing, both may lead to producing different proteins from the same transcription

unit.

Figure 2.1: Steps in post-transcriptional modification of eukaryotic messenger RNAs.

Reprinted from Biochemistry Free & Easy by K. Ahern and I. Rajagopal Press; 3rd

Edition edition, February 12 2015, retrieved from https://bio.libretexts.org/ Licensed

by CC BY-NC-SA 3.0
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2.1.2 Splicing and Alternative Splicing

Pre-mRNA has two types of sequences, exons and introns. While introns are the

non-coding sections to be removed during maturing process, exons are the sections

having code for protein synthesis and need to be translated. Splicing process stands

for remaining exons and removing introns to generate the final mature mRNA. There

are many variations of splicing events which lead to distinct mRNA isoforms and

proteins. Some removes all introns but keeps different combinations of exons. Some

excludes part of exons treating them as introns and some keeps part of introns as well

as exons. These variations are known as alternative splicing and associated with the

tissue type in that the transcription process occurs. Beside protein differentiation, al-

ternative splicing also causes human genetic diseases derived from splicing mutations

and need to be studied carefully [34].

2.1.3 Polyadenylation and Alternative Polyadenylation(APA)

During maturation of eukaryotic mRNA, 3’ end is also modified to enhance the speci-

ficity of the recognition and protect strand from ribonuclease digestion. First, the

canonical polyadenylation signal sequence, AAUAAA, generally followed by a GU-

rich sequence, is marked on the upstream of the actual cleavage site and binded by

a multiprotein complex. Then, 3’ end is shifted to right position for cleavage. With

the help of cleavage factors and polyadenylate polymerase enzyme, mRNA is cleaved

between PAS and the GU-rich sequence. The complex is seperated, and the splitted

3’ end degrades. Following endonucleolytic cleavage, polyadenylate tail synthesis is

started by adding lots of adenine residues onto the upstream cleavage area. As soon

as the tail reaches its full length, stop signal is emerged and process is terminated.

Size of polyadenylate tail varies between species, e.g. in humans it is 250–300 on

average [35].

Apart from its usual place near 3’ end, polyadenylation signal sequence can be seen

in different parts of mRNA which yields different transcript isoforms from the same

gene which is called APA. Signals located in various parts of 3’ untranslated region

(3’UTR) leads to shortening/lengthening in transcript by creating different poly(A)
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positions. This type of APA does not affect protein coding frame but the availability of

the binding sites, translation efficiency and stability of mRNA and also may indicate

serious health conditions such as rapid cell proliferation and cancer [12, 15]. Signals

located in internal exons or introns also lead to APA creating distinct protein isoforms

but it is much less common when it is compared to APA events in 3’UTR [36].

2.1.4 APADetect Tool and the SLR Concept

Alternative polyadenylation is accepted as a leading regulatory mechanism affecting

many cellular operations including development and diversity. Therefore, there are

many ongoing researches to detect APA events using microarray technologies such

as RNA-Seq and Microarray. Although, there is a rising demand for the analysis,

APA event detection continues to be a challenging problem in genomics. As we

mentioned before, several polyA regions can be observed during post-transcriptional

phase which leads to shortening/lengthening of the 3’UTR sector. The 3’UTR end is

also a common target region in microarray experiments, because of its tendency of

staying as a tail, i.e., not forming RNA secondary structures. Therefore, most probes

in Affymetrix chips are designed to target the 3’ UTR section.

In this thesis, SLR (Short isoform to Long isoform expression Ratio, or proximal to

distal ratio) values produced by a microarray-based method, APADetect tool, are used

to detect 3’ UTR isoform variations of genes. APADetect is a cross platform probe

level analysis tool to screen and identify potential APA events, showing differential

intensities [37, 38]. It uses previously known poly(A) positions [39] to divide probe

sets into two differentially expressed groups, proximal and distal, and process hy-

bridization levels of each probe to calculate intensities. It also searches for unknown

poly(A) sites by studying probe sets and by discovering groups showing statistically

important expression difference.

Probes to the upstream and downstream of a polyA site are partitioned into a proximal

group and a distal group, respectively. If a probe overlaps with the poly(A) site, it

is ignored. While high intensities in proximal group indicates a shortening event,

high intensities in distal group shows a lengthening event. By computing average

intensities for each group, proximal to distal ratio is computed and named as the SLR
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value.

APADetect applies several filters to eliminate outlier samples and increase accuracy

during calculation of SLR values. First, if all probes are either placed completely in

the distal or the proximal group, it is not possible to detect and APA event and genes

having this type of probe distribution are removed from the experiment set. Second,

degraded samples whose distal intensities are significantly higher than proximal in-

tensities are extracted from the sample set. Third, median of absolute differences of

each probe for respective group is calculated and deviating probes according to a se-

lected threshold value are discarded. The last filter works similar to the third, but it

filters out samples deviating from related control groups.

Studies show that, APA may has a functional role in tissue-specific differentiation

such that 3’UTR length difference is observed more in some tissues like ovary, brain,

and adrenal than others [40, 17, 18]. Higher SLR value indicates shorter 3’UTR

isoform of the transcript, which may show connection with rapid proliferation of cells,

higher level of proteins and activation of proto-oncogenes in cancer cells [11, 12, 37].

Altogether, SLR values may help scientist to figure out the roles of APA events in

different physiological and disease states and they can be used to examine diverse

genes and to find hierarchical similarities between tissues.

2.2 Mathematical Background

2.2.1 Hierarchical Clustering

Clustering is one of the most important methods to group similar data points by dis-

covering hidden patterns in the data. There are many clustering techniques developed

with the current discoveries on data science. Hierarchical clustering is one of the

leading and easy to understand technique among them. It requires a distance matrix

or raw data as an input and produces a tree like structure, dendrogram, which shows

hierarchical relationship between clusters. Initial parameter settings are not required

and handled by linear/non-linear regression models. Two top-level methods for find-

ing hierarchical clusters are agglomerative and divisive.

10



Figure 2.2: Illustration of the APADetect tool on two different platforms. PAS stands

for the polyadenylation site and the PAS is used to divide probes into two groups. By

determination of proximal/distal groups, four different filters are applied to discard

outlier samples. Adapted from ‘Alternative Polyadenylation: Another Foe in Cancer’,

by Erson-Bensan, A.E., & Can, T., 2016, Molecular cancer research : MCR, 14 6,

507-17

2.2.1.1 Divisive Hierarchical Clustering

Divisive Hierarchical Clustering works by adopting a top-down approach. It starts

with considering all data points in one big cluster, then splits the most heterogeneous

clusters until all data points are in their own cluster. The basis of divisive clustering

was introduced as the DIANA (DIvisive ANAlysis Clustering) algorithm [41]

11



2.2.1.2 Agglomerative Hierarchical Clustering (AHC)

AHC uses a bottom-up approach, which is considering each data point as a separate

cluster, then joining similar clusters in a greedy manner by merging them until all

the similar clusters are merged together. If the number of clusters is provided, merg-

ing process is completed when system reaches desired number of clusters. Different

methods are implemented to measure proximity of any two cluster. The most popular

and commonly used ones are single linkage, complete linkage, weighted linkage, av-

erage linkage, and centroid linkage. Depending on the selected linkage type, distance

is calculated between clusters and selected ones are combined into a single cluster.

Processed clusters are removed from the set and a new comprised cluster is added.

In general, agglomerative procedure is more open to false decisions made in early

stages which makes the divisive procedure more reliable. It is also known that, divi-

sive clustering is powerful for finding large clusters while agglomerative clustering is

powerful for identifying small clusters. However, if we compare clustering possibil-

ities of the two approaches, we see that divisive clustering is more computationally

expensive than the agglomerative one. While all possible mergers of two samples

requires n(n − 1)/2 combinations for agglomerative clustering, the splitting proce-

dure of n objects requires 2n−1 − 1 combinations for divisive clustering. Although

DIANA reduces complexity by considering only a subset of all the divisions, it still

requires much more computations (O(2n) ~ O(n5)) than the agglomerative approach.

Exponentially growing combinations makes divisive clustering non-preferable and

therefore, it is largely ignored in the literature.

2.2.1.3 UPGMA

Unweighted pair group method with arithmetic mean, which is also known as average

linkage, is a distance based method to construct a rooted phylogenetic tree [42]. It

creates unweighted dendrograms, which means the distances from the root to termi-

nal nodes are all equal in the tree. It requires the rates of evolution among distinct

family lines to be almost equal. Because providing such evolutionary relationships is

challenging and may still violate the criteria, this method is not commonly used.
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We used open source SciPy [43], which is a python library used for scientific and

technical computing. Cluster hierarchy package’s average linkage method was used

to build the tissue hierarchy dendrogram. The naive algorithm has time complexity

O(n3). SciPy implementation is based on nearest neighbors chain which reduces

complexity to O(n2) and uses O(n2) memory [44].

UPGMA algorithm steps

Let i and j be two distinct nodes, d(i,j) is the distance between nodes.

n is the number of nodes(OTU) to be processed.

Terminate only one cluster remains.

1. Find smallest value in matrix D for the pair of distinct nodes and create a new

internal node by connecting currently processed terminal nodes to that node.

2. Calculate branch length from the pair members to the new internal node.

δ(a, u) = δ(b, u) =
D(a, b)

2

3. Calculate the average distance from the remaining nodes in tree to the new

internal node where A and B are clusters and x and y are nodes in clusters.

d(A,B) =
1

| A | · | B |
∑
x∈A

∑
y∈B

d(x, y)

4. Update distance matrix D by combining processed terminal nodes in new inter-

nal node and by setting distances calculated in previous steps. Please note that

matrix size is reduced by one column and row because of the joining process.

Repeat algorithm starting with step 2.

2.2.1.4 Neighbor Joining

Neighbor Joining is a distance based method firstly proposed by Naruya Saitou and

Masatoshi Nei in 1987 [45]. It can be adopted to different needs but it is especially

used for describing the evolutionary history trees based on DNA or protein sequence

data. Construction of a tree requires divergence of species or sequences which is pro-

vided by a distance matrix. In this thesis, the tree was constructed based on how many
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genes differ in terms of their SLR values between tissues. Neighbour joining assumes

that genes with lower difference must be closer than other genes in the matrix. It it-

eratively clusters proteins, builds a new subtree and creates a new distance matrix

from gene clusters. It makes a correction of the initial distance matrix and deals with

the juxtaposition problem of long and short branches on the same phylogenetic tree.

The principle of this method is to minimize the total branch length at each phase of

clustering, beginning with a star like tree [45].

NJ algorithm steps

Let i and j be two distinct nodes, d(i,j) is the distance between nodes.

Let f and g be two distinct nodes, L(f,g) is the branch length between nodes.

n is the number of nodes(OTU) to be processed.

Terminate when n=3.

1. Create initial star tree.

2. Calculate modified distinct matrix Q from distance matrix D.

Q(i, j) = (n− 2)d(i, j)−
n∑

k=1

d(i, k)−
n∑

k=1

d(j, k)

3. Find smallest value in matrix Q for the pair of distinct nodes and create a new

internal node by connecting currently processed terminal nodes to that node,

which is also connected to center of the star shape.

4. Calculate the distance from the pair members to the new internal node

δ(f, u) =
1

2
d(f, g) +

1

2(n− 2)

[ n∑
k=1

d(f, k)−
n∑

k=1

d(g, k)

]
δ(g, u) = d(f, g)− δ(f, u)

5. Calculate the distance from the remaining nodes in tree to the new internal node

d(u, k) =
1

2

[
d(f, k) + d(g, k)− d(f, g)

]
6. Update distance matrix D by combining processed terminal nodes in new in-

ternal node and setting distances calculated in previous steps. Please note that

matrix size is reduced by one column and row because of joining process. Re-

peat algorithm starting with step 2.
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According to the algorithm described above, the total time complexity and space

complexity of running neighbor joining on a set having n objects are O(n3) and O(n2)

respectively. It is possible to improve performance using different acceleration tech-

niques and heuristics have been proposed to decrease complexity.

There are many libraries and tools available implementing neighbor joining. We used

the open source scikit-bio which implements several structures and methods to work

with biological data in Python. It provides well documented, high quality and up-to-

date stability commitments with its API.
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CHAPTER 3

SLR BASED HIERARCHICAL CLUSTERING

3.1 Brenda Tissue Ontology

Brenda Tissue Ontology (BTO) is a comprehensive structured encyclopedia which

connects the biochemical and molecular biological enzyme data of BRENDA

(BRaunschweig ENzyme DAtabase) with a hierarchical and standardized collection

of tissue-specific terms [46, 47]. It is one of the first ontologies maintaining wide

range of tissue related information, which is gathered from literature references and

annotated manually by experts. It provides a tree-like subgraph, highlighting place-

ment of tissue on the hierarchy when a tissue specific term is searched. Several in-

formation such as BTO id, definition, references, and enzyme source is also linked.

Enzyme-organism specific tissue content is growing each day with the data integrated

from external sources as well as laboratories studying cell line databases. Brenda

Tissue Ontology, widely used in biochemical applications and scientific community,

has currently more than 75000 tissue entries updated twice a year[46].

3.2 The Gene Expression Dataset and SLR values

GSE7307 (GEO, www.ncbi.nlm.nih.gov/geo/) [48] was used in this thesis, which has

been submitted by R. Roth et al. in 2007. It contains gene expression data of normal

and diseased human tissues obtained using the Affymetrix U133 plus 2.0 array. It has

677 processed samples, representing over 90 distinct tissues. Disease status, disease

type, cell line and gender data are also provided for each sample. The sample IDs of

the dataset are given in Appendix A.
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3.3 Preparation

We used SLR values of genes to examine diverse genes and hierarchical similarity be-

tween tissues. The APADetect tool [37, 38], which detects and quantifies alternative

polyadenylation (APA) events by analyzing raw intensities of the probes, was used to

calculate the SLR values. In the tool, firstly, proximal and distal probe sets are con-

structed. Then, average probe intensities are identified for every proximal and distal

probe and processed gene by gene. After calculating optimum intensities for each

sample, proximal to distal ratio is computed and named as SLR (Short/Long Ratio).

We worked on a matrix, which has SLR values of 3304 genes across 677 tissue sam-

ples. Because of the problem with redundant assignment of gene symbols in the lit-

erature, entrez gene ids were assigned for each gene as well as symbols, which were

used as primary identifiers for genes. An R object, org.Hs.egALIAS, from the bio-

conductor annotation packages [49] was used to provide mappings between common

gene symbol identifiers and entrez gene identifiers. After an elimination of unknown

named genes and the ones having no entrez gene identifiers, 2380 unique genes were

listed in total. SLR values of each gene for each sample were processed according

to its magnitude and quantity. Some genes appear more than once with the same

probeset id but different polyA site id, which means that more than one alternative

polyadenylation site exists for that gene. Therefore, more than one SLR value can be

associated with one gene. Because larger/shorter SLR value implies proximal/distal

3’ UTR isoform of the transcript, maximum shortening/lengthening output, furthest

from 1, was taken into account while doing calculations. A difference threshold of

0.9 was selected to find genes having most differentiated 3’ UTR isoforms. Genes

having SLR values between 0-0.1 and 1.9- of the corresponding genes were identi-

fied for each 677 tissue samples. Consequently, we had 1425 unique genes with high

proximal APA after SLR based elimination. Next, tissues were grouped according to

sample types. In this dataset, there are six types, Activated, Control, Resting, Treated,

Disease and Normal, each of which a tissue profile. Some tissues were experimented

on for both Normal and Disease types. Since there were many samples belonging to

the same tissue, gene SLR data of samples were merged into one unique tissue sample

for each sample types. In total, we obtained the SLR data of 129 unique tissues for
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the dataset GSE7307. The dataset before and after this process is given in Table 3.1.

Total Sample Count Merged Sample Count Gene Count

Activated 9 6 570

Control 18 5 713

Resting 9 6 550

Treated 18 6 815

Disease 119 16 855

Normal 504 106 1325

All 677 145 1425

Table 3.1: Finalized tissue sample and gene count for each sample type

Additionally, to perform tissue-wide analysis of the human genes, we constructed the

actual tissue hierarchy using the Brenda tissue ontology system. Tissue hierarchies

were organized according to 2-5 level counts. Animal and other source classification

categories were selected to inspect 129 source tissues in our dataset. Because some

tissues are labeled in more than one parent tissue, we added additional entries to the

hierarchy for those tissues. In the end, the hierarchy contains 21 main tissues with

related sub tissues. Table 3.2 shows detailed information.

For each merged sample, genes were sorted according to SLR values and top 20,50,100

genes were selected respectively. The distance matrix, which contains pairwise dis-

tances between two sets, was constructed for each sample type to see dissimilarity of

samples. The size of the matrix depends on the number of top genes that are analyzed,

in our case 20x20, 50x50 and 100x100 matrices were analyzed for each sample class.

Rows and columns were tissue samples in each class. Since diagonal entries give

the difference between same tissue samples, all of them should be 0 and all the off-

diagonal entries should be a positive number. The difference is calculated by counting

genes which are not in the intersection of the two considered tissue samples.

MatrixM = (xij) with 1 ≤ i, j ≤ N

A = {tissueSamples}
tissueTypes = {Disease,Normal, Activated, Control, T reated}
N = {20, 50, 100}
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Tissue Name Sub-tissue Count Tissue Name Sub-tissue Count

Integument 14 Connective Tissues 6

Gland 26 Ganglion 16

Urogenital System 27 Viscus 19

Muscular System 8 Trunk 9

Cardiovascular System 9 Embryonic Structure 4

Nervous System 45 Softbody Part 2

Hematopoietic System 7 Sense Organ 3

Respiratory System 3 Adult Stem Cell 2

Skeletal System 3 Organism Form 1

Immune System 4 Other Source 4

Head 46

Table 3.2: Main tissues with related sub tissue counts

xii = 0 for all 1 ≤ i ≤ N, xij > 0 if i 6= j, xij = xji, xij ≤ N if i 6= j

xij = Count({gene : gene ∈ Ai ∧ gene 6∈ Aj ∪ gene 6∈ Ai ∧ gene ∈ Aj})

3.4 Dendrogram Creation and Structural Comparison

In this work, hierarchical clustering was used to create dendrogram structures of tis-

sues in the human body, and the accuracy of the clustering is assessed using a stan-

dard hierarchy of tissues. The agglomerative clustering technique, which follows a

bottom-up approach, was selected. We created dendrograms for each tissue type us-

ing neighbor joining and UPGMA techniques. The same workflow was repeated for

top most 20, 50, and 100 differentiated genes.

Although there are more accurate character based methods using an optimization

criterion such as parsimony, maximum likelihood or compatibility to analyze den-

drograms [50, 51], we could not apply them because of our distance based dataset.

Character based methods need phylogenetic characters like gene sequence alignment

but we were dealing with data having numerical attributes.
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Phylo.io was used to visualize hierarchical trees from their Newick [52, 53] tree

format. It analyzes different levels and compares the internal structure of two in-

ferred trees for the same set of OTUs[54]. Optimized version of Jaccard index is

used to make metric comparison and identify the overlapped structure. Robinson-

Foulds(RF)[55], euclidean and SPR metrics are adopted to measure distance between

unrooted binary trees. RF distance is also known as the symmetric difference which

searches for partitions existing only in one of the trees and calculates the sum of them.

Euclidean distance simply measures line distance between nodes in trees being com-

pared. Subtree pruning and regrafting (SPR) distance, which is NP-hard, counts the

minimum number of moves needed to obtain one tree from another. Table 3.3 shows

the result of tree distances for all, normal, and disease tissue types.

As expected, dendrograms, created using different clustering algorithms, have differ-

ent structures if we calculate the distance of the overall schema. While NJ preserves

actual branch rates, UPGMA assigns equal rates among branches resulting in a dis-

crepancy. The distances get larger as the node count in the tree increases. In addition

to that, trees built with top 100 highest SLR values are more differentiated from each

other than the ones built with top 20/50 highest SLR values. This shows that, branch

rate calculation affects the dataset with size 100 most and leads to data loss. How-

ever, the amount of differentiation is mostly negligible. If the internal structures are

compared, we see that although there are differences among internal branches, hi-

erarchically closer tissues are often located close on the tree for both UPGMA and

NJ structures. The most remarkable tissue groups, whose sub tissues are clustered

together were brain, ganglion, nervous system, and muscular systems. Respiratory

system tissues except Lung were also located close. Deltoid Muscle, Skelatal Mus-

cle, Thalamus Laterai Nuclei, Testes and Prostate tissues were the most differentiated

tissues and located in farthermost branch. If disease and normal samples of same tis-

sues are compared, we again see that tissue groups were neatly separated from each

other. Also, we observe that normal samples of most tissues shared the same parent

with their disease samples, which demonstrates high similarity. However; Skin, Ac-

cumbens and Putamen tissues show correlation with the samples of different tissues.

In order to inspect the effects of proximal APA tissue-wide, we studied various den-

drograms with respect to the literature curated tissue hierarchy and presented accuracy
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Robinson-

Foulds
Euclidean SPR

Node

Count

Top20 SLR NJ All

Top20 SLR UPGMA All
120/0.63 10.807 32 145

Top50 SLR NJ All

Top50 SLR UPGMA All
119/0.62 19.724 31 145

Top100 SLR NJ All

Top100 SLR UPGMA All
124/0.65 35.600 32 145

Top20 SLR NJ Random

Top20 SLR UPGMA Random
112/0.59 11.204 30 145

Top50 SLR NJ Random

Top50 SLR UPGMA Random
114/0.60 21.758 31 145

Top100 SLR NJ Random

Top100 SLR UPGMA Random
138/0.73 21.821 35 145

Top20 SLR NJ Normal

Top20 SLR UPGMA Normal
123/0.71 9.200 32 106

Top50 SLR NJ Normal

Top50 SLR UPGMA Normal
119/0.65 16.337 30 106

Top100 SLR NJ Normal

Top100 SLR UPGMA Normal
131/0.74 29.310 36 106

Top20 SLR NJ Disease

Top20 SLR UPGMA Disease
11/0.42 6.251 4 16

Top50 SLR NJ Disease

Top50 SLR UPGMA Disease
9/0.35 13.595 3 16

Top100 SLR NJ Disease

Top100 SLR UPGMA Disease
17/0.65 17.247 4 16

Table 3.3: Structural comparison of UPGMA and NJ trees

results for each experiment.
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3.5 Precision Analysis of Dendrogram Structures

Precision of dendrograms was computed with Algorithm 1 and Algorithm 2 which

were run on NJ and UPGMA trees respectively. Both algorithms have two phases

executed sequentially and give ancestor based accuracy. They both identify near and

distant nodes for each processed node and try to find out if detected near nodes are ac-

tually in the same family according to the actual biological tissue hierarchy. Because

UPGMA and NJ have different branch rate approaches, they handle node identifica-

tion and threshold selection separately. Algorithms were executed for each agglom-

erative tree which was created with top most 20, 50, and 100 differentiated genes for

each type. Below, we provide results for four dataset types. The first dataset con-

tains gene data for normal, i.e. healthy, tissues. The second one has data for diseased

tissues. The third one contains gene data for diseased tissues and respective normal

tissues, and the last one has all the tissues for activated, resting, control, and treated

tissues as well as normal and diseased ones.

3.5.1 Ancestor Based Accuracy of NJ Based Trees

3.5.1.1 Algorithm

Algorithm 1 presents ancestor based accuracies for dendrograms constructed with the

Neighbor Joining method. In the first phase, an N × N matrix is generated having

branch distances of related pair of tissues in the entries. N is the number of unique

tissues. The edges of trees represent the proximity or genetic distance between two

tissues. A smaller distance indicates that tissues having similar proteins according to

SLR values are more closely related. In the second phase, ancestors of the sample

tissues are determined using the biological tissue hierarchy for each tissue pair. An-

cestor data is a list and might contain multiple parent tissues for each sub tissue as a

result of our structure. Median, average, and optimal distance values are calculated

for each row and assigned as the threshold. These values divide row data into two

halves, possibly near and possibly distant tissues. The ones having lower distance

than the threshold are gathered and if currently processed tissue and its possibly near

tissues have common ancestors, they are labeled as closely related. The contribution
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amount to the final sum values depend highly on the size of the ancestor list.

Algorithm 1 The NJ AncestorBasedAccuracy Algorithm

Input: Agglomerative Tree T, Unique Tissue List M,Biological Tissue Hierarchy H

Output: Accuracy for given tree

1: for tissueCur in M do . Phase 1

2: currentNode← findNode(T,tissueCur)

3: for tissueComp in M do

4: comparisonNode← findNode(T, tissueComp)

5: d← calculateDifference(currentNode,comparisonNode)

6: add d to nodeDistancesMatrix

7: end for

8: end for

9: for tissueCur in M do . Phase 2

10: get node ancestors A for tissueCur(H)

11: calculate threshold for tissueCur

12: for tissueComp in M do

13: get node ancestors B for tissueComp(H)

14: intersect← findIntersection(A,B)

15: if nodeDistancesMatrix[tissueCur][tissueComp] < threshold then

16: calculate SumN, countN using intersect

17: end if

18: end for

19: calculate average near node count for tissueComp and add to nList

20: end for

21: return average(nList)

3.5.1.2 Results

Results are provided in Table 3.4. Each pair of the columns represent accuracy and

average near node count with respect to the selected threshold value. Median distance

threshold gives middle value of the sorted distance values, and half of the tissues in the
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network are accepted as near node. Because the threshold is so high, we got the low-

est accuracy in this case. Average distance threshold is calculated by the arithmetic

mean of the distance value list. In this case, possibly, the near node count is calcu-

lated for each tissue specifically, which divides near and distant nodes better. Best

accuracy results were obtained with the average threshold. In the optimum thresh-

old case, we determined the optimum nearest tissue count to be processed according

to tree structure and the total tissue count for each network, and computed accuracy

results accordingly. This method gave lower results than the average threshold be-

cause, in some cases, distant nodes behaved like near nodes and were included in the

calculation. Likewise, near nodes were neglected because of the limited threshold.

Median

Distance

Avg

NNC

Average

Distance

Avg

NNC

Optimum

Distance

Avg

NNC

All Top20 0.3905 71 0.60 24 0.53 15

All Top50 0.3616 71 0.74 9 0.53 15

All Top100 0.3879 71 0.81 7 0.53 15

Normal Top20 0.4051 52 0.64 15.2 0.53 10

Normal Top50 0.3884 52 0.85 5.89 0.55 10

Normal Top100 0.4150 52 0.89 6.18 0.57 10

Disease Top20 0.7757 7 0.93 5.63 0.87 4

Disease Top50 0.7361 7 0.94 5.44 0.81 4

Disease Top100 0.7757 7 1 4.38 0.82 4

Normal-Disease Top20 0.5096 14 0.94 10.8 0.91 7

Normal-Disease Top50 0.5043 14 0.93 9.29 0.85 7

Normal-Disease Top100 0.4896 14 0.98 7.84 0.87 7

Table 3.4: Summary of ancestor based accuracies of NJ dendrograms
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3.5.2 Ancestor Based Accuracy of UPGMA Based Trees

3.5.2.1 Algorithm

Algorithm 2 presents a method for computing ancestor based accuracy for dendro-

grams constructed with the UPGMA method. In the first phase, the maximum dis-

tance threshold list which keeps maximum inconsistency coefficient for each non-

singleton cluster is created, and flat partitions are formed by given linkage matrix

and distance based threshold. The matrix provides encoded hierarchical clustering

data and the threshold determines the cluster size. If the threshold is small, just the

closest neighbours form a cluster, which increases total cluster count in the network.

On the other hand, if the threshold is very high, many distant nodes can be added to

the cluster, which decreases the total cluster count. Therefore, it is vital to choose

the optimum threshold during clustering. We analyzed maximum, minimum, average

and median of maximum distance threshold list to find an optimal threshold. We also

provided additional threshold values according to tree structure and total tissue count

for each network. Finalizing cluster sets, we assigned each tissue to a proper cluster.

In the second phase, ancestors of the sample tissues are determined using biological

tissue hierarchy for each tissue pair. Ancestor data is a list and might contain multiple

parent tissues for each sub tissue as a result of our structure. Tissues belonging to

same cluster and having common ancestors are labelled as closely related and ances-

tor based accuracy for each tissue is calculated accordingly. The average of calculated

accuracies give the network accuracy.

3.5.2.2 Results

Results are provided in Table 3.5. Each pair of the columns represent accuracy and

average cluster count with respect to the selected threshold value. Among all, av-

erage and optimum thresholds were chosen to represent the accuracy of a network.

Average threshold gives middle value of the sorted maximum inconsistency coeffi-

cients and clusters were formed to include 4-7 tissues each. For the optimum case,

cluster count was determined based on tree structure and total tissue count for each

network, and accuracy were calculated accordingly. We decreased cluster count for
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Algorithm 2 The UPGMA AncestorBasedAccuracy Algorithm

Input: Tissue Distance Matrix Z, Unique Tissue List M,Biological Tissue Hierarchy

H, Threshold T

Output: Accuracy for given tree

1: findMaximumDistanceForEachCluster(Z)

2: clusterIds← getClusterIds(Z,T)

3: for clusterId in 1, . . . , max(clusterIds) + 1 do . Phase 1

4: find tissues with same clusterId and insert into clusterSet[clusterId]

5: end for

6: for tissueCur in M do . Phase 2

7: get node ancestors A for tissueCur(H)

8: for tissueComp in M do

9: get node ancestors B for tissueComp[(H)

10: intersect← findIntersection(A,B)

11: if tissueCur and tissueComp in same clusterSet then

12: calculate SumN, countN using intersect

13: end if

14: end for

15: calculate average near node count for tissueComp and add to nList

16: end for

17: return average(nList)
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both normal/healthy tissue dataset and all tissue datasets to enhance divergence. Clus-

ters had 9-10 tissues for this case. We slightly increased cluster count for diseased

tissue dataset and diseased-normal together tissue datasets to prevent distant tissues

from being member of the same cluster, and compared results with the ones obtained

from NJ experiments. Clusters had 4-5 tissues for this case. While average threshold

based analysis gave higher accuracy results for healthy and all tissue datasets, opti-

mum threshold based analysis gave better results for diseased and normal-diseased

datasets. Because accuracy depends highly on cluster size, this behavior was ex-

pected.

Average

Threshold

Cluster

Count

Optimum

Threshold

Cluster

Count

All Top20 0.64 29 0.56 15

All Top50 0.67 29 0.54 15

All Top100 0.69 28 0.56 15

Normal Top20 0.63 22 0.54 10

Normal Top50 0.67 25 0.52 10

Normal Top100 0.69 22 0.57 10

Disease Top20 0.91 4 0.91 4

Disease Top50 0.83 3 0.90 4

Disease Top100 0.83 3 0.83 4

Normal-Disease Top20 0.88 4 0.95 7

Normal-Disease Top50 0.88 5 0.95 7

Normal-Disease Top100 0.74 3 1 7

Table 3.5: Summary of ancestor based accuracies of UPGMA dendrograms

Altogether, if we compare UPGMA results of optimum threshold and NJ results of

optimum distance, we observe that UPGMA gives slightly better accuracy, but over-

all, results were close to each other. Applying the optimum threshold, we obtained

similarity more than %50 for normal and all datasets and more than %90 for diseased

and normal-diseased datasets. Lowering cluster size or near neighbor count improved

accuracy even more. Therefore, we can say that hierarchically similar tissues can be
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determined by just looking at the gene data showing higher SLR values. There might

be several underlying reasons behind accuracy loss. First of all, some tissues tend

to exhibit more APA events than other hierarchically closer tissues, which yields di-

vergence. Secondly, different samples of same tissues such as diseased, activated,

healthy etc. may show different APA behaviour from each other, but show high APA

similarity with the hierarchically distant ones. To be able to detect these cases, we

have to deep dive into the data.

Best results were obtained for the dataset having gene data of diseased tissues and

respective healthy tissues. If we analyze the dendrograms, we clearly see that for vast

majority of tissues, diseased-healthy samples are highly correlated. It means that the

genes showing shorter 3’ UTR isoform are common in diseased and healthy samples

of same tissues. Skin, putamen and accumbens tissues make an exception, and their

samples were located far away from their related pair in the dendrogram and can be

focused more in future work.
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CHAPTER 4

SLR BASED FEATURE LEARNING ANALYSIS

In this chapter, we aim to perform organism-wide analysis of proximal APA events

using a multi-layer tissue hierarchy and a gene interaction network. Although we

have created dendrograms based on tissue-tissue distances and examined hierarchi-

cally closer tissues for different cases, we did not consider gene interaction networks

across tissues before. By extracting SLR based features for each gene, gene-tissue

correlation and tissue behaviour in case of proximal APA can be studied.

4.1 Feature Engineering and Related Work

Feature engineering, transforming raw data into features, has been popular among

researchers who study variety of domains ranging from social networks to biological

networks. It is one of the most important phases of a data mining workflow, aiming

to build an efficient model and to work on classification and prediction of data, be-

cause meaningful features and attributes are key factors to improve performance and

accuracy.

Protein-protein interaction networks are fundamental as data sources to learn neural

embedding based low-dimensional space of features, and they are studied extensively

in life sciences. They are used for network alignments, predicting functional labels

of proteins, discovering novel interactions between genes, drug discovery, and more

[56, 57, 58, 59, 60]. A significant body of genomics research focuses on down-stream

learning tasks on specific tissues and novel genes, but relations between tissues and

genes are largely ignored. They assume that same proteins in distinct tissues work

similar and cellular function is constant across organs and tissues [56, 61, 62]. How-
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ever, gene behaviors and functionality may be specific to a particular tissue and tis-

sue hierarchy should be taken into account while extracting rich feature representa-

tions for proteins [26]. Among many state-of-the-art approaches, we focused on an

algorithm for hierarchy aware multi-layer networks [26]. The algorithm builds on

prior unsupervised feature learning methods working on neural architectures [63, 64]

and uses random walks and continuous bag of words model to learn features. Ran-

dom walk efficiently explores node neighbors in a d-dimensional feature space [63].

CBOW produces a distributed representation of nodes and predicts the current node

by looking at the surrounding nodes in a window having adjustable size [64]. Ohmnet

constructs a tissue hierarchy and layers, representing the PPI network for each dis-

tinct tissue in the hierarchy. A biological system is represented as a bunch of proteins

and interactions in a PPI network considering gene names as nodes and physical/-

functional interactions as edges [65]. The strength of weighted edges are processed

to discover functional units[66]. Processing on the multi layer network, neighbor-

hoods for nodes are generated using a random walk approach[63]. Walk length and

number of walks parameters are used to determine a sampling strategy. Biased pa-

rameters p and q are used to guide the walk by regulating probabilities, which affect

neighborhood strategy[63]. After constructing network neighborhoods, initial feature

set is generated for each node in every layer by evaluating node-node interactions.

This set is then updated iteratively such that gene, i.e. protein, nodes having similar

set of neighbors in hierarchically close layers are embedded closely together[26]. In

the end, the system learns a d-dimensional feature vector for every protein node in

every tissue. The authors of Ohmnet use feature vectors for protein functionality pre-

diction and, for cellular function transferring to unannotated tissues[26]. However,

in this thesis, we are only interested in feature embeddings and protein similarity to

infer whether protein nodes in a proximal APA cluster are parallel with initial tissue

hierarchy. Therefore, we did not perform any classification methods.

4.2 Dataset

To perform protein feature extraction, we need a PPI network for each tissue as well

as a hierarchical representation of the tissues. We used the supplementary data pro-
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vided by Zitnik et al.[26] In their work, the Human PPI network was retrieved from

Menche et al.[67] who merged lots of databases having different types of physical

interactions. The resulting network gives an interactome having 13,460 proteins con-

nected by 141,296 physical interactions[67]. Interaction type based protein and PPI

count is given in table 4.1.

Interaction Type Protein Count Interaction Count

Regulatory 564 1335

Binary 8120 28653

Literature 11798 88349

Metabolic enzyme-coupled 921 5325

Protein complexes 2069 31276

Kinase network 1843 6066

Signaling 6339 32706

Table 4.1: Obtained PPI interaction count from well known studies and databases

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Zitnik et al.[26] then expanded the network by combining data sources from three

other significant databases[68, 69, 70]. The final global network contained 21,557

proteins interconnected by 342,353 physical interactions[26]. They handled gene to

tissue mapping using gene pair annotation data by the method provided by Greene et

al. [71]. Greene et al. [71] determined tissue specific proteins by examining gene

pair relationship with the tissue such that each gene pair is labeled as co-expressed

if at least one of the gene in the pair is tissue specific. Using co-expressed genes

and related tissue data, Zitnik et al.[26] presented 107 tissue specific human PPI sub-

networks.

4.3 Preparation

We selected 48 tissues among 107 to analyze proteins having SLR values higher than

a specified threshold value. They have 5000 to 57000 interactions. We used Brenda

Tissue Ontology [46, 47] to build a tissue hierarchy. The resulting network has 27
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internal tissue nodes and 48 leaf tissue nodes. Several training experiments with dif-

ferent gene datasets were executed. During training, biased parameters p and q were

both set to 1. Walk length, number of walk and window size parameters were kept

as 10, 5, and 10 respectively. In the first experiment, all proteins and PPI interactions

were used to train the system. Running the Ohmnet model, we obtained 117,069 fea-

ture vectors with 128 features each. In the second experiment, PPI interaction network

of tissues were limited such that we eliminated interactions if neither of the proteins

showed high proximal APA. Same gene dataset with high proximal APA, provided in

Table 3.1, was used to label proteins in the PPI network. Once elimination was done,

tissue networks had 4000 to 26000 interactions. After training, we obtained 104,414

feature vectors with the same amount of features. Because we are interested in pro-

teins with high 3’UTR shortening, we only kept corresponding feature sets, resulting

in a total of 11,676 protein feature vectors for 48 unique tissues.

4.4 Methods and Experiments

To observe the pattern of protein and tissue similarity, we performed principal compo-

nent analysis and t-distributed stochastic neighbor embedding methods [72, 73]. Both

techniques model high dimensional data to low dimensional space by preserving the

neighborhood structure and variance as much as possible. They reduce the complexity

of data to accelerate the learning algorithm and visualize high-dimensional datasets.

Although PCA gives a mathematical solution, t-SNE uses a probabilistic approach

while embedding the feature set into lower dimensions. Because probabilistic ap-

proach may require heavy computational power if the number of dimensions is very

high, using t-SNE after applying other techniques might be preferred. In our experi-

ments, we dealt with 128-dimensional feature subspace, therefore; we did not require

sequential execution of dimensionality reduction methods using t-SNE.

The first experiment gave us all protein embeddings by processing PPI interactions

in each layer and similar proteins in hierarchically closer layers. We used output of

this experiment as a guidance for hierarchically closer tissues in the normal condition.

In the second experiment, we obtained protein embeddings with high proximal APA.

Then, we compared the resulting networks of the two experiments to analyze tissue
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behaviours in case of proximal APA presence. We also investigated whether genes

having higher SLR values showed irregularity or if they clustered together.

For both experiments, PCA and t-SNE methods were executed and the resulting charts

were analyzed [74]. PCA was performed on training data with two components and

an auto solver, which determines the most efficient linear dimensionality reduction

method using a training matrix and the component count. TSNE is run with several

parameters. The number of dimensions of the embedded space was chosen as two.

Because we were processing a relatively large dataset, perplexity and maximum itera-

tion number for the optimization were set to 50 and 3000, respectively. The Euclidean

metric was used to compute the distance between items in a feature array. Finally, the

random state was given as 32 to the seed cost function.

When the data is crowded, it might be very difficult to visualize similarity between

objects. Therefore, it is a common practice to color objects. Because tissues in our

work are represented in multiple hierarchies, first we reduced the hierarchy level to

two such that all proteins connect to mid-level tissues and all mid-level tissues con-

nect to an anterior division of the animal body according to Brenda Tissue Ontology.

Through 2-level hierarchy of tissues, colorization was performed. Figure 4.1 shows

1-level and 2-level color mapping.

Figure 4.1: 2-level color mapping with distinct monochromatic colors(A). 1-level

color mapping with distinct main colors(B).
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Each anterior division of the animal body was assigned a main color and related con-

nected tissues were assigned distinct monochromatic colors. During 2D visualization,

proteins were also colored according to color information of mid-level tissues they are

connected to.

4.4.1 Feature Embeddings of Proteins with High SLR Values

PCA and t-SNE methods were first run on the limited set containing proteins with

higher SLR values, i.e. higher proximal APA. 2-level tissue hierarchy was used to

color and distinguish proteins in same mid-level tissue group as well as in the main

tissue group. While in Figure 4.2 proteins were mapped using PCA, in Figure 4.3

proteins were mapped using T-SNE.

Figure 4.2: PCA representation of limited protein embeddings on 2-levels tissue hi-

erarchy.

According to the figures, we clearly see that proteins in the same tissue are closely

distributed and clustered together. Tissues connected to same anterior divisions of

animal body are also mapped into closer regions than others. In the T-SNE chart, tis-

sues form separate, well-defined circular shapes. In the PCA chart, tissues are mapped
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Figure 4.3: T-SNE representation of limited protein embeddings on 2-levels tissue

hierarchy.

more linearly but still cluster closely. Because at some points, proteins in different

tissues are mapped to the same regions, clear detection of diverged tissues is not pos-

sible with the PCA approach. However, clustering is more precise in T-SNE and this

allowed us to make inferences. Heart tissue is separated from other cardiovascular

system tissues and hypophysis is mapped together with bronchus, blood vessel, and

urogenital system tissues rather than gland tissues. Blood vessel and b_lymphocyte

are also not clustered together with other proteins in the hematopoietic system and

show similarity with the nodes in the urogenital system and bone marrow.

1-level tissue hierarchy was used to color and distinguish proteins in the same main

tissue group. Protein mappings stayed the same but coloring became simpler such

that mid-level tissues were assigned a main color according to anterior division of

animal body they are connected to. While Figure 3.4 shows proteins mapped using

PCA, Figure 3.5 shows proteins mapped using T-SNE. In those charts, we cannot

observe mid-level tissue neighborhood but we can infer about the similarity of main

tissues.

Head and muscular system tissue groups seem more isolated than other tissues. While
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Figure 4.4: PCA representation of limited protein embeddings on 1-level tissue hier-

archy.

Figure 4.5: T-SNE representation of limited protein embeddings on 1-level tissue

hierarchy.

proteins in the head group indicate partial closeness with the viscus group, the muscu-

lar group is closest to the integument group. Other tissue groups partly intersect with
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each other, which means they might share mutual features. Among them, gland and

cardiovascular tissues seem more similar to each other since they have many proteins

placed together on PCA‘s 2-dimensional coordinate system. Their circular shaped

clusters are both located at the top-center of the T-SNE chart. Part of the gland nodes

are also mapped distinctly or share similar points with respiratory, nervous, and uro-

genital systems. While one big cluster of the viscus tissue showed similarity with the

head, integument, and hematopoietic systems, other smaller clusters appeared to be

surrounded by respiratory, skeletal, urogenital, and embryonic structure systems.

4.4.2 Feature Embeddings of All Proteins

In order to examine whether genes having shortened 3’UTR show irregularity or bet-

ter clustering, protein embeddings of the whole gene set were also visualized with

the T-SNE and PCA approaches using same colorization technique described before.

Since, the dataset is much more crowded than before, it produces high density but

difficult to read charts. Therefore, we just used 1-level tissue hierarchy to color and

distinguish proteins in same main tissue groups. Figures 4.6 and 4.7 present all the

protein embeddings mapped using PCA and T-SNE, respectively.

Figure 4.6: PCA representation of all protein embeddings on 1-level tissue hierarchy.
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Figure 4.7: T-SNE representation of all protein embeddings on 1-level tissue hierar-

chy.

According to the figures, we still see closely distributed and clustered mid-level tis-

sues but, among the main tissue groups, some mid-level tissues show divergence.

Although all mid-level tissues in embryonic structure, integument, urogenital, and

muscular systems cluster in nearby places, some remaining mid-level tissues seem to

cluster farther than their tissue group.

As a result of our experiment on whole protein data embeddings with tissue hier-

archy, we were able to see that the head tissue was not separated from other tissue

groups anymore, as it showed similarity with respiratory, hematopoietic, integument,

and partly skeletal and nervous systems. The muscular system is still isolated but

maps slightly closer to the gland group. Gland and cardiovascular systems are again

similar to each other but, this time, they are placed in a more central position and

partially intersect other tissues. One big cluster group of gland is partially close to

viscus and skeletal systems. On the other hand, a small cluster of gland is placed

together with respiratory, hematopoietic, integument and urogenital systems. Viscus

groups also converge in two different places. While one cluster shows similarity with

cardiovascular and hematopoietic systems, other cluster is placed near the muscular
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system. Tissues in the respiratory system show different mapping behaviour, which

yields multiple neighbours mainly including head, gland, nervous, hematopoietic and

skeletal systems.

When we compare the experiment done by using embeddings of proteins having high

SLR values with the experiment that have all the protein embeddings, we clearly see

that mid-level tissue clustering is stable. In both experiments, proteins showing sim-

ilar interactions according to a particular tissue and hierarchy are clustered together,

and tissue regions of the distinct colors are well-separated from each other. Cluster

divergence between main-level tissues was reduced with SLR proteins and all tissues

in respiratory, head and nervous system were mapped together. Accepting similar

main tissues as hierarchically closer in experiment one, we can argue that training the

system with only interactions of genes having higher proximal APA changes the map-

ping of some tissue groups. Moreover, different tissue groups having more uniquely

co-expressed proteins with shortening events may show more similarity than other

hierarchically closer tissue groups. The unexpected similarity between these hier-

archically unrelated tissues may reflect common functional and regulatory roles or

disease trends resulting from proximal APA which can be further investigated by

wet-lab experiments.

Following inferences can be made for individual main tissue groups from the experi-

ment with SLR protein embeddings compared to the results of the experiment using

all the protein embeddings. Although gland and nervous systems are located far from

each other in when all embeddings are used, they showed high similarity and mapped

together in SLR only embeddings. The head tissue is separated from the respiratory

and nervous system, and is associated with the viscus and shows similarity with the

hematopoietic system. The viscus is distant from the gland and cardiovascular sys-

tems, but it is closer to the head and the integument, and retains the similarity with

the hematopoietic system. The cardiovascular system is mapped in a relatively central

position and has many neighbor tissues surrounding it when all embeddings are used.

However, it is quite different from these tissues (except for the gland) when SLR only

embedding is used. Moreover, the respiratory system is located similarly with the

gland and cardiovascular systems and it is different from the head and hematopoietic

systems. The muscular system is clustered separately in both cases. Although viscus
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and gland groups are its immediate neighbours when all embeddings are used, they

are replaced with the integument in the case of SLR only embeddings. The nervous

system is mapped mostly isolated from other tissue groups but gets sporadically closer

to the head, hematopoietic, integument, and respiratory systems when all embeddings

are used. However, it dissociates with the head and integument completely, stays as

a neighbor of the hematopoietic and respiratory systems and gets closer to the gland,

viscus and embryonic structure when SLR embeddings are used. This shows that the

utilization of APA events in modeling tissue-level dynamics of genes expression is

crucial and complementary to the existing transcriptomic information.
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CHAPTER 5

GENE ANALYSIS

Studies report that, proximal APA may lead to rapid proliferation of various cells and

can be associated with activation of proto-oncogenes in cancer cells [11, 12, 37]. It

has already left marks for breast and lung cancers as well as some of heart, endocrine

and hematology diseases [14, 15, 16]. Therefore, examining gene behaviours across

different tissues for different conditions may help scientists to work on medical prog-

nosis, diagnostics, and treatment options of the APA related diseases and characterize

the diversity of polyadenylation. This guides us to one of the motivations of our

work. Analyzing genes that show significant 3’ UTR shortening for disease and cor-

responding normal samples, we intended to detect mutual/differentiated genes across

different tissues and reveal common biological pathways if there are any.

5.1 Preparation

In this work, 1425 different genes having SLR values higher than 1.9 were studied

across 677 different samples. The dataset contains gene-SLR values for 129 unique

tissues. Sampling was made for six different conditions, which are activated, control,

diseased, normal, resting, and treated conditions. For this part of the experiment, we

only focused on diseased and normal samples. Among all, just 15 tissues have both

diseased and normal samples and inferences were made accordingly. Table 5.1 shows

sample counts for normal and diseased states. Each sample stores the list of genes

activated on that tissue with the corresponding SLR values. GSM ids of samples are

given in Appendix A and NCBI GEO [48] can be examined for further information.
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Normal Diseased

Accumbens 14 4

Breast 2 5

Caudate 4 2

Gloubus Pallidum External 2 4

Gloubus Pallidum Internal 3 4

Myometrium 22 32

Ovary 5 18

Prostate 7 18

Putamen 13 5

Skin 7 3

Substantia Nigra Pars Compacta 5 3

Substantia Nigra Reticulata 4 3

Synovial Membrane 6 5

Thalamus Lateral Nuclei 2 2

Thalamus Subthalamic Nucleus 2 2

Table 5.1: Normal and diseased sample counts for tissues used in this part of the

study.

5.2 Experiments and Results

Since multiple samples may belong to the same tissue, we merged samples of each

unique tissue into two different samples, one for the diseased and the other for the

normal state in order to conduct accurate experiments. SLR-gene analysis was made

considering two parameters. The first parameter is the SLR value of the gene and the

second parameter is the number of occurrences of genes showing 3’ UTR shortening.

Gene behaviour across diseased, normal, and entire samples of tissues were analyzed

and genes meeting the criteria were determined. Human Protein Atlas [75, 75, 76]

was used to examine tissue and pathology atlas of each notable gene and to identify

genes as potential bio-markers in various diseases.
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5.2.1 Analysis Based on SLR Value

In this case, all provided diseased and normal samples of the same tissue were merged

separately according to SLR values of genes. Because one gene may be represented

with different SLR values in multiple samples, the highest SLR value obtained for

that gene was selected during the merge. Resulting unique tissue samples, which

contain sorted genes by SLR values, were generated for diseased and normal samples.

Processing all diseased and normal samples, mutually occurring and distinct genes

were detected for all tissues. Appendix B.1 give the corresponding gene counts for

all the tissues.

By analyzing each tissue separately, we observed that some genes have higher SLR

values for both diseased and normal samples. These genes may be more prune to the

APA shortening event in any condition. However, we mainly aim for genes show-

ing different characteristics at the diseased state. Therefore, we initially focused on

mutually occurring genes whose SLR values on the diseased tissue is higher than the

normal tissue. Due to the dense gene dataset, we selected the most differentiated

ones. Appendix B.2 gives the names of these genes. It is noteworthy that some genes

were found in the output of multiple tissues and CLU, IGL@, TNFSF10, DAZAP2,

CALM1, MMP7, STMN1 and COL16A1 are the most common of them. Among

these genes, CLU, TNFS10, CALM1, MMP7 and STMN1 are classified as cancer re-

lated genes in the Human Protein Atlas [75, 75, 76]. All but COL16A1 is associated

with various diseases.

We then analyzed distinct genes whose SLR values are high on either diseased tissues

or normal tissues. We excluded genes having SLR values lower than 3 for simplic-

ity. As we anticipated, behaviour of tissues varies. Although genes in Accumbens,

Putamen and Skin have high SLR values for normal tissues, genes in Myometrium,

Ovary and Breast have high SLR values for diseased tissues. After studying tissues

on the tissue hierarchy and the dendrograms, which were created before, we saw that

Accumbens and Putamen are nervous system’s sub-tissues. They are located very

close, sharing the same parent, on Normal-Disease dendrogram. Skin is integument’s

sub-tissue and located slightly farther from Accumbens and Putamen. Myometrium,

Ovary and Breast are both reproductive system tissues and located in the same sub-
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tree on Normal-Disease dendrogram. Distinct gene counts, when threshold was se-

lected three and four respectively, for all experimented tissues are given in Table 5.2.

If only distinct genes in diseased samples are studied, Breast, Myometrium, Ovary

and Synovial Membrane tissues are the only ones which have gene(s) with SLR values

higher than four. Top 10 distinct genes meeting the criteria for each tissues are given

in Table 5.3. In Human Protein Atlas, CD44, NAMPT, MAF, PTGS1 and TET2

are categorized as cancer related genes and HNRNPA1, TET2, C22ORF25, USP9X,

COL4A1, MAF, BGN and SFTPB are categorized as disease related genes[75, 75,

76].

Distinct Gene Count

Normal Diseased

t=3 t=4 t=3 t=4

Accumbens 30 6 - -

Breast 1 - 8 1

Caudate - - - -

Gloubus Pallidum External - - 1 -

Gloubus Pallidum Internal 1 - - -

Myometrium 1 - 5 3

Ovary 1 - 15 6

Prostate 1 - 3 -

Putamen 34 8 - -

Skin 24 9 2 -

Substantia Nigra Pars Compacta 1 - 1 -

Substantia Nigra Reticulata 2 - - -

Synovial Membrane 5 1 2 1

Thalamus Lateral Nuclei 1 - 1 -

Thalamus Subthalamic Nucleus 1 - - -

Table 5.2: Filtered distinct gene counts according to SLR values for all experimented

tissues.
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Distict Genes

t=3 t=4

Breast
LRFN1

RPS6KB1,MED14,SLC16A3,

TSPAN1,USP9X,HNRNPA1,CD44

Gloubus Pallidum External SFTPB -

Myometrium
GLRX3,TACC1,COL4A1

ZNF614,TC2N

Ovary
CMBL,MAF,CAPZB,BGN,NDRG2,TET2

HMOX2,BHLHE41,GRK6,PPFIA2

Prostate PTGS1,NAMPT,SLC46A3 -

Skin C22orf25,BHLHE41 -

Substantia Nigra Pars Com-

pacta
COL16A1 -

Synovial Membrane
EMR2

QPCT

Thalamus Lateral Nuclei SFTPB -

Table 5.3: Notable genes processed by SLR values and appearing only in diseased

samples. Lower SLR values than threshold=3 were excluded from the set.

5.2.2 Analysis Based on Gene Frequency

In this case, all provided diseased and normal samples of the same tissue were merged

separately according to gene occurrence. Traversing all samples of each tissue, the

total count of each gene was calculated and stored for diseased and normal samples.

Mutually occurring and distinct genes were determined and ordered by total count.

We first identified genes mutually occurring for diseased and normal samples. Pro-

cessing each tissue one by one, we measured difference of genes existence between

normal and diseased tissues for all genes. The higher the difference, the better de-

tection for genes activated on the diseased state. Distinct gene count data was same

as in the previous section. The count of mutually occurring genes, whose occurrence

47



is superior in either normal or diseased condition, and the count of distinct genes in

complete set are both reported in Appendix B.3.

We then experimented on completely distinct genes which show significant 3’ UTR

shortening either for diseased or normal samples. To reduce clutter, we eliminated

distinct genes with total count lower than 3, and selected more frequent ones. Filtered

distinct gene count according to frequency for all experimented tissues are given in

Table 5.4. As in the analysis based on SLR value, the tissues that have the highest

number of distinct genes for normal samples are: Accumbens, Putamen and Skin, and

for diseased samples: Myometrium, Ovary and Breast. There were also some addi-

tional tissues which were not prominent in the analysis based on gene SLR value but

gene occurrence. Substantia Nigra Pars Compacta and Substantia Nigra Reticulata

have both more distinct genes than the threshold for normal samples. Prostate is the

third among fifteen tissues according to gene occurrence showing 3’ UTR shorten-

ing in the diseased case. Synovial Membrane tissue is the one having relatively high

amount of distinct genes for both diseased and normal cases. Evaluating tissues on the

dendrogram structures and the tissue hierarchy, we saw that Accumbens, Putamen,

Substantia Nigra Pars Compacta and Substantia Nigra Reticulata are both nervous

system tissues. They are located in pairs (Accumbens-Putamen and Substantia Nigra

Pars Compacta-Substantia Nigra Reticulata) on Normal-Disease dendrogram. Skin,

which is an integument tissue, was found in a slightly farther branch. Myometrium,

Ovary, Breast and Prostate are both reproductive system tissues and Synovial Mem-

brane is a connective tissue. All those tissues are clustered together in the same sub

tree on Normal-Disease dendrogram.

If only distinct genes in diseased samples are taken into account; Breast, Myometrium,

Ovary, Prostate and Synovial Membrane tissues are the prominent ones which have

many genes occurring more than 4. Top 10 significant distinct genes meeting the

criteria for each tissue are given in Table 5.5. According to tissue and pathology at-

las of each gene, DNAJC21, SP110, SARDH and PBRM1 are reported as disease

related genes, HSPH1,CD44, PBRM1,PTGS1 and NAMPT are reported as cancer

related genes and TET2, TCF3, SETBP1,AARS2 and FOXP1 are reported as both

[75, 75, 76].
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Distinct Gene Count

Normal Diseased

t=3 t=4 t=3 t=4

Accumbens 132 94 - -

Breast - - 12 5

Caudate 2 1 - -

Gloubus Pallidum External - - 3 1

Gloubus Pallidum Internal 1 - 2 1

Myometrium 3 1 34 25

Ovary 1 - 67 48

Prostate 1 - 22 7

Putamen 128 96 1 -

Skin 57 21 - -

Substantia Nigra Pars Compacta 7 3 - -

Substantia Nigra Reticulata 6 2 1 -

Synovial Membrane 12 4 6 4

Thalamus Lateral Nuclei - - - -

Thalamus Subthalamic Nucleus - - - -

Table 5.4: Filtered distinct gene counts according to frequency for all experimented

tissues.

5.2.3 Analysis Based on All Data

In this case, all provided diseased and normal samples of tissues were merged together

first according to SLR values of genes and second according to gene occurrence. The

aim of this analysis was to find candidate genes which may likely to be correlated with

critical regulatory functions genome-wide. Resulting genes were added into Table

5.6. The first set shows distinct gene list which is available in just disease sample

group but not in any other group. The second set displays distinct gene list that is

available in just normal sample group and total occurrence count across all tissues is

more than 20. The third set presents mutually occurring genes across all tissues but
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Distinct Genes

t=3 t=4

Breast
MED14,CD44,TAGAP, TDRD9,WIZ

PBRM1,MGAT4A,ADAL,

SLC16A3,CORO2A

Gloubus Pallidum External STAC,FOXP1,ACACB STAC

Gloubus Pallidum Internal HSPH1,NAP1L1 HSPH1

Prostate
RPS6KB1,C11orf24,NOP58,NAMPT

SYF2,SLC46A3,PTGS1

HIPK1,SP110,ENOX2

Myometrium
ARL1,GLRX3,TROVE2,SETBP1,TLE4,SARDH

NCAPH2,TC2N,TBC1D9,CRYZ

Ovary
CAPZB,B3GNT2,TCF3, TET2,RPL19,DNAJC21

GRK6,ZNF326,HSPH1,LMAN2

Putamen ARPP19 -

Substantia Nigra Reticulata PTPRM -

Synovial Membrane
MAP3K7IP3,AARS2, NPAT,SLAMF8

LCP2,COBL

Table 5.5: Notable genes processed by frequency and appearing only in the diseased

samples. Lower SLR values than 3 are excluded from the set.

just the ones whose frequency is much more higher in the diseased samples. Diseased

and cancer related genes for each set were also added to the table [75, 75, 76].

5.3 Discussions

All in all, both analyses demonstrate that variable sample count for tissues does not

have a significant impact on resulted distinct gene counts. Even though distinct gene

count and frequency are linearly dependent, data set limitation with proper threshold

value annihilate dependency and reveal likely to be important data. For instance, My-
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Genes Disease Related Cancer Related

Set 1

ZNF614,ATP6V1A,HSD11B2,

SUMO3,DYRK4,MAGOHB,

IL13RA1,FAM114A1,GLG1,

C10orf104,SLCO4A1,DDR2,

ENTPD6

HSD11B2,

DDR2
DDR2

Set 2

SLC25A17,ESR1,PALMD,RABIF,

NR3C1,TTC37,KLK13,

REM1,HSPA4,SCRN3,PPIC,

MYO1B,OBSL1,FAHD1,DDX18,

DLGAP2,TMEM92,CREB1,LPL,

IL1R2,ABCE1,DDX28,TMEM18

ESR1,NR3C1,

TTC37,OBSL1,

CREB1,LPL

ESR1,

KLK13,HSPA4,

CREB1,IL1R2

Set 3

TMEM182,TMEM38B,HIPK1,TYW3,

SCFD2,ZNF345,PLOD2,MMP10,

NTRK3,MRPL28,EMR2,NKD2,

CNTN6,TPT1,IGBP1,ALDOB,

ING1,SUB1,TMEM9B,AP3D1,

SEC11A,THBS1, ARPP19

TMEM38B,

PLOD2,NTRK3,

IGBP1,ALDOB,

ING1,AP3D1

MMP10,NTRK3,

ALDOB,ING1,

THBS1

Table 5.6: Genes with prominent SLR behaviour genome-wide

ometrium was the tissue with the highest normal sample count but it was containing

much less distinct genes than lots of other tissues with fewer normal samples. Sim-

ilarly, Ovary and Prostate have the same amount of diseased samples but the Ovary

has much more distinct genes than the Prostate in both of the analyses.

Another thing to note is that hierarchically closer tissues show similar behaviour in

case of diseased or normal conditions. Although nervous system tissues are more

prone to 3’ UTR shortening in the normal state, reproductive system tissues are likely

to show proximal APA in the diseased state. It is anticipated that most of notable

genes which were presented for each analysis were not common because source data

set and criteria were different for each case. Investigating the distinct genes which fre-

quently occur in diseased samples with higher SLR values, we found some notewor-
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thy genes which are TET2 and GRK6 for Ovary, GLRX3 and TC2N for Myometrium

and MED14 and CD44 for Breast. All are protein coding genes. Although cancer

tissue analysis is still pending for some; TET2, TC2N and CD44 genes are classified

as disease and cancer related genes and prognostic markers in various cancer types

according to The Human Protein Atlas [75, 75, 76].
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CHAPTER 6

DISCUSSIONS AND CONCLUSIONS

In this thesis, we have aimed to comprehend the significance and consequence of

alternative polyadenylation events in differentiation of functional regulatory mecha-

nisms which may lead to various diseases as well as accumulation of abnormal cells

and malignant (cancerous) growths. Although there are numerous state-of-the-art

prior work and ongoing research, there are still many unanswered questions. Differ-

ent from related researches, we mainly focus on genome-wide analysis of proximal

APA on human transcripts. We analyzed the effect of proximal APA on both tissues

and genes. Significant 3’ UTR shortening events are observed and reported across

variety of human tissues. However, length variation and degree may depend on tis-

sue type and hierarchical similarity of tissues. Besides, tissue specificity also affects

3’ UTR isoform expression of activated genes, which means the same gene may be

activated on many tissues but show proximal APA in just one tissue.

We performed three different analyses in this thesis to examine human tissues and

genes in the presence of 3’ UTR shortening events. We aimed to investigate tissues

becoming distant from their hierarchically closer neighbors and also to detect tis-

sue groups whose members are clustering together and showing similarity with the

closely related tissues according to the biological tissue hierarchy. In addition to that,

we tried to identify several novel genes that are related with various diseases.

We worked on a primary dataset which was profiled for gene expression using the

Affymetrix U133 plus 2.0 array. It has 677 human tissue samples, each keeps active

gene-SLR value assignments. Samples may be profiled for different characteristics,

but we mainly focused on Diseased and Normal ones. Higher SLR shows higher

proximal APA for a gene. Since each tissue has several samples, we combined them
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according to tissue characteristics and obtained one sample having active genes with

higher SLR values for each tissue.

The first analysis investigates whether hierarchically closer tissues show similar prox-

imal APA behaviour both on Diseased and Normal conditions or not. We used 129

merged tissue samples and constructed various dendrogram structures from distance

matrices. Distance matrices were created processing top 20-50-100 genes with maxi-

mum SLR values for each tissue. NJ and UPGMA hierarchical clustering algorithms

were used in reconstructing dendrograms. We presented two algorithms to find an-

cestor based accuracies. They simply cluster tissue nodes in an input tree according to

some criteria and measure closeness of the tree with the actual tissue hierarchy. Using

optimum threshold for criterion, over %93 accuracy was obtained for tree constructed

by diseased and correspondent normal samples. It was over %90 for diseased samples

and over %50 for normal samples. Most ideal results were achieved with average dis-

tance threshold for NJ and optimum threshold for UPGMA. It supports the idea that

top genes showing significant 3’UTR shortening both in hierarchically closer tissues

and disease-normal samples of the same tissue are mostly similar. Their presence and

length variation may change but it is not considered within this analysis. We saw that

hierarchically closer tissues mostly cluster together in the dendrograms and the tissue

family can be constructed by just looking at top activated genes by SLR values. Most

diseased-normal couples of tissue samples also show high correlation but Putamen

and Skin tissues diverged from normal samples in the disease state.

The second analysis creates two different multi-layer tissue networks, considering

proteins with SLR or not, and investigates if genes activated in closer layers have

similar feature set or not. It also examines tissue behaviour for two networks and re-

veals main tissue groups which differentiated from closer neighbors when the dataset

is filtered according to SLR values of the genes. Unlike the previous analysis, PPI

network of each tissue was used to feed the system and to create feature embeddings

of each gene activated in the tissue. Processed tissue set was slightly different from

previous analysis, therefore, a new tissue hierarchy up to 5 levels was created and

given to the system as a multiscale tissue hierarchy. Ohmnet model, built on state of

the art Word2Vec, was adapted to learn a d-dimensional feature vector for every gene

node in every tissue [26, 63, 64]. Two different embeddings were constructed, one
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with all PPI network and other with filtered PPI network according to proteins having

high SLR values. Since the size of feature vector is 128, PCA and t-SNE was used to

model data into low dimensional space. We then visualized each node, i.e. gene, with

color mapping based on tissue to analyze similarity of tissues. We first demonstrated

that genes in the same sub-tissues were mapped together and clearly differentiated

from other tissues. Second, most of the sub-tissues were also clustered together with

other sub-tissues belong to same main tissue. This shows that hierarchically closer

tissues are highly correlated with each other in both experiments. Comparing two

experiments, we can say that although sub-tissues continue to be well separated from

others, some of hierarchically closer main tissues, such as nervous systems and head,

were mapped better in the experiment with SLR values. Even though we can not

directly discuss hierarchical relation of main tissues, all derived from ’whole body’

tissue according to Brenda, we can accept the resulting network with all PPI data as a

reference and make following inference. Distinct tissue groups, having similar active

gene data set filtered by SLR value, may indicate closeness. Because those tissues

were shown to share more associated co-expressed genes and interactions according

to our model, common functional and regulatory disease trends among them may

further investigated and validated by water based experiments.

The third analysis is on tissue specific proximal pol(A) site differentiation. It also

seeks notable genes by processing normal-diseased tissue sample pairs and tries to

find out if those genes are classified as markers of various disease and cancer types by

examining their protein class. The analysis is conducted on the same tissue dataset as

pre-processed in the first analysis but this time, focuses on only diseased and normal

samples. SLR value-gene analysis were made according to 3’UTR length variation

and occurrence of genes. First mutually occurring then distinct genes of the disease-

normal pair of each tissue were studied. Resulting genes were filtered according

to threshold. Among all tissues, Breast, Ovary and Myometrium are the top three

whose distinct genes are more prune to 3’UTR shortening in disease condition. They

are all reproductive system tissues and located closely in the dendrograms created

before. Skin, Accumbens and Putamen are the prominent tissues in normal condition.

Accumbens and Putamen are nervous system tissues and siblings in the dendrogram.

Skin is an integument tissue and positioned a little farther from them. Prostate, a
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reproductive system tissue, is also important such that it gave one of the higher results

in case of gene occurrence in diseased case. According to the results, it can be noted

that hierarchically closer tissues tend to show similar shortening behaviour. Nervous

and reproductive system tissues are the most promising group for further experiments

because they provided most differentiated proximal APA data. Apart from these, we

also shared some noteworthy genes which are proven to be associated with various

diseases and cancer categories for further biological research. Detailed data can be

found on Chapter 6.

6.1 Future Work

There are several directions for future work. In our research, SLR data, which was

extracted by performing micro array gene expression profiles, was used to examine

genes showing alternative polyadenylation. With the increasing number of expressed

sequence data in public databases and recently developed methods specialized for

comprehensive APA profiling, such as 3’-enriched RNA-seq and PAS-Seq, it becomes

easier to reveal more genes showing APA behaviour in mammalian cells. Analyses

within the scope of this thesis can be enhanced with more comprehensive set of genes

and accuracy results can be examined to see if there is any improvement.

In addition to that, we analyzed organism wide APA events in our work and stud-

ied effects of shortening events in terms of tissue hierarchy. Because there are many

tissues to handle, our analysis sometimes yielded general inferences. Further exper-

iments may concentrate on more specific tissues and genes which show excessive

shortening events and evaluate gene behaviours specific to those tissues.
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APPENDIX A

GSE7307 SAMPLE IDS

GSM175786, GSM175787, GSM175788, GSM175789, GSM175790, GSM175791,

GSM175792, GSM175793, GSM175794, GSM175795, GSM175796, GSM175797,

GSM175798, GSM175799, GSM175800, GSM175801, GSM175802, GSM175803,

GSM175804, GSM175805, GSM175806, GSM175807, GSM175808, GSM175809,

GSM175810, GSM175811, GSM175812, GSM175813, GSM175814, GSM175815,

GSM175816, GSM175817, GSM175818, GSM175819, GSM175820, GSM175821,

GSM175822, GSM175823, GSM175824, GSM175825, GSM175826, GSM175827,

GSM175828, GSM175829, GSM175830, GSM175831, GSM175832, GSM175833,

GSM175834, GSM175835, GSM175836, GSM175837, GSM175838, GSM175839,

GSM175840, GSM175841, GSM175842, GSM175843, GSM175844, GSM175845,

GSM175846, GSM175847, GSM175848, GSM175849, GSM175850, GSM175851,

GSM175852, GSM175853, GSM175854, GSM175855, GSM175856, GSM175857,

GSM175858, GSM175859, GSM175860, GSM175861, GSM175862, GSM175863,

GSM175864, GSM175865, GSM175866, GSM175867, GSM175868, GSM175869,

GSM175870, GSM175871, GSM175872, GSM175873, GSM175874, GSM175875,

GSM175876, GSM175877, GSM175878, GSM175879, GSM175880, GSM175881,

GSM175882, GSM175883, GSM175884, GSM175885, GSM175886, GSM175887,

GSM175888, GSM175889, GSM175890, GSM175891, GSM175892, GSM175893,

GSM175894, GSM175895, GSM175896, GSM175897, GSM175898, GSM175899,

GSM175900, GSM175901, GSM175902, GSM175903, GSM175904, GSM175905,

GSM175906, GSM175907, GSM175908, GSM175909, GSM175910, GSM175911,

GSM175912, GSM175913, GSM175914, GSM175915, GSM175916, GSM175917,

GSM175918, GSM175919, GSM175920, GSM175921, GSM175922, GSM175923,

GSM175924, GSM175925, GSM175926, GSM175927, GSM175928, GSM175929,
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GSM175930, GSM175931, GSM175932, GSM175933, GSM175934, GSM175935,

GSM175936, GSM175937, GSM175938, GSM175939, GSM175940, GSM175941,

GSM175942, GSM175943, GSM175944, GSM175945, GSM175946, GSM175947,

GSM175948, GSM175949, GSM175950, GSM175951, GSM175952, GSM175953,

GSM175954, GSM175955, GSM175956, GSM175957, GSM175958, GSM175959,

GSM175960, GSM175961, GSM175962, GSM175963, GSM175964, GSM175965,

GSM175966, GSM175967, GSM175968, GSM175969, GSM175970, GSM175971,

GSM175972, GSM175973, GSM175974, GSM175975, GSM175976, GSM175977,

GSM175978, GSM175979, GSM175980, GSM175981, GSM175982, GSM175983,

GSM175984, GSM175985, GSM175987, GSM175988, GSM175989, GSM175990,

GSM175991, GSM175992, GSM175993, GSM175994, GSM175995, GSM175996,

GSM175997, GSM175998, GSM175999, GSM176000, GSM176001, GSM176002,

GSM176003, GSM176004, GSM176005, GSM176006, GSM176007, GSM176008,

GSM176009, GSM176010, GSM176011, GSM176012, GSM176013, GSM176014,

GSM176015, GSM176016, GSM176017, GSM176018, GSM176019, GSM176020,

GSM176021, GSM176022, GSM176023, GSM176024, GSM176025, GSM176026,

GSM176027, GSM176028, GSM176029, GSM176030, GSM176031, GSM176032,

GSM176033, GSM176034, GSM176035, GSM176036, GSM176037, GSM176038,

GSM176039, GSM176040, GSM176041, GSM176042, GSM176043, GSM176044,

GSM176045, GSM176046, GSM176047, GSM176048, GSM176049, GSM176050,

GSM176051, GSM176052, GSM176053, GSM176054, GSM176055, GSM176056,

GSM176057, GSM176058, GSM176059, GSM176060, GSM176061, GSM176062,

GSM176063, GSM176064, GSM176065, GSM176066, GSM176067, GSM176068,

GSM176069, GSM176070, GSM176071, GSM176072, GSM176073, GSM176074,

GSM176075, GSM176076, GSM176077, GSM176078, GSM176079, GSM176080,

GSM176081, GSM176082, GSM176083, GSM176084, GSM176085, GSM176086,

GSM176087, GSM176088, GSM176089, GSM176090, GSM176091, GSM176092,

GSM176093, GSM176094, GSM176095, GSM176096, GSM176097, GSM176098,

GSM176099, GSM176100, GSM176101, GSM176102, GSM176103, GSM176104,

GSM176105, GSM176106, GSM176107, GSM176108, GSM176109, GSM176110,

GSM176111, GSM176112, GSM176113, GSM176114, GSM176115, GSM176116,

GSM176117, GSM176118, GSM176119, GSM176120, GSM176121, GSM176122,

GSM176123, GSM176124, GSM176125, GSM176126, GSM176127, GSM176128,
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GSM176129, GSM176130, GSM176131, GSM176132, GSM176133, GSM176134,

GSM176135, GSM176136, GSM176137, GSM176138, GSM176139, GSM176140,

GSM176141, GSM176142, GSM176143, GSM176144, GSM176145, GSM176146,

GSM176147, GSM176148, GSM176149, GSM176150, GSM176151, GSM176152,

GSM176153, GSM176154, GSM176155, GSM176156, GSM176157, GSM176158,

GSM176159, GSM176160, GSM176161, GSM176162, GSM176163, GSM176164,

GSM176165, GSM176166, GSM176167, GSM176168, GSM176169, GSM176170,

GSM176171, GSM176172, GSM176173, GSM176174, GSM176175, GSM176176,

GSM176177, GSM176178, GSM176179, GSM176180, GSM176181, GSM176182,

GSM176183, GSM176184, GSM176185, GSM176186, GSM176205, GSM176206,

GSM176207, GSM176208, GSM176209, GSM176210, GSM176211, GSM176212,

GSM176213, GSM176214, GSM176215, GSM176216, GSM176217, GSM176218,

GSM176219, GSM176220, GSM176221, GSM176222, GSM176223, GSM176224,

GSM176225, GSM176226, GSM176227, GSM176228, GSM176229, GSM176230,

GSM176231, GSM176232, GSM176233, GSM176234, GSM176235, GSM176236,

GSM176237, GSM176238, GSM176239, GSM176240, GSM176241, GSM176242,

GSM176243, GSM176244, GSM176245, GSM176246, GSM176247, GSM176248,

GSM176249, GSM176250, GSM176251, GSM176252, GSM176253, GSM176254,

GSM176255, GSM176256, GSM176257, GSM176258, GSM176259, GSM176260,

GSM176261, GSM176262, GSM176263, GSM176264, GSM176265, GSM176266,

GSM176267, GSM176268, GSM176269, GSM176270, GSM176271, GSM176272,

GSM176273, GSM176274, GSM176275, GSM176276, GSM176277, GSM176278,

GSM176279, GSM176280, GSM176281, GSM176282, GSM176283, GSM176284,

GSM176285, GSM176286, GSM176287, GSM176288, GSM176289, GSM176290,

GSM176291, GSM176292, GSM176293, GSM176294, GSM176295, GSM176296,

GSM176297, GSM176298, GSM176299, GSM176300, GSM176301, GSM176302,

GSM176303, GSM176304, GSM176305, GSM176306, GSM176307, GSM176308,

GSM176309, GSM176310, GSM176311, GSM176312, GSM176313, GSM176314,

GSM176315, GSM176316, GSM176317, GSM176318, GSM176319, GSM176320,

GSM176321, GSM176322, GSM176323, GSM176324, GSM176325, GSM176326,

GSM176327, GSM176328, GSM176329, GSM176330, GSM176331, GSM176332,

GSM176333, GSM176334, GSM176335, GSM176336, GSM176337, GSM176338,

GSM176339, GSM176340, GSM176341, GSM176342, GSM176343, GSM176344,
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GSM176345, GSM176346, GSM176347, GSM176348, GSM176349, GSM176350,

GSM176351, GSM176352, GSM176353, GSM176354, GSM176355, GSM176356,

GSM176357, GSM176358, GSM176359, GSM176360, GSM176361, GSM176362,

GSM176363, GSM176364, GSM176365, GSM176366, GSM176367, GSM176368,

GSM176369, GSM176370, GSM176371, GSM176372, GSM176373, GSM176374,

GSM176375, GSM176376, GSM176377, GSM176378, GSM176379, GSM176380,

GSM176381, GSM176382, GSM176383, GSM176384, GSM176385, GSM176386,

GSM176387, GSM176388, GSM176389, GSM176390, GSM176391, GSM176392,

GSM176393, GSM176394, GSM176395, GSM176396, GSM176397, GSM176398,

GSM176399, GSM176400, GSM176401, GSM176402, GSM176403, GSM176404,

GSM176405, GSM176406, GSM176407, GSM176408, GSM176409, GSM176410,

GSM176411, GSM176412, GSM176413, GSM176414, GSM176415, GSM176416,

GSM176417, GSM176418, GSM176419, GSM176420, GSM176421, GSM176422,

GSM176423, GSM176424, GSM176425, GSM176426, GSM176427, GSM176428,

GSM176429, GSM176430, GSM176431, GSM176432, GSM176433, GSM176434,

GSM176435, GSM176436, GSM176437, GSM176438, GSM176439, GSM176440,

GSM176441, GSM176442, GSM176443, GSM176444, GSM176445, GSM176446,

GSM176447, GSM176448, GSM176449, GSM176450, GSM176451, GSM176452,

GSM176453, GSM176454, GSM176455, GSM176456, GSM176457, GSM176458,

GSM176459, GSM176460, GSM176461, GSM176462, GSM176463, GSM176464,

GSM176465, GSM176466, GSM176467, GSM176468, GSM176469, GSM176470,

GSM176471, GSM176472, GSM176473, GSM176474, GSM176475, GSM176476,

GSM176477, GSM176478, GSM176479, GSM176480, GSM176481
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APPENDIX B

SUPPLEMENTARY TABLES

B.1 Distinct/Mutually Occurring Gene Count of Complete Set Based on SLR

values

Mutually Occurring Gene Count Distinct Gene Count

Normal>Disease Disease>Normal Normal Diseased

Accumbens 123 15 291 7

Breast 118 170 33 137

Caudate 72 42 52 16

Gloubus Pallidum External 36 57 16 33

Gloubus Pallidum Internal 59 42 50 22

Myometrium 241 269 85 116

Ovary 131 228 48 188

Prostate 46 223 17 131

Putamen 141 10 305 3

Skin 148 61 255 35

Substantia Nigra Pars Com-

pacta
72 42 50 26

Substantia Nigra Reticulata 57 43 40 23

Synovial Membrane 151 154 80 97

Thalamus Lateral Nuclei 55 39 40 22

Thalamus Subthalamic Nu-

cleus
44 38 29 19

Table B.1: Distinct/Mutually Occurring Gene Count of Complete Set Based on SLR

values.
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B.2 Mutual genes having higher SLR values in diseased samples

Gene Names

Accumbens CLU

Breast
IGL@, PABPC3, TNFSF10, MMP7, RHOB,

DAZAP2, STMN1, RPL13, SLITRK6, MRP63

Caudate CLU, FOXP1

Gloubus Pallidum External

TNFSF10, CALM1, CLU, KIAA1245,

ARPC2, DAZAP2, APC, RPL13, ANP32A,

CUGBP2

Gloubus Pallidum Internal CLU, KIAA12, CALM1

Myometrium
RHOB, PAM, PNRC1, TNFSF10, LOC284454,

IGL@, VASP, GSTM5, MMP7, STMN1

Ovary
IGL@, FDX1, C4A, PAM, COL16A1,

DAZAP2, ANKRD12, MMP7, CLU, RGS10

Prostate

IGL@, TNFSF10, PNRC1, PAM, MMP7,

AMOT, CORO1C, KLK4, COL16A1,

ANKRD12

Putamen CLU, CALM1, RTN1

Skin

IGL@, STMN1, RGS10, GSTM5, COL16A1,

HADHA, CORO1C, DAZAP2, AK2, HN-

RNPA1

Substantia Nigra Pars Compacta CLU, APP

Substantia Nigra Reticulata CLU, AQP4, SNX3, COL16A1, CMBL

Synovial Membrane
IGL@, KIAA1245, SLC16A3, STMN1,

RIBC1, FLII, ARPC2, PLB1, APIP, CORO1C

Thalamus Lateral Nuclei
TNFSF10, CALM1, APC, KIAA1245, IL21R,

DAZAP2, AQP4

Thalamus Subthalamic Nucleus
TNFSF10, CLU, CALM1, APC, RTN1,AQP4,

SNX3, PABPC3, MYST2

Table B.2: Mutual genes which having higher SLR values in diseased samples.
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B.3 Distinct/Mutually Occurring Gene Count of Complete Set Based on SLR

frequency

Common Gene Count Diverged Gene Count

Normal>Disease Disease>Normal Normal Diseased

Accumbens 133 1 291 7

Breast 5 241 33 137

Caudate 93 2 52 16

Gloubus Pallidum External 7 75 16 33

Gloubus Pallidum Internal 12 66 50 22

Myometrium 61 391 85 116

Ovary 9 297 48 188

Prostate 5 244 17 131

Putamen 142 5 305 3

Skin 158 18 255 35

Substantia Nigra Pars Com-

pacta
93 5 50 26

Substantia Nigra Reticulata 73 7 40 23

Synovial Membrane 195 41 80 97

Thalamus Lateral Nuclei 9 5 40 22

Thalamus Subthalamic Nu-

cleus
16 5 29 19

Table B.3: Distinct/Mutually Occurring Gene Count of Complete Set Based on SLR

frequency.
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