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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2019





Approval of the thesis:

A COMPARATIVE STUDY OF QUADTREE DECOMPOSITION AND
CONSTRAINED DELAUNAY TRIANGULATION USING MDP AND

ARTIFICIAL POTENTIAL FIELD BASED PATH PLANNING
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ABSTRACT

A COMPARATIVE STUDY OF QUADTREE DECOMPOSITION AND
CONSTRAINED DELAUNAY TRIANGULATION USING MDP AND

ARTIFICIAL POTENTIAL FIELD BASED PATH PLANNING

Kandehir, Başer

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Afşar Saranlı

July 2019, 60 pages

The general purpose of a mobile robot is moving from one point to another and per-

form certain tasks. To do so, it first computes a motion strategy and then tries to

execute it. This is not feasible most of the time unless uncertainties of the real world

is taken into account. Markov decision processes (MDPs) provide a mathematical

system to deal with uncertainties of planning and execution stages. MDPs require

finite set of states. Therefore, continuous space of the real world must be discretized.

In this study, two widely used space discretization methods, namely quadtree decom-

position (QD) and constrained Delaunay triangulation (CDT), are compared in terms

of path length, travel time, two safety measures, planning time, number of iterations,

and number of states to find out which one of these discretization methods is better

in the context of MDP and planar motion planning. MDP framework is used as high-

level planner, and value iteration is used to obtain the optimal policy. Then, artificial

potential field (APF) method is used for low-level execution. Results showed that

QD and CDT are both suitable in the context of MDP and planar path planning with

APF. QD results in longer paths but requires less travel time whereas CDT results in
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shorter paths but requires more travel time. QD and CDT perform almost equally in

terms of safety. QD has clear disadvantages compared to CDT in terms of planning

time, number of iterations, and number of states. QD and CDT might be preferable

for different applications. Thus, it is best to optimize parameters for preferred metrics

on a specific problem.

Keywords: Quadtree decomposition, constrained Delaunay triangulation, Markov de-

cision process, artificial potential field, space discretization, motion planning
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ÖZ

DÖRDÜN AĞAÇ AYRIŞTIRMASI VE KISITLANDIRILMIŞ DELAUNAY
ÜÇGENLEŞTİRMESİNİN MARKOV KARAR SÜRECİ VE YAPAY

POTANSİYEL ALAN TABANLI YOL PLANLAMASI KULLANILARAK
KARŞILAŞTIRMALI BİR ÇALIŞMASI

Kandehir, Başer

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Afşar Saranlı

Temmuz 2019 , 60 sayfa

Bir mobil robotun genel amacı bir noktadan diğerine hareket etmek ve belli görev-

leri yerine getirmektir. Bunu yapmak için, önce bir hareket planı hesaplar ve daha

sonra bunu uygulamaya çalışır. Gerçek dünyanın belirsizlikleri dikkate alınmadıkça

bu çoğu zaman uygulanabilir değildir. Markov karar süreçleri (MKSler) hem plan-

lama hem uygulama aşamasında bu belirsizliklerin üstesinden gelmek için matema-

tiksel bir sistem sağlar. MKSler sonlu sayıda durum gerektirir. Bundan dolayı, gerçek

dünyanın devamlı uzayı ayrıklaştırılmalıdır. Bu çalışmada, dördün ağaç ayrıştırması

(DAA) ve kısıtlandırılmış Delaunay üçgenleştirmesi (KDÜ) olarak adlandırılan iki

sık kullanılan uzay ayrıklaştırma metodu, MKS ve düzlemsel hareket planlama bağ-

lamında bu ayrıklaştırma metodlarından hangisinin daha iyi olduğunu anlamak için,

yol uzunluğu, yolculuk zamanı, iki güvenlik ölçüsü, planlama zamanı, iterasyon sa-

yısı, ve durum sayısı cinsinden karşılaştırılıyor. MKS sistemi yüksek düzey planlayıcı

olarak kullanılıyor, ve değer iterasyonu en iyi planı elde etmek için kullanılıyor. Daha

sonra, yapay potansiyel alan (YPA) metodu alt düzey uygulama için kulllanılıyor. So-
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nuçlar gösterdi ki, hem DAA hem KDÜ, MKS ve YPA ile düzlemsel hareket planlama

bağlamında uygundur. DAA daha uzun yollarla sonuçlanıyor ama daha az yolculuk

zamanı gerektiriyorken KDÜ daha kısa yollarla sonuçlanıyor ama daha fazla yolcu-

luk zamanı gerektiriyor. DAA ve KDÜ güvenlik açısından neredeyse aynı davranıyor.

DAA, KDÜ ile karşılaştırıldığında planlama zamanı, iterasyon sayısı, ve durum sayısı

cinsinden belirgin dezavantajlara sahip. DAA ve KDÜ farklı uygulamalar için tercih

edilebilir. Bundan dolayı, en iyisi parametreleri belli bir problem üzerinde tercih edi-

len ölçüler için optimize etmektir.

Anahtar Kelimeler: Dördün ağaç ayrıştırması, kısıtlandırılmış Delaunay üçgenleştir-

mesi, Markov karar süreci, yapay potansiyel alan, uzay ayrıklaştırması, hareket plan-

laması
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CHAPTER 1

INTRODUCTION

Motion planning is one of the main topics in the field of robotics. The purpose is

to find a motion strategy that would move the robot from one point to another un-

der certain constraints. To build a motion strategy that can safely be executed by

the robot, it is crucial to consider uncertainties of the real world. Markov decision

processes (MDPs) provide a mathematical system to deal with uncertainties of plan-

ning and execution stages. MDPs require finite set of states thus, continuous space

needs to discretized. Quadtree decomposition (QD) and constrained Delaunay trian-

gulation (CDT) are two of the widely used space discretization methods. However,

in the context of MDP and planar motion planning, which of these methods perform

better, remains an unanswered question. In this study, we consider a point mass with

holonomic capabilities in an environment with various polygonal obstacles and using

MDP framework as high-level planner and artificial potential field (APF) method for

low-level execution, we compare QD and CDT with least possible states.

1.1 Literature Survey

In this section, we give related work about QD, CDT, APF and MDP.

Discretization of continuous space has been studied in robotics for many decades [34],

[35]. In this study, we focus on QD and CDT. Finkel and Bentley named quadtrees

in 1974 [3]. QD has been used in various areas including image processing [4],

databases [5], and geographic information systems [6]. Delaunay triangulation (DT)

is named after Boris Delaunay for his work in 1934 [7]. There are various Delaunay

refinement algorithms e.g. Ruppert’s algorithm [8], [9]. DT can be forced to satisfy
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certain constraints, then it is called constrained Delaunay triangulation (CDT) [10],

[11].

The APF method was originally proposed by Oussama Khatib [12]. APF offers a

fast and effective way to solve the motion planning problem. APF and its modi-

fied versions has been commonly used: [13] describes a path planning method for

robotic manipulators and mobile robots using APF around configration-space ob-

stacles, [14] integrates APF with simulated annealing to mobile robots, [16] uses

APF for collision-free path planning in 3D environment for unmanned aerial vehicles

(UAVs). However, there is a local minima problem associated with APFs. Various

methods have been suggested for solving the local minima problem: [15] uses vir-

tual obstacles to escape local minima,[18] uses dynamic state agents to escape local

minima, [19] uses input to state stability property of multistable system to avoid local

minima.

MDPs have been used in various fields including robotics, economics, automatic con-

trol and manufacturing since 1950s [21], [22]. MDPs maximize an objective function

to obtain a control policy over all states rather than finding a single trajectory solution

[23], [24]. The partially observable Markov decision process (POMDP), is a general-

ization of MDP. Their complexity restricts their usage to relatively simple problems

[25], [26]. Computation of an approximate solution is one of the methods for re-

ducing the complexity [27]. However, in practice, MDP is generally used instead of

POMDP in more complex planning problems [28]. Still, realistic problems require

large number of states, thus it is necessary to reduce the number of states considering

complexity of MDP [29]. That is why we need efficient space discretization methods

like QD and CDT.

[30] uses MDP-based planning where QD is used to discretize robot’s state space.

Actions namely, Dubins actions, are chosen considering kinematic constraints of a

mobile robot with wheels. QD and Dubins actions results in an efficent and robuts

motion planner. In [31], they extend [30], and describe a navigation approach based

on MDP and Markov localization. This paper also focuses on experimental aspects

about Markov techniques by using learning to obtain transition function and the sen-

sor model. Experimental work is done on a real robot for realization and demonstra-
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tion of the approach.

[32] uses bounded-parameter Markov decision processes (BMDPs) and DT for fast

reconfiguration of local policies. Thus, the policy can be updated if the reward func-

tion changes. This framework is tested on various online tasks, and shown that policy

reconfiguration can be done in a few seconds. In [33], they again use BMDPs and

DT, and consider action uncertainty in offline stage, and upon change or discovery of

environment, optimal policy can be recomputed within seconds.

1.2 Contribution of the Thesis

In the context of MDP and motion planning, QD has been used in [30], [31], whereas

DT has been used in [32], [33]. However, the reason for using these methods has

not been justified, thus we do not know if using one or the other would change the

outcome of these works dramatically. In this thesis, we try to answer if QD or CDT

performs better in the context of MDP and planar motion planning.

1.3 Organization of the Thesis

The orginization of thesis is as follows: in Sec. 2, we give the background on QD,

CDT, MDP, and APF; in Sec. 3, we describe our approach towards comparing QD

and CDT; in Sec. 4, we explain parameter selection then give results, and discussion;

in Sec. 5, we conclude the thesis with a summary and description of possible future

work.
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CHAPTER 2

BACKGROUND

In this section, the background on following topics will be given: discretization

of continuous space using Quadtree decomposition (QD) and Delaunay triangula-

tion(DT); Markov decision process (MDP) with its formal definition, policies, value

functions and computing the optimal policy; artificial potential field (APF) with at-

tractive potential, repulsive potential and local minima problem.

2.1 Discretization of Continuous Space

MDP framework requires finite number of states. Using uniform decomposition

methods are computationally expensive because they require large number states thus

not feasible for maps having large sizes. We prefer more computationally efficient

methods like QD and DT which will be described in this section.

2.1.1 Quadtree Decomposition

In a quadtree structure each node has 4 sub-nodes. QD is a hierarchical state dis-

cretization method used to partition 2D space. It recursively divides the environment

into four regions. Regions which include both obstacle and free space (partially occu-

pied) are subdivided until a specified resolution is reached. By doing so, a map with

QD has a finer resolution around obstacles and coarser resolution in the free space.

Thus, the number of states and computation time in motion planning is much less

compared to those of uniform decomposition methods. QD can be extended to 3D

space, then it is called octree decomposition.
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Fig. 2.1 shows a binary image and its QD.

Figure 2.1: QD as applied to binary image quantization

2.1.2 Delaunay Triangulation

Delaunay triangles satisfy the empty circumcircle criterion which ensures circumcir-

cle1 of each triangle does not include any other point than the vertices of that triangle.

Because of this property, Delaunay triangles are not sliver2 triangles. Also, points

are connected in nearest-neighbor manner in Delaunay triangulation (DT). Because

of these advantageous geometric properties, they have been used widely in various

applications.

DTs do not exist if the points are on the same line. And they are not unique if there

are four or more points on the same circumcircle. DTs can be extended to three and

higher dimensions.

Certain constraints can be defined and DT can be forced to satisfy these constraints.

In this case, it is called constrained Delaunay triangulation (CDT) [10] [11]. Since

empty circumcircle criterion cannot always be satisfied with the defined constraints,

a CDT is not a DT. In this study, we need to specify constraints for obstacles since

1Circumcircle of a polygon is the circle passing through vertices of that polygon.
2A sliver triangle covers much less area compared to its circumcircle. Thus, some of its internal angles are

very small.
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triangulations inside obstacles are unnecessary and triangles should only contain the

free space. Therefore, we use CDT in this study.

Fig. 2.2 shows DT of 100 random points.

Figure 2.2: DT of 100 random points.

2.2 Markov Decision Processes

In an ideal world, the effect of control actions are deterministic. However, this is

not the case in practice, since there is uncertainty in action effects, as well as in

perception. Considering the uncertainty in action effects, Markov decision processes

(MDPs) provide a framework for optimal decision making considering uncertainty.

There are two assumptions to be made:

• Markov assumption: Transition probability to the next state only depends on

the current state and current action, therefore independent of all the past states

and actions.

• Full observability assumption: Unlike partially observable Markov decision

processes (POMDPs), MDPs assume full observability of states at all times.
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2.2.1 Formal MDP Definition

As described in [32] and [30] an MDP is defined by 4 elements {S,A, P,R} where

• S represents a finite set of states. In this work, states are obtained after dis-

cretization of continous space (detailed in Sec. 3.2.1).

• A represents a finite set of actions. Actions allow transitioning between states.

• P : S × A × S → [0, 1] represents the transition probability function where

P (si, a, sj) gives the transition probability of going from state si to state sj

when action a is executed.

• R : S → R represents the rewards where R(s) gives the reward for staying in

state s.

As given in [1], the graphical representation of MDP is shown in Fig. 2.3.

Figure 2.3: Graphical model representation of MDP from [1]. St, At, and Rt repre-

sents the state, action and reward at time t respectively.

2.2.2 Policies and Value Functions

There are a few definitions to be made to understand how MDPs provide optimal

decisions under uncertainty. For these definitions we refer to [23] and [1].
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Control policy, or simply policy is a mapping from all the past observations and ac-

tions to current action. It can be denoted as follows:

π : z1:t−1, a1:t−1 → at (21)

where π is policy, z1:t−1 is all the past observations, a1:t−1 is all the past actions, and

at is the current action.

Considering the full observability assumption, policy becomes a mapping from states

to actions as follows:

π : st → at (22)

where π is the policy, st is the current state, at is the current action.

As described in [1], value function associated with a policy, gives the expected sum

of discounted rewards for that policy. It can be written as:

V π(s) = E

[
∞∑
t=0

γtR(st)|s0 = s, at = π(st), st+1|st, at ∼ P

]
(23)

where γ < 1 represents the discount factor.

The equation defining the value function recursively, which is called the Bellman

equation which is written as follows:

V π(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′) (24)

Optimal policy is the policy which gives the maximum value for each state. As de-

scribed in [1], the optimal value function can be found using Bellman optimality equa-

tion as follows:

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′|s, a)V ∗(s′) (25)
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And optimal policy becomes the actions that achieve this value function:

π∗(s) = argmax
a

∑
s′∈S

P (s′|s, a)V ∗(s′) (26)

2.2.3 Computing the Optimal Policy

There are two approaches to compute the optimal policy. These are value iteration

and policy iteration.

2.2.3.1 Value Iteration

The algorithm for value iteration is given as follows [1]:

1. First, the value function is initialized as zeros for all states.

V̂ (s)← 0,∀s ∈ S (27)

2. Then, the values are updated according to Bellman optimality equation:

V̂ (s)← R(s) + γmax
a∈A

∑
s′∈S

P (s′|s, a)V̂ (s′),∀s ∈ S (28)

Value iteration is guaranteed to converge to its optimal value. The proof can be found

in [1].

Value iteration is illustrated with a simple example in Fig. 2.4. Fig. 2.4a shows the

original reward function. In this reward function, goal state is represented with value

1, and shown as green, whereas "a bad state" where robot would not want to be is

represented with value -100, and shown as red. All the other states has zero value.

This kind of simple reward function is good enough for value iteration. Transition

probability function is chosen so that when the robot moves in a direction it reaches

that state with 0.8 probability and perpendicular states with 0.1 probability. If robot

takes an action that would make it crash into a wall, it stays where it is.

Using the reward function and γ = 0.9, value iteration is run for 1000 iterations. Fig.

2.4b shows the value iteration after 1 iteration, and Fig. 2.4c shows the value function
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after 1000 iterations. As can be seen, the goal state has the highest value and the "bad

state" has the lowest value. Using this value function and Eq. 26, the optimal policy

can be found as shown in Fig. 2.4d.

(a) Original reward function (b) Value function after 1 iteration

(c) Value function after 1000 iterations (d) Resulting policy

Figure 2.4: Illustration of value iteration from [1]. (a) Original reward function. (b)

Value function after 1 iteration. (c) Value function after 1000 iterations. (d) Resulting

policy.

2.2.3.2 Policy Iteration

The algorithm for policy iteration is as follows [1]:

1. Initialize the policy π̂ randomly.

2. Compute the value of the policy V π as follows:

V π = (I − γP π)−1r (29)

where γ is the discounting factor, P π is the transition probability matrix, r is

the reward vector.
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3. Compute policy π with respect to its value V π as follows:

π(s)← argmax
a

∑
s′∈S

P (s′|s, a)V π(s′) (210)

4. If policy π does not change in the last iteration, optimal policy is said to be

found. Otherwise, return to step 2.

Policy iteration is illustrated in Fig. 2.5 with the same example given in value itera-

tion. Fig. 2.5a shows the original reward function. After 1 iteration, resulting policy

value becomes as in Fig. 2.5b. And after 3 iterations, policy value becomes as given

in Fig. 2.5c. Then resulting policy is obtained as in Fig. 2.5d. An important remark

here is that even at the first iteration, policy value is quite close to exact value func-

tion and after 3 iterations it reaches the exact value function. Thus, it can be said that

policy iteration requires much less iterations than value iteration, but each iteration

takes more time since it requires solving a linear system.

(a) Original reward function (b) Policy value after 1 iteration

(c) Policy value after 3 iterations (d) Resulting policy

Figure 2.5: Illustration of policy iteration from [1]. (a) Original reward function. (b)

Policy value after 1 iteration. (c) Policy value after 3 iterations. (d) Resulting policy.
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2.3 Artificial Potential Field Method

The artificial potential field (APF) method was originally proposed by Oussama Khatib

[12] for avoiding obstacles real-time using mobile robots and manipulators. It is based

on a simple idea that obstacles repel the robot and the goal attracts it, thus combination

of repulsive forces with attractive forces move the robot to the goal while preventing

a collision with obstacles.

As described in [2], combining the attractive and repulsive potentials, total energy of

the robot can be written as:

U(q) = Uatt(q) + Urep(q) (211)

where Uatt(q) is the attractive potential, and Urep(q) is the repulsive potential.

The robot minimizes this potential energy by moving towards the negative gradient

of it, −∇U(q).

2.3.1 The Attractive Potential

Attractive potential should be increasing as the distance from the goal configuration

increases [2]. The simplest attractive potential is the conic potential. Its energy and

gradient of this energy is as follows:

Uconic(q) = ζd(q, qgoal) (212)

∇Uconic(q) =
ζ

d(q, qgoal)
(q − qgoal) (213)

Implementing conic potential with gradient descent can cause "chattering" problems,

thus quadratic potential is preferable. Its energy and gradient of this energy is as
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follows:

Uquad(q) =
1

2
ζd2(q, qgoal) (214)

∇Uquad(q) = ζ(q − qgoal) (215)

The problem with the quadratic potential is that if initial configuration is far away

from the goal, it can produce a very large velocity. Because of this, combining conical

and quadratic potential gives the best results. Quadratic potential attracts the robot

when it is close to the goal, and conic potential attracts it when it is far away from the

goal. The resulting attractive potential and its gradient becomes [2]:

Uatt(q) =


1
2
ζd2(q, qgoal), d(q, qgoal) ≤ d∗goal

d∗goalζd(q, qgoal)− 1
2
ζ(d∗goal)

2, d(q, qgoal) > d∗goal

(216)

∇Uatt(q) =

ζ(q − qgoal), d(q, qgoal) ≤ d∗goal
d∗goalζ(q−qgoal)

d(q,qgoal)
, d(q, qgoal) > d∗goal

(217)

where d∗goal is the distance from the goal where potential function changes between

conic and quadtratic potentials.

2.3.2 The Repulsive Potential

Repulsive potential should increase as the robot gets closer to the obstacle in order

to avoid colliding with obstacles. We choose to define repulsive potential functions

for individual obstacles and combine them in order to prevent oscillatory paths and

ease the detection of local minima. The repulsive potential for each obstacle and its

gradient is defined as follows [2]:

Urepi(q) =


1
2
η( 1

di(q)
− 1

Q∗i
)2, di(q) ≤ Q∗i

0, di(q) > Q∗i

(218)
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∇Urepi(q) =

η( 1
Q∗i
− 1

di(q)
) 1
d2i (q)
∇di(q), di(q) ≤ Q∗i

0, di(q) > Q∗i

(219)

where di(q) is the distance to the individual obstacle,Q∗i is the threshold distance from

the robot where obstacles are ignored after, η is the gain of the repulsive gradient. We

choose Q∗i = Q∗ for all the obstacles. The total repulsive potential can be computed

as follows:

Urep(q) =
n∑
i=1

Urepi(q) (220)

2.3.3 Local Minima Problem

The standard APF method is not complete because of the local minima problem. The

robot might get stuck when attractive and repulsive forces cancel each other. There

are various methods to solve the local minima problem [17], [18], [19], [20]. Fig.

2.6 shows examples for local minima problem for both concave and convex obstacles

from [2].
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(a) Local minima problem for a concave obstacle

(b) Local minima problem for convex obstacles

Figure 2.6: Examples for local minima problem for both concave and convex obsta-

cles from [2].
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CHAPTER 3

APPROACH

In Sec. 2, we have given background on Quadtree decomposition (QD), Delaunay tri-

angulation (DT), Markov decision process (MDP) and artificial potetial field (APF).

In this section, we describe our approach towards comparing QD and constrained

Delaunay triangulation (CDT) in the context of MDP and planar motion planning.

Firstly, we discretize the maps with polygonal obstacles using QD and CDT. Sec-

ondly, we define the MDP framework to be used by defining states, actions, transition

function and reward function. Then, we compute the optimal policy to obtain a high-

level plan. Then, we use APF method as a low-level controller.

3.1 Discretization of Continuous Space: Quadtree Decomposition and Con-

strained Delaunay Triangulation

We discretize maps with polygonal obstacles using QD and CDT. We use qtdecomp

function of MATLAB for QD. However, this function requires a grayscale image as

input considering the non-exact nature of QD. Therefore, we need to approximate

polygons as group of pixels to apply QD. We approximate the polygonal obstacles

by considering each pixel which has at least some part of the obstacle as obstacle.

However, this approximation can cause some of the paths to the goal to be blocked.

To guarantee reaching to the goal state from any other state in the free space, we apply

the following strategy: We start from the smallest quadtree resolution and check for

this blockage using a DFS algorithm1 to see if all the other non-obstacle states are

1We first construct a graph (using digraph function of MATLAB) with directed edges where nodes represent

the states, and directed edges represent the policy. Then, we make a depth-first graph search on this graph (using

dfsearch function of MATLAB) starting from goal state. dfsearch returns the vector of node IDs in the order of
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reachable from the goal state. If not, we increase the quadtree resolution until there

is a path from every other cell in free space to the goal cell. Thus, we choose the

coarsest possible quadtree resolution which does not cause blockage towards reaching

the goal.

Fig. 3.1 shows an example map with different resolutions for QD. In Fig. 3.1a and

3.1b, the goal state stays inside the obstacle, so robot cannot reach there and the result

is the same with lower resolutions. As the resolution increases, the goal is now in the

free space as can be seen in Fig. 3.1c. But still there is a blockage preventing reaching

to the goal state from some states in the free space. In Fig. 3.1d, finally the blockage

between the goal state and other cells disappear and every state in the free space can

reach the goal state. This is where our algorithm stops increasing the resolution for

QD.

We use delaunayTriangulation function of MATLAB for CDT. Having defined the

vertices and the edge constraints of polygonal obstacles, receiving resulting triangles

is straightforward.

Fig. 3.2 shows QD and CDT on a sample map. Black regions indicate the original

polygonal obstacles. Gray regions show the approximated obstacle regions in QD, all

the other cells are in the free space and shown as white.

3.2 Definition of MDP

In this section, we define the 4 elements of MDP used in this study.

3.2.1 Definition of States

The states are defined based on the discretization method. In the case of QD, resulting

states are squares whereas in CDT, resulting states are triangles. Each of these states

can be defined by Cartesian coordinates of their vertices. Orientation is not included

in state definition as done in [30] and [31], since we consider a point mass with

their discovery. We compare size of this vector with the number of non-obstacle cells in the map. If they are same,

we say every other state in free space is reachable from the goal.
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(a) QD of the sample map with resolu-

tion of 8x8

(b) QD of the sample map with resolu-

tion of 16x16

(c) QD of the sample map with resolu-

tion of 32x32

(d) QD of the sample map with resolu-

tion of 64x64

Figure 3.1: An example map with different resolutions for QD. In (a) and (b), the

goal state is inside the obstacle. In (c), the goal state is in the free space but there is

still a blockage. In (d), the blockage disappears.
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(a) QD example.

(b) CDT example.

Figure 3.2: QD and CDT on a sample map. Black regions indicate the original polyg-

onal obstacles. Gray regions show the approximated obstacle regions in quadtree

decomposition, all the other cells are in the free space and shown as white.

20



holonomic capabilities in this study. The states for QD and CDT is defined in Eq. 31a

and Eq. 31b respectively.

Sqdi =


x1 y1

x2 y2

x3 y3

x4 y4


i

(31a)
Scdti =


x1 y1

x2 y2

x3 y3


i

(31b)

where xn, yn are Cartesian coordinates of nth vertice.

3.2.2 Definition of Actions

Actions allow passing from one state to another. In [30] and [31], they choose to use

Dubins actions [36], whereas in [28] and [37] somewhat abstract actions are used. In

the planning phase, we chose to define simple actions such that at any point agent

chooses to go towards the center of the next cell determined by the optimal policy

except if it is in the goal state or in a state whose policy directly points to goal and

if that state is neighbor to goal state, then it directly goes towards the goal position.

Sample actions from 5 different starting points to the goal are shown in Fig. 3.3.

Obstacle is shown as black, si are starting points, and green dot shows the goal.

The real action driving the robot is being decided during execution stage by APF

method and actuator limitations. Thus, all of the simple actions shown in Fig. 3.3

actually corresponds to Fatt, the attractive force, used in APF method shown in Fig.

3.6. In Fig. 3.3, it looks as if the action starting from s2 would collide with the

obstacle, however this is not the case because of Frep, the repulsive force in Fig. 3.6.

Details about APF method will be given in Sec. 3.4.
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goal

s1

s2s3

s4

s5

Figure 3.3: Sample actions starting from 5 different starting points to the goal. Ob-

stacle is shown as black, si are starting points, and green dot shows the goal.

3.2.3 Definition of Transition Function

The transition function encodes the stochastic effects of actions in MDP. In [30] and

[31], they model the transition function as multivariate normal distribution, then com-

pute the transition functions for primitive Dubin actions and combine them for com-

plex actions.

In our study, we do not know the exact action robot will take in advance, because it is

defined by APF method during execution. Thus, we use only the attractive component

of the action to construct the uncertainty model. We model the transition function as

multivariate normal distribution, X ∼ N (µ,Σ) where

µ =

µx
µy

 (32a) Σ =

σ2 0

0 σ2

 (32b)

where µx and µy are the cartesian coordinates of the center of the current cell. σ2

is proportional to the distance between center of the current cell and center of the

neighbor cell the robot wants to go to:

σ2 ∝ K ‖µcur − µneigh‖ (33)
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Fig. 3.4a shows a sample map discretized with QD. Black cells are obstacles, blue

dot shows the center of the start cell, green dot shows the center of the goal cell. Gray

area represents the high probability region for location of the robot, as a result of

travelling from start point to goal point. The probability is highest at the center of the

gray area, because if there was no noise, that’s where the robot would be. Considering

the real world scenarios and using the defined transition function, we predict where

robot might be after passing from one cell to another. In Fig. 3.4a most of the gray

area is in the goal cell, and rest of the area is distributed to other cells in an uneven

fashion. Fig. 3.4b shows the uncertainty model used, which is a multivariate normal

distribution. Its mean is at the center of the goal cell and its standard deviation is

proportional to the distance between start cell and goal cell. It is reasonable to model

standard deviation like this because as the distance between the cells increase, the

distribution becomes more broad around the neighboring cells.

The probability values for transition function gets smaller and smaller as the posi-

tion moves away from the mean. And it gets close to zero in cells far away from the

goal cell. Thus, we limit the extend of the multivariate normal distribution for com-

putational savings in the QD. Here are the limits for transition function of QD and

CDT:

max(µx − s, 0) ≤ xqd ≤ min(µx + s, size_x)

max(µy − s, 0) ≤ yqd ≤ min(µy + s, size_y)
(34)

0 ≤ xcdt ≤ size_x

0 ≤ ycdt ≤ size_y
(35)

where xqd and yqd are the suitable coordinates for multivariate normal distribution for

QD, xcdt and ycdt are the suitable coordinates for multivariate normal distribution for

CDT, µx and µy are the coordinates of the center of the cell, s is the size of the cell,

size_x and size_y are size of the map in x and y respectively. We do not limit the

extend of the distribution in CDT, because triangulations are dispersedly distributed,

and there are very few states to consider in the whole map.
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start

goal

(a) Demonstration of transition function on a sample map. Black cells are obstacles, blue dot shows

the center of the start cell, green dot shows the center of the goal cell. Gray area represents the high

probability region for location of the robot, as a result of travelling from start point to goal point.

(b) Demonstration of uncertainty model, multivariate normal distribution where its mean is at the

center of the goal cell and its standard deviation is proportional to the distance between start cell and

goal cell.

Figure 3.4: Transition function
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3.2.4 Definition of Reward Function

Defining a suitable reward function is necessary for obtaining a policy that makes the

robot go towards the goal and avoid obstacles. Defining a simple reward function is

shown to be sufficient in [38], [39], [31] and [30]. We define the reward function as

follows:

R(s) =


1, if s is the goal state

−1, if s is an obstacle state

0, otherwise

(36)

This reward function is sufficient to obtain the optimal policy.

3.3 High-level Planning: Computing the Optimal Policy

As described in Sec. 2.2.2, optimal policy is the policy which gives the highest value

for each state. In other words, the optimal policy gives the best actions to take in each

state given the rewards and transition function. And its simply a mapping from states

to actions. We use this optimal policy for high level decision making.

QD and CDT decompose the map into finite number of states. Using the defined

transition function and rewards, we use value iteration to compute the optimal policy.

When checking for convergence, we compare last few policies and if they remain

unchanged, we say the convergence is reached. Although computing policies and

checking for them increases the execution time, it is better than checking for some

predefined value or percentage change because it reduces the number of iterations, is

independent of other parameters and gives faster results.

Using defined transition function and reward function, value iteration is applied as in

Eq. 28. The resulting optimal policy is shown on the sample map in Fig. 3.5 for QD

and CDT. Black regions indicate the original polygonal obstacles. Gray regions show

the approximated obstacle regions in QD, all the other cells are in the free space and

shown as white. Red arrows indicate the policy, which state to move for any state.
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Blue dot indicates the goal position. The cell which has the goal is shown as green.

3.4 Low-level Execution: Artificial Potential Field Method

We obtained the optimal policy using value iteration. For any state, the optimal policy

gives which state to transition to. Still, moving to these states requires a low-level

execution method. We use APF method for this purpose.

Fig. 3.6 shows the attractive force
−−→
Fatt, repulsive force

−−→
Frep, and the resulting desired

force
−−→
Fdes. Eq. 37 gives the relationship between these forces. Attractive force simply

follows the policy by going towards the center of the next cell, and repulsive force

avoids the obstacles within certain region.

−−→
Fdes = α

−−→
Fatt + (1− α)

−−→
Frep (37)

Directly following
−−→
Fdes results in sharp and unrealistic paths. In reality, a robot would

follow a smoother path because of its dynamics and actuator limitations. Therefore,

to make the simulation more realistic, we incorporate dynamics, actuator and velocity

limitations, and noise. Fig. 3.7 shows the velocities for clarity.

−→vdes is the desired velocity robot is trying to attain. However, this velocity may not

always be attainable due to dynamics, actuator and velocity limitations. It is obtained

from
−−→
Fdes as follows:

−→vdes =

−−→
Fdes
m

∆t (38)

where m is the mass of the particle/robot, ∆t is the elapsed time.

−−→vprev is the previous velocity of the robot. A force is required to change the velocity

from −−→vprev to −→vdes. This force is
−−→
Freq and can be written as:

−−→
Freq = m

−→vdes −−−→vprev
∆t

(39)
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(a) Optimal policy for QD.

(b) Optimal policy for CDT.

Figure 3.5: Optimal policy on the sample map. Black regions indicate the original

polygonal obstacles. Gray regions show the approximated obstacle regions in QD,

all the other cells are in the free space and shown as white. Red arrows indicate the

policy, which state to move for any state. Blue dot indicates the goal position. The

cell which has the goal is shown as green.
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goal

!!!
Fatt

!!!
Frep

!!!
Fdes

Figure 3.6: Attractive force, repulsive force and resulting desired force in APF.

goal

!!vdes

!!!vprev

!!vact

!!!vlim

Figure 3.7: Velocities in APF.
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Considering actuator limitations, we define Fmax, the maximum force that can be

applied by the robot. This force can be applied in any direction since the robot is

holonomic. We also define vmax to limit the maximum speed of the robot.

If
∥∥∥−−→Freq∥∥∥ > Fmax, then it is limited as:

−−→
Flim =

−−→
Freq∥∥∥−−→Freq∥∥∥Fmax (310)

The applied force,
−−→
Fapp can be written as:

−−→
Fapp =


−−→
Freq,

∥∥∥−−→Freq∥∥∥ ≤ Fmax
−−→
Flim,

∥∥∥−−→Freq∥∥∥ > Fmax

(311)

This force is applied to the robot and the resulting actual velocity becomes:

−→vact = −−→vprev +

−−→
Fapp
m

∆t (312)

If ‖−→vact‖ > vmax, then it is limited as:

−−→vlim =
−→vact
‖−→vact‖

vmax (313)

The real velocity can be written as:

−−→vreal =


−→vact, ‖−→vact‖ ≤ vmax

−−→vlim, ‖−→vact‖ > vmax

(314)

If
∥∥∥−−→Freq∥∥∥ ≤ Fmax and ‖−→vact‖ ≤ vmax then −−→vreal = −→vdes. Robot could always go with
−→vdes if there were no actuator and velocity limitations.

In the simulation, robot periodically applies the force
−−→
Fapp, to reach the velocity−−→vreal.
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3.4.1 Incorporating Noise

There is also noise component in the simulation. If there was no noise component,

change in robot position would be as follows:

vmag = ‖−−→vreal‖

θ = atan2(−−−→vrealy ,
−−−→vrealx)

∆x = vmagcos(θ)∆t

∆y = vmagsin(θ)∆t

(315)

where ∆x, ∆y are change in x and y coordinates respectively, ∆t is the elapsed time,
−−−→vrealx and −−−→vrealy are the real velocities in x and y coordinates respectively.

After adding noise component, change in robot position becomes:

vnew = normrnd(vmag, k1vmag)

θnew = normrnd(θ, k2vmag)

∆x = vnewcos(θnew)∆t

∆y = vnewsin(θnew)∆t

(316)

where k1, k2 are noise parameters, normrnd is a MATLAB function which samples

from normal distribution, its first parameter is mean, and second one is the standard

deviation. We choose means as vmag and θ which is straightforward, whereas we

choose standard deviations as proportional to the magnitude of the real velocity. Thus,

as the magnitude of the real velocity increases, the noise becomes more scattered

around the mean. And by playing with k1 and k2, different noise distributions can be

obtained. Fig. 3.8 shows a sample noise distribution of 500 points where vmag = 0.05,

θ = 0, k1 = 1/30, k2 = 2/3. Red dot shows the initial position of the robot, green

dot shows the ideal final position, and red path shows the ideal path followed by the

robot. Blue dots show the positions after noise is incorporated.
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Figure 3.8: Sample noise distribution of 500 points. Red dot shows the initial position

of the robot, green dot shows the ideal final position, and red path shows the ideal path

followed by the robot. Blue dots show the positions after noise is incorporated.

3.4.2 Local Minima Problem

There are three cases that can cause the robot to get stuck:

• Case 1: −→vdes = 0. This might occur if
−−→
Fatt and

−−→
Frep (combination of repul-

sive vectors) cancel each other. In this case, if
∥∥∥−−→Freq∥∥∥ ≤ Fmax, it can make

−−→vreal = 0. Since the speed is zero, also there cannot be noise if the speed is

zero, thus the robot stops. There are various cases that might cause this prob-

lem. One example is that robot might be going towards the goal, and there

might be an obstacle behind the goal. In this case, there can be a local minima.

Another example is that robot might not be directly going towards an obstacle

but combination of repulsive vectors from obstacles may cause local minima as

in Fig. 2.6b.

• Solution for Case 1: Ignore repulsive force when the angle between
−−→
Fatt and

−−→
Frep is very close to 180°. When repulsive force is ignored, there is no longer

local minima. This simple solution also prevents slowing down before encoun-
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tering a local minima. However, in rare cases robot might collide with an ob-

stacle since we ignore the repulsive force. During experimentation, we did not

encounter any such cases. However, if for this reason or any other reason, robot

collides with an obstacle, we do not include that case in the comparison.

• Case 2: −→vdes 6= 0 but −−→vreal = 0. Since the speed is zero, there cannot be noise.

In this case,
−−→
Fatt and

−−→
Frep do not cancel each other but robot still stops. For

−−→vreal = 0 when −→vdes 6= 0, −→vdes and −−→vprev should have a 180° between them and∥∥∥−−→Freq∥∥∥ > Fmax thus limited as
−−→
Flim and if

−−→
Flim is exactly equal to the force

required to stop the robot. This is unlikely to happen, and in our case this is

impossible. Because it would require 180° change in velocity vector, and there

is no such policy in the optimal policy (such a policy would cause returning

to the state it came from, causing an infinite loop even if there was no local

minima problem), and the repulsive vector cannot change that much since we

are considering repulsive vectors from multiple obstacles.

• Case 3: It is unlikely to happen, but robot might get stuck in a loop that is not

exacly local minima. We encountered such cases in experimentation. Although

it is rare, in some parameter combinations, such problems can occur. To prevent

infinite loops because of such problems, we stop execution if some prefined

time has passed since the simulation started.

Since our main objective here is to compare discretization methods, the sim-

ple solution given in Case 1 results in an almost complete low-level execution

method. If it is desired to escape after local-minima occurs, or to prevent it

before it happens, alternative strategies can be developed or used from the lit-

erature.

3.4.3 Special Cases in Quadtree Decomposition

There are special cases in QD where robot is actually not collided with an obstacle

and there is no policy for that state. When robot is in an approximated obstacle, which

is not an obstacle in reality, there is no policy for that state indicating where to go next,

thus the action is undefined. In this case, we choose to follow the last best action as

if robot was in the previous state. Fig. 3.9 demonstrates some of these special cases.
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Black polygon is the real obstacle, gray regions are approximated obstacle regions,

green dot is the goal point, red dots are starting points, and the path followed by the

robot is shown as blue.

Figure 3.9: Demonstration of special cases in QD. Black polygon is the real obstacle,

gray regions are approximated obstacle regions, green dot is the goal point, red dots

are starting points, and the path followed by the robot is shown as blue.

3.4.4 Preventing Getting out of Boundary

In the cases where there is an obstacle very close to the map boundary, the repulsive

force from the obstacle may cause robot to leave the boundary. Thus, it is necessary

to consider the boundary of the map as obstacle. Because if the robot leaves the

boundary, we do not have any states or policies outside to get it back. Other strategies

can be developed for this but for the time being, considering boundary as obstacle is

sufficient.

3.4.5 An Example

We used this low-level planner on the sample map from 10 random starting positions

and the resulting paths are shown in Fig. 3.10 for both QD and CDT. Black regions

indicate the original polygonal obstacles. Gray regions show the approximated ob-
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stacle regions in QD, all the other cells are in the free space and shown as white. The

path followed by the robot is shown as blue. Red dots indicate the starting positions.

Green dot indicates the goal position.
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(a) Paths for QD.

(b) Paths for CDT.

Figure 3.10: Paths from 10 random points on the sample map. Black regions indi-

cate the original polygonal obstacles. Gray regions show the approximated obstacle

regions in QD, all the other cells are in the free space and shown as white. The path

followed by the robot is shown as blue. Red dots indicate the starting positions. Green

dot indicates the goal position.
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CHAPTER 4

EXPERIMENTAL WORK

In Sec. 3, we have described our approach towards comparing Quadtree decompo-

sition (QD) and constrained Delaunay triangulation (CDT). In this section, we give

simulation parameters and comparison metrics, then we explain how we choose the

simulation parameters for a fair comparison, then we give results and discussion to

compare QD and CDT in terms of various metrics.

4.1 Parameters and Comparison Metrics

There are various parameters in the simulation that can significantly affect the results,

these are listed in Tab. 4.1 with their description. We compare QD and CDT based

on the metrics given in Tab. 4.2 with their description.

4.2 Parameter Selection

In this section, we explain how we choose the simulation parameters for a fair com-

parison between QD and CDT.

K is measure of how scattered noise is distributed and it depends on the physical

properties. It significantly affects the value iteration process and what the optimal

policy will be. In the simulation, choosing same values for K for QD and CDT

makes it hard to find optimal policies for both methods. Thus, by experimentation,

we choose Kqd = 0.0025 and Kcdt = 0.1.

m, Fmax, and vmax depend on the hardware and physical properties of the robot. For
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Table 4.1: Simulation parameters and their description

Parameter Description

K gain for standard deviation in the transition function

ζ gain for attractive gradient

η gain for repulsive gradient

d∗goal (m) distance from the goal where potential changes between conic and

quadratic

Q∗ (m) threshold distance from the robot where obstacles are ignored after

k1, k2 gains for standard deviation of noise distribution in the execution

m (kg) mass of the particle/robot

α parameter to combine attractive and repulsive forces

Fmax (N) maximum force that can be applied by the robot

vmax (m/s) maximum speed of the robot

Table 4.2: Comparison metrics and their description

Metric Description

Path length (m) Total length of the path followed by the robot in reaching

from start position to the goal position

Travel time (s) Total travel time in reaching from start position to goal

position

Safety measure 1 (m) Average of the distances between the robot and the closest

obstacle to it, throughout the whole path

Safety measure 2 (m) Minimum of the distances between the robot and the clos-

est obstacle to it, throughout the whole path

Planning time (s) Execution time of the value iteration until convergence

Number of iterations Number of iterations in the value iteration until conver-

gence

Number of states Number of states/cells on the map not including obstacles

simulation, they are chosen as m = 1 kg, Fmax = 0.02 N, and vmax = 0.2 m/s. In the

real world, these values would most probably be higher. But in the simulation, these
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values are chosen to obtain realistic paths.

k1 and k2 are noise parameters, and they depend on the characteristics of the environ-

ment and the robot. For simulation, they are chosen as k1 = 1
30

and k2 = 2
3
.

There are 5 parameters for APF (ζ , η, d∗goal, Q
∗, α) that can significantly affect the

behavior of the low-level execution method. Choosing these parameters by trial and

error is not optimal and cannot provide the best strategy for QD or CDT. Thus, we

optimize these APF parameters for QD and CDT using PSO (Particle swarm opti-

mization) based on the cost function given in Eq. 41. For optimization, we choose

100 random points on map 3 (in Fig. 4.6) and take average of metrics.

J =
[
λ1 λ2 λ3 λ4 λ5

]


N

x

t

s1

s2


(41)

where λ1, λ2, λ3, λ4, and λ5 are weights, N is the number of times either robot col-

lided with an obstacle, is out of the map boundary, or trapped in a loop or a local

minima, x is the average path length, t is the average travel time, s1 and s2 are the

average safety measures. We choose λ1 much greater than the other weights to pun-

ish for the undesired outcomes like collision with obstacles, getting out of the map

boundary, or trapping in local minima. The other weights are chosen empirically

from the sample results. The resulting parameters for QD and CDT are obtained as

follows:
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ζ

η

d∗goal

Q∗

α


qd

=



0.1682

1.0000

49.9239

46.3754

0.9900


(42a)



ζ

η

d∗goal

Q∗

α


cdt

=



0.9994

0.6967

41.2817

0.1019

0.9893


(42b)

where definitions for these parameters were given in Tab. 4.1.

4.3 Results and Discussion

In this section, we give the results and discussion to compare QD and CDT in terms

of path length, travel time, two safety measures, planning time, number of iterations,

and number of states. Descriptions for these metrics were given in Tab. 4.2. We

created 3 simple and 2 relatively complex maps to compare QD and CDT. The maps

were chosen so that they would most probably cause a standard APF algorithm to trap

in local minima and they have various shapes and sizes of obstacles with narrow and

wide passages. One of the maps was specifically designed by approximating a circular

obstacle as a polygon to see how circular obstacles affects the results. We obtained

the optimal policies and paths starting from 100 randomly selected points from free

space and averaged results for path length, travel time, and two safety measures on 5

maps.

Optimal policies for QD and CDT on 5 maps are given in Fig. 4.1, 4.3, 4.5, 4.7,

and 4.9. Black regions indicate the original polygonal obstacles. Gray regions show

the approximated obstacle regions in QD, all the other cells are in the free space and

shown as white. Red arrows indicate the policy, which state to move for any state.

Blue dot indicates the goal position. The cell which has the goal is shown as green.

Paths from 100 random points for QD and CDT on 5 maps are given in Fig. 4.2,

4.4, 4.6, 4.8, and 4.10. Black regions indicate the original polygonal obstacles. Gray
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regions show the approximated obstacle regions in QD, all the other cells are in the

free space and shown as white. The path followed by the robot is shown as blue. Red

dots indicate the starting positions. Green dot indicates the goal position.

Fig. 4.11 shows comparison of path length, travel time, two safety measures, plan-

ning time, number of iterations and number of states for QD and CDT on 5 maps

where each map size is 16x16 in meters. Blue bars indicate results for QD whereas

orange bars indicate results for CDT. x-axis indicates map indices and y-axis shows

the comparison metric.

As can be seen on Fig. 4.11a, QD results in longer paths on almost all the maps. Fig.

4.11b shows that CDT results in longer travel times on all the maps except map 3. In

map 3 in Fig. 4.6a, in the upper right portion of the map, although there was a much

shorter path to the goal, it is closed by approximation in QD. Thus, the average path

length is much longer in QD and it even caused more travel time in QD than CDT

which is not the case in other maps. This is a disadvantage of QD compared to CDT.

In terms of two safety measures in Fig. 4.11c and Fig. 4.11d, QD and CDT perform

almost equally. As can be seen in Fig. 4.11e, 4.11f, and 4.11g, QD has clear disadvan-

tages compared to CDT in terms of planning time, number of iterations, and number

of states on all the maps. Planning time almost increases exponentially and number

of states increase almost linearly as the maps become more complex in QD. How-

ever, planning time, number of iterations, and number of states are only important

if online planning is required. Otherwise, if offline planning is preferred, comparing

these metrics becomes mostly unnecessary. And considering the planning times, the

current implementation is not suitable for online planning.

Map 5 (in Fig. 4.9) is different than other maps since it has an almost circular obstacle

approximated as a polygon with 40 edges. Having lots of edges causes the map

approximated with CDT to have greater number of states than that of QD as can be

seen in 4.11g. However, still the planning time in 4.11e is much greater in the QD

because it still needs to consider various neighbors during value iteration, whereas

CDT only needs to look for 3 neighbors.

In overall, QD and CDT seems both suitable in the context of MDP and path planning
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with APF. QD results in longer, and more smooth paths and requires less travel time.

Whereas CDT results in shorter, and sharper paths and requires more travel time. QD

and CDT perform almost equally in terms of safety. QD and CDT might be preferable

for different applications. If offline planning time, number of iterations or number of

states is important, it is better to choose CDT over QD. If travel time is important,

QD can be preferred.

It is important to note that the results for path length, travel time, and safety measures

might vary based on the cost function of the optimization. So, it is best to optimize

for the preferred metrics on a specific problem to get the best possible outcome.
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(a) Optimal policy for QD on map 1.

(b) Optimal policy for CDT on map 1.

Figure 4.1: Optimal policy on map 1. Black regions indicate the original polygonal

obstacles. Gray regions show the approximated obstacle regions in QD, all the other

cells are in the free space and shown as white. Red arrows indicate the policy, which

state to move for any state. Blue dot indicates the goal position. The cell which has

the goal is shown as green.
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(a) Paths for QD on map 1.

(b) Paths for CDT on map 1.

Figure 4.2: Paths from 100 random points on map 1. Black regions indicate the

original polygonal obstacles. Gray regions show the approximated obstacle regions

in QD, all the other cells are in the free space and shown as white. The path followed

by the robot is shown as blue. Red dots indicate the starting positions. Green dot

indicates the goal position.
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(a) Optimal policy for QD on map 2.

(b) Optimal policy for CDT on map 2.

Figure 4.3: Optimal policy on map 2. Black regions indicate the original polygonal

obstacles. Gray regions show the approximated obstacle regions in QD, all the other

cells are in the free space and shown as white. Red arrows indicate the policy, which

state to move for any state. Blue dot indicates the goal position. The cell which has

the goal is shown as green.
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(a) Paths for QD on map 2.

(b) Paths for CDT on map 2.

Figure 4.4: Paths from 100 random points on map 2. Black regions indicate the

original polygonal obstacles. Gray regions show the approximated obstacle regions

in QD, all the other cells are in the free space and shown as white. The path followed

by the robot is shown as blue. Red dots indicate the starting positions. Green dot

indicates the goal position.
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(a) Optimal policy for QD on map 3.

(b) Optimal policy for CDT on map 3.

Figure 4.5: Optimal policy on map 3. Black regions indicate the original polygonal

obstacles. Gray regions show the approximated obstacle regions in QD, all the other

cells are in the free space and shown as white. Red arrows indicate the policy, which

state to move for any state. Blue dot indicates the goal position. The cell which has

the goal is shown as green.
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(a) Paths for QD on map 3.

(b) Paths for CDT on map 3.

Figure 4.6: Paths from 100 random points on map 3. Black regions indicate the

original polygonal obstacles. Gray regions show the approximated obstacle regions

in QD, all the other cells are in the free space and shown as white. The path followed

by the robot is shown as blue. Red dots indicate the starting positions. Green dot

indicates the goal position.
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(a) Optimal policy for QD on map 4.

(b) Optimal policy for CDT on map 4.

Figure 4.7: Optimal policy on map 4. Black regions indicate the original polygonal

obstacles. Gray regions show the approximated obstacle regions in QD, all the other

cells are in the free space and shown as white. Red arrows indicate the policy, which

state to move for any state. Blue dot indicates the goal position. The cell which has

the goal is shown as green.
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(a) Paths for QD on map 4.

(b) Paths for CDT on map 4.

Figure 4.8: Paths from 100 random points on map 4. Black regions indicate the

original polygonal obstacles. Gray regions show the approximated obstacle regions

in QD, all the other cells are in the free space and shown as white. The path followed

by the robot is shown as blue. Red dots indicate the starting positions. Green dot

indicates the goal position.
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(a) Optimal policy for QD on map 5.

(b) Optimal policy for CDT on map 5.

Figure 4.9: Optimal policy on map 5. Black regions indicate the original polygonal

obstacles. Gray regions show the approximated obstacle regions in QD, all the other

cells are in the free space and shown as white. Red arrows indicate the policy, which

state to move for any state. Blue dot indicates the goal position. The cell which has

the goal is shown as green.
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(a) Paths for QD on map 5.

(b) Paths for CDT on map 5.

Figure 4.10: Paths from 100 random points on map 5. Black regions indicate the

original polygonal obstacles. Gray regions show the approximated obstacle regions

in QD, all the other cells are in the free space and shown as white. The path followed

by the robot is shown as blue. Red dots indicate the starting positions. Green dot

indicates the goal position.
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Figure 4.11: Comparison of various metrics for QD and CDT on 5 maps where each

map size is 16x16 in meters. Blue bars indicate results for QD whereas orange bars

indicate results for CDT. x-axis indicates map indices and y-axis shows the compari-

son metric.
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CHAPTER 5

CONCLUSION

5.1 Summary

In this section, we give a summary of the work done in this study. First, we discretized

continuous space using Quadtree decomposition (QD) and constrained Delaunay tri-

angulation (CDT). Then, we defined Markov decision process (MDP) framework

with states, actions, transition function, and reward function. Next, we used this

MDP framework and value iteration to obtain the optimal policy which we used as

a high-level planner. Then, we used APF for low-level execution. Next, we defined

comparison metrics and selected suitable parameters in the simulation. Then, we

obtained the average results from 100 random points on 5 maps. Next, we compared

QD and CDT in terms of path length, travel time, two safety measures, planning time,

number of iterations, and number of states. Results showed that, QD and CDT are

both suitable in the context of MDP and path planning with artificial potential field

(APF). QD results in longer paths but requires less travel time. Whereas CDT results

in shorter paths but requires more travel time. QD and CDT perform almost equally

in terms of safety. QD has clear disadvantages compared to CDT in terms of planning

time, number of iterations, and number of states on all the maps. However, planning

time, number of iterations, and number of states are only important if online planning

is required. Another disadvantage of QD is that it might block some of the paths to

the goal, thus causing a longer path in some maps. Using a circular obstacle on a

map causes the map approximated with CDT to have greater number of states than

that of QD. However, still the planning time is much greater in the QD than that of

CDT. It is important to note that the results for path length, travel time, and safety

measures might vary based on the cost function of the optimization. And QD and
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CDT might be preferable for different applications. Therefore, it is best to optimize

for the preferred metrics on a specific problem to get the best possible outcome.

5.2 Future Work

The possible future work related to this study includes:

• Extension of the overall algorithm for non-holonomic robotics systems

• Extension and realization of the current work on a real robotic system

• Extension or modification of the current algorithm to work with robots having

dimension

• Incorporating real noise model to the value iteration algorithm

• Extending the comparison to different space discretization methods like trape-

zoidal decomposition

• Online update of the goal and obstacles in the map

• Increasing algorithm efficiency by vectorization

• Developing new methods or using existing strategies for completely preventing

local-minima or escaping after it occurs

• Considering approximated obstacles in QD as non-obstacles but states with

negative rewards, as a result, using a lower resolution in the map, thus decreas-

ing the planning time for QD

• Finding the direction of
−−→
Fmax that would minimize the difference between −→vdes

and −→vact.
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