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ABSTRACT

A MULTI-OBJECTIVE APPROACH TO CLUSTER ENSEMBLE
SELECTION PROBLEM

Aktaş, Dilay

M.S., Department of Operational Research

Supervisor: Assist. Prof. Dr. Banu Lokman

Co-Supervisor: Assoc. Prof. Dr. Tülin İnkaya

July 2019, 71 pages

Clustering is an unsupervised learning method that partitions a data set into groups.

The aim is to assign similar points to the same cluster and dissimilar points to dif-

ferent clusters with respect to some notion of similarity. It is applicable to a wide

range of areas such as recommender systems, anomaly detection, market research,

and customer segmentation. With the advances in the computational power, a diverse

set of clustering solutions can be obtained from a dataset using different clustering al-

gorithms, different parameter settings and different features. Clustering ensemble has

emerged as a powerful tool for combining the strengths of these multiple clustering

solutions and generating a consensus solution. It improves the quality of clustering

in terms of accuracy and robustness. In this study, we address the cluster ensemble

selection problem, and propose a multi-objective approach to generate a consensus

clustering solution. Our proposed algorithm selects a representative subset of clus-

tering solutions, and produces a consensus clustering solution by combining these

representatives. Different from the existing approaches, we design the representative

selection approach based on three criteria: quality, diversity, and size of the represen-
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tative set. Before the representative selection, we apply a preprocessing procedure

to analyze the characteristics of the clustering solutions in the library and eliminate

the ones that may mislead the consensus function. We test the performance of the

proposed approach on the benchmark datasets. The results show that the proposed

approach works well, and the resulting consensus solution is better than the cluster-

ing solutions in the library.

Keywords: Cluster ensembles, Consensus clustering, Multi-objective clustering
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ÖZ

KÜMELEME TOPLULUĞU SEÇİMİ PROBLEMİNE ÇOK AMAÇLI
YAKLAŞIM

Aktaş, Dilay

Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Banu Lokman

Ortak Tez Yöneticisi: Doç. Dr. Tülin İnkaya

Temmuz 2019 , 71 sayfa

Kümeleme, verideki gizli örüntüleri ön bilgi olmadan ortaya çıkarmayı hedefleyen

gözetimsiz bir öğrenme biçimidir. Kümelemede benzer olan nesneler aynı kümede,

benzer olmayan nesneler farklı kümelerde olacak şekilde verinin gruplandırılması

amaçlanmaktadır. Öneri sistemleri, dolandırıcılık tespiti, pazar araştırması gibi çe-

şitli alanlarda kullanılmaktadır. Teknolojideki gelişmelerle birlikte, bir veri setinden

farklı kümeleme algoritmaları, farklı parametreler ve farklı öznitelikler kullanılarak

çeşitli kümeleme çözümleri elde edilebilmektedir. Kümeleme topluluğu (clustering

ensemble), bir veri setinden farklı kümeleme yöntemleri ile elde edilen çözümlerin

birleştirilerek fikir birliğine varılan ortak bir çözüm (consensus clustering) oluşturul-

ması için ortaya çıkan güçlü bir araçtır. Böylece, gürbüz (robust) ve doğru (accurate)

kümeleme sonuçları elde edilmektedir. Bu çalışmada, kümeleme topluluğu seçimi

problemi için çok amaçlı bir yaklaşım önerilerek ortak çözümler üretilmiştir. Öner-

diğimiz yaklaşım mevcut kümeleme çözümlerinden temsilciler seçip bu temsilcilerin

birleştirilmesiyle bir ortak çözüm üretmektedir. Mevcut çalışmalardan farklı olarak

bu çalışmada, bir kümeleme topluluğundan kalite, çeşitlilik ve temsilci sayısına göre
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baskın temsilci alt kümeleri seçilmesi amaçlanmaktadır. Alt küme seçim aşamasın-

dan önce başlangıç kütüphanesinin özelliklerini incelemek ve ortak çözümü yanılta-

bilecek ayrık çözümlerin elenmesi hedeflenerek bir ön eleme yöntemi geliştirilmiştir.

Önerilen yaklaşımın performansı gerçek sınıf etiketleri bilinen veri setleri üzerinde

test edilmiştir. Sonuçlar yaklaşımımızın iyi çalıştığı ve elde edilen ortak çözüm so-

nuçlarının mevcut çözümler ile kıyaslandığında daha iyi olduğunu göstermektedir.

Anahtar Kelimeler: Denetimsiz öğrenme, Kümeleme topluluğu, Çok amaçlı küme-

leme
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me with their endless patience and support, but also showed me how I would like to

be with my students in the future. They were always there for me to show a way

out whenever I felt stuck and they have never hesitated to show their support and

understanding, both academically and emotionally. I am aware that I was so lucky to

experience working with such supervisors.

I would also like to express my sincere thanks to the examining committee, Assist.

Prof. Dr. Sakine Batun, Assist. Prof. Dr. Gülşah Karakaya, and Assist. Prof. Dr.
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CHAPTER 1

INTRODUCTION

Due to the rapid increase in the amount of data generated and collected everyday

by various sources, there exists an urgent need for new methods to process data and

extract relevant information. This process of extracting knowledge of interest from

raw data is called data mining, which is an interdisciplinary field that combines tools

and methods from different areas such as computer science, operational research, and

statistics. The discovery of data mining dates back to early 90s and now it has been

widely used in a variety of application domains such as healthcare, marketing, image

processing, recommender systems, and so on. Wide range of applicability brings

new techniques and methods to data mining studies since the purpose of collecting

data and the characteristics of data are specific to application domain. In addition,

as the amount and the pace of data generation increase, the need for computationally

efficient and effective methods arises.

Classification and clustering can be considered as one of the main data mining tech-

niques developed for the extraction of knowledge from large datasets. In this study,

we are interested in a particular technique, namely clustering. Unlike classification

which is categorized as a supervised learning method, clustering is an unsupervised

learning method aiming to reveal the true nature of data in the absence of any ex-

ternal knowledge of labels (Jain et al., 1999). It can be summarized as partitioning

the whole dataset into subsets such that the points assigned to the same groups are

similar, while the ones assigned to different groups are dissimilar with respect to

some criteria (Berkhin, 2006). Resulting clustering solution is affected by similarity

or dissimilarity measures, desired number of clusters, characteristics of dataset, and

parameter settings of the algorithms used. Consequently, there is no single proven
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algorithm or technique that performs well for any kind of data and setting (Kuncheva

and Hadjitodorov, 2004) suggested by the No Free Lunch Theorem (Wolpert et al.,

1995). To use the advantages of different methods’ capabilities, combining different

solutions into a single solution is studied.

Cluster ensembles emerged as a tool to generate a single consensus clustering solu-

tion that reflects the relevant information about the structure of data from a library of

clustering solutions. By using a library of solutions, the consensus solution is aimed

to be more robust and accurate. A library of solutions can be obtained by using mul-

tiple clustering algorithms, different parameter settings, and different representations

of data. In the earlier studies of cluster ensembles, it is traditional to use all clustering

solutions in the library as the ensemble. Later on, the motivation to use a smaller sub-

set of library that can generate a consensus solution competing with the one obtained

by using all of the solutions is introduced and Fern and Lin (2008) show that using all

members of library sometimes masks the true nature of data and misleads consensus

function in addition to computational effort. As a result, selecting a subset of library

as the ensemble is studied.

The aim of cluster ensemble selection is to find a smaller subset of solutions such

that the resulting partition performs as well as, or better than the solution obtained

by using all of the solutions. Fern and Brodley (2003) suggests that ensemble should

be of good quality and diverse to obtain such consensus solutions. Although in the

literature different measures are employed, quality mainly stands for the capability

of ensemble to reflect the trend in library whereas diversity stands for the ability to

attain diverse consensus solutions from ensemble.

In this thesis, we address cluster ensemble selection problem. Given a library of

clustering solutions, we develop an algorithm, Representative Clusterings Algorithm

(RCA), that finds a subset of solutions representing the library well. Different than

the existing approaches, we propose a multi-objective approach that takes quality,

diversity, and size of the representative subset. To evaluate the quality of the rep-

resentative set, RCA assigns a representative clustering solution to each solution in

the library and measure the coverage gap by the maximum representation error. The

diversity corresponds to the minimum difference in the predictions of representative
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solutions. In contrast to the existing literature, we develop a preprocessing algorithm

(PPA) and apply to the initial library in order to eliminate the clustering solutions

that may mislead the representative selection process. RCA then is applied to gener-

ate representative subsets of the preprocessed library. Since RCA aims to minimize

the size of the representative set while maximizing the quality and diversity simul-

taneously, there does not exist a unique solution. RCA is designed to find "efficient

subsets (ESs)" for which it is not possible to improve one criterion without sacrific-

ing from another one. RCA iteratively generates ESs by solving a single-objective

mathematical model at each iteration. Each ES of clustering solutions is then used to

generate "efficient consensus solution (ECS)" by means of a consensus function.

The contribution of this thesis is that efficient subsets are meaningful by themselves

as well as efficient consensus solutions obtained by utilizing ESs. Selection of the

subsets are based on representation rather than consensus performance. We espe-

cially propose this method for the problem domains like customer segmentation and

recommender systems where different solutions for different groups are desired to

represent a population. We combine the efficient subsets to obtain a consensus solu-

tion. Different than the existing studies in ensemble clustering, we also address the

case where the true number of clusters is not known. Instead of generating all ESs, we

generate a compromise efficient subset based on the three criteria utilizing a scalar-

ization method. Our approach is tested on benchmark datasets and proven to work

well. We apply our representative selection approach to a real-life case study where

initial clustering solutions are customer perceptions/evaluations instead of generated

solutions.

The organization of the thesis is as follows. We give background information on clus-

ter ensemble selection problem and summarize existing methods in Chapter 2. In

Chapter 3, we give definitions used in the development of the algorithms. We explain

the details of Preprocessing Algorithm (PPA), Representative Clusterings Algorithm

(RCA), and Consensus Generation Method (CGM). In Chapter 4, we present compu-

tational results of experiments on the benchmark datasets. In Chapter 5, we apply our

approach to a real life case study of chocolate candy assortment. We summarize our

conclusions and future research directions in Chapter 6.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In cluster ensembles, objects are data points that are subject to grouping/clustering/-

partitioning. By applying different strategies, a number of clustering solutions for

the same dataset is obtained and the set of clustering solutions is called as library or

full-ensemble. Some studies do not differentiate the terms ensemble and library as tra-

ditionally all clustering solutions in the library are combined. We use term ensemble

for the set of clustering solutions to be combined. By applying a consensus function

to ensemble, the resulting solution is called as consensus solution.

Different than the existing approaches, we focus on selecting a subset to represent

the library well with respect to the certain criteria. The aim is to generate better

consensus solutions utilizing these representative clustering solutions. In that sense,

our approach is similar to a well-known problem in multi-objective optimization,

representing nondominated set with a small subset of solutions.

2.1 Cluster Ensemble Problem

Cluster ensembles arise to overcome the restrictions of the traditional methods of

clustering. It mainly aims to combine different clustering solutions such that final

consensus solution is more robust and accurate than those of the individual members.

Consider a set of N data points X = {x1, x2, ..., xN} and π = {π1, ..., πM} as the

set of M clustering solutions obtained by the dataset X . The aim is to combine M

clustering solutions and obtain a new clustering solution π∗ as the consensus partition

of data points in X .
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In Figure 2.1 below, the steps of traditional cluster ensemble problem summarized by

Boongoen and Iam-On (2018) is presented.

Figure 2.1: Cluster Ensemble Problem

Source: Boongoen and Iam-On (2018)

The cluster ensemble problem originally composes of two stages as library and con-

sensus generation. After a library of solutions is generated, all of the solutions is

combined by using a consensus function. In the following Sections 2.1.1 and 2.1.2,

main strategies employed in library generation and consensus functions are explained.

2.1.1 Library Generation

According to Fern and Brodley (2003), quality and diversity are two important fac-

tors in cluster ensemble problem. It is claimed that including diverse solutions in the

ensemble improves resulting consensus solution by Kuncheva and Vetrov (2006). To

obtain diverse but consistent library, main strategies used in the literature are summa-

rized below.

• Homogeneous library

The library consists of solutions obtained by a single nondeterministic algo-

rithm with several initialization settings.

• Different number of clusters

The library consists of solutions obtained by a single algorithm with changing

the number of clusters.
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• Random subset of features/subset of data points

The library consists of solutions that are obtained by randomly selected subsets

of features. Similar to the use of random subset of features, randomly selected

subsets of data can be used without replacement.

• Heterogeneous library

The library consists of solutions obtained by different clustering algorithms.

• Mixed methods

Any combination of the above methods can be used to generate a diverse set of

solutions.

In the cluster ensembles literature, k-means algorithm is mostly preferred with the

aforementioned methods due to its computational efficiency and performance on large

datasets as used by Fern and Lin (2008) Azimi and Fern (2009), Alizadeh et al.

(2014), Akbari et al. (2015), Pividori et al. (2016), and Yang et al. (2017). In this

study, to generate an initial library of solutions, we use k-means algorithm, as well.

Algorithm 1 presents the steps of the k-means algorithm.

Algorithm 1: K-means Algorithm

1 Randomly select k initial centers

2 while termination condition is not met do

3 foreach data point do

4 Assign data point to the closest cluster center

5 end

6 foreach cluster do

7 Update cluster center as the mean of its members

8 end

9 end

10 return Clustering Solution

K-means is an iterative algorithm that constructs clusters by assigning points to a

cluster center and updating centers as the mean of its members. The algorithm takes

the desired number of clusters k as input and seeks for the solution that minimizes

the total sum of squared distance between each point and its cluster center. The
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algorithm stops when a certain level of convergence such as obtaining the same cluster

assignments in successive iterations is achieved (MacQueen et al., 1967).

2.1.2 Consensus Functions

The methods used in combining ensembles can be classified under four categories as

direct, feature-based, pairwise-similarity based and graph-based approaches accord-

ing to Boongoen and Iam-On (2018).

• Direct Approaches

These approaches use a form of voting for the consensus label of each point.

As labels are not meaningful by themselves but the objects having the same

labels are in clustering problems, clustering solutions which seem different at

the first glance can result in the same groupings. The problem of extracting

unique groupings out of a solution is called label correspondence problem.

They first solve the label correspondence problem for the clustering solutions

in the ensemble, then do the voting or find a consensus solution that optimizes

label correspondence with ensemble members.

• Feature-based Approaches

These approaches consider each clustering solution’s label information as the

features of that solution and decides on the final consensus by considering

agreement/disagreement between solutions.

• Pairwise Similarity-based Approaches

These approaches creates a pairwise-similarity matrix of objects using the en-

semble members, then apply clustering to the data using pairwise-similarity

matrix constructed based on the clustering solutions.

• Graph-based Approaches

These approaches represent cluster ensemble with graph representations. Then,

partitioning the graph gives the consensus solution.

In this thesis, we use a graph-based approach as the consensus function, namely Hy-

brid Bipartite Graph Formulation (HBGF). Most of the graph-based approaches either
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focus on the relation between data points or between clusters. HBGF makes use of

both associations in the graph representation and proven to work well. The method

requires the number of clusters desired as an input and it initializes cluster centers

randomly (Fern and Brodley, 2004).

2.1.3 Cluster Ensemble Selection Problem

In the earlier studies of cluster ensembles, the focus is mainly on how to generate a

library consisting of good quality and diverse solutions rather than selecting solutions

to be combined. In this section, we summarize the approaches that are focused on

selecting a subset of clustering solutions as ensemble.

Hadjitodorov et al. (2006) introduced the problem of ensemble selection by gener-

ating multiple ensembles and selecting among the one with moderate diversity. The

authors propose different diversity measures based on a validation metric, Adjusted

Rand Index. They calculate the median of diversity and select the corresponding

ensemble.

Fern and Lin (2008) are the first to introduce the problem of subset selection based on

quality and diversity. The authors define quality of an ensemble as the total similarity

of ensemble members to the other solutions in library, and diversity is defined as

total pairwise-similarity of solutions in the ensemble by using Normalized Mutual

Index (NMI) as a measure of similarity. They propose three methods to deal with

two criteria, namely Joint Criterion (JC), Cluster and Select (CAS), and Convex Hull

(CH). By Joint Criterion, they aggregate the two criteria by solving a weighted sum

problem given the size of the ensemble. Secondly, a lexicographic approach, Cluster

and Select is proposed which considers both criteria in a prioritized manner. For

a given size of ensemble, clustering solutions are first clustered according to their

similarity values and one solution from each cluster is selected for ensemble based

on quality values. Grouping of clustering solutions is serving for the diversity while

selection of one solution is serving for the quality. Lastly, by Convex hull method,

authors represent each pair of solutions by the pair’s average quality and pairwise

dissimilarity value as diversity. Then, given the size of the ensemble, the pair of

solutions with highest quality and diversity are selected.
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In adaptive cluster ensemble selection (ACES) studied by Azimi and Fern (2009), the

authors propose an adaptive way of subset selection from solutions to be combined

by using the characteristics of initial library. The library of solutions is categorized as

stable and non-stable. The authors define four types of subsets by exploiting NMI, as

full-ensemble (all solutions), low-diversity ensemble (that half of the solutions more

similar to each other), high-diversity ensemble (that half of the solutions less similar

to each other), and medium-diversity ensemble (medium half of the solutions from

low and high diversity subsets). They suggest that if library is stable, this means

dataset is also stable and full-ensemble should be selected. On the other hand, if

library is non-stable, high-diversity ensemble should be selected. This approach is

computationally efficient and works well, however, subsets are not meaningful by

themselves. Subsets are determined to obtain a rule-based method for good consensus

solutions.

In hierarchical cluster ensemble selection (HCES) proposed by Akbari et al. (2015),

the selection of subset and consensus solution is considered simultaneously by qual-

ity and diversity of an ensemble. Similar to CAS, quality and diversity are considered

in a lexicographic approach. The authors group clustering solutions for each ensem-

ble size and apply a consensus function. Final consensus solution is chosen based

on quality measured by similarity to a reference partitioning. HCES is considered

as a generalized version of CAS as it considers size of ensemble at each level and

decides on the final consensus solution among the consensus solutions obtained by

the ensemble of each level.

A recent study of Yang et al. (2017) proposes another criteria for cluster ensemble

selection problem as consistency in addition to quality and diversity. To measure

consistency, authors define must-link and cannot-link constraints indicating that a

pair of objects should be in the same cluster, or they should be in different clusters.

Then, consistency of an ensemble is measured by the average consistency of ensemble

members calculated by the fraction of satisfied constraints. They propose a greedy ap-

proach to find a good ensemble with the given ensemble size. The approach searches

for the ensemble that maximizes a score based on a weighted objective function of

quality, diversity, and consistency where quality and consistency is jointly considered

by another measure.
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Alizadeh et al. (2014) treat the problem in a different manner. They propose a method

that selects base clusters instead of clustering solutions in the ensemble based on sta-

bility of partitionings and simplicity of a dataset. In other words, instead of selecting

clustering solutions to be combined, authors select clusters itself to be combined.

They propose a consensus function for their approach, as well.

In order to compare and evaluate clustering solutions, there are some measures pro-

posed in the literature. In the following Section 2.1.4, some of well-known metrics in

evaluating clustering solutions are given.

2.1.4 Evaluating Clustering Solutions

The measures proposed in the literature to evaluate clustering solutions are classified

under two main categories as internal validation and external validation metrics (Liu

et al., 2010).

External validation metrics evaluate the success of an algorithm based on the accuracy

of a clustering solution with respect to true class labels or a reference partition. On

the other hand, internal validation measures only use information provided by data

and they are also useful in estimating true number of clusters. The metrics we use in

this study are explained below.

• Internal Validation Metrics

- Davies-Bouldin index (DBI)

Let a set of N data points be denoted by X = {x1, x2, ..., xN}. A clustering

solution πi has kπi clusters. In each cluster ci, there exists nci objects and the

cluster center is denoted by µci . Then, Davies-Bouldin Index of a clustering

solution πi is calculated as follows.

DBIπi =
1

kπi

kπi∑
i=1

max
i 6=j

{ 1
nci

(
∑

xi∈ci ||xi − µci ||2) + 1
ncj

(
∑

xi∈cj ||xi − µcj ||2)

||µci − µcj ||2

}
(2.1)

The index measures the pairwise similarity of each cluster in a clustering so-

lution. It assigns cluster similarity for each cluster as the maximum similarity
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value with the other clusters. Then, by averaging the cluster similarities, DBI is

found. It is desired to be minimized so that the clusters will be dissimilar from

each other (Davies and Bouldin, 1979).

- Silhouette index (SI)

Let data point xi is assigned to cluster cj . a(xi) is the average dissimilarity of

data point xi to all other objects in cj . d(xi, ci) is the average dissimilarity of

data point i to all data points in cluster ci and b(xi) is the minimum d(xi, ci)

where ci 6= cj , i.e., cluster ci is the second best choice for xi. Then, Silhouette

Index of a clustering solution is calculated as follows.

SIπi =

∑N
i=1 sxi
N

(2.2)

where

s(xi) =


1− a(xi)/b(xi) if a(xi) < b(xi)

0 if a(xi) = b(xi)

b(xi)/a(xi)− 1 if a(xi) > b(xi)

(2.3)

The index measures the silhouette of each data point by its placement. It is de-

sired to be maximized so that between cluster dissimilarity is high, i.e. clusters

are separated while within cluster dissimilarity is low, i.e. clusters are compact

(Rousseeuw, 1987).

- Dunn’s index (DI)

The index measures the ratio of minimum pairwise dissimilarity between clus-

ters and maximum pairwise dissimilarity within clusters. Then, Dunn’s Index

of a clustering solution is calculated as follows.

DIπi =

min
∀m6=∀n

{
min

∀xi∈cm,∀xj∈cn
||xi − xj||2

}
max
∀m

max
∀xi,xj∈cm

||xi − xj||2
(2.4)

It is desired to be maximized so that the closest points in different clusters are

as far as possible while the furthest points in a cluster are as close as possible

(Dunn, 1974).
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• External Validation Metrics

- Normalized Mutual Information (NMI)

The index is introduced in the study of Strehl and Ghosh (2002) with the geo-

metric mean of entropy of solutions when they first introduce cluster ensemble

problem. It measures the mutual information shared by two clustering solutions

considering the number of objects in each cluster and the number of clusters in

each solution. Then, Normalized Mutual Index between a pair of clustering

solutions πi and πj is calculated as follows.

NMIπi,πj =

∑kπi
i=1

∑kπj
j=1 nci,cj log

(
Nnci,cj

n
πi
ci
n
πj
cj

)
√(∑kπi

i=1 nci log
nci
N

)(∑kπj
j=1 ncj log

ncj
N

) (2.5)

The index takes values in [0, 1]. For identical solutions, NMI is equal to 1.

Therefore, it is used to compare a clustering solution with the true clustering

solution as a measure of accuracy.
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CHAPTER 3

DEVELOPMENT OF THE ALGORITHM(S)

Given a library of clustering solutions, the aim is to first generate a representative

subset of clustering solutions, then to produce a consensus clustering solution. We

first develop a preprocessing algorithm (PPA) that eliminates the clustering solutions

in the initial library that may mislead the resulting subset. We then develop Represen-

tative Clusterings Algorithm (RCA), that finds a subset of solutions that represent the

library well. Since RCA aims to minimize the size of the subset while maximizing

the diversity and quality, the problem is multi-objective by its nature and there does

not exist a unique subset. Therefore, RCA is designed to generate all efficient subsets

(ESs) with respect to the three criteria. While RCA could also be employed to gen-

erate a consensus solution, we propose alternative methods in Consensus Generation

Method (CGM) to find a consensus solution given a subset of clustering solutions.

3.1 Definitions - Notation

In this section, we first present related background information on multi-objective

mixed integer programs (MOMIPs). Then, we give definitions and measures we use

in our approach.

A multi-objective mixed integer program (MOMIP) with p-objectives can be mod-

elled as follows:

“Max”z = (z1(x), ..., zp(x)),

subject to;

x ∈ X
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where x is a feasible vector in decision space, zj(x) is the objective function value of

jth criterion with respect to x, and z(x) = (z1(x), ..., zp(x)) is the objective vector

corresponding to x.

Definition 1. For any x1, x2 ∈X; if zj(x1) ≤ zj(x2) j = 1, ..., p and zj(x1) < zj(x2)

for at least one objective, then z(x2) is said to be dominating z(x1).

If there does not exists such an x2 ∈X , x1 is called efficient solution and z(x1) is said

to be nondominated point.

Definition 2. A point whose components are the best values of each objective is

called the ideal point of an MOMIP.

The ideal point is represented as follows.

zI = (zI1 , ..., z
I
p) where zIj = max

x∈X
zj(x), j = 1, ..., p.

Notation we use to represent cluster ensemble problem is as follows.

Given a library of l clustering solutions, L = {π1, ..., πl} each having kπi number of

clusters, we first apply PPA to obtain preprocessed library of p clustering solutions,

P = {π1, ..., πp}. By applying RCA to P , the set of m efficient subsets τ =

{E1, ..., Em} is found. A representative subset Ei consisting of s clustering solu-

tions is denoted as Ei = {π1, ..., πs} where Ei ⊆ P and P ⊆ L. Ensemble member πi

represents the solutions in the set Rπi , where Rπ1 ∪ Rπ2 ... ∪ RπS = P . In CGM, we

apply a consensus function Φ(Ei, k) to combine the solutions in efficient subset Ei

with the desired number of clusters k, resulting efficient consensus solution is denoted

by π∗Ei or we apply a special case application of RCA, resulting consensus solution is

denoted with π∗i . We first present how clustering solutions are compared.

Definition 3. The similarity between two clustering solutions πi and πj is measured

by the normalized mutual information shared.

simπi,πj = NMI(πi, πj) (3.1)

where 0 refers to completely different solutions and 1 refers to identical solutions.

Definition 4. The dissimilarity between two clustering solutions πi and πj is mea-

sured as follows.

disπi,πj = 1−NMI(πi, πj) (3.2)
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We next present the measures based on which PPA considers a solution as an outlier.

Definition 5. A solution’s agreement with the library is measured by its average

pairwise similarity with the rest of the solutions.

agreeπi =

∑
πj 6=i∈L simπi,πj

|L− 1|
(3.3)

Definition 6. Mean agreement in the library is calculated as follows.

agree =

∑
πi∈L agreeπi
|L|

(3.4)

Definition 7. Z-score of a solution with respect to its agreement value is calculated

as follows.

zscoreπi =
agreeπi − agree

σagree
(3.5)

where σagree is the standard deviation of agreement values.

Definition 8. The solution with Minimum Z-score has index i∗.

zscoreπ∗i = min
πi∈L

zscoreπi (3.6)

We next discuss how RCA measures the quality, diversity, and size.

Definition 9. Representation error caused by an ensemble member πi is measured by

the solution it represents worst. It is calculated as follows.

απi = max
πj∈Rπi

disπi,πj (3.7)

Definition 10. Coverage gap of an ensemble is measured by the maximum repre-

sentation error caused by its members. We measure Quality of an ensemble by the

coverage gap. Minimizing coverage gap is equivalent to maximizing quality of the

ensemble to represent the library well.

CoverageGapEj = max
πi∈Ej

απi (3.8)

Given a library of solutions, the best quality value is obtained when the size of the

ensemble is equal to the cardinality of the library as each solution is represented by
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itself and the representation error caused by each ensemble member equals to 0. Thus,

resulting coverage gap is equal to the minimum possible value, 0.

Definition 11. Diversity of an ensemble is measured by the minimum difference

in the predictions of its members. Maximizing diversity is desired to represent the

library well.

DiversityEj = min
πi,πj∈Ej

disπi,πj (3.9)

Given a library of solutions, the best diversity value is obtained when the size of the

ensemble is equal to two as the ensemble is composed of the pair of most dissimilar

solutions.

Definition 12. Size of an ensemble is measured by the number of solutions selected

as representatives. Representing the library with minimum number of solutions is

desired.

SizeEj = |Ej| (3.10)

Given a library of solutions, the best size value is two as diversity is not defined for

an ensemble of size one. The worst size value equals to the cardinality of the library

where each solution is represented by itself.

Coverage gap, diversity, and size are normalized such that the best values take the

value of 0 and the worst values take the value of 1 regardless of the direction of the

objective.

Definition 13. Normalized Coverage Gap of an ensemble is calculated as follows.

CoverageGap
′

Ej
=
CoverageGapEj − CGapbest
CGapworst − CGapbest

(3.11)

where

CGapbest = min
Ej∈τ

CoverageGapEj , CGapworst = max
Ej∈τ

CoverageGapEj (3.12)

Coverage gap is desired to be minimized to maximize quality. Thus, it is normalized

such that the minimum coverage gap value takes the value of 0 while the maximum

takes the value of 1.
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Definition 14. Normalized Diversity of an ensemble is calculated as follows.

Diversity
′

Ej
= 1−

DiversityEj −Diversityworst
Diversitybest −Diversityworst

(3.13)

where

Diversitybest = max
Ej∈τ

DiversityEj , Diversityworst = min
Ej∈τ

DiversityEj

(3.14)

Diversity is desired to be maximized. Thus, it is normalized such that the maximum

diversity value takes the value of 0 while the minimum diversity value takes the value

of 1.

Definition 15. Normalized Size of an ensemble is calculated as follows.

Size
′

Ej
=

SizeEj − Sizebest
Sizeworst − Sizebest

(3.15)

where

Sizebest = min
Ej∈τ

SizeEj , Sizeworst = max
Ej∈τ

SizeEj (3.16)

Size is desired to be minimized. Thus, it is normalized such that the minimum size

value of two takes the value of 0 and the worst size value of the cardinality of the

library takes the value of 1.

We next present how clustering solutions in an ensemble are evaluated to have an

estimate on k. Due to the different range of indices, all indices are normalized such

that the lowest value takes the value of 0 while the highest value takes the value of 1.

Definition 16. Normalized Davies-Bouldin Index of a clustering solution πi in en-

semble Ei is calculated as follows.

DBI
′

πi
=

DBIπi −DBIbest
DBIworst −DBIbest

(3.17)

where

DBIbest = min
πi∈Ei

DBIπi , DBIworst = max
πi∈Ei

DBIπi (3.18)

Definition 17. Normalized Silhouette Index of a clustering solution πi in ensemble

Ei is calculated as follows.

SI
′

πi
=

SIπi − SIworst
SIbest − SIworst

(3.19)
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where

SIbest = max
πi∈Ei

SIπi , SIworst = min
πi∈Ei

DBIπi (3.20)

Definition 18. Normalized Dunn’s Index of a clustering solution πi in ensemble Ei is

calculated as follows.

DI
′

πi
=

DIπi −DIworst
DIbest −DIworst

(3.21)

where

DIbest = max
πi∈Ei

DIπi , DIworst = min
πi∈Ei

DIπi (3.22)

Definition 19. Score of a clustering solution πi in a subset Ei based on normalized

internal validation indices is calculated as follows.

Scoreπi = SI
′

πi
+DI

′

πi
−DBI ′πi (3.23)

As SI and DI are desired to be maximized while DBI is desired to be minimized, we

sum normalized values of SI and DI and subtract DBI in calculating the score. Then,

the solution with the highest score value is desired.

Definition 20. The solution with Maximum Score has index i*.

Scoreπ∗i = max
πi∈Ei

Scoreπi (3.24)

Definition 21. Accuracy of a clustering solution πi with respect to true clustering

solution Υ is calculated as follows.

Accπi = NMI(πi,Υ) (3.25)

Accuracy values close to 1 are desired so as to perfectly match with the true clustering

solution.

Figure 3.1 presents general framework of our approach.
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Figure 3.1: Framework of Our Approach

3.2 Preprocessing Algorithm (PPA)

Since our quality metric ensures that all clustering solutions are represented well by

the subset generated by RCA, the subset selection process may be misleaded by the

extreme solutions. Therefore, we develop a preprocessing algorithm to detect and

eliminate such solutions. The process is also useful in reducing computational time

and complexity of the problem.

PPA defines each solution by its agreement with the current library. The solutions

that are not similar to the trend in the library more than a certain level are consid-

ered as outliers. However, we do not define a threshold agreement value. Instead, we

make use of z-score values which implicitly sets the threshold value with respect to

the library characteristics. As a rule of thumb, data points that lie beyond±3 standard

deviations from the mean signals anomaly in data collection if data is either normally
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distributed or The Central Limit Theorem (CLT) is applicable (Hines et al., 2008).

Exploiting the rule of thumb in outlier definition, we only consider solutions that are

having agreement values less than three standard deviations of the mean. Solutions

that are in agreement with the library more than three standard deviations of the mean

are not considered as outliers as they are expected to have high representation ca-

pabilities over library. In each iteration, PPA eliminates one solution which has the

least agreement with the rest of the library if it is beyond -3 standard deviations and

the number of solutions in the library is greater than 30 for CLT to be applicable.

In each iteration, agreement values are calculated concerning remaining solutions in

the library and procedure is repeated until no other solution is considered as outlier.

Algorithm 2 presents the steps of PPA.

Algorithm 2: Preprocessing Algorithm

1 Set P = L

2 foreach solution πi ∈ P do

3 Calculate agreeπi , zscoreπi
4 end

5 Find zscoreπ∗i = min
πi∈P

zscoreπi

6 while zscoreπ∗i ≤ −3 and |P | > 30 do

7 Update P = P − {π∗i }
8 foreach solution πi ∈ P do

9 Calculate agreeπi , zscoreπi
10 end

11 Find zscoreπ∗i = min
πi∈P

zscoreπi

12 end

13 return P

Note that, when the standard deviation is relatively small, the solutions that are not

extremely different than the rest of the library are considered as outliers. In that case,

we still have solutions that are similar to the eliminated solutions.
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3.3 Representative Clusterings Algorithm (RCA)

Due to the multi-objective nature of the problem, there does not exists a unique subset

to represent library well but a set of efficient subsets (ESs). In order to generate ESs in

three criteria, we adapt the modified epsilon constraint method (Steuer, 1986). RCA

first fixes the size of the representative subset and then generates all nondominated

points with respect to the quality and diversity criteria. To do this, RCA solves Model

1 in order to generate a representative set of a fixed size that minimizes the coverage

gap of the representative subset while keeping the diversity above a certain level. It

then systematically changes the lower bound for the diversity and generate new ESs.

After RCA generates all nondominated points for a given size of the representative

set, we change the size of the representative subset and repeat the process. The subsets

obtained are guaranteed to be nondominated in terms of quality and divesity but not

in terms of all three criteria, some subsets can be dominated. RCA finally eliminates

the dominated subsets. We summarize the steps of RCA in Algorithm 3.

Table 3.1: Notation for Model 1

Sets

L Library of clustering solutions

Parameters

simij Similarity between solution i and solution j

disij Dissimilarity between solution i and solution j

s Size of the ensemble

DiversityLB Lower bound on diversity value

Nonnegative Decision Variables

CoverageGap Maximum representation error caused by representatives

Diversity Minimum difference in the predictions of representatives

Binary Decision Variables

eij 1 if solution i is represented by solution j,

0 otherwise

pij 1 if solutions i and j are representatives,

0 otherwise
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Minimize CoverageGap - ε1×Diversity (3.26)

subject to;∑
j∈L

eij = 1, ∀i ∈ L (3.27)

eij ≤ ejj, ∀i ∈ I,∀j ∈ J (3.28)∑
j∈L

ejj = s, (3.29)

pij ≤ eii, ∀i ∈ L,∀j ∈ L (3.30)

pij ≤ ejj, ∀i ∈ L,∀j ∈ L (3.31)

pij ≥ eii + ejj − 1, ∀i ∈ L,∀j ∈ L (3.32)

CoverageGap ≥ eij × disij, ∀i ∈ L,∀j ∈ L, i 6= j (3.33)

Diversity ≤ pij × disij + (1− pij), ∀i ∈ L,∀j ∈ L, i 6= j (3.34)

Diversity ≥ DiversityLB, (3.35)

eij ∈ {0, 1}, ∀i ∈ L,∀j ∈ L (3.36)

pij ∈ {0, 1}, ∀i ∈ L,∀j ∈ L (3.37)

CoverageGap ≥ 0, (3.38)

Diversity ≥ 0. (3.39)

where the parameters and decision variables are defined in Table 3.1.

Equation 3.27 makes sure that each solution should be represented by exactly one so-

lution and Equation 3.28 links representing relations. Equation 3.29 sets the number

of representatives to the predefined size value of s. Equations 3.30, 3.31, and 3.32

serve to linearize pij . If at least one of the solutions i or j is not a representative, it

forces pij to take the value of zero while when both solutions i and j are representa-

tives, it forces pij to take the value of one. Equation 3.33 defines coverage gap such

that it should be greater than or equal to the maximum representation error. For a

pair of solutions without a representation relation, right hand side takes the value of

0. Equation 3.34 defines diversity such that it should be less than or equal to the min-

imum difference in the predictions of representatives. For the pair of solutions that

are not both representatives, the right hand side takes the value of 1. Equation 3.35 is
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defined to search objective space. In the first iteration, DiversityLB equals to zero

and at each iteration it is updated according to the Diversity found in the previous

iteration. Remaining set of constraints makes sure that binary variables take binary

values and nonnegative variables take nonnegative values.

Algorithm 3: Representative Clusterings Algorithm

1 Initialize s = |P |
2 while s ≥ 2 do

3 Initialize DiversityLB = 0

4 while there exists a feasible subset do

5 Solve Model 1

6 Return subset with size s, Diversity, CoverageGap

7 Set DiversityLB = Diversity + ε2

8 end

9 Set s = s− 1

10 end

11 return all subsets obtained by Model 1

12 Set τ ← all subsets obtained

13 foreach subset i ∈ τ do

14 Set bool = 0

15 Set j = 1

16 while check < 1 and j < |τ | do

17 if subset j dominates subset i then

18 Set bool = 1

19 Update τ = τ − {i}

20 end

21 end

22 Set j = j + 1

23 end

24 return τ
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3.4 Consensus Generation Method (CGM)

We present three main approaches in consensus generation method. The first ap-

proach generates corresponding efficient consensus solutions (ECSs) by combining

the solutions in each ESs generated by RCA. Then, we present decision maker (DM)

all distinct ECSs. The second approach selects a compromise ES among all ESs and

generates a compromise ECS to present DM. The third approach generates a consen-

sus solution as a special case application of RCA. Applying RCAs=1 to P , we obtain

the solution that has the least representation error as the consensus solution. To com-

bine clustering solutions in Approaches 1 and 2, we apply a graph-based consensus

function, HBGF. The consensus function requires desired number of clusters k for

the consensus clustering solution, however; most of the time this information is not

available for the unsupervised learning methods. We develop a preliminary estima-

tion method for the case where the true number of clusters is not known or anticipated

by DM. We obtain an estimate on the number of clusters from a compromise subset

among ESs. General framework of CGM is presented in Figure 3.2.

CGM

K-known K-unknown

Approach 1 Approach 2 Approach 3Approach 1 Approach 2

Generate a 

compromise ES

Estimate k’

Generate a 
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Figure 3.2: General framework of CGM
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To select a compromise efficient subset, we use Tchebychev Distance to the Ideal

Point based on normalized criteria values. Regardless of the direction of the objective,

a subset’s normalized criteria values are equivalent to its distance to the ideal point in

terms of that criteria due to our normalization. Subset Ej’s Tchebychev Distance to

the ideal point is defined by its furthest criterion (Cha, 2007).

DistTchebychevEj
= max{CoverageGap′Ej , Diversity

′

Ej
, Size

′

Ej
} (3.40)

We select subset E∗j that is the closest to the ideal point.

DistTchebychevE∗j
= min

Ej∈τ
DistTchebychevEj

(3.41)

We formulate an updated version of Model 1, which we call as Model 2 to generate the

closest subset to ideal point without generating ESs. As we use normalized distance

metrics, we first generate solutions with the best and the worst criteria values using

Model 1. Then we solve Model 2 to find the closest solution in terms of Normalized

Tchebychev Distance to the ideal point. We summarize the steps to obtain closest

subset in Algorithm 4.

Table 3.2: Additional Notation for Model 2

Parameters

CGapbest Best coverage gap value in the feasible region

CGapworst Worst coverage gap value in the feasible region

Dbest Best diversity value in the feasible region

Dworst Worst diversity value in the feasible region

Sbest Best size value in the feasible region

Sworst Worst size value in the feasible region

Nonnegative Decision Variables

CGap
′ Normalized coverage gap, distance to ideal point in terms of quality

Diversity
′ Normalized diversity, distance to ideal point in terms of diversity

Size
′ Normalized size, distance to ideal point in terms of size

DistTchebychev Normalized Tchebychev Distance
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Minimize DistTchebychev (3.42)

subject to;∑
j∈L

eij = 1, ∀i ∈ L (3.43)

eij ≤ ejj, ∀i ∈ I,∀j ∈ J (3.44)∑
j∈L

ejj = Size, (3.45)

pij ≤ eii, ∀i ∈ L,∀j ∈ L (3.46)

pij ≤ ejj, ∀i ∈ L,∀j ∈ L (3.47)

pij ≥ eii + ejj − 1, ∀i ∈ L,∀j ∈ L (3.48)

CoverageGap ≥ eij × disij, ∀i ∈ L,∀j ∈ L, i 6= j (3.49)

Diversity ≤ pij × disij + (1− pij), ∀i ∈ L,∀j ∈ L, i 6= j (3.50)

CoverageGap
′
=
CoverageGap− CGapbest
CGapworst − CGapbest

, (3.51)

Diversity
′
= 1− Diversity −Dbest

Dbest −Dworst

, (3.52)

Size
′
=

Size− Sbest
Sworst − Sbest

, (3.53)

DistTchebychev ≥ Quality
′
, (3.54)

DistTchebychev ≥ Diversity
′
, (3.55)

DistTchebychev ≥ Size
′
, (3.56)

Dworst ≤ Diversity ≤ Dbest, (3.57)

CGapbest ≤ CoverageGap ≤ CGapworst, (3.58)

Sbest ≤ Size ≤ Sworst, (3.59)

eij ∈ {0, 1}, ∀i ∈ L,∀j ∈ L (3.60)

pij ∈ {0, 1}, ∀i ∈ L,∀j ∈ L (3.61)

CoverageGap
′
, Diversity

′
, Size

′ ≥ 0, (3.62)

where additional parameters and decision variables are defined in Table 3.2.

The first eight set of constraints starting from Equation 3.43 to Equation 3.50 are

exactly the same with the ones in Model 1 except in Equation 3.45 Size is not a pa-
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rameter but a decision variable. Equations 3.51, 3.52, and 3.53 are used to normalize

the criteria values. Equations 3.54, 3.55, and 3.56 together serve DistTchebychev to

take the furthest distance value in terms of all criteria. Equations 3.57, 3.58, and 3.59

make sure that we search the same objective space as we do with Model 1. In other

words, it prevents from obtaining different solutions with Model 1 due to rounding

off. Remaining equations are for sign and set constraints.

Algorithm 4: Generating a Compromise Subset

1 Set s = |P |
2 Set DiversityLB = 0

3 while there exists a feasible subset do

4 Solve Model 1

5 Return subset with size s, Diversity, CoverageGap

6 Set DiversityLB = Diversity + ε2

7 end

8 return (CGapbest, Dworst)

9 Set s = 2

10 Set DiversityLB = 0

11 while there exists a feasible subset do

12 Solve Model-1

13 Return subset with size s, Diversity, CoverageGap

14 Set DiversityLB = Diversity + ε2

15 end

16 return (Dbest, CGapworst)

17 Set Sbest = 2

18 Set Sworst = |P |
19 Solve Model 2

20 return Subset

By evaluating obtained subset’s members in terms of internal validation metrics DBI,

SI, and DI, we obtain an estimate of k. Kryszczuk and Hurley (2010) suggest that

combination of metrics increases the accuracy in detecting correct number of clus-

ters as each index captures different aspects of clustering solutions. DBI is desired to
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be minimized while SI and DI are desired to be maximized so that partition is well

separated and compact. Given a subset, we normalize the values of internal metrics

and calculate an equally-weighted score based on normalized values. We select the

highest score representative solution’s number of clusters to continue with consensus

generation. Steps of this procedure can be found in Algorithm 5.

Algorithm 5: Estimating Number of Clusters

1 Call Algorithm 4 to generate a compromise subset, Ei

2 Given subset Ei = {π1, ..., πs}
3 foreach solution πi ∈ Ei do

4 Calculate DBIπi , SIπi , and DIπi
5 Calculate Scoreπi

6 end

7 Find scoreπ∗i = max
πi∈P

scoreπi

8 return kπ∗i

In the following section, we present an example to apply PPA, RCA, and CGM.
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3.5 Example

To illustrate our approach, we generate an instance of 25 data points with two features.

The example we generate includes five classes whose three and two of the classes are

not easily distinguished by inspection. Figure 3.3 presents distribution of data points

represented by the two features.

Figure 3.3: Distribution of Data Points

3.5.1 Library Generation Method (LGM)

We generate our initial library using k-means algorithm described in Algorithm 1 for

different number of clusters k. We take k ∈ [2,m] where m is suggested to be
√
n

as a rule of thumb according to Fred and Jain (2002). For each k, we initialize the

algorithm r times. Resulting library includes r × (b
√
nc − 1) clustering solutions.

The algorithm might converge to the same solution for the same k. For computational

efficiency, we check identical solutions and eliminate them from the library. Algo-

rithm 6 summarizes the steps in library generation.
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Algorithm 6: Library Generation Method

1 Initialize r, n, m

2 Set L = ∅

3 for i = 2: m do

4 for j = 1 : r do

5 Call K-means Algorithm

6 Return solution πij

7 Update L = L + {πij}

8 end

9 end

10 for i = 1 : |L| do

11 for j = 1 : i do

12 Calculate sim(πi, πj)

13 if sim(πi, πj) = 1 and i 6= j then

14 Update L = L− {πj}
15 end

16 end

17 end

3.5.2 PPA Application

We report the minimum, mean, and maximum agreement, accuracy, and average DBI,

SI, and DI values before and after preprocessing. Table 3.3 presents the results.

Table 3.3: Initial and Preprocessed Library Characteristics

# of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

Initial 53 0.553 0.737 0.788 0.528 0.754 0.935 0.242 0.609 0.755

Processed 38 0.650 0.745 0.791 0.623 0.756 0.910 0.253 0.623 0.725
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According to the results, while initial library consists of 53 solutions, preprocessed

library consists of 38 solutions. Minimum agreement increases since PPA eliminates

the solutions that are the most dissimilar with the rest of the library on the average.

Also, the average accuracy of the library increases although the best solution in the

library in terms of accuracy is also considered as one of the outliers by PPA. Some

of our inspected performance measures slightly worsen, however; PPA works as in-

tended and it eliminates solutions that may mislead RCA due to representation error

within seconds. Figures 3.4 and 3.5 presents distribution of solutions before and after

PPA.

Figure 3.4: Initial Library: Distribution of Solutions

Figure 3.5: Preprocessed Library: Distribution of Solutions

33



When we analyze the relationship between performance measures and agreement,

we observe that good solutions generally have more in common with the rest of the

library compared to the poor solutions.

3.5.3 RCA Application

We apply RCA to the preprocessed library of solutions. Figure 3.6 presents ESs with

respect to the criteria.

Figure 3.6: Efficient Subsets

As the size increases, coverage gap decreases and quality improves. Considering the

extreme case where the size is equal to the number of solutions in the preprocessed

library, each solution is represented by itself and coverage gap is equal to zero. As the

diversity is measured by the minimum pairwise dissimilarity of the representatives,

the best value is obtained when the size is equal to 2. The trade-off between quality

and diversity results from their behaviour with size. A subset with the best coverage

gap and quality has the worst diversity value and a subset with the best diversity

has the worst coverage gap and quality value. For a DM to deal with the clustering

solutions, size is considered as the third criterion which is desired to be minimized.

34



3.5.4 CGM Application

In CGM, we have three main approaches, two of which are applicable where k is

known and unknown. Approach 3 is considered for the case where k is unknown.

In Approach 1, all ESs are generated and corresponding ECSs are found with the

final partitioning of objects into k clusters. In Approach 2, without generating all

of the ESs, only a compromise ES is found and corresponding ECS is found with

the final partitioning of objects into k clusters. If k is unknown, then it is estimated

and the desired number of clusters in the final partitioning of objects is given as k′.

In Approach 3, a special case of RCA is applied where the size of the ensemble is

selected as 1. A consensus solution is obtained without the need for a consensus

function and an estimation on k. Resulting consensus solution is the solution having

the minimum representation error in the library. Figures 3.7, 3.8, and 3.9 below

summarize the approaches.
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Figure 3.7: CGM: Approach 1 Summary
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Case 1: k-known

Approach 1 and Approach 2

We obtain ECSs corresponding to each ES by applying the consensus function HBGF

with k is equal to 5. We report the internal and external validation metrics of each

ECS in Table 3.4. ES indicated as bold corresponds to the compromise ES.

Table 3.4: CGM : Approach 1 and Approach 2 | k-known

ES ID Coverage Gap Size Diversity DBI SI DI Accuracy ES ID Coverage Gap Size Diversity DBI SI DI Accuracy

1 0.000 38 0.032 0.704 0.655 0.485 0.807 29 0.111 12 0.122 0.727 0.604 0.366 0.870

2 0.032 37 0.038 0.727 0.604 0.366 0.870 30 0.122 12 0.145 0.662 0.536 0.224 0.741

3 0.038 36 0.039 0.727 0.604 0.366 0.870 31 0.122 11 0.142 0.662 0.536 0.224 0.741

4 0.039 34 0.042 0.727 0.604 0.366 0.870 32 0.123 11 0.154 0.727 0.604 0.366 0.870

5 0.042 33 0.047 0.727 0.604 0.366 0.870 33 0.122 10 0.123 0.727 0.604 0.366 0.870

6 0.047 32 0.047 0.727 0.604 0.366 0.870 34 0.123 9 0.149 0.727 0.604 0.366 0.870

7 0.047 31 0.053 0.727 0.604 0.366 0.870 35 0.141 9 0.177 0.731 0.610 0.246 0.870

8 0.052 30 0.053 0.727 0.604 0.366 0.870 36 0.141 8 0.172 0.731 0.610 0.246 0.870

9 0.053 29 0.064 0.727 0.604 0.366 0.870 37 0.149 8 0.227 0.704 0.655 0.485 0.807

10 0.053 28 0.053 0.727 0.604 0.366 0.870 38 0.153 7 0.141 0.727 0.604 0.366 0.870

11 0.053 28 0.064 0.727 0.604 0.366 0.870 39 0.159 7 0.161 0.871 0.485 0.309 0.714

12 0.053 27 0.058 0.727 0.604 0.366 0.870 40 0.161 7 0.232 0.704 0.655 0.485 0.807

13 0.058 26 0.064 0.727 0.604 0.366 0.870 41 0.180 7 0.258 0.735 0.578 0.220 0.737

14 0.064 25 0.064 0.727 0.604 0.366 0.870 42 0.161 6 0.171 0.704 0.655 0.485 0.807

15 0.064 24 0.068 0.727 0.604 0.366 0.870 43 0.175 6 0.248 0.905 0.482 0.091 0.754

16 0.068 23 0.072 0.727 0.604 0.366 0.870 44 0.202 6 0.276 0.727 0.604 0.366 0.870

17 0.081 23 0.089 0.727 0.604 0.366 0.870 45 0.178 5 0.171 0.731 0.610 0.246 0.870

18 0.072 22 0.081 0.727 0.604 0.366 0.870 46 0.181 5 0.232 0.715 0.586 0.180 0.792

19 0.078 21 0.081 0.727 0.604 0.366 0.870 47 0.183 5 0.266 0.727 0.604 0.366 0.870

20 0.078 20 0.081 0.727 0.604 0.366 0.870 48 0.221 5 0.281 0.793 0.520 0.246 0.786

21 0.081 19 0.081 0.727 0.604 0.366 0.870 49 0.201 4 0.242 0.685 0.621 0.161 0.810

22 0.081 18 0.088 0.727 0.604 0.366 0.870 50 0.216 4 0.253 0.743 0.586 0.225 0.831

23 0.088 18 0.099 0.727 0.604 0.366 0.870 51 0.218 4 0.280 0.731 0.610 0.246 0.870

24 0.088 15 0.099 0.727 0.604 0.366 0.870 52 0.222 3 0.333 0.743 0.586 0.225 0.831

25 0.099 14 0.122 0.704 0.655 0.485 0.807 53 0.238 3 0.359 0.631 0.430 0.294 0.709

26 0.102 13 0.098 0.731 0.610 0.246 0.870 54 0.270 2 0.398 0.704 0.655 0.485 0.807

27 0.107 13 0.122 0.727 0.604 0.366 0.870 55 0.282 2 0.445 2.257 0.200 0.123 0.682

28 0.122 13 0.147 0.727 0.604 0.366 0.870 56 0.287 2 0.471 0.890 0.333 0.123 0.690

With the given ESs, we generate consensus solutions combining 56 ESs and obtain

14 unique ECS solutions. For a given size of ensemble, the solutions with higher ac-

curacy are mostly obtained by the ESs towards better quality with moderate diversity.

Considering all ESs, when the diversity and size is the best, solution performance in

terms of accuracy is the worst among ECSs. On the other hand, some solutions of

high accuracy are obtainable with smaller ensembles. For instance, the ensemble of

size 37 and one of the efficient subsets of size 5 result in exactly the same solution.
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We compare our results with the most accurate solution in the library and the full-

ensemble consensus solution of initial library. Table 3.5 presents evaluation metrics.

Table 3.5: Comparison: Approach 1 and Approach 2 | k-known

DBI SI DI Accuracy

Full Ensemble 0.704 0.655 0.485 0.807

Library Best 0.737 0.596 0.071 0.935

Average ECSs 0.758 0.585 0.330 0.837

Compromise ECS 0.704 0.655 0.485 0.807

According to internal validation metrics, full-ensemble consensus returns a better

solution in terms of the final partitioning’s compactness and separation. However,

the best solution in the library corresponds to 90% whereas full-ensemble consensus

corresponds to 80% of accuracy. Our first approach results in a better consensus solu-

tion than full-ensemble solution on the average with 37 out of 56 efficient consensus

solutions with smaller ensemble sizes obtained by RCA and generates all efficient

consensus solutions in approximately 8 hours. With the compromise efficient subset,

we obtain the same solution with the full-ensemble. However, while full ensemble

combines 53 solutions, our subset is composed of 8 solutions, which is introduced as

the main motivation for cluster ensemble selection. Generating compromise subset

and compromise consensus solution without generating all ESs takes approximately

3 hours. Resulting ECS partitions data points into 5 clusters as shown in Figure 3.10

Figure 3.10: K-known - Approach 2: Consensus Solution

38



Case 2: k-unknown

Approach 1, Approach 2, and Approach 3

To estimate k, we select the ES that is closest to the ideal point in terms of Normalized

Tchebychev Distance. We then apply HBGF with estimated k to obtain corresponding

ECSs. For the evaluation of k, compromise subset’s performance metrics are given in

Table 3.6. Ensemble member indicated as bold corresponds to the solution with max-

imum score. We report the internal and external validation metrics of ECSs generated

where k is unknown and estimated in Table 3.7. ES indicated as bold corresponds to

the compromise ES.

Table 3.6: Compromise ES: Estimate on k

Representative # of clusters DBI SI DI Accuracy DBI’ SI’ DI’ Score

1 3 0.995 0.427 0.098 0.623 1.000 0.093 0.000 -0.907

2 5 0.812 0.397 0.161 0.717 0.498 0.000 0.255 -0.243

3 5 0.704 0.559 0.235 0.812 0.203 0.503 0.560 0.861

4 4 0.670 0.587 0.123 0.654 0.111 0.592 0.103 0.584

5 3 0.630 0.719 0.220 0.720 0.000 1.000 0.499 1.499

6 5 0.685 0.627 0.304 0.764 0.152 0.714 0.841 1.403

7 5 0.935 0.526 0.343 0.702 0.835 0.401 1.000 0.566

8 5 0.682 0.654 0.287 0.799 0.142 0.799 0.772 1.429

Out of 8 representatives, 5 of them are the solutions with the true number of clusters.

However, by calculating the score of each solution with the normalized indices, the

maximum score corresponds to the fifth representative. The representative has the

best values of indices for DBI and SI, and a moderate value for DI. Selecting k = 3

instead of 5 is expected in this case as the clusters are not well separated and creating

smaller number of clusters for this dataset is expected to improve the internal mea-

sures. Moreover, evaluation of scores is done within seconds; therefore, estimation

can be assumed to take as long as the generation of compromise efficient subset.
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Table 3.7: CGM : Approach 1 and Approach 2 | k-unknown

ES ID Coverage Gap Size Diversity DBI SI DI Accuracy ES ID Coverage Gap Size Diversity DBI SI DI Accuracy

1 0.000 38 0.032 0.584 0.759 0.341 0.742 29 0.111 12 0.122 0.630 0.719 0.220 0.720

2 0.032 37 0.038 0.584 0.759 0.341 0.742 30 0.122 12 0.145 0.630 0.719 0.220 0.720

3 0.038 36 0.039 0.584 0.759 0.341 0.742 31 0.122 11 0.142 0.584 0.759 0.341 0.742

4 0.039 34 0.042 0.584 0.759 0.341 0.742 32 0.123 11 0.154 0.630 0.719 0.220 0.720

5 0.042 33 0.047 0.584 0.759 0.341 0.742 33 0.122 10 0.123 0.584 0.759 0.341 0.742

6 0.047 32 0.047 0.584 0.759 0.341 0.742 34 0.123 9 0.149 0.630 0.719 0.220 0.720

7 0.047 31 0.053 0.584 0.759 0.341 0.742 35 0.141 9 0.177 0.630 0.719 0.220 0.720

8 0.052 30 0.053 0.630 0.719 0.220 0.720 36 0.141 8 0.172 0.584 0.759 0.341 0.742

9 0.053 29 0.064 0.630 0.719 0.220 0.720 37 0.149 8 0.227 0.584 0.759 0.341 0.742

10 0.053 28 0.053 0.584 0.759 0.341 0.742 38 0.153 7 0.141 0.630 0.719 0.220 0.720

11 0.053 28 0.064 0.630 0.719 0.220 0.720 39 0.159 7 0.161 0.584 0.759 0.341 0.742

12 0.053 27 0.058 0.630 0.719 0.220 0.720 40 0.161 7 0.232 0.584 0.759 0.341 0.742

13 0.058 26 0.064 0.584 0.759 0.341 0.742 41 0.180 7 0.258 0.630 0.719 0.220 0.720

14 0.064 25 0.064 0.630 0.719 0.220 0.720 42 0.161 6 0.171 0.630 0.719 0.220 0.720

15 0.064 24 0.068 0.630 0.719 0.220 0.720 43 0.175 6 0.248 0.630 0.719 0.220 0.720

16 0.068 23 0.072 0.630 0.719 0.220 0.720 44 0.202 6 0.276 0.584 0.759 0.341 0.742

17 0.081 23 0.089 0.630 0.719 0.220 0.720 45 0.178 5 0.171 0.630 0.719 0.220 0.720

18 0.072 22 0.081 0.630 0.719 0.220 0.720 46 0.181 5 0.232 0.630 0.719 0.220 0.720

19 0.078 21 0.081 0.630 0.719 0.220 0.720 47 0.183 5 0.266 0.585 0.751 0.334 0.810

20 0.078 20 0.081 0.630 0.719 0.220 0.720 48 0.221 5 0.281 0.584 0.759 0.341 0.742

21 0.081 19 0.081 0.630 0.719 0.220 0.720 49 0.201 4 0.242 0.584 0.759 0.341 0.742

22 0.081 18 0.088 0.630 0.719 0.220 0.720 50 0.216 4 0.253 0.585 0.751 0.334 0.810

23 0.088 18 0.099 0.630 0.719 0.220 0.720 51 0.218 4 0.280 0.630 0.719 0.220 0.720

24 0.088 15 0.099 0.630 0.719 0.220 0.720 52 0.222 3 0.333 0.585 0.751 0.334 0.810

25 0.099 14 0.122 0.630 0.719 0.220 0.720 53 0.238 3 0.359 0.585 0.751 0.334 0.810

26 0.102 13 0.098 0.630 0.719 0.220 0.720 54 0.270 2 0.398 0.558 0.729 0.255 0.718

27 0.107 13 0.122 0.630 0.719 0.220 0.720 55 0.282 2 0.445 0.584 0.759 0.341 0.742

28 0.122 13 0.147 0.630 0.719 0.220 0.720 56 0.287 2 0.471 0.881 0.450 0.133 0.670

By combining 56 ESs, 6 unique ECSs are obtained. Similar to the results of Approach

1 when k is known, the ensemble with the best diversity resulted in the poorest con-

sensus solution in terms of accuracy. In contrast, we obtain the best solutions from

the subsets with lower quality and higher diversity when k is unknown. Our ECSs

resulted in no worse than full ensemble consensus for 21 out of 56 efficient subsets.

Similar to the case where k is known, with smaller subsets the same or better solu-

tions are achievable. Moreover, four of the ECS resulted in even better consensus

solutions compared to the full-ensemble consensus solution when k is known.

We compare our results with the most accurate solution in the library and the full-

ensemble consensus solution of initial library. Table 3.8 presents evaluation metrics.
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Table 3.8: Comparison: Approach 1, Approach 2, Approach 3 | k-unknown

DBI SI DI Accuracy

Full Ensemble 0.584 0.759 0.341 0.742

Library Best 0.737 0.596 0.071 0.935

Average ECSs 0.614 0.730 0.268 0.733

Compromise ECS 0.584 0.759 0.341 0.742

Single Representative 0.469 0.782 0.413 0.646

With the compromise efficient subset, we obtain the same solution with the full-

ensemble. However, while full ensemble combines 53 solutions, our subset is com-

posed of 8 solutions. Resulting ECS partitions data points into 3 clusters as shown in

Figure 3.11

Figure 3.11: K-unknown - Approach 2: Consensus Solution

We apply RCAs = 1 to generate a consensus solution, in other words, to select a

single representative among the solutions. The resulting partitioning of objects is

given in Figure 3.12.

41



Figure 3.12: K-unknown - Approach 3: Consensus Solution

The approach did not result in estimating the true k value, however; it returns a solu-

tion that is representing the library well. Corresponding representation error is 0.35.

From this approach, we expect to obtain solutions with smaller number of clusters as

increasing the number of clusters decrease agreement.

In this example, we apply PPA, RCA, and CGM to the dataset and we report approx-

imate computational times. PPA and consensus function application are done within

seconds and negligible. However, for the approaches requiring an optimization model

to be solved as Approach 1 and Approach 2, computational times are dependent to

the size of the library and the structure of the similarity and dissimilarity matrices.
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CHAPTER 4

COMPUTATIONAL RESULTS

4.1 Datasets

The approach we propose is tested on three benchmark classification datasets that

have different characteristics from UCI Machine Learning Repository (Dua and Graff,

2017). The datasets includes true class labels of objects which can be used as true

cluster information. Although labels themselves are not meaningful for clustering

problems, objects with the same label should be in the same cluster while objects

with different labels should be in different clusters. The approach is applied to Iris,

Wine, and Glass datasets and consensus solutions are evaluated with both internal and

external metrics. Table 4.1 presents the number of data points, features, and true class

labels in the datasets and Figure 4.1 presents the distribution of data points in two

dimensional space after Principal Component Analysis is employed (Pividori et al.,

2016).

Table 4.1: Properties of Datasets

Dataset # of Data Points (n) # of Features (f) # of True Labels (k)

Iris 150 4 3

Wine 178 13 3

Glass 214 10 6
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(a) Iris (c) Glass(b) Wine

Figure 4.1: Iris - Wine - Glass : Distribution of datapoints

Source: Pividori et al. (2016)

Iris is a well known dataset consisting of features for plants with the class information

of type of iris. Wine dataset is a result of a chemical analysis on wines derived

from different regions with the class information of cultivar. Classification of glass

is motivated by criminal investigation and the dataset consists of class information

about possible environments such as headlamps and building windows for that glass

to come from.

Due to the randomness in both library generation with k-means and consensus appli-

cation with HBGF, we test our approach by several independent runs. We generate 10

libraries for the same dataset, where each library generation consists of the solutions

obtained by 5 random initializations of k-means, and we apply HBGF as the consen-

sus function 10 times each with different random initialization of cluster centers. We

report average consensus solution values.

As the benchmark datasets requires a unique solution to compare with true clusters, in

this section we first report our compromise efficient consensus solution in Approach 2

and single representative consensus solution in Approach 3 of CGM before and after

applying PPA for each library. To evaluate our consensus solutions, we present library

characteristics and properties of the best solutions in terms of accuracy in each library

for initial and preprocessed libraries of Iris, Wine, and Glass datasets. It should be

noted that it is not straightforward to identify those solutions without knowing the

true labels. Then, we present a summary table comparing average results for each

approach of CGM.
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Table 4.2: Iris: Initial Library Characteristics

Initial Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 53 0.544 0.733 0.782 0.582 0.653 0.782 0.082 0.514 0.980

2 50 0.539 0.754 0.810 0.596 0.656 0.758 0.087 0.515 0.985

3 52 0.542 0.736 0.786 0.557 0.647 0.758 0.08 0.511 0.999

4 51 0.548 0.747 0.801 0.584 0.659 0.758 0.087 0.519 0.980

5 52 0.535 0.756 0.804 0.588 0.646 0.758 0.086 0.507 1.007

6 51 0.550 0.768 0.821 0.587 0.668 0.758 0.092 0.542 0.985

7 53 0.549 0.746 0.796 0.583 0.655 0.758 0.081 0.526 0.971

8 51 0.555 0.770 0.824 0.602 0.674 0.758 0.086 0.540 0.969

9 53 0.557 0.731 0.789 0.575 0.654 0.758 0.082 0.534 0.973

10 52 0.548 0.748 0.799 0.571 0.655 0.782 0.080 0.518 0.986

Table 4.3: Iris: Preprocessed Library Characteristics

Preprocessed Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 30 0.568 0.736 0.775 0.587 0.669 0.782 0.081 0.564 0.923

2 49 0.682 0.763 0.817 0.596 0.656 0.758 0.087 0.509 0.997

3 30 0.578 0.738 0.800 0.572 0.662 0.758 0.078 0.551 0.950

4 30 0.575 0.746 0.784 0.592 0.678 0.758 0.083 0.572 0.926

5 51 0.688 0.765 0.809 0.588 0.645 0.758 0.086 0.500 1.019

6 30 0.565 0.762 0.812 0.587 0.683 0.742 0.089 0.586 0.920

7 30 0.599 0.741 0.792 0.583 0.669 0.758 0.073 0.569 0.925

8 50 0.680 0.779 0.829 0.602 0.674 0.758 0.086 0.534 0.980

9 30 0.590 0.733 0.789 0.588 0.664 0.758 0.077 0.564 0.945

10 35 0.572 0.741 0.796 0.571 0.665 0.782 0.073 0.544 0.963

According to the initial and preprocessed library characteristics presented in Tables

4.2 and 4.3, minimum agreement values increase for all libraries since PPA aims to

eliminate the most dissimilar solution if it is above a certain level. However, for some

libraries like the sixth, average agreement decreases. This means that some of the

eliminated solutions are highly similar to some of the remaining solutions. Due to

the same reason, maximum agreement values also decrease for those libraries. When

we compare accuracy values, we observe that minimum accuracy values increase and

45



maximum accuracy values do not decrease in most of the libraries indicating that

eliminated solutions are mostly the ones with low accuracy. We report the same met-

rics for the most accurate solutions in each library. Table 4.4 presents characteristics

of the most accurate solutions for initial and preprocessed libraries.

Table 4.4: Iris: Initial and Preprocessed Library Best Solution Characteristics

Initial Library Preprocessed Library

Library ID # of clusters DBI SI DI Accuracy # of clusters DBI SI DI Accuracy

1 5 0.916 0.619 0.124 0.782 5 0.916 0.619 0.124 0.782

2 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

3 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

4 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

5 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

6 3 0.662 0.735 0.099 0.758 3 0.666 0.734 0.109 0.742

7 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

8 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

9 3 0.662 0.735 0.099 0.758 3 0.662 0.735 0.099 0.758

10 5 0.916 0.619 0.124 0.782 5 0.916 0.619 0.124 0.782

True Clustering 3 0.751 0.657 0.059 1.000 3 0.751 0.657 0.059 1.000

When we compare true clustering solution and best solutions in the libraries, we

observe that the best solutions performs better than true clustering solution in terms

of all three internal indices except for the first and tenth libraries. In other words,

k-means algorithm generates a more compact and separate clustering solution than

the true clustering solution of Iris. As accuracy depends only on the true class labels,

it is possible not to be able to reach a high level of accuracy when the true clusters are

not well separated and compact.

For the case where the true number of clusters is known or anticipated, we apply

Approach 2 to generate a compromise efficient consensus solution with k is equal

to 3. For a given subset, we apply HBGF 10 times to minimize the effect of random

center initialization on our comparison. Table 4.5 and 4.6 presents the average metrics

for resulting consensus solutions of our approach and full-ensemble across 10 runs

with and without preprocessing, respectively.
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Table 4.5: Iris: CGM Results - k-known

Iris: k is known - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 3 0.660 0.734 0.127 0.792 3 0.666 0.734 0.109 0.742

2 3 0.701 0.689 0.102 0.845 3 0.671 0.725 0.130 0.819

3 3 0.660 0.735 0.126 0.778 3 0.659 0.735 0.094 0.751

4 3 0.654 0.735 0.133 0.798 3 0.659 0.734 0.138 0.806

5 3 0.657 0.735 0.115 0.770 3 0.660 0.735 0.116 0.778

6 3 0.659 0.734 0.138 0.806 3 0.660 0.735 0.116 0.778

7 3 0.659 0.734 0.138 0.806 3 0.819 0.647 0.064 0.648

8 3 0.660 0.735 0.126 0.778 3 0.659 0.734 0.138 0.806

9 3 0.654 0.735 0.148 0.798 3 0.856 0.686 0.076 0.649

10 3 0.659 0.734 0.149 0.806 3 0.659 0.734 0.138 0.806

Average - 0.662 0.730 0.130 0.798 - 0.697 0.720 0.112 0.758

Table 4.6: Iris: Full Ensemble Results - k-known

Iris: k is known - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 3 0.654 0.735 0.133 0.798 3 0.654 0.735 0.133 0.798

2 3 0.654 0.735 0.136 0.798 3 0.654 0.735 0.133 0.798

3 3 0.659 0.734 0.148 0.806 3 0.659 0.734 0.138 0.806

4 3 0.654 0.735 0.133 0.798 3 0.654 0.735 0.133 0.798

5 3 0.654 0.735 0.136 0.798 3 0.654 0.735 0.133 0.798

6 3 0.659 0.734 0.148 0.806 3 0.654 0.735 0.133 0.798

7 3 0.654 0.735 0.133 0.798 3 0.659 0.734 0.138 0.806

8 3 0.658 0.734 0.139 0.804 3 0.659 0.734 0.138 0.806

9 3 0.654 0.735 0.148 0.798 3 0.654 0.735 0.133 0.798

10 3 0.654 0.735 0.142 0.798 3 0.654 0.735 0.133 0.798

Average - 0.655 0.734 0.139 0.800 - 0.656 0.734 0.135 0.800

Both full-ensemble consensus solutions and our approach perform better than library

best solutions for Iris. PPA worsen the performance of our approach as Iris consists of

mostly similar solutions. The solutions we eliminate provide diversity, and working

with smaller subsets, we cannot achieve the diversity captured by the full-ensemble.
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Table 4.7: Iris: CGM Results - Approach 2 k-unknown

Iris: k is unknown - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 5 0.895 0.563 0.108 0.647 4 0.856 0.613 0.055 0.674

2 2 0.384 0.846 0.339 0.761 5 0.912 0.556 0.062 0.673

3 2 0.384 0.846 0.339 0.761 3 0.659 0.735 0.094 0.751

4 3 0.654 0.735 0.133 0.798 3 0.659 0.734 0.138 0.806

5 2 0.384 0.846 0.339 0.761 4 0.789 0.664 0.137 0.735

6 2 0.384 0.846 0.339 0.761 4 0.850 0.613 0.052 0.713

7 3 0.659 0.734 0.138 0.806 3 0.819 0.647 0.064 0.648

8 2 0.384 0.846 0.339 0.761 4 0.789 0.664 0.137 0.735

9 2 0.384 0.846 0.339 0.761 3 0.856 0.686 0.076 0.649

10 2 0.384 0.846 0.339 0.761 3 0.659 0.734 0.138 0.806

Average - 0.489 0.795 0.275 0.758 - 0.785 0.665 0.095 0.719

Table 4.8: Iris: CGM Results - Approach 3 k-unknown

Iris: k is unknown - Approach 3 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 5 0.764 0.579 0.055 0.667 5 0.897 0.564 0.068 0.650

2 4 0.764 0.679 0.082 0.704 6 0.916 0.559 0.083 0.657

3 4 0.856 0.613 0.055 0.674 5 0.897 0.564 0.068 0.650

4 4 0.863 0.608 0.055 0.678 3 0.863 0.608 0.055 0.678

5 3 0.662 0.735 0.099 0.758 5 1.008 0.503 0.062 0.644

6 4 0.852 0.614 0.053 0.688 4 0.852 0.614 0.053 0.688

7 4 0.852 0.614 0.053 0.688 4 0.852 0.614 0.053 0.688

8 5 0.742 0.631 0.137 0.707 6 0.987 0.531 0.085 0.696

9 3 0.662 0.735 0.099 0.758 5 0.907 0.559 0.062 0.670

10 4 0.856 0.613 0.055 0.674 4 0.856 0.613 0.055 0.674

Average - 0.787 0.642 0.074 0.700 - 0.903 0.573 0.064 0.670
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Table 4.9: Iris: Full Ensemble Results - k-unknown

Iris: k is unknown - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 4 0.848 0.610 0.080 0.724 4 0.813 0.641 0.070 0.732

2 2 0.384 0.846 0.339 0.761 5 0.917 0.550 0.062 0.680

3 2 0.384 0.846 0.339 0.761 3 0.659 0.734 0.138 0.806

4 4 0.789 0.664 0.137 0.735 4 0.789 0.664 0.137 0.735

5 2 0.384 0.846 0.339 0.761 4 0.793 0.659 0.137 0.740

6 2 0.384 0.846 0.339 0.761 5 0.813 0.666 0.137 0.698

7 3 0.654 0.735 0.133 0.798 6 0.916 0.554 0.085 0.653

8 2 0.384 0.846 0.339 0.761 6 0.839 0.632 0.058 0.682

9 2 0.384 0.846 0.339 0.761 5 0.917 0.550 0.062 0.680

10 2 0.384 0.846 0.339 0.761 6 0.919 0.554 0.083 0.655

Average - 0.498 0.793 0.272 0.759 - 0.838 0.620 0.097 0.706

In all PPA applied results of CGM, average consensus accuracy is higher than average

library accuracy when Approach 2 is employed, however, we observe that consensus

solutions obtained without preprocessing mostly result in more accurate solutions

for Iris dataset. Although we eliminate less accurate solutions, their inclusion in

ensemble increases resulting partition’s accuracy. Comparing Approach 2 with the

full-ensemble, we observe that without knowing the true k value, our approach works

better than full-ensemble of preprocessed library. Although we applied PPA, this is

an example where using a subset instead of all of the solutions work better. Moreover,

PPA increases the accuracy of true number of cluster estimation. Out of 10 libraries,

PPA applied estimation finds the true k as the selected subset is less concerned with

representing extreme solutions. Approach 3 returns moderate solutions in terms of

accuracy as a single representative that has minimum representation error is desired.

For both cases and approaches, consensus solutions returned are better than average

library performance for Iris dataset.

We next discuss the applications on Wine dataset. Tables 4.10 4.11 present initial and

preprocessed library characteristics in terms of agreement, accuracy and validation

indices.
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Table 4.10: Wine: Initial Library Characteristics

Initial Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 50 0.508 0.776 0.809 0.347 0.376 0.429 0.029 0.669 0.564

2 50 0.507 0.780 0.821 0.346 0.374 0.443 0.028 0.670 0.587

3 56 0.514 0.757 0.801 0.345 0.376 0.443 0.035 0.688 0.549

4 53 0.498 0.763 0.811 0.339 0.372 0.443 0.030 0.676 0.571

5 55 0.511 0.757 0.799 0.340 0.376 0.443 0.033 0.682 0.570

6 51 0.503 0.778 0.833 0.340 0.372 0.443 0.022 0.662 0.593

7 54 0.517 0.757 0.806 0.339 0.378 0.443 0.034 0.681 0.560

8 48 0.495 0.780 0.825 0.343 0.371 0.429 0.027 0.671 0.579

9 54 0.506 0.768 0.811 0.345 0.374 0.443 0.033 0.686 0.556

10 52 0.504 0.772 0.833 0.343 0.373 0.443 0.024 0.673 0.591

Table 4.11: Wine: Preprocessed Library Characteristics

Preprocessed Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 31 0.682 0.773 0.811 0.364 0.383 0.429 0.028 0.679 0.550

2 30 0.515 0.775 0.819 0.350 0.383 0.443 0.027 0.683 0.565

3 30 0.535 0.746 0.791 0.360 0.386 0.429 0.031 0.707 0.529

4 30 0.512 0.745 0.784 0.354 0.382 0.443 0.030 0.693 0.548

5 30 0.527 0.747 0.804 0.363 0.388 0.429 0.034 0.702 0.541

6 30 0.513 0.767 0.817 0.358 0.383 0.443 0.021 0.677 0.572

7 30 0.529 0.750 0.801 0.356 0.390 0.443 0.035 0.699 0.546

8 30 0.511 0.764 0.807 0.361 0.379 0.423 0.026 0.686 0.553

9 30 0.523 0.761 0.809 0.363 0.387 0.429 0.031 0.699 0.538

10 30 0.520 0.748 0.795 0.361 0.383 0.443 0.026 0.693 0.556

Similar to Iris dataset, with PPA, minimum agreement values increase for all libraries

and for some libraries like the second, average agreement decreases indicating that

some of the eliminated solutions are highly similar to some of the remaining solutions.

Due to the same reason, maximum agreement values also decrease for those libraries

like the second. This is observed more commonly for the libraries of Wine dataset

compared to those of Iris indicating that initial library consists of more diverse set

of solutions. When we compare accuracy values, we observe that average accuracy
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values increase for all libraries. We report the same metrics for the most accurate

solutions in each library. Table 4.12 presents characteristics of the most accurate

solutions for initial and preprocessed libraries.

Table 4.12: Wine: Initial and Preprocessed Library Best Solution Characteristics

Initial Library Preprocessed Library

Library ID # of clusters DBI SI DI Accuracy # of clusters DBI SI DI Accuracy

1 3 0.534 0.732 0.016 0.429 3 0.534 0.732 0.016 0.429

2 2 0.479 0.821 0.023 0.443 2 0.479 0.821 0.023 0.443

3 2 0.479 0.821 0.023 0.443 3 0.534 0.732 0.016 0.429

4 2 0.479 0.821 0.023 0.443 2 0.479 0.821 0.023 0.443

5 2 0.479 0.821 0.023 0.443 3 0.534 0.732 0.016 0.429

6 2 0.479 0.821 0.023 0.443 2 0.479 0.821 0.023 0.443

7 2 0.479 0.821 0.023 0.443 2 0.479 0.821 0.023 0.443

8 3 0.534 0.732 0.016 0.429 2 0.482 0.819 0.015 0.423

9 2 0.479 0.821 0.023 0.443 3 0.534 0.732 0.016 0.429

10 2 0.479 0.821 0.023 0.443 2 0.479 0.821 0.023 0.443

True Clustering 3 1.516 0.250 0.005 1.000 3 1.516 0.250 0.005 1.000

When we compare the best solutions and the true cluster solution, we observe that true

labels correspond to poor clustering solutions in terms of compactness and separation.

Similar to the results of Iris, k-means algorithm generates more compact and sepa-

rate clusters of objects and due to the characteristics of the dataset, those solutions

do not match with true labels. This is more drastic in Wine dataset as the highest

accuracy values are below 50 percent whereas with Iris about 80 percent accuracy

could be reached. Tables 4.13, 4.15, 4.16 present results of CGM and Tables 4.14

and 4.17 present full-ensemble consensus solutions when k is known and unknown,

respectively.
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Table 4.13: Wine: CGM Results - k-known

Wine: k is known - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 3 0.526 0.732 0.054 0.397 3 0.533 0.729 0.024 0.430

2 3 0.533 0.723 0.028 0.430 3 0.533 0.720 0.035 0.432

3 3 0.557 0.641 0.022 0.371 3 0.545 0.729 0.016 0.426

4 3 0.555 0.692 0.021 0.400 3 0.551 0.701 0.017 0.408

5 3 0.554 0.699 0.021 0.402 3 0.534 0.732 0.025 0.429

6 3 0.550 0.663 0.019 0.386 3 0.554 0.650 0.019 0.377

7 3 0.551 0.716 0.017 0.412 3 0.550 0.728 0.018 0.418

8 3 0.556 0.651 0.020 0.377 3 0.552 0.724 0.032 0.404

9 3 0.540 0.704 0.051 0.384 3 0.566 0.576 0.021 0.338

10 3 0.560 0.622 0.024 0.357 3 0.560 0.622 0.024 0.357

Average - 0.548 0.684 0.028 0.392 - 0.548 0.691 0.023 0.402

Table 4.14: Wine: Full Ensemble Results - k-known

Wine: k is known - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 3 0.533 0.709 0.022 0.424 3 0.534 0.732 0.024 0.432

2 3 0.534 0.732 0.036 0.432 3 0.534 0.732 0.034 0.432

3 3 0.534 0.732 0.034 0.432 3 0.558 0.624 0.022 0.363

4 3 0.533 0.709 0.018 0.424 3 0.534 0.732 0.024 0.432

5 3 0.534 0.732 0.029 0.432 3 0.534 0.732 0.024 0.432

6 3 0.558 0.624 0.020 0.363 3 0.573 0.528 0.021 0.317

7 3 0.534 0.732 0.024 0.432 3 0.558 0.620 0.029 0.365

8 3 0.533 0.719 0.025 0.427 3 0.556 0.629 0.022 0.367

9 3 0.534 0.731 0.024 0.431 3 0.534 0.732 0.031 0.432

10 3 0.533 0.729 0.024 0.430 3 0.534 0.731 0.033 0.431

Average - 0.536 0.715 0.026 0.423 - 0.545 0.679 0.027 0.400
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Table 4.15: Wine: CGM Results - Approach 2 k-unknown

Wine: k is unknown - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 2 0.482 0.819 0.015 0.423 3 0.533 0.729 0.024 0.430

2 2 0.484 0.817 0.029 0.439 2 0.479 0.821 0.023 0.443

3 2 0.479 0.821 0.023 0.443 2 0.496 0.806 0.043 0.431

4 2 0.496 0.806 0.043 0.431 2 0.487 0.814 0.033 0.437

5 2 0.482 0.819 0.015 0.423 2 0.482 0.819 0.015 0.423

6 2 0.489 0.813 0.029 0.427 2 0.496 0.806 0.043 0.431

7 2 0.482 0.819 0.015 0.423 2 0.479 0.821 0.023 0.443

8 2 0.482 0.819 0.015 0.423 2 0.496 0.806 0.043 0.431

9 2 0.482 0.819 0.015 0.423 2 0.482 0.819 0.015 0.423

10 2 0.489 0.813 0.029 0.427 2 0.487 0.814 0.033 0.437

Average - 0.485 0.817 0.023 0.428 - 0.492 0.805 0.030 0.433

Table 4.16: Wine: CGM Results - Approach 3 k-unknown

Wine: k is unknown - Approach 3 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 5 0.483 0.731 0.042 0.369 6 0.529 0.706 0.018 0.400

2 5 0.554 0.673 0.012 0.384 4 0.554 0.673 0.012 0.384

3 5 0.483 0.731 0.042 0.369 5 0.483 0.731 0.042 0.369

4 4 0.549 0.730 0.038 0.407 4 0.549 0.730 0.038 0.407

5 5 0.483 0.731 0.042 0.369 4 0.483 0.731 0.042 0.369

6 4 0.549 0.730 0.038 0.407 4 0.549 0.730 0.038 0.407

7 5 0.483 0.731 0.042 0.369 5 0.483 0.731 0.042 0.369

8 4 0.546 0.727 0.042 0.382 3 0.546 0.727 0.042 0.382

9 4 0.544 0.727 0.025 0.378 4 0.544 0.727 0.025 0.378

10 5 0.483 0.731 0.042 0.369 6 0.584 0.696 0.035 0.366

Average - 0.516 0.724 0.036 0.380 - 0.531 0.718 0.033 0.383

In contrast to Iris, Approach 2 and PPA together provide better solutions when k is

unknown and estimated on the average in terms of all performance measures. PPA

improves resulting consensus solutions in all approaches compared to the consensus

solutions obtained without preprocessing. As discussed previously, initial libraries of
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Wine is more diverse than Iris which causes the elimination of some of the extreme

solutions providing moderate diversity and improving resulting consensus solution

regardless of the value of k. Moreover, our approaches perform better than full-

ensemble of both initial and preprocessed libraries.

Table 4.17: Wine: Full Ensemble Results - k-unknown

Wine: k is unknown - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 2 0.496 0.806 0.043 0.431 7 0.564 0.686 0.019 0.380

2 2 0.496 0.806 0.043 0.431 2 0.496 0.806 0.043 0.431

3 2 0.496 0.806 0.043 0.431 2 0.496 0.806 0.043 0.431

4 6 0.517 0.698 0.026 0.386 6 0.520 0.706 0.028 0.390

5 2 0.489 0.813 0.029 0.427 5 0.538 0.715 0.028 0.408

6 5 0.567 0.653 0.030 0.406 2 0.496 0.806 0.043 0.431

7 6 0.531 0.710 0.028 0.396 6 0.543 0.704 0.028 0.399

8 2 0.496 0.806 0.043 0.431 2 0.496 0.806 0.043 0.431

9 7 1.329 0.675 0.042 0.369 2 0.488 0.814 0.026 0.426

10 4 0.547 0.717 0.050 0.379 2 0.496 0.806 0.043 0.431

Average - 0.597 0.749 0.038 0.409 - 0.513 0.765 0.035 0.416

We consider the same aspects of our approach for Glass dataset. Tables 4.18 and 4.19

present the effect of PPA considering initial and preprocessed library characteristics.

Table 4.18: Glass: Initial Library Characteristics

Initial Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 64 0.492 0.691 0.740 0.260 0.387 0.463 0.037 0.430 1.082

2 64 0.373 0.678 0.739 0.161 0.380 0.440 0.043 0.427 1.054

3 64 0.504 0.683 0.744 0.251 0.377 0.445 0.034 0.407 1.114

4 68 0.333 0.664 0.734 0.153 0.370 0.448 0.035 0.403 1.132

5 66 0.205 0.656 0.724 0.114 0.380 0.440 0.049 0.447 1.058

6 64 0.348 0.685 0.762 0.161 0.382 0.496 0.039 0.410 1.095

7 62 0.501 0.699 0.754 0.264 0.387 0.444 0.038 0.408 1.066

8 62 0.501 0.700 0.755 0.264 0.392 0.449 0.035 0.417 1.072

9 65 0.494 0.697 0.753 0.260 0.372 0.435 0.03 0.394 1.105

10 65 0.339 0.671 0.741 0.147 0.371 0.444 0.033 0.401 1.115
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Table 4.19: Glass: Preprocessed Library Characteristics

Preprocessed Library Characteristics

Library # of Min. Avg. Max. Min. Avg. Max. Avg. Avg. Avg.

ID Solutions Agreement Agreement Agreement Accuracy Accuracy Accuracy DBI SI DI

1 34 0.548 0.697 0.765 0.260 0.372 0.463 0.041 0.490 1.078

2 30 0.428 0.668 0.738 0.161 0.372 0.440 0.053 0.519 1.023

3 37 0.540 0.672 0.742 0.251 0.359 0.440 0.035 0.444 1.126

4 30 0.346 0.623 0.712 0.153 0.333 0.426 0.041 0.456 1.183

5 30 0.214 0.635 0.738 0.114 0.361 0.440 0.068 0.552 1.019

6 47 0.521 0.690 0.767 0.264 0.381 0.496 0.040 0.435 1.092

7 33 0.539 0.698 0.752 0.264 0.376 0.444 0.042 0.473 1.046

8 30 0.550 0.704 0.766 0.264 0.378 0.447 0.037 0.477 1.069

9 30 0.565 0.695 0.740 0.260 0.342 0.435 0.030 0.430 1.125

10 30 0.474 0.672 0.745 0.147 0.348 0.444 0.035 0.478 1.100

Similar to Wine dataset, initial libraries of Glass consists of more extreme solutions

compared to Iris as indicated by the range of minimum and maximum agreement. In

contrast to Wine, applying PPA does not eliminate neither poor nor good solutions in

terms of accuracy. This means that average accuracy solutions are relatively few and

considered as extreme solutions. Therefore, preprocessing results in a decrease in the

average accuracy for all libraries. Table 4.20 presents the most accurate solutions’

characteristics.

Table 4.20: Glass: Initial and Preprocessed Library Best Solution Characteristics

Initial Library Preprocessed Library

Library ID # of clusters DBI SI DI Accuracy # of clusters DBI SI DI Accuracy

1 8 0.922 0.609 0.052 0.463 8 0.922 0.609 0.052 0.463

2 4 0.888 0.757 0.163 0.440 4 0.888 0.757 0.163 0.440

3 15 1.125 0.356 0.039 0.445 9 1.041 0.635 0.045 0.440

4 15 1.035 0.352 0.032 0.448 4 0.893 0.757 0.167 0.426

5 4 0.888 0.757 0.163 0.440 4 0.888 0.757 0.163 0.440

6 5 1.023 0.697 0.156 0.496 5 1.023 0.697 0.156 0.496

7 10 0.974 0.551 0.035 0.444 10 0.974 0.551 0.035 0.444

8 11 1.041 0.396 0.028 0.449 8 1.143 0.404 0.025 0.447

9 7 1.156 0.380 0.023 0.435 7 1.156 0.380 0.023 0.435

10 6 0.989 0.595 0.043 0.444 6 0.989 0.595 0.043 0.444

True Clustering 6 3.736 -0.248 0.015 1.000 6 3.736 -0.248 0.015 1.000
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When true clustering solution is compared with the best solutions in each library with

respect to validity indices, library bests are more or less close to each other while true

clustering solution is performing poorly in terms of compactness and separation.

Table 4.21: Glass: CGM Results - k-known

Glass: k is known - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 6 1.003 0.576 0.044 0.430 6 1.032 0.560 0.045 0.395

2 6 0.884 0.560 0.077 0.397 6 1.149 0.407 0.032 0.376

3 6 0.984 0.605 0.053 0.426 6 1.099 0.325 0.019 0.399

4 6 1.198 0.435 0.030 0.375 6 1.102 0.350 0.029 0.384

5 6 1.130 0.552 0.060 0.422 6 1.543 0.584 0.061 0.409

6 6 1.026 0.588 0.028 0.440 6 1.041 0.566 0.026 0.431

7 6 1.085 0.367 0.020 0.364 6 1.092 0.350 0.023 0.366

8 6 0.962 0.609 0.047 0.452 6 1.104 0.355 0.017 0.369

9 6 1.097 0.357 0.018 0.364 6 1.093 0.357 0.023 0.392

10 6 1.148 0.402 0.023 0.373 6 1.157 0.340 0.037 0.347

Average - 1.052 0.505 0.040 0.404 - 1.141 0.419 0.031 0.387

Table 4.22: Glass: Full Ensemble Results - k-known

Glass: k is known - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 6 0.963 0.610 0.048 0.444 6 1.126 0.382 0.038 0.353

2 6 1.095 0.379 0.031 0.353 6 1.105 0.360 0.031 0.376

3 6 0.974 0.622 0.048 0.421 6 0.975 0.623 0.048 0.426

4 6 1.104 0.377 0.021 0.345 6 1.135 0.353 0.017 0.368

5 6 1.095 0.380 0.029 0.354 6 0.965 0.626 0.053 0.429

6 6 1.101 0.374 0.055 0.345 6 1.096 0.381 0.018 0.358

7 6 1.106 0.377 0.022 0.359 6 1.101 0.385 0.023 0.356

8 6 0.985 0.598 0.045 0.457 6 1.101 0.352 0.011 0.373

9 6 1.095 0.378 0.024 0.353 6 1.101 0.366 0.024 0.390

10 6 0.982 0.602 0.044 0.439 6 1.097 0.389 0.024 0.376

Average - 1.050 0.470 0.037 0.387 - 1.080 0.422 0.029 0.381
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When the number of true clusters are known, PPA worsen the performance of Ap-

proach 2; on the other hand, it improves for full-ensemble. As for Glass, library

consists of extreme solutions in terms of accuracy, selected subsets are affected by

the lack of moderate solutions to balance the diversity.

Table 4.23: Glass: CGM Results - Approach 2 k-unknown

Glass: k is unknown - Approach 2 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 4 1.203 0.566 0.029 0.396 8 1.121 0.423 0.032 0.382

2 2 1.089 0.692 0.098 0.297 2 1.085 0.685 0.089 0.323

3 9 1.152 0.357 0.028 0.389 5 0.954 0.589 0.037 0.413

4 3 1.186 0.446 0.020 0.264 2 1.034 0.695 0.080 0.270

5 4 0.898 0.753 0.124 0.424 2 1.028 0.690 0.089 0.269

6 2 1.092 0.676 0.090 0.346 6 1.041 0.566 0.026 0.431

7 10 1.089 0.362 0.035 0.403 4 0.988 0.549 0.048 0.365

8 5 0.929 0.606 0.032 0.415 5 0.954 0.609 0.027 0.393

9 7 1.165 0.363 0.022 0.412 7 1.210 0.374 0.023 0.427

10 6 1.148 0.402 0.023 0.373 2 1.071 0.689 0.089 0.328

Table 4.24: Glass: CGM Results - Approach 3 k-unknown

Average - 1.095 0.522 0.050 0.372 - 1.049 0.587 0.054 0.360

Glass: k is unknown - Approach 3 CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 5 0.957 0.600 0.049 0.392 5 0.957 0.600 0.049 0.392

2 4 0.888 0.757 0.163 0.440 4 0.888 0.757 0.163 0.440

3 6 0.967 0.621 0.029 0.428 6 0.967 0.621 0.029 0.428

4 4 1.020 0.567 0.031 0.350 3 1.020 0.567 0.031 0.350

5 4 0.896 0.754 0.127 0.413 4 0.896 0.754 0.127 0.413

6 4 1.023 0.563 0.020 0.349 4 1.023 0.563 0.020 0.349

7 5 0.907 0.593 0.049 0.380 4 1.029 0.549 0.036 0.349

8 5 1.071 0.548 0.036 0.382 7 1.069 0.611 0.029 0.428

9 5 1.236 0.304 0.013 0.284 4 1.050 0.534 0.015 0.318

10 4 1.020 0.567 0.031 0.350 3 1.020 0.567 0.031 0.350

Average - 0.998 0.587 0.055 0.377 - 0.992 0.612 0.053 0.382
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As PPA eliminates moderate solutions in terms of accuracy, it improves the perfor-

mance of Approach 3.

Table 4.25: Glass: Full Ensemble Results - k-unknown

Glass: k is unknown - Full Ensemble CSs

Initial Library Preprocessed Library

Library # of Average Average Average Average # of Average Average Average Average

ID clusters DBI SI DI Accuracy clusters DBI SI DI Accuracy

1 3 1.008 0.732 0.109 0.434 3 1.166 0.438 0.025 0.268

2 4 1.037 0.577 0.031 0.379 4 1.024 0.573 0.020 0.365

3 4 1.122 0.532 0.025 0.317 3 1.135 0.494 0.025 0.324

4 3 1.213 0.481 0.025 0.279 3 1.188 0.480 0.015 0.285

5 4 0.874 0.747 0.117 0.442 2 1.032 0.687 0.089 0.301

6 2 1.090 0.654 0.091 0.377 4 1.091 0.549 0.043 0.336

7 4 1.042 0.565 0.020 0.355 4 1.023 0.568 0.020 0.360

8 3 1.191 0.454 0.025 0.282 4 1.032 0.567 0.028 0.385

9 2 1.169 0.668 0.089 0.376 2 1.071 0.689 0.089 0.328

10 3 1.213 0.481 0.025 0.279 3 1.116 0.485 0.025 0.308

Average - 1.096 0.589 0.056 0.352 - 1.088 0.553 0.038 0.326

Considering all the results we obtain for these three different benchmark datasets, we

conclude that when initial library does not consist of a certain level of diversity, PPA

eliminates different solutions by considering them as outliers and worsen the perfor-

mance of our algorithm. The subsets cannot achieve the diversity that full-ensemble

has. When initial library consists of diverse solutions, PPA improves the performance

of our algorithm as it eliminates the extremes without losing the capability of gen-

erating different consensus solutions. Furthermore, the resulting solutions from our

Approaches when k is unknown, are slightly worse than the solutions that are the best

in the initial library, which are not straightforward to distinguish.
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Table 4.26: Summary of All Results

k-known k-unknown

Approach 1 Approach 1

Avg. DBI Avg. SI Avg. DI Avg. Acc. Avg. DBI Avg. SI Avg. DI Avg. Acc.

Iris 0.663 0.735 0.099 0.757 0.663 0.735 0.099 0.757

Wine 0.534 0.732 0.024 0.432 0.525 0.708 0.026 0.398

Glass 1.160 0.436 0.033 0.367 1.024 0.564 0.036 0.387

Approach 2 Approach 2

Avg. DBI Avg. SI Avg. DI Avg. Acc. Avg. DBI Avg. SI Avg. DI Avg. Acc.

Iris 0.697 0.720 0.112 0.758 0.785 0.665 0.095 0.719

Wine 0.548 0.691 0.023 0.402 0.492 0.805 0.030 0.433

Glass 1.141 0.419 0.031 0.387 1.049 0.587 0.054 0.360

Full Ensemble Full Ensemble

Avg. DBI Avg. SI Avg. DI Avg. Acc. Avg. DBI Avg. SI Avg. DI Avg. Acc.

Iris 0.656 0.734 0.135 0.800 0.838 0.620 0.097 0.706

Wine 0.545 0.679 0.027 0.400 0.513 0.765 0.035 0.416

Glass 1.080 0.422 0.029 0.381 1.088 0.553 0.038 0.326

Library Best Approach 3

Avg. DBI Avg. SI Avg. DI Avg. Acc. Avg. DBI Avg. SI Avg. DI Avg. Acc.

Iris 0.713 0.712 0.105 0.761 0.903 0.573 0.064 0.670

Wine 0.490 0.804 0.022 0.440 0.531 0.718 0.033 0.383

Glass 1.004 0.545 0.074 0.450 0.992 0.612 0.053 0.382

According to the results in 4.26, when k is known, for Iris dataset, full-ensemble con-

sensus solution gives the most accurate results on the average. Then, it is followed

by Approach 2 and Approach 1. For Wine dataset, the most accurate solutions are

obtained by Approach 1. Then it is followed by Approach 2 and full-ensemble con-

sensus solution gives the least accurate solutions on the average. For Glass dataset, the

most accurate solutions are obtained by Approach 2 and followed by full-ensemble

consensus solution and Approach 1. For the case where k is known, we conclude that

for these three benchmark dataset, Approach 2 provides either the best or the sec-

ond best solutions in terms of accuracy on the average. When k is unknown, for Iris

dataset, Approach 3 provides the poorest solutions while Approach 1 and Approach

2 provide the best and second best solutions on the average. Similar to Iris, for Wine

dataset, Approach 3 provides the poorest results while Approach 2 and full-ensemble

consensus solution provides the best and second best solutions on the average. In

59



contrast, for Glass dataset, Approach 3 provides the second best solutions while Ap-

proach 1 gives the best solutions on the average.

The computational time required for each dataset and library changes however we

notice that Approach 1 and Approach 2 requires the least time for Wine dataset and it

is followed by Iris dataset while Glass dataset requires the most computational time

due to the structure of the similarity and dissimilarity matrices.
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CHAPTER 5

CASE STUDY

5.1 Problem Definition

We apply our multi-objective cluster ensemble selection approach to a customer seg-

mentation problem. For these kind of problems, customers have their own perceptions

of objects which can be used as initial library of clustering solutions. Depending on

the perceptions, customers have a natural grouping as well. Our main idea is to find a

good representative subsets of customers to identify natural grouping.

In this study, we use a demo version of the chocolate candy assortment example

studied by Santi et al. (2016). The authors propose a mathematical model that groups

customers and finds a consensus clustering solution of chocolates for each group of

individuals simultaneously. They collect data on customer perceptions by an online

study consisting of 189 undergraduate students. The students are asked to put the

chocolates they think that are similar in someway into the same pile and dissimilar

into different piles by using as many piles as they want. For 20 type of chocolates, the

number of piles that the customers use ranges from 2 to 12 with the average of 5.73

piles which shows that not everybody has the same perception of the same objects.

Due to their formulation, the authors need to turn the pile information of clusters

provided by each individual into a similarity/dissimilarity matrix of chocolates. Then,

they group the customers into g number of groups such that the group assignments of

individuals and their consensus solution simultaneously minimize total sum of within

cluster dissimilarity of objects. In this study, we use the pile information directly as

our initial library with the advantage of cluster ensemble’s not requiring to access the

original features or pairwise similarity of objects and the consensus solutions for each
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group are the representative customers’ clustering solutions.

For this problem, the objects or data points are the chocolate types subject to the

study. Those are Almond Joy, Baby Ruth, Butterfinger, Hershey (Almond), Hershey

(Plain), Junior Mints, Kit Kat, M & M (Peanut), M & M (Plain), Mars Bar, Milky

Way, Mounds Bar, Nestle’s Crunch, Oh Henry!, Payday, Reece’s Cups, Snickers,

Three musketeers, Twix, and York Mint. Initial Library of Solutions consists of 35

clustering solutions obtained by the online study. Ensemble is the representative sub-

set of customers and chocolate partitioning obtained by combining the perceptions of

representative customers is the consensus solution.

An example of survey evaluation where 4 piles are used to partition the chocolates is

presented in Figure 5.1.

Figure 5.1: Chocolate Candy Assortment: Pile Example

According to the study, the students filling the survey also give a score on the level of

confidence about their piles. We choose an initial library of 35 clustering solutions to

demonstrate an example of our approach among the surveys having highest level of

confidence.

5.2 Results

Among 35 solutions, PPA eliminates only 1 solution. So, we apply RCA to the re-

maining 34 solutions to identify the natural grouping of customers. At this point,

the number of groups that the customers form can be supported by the DM and the

subsets corresponding to that size values can be presented. As there is no external

62



information, we present efficient subsets with additional measures on representation

over population. Therefore, for each efficient subset, we also calculate the agreement

between a representative and the solutions it represents as follows.

agree′πi =

∑
πj∈Rπi

simπi,πj

|Rπi |
(5.1)

Then, we report minimum, average, and maximum agreement among the represen-

tatives of each subset in addition to quality, size, and diversity as presented and the

compromise subset is indicated as bold in Table 5.1 and an example efficient subset

is given in Figure 5.2.

Table 5.1: Chocolate Candy Assortment Example: ESs

ES ID Coverage Gap Size Diversity Min. Agr. Avg. Agr. Max. Agr. ES ID Coverage Gap Size Diversity Min. Agr. Avg. Agr. Max. Agr.

1 0.000 34 0.182 1.000 1.000 1.000 25 0.337 12 0.254 0.560 0.841 1.000

2 0.182 33 0.194 0.709 0.991 1.000 26 0.368 12 0.369 0.545 0.850 1.000

3 0.194 32 0.212 0.709 0.988 1.000 27 0.345 11 0.271 0.642 0.862 1.000

4 0.212 31 0.221 0.709 0.982 1.000 28 0.369 11 0.378 0.527 0.852 1.000

5 0.221 29 0.239 0.651 0.971 1.000 29 0.365 10 0.254 0.540 0.860 1.000

6 0.231 28 0.239 0.651 0.968 1.000 30 0.378 10 0.394 0.644 0.861 1.000

7 0.239 27 0.256 0.651 0.963 1.000 31 0.368 9 0.254 0.539 0.838 1.000

8 0.250 26 0.254 0.651 0.957 1.000 32 0.383 9 0.394 0.564 0.864 1.000

9 0.254 25 0.256 0.657 0.955 1.000 33 0.425 9 0.495 0.539 0.777 1.000

10 0.256 24 0.258 0.657 0.948 1.000 34 0.378 8 0.254 0.575 0.823 1.000

11 0.258 23 0.266 0.657 0.941 1.000 35 0.394 8 0.399 0.541 0.819 1.000

12 0.261 22 0.279 0.619 0.938 1.000 36 0.402 7 0.369 0.627 0.817 1.000

13 0.276 21 0.281 0.661 0.941 1.000 37 0.435 7 0.484 0.386 0.749 1.000

14 0.279 20 0.284 0.619 0.934 1.000 38 0.424 6 0.406 0.622 0.770 1.000

15 0.298 19 0.318 0.619 0.913 1.000 39 0.450 5 0.369 0.596 0.718 1.000

16 0.299 18 0.318 0.684 0.927 1.000 40 0.460 5 0.470 0.563 0.707 1.000

17 0.318 17 0.324 0.675 0.907 1.000 41 0.492 5 0.579 0.589 0.639 0.734

18 0.318 16 0.259 0.661 0.880 1.000 42 0.460 4 0.271 0.585 0.718 1.000

19 0.335 16 0.361 0.596 0.900 1.000 43 0.464 4 0.404 0.611 0.733 1.000

20 0.324 15 0.337 0.659 0.853 1.000 44 0.474 4 0.521 0.566 0.629 0.788

21 0.330 14 0.271 0.685 0.887 1.000 45 0.471 3 0.502 0.533 0.557 0.576

22 0.352 14 0.412 0.630 0.834 1.000 46 0.521 3 0.618 0.574 0.622 0.690

23 0.335 13 0.254 0.571 0.844 1.000 47 0.502 2 0.536 0.578 0.581 0.585

24 0.356 13 0.402 0.675 0.872 1.000 48 0.553 2 0.665 0.258 0.399 0.539
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Figure 5.2: Chocolate Candy Assortment: Efficient Subset Example

The first group of customers is represented by customer 8 and the second group is

represented by customer 25. The main usage of representative subset selection in this

problem context is that for the customers that are in the same group and represented

by the same representative, the same marketing strategies are applicable whereas the

customers that are in different groups require different strategies. Therefore, a repre-

sentative subset is useful and practical for the DM.
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CHAPTER 6

CONCLUSIONS

Due to the challenges in cluster analysis, different clustering solutions are obtained

with different clustering algorithms, different parameter settings, and different repre-

sentations of data. Thus, there is no proven single algorithm that works well under

any kind of data and setting. Cluster ensembles emerge as a tool to combine multiple

clustering solutions to obtain a single consensus solution that uses the advantages of

different methods. To obtain more accurate and robust consensus solutions, rather

than using all of the solutions in the library, cluster ensemble selection is studied.

Considering some application areas such as recommender systems and customer seg-

mentation, representing a library of solutions with a small subset is useful and practi-

cal for decision makers. In this thesis, we address cluster ensemble selection problem

and propose a multi-objective approach to generate efficient subsets. We evaluate the

quality of our subsets by the maximum representation error and the diversity of our

subsets by the minimum difference in the predictions of our representatives. Different

than the existing approaches in the literature, size of the ensemble is also considered

and we address the case where the true number of clusters are not known.

Our approach starts with Preprocessing Algorithm (PPA) to eliminate the solutions

that may mislead the representative selection and resulting consensus solution. Then,

we apply Representative Clusterings Algorithm (RCA) to generate efficient subsets.

For the problems when a single clustering solution is desired, we generate efficient

consensus solutions by applying a Consensus Generation Method (CGM) to combine

efficient subsets.

PPA is developed based on statistical outlier detection. We analyze the library char-

acteristics and eliminate the solutions that are dissimilar than the rest of the library
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more than a certain level and hard to represent. As the existence of some outliers

might mask the existence of others, we eliminate one solution at a time and repeat the

procedure. Results on the benchmark datasets show that PPA is useful in eliminating

poor solutions and reducing computational time. It improves the performance of our

approach when initial library consists of diverse set of solutions.

RCA is developed to generate efficient subsets considering the three criteria, quality,

diversity, and size. The algorithm first fixes the size of the representative subset and

generates all nondominated points with respect to the quality and diversity utilizing

epsilon constraint method. The algorithm stops after eliminating dominated subsets.

CGM is composed of three approaches. The first approach generates all efficient

consensus solutions corresponding to efficient subsets obtained by RCA. Results ob-

tained by the benchmark datasets show that with smaller subsets, consensus solutions

as well as, or better than full-ensemble solutions are obtainable. The second approach

generates a compromise efficient consensus solution corresponding to a compromise

efficient subset. An updated version of RCA is modelled to generate the compromise

efficient subset without generating all nondominated points. Results show that with

the compromise subset, full-ensemble solutions are achievable. While the first and the

second approaches are both applicable to the cases where the true number of clusters

is known and unknown, we propose an estimate on the true number of clusters by us-

ing a score based evaluation of the solutions in the compromise subset. We continue

with the highest scored solution’s number of clusters as our estimate. Moreover, as a

special case application of RCA, Approach 3 generates a single representative solu-

tion as the consensus without the need for the true number of clusters and a consensus

function. Results show that the single representative consensus solution is an average

solution in terms of performance but representing library well.

As future research, a classification of the datasets can be considered according to

the need for preprocessing. PPA can be suggested to be applied for a dataset while

it is not employed for another depending on the characteristics of data. Secondly,

due to the computational time required by exact methods, RCA can be employed

with faster methods for larger and complicated libraries. For the problems where the

clustering solutions are not generated like chocolate candy assortment, initial library
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of solutions is more diverse and computationally complicated than the libraries of

generated solutions. Lastly, other metrics can be employed to generate a compromise

efficient subset that leads to the efficient consensus solutions performing better than

full-ensemble consensus solutions.

67



68



REFERENCES

Akbari, E., Dahlan, H. M., Ibrahim, R., and Alizadeh, H. (2015). Hierarchical cluster

ensemble selection. Engineering Applications of Artificial Intelligence, 39:146–

156.

Alizadeh, H., Minaei-Bidgoli, B., and Parvin, H. (2014). To improve the quality of

cluster ensembles by selecting a subset of base clusters. Journal of Experimental

& Theoretical Artificial Intelligence, 26(1):127–150.

Azimi, J. and Fern, X. (2009). Adaptive cluster ensemble selection. In Twenty-First

International Joint Conference on Artificial Intelligence.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping

multidimensional data, pages 25–71. Springer.

Boongoen, T. and Iam-On, N. (2018). Cluster ensembles: A survey of approaches

with recent extensions and applications. Computer Science Review, 28:1–25.

Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between

probability density functions. City, 1(2):1.

Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. IEEE trans-

actions on pattern analysis and machine intelligence, (2):224–227.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. Journal of

cybernetics, 4(1):95–104.

Fern, X. Z. and Brodley, C. E. (2003). Random projection for high dimensional data

clustering: A cluster ensemble approach. In Proceedings of the 20th international

conference on machine learning (ICML-03), pages 186–193.

Fern, X. Z. and Brodley, C. E. (2004). Solving cluster ensemble problems by bipartite

69



graph partitioning. In Proceedings of the twenty-first international conference on

Machine learning, page 36. ACM.

Fern, X. Z. and Lin, W. (2008). Cluster ensemble selection. Statistical Analysis and

Data Mining: The ASA Data Science Journal, 1(3):128–141.

Fred, A. L. and Jain, A. K. (2002). Data clustering using evidence accumulation.

In Object recognition supported by user interaction for service robots, volume 4,

pages 276–280. IEEE.

Hadjitodorov, S. T., Kuncheva, L. I., and Todorova, L. P. (2006). Moderate diversity

for better cluster ensembles. Information Fusion, 7(3):264–275.

Hines, W. W., Montgomery, D. C., and Borror, D. M. G. C. M. (2008). Probability

and statistics in engineering. John Wiley & Sons.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM

computing surveys (CSUR), 31(3):264–323.

Kryszczuk, K. and Hurley, P. (2010). Estimation of the number of clusters using mul-

tiple clustering validity indices. In International Workshop on Multiple Classifier

Systems, pages 114–123. Springer.

Kuncheva, L. I. and Hadjitodorov, S. T. (2004). Using diversity in cluster ensembles.

In 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE

Cat. No. 04CH37583), volume 2, pages 1214–1219. IEEE.

Kuncheva, L. I. and Vetrov, D. P. (2006). Evaluation of stability of k-means cluster

ensembles with respect to random initialization. IEEE transactions on pattern

analysis and machine intelligence, 28(11):1798–1808.

Liu, Y., Li, Z., Xiong, H., Gao, X., and Wu, J. (2010). Understanding of internal

clustering validation measures. In 2010 IEEE International Conference on Data

Mining, pages 911–916. IEEE.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivari-

ate observations. In Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.

70



Pividori, M., Stegmayer, G., and Milone, D. H. (2016). Diversity control for improv-

ing the analysis of consensus clustering. Information Sciences, 361:120–134.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and val-

idation of cluster analysis. Journal of computational and applied mathematics,

20:53–65.

Santi, É., Aloise, D., and Blanchard, S. J. (2016). A model for clustering data

from heterogeneous dissimilarities. European Journal of Operational Research,

253(3):659–672.

Steuer, R. E. (1986). Multiple criteria optimization: theory, computation, and appli-

cation, volume 233.

Strehl, A. and Ghosh, J. (2002). Cluster ensembles—a knowledge reuse frame-

work for combining multiple partitions. Journal of machine learning research,

3(Dec):583–617.

Wolpert, D. H., Macready, W. G., et al. (1995). No free lunch theorems for search.

Technical report, Technical Report SFI-TR-95-02-010, Santa Fe Institute.

Yang, F., Li, T., Zhou, Q., and Xiao, H. (2017). Cluster ensemble selection with

constraints. Neurocomputing, 235:59–70.

71


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background and Literature Review
	Cluster Ensemble Problem
	Library Generation
	Consensus Functions
	Cluster Ensemble Selection Problem
	Evaluating Clustering Solutions


	Development of the Algorithm(s)
	Definitions - Notation
	Preprocessing Algorithm (PPA)
	Representative Clusterings Algorithm (RCA)
	Consensus Generation Method (CGM)
	Example
	Library Generation Method (LGM)
	PPA Application
	RCA Application
	CGM Application


	Computational Results
	Datasets

	Case Study
	Problem Definition
	Results

	Conclusions
	REFERENCES

