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ABSTRACT

COMPARISON OF MACHINE LEARNING ALGORITHMS ON CONSUMER
CREDIT CLASSIFICATION

Koç, Oğuz

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. A. Sevtap Kestel

Co-Supervisor : Prof. Dr. Ömür Uğur

July 2019, 110 pages

Like other prediction models, credit scoring is a tool used to evaluate the amount of
risk associated with applicants or customers. Scoring models identify clients indi-
vidually as good or bad applicants. They offer statistical odds or probabilities for
prediction either the applicant will be default or not in the future. It is beneficial
for banks and credit analysts to measure customers’ non-payment risk by statistically
tested algorithms in many aspects such as reduction in workload and evaluation time.
Also, only demanding features that have the most significant impact on credit assess-
ment process in terms of obtaining more explanatory outcomes, emphasizes the ben-
efits mentioned formerly. Today, Machine Learning (ML) algorithms are commonly
applied for data analysis in various areas. The algorithms learn how to determine
complicated patterns and create smart choices by generating a mathematical model
depending on sample dataset without direct programming.

In this thesis, a comparative study is performed using Logistic Regression (LR), Sup-
port Vector Machine (SVM), Gaussian Naïve Bayes (GNB), Decision Trees (DT),
Random Forest (DT), XGBoost (XGB), K-Nearest Neighbors (KNN) and Multilayer
Perceptron Neural Network (MLP) algorithms. In addition to these, we strive to
achieve more explanatory outcomes in terms of dimentionality with Wrapper Feature
Selection (WFS), and investigate its performance in a way of important attributes de-
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tection capacity. We also analyze the impact of Grid Search (GS) hyper-parameters
optimizing method, and effect of four data transformation techniques Natural Loga-
rithm (LN), Standard, Box-Cox and Min-Max to these algorithms and methods. We
compare these cases to determine the most appropriate way for credit classification
by considering accuracy, AUC, type I and type II error rates. All measurements are
conducted on German and Australian real world consumer credit datasets commonly
used in literature.

Keywords: Machine Learning, Credit Classification, German Credit Dataset, Aus-
tralian Credit Dataset, Data Transformation, Wrapper Feature Selection, Data Mining
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ÖZ

TÜKETİCİ KREDİLERİNİN SINIFLANDIRMASI ÜZERİNDE MAKİNE
ÖĞRENİMİ ALGORİTMALARININ KARŞILAŞTIRMASI

Koç, Oğuz

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Kestel

Ortak Tez Yöneticisi : Prof. Dr. Ömür Uğur

Temmuz 2019, 110 sayfa

Diğer tahmin modelleri gibi, kredi değerlendirme de başvuru sahipleriyle veya müşte-
rilerle ilişkili olan risk miktarını değerlendirmek için kullanılan bir araçtır. Değerlen-
dirme modelleri müşterileri bireysel olarak iyi ya da kötü başvuranlar olarak tanımlar.
Başvuru yapanların gelecekte temerrüde düşüp düşmeyecekleri için istatistiksel ola-
sılıklar veya tahmin olanakları sunarlar. İstatistiksel olarak test edilmiş bir algoritma
kullanarak kredinin geri ödenmeme riskinin ölçülmesi bankaların ve kredi analistle-
rinin iş yükünün ve değerlendirme sürecinin azaltılması gibi birçok açıdan faydalıdır.
Ayrıca, sadece kredi geri ödemesinde anlamlı etkisi olan değişkenlerin kredi talebinde
bulunan kişilerden istenmesi daha açıklayıcı sonuçlar alınması açısından bahsedilen
yararların etkinliğini artırmaktadır. Günümüzde Makine Öğrenimi (ML) algoritmala-
rıyla yaygın olarak çeşitli alanlarda veri analizi yapılmaktadır. Bu lagoritmalar doğru-
dan programlama yapmadan örnek veri setine bağlı olarak oluşturulan matematiksel
bir model ile karmaşık ilişkilerin nasıl belirleneceğini ve akıllı seçimler yaratmayı
öğrenirler.

Bu tezinde, Lojistik Regresyon (LR), Destek Vektör Makinesi (SVM), Gaussian Na-
ïve Bayes (GNB), Karar Ağaçları (DT), Rasgele Karar Ormanları (RF), XGBoost
(XGB), K-En Yakın Komşu (KNN) ve Çok Katmanlı Algılayıcı Sinir Ağları (MLP)
algoritmaları kullanılarak kapsamlı bir çalışma yapılmaktadır. Bunlara ek olarak, Wrap-
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per Özellik Seçilimi (WFS) ile boyutluluk açısından daha açıklayıcı sonuçlara ulaş-
mayı amaçlıyoruz ve bunun önemli özellikleri belirleme yönünden kabiliyetini araştı-
rıyoruz. Biz ayrıca hiper-parametere optimizasyon yöntemi olan Kare Arama’nın et-
kinliğini ve dört farklı veri dönüşümü tekniği olan Doğal Logaritma (LN), Standard,
Box-Cox ve Min-Max’un bu algoritma ve metotlara olan etkilerini analiz ediyoruz.
Biz kredi sınıflandırması için en uygun yolu belirlemek için doğruluk, AUC, tip I ve
tip II hata oranlarını göz önünde bulundurarak bu durumları karşılaştırıyoruz. Tüm öl-
çümler literatürde yaygın olarak kullanılan Alman ve Australya gerçek dünya tüketici
kredisi verileri üzerinde gerçekleştirilmektedir.

Anahtar Kelimeler: Makine Öğrenimi, Kredi Sınıflandırması, Alman Kredi Verisi,
Avustralya Kredi Verisi, Veri Dönüşümü, Wrapper Özellik Seçilimi, Veri Madenci-
liği
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CHAPTER 1

INTRODUCTION

As a result of the unrestrained growth of banking sector and financial globalization, in

2008, the financial crisis arise from housing market fluctuations in USA, and spread

worldwide. In a consequence of this crisis, it is appeared that the banking sector

conduct their management tasks insufficiently. During the crisis, the total amount of

loses of banking sector is 2 trillion dollars. After these incidents, regulatory criterias

such as Basel III are developed1, and risk management become one of the main factors

determining contestability of banks. Besides, the current and future risk level of the

bank’s loan portfolio is crucial in terms of its competitiveness, resilience to financial

crises and profitability. Additionally, the ratio of consumer loans to total number of

all loans of all banks operating in Turkey is 71% in 1988, this ratio increased to 93%

in 20162. According to Turkish Banking Regulatory Authority (BDDK) report3, the

total amount of retail loans was 173 billion TL in 2010 while this amount reached

518 billion TL in September 2018. Additionally, the total amount of non-performing

loans has increased notably since 2010 [28].

Banks can make credit classification in two different ways. The first is a classifi-

cation method based solely on the individual judgment of the credit analyst. This

assessment depends on the personal judgment and expertise of individual customer

representatives [19]. Another method used by banks is the credit scoring method.

This approach is the classification of the new application according to a statistics

based on classification algorithm, such as ML, that takes into account current and

1 BDDK Sorularla Basel III December 2010 report
2 www.tbb.com.tr
3 Banking Regulation and Supervison Agency Sector Main Indicator 2018 September report
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past payment habits of customers. With this method, the payment habits of the new

customer can be estimated based on the dataset [31]. In order to measure the risk of

non-performing credit using a statistical testing algorithm can significantly reduce the

workload of banks and credit experts. Additionally, contradictory and objective credit

decisions can be decreased, speed of the process and system adjustments against to

changing environment would be increased. Statistical methods can make decisions

that based on huge datasets that credit analysts can not reach that level of experience

during their entire lives and deduce by using that much information. This methods

make the credit process accessible for costumers since there is no need for face to

face contact and reduce the operating costs in case of high volume of workload [1].

ML offers the ability to automatically learn to detect complicated patterns and cre-

ate smart data-based choices without direct programming. These algorithms generate

a mathematical model depending on sample instances, also known as training data.

Recently, ML methods are widely used in many data analysis fields [28].

Credit dataset cannot be provided from Turkish banks due to the confidentiality cus-

tomer information protection. For this reason, we conduct our research on two real-

world datasets commonly used in the literature which also enables us to make sound

comparisons with respect to the other studies in the literature. The datasets are taken

form the University of California, Irwin’s (UCI) [23] ML data repository. German

dataset consists of 1000 observation labeled as 1 or 0, and 30% of the data is defaulted

borrowers. Australian data set includes 690 examples and 45% of them is belong to

class 0. All machine learning analysis are conducted using sckit-learn libraries on

Python programming language. We employ eight different ML classification algo-

rithm.

1.1 The Aim of the Study

Credit assessment has a great importance for banks in terms of competing against

the other banks, its resilience to financial crises and its profitability. Therefore, the

risk management system used for credit decision should be modernized respect to the

changes and be robust. In this study, we investigate the most suitable and current clas-

sification algorithm fulfilling these conditions. We aim to obtain more explanatory

2



results in terms of dimentionality, and investigate capability of detection significant

features in case WFS method is used with ML algorithms. We also analyse the con-

tribution of hyper-parameter optimization, these parameters are included in all ML

algorithms, and can be manually adjusted, with GS. Additionally, effect of four types

of data transformation to these algorithms and methods is also in the scope of this

study.

The thesis is structured as follows: Chapter 2 contains a literature study of evaluation

of credit scoring and recent papers that related to our study. Chapter 3 demonstrates

credit scoring aspects, and its importance. Also, the dissimilarities between judgmen-

tal and credit scoring systems are revealed. In Chapter 4, we give detailed information

about two credit data set with attribute distribution and bar-plot graphs. Then, we

proceed with the statistical background explanations of scaling/normalization tech-

niques. After that, we state the mechanism behind the wrapper attribute selections,

and GS a method for ML to determine the optimum hyper-parameters. In Chapter

5, we introduce statistical and mathematical background of eight different ML algo-

rithms, and also techniques that used within these algorithms such as different op-

timization methods to estimate optimum coefficients in LR. Chapter 6 demonstrates

the results in three aspects consisting of large variety of different approaches. First

of them is the impact of data normalization techniques to efficiency of the ML al-

gorithm. The effect of wrapper methods on ML is the other aspect. After that we

examine how GS parameter optimization method affects these algorithms.

3
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CHAPTER 2

LITERATURE

2.1 Evaluation of Credit Assessment

The history of credit may dates back to appearance of commerce. The credit assess-

ment history is beginning just about sixty years ago, but credit history goes back to

about 2000 BC conversely. Credit assessment history is very short comparison to

emergence of credit. The concept of discriminative statistical assessment between

groups in samples is established by Fisher [25] in 1936. In this study, he attempts to

distinguish among two iris types by measuring the plant’s physical size and by using

their physical measurements to distinguish the root of the skulls by using Linear Dis-

criminant Analysis (LDA). The first usage of the same techniques for differentiation

among the default and non-default credits is implemented by Durand [24] in 1941.

This method is a research project in the US National Bureau of Economic Research.

However, in this project LDA does not have an aim for forecasting purpose. In ad-

ditionally, some of the financial institutions have problems with their loan operations

at the same moment. Credit assessments for deciding whether or not giving the a

loans to a customer is made by credit analysts judgmentally for a long time. These

loan analysts are drafted into military service, therefore, there is a serious need for

the people that has this kind of specialty. Hence, the companies wanted the analysts

to write down practical rules needed for credit assessments [34].

Inexperienced employees then used these guidelines to create loan choices. In this

way, one of assessment system is established for the first time. In the late 1960s, with

the appearance of the credit cards, the banks and other institutions that use the credit
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cards noticed the benefit of credit assessment. Every day, the number of individuals

is making application for credit cards, and the assessment of all these applications

with manpower is unfeasible except with automatized credit decision systems. These

institutions discovered that automatized credit decision is a much stronger predictor

than any other judgmental system when they apply this approach. Also, they noticed

that their default rates could decrease by 50% or more [45].

The achievement of credit assessment in credit cards in the 1980s led to financial in-

stitutions started to apply for scoring the other financial services such as consumer

credits. In the United States, the full quantity of outstanding personal loans is more

than $700 billion. Eastern European nations and China also begin to notice the benefit

of consumer credit since a central point in a personal loan is providing credit widely

accessible and also profitable. Developments in computing enables other methods to

be attempted to construct scorecards. Logistic Regression and Linear programming

which today’s commonly used card builders are introduced in the 1980’s. The Basel

standards for determining capital requirements are introduced in 1998, and also en-

hance and advance so far. Capital is needed for every kind of financial major risks.

Credit risk typically has been the biggest risk factor facing banks, and generally the

one needs the highest capital [30].

With advancements in computer technologies, artificial intelligence methods such as

expert systems and neural networks are tested in credit scoring more recently. Proba-

bility of Default (PD) estimations are made for classification and survival analysis by

new models constructed with strong methods. This models are used to calculate the

customer’s default likelihood and when the borrower’s default would take place [37].

A variety of credit scoring methods are compared, including discriminating analysis,

logistic regression, Bayes classifier, nearest neighbor, neural networks, and classifi-

cation trees. It has been found that artificial neural networks are more accurate in

classification than the other five techniques [69]. In addition, it is noticed that ad-

vanced techniques such as Neural Network (NN) are working outstandingly better

than the extreme learning machine on loan assessment [37].
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2.2 Literature on Machine Learning

In Brown and Mues study [13], many machine learning methods are analyzed on im-

balanced data distribution sets at which five different credit data exist. The imbalance

rates of these data are increased by 1%, 2.5%, 5%, 10%, 15% and 30% respectively

and the performance of the algorithms are compared. Performance criterias AUC,

Friedman’s statistics and Nemenyi post hoc test are used to validate these methods

under this ratios. According to result, RF and Gradient Boosting yielded the best

results, while C4.5 and KNN are the worst techniques in cases of large class imbal-

ance cases. Following study of Lessmann et al. [37] has tested 41 different predictive

methods on eight different credit data. Each algorithm used in these analyzes is tested

50 times, and averages of the test results are taken. Six different criteria PCC, AUC,

Partial Gini index, H-measure, Brier Score, and the Kolmogorov Smirnov statistics

are applied in the evaluations. They conclude that many machine learning methods

have much better results than Logistic Regression which is accepted as an industrial

standard. Especially the ensemble algorithms preferable to the other methods. In

another study of Ince and Aktan [31], performances of discriminant analysis, logistic

regression, artificial neural networks and Classification and Regression Trees (CART)

based Decision Tree are compared. Analyzes are made on data consisting of 1260 ob-

servations, which included nine characteristics from a Turkish bank. As the result, it

is found that Decision tree has the best performance. In paper of Basens et. al. [5],

mainly used classification methods in ML literature are compared on 8 different real-

world data. Evaluation of these methods is based on AUC and PCC criterias, which

conclude that NN and SVM algorithms are prominent methods. LR, C4.5, SVM and

NN methods are examined in work of Yu et. al. [70], analyzing them with 8 different

training data ratios from 10 percent to 80 percent, which result in LR and SVM have

the best results comparison to the other methods in general, with SVM being more

robust against different data split ratios. 1-NN, NB, LR, MLP, Radial Basis Function

(RBF) neural networks, SVM and C4.5 based DT algorithms are used in study of

Marqués et. al. [43]. The comparison of the algorithms, and their compatibleness

with 5 different ensemble techniques is examined. It is found that DT based on C4.5

and SVM gives better results than other classifiers.
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In feature selection area on ML algorithms, there are a wide variety of methods such

as wrapper, filter and hybrid algorithms. The paper of Van et. al. [63] approaches

this subject by using German and Australian data sets. In this research, the features

are 20 times trained on RF and median values and standard deviation of outcome

values are evaluated. As a result, the features with the highest median and the lowest

standard deviation are determined. Obtained subset is validated by NN algorithm, and

these scores also are used in specifying the final form of attribute subset. Efficiency

of this subset is assessed with the five different ML methods, and as a result they

see that usage of the subset increase performance of these ML algorithms generally

comparing to normal data set. On another research by Liang et. al. [40], same data

sets as the research above and two additional credit data sets are used and 5 different

attribute selection approach are applied. This methods include two wrapper methods

with Genetic Algorithms (GA) and Particle Swarm Optimization(PSO), and the three

widely used filter methods t-Test, LDA, and LR. It is summarized that there is no best

feature selection method for the four data sets. Efficiency of the base line algorithms

can be enhanced if the attribute selection method is chosen carefully. Another study

by Chen and Li [15] on attribute selection practices with the same two data sets of

German and Australian credit data has taken place, analyzing four selection methods

on SVM algorithm. The methods examined are LDA, DT, RST and F-score. It is

concluded that LDA+SVM combination is slightly better than the other combinations,

but DT+SVM gives accuracy result that has the minimum standard deviation. In the

following study of Suto et. al. [59], evaluations on human activity recognition data

is conducted. One NB wrapper and six filter methods are compared on both NN and

NB. They find that attribute subset created with NB wrapper gives the best results in

comparison to other selection algorithms. Another research about attribute selection

in our literature review is the paper of Nnomoko et al. [47]. In this study, they examine

a filter and two wrapper methods on diabetes data, and they see that wrapper approach

have the highest performance against filter method in terms of ROC and accuracy.

However, they also add that filter methods are more robust and less time consuming

approach than wrapper methods.

In literature, the effects of data transformation are not commonly examined. One

of the paper by Szymanski et al. [60] analyzes are performed on masquerade data
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consists of 5000 observations. Efficiency of SVM is examined on Standard and Min-

imum Maximum data transformation methods. They find that combining SVM with

Max-Min transformation gives more accurate results. In the other research of Jay-

alakshmi and Santhakumaran [33], performance of NN with five different scaling

methods is measured. These methods are Min-Max, Median Norm, Sigmoid Norm,

Z-score and Statistical Column Normalization. Studies performed on the PIMA In-

dian Diabetes dataset consist of 768 samples. They conclude that effectiveness of NN

depends on scaling methods, and NN with Statistical Column Normalization provides

better results than with the other methods, while worst result is obtained by median

normalization.
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CHAPTER 3

CREDIT SCORING

Credit scoring, like other prediction models, is a instrument used to assess the amount

of risk related to candidates or clients. Scoring models identifies customers as good

or bad applicant on an individual basis. They offer statistical odds or likelihood that

the applicant with any specified score will be good or bad in the future. These odds or

scores are then used as a basis for decision making process along with other factors

such as predicted approval rates, income, and losses [56].

The simplest meaning of the loan is to provide monetary service before payment. It

could be for short-term expenditure, consumer durables and other benefits providing

valuable services to customers or business enterprise. The meaning of the word credit

is rely on or trust. When you give someone something, you have to trust him or her

to honor the responsibility. On the other hand, scoring relates to using a numerical

tool to rank order instances based on some actual or perceived quality to discriminate

between them and to guarantee objective and stable choices. The available informa-

tion is integrated into a single value that means a certain quality, generally linked to

desirability or suitability. Measurements are commonly described as numbers rep-

resenting a single quality, while these scores may be presented with classifications

(high, medium, low, etc.) representing one or more qualities. Scoring has become a

common method in processes where predictions are required that can only be stated

statistically, and do not express certainty. If there were methods that predicted the

future in a perfect way, it would make a bank or financial institution’s credit portfolio

very robust, and this method give an big advantage in competition. Extrapolate is an

unreachable ideal, and creditors must do their utmost with the available data. The
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total losses and the elements of profitability are ignored sometimes when application,

behavior and credit history ratings are mistakenly considered to be creditworthiness

measures. Indeed, a individual with greater than average risk can be creditworthy

at the correct price or increasing the interest rate, lowering the quantity, shortening

the duration of the debt. Predictive credit models are used to evaluate the relative

probability of a future event based on past information. If there is no sufficient data

for scoring models, then judgmental models could be used. Combining scores and

strategies by automatically usage of the computers offers a significant reduction in

decision making process costs and time [1].

A robust credit risk management can be stated as providing a strong portfolio of

performing assets that can compete against to others. The interest rate and margin of

the loans has to reflect the risk. A good quality assessment approach is a requirement

to prevent high-level losses. Credit assessment is a method for creditworthiness that

analyzes the risk of the borrower. High probabilities or scores represent low risk and

small probabilities demonstrate high risk level in a good credit evaluation model, so

it must be very discriminatory. To have better ranking assessment, the scoring system

has to be highly discriminatory. Risk measurements is classified to each score or score

categories during the calibration stage. The robustness, risk ranking and calibration

of credit scores can be verified by testing observed old credit losses per score. Credit

validation scores are often categorized into segments. Categorized scores are stratified

risk estimates that are also known as risk classes and ratings [62].

3.1 Credit Scoring Versus Judgmental Systems

The general concept of loan assessment is to compare a clients features with attributes

that belongs to other previous customers whose loans they have already paid back. If

the features of a customer are sufficiently comparable to those granted credit and have

therefore failed, the request will usually be dismissed. The credit request will usually

be given if the customer’s characteristics are satisfactorily comparable to those that

have not defaulted [19].

Lenders make judgmental decisions for potential borrowers in traditional lending
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based on the applicant’s character by measuring the borrower’s reputation and hon-

esty, the borrower’s ability to pay, the capital that the borrower’s assets, collateral

provided in the event of payment problems occurrence, and condition that the bor-

rower’s circumstances. These evaluations are based on the knowledge of the lenders

themselves and what they have learned from their mentors, taking into account not

only historical experience, but also a forward-looking perspective of the prospects of

the borrowers. Obtaining information through customer relationships makes it very

hard for clients to grow their company. The efficiency of a judgmental method relies

on the loan analyst’s knowledge and common sense [1].

Consequently, judgmental methods are linked to subjectivity, inconsistency and indi-

vidual preferences that motivate choices; and also there are some strengths in judg-

mental techniques, such as taking qualitative features into consideration and dealing

with inexact information, and missing information [2].

On the other hand, analysts use their historical knowledge with debtors in a credit

scoring model to derive a quantitative model to segregate acceptable and unaccept-

able loan requests. A credit application is mainly a self-operating method using a

credit scoring model and is continuously applied to all credit choices. The scoring

process can create choices based on a statistically extracted amount of points related

to the applicant’s score provided by the predictor factors, such as age or educational

background. As a consequence, it can be said that credit scoring allows progress to

quickly evaluate creditworthiness [58]. In addition, credit assessment provides ad-

vancers an opportunity to enhance customer services and retain steady clients. An

analyst can, of course, distinguish the acceptable from the unacceptable loan candi-

dates by using a statistically extracted cut-off credit score. On the other side, due to

statistical issues with the information used to develop the model, credit assessment

has been criticized as well as assumptions of the specific statistical method used to

obtain point scores. These models can be considered one of the most effective models

used in business and finance despite the criticism of credit scoring systems [6].

Credit assessment needs less data to make a choice, since credit scoring models have

been estimated to include only those variables that are statistically and substantially

correlated with repayment results, while judgmental choices have no statistical im-
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portance and therefore no variable reduction techniques are accessible. Credit scor-

ing systems try to correct the error that would occur with only considering accepted

applicant and not all applications repayment history. The process is done by assum-

ing, if rejected requests approved, how they would have been fulfilled. Features of

those who have been accepted and who have subsequently failed is usually a base

for judgmental methods [19]. Credit scoring models consider both good and bad bor-

rowers’ characteristics, whereas judgmental techniques are commonly biased towards

bad borrowers. Credit scoring models are based on much bigger samples than can be

remembered by a credit analyst. Credit assessment models reveal the correlation be-

tween the attributes which belong to customer and repayment behavior. While in the

event of judgmental methods this correlation can not be reviled since many of the

features that a loan analyst may use are not measured impartially [14].

A credit assessment model can handle a large number of the characteristics of a cus-

tomer at the same time, including their relationships, however The mind of a loan an-

alyst can not possibly do the same, because the task is too difficult and complicated.

Another vital advantage of credit scoring is that different loan experts or data analysts

can analyze the same data effectively and accurately and offer the same weights. In

the event of judgmental techniques, this is extremely unlikely [19].

Some other credit scoring benefits are more effective processing time, reduced costs

and effort of loan process, modeling with real data, occurrence of fewer error rates,

providing estimates to be compared in previous assessments,consideration of mutual

relations between variables, objective analysis can be used to support the credit risk

assessment, with the feature selection techniques fewer customer information can be

required for loan assessment, and the threshold value can be altered depending on

environmental variables influencing the banking sector [14].
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CHAPTER 4

DATA PROCESSING, METHODS AND DATASETS

4.1 Data Transformation Techniques

In preprocessing phase, feature scaling is a vital part that could be easily ignored

by the analyst. DT, RF and XGB are some of tree based algorithms that do not

require feature scaling. These algorithms are insensible against to scaling methods,

whereas most of ML and optimization methods work more efficiently when attributes

are on the same range [51]. For instance, different attributes are typically measured

on various ranges, and if there is a usage of Euclidean distance or Manhattan distance

metric, it can cause some features completely outweigh the others that had smaller

range of measurement [68]. Normalization and standardization are two of the most

common methods for bringing distinct attributes to same scale [51].

Natural Logarithm

The natural logarithmic scaling is a particular case of a group of transformations

known as power transformation. The logarithmic function (LN) is formed by taking

the inverse of the exponential function. The log function shrink the range of large

numbers and expands the range of small numbers. The transformation can simply

be defined as the greater x, the slower the increases in the function. The function is

expressed as

x′i = lnxi, x > 0 (4.1)

where xi is the i-th sample in the data, and x′i is the transformed sample. It compresses

15



the long tail into a shorter tail, and expands the lower tale into longer. The transform

is a strong instrument to deal with a heavy tailed distribution of positive numbers [71].

Figure 4.1: Attribute Amount under LN transformation.

In Figure 4.1, it is seen that the amount attribute in German dataset is normalized, and

scaled values falls within the range between 0 and 6.

Box-Cox

Box-Cox transformation also known as power transformation. Statistically, these

transformations are aimed at stabilizing the variance. We can define this transfor-

mation as

x
′

i =


xλi −1

λ
if λ 6= 0,

lnxi if λ = 0,
(4.2)

where λ is transformation parameter, and x is the i-th sample. To avoid the variance

dependence on the mean, Box-Cox transformation change the distribution of the vari-

able. Setting λ to be less than 1 compresses the higher values, and setting it higher

than 1 has the opposite effect. While applying the transformation, we have to deter-

mine a value for the λ parameter. Determination for specific value of λ could be done

via maximum likelihood estimation or Bayesian methods. Additionally, to apply a

Box-Cox transformation, observations have to be positive [71].
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Figure 4.2: Attribute Amount under Box-Cox transformation.

It is seen that the amount attribute values are centered, and its values are scale into

the range [0,5] in Figure 4.2.

Min-Max

Min-max scaling function provides a linear transformation of the initial data. It main-

tains the connection between the values of the initial data [28].

Let x be an individual feature value (i.e., a value of the feature in some data point),

and min(x) and max(x), respectively, be the minimum and maximum values of this

feature over the entire dataset. Min-max scaling squeezes (or stretches) all feature

values to be within the range between 0 and 1. Consider that x is an attribute value

in the data, and max(x) is the maximum value of an attribute column and min(x) is

the minimum value of the same column. With the usage of these values this function

scale by compressing or expanding the values into the range between 0 and 1 [71].

The formula for min-max scaling is:

x
′

i =
x− xmin

xmax − xmin
(4.3)

It is seen in Figure 4.3 that the amount attribute values are only scaled into the range

[0,1], but this attribute keeps its long tail distribution.
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Figure 4.3: Attribute Amount under Min-Max transformation.

Standard

Standard scale is also known as the z-score standardization can be more practical for

many ML algorithms, as well as for optimization methods such as stochastic gradient

descent. Some linear models like SVM start the weights small random values which

is close to zero. In this transformation, feature columns are set in the midst at stan-

dard deviation one and mean zero. It makes the process easier. In min-max scaling,

the feature variables are squeezed into the range between 0 and 1 which makes algo-

rithms sensitive to the extreme values, but the standard scaling sustain useful outlier

information which makes the algorithms more robust. The standardization procedure

can be demonstrated by the following equation:

x
′

i =
x− µ
σ

(4.4)

Here, µ is the sample mean of a particular feature column and σ is the corresponding

standard deviation [51].

It is understood in Figure 4.3 that the amount attribute values are only scaled into the

range [0,1], but this attribute is kept its long tail distribution.

Figure 4.4: Attribute Amount under Standard transformation.
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Similar to the Max-Min, with the Standard scale in Figure 4.4 amount attribute main-

tains its distribution, but its range is between [0,5].

4.2 Feature Selection

Feature Selection is one of the most influential analysis for performance of the model

since irrelevant or partially relevant features can cause negative effect. Besides, this

analysis provides various benefits such as reduction in run time and obtaining more

accurate results.

Wrapper Method

The learning algorithm is wrapped into variable subset selection procedure for this

reason it is called wrapper method. It would be simple to make an independent eval-

uation of an attribute subset if there was a silver bullet way to determine when an

attribute was related to the class. Yet, there is no widely accepted measure of signifi-

cance, even though several variety of measurements have been proposed [71].

The general concept of the wrapper method is to pick a subset of features using a

learning algorithm as part of the evaluation function. In this method a black box

function is used to search relevant attributes, instead of usage of explicitly described

feature assessment method, such as entropy. In the assessment process, each candi-

date attribute subset is validated by the learning algorithm itself, and it returns a score

value corresponding to each subset, visualization of WFS is in Figure 4.5. This can

be rather time consuming, since for each candidate feature subset evaluated during

the search, the target learning algorithm is usually applied several times (e.g., in the

case of ten-fold cross-validation used to estimate model quality). This process could

be taken time because each of the attribute in the data is evaluated generally several

times, especially in case of K-Fold Cross Validation (KFCV) usage. The wrapper

method can be used with any machine learning algorithm. KFCV is common option

for wrapper methods since usage of algorithm itself may cause overfitting problem.

Besides cross validation, the greedy search methods such as forward and backward

selection are some typical implementation algorithms [8].
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Figure 4.5: Wrapper Mechanism.

Sequential Forward Selection

In a nutshell, Sequential Forward Selection (SFS) processes begins with the induc-

tion of machine learning algorithms for n single-attribute subsets from which the best

performer is selected, which finished the first selection phase. Among the n − 1 at-

tributes most fitted one with the already selected feature is spotted, and this attribute

is added to the subset. This process goes on until the number of subset reaches to

n. In that way, whole attribute combinations are validated and the subset that has the

highest score, such as accuracy or minimum weighted error,is detected. Algorithm 0

is given for simplicity of the SFS mechanism. We are dealing with more and more

variables in this methodology with each iterative phase of the method, a question is

could be examined in each step that whether it is enough, whether we have the set of

attributes that fulfill our criteria. The answer is not quite clear since when accuracy

criteria is considered as the most efficient factor for base decision measure, reaching

to the maximum point is not an easy process. The best point that we achieve could

be an local maximum instead of a global optimum. Even if it is greedily continued,

the next optimum point could also be another local maximum point. Only when the

brute force approach is applied, the global maximum point is guaranteed. However it

is an extremely exhaustive and time-consuming process. When the dataset include n

attributes, the combination number is 2n for all the possible assessment. Without set-

ting an initial stopping criteria, the brute force strategy the process could not be over

even in a lifetime. Since the execution time increases exponentially as the number of

attributes go up. In such a scenario, the process can be limited by initially stating the

number of features that contained in subset, but it does not make certain the optimum

subset. The time consumption is the most important problem in wrapper methods. In

the SFS approach, execution time is considerably low in comparison to brute force
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because the number of combination is n(n+1)
2

. SFS is a more appropriate way to apply

wrapper methods, as we will use SFS in our study [57]. The mechanism of SFS is

demonstrated in Table 4.1 for better understanding.

Table 4.1: Forward Feature Selection Algorithm
k = 0; i = 0; best = 0; score = 0;OFS = [ ]

FC = [f0, f1, f2, ..., ft]

n = len(FC)

while i < n : do
k = len(FC)

max = 0

feature = 0

for j in range(k) : do
score = eval(FC[j])

if score > max : then

max = score

feature = FC[j] ;

if max > best : then

best = max ;

end

OFC = OFC + feature

FC = FC − feature
i = i+ 1

end

4.3 Parameter Optimization

In machine learning, there are two kind of parameters. The first one is learned from

the training data, as an example the weights in LR, and the other one are hyper-

parameters of a learning algorithm that are optimized separately. For example, the

iteration number parameter in LR or the number of trees in a random forest [51].

Search of the possible combinations of hyper-parameters, and where to look for opti-

mum point is a hard task. An hyper-parameter space may contain value combinations

that perform better or worse. Even after detecting a good combination, there may al-

ways be a better combination of the parameters since this point could be an optimum

point in local minimum area. A practical way to overcome this problem, verifying

hyper-parameters for an algorithm applied to specific data is to test them in large
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variety by KFCV, and to pick the best combination based on the highest accuracy

rate. GS makes this process easier by allowing user by sampling the range of pos-

sible values to input into the algorithm and to spot when the general error rate is in

minimum [44].

It is a brute-force approach that a list of prespecified values belongs to different hyper-

parameters is used, and the model performance is assessed to find the highest accuracy

among the combination of those parameters. To obtain more robust and general re-

sults, GS is commonly applied with 10-fold cross validation [51]. The structure of

GS is given in Table 4.2.

Table 4.2: Grid Search Algorithm
max = 0; best = 0; score = 0

A = [a0, a1, a2, ..., an]

B = [b0, b1, b2, ..., bn]

for i in A do

for k in B do
score = eval(φik(x0, x1, ..., xt))

if score > max : then

max = score

feature = FC[j] ;

end

end

where xt’s are sample tuples in dataset, A is the set of one type hyperparameter, and

B is another type of hyperparameter set. an’s and bm’s are different parameter values

aimed to tune.

4.4 Datasets in Credit Classification

The performance of the ML algorithms and different approaches that we work on

requires real-world data. However, due to Law On The Protection Of Personal Data,

published in the official gazette and entered into force on 07.04.2016, customer data

cannot be provided from Turkish banks 1. For this reason, two real-world data sets,

German and Australian, are used to conduct our research. Since these data sets are
1 http://www.resmigazete.gov.tr/eskiler/2016/04/20160407-8.pdf
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frequently used in the literature, we will be able to compare our own results with the

literature.

4.4.1 German Dataset

German dataset is taken form the UCI machine learning data repository [23], and

there are two available variety of the data . The first one of these is the original

one consists of symbolic, categorical and continuous attributes. The second and the

numeric form of the data produced by Strathclyde University for algorithms that work

only with numerical attributes contains 24 attributes, which are 20 attributes in the

original version. There are 1000 observations in the data set, 700 of which belong to

class 1 (Not default) and 300 of them belong to class 0 (Default). The plots of these

attributes are visualized in Figure 4.4.6.

(a) Duration. (b) Credit Amount. (c) Age.

(d) Co-Applicant. (e) Checking Account. (f) Domestic.

(g) Credit History. (h) Employment. (i) Foreign.
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(j) Management. (k) New Car. (l) Number Credit.

(m) Number of Dep. (n) Other Int. (o) Own Residence.

(p) Personal Stat. (q) Present Res. (r) Property.

(s) Skilled. (t) Rent. (u) Savings Account.

(v) Unskilled. (w) Used Car. (x) Telephone.

Figure 4.4.6: German Data Attributes.

Figure 4.4.6 includes the continuous and categorical attributes in German dataset.

Three of the features 4.4.6b, 4.4.6c and 4.4.6a follows long tail distribution, and it is

seen that distribution of each class values are very similar. The remaining 21 attributes

are categorical. Their class percentages are also added to top of the category bars.
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Table 4.3: German Credit Data Features
Attribute Description Type
Attribute 1 Age in years Numerical
Attribute 2 Duration in month Numerical
Attribute 3 Credit history Categoric
Attribute 4 Purpose Categoric
Attribute 5 Credit amount Numerical
Attribute 6 Savings account/bonds Categoric
Attribute 7 Present employment since Categoric
Attribute 8 Instalment rate Numerical
Attribute 9 Personal status and sex Categoric
Attribute 10 Other debtors/guarantors Categoric
Attribute 11 Present residence since Numerical
Attribute 12 Property Categoric
Attribute13 Status of existing checking account Categoric
Attribute 14 Telephone Categoric
Attribute 15 Other instalment plans Categoric
Attribute 16 Housing Numerical
Attribute 17 Number of existing credits at this bank Categoric
Attribute 18 Foreign worker Numerical
Attribute 19 Job Categoric
Attribute 20 Number of dependants Categoric

4.4.2 Australian Dataset

Same as the German dataset, this data is also taken from the UCI machine learning

repository [23]. The data set consists of credit card applications. The data source and

the attributes contained within it are represented by letter codes for confidentiality

reasons. The data consists of six numeric and 8 categorical attributes. Percentage of

the missing values in the data is 5%, and these values are changed by the attribute’s

mode if it is a categorical data, and the values are replaced by the attribute’s mean if

it is continuous. The data includes 690 observations, 307 of which belong to class 0

and 383 of them belong to class 1. The graphs of each features can be found in Figure

4.4.7.

(a) G. (b) M. (c) N.
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(d) C. (e) B. (f) J.

(g) A. (h) D (i) E.

(j) F. (k) H. (l) K.

(m) L. (n) I.

Figure 4.4.7: Australian Data Attributes.

In Figure 4.4.7, it is seen that the Australian dataset includes both categorical and

continuous features. The subfigures 4.4.7a, 4.4.7b, 4.4.7c, 4.4.7d, 4.4.7e and 4.4.7f

demonstrate the continuous attributes which follow a long tailed distribution. Rest of

the subfigures show the class percentages of each category.
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Table 4.4.4: Australian Credit Data Features
Attribute Type and/or value
Attribute 1 (A) 1, 0 categorical
Attribute 2 (B) Continuous
Attribute 3 (C) Continuous
Attribute 4 (D) 1, 2, 3 categorical
Attribute 5 (E) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 categorical
Attribute 6 (F) 1, 2, 3, 4, 5, 6, 7, 8, 9 categorical
Attribute 7 (G) Continuous
Attribute 8 (H) 1, 0 continuous
Attribute 9 (I) 1, 0 continuous
Attribute 10 (J) Continuous
Attribute 11 (K) 1, 0 continuous
Attribute 12 (L) 1, 2, 3 continuous
Attribute 13 (M) Continuous
Attribute 14 (N) Continuous
Attribute 15 1, 0 class attribute
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CHAPTER 5

MACHINE LEARNING ALGORITHMS

In this part, mathematical and statistical aspects of eight commonly used ML algo-

rithms in literature, are comprehensively provided. Besides, the hyper-parameters

requiring mathematical explanation, and included in the algorithms, are detailed.

5.1 Gaussian Naïve Bayes

Naïve Bayes classifier is a statistical classifier that has a white box nature which

means the ML process is transparent and clear understanding of how they behave [39].

Bayesian classification method named after Thomas Bayes is based on Bayesian The-

ory [28]. In this approach, the posterior probability of every samples is calculated by

considering their particular classes [26]. This classifier assign the most probable class

to a specified instance defined by its attribute vector. In this algorithm, assuming that

features are independent for corresponding class can greatly simplify the learning

process. For this reason, the algorithm is called Naïve [53]. Some machine learning

classifier comparison studies have found that a simple Bayesian learning algorithm

known as Naïve Bayes Classifier has a competitive performance with and neural net-

work classification algorithms. Also, when applied to big databases, Bayesian classi-

fiers showed good accuracy and execution time efficiency [28].
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Figure 5.1.1: Schematic for GNB. [64]

In the following, we give general intuition for GNB.

The conditional probability of an example E = (x1, x2, ..., xn) belonging a class c is

P (c|E) =
P (E|c)P (c)

P (E)
(5.1)

Due to the samples in each feature are assumed to be normally distributed and to deal

with the continuous variables, the Gaussian transformation is required, so calculation

of P(x|c) is

P (E|c) =
1√

2πσ2
c

e
− (x−µc)2

2σ2c (5.2)

In the above formula 5.2, µc is the mean of class c and σc is the standard deviation of

class c. With this transformation the conditional probability of numeric attributes can

be calculated. E is classified as the class C = + if and only if the estimation

fb(E) =
P (C = +|E)

P (C = −|E)
1 1, (5.3)

is satisfied, where fb(E) is called a Bayesian classifier. With the assumption of all

attributes are independent given the value of the class variable; that is,

P (E|c) = P (x1, x2, ..., xn|c) =
n∏
i=1

P (xi|c), (5.4)

the final form of the classifier is then:

fnb(E) =
P (C = +)

P (C = −)

n∏
i=1

P (xi|C = +)

P (xi|C = −)
. (5.5)
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The corresponding classifier ĉ is:

ĉ = argmaxP (c|x) (5.6)

Because P (x) is the same for each, ĉ is:

ĉ = argmaxP (c|x) = argmaxP (c)P (x|c) (5.7)

The function fnb(E) is called a GNB classifier [7].

5.2 Support Vector Machines

The Support Vector Machine (SVM) converts the initial training data into a higher di-

mension, it employs a nonlinear mapping. Within this new dimension, it searches for

the linear optimal separating hyperplane (i.e., a decision boundary separating the tu-

ples of one class from another). In this high dimensional space, the algorithm search

decision boundary which separates linearly the variables belong to different classes.

This optimum separating boundary is called hyperplane. The SVM decides the hy-

perplane location and margins by using the support vectors which are training points.

For simplicity, consider a two class example where the classes are linearly separable.

Figure 5.2.1: Schematic for SVM [67]

Let assume that the data set D be given as (X1, y1), (X2, y2), ..., (X|D|, y|D|),

where Xi is the set of training variables with associated class labels yi.
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Corresponding to the classes each yi can take one of two values either +1 or −1.

There is an infinite number of dividing hyperplanes that could be drawn for a linearly

separation of two-class dataset. SVM deals with discovering the optimal hyperplane,

that is one on earlier invisible variables that will have lesser classification error is

found by seeking for the largest marginal hyperplane. We expect the hyperplane

with the larger margin to be more accurate at classifying future data tuples than the

hyperplane with the smaller margin. In this approach, the hyperplane that has bigger

margin to be more precise than the hyperplane that the lower margin when classifying

future data inputs is aimed. Definition of margin, we can say that the shortest distance

from a hyperplane to one side of its margin is equal to the shortest distance from the

hyperplane to the other side of its margin, where the “sides” of the margin are parallel

to the hyperplane. The shortest range from a hyperplane to one side of its distance is

equal to the shortest range from the hyperplane to the other side of its distance, where

the distance borders are parallel to the hyperplane is the definition of margin.

A dividing hyperplane can be identified as

W.X + b = 0, (5.8)

where W is a weight vector, in that, W = (w1, w2, . . . , wn); n is the number of

features; and b is a scalar, often referred to as a bias. With considering two input

attributes, A1 and A2, and x1 and x2 are the values of this features.

Redesigning Eq: 5.8 we get,

w0 + w1x1 + w2x2 = 0. (5.9)

If any point lies above the dividing hyperplane, this points satisfy the following con-

dition

w0 + w1x1 + w2x2 > 0. (5.10)

Alike in the above inequality 5.10, if any point lies below the dividing hyperplane
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satisfies the below condition

w0 + w1x1 + w2x2 < 0. (5.11)

The weights can be adapted to allow the hyperplanes defining the margin’s borders to

be written as

H1 : w0 + w1x1 + w2x2 ≥ 1 for yi = +1, (5.12)

H2 : w0 + w1x1 + w2x2 ≤ −1 for yi = −1. (5.13)

Combining these two inequalities 5.12 and 5.13, we get

yi(w0 + w1x1 + w2x2 ≥ 1), ∀i. (5.14)

The training features which is on hyperplanesH1 orH2 are defined as support vectors.

With this, a formula can be obtained for the size of the maximal distance. The dis-

tance between the dividing hyperplane to any point on H1 is 1
||W || ,where ||W || is the

Euclidean norm of W . This distance range is same as the distance from any point

on H2 to the dividing hyperplane. Hence, the maximal margin is 2
||W || . It is a convex

quadratic optimization problem needed for maximal marginal hyperplane in this sit-

uation. Reorganizing inequality in Eq:5.14 with using a Lagrangian formulation and

then solving for the solution using Karush-Kuhn-Tucker (KKT) condition, we get

d(XT ) =
l∑

i=1

yiαiXiX
T + b0, (5.15)

where yi is the class label of support vector Xi; XT is a test tuple; αi and b0 are nu-

meric parameters that are calculated by the optimization process of SVM algorithm,

l is the support vector quantity and the αi are Lagrangian multipliers. In nonlinear

cases, it is needed to find a way to separate classes. Mapping variables into higher

dimensional space enables to deal with separation of this cases.
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To overcome with this problem, we can apply a kernel function, such as K(Xi, Xj),

to the original input data. That is,

K(Xi, Xj) = φ(Xi).φ(Xj). (5.16)

After applying this trick to Eq: 5.15, we can proceed to find a maximal separating

hyperplane. With this our equation become

d(X) =
l∑

i=1

yiαiφ(Xi).φ(X) (5.17)

form [28].

5.2.1 SVM with Sigmoid Function

SVM generates an uncalibrated value that is not a likelihood. Assume an SVM’s

unthresholded output be

f(x) = d(x) + b, (5.18)

where d(x) given in Eq: 5.15 lies in a Reproducing Kernel Hilbert Space (RKHS) F
induced by a kernel k. Training an SVM minimizes an error function that penalizes

an approximation to the training misclassification rate plus a term that penalizes the

norm of d in the RKHS:

C
∑
i

(1− yifi) +
1

2
||d||F , (5.19)

where fi = f(xi). In order to decrease a bound on the test data classification error

ratio, minimization of error function is required. An extra benefit of this error function

is that minimizing it will result in a sparse machine where the final machine uses

only a subset of possible kernels. By sorting the attribute space F to an orthogonal

direction to the dividing hyperplane, and rest of all the N − 1 dimensions of the

attribute space, SVMs can map the outputs into the probabilities.
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t which is a transformed version of f(x) parameterizes the orthogonal direction, as a

vector u parameterizes all the other directions. The posterior probabilities is generally

dependent on t and u : P (y|t, u). By summing cosine values, probabilities could be

calculated

P (y|t, u) = a0(u) +
N∑
n=1

an(u)cos(nt). (5.20)

Regularization function is minimized with usage of cosine expansion coefficients,

which can be define as a linear equation for the an. To fit posterior probability P (y|f),

a parametric model is employed. The conditional densities of margins with respect to

classes are exponential,so by use of sigmoid function we have

P (y|f) =
1

1 + exp(Af +B)
. (5.21)

By using maximum likelihood calculation, A and B parameters could be fit form the

set (fi, yi).

Assume that identify a training set as (fi, ti). In this tuple the ti are target probabilities

identified as follow

ti =
yi + 1

2
. (5.22)

By minimizing the negative log likelihood of the training data, A and B are calcu-

lated [50]. It is a cross-entropy error function

min

{
−
∑
i

tilog(Pi) + (1− ti)log(1− Pi)

}
, (5.23)

where

Pi =
1

1 + exp(Afi +B)
. (5.24)
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5.2.2 Kernel Functions

One of the main reason why SVMs gains popularity is that it can simply increase di-

mensionality to solve nonlinear classification tasks. The fundamental concept behind

kernel methods for dealing with such linearly inseparable samples is to generate non-

linear combinations of the initial attributes to project them through a mapping func-

tion K into a higher-dimensional space where they turn into linearly separable [52].

a) Linear Kernel

The Linear Kernel (LK) uses Pearson standard correlation to assess the relation in a

pair of instances [32].

K(xi, xi′) =

p∑
j=1

xijxi′j. (5.25)

b) Radial Basis Function

The Radial Basis Function (RBF) or simply called the Gaussian kernel is one of the

most commonly used function. The function is defined as follows

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2). (5.26)

where γ = 1
2σ2 is a regulatory parameter can be optimized. When the gamma param-

eter values is increased, it brings a tighter and bumpier decision boundary [52].

c) Sigmoid Kernel

Sigmoid kernel (SK) is also knows as The hyperbolic tangent kernel. It is a nonlinear

transformation of separating hyperplane.

K(Xi, Xj) = tanh(κXi.Xj − δ) (5.27)

Here, κ and δ are shape values for separation [44].
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d) Polynomial Kernel

A polynomial kernel (PK) of degree d,

K(xi, xi′) = (1 +

p∑
j=1

xijxi′j)
d. (5.28)

where d is a positive integer. Using such a kernel with d > 1 leads to a much more

flexible decision boundary. It causes SVM to work in a higher-dimensional space by

including polynomials of degree d [32].

5.3 Decision Tree

A decision tree (DT) consists of internal nodes, branches and leaf which seems like a

tree structure. In each internal node indicates a test on a feature, all leaves are sym-

bolize a class label, and each branch defines an outcome. In top of the tree structure,

there is a root node which the splitting is started at this point [28].

DT’s are structured general to specific information by usage of training data. In a

situation that whole the examples in a node belong to same class, there is no need

for a splitting because when a random dividing is occurred, it does not decrease the

impurity ratio which will be explained later. Hence, the node is turn to a leaf node and

the branching is completed. In another scenario, we consider the examples belong to

different two classes half and half. In such a situation, it means that the node is not

pure, and with the test splitting will be occurred. This is continuously repeated until

there is no possible decrease for the impurity ratio. This process will be done for all

internal nodes till the tree structure turn out to fully discriminating form. If a DT is

fully discriminating all the information in the training set, it is highly possible that the

tree is overfitted to the data. Another words, the tree could be specified to the outliers,

and biased. To overcome this problem, pruning approach is taken into account. This

approach eliminate the subtrees that when they split from parent node, but there is not

a decrease in impurity rate. This elimination decisions are made by error estimation

techniques [3].
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Figure 5.3.1: Schematic for DT

5.3.1 Splitting Criterions

Splitting criterions are used to measure impurity ratio of a node. In other words,

these two criterions evaluate how much information the instances that are included in

a node carry.

a) Gini Criterion

Let us define a specific node as t, and specify a class by j in a DT. Estimated class

probabilities are P (j|t) with respect to a node t, and impurity measurement on a node

is calculations

i(t) = φ(P (1|t), ..., P (j|t)), j = 1, . . . , j. (5.29)

When a splitting is occurred in a node t, it is done by searching the most reduction

point in impurity rate. And this is applied by usage of above equation. The classical

form of the Gini function is

φ(P1, ..., Pj) = −
∑
j

Pj logPj. (5.30)

To use this function in classification tusk, it needs to be redefined. Hence the appro-
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priate design is

i(t) =
∑
j 6=i

P (j|t)P (i|t). (5.31)

Besides, the form in the below is more useful for calculation

i(t) =

(∑
j

P (j|t)

)2

−
∑
j

P 2(j|t) = 1−
∑
j

P 2(j|t). (5.32)

Additionally, the Gini index classifies a variable selected randomly to j class with

using likelihood P (i|t), and it does not use the plurality rule for this purpose [11].

b) Entropy

The information theory uses data probabilities on minus the logarithm base 2 to mea-

sure the information in bits. When randomly selecting an example which is a member

of a class Cj in a node belongs to a set D, it carries a probability of message such as

freq(Ci, D)

|D|
(5.33)

and the information values that it has calculated by

− log2

(
freq(Ci, D)

|D|

)
(5.34)

in bits. Here, D is the set of examples, freq(Ci, D) is the the number of examples

that belong to Ci class, and |D| symbolize the number of samples in D.

For instance, there are four equally likely instances in a node. In such a situation, the

information that carried by any of the instance is equal to − log2(1/4) or 2 bits.

To calculate the expected information of a message that carry belonging to a class

membership, the classes in proportion to its frequencies in D is summed up with the

follows

info(D) = −
k∑
j=1

freq(Cj, D)

|D|
× log2

(
freq(Cj, D)

|D|

)
(5.35)
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info(t) is required for identifying the examples in t node while training process is

occurred. info(t) measures the average quantity of information.

After a splitting in t is occurred, and the splitting is in accordance with the n outcomes

of a test X . By using the weighted summing up the subsets, the expected information

which is required could be calculated as follows

infox(t) =
n∑
i=1

|ti|
|t|
× info(ti). (5.36)

Calculation of information gained by splitting in t in accordance with the test X is

measured with

gain(X) = info(t)− infox(t) (5.37)

value. After that, the gain criterion spots a test that is most suited to maximize the

information gain. This approach is also known as Mutual Information (MI) that mea-

sures the relation between the class and the test [11].

5.3.2 Gain Ratio Criterion

While gain criterion produce highly effective results, this approach has a quite biased

in favor of tests in lots of outputs, which is a major deficiency. The bias intrinsic

in the gain criterion can be rectified through some sort of standardization in which

the obvious gain attributable to tests with many outputs is adjusted. By taking into

account containing information of a case-related message that does not indicate the

class to which the case belongs, but the test result.

The description of info(S) is as follow

split info(X) = −
n∑
i=1

|ti|
|t|
× log2

(
|ti|
|t|

)
. (5.38)

Above equation (5.38) reflects the possible information occurred by splitting t into n

sub nodes. However, information gain calculates the classification related information

that subject occurred in the same splitting. Identifying the proportion of information

that is occurred in splitting the way

gain ratio(X) = gain(X)/split info(X) (5.39)
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is beneficial for classification. When division information is resulted in very small

ratio, this indicates that the ratio is not stable. To overcome this problem, the gain ratio

criteria choose a test to maximize the ratio, with respect to value that the information

gain is need to be higher than at least as large as the mean of the gain that is over all

tests analyzed [11].

5.3.3 Pruning

For each branched subtrees T ≤ Tmax′ , let’s define its complexity as T̃ . It is the

number of terminal branch points in T , and also assume that a ≥ 0 be a real valued

number, which is the complexity parameter. The cost of complexity is described by

Rα(T ) as

Rα(T ) = R(T ) + α|T̃ |. (5.40)

Here, α value give the cost of complexity for each terminal node, while Rα(T ) is

stand for complexity measurement the misclassication cost of the additional tree.When

α value is low, T (α) is large and a high number of terminal nodes will bring small

penalty. In other word, while each terminal nodes includes only one example, every

instance will be assigned without any error and R(Tmax) will be equal to zero. The

subtrees in a tree are pruned by the previous one to upwardly. The pruning is done

in a sequential process from bottom to the top root node of the tree, T1, T2, ...,. The

core mechanism of minimal cost-complex pruning is operated by cutting the weakest

branch link form the subtree. The subbranch of Tt, a node t ∈ T1 denote by {t},
include the single node {t}.

The definition for a single node the cost of complexity is

Rα(t) = R(t) + α. (5.41)

We can organize this definition in more suitable way for any branch Tt

Rα(Tt) = R(Tt) + α|T̃t|. (5.42)

When the statement

Rα(Tt) < Rα((t)), (5.43)
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is valid, the subbranch Tt carry smaller cost of complexity than a single node {t}.
While the cost of complexity values of the two are equal at some breakeven point of

α. At such a points the branching is smaller for subbranch {t} than Tt while they carry

the same amount of cost complexity. Hence, {t} is preferable to Tt. With solving the

inequality

Rα(Tt) < Rα((t)), (5.44)

to search this breakeven point of α, we can reorganize this inequality as

α <
R(t)−R(Tt)

|T̃t| − 1
. (5.45)

By defining the weakest link as t̄1 in T1 the node such that

g1(t̄1) = min
t∈T1

g1(t). (5.46)

While the value α increases, the node t̄1 will be the weakest link, it is the first node

such that Rα(t) is equal to Rα(Tt). Then it is could be said that t1 is preferable to Tt̄1 ,

and α2 is the value of α at which equality occurs. By pruning the branch Tt̄1 , we can

define a new tree T2 < T1 as

T2 = T1 − Tt̄1 . (5.47)

If we carry on this way, we will have a reduction sequence in subtrees

T1 > T2 > T3 > ... > (t1). (5.48)

With choosing a specified number ofN(2) of instances randomly fromL to determine

the test example L2. L1 is used for the new learning examples. By usage of L1, the

tree Tmax is grown to reach to highest possible impurity and it is upwardly pruned ot

have the subtree sequence T1 > T2 > T3 > ... > (t1). That is, the Tk sequence

of trees is constructed and the terminal nodes assigned a classification without ever

seeing any of the cases in L2. By not using the cases in L2, the Tk tree sequence is

built and the terminal nodes are assigned to classes. Then, with taking the cases in

L2 and dropping them though Tr. Every tree Tk appoints a estimated classification

to every cases in L2. Misassigned cost of Tk operating on L2 can be determined by

usage of cases in L2 known the real class. This generate the estimation of Rts(T̄k).

Qts(i|j) =
N

(2)
ij

N
(2)
j

(5.49)
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is calculated by the proportion of test instances class j cases that the tree T classifies

as i.

Rts(j) =
∑
i

c(i|j)Qts(i|j) (5.50)

Here, c(i|j) is the misclassification cost of a class k subject as a class i. For the priors

this gives the calculation

Rts(T ) =
K∑
k=1

Rts(k)π(k). (5.51)

If the priors are calculated from the data, L2 can be used to calculate them as π(k) =
N

(2)
k

N(2) . The calculation can be simplified as the below form

Rts(T ) =
1

N (2)

∑
i,k

c(i|k)N
(2)
ik . (5.52)

By taking the average the cost of misclassification calculated in L2 for each instance

dropped by T [11]. The estimates of the test sample can be used to select the correct

size tree Tk0 by the rule

Rts(Tk0) = min
k
Rts(Tk). (5.53)

5.3.4 Cross-Validation Estimates

In validation part [11], the cross validation calculations are described in detail. How-

ever, this method is used in the growing process of tree also. Therefore the process is

briefly explained in this part. The learning instances dataset L is splitted by randomly

selecting to k subsets. The subsets Lk, k = 1, ..., k each containing the same amount

of instances as nearly as possible in k-fold cross-validation. The kth learning set is

defined by

L(k) = L− Lk, k = 1, ..., k. (5.54)

In k-fold cross-validation, k trees are built together with the main tree grown on L. By

using the learning set L(k), the k-th assistant tree is constructed. Start by constructing
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k overly large trees T (k)
max, k = 1, ..., k, as well as Tmax, using the criterion that the

splitting continues until nodes are pure or have fewer cases than Nmin. With usage of

dividing until to nodes are fully pure or get lesser cases than Nmin criteria, begin by

building k overly large trees T (k)
max, k = 1, ..., k, such as closer to Tmax.

Assume that T (α), T (k)(α), k = 1, ..., k, be related to minimal cost-complexity sub-

trees of Tmax, T
(k)
max for each calculation of the cost complexity α. The trees T (k)

max,for

every k, T (k)(α) is built the instances in Lk unseeingly. Hence, the instances in Lk

can perform as an independent test set for the tree T (k)(α). While fixing the value of

the complexity α, process Lk top down the tree T (k)
max, k = 1, ..., k. For each value of

k, i, j, define N (k)
ij = the number of class j cases in Lk classified as and set

Nij =
∑
K

N
(k)
ij , (5.55)

so Nij is the total number of class j test cases classified as i.

By defining N (k)
ij = the number of class j cases in Lk for each values of k, i, j, is

classified as and constituted

Nij =
∑
K

N
(k)
ij , (5.56)

so Nij is the total number of class j test instances assigned as i. Every instances in L

is used only one times in test set Lk. The total number of cases in L which belongs

to class j represented with Nj . Than, implement the earlier steps for each trees. The

application is simplified by the fact that although α may vary continuously, the least

cost complexity tree built on L are equal to Th for αh ≤ α < αh+1. In order to α′h is

the geometric midpoint of the interval where T (α) = Th, put

α′h =
√
αhαh+1 (5.57)

After that, put

Rcv(Th) = Rcv(T (α′h)), (5.58)

where Rcv(T (α′h)). By using the Rcv(Th0) as an calculation of the misclassification

cost, choose the tree Th0 such that

Rcv(Th0) = min
h
Rcv(Th). (5.59)
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5.4 Random Forest

A large number of classification trees are growing in Random Forests (RF). These

trees are based on Breiman’s CART tree approach which requires placing the input

variable down each of the trees in the forest to classify newly added test object from

an input variable. Every tree in the forest give a classification vote to classify an

instance to appropriate category. The forest select the class that the instance belong

by considering the most votes over all the trees. In training process, the amount of

instances in the training set N is sampled randomly by replacement from the initial

dataset. In each step, the training set is sampled to build a new tree. The number of

input attributes isM , and a numberm is specified with respect tom < M such that at

each node, m attributes are chosen randomly out of the M and the optimum split on

these m is used to split the node. During the forest contraction, the m value is fixed.

In the forest, every tree is constructed in the maximum possible extent without prun-

ing. The correlation and strength between any two trees are reduced by decreasing the

amount of inputsm, and inversely increasing the number of input increase correlation

and error rate. The sampling in training instances for a new tree is nearly one third of

the examples are left of the set. Out of Bag (OOB) technique is applied as trees are

added to the forest to obtain a running unbiased calculation of the misclassification.

This approach is also applied to obtain variable importance calculation. Whole data

is run down the tree and for each pair of instances affinities are estimated after every

trees are built. In a case of two instances are in the same terminal node, their affini-

ties are increased by one. It provides calculations of which variables are essential

in assignation process. The affinities are normalized by splitting with the amount of

trees at the end of execution. Proximities are used in replacing missing data, locating

outliers, and producing illuminating low-dimensional views of the data. In the cases

of replacement of missing data, locating anomalies in data, and illustrative low di-

mensional view of the data, the affinities are applied [10] and [12].
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Figure 5.4.1: Schematic for RF. [65]

A random vector Θk is generated for the k-th tree independent form the earlier random

vectors Θ1, ...,Θk−1. k-th tree and the earlier trees have the same distribution. A tree

is constructed with the Θk and training samples. The built classifier is defined as

h(x,Θk) where x is an input vector. The dimensional structure of Θ relies on usage

of it in the tree built. Θ parameter is formed by a number of independent random

integers in the range between 1 and K in random division selection. The margin

function is defined as

mg(X, Y ) = avkI(hk(X) = Y )−max
j 6=Y

avk(hk(X) = j) (5.60)

with the given training set selected randomly from the distribution of the random

vector Y,X , and ensemble of classifiers h1(x), h2(x), ..., hk(x).

Here, I(·) is the indicator function. The margin estimates the scope that the average

number of votes exceeds mean of the votes for any other class at X , Y for the right

class. Greater margin leads to greater confidence in the rating. The generalization

error of is defined as follows

PE∗ = PX,Y (mg(X, Y ) < 0). (5.61)

Here, PX,Y is the probability over the X , Y space. With the notation hk(X) =

h(X,Θk), and a large number of trees follows the rule Strong Law of Large Num-

bers. It indicates that as the number of trees increases, for almost surely all sequences

46



Θ1, ...PE
∗ converges to

PX,Y (PΘ(h(X,Θ) = Y )−maxPΘ
j 6=Y

(h(X,Θ) = j) < 0). (5.62)

5.4.1 Bootstrap

The bootstrap [10] is an extremely strong and commonly feasible statistical tool that

can be used to measure the uncertainty related to given estimator or method of statis-

tical learning. The bootstrap’s strength lies in the fact that it can be applied simply

to a broad spectrum of techniques of statistical learning. We can add the complete

sum that the Gini index is reduced by splits over a specified predictor in the context

of bagging classification trees, averaged over all B trees. Bootstrap aggregation, or

bagging, is a general-purpose procedure for reducing the bagging variance of a statis-

tical learning method. General aim of this process is redaction in statistical learning

method’s variance in bootstrap aggregation, or bagging. The variance of the mean Z

of the instances a set of n independent Z1, ..., Zn each have the variance σ2 is given

by σ2/n. That is to say, it decreases σ2 by averaging a set of instances. With repeated

examples from a training dataset, bootstrap can be applied. B various bootstrapped

training data sets are produced in this strategy. After that this technique is trained on

the bootstrapped training set ot get f̂ b(x), and lastly by averaging these predictors in

order to get

f̂bag(x) =
1

B

B∑
b=1

f̂ b(x). (5.63)

5.4.2 Out of Bag Error Estimation

In bagging, the crucial point is that trees are recursively fit to bootstrapped subsets

of instances. In this approach, approximately two third of the instances are used to

generate bagged trees. OOB instances rest of the examples one third of the set are not

used to fit a specified bagged tree. Using each of the trees in which that instances are

OOB, the assessment of the i-th instance can be analyzed.

This approach produce for the i-th instance around B/3 predictions. By taking ma-

47



jority vote to achieve a single forecast for the i-th instance. This brings about a single

OOB forecast for the assessment of i-th instance. By this way, misclassification can

be estimated for each of the n instances. The outcome from the OBB classification

error is an effectual calculation of the test set error for the bagged algorithm as the

reaction for every instance is predicted by only usage of the trees that are not fit using

those instances [12].

5.4.3 Variable Importance Measures

Explanatory interpretation is a much harder task for bagged trees approach than a de-

cision tree. In this algorithm, a general overview of the significance of each predictor

can be obtained using the Gini index. Total amount of Gini index that reduced by

division over a specific predictor that is taken the average over B trees. In bagging

the central aim is lowering the variance of a statistical learning algorithm [10].

5.5 XGBoost

XGBoost is an improved version of Gradient Boosting algorithm which based on

CART decision tree approach. In this method, regularized objective and sparsity-

awareness are two of the novel approach in gradient boosting. This algorithm can

handle missing inputs, frequently zero values and binary data with default direction

approach. The other powerful sides of this algorithm are faster than other most pop-

ular machine learning methods and preventing overfitting by shrinkage and column

subsampling approaches.

Figure 5.5.1: Schematic for Structure.

1Source of Figure 5.5.1: https://s3-ap-south-1.amazonaws.com/av-blog-media/wp-content/uploads/2017/06/

11194227/depth.png
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5.5.1 Regularized Objective

Let’s D = {(xi, yi)} is a set of inputs with n examples and m features. {xi ∈ Rm}’s
are the vector of independent variables and {yi ∈ R}’s are corresponding values.

ŷi = φ(xi) =
K∑
k=1

fk(xi), fk ∈ F , (5.64)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is the space of CART tree

functions, and K is the number of additive functions of a tree ensemble model which

makes prediction. In the above mapping, q represents the structure of each tree ac-

cording to leaf index, and T is number of leaves corresponding to a specific tree.

Every fk have an independent tree with structure q and leaf weights w. In every tree,

each of the leaves contains a continuous score wi, it is the score of i-th leaf, which

contrary to decision trees. q will be used as decision rules in trees to classify a spe-

cific example, and final forecasting is calculated by summing up w the corresponding

scores in a leaf. With minimization of regularized objective (Eq: 5.65), function set

used in the model is learned by

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (5.65)

where l measures the error between the predicted ŷi and the actual value of yi, and it

is a differentiable convex function.

Ω(f) = γT +
1

2
λ||w||2 (5.66)

Above term in Eq: 5.66 Ω penalizes the complexity of the CART decision tree func-

tions. To prevent over-fitting conclusive learned weights, the penalization term helps

for smoothing. Intuitively, a model using simple and predictive functions will tend

to be selected by the regularized objective. Regularization objective and learning

process employed in this algorithm are less complex than regularized greedy forest

algorithm which is a similar regularization technique. In the case of setting the param-

eter of regularization to zero, the objective function becomes the traditional gradient
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tree boosting [17].

5.5.2 Gradient Boosting Mechanism

Conventional optimization techniques for Euclidean space do not capable of opti-

mization because the tree ensemble model consist of functions as parameters. Alter-

natively, the model is trained in an additive process. Let ŷ(t)
i be the predicted value of

the i-th sample at the t-th iteration.

ŷi
0 = 0

ŷi
1 = f1(x1) = ŷi

0 + f1(xi)

ŷi
2 = f1(xi) + f2(xi) = ŷi

1 + f2(xi)

...

ŷi
t =

K∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi)

(5.67)

by adding ft the following objective will be minimized.

L(t) =
n∑
t=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (5.68)

This implies that we are adding the ft step by step that most improves our ensemble

model. By using Taylor expansion of the loss function to the second order, optimiza-

tion of the function becomes easier in general manner. Hence, other kind of loss

functions could be used, and they could be optimized quicker.

L(t) '
∑
t=1n

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (5.69)

Here, gi and hi are the first and second order gradient statistics on the loss function and

they are defined respectively ∂ŷ(t−1)l(yi, ŷ
(t−1)) and ∂2

ŷ(t−1)l(yi, ŷ
(t−1)). The specific

objective function at iteration t after removing all the constant terms is in the below.

L̃(t) =
n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (5.70)
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In Eq: 5.70, the objective function becomes only dependent on gi and hi, and flexible

for different loss functions. By defining the sample set of leaf j as Ij = {i|q(xi) = j},
and with the implementation of regularization term, Ω, Eq: 5.70 can be expanded as

follows

L̃(t) =
n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j (5.71)

=
T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT (5.72)

With a given structure q(x), optimal weight w∗j of a leaf j can be computed by

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

, (5.73)

and the regarding optimal value is calculated as

L̃(t) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (5.74)

For assessment of a tree structure q quality, Eq: 5.74 can be applied as a measurement

function. This measurement could be thought as a impurity ratio for assessing a

decision tree, but it has a wider spectrum for objective functions.

By assuming IL and IR are the observation sets of right and left leaves resulting from

a splitting I = IL ∪ IR. Evaluation of the split candidates and reduction in the loss

when a splitting is accrued are calculated by

Lsplit =
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (5.75)

In this estimation (Eq: 5.75), if the score is smaller than γ value, than the branching

does not take place [16].
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5.5.3 Shrinkage Approach and Attribute Subsampling

Two additional techniques are used to further prevent over-fitting. One of them is

shrinkage technique. After each iteration of gradient tree boosting, subsequently

added new weights are shrunk by the factor η. Shrinkage approach decreases the

impact of each individual tree and leaves room for future trees to enhance the model

like a learning rate in stochastic optimization. The other approach is attribute sub-

sampling. In each tree, attribute subsets are generated randomly with respect to the

subsampling ratio. This method also decreases the execution time of the parallel al-

gorithm [17].

5.5.4 Split Finding Algorithm

Approximate Algorithm

Although, the basic exact greedy algorithm is very powerful since it enumerates over

all possible splitting points greedily. However, it is impossible to efficiently do so

when the data does not fit entirely into memory. Although the fundamental exact

greedy algorithm is very effective as it iteratively enumerates all potential splitting

points, efficient implementation of it is almost unfeasible since there is a chance that

entire data may not be fitted into memory. An approximate algorithm is required to

support appropriate gradient tree boosting in these two conditions.

First, the method recommends candidate dividing points according to feature distri-

bution percentiles. After that, the method then maps the continuous attributes into

buckets divided by these candidate points, analyzes the statistics and finds the best

alternative among suggestions based on aggregated statistics. Based on when the

suggestion is given, there are two variations of the algorithm. During the original

stage of tree building, the global version recommends all candidate splits and utilizes

the same suggestions for split finding at all stages. After each divide, the local variant

proposes again. The global technique needs less propose than the local method. Nev-

ertheless, usually more candidate points are needed for the global proposal because

candidates are not refined after each split.
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However, for the global proposal, usually more suggestion points are required since

after each split, candidates are not refined. After every division, the local suggestion

refines the candidate points, and it could be more suitable for deeper trees [17].

Weighted Quantile Sketch

Proposing candidate split points is an important step in the approximate algorithm.

Usually a feature’s percentiles are used to enable candidates to distribute data evenly.

Let assume that the below set Dk = {(x1k, h1), (x2k, h2)...(xnk, hn)} symbolize the

k-th attribute inputs and second order gradient values of each training example. Defin-

ing the mapping of the rank functions rk : R→ [0,+∞) as

rk(z) =
1∑

(x,h)∈Dk h

∑
(x,h)∈Dk,x<z

h, (5.76)

which identify the ratio of instances whose feature value k is lower than z.

The objective is to locate the candidate for a split point {sk1, sk2, ..., skl}, such that

|rk(sk,j)− rk(sk,j+1)| < ε, sk1 = minxik, skl = maxxik. (5.77)

where ε is an approximation factor. Empirically, this implies that there is approx-

imately 1
ε

candidate points. In redesigned simplified objective function (Eq:5.78),

every data points are weighted by hi

n∑
i=1

1

2
hi(ft(xi)−

gi
hi

)2 + Ω(ft) + constant, (5.78)

which is exactly weighted squared loss with labels gi
hi

and weights hi. For big datasets,

finding candidate splits that meet the requirements is not an easy task. The problem is

solved by an existing algorithm called quantile sketch as each instance has the same

weights. However, there is no existing quantile sketch for the weighted datasets, but

the weighted datasets do not have an current quantile sketch. One way to handle

this kind of approximate algorithms problem is heuristics that do not have theoretical
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guarantee or resorted to sort on a random subset of data which have a chance of failure

in most of the current approach [17].

Sparsity-aware Split Finding

In many real-world problem with the data, sparsity of input x is quite common. Pres-

ence of high frequent zero inputs, existence of missing values in data and formed

binarization of categorical variables artifactuality are some of the reasons of sparsity

in dataset. It is important to make the algorithm aware of the sparsity pattern in the

data. Making the algorithm conscious against to sparse variables in the data has a

importance. To overcame this problem, a default direction in every tree branch point

for those attributes is added to the algorithm. An example is classified into a default

direction, as the example is a missing value. In each branch point, two direction is

exist for an sparse value, and the best direction is learned from data. When there

are attribute columns that contain missing values, by taking into consideration just

existed samples and treating these variables as a nonexistent the algorithm creates a

direction.

Column Block for Paralel Learning

In tree learning the most time consuming process is sorting order the data. By storing

the data in memory units, which it is called blocks, cost of storing is decreased. Data

is stored in the compressed columns in each block, with each column being sorted

by the appropriate feature value. This design of input data only requires to be calcu-

lated once before training and can be reused in subsequent iterations. Whole dataset

is stored in a single block in the exact greedy process. Than, the split scanning algo-

rithm linearly search over previously ordered inputs. A split search across the block

collects the statistics of candidates in whole leaf branches. This search is done by

jointly. Also, when using approximate algorithms, the block structure provides ben-

efit. In this circumstances, multi-blocks can be used, with each block corresponding

to row subset in the data. The quantile search phase turn out a linear scan across the

sorted columns using the ordered framework. This phase has significance particularly

for local proposal method which candidates are created at every branch continually.

Additionally, with the column block structure column subsampling is promotes be-
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cause a sub-set of columns in a block can be easily selected [17].

5.6 K-Nearest Neighbor

The K-Nearest Neighbor (KNN) algorithm originated in the early 1950s. The tech-

nique is time consuming considering big training sets and did not achieve popularity

until the 1960s when enhanced computing power became accessible [28]. This algo-

rithm is memory based method and requires no model to be fit. In other words, KNN

does not make any assumption on data to produce a model.

Figure 5.6.1: Explanatory Visual of KNN

In a nutshell, given a testing point x0 that is in the sample space we can find the clos-

est k point x(r), r = 1, ..., k with distance assumptions to x0. After that we can assign

this instance to suitable class by usage of majority vote over all the k neighbors [61].

The efficiency of this method is highly dependent on two hyper-parameter. These are

a proper similarity function and a appropriate value for parameter k the number of

neighbors. When the k is too large number, the majority class members will over-

whelm the small class members. And if the k value is too small, than the assessment

will be biased [38]. The algorithm can become more or less flexible for different k

values. KNN has an advantage that over other algorithms is that the neighbors can

give an explanatory classification estimations, especially in where black box methods

are insufficient [22]. However, one of the problems in K-NN algorithm is its effec-

tiveness, since it require to compare a test sample set with all samples in the training
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dataset. That is, it may needs a huge memory while assessment is done. Closeness

between two tuples or points is described in terms of a distance metric, such as Eu-

clidean distance. Eq:5.79 can be given for an example to distance metric.

X1 = (x11, x12, ..., x1n) and X2 = (x21, x22, ..., x2n), is

dist(X1, X2) =

√√√√ n∑
i=1

(x1i − x2i)2. (5.79)

Typically, we normalize the values of each attribute before applying to algorithm.

Commonly, normalizing or scaling each of data variables before applying to the al-

gorithm avoids the problem of small ranged features are dwarfed by initially larger

ranged (such as amount of money) features [28].

5.6.1 Distance Metrics

Distance metrics are used for calculating the distance between initial training samples

and newly added test instances. These measurement metrics are generally applied to

estimate ot discover the dissimilarity of numerical features of observations.

a) Euclidean Distance

The Euclidean distance is a assessment criterion to calculate distance between two

points. It is identified as follows

√∑
((x− y)2). (5.80)

The Euclidean distance is a specific form of the Minkowski metric with degree p =

2 [18].

b) Manhattan Distance

Another commonly used criterion is the Manhattan distance. This metric is also

known as city block since it is used to calculate the distance between two points
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in a city [28].

∑
(|x− y|) (5.81)

c) Minkowski Distance

The Minkowski distance is a way of finding distance based on Euclidean space, de-

fined as

(
∑

(x− y)p)
1
p . (5.82)

d) Chebyshev Distance

Chebyshev Distance is a specific form of the Minkowski distance for p = ∞. When

degree parameter p is equal to 1, it turns into the Manhattan distance. To compute

it, we find the attribute that gives the maximum difference in values between the two

objects. By spotting the feature that provide the maximum margin in values between

the two example [28]. This metric can be identified as

max(|x− y|). (5.83)

e) Weighted Minkowski Distance

It is a variant version of the Minkowski distance. The weights are introduced to select

feature importance [66]. The formulation is defined as

(
∑
|w(x− y)|p)

1
p . (5.84)

f) Standardized Euclidean Distance

The Standardized Euclidean Distance is used to optimize the problem of finding the

distance, and it is defined [18] by√∑
(
(x− y)2

v
). (5.85)
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g) Mahalanobis Distance

The Mahalanobis distance is used to measure the margin between a point and a dis-

tribution of samples. The defination is

√
(x− y)′v−1(x− y). (5.86)

where v is the covariance matrix [18].

5.6.2 Multi-Dimensional Search Algorithms

We consider three different multi-dimensional search algorithms commonly used in

KNN analysis. These algorithms are used to find k nearest instances to new test

observation.

a) Brute Force

The brute force method calculates the distances between each query point and all

reference points using a specified metric,such as Manhattan, Chebyshev, Euclidean

etc., for comparison. After this calculations, the nearest neighbors are determined

by ordering the distances. Even though the method is very easy and clear, there is a

strong computational complexity behind this obvious simplicity. To give an example,

if we have a sample set in a d-dimensional space with n searching points and m

reference points. In this case, O(mnd) time is required for distance calculations

and O(nm logm) for ordering, so the summation work O(mnd) + O(mn logm) is

required for the total execution. In a case that every sample point is considered as both

a query point and a reference point, the KNN search require to be implemented on

n = m points and subsequently, the execution time consumption becomes O(n2d) +

n2 log n. The technique can simply become prohibitive on regular computers for

dataset that consist of a big amount of points. Luckily, for every search point, such

distance estimations and seeking can be applied separately. Hence, parallelizing the

job is one of the practical option for decreasing the execution time consumption [4].
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b) kD-Tree

kD-Tree is a binary tree that splits the sample space by using a hyperplane. This ap-

proach divides every partition iteratively. Divisions in kD-Tree are produced in the

two dimensional space parallel to one of the axes, either vertically or horizontally.

The data framework stores a set of samples in k-dimensional space, with the number

of features being k, so the method is called k dimensional tree. By estimating the

variance of the data samples along every axis separately, an optimum direction for

the division is spotted, picking the axis that has the highest variance, and generating a

perpendicular separation hyperplane. In order to spot an optimum hyperplane direc-

tion, the median value along that axis is located and with this value selection is made

for an appropriate point. This assessment allow the separation perpendicular to the

maximum spread direction, with half of the samples in the space either hand, and the

process is resulted in a well balanced tree [68].

c) Ball Tree

To address the inefficiencies of kD Trees in higher dimensions, the ball tree data

structure was developed. Where kD trees partition data along Cartesian axes, ball

trees partition data in a series of nesting hyper-spheres. This makes tree construction

more costly than that of the kD Tree, but results in a data structure which can be very

efficient on highly structured data, even in very high dimensions [48].

In Ball Tree (BT) approach, a ball is defined as the area bounded by a hyper spare

that is in the k dimensional Euclidean spaceRn.

The balls are constructed as floating sample point values of n + 1 that indicate the

center coordinates and the radius size. A BT is an absolute binary tree in which

every node is related with a ball in such a way that the ball of an inner node is the

smallest that includes its balls of the children nodes. The inner nodes are only used

to direct effective searching through the constructions of the leaf. The leaves only

carry the appropriate information for the implementation. Except for node areas in

kD-T or oct trees, balltrees sibling areas are permitted to intersect and do not need
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to partition the whole space. For their implementations and representational strength,

these characteristics have a great importance.

A BT iteratively splits the data into nodes described by a C centroid and r radius, so

that every node point is within the r and C hyper-sphere. By using the below triangle

inequality, the amount of target points for a neighbor search is decreased.

|x+ y| ≤ |x|+ |y| (5.87)

A single margin estimation between a test point and the centroid is appropriate to

evaluate a lower and upper limit on the margin to all sample points within the node

in this structure. Due to the ball tree nodes’ spherical geometry, it can predominate

over kD-tree in a high dimensional cases, although the real efficiency is extremely

dependent to the training dataset framework [48].

5.7 Multilayer Perceptron Neural Network

To approximate brain structure with neural feed-forward network consisting of dis-

crete neuron layers, each linked to the next one is a prevalent approach since the

brain structure is extremely complex. This framework ordinarily involves an input

layer, one or more hidden layers, and the output layer. Initiation of the data samples

are took place in the input layer. This layer feeds the samples to hidden layer without

any change. After that in hidden layer, every one of the node in this layer receive the

outputs from the previous layer, make some assumptions, and deliver the results to

the output layer. Finally, output layer generates the last outputs that end up with a

classification or regression [27].

60



Figure 5.7.1: Schematic for MLP

5.7.1 Feed-Forward Neural Network

Neurons that is not a input neuron has a weight and a bias for associated to every one

of its inputs . In order to give more straightforward definition of the structure, the bias

vectors are added to vector weights and a bias that is always equal to one is used for

every neuron. The outcomes of the neurons’ inputs and weights will be summed up.

However, it will be produced a gentle approximation of the step function instead of

generating the step function given to that item. The weight of the link from the k-th

neuron in the (l − 1)-th layer to the j-th neuron in the j-th layer is defined by wljk.

blj is the bias and alj is the activation of the j-th neuron in the l-th layer. This notations

are used to make the structure more comprehensible with similar symbols. By using

the notations, the alj activations of the j-th neuron in the l-th layer are linked to the

(l − 1)-th layer activations. It is defined as the equation

all = σ

(∑
k

wljka
l−1
k + blj

)
, (5.88)

Here, this gives the summation of all neurons k in the (l − 1)-th layer. The weight

matrix inputs wl are the weights that connected to the l-th layer of neurons, and a bias

vector will be identified as, bl, likewise for every layer l.

Lastly, an activation vector and the activation function will be identified as alj and σ
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respectively [46]. The weighted input to the neurons in layer l is defined as

zl = wlal−1 + bl. (5.89)

5.7.2 Backpropagation

The first appearance of the backpropagation algorithm was originally in the 1970s.

However, value of this algorithm was not completely realized till a renowned article

by David Rumelhart, Geoffrey Hinton, and Ronald Williams. A statement for the

partial derivative ∂C/∂w of the cost function C with respect to any weight w or

bias b underlies the center of backpropagation in the network. The expression shows

how fast the cost varies when the weights and biases are changed. The objective of

backpropagation is to calculate the partial derivatives ∂C/∂w and ∂C/∂b of the cost

function C with regarding to any weight w or bias b in the network. The quadratic

cost function is identified as

C =
1

2n

∑
x

∣∣|y(x)− aL(x)
∣∣ |2. (5.90)

Here, n is the total number of training instances; the summation of over all individual

training instances, and x; y = y(x) is the appropriate outcome accordingly. Also, the

number of layers in the network is defined as L, and aL = aL(x) is the vector of

activations outcome from the network for x inputs. The first assumption we need is

that the cost function can be written as an average Cx = 1
n

∑
xCx over cost functions

Cx for individual training examples, x. For individual training instances x, the cost

function can be define as an average Cx = 1
n

∑
xCx over cost functions Cx. The

reason why this assumption is needed is because backpropagation effectively make

possible the calculations of the partial derivatives ∂Cx/∂w and ∂Cx/∂b for a single

training instance.

Then, ∂C/∂w and ∂C/∂b are can be restored by averaging over training instances.

Let’s identify the error on j-th neuron in l-th layer with the notation δlj . Varying a

network’s weights and bias varies the cost function. A minor variation in ∆zlj to the

neuron’s weighted input, in this way rather than outputting σ(zlj), the neuron instead
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outputs σ(zlj + ∆zlj). This variation effects through next layers in the network, at last

it leads to a change in the overall cost by an amount ∂C
∂zlj

∆zlj .

With weight variation, the optimum value of δzlj that reduces the cost value. By

selecting ∆zj to have the opposite sign to ∂C/∂zlj , cost value can be reduce in case

of the cost is a high value. As previously stated, the error δlj of neuron j in layer l is

identified by

δlj =
∂C

∂zlj
. (5.91)

The error in a output layer δL is stated as follows:

Corresponding factors of δL are

δlj =
∂C

∂aLj
σ′(zLj ). (5.92)

The first expression, ∂C
∂aLj

, estimates how quickly the cost changes as activation func-

tion in the j-th outcome. The other expression on the right, σ′(zLj )., estimates how

quickly the activation function is varies at zLj .

δL = ∇aC � σ′(zL) (5.93)

is the error form that is the matrix-based where∇aC is described as a vector with the

partial derivatives ∂C/∂aLj components.

Let’s define the error value δl in the sense of the error in the later layer δl+1 as follows

δl = ((wl+1)T δl+1)� σ′(zl). (5.94)

Here, the transpose of the weight matrix wj+1 for corresponding (l + 1)-th layer is

(wj+1)T . To estimate error backward through the activation function in layer l, the

error value on the (l+ 1)-th layer which already known is needed. With the transpose

of the (wl+1) and the Hadamard product �σ′(zl), this error value can be calculated.

The following equation for the variation ratio of the cost value regarding to any bias
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in the network;

∂C

∂blj
= δlj. (5.95)

In this equation, the error δlj is just equal to the ratio of variation ∂C
∂blj
. And finally the

following equation for the ratio of variation in the cost value regarding to any weight

in the network;

∂C

∂wljk
= al−1

k δlj. (5.96)

With this equation the partial derivatives ∂C
∂wljk

can be estimated in the way of the

quantities δl and al−1. With beginning from the final layer, the error vectors can be

calculated backwardly. For this reason, the approach is called backpropagation [46].

5.7.3 Activation Functions

One of the most essential element in the neural network architecture is their net inputs

using a scalar function known as activation function or threshold function, it provide

an output a result value. The magnitude of a neuron’s output can be restrained by

applying an activation function. It limits the magnitude range of the output signal to

bounded interval [41].

a) Identity

In this method any calculation or any transformation is not made. This method feed

the next layer with just the summed up weighted inputs values. The identity function

is defined as

f(x) = x. (5.97)
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b) Logistic

Logistic function is an attractive activation since in this approach computation capac-

ity for training can be reduced. Resulted outcomes form this transformation has a

range between 0 and 1. This function is used in many methods. It is also known as

sigmoid because of its S-shape [35]. It is defined as

g(x) =
1

1 + e−x
. (5.98)

c) Hyperbolic Tangent Function

The structure of Hyperbolic tangent function can be simply defined as the ratio be-

tween the hyperpolic cosine and sine functions, but it also be identified as the ratio of

the half difference and half sum of two exponential functions in the points x and −x.

This function can be described as

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
. (5.99)

This function is similar to sigmoid function, but range of its outputs are between -1

and 1 [35].

d) Rectified Linear Unit

Rectified Linear Unit (ReLU) is commonly used activation function in NN algo-

rithms. In the hearth of this function, it feed the next layer with nonnegative value. In

other words, this method gives zero value instead of negative values [46]. The output

of a rectified linear unit with input x is

max(0, x). (5.100)
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5.7.4 Weight Optimization Methods

Weight optimization is a process that weights of a model are fitted for a given training

dataset by minimizing error values of a loss function.

a) The limited memory Broyden-Fletcher-Goldfarb-Shanno

In the limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) weight opti-

mization method, the iterates are denoted by xk, and with sk = xk+1 − xk and

yk = gk+1 − gk equations are defined to construct a base for iterations. The inverse

formula of BFGS is used in this algorithm. That is identified as

Hk+1 = V T
k HkVk + ρksks

T
k , (5.101)

where ρk = 1/yTk sk, Hk is inverse Hessian matrix

Vk = I − ρkyksTk . (5.102)

The LBFGS method works in the following order

At first,by choosing x0,m, 0 < β
′
< 1

2
, β
′
< β < 1, a symmetric and positive definite

beginning matrix H0, by setting k to zero.

Here, H0 is a notation for a positive definite and sparse symmetric matrix, which

approximates to inverse Hessian of objective function.

From this point the iterations takes place as follows

dk = −Hkgk, (5.103)

xk+1 = xk + αkdk. (5.104)

Here, αk meets the Wolfe conditions;

f(xk + αkdk) ≤ f(xk) + β
′
αkg

T
k dk, (5.105)
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g(xk + αkdk)
Tdk ≥ βgTk dk. (5.106)

Than, let m̂ = min{k,m − 1}., and adjust H0, m̂ + 1 times by usage of the tuples

{yj, sj}kj=k−m̂.

More specifically,

Hk+1 = (V T
k ...Vk−m̂)H0(Vk−m̂...Vk)

+ ρk−m̂(V T
k ...V

T
k−m̂+1)sk−m̂s

T
k−m̂(Vk−m̂+1...Vk)

+ ρk−m̂+1(V T
k ...V

T
k−m̂+2)sk−m̂+1s

T
k−m̂+1(Vk−m̂+2...Vk)

...

+ ρksks
T
k .

(5.107)

And than, setting k = k + 1 and by repeating this process from beginning of the

iterations [42].

b) Stochastic Gradient Descent

For simplicity, let’s consider a clear supervised learning framework. Every instance z

is a tuple that contains (x, y) comprised of an arbitrary input x and a scalar outcome

y. `(ŷ, y) is a cost function that estimates the loss of predicting ŷ with respect to y the

actual answer. Also, fw(x) parameterized functions by a weight vector w, and F is a

family of these functions chosen. The aim is searching a function f ∈ F that reduces

the loss Q(z, w) = `(fw(x), y) averaged on the instances.

In every iteration, the gradient of En(fw) is calculated on the basis of an only chosen

instance at random zt instead of estimating the gradient exactly. It process can be

defined as

wt+1 = wt − γtOwQ(zt, wt). (5.108)

The stochastic procedure {wt, t = 1, 2, ...} subject to the instances that chosen at

random in every iteration [9].
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c) Adam

A method for optimizing stochastic objective functions based on first order gradient,

and adaptive calculation of moments of lower order is an underlying base [36]. The

technique is simple to execute, computationally effective, and required few memory

consumption. In addition, this method is not affected by diagonal rescaling of the

gradients, and it is appropriate to handle the difficulties that are large in terms of data

or parameters.

m̂t =
mt

1− βt1
(5.109)

with this first moment estimation, bias can be corrected. After that, by using

v̂t =
vt

1− βt2
(5.110)

second raw moment bias is estimated. The parameters can be updated by below

equation

θt+1 = θt −
η√
v̂t+ ∈

m̂t. (5.111)

Let’s consider a stochastic scalar function that is differentiable with respect to param-

eter θ as a noisy objective function f(θ). The aim is minimizing the expected outcome

of this function E[f(θ)] with respect to its parameters θ. The stochastic function is

described with f1(θ), ..., fT (θ) at following timesteps 1, ..., T . The stochasticity may

result from the assessment of random minibatches of instances, or may result from

inherent function noise. The gradient that is a vector of partial derivatives of ft re-

garding to θ utilized at time step t is defined by

gt = Oθft(θ) (5.112)

The method adjusts the gradient (mt) and the squared gradient (vt). Here, the β1, β2

hyper-parameters in range [0,1) regulate the exponential decay ratios of these moving

averages.
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5.8 Logistic Regression

In LR analysis, we need to justify certain statistical conditions for the validity of the

model. However, based on the studies done in LR as a ML method these diagnostic

tests are mostly neglected. For the sake of simplicity, in the framework of this thesis

the diagnostic checks are not implemented.

While the logistic distribution is used, the value P (D|X1, X2, ..., Xn) will define the

conditional probability ofD givenX . In order to get the logic model from the logistic

function, z value will be identified as the linear summation β0 + β1X1 + ...+ βnXn.

Here, the βi are constant parameters that symbolize the unknown parameters, and the

Xs are independent attributes of interests. Indeed, to combine theXs values, z is used

as an index.

Figure 5.8.1: Schematic for LR.1

The specific form of the logistic regression model can be represented as the following

P (D|X1, X2, ..., Xn) =
eβ0+β1X1+...+βnXn

1 + eβ0+β1X1+...+βnXn

=
e(β0+

∑
i βiXi)

1 + e(β0+
∑
i βiXi)

+ ρk−m̂+1(V T
k ...V

T
k−m̂+2)sk−m̂+1s

T
k−m̂+1(Vk−m̂+2...Vk)

=
1

1 + e−(β0+
∑
i βiXi)

.

(5.113)

Central point in this transformation is it is designed to identify a probability that is

always a number in the range between 0 and 1 due to the S-shape of the logistic

1Figure 5.8.1 source:http://rasbt.github.io/mlxtend/user_guide/classifier/LogisticRegression/
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function. Hence, with this design the function can generate a probability value. The

logistic model, therefore, is set up to ensure that whatever calculation of risk we

obtain, it is a number between 0 and 1.

5.8.1 The Logistic Model

The logit form in the below is required to estimate an odds ratio from logistic model

logitP (D|X1, X2, ..., Xn) = ln

[
P (D|X1, X2, ..., Xn)

1− P (D|X1, X2, ..., Xn)

]
. (5.114)

Simplest meaning of an odds is the ratio of the likelihood that an event will take place

over the likelihood that the same event will not take place.

To construct the model, the vector β′ = (α, β1, β2, ..., βn) estimation is needed. These

variables are computed by using the method maximum likelihood estimation.

The likelihood equation results can be identified as

n∑
i=1

[yi − P (D|Xi)] = 0 (5.115)

and
n∑
i=1

xij[yi − P (D|Xi)] = 0 (5.116)

for j = 1, 2, 3, ..., p. Let’s consider that the solution to these equation will be defined

as β̂. Also, the estimated values for the multiple logistic regression model are denoted

as ˆP (D|X), the value is estimated with using β̂ and Xi.

The calculation of the covariance and variance of the computed coefficients appropri-

ately follows a theory of maximum likelihood estimation. The theory indicates that

by using the the matrix of second partial derivatives of the logistic likelihood func-

tion, the calculations are procured. The general form of the partial derivatives in the

above have the form

∂2L(β)

∂β2
j

= −
n∑
i=1

x2
ijPi(1− Pi) (5.117)
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and

∂2L(β)

∂βj∂βl
= −

n∑
i=1

xijxilPi(1− Pi) (5.118)

for j, l = 0, 1, 2, ..., p where Pi denotes P (xi).

Considering the (p+1)×(p+1) matrix including the nonpositive of the terms specified

in equation above be identified as I(β). The matrix maintained in the above is known

as the observed information matrix. By using the inverse of this matrix which defined

as V ar(β) =−1 (β), the variance and covariance values of the calculated coefficients

can be produced. It is not likely to define an explicit expression for the values in

this matrix except in very particular situations. Therefore, the notation V ar(βj) will

be used to identify the j th diagonal element of this matrix, which is the variance

of β̂j .And also, Cov(βj, βl) identifies an arbitrary off-diagonal element, which is the

covariance of β̂j and β̂l.

The calculations of the variances and covariances, which will be identified as V̂ ar(β̂),

are computed by assessing V ar(β) at β. We use the calculated standard errors of the

computed coefficients, which will be defined as

ŜE(β̂j) = [V̂ ar(β̂j)]
1/2 (5.119)

for j = 0, 1, 2, ..., p. A formulation structure of the information matrix helpful as

examining the model adjustment and evaluation of adjusting is Î(β̂) = X
′
V̂ X .

Here, X is an n × p+1 matrix includes the data for every subject and V is an n × n

diagonal matrix with general element P̂i(1− P̂i) [29].

5.8.2 Regularization

a) Ridge Regression

Except that the coefficients are computed by reducing a minor different amount while

comparing the Ridge Regression (RR) and least squares. Apart form this, these two

calculation method is very similar. Specifically, the ridge regression coefficient com-
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putes β̂ are the values that reduce

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j . (5.120)

Here, λ ≥ 0 is used to regulate the relative effect of RSS and λ
∑p

j=1 β
2
j , shrinkage

penalty, terms on the regression coefficient computations [32].

b) Lasso Regression

Comparing the Lasso Regression with the Ridge regression, RR have an apparent

drawback. Instead of the best subset, RR will contains all p attributes within the final

form of model. Without setting the λ parameter to zero, the penalty expression shrink

each one of the coefficients through to zero, but this will not lead any of them to

reach exactly to zero. In model interpretation, this can generate a difficulty where the

amount of variable is quite wide. The lasso is an alternative to ridge regression that

obviates this disadvantage. The lasso coefficients, β̂Lλ , reduce the value

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj| = RSS + λ

p∑
j=1

|βj|. (5.121)

The only distinction is that the penalty expression β2
j in the ridge regression is re-

placed by |βj| in the lasso penalty. Like with ridge regression, the lasso shrinks the

calculations of the coefficient through to zero, but in the case of lasso, if λ is large

enough, the l1 penalty will force some of the coefficient calculations to be precisely

equivalent to zero.

Therefore, the lasso works feature selection method, similar to the optimum subset

selection of attributes. For this reason, the models constructed form the lasso are

commonly quite simpler compered to those by ridge regression in terms of interpre-

tation [32]. (An introduction to statistical learning)
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5.8.3 Optimization Techniques

a) Limited Memory BFGS Method

In this part, a summary will be given to explanation of LBFGS method since this

technique is already identified under the MLP section.

The LBFGS method is redesigned version of BFGS for handling large scale opti-

mization problems. In such a problem, O(n2) is the storing cost and updating cost

Bt would be prohibitively expensive. In LBFGS, first m steps are identical to the

BFGS approach. Inverse of the Hessian is calculated only by using the m steps that

in parameter and gradient space.

The form of the inverse BFGS formula in this approach is

Hk+1 = V T
k HkVk + pksks

T
k , (5.122)

where pk = 1
yTk sk

, and Vk = 1− pkyksTk .

The direction of the quasi newton is produced from by usage of a matrix free method [55].

The iterations in optimization are identified as sk = xk+1−xk and yk = gk+1−gk, with

respect to xk. By adjusting H0, m̂ + 1 times with usage of the tuples {yj, sj}kj=k−m̂,

the optimization is performed [42].

b) Newton-Conjugate Gradient

The fundamental concept in Conjugate Gradient (CG) is to choose a seeking direction

that is perpendicular to the seeking direction from the prior iteration. Let’s assume

that u is an arbitrary direction. w can be adjusted as

w
′ ← w +

gTu

λuTu+
∑

n σ(wTxn)σ(−wTxn)(uTxn)2
u (5.123)

Here, σ is the logistic function, σ(a) = (1 + exp − 1)−1, g is the gradient, w is

an arbitrary weight, and xn’s are independent data instances. The gradient can be
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estimated as

g = −λw +
∑
n

σ(−ynwTxn)ynxn. (5.124)

By using the Hestenes-Stiefel formula

β =
g
′T

(g
′ − g)

uT (g′ − g)
(5.125)

the direction u can be determined according to u′ ← g−βu, where an optimum value

of β [20].

c) LIBLINEAR

By considering a set of sample and class label tuple is (xi, yi), i = 1, ..., l, xi ∈
Rn, yi ∈ {−1,+1}. The Liblinear method deal with the following unconstrained

optimization case with variety of loss functions ξ(w;xi, yi) :

min
w

1

2
wTw + C

l∑
i=1

ξ(w;xi, yi), (5.126)

where C > 0 is a penalty parameter. log(1 + e−yiw
T xi) is the loss function that is

derived from a probabilistic model. This optimization method solve bias term, b, by

augmenting the vector w and each sample xi with an additional dimension wT ←
[wT , b], xTi ← [xTi , B], where B is a constant.

d) Stochastic Average Gradient

The Stochastic Average Gradient (SAG) technique is a randomized setting of the in-

cremental aggregated gradient approach. SAG has the lesser iteration cost comparing

to SG techniques, but reaches the converge rates for the Full Gradient algorithm.

The iteration of SAG takes the following form

xk+1 = xk − αk
n

n∑
i=1

yki . (5.127)
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Here, a random index ik is chosen for every iteration. Also, we set

yki =

f
′
i (x

k) if i = ik,

yk−1
i if otherwise.

This is the step includes a gradient with respect to every function. However, each

iteration only calculates the gradient for a single instance, and iteration cost is inde-

pendent of n. By specifying a constant value for step-size the SAG iterations have a

linear convergence ratio for strongly-convex objectives, and a O(1 = k) convergence

ratio for convex objectives [54].

e) SAGA

SAGA method is based on theory behind SAG and Stochastic Variance Reduced Gra-

dient algorithms. The algorithm reduces strongly convex finite sums, and it is faster

in expectation than is likely without the construction of the finite sum. In the general

situation that a quadratic regularization is used, the requirement of strong convex-

ity is also met in machine learning issues. Specifically,in this approach, minimizing

functions as the following form are aimed.

f(x) =
1

n

n∑
i=1

fi(x), (5.128)

Here, x∈ Rd, every fi has Lipschitz continuous derivatives with scalar L and, it is

convex. The optimization is started with some vector x0 ∈ Rd that is initially known,

and f ′i (φ
0
i ) ∈ Rd known derivatives with φ0

i = x0 for every i. Above derivatives are

kept in a table data-framework of length n. By using a step size of γ and executing

below adjustments, and starting with k = 0, the SAGA algorithm begins with given

xk value and each f ′i (φ
k
i ) quantity at the end of iteration k, the adjustments for itera-

tion k + 1 is as follows

First, select a j value uniformly at random.
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After that, obtain φk+1
j = xk, and keep f ′j(φ

k+1
j ) in the table. All other inputs in the

table remain untouched. The value φk+1
j is not explicitly kept.

Than, adjust x by using f ′i (φ
k+1
i ), f ′i (φ

k
i ) and the table average

wk+1 = xk − γ

[
f
′

j(φ
k+1
j )− f ′j(φkj ) +

1

n

n∑
i=1

f
′

i (φ
k
i )

]
, (5.129)

xk+1 = proxhγ(w
k+1). (5.130)

The description of the proximal operator applied above is

proxhγ(y) := argmin
x∈Rd

{
h(x) +

1

2γ
||x− y||2

}
(5.131)

where h(x) is the regularization function [21].
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CHAPTER 6

VALIDATION AND EMPIRICAL RESULTS

Validation criterias measure for assessing how good or how accurate a classifier is at

predicting the class label of instances.

Using training data to derive a classifier and then estimating the accuracy of the re-

sulting learned model can result in misleading overoptimistic estimates due to over-

specialization of the learning algorithm to the data. Instead, it is better to measure the

classifier’s accuracy on a test set consisting of class-labeled tuples that were not used

to train the model.

a) Accuracy Ratio

Accuracy ratio can be described in detail with four additional terms that is needed to

know to create confusion matrix used in evaluation of classification. There are two

dimensions in determining the accuracy. These are true positive (TP) which refers

to the positive instances that are correctly assigned by the classifier, true negative

(TN) which measures the negative observations that are correctly classified by the

algorithm, false positive (FP) which shows the negative samples that are incorrectly

assigned as positive, and false negative (FN) gives the ratio of the positive instances

that are misclassified as negative.

These ratios are summarized in the confusion matrix (Table 6.0.1).
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Table 6.0.1: Confusion Matrix.
Predicted Class

1 0 Total
Actual Class 1 True Positive False Positive P

0 False Negative True Negative N
Total P’ N’ P+N

The accuracy of a classifier on a given test set is the percentage of test set tuples that

are correctly classified by the classifier. That is,

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

In the pattern recognition literature, this is also referred to as the overall recognition

rate of the classifier, that is, it reflects how well the classifier recognizes tuples of the

various classes [28].

b) Type I and Type II Error

Type I and Type II error rates measure the error that occur for each class. It calculates

for class I by total number of falsely classified class I members number divided by

the total number of class I members. These ratios are needed when it is an imbalance

problem, where the main class of interest is rare. That is, the data set distribution

reflects a significant majority of the positive class and a minority negative class, in

our study credit assessment default instances are always lesser than the non-default

ones.

Type I Error =
FN

FN + TN
(6.2)

Type II Error =
FP

FP + TP
(6.3)

c) Area Under the Receiver Operating Characteristics

Receiver operating characteristic (ROC) curve is a useful visual tool for comparing

two classification models. An area under the receiver operating characteristics (AUC)
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curves comes from signal detection theory, and this curves are used for the analysis of

radar images. ROC curve for a given model shows the trade-off between the true pos-

itive rate (TPR) and the false positive rate (FPR). Given a test set and a model, TPR

is the proportion of positive (or “yes”) tuples that are correctly labeled by the model;

FPR is the proportion of negative (or “no”) tuples that are mislabeled as positive.

Given that TP, FP, P, and N are the number of true positive, false positive, positive,

and negative tuples, respectively. A visual example of ROC curve for different thresh-

old values is given in Figure 6.0.1. For a two-class problem, an ROC curve allows us

to visualize the trade-off between the rate at which the model can accurately recog-

nize positive cases versus the rate at which it mistakenly identifies negative cases as

positive for different portions of the test set. Any increase in TPR occurs at the cost

of an increase in FPR. The area under the ROC curve is a measure of the accuracy of

the model [28].

Figure 6.0.1: An example to ROC Curve.

6.1 K-Fold Cross Validation

In K-fold cross-validation, the present samples are split at random into k dissociated

parts or subsets D1, D2, ..., Dk, every one of them have roughly equal number of

sample. In this validation process, testing and training is executed k times. In step i,

splitted part Di is kept as a test set, and the rest of the data samples are used to train

the ML model.

More specifically, the sample subsetsD2, D3, ..., Dk collectively perform as the train-

ing set to produce the first model in the first step, which is validated onD1; the second

step is trained on sample sets D1, D3, D4, ..., Dk and validated on D2. Every instance
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is used just one time for validation, k − 1 times in the training process. This valida-

tion technique is performed for classification as depending on the criteria estimation

is total number of correctly classified instances from the k iterations, split by the total

number of pairs in the recent sample set [28]. In the case of leave on out approach,

just one instance is kept out at a time for the validation set. The structure is simply

identified in the Figure 6.1.1.

Figure 6.1.1: K-Fold Cross Validation.

6.2 Experimental Design

Experiments are conducted on two credit datasets taken from UCI machine learning

repository. The details of the datasets can be seen in Chapter 2. In the experiments,

the two datasets are randomly divided into two sets: 90% as the training set and 10%

as the test set. However, the sample distribution in German data is 30% and 70%, and

when the data is divided randomly, insufficiency in terms of default or non-default

sample may be occurred on train or test datasets. To prevent this, the instances are

selected so that the proportion of features from each classes remains the same in

both the training set and the test set. To do this, the data is first divided into two

data subsets, one of them contains the default instances and the other includes non-

defaulted examples only. Then, these two data subsets are split separately at random,

and than, the train and test datasets are obtained by combining corresponding subsets.

In our experiments, it is aimed to show the classification ability of eight ML algo-
1Source of Figure 6.1.1: http://karlrosaen.com/ml/learning-log/2016-06-20/
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rithms, and the impact of four data transformation techniques. Beside, we employ

three approaches in our analysis. The first one is application of GS for parameter

optimization, the second one is implementation of Wrapper method for feature se-

lection, and the last one is jointly usage of WFS and GS. 10-fold cross is applied to

ensure avoidance of overfitting in these approaches. Each of the experiments are val-

idated on three randomly divided train and test subsets. Average of AUC, accuracy,

type I and type II error values of these three cases is used to compare effectiveness of

algorithms and methods.

Figure 6.2.1: Experimental Desing with Wrapper Method.

Second design which is only application of grid search to the datasets is similarly

executed just on training set. It reveals that which parameters of the machine learning

algorithms are the optimum for the data. Same as the wrapper method part, to avoid

overfitting 10 fold cross validation is used in grid search process. After determination

of the parameters, this values are used to evaluate models performance on test set.

This process is conducted for three times and their average is taken. One can find

visual description on Figure 6.2.2.
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Figure 6.2.2: Experimental Desing with Grid Search.

In the last experiment, after the most successful attributes are selected by applying

WFS, GS is used for parameter tuning on training dataset consists of the selected

features. In Figure 6.2.3, visualization of this approach is given. This design is also

applied three times and the results averages are taken.

Figure 6.2.3: Experimental Desing with Wrapper Method and Grid Search.

Sklearn-learn libraries [49] are used to conduct the experiments for eight machine
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learning algorithms and the validation algorithms.

6.3 Application to German and Australian Datasets

In this section, we will compare the performance of eight different machine learning

algorithms with three approaches on their default states and dataset having no feature

selection. In addition, the impact of four different transformation methods to the

results are analyzed. Six different datasets are created. These are four datasets created

by using four transformation techniques to continuous attributes only and two datasets

that Min-Max and Standard scaling are also applied to the categorical features. For the

outcomes for feature selection, we give attribute numbers to ensure simple expression.

Each of the numbers correspond to an attribute, and there are two tables in the below

indicating which numbers the attributes are associated with. In the experiments on

each data set 3 different attribute sets are obtained. To get general view of results,

the attributes that are occurred at least two time in these three subsets are in the

final feature subset. We share two different lists that first (common attribute list)

aim to give an overview of the feature selection results on 7 different data formed by

transformation techniques, and the second (best case list) is for the case that reaches

the highest accuracy ratio. Features included in the best-case list are those contained

in at least 4 of the final lists generated in seven cases. We share the selected features

on Australian data in Appendix since the attributes are changed symbols.

a) SVM

(a) On Australian Data (b) On German Data

Figure 6.3.1: SVM Results
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In the analysis made with SVM, it is seen in Figure 6.3.1a that WFS and GS ap-

proaches on Australian data together and only using WFS generally give more stable

results than other approaches. Additionally, it is seen that with GS, and dataset gener-

ated by the Standard scaling which is applied to all attributes has the highest accuracy

score 88.09% in the analysis. Also, outcomes obtained with data that Min-Max scale

is applied to only continuous attributes have the highest average ratio than with the

other techniques. The worst outcome is obtained with the data that no transformation

is applied (54.29%), but on average, the lowest case equal to 80.24% is occurred on

the data that generated with LN transformation. [3,5,7,8] is the Common Attribute

List (CAL) and [0,1,2,3,5,6,7,8,9,12] is the Best Case List (BCL) with 87.14% accu-

racy.

In the outcomes on German data in Figure 6.3.1b, the performance of GS and SVM

combination reaches the highest degree. It is understood that the algorithm does not

give stable results when WFS and together WFS and GS are applied. Among the data

transformation techniques, the data set which transformation is not implemented gives

the highest score 79.33% with parameter optimization. However, it’s execution time

takes 05:40:49 hour although the others have average computation time is 00:08:34

minutes. Also, the lowest score 73.75% is obtained in this data set. On average, the

most successful scale technique for this data is LN (77.08%) while the worst score is

attained by the data with no transformation. Hence, it is seen that the transformation

methods have a significant effect on the algorithm efficiency. On the other hand,

[0,1,2,3,4,5,9,13,14,15,16,17,18] is CAL and [0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,

18,21,23] is BCL with 77% accuracy ratio. It can be said that each of the lists share

similar attributes in general.
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b) KNN

(a) On Australian Data (b) On German Data

Figure 6.3.2: KNN Results

In the analysis with KNN, it is seen in Figure 6.3.2a that with WFS approach appli-

cation to Australian data generally give stable and better results, and GS has slightly

better outcomes than the algorithm with default parameters. Hence, KNN is more

effective when WFS method is applied. The data set that generated by using Min-

Max scale for only continuous features gives the highest score 89.05% while the ML

algorithm has the lowest accuracy 70.00% with Box-Cox and LN transformation. In

general, the case obtained by applying Min-Max transformation to all attributes has

the better result on average (86.43%), but with Box-Cox it has the worst outcome

78.21%. On the feature selection side, [3,7,8,9,11,13] are the features that are in the

CAL and [2,7,8,9,11,12,13] is the BCL with the accuracy rate 89.05%. This rate also

is the highest point among the other ML algorithms. Most of the features are common

to the two lists.

The studies with German credit dataset in Figure 6.3.2b show that KNN achieved

the highest performance 78.33% with GS. The other two approaches have a positive

effect on the accuracy ratio of KNN. The ML algorithm reaches the highest score with

the dataset that Standard scale is implied to only continuous feature, and the lowest

score 69.67% is obtained with data set Min-Max scale is applied for all features.

On average, the most suitable transformation is Standard scale (74.92%) whereas

the worst technique is Standard scale that is implemented to all features (72.22%).

In the general sense, it is clear that the effectiveness of KNN on this data depends

on transformation techniques. For this dataset, [0,1,2,3,4,5,14,16,17,18,19,21] is the

CAL and [0,1,2,4,5,13,14,16,17,18,19,20,21] is the BCL with 74.67% accuracy rate.
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c) MLP

(a) On Australian Data (b) On German Data

Figure 6.3.3: MLP Results

In the Figure 6.3.3a, it is seen that all approaches give results that are close to each

other. WFS with GS is the most consistent approach than the others, but GS is

slightly better in general. This algorithm reaches the highest accuracy ratio 87.62%

with Box-Cox data transformation and the case that Standard scale is applied to all

features, but the data that no transformation is implemented gives the worst out-

come 74.29% with MLP. On average, Box-Cox is the most suitable techniques for

this data whereas LN is the transformation that gives the lowest outcome 84.52%.

[0,1,2,3,4,5,7,8,10,11,12,13] attributes are selected in the CAL, and [0,1,2,3,4,5,7,8,

10,11] are determined in the BCL with accuracy ratio 87.62%.

The results obtained on the German data in Figure 6.3.3b give unstable results com-

pared to Australian data case. It is observed that the performance of MLP reaches

the highest level in the case that GS is applied for parameter optimization. In terms

of data transformation, the highest result 82.00% is achieved with the data set that

Standard scale is applied to only continuous attributes. However, the worst result

74.33% is obtained with Min-Max scale is used for only continuous features. On the

other hand, considering the average result MLP have better performance with Stan-

dard scale (80.50%) while this algorithm has the lowest average result 75.25% with

Min-Max scale is applied data set. As a result, it can be said that performance of

MLP is influenced significantly as the transformation techniques change. In the FS

side, [0,1,2,3,4,5,7,8,10,14,15,16,17,19,20] are selected as a most efficient features

in CAL, and [0,1,2,3,4,5,7,8,9,10,14,15,16,17,18,19,20,21] attributes are for the BCL

with 79.33 % accuracy.
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d) LR

(a) On Australian Data (b) On German Data

Figure 6.3.4: LR Results

Studies conducted with Australian data in Figure 6.3.4a generally show robust re-

sults. The performances of the three different methods give close results, but GS has

a better impact on LR in general. The most successful result 88.10% is obtained by

the approach that WFS and GS is used together. The worst result 78.10% attained in

the case where no method and data scaling is applied. In terms of data transforma-

tion techniques, the algorithm is reached the highest result 88.10% with the data that

Standard scale is applied to all attributes while the worst result is obtained with data

that no scale technique is applied. Also, the best average accuracy ratio is 87.38% ob-

tained with dataset that Standard scale is implemented for only continuous features,

but without transformation LR gives the lowest average results 84.40%. In this exper-

iment chosen features for CAL is [0,1,2,3,4,5,7,8,9,11], and for BCL is [3,4,5,7,9,13]

with accuracy rate 87.62 %.

In Figure 6.3.4b, it is seen that the variation of the results is high. It appears that

jointly usage of GS and LR has more robust results than the other methods, and in

general its average efficiency is pretty high. Although, it is seen that LR is less com-

patible with LN scaling among the transformation techniques, with this technique LR

gives better results comparing to case that no scaling is applied. This algorithm has

the best score 78.33% with Min-Max and Standard scale while it gives the lowest

result in the case that no transformation is applied. Additionally, the highest aver-

age result 78.00% is obtained with the case that Standard scaling to all attributes,

and again the worst result 76.58% is occurred in the dataset that no transformation is

applied. Hence, it is clear that the efficiency of the algorithm depends on the trans-

87



formation techniques. For the FS side, [0,1,2,3,4,6,7,8,10,11,14,15,16,17,18,19,21]

is CAL, and [0,1,2,4,6,7,8,10,11,14,15,16,18,22] is BCL with 78 %.

e) GNB

(a) On Australian Data (b) On German Data

Figure 6.3.5: GNB Results

In the analysis with GNB, it is seen in Figure 6.3.5a that the approaches using WFS

and WFS with GS together on Australian data give better and more consistent results

than other situations, with GS its performance increases but the variation of accuracy

ratios is high. It can be said that GNB is more compatible with the feature selection

that is using GNB itself. In the case where GS is used only, performance of the algo-

rithm is better than the situation where no method is applied. And, it is also seen that

after implementing FS methods to data, transformation techniques have no effect on

performance of GNB. Apart from these, the best accuracy 88.57% is obtained with

data that Standard scale is applied to only continuous variables, and the lowest result

78.57% is occurred in the data which no transformation is implemented. Beside, aver-

age (86.91%) of results occurred on the cases Box-Cox and LN transformation is used

is the highest among the other techniques while the worst average accuracy 83.81%

is obtained in the dataset which no data scaling is applied. Determined attributes on

this data set for CAL and BCL is [0,1,3,4,5,7,8,10,11,12] with 88.57% accuracy.

The results in Figure 6.3.5b show that WFS approach is more efficient compared to

the situation where only GS is applied. All methods have a positive impact on GNB

except the case where only GS is applied on the data Min-Max transformation is used

for all features. When the data scaling techniques are considered, the highest result

77.33% achieved with Standard and Box-Cox is used to scale continuous attributes,
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and the lowest outcome 73.33% is occurred where LN is applied. Among the average

results, the worst case (74.33%) is obtained where LN is used, and the best result

76.17% is gotten in the dataset that Standard scale is implemented to only continuous

features. The CAL on this data is [0,1,2,4,5,6,7,8,11,12,13,15,20,22,23], and the BCL

is [0,1,2,4,5,6,8,15] with 77.33 %.

f) DT

(a) On Australian Data (b) On German Data

Figure 6.3.6: DT Results

The Figure in 6.3.6a shows that the performance of the decision tree reaches the

highest point with the WFS method. Also, it is understood that all methods in-

crease the efficiency of this algorithm. The accuracy results of GS and WFS with

GS overlap. Therefore, they are seen as orange. Apart from this, it is understood

that the performance of the algorithm is not affected by data transformation tech-

niques [71] [52] [61], as stated in the literature. The approach that only GS is applied

is less effective than WFS. The selected features in CAL and BCL is [0, 3, 7, 8, 11]

with 87.62 % accuracy ratio.

On the other hand, in the studies conducted on German data in Figure 6.3.6b, it is

clear that GS gives better results than other approaches. The efficiency of DT on

the original data with default parameters appears to be very low in this data set as in

Australian data. It is once again seen that DT is not affected by the transformation

techniques. With this data features [0,2] are included in the CAL, and [0, 2, 14, 18,

23] are contained in the BCL with the accuracy rate 72.67 %.
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g) RF

(a) On Australian Data (b) On German Data

Figure 6.3.7: RF Results

In Figure 6.3.7a, it can be said that the efficiency of all methods are close to each

other, but the case that WFS is applied gives slightly lower accuracy rate than the

other methods in general. The best result 87.14% is occurred where WFS is used

with GS, but the most consistent method is GS. In terms of data transformation,

RF gives the highest result 87.14% with datasets that Standard and Min-Max scale

are implemented to all attributes. However, the worst cases (81.43%) are occurred

with the same transformation techniques where no method is applied. The best av-

erage accuracy rate 85.60% is achieved on dataset that Min-Max is applied only

to continuous columns while the worst results 85.12% are obtained on the cases

where the Min-Max and Standard scale is used for all attributes. In the FS side,

[0,1,2,3,4,5,7,8,9,10,11,12,13] are the elements for both the CAL and BCL with ac-

curacy rate 87.14 %.

The results seen in Figure 6.3.7b shows that the GS approach has more positive ef-

fect than the others. Outcomes of the case that only feature selection method is

applied with this algorithm is poor since it even gives worse results than the one

that no method is applied. RF algorithm has the highest result 80.67% with LN

data transformation, but the worst outcome 72.00% is occurred in case that Min-

Max scale is applied to all features. In general, the highest average accuracy value

76.42% is obtained with Min-Max scale whereas the lowest value 75.83% is ob-

tained in case that Box-Cox transformation is used. Hence,the performance of the

algorithm is dependent to transformation techniques, but it is not consistent. In

other word, there is not an ideal transformation for this algorithm. The CAL is

90



[0,1,2,3,4,5,7,12,14,15,16,17,18,19,20,21,22,23] for this experiment and the BCL is

[0,1,2,3,4,5,6,10,14,15,16,17,18,19,21,22,23] with 77.67 % accuracy.

h) XGB

(a) On Australian Data (b) On German Data

Figure 6.3.8: XGB Results

Finally, it can be said that the results in Figure 6.3.8a of the studies conducted with

XGB on the Australian data with GS are more compatible than the other cases. In ad-

dition, WFS has a positive effect on performance when compared to the original data.

Jointly usage of GS and WFS contributes a little to previous results. As mentioned in

the literature, data transformation techniques do not have any effect on this algorithm.

The elements in both the CAL and the BCL are same, [0,3,4,6,7,8,9,10,11,12] with

accuracy rate 87.62%, since data transformation techniques do not have any effect on

this ML algorithm.

In parallel with the results on other data in Figure 6.3.8b, compatibility of GS with

this algorithm is much higher than other approaches on German data. However, the

results of the analyzes performed with feature selection show that the performance

of the algorithm is less efficient than the default case. In this analysis, when XGB

algorithm is applied with wrapper method which uses XGB itself, it can be seen that

this approach is inefficient on this dataset. Likewise, the results show that this method

is not affected by data transformation once again. The common elements for the

CAL and BCL are [0,1,2,3,4,5,6,7,12,13,14,15,16,17,18,21,22,23] with the accuracy

78.67%.
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6.3.1 Additional Experiment

In this part, we give the outcomes of different experimental approach. The trans-

formation techniques are applied in normal approaches, but we also want to show if

the transformations are applied after the splitting, how the performances of ML algo-

rithm are affected. To investigate this affect the best results MLP with GS on German

dataset form that Standard scale is used for only continuous features, and KNN with

WFS on Australian dataset version that Min-Max transformation is applied only to

continuous attributes are taken into account. Although The experiment with XGB

gives the same accuracy with the KNN, we use this experiment KNN since transfor-

mation techniques does not affect XGB. Same as the previous designs the test set ratio

is 10% , and 90% left for train set. Transformation process is applied after the split.

For Min-Max scaling approach, the highest and lowest values are used to scale the

attribute columns, and Standard scale technique uses the sample mean and standard

deviation. For that reason, the values in a specific column affect the transformation

process. We also assume that all the test values are not seen in training process, so it

also applies to scaling.

In the experiment with MLP, it is found that the accuracy ratio decrease form 82% to

81.33%. Rise on the type II error (it is increased form 8.09% to 9.04%) is the cause of

performance decrease, but the type I error rates remain the same. However, accuracy

rate drops approximately 3.80% to 85.24% from 89.05%. Compering to MLP case it

has a dramatic influence on the performance of KNN. And, the selected features are

also different from ones in the previous design. In this analysis, the instances E, H,

J and L are prominent, while in the previous case, H, I, J, L, M and N features are

selected.
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6.3.2 Comparison of Machine Learning Algorithms Selected Methods

Table 6.3.1: The best performing three algorithms under with WFS
Performance indicators of top 3 algorithms (Australian Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) No of Feat. Without FS (%)

KNN 89.05 89.18 11.96 9.67 6.66 80.95

GNB 88.10 88.76 17.09 5.37 9.33 80.95

LR 87.62 88.00 15.38 8.60 9.66 86.67

Performance indicators of top 3 algorithms (German Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) No of Feat. Without FS (%)

MLP 79.67 71.51 48.88 8.09 18 78.67

XGB 78.67 70.16 51.11 8.57 15.66 79.67

LR 78.00 69.68 51.11 9.52 15.33 77.33

Table 6.3.1 presents only the three highest results of the performance of WFS method

on all ML algorithms. These results are compared with accuracy, AUC, type I error

and type II error rates. When the table is examined, it is seen that KNN has achieved

a much better result than other algorithms only with an average of 6.66 attributes.

The low dimensionality is a major advantage in terms of both the interpretation of the

data and the execution time. GNB’s efficiency is significantly higher than the default

situation. Although WFS has a relatively small effect on MLP, it ranks third with a

slightly higher result than others.

When we look at the top three performances on German data, MLP is at the top. It

is seen feature selection contribute 1 % to the efficiency of this algorithm comparing

to original data case. This performance is achieved with an average of 18 features,

while the original data has 24 characteristics. It is seen that WFS has a negative effect

on the efficiency of the XGB which comes after this ML algorithm. LR has the third

highest accuracy with this result, although feature selection contributes slightly to its

performance.
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Table 6.3.2: The best performing three algorithms under with WFS+GS
Performance indicators of top 3 algorithms (Australian Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) No of Feat. Without GS and FS (%)

KNN 89.05 89.18 11.96 9.67 6.66 80.95

GNB 88.55 89.19 16.23 5.37 9.33 80.95

LR 88.10 88.54 15.38 7.53 8.66 85.71

Performance indicators of top 3 algorithms (German Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) No of Feat. Without GS and FS (%)

MLP 80.00 71.50 47.78 8.09 18 78.67

XGB 78.33 69.29 53.33 8.09 15.67 79.67

LR 78.00 69.68 51.11 9.52 15.33 77.33

When the highest three scores obtained from the case that WFS and GS are applied

together, it shows that KNN has the highest accuracy ratio on Australian data similar

to WFS is summarized in Table 6.3.2. With this method, the accuracy of KNN has

increased from 80.95% to 89.05% at a significant level. Compared to the previous

table, the enhancement of this approach to performance of GNB is seen in the second

row. The efficiency of LR in the third row is increased significantly with approach,

and it gives stronger results than MLP.

As a result of the analysis conducted with the other data set, it is seen that the per-

formance of MLP is partially increased, efficiency of XGB is decreased, and this

approach does not make any contribution to LR’s accuracy ratio. Nevertheless, the

XGB algorithm ranks second.

Table 6.3.3: The best performing three algorithms under with GS
Performance indicators of top 3 algorithms (Australian Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) Without GS (%)

XGB 89.05 89.18 11.96 9.67 85.71

GNB 88.10 88.76 17.09 5.37 80.95

MLP 87.62 87.89 14.52 9.67 86.67

Performance indicators of top 3 algorithms (German Dataset)

Model Accuracy (%) AUC (%) Type I Error (%) Type II Error (%) Without GS (%)

MLP 82.00 75.71 40.00 8.57 81.00

XGB 81.67 73.89 45.56 6.67 79.67

RF 80.67 71.90 50.00 6.19 75.00

In the approach where only GS is applied, it is understood in Table 6.3.3 that XGB
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has reached the highest efficiency and its accuracy ratio is increased significantly

comparing to the case that default parameters are applied. The next highest accuracy

rate is achieved with NB. With this approach, the efficiency of this algorithm increases

significantly compared to XGB. The highest results of MLP are occurred with this

method.

On the other hand, MLP reaches the highest performance with this method consid-

ering the other approaches on German credit data. The next highest performance is

belong to XGB, and it can be said that the efficiency of this algorithm also reach its

highest level with this approach. Although LR significantly improves its performance

with GS, it gives the third best result.

Table 6.3.4: Comparison of the results to previous studies
Accuracy, Type I and Type II Error Rates

German Dataset Australian Dataset

Article name Method Accuracy (%) Type I (%) Type II (%) Method Accuracy (%) Type I (%) Type II (%)

- Our Study MLP&G.S 82.00 40.00 8.57 XGB & G.S. 89.05 11.96 9.67

- Xia Y. et al. (2017) Bagging NN 76.01 49.67 12.98 XGB 87.81 13.92 10.80

- D. Liang er al. (2015) SVM 76.30 49.80 - NB+PSO*** 85.86 12.41 -

- A. I. Marques er al. (2012) MLP+Adaboost 71.50 45.00 - Adaboost+NB 79.57 3.00 -

- C. F. Tsai (2009) MLP+FA* 78.76 48.69 10.66 MLP+PCA** 89.93 11.53 7.9
*FA=Factor Analysis **PCA=Principal Component Analysis ***PSO=Partial Swarm Optimization

Table 6.3.4 represents the results of the studies in literature at which type I and type

II ratios are available from over twenty recently published studies. Results that the

highest accuracy and least error rates in these studies are situated in the table. When

we look at these studies, it can be said that the case which MLP ML algorithm is

applied together with GS to German data has better results than the other studies in

the table in terms of accuracy rate, type I and type II error ratios.

It is seen that the results obtained on XGB with GS on Australian credit data are more

efficient than the studies in literature except that the case MLP is used with PCA. The

type I error in the study using Adaboost with GNB appears to be very low, but it can

be said that the type II error is very high because the accuracy rate is much lower than

the other studies.
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6.3.3 Conclusion

In this thesis, we investigate which of the eight classification methods is superior

to others in terms of consumer credit classification. We also examined the effects

of GS and WFS methods on the performance of these classification algorithms, and

observed how four different data conversion techniques influence the effectiveness

of these algorithms. WFS is applied to each algorithm with usage of SFS method.

Analysis is carried out with German and Australian credit dataset taken from UCI ML

repository. To make these measurements 90 percent of the data is kept for training

and 10 percent for testing. Data transformations are implemented before splitting. In

order to compare the analysis results, datasets are divided according to certain random

states. For each case, three different train and test sets are generated according to

random states, and average of these three results are considered for comparison. AUC,

accuracy, type I and type II error rates are used for validation.

In our analysis, we find that performance of SVM is significantly improved with GS

on both datasets. Although the WFS method leads to consistent and good results

on Australian data, the same does not apply to German data. While KNN is more

compatible with WFS on Australian data, usage of GS leads to better results in other

data. MLP gives higher accuracy rates with GS on these datasets. WFS has a posi-

tive impact to this algorithm on German data, but the same is not observed in other

data. Studies with LR shows that this algorithm gives better results with GS on both

data whereas WFS is more suitable for Australian data than the other one. GNB and

GS combination gives good classification performance, but jointly usage of GNB and

WFS provides higher and more stable outcomes. Application of WFS to Australian

data, and GS to German data is more appropriate in terms of DT’s classification abil-

ity. Although there is a feature selection mechanism in DT called embedded method,

WFS has a favorable impact. Three different approaches have a contribute signifi-

cantly to the effectiveness of RF algorithm, but it is seen that while only GS is ap-

plied, better results are achieved compared to the others. While analyzing with XGB,

WFS has a positive impact on Australian data and a negative effect on the other data.

On the other hand, it is found that GS is the best method on both datasets.

In terms of data transformations, it is seen that impact of these techniques vary ac-
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cording to data set and ML algorithms. For SVM, the most efficient technique is

Standard scale on Australian data. On German data, the case that no transformation

technique is applied gives the highest accuracy rate, but although average of the com-

putational time of the other situations is 8 minutes and 34 seconds, this case takes 5

hours, 40 minutes and 49 seconds. Therefore, LN transformation is more appropriate

for SVM on this dataset. Min-Max is more effective for Australian data, and Standard

scale for German data where KNN is employed. It is found that Standard scale is the

best option on both dataset for MLP. However, the worst results are obtained with

LN on Australian data, and Min-Max on the other data. Two datasets generated by

implementing Min-Max and Standard scale give the highest scores with LR, while

Standard scale is more suitable, but LN is incompatible technique for Australian data.

For GNB, the results indicate that Min-Max leads to more accurate score on Aus-

tralian data, while Standard scale is not as efficient as the other techniques. On Ger-

man data, the highest outcomes are achieved with Box-Cox and Standard techniques,

and the worst result is obtained with LN transformation. Although data transforma-

tion techniques do not affect RF, DT and XGB tree based algorithms [71] [52] [61],

it is clearly seen in the result section that these techniques have an impact on RF

algorithm.

Regarding WFS, it is observed that some of the attributes are commonly selected by

all ML algorithms, which are contained in CAL and BCL sets at least five times. The

features that are contained at least five of the CAL sets are Checking Account, Dura-

tion in month, Credit History, Credit Amount, Savings Account, Employment Since,

Present Resident, Foreign Worker, Purpose-New Car, Purpose-Used Car, Purpose-

Domestic Appliances, Co-Applicant. On the other hand, Checking Account, Dura-

tion in month, Credit History, Savings Account, Employment Since, Foreign Worker,

Purpose-New Car, Purpose-Used Car, Purpose-Domestic Appliances, Co-Applicant,

Skilled Employee-Official are included in more than four of the BCL sets. The se-

lected features that occur on Australian data can be found within Table A.3.1 in Ap-

pendix.

As a result of this research, we find that there is no perfect algorithm, method or

transformation for all datasets. We also see that the performance of ML algorithms

depends on the transformation techniques, data itself and the methods. In general,
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GS is the most suitable method for all algorithms, while WFS is more appropriate

for KNN and GNB because of the increase in their accuracy ratio comparing to their

default cases that no method is applied. When all the outcomes are considered, it can

be said that WFS gives consistent results as similar features are selected in all of the

FS cases.
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APPENDIX A

DETAILED PERFORMANCE OUTCOMES OF ML

ALGORITHMS

In the following sections, detailed outcomes of ML algorithms and methods are pre-

sented. Additionally, FS outputs belonging to Australian dataset, their corresponding

codes and tables of execution time are provided.

A.1 Detailed Performance Outcomes

SVM

Table A.1.1: Detailed Results of SVM on German Data
Support Vector Machine Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 71.00% 72.67% 72.00% 79.33% 9.7
Standard 76.00% 77.00% 77.00% 76.67% 16.7
Min-Max 74.67% 71.67% 72.67% 78.00% 11.7
Box-Cox 75.67% 74.33% 75.33% 78.00% 21.3

LN 76.00% 75.67% 78.00% 78.67% 16.7
Min-Max (All At.) 73.67% 74.33% 75.00% 76.33% 12.0
Standard (All At.) 76.67% 76.67% 77.33% 77.00% 13.7

Table A.1.2: Detailed Results of SVM on Australian Data
Support Vector Machine Without FS and GS Feature Selection Forward S. and Grid S. Grid Search No of Feat.

Without Scale 54.29% 85.71% 85.71% 72.86% 5.7
Standard 83.81% 84.76% 84.76% 84.29% 7.7
Min-Max 85.71% 87.14% 86.67% 87.62% 8.0
Box-Cox 75.71% 85.71% 84.76% 79.52% 6.3

LN 73.33% 84.76% 86.19% 76.67% 7.0
Min-Max (All At.) 87.14% 87.14% 86.67% 85.71% 1.0
Standard (All At.) 85.71% 85.71% 88.10% 83.33% 6.0
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KNN

Table A.1.3: Detailed Results of KNN on German Data
K-Nearest Neighbors Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 71.33% 73.33% 72.33% 73.00% 16.7
Standard 73.00% 74.67% 73.67% 78.33% 11.3
Min-Max 74.33% 73.33% 73.67% 76.33% 15.0
Box-Cox 74.67% 74.00% 74.33% 74.33% 17.7

LN 74.00% 72.67% 76.00% 74.33% 13.3
Min-Max (All At.) 69.67% 72.00% 74.33% 76.33% 11.0
Standard (All At.) 72.33% 74.33% 71.00% 71.00% 14.7

Table A.1.4: Detailed Results of KNN on Australian Data
K-Nearest Neighbors Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 72.86% 80.95% 84.29% 76.19% 4.0
Standard 77.14% 86.67% 85.24% 80.00% 7.0
Min-Max 80.95% 89.05% 89.05% 82.86% 6.7
Box-Cox 70.00% 83.81% 85.71% 73.33% 6.3

LN 70.00% 83.33% 86.19% 74.76% 6.7
Min-Max (All At.) 84.76% 87.62% 87.62% 85.71% 6.7
Standard (All At.) 84.29% 86.19% 85.71% 84.76% 7.7

MLP

Table A.1.5: Detailed Results of MLP on German Data
Multilayer NN Perceptron Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 78.67% 79.67% 80.00% 81.00% 18.0
Standard 81.00% 79.33% 79.67% 82.00% 17.3
Min-Max 77.00% 75.33% 74.33% 74.33% 11.7
Box-Cox 79.33% 77.33% 76.33% 77.33% 19.3

LN 78.33% 75.67% 75.33% 77.33% 12.3
Min-Max (All At.) 77.33% 76.00% 76.33% 78.33% 14.0
Standard (All At.) 78.00% 79.00% 79.33% 77.67% 13.7

Table A.1.6: Detailed Results of MLP on Australian Data
Multilayer NN Perceptron Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 78.67% 79.67% 80.00% 81.00% 18.0
Standard 81.00% 79.33% 79.67% 82.00% 17.3
Min-Max 77.00% 75.33% 74.33% 74.33% 11.7
Box-Cox 79.33% 77.33% 76.33% 77.33% 19.3

LN 78.33% 75.67% 75.33% 77.33% 12.3
Min-Max (All At.) 77.33% 76.00% 76.33% 78.33% 14.0
Standard (All At.) 78.00% 79.00% 79.33% 77.67% 13.7
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LR

Table A.1.7: Detailed Results of LR on German Data
Logistic Regression Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 74.67% 77.00% 76.67% 78.00% 15.7
Standard 77.33% 78.00% 78.00% 78.00% 15.3
Min-Max 77.67% 77.00% 77.33% 78.33% 17.3
Box-Cox 77.67% 76.67% 76.33% 78.00% 17.0

LN 78.00% 75.33% 75.33% 78.00% 13.7
Min-Max (All At.) 76.67% 76.33% 76.33% 78.33% 17.3
Standard (All At.) 78.33% 78.00% 78.00% 77.67% 15.3

Table A.1.8: Detailed Results of LR on Australian Data
Logistic Regression Without FS and GS Feature Selection Forward S. and Grid S. Grid Search No of Feat.

Without Scale 78.10% 86.67% 86.67% 86.19% 9.0
Standard 87.14% 87.14% 87.62% 87.62% 10.7
Min-Max 86.19% 86.19% 85.71% 86.19% 12.0
Box-Cox 86.19% 86.67% 86.67% 86.67% 9.0

LN 86.67% 86.19% 86.19% 87.14% 11.0
Min-Max (All At.) 86.19% 87.14% 87.14% 86.19% 8.3
Standard (All At.) 85.71% 87.62% 88.10% 85.24% 8.7

GNB

Table A.1.9: Detailed Results of GNB on German Data
Naïve Bayes Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.
Without Scale 75.33% 76.00% 76.00% 76.67% 9.7

Standard 75.33% 76.00% 76.00% 77.33% 9.7
Min-Max 75.33% 76.00% 76.00% 75.33% 9.7
Box-Cox 72.33% 77.33% 77.33% 74.33% 8.7

LN 73.33% 75.33% 75.33% 73.33% 8.3
Min-Max (All At.) 75.33% 76.00% 76.00% 75.00% 9.7
Standard (All At.) 75.33% 76.00% 76.00% 75.33% 9.7

Table A.1.10: Detailed Results of GNB on Australian Data
Naïve Bayes Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.
Without Scale 78.57% 88.10% 88.10% 80.48% 9.3

Standard 80.95% 88.10% 88.57% 81.43% 9.3
Min-Max 80.95% 88.10% 88.10% 87.14% 9.3
Box-Cox 85.71% 88.10% 88.10% 85.71% 9.3

LN 85.71% 88.10% 88.10% 85.71% 10.7
Min-Max (All At.) 80.95% 88.10% 88.10% 88.10% 9.3
Standard (All At.) 80.95% 88.10% 88.10% 82.38% 9.3
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DT

Table A.1.11: Detailed Results of DT on German Data
Decision Tree Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.
Without Scale 66.33% 72.67% 73.33% 77.00% 4.3

Standard 66.33% 72.67% 73.33% 77.00% 4.3
Min-Max 66.33% 72.67% 73.33% 76.67% 4.3
Box-Cox 66.33% 72.67% 73.33% 76.67% 4.3

LN 66.33% 72.67% 73.33% 76.67% 4.3
Min-Max (All At.) 66.33% 72.67% 73.33% 76.67% 4.3
Standard (All At.) 66.33% 72.67% 73.33% 76.67% 4.3

Table A.1.12: Detailed Results of DT on Australian Data
Decision Tree Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.
Without Scale 86.19% 87.62% 87.14% 87.14% 4.7

Standard 86.19% 87.62% 87.14% 87.14% 4.7
Min-Max 86.19% 87.62% 87.14% 87.14% 4.7
Box-Cox 86.19% 87.62% 87.14% 87.14% 4.7

LN 86.19% 87.62% 87.14% 87.14% 4.7
Min-Max (All At.) 86.19% 87.62% 87.14% 87.14% 4.7
Standard (All At.) 86.19% 87.62% 87.14% 87.14% 4.7

RF

Table A.1.13: Detailed Results of RF on German Data
Random Forest Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 74.67% 75.33% 76.33% 79.00% 16.7
Standard 75.00% 73.33% 77.67% 79.00% 14.3
Min-Max 74.33% 75.00% 77.67% 78.67% 19.0
Box-Cox 74.67% 74.33% 74.00% 80.33% 17.7

LN 75.00% 74.33% 75.33% 80.67% 17.7
Min-Max (All At.) 73.60% 72.00% 77.67% 80.33% 15.7
Standard (All At.) 75.00% 74.00% 76.33% 79.00% 16.3

Table A.1.14: Detailed Results of RF on Australian Data
Random Forest Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 83.81% 85.71% 85.71% 86.67% 11.0
Standard 83.81% 85.24% 86.19% 86.67% 11.0
Min-Max 83.81% 85.24% 86.67% 86.67% 12.0
Box-Cox 83.81% 86.19% 85.71% 86.19% 11.3

LN 83.81% 85.24% 86.67% 86.19% 12.0
Min-Max (All At.) 81.43% 85.24% 87.14% 86.67% 12.0
Standard (All At.) 81.43% 85.24% 87.14% 86.67% 12.0
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XGB

Table A.1.15: Detailed Results of XGB on German Data
XGBoost Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 79.67% 78.67% 78.33% 81.67% 15.7
Standard 79.67% 78.67% 78.33% 81.67% 15.7
Min-Max 79.67% 78.67% 78.33% 81.67% 15.7
Box-Cox 79.67% 78.67% 78.33% 81.67% 15.7

LN 79.67% 78.67% 78.33% 81.67% 15.7
Min-Max (All At.) 79.67% 78.67% 78.33% 81.67% 15.7
Standard (All At.) 79.67% 78.67% 78.33% 81.67% 15.7

Table A.1.16: Detailed Results of XGB on Australian Data
XGBoost Without FS and GS Feature Selection Feature S. and Grid S. Grid Search No of Feat.

Without Scale 85.71% 87.14% 87.62% 89.05% 9.0
Standard 85.71% 87.14% 87.62% 89.05% 9.0
Min-Max 85.71% 87.14% 87.62% 89.05% 9.0
Box-Cox 85.71% 87.14% 87.62% 89.05% 9.0

LN 85.71% 87.14% 87.62% 89.05% 9.0
Min-Max (All At.) 85.71% 87.14% 87.62% 89.05% 9.0
Standard (All At.) 85.71% 87.14% 87.62% 89.05% 9.0

A.2 Execution Time Tables

Table A.2.1: Runtime with GS on German Dataset
Datasets XGBoost Random Forest Decision Tree G. Naïve Bayes Support V.M. Multilayer N.N.P. K-Nearest Neighbor Logistic Regression

Without Scale 00:10:07 00:02:36 00:00:36 00:00:28 00:08:37 00:25:33 00:00:42 00:03:04
Standard 00:10:08 00:02:39 00:00:36 00:00:27 00:06:15 00:41:48 00:00:43 00:02:18
Min-Max 00:10:06 00:02:29 00:00:36 00:00:27 00:03:50 00:37:21 00:00:43 00:02:45
Box-Cox 00:09:58 00:02:42 00:00:36 00:00:29 00:06:42 00:34:06 00:00:43 00:03:02

LN 00:09:58 00:02:30 00:00:36 00:00:27 00:04:23 00:30:28 00:00:43 00:02:33
Min-Max (All At.) 00:10:07 00:02:56 00:00:36 00:00:27 00:01:31 00:40:19 00:00:42 00:01:23
Standard (All At.) 00:09:58 00:02:33 00:00:36 00:00:27 00:01:41 00:42:16 00:00:44 00:00:55

Table A.2.2: Runtime with WFS on German Dataset
Datasets XGBoost Random Forest Decision Tree G. Naïve Bayes Support V.M. Multilayer N.N.P. K-Nearest Neighbor Logistic Regression

Without Scale 00:00:30 00:01:12 00:00:01 00:00:08 05:40:49 00:01:07 0:00:09 00:00:35
Standard 00:00:30 00:01:14 00:00:01 00:00:01 00:09:38 00:01:11 00:00:02 00:00:23
Min-Max 00:00:30 00:01:23 00:00:01 00:00:01 00:07:09 00:01:11 00:00:02 00:00:23
Box-Cox 00:00:30 00:01:13 00:00:01 00:00:01 00:08:24 00:01:10 00:00:02 00:00:38

LN 00:00:30 00:01:12 00:00:01 00:00:01 00:06:45 00:01:11 00:00:02 00:00:27
Min-Max (All At.) 00:00:30 00:01:13 00:00:01 00:00:01 00:08:04 00:01:17 00:00:02 00:00:11
Standard (All At.) 00:00:30 00:01:13 00:00:01 00:00:01 00:11:23 00:01:03 00:00:02 00:00:07

Table A.2.3: Runtime with GS on Australian Dataset
Datasets XGBoost Random Forest Decision Tree G. Naïve Bayes Support V.M. Multilayer N.N.P. K-Nearest Neighbor Logistic Regression

Without Scale 00:04:07 00:01:06 00:00:15 00:00:16 00:01:47 00:11:39 00:00:25 00:00:34
Standard 00:04:07 00:01:09 00:00:15 00:00:13 00:01:37 00:10:53 00:00:30 00:00:22
Min-Max 00:04:07 00:01:10 00:00:15 00:00:15 00:01:49 00:16:59 00:00:29 00:00:29
Box-Cox 00:04:07 00:01:09 00:00:15 00:00:17 00:00:45 00:15:31 00:00:29 00:00:33

LN 00:04:07 00:01:01 00:00:15 00:00:18 00:01:38 00:12:08 00:00:25 00:00:35
Min-Max (All At.) 00:04:07 00:01:12 00:00:15 00:00:15 00:00:58 00:13:37 00:00:29 00:00:21
Standard (All At.) 00:04:07 00:01:07 00:00:15 00:00:16 00:01:41 00:13:35 00:00:27 00:00:19
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Table A.2.4: Runtime with WFS on Australian Dataset
Datasets XGBoost Random Forest Decision Tree G. Naïve Bayes Support V.M. Multilayer N.N.P. K-Nearest Neighbor Logistic Regression

Without Scale 00:01:07 00:00:38 00:00:01 00:00:01 00:01:26 00:00:11 00:00:43 00:00:06
Standard 00:01:07 00:00:44 00:00:01 00:00:01 00:01:26 00:00:22 00:01:03 00:00:08
Min-Max 00:01:07 00:00:36 00:00:01 00:00:01 00:01:25 00:00:20 00:00:56 00:00:01
Box-Cox 00:01:07 00:00:36 00:00:01 00:00:01 00:01:22 00:00:19 00:00:49 00:00:03

LN 00:01:07 00:00:38 00:00:01 00:00:01 00:00:13 00:00:19 00:00:40 00:00:03
Min-Max (All At.) 00:01:07 00:00:37 00:00:01 00:00:01 00:01:37 00:00:21 00:01:04 00:00:01
Standard (All At.) 00:01:07 00:00:36 00:00:01 00:00:01 00:01:20 00:00:22 00:01:07 00:00:01

A.3 Additional Feature Related Tables

Table A.3.1: Selected Features
Algorithms BCL CAL
Decision Tree [0,3,7,8,11] [0,3,7,8,11]
K-Nearest Neighbor [2,7,8,9,11,12,13] [3,7,8,9,11,13]
Logistic Regression [3,4,5,7,9,13] [0,1,2,3,4,5,7,8,9,11]
Multilayer Perceptron [0,1,2,3,4,5,7,8,10,11] [0,1,2,3,4,5,7,8,10,11,12,13]
Naïve Bayes [0,1,3,4,5,7,8,10,11,12] [0,1,3,4,5,7,8,10,11,12]
Support Vector Machine [0,1,2,3,5,6,7,8,9,12] [3,5,7,8]
Random Forest [0,1,2,3,4,5,7,8,9,10,11,12,13] [0,1,2,3,4,5,7,8,9,10,11,12,13]
XGBoost [0,3,4,6,7,8,9,10,11,12] [0,3,4,6,7,8,9,10,11,12]

Table A.3.2: Attribute Codes for German Data
Name of the Attribute Corresponding code Name of the Attribute Corresponding code

Checking Account 0 Number of dependence 12
Duration in month 1 Telephone 13

Credit history 2 Foreign 14
Credit amount 3 Purpose-New car 15

Savings account 4 Purpose-Used car 16
Employment since 5 Purpose-Domestic 17

Personal status 6 Co-Applicant 18
Present residence 7 Housing-Rent 19

Property 8 Housing-Own 20
Age 9 Job-Skilled employee 21

Other installment 10 Job-Unskilled employee 22
Number of credits 11 Job-Management 23

Table A.3.3: Attribute Codes for Australian Data
Name of the Attribute Corresponding code Name of the Attribute Corresponding code

A 0 H 7
B 1 I 8
C 2 J 9
D 3 K 10
E 4 L 11
F 5 M 12
G 6 N 13
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