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ABSTRACT

EXPLORING EXTRA DIMENSIONS THROUGH RARE PROCESSES

Simsek, Kagan
M.S., Department of Physics
Supervisor: Prof. Dr. Ismail Turan

Co-Supervisor: Assoc. Prof. Dr. Ismet Yurdusen

July 2019, pages

We study the single top quark production and decay mechanisms at one-loop level
occurring via flavor-changing neutral currents in the Minimal Universal Extra Di-
mensions (MUED) model. We make a complete study of the model in the Feynman
gauge. Especially, we focus on extracting the complete list of 3- and 4-point interac-
tions and determining the mixings among the gauge eigenstates to form the so-called
mass eigenstates. Once we have the complete model analyzed, it is implemented
via the LanHEP package and transferred to specialized programs such as FeynArts,
FormCalc, and LoopTools for automatic calculations. Finally, we explore the MUED

predictions for rare top processes in detail and interpret our results.

Keywords: extra dimensions, rare processes, top quark, physics beyond the Standard

Model
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NADIR SURECLER ARACILIGI iLE EKSTRA BOYUTLARIN
ARASTIRILMASI

Simsek, Kagan
Yiiksek Lisans, Fizik Bolimii
Tez Yoneticisi: Prof. Dr. ismail Turan

Ortak Tez Yoneticisi: Dog. Dr. Ismet Yurdusen

Temmuz 2019 ,[195] sayfa

Tek ilmek seviyesinde, cesni degistiren yiiksiiz akimlar araciligiyla gerceklesen tek
tist kuark tiretim ve bozunum mekanizmalarin1 Minimal Evrensel Ekstra Boyutlar
(MEEB) modelinde c¢alistyoruz. Modelin eksiksiz ¢calismasin1 Feynman ayarinda ya-
pryoruz. Ozellikle, 3 ve 4 nokta etkilesimlerinin tam listesinin ¢ikarilmasina ve kiitle
0zdurumlarinin olusturulmasi i¢in ayar 6zdurumlarindaki karigimlarin belirlenmesine
odaklaniyoruz. Biitiin modelin analizinden sonra, modeli LanHEP paketiyle uygula-
yip FeynArts, FormCalc ve LoopTools gibi otomatik hesaplar i¢in 6zellesmis prog-
ramlara aktartyoruz. Son olarak, nadir iist kuark siirecleri icin MEEB ©Ongoriilerini

detaylica kesfedip sonuclarimizi yorumluyoruz.

Anahtar Kelimeler: ekstra boyutlar, nadir siirecler, iist kuark, Standart Model 6tesi

fizik
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CHAPTER 1

INTRODUCTION

1.1 The Standard Model

The Standard Model (SM) of particle physics is a well-established theory that ex-
plains electromagnetic, strong, and weak interactions in the nature. With the discov-
ery of the long-sought Higgs boson back in 2012, now the full particle set of the SM

seems complete [1} 2 3 4].

Although the SM very successfully describes practically all existing experimental
data, it still suffers from major complications: the hierarchy problem [3], the flavor
problem [6], the origin of C'P violation [7, 8], to name a few. The hierarchy problem
is concerned with the splitting of the fermion masses and with the question why the
gravitational force is 103 times weaker than the weak force. In the SM, a dark matter
candidate is absent. During the last few years, there have appeared experimental data

on the lepton non-universality [9], which cannot be explained within the SM.

All these facts indicate that the SM is not the final theory in particle physics. To
address some of these problems, many models have been proposed. On one hand,
for example, the string theory has grown to be an independent attempt for a better
understanding of the nature; on the other hand, Supersymmetry 10} 11], Two-Higgs-
Doublet model [[12,13], and models with extra dimensions of different configurations

have appeared as distinct extensions of the SM [14, 15, (16, [17].



1.2 Universal Extra Dimensions

The Universal Extra Dimensions (UED) model, which was proposed by Appelquist
et al. in 2001 [17], describes a universe with 4 + N dimensions where the N extra
dimensions are flat and compactified. In the case N = 1, the extra dimension is
compactified on a circle, and for N = 2, it becomes a torus. In this work, we consider

the model with one extra dimension, N = 1.

The universe in the 5 UED model is assumed to be cylindrical. Inside the cylinder
extends the usual 4D spacetime, and along the tangential direction on the surface lies
the extra dimension. The term bulk is defined as the complete 5D spacetime, whereas

a brane is specified to be a 4D plane at a certain value of the extra dimension.

The UED model is called universal simply because all the fields (matter and media-

tors) are allowed to live in the bulk.

The existing experimental data indicates that the main parameter of the UED, namely

the size of the extra dimension, R, lies in the region [18]
0.5TeV < R°' < 1TeV. (1.1)

At the present time, with the Large Hadron Collider (LHC) exploring the energy
region 13 TeV, the extra dimension can be probed and hence the predictions of this

model can be checked at the LHC.

In the UED, each SM field has a set of associate particles coming from the extra
dimensions, which are called the Kaluza-Klein (KK) partners. Unlike in the Super-
symmetry, the SM field and its KK partners have the same spin. A 5D field can be
decomposed into a sum of the SM mode and its KK partners, where the partner fields

are modulated by certain mode functions. This is the so-called KK decomposition.

The 5D Lagrangian density (or simply Lagrangian) is integrated over the extra di-
mension to get the physical states that depend on the usual 4-position vector. This
integration is necessary to obtain a field theory whose structure is familiar to us. The
mode functions depending only on the extra dimension determine the selection rules

for possible interactions after the integration.



The UED is an effective field theory due to the fact that the gauge couplings are
dimensionful — indeed, they depend on the size of the extra dimension. When this
is the case, the theory at hand becomes non-renormalizable, and thus we need to

introduce an appropriate cut-off energy [19, 20].

There are two versions of the UED: minimal (MUED) and non-minimal (NMUED).
In the non-minimal case [21} 22} 123\ 24} 25| 26]], there exist brane-localized terms in
the Lagrangian, which are assumed to be absent at the cut-off scale in the minimal
version of the model. Due to these brane localizations, we lose certain symmetries in
NMUED. Nevertheless, in both versions, there remains a conserved quantum number:
the KK parity. The conservation of the KK parity is a major prediction of the model,
that is, the lightest KK particle (LKP), which is the first KK partner of the photon in

the MUED model, is stable, and hence serves as a fine candidate for dark matter.

In this thesis, we focus our attention to the MUED model. After a detailed description
of the model and deriving the Feynman rules in the Feynman gauge, we next apply
this theory to the analysis of the rare top quark processes occuring by flavor-changing

neutral currents (FCNCs).

1.3 Rare top quark processes

The most dominant channel for the top quark decay is ¢ — b} which occurs at the
tree level. The decay width for this process is at the order of 1 GeV. The top quark
can also decay into other up-like quarks (practically, v or c¢) by emitting a neutral
gauge boson (a gluon, a Z boson, or a photon) or a Higgs particle. Due to the flavor
conservation, these processes cannot take place at tree level unlike the ¢ — bWV case.
Assuming the other quark in the final state is ¢, we need the ¢ — c transition. In the
SM, as well as in the UED, the ¢ — ¢ transition takes place at one loop level, since

direct t — cX (X =7, g, Z, h) vertices are forbidden in the SM (Figure I.1)).



Figure 1.1: The loop that appears in the rare top quark processes occurring by FCNCs

in the Feynman gauge.

In Figure the d° (i = 1,2,3) denote all the down-like quarks (d, s, and b), ¢p*
is the Goldstone scalar associated with the 1 boson, and both or either of the top
quark and the charm quark belongs to an external line. This is the only possible loop
for the rare top quark processes occurring by FCNCs in the SM. In writing Feynman
amplitudes, two Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, V;; and V;
(i = d, s, b), are involved. From the unitarity of the CKM matrix, the amplitude for
the Feynman diagrams that contain a loop as in Figure will nearly vanish, when
summed over the down-like quark generationﬂ This is the reason for the above-
mentioned processes to be rare. When we say rare, we really mean the following.
A straightforward SM calculation shows that the decay widths of these processes are
less than 1071° GeV. A similar observation holds true for scattering cross sections of

the rare top-production processes.

Intriguingly, there exist only upper bounds for the decay widths of the rare top decay
processes given above [27], which are quite large (Table [I. ).

Table 1.1: Bounds on the decay widths of the rare top decay processes.

Process Branching ratio (I'/T'ota1)

t—cy <1.7x1073
t—cZ <0.24x1073
t —ch <1.6x1073

Our motivation to study the MUED model is to observe whether extra dimensions can

1 The exact cancellation would happen if the masses of the quarks in the loop were taken to be degenerate.



account for the large difference between the SM computations and the experimental
bounds on the decay widths of the rare top quark decays occurring by FCNCs. Simi-
larly, rare single-top production processes will be studied to see if the MUED model

can enhance the SM cross sections.

1.4 Outline of the thesis

This thesis is outlined as follows. In Chapter [2] we analyze the MUED model and,
at the end, obtain the complete particle spectrum. After the detailed discussion of the

model, we apply it to the following rare top quark processes:

t— ¢y, (1.2)
t — cg, (1.3)
t — ch, (1.4)
t— cZ, (1.5)
t — cgg, (1.6)
and
gg — tc, (1.7)
cg — 1, (1.8)
cg — tg, (1.9)
cg — th, (1.10)
cg — 4. (1.11)

The numerical results for the decay widths and the cross sections are presented in
Chapter [3] Chapter @] contains our conclusion. In Appendix [A] complete Feynman
diagrams for all the processes are given. The relevant Feynman rules are listed in
Appendix Bl We wrote an original Mathematica code before moving on to the nu-
merical analysis. By using this code, we were able to quickly compare the vertex
factors of the interactions of fermions with scalars and vectors to the ones in the liter-
ature. This code is displayed in Appendix [C} Our own LanHEP code for the complete
MUED model in the Feynman gauge is attached in Appendix D] Let us note that Lan-



HEP is a program designated to extract the complete set of Feynman rules from the

Lagrangian-level input.



CHAPTER 2

MINIMAL UNIVERSAL EXTRA DIMENSIONS

In this chapter, we present the formal mathematical construction of the Minimal
Universal Extra Dimensions (MUED) model. We start with the convention that we
choose for the metric, covariant derivative, and Higgs doublet. Next, we construct the
5D cylindrical universe and promote the SM Lagrangian to this universe. As a toy
model for the theoretical analysis, we consider the case of a free massive scalar field
in 5D, from which we show the fundamental step in assigning the correct boundary
condition to each field in relation with the reflection symmetry introduced to remove
the redundant degrees of freedom in the theory, and find out the mass quantization
condition. By making analogies for the cases of the vectors and fermions, we obtain
the Kaluza-Klein (KK) expansions of all fields and derive the selection rules for the
available vertices. Finally, we move on to the extraction of the physical states in the
mass basis, and summarize the theoretical results in order to prepare a LanHEP code

for the numerical part.

2.1 Conventions

Our metric convention is mostly minus:
G = (+,—,—,—). 2.1)
For the covariant derivative, we take the sign of all the gauge couplings to be plus:
Dy =0, +ig.Ts - G, +igwTy - W, +ig,T,B, (2.2)

where

7, T,=2Y. (2.3)



Here, the \* (a = 1,2, ..., 8) are the Gell-Mann matrices, the 7° (i = 1,2, 3) are the
Pauli matrices, and Y is the hypercharge. The relation among the electric charge, the

third component of the weak isospin, and the hypercharge is given as usual by
1
Q:T3+Ty:§(73+y). (2.4)
The SU(2) Higgs doublet is taken to be

H:i i(¢1 — i) _ it 2.5)
V2 \h+v+iy L (h+ v+ i)

where v = 246 GeV is the Higgs vacuum expectation value (VEV). It should be
remarked that there is a factor of i in the C'P-odd scalar ¢

2.2 Construction of the 5D universe

To begin with, the 4D Lorentz indices (denoted by lowercase Greek letters) are pro-

moted to the 5D ones (denoted by uppercase Latin letters):
w=0,1,23 =+ M=p,5=0,1,2,3,5. (2.6)
With this, the position vector becomes
o — oM = (a2, 2%) = (2, y) (2.7)
and as for the derivative, we have

0
8u — OM = (8,“ 85) = (8,“ a—y) . (28)

In the meantime, the Minkowski metric becomes
g,u,u_>gMN - (+7_7_7_7_)' (29)

Scalar and fermionic fields become functions of the usual 4-position, x for short, and

the extra dimension, ¥:

o(z) = o(z,y), (2.10)
Y(z) = Y(z,y). (2.11)
1 The reader displeased with this convention can always let ¢i — :Fiqﬁi in what follows. This convention

has been chosen on the sole ground that the derivation of the physical states and the coding in LanHEP will be
facilitated.




Vector fields are also functions of x and y now; in addition, they obtain a new com-
ponent:
Vi(z) = V¥ (a,y) = (V¥(z,y), V> (z,y)). (2.12)

V% is a new degree of freedom, which we treat as a new scalar field in the theory.

We take the extra dimension to be defined on an interval of length 27 R, and then
compactify it on a circle (Figure [2.1).
Yy

v /

_— s
0 2R

Figure 2.1: Compactification of the extra dimension on a circle of radius R.

This creates a 5D cylindrical universe. The usual 4D spacetime fills the inside of the

cylinder, and the 5*" dimension lies on the circle defined on the surface (Figure .

Figure 2.2: The 5D cylindrical universe.

2.3 Complete 5D Lagrangian of MUED

Embedding the SM Lagrangian into five dimensions is straightforward. We write all

the sectors,
Z = ggauge + ggauge—ﬁxing + ghiggs + Dg/ﬂfermion + fyukawa + gghost (213)

9



and the fields are allowed to extend to the extra dimension, as well. This allows us to

write
5.1 1 1
Lywge =Y —7(Ghn)* + Y= (Wi = (Bav)’, 214)
a=1 =1
Lriges =D H | + 3 |HI” = X |H[", (2.15)
cg/ﬂfermion - Z fZFMng7 (216)
f=Q,U,D
Zyawa = — YusQUH — yasQDH + h.c. (2.17)

and the gauge-fixing terms in the Feynman-’t Hooft gauge will be determined after
we obtain the mass eigenstates. The ghosts (or the Faddeev-Popov particles) are

irrelevant at the moment. Here, the 5D field strength tensors are given by

fin =G — OGS, — 955 /GGy, (2.18)
Wiy =0uWi — ONWip — guse?* Wi Wk, (2.19)
Byny =00 By — OnBays. (2.20)

The 5D covariant derivative is taken to be
Dri = Ot + 19551, - Gar + igwsTo - War + i9ysTy By (2.21)

where g5, g5, and g5 denote the 5D couplings of the gauge bosons of the strong
interactions, weak interactions, and the hypercharge, respectively. The 5D SU(2)

Higgs doublet is given as

igt
m=| | (2.22)
Z5(h+ vs +ids)

where v5 1s the 5D Higgs VEV.
We choose the following convention for the 51 Dirac matrices:
I = (", i75) (2.23)
which obey the usual anticommutation rule:
{rM TN} = 24MN, (2.24)

The fermionic states ), U, and D refer to the left-handed SU(2) quark doublet, the
right-handed up-type singlet, and the right-handed down-type singlet, respectively.
In this work, the leptonic sector is irrelevant to us and it is not going to be explored

further.

10



2.4 Bulk equation of motion for a scalar

Consider the case of a free scalar field, ¢, of mass m,. The 5D Klein-Gordon (KG)
Lagrangian reads
1 2 1 5
L = 5(anﬁ) - §m¢¢ . (2.25)
The 5D Euler-Lagrange equation of motion becomes

0Z 0Z

aME)(E)Mgb) "9 =0. (2.26)
Taking the necessary derivatives, we get
(O+m2)p =0 (2.27)
where we define a new operator
O == 0y 0™ = 0,0" + 0;0° =0 — 03 (2.28)

It is essential to remark that all the explicit 5'" components are covariant, unless

written as contravariant.

Since the 5D Lagrangian will be integrated over the extra dimension, it is beneficial
to perform a separation of variables between the usual 4D coordinates and the extra

dimension, y:

S(x,y) =D dnl@) faly). (2.29)

Here, the f,(y) are the so-called mode functions and the ¢, () are the scalar fields.

It is assumed that the scalar fields satisfy the 4D KG equation:
Do = —M;¢n (2.30)

where M, is the physical mass of the state ¢,. If we substitute the 5D scalar in

Equation (2.29) into the equation of motion (2.27)), we get

D a1+ (M2 —m3) fa] =0. (2.31)
n=0

Let

n

m? = M} —mj,. (2.32)

11



We assume that m? > 0 for all positive integers Thus, the mode functions that

solve Equation (2.31) are given by
faly) = A, sinmy,y + B, cosm,y (2.33)

for all n. With this, the 5D scalar field becomes

o(z,y) = Z On(Ay sinmyy + By, cosmyy). (2.34)

n=0
In this summation, the zeroth term, ¢ (x), will denote the SM mode of the 5D scalar
field. The rest of the components are simply the KK partners of the SM scalar ¢y.
However, there is a caveat here: If ¢ is the 5'" component of a vector field, then
the cosine tower is extra since there will be a zero mode, which is absent in SM.
Therefore, there are redundant degrees of freedom here, which we need to remove

systematically.

2.5 The Z; symmetry

To eliminate the undesired degrees of freedom, we introduce the Z, symmetry on
the extra dimension. The reflection symmetry is imposed on the circle such that the
components of the fields that lie on the lower part of the circle cannot independently
exist from those that lie on the upper part. This is called the S'/Z, orbifolding [28]].
We effectively lose the half of the domain at the benefit of eliminating superfluous

degrees of freedom (Figure [2.3).

st/z,

st Z,
y
1 ; Ly
—_— —
2nR 0 mR

Figure 2.3: The Z, symmetry imposed on the circle.

2 Actually, the hyperbolic solutions, governed by the condition m?2 < 0, are naturally eliminated for the mass
quantization yields the trivial solution, ergo the KK partners are decoupled from the theory.
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This is equaivalent to saying that the fields should be either even or odd under the

transformation y — —y:

o(—y) = £o(—y). (2.35)

One way to achieve this on mathematical grounds is to impose either the Dirichlet

boundary condition,

=0 (2.36)

y=0,m7R

or the Neumann one,

050 = 0. (2.37)

y=0,TR

We choose to implement Dirichlet condition to the new fields (such as the 5" compo-
nent of vectors and the right-handed components of left-handed spinors) so that they
will not receive the zeroth mode, hence the SM spectrum will not be spoiled. We
define a Dirichlet (Neumann) field to be one that satisfies the Dirichlet (Neumann)

condition at the boundaries.

2.6 Mass quantization

After we correctly assign the type of the field (Dirichlet or Neumann), one boundary
condition removes the undesired degrees of freedom and the other determines the

mass quantization.

Suppose we have a Dirichlet field. The 5D scalar field ¢ given by

$(x,y) = > én(@)(An sinmy,y + By cos myy) (2.38)
n=0
will vanish at y = 0:
$(2,0) = > ¢n(z)B, = 0. (2.39)
n=0
This leaves us with
B,=0 VnelN (2.40)

At the other boundary, we have

oz, mR) = Z On () Ay sinm,TR. (2.41)
n=0

13



Now the mode function should vanish:
sinm, 7R =10 (2.42)

so that
mptR =nm, n€NT (2.43)

where we ignore the case n = 0 to avoid the trivial solution. Therefore, the mass is

quantized as integer multiples of 1/R:

n
n= —=. 244
m 7 ( )
The 5D scalar field ¢ is thus given by
E Anon(z Sln —= (2.45)

To fix the normalization constants A,,, we choose to canonically normalize the kinetic

term. Starting from the 5D action, we have

S5 / i %(@M@?

TR
D / diax / dy
0

DN | —

(Z 0, Ay sin —) (Z b A,y sin %)

TR 1
D/d4x/0 dy 5 n;lA nAm smfysm— 000" oy
1 [e.e]
4 2
) / da 5;@%) . (2.46)
The normalization constants should satisfy
TR
A A, /0 dy sin % sin % = Jpm- (2.47)

Since the integral in Equation (2.47) gives d,,,,7R/2, we obtain

2

A, = —. 2.4
n = (2.48)

Therefore, the expansion for a Dirichlet scalar field turns out to be

o(z,y) Z \/ qbn sm —. (2.49)

This expansion is also known as the KK decomposition (or KK tower) for a Dirichlet

scalar field. Accordingly, the summation index, n, is called the KK number.

14



Now suppose we have a Neumann field. The y derivative of the scalar field given in

Equation (2.29) vanishes at the point y = 0:

y=0

= Z On(x)my, (A, cosm,y — By, sinm,y)
- n=0

n=0
= 0. (2.50)

This produces
A, =0 VneN (2.51)

The vanishing derivative at y = mR gives the same mass quantization as for the

Dirichlet scalar field:

050 = —MyOp By sinm, TR =0 (2.52)
y=mR
n=0
so that

my,mR=nm, neN (2.53)

and hence

n

n= —. 2.54
Mn =5 (2.54)

The KK tower before the normalization now reads
Z Bnon(x cos — = Bygo(x) + Z Bnon(x cos — (2.55)

Again, we fix the normalization constants B,, such that the physical states ¢, have

15



the canonically normalized kinetic terms:

S D / d°x %(GMQS)Z
D/d“x/ﬂRdl Bod, b +§:Ba¢cos%
0 y2 o0 a nYu¥n R

X <Boa“¢>0 + Z B,,0,,¢m cos %)

m=1

ny

LR > my
) / d4x/0 dy 5 [Bg(@uqﬁo)Q + Z B,,B,, cos & oo fﬁuqﬁnﬁ“qﬁm

n,m=1

+ Z By B,,0,,¢00" ¢y, cos n—éﬂ

n=1
1 1
D/d4l‘ [5(8M¢0)2+;§<8M¢n)2] .

For the SM mode, we get
TR
B} / dy =1
0

and hence

For the KK modes, we have

TR
B, B,, / dy cos y cos my_ Onyrm.-
0

R R
Since the integral in Equation (2.59) yields d,,,,m R/2, we obtain
2
B, —.
TR

Therefore, the KK decomposition for a Neumann scalar is given by

[e.e]

1
¢(x7y> = \/ﬁ — 7TR R

2.7 KK decomposition for the vector and fermion fields

2.7.1 The vector case

do(x) + Z i<;5n(:c) cos 7 |

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

A similar discussion as to scalar fields holds for vector ones. It is crucial to note

that there is no new vector field coming directly from the extra dimension — all the

vectors are Neumann fields.
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Consider a massive vector field, V#, of mass my in the Feynman gauge. The 5D

massive Proca Lagrangian reads

1 1 1
Z = _Z(FMN)Q + §m%/VA24 — 5(8MVM)2

By using the antisymmetric property of the field strength tensor, we have
(Fun)? = (Fu)? = 2(Fi5)* D F2, — 2(05V,,)%.
Meanwhile, the mass term contains
Vi =V2=V¢
and the gauge-fixing term includes
(O VM) = (9,V* — 05V5)* D (9, V")

Now we can safely focus on the vector field V#. The free Lagrangian reads

1 1 1 1
.,E/ﬂ D) —Z<FW,)2 + 5(85‘/”)2 + §m2VM2 — 5(8HV“)2.

The 5D Euler-Lagrange equation of motion for a vector field is given by
0L 0L

— = =0.1.2
Mgty v, O a=0L23

or, more explicitly,
0L 0L 0L
0 0 — =0.
AR AL

Taking the considered derivatives, we obtain

—0sFP* — 059°°0 - V + 02V* —m?V =0

or

—OV*4+0%0-V — 90 -V + 03V* —m?*V* =0

and hence

(O +m*)V* = 0.

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

This is the same equation of motion as for the scalar field ¢; ergo, it is not surprising

that the same KK decomposition,

V(r,y) = \/EVO (x) + Z \/ ﬁ%Vn (x) cos =
n=1

will hold true.

17
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2.7.2 The fermion case

Fermions have a different story for the boundary conditions. To understand this bet-
ter, we need to re-interpret the reflection symmetry. By changing the origin of the
extra dimension, we can re-express the reflection symmetry as if we make the trans-

formation y — —y.

5D fields under the Z; symmetry should be either even or odd:

P(—y) = Té(y). (2.73)

However, for the fermions, we have a chirality issueﬂ This is reflected by considering

the following condition [29, [30]:

U(—y) = 50 (y) (2.74)

where we assign the plus (minus) sign to the right- (left-)handed spinor. This is
equivalent to imposing the Dirichlet or Neumann boundary conditions at y = 0 and
y = mR. Now, all the fields are periodic on the extra dimension, so we can write the

fermions in towers of sines and cosines, as well, with the same mass quantization.

Here comes the tricky part. By allowing all possible operators, we may write

[e.o]

Yr(z,y) = Z [PR(An sinm,y + B, cosm,y)
n=0
+ Pr(C, sinmyy + D, cos mny)] U Rn, (2.75)
Vr(z,y) = i [PR(A:1 sinmy,y + Bl cosm,y)
n=0
+ Pp(C! sinm,y + D!, cos mny)] Vin (2.76)
where
Py =~ j;% @2.77)

are the right/left-handed projection operators. We see that each left- or right-handed

spinor is allowed to have left- and right-handed partners. However, to successfully

3 The kinetic term of a fermion field contains a single derivative, unlike a boson field, and hence we may not
directly impose the aforementioned boundary conditions. Nevertheless, there appears a term 95 (1y51) in the 5D
Lagrangian, and this is the most suitable candidate term to impose a reflection condition on.
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extract the chiral SM modes, we need to remove at least one of the cosine towers

modulated by the projection operators. That is, the left- (right-)handed cosine tower

for the right- (left-)handed spinor is a redundant degree of freedom. Now,

oo

Vs Vr(T,y) = [PR(An sinm,y + By, cos my,y)
n=0

— Pp(C, sinmyy + D, cos mny)] VRn.

In the meantime,

—y) = Z [PR(—An sinm,y + B, cos m,y)
n=0

+ Pr(—C, sinmyy + D,, cos mny)] VRn.

Comparing Equations (2.78) and (2.79), we obtain

An = _An7 Bn = Bn: _Cn = _Cna _Dn = Dn

and this leaves us with

A,=D,=0 VneN.

Thus, for the non-normalized right-handed spinor, we get

hE

@ZJR(CL’, y) = (BTLPR cosmypy + OnPL sin mny) an‘

3
Il
o

After the normalization, this becomes

Yr(1,y) =

Similarly for the left-handed spinor, we have

o0

Vs (z,y) Z [PR (Al sinm,y + Bl cosmyy)
n=0
— P(C) sinm,y + D), cos mny)] Uin
and
i [ ! sinm,y + B), cosm,y)

n=0

+ Pp(—C) sinm,y + D), cos mny)] Y.
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\/EPR@/JR()(ZL‘) + ; \/ = (PR coS Ey + P; sin Ey) VRn-

(2.78)

(2.79)

(2.80)

2.81)

(2.82)

(2.83)

(2.84)

(2.85)



Imposing the condition

Vi(z, —y) = —ys¥r(z, ), (2.80)

we obtain
A=A, -B. =B, C =-C, D =D, (2.87)

This gives
B, =Cl =0 VYneN. (2.88)

Hence, the non-normalized KK decomposition for the left-handed spinor reads

NE

Yr(x,y) = (Al Prsinm,y + D! Pp cosm,y) ¥rn. (2.89)

Il
o

n

After the normalization, this becomes

1 = 2
Uu(ry) = = Pubua(a) + S5 (PL cos ”—}g + Pysin "—Ig) brn. (2.90)
n=1

2.8 Integration limits

After the S'/Z, orbifolding, the domain of the extra dimension becomes y € [0, 7 R].

However, we can still make use of the complete (symmetric) domain.

In the Lagrangian, at the quadratic level, one Neumann field always meets a Neumann
field (similarly for a Dirichlet field). For fermions, the left-handed component always

goes to another left-handed component. Consider the mass term for a fermion:

LD —mirr + hc.

1 - 2 - ny . ny ]
— — \/ —5Vrn | P — + P, —>
D) m[ WR¢L0+; 7TR77Z)L < RCOSR + LSIDR |
1 2 my . my ]
— | P, — 4+ P — m
X [ TRQﬂROﬂL;\/WR( R COS —~ + Ppsin R>¢R _
my

2 B _
D—m Z e (@/}LnPL@me cos n_]:;/ cos % + Y10 PrRY R, SIn n_é/ sin 7)

nm>1

+ h.c. (2.91)

20



Therefore, we still need the orthogonality of sines and cosines over the half interval.
In order to make this more powerful, we can simply switch to the complete domain,

but taking the half of the integra]ﬂ:

TR 1 TR
/ dy — —/ dy. (2.92)
0 2 —7mR

In essence, this transformation is possible due to the Z, symmetry imposed on the
fields, with the fields being completely symmetric or antisymmetric with respect to

the transformation y — —y.

2.9 Selection rules

As one can show, using the complete domain has its merits. It is easier to deal with

the integration of various products of sines and cosines.

This brings us to the selection rules. In the 5D Lagrangian, all the fields are expanded
in series of sines and cosines. After integrating out the extra dimension, we get effec-

tive selection rules for possible vertices. All the rules (from 2- to 4- point interactions)

4 The factor 1 /2 is, of course, necessary not to overcount.
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are present according to the result of the following integrals:

Inm =

~

3
3

=
I

3
3

Inmk -

~

3
3
ko

~
<

nmk —

-
3
<

nmk —

[nmké =

/ —
nmkl —

" _
nmkl —

" _

nmkl —

" _
nmkl —

TR

1/ J ny my

= COS — COS —

2 ) YRR

1 TR

—/ dy cos%sin@,

2 ) . r R R

1 TR

—/ dy sin%sin@,

2 ) .r R R

1/7rR dy cos 2 cos Y cos @,

2 ) _ g R R R
l/WR dy cos%cos@sin@,

2 ) r R R R
l/ﬂR dy cos@sin@sink—y,

A R R R

1/WR dy sin 2 sin ™Y gin @,

2 ) _.r R R R

1/WR dy cos%cos@cos@cosg—y7
2 ) _.r R R R R
1/ﬂR dy cos%cos@cos@sing—y,
P R R R R
l/KR dy COS%COS@Sin@SiDE—y,
2 ) r R R R R
1/WR dy cos@sin@sink—ysing—y,
N R R R R
1/WR dy sin%sin@sin@sing—y.
2 ) _ r R R R R

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

Here, the number of indices denotes the number of legs at a vertex, and the number

of primes indicates the number of sine factors in the integral. All the integrals with

an odd number of primes will vanish due to the symmetry:

Ly =0,
I’:zmk =0,
Lk =0,
[;Lmké =0,
[711/;71166 = 0.

22

(2.105)
(2.106)
(2.107)
(2.108)
(2.109)



The nontrivial integrals exist under certain rules applied on the KK numbers involved:

me:%WRMWr—n% 2.110)
I = %ﬂRé(m—n), @2.111)
[ in[é(k —m—n) 45k +m—n) + 6(k —m+n)), 2.112)
"o in[é(l@ —m—n) = 6(k+m—n) +6(k —m+n)], 2.113)

Inmkg:%ﬂR[d(k—E—m—n)—l—é(kz—i—é—m—n)+(5(k—€—|—m—n)
+0(k4+l+m—n)+6(k—C—m+n)+06(k+l—m+n)
+8(k —€+m+n)], (2.114)

;{mkﬁzéﬂR[(s(k—f—m—n)—5(k+€—m—n)+5(k_g+m_n)
—0(k+l4+m—n)+0(k—L—m+n)—5dk+L—m+n)
+0(k =L+ m+n)l, (2.115)

e =~ RIS(k — €~ m —n) = 8k + €~ m —n) — 8k — (+m —n)
+dk+l+m—n)—06k—C—m+n)+5k+{—m+n)
+6(k — L+ m+n). (2.116)

The integrals (2.110) and (2.111)) vanish unless n — m = 0, which implies that the 2-
point vertices, namely the kinetic or mass terms or the vector-scalar mixings, respect

the KK number conservation (Figure [2.4)).

n m

— —
o n=m

Figure 2.4: KK numbers at a 2-point vertex, which regularly represents a mass term

or a derivative (vector-scalar) mixing, are conserved.

Similarly, the integrals (2.112)) and (2.113)) give zero unless n =m + k£ = 0 (except
for the all plus combination). Consequently, 3-point interactions exist if the sum of

the KK numbers of the incoming legs is equal to that of the outgoing lines (Figure

P3).
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b
n=m+k

BN

Figure 2.5: The sum of KK numbers incoming to a 3-point interaction is equal to the

sum of KK numbers outgoing from the vertex.

Finally, the integrals (2.114])) to (2.116) are nontrivial if n £ m + k £ ¢ = 0 (except

for the all plus case). The situation is pictured in Figure 2.6

n+m==k+7¢

Figure 2.6: The sum of KK numbers incoming to a 4-point interaction is equal to the

sum of KK numbers outgoing from the vertex.

These diagrams denote the conservation of KK number,

Zn:Zn (2.117)

out

which is a result of the conservation of the 5'" component of the momentum. We
quantize the momentum on a circle, so it can be written in integer multiples of some
constant (indeed 1/ R); since there are no boundary-localized terms, there is a transla-
tional symmetry, ergo the 5*" component of the momentum is conserved — just like
the usual Feynman rules: We write for any vertex some interaction coupling times
S k= >, . k), and following this spirit, we write selection rules by using

Dirac delta functions over the domain of integers.
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2.10 KK parity

In MUED, there is an accidental symmetry. Let 7 denote the translation along the
extra dimension:

Ty —y+nR. (2.118)

Under this operation, all the mode functions receive a global phase of (—1)":

sinn—]g N (—1)"sin”—]§, (2.119)
cosn—g — (=1)"cos % (2.120)
Here, \, := (—1)" is the eigenvalue of the translation operator and called the KK

parity of the n'" KK excitation.

If we expand the fields in the 5D Lagrangian in KK towers, and if we impose the
condition that the 5D Lagrangian should be invariant under 7, we see that, in addition

to the conservation of the KK number, the KK parity is conserved (Figure [2.7).

N
n+m==k+¢(, (—1)rtm-k+h —q

/m N

Figure 2.7: The conservation of KK parity is in natural agreement with the conserva-

tion of KK number.

Note that the conservation of the KK parity does not bring anything new on top of the
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conservation of KK number — but it is simply consistent with it. In NMUED, due
to boundary-localized terms, we lose the conservation of the KK number, yet the KK

parity remains a good quantum number in a disguise.

2.11 MUED as an effective field theory

In a field theory, if the couplings depend on energy, then the theory is simply non-
renormalizable and we need to introduce a cut-off scale, A. In MUED, the relation
between the cut-off energy, the size of the extra dimension, and the maximum KK
number to include is given by

AR = npax. (2.121)

From a perturbative point of view and a study of vacuum stability on the mass of the

Higgs scalar [31, 32], we can fix
Nmax = 0. (2.122)

This leaves MUED with only one free parameter, namely the size of the extra dimen-

sion, R.
Consider the fermion sector, interacting with a U (1) gauge boson:

ﬁermion = Z f_ZFM-@Mf
!

0 JJLZ"V”(au + igSAu)wL

5 ( \/i_RzELo) i (igw%,%u) ( \/jr_RwLo). (2.123)

When integrated over the extra dimension, Equation (2.123) gives

1 TR 1 B
a d germion D—F= HA
2/_WR Y Zt \/ﬁgsﬂho’y o,ﬂﬂLo

D QZZLOWMAOMPL@ (2.124)

Matching the 5D gauge coupling to its 4 counterpart, we see

g=-5 (2.125)

VTR

and ergo conclude that the 5 gauge couplings are dimensionful, hence the theory is

non-renormalizable.
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Now let us find the relation between v and vs. Consider the Higgs kinetic term in a

U(1)-only field theory. The complex scalar field is given by
1

V2

For the consistency of the MUED model, only the SM mode of the 5D Higgs field

H (h+ vs + ichs). (2.126)

should receive a VEV. Thus, it would be more appropriate if we had written Equation

(2.126) as

H = —(h + i¢3) (2.127)

1
V2

1 2 ny
h = ho +vs | + —h,, cos —. 2.128
( —h 5> ;\/m I (2.128)

Nevertheless, as long as the 5D Higgs VEV is not expressed in a sort of KK tower,
the notation in Equation (2.126)) should work.

where

Now, the kinetic term of the complex scalar H reads

ghiggs ) |9MH‘2
>12,H” — | Z5H|*
3’<8u+%Au) h + vs + i

V2
-1 (M)z A2

2

2\ 2 K
L /9505 ) 2 1 2
— A : 2.129
23 ( 2 NCTa (2.129)
If we integrate over the extra dimension, we obtain
1 h 1 7gs5v5\2 2
5 /_ dy B O (T> A2 (2.130)

If we now match the 4D mass of A, with the apparent 5D mass (i.e. the mass

consisting of the 5D constants), we get

== 2.131
5 5 (2.131)
and hence
(% Us
v = = = uvsVTR. 2.132
9/gs  1NTR (152)
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From Equation (2.131)), we also see that
J5U5 = gu. (2.133)

This allows us to directly write the “apparent 5D masses" simply as their 4D coun-
terparts — indeed, this is what we did while studying the equations of motion of the

scalar and vector fields earlier.
Now let us relate the 5D Higgs coefficients, p5 and A5, to their 4D counterparts.

Lhiges O Ug ’H’2 — X5 ’H’4
2
— A5

4

1 1
Dz E(h+v5+@'¢3) E(fwrvgnuz'cbg) : (2.134)

It should be noted that, for consistency purposes, we take the 5D Higgs VEV to be

given by the same relation in terms of u5 and A5 as the 4D one:

Hs
Vs = ——. (2.135)
Vs
Let us extract the Higgs mass term from the 5D Lagrangian,
ghiggs o= M§h2
1 2
D -l ( ho) (2.136)
VTR
and integrate it over the extra dimension:
1 TR
3 / dy Lhiiggs D — Hshi. (2.137)
—7mR
Matching this with the usual SM mass of the Higgs field, we see that
= lt5. (2.138)
This gives us , , ,
1 A
o=t _H___F (2.139)

Ug (U\/WR)Q _ﬁ%:ﬁ
Finally, let us match the 5 Yukawa couplings, ;5 (where ¢ = 1, 2 denotes the upper

and lower components of the SU(2) doublets, respectively), to its SM counterpart.
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Consider the Yukawa sector:

Lyawa D — Y1sUr1rH — yostbribopH + hec.

_ _ 2
D — Y5 (@DlL 'QD2L) () 05/0\/_ + (1 —2)+h.c

Y155

D — i /2
o= <F¢1LO> y$5 (ﬁ@bmo) +(1—2)+hec (2.140)

If we integrate Equation (2.140) over the extra dimension, we obtain

Y1p+ (1 —2)+h.c

1 [ - YsUs
= dy Lyukawa O — Y100 —=V1ro + (1 — 2) + h.c.
2 —mR \/_
T YsUs - YsUs
D - P P +(1—=2
Y10=—= NG rRY10 — V10— = NG P10 + ( )
> =t + (1 2) (2.141)
Now, y5v5/+/2 should give the usual (non-diagonal) mass matrix, yv/v/2, so
Ysvs = YU (2.142)
and thus
Ys
= (2.143)
Y VTR

just like any gauge couplings. So we can see that the combinations gsvs and y5v5
can always be written as gv and yv, respectively, even before we integrate the 5D

Lagrangian over the extra dimension.

2.12 Final remarks on the notation

To facilitate the notation, we define

2

Cn =1/ ﬁcos”_g, (2.144)
2

8, 1= ,/ﬁ sin% (2.145)

(2.146)



to represent the universal mass term. Meantime, let

1
VTR

which is simply the scale factor for the SM modes. The Einstein summation con-

b:=

(2.147)

vention is employed throughout this work. For instance, for the 5D Higgs field, we

write

= bho + hycy,. (2.148)

When we take the y derivative, we include the mass term coming from the argument

of the sine or cosine in this summation, as well:

6
2 n .. n
Osh(z,y) = Z —1/ ﬁhn(a:)ﬁ sin Ey

n=1

= —myh,s,. (2.149)

We will treat any field without a KK number as a 5D field, which depends on both the
4-position and the extra dimension, and fields that carry a KK number as the 4D ones,
depending only on the 4-position. We will suppress the coordinate dependence of the
fields and the mode functions. The 5D Lagrangian will be integrated over the extra
dimension, y, and the integrated Lagrangian will be denoted by %ff—m> -+ D. For

the states in the mass basis and the diagonalized mass matrices, we append an asterisk

to the subscript.

2.13 KK decomposition of the fields

Below are the KK decomposition of all the fields in the MUED model in the notation
summarized in Section
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2.13.1 The scalar fields

The KK towers for the usual SM fields, promoted to the 5D, are as follows:

h = bhy + hpcy,
¢i - bgb(:)t + ¢7:|z:cn7
O3 = bz + Pancy.

The KK towers for the 5" components of the vector fields are as follows:

GS = G5n3m
I/V51 = WSInSn’
W5)2 = W52n8n’
WE? = W53nsn’
B5 == BSnSn'

2.13.2 The fermion fields

The KK decomposition of the fermions are given by

Uy, = b+ (Pren + Prsa) ¥,
Vi = bibio + (Pren + Prsa) Uk,

(2.150)
(2.151)
(2.152)

(2.153)
(2.154)
(2.155)
(2.156)
(2.157)

(2.158)
(2.159)

where ¢ = 1,2 denotes the upper and lower components of the left-handed SU(2)

doublets, respectively, 1! represents the up-like quarks (u, ¢, and t), and 12 stands

for the down-like quarks (d, s, and b). wi and w% together form the left-handed SU (2)

doublet, Q. The ¢%, are simply the right-handed singlet states.
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2.13.3 The vector fields

The KK expansions of the SM vectors are as follows:

Gt = bGl + Gle,, (2.160)
W = bW* + Wiee,, (2.161)
W2 = bW 4+ Whe,, (2.162)
W3 = bWH + Wike,, (2.163)

B" = bBY + Blc,. (2.164)

2.14 Physical states in MUED

Having armed with the theoretical background and a facilitated notation, we are going
to derive the mass eigenstates of the complete particle spectrum of the MUED model
in this section. First, we consider the vector and scalar fields, charged and neutral
sectors one by one. Then, we focus on the quarks. The gauge-fixing Lagrangian is
obtained in the Feynman gauge. The gluon, leptons, and ghosts are treated separately

at the end.

2.14.1 The vector and scalar fields

We start with the bosonic sector. In the charged sector, we have the vectors W1# and
W2 and the scalars ¢y, ¢o, W2, and V2. Due to the existence of two new degrees of
freedom, namely W3 and W2, we expect to have a new physical charged scalar, living
in the KK tower, besides a charged Goldstone boson. In the neutral sector, there exist
the vectors W3* and B* and the scalars ¢s, Wg‘, and Bs. In this case, ¢3 combined
with the two new degrees of freedom, namely W2 and Bj;, will contribute to a new
physical neutral scalar and the Goldstone bosons associated with the KK partners of

the photon and the Z boson.
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2.14.1.1 The charged sector

Consider the gauge and Higgs sectors:
L = ZLyange + Lhiges- (2.165)

We can focus on the 5D Proca terms of the first and the second gauge vectors of the
weak interactions:

1 1
ggauge — _Z(WI%JN)Q - Z(W}@N)Q (2166)

For a generic non-abelian 5D vector V), the field strength tensor is given by
Viin = OuVE — OnViy — gs0™ Vi Vi (2.167)

where g5 1s the 5D coupling of the interaction that V'* mediates, and the ¢”"¢ are
the structure constants. The term proportional to the coupling constant is already
quadratic in the fields, thus it will not contribute to the diagonalization of the states.

Now, let us take the square of the field strength tensor in Equation (2.167)):

(VMN)2 :<Vuu)2 - Q(VMS)Q
D —2[(8,V5)% + (85V,)* — 20,V50;V*]
D —2(9,V5)? — 2(05V,,)? + 40, V505 V. (2.168)
Here, the second term will contribute to the mass terms of V# by adding the universal

mass m,, once the field is expanded, and the last term will be resolved in the gauge-

fixing Lagrangian. If we use Equation (2.168) in (2.166), then we get

1 1
Lryange D 5(851/1/;)2 — 0, Wios W + 5((95Wj)2 — 9, W20sW?.  (2.169)

Let . )
W FiW
wE = T (2.170)
V2
for both the vector and 5" components. Then,
+ - W+ -
Wl = u’ W2 = u (2.171)
V2 V/2i
Using these in Equation (2.169)), we get
Lyauge D 85W;85W_“ — QWSO W™ — 0, W5 05 W
1 TR d
RN maWE W+ m, W o,We, +ma W, 0,Ws. (2.172)
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The first term in Equation (2.172)) is the part of the mass term for the KK 1/ bosons,

and the rest is just the derivative mixings to be resolved by the gauge-fixing terms.

Next, consider the Higgs sector:
Lhiges =|PuH[" — U (H)
>|2,H)? — |Z5H|*. (2.173)
The covariant derivative is given by
D = 0+ igusThy - W +igysT, B

O+S2WP 2B (W —iW?)
Bus (W 4+iW?) 9 — Mes|p3 4 e p

igw 3 19y5 igw +
_ 0+ 2 W° + =22 B T;W (2.174)
sy 0 — sy 4 9o

for both the vector and 5*® components. The hypercharge eigenvalue of the Higgs
doubletis Y = 1, hence T, = % The Higgs doublet is
1 (P — 1 it
go L (o1 —id2) | _ ¢ . (2.175)
V2 \ h+ s + i J5(h + vs + iss)
Since we only need possible mass terms of the charged particles, we can ignore all the
terms from the neutral sector, and the terms already quadratic in fields. This leaves us
with
Za¢+ + i9w25v5 W+
0

9H D (2.176)

where

GusUs _ Guw¥
2 2

(See the discussion following Equation (2.143).) Taking the modulus, be-

comes

= mu. (2.177)

\2H|? D (06F + myWH) (™ + my W)
D ¢t + mpyWIW ™ + myWHo¢™ + myW = dg™. (2.178)
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By inserting Equation (2.178)) into (2.173)) for both the vector and 5 components,

and integrating over the extra dimension, we obtain
& % fffR dy 2 Ny 2 s —
hjggs ) st D mwwo WON + mwwn Wn,u
+mu Wy 0.ty + mw W, 0,0,
+ Trn;[/l/[/'(f“(%qbar + mWW,j“(?quj{
— mydn d, — miy War We, + mumw Wi 6,
+ manWE;quz. (2.179)
Totally, from the gauge sector and the Higgs kinetic term, we have

R
% ffﬂ'R dy
2

£ ) {m%VWJ“W@ + m%VnW,j“Wn;}
- {quﬁb:(b; + m%ﬂ/WSJ;ZWS;L - mnmwgb;fWg;L
+ {W 0umw g + W0, (mw ey, + maWs,)

+ Wy ' Oumwog + W, 0, (mwd) +m, Wi} (2.180)
where we have defined

mw, = \/m2, +m2. (2.181)

The vector fields come out orthogonal, so we only need to diagonalize the scalar

fields. The second and the third lines in Equation (2.180) can be written as
LD —SHMZ St (2.182)

with the charged scalars collected as a column matrix

+
si={ ") si= (o wi) .183)
WSn
and the mass matrix is given by
m?2 — MMy
M, = . (2.184)
" — MM mé,

Assume there exists a unitary matrix Ug+ that diagonalizes the mass matrix:
+tas2 o+ — ot 2 +
SyiME, ST = SiiUG UL MG Ug UL S)

= SHME, ST (2.185)

x Mk
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The diagonalized mass matrix has the eigenvalues 0 and m%,vn,

5 0
M2, = (2.186)
n mIQ/Vn

so that there is one charged Goldstone boson, Gﬁ, associated with the KK W boson.
The mass goes to the new physical state, a:, which is called the charged Higgs boson.

We may collect the Goldstone scalar and the charged Higgs in the column vector

(G
SE = . (2.187)
a:i:

The normalized eigenvectors, Z; and T, of the unitary rotation matrix Ug+ are given
n

by

1 m 1 —my,
fH=—10" zm=— . (2.188)
mWn mn mWn mW

Hence the matrix itself is constructed to be

1 m —my
Ugs = W , (2.189)

mWn mn mW

From Equation (2.185]), we have

USJS:[ =St (2.190)
or, taking the inverse,
St = US;S;[*. (2.191)
Therefore, the gauge eigenstates can be written in terms of the mass eigenstates as
1
oy = ——(mwGy — myal), (2.192)
mw,
1
Wi = ——(m,GE + myab). (2.193)
Wn

The derivative mixing term does not contain the charged Higgs boson:
mw oL + m, Wi = my, GE. (2.194)

We are now in a position to suggest the gauge-fixing Lagrangian. The derivative-
mixing terms in the integrated Lagrangian can be collected as

1 rmR

1 d

3 ) ardy +p _ + _
Lyange—fixing ——— -+ O O, Wy "mwaoy + 0,W, mw, G,

+ 3MWO_“mW¢f{ + 3MWH_“mWnG:[ (2195)
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Let us try the following:
ggauge—ﬁxing o - |8MW+M - mW¢+
D — |3MW+“ — Os W5 — myw o™
- [(&wWO—HL —mwoy ) + CN<auWr;HL —m, W, —mwo,]

| 2

’ 2

x [(0Wo " —mwy) + cn(OW, " — m, Wy, — mwe,)].
(2.196)

In the light of Equation (2.194), this works.

Now let us briefly summarize this section. The charged vectors W* and their 5"
components are given by the same prescription as in the SM:
Wi
= T

The charged 5'" components mix with the charged scalars to produce the Goldstone

w* (2.197)

bosons associated with the KK W boson and the charged Higgs particle:

1
Gt = —(mwot +m, W), (2.198)
mWn
1
af = ——(—mu ¢ + my W), (2.199)
T?”L{/Vn

The charged Higgs field has mass
My = My, = \/Miy +m2. (2.200)
The gauge-fixing Lagrangian is constructed to be

Lraugotixing D — [OuW ™M — myot|”. (2.201)

2.14.1.2 The neutral sector

Again, we start with the gauge sector and the Higgs kinetic term:
L = Lyange + Lhiges (2.202)

In the gauge sector, this time we focus on the curvature tensors of the neutral gauge
bosons, W3 and B:
1,2 5 1 5
Loauge = _Z(WMN) - Z(BMN) . (2.203)
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W3 belongs to a non-abelian vector, so in its field strength tensor, there exists a term

proportional to the 5D weak coupling, g,s:
Viry = OV — OnVir — guse " Vi Vi (2.204)

Since the terms proportional to the gauge coupling are already quadratic in the fields,
we ignore them in the diagonalization. Since the mediator of the hypercharge is an
abelian vector, its strength tensor does not contain such a term. Hence, for both 13

and B, we proceed without the last term in Equation (2.204).
(VMN)2 = (VMV)Q - 2(‘/#5)2
D —2[(0,V5)? + (05V,,)? — 20, V505V
D —2(8,V5)? — 2(95V,)* + 40, V505 V. (2.205)
The first term in Equation (2.205) is the kinetic term for the 5'" component of the

vector field, the second term will contribute to the mass term after KK decomposition,

and the last term will be resolved in the gauge-fixing sector.

Substituting Equation (2.205)) in (2.203)), and integrating over the extra dimension,

we obtain
3/ erdy I, 332 3 3 I 5.9
Lange —— 3§mn(Ww) +m,W1o,Ws, + §manM +m,, BL0,Bs,.

(2.206)

Next, we consider the kinetic term of the 5D Higgs field. To facilitate the computa-
tion, we may consider the U (1) ® U(1) complex scalar, taking advantage of the fact
that T3 can be treated as another U (1) gauge boson with the generator 73, the third

component of the weak isospin.
Lhiges D D H|?
o |2, H — | Z:H|* . (2.207)
For both the vector and 5" components, the covariant derivative can be expressed as
D =0 +igusToW? +ig,sT,B (2.208)

where T2 = —1/2 and T,, = 1/2 for the complex scalar field, H, which is given by

1

"=

(h+ vs + ics). (2.209)
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Applying the covariant derivative on the complex scalar field, we obtain

@H:(a—w—w5W3+Zgy5B> h+v5+i¢3
V2

2 2

1 /. 1Gw5V5 13 . 1Gy5Us5
— - We4+ 2=2°PB
3\/5 (z6¢3 5 5
7
D>—— (03 — my W3 +mpB 2.210
\/5( ®3 w B ) ( )

where we have defined the apparent mass term for the mediator of the hypercharge as

_ 9% _ Gy (2.211)

mp: 5 5)
and the apparent mass of Wg’ " is defined to be

_ gw;”5 _ % (2.212)

my
such that m?% + m#, = m?%. The absolute square of Equation (2.210) gives

1
|2H|* 35[((%3)2 +miy(W?)? + mpB®
+ 2(—=mw W?d¢3 + mpBdgs — mympW?B)]
1 1 1
35(8@)2 + 5771‘2,[,(1/1/3)2 + §m2BB2 — myW30¢s

+ mpBdps — mympW?B. (2.213)

If we substitute Equation (2.213)) into (2.207) and integrate over the extra dimension,

we obtain

3T 1 1
ghiggs 24“/) s Dém%{,(WS)Z —+ imQB(BO)Q — meBWg)MBOM
— meé’“@ucbso + mpBf0,d30

%m%,v(W;j’)Q + %mQB(Bn)2 — mympW2*B,,
- mwwg’”@ugbgn + mpBLo,¢s3n
{55+ g (W) 4 SmbBE,
+ iy W, dsn — Mumpds, Bs, — mBmWBBHWSn}
(2.214)

where the apparent KK masses of the fields B* and W3# are defined as

mp, = \/m%+m2 (2.215)
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and

mw, = \/m¥ +m2. (2.216)

The integrated gauge and Higgs sectors combine to give

3T d 1 1
g 2f R «-~D{§m%V(Wg’)2+§m2B—meBW5’“BON

— my Wt 0,030 + mBBSLau%o}

1 1
+ {—TI”L%VH(T/VE)2 + —mQBnBi — meBWT?"BW

2 2
+ WO (mw dan — maW3,)
+ Bﬁa,u(mB(b?m + mnB5n)}

1 1 1
- {§mi(¢3n)2 + §m12/V(WE:)3n)2 + §m2BB§n
+ mnme§n¢3n — MympBs, @3, — meBWE?nBEm}-

(2.217)

In order to set our convention for the Weinberg mixing angle, we first focus on the

SM modes of the vectors.

LR d 1 1
2 2 S B S (W) — mimu B,
2
Sy (o ) () (B
2 —mpmw m%[, W(;’M
1
o) 5%“TM30V()M (2.218)
where we have defined the column matrix
B#
vie=1 ) (2.219)
and the mass matrix
m>2 —mpgm
MZ = B PR (2.220)
—mpmyw m%,v

Suppose there exists an orthogonal matrix Uy, that diagonalizes the mixing matrix
M

R
% fij dy

Lo
% 3§V(;TUVOU$OM30UVOU‘§)VOM

1
Di%‘iTM‘Q/M%*”. (2.221)
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The eigenvalues of the mass matrix is nothing but the masses of the photon and the 7

boson:

MZ, = 0 . (2.222)
Vo * 9 .
my

The normalized eigenvectors, ¢; and 9>, of Uy, are found to be

. L [mw . I [—mp
Y1 =— s Y= — (2.223)
so that
1 m —-m c —S
Uy =— | 7P =" W (2.224)
mz \'mgp mw Sw Cw

where sy (cy) 1s the (co)sine of the Weinberg mixing angle:

ow =W g, =8 (2.225)
myg my

The physical states are given by the rotation

Vo' = Uy Ve (2.226)

or, more explicitly,
BY = cw Al — sw 2t (2.227)
Wt = sy Al + ew Z1. (2.228)

Next, we move on to the KK modes of the vectors. The mixing terms can be collected

in the form of matrices as in

LR g 1 1
o 2t Somip, Bl + 5miy, (W2)* — memw BIW,
51 (BN WS“) m,  —mpmw | [ B,
2\ " —mpmw m%/[/n WS’“
1
Ly, (2.229)

Assume there exists an orthogonal matrix Uy, that diagonalizes the mass matrix:

3T ndy L 7 o2 t
&z 351/,5 Uy, Uy, My, Uy, Uy Vi
1
3§Vn*;TM2n*vw. (2.230)
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The eigenvalues of the mixing matrix determines the masses of the KK photon and

the KK Z boson:
2

m
ME, =" (2.231)
where
= m, (2.232)

and

my, = /Mm% + m2. (2.233)

The eigenvectors, 2} and 25, of Uy, are found to be

1 m 1 —-m
z=— """, z=— B (2.234)

so that
1 m —-m
Uy, =— | % 7°F (2.235)
mz \mp mw
which is the same rotation matrix as for the SM modes. Consequently, the Weinberg
angle is independent of the KK number. Now, the rotation between the gauge and the

mass eigenstates are given by

Vi =Uy, V) (2.236)

or, more explicitly,
B! = ey AP — sy ZF, (2.237)
W3k = sy AP + ey Z1. (2.238)

Next, we study the neutral scalars. The mass terms can be collected in the following
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arrays:

%fff’Rdy 1 9 2 1 2 3\2 1 2 2
P e D — {§mn<¢3n) + imW(W%) + émBBE;n

3 3
+ mymwWE @3, — mympBs, @3, — meBWEmBEm}

2

mn —mympg man
1
03 <¢3n Bs, W53n> —m,mp My —mpmwy
mymw —mpmyw m%,v
¢3n
B5n
ws,
1
D — 55{ MZ S,. (2.239)

Assume there exists an orthogonal matrix Ug, that diagonalizes the mass matrix:

TR
% ffrrR dy
2

1
@ S §S§USRU§LM§”USRU§LSTL
1
> = SShM3, S0 (2.240)

The eigenvalues of the mixing matrix are 0, 0 and mQZn, implying that there appear two

Goldstone scalars associated with the KK photon and the KK Z boson, as expected:

0
MZ = 0 . (2.241)

2
my

n

The nontrivial eigenvalue indicates the appearance of a new scalar, a,,, with mass
Mg, = My, . (2.242)

Since the eigenvalue O is doubly degenerate, we need to perform a Gram-Schmidt

orthogonalization procedure. Starting with the eigenvalue equation

MZ —X\|@ =0 (2.243)
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let us study the case A\(; 2y = 0:

q(1,2)1
qa2) = d(1,2)2
q(1,2)3

q(1,2)1

= q(1,2)2

i da2)1 T ﬁQ(mp

1 0
=q(1,2)1 0 +qa22| 1 (2.244)
_mp mp
mw w
Thus, we might as well take the non-orthogonal eigenvectors, ¢; and ¢, to be
mywy 0
n=1 0 |, @@= |mw]|- (2.245)
—mpy mp
For the last eigenvalue, \3 = mQZn, we obtain
my
G=\|-mp|- (2.246)
mw

We can switch to the orthogonal set by using the relation

k—1
P = (1 - Zm-) G (2.247)
j=1

where the pj, are the mutually perpendicular vectors, with respective unit vectors py.

For k = 1, we get

= q (2.248)
and hence
mw
) 1
pr=— 0 . (2.249)
mWn
For k = 2, we obtain
Dy = G2 — G2 P11 (2.250)
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so the normalized vector is given by

mpmy, /(Mmw,mz,)
p2 = mw, /Mz,

mpmw [ (mw, mz, )

Since A3 is not degenerate, we may directly take

D3 = g3
and normalize it to unity:
My
) 1
Pp3=——1|—m
m T B
mw

Hence, the rotation matrix Ug, is constructed to be
mW/mWn man/<manZn) mn/mzn
Usn = 0 mWn/mzn —mB/mZn
—mn/mw, mpmw [(mw,mz,)  mw/mg,

The rotation between the gauge and the mass eigenstates is given by

Sn = USn Sn*
or, more explicitly,
mw mpmny mpy
¢3n - Gln + GQn + Qp,
mWn man Zn m I,
mw, mp
BSn = G2n - Qp,
mZn mZn
m mpmyw mw
3 n
W5n = - Gln + GQn -+ —Ap.
mw, mw, Mgz, mz,

(2.251)

(2.252)

(2.253)

(2.254)

(2.255)

(2.256)
(2.257)

(2.258)

Finally, let us collect the derivative-mixing terms. For the SM modes, we have

% fffR dy

Z

so the integrated gauge-fixing Lagrangian should contain such terms as

lf"R d
2J-7xrR Y 3 M
Lyauge—fixing ——— *++ O — O, W "myw d30 + 0, Bymppso

- D =Wt Oumwbso + BYOmpdso

(2.259)

1 1
o — §(auW§” + my dg0)? — 5(@35‘ — mpos)>.
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The sign of the mass term differs, depending on the sign conventions. We set it by

writing the derivative-mixing terms in the mass eigenstates:
3
—my WH 0,030 + mp Bl 0,b30 = —Z50,mz¢s. (2.261)

This helps us determine the 4D gauge-fixing terms correctly:

% fffR dy

1 1
ggaugefﬁxing —_— D —5(8“26‘ + mZ¢30)2 — 5(8#145)2 (2262)

Let us repeat the procedure for the KK modes:

3T dy
L2 WO, (—miy g + mu W) + B0, (mpsn + My Bsy)
D — ZM0ymy, Ggn + ALOma, Gan

DAZau(ClnGln + CQnGQn) + Zﬁaﬂ(anGln + C4nng) (2263)

where the sign of the KK Z boson in the second line is to comply with its SM mode.

Here, we have defined

mpm?

Clp = — ———, (2.264)
manZ
Con =W V20 (2.265)
mw,mz
2
e = — . (2.266)
mw,mz
Can = — mphmninz, (2.267)
mw,mz

In order to derive the Goldstone bosons, we need to solve the following system:

Cin Con G n m nG n
tn ©2 ) | THAAn (2.268)

C3n  C4n G2n _mZnGZn

The solutions are found to be
G, = —MGM + %Gm, (2.269)
mzmw,, mw, Mz
G2n _ mwmz, GAn + mpmy GZn- (2270)
mwy,mz mzmw,

Now we are in a position to propose the closed form of the 5D gauge-fixing La-
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grangian. Let us try the following:

1 1
Z D - §(<9MW3M + my¢3)* — 5(8MBM — mpp3)?
1 1
o — 5(@MW3“ — W2 + mpes)? — 5(@3" — 05B5 — mpps3)?

1 rmR
2J-71R dy

1 1
el D — §(aqu'u -+ mw¢30>2 — 5(8#_861 — mB¢30)2

1
= 50V = ma W5, + mw g )
1
= 5(0uBy = mnBsy — mpds,)°. (2.271)

It fits. Let us check the SM modes for the signs:
(0, W5" + mww d30)? + (0, B — mpds0)® = (0, A45) + (0,28 +mzgs0)®. (2.272)
which is also fine.

We finalize this section by summarizing the mass eigenstates of the neutral vectors
and scalars: B* and 73" mix to produce the photon and the Z boson with the iden-
tical mixing angle for both the SM and the KK modes, hence we might suppress the

indices for convenience:

B* = ey A* — sy ZH, (2.273)
W3 = sy A" + e ZH. (2.274)

where sy (cy) denotes the (co)sine of the Weinberg mixing angle,

— (2.275)

mz
In the SM sector, ¢30 remains to be the only neutral Goldstone scalar (associated with
the SM Z boson); however, in the KK tower, due to the existence of two new scalar
fields, B and W3, we get two Goldstone bosons (associated with the KK photon and
the KK Z boson) and a new degree of freedom, a,,, which is called the neutral scalar

in the tower:

m mpmy my,
G0 = —2-Grp + —2—"Gop + — a1, (2.276)
mWn manZn mZn
Bsy = WGy, — B, (2.277)
mz, mgyg,
W53n __Mn Gin + MG% + @an_ (2.278)
mw, mw,mz, mgz,



The neutral scalar a,, has the same mass as the KK Z boson:

Mg

= my,. (2.279)

n

The compact form of the 5D gauge-fixing Lagrangian reads

1 1
Lyange—fixing D —§(aMW3M + my¢s)? — 5(aMBM — mpos)*. (2.280)

2.14.2 The fermion fields

In the derivation of the physical fermion states in the mass eigenbasis, we need the

Dirac and Yukawa sectors.
Z = Dg/ﬂfermion + gyukawav (2281)
The 5D Dirac Lagrangian reads
agfermion = Z fZFM-@Mf (2282)
f=QU,D
where () denotes the left-handed SU(2) quark doublet, U is the right-handed up-like
singlet, and D represents the right-handed down-like singlet. The 5D Dirac matrices

are taken to be

M = (y#,irys). (2.283)

In our earlier analysis, we observed that the KK mass terms derive from the terms

containing the 5 component of the derivative:

ﬁermion D) Z fTZ (275)85][
!
D — [0 f
D — YrY505¢L — VrY05UR (2.284)

where 17, denotes either component of () and vy is either of U and D. The KK

decomposition for the fermion fields read

Y = bro + Prvpncn + PriYrnSn, (2.285)
Yr = bro + Prrncn + Prvpn Sy (2.286)
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with the adjoints

V1, = bro + Ui Pren + ¥rn Prsy, (2.287)
VYr = bbro + Vrn Prcy + Vrn PRS- (2.288)

With Equations (2.285)—(2.288) substituted, the Dirac Lagrangian becomes

Dgfermion D= (&LnPRCn + &LnPLSn) 5 (_mmPquz)Lmsm + mmPRwLmCm)

- (&RnPLCn + &RnPRSTJ V5 (_mmPRmeSm + mmPL¢Rmcm)

%fij dy N N
———— -+ D — (Mu¥rn PRV L0 + Mnrn Pribrn)

- (_mn@anPLden - mnqijnPR@bRn)

o= mn&anﬂLn + mn&Rn"#Rn' (2289)

The chiral modes do not mix in the KK tower; however, the right-handed mode ap-
pears with the wrong sign. This can be resolved by including =5 in the rotation matrix

between the gauge eigenbasis and the mass one.

Meantime, the 5D Yukawa sector reads

Lrkawa = — Y1501 R H — yosthribar H + hec. (2.290)

where the subscripts 1 and 2 refer to that component of the left-handed doublet, h.c.

stands for the Hermitian conjugate, H is the SU(2) Higgs doublet, and

H :=ir’H. (2.291)

The only term that we need from the Higgs doublet is the Higgs VEV, so we may
safely ignore the rest of the fields:

vs /2 _ 0
of — Y5V 2R + h.c.

U5/\/§

Lyuawa D — Y15V V1R

o= QZILmzbﬂ/)lR - 1/_12me2¢212 +h.c.
o - QZLmd,’QbR + h.c.
o= (b&LO + 77ZL7’L-PRC’VL + 7IJLTL-PLSTL)TRw
X (0ro + PrYRmCn + PLYRmSm)
%fffR dy - - -
—— - D = myYro¥ro — MypVrnPRYRR — My PR, + hec.

o= mw&owo - meLniﬁRn — md)&RnwLn (2.292)
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where we have defined

o YisUs YU

(2.293)

Combining the integrated Lagrangians in Equations (2.289) and (2.292)), we obtain

TR
% ffﬂ'R dy
=T,

Z S D = mytotdo
- {mn&anLn - mnq/;Rann + qu/;anRn + mw,’vZ)Rn,’vZ}Ln} .
(2.294)
We choose the following rotation for the physical states:
an = —75COS ()Odmwln + sin S%nwzn, (2295)
Yin = Y580 Qynin + COS Pynan (2.296)
with the adjoints
VRn = CO8 PyntinVs + S Pynton, (2.297)
Yin = = SN Pynthins + COS Pynthan. (2.298)

Inserting Equations (2.295)—(2.298) into (2.294), the relevant terms in the total La-

grangian become

%fffR dy : )y
K% e D(mn CcoS 290¢n + My SIN 290¢n)@/)1n@/)1n

(1 005 2 + i1 20 i
+ {(mw COS 2Py — My SN 204 )1 Y52 + h.c.} . (2.299)
In Equation (2.299), we want to eliminate the mixing between 1y,, and 1)s,,:
My COS 2Py, — My, SIN 20y, = 0. (2.300)
This fixes the rotation angle ¢y,:
Pyn = %tanl Z—i (2.301)

It should be noted that the physical KK fermions are of the same mass:

My, COS 2Py + My SIN 2000, = My, (2.302)

My, = \/m, +m2. (2.303)
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2.14.3 Gluons, leptons, and ghosts

Even though we have obtained the physical states of the charged and neutral boson,
and of the quarks, there remain the gluons, the leptons, and the Faddeev-Popov parti-

cles.

Since the gluons do not interact with the Higgs field in either the SM or the MUED,
the SM modes of the gluons will remain massless. However, the KK gluon receives a

mass term coming solely from the 5*® derivative in the gauge sector:

25— Yaur o Loygey 2 Ln2(ge )2 2304
where there exists an implicit summation over the color index a = 1,2, ...,8. By the

same token, the 5*" component of the gluon does not mix with any other state. This
makes it easier to determine the gauge-fixing Lagrangian:

1 1
ggaugefﬁxing D _§(aMGaM)2 = _§<8MGGN - 65Gg)2. (2305)

Next, we have the leptons. Since the neutrinos in the SM do not possess the right-
handed component, it is much more straightforward to deal the leptons. We can
expand the electron-like leptons in the same tower as for the down-like quarks. For

the left-handed spinors, we have

er, = beL() =+ (PLCn =+ PRSH)BLn, (2306)
pr = bpro + (Pren + PrSp) i, (2.307)
T, = bTLO + (PLCn + PRSn)TLn (2308)

whereas the right-handed spinors are given by

ER = beRO + (PRCn + PLSn)GRn, (2309)
pr = bpro + (Prcy + Prsn) fian, (2.310)
TR — bTRo =+ (PRCn + PLSn)TRn- (2311)

For the neutrinos, we only have the left-handed towers:

Ver, = Wero + (Prcn + PrSn)Vern, (2.312)
VuL e quLO + (PLCn + PRSn)V,uLn> (2313)
Vrr, = burpo + (PLCn + PRSH)VTLH' (2314)
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The physical states for the electron-like leptons are given by the same relation as in

Equations (2.295)) and (2.296). The KK modes of the electron-like leptons also have

the mass
My, = \/m5, +m2. (2.315)

The states given Equations (2.312)—(2.314) are the physical states for the neutrinos.

The KK neutrinos have the mass
My, = M. (2.316)

Finally, we need to include the ghost sector. The KK modes of the ghosts are irrele-
vant to this work; nevertheless, we will need the SM modes of the gluon ghosts, wj,.

To this end, we will borrow the usual Faddeev-Popov sector:
3/ ffR dy

Lghost ———— -+ D igo [ (0u05) G (2.317)

where the f%° are the structure constants for the SU(3) group.

2.15 Summary

We have derived the complete particle spectrum for the MUED model in the Feyn-
man gauge. The masses and the rotations from the gauge basis to the mass one are

summarized in Tables Z.11-2.3

Table 2.1: The spectrum of vector fields in MUED.

Mass eigenstate  Mass Gauge eigenstate(s)
Gt 0 Gt
Wy mw Wt = (W F i)
zy my  ZY = cwWy" — swBY
Ay 0 Ab=swW" +cwB)
G* M, G*
W mw, W = (W 5 i)

Zﬁ my Zf; = CWW’r::’M - SwB#

Al m, A= sy W3 + ey BE
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In Table (2.1)), sy (cw) is the (co)sine of the Weinberg mixing angle, and the KK

masses are given by the formulae

my, = 1/m12/v —|—m72w My, = ‘/mQZ —I—m% (2.318)

Table 2.2: The spectrum of scalar fields in MUED.

Mass eigenstate Mass Gauge eigenstate(s)
ho my, ho
G% mw ¢§ = %@510 F iga0)
®30 mz ®30
Iy mp,, R
an, mg, n = - (Mpt3, — mpBs, + my W3 )
az my, af= \@}Wn [ (P1n F idh2n) + mw (Wa, FiW2)]
G5, My, Gsn
G mw, Gy = g mw (G F idan) + mn(W3, FiW3,)]
Gzn mg, Gz = mZ}nzn (m%¢3, + mumpBs, — m,my W3 )
G an My, Gan = 7 (mw Bs, +mpW3,)

In Table (2.2)), the parameter mp is nothing but the apparent mass of the By, boson,

Mg = % — mysy (2.319)

and the Higgs KK mass is defined as

mpy, = /m2 + m2. (2.320)

In the KK tower, we have four new degrees of freedom, namely Bs,,, W;n and an
Combined with the KK modes of the 4D Goldstone scalars ¢+ and ¢s, they produce
G an» Gzn» GE, a,, and aX. There appear three new fields, living only in the KK

tower: the neutral scalar, a,, and the charged Higgs boson, a>.
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Table 2.3: The spectrum of fermions in MUED.

Mass eigenstate Mass Gauge eigenstate(s)
e Megi e
v 0 v
ul My uf)
ekl Mei ey = —75(COS Qein€h, — sin Yeinel,)
el Mei €2l = sin @in el + COS Peineh
v, My, vy, = Vi,
ul? Myi Uy = —5(COS Puintily, — SN Qyinul,,)
u? My U2 = Sin Pyl + COS Puinul
db Mg dy) = —75(co8 Qi iy, — sin@gindy,,)
d* Mg d? = sin @ gin i, + 08 Pginds,

In Table[2.3| i = 1,2, 3 is the generation index, and the mixing angle ¢y, is given by

1 _1 mw

Pyn =35 tan (2.321)

mn
where my, is the SM mass of the corresponding fermion. 1)) and )2 are the new

degrees of freedom, deriving from the right-handed component of the left-handed

KK spinor and the left-handed component of the right-handed KK spinor.
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CHAPTER 3

APPLICATIONS OF MUED TO RARE TOP PHYSICS

Once we complete the theoretical considerations of the MUED model, with all the
states given in the mass basis and with their rotation angles from the gauge eigen-
states to the mass ones, we can apply the model to any desired high-energy physics
phenomenology. In this chapter, we present our results of the MUED contributions to

rare top quark processes which occur by flavor-changing neutral currents (FCNCs).

Rare top quark processes play a crucial role for new physics searches. Experimen-
tally, we only have upper bounds for the decay widths of the rare top quark decays
occurring via FCNCs, which are dramatically larger than the corresponding SM cal-
culations. Since no well-defined measurement of the considered decay widths are yet
to be performed, we can hope for a new physics signal in order to account for huge

orders of gaps between the SM computations and experimental bounds.

This chapter starts with the list of the processes of our interest, namely the rare top
quark decays and single top quark production channels. Next, we discuss the special
processes that contains two or more external non-abelian vector fields of the same
kind. Then, we show the generic diagrams for the processes considered. Afterwards,
our remarks on the numerical analysis are given. Finally, the MUED contributions to

the decay widths and cross sections of the processes taken into account are presented.

3.1 Rare top quark processes

In order to perform numerical analysis, one needs the Feynman rules, extracted from

the complete Lagrangian in a systematical fashion. To this end, LanHEP [33] 34]
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appears to be the best solution available at the moment. It is crucial to note that
there exists a LanHEP code for the MUED model written by Belyaev ef al. [29].
Intriguingly enough, the Feynman rules produced by this code seem to contain sus-
picious vertex factors, especially for the interactions of the quarks with the charged
bosons, concerning the CKM matrix elements. Therefore, in accordance with the
physical states summarized in Tables [2.1H2.3] we prepared our own LanHEP code for
the MUED model, which can be found in Appendix [D| By piping the systematically
extracted Feynman rules from LanHEP to FeynArts [35] and FormCalc [36, 37][], we
applied the model to the following rare top quark processes that occur by FCNCs:

t— cy, 3.1
t — cg, (3.2)
t — ch, (3.3)
t—cZ, (3.4)
t — cgg, (3.5
and
99 — tc, (3.6)
cg — t, (3.7
cg — g, (3.8)
cg — th, (3.9)
cg — tZ. (3.10)

The full set of Feynman diagrams for the processes (3.1)—(3.10) are presented in
Appendix [A] The vertex factors relevant to these processes are contained in Appendix
Bl

! LanHEP, FeynArts, and FormCalc are package programs which are used to get the matrix element of a
process starting from the Lagrangian of a model.
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3.1.1 Processes with two or more non-abelian vectors

Consider the processes

t — cgg, (3.11)
gg — tc, (3.12)
cg — tg (3.13)

where we have two external gluons. In the computation of the probability amplitude,
the Feynman diagrams that gives the transition amplitude are brought together with
those that produce the complex conjugate of the matrix element. Since we have more
than one non-abelian vectors of the same kind, namely the gluon, there appear gluon
loops due to 3-point gluon self-couplings. In order to conserve the unitarity of the

theory [38], we need to include the ghost fields associated with the gluons (Figure

B1).

N N
B

Figure 3.1: Gluon loops in the matrix element squared for the process ¢ — cgg.

This implies that we also have to consider the processes where the gluon is replaced

with the gluon ghost:

T — cogwy, (3.14)
Wewg — tC, (3.15)
cwg — twy. (3.16)

The ghost fields do not interact with the fermions, thus they will appear only in place

of the triple gluon vertices (Figure [3.2)).
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Figure 3.2: Gluon ghosts replaced with two gluons in the triple gluon vertex.

Since the external gluons are SM fields, it is sufficient for us to consider in the MUED

model only the SM gluon ghosts due to the conservation of KK number.

3.2 Generic diagrams

Generic Feynman diagrams for the rare top processes are presented below. We clas-
sify the diagrams into four: (1) the two-body decays of the top quark given in (3.1)—
(3.4), (2) the three-body decay of the top quark given in (3.5), (3) the single top quark
production processes via gluon-gluon scattering given in (3.6), and (4) the single top

quark production processes via charm-gluon scattering given in (3.7)—(3.10).

To facilitate the notation in the generic diagrams below, we denote the charged bosons
in the loops (the W boson, the Goldstone scalar associated with the W boson, and
the charged Higgs scalar) by a red line and the outgoing neutral bosons (the photon,
the gluon, the Higgs scalar, and the Z boson) by a blue line. Naturally, the quark
flavor changes whenever a quark current meets a red line. It is crucial to note that
there cannot exist diagrams where the external bosons undergo a self-energy loop;

otherwise, the fermion flavor will be conserved.

3.2.1 Two-body top decays

All the possible types of Feynman diagrams for the two-body top decay processes

include self-energy and vertex-correction diagrams (Figure [3.3).
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(a) (b)

Figure 3.3: Generic self-energy and vertex-correction diagrams for the processes ¢t —

cX (X =7,9,h,2).

It should be noted that the diagram (d) in Figure is not available for the process

t — cg since the gluon does not interact with the charged bosons.

3.2.2 Three-body top decay

The three-body top decay process t — cgg includes self-energy and vertex-correction

diagrams (Figure [3.4).

(a) (b)

Figure 3.4: Generic self-energy and vertex-correction diagrams for the process ¢t —

cgg.

In Figure the self-energy diagrams (a) and (b) are to be repeated for all the
fermion lines, whether they are virtual or external; moreover, the first gluon can also
come out from the charm quark in (a) and (¢), and from the down-like quark in (c).
It is important to note that we also consider the diagrams with the gluon ghosts. They
can be obtained from (b) and (d) in Figure [3.4|by replacing the two outgoing gluons
with the gluon ghosts.
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3.2.3 Gluon-gluon scattering

For the gluon-gluon scattering, there exist self-energy, vertex-correction, and box

diagrams in all of the S, T', and U channels (Figure[3.5).

Y

A

(a) (b) ()

Figure 3.5: Generic self-energy, vertex-correction, and box diagrams for the process

gg — tc.

The self-energy diagram (a) in Figure [3.5|should be repeated not only for the charm
line, but also for the 7" and U channels. The vertex diagram (b) exists also in the T
and U channels. There is a box diagram (c) in the U channel, as well. The S-channel
diagrams (a) and (b) contain 3-point gluon self couplings, ergo these diagrams should

be taken into account with the incoming gluons replaced with their ghost fields.

3.2.4 Charm-gluon scattering

Generic Feynman diagrams for the single top quark production processes via charm

quark-gluon scattering contain self-energy, vertex-correction, and box diagrams (Fig-

ure [3.06)).

(a) (b) ()

Figure 3.6: Generic self-energy, vertex-correction, and box diagrams for the pro-

cesses cg — tX (X =7,9,h, 2).
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The self-energy diagram (a) in Figure is meant to be repeated for all the fermion
lines, whether virtual or external, in the S and U channels. It should be noted that
when the external state other than the top quark, namely the one with the blue line,
is a gluon, there exist 3-point gluon self couplings in the U channel, ergo we have
to take into account the gluon ghosts in place of the two gluons, both incoming and

outgoing.

3.3 Numerical analysis

In the numerical computations of the decay widths and cross sections, we used Form-
Calc, which prepares the necessary Fortran codes, and then LoopTools to carry out

multidimensional integrals of the phase space.

In the process ¢t — cgg, assuming 7,57 = 1,2,3 denote the outgoing particles, we

imposed cuts on the total energy of each outgoing particle,
E; > 15 GeV (3.17)
and on the angle between particles ¢ and j,
aj > 15° (3.18)
for all 7 and ;.
The scattering events (3.6)—(3.10) were analyzed at the center-of-mass energy
Vs =14TeV. (3.19)

As for the parton distribution function, we chose CTEQ6L1 [39] from the package
LHAPDF [40} 41]).

The numerical values of the parameters we used in our analysis are shown in Table
B.1] The fine-structure constants of QED and QCD, and the quark masses are taken

at the scale of the mass of the top quark.
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Table 3.1: Parameters used in the numerical analysis.

Parameter Description Value

Je Electric charge 0.313329
Js Strong coupling constant 1.21978

sin Oy, Sine of Weinberg mixing angle 0.471813

sin 619 Sine of 615 in CKM matrix 0.22506

sin O3 Sine of 653 in CKM matrix 0.0410788

sinfj3  Sine of ;3 in CKM matrix 0.00357472
my Mass of Z boson 91.1876 GeV
mp, Mass of Higgs boson 125.0 GeV
mq Mass of down quark 0.0047 GeV
Mme Mass of charm quark 1.28 GeV
ms Mass of strange quark 0.096 GeV
my Mass of top quark 175.0 GeV
mp Mass of bottom quark 4.18 GeV

3.4 Results

In this section, we present the decay widths and cross sections of the processes given

in (3.1)—(3.10). The results are obtained as a function of the maximum KK number

to include, 7., and the inverse radius of the extra dimension, R~.

3.4.1 Rare top decay processes

All the MUED contributions to the rare top decay processes (3.I)—(3.5) display a

similar dependence on the inverse radius of the extra dimension, R~' (Figures

3.11). From the figures, we make the following observations:

e The MUED contributions asymptotically approach the corresponding SM val-

ues as the inverse radius of the extra dimension increases.
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e The MUED contributions increase as 7, INCreases.

e For the values of n,.x = 4 and n,.x = 6, the MUED contributions almost

coincide.

e The order of the highest relative MUED contributions ranges from 10~ to
107!, with the highest one in ¢ — cg and the lowest in t — cgg at R~ =
0.2 TeV.

e Between the experimental ranges of the size of the extra dimension, namely

0.5 TeV < R~! < 1.0 TeV, the MUED contributions become nearly negligi-

ble.
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Figure 3.7: MUED contributions to the process ¢ — ¢y as a function of the maximum

KK number, n,,,x, and the inverse radius of the extra dimension, R.
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Figure 3.8: MUED contributions to the process t — cg as a function of the maximum

KK number, n,,.«, and the inverse radius of the extra dimension, £.
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Figure 3.9: MUED contributions to the process ¢ — ch as a function of the maximum

KK number, n,,,x, and the inverse radius of the extra dimension, R.
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Figure 3.10: MUED contributions to the process ¢ — c¢Z as a function of the maxi-
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Figure 3.11: MUED contributions to the process ¢ — cgg as a function of the maxi-

mum KK number, n,,.,, and the inverse radius of the extra dimension, .
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3.4.2 Rare single-top production channels

The contributions from the MUED model for the single-top-quark production chan-
nels (3.6)—(3.10) display a similar dependence on the inverse radius, R~* (Figures
3.12H3.16), with a notable exception for the process cg — th (Figure|3.15). From the

figures, the following observations can be made:

The MUED contributions asymptotically approach the corresponding SM val-

ues.
e The moduli of the MUED contributions increase with increasing 7.

e The MUED contributions nearly coincide for the values of n.., = 4 and

Nmax = 0.

e The order of the highest relative contributions ranges from 1073 to 1072, with

the highest one in cg — tg at R™! = 0.2 TeV.

e For the physically acceptable range of the size of the extra dimension, that is,
0.5 TeV < R~ < 1.0 TeV, the MUED contributions can be considered almost
negligible.

e For the process cg — th, the MUED contributions are negative for =1 >
0.3 TeV.
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Figure 3.12: MUED contributions to the process gg — tc as a function of the maxi-

mum KK number, n,,,, and the inverse radius of the extra dimension, F.
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Figure 3.13: MUED contributions to the process cg — t as a function of the maxi-

mum KK number n,,,, and the inverse radius of the extra dimension, R.
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Figure 3.14: MUED contributions to the process cg — tg as a function of the maxi-
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Figure 3.15: MUED contributions to the process cg — th as a function of the maxi-

mum KK number, n,,.,, and the inverse radius of the extra dimension, .
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Figure 3.16: MUED contributions to the process cg — tZ as a function of the maxi-

mum KK number, n,,,, and the inverse radius of the extra dimension, F.

3.5 Summary

The MUED contributions to all the decay and production processes at the maximum
KK number n,,,, = 6 are displayed in Figures and [3.18] respectively, and the
results are summarized in Tables [3.2]and [3.3] The enhancements to the decay widths

and cross sections decay with the decreasing R.
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Figure 3.17: MUED contributions to the rare top decay processes at the maximum

KK number n,,, = 6 as a function of the inverse of the size of the extra dimension,

R.

Table 3.2: The SM values, I', of the decay widths of the rare top decay processes and
the contributions from MUED calculations, AI', are shown. The contributions are
taken at R = (1 TeV)™! and n,,,, = 6. The observational limits are expressed as the

corresponding branching ratios with respect to the main decay mode, t — bWV.

Process Observational limit I' (GeV) AT (GeV)
t—cy <1.7x1073 0.389 x 10712 0.103 x 10~
t—cg 0.395 x 10719 0.549 x 10713

t—ch  <1.6x107°  0.956 x 107" 0.220 x 107"
t—cZ <024x107°  0.110 x 107" 0.560 x 107"

The contributions asymptotically approach the corresponding SM values. This is an

expected behavior. There are two ways to see this. Firstly, as the size of the extra

70



dimension decreases, there will be smaller and smaller room for the fields to leak
into. Doing so, the particles will lose a degree of freedom. When the extra dimension
gets too small, there will be no contributions after all. Secondly, the larger the inverse
radius of the extra dimension grows, the heavier the KK states become. Recalling
that all the KK partners have mass of the form

M, = \/msm + (%)2 (3.20)

where mgy; is the corresponding SM mass, we see that at some point the partners will
become so heavy that they will decouple from the theory. This, in turn, will diminish

the contributions from the extra dimension.

In this sense, the MUED model, having only one free parameter, is extremely pre-

dictable.
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Figure 3.18: MUED contributions to the rare single-top production processes at the
maximum KK number n,,,, = 6 as a function of the inverse of the size of the extra

dimension, F.
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Table 3.3: The SM values, o, of the cross sections of the rare single top quark pro-
duction channels and the contributions from MUED calculations, Ao, are shown.
The contributions are taken at R = (1 TeV)_l, Nmax = 0, and at the center-of-mass

energy /s = 14 TeV.

Process o (pb) Ao (pb)

gg —t¢  0.151x 106 0.730 x 1010
cg =ty 0.995x 10710 0.354 x 10713
cg —tg 0.349 x 1075 0.460 x 1078

cg—th 0271x 1079 —0.231 x 10~12
cg > tZ 0.115x 107 0.225 x 10712
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CHAPTER 4

CONCLUSION

In this work, we analyzed the model of Minimal Universal Extra Dimensions in the
Feynman-’t Hooft gauge. Firstly, we obtained the mass spectrum of the complete
set of particles. Later, we aimed to apply this model to the rare top quark processes

occurring by flavor-changing neutral currents.

For performing the numerical analysis, we needed the vertex factors, which were
supposed to be systematically extracted from the complete Lagrangian. The most
straightforward way to proceed was to construct a LanHEP code. It should be noted
that a LanHEP code of the model exists in the current literature by Belyaev et al. [29].
However, this code yielded suspicious vertex factors involving the interactions of the
quarks with the charged bosons, regarding the CKM matrix elements. In order to
systematically check this code for all the interactions that we will need, we prepared
an original Mathematica code. Having guaranteed that the LanHEP code at hand was

suspicious, we prepared our LanHEP code.

We channeled the Feynman rules extracted from the LanHEP code to FeynArts. By
using FormCalc and LoopTools, we obtained the decay widths and the cross sections

of the following rare top processes:

t— cy, “4.1)
t — cg, “4.2)
t — ch, 4.3)
t— cZ, 4.4)
t — cgg 4.5)
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and

gg — tc, (4.6)
cg — 1, 4.7)
cg — tg, (4.8)
cg — th, 4.9)
cg — tZ. 4.10)

The contributions to these processes coming from the MUED model are in order
10~ at R = (200 GeV)~! and decay rapidly to nearly 103 at R = (1 TeV)~! for
Nmax = 6 (see Tables[3.2]and[3.3)). That is, the contributions deriving from the MUED
model to the processes are tiny. This goes on to say that the MUED model
cannot be the final extension to the SM. It has only one free parameter, namely the size
of the extra dimension, and thus the model is extremely predictable. Therefore, one
should not stop at this minimal extension of the SM in an extra-dimensional scenario,
and move on with the next-to-minimal (or non-minimal) version of the UED model.
In the NMUED model, due to an extended parameter space, it might be possible to

obtain relative contributions larger than order unity.
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APPENDIX A

FEYNMAN DIAGRAMS

In this chapter, we present the generic Feynman diagrams for the rare top quark pro-

cesses given in (3.1)—(3.10). The particle spectrum is summarized in Table It

should be noted that, in the MUED diagrams, there exists an implicit summation over

the KK index n from 1 to 7ax.

Table A.1: The symbols of the particles that appear in the Feynman diagrams.

Label Definition

¢  SM mode of Goldstone scalar associated with 1/ boson

GE KK mode of Golstone scalar associated with W boson

a®  Charged Higgs boson

n

dy  SM mode of down-like quarks (d, s, and b)
di/* KK mode of down-like quarks (d, s, and b) of type 1/2

co SM mode of charm quark

to SM mode of top quark

go  SM mode of gluon
Wi SM mode of W boson
W%  SM mode of W boson
Zo  SM mode of Z boson
Ap  SM mode of photon

wWeo  SM mode of gluon ghost
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A.1 Feynman diagrams at SM level

All t—cy

9 10

Figure A.1: SM diagrams contributing to the process ¢ — c7.
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Al12 t—cg

Figure A.2: SM diagrams contributing to the process ¢t — cg.

Al3 t—ch

Figure A.3: SM diagrams contributing to the process t — ch.
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Al4 t—cZ

9 10

Figure A.4: SM diagrams contributing to the process t — cZ.
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Al1S t— cgg
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Figure A.5: SM diagrams contributing to the process t — cgg.
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Figure A.6: SM diagrams contributing to the process t — cgg.

Figure A.7: SM diagrams contributing to the process t — cgg.
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Figure A.8: SM diagrams contributing to the process gg — tc.
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Figure A.9: SM diagrams contributing to the process gg — tc.
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Figure A.10: SM diagrams contributing to the process gg — tc.
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Figure A.11: SM diagrams contributing to the process cg — t7.
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SM diagrams contributing to the process cg — .
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Figure A.13: SM diagrams contributing to the process cg — tg.
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Figure A.14: SM diagrams contributing to the process cg — tg.

Figure A.15: SM diagrams contributing to the process cg — tg.
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13 14 15 16

Figure A.16: SM diagrams contributing to the process cg — th.
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33 34 35 36

Figure A.17: SM diagrams contributing to the process cg — th.

92



A110 cg—tZ

Figure A.18: SM diagrams contributing to the process cg — tZ.
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Figure A.19: SM diagrams contributing to the process cg — tZ.
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A.2 Feynman diagrams at MUED level

A21 t—cy

17 18 19 20

Figure A.20: MUED diagrams contributing to the process ¢t — c7.
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Figure A.21: MUED diagrams contributing to the process ¢t — c7.
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A22 t—cg
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Figure A.22: MUED diagrams contributing to the process ¢t — cg.

97



A23 t—ch

5 6 7 8
; Co 5 Co ; Co ; Co
d;ll dn’ dﬂ’ dnl
| | | |
| | |
4 Aa) 4 Aa, 4 A G, 4 Aa,
to N : to N : to L : to AL :
+ - + - + \._ + \._
an A Te-- an A Te=a an Te=a Gn Te=a
hy ho ho ho
9 10 11 12
2i “0 2 “0 1 “0 2 co
4’_‘11/’1’/./’—/ dnl dnl dnl
| | | |
| | |
O Ye Tk TGy T Gy
to ! to ! to ! to !
+ ~ | + ~ | + ~ | + ~ |
a, ®---__ Gy, ®---__ Gy, ®---__ G, ®---__
0 ho ho ho
13 14 15 16

17 18 19 20

Figure A.23: MUED diagrams contributing to the process ¢t — ch.
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37 38 39 40

Figure A.24: MUED diagrams contributing to the process ¢t — ch.
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Figure A.25: MUED diagrams contributing to the process ¢t — ch.

100



Zy Zy Zy Zy

5 6 7 8
Co Co ) Co Co
| | | |
4 Aa) 4 Aa) 4 AG) 4 Aal
to N : to N : to N : to N :
ﬂ; ‘/\/\’\f\, a:z— ‘/\/\/\f\, a;-; M G;: ‘/Vv\f\,
Zo Zo Zo Zy
9 10 11 12
Co Co ) Co Co
| | | |
G C hap Gy Gy
to N : to N : to N : to N :
Zy Zy Zy Zy
13 14 15 16
Co Co

to tO

1 5
d, dy

Zy

17 18 19 20

Figure A.26: MUED diagrams contributing to the process t — cZ.
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37 38 39 40

Figure A.27: MUED diagrams contributing to the process t — cZ.
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Figure A.28: MUED diagrams contributing to the process t — cZ.
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A2S5 t— cgg

Figure A.29: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.30: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.31: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.32: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.33: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.34: MUED diagrams contributing to the process ¢t — cgg.
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Figure A.35: MUED diagrams contributing to the process gg — tc.
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Figure A.36: MUED diagrams contributing to the process gg — tc.
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Figure A.37: MUED diagrams contributing to the process gg — tc.
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Figure A.38: MUED diagrams contributing to the process gg — tc.
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Figure A.39: MUED diagrams contributing to the process gg — tc.
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Figure A.40: MUED diagrams contributing to the process gg — tc.

115



A27 cg—ty

Figure A.41: MUED diagrams contributing to the process cg — t7.
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Figure A.42: MUED diagrams contributing to the process cg — 7.
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Figure A.43: MUED diagrams contributing to the process cg — 7.
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Figure A.44: MUED diagrams contributing to the process cg — t+.
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Figure A.45: MUED diagrams contributing to the process cg — 7.
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Figure A.46: MUED diagrams contributing to the process cg — t7.
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Figure A.47: MUED diagrams contributing to the process cg — tg.
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Figure A.48: MUED diagrams contributing to the process cg — tg.
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Figure A.49: MUED diagrams contributing to the process cg — tg.
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Figure A.50: MUED diagrams contributing to the process cg — tg.
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Figure A.51: MUED diagrams contributing to the process cg — tg.
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Figure A.52: MUED diagrams contributing to the process cg — tg.
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Figure A.53: MUED diagrams contributing to the process cg — th.
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Figure A.54: MUED diagrams contributing to the process cg — th.
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Figure A.55: MUED diagrams contributing to the process cg — th.
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Figure A.56: MUED diagrams contributing to the process cg — th.
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Figure A.57: MUED diagrams contributing to the process cg — th.
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Figure A.58: MUED diagrams contributing to the process cg — th.
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Figure A.59: MUED diagrams contributing to the process cg — th.
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Figure A.60: MUED diagrams contributing to the process cg — th.
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Figure A.61: MUED diagrams contributing to the process cg — tZ.
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Figure A.62: MUED diagrams contributing to the process cg — tZ.
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Figure A.63: MUED diagrams contributing to the process cg — tZ.
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Figure A.64: MUED diagrams contributing to the process cg — tZ.
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Figure A.65: MUED diagrams contributing to the process cg — tZ.
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Figure A.66: MUED diagrams contributing to the process cg — tZ.
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Figure A.67: MUED diagrams contributing to the process cg — tZ.
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Figure A.68: MUED diagrams contributing to the process cg — tZ.
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APPENDIX B

VERTEX FACTORS IN MUED

In this chapter, the relevant vertex factors for the rare top quark processes given in
Equations (3.1)—-(3.10) are presented. There are no 4-point interactions required. The
KK numbers of the fields in the 3-point vertices are considered to be of the form 000
or nn0. At one loop, the vertices of the form nmk with all the indices different from

0 are absent due to the conservation of KK number.

In Section the vertex factors for the interactions of the fermions with the scalars
(FFS) and the vectors (F'F'V). Section [B.2] contains the bosonic interactions. We
treat gluon self interactions and ghosts separately in Section [B.3]

The output has been produced by using LanHEP. It should be noted that the vertex
factors should be multiplied by —:.

B.1 FFS and FFFV interactions

Fields in the vertex Feynman rules

T
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145




1 \/_‘/Cle p (=)

dbap  Cobg Wo u T2 s OpgVhe 3

dbap Cobg Do ;ZT\”/;VZC;VG pa (md'% - mc%)

dbap  dipg You %eépﬂéﬁ:éeb

dbap  divg Gour —GsApg VhcOch

Jéap oba Zou éc BSW 5pq75c((3 - 23W2)% - 231/#%)

dbap dig o ; mTr:;;i/ OpgOab

Jéap tobg 0 ; \/;V‘fl nq 56%

dyap torg Fo ; ngm_/ ‘f‘;f (a5 — L)

o g Wi | 5L g

toap g Og ; Zn\l/;/‘f;‘/ Opq (Mg (1+gs)ab — my (1—;5)«117)

toap tobg You —geapq%cfscb

t_Oap tobg  Gour _gs)\;q’chécb

toap tovg Zou _%cwesw Opg Vi (3 — 45W2)% - 45W2%)

toap tobg ho ; mn;/tsw OpqOab

Coap dflmibq er# % \/_chiil/n(@dn) Opq Ve (ligS)Cb

Coap ding G —%%@q (mnmw sin(@an) (Hf)“"
—MgMgi Cos(godn)cwn%
+mzmecwnsin(gy,) %)

Coap dpg a —%%%q (mwm zewn sin(Qay, ) %
+mpmg COS(%n)% — MMy Sin(Yay) (1*;5)“)

Coap divg W,ia —% ELE Z‘:VS(%E(SPMCW

Coap d*p, G —EM(SM (mpmw cos(¢an) %

2 my, nswmyy

3 1+’YS ab
+mzmgicwn sin(Qan,) %

146




Co ap

717
dn ap

714
dn ap

dyap
dy ap
dyap
dyap
dyap
dyap
dy ap
) ap

714
dn ap

Jli

n ap

721
dn ap

721
dn ap

2
dn bq
Cobq

Cobq

Cobq

drlzi bq
d% bq
dif bq
dif bq
d?f bq
dff bq
Lobg

tobg

t()bq

Cobq

Cobq

5
—MzMe, COS(@dn)CWnW)

1 iv2Vae
— - ——————G,q (mwmz cos(pan)cwn

(1+’Y5)ab
2my, Swmwn 2

(1*’75)(11;)

. 5
— MMy sm(gpdn)w + MM cos(Yan)

1 V2Veiesin(an) 5, p =2

9 Pq lac 2

SW
1 Z\/i‘/cz6 : = 5)a
g (s S

(1775)017
—mzMgi COS(Pan)cwn—4=>*

+mzmecwn sin(wdn)%)

1 iv/2V e 5

2 myy, swmwn (mwmzcwn sin(pan) 2
n

+MyMyi COS(@dn)% — MpMe Sin(SOdn) (1+,;5)ab)
geépqw;cécb
- gS )\;)q ,-)/(l;c 5Cb
1 e .
6 51"1750(3 Sln(SOdn)Q(Scb - 25W2(50b)

CwSw

Mg cos(Pan )e sin(sodn)(s 5
— pq¥ab

mwSsw

lcos(wdn)e Sin<g0d’fb> ) m A5
D) Cw S quYac’ycb
10— 2sin(ea)Imac,

5 —— paVab
1 V2Viesin(gan) . 1oy
5 5pf1/7ac 2

Sw

1 iV2Ve (1-7")ab

2 mw, nswmy O (mnmw nlean)

(1775)017
—My My cos(<pdn)cwn—2

+mzmewn sin(pgy,) —(Hf)ab )

1 iV2Ve : 1-9%)a
S s o (T 50 ()

(1=7%)an M)
2

+mumgi cos(Pan) — My SIN(Qan )~

12V, COS(‘Pdn)e(S un (=7")eb
—5 S quYac 2
w

iv/2V e

1
2 mw, nswmwy

Opg (Mnm cos(@an) (1—35)@

147




724
(in‘ap

diap
A ap
A ap
A ap
A ap
A ap

721
(1n/ap

721
(in ap

724
(in‘ap

thp

thp

thp

thp

Cobq

drlzi bgq
d}zi bq
erzi bg
dii bq
dii bq
d?f bq
tObq

tObq

tobg

13
dn,bq

14
dn bq

14
dn bq

P
dn bq

. 1—°
+mzmgicwn Sm(gpdn)( ; =

5
— My cos(Pan)cn e )

1 iv2Vge
= ——————"bpq (mwmz cos(pan)cwn

(1775)1117
2 mw, Swmwn :

— My Mg Sin<§0dn>% e

L mpme cos(Pan) —322)

1 cos(pan)esin(@an) o, 5
— 6pq7ac’)/d)
CwSw

1 (1 = 2sin(pgn)®)mae .

: Opg,
My S Pq lab

3 €0pgVheOch

\)

— DN

- gS )\;q PY(I;C 5Cb

1 e
6 cwsw Opa Ve (3 c08(an)*0cr, — 25w %01

<_7nd¢cos(¢dn)esin(¢dn)

5pq5ab
mwSw

1 \/ivm cos(Pan)e
2 Sw

1 iV2Ve (1-9%),
3 g gy 0 e 008 ) S

) i (1=")en
Pq lac 2

. 1—°
+mzmgicwn Sm(gpdn)( ; Jot

5
— My cos(@ap)cyn T

1 iy/2Vye
= ——————"0q (mwmz cos(pan)cwn

(1775)1117
2 mw, Swmwn :

—MypMygi Sifl((pdn)% + My cos(Pan) (H_f)ab)

1\/5‘/157,6 Sin(SOdn)(s o (1=")eb

2 Sy pq lac 2
1 ivV2Ve 0+

gy 0 (a0 n) 5

(1+’Y5)ab
—MzMygi COS(SOdn)CWn 2

44nznqunsHm¢mﬁ(kg%M)

1 ivV2Vge : 7)ap
e (i msin(a) 5

(1++%)

s 008(Pan) L — g sin(pan) )

Pq lac

2 Sw

148




Iy 21 -+
toap dp'vg G

Iy 21 +
toap dy'vg  ay,

1 2V
———Z\/_ i€ Opg (M cos(@dn)(Hf)ab
2 myy, nswmy

. 145
+mzmgicyn sin(pan,) %

_AD
—Mmymy cos(gpdn)cwnW)

1 iv2Ve
—— 0y (meZ cos(@an)ewn

(1+75)ab
2my, Swmwn 2

—MpMygi sin(gpdn)% + mpmy cos(QPan) (17;5)“)

B.2 Bosonic interactions

Fields in the vertex

Feynman rules
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B.3 Gluon and ghost vertices

Fields in the vertex Feynman rules
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APPENDIX C

MATHEMATICA CODE

In the literature, there exists a LanHEP code for the MUED model by Belyaev e? al.
[29]. However, this model yields suspicious vertex factors for the interactions of the

quarks with the charged bosons, regarding the CKM matrix elements.

We prepared an original Mathematica code to cross-check the vertex factors of the
interactions of the fermions with the scalars and vectors at the KK level nn0 before
moving on to the numerical analysis. Below is presented our Mathematica code. It
should be noted that, for convenience, the subscripts are not written by using the
Subscript command of Mathematica, but as if we were coding in an . nb file by

using the graphical tools of the software.

Clear["Global *x"];

(*

*x* here 1s the convention x#*x*

FFS/nn0 AND FFV/nn0 INTERACTIONS OF QUARKS IN OUR MUED

Gamma5 and PL/PR are always to the right of GammaMu.

SPECTRUM

up: SM mode of up-like Dirac quark

down: SM mode of down-like Dirac quark

upl: KK mode of 1lst up-like Dirac quark

up2: KK mode of 2nd up-like Dirac quark
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downl: KK mode of 1lst down-like Dirac quark

down2: KK mode of 2nd down-like Dirac quark

Wp: SM mode of W"+ boson
Wm: SM mode of W"- boson
Z: SM mode of Z boson
A: SM mode of photon

g: SM mode of gluon

Wpn: KK mode of W"+ boson
Wmn: KK mode of W"- boson
Pn: KK mode of P boson
Vn: KK mode of V boson

gn: KK mode of gluon

higgs: SM mode of Higgs
Wpf: SM mode of Goldstone of W"+ boson
Wmf: SM mode of Goldstone of W"- boson

Zzf: SM mode of Goldstone of Z boson

Wpnf: KK mode of Goldstone of W"+ boson
Wmnf: KK mode of Goldstone of W"- boson
Pnf: KK mode of Goldstone of P boson
Vnf: KK mode of Goldstone of V boson

gnf: KK mode of Goldstone of gluon

hn:KK mode of Higgs

apn and amn: charged scalars in the tower

an: neutral scalar in the tower

(# integrator «)

cn_ = Sqgrt[2/(Pi R)] Cos[n (y/R)];
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Sn_ = Sgrt[2/(Pi R)] Sin[n (y/R)];

int[a_] := Pi R a /; FreeQla, V]

int[a_ b_] := a int[b] /; FreeQla, V]

int[a_ + b_] := intla] + int[Db]

int[Cos[n_ y/R]] := 0

int[Sin[n_ y/R]] := 0

int[Cos[n_ y/R] Cos[m_ y/R]] := delta,, Pi R/2
int[Cos[n_ y/R] Sin[m_ y/R]] := 0

int[Sin[n_ y/R] Sin[m_ y/R]] := delta,, Pi R/2

(» for the purposes of studying nnO: =)
int[Cos[n_ y/R] Cos[m_ y/R] Cos[k_ y/R]] :=
int[Cos[n_ y/R] Cos[m_ y/R] Sin[k_ y/R]] :=

0
0
int[Cos[n_ y/R] Sin[m_ y/R] Sin[k_ y/R]] := 0
int[Sin[n_ y/R] Sin[m_ y/R] Sin[k_ y/R]] := 0

1

int[Cos[n_ y/R] Cos[m_ y/R] Cos[k_ y/R] Cos[l_ y/R]]
int[Cos[n_ y/R] Cos[m_ y/R] Cos[k_ y/R] Sin[l_ y/R]]
int[Cos[n_ y/R] Cos[m_ y/R] Sin[k_ y/R] Sin[l_ y/R]]
int[Cos[n_ y/R] Sin[m_ y/R] Sin[k_ y/R] Sin[l_ y/R]]

int[Sin[n_ y/R] Sin[m_ y/R] Sin[k_ y/R] Sin[l_ y/R]]

(x refiner =)

refla_] := a

refla_ b_] := a ref[b]

refla_ + b_] := refla] + refl[b]
refla_ Ax B; deltayx 1] := a A, B,

(* simplifier =)

sim = {
LambdalLl LambdaLlco ->

LambdaRl LambdaRlco ->

~

Lambdal?2 LambdalL2co —->

N

LambdaR2 LambdaR2co —>
LambdalLlco Lambdal2 -> CKM,

LambdalLl LambdaL2co -> CKMco,
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LambdalLlco yl LambdaR1l —-> ml0 Sqrt[2]/v,
LambdalL2co y2 LambdaR2 -> m20 Sqrt[2]/v,
LambdaRlco ylco LambdaLl -> mlO Sqrt[2]/v,
LambdaR2co y2co LambdalL2 -> m20 Sqgrt[2]/v,
Lambdal2co yl LambdaRl -> CKMco mlO Sqgrt[2]/v,
LambdaR2co y2co LambdalLl -> CKMco m20 Sqrt[2]/v,
LambdaRlco ylco Lambdal2 -> CKM ml0 Sqgrt[2]/v,
LambdalLlco y2 LambdaR2 -> CKM m20 Sqgrt[2]/v

i

(» collector =)

colVec = {
Ql10Bar gamma Q10 -> upBar gamma PL up,
Ql0Bar gamma Q20 -> upBar gamma PL down,
Ql0Bar gamma glO0 -> 0,
Ql0Bar gamma g20 —-> O,
Ql0Bar gamma QI1KKL, —-> upBar gamma PL UpKK,,
Ql0Bar gamma QlKKR, —-> 0,
Ql0Bar gamma Q2KKL, —-> upBar gamma PL DownKK,,
Ql0Bar gamma Q2KKR, —-> 0,
Ql0Bar gamma glKKL, —-> upBar gamma PL upKK,,
Ql0Bar gamma glKKR, -> 0,
Ql0Bar gamma g2KKL, —-> upBar gamma PL downKK,,

Ql0Bar gamma g2KKR, —-> 0,

Q20Bar gamma Q10 -> downBar gamma PL up,

Q20Bar gamma Q20 -> downBar gamma PL down,
Q20Bar gamma glO0 -> O,

Q20Bar gamma g20 -> 0,

Q020Bar gamma QlKKL, —-> downBar gamma PL UpKK,,
Q20Bar gamma QlKKR, —-> 0,

Q20Bar gamma Q2KKL, —> downBar gamma PL DownKK,,
Q20Bar gamma Q2KKR, -> 0,

Q20Bar gamma glKKL, -> downBar gamma PL upKK,,
Q20Bar gamma glKKR, -> 0,

Q20Bar gamma g2KKL, —> downBar gamma PL downKK,,
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Q20Bar gamma g2KKR, —-> 0,

glO0Bar gamma Q10 -> O,

glOBar gamma Q20 -> O,

glOBar gamma gl0 —-> upBar gamma PR up,
glOBar gamma g20 —> upBar gamma PR down,
glOBar gamma QlKKL, —-> 0,

glO0Bar gamma Q1KKR, —-> upBar gamma PR UpKK,,
glOBar gamma Q2KKL, -> 0,

gl0Bar gamma Q2KKR, —-> upBar gamma PR DownKK,,
glOBar gamma glKKL, -> 0,

glO0Bar gamma glKKR, —-> upBar gamma PR upKK,,
glOBar gamma g2KKL, -> 0,

glOBar gamma g2KKR, —> upBar gamma PR downKK,,

g20Bar gamma Q10 -> 0,

g20Bar gamma Q20 -> 0,

g20Bar gamma gl0 -> downBar gamma PR up,
g20Bar gamma g20 —-> downBar gamma PR down,
g20Bar gamma Q1KKL, -> 0,

g20Bar gamma QlKKR, —> downBar gamma PR UpKK,,
g20Bar gamma Q2KKL, -> O,

g20Bar gamma Q2KKR, —-> downBar gamma PR DownKK,,
g20Bar gamma glKKL, -> 0,

g20Bar gamma glKKR, —> downBar gamma PR upKK,,
g20Bar gamma g2KKL, -> O,

g20Bar gamma g2KKR, —-> downBar gamma PR downKK,,

QlKKLBar, gamma Q10 -> UpKKBar, gamma PL up,
Ql1KKLBar, gamma Q20 -> UpKKBar, gamma PL down,
QlKKLBar, gamma glO0 -> 0,

QlKKLBar, gamma g20 -> 0,

Q1KKLBar, gamma QIlKKL, —-> UpKKBar, gamma PL UpKK,,
QlKKLBar, gamma QlKKR, -> 0,

QlKKLBar, gamma Q2KKL, -> UpKKBar, gamma PL DownKK,,
Ql1KKLBar, gamma Q2KKR, -> O,

Q1KKLBar, gamma glKKL, —-> UpKKBar, gamma PL upKK,,
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Q1lKKLBar,
Q1KKLBar,

Ql1KKLBar,

Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,
Q2KKLBar,

Q2KKLBar,

glKKLBary,
glKKLBar,
glKKLBar,
glKKLBary,
glKKLBar,
glKKLBar,
glKKLBar,
glKKLBary,
glKKLBar,
glKKLBar,
glKKLBar,

glKKLBary,

g2KKLBary
g2KKLBary,
g2KKLBar,
g2KKLBary
g2KKLBar,
g2KKLBary,

g2KKLBar,

gamma
gamma

gamma

gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma

gamma

gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma

gamma

gamma
gamma
gamma
gamma
gamma
gamma

gamma

glKKR,
g2KKLy,
q2KKRp
Q10 —>
020 —>
ql0 —>
q20 ->
Q1KKL,
Q1KKR,
Q2KKL,
Q2KKR,,
glKKLy,
glKKR,
g2KKLy
J2KKR,
Q10 —>
020 —>
qlld ->
q20 —>
Q1KKL,
O1KKR,
Q2KKL,
Q2KKR,
glKKLy
glKKR,
q2KKLp
g2KKR,
Q010 —>
Q20 —>
qlld ->
g20 ->
Q1KKL,
Q1KKR,

Q2KKL,

—>

0,

—-> UpKKBar, gamma PL downKK,,

->

0,

DownKKBar, gamma PL up,
DownKKBar, gamma PL down,

0,

0,

—> DownKKBar, gamma PL UpKK,,
-> 0,

—> DownKKBar, gamma PL DownKK,,
-> 0,

—> DownKKBar, gamma PL upKK,,
-> 0,

—> DownKKBar, gamma PL downKK,,
-> 0,

upKKBar, gamma PL up,
upKKBar, gamma PL down,

0,

0,

—-> upKKBar, gamma PL UpKK,,
-> 0,

—> upKKBar, gamma PL DownKK,
-> 0,

—> upKKBar, gamma PL upKK,,
-> 0,

—> upKKBar, gamma PL downKK,,
-> 0,

downKKBar, gamma PL up,

downKKBar, gamma PL down,

0,
0,

—> downKKBar, gamma PL UpKK,,

->

0,

—> downKKBar, gamma PL DownKK,,
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g2KKLBar,
g2KKLBary,
g2KKLBar,
g2KKLBary,

g2KKLBary

Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,

Q1KKRBar,

Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,

Q2KKRBar,

glKKRBar,
glKKRBar,
glKKRBar,
glKKRBary,

glKKRBar,

gamma
gamma
gamma
gamma

gamma

gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma

gamma

gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma
gamma

gamma

gamma
gamma
gamma
gamma

gamma

02KKR,
g1KKL,
q1KKR,
g2KKL,

q2KKR,,

Q10
020
glo
q20
Q1KKL,
Q1KKR,
Q2KKL,
Q2KKR,
glKKL,
qlKKR,
q2KKL,

q2KKR,

Q10
020
qlo
az20
Q1KKL,
Q1KKR,
Q2KKL,
Q2KKR,
qlKKL,
glKKR,
q2KKLy,

g2KKR,

Q10
020
qlo
g20

Q1KKL,

-> 0,

—-> downKKBar, gamma PL upKK,,
-> 0,

-> downKKBar, gamma PL downKK,,
-> 0,

0,

0,

UpKKBar, gamma PR up,
UpKKBar, gamma PR down,

-> 0,

—> UpKKBar, gamma PR UpKK,,
-> 0,

—> UpKKBar, gamma PR DownKK,,
-> 0,

—> UpKKBar, gamma PR upKK,,
-> 0,

-> UpKKBar, gamma PR downKK,,
0,

0,

DownKKBar, gamma PR up,

DownKKBar, gamma PR down,
0,
DownKKBar, gamma PR UpKK,,
0,
DownKKBar, gamma PR DownKK,,
0,
DownKKBar, gamma PR upKK,,
0,
DownKKBar, gamma PR downKK,,
0,

0,

upKKBar, gamma PR up,

upKKBar, gamma PR down,

—> O,
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}i

colScaGen[a_ + b_

glKKRBar,
glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,
glKKRBar,

glKKRBary,

g2KKRBary
g2KKRBar,
g2KKRBary,
g2KKRBar,
g2KKRBary,
g2KKRBar,
g2KKRBar,
g2KKRBary,
g2KKRBary,
g2KKRBary,
g2KKRBar,

g2KKRBary

gamma Ql1KKR,

gamma Q2KKL,

gamma Q2KKR,

gamma glKKL,

gamma glKKR,

gamma g2KKL,

gamma g2KKRy,

gamma Q10 -> 0,

gamma Q20 -> 0,
gamma
gamma
gamma Ql1KKL,
gamma Ql1KKRy,
gamma Q2KKL,
gamma Q2KKR,
gamma glKKL,
gamma glKKRy,
gamma g2KKL,

gamma g2KKR,

1 :=

colScaGen[a]

upKKBar,
0,
upKKBary,
0,
upKKBar,
0,

upKKBar,

0,
downKKBar,
0,
downKKBar,
0,
downKKBar,
0,

downKKBar,

gamma

gamma

gamma

gamma

PR UpKK,,

PR DownKK,,

PR upKK,,

PR downKK,,

gl0 —-> downKKBar, gamma PR up,

g20 -> downKKBar, gamma PR down,

gamma PR UpKK,,

gamma PR DownKK,,

gamma PR upKK,,

gamma PR downKK,

+ colScaGen|[b]

colScaGen[a_] := If[FreeQla, gamma5], a /. colSca, a /. colSca5]
colSca = {
Ql0Bar Q10 -> O,
Ql0Bar Q20 -> O,
Ql0Bar gl0 —-> upBar PR up,
Ql0Bar g20 —-> upBar PR down,
Ql0Bar QlKKL, -> O,
Ql10Bar Q1KKR, —> upBar PR UpKK,,
Ql0Bar Q2KKL, -> 0,
Ql0Bar Q2KKR, —> upBar PR DownKK,,
Ql0Bar glKKL, -> O,
Ql0Bar glKKR, -> upBar PR upKK,,
Ql0Bar g2KKL, -> O,
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Ql0Bar g2KKR, -> upBar PR downKK,,

Q20Bar Q10 -> O,

Q20Bar 020 -> O,

Q20Bar gl0 -> downBar PR up,
Q20Bar g20 -> downBar PR down,
020Bar QlKKL, -> O,

Q20Bar Q1lKKR, -> downBar PR UpKK,,
020Bar Q2KKL, —-> O,

Q20Bar Q2KKR, —> downBar PR DownKK,,
Q20Bar glKKL, -> O,

020Bar glKKR, —> downBar PR upKK,,
Q20Bar g2KKL, -> O,

Q20Bar g2KKR, -> downBar PR downKK,,

glO0Bar Q10 -> upBar PL up,

glO0Bar 020 —-> upBar PL down,
glOBar gl0 -> 0,

glOBar g20 -> O,

glO0Bar QlKKL, -> upBar PL UpKK,,
glOBar QlKKR, -> O,

glOBar Q2KKL, -> upBar PL DownKK,,
glO0Bar Q2KKR, —> O,

glO0Bar glKKL, -> upBar PL upKK,,
glOBar glKKR, -> O,

glOBar g2KKL, -> upBar PL downKK,,

glOBar g2KKR, —> O,

g20Bar Q10 —-> downBar PL up,

g20Bar Q20 -> downBar PL down,
gz20Bar gl0 -> O,

g20Bar g20 -> 0,

g20Bar QlKKL, —-> downBar PL UpKK,,
g20Bar QlKKR, —> O,

g20Bar Q2KKL, —-> downBar PL DownKK,,
g20Bar Q2KKR, -> O,

g20Bar glKKL, —-> downBar PL upKK,,
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gz20Bar glKKR, —-> O,
g20Bar g2KKL, —-> downBar PL downKK,,

g20Bar g2KKR, -> O,

Q1lKKLBar, Q10 -> O,

QlKKLBar, Q20 -> O,

QlKKLBar, gl0 -> UpKKBRar, PR up,
Q1KKLBar, g20 —-> UpKKBar, PR down,
QlKKLBar, QlKKL, —-> O,

QlKKLBar, QlKKR, —> UpKKBar, PR UpKK,,
Q1KKLBar, Q2KKL, -> O,

QlKKLBar, Q2KKR, —-> UpKKBar, PR DownKK,,
QlKKLBar, glKKL, -> 0,

QlKKLBar, glKKR, —-> UpKKBar, PR upKK,,
QlKKLBar, g2KKL, -> 0,

QlKKLBar, g2KKR, —-> UpKKBar, PR downKK,,

Q2KKLBar, Q10 -> 0,

Q2KKLBar, Q20 -> O,

Q2KKLBar, glO0 -> DownKKBar, PR up,
Q2KKLBar, g20 -> DownKKBar, PR down,
Q2KKLBar, QlKKL, -> O,

Q2KKLBar, Q1KKR, —-> DownKKBar, PR UpKK,,
Q2KKLBar, Q2KKL, -> O,

Q2KKLBar, Q2KKR, —-> DownKKBar, PR DownKK,,
Q2KKLBar, glKKL, -> O,

Q2KKLBar, glKKR, —-> DownKKBar, PR upKK,,
Q2KKLBar, q2KKL, -> 0,

Q2KKLBar, g2KKR, —-> DownKKBar, PR downKK,,

glKKLBar, 010 -> O,

glKKLBar, Q20 -> O,

glKKLBar, gl0 -> upKKBar, PR up,
glKKLBar, g20 —-> upKKBar, PR down,
qlKKLBar, QlKKL, -> 0,

glKKLBar, Q1KKR, —-> upKKBar, PR UpKK,,

glKKLBar, Q2KKL, -> O,
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glKKLBar,
glKKLBar,
glKKLBar,
glKKLBary,

glKKLBar,

g2KKLBary,
g2KKLBary,
g2KKLBary
g2KKLBar,
g2KKLBary,
g2KKLBar,
g2KKLBary,
g2KKLBary,
g2KKLBar,
g2KKLBary
g2KKLBary

g2KKLBary,

Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,

Q1KKRBar,

Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,

Q2KKRBar,

Q2KKR,,
g1KKL,
qlKKRp
g2KKLy,
g2KKR,
Q10 —>
Q20 —->
gld -—>
gz20 —>
Q1KKL,
Q1KKR,
Q2KKL,
Q2KKR,
gl1KKLy,
g1KKR,
q2KKLp
g2KKR,
Q10 —>
Q20 —>
gqld —>
g20 ->
Q1KKL,
Q1KKR,
Q2KKL,
Q2KKR,
qlKKLp
glKKR,
g2KKL,
A2KKRp
Q10 ->
020 —->
qlld —>
q20 —>

Q1KKL,

0,
0,

upKKBar, PR
0,
upKKBar, PR
0,

upKKBar, PR

DownKKy,

UpPKKy,

downKK,,

downKKBar, PR up,

downKKBar, PR down,

-> 0,

—-> downKKBar, PR UpKK,,
-> 0,

-> downKKBar, PR DownKK,,
-> 0,

—> downKKBar, PR upKK,,
-> 0,

-> downKKBar, PR downKK,,
UpKKBar, PL up,

UpKKBar, PL down,

0,

0,

—> UpKKBar, PL UpKK,,

-> 0,

—> UpKKBar, PL DownKK,,
-> 0,

—> UpKKBar, PL upKK,,

-> 0,

—-> UpKKBar, PL downKK,,
-> 0,

DownKKBar, PL up,

DownKKBar, PL down,

0,
0,

—> DownKKBar, PL UpKK,,
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}i

Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,

Q2KKRBar,

glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,
glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,

glKKRBar,

g2KKRBar,
g2KKRBary,
g2KKRBary,
g2KKRBary,
g2KKRBar,
g2KKRBary,
g2KKRBar,
g2KKRBar,
g2KKRBary,
g2KKRBary,
g2KKRBary,

g2KKRBar,

colScab = {

Q1KKR, —> O,

Q2KKL, -> DownKKBar, PL DownKK,,
Q2KKR, —> 0,

glKKL, —-> DownKKBar, PL upKK,,
glKKR, -> 0,

g2KKL, —-> DownKKBar, PL downKK,,
g2KKR, -> 0,

Q10 -> upKKBar, PL up,

Q20 -> upKKBar, PL down,

glo —> 0,

gz20 -> O,

Q1KKL, —> upKKBar, PL UpKK,
Q1KKR, -> 0,

Q2KKL, —> upKKBar, PL DownKK,,
Q2KKR, —-> 0,

glKKL, —> upKKBar, PL upKK,,
glKKR, -> 0,

g2KKL, —> upKKBar, PL downKK,,
g2KKR, —-> 0,

Q10 -> downKKBar, PL up,

Q20 -> downKKBar, PL down,

glo -> 0,

qgz20 -> 0,

Q1KKL, —> downKKBar, PL UpKK,,
Q1KKR, —-> 0,

Q2KKL, —-> downKKBar, PL DownKK,,
Q2KKR, -> 0,

glKKL, —> downKKBar, PL upKK,,
glKKR, —> 0,

g2KKL, —-> downKKBar, PL downKK,,
g2KKR, -> 0

Ql0Bar gamma5 Q10 -> O,
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Ql0Bar
Ql0Bar
Ql10Bar
QlOBar
Ql0Bar
Ql0Bar
Ql0OBar
Ql0Bar
Ql0Bar
Ql10Bar
Ql0Bar

Q020Bar
Q20Bar
020Bar
020Bar
Q20Bar
Q20Bar
Q20Bar
Q020Bar
020Bar
Q20Bar
Q020Bar
Q20Bar

glOBar
glOBar
glOBar
glOBar
glOBar
glOBar
glOBar
glOBar
glOBar
glOBar
glOBar

glOBar

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gamma b5
gammab
gammab
gammab
gamma b
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

Q20 —> 0,

gl0 —-> upBar PR up,

g20 —-> upBar PR down,
Q1KKL, -> 0,

Q1lKKR, —> upBar PR UpKK,,
Q2KKL, —-> 0,

Q2KKR, —-> upBar PR DownKK,,
glKKL, —-> 0,

glKKR, —> upBar PR upKK,,
g2KKL, -> 0,

g2KKR, —-> upBar PR downKK,,

Q10 -—> 0,
Q20 -> O,
gl0 -> downBar PR up,

g20 -> downBar PR down,
Q1KKL, —> 0,

Q1lKKR, —-> downBar PR UpKK,,
Q2KKL, —-> 0,

Q2KKR, —> downBar PR DownKK,,
glKKL, -> 0,

glKKR, —> downBar PR upKK,,
g2KKL, -> 0,

g2KKR, —> downBar PR downKK,,

Q010 -> —upBar PL up,

Q20 -> —upBar PL down,

qld -> O,
q20 -> 0,
Q1lKKL, —> —-upBar PL UpKK,,

Q1KKR, —> 0,

Q2KKL, -> —-upBar PL DownKK,,
Q2KKR, -> 0,

glKKL, —-> -upBar PL upKK,,
glKKR, -> 0,

g2KKL, —-> —-upBar PL downKK,,

g2KKR, -> 0,
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g20Bar gammab5 Q10 -> -downBar PL up,

g20Bar gammab5 Q20 -> —-downBar PL down,
g20Bar gamma5 glO0 -> 0,

g20Bar gamma5 g20 -> 0,

g20Bar gammab5 Ql1KKL, -> —-downBar PL UpKK,,
g20Bar gamma5 QlKKR, -> O,

g20Bar gammab5 Q2KKL, —-> —-downBar PL DownKK,,
g20Bar gammab5 Q2KKR, -> 0,

g20Bar gammab glKKL, —-> -downBar PL upKK,,
g20Bar gamma5 glKKR, -> O,

g20Bar gammab5 g2KKL, —-> -downBar PL downKK,,

g20Bar gammab5 g2KKR, —-> 0,

Ql1KKLBar, gammab Q10 -> O,

QlKKLBar, gammab5 Q20 -> 0,

QlKKLBar, gammab5 glO -> UpKKBar, PR up,
QlKKLBar, gammab g20 -> UpKKBar, PR down,
QlKKLBar, gammab Q1KKL, -> O,

QlKKLBar, gammab Ql1KKR, —> UpKKBar, PR UpKK,,
QlKKLBar, gammab Q2KKL, -> O,

QlKKLBar, gammab Q2KKR, -> UpKKBar, PR DownKK,,
QlKKLBar, gammab5 glKKL, -> 0,

QlKKLBar, gammab glKKR, —-> UpKKBar, PR upKK,,
QlKKLBar, gammab g2KKL, -> O,

QlKKLBar, gammab g2KKR, -> UpKKBar, PR downKK,,

Q2KKLBar, gammab Q10 -> O,

Q2KKLBar, gammab Q20 -> O,

Q2KKLBar, gammab5 gl0 -> DownKKBar, PR up,
Q2KKLBar, gammab g20 -> DownKKBar, PR down,
Q2KKLBar, gammab Q1KKL, -> O,

Q2KKLBar, gamma5 Q1KKR, -> DownKKBar, PR UpKK,,
Q2KKLBar, gammab Q2KKL, -> 0,

Q2KKLBar, gammab Q2KKR, —-> DownKKBar, PR DownKK,,
Q2KKLBar, gammab glKKL, -> O,

Q2KKLBar, gammab glKKR, —-> DownKKBar, PR upKK,,
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Q2KKLBar,

Q2KKLBar,

glKKLBary,
glKKLBar,
glKKLBar,
glKKLBary,
glKKLBar,
glKKLBar,
glKKLBar,
glKKLBary,
glKKLBar,
glKKLBar,
glKKLBary,

glKKLBar,

g2KKLBary
g2KKLBary,
g2KKLBar,
g2KKLBary,
g2KKLBary,
g2KKLBar,
g2KKLBary
g2KKLBary,
g2KKLBary,
g2KKLBary,
g2KKLBary

g2KKLBar,

Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,
Q1KKRBar,

Q1KKRBar,

gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

g2KKL, —>

q2KKR,
—->

Q10 0,

020 -> 0,
qlld ->
q20 —>
Q1KKL, ->
Q1KKR,
Q2KKL,
Q2KKR,
glKKLy,
glKKR,
g2KKL,
g2KKR,
->

Q10 0,

Q20 -> 0,
qlld ->
g20 ->
Q1lKKL, ->
Q1KKR,
02KKL,
Q2KKR,
glKKL,
glKKR,
g2KKLy,
q2KKRp
Q10 —>
020 —>
qlo -> 0,
g20 -> 0,
Q1KKL,
Q1KKR,
Q2KKL,

Q2KKR,

0,

0,
upKKBary,
0,
upKKBar,
0,
upKKBar,
0,

upKKBary,

0,

downKKBary,

0,

downKKBar,

0,

downKKBary,

0,

downKKBar,

-> DownKKBar, PR downKK,,

upKKBar, PR up,

upKKBar, PR down,

PR UpKK,,

PR DownKK,,

PR upKKn,

PR downKK,,

downKKBar, PR up,

downKKBar, PR down,

PR UpKK,,

PR DownKK,,

PR upKK,,

PR downKK,,

-UpKKBar, PL up,

—-UpKKBar, PL down,

—UpKKBar, PL UpKK,,

0,

—-UpKKBar, PL DownKK,,

0,
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Q1KKRBar,
Q1KKRBar,
Q1KKRBar,

Q1KKRBar,

Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,
Q2KKRBar,

Q2KKRBar,

glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,
glKKRBar,
glKKRBar,
glKKRBary,
glKKRBar,
glKKRBar,
glKKRBar,
glKKRBary,

glKKRBar,

g2KKRBary,
g2KKRBar,
g2KKRBary,
g2KKRBar,
g2KKRBary,

g2KKRBar,

gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab
gammab

gammab

gammab
gammab
gammab
gammab
gammab

gammab

qlKKL, —> -UpKKBar, PL upKK,
glKKR, —-> 0,

g2KKL, —-> -UpKKBar, PL downKK,,
J2KKR, —-> 0,

Q10 -> -DownKKBar, PL up,

Q20 -> -DownKKBar, PL down,
qlod -> 0,

g20 -> 0,

Q1KKL, —-> -DownKKBar, PL UpKK,,
Q1KKR, —> 0,

Q2KKL, —-> -DownKKBar, PL DownKK,,
Q2KKR, —-> 0,

glKKL, -> -DownKKBar, PL upKK,
glKKR, —-> 0,

g2KKL, —-> -DownKKBar, PL downKK,,
q2KKR, -> 0,

Q10 -> —-upKKBar, PL up,

Q20 -> -upKKBar, PL down,

qgqld -> O,

g20 -> 0,

Q1KKL, —-> -upKKBar, PL UpKK,
Q1KKR, —> 0,

Q2KKL, -> -upKKBar, PL DownKK,,
Q2KKR, -> 0,

glKKL, —-> —upKKBar, PL upKK,,
qlKKR, -> 0,

g2KKL, -> -upKKBar, PL downKK,,
g2KKR, -> 0,

Q10 -> —-downKKBar, PL up,

Q20 -> —-downKKBar, PL down,

qld -> 0,
q20 -> 0,
QlKKL, —>

Q1KKR, —>

-downKKBar, PL UpKK,,

0,

168




g2KKRBar, gammab Q2KKL, -> —-downKKBar, PL DownKK,,
g2KKRBar, gammab5 Q2KKR, -> 0,
g2KKRBar, gammab5 glKKL, —-> -downKKBar, PL upKK,;,
g2KKRBar, gammab glKKR, -> O,
g2KKRBar, gammab g2KKL, —-> -downKKBar, PL downKK,,
g2KKRBar, gammab g2KKR, —-> 0

}i

(» ultimator =)

ult = {
upKK, —-> -upl CU gammab + up2 SU,
UpKK, -> upl SU gammab5 + up2 CU,
upKKBar, —-> uplBar CU gammabco + up2Bar SU,

UpKKBar, —> -uplBar SU gammabco + up2Bar CU,

downKK, -> —-downl CD gamma5 + down2 SD,
DownKK, -> downl SD gammab5 + down2 CD,
downKKBar, —-> downlBar CD gammab5co + down2Bar SD,

DownKKBar,, —-> —-downlBar SD gamma5co + down2Bar CD,

WpO -> Wp,
Wm0 —-> Wm,
z0 -> Z,
A0 -> A,

GO —> g,

WpKK, —-> Wpn,
WmKK, —> Wmn,
PKK, —-> Pn,
VKK, -> Vn,

GKK, -> gn,

hO -> higgs,
phip0 -> Wpf,
phim0 -> Wmf,

chi0 -> Zf,
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hKK, -> hn,
GpKK, —> Wpnf,
GmKK, —> Wmnf,
apKK, —-> apn,
amKK, —-> amn,
aKK, —-> an,
GPKK, -> Pnf,
GVKK, -> vnf,
G5KK, —> gnf
bi

ultScal = {
gammabco PR gammab -> PR,
gamma5co PL gammab —-> PL

}i

ultScal = {
gamma5co PR —-> PR,
gamma5co PL -> -PL

}i

ultScaz2 = {
gamma5 PR —-> PR,
gamma5 PL -> -PL

}i

ultScal3 = {
gammaS5co gammab5 -> 1,
PL"2 -> PIL,
PR"2 -> PR

}i

ultVecl = {

gammabSco gamma PR gammab —-> —gamma

PR,

gammaSco gamma PL gammab —-> —gamma PL

}i
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ultVec2 = {
gammaSco
gamma5co

}i

ultVec3 = {

gammaSco

}i

ultVecd = {

gamma5co

}i

ultvVecb = {
gamma5”2

}i

gamma

gamma

gamma

gamma

(+ field expansions x)

(» quarks x)

Ql[n_] := (1/Sgrt[Pi R])
Q1KKR, s, Lambdall;
Q2[n_] := (1/Sgrt[Pi R])
Q2KKR, s, Lambdal?2;
ql[n_] := (1/Sqrt[Pi R])
glKKL, s, LambdaR1l;
g2[n_] := (1/Sgrt[Pi R])
g2KKL, s, LambdaR2;
QlBar[n_] := (1/Sgrt[Pi R])

Q10

020

glo

q20

PR -> —gamma PR,

PL —-> gamma PL

gammab —-> —gamma

—-> —gamma gammab

LambdalLl

Lambdal2

LambdaR1

LambdaR2

+

Q1KKLBar, c, LambdalLlco + QlKKRBar,

Q2Bar[n_] :=

(1/Sqrt[Pi R])

Q2KKLBar, c, LambdaL2co + Q2KKRBary,

glBar[n_] :=

(1/Sgrt [Pi RJ])

Q1KKL,

Q2KKLy

q1KKR,

q2KKR,

Cn

Cn

Cn

Cn

Ql10Bar LambdaLlco +

Q020Bar Lambdal2co +

glOBar LambdaRlco +

LambdalLl

Lambdal2

LambdaR1

LambdaR2

s, LambdaLlco;

s, Lambdal2co;

glKKRBar, ¢, LambdaRlco + glKKLBar, s, LambdaRlco;

g2Bar[n_] :=

(1/8qrt [Pi R])
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g2KKRBar, c, LambdaR2co + g2KKLBar, s, LambdaR2co;

QDoublet[n_] := {Ql[n], 02[n]};

QDoubletBar[n_] := {QlBar[n], Q2Bar[n]};

(x gauge bosons *)

Wl[n_] := (1/Sqrt[Pi R]) (Alphal WpO + Alpha2 Wm0) +
(Alpha9 WpKK, + Alphall WmKK,) cp;

W2[n_] := (1/Sgrt[Pi R]) (Alpha3 WpO0 + Alphad4 WmO) +
(Alphall WpKK, + Alphal2 WmKK,) cu;

W3[n_] := (1/Sqrt[Pi R]) (Alphab z0 + Alpha6 A0) +
(Alphal3 PKK, + Alphal4 VKK,) cj;

B[n_] := (1/Sgrt[Pi R]) (Alpha7 7Z0 + Alpha8 A0Q0) +
(Alphal5 PKK, + Alphal6 VKK,) cu;

GIn_] := (1/Sqgrt([Pi R]) GO + GKK, cu;

W15[n_] := (Alphal7 GpKK, + Alphal8 apKK, + Alphal9 GmKK, +
Alpha20 amKK,) (sp/Sqrt[ZW]);

W25[n_]1 := (Alpha2l GpKK, + Alpha22 apKK, + Alpha23 GmKK, +
Alpha24 amKK,) (s,/Sqrtl[ZW]);

W35[n_] := (Alpha25 GPKK, + Alpha26 GVKK, + Alpha27 aKK,;)
(sn/Sgrt[ZW]) ;

B5[n_] := (Alpha28 GPKK, + Alpha29 GVKK, + Alpha30 aKK,)
(sn/Sqrt[zB]);

G5[n_] := G5KK, (s,/39grtl[zG]);

(* higgs components x)

h[n_] := (1/Sqgrt[Pi R]) hO + hKK, c,;
phip[n_] := (1/Sqgrt[Pi R]) phip0 +
(Alpha3l GpKK, + Alpha32 apKK,) cnu;
phim[n_] := (1/Sgrt[Pi R]) phim0 +
(Alpha33 GmKK, + Alpha34 amKK,) cj;
chi[n_] := (1/Sgrt[Pi R]) chiO +

(Alpha35 GPKK, + Alpha36 GVKK, + Alpha37 aKK,) cu;
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H(n_] := {I phip[n], (h[n] + v5 + I chi[n])/Sqrt[2]};

HTilde[n_] := {(h[n] + v5 - I chi[n])/Sqrt[2], I phim[n]};
Hco[n_] := {-I phim[n], (h[n] + v5 - I chi[n])/Sqrt(2]};
HTildeco[n_] := {(h[n] + v5 + I chi[n])/Sqgrt([2], -I phipl[n]};

(» quantum numbers =)

YQDoublet = 1/3;

YQSingletl = 4/3;
YQSinglet2 = (-2)/3;
YLDoublet = -1;

YLSingletl = 0;

YLSinglet2 = -2;

(* pauli matrices «x)

taul

{{0, 1}, {1, 0}};
{{0, -I}, {I, O}};
{{1, 03}, {0, -1}};
unit2z = {{1, 0}, {0, 1}};

tau2

tau3

(# couplings and vev x*)

gy5 = gy Sqgrt[Pi R];
gwb = gw Sqgrt[Pi R];
gc5 = gc Sqgrt[Pi R];
v5

v/Sqrt [Pi R];

v = 2 mWO0/gw;

y15 yl Sgrt[Pi R];

y25

y2 Sqgrt[Pi R];

ylb5co ylco Sgrt[Pi R];

y25co y2co Sqgrt[Pi R];

(x some other parameters x)
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ZzB = 1;

7zG = 1;
zQ = 1;
Zzu = 1;
Zzd =1

),
Clear[ZW, ZB, 272G, 7ZQ, 2Zu, zd]l];

ml0 = muO;

m20 = mdO0;

zqgl = Zu;

7292 = Zd;

(» covariant derivative minus the del-mu -- only the interactions =
CovarQDoublet [n_] := I gcb lambda G[n] unit2 +

I gw5/2 (taul Wl[n] + tau2 W2[n] + tau3 W3[n]) +

I gy5/2 YQDoublet B[n] unit2;
Covar5QDoublet [n_] := (I gc5 lambda G5[n] unit2 +

I gw5/2 (taul W15[n] + tau2 W25[n] + tau3 W35[n]) +

I gy5/2 YQDoublet B5[n] unit2) 2zQ;
CovarQSingletl[n_] := I gc5 lambda G[n] + I gy5/2 YQSingletl BI[n];
Covar5QSingletl[n_] := (I gc5 lambda G5[n] +

I gy5/2 YQSingletl B5[n]) Zgl;
CovarQSinglet2[n_] := I gc5 lambda G[n] + I gy5/2 YQSinglet2 BI[n];
Covar5QSinglet2[n_] := (I gc5 lambda G5[n] +

I gy5/2 YQSinglet2 B5[n]) Zg2;

(x fermion sector =)

LagQ = I gamma QDoubletBar[n].CovarQDoublet [m].QDoublet [k] -
gamma5 QDoubletBar[n].Covar5QDoublet [m] .QDoublet [k] +
I gamma glBar[n] CovarQSingletl[m] gll[k] -
gamma5 glBar[n] Covar5QSingletl[m] gllk] +
I gamma g2Bar[n] CovarQSinglet2[m] g2[k] -
gamma5 g2Bar[n] Covar5QSinglet2[m] g2[k] // Expand;
LagQEff = int[LagQ] // Expand;
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LagQRef = ref[LagQEff] // Expand;

(» yukawa sector x)

LagY = -yl15 gl[n] QDoubletBar([m].HTilde[k] -
y1l5co glBar[n] HTildecol[k].QDoublet[m] -
y25 g2[n] QDoubletBar[m].H[k] -
y25co g2Bar[n] Hcolk].QDoublet [m] // Expand;

LagYEff = int[LagY] // Expand;

LagYRef = ref[LagYEff] // Expand;

LagFFSFFV = LagQRef + LagYRef /. sim;

(» Alpha factors x)

Alphal = 1/Sqrt[2];
Alpha2 = 1/Sqrt[2];
Alpha3 = I/Sqrt[2];
Alpha4 = -I/Sqgrt[2];
Alphab = Cw;

Alpha6 = SW;

Alpha”7 = —-SW;

Alpha8 = CwW;

Alpha9 = 1/Sqrt[2];
Alphal0 = 1/Sqgrt[2];
Alphall = I/Sqgrt[2];
Alphal2 = -I/Sqrtl[2];
Alphal3 = SV;

Alphald = CV;

Alphalb5 = CV;

Alphaléb

-SV;

Alphal7 = omegal omegab;
Alphal8 = omega2 omegab;
Alphal9

omega3 omegab;
Alpha20 = omegad4 omegab;
Alpha2l = omegal omega’;
Alpha22 = omega2 omega’;
Alpha23 = omega3 omegal§;
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AlphaZ24

= omega4 omegal;

Alpha25 = gamma3l;
Alpha26 = gamma32;
Alpha27 = gamma33;
Alpha28 = gammaZ2l;
Alpha29 = gamma22;
Alpha30 = gammaz23;
Alpha3l = mW0/mWn;
Alpha32 = - (mn/ (mWn/Sqrt[ZW])) ;
Alpha33 = (mWO0/Sqrt[ZW])/ (mWn/Sqrt [ZW]) ;
Alpha34 = —(mn/ (mWn/Sqrt[ZW]));
Alpha35 = gammall;
Alpha36 = gammal2;
Alpha37 = gammal3;
SAssumptions = {
mW0 > 0,
70 > 0,
EE > O,
cw > 0,
SW > 0,
7B > 0,
R >0
}i
betal = 1/Sqgrt[2];
beta2 = 1/Sqrt[2];
beta3 = I/Sqgrt[2];
betad = -I/Sqrt[2];
beta5 = mn/ (mWn/Sqrt [ZW]) ;
beta6 = (mW0/Sqgrt[ZW])/ (mWn/Sqgrt [ZW]) ;
beta7 = mn/ (mWn/Sqrt [ZW]) ;
beta8 = (mWO/Sqrt[ZW])/ (mWn/Sqrt[ZW]) ;
gammal = mn/Sqgrt[(gy v/ (2 Sqgrt[ZB]))"2 +
gamma?2 = gw/Sqrt[ZW] CV + gy/Sqrt[ZB] SV;
gamma3 = gy CV - gw SV;
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omegal = Sqrt[ZW] mn/mWn;
omega?2 = mWO/mWn;

omega3 = Sqgrt[ZW] mn/mWn;
omegad = mWO/mWn;

omegab = 1/Sqrt[2];
omega6 = 1/Sqgrt[2];
omega7 = I/Sqrt[2];

omega8 = -I/Sqrtl2];

gammall = Cl12 C13;

gammal?2 = -Cl3 S12;

gammal3 = S13;

gamma2l = C23 S12 + Cl2 S13 S23;

gamma22 = Cl2 C23 - S12 S13 S23;

gamma23 = —-C1l3 S23;

gamma3l = -Cl2 C23 S13 + Sl12 S23;
gamma32 = C23 S12 S13 + Cl2 S23;

gamma33 = Cl1l3 C23;

rulel = {

Cos[ThetaOV] -> gw/Sqrt[gy”2 + gw”2],

Sin[ThetaOV] -> gy/Sqgrt[gw”2 + gy"2],

Cos[2 ThetaV] —-> ((gw"2 - gy"2) v*2/4 +
(ZW — ZB) mn"2)/Sqrt[((gw*2 — gy"2) v"*2/4 +
(ZW — ZB) mn"2)"2 + (gy gw v*2/2)"2],

Sin[2 ThetaV] -> (gy gw v*2/2)/Sqgrt[((gw*2 - gy”2) v*2/4 +
(ZW — ZB) mn”2)"2 + (gy gw v*2/2)"2],

Cos[ThetaS01] —-> gw/Sqrt[zW]/Sqrt[ (gy/Sqgrt[ZB]) "2 +
(gw/Sqrt [zW]) ~2],

Sin[ThetaS01] -> gy/Sqrt[ZB]/Sqrt[(gy/Sqrt[ZB])" 2 +
(gw/Sqrt[ZW])~2]1,

Cos [ThetaS02] —-> Sqgrt[(gy/ (2 Sgrt[ZB]))" 2 +
(gw/ (2 Sgrt[ZW]))"2]1/Sgrtl(gy/ (2 Sqrt[ZB]))"2 +
(gw/ (2 Sgrt[ZW]))"2 + mn"2],

Sin[ThetasS02] -> —(mn/Sqgrt[(gy/ (2 Sqrt[zZB]))" 2 +
(gw/ (2 Sgrt[ZW]))"2 + mn"2]),
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Sin[ThetaG] —-> gammal gamma2/Sqrt [ (gammal gamma2)~2 + gamma3”2]
Cos[ThetaG] -> gamma3/Sgrt[ (gammal gamma2)~2 + gamma3"2]
}i

LagFFV = Coefficient [LagFFSFFV, gamma] gamma // Expand;

LagFFS = LagFFSFFV - LagFFV // Expand;

LagFFSo0 colScaGen[LagFFS] // Expand;

LagFFS1 LagFFS0 /. ult // Expand;

LagFFS12 = LagFFS1 /. ultScal // Expand;

LagFFS2 LagFFS1 /. ultScal // Expand;
LagFFS3 = LagFFS2 /. ultSca2 // Expand;

LagFFSFinal = LagFFS3 /. ultSca3 // Expand;

LagFFV0 = LagFFV /. colVec // Expand;
LagFFV1 = LagFFVO0 ult // Expand;
LagFFV2 = LagFFV1 ultVecl // Expand;

LagFFV3 = LagFFV1 ultVec2 // Expand;

~NON N

LagFFV4 = LagFFV3 ultVec3 // Expand;
LagFFV5 = LagFFV4 /. ultVecd4 // Expand;

LagFFVFinal = LagFFV5 /. ultVec5 // Expand;

sca[MainField_, FermionBar_, Fermion_] :=
I Coefficient[LagFFSFinal, MainField
ToExpression[ToString[FermionBar] <> "Bar"] Fermion]
vec[MainField_ , FermionBar_, Fermion_] :=
I Coefficient[LagFFVFinal, MainField

ToExpression[ToString[FermionBar] <> "Bar"] Fermion]

(» usage x)

vertex [MainField_, FermionBar_, Fermion_] :=
If[MemberQ[{Wp, Wm, Z, A, g, Wpn, Wmn, Pn, Vn, gn}, MainField],
vec[MainField, FermionBar, Fermion],

sca[MainField, FermionBar, Fermion]] /. rule2 // Simplify
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APPENDIX D

LANHEP CODE

Once we completed the theoretical analysis of the MUED model in the Feynman
gauge, concerning the mass spectrum of the model and the compact form of the var-
ious sectors of the complete Lagrangian, we prepared our own LanHEP code for the
numerical analysis. Unline the code written by Belyaev et al. [29], ours is able to
produce the interactions for the maximum KK numbers n,,, = 1,2,4,6. For the
technical reasons (the run time, insufficient RAM, and low CPU), the leptons and the

ghosts other than those of the gluons and the KK partners of the ghosts are excluded.

Our own LanHEP code is presented below.

model ‘mued’/1001.

alias

nmax=6.

keys
maxkk=6.

do_if maxkk==1.
let
cosl=cos (1),
cos2=0,
cos3=0,
cos4=0,
cosb5=0,

cos6=0,

sinl=sin (1),
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do_else_if maxkk==2.

let

do_else_if maxkk==4.

let

do_else_if maxkk==6.

sin2=0,
sin3=0,
sin4=0,
sinb5=0,

sin6=0.

cosl=cos (1),
cos2=cos (2),
cos3=0,
cos4=0,
cos5=0,
cos6=0,
sinl=sin (1),
sin2=sin(2),
sin3=0,
sin4=0,
sin5=0,

sin6=0.

cosl=cos (1),
cos2=cos (2),
cos3=cos (3),
coséd4=cos (4),
cos5=0,

cos6=0,

sinl=sin (1),
sin2=sin(2),
sin3=sin (3),
sind4=sin (4),
sin5=0,

sin6=0.
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let

cosl=cos (1),
cos2=cos (2),
cos3=cos (3),
coséd4=cos (4),
cosb=cos (5),
cos6=cos (6),
sinl=sin (1),
sin2=sin(2),
sin3=sin(3),
sind=sin (4),
sin5=sin(5),

sin6=sin (6) .

end_if.

option ReduceGammab5=0.

/* parameters =/

[k kkkkkkhkkxhkkxk/

/+ free parameters x/

parameter

alphae=1/128,

pi=acos(-1),

ge=sqrt (4xpi*alphae),

gc=1.21978,
sw=0.471813,
CKMs12=0.22506,
CKMs23=0.0410788,
CKMs13=0.00357472,
Mz0=91.1876,
Mh0=125.

/+ derived parameters

*/

181




parameter
cw=sqgrt (l-swx=x2),
MWO=MZ0*cw,
vv=2x (MZ0Oxcw) / (ge/sw),
muH=MhO0/Sqrt2,

lamH=( (ge/sw) *Mh0/8/ (MZ0O*cw) ) **2.

/* masses */

parameter

MBB0O=MZ0*sw.

parameter
Mu0=0.0022,
Md0=0.0047,
Mc0=1.28,
Ms0=0.096,
Mt0=175,
Mb0=4.18.

_x=[h,Z,W,u,d,c,s,t,b] in parameter

M _x02=M_x0%*x2.

parameter
invR=500,

R=1/invR.

_n=l-nmax in parameter
Mhn_n=sqgrt (MhOx+2+ (_n/R) **2),
MaOn_n=sqgrt (MZ0**2+ (_n/R) x*2),
Macn_n=sqrt (MWO**2+ (_n/R) xx2),
Muln_n=sqgrt (MuO*x*2+ (_n/R) *x2),
Mu2n_n=sqgrt (MuO**2+ (_n/R) x*2),
Mdln_n=sqrt (MdO**2+ (_n/R) *x2),
Md2n_n=sqgrt (MdO**2+ (_n/R) *x2),
Mcln_n=sqgrt (McOx*2+ (_n/R) **2),

Mc2n_n=sqrt (McO0**2+ (_n/R) x*2),
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Msln_n=sqrt (MsO**2+ (_n/R) *x2),
Ms2n_n=sqrt (MsO**2+ (_n/R) *x2),
Mtln_n=sqgrt (MtOx*2+ (_n/R) *x2),
Mt2n_n=sqgrt (MtOx*2+ (_n/R) *x2),
Mbln_n=sqrt (MbO**2+ (_n/R) *x2),
Mb2n_n=sqrt (MbO**2+ (_n/R) *x2),
MGn_n=(_n/R),

MAn_n=(_n/R),

MZn_n=sqrt (MZ0**2+ (_n/R) xx2),

MWn_n=sqrt (MWO**2+ (_n/R) **2) .

_n=l-nmax, _x=[h,a0,ac,ul,u2,dl,d2,cl,c2,s1,s2,tl,t2,bl,b2,G,A,Z,W]
in parameter

M_xn_n2=M_xn_n#*x2.

_n=l-nmax in parameter

MBBn_n=sqrt ( (MZ0xsw) **x2+ (_n/R) xx2) .

/* projection operators =/

let
PL=(l-gamma5) /2,

PR= (l+gammab5) /2.

/x ckm matrix =/

parameter
CKMcl2=sqgrt (1-CKMsl2x%%2),
CKMc23=sqrt (1-CKMs23xx2),

CKMc13=sqgrt (1-CKMs13%%2) .

parameter
Vud=CKMcl1l2+«CKMcl3,
Vus=CKMs12+xCKMcl3,
Vub=CKMs13,
Vcd= (-CKMs12*CKMc23-CKMc1l2+*CKMs23+«CKMs13),

Vcs= (CKMcl1l2+«CKMc23-CKMs12+CKMs23+«CKMs13),
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Vcb=CKMs23*CKMcl3,
Vtd= (CKMs12+CKMs23-CKMc1l2+*CKMc23+CKMs13),
Vts=(-CKMcl2+*CKMs23-CKMs12+CKMc23*CKMs13),

Vtb=CKMc23+CKMcl3.

OrthMatrix ({{Vud, Vus,Vub}, {Vcd, Vcs,Vcb}, {Vtd,Vts,Vtb}}).

/* fields «/

Jxkkxhkkxhkkx/

/* sm x/

scalar

h0/h0: (Higgs, mass MhO) .

spinor
u0/U0: (up, color c3, mass Mu0),
d0/D0: (down, color c¢3, mass MdO),
c0/C0: (charm, color c¢3, mass McO),
s0/S0: (strange, color c¢3, mass MsO0),
t0/TO0: (top, color c3, mass MtO),

b0/B0: (bottom, color c3, mass MbO0).

vector
G0/G0: (gluon, color c8, gauge),
AQ0/A0: (photon, gauge),
Zz0/20:(z, mass Mz0, gauge),

WpO/WmO: (W, mass MWO, gauge).

/* kk x/

_n=l-nmax in scalar

hn_n/hn_n: (Higgs_n, mass Mhn_n),

alOn_n/a0On_n: (neutral_n, mass MaOn_n),

apn_n/amn_n: (charged_n, mass Macn_n) .

_n=l-nmax in spinor
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uln_n/Uln_n:
u2n_n/U2n_n:
dln _n/Dln_n:
d2n_n/D2n_n:
cln_n/Cln_n:
c2n_n/C2n_n:

sln_n/Sln_n:

(upl_n, color c3, mass Muln_n),

(up2_n, color c3, mass Mu2n_n),

(downl_n, color c¢3, mass Mdln_n),

(down2_n, color c3, mass Md2n_n),

(charml_n, color c¢3, mass Mcln_n),

(charm2_n, color c¢3, mass Mc2n_n),

(strangel_n, color c¢3, mass Msln_n),

s2n_n/S2n_n: (strange2_n, color c¢3, mass Ms2n_n),
tln_n/Tln_n: (topl_n, color c3, mass Mtln_n),
t2n_n/T2n_n: (top2_n, color c3, mass Mt2n_n),
bln_n/Bln_n: (bottoml_n, color ¢3, mass Mbln_n),
b2n_n/B2n_n: (bottom2_n, color c3, mass Mb2n_n).

_n=l-nmax in vector

Gn_n/Gn_n: (gluon_n,

An_n/An_n: (photon_n, mass MAn_n,

zn_n/7Zn_n: (Z_n,

Wpn_n/Wmn_n: (W_n,

/* physical fields */

/K okok ok kok ok kok ok ok ok ok kok ok kok/

/* scalars =/

let
phip0="WpO0.£f’,
phim0="WmO.£f’,
phi30="Z20.£f".

_n=l-nmax in let
Gbn_n="Gn_n.f’,
GAn_n="An_n.f’,
GZn_n="Zn_n.f’,
Gpn_n='Wpn_n.f’,

Gmn_n='"Wmn_n.£f’.

_n=l-nmax in let

color c8,

mass MZn_n,

mass MWn_n,

mass MGn_n, gauge),
gauge) ,
gauge) ,

gauge) .
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Wp5n_n=((_n/R) *Gpn_n+ ( ( (ge/sw) xvv/2) /cw) xcw*apn_n) /MWn_n,

Wm5n_n=( (_n/R) *Gmn_n+ ( ( (ge/sw) xvv/2) /cw) xcwxamn_n) /MWn_n,
phipn_n=((((ge/sw) *vv/2)/cw) *xcwxGpn_n- (_n/R) xapn_n) /MWn_n,
phimn_n=((((ge/sw)*vv/2)/cw)xcw+Gmn_n—- (_n/R) xamn_n) /MWn_n,

W15n_n= (Wp5n_n+Wm5n_n) /Sqgrt2,

W25n_n=(-Wp5n_n+Wmbn_n) /Sqrt2/1.

_n=l-nmax in let

Gln_n=-MBBO«* (_n/R)/ (((ge/sw)*vv/2) /cw)/MWn_n+GAn_n
- (((ge/sw)*xvv/2) /cw)*cw*MZn_n/ ( ((ge/sw) *vv/2)
/cw) /MWn_n=GZn_n,

G2n_n=(((ge/sw) *xvv/2) /cw) cw*MZn_n/ ( ( (ge/sw) *vv/2)
/cw) /MWn_n*GAn_n-MBBO«* (_n/R) / (((ge/sw) *vv/2) /cw)
/MWn_nxGZn_n,

W35n_n=-(_n/R) /MWn_n+GIln_n+MBBO=* ( ( (ge/sw) *vv/2) /cw)
*Ccw/MWn_n/MzZn_n+G2n_n+ ( ( (ge/sw) *vv/2) /cw) *Ccw
/MZn_n+xaOn_n,

BB5n_n=MWn_n/MZn_n*G2n_n-MBB0/MZn_n*a0ln_n,

phi3n_n=(((ge/sw)*vv/2) /cw) *cw/MWn_nxGln_n+MBBO

* (_n/R) /MWn_n/MZn_n*G2n_n+ (_n/R) /MZn_n*alOn_n.

_x=[h,phip,phim,phi3] in let
_x=(_x0)*cos (0) +Sgrt2« ((_xnl) xcosl+ (_xn2) xcos2
+(_xn3) xcos3+ (_xnd) xcos4d+ (_xnb) xcosb+ (_xnb6)

*COS06) .
_x=[W1l,W2,W3,Wp,Wm,BB,G] in let
_xX5=8Sqrt2x ((_x5nl) *sinl+ (_x5n2) *sin2+ (_x5n3) xsin3

+(_x5n4) xsind+ (_x5n5) xsinb+ (_x5n6) xsino6) .

let
WW5={W15,W25,W35}.

/* spinors x/

_n=l-nmax, _x=[u,d,c,s,t,b] in parameter

f x _n=atan (M_x0/(_n/R))/2,
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cf_x_n=cos (f_x_n),

sf_x n=sin(f_x_n).

_n=l-nmax, _x=[u,d,c,s,t,b] in angle
sin=sf_x_n,

cos=cf_x_n.

_n=l-nmax, _x=[u,d,c,s,t,b] in let
_XRn_n=-gammab*cf_x_n+* (_xln_n)+sf_x_nx(_x2n_n),

_xILn_n=gammab#*sf_x_nx (_xln_n)+cf_x_nx(_x2n_n).

_x=[u,d,c,s,t,b] in let

_xLL=PL#* ( (_xLnl) *cosl+ (_xLn2) xcos2+ (_xLn3) xcos3
+(_xLn4) xcos4d+ (_xLnb5) xcos5+ (_xLn6) xcosb),

_xXLR=PRx* ( (_xLnl) *sinl+ (_xXLn2) *sin2+ (_xLn3) *sin3
+(_xLn4) xsind+ (_xLn5) xsin5+ (_xLn6) *sino6),

_xRR=PR* ( (_xRnl) *xcosl+ (_xRn2) xcos2+ (_xRn3) xcos3
+ (_xRn4) xcos4d+ (_xRnb5) rcos5+ (_xRnb6) xcosb),

_xXRL=PLx* ( (_xRnl) *sinl+ (_xRn2) *sin2+ (_xRn3) *sin3

+ (_xRn4) xsind+ (_xRn5) xsin5+ (_xRn6) *sino6) .

_x=[u,d,c,s,t,b] in let
_xXL=PLx* (_x0) xcos (0) +Sgrt2* ( (_xLL) + (_xLR) ),

_XR=PRx* (_x0) xcos (0) +Sqrt2* ( (_xRR) + (_xRL) ) .

/* vectors =*/

let
W10= (Wp0+WmO) /Sqrt2,
W20=(-WpO0+WmO) /Sqrt2/1,
W30=swxAO0+cw=*Z0,

BBO=cw*AQ0—-swxZ0.

_n=l-nmax in let
Wln_n= (Wpn_n+Wmn_n) /Sqrt2,
W2n_n= (-Wpn_n+Wmn_n) /Sqrt2/1,

W3n_n=swxAn_n+cw+*7Zn_n,
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BBn_n=cwxAn_n-swx*zZn_n.

_x=[G,Wl,W2,W3,BB,Wp,Wm] in let
_x=(_x0)*cos (0)+Sgrt2x ((_xnl) *cosl+ (_xn2)xcos2
+(_xn3) xcos3+ (_xnd) xcosd+ (_xn5) xcos5+ (_xnb6)

*C0S6) .

let

WW={W1,W2,W3}.

/* lagrangian =/

[ xhkxhkxhkkxkkxk/

/+ higgs sector =/

let
phi={ixphip, (h+vv+ixphi3) /Sqrt2},
Phi={-i*phim, (h+vv-i*phi3) /Sqrt2},
phi2=Phi*phi.

let

Dphi={i+xderiv*phip+ (i*x (ge/sw) /2xW3+i* (ge/cw) /2*BB)
* (1*phip) +i* (ge/sw) /Sqrt2+Wp+* (h+vv+i+phi3)
/Sqrt2,1i* (ge/sw)/Sqrt2+«Wmx (i*phip)+deriv+h/Sqrt2
+ixderiv+phi3/Sqrt2+ (—-i* (ge/sw) /2+«W3+ix (ge/cw)
/2*BB) x (h+vv+i*phi3) /Sqrt2},

D5phi={ixderiv5/R*phip+ (i* (ge/sw) /2+xW35+ix (ge/cw) /2
*BB5) * (1xphip) +ix (ge/sw) /Sqrt2+Wp5x (h+vv+ixphi3)
/Sqrt2,i* (ge/sw) /Sqrt2+Wm5S* (i+phip) +deriv5/Rxh
/Sqgrt2+ixderiv5/R+phi3/Sqrt2+ (-i* (ge/sw) /2+xW35
+i% (ge/cw) /2+BB5) x (h+vv+i*phi3) /Sqrt2},

DPhi={-i+deriv+phim+ (-ix (ge/sw) /2+«W3-1ix (ge/cw) /2xBB)
* (—ixphim) —1i* (ge/sw) /Sqrt2+Wm* (h+vv-1i+phi3)
/Sqrt2,-i* (ge/sw) /Sqrt2+«Wp* (-ixphim)+deriv+h
/Sqrt2—-ixderiv+phi3/Sqrt2+ (ix (ge/sw) /2xW3
—ix (ge/cw) /2+BB) x (h+vv—ixphi3) /Sqrt2},

D5Phi={-i*xderiv5/R*phim+ (-i* (ge/sw) /2+«W35-1ix (ge/cw)
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/2*BB5) * (—ixphim) -1« (ge/sw) /Sqrt2+«Wm5x* (h+vv
—ixphi3) /Sqrt2, —i* (ge/sw) /Sqrt2+Wp5+ (-i+phim)
+deriv5/Rxh/Sqrt2-ixderiv5/R*phi3/Sqrt2
+(ix(ge/sw) /2*W35-1x (ge/cw) /2xBB5) * (h+vv-1xphi3)
/Sqgrt2}.

lterm

DPhi+Dphi-D5Phi*D5phi+muH**2+phi2—-lamHxphi2*x*2.

/* gauge sector =/

let

FB " mu"nu=deriv mu*BB"nu-deriv” nu*BB"mu,

FB5"mu=deriv"mu*BB5-deriv5/R+*BB"mu,

FW "mu“nu”a=deriv mu+WW nu*a-deriv "nu*WW mu*a- (ge/sw)
xeps”tabtcxWW mu*b+xWW nu~c,

FW5 "mu”a=deriv mu*WW5"a-deriv5/R«WW " mu~a- (ge/sw)
*epstabrcxWW mu b+WW5"c,

FG"mu"nuta=deriv mux*G"nu”*a-deriv nuxG "mu”a-gc
*f_SU3"a"b"c+*G"mu"b*G"nu’c,

FG5"mu"a=deriv "mu*G5%a-deriv5/R*G "mu~a—-gc

*f_SU3%a"b*c*xG"mu"b*G5"c.

lterm
—1/4%FG**2+1/2+«FG5xx2—1/4*FWx*x2+1/2xFW5%*2-1/4xFB**2
+1/2*xFB5**2.

lterm
-1/2% (deriv+G—deriv5/R*G5) **x2— (deriv+Wp—-deriv5/R+«Wp5
- (((ge/sw)*vv/2) /cw)*cwxphip) * (deriv+«Wm-deriv5/R
*Wm5— ( ( (ge/sw) xvv/2) /cw) xcw*phim) -1/2% (deriv+W3
—deriv5/R*W35+ (((ge/sw) *vv/2) /cw) xCwxphi3) **2

-1/2% (deriv+«BB-deriv5/R+*BB5-MBBO*phi3) x*2.

/* ghost sector x/

let
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ghG="G0.c’ xcos (0),
GhG="G0.C’ xcos (0) .

lterm

ixgcxf_SU3xderiv+GhG*G*ghG.
/* fermion sector =/
_x=[L,R] in let
da_x=Vudx*d_x+Vus*s_x+Vubx*b_x,

sa_x=Vcdrd_x+Vcs+*s_x+Vcb*b_x,

ba_x=Vtdxd_x+Vts+*s_x+Vtb*b_x.

[

lterm % kinetic

anti (psil) xixgammarderiv*psilL+anti (psiR) xi+xgamma

rderivxpsiR

where
psil=ulL,
psil=dL,
psil=cL,
psil=sL,
psil=tL,
psil=Dbl,

[

lterm % kinetic-5

psiR=uR;
pPsiR=dR;
pPsiR=cR;
psiR=sR;
PsiR=tR;

pPsiR=DbR.

—anti (psil) *rgamma5+deriv5/Rxpsil-anti (psiR) xgammab

*deriv5/R+psiR

where
psil=ul,
psil=dL,
psil=cL,
psil=sL,
psil=tL,

psil=Dbl,

lterm % u(l)

psiR=uR;
psiR=dR;
pPsiR=cR;
psiR=sR;
PsiR=tR;

pPsiR=DbR.

anti (psil) xixgamma*i* (ge/cw) /2xYL+xBB+psiL+anti (psiR)
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*ixgamma*ix (ge/cw) /2xYR*BB*psiR

where
psil=ul, YL=1/3, psiR=uR, YR=4/3;
psil=cL, YL=1/3, psiR=cR, YR=4/3;
psil=tL, YL=1/3, psiR=tR, YR=4/3;
psil=dL, YL=1/3, psiR=dR, YR=-2/3;
psil=sL, YL=1/3, psiR=sR, YR=-2/3;

psil=blL, YL=1/3, psiR=bR, YR=-2/3.

lterm % u(l)-5
—anti (psikl) xgammab+i* (ge/cw) /2*xYL+*BB5+psiL
—anti (psiR) xgamma5*i* (ge/cw) /2 YR+*BB5*xpsiR
where
psil=ul, YL=1/3, psiR=uR, YR=4/3;
psil=cL, YL=1/3, psiR=cR, YR=4/3;
psil=tL, YL=1/3, psiR=tR, YR=4/3;
psil=dL, YL=1/3, psiR=dR, YR=-2/3;
psil=sL, YL=1/3, psiR=sR, YR=-2/3;

psil=blL, YL=1/3, psiR=bR, YR=-2/3.

lterm % neutral component of su(2)
anti (psilLl) xixgamma*i* (ge/sw) /2+xW3xpsillL—-anti (psi2L)
*1+gammaxi* (ge/sw) /2+xW3xpsi2L
where
psill=ul, psi2L=dL;
psill=cL, psi2L=sL;

psill=tL, psi2L=DbL.

lterm % neutral component of su(2)-5
—anti (psill) rgammab*ix* (ge/sw) /2+xW35+psilL
+anti (psi2L) xgamma5+1i* (ge/sw) /2+«W35+psi2L
where
psillL=ul, psi2L=dL;
psill=clL, psi2L=sL;

psill=tL, psi2L=DbL.

lterm % charged component of su(2)
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anti (psill) xixgammax*ix (ge/sw) /Sqart2+«Wp*psi2L
+anti (psi2l) xixgamma*i* (ge/sw) /Sqrt2+Wm+psilL
where
psillL=ul, psi2L=dal;
psill=cL, psi2L=sal;
psill=tL, psi2L=bal.

o

lterm % charged component of su(2)-5
—anti (psilLl) xgammaSxix (ge/sw) /Sqrt2+xWpS5+psi2L

—anti (psi2L) *gamma5*1i* (ge/sw) /Sqrt2«Wm5S+psilL

where
psilL=ulL,
psill=cL,
psill=tL,

o

lterm % su(3)

anti (psil) xixgammaxixgc*xlambdaxGxpsiL+anti (psiR) x1i

psi2lL=dal;
psiz2l=sal;

psi2L=bal.

*gammaxixgc+xlambdaxGxpsiR

where
psil=ul,
psil=dL,
psil=cL,
psil=sL,
psil=tL,

psil=blL,

lterm % su(3)-5

—anti (psil) rgammabxixgcxlambda*xG5+psilL—anti (psiR)

psiR=uR;
psiR=dR;
psiR=cR;
pPsiR=sR;
PsiR=tR;

psiR=DbR.

+*gammabx*i*gcxlambda*G5xpsiR

where
psil=ul,
psil=dL,
psil=cL,
psil=sL,
psil=tL,

psil=blL,

psiR=uR;
psiR=dR;
pPsiR=cR;
pPsiR=sR;
pPsiR=tR;

psiR=DbR.
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/* yukawa sector =/

let
gla={ulL,dal},
g2a={cL, salL},

g3a={tL,balL}.

let
H={ixphip, (h+vv+i*phi3) /Sqrt2},

Hcc={-i*phim, (h+vv—-i*phi3) /Sqrt2}.

lterm
-M2/MWO/Sqrt2+ (ge/sw) = (anti (pl) *pr+H+anti (pr) *pl

*Hcc)

where
M2=vudxMdO, pl=gla, pr=dR;
M2=VusxMs0, pl=gla, pr=sR;
M2=Vub*Mb0, pl=gla, pr=bR;
M2=VcdxMd0O, pl=gZ2a, pr=dR;
M2=VcsxMs0, pl=g2a, pr=sR;
M2=Vcb*Mb0, pl=g2a, pr=bR;
M2=vVtdxMd0O, pl=g3a, pr=dR;
M2=VtsxMs0, pl=g3a, pr=sR;

M2=VtbxMb0, pl=g3a, pr=DbR.

lterm
-M1/MWO/Sqrt2+ (ge/sw) = (anti (pl) *xixtau2+pr+Hcc
+anti (pr) xixplxtau2+H )
where
M1=MuO, pl=gla, pr=uR;
M1=Mc0, pl=g2a, pr=cR;
M1=Mt0, pl=g3a, pr=tR.

/* conclusion */

[k kkkkkkkkkkkxk/

SetAngle (l-cw**2=swx*2) .
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SetAngle (1-CKMc1l2%*2=CKMs12%*2) .
SetAngle (1-CKMcl3%*2=CKMs13**2) .

SetAngle (1-CKMc23**x2=CKMs23%%2) .

SetAngle (1-cfulx«*2=sfulxx2).
SetAngle (1-cfulx*x2=sfu2*=*2) .
SetAngle (1l-cfu3x*x2=sfu3*«*2).
SetAngle (1-cfudx*«2=sfudxx2).
SetAngle (1-cfubx*2=sfubxx2).

SetAngle (1-cfubx*x2=sfub**2) .

SetAngle (1-cfdlx*2=sfdlx%x2) .
SetAngle (1-cfd2x*x2=sfd2**2) .
SetAngle (1-cfd3x*x2=sfd3**2) .
SetAngle (1-cfdd++2=sfd4dx%x2) .
SetAngle (1-cfdb**2=sfd5%%2) .
SetAngle (1-cfdb6x*x2=sfd6**2) .

SetAngle (1-cfclx*2=sfclxx2).
SetAngle (1-cfc2x*x2=sfc2**2) .
SetAngle (l-cfc3x*x2=sfc3%*2).
SetAngle (1-cfcdx*x2=sfcdxx2).
SetAngle (1-cfcbhx*2=sfcbxx2).

SetAngle (l-cfcbx*x2=sfcb6**2) .

SetAngle (1-cfslx*x2=sfslxx2).
SetAngle (1-cfs2x*2=sfs2x%2) .
SetAngle (1-cfs3x*x2=sfs3%*2).
SetAngle (1-cfsdx*x2=sfsdxx2).
SetAngle (1-cfsb*x*2=sfs5x%2) .
SetAngle (1-cfsbx*x2=sfs6*x*x2) .

SetAngle (1-cftlx*2=sftlxx2).
SetAngle (1-cft2x*2=sft2x%2).
SetAngle (1-cft3x*x2=sft3%*2).

SetAngle (l-cftdx«2=sftd«*«x2).
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SetAngle (1-cftbox*«2=sft5**2).

SetAngle (1-cft6*x+2=sft6x%2).

SetAngle (1-cfblx*x2=sfblx**2).
SetAngle (1-cfb2x*2=sfb2x%2) .
SetAngle (1-cfb3**2=sfb3x%2) .
SetAngle (1-cfbdx+x2=sfbd**2) .
SetAngle (1-cfbbx*x2=sfb5%*2) .

SetAngle (1-cfb6*x*2=sfb6x%2) .

CheckHerm.
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