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ABSTRACT

PARAMETRIC SPECTRAL ESTIMATION METHODS OF CLUTTER
PROFILE FOR ADAPTIVE RADAR DETECTION AND CLASSIFICATION

ERASLAN, BERNA
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Gökhan Muzaffer Güvensen

July 2019, 128 pages

Identification of unwanted echoes in a received radar signal is crucial in order to im-

prove the radar detection performance. In the scope of thesis, currently proposed

parametric spectrum estimation techniques, such as MUSIC, ESPRIT and Burg, are

evaluated in order to estimate moments of clutter components in received radar echo.

Since none of these methods has the ability of estimating Doppler spread and ad-

equate accuracy, Stochastic Maximum Likelihood (SML) method is implemented,

working with the best performing optimization and line search method. Since SML

estimation accuracy is highly initial point dependent and computationally expensive,

a novel estimation technique (Turbo) is proposed which works recursively. Proposed

Turbo method outperformed the methods suggested in literature with its high Doppler

resolution, accuracy and low computational cost. Moreover, Turbo performance is op-

timized by utilizing Burg estimates for initial point selection. After designing nearly

optimal estimator, estimated parameters is used to design the detection filter which

maximizes the Normalized SINR at its output even with a small number of secondary

data. Finally, for clutter classification, a problem specific Neural Network architec-
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ture is designed. The proposed Neural Network performance is also evaluated with

estimates of novel Turbo method.

Keywords: radar signal processing, clutter power spectrum, parameter estimation,

neural networks, maximum likelihood estimation, adaptive detectors
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ÖZ

ADAPTİF RADAR TESPİTİ VE SINIFLANDIRMASI İÇİN KARGAŞA
SPEKTRUMU PARAMETRE KESTİRİM METOTLARI

ERASLAN, BERNA
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Gökhan Muzaffer Güvensen

Temmuz 2019 , 128 sayfa

Radar tespit performansını iyileştirmek için, radar sinyali içindeki istenmeyen sin-

yallerin teşhisi kritiktir. Bu tez kapsamında, kargaşa yankılarının spektral moment

tahmini için MUSIC, ESPRIT ve Burg gibi parametrik spektrum tahmin teknikleri

değerlendirilmiştir. İncelenen tekniklerin hiçbiri Doppler yayılımını tahmin edeme-

diği ve yeterli tahmin doğruluğuna sahip olmadığı için, en iyi performansa sahip op-

timizasyon ve çizgi arama algoritması ile çalışan Stokastik Maksimum İhtimal (SML)

metodu uygulanmıştır. SML tahmin doğruluğu başlangıç noktasına çok bağlı olduğu

ve hesaplama olarak pahalı olduğu için, yinelemeli çalışan özgün bir tahmin metodu

(Turbo) önerilmiştir. Önerilen Turbo metodu yüksek Doppler çözünürlüğü, doğruluk

değeri ve hesaplama kolaylığı ile literatürde önerilen metotlardan çok daha iyi per-

formans göstermiştir. Buna ek olarak, Burg tahminleri başlangıç noktası seçiminde

kullanılarak, önerilen Turbo metodu en uygun hale getirilmiştir. En uyguna yakın

tahmin metodu tasarımından sonra, tahmin edilen parametreler, az sayıda ikincil veri

ile bile çıkışında sinyalin girişim ve gürültü toplamına oranının maksimum normalize

değerini elde edebilen tespit filtresi tasarımında kullanılmıştır. Son olarak, kargaşa sı-
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nıflandırılması için problem özel olarak yapay sinir ağı mimarisi tasarlanmıştır. Öne-

rilen sinir ağı performansı, özgün Turbo metodu tahminleri ile değerlendirilmiştir.

Anahtar Kelimeler: radar sinyal işleme, kargaşa güç spektrumu, parametre tahmini,

sinirsel ağlar, maksimum olasılık tahmini, uyarlanabilir detektörler
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CHAPTER 1

INTRODUCTION

RADAR is an acronym standing for RAdio Detection And Ranging. It is a system,

aiming the detection of objects. Detection is accomplished by transmitting electro-

magnetic waves with the help of an antenna and analyzing the echoes reflected from

objects in environment to extract information about ones of interest, targets. In other

words, it is an electromagnetic remote sensing instrument, which can be used for de-

tecting and tracking the targets. Basically, an electromagnetic wave is transmitted to

illuminate a volume of space and the echo coming from the target is extracted to de-

termine its direction, distance to the system or speed. The return signal is composed

of some components such as the direct path return of the target, multipath returns,

echoes reflected from other objects, thermal noise, and jammer. Anything except the

target echo can be called as an interference signal or unwanted radar return. In short,

interference signals can be listed as noise, jammer and clutter.

First of all, external noise and internal noise are two types of noise signals, must be

suppressed. The external noise is received through the radar antenna. Generally, its

source is solar activity. On the other hand, the intrinsic noise is caused by the hard-

ware of radar. It is also called as thermal noise. Noise term generally stands for the

internal one since it is more dominant than the external one. In most of the radar

systems, noise is modelled as a zero-mean, white, Gaussian process [2].

Second type interference signal is clutter which differs from noise by its different

correlation properties. Moreover, clutter is a type of echo; hence its power depends

on the operational radar parameters, whereas noise power is modelled independently.

The clutter signal model will be investigated in following chapters.

Thirdly, as an offensive Electronic countermeasure, jamming techniques are used to

degrade the ability of radar during detection of targets. The difference between jam-
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mer and clutter signal comes from the type of interference signal. In other words, the

clutter causes a passive interference, while the jammer signal is an active one.

It is useful to note that, the definition of target and clutter is application dependent. In

other words, it differs with the aimed application area of the radar. For instance,

clouds are considered as clutter signals for air traffic radars, while as targets for

weather radars. Similarly, synthetic aperture radars’ target is the surface of earth,

yet it is the clutter of surveillance radars.

The clutter echo is an unwanted band-limited signal which has to be suppressed for

operation. Thus, it is desired to obtain the characteristic of clutter accurately in order

to increase the performance during detection of targets. For a successful character-

ization of clutter, its spectral and statistical properties must be under consideration.

Because of that, clutter Power Spectrum Density (PSD) will be estimated by using

various methods. A suitable spectrum modelling is utilized such that moments of

PSD enables full characterization. In addition to the estimation, the effect of clutter

power spectrum parameter estimation on radar detection performance will be stud-

ied with the utilization of an adaptive parametric filter. Finally, estimated parameters

will be used to determine the type of clutter. A classification approach will be imple-

mented with features, obtained from estimated spectral parameters.

1.1 Motivation and Problem Definition

The aim of designing most of the modern radar systems is to optimize the detection

performance. Various effective signal processing techniques have been proposed to

suppress the clutter. Successful suppression of clutter signals will increase the signal

power to interference power ratio. If the radar system knows the clutter characteris-

tics such that it processes the radar echoes based on that, characterization accuracy of

detection will significantly improve. Therefore, clutter spectral profile identification

is crucial.

In the case of fixed ground radars, working in a relatively stationary environment, the

clutter characteristic will be predictable and easy to obtain. However, radars may be

located over moving platforms. Additionally, if the environmental conditions are not

predictable, the stored information of the working medium will be useless. For ex-
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ample, detection of targets on a rainy day will be troublesome because of the abrupt

changes in rain characteristics with varying velocity vector direction of wind or the

rate of rainfall or the turbulence strength etc. Another example is that both the rain

and sea clutter may coexist. It is impossible to model or predict such changeable

media. Therefore, the radar should adapt itself to the instantly changing clutter envi-

ronments in order to achieve solid elimination of unwanted echoes. By that, instanta-

neous characterization of the environment must be accomplished with estimating of

clutter parameters adaptively. Real time environment identification is critical if high

performance target detection is required in a difficult operation environment.

The main motivation of the thesis is to evaluate the performance of recently proposed

clutter spectral parameter estimation techniques and improve their performance with

novel approaches. After accomplishing optimum estimation, the estimation effect on

radar detection performance will be measured with an adaptive filter. Lastly, classifi-

cation of the owner or owners of the received signal components is aimed.

Figure 1.1: Clutter Identification

1.2 Literature Review

Clutter power spectrum estimation and classification is the main research theme, aim-

ing to increase radar detection performance. A detailed literature survey has been

specifically directed to review the strengths and weaknesses of existing algorithms.
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1.2.1 Parameter Estimation

Spectral moment estimation techniques can be used in many areas. In weather radars

[3], spectral moment estimation methods are used to decrease required data size for

identification in a stationary environment. In [4], optimal range information is deter-

mined by estimation. As an application area, different from radar, the estimation is

used to increase resolution for accurate diagnostic criteria selection. Radio astronomy

uses telescopes instead of antenna arrays to determine a ‘target’s location [5]. Thus,

estimation methods become important like as in radar applications. Despite the fact

that each of the listed areas has different aims, the common goal is to determine the

moments with a less complex algorithm giving adequately accurate results.

Clutter spectral moment estimation becomes a popular area when radar detection per-

formance became a concern. A robust algorithm is desired to obtain optimum de-

tection performance. In literature, some of non-parametric and parametric methods,

suggested to estimate moments, are examined. Non-parametric methods are preferred

because of their low computational complexity. For example, Pulse Pair (PP) method

[6] and periodogram based [3] ones are most widely used ones. Their computational

load is relatively light. However, they have some disadvantages such as increased bias

with increase in spectral width. Moreover, their performances are poor compared with

parametric ones [7]. Moreover, in [8], it is shown that PP will give erroneous esti-

mates in case of signals having low Doppler values, i.e. near to zero. It will not give

results as precise as ones of Maximum Likelihood estimation method [9]. Actually,

all of the drawbacks are resulted from trade-off between computational complexity

and accuracy of estimation algorithms. High accuracy is required for clutter identifi-

cation, so non-parametric algorithms are not investigated in the scope of this thesis.

Since, the parametrization of PSD models constrains the search space; parametric

methods have higher accuracy than non-parametric methods. The main goal is to de-

termine the first three spectral moments for Doppler radars. Zeroth moment of PSD

is related to the power of received echo. The first moment gives the information about

mean Doppler frequency. The second moment represents spectrum standard devia-

tion, Doppler spread value. In other words, spectral width is expressed as the standard

deviation of the Doppler frequencies. First spectral moment estimation is crucial for

pulsed-Doppler data processing since it is related with Doppler frequency. Some sug-
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gested methods in literature are studied to estimate Doppler frequency. First of all,

two subspace based techniques, MUSIC and ESPRIT, are implemented. Then, Burg

with Maximum Entropy Method is studied and tested.

Subspace based methods for frequency estimation is first suggested by Schmidt in

1986 [10]. They are chosen because of high resolution capacity. Firstly, MUSIC is

examined. In [10], it is claimed that MUSIC is asymptotically efficient if the number

of signals in received echo is one. If received signal consists of more than one echo,

it may give biased estimates. It is claimed that MUSIC is also applicable for narrow-

band signals. Similarly, in [11], superposition of two close spectrums is investigated

to measure sensitivity of MUSIC. The accuracy is dependent on the test scenario, yet

it claims that it is possible to estimate two parameters with high accuracy. However,

it also notes that MUSIC needs high number of snapshots. If number of snapshots is

not enough, it may fail even if in case of small modelling errors. The ESPRIT is an-

other proposed method, used for parameter estimation. In [12], MUSIC and ESPRIT

algorithms are compared with respect to estimation accuracy. It is shown that MUSIC

has better performance than ESPRIT. However, ESPRIT is used as an alternative to

MUSIC since while MUSIC algorithm requires search, but ESPRIT needs no search

to estimate Doppler frequencies. In [13], it is shown that ESPRIT can reduce compu-

tational and storage cost. Moreover, it is claimed that ESPRIT is less sensitive to the

array imperfections of antenna than MUSIC. However, ESPRIT gives biased results.

Same trade-off between computational complexity and accuracy occurs.

As a final method to estimate frequency, Burg with Maximum Entropy Method (MEM)

is investigated. An autoregressive (AR) spectrum can be computed using Burg esti-

mation or solving Yule Walker equations. MEM using autoregressive signal model is

proposed by Burg [14]. AR modelling has great spectral resolution. In [15], a com-

parison is studied between Fast Fourier transform (FFT) methods and AR spectrum

estimation methods. It is shown that AR is more consistent than FFT. Moreover, FFT

method accuracies are dependent on available data duration which is an impediment

for real time estimation.

When spectrum has non-zero spread, frequency estimation is also studied by adding a

multiplicative noise to the signal. Many efficient algorithms are suggested using this

model, yet none of them is able to give information about the spread value.

Maximum Likelihood (ML) is investigated to estimate spread value. ML solutions are
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generally dependent on non-linear equations. In literature, ML approach for parame-

ter estimation has appeared in two versions referred to as Stochastic (SML) [16] and

Deterministic Maximum Likelihood (DML) estimation [17]. Çırpan’s work [18] is a

useful source to compare performances of SML and DML. In his work, both of the

methods are developed and iterative solutions are proposed. By interpreting founding

of the paper, it is decided to use SML instead of focusing on DML. Huge variety of

proposed approaches in the field of ML spectral-moments estimation is studied such

as [3] and [19]. They both show that parametric ML outperformed the non-parametric

classical approaches. In [20], Levin used ML to estimate the mean Doppler frequency

and spectral width. However, an assumption is made which data recording is much

longer than correlation time of the process. Additionally, Maximum Likelihood esti-

mator is studied over weather spectral parameters in [21] which was computationally

too heavy for implementing in real time operation. Moreover, it was not optimal in

accuracy. The milestone of the research was investigating the paper of Boyer [22]

in which a SML technique is implemented to obtain accuracy at high resolution. A

second order optimization algorithm starting from actual value was suggested in the

paper in order to estimate all spectral parameters with same algorithm. This approach

is not robust to the selected initial values for each moment of the clutter spectrum.

Moreover, an algorithm, including all moments, requires tremendous computational

effort. Thus, a novel algorithm must be designed and tested.

Note that, parameters of test scenarios are generated by using values in literature.

In [23], clutter resulted from windblown trees is studied, supported by a comparison

with the previous studies. This study also gives some information about spread and

velocity values of clutters.

1.2.2 Radar Detectors

In order to measure the effect of clutter PSD estimation on radar detection perfor-

mance. Some common detectors in literature are investigated. The first work about

adaptive detectors was belonging to Kelly, published in 1986 [24]. In addition to de-

tection range bin (Cell Under Test i.e CUT), Kelly proposed to use secondary range

cells during detection hypothesis choice. He derived corresponding false alarm and

detection probabilities Pfa, Pd and generalized likelihood ratio test (GLRT) analytic
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expressions. Target is assumed to be located in 1 dimensional subspace of signal

model. As a following work, Kelly and Forsythe [25] generalized the method for

systems having multi-channels. Similar formulations are used to design various de-

tectors. For example, Adaptive Matched Filter (AMF) is suggested in [26], which

assumes CUT data is Gaussian distributed. Thus, CUT data covariance matrix is re-

quired during detector design. The secondary cell covariance matrices are also used

during hypothesis tests. The adequate number of secondary cells is required for suc-

cessful detection. Reed-Mallet [27] derived a rule to measure the effect of secondary

cell numbers on output Signal to Noise Ratio (SNR). They proposed a limit for num-

ber of observations. If output SNR loss is desired to be 3 dB, at least two times of

covariance matrix size must be investigated. The effect of power difference between

CUT and clutter signals are investigated by [28] and [29]. Adaptive Normalized

Matched Filter (ANMF) is suggested as detector. ANMF assumes secondary cells

and CUT have same normalized covariance matrix, while clutter signals in secondary

cells and CUT have power values modelled with deterministic unknown variables. In

[30], a sensitive detector is tried to be designed by suggesting that an additional sig-

nal exists in CUT, belonging neither noise nor target. The approach is useful in order

to detect closely spaced multiple targets. In [31], clutter signal covariance matrix is

assumed to be modelled as an AR process in order to design the adaptive detector.

In [32], previously suggested detectors are examined in a class named as “invariant

detectors”. By using covariance matrix model, various detectors are designed. An

additional detector design is suggested and its performance is measured in [33] and

[34], when non-homogeneity exists between CUT and secondary cells. In order to

decrease Pfa, the importance of covariance matrix estimation is stressed in [18], such

that a recursive covariance matrix estimation method is investigated. The effect of es-

timation method is measured with real data. The results were not promising because

of non-stationarity of clutter in time and spatial domain.

Adaptive detectors, mentioned above are Sample Matrix Inversion (SMI) based tech-

niques necessitating large number of secondary cells, multiples of autocorrelation

matrix size. In this thesis, instead of using SMI adaptive detectors, a parametric filter

is adopted by using proper parameters of clutters, obtained via spectral estimation

method. In other words, Wiener filter approach is employed which will be adequate
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with the small number of secondary cells to achieve genie-aided detector which will

be used as a performance benchmark. The estimated covariance matrix is used for

filter design which is explained in Chapter 4. Thus, the high number of secondary

cell requirement is significantly diminished with the use of parametric spectrum esti-

mation methods.

1.2.3 Classification Using Neural Networks

Many application areas using classification with the help of Artificial Intelligence

(AI) become popular in recent years such as image processing, speech and character

recognition and forecasting. Specifically for radars, AI is commonly used for target

classification. As a good example, target classification with neural network is inves-

tigated in [35].

In the scope of this work, a classifier is aimed to be designed which will work with

the proposed clutter parameter estimator. This is a unique approach introduced in the

area of clutter classification.

In [36], comprehensive background information is given about pattern classification.

It is shown that the most of the successful classification methods depends on Neu-

ral Networks (NN). Neural networks are compatible with real world problems since

they are developed to provide real-time response with high-performance. As sug-

gested, appropriate features must be selected. The features are selected by using [37].

Haykin’s work was a useful source for data generation. However, the suggested neural

network architecture was not satisfying when thinking neural network designs used

today for classification. In [38], it is suggested that fuzzy logic and Bayesian classifi-

cation can also be used, but their results are not consistent. A number of performance

comparisons between neural and conventional classifiers have been made by many

studies [39]. Neural networks outperformed classical approaches. As a similar work,

[40] is examined which performs classification by using features (entropy, skewness

and kurtosis) of different clutter models with multilayer perceptron. Features selected

in Haykin’s paper were more comprehensive than in [40]. In [41] clutter classifica-

tion is performed with multi-segment Burg algorithm with K distribution model. The

paper was similar to our work, yet shape parameter estimation is not adequately ap-
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propriate approach.

All in all, designing an optimal radar clutter classifier, which can also work with an

estimator, is a gap. Thus, this thesis tries to fill the gap.

1.3 Contributions and Novelties

In this thesis, we will design a favourable estimator, which forecasts the moments of

radar echo Power Spectrum Density. After that, detector performance with estimated

parameters will be observed by implementing an adaptive filter. Finally, type of esti-

mated signals will be determined by a classifier using Artificial Neural Networks.

Our contributions are as follows:

• The most encountered clutter types are explained with related power spectrum

parameters.

• The comparison between widely used Doppler frequency estimation methods

is performed in order to choose the most efficient one, used for initial point

selection.

• The performances of various optimization and line search methods are mea-

sured to find the optimal one working with SML method suggested in [22].

• A novel estimator is designed by implementing a Turbo approach which esti-

mates first and second moments of spectrum recursively.

• The detector design with estimated parameters is performed to observe the ef-

fect of parameter estimation over detection performance of radar.

• The proposed detector achieves the performance of genie-aided detector (with

perfect knowledge of the spectrum) even with a small number of secondary data

which is crucial for non-stationary environments.

• A neural network structure is designed and used to determine the types of clut-

ters from estimated parameters.
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1.4 The Outline of the Thesis

In Chapter 2, radar operation is explained briefly. Encountered signal types are inves-

tigated with related spectral properties. After that, the focus is on the clutter spectrum

characteristics which will be used in estimation. Finally, most common clutter types

are given.

In Chapter 3, various methods aiming to estimate power spectrum density parameters

are examined. First of all, definition and spectral parameters of some clutter types

are stated. After that, subspace based methods and AR signal model with Maximum

Entropy Method are represented which are used to estimate center Doppler frequen-

cies. As another approach, Stochastic Maximum Likelihood (SML) performance is

evaluated. Moreover, its output accuracy is increased with the help of examining var-

ious optimization algorithms and line search methods. Additionally, Turbo estimator

architecture is designed in order to increase accuracy while decreasing computational

cost. Turbo is an algorithm integrated with SML technique.

Chapter 4 covers the analyses of detection performance improvement after determin-

ing the clutter spectral parameters. Received signal is processed such that detector

performances with experimental and analytical results are compared.

In Chapter 5, classification of clutter signals from spectral parameters by using deep

learning concept, neural networks, is illustrated with compressive background infor-

mation, steps of designing the network and test results.

Finally, in Chapter 6, the conclusions are given and the possible future works are

stated.

1.4.1 The Notation of the Thesis

The notation used in this thesis is summarized below,
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Table 1.1: Notation

General Notation

a, b, ..., z Scalar quantities

a,b, ..., z m dimensional column or row vectors

A,B, ...,Z m× n dimensional matrices

aT ,AT Transpose of vector a, transpose of matrix A

aH ,AH Hermitian of vector a, Hermitian of matrix A

[A](i,j) Entry of matrix A located at ith row and jth column

ai ith entry of vector a
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CHAPTER 2

RADAR PRINCIPLES

As mentioned, the most basic aim of radar is to extract necessary information from

received signal which is reflection of transmitted electromagnetic waves from objects

in the environment. The necessary information definition depends on application area

of radar. Mainly, location (distance to the radar), velocity with travel direction, and

elevation (altitude with respect to radar system) of both stationary and non-stationary

objects must be extracted for full identification of environment. In this work, target

and interference signals are under-interest.

In Section 2, firstly, radar operation is briefly explained; spectral analysis of clutter is

introduced with examples on well-known clutter types.

2.1 Introduction to Radar Operation

The idea of radar comes from nature, the echolocation animals such as bats. Radar

uses electromagnetic waves for detection, finding location and speed measurement

of anything under interest. Basically, it transmits electromagnetic waves into space

and collects reflected echoes from environment. If the transmitting and receiving of

signals are performed by same antenna, the system is called as mono-static. If they

are located at different places, the system is a bi-static radar system. In this work,

mono-static radar system is investigated.

The key goal of radar operation is to distinguish the signal as the one reflected from

target or only interference. In most of the radars, detection is done with cancellation

of clutter and thresholding the output. Thresholding implies comparing the amplitude

of processed signal with an adaptively computed threshold value, which generally
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depends on the received echo amplitude.

It is easy to deduce that the range of a target can be interpreted from time delay be-

tween transmitted signal and received echo. Thus, for monostatic radar, formulation

of target range is

R =
c · tD

2
(2.1.1)

Backscattered signals are processed digitally. Thus, received signal will be sampled

after filtering and demodulation such that samples forming range bins will have size:

∆R =
c · ts

2
(2.1.2)

in which ts is sampling period which is one over sampling rate (frequency), 1
fs

. Sam-

pling frequency must be chosen such that samples will be independent.

Radar transmits modulated carrier signals. The most common one is a pulse train,

pulses repeated at intervals. In other words, the electromagnetic waves are emitted in

short bursts. It is shown in Figure 2.1.

Figure 2.1: A Pulse Train

Pulse width of the transmitted pulse, PW , is the duration of pulse in one Pulse Rep-

etition Interval (PRI). PRI is the interval between pulses. Inverse of PRI is referred

as Pulse Repetition Frequency (PRF) which is the number of transmitted pulses per

second. Dwell time is defined as time spent on target. Thus, in short, coherent trains

of P pulse are transmitted from radar antenna. After receiving echo reflected from

objects in environment, radar properly demodulates filters and samples the incoming

narrowband waveform.

Width of the transmitted pulse, PW , determines the range resolution of radar which

becomes important when the detection of close targets will be performed. Range res-

olution is the minimum distance between two close targets, required to distinguish
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them. It is calculated in 2.1.3 in which bandwidth is denoted by BW . Thus, range

resolution may be different than range cell size.

∆Rres =
c · PW

2
=

c

2 ·BW
(2.1.3)

Coherency in radars defined as constant phase relationships of transmitted signal and

reference signal. Coherency in radars enables to notice even small phase shifts in

received echo. Phase shift is used to calculate Doppler frequency related with velocity

of target. Coherent Processing Interval (CPI) is defined as the total time of sampling

a pre-specified group of pulses having same PRF and operational frequency. Thus, if

P is number of transmitted pulses for accurate detection, CPI can be formulated as;

CPI = P · PRI (2.1.4)

The radial velocity of target can be interpreted from Doppler shift in received echo

which has carrier (operating) frequency f0. For stationary monostatic radar suppose

that the target is moving with a radial velocity v toward the radar. Doppler shift for

received electromagnetic waves is given in 2.1.5. The received frequency will be

fR = (
1 + v

c

1− v
c

)f0 (2.1.5)

Thus, if target moves towards the antenna received frequency will increase. If it

recedes, a decrease will occur. Since target will have much lower velocity than speed

of light. The previous equation can be simplified to,

fR = (1 + 2
v

c
+ 2(

v

c
)2 + ...)f0 (2.1.6)

If we get rid of all second and higher order terms of v
c
,

fR ∼= (1 + 2
v

c
)f0 (2.1.7)

Thus, Doppler shift or Doppler frequency, fd, is defined as the difference between

transmitted and received echo signal frequencies can be written as,

fd = 2
v

c
f0 (2.1.8)

Equivalently,

v =
c · fd
2f0

(2.1.9)
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Doppler frequency of a target, fd ; must be found with spectrum estimation tech-

niques. Some targets will not be visible to the radar because of the velocity values.

This velocity is called as the blind speed. It depends on the operating frequency and

Pulse Repetition Frequency (PRF) of the radar unit. If PRI of received signal is same

or multiple of transmitted signal PRI, zero signals will be obtained by radar.

vblind =
c

2 · PRI · f0

(2.1.10)

If Pt stands for the transmitted power from a directional antenna with gain Gt , then

power density at a distance R can be defined as;

Pdt =
PtGt

4πR2
(2.1.11)

After transmit, reflected echo power to the antenna surface is dependent on target

Radar Cross Section (RCS), σ , such that

Pde =
PtGt

4πR2

σ

4πR2
(2.1.12)

The total amount of received power by the antenna, Pt, depends on affective aperture

Ae of antenna, which is defined as

Ae =
Gr

4πλ2
(2.1.13)

in which Gr is receiver antenna gain and λ is the wavelength, depending on operation

(carrier) frequency, f0. Moreover, received power will be affected by some losses

such as system losses and atmospheric attenuation. If the total loss can be represented

by L, the relation between received echo and transmitted powers can be written by

radar equation;

Pr =
Pt ·Gt ·Gr · λ2 · σ

(4π)3 ·R4 · L
(2.1.14)

Another form of 2.1.14 can be used to calculate maximum range of the target.

R = {Pt ·Gt ·Gr · λ2 · σ
(4π)3 · Pr · L

}1/4 (2.1.15)

Radar detection performance is evaluated by some criteria such as probabilities of

detection (Pd) and false alarm (Pfa). They usually depend on Signal to Interference

plus Noise Ratio (SINR), which is the power ratio of the useful and unwanted signals.

SINR =
Psignal

Pinterference + Pnoise
(2.1.16)
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Similarly, Clutter to Noise Ratio is defined as

CNR =
Pclutter
Pnoise

(2.1.17)

Finally, Signal to Noise Ratio is

SNR =
Psignal
Pnoise

(2.1.18)

2.2 Radar Signals

Received echo contains signals reflected from targets, clutter, thermal noise and other

types of interference. Identification of each signal is substantial during radar opera-

tion.

2.2.1 Target Signal

As it is derived, the target echo signal power is related with target radar cross sec-

tion (RCS). RCS of a target generally depends on angle, frequency and polarization.

Thus, fluctuations will occur in RCS value. Swerling models are used to model RCS

fluctuations [2]. Swerling models depends on a probability density function and a

decorrelation time for the target RCS. Scan to scan decorrelation implies pulses col-

lected on one sweep have the same complex amplitude value, whereas the pulses from

next scan will have another constant value, independent from the previous one. On

the other hand, pulse-to-pulse decorrelation implies each pulse in one scan will take

an independent value for the RCS from other pulses.

2.2.1.1 Swerling 0

It is an ideal target model, having constant return. In other words, its RCS is fixed

during operation.
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2.2.1.2 Swerling I

Signal has decorrelation from scan to scan. The radar cross-section is constant from

pulse-to-pulse. Thus, its RCS is permanent over one antenna scan. Entire pulse train

will have the constant amplitude, which is a single random variable with a Rayleigh

pdf.

P (σ) =
1

σavg
exp(− σ

σavg
) (2.2.1)

2.2.1.3 Swerling II

Fluctuations occur from pulse to pulse. Similarly with the Swerling I model, the

amplitude of each pulse in the train is a statistically independent random variable with

the a Rayleigh pdf. The variations are faster than ones of Swerling I target model.

Swerling I and II are generally used to model targets composed of many independent

scatterers with similar area values like airplanes.

2.2.1.4 Swerling III

Similar to the Swerling I model, each pulse of a train will have the same amplitude.

Yet, pulse amplitude along train is assumed to be a random variable with a one-

dominant-plus-Rayleigh,

P (σ) =
4σ

σ2
avg

exp(−2
σ

σavg
) (2.2.2)

2.2.1.5 Swerling IV

Swerling IV target model resembles to Swerling III, but RCS variations occur from

pulse to pulse rather than from scan to scan
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2.2.2 Clutter Signal

Clutter modelling becomes more challenging with a high-resolution radar at a low

incident angle. Since it is a random signal, clutter can be defined by means of its

spatial and temporal statistical characteristics. Radar clutter can be modelled with a

Gaussian speckle, g; modulated by a texture parameter, τ ;

c =
√
τg (2.2.3)

In the scope of this work, it is assumed that texture parameter is constant. Thus, clutter

signal is purely Gaussian. This assumption is reasonable since clutter component in

received echo has a large number of scatterers, Central Limit Theorem can be used to

claim that clutter returns model is a multivariate Gaussian. Power spectrum of clutter

represents amplitude variations of the signal received from a given range bin.

2.2.3 Noise Signal

The thermal noise in the system is generally assumed as an independent and identi-

cally distributed complex white Gaussian random vector. Thus, it will be zero mean

and has diagonal autocorrelation matrix shown below;

u = uI + juQ (2.2.4)

E{uuH} = σn
2I (2.2.5)

u is the complex noise vector with zero mean in phase and quadrature components;

uI ,uQ . σn2 stands for noise variance.

2.3 Radar Detection

For most of the radars, classical detection process starts with clutter suppression fol-

lowed by Doppler processing and thresholding. Clutter suppression may be included

in Doppler processing or performed apart from it. In modern radar systems, inter-

ference suppression, Doppler processing and thresholding operations are performed
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simultaneously. Along each range bin, received pulses are processed. Pulse samples

are separated by a Pulse Repetition Interval (PRI).

Several clutter suppression methods can be implemented such as Moving Target In-

dication (MTI) canceller. They are inefficient for some scenarios such as in case of

slow targets etc. Moreover, Fast-Fourier Transformation (FFT) is used to analyze

spectra and extract Doppler frequency information. FFT has low resolution such that

contamination of target signals by the other targets having neighboring Doppler fre-

quencies may occur. Windowing can be used to prevent that, but it decreases SNR and

expands the main lobe of beam which is undesired for radar operation. Thus, a more

effective processing approach must be employed which is particularly investigated in

Chapter 4. After processing, thresholding is applied. The threshold dependence on

the received echo is resulted from the aim of keeping the false alarm rate constant.

Because of that the operation is called as Constant False Alarm Rate (CFAR) method

[42] which is also explained at length in Chapter 4.

2.3.1 Data Matrix

Throughout radar signal processing, in order to make it easier, a well-defined data

structure is necessary. The structure must be created such that it will enable spectral

and statistical operations over data. Depending on the data acquisition scenario, di-

mensions of the structure can be changed. It is assumed that the angular position of

the antenna remains constant in the data acquisition system. Moreover, in the scope

of this work, only the pulse number and the delay will be under interest. Thus, the

obtained data will be a matrix which is shown in Figure 2.2.
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Figure 2.2: Data Matrix

In which P is the number of transmitted train pulses. PRI is separated into R succes-

sive range cells (range bins or delay bins). Each range cell represents a delay values.

Therefore, the return signal can be sampled and stored in a PxR data matrix structure.

Rows represent the samples at a fixed PRI. On the other hand, columns stand for the

samples taken from successive pulses after a fixed delay time. Doppler processing is

performed over each range bin along slow time.

2.4 Spectral Analysis of Clutter

The spectral analysis of clutter is of great importance for adaptive radar operation.

In the Figure 2.3, a sample representation of spectral contents for targets, noise and

clutter is illustrated. As it can be predicted, the zero-Doppler bin consists of the

returns from stationary objects. Moving ones are located in the spectrum according

to their relative radial velocity with respect to the radar. Additionally, noise is spread

uniformly over the whole spectrum. Finally on Figure 2.3, the clutter usually occupies

a region near to the zero-Doppler bin. Non-zero Doppler values of clutter spectrum

are due to the intrinsic motion of clutter sources.

21



Figure 2.3: Generic Doppler spectrum of a received echo signal

From this spectrum, it can be seen that for a target which is located outside the clutter

region, the only interference will be the thermal noise. On the other hand, targets hav-

ing low velocity values will be dominated by clutter signals. If the information about

clutter spectral characteristics is inadequate, the performance of radars will be sig-

nificantly degraded. Spectral characteristics of clutter components can be estimated

from Power Spectral Density of the slow time samples at a specific range bin shown

in Figure 2.2.

During modelling and estimation of clutter Power Spectrum Density two assumptions

are suggested.

A1) Power spectrum is formed by N number of Gaussian echoes.

A2) The numbers of clutters and targets in PSD are known.

σ2
n stands for additive white Gaussian circular noise representing the radar receiver

noise power spectral density. Pi’s are the mean power and fi is the mean frequency

of ith clutter signal. Mean Doppler frequency can be calculated by using velocity in

m/s with 2.4.1.

fi =
2 · vi
λ

(2.4.1)

Moreover, the spreads of the Doppler spectra of the clutters, σ2
i ’s, are found from

spread of Doppler velocity spectrum by using 2.4.2.

σi =
2 · σvi
λ

(2.4.2)
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Thus, by using A1 and A2, clutter spectra are typically approximated by Gaussian

shaped Power Spectrum Density. This may often be a computational convenience

rather than a realistic modelling. All in all, power spectrum of received signal Ps(f)

can be written as it was in [22];

Ps(f) = (
N∑
i=1

Si(f) + σ2
n)|β2| with Si(f) =

Pi√
2πσ2

i

e
(− 1

2
(
f−fi
σi

)2) (2.4.3)

with asymptotic autocorrelation sequence

γ(t) =
N∑
i=1

Pie
(−2π2σ2

i t
2+j2πfit) + σ2

n|δ(t)| (2.4.4)

A sample power spectrum is shown in Figure 2.4

Figure 2.4: Generic Doppler spectrum of two clutters

The clutter covariance matrix determines the PSD of clutter.

2.4.1 Covariance Data Matrix Model

Received signal is x(k) = [x1(k). . . xP (k)]T where 0 ≤ k ≤ K. K stands for the

number of snapshots, secondary range cells, to the pre-specified range bin and P is

the pulse number. Index k can be dropped for convenience, so that received signal
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is x = y + n. The vector x is a stochastic Gaussian vector, having zero mean and

covariance, Rx.

For each clutter, steering matrix can be expressed as;

A(wi) = diag(
[
1 ejwiPRI ej2wiPRI ... ej(P−1)wiPRI

]
(2.4.5)

which only depends on the mean Doppler frequency of signal components. Spectral

width related component is written as;

[B](k,l) = e−2π2σ2
i (k−l)2PRI2 (2.4.6)

Thus, each clutter will have covariance

Ryi(Pi, wi, σ
2
i ) = PiA(wi)B(σ2

i )A∗(wi) (2.4.7)

If more than one clutter signal is received, a composite clutter case, a superposition

approach can be applied. If N is the number of clutter signals;

Ry =
N∑
i=1

Ryi(Pi, wi, σ
2
i ) (2.4.8)

Noise and clutter signals are uncorrelated such that Rx can be written as the summa-

tion of signal and noise covariance matrices.

Rx = Ry + σ2
nI (2.4.9)

As it can be seen Rx is full rank.

2.5 Clutter Types

Each of the different types of radar clutter possesses distinct spectral characteristics,

which can be used to determine the type of clutter. In this part, some common clutter

types are explained with corresponding spectral characteristics.

2.5.1 Ground (Land) Clutter

The modelling of ground clutter is really complex. If man-made and natural discrete

scatterers on the ground are not included, the clutter will always be stationary, having
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zero Doppler. Thus, ground clutter can have a strictly narrow spectrum, centralized

at zero Doppler. In other words, it has impulse like spectrum. By that way, the land

clutter can be classified and detected by using Doppler information. Its spectrum has

lower standard deviation value compared to other clutter types (approx.: 0-1 m/s).

Because of the fact that it can be identified from zero center Doppler value, ground

clutter is not included during analysis of scenarios having multiple clutters in one

range cell.

2.5.2 Sea Clutter

Sea clutter effect generally depends on particular characteristics of measurement en-

vironment, such as sea waves, or wind speed. They have significant effect on char-

acteristics of sea clutter spectrum. Sea clutter mean Doppler frequency is determined

by the orbital velocity of wind driven waves. Useful empirical models are studied in

literature such as Rayleigh, K-Distributed. However, it is adequate to treat it as if it is

Gaussian distributed. Sea clutter is dependent on the waves and state of sea. Douglas

Sea State, given in 2.1, is used to determine approximate velocity intervals, spread

and CNR values of sea clutter for tests. Note that, 1 knot is approximately 0.5144

m/sec.

Table 2.1: Douglas Sea State [1]

Sea State Description Wind Speed (kts) Sea Wave Height (ft)

1 Smooth 0 - 6 0 - 1

2 Slight 6 - 12 1 - 3

3 Moderate 12 - 15 3 - 5

4 Rough 15 - 20 5 - 8

5 Very rough 20 - 25 8 - 12

6 High 25 - 30 12 - 20

7 Very high 30 - 50 20 - 40

8 Precipitous > 50 > 40
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2.5.3 Rain Clutter

Unlike the spiky characteristic of sea clutter returns, rain echoes response is flat. Rain,

similarly hail or snow, generates clutter signal which can be characterized by having

continuous return over long ranges and at wide angles. It is a typical volume clut-

ter. Thus, its spectrum has a higher spread than sea clutter, with a possibly larger

shift in the center frequency. It has high possibility to mask possible targets. In re-

ality, as weather condition become rough, sea clutter spectrum must also be affected.

However, the exact relation between sea and rain cannot be foreseen. Luckily, we

do not have to know the exact relation in the scope of this work, they assumed to be

independent signals.

2.5.4 Bird Clutter

Clutter caused by birds is difficult to eliminate because of its target like characteristic.

It is a type of point clutter. Because birds can fly at up to approximately 25 m/s,

their returns are not rejected by Doppler or MTI processing. They are treated as

moving point targets. Mean radar cross section of a bird is small, but a group of bird

returns can fluctuate up to a high level (aircraft). It confuses the radar while detecting

targets with low cross sections. In addition to that, intrinsic motion of the scatters

will be relatively heavy because of that the amount of spectral spread is high. Unlike

water droplets of rain clutter, moving passively with the wind, birds are individually

powered scatterers moving in different directions with various speeds. Thus, bird

clutter effect must be under consideration during design.

To summarize, it is seen that most common forms of clutters have more or less definite

spectral characteristics which can be summarized as:

• Ground clutter spectrum is remarkably narrow and located at zero Doppler fre-

quency

• Sea clutter has a spread spectrum with a possibly moderate shift in the center

frequency

• Rain clutter has a wider spread, with a possibly higher shift in the center fre-
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quency than sea clutter

• Bird clutter has target like spectrum with a higher spread resulted from large

amount of scatterer intrinsic motion

It is also desired to identify target echoes. Despite the fact that radar target definition

depends on the application; in general, it is assumed that targets will be characterized

by having impulse like spectrum located at center Doppler frequency ranges higher

than ones of clutters. However, other cases are also investigated such as targets having

velocities close to the ones of clutter.
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CHAPTER 3

CLUTTER PROFILE PARAMETER ESTIMATION METHODS

Estimation is the process of deducing the value of a quantity of interest using some

noisy measurements or observations. As stated in Chapter 1, clutter signals are those

received from undesired scatterers, defined depending on the aim of application.

In literature, non-parametric methods are used to estimate spectral characteristics of

signals. They are derived from the Power Spectral Density (PSD) definitions of sig-

nals. Some examples are periodogram and correlogram, which will not be exam-

ined in the scope of this work. Because of the fact that, non-parametric techniques

have moderate frequency resolution, as complexity of spectrum increases, they will

not be able to separate the different signal contributions to the spectrum. For exam-

ple, in case of overlapped echoes having a big difference between amplitudes, non-

parametric methods have difficulty to distinguish signal components. Thus, various

parametric algorithms are implemented instead of non-parametric ones with the hope

of finding the most efficient one.

In parametric estimation methods, PSD is assumed to be fit to a certain functional

form. Parametric estimation methods are also known as the model based methods

such that spectral estimation is implemented to determine parameters of the signal

model as accurately as possible. Parameters of signal model are defined as moments

of PSD. Zeroth moment of PSD is related to the power of received echo. The first

moment gives the information about mean Doppler frequency. The second moment

represents spectrum standard deviation, Doppler spread value. It is important to note

that, 1st and 2nd moments of the signals are fixed during operation time. In other

words, clutter signals are assumed to be Wide Sense Stationary (WSS).

First moment of spectrum is estimated using model based methods. First imple-

mented one is MUSIC algorithm, which is based on a parametrization of time series
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autocorrelation function. Secondly, ESPRIT algorithm is tested. MUSIC and ESPRIT

give poor results when spectral spreads are moderate. Thus, as an alternative method

Burg algorithm is implemented. It also gives information about zeroth moment. Burg

showed the most satisfying first moment estimation performance. However, none of

these methods has the ability to provide second moment knowledge. Thus, Stochastic

Maximum Likelihood is implemented which is proposed in [22]. The suggested algo-

rithm accuracy was highly initial point dependent. If the initial parameter values are

not selected close to the real ones, the algorithm gives erroneous estimates. It is also

computationally heavy because it tries to find all three moments of each component at

the same time. An well-suited optimization method must be determined which gives

more flexibility while searching the optimal point. Thus, various optimization algo-

rithms and line search methods are employed to get rid of initial value dependence

and increase the accuracy of estimation. In addition to that, the number of estimated

parameters is decreased by using information obtained from the other parametric mo-

ment estimation methods. Moreover, accuracy is improved by choosing initial values

with the help of previously mentioned estimation methods.

In Chapter 3, implemented conventional parametric estimation methods are illustrated

with related signal models. Proposed novel algorithm working principle and imple-

mentation steps are explained. Finally, the most substantial test results with related

comments are represented at the end of the chapter.

3.1 Conventional Approaches (Center Velocity Estimation Methods)

The classical frequency estimation techniques are generally known as time domain

ones, based on auto-correlation or cross-correlation of signals. MUSIC and ESPRIT

are two parametric ones. They depend on the assumption that number of tones in

a measurement is known. Note that, MUSIC and ESPRIT are only applicable to

narrowband signals. For the case of interest, sources are independent and noise sig-

nals are uncorrelated. Additionally, as stated covariance matrix of received samples,

Rx, is full rank.First of all, as a parameter estimation algorithm, MUSIC will be in-

vestigated. It will be followed by ESPRIT and Burg methods to estimate Doppler

frequencies of clutters.
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3.1.1 MUSIC (MUltiple SIgnal Classification)

MUSIC is a high resolution parameter estimation method, enabling velocity estima-

tion of multiple signals of interests, target, clutter, etc. It has high accuracy. Moreover,

it can simultaneously estimate multiple frequencies. It is also applicable to short data

circumstances. It is designed by improving Piseranko harmonic method estimator

[43]. At core, MUSIC algorithm aims to obtain characteristic decomposition from

autocorrelation of received signal. First of all, sample covariance matrix is computed

from received echo, and its eigen decomposition is performed;

Rx = U · D · V′ (3.1.1)

After that, ordered eigenvalues of sample covariance matrix are extracted.

U = [u1 u2 ... un] (3.1.2)

MUSIC algorithm decomposes observation space into two sub-spaces, signal and

noise. They are orthogonal to each other. If r is number of estimated frequencies,

null space of autocorrelation Hermitian is spanned by columns of G such that;

G = [ur+1 ur+2 ... un] (3.1.3)

Frequency estimates are interpreted from angular positions of roots of equation 3.1.4.

The columns of G belong to null space[43].

aT (z−1) ·G ·G∗ · a(z) = 0 (3.1.4)

Roots nearest and inside to unit circle are found. The angular positions of roots

are used to estimate Doppler frequencies, i.e. velocities. MUSIC is computationally

expensive, but it shows strong center velocity estimation performance in case of small

standard deviations. When spread is relatively large, it may fail. As expected, it

generally gives superior results when CNR increases.

3.1.2 ESPRIT (Estimation of Signal Parameters via Rotational Invariance Tech-

nique)

Since, MUSIC is computationally heavy, ESPRIT method is implemented which

takes much less computational effort. Its lower calculation load is due to leaving
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out a search over all values. In ESPRIT, similar to MUSIC, firstly sample covariance

matrix is calculated. After eigen decomposition; matrix, having columns as signal

space eigenvectors, is found.

Rx = U · D · V′ (3.1.5)

Shift invariability between the discrete time series causes rotational invariance be-

tween the corresponding signal subspaces. The shift invariance, illustrated below, is

the basis of ESPRIT method. Rotation will be achieved by using matrices 3.1.6;

Γ1 = [Im−1 0] Γ2 = [0 Im−1] (3.1.6)

Two subspaces spanned by eigenvectors are defined as

S1 = Γ1U S2 = Γ2U (3.1.7)

By using relation of rotation operation with a non-singular matrix φ

S1φ = S2 (3.1.8)

in which ESPRIT method estimates the frequencies from eigenvalues of estimated φ;

φ̂ = Ŝ2Ŝ
−1

1 (3.1.9)

The negative of angles of eigenvalues give information about Doppler frequencies of

scatterers.

3.1.3 Burg with Maximum Entropy Method

Starting point is the idea claiming that radar clutter signals can be modelled with a low

order Autoregressive (AR) process. Well-known Burg estimator fits an autoregressive

model to the input data with the help of Burg method. Fitting operation is a constraint

optimization problem of a Prediction Error Filter model. The aim is to minimize the

forward and backward prediction errors while AR parameters fulfill the Levinson-

Durbin recursion [44].

3.1.3.1 Autoregressive (AR) Signals

The autoregressive model output variable is determined recursively. In other words,

its value depends on linear combinations of its own previous values and on a stochas-
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tic term [45]. AR signals are obtained by filtering white noise with a filter. The filter

must have no zeros and p poles. The filter given 3.1.10

H(z) =
B(z)

A(z)
=

b0

1 +
∑p

k=1 akz
−k (3.1.10)

The parameters of AR signal can be estimated by solving a set of linear equations,

called as Yule-Walker equation set. The Yule-Walker relations give the relation be-

tween AR process auto-covariance and its parameters. The Yule-Walker equation set

is shown in 3.1.11 in which σ2
n stands for noise variance;

r(k) =

 −
∑p

l=1 alr(k − l) + σ2
n|b0|2 , if k = 0

−
∑p

l=1 alr(k − l) , if k > 0
(3.1.11)

The same equation can be written in matrix form shown as follows;

r(0) r(−1) ... r(−p)
r(−1) r(0) ... r(−p+ 1)

. . ... .

. . ... .

. . ... .

r(p) r(p− 1) ... r(0)


×



1

a1

.

.

.

ap


= σ2

n|b0|2



1

0

.

.

.

0


(3.1.12)

Auto-covariance function is Hermitian symmetric such that the negative lags can be

replaced by their positive lag counterparts. By using last p equations;

r(0) r∗(1) ... r∗(p− 1)

r(1) r(0) ... r∗(p− 2)

. . ... .

. . ... .

. . ... .

r(p− 1) r(p− 2) ... r(0)


×



1

a1

.

.

.

ap


= −



r(1)

r(2)

.

.

.

r(p)


(3.1.13)

3.1.12 and 3.1.13 can be combined into;

r(0) + αp
T rp = σ2

nRpαp = −rp (3.1.14)

In 3.1.13, Rp represents a doubly symmetrical Toeplitz matrix with p × p dimen-

sions. The parameter vector and auto covariance vector is defined without the first

AR coefficient a0 as

αp = [a1 a2 ... ap] (3.1.15)
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rp = [r(1) r(2) ... r(p)] (3.1.16)

Thus, the mathematical solution can be found.

αp = −Rp
−1rp (3.1.17)

A recursive algorithm is used to obtain the solution of 3.1.17. The algorithm is called

as Levinson-Durbin algorithm.

3.1.3.2 Levinson Durbin and Maximum Entropy Method

Levinson Durbin recursion is employed in order to find poles of all pole infinite im-

pulse response filters, shown in 3.1.10, used to obtain AR signals. MATLAB built-in

algorithm uses pre-described deterministic autocorrelation sequence. Instead of using

that, a new algorithm is written by referencing [46].

By using Shannon’s information theory, information of random variables can be mea-

sured with entropy and mutual information. Entropy measures the uncertainty of ran-

dom variables. Mutual information indicates how two variables are related.

In his work [46], Haykin uses Maximum Entropy Method (MEM) to increase resolu-

tion and stability of estimation from short radar echoes. MEM, as it can be understood

from its name, aims to find the least constrained time series spectrum, related with

the known values of autocorrelation function.

By using Wiener-Khinchin theorem, the power spectrum Sx(f) and the autocorrela-

tion function Rx(m) relation can be written as in 3.1.18.

Sx(f) = ∆t
∞∑

m=−∞

Rx(m)e−j2πmf∆t (3.1.18)

where ∆t is the sampling period.

In information theoretic sense, it is the prediction of autocorrelation function maxi-

mizing the entropy of process.

Entropy(x) = −
∑
m

p(x) log2(p(x)) (3.1.19)
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For Gaussian realizations entropy rate can be written as;

h =
1

4W

∫ W

−W
ln[Sx(f)]df (3.1.20)

Assume that first 2M + 1 values of the autocorrelation function, Rx(m), are known.

If so, the desired unknown autocorrelation values must be the ones adding no infor-

mation to the process such that;

∂h

∂Rx(m)
= 0, |m| ≥M + 1 (3.1.21)

Note that, M, order of filter, will be chosen as the number of clutters.

A Prediction Error Filter (PEF) can represent beneficial information from data with

relatively less number of coefficients. After PEF obtained, it can be used to esti-

mate missing data. If M is the maximum PEF order, by combining 3.1.18 and 3.1.21

spectrum can be estimated as;

Ŝx(f) =
PM

2W |
∑M

m=0 |aM,m exp(−2jπmf∆t)|2
(3.1.22)

where the aM,m are the coefficients of a prediction error filter (PEF) of order M, and

PM is the average value of the output power of the filter [46].

As it can be understood from its name; the prediction error is the difference between

actual sample value x(n) and its prediction x̂(n). If predictor uses the previously

taken samples, it is called forward predictor. Forward prediction error is calculated

as in 3.1.23. It is the difference between, x(n) and it is estimated value, calculated by

using x(n− 1), x(n− 2), . . . , x(n−M).

fM(n) = x(n)−
M∑
k=0

aM,kx(n− k), n = M + 1, ..., P (3.1.23)

where aM,0 = 1 for all M. Note that, P is number of pulses.

Conversely, backward prediction is to estimate a sample by using values of next sam-

ples. Backward prediction error calculation is shown in 3.1.24. It represents the

difference between actual x(n−M) and its predicted value. Backward prediction of

x(n−M) is found by using samples x(n−M + 1), x(n−M + 2), . . . , x(n).

bM(n) = x(n−M)−
M∑
k=0

a∗M,kx(n−M + k), n = M + 1, ..., P (3.1.24)
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Lattice predictors can combine forward and backward one with reflection coefficients

ρi. Thus, PEF forward and backward procedure can be shown as a lattice filter [46]

with cascaded M stages as in Figure 3.1

Figure 3.1: Lattice-equivalent model of PEF of order M

For stage m + 1 of this filter, ρm is called the reflection coefficient of stage m. We

have

fm+1(n) = fm(n) + ρm+1bm(n− 1) (3.1.25)

bm+1(n) = bm(n) + ρ∗m+1fm(n) (3.1.26)

where n = m + 2,m + 3, ..., P , m = 0, 1, 2, ...,M − 1 . Moreover, all reflection

coefficients must have magnitudes smaller than unity, so the lattice filter structure is

stable.

Levinson Recursion comes to scene such that it will be used to compute the PEF

coefficients from related set of reflection coefficients. The algorithm will take com-

plex valued input signal x(n), received echo. After that, it will produce outputs listed

below.

• PM : PEF output powers

• ρ : Reflection coefficients

• aMm : PEF coefficients (denominator poynomial)

• fM(n) : Forward Prediction Error

• bM(n) : Backward Prediction Error
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n is the sample index.

am+1,k = am,k + ρm+1a
∗
m,m+1−k (3.1.27)

where k = 0, 1, 2, ...,m+ 1 and m = 0, 1, 2, ...,M − 1, with

am+1,k =


1 , if k = 0

ρm+1 , if k = m+ 1

0 , if k > m+ 1

(3.1.28)

PEF output powers are calculated recursively.

Pm+1 = (1− |ρm+1|2)Pm where m = 0, 1, 2, ...,M − 1 (3.1.29)

Reflection coefficients are needed which will be estimated from forward and back-

ward predication errors. Burg’s method aims to diminish the sum of forward and

backward squared prediction errors.

Em+1 =
P−1∑

n=m+2

(fm+1(n))2(bm+1(n))2 (3.1.30)

If 3.1.25 and 3.1.26 are substituted in 3.1.30.

Em+1 =
P−1∑

n=m+2

fm(n) + ρm+1bm(n− 1)2bm(n) + ρ∗m+1fm(n)2 (3.1.31)

If the derivative is taken with respect to ρm+1 and equated to zero in order to find

optimal reflection coefficients, the result will be

ρ̂m+1 =
−2
∑P

n=m+2 fm(n) ∗ bm(n− 1)∑P
n=m+2[|fm(n)|2 + |bm(n− 1)|2]

(3.1.32)

The summary of algorithm:

1. Initial conditions:

f0(n) = b0(n) = x(n), n = 1, 2, 3, ..., P (3.1.33)

P0 =
1

N

N∑
n=1

|x(n)|2 (3.1.34)
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2. Put m=0. Compute estimate of 1st reflection coefficient:

ρ̂1 =
−2
∑P

n=2 x(n) ∗ x(n− 1)∑P
n=m+2[|x(n)|2 + |x(n− 1)|2]

(3.1.35)

P1 = (1− |ρ̂1|2)P0 (3.1.36)

From the Levinson recursion, a1, 1 = ρ̂1

3. Find the forward f1(n) and backward b1(n) prediction errors at the first output

stage of the lattice filter:

fm+1(n) = fm(n) + ρm+1bm(n− 1) (3.1.37)

bm+1(n) = bm(n) + ρ∗m+1fm(n− 1) (3.1.38)

4. Utilize Burg’s formula in order to estimate stage 2 reflection coefficient. After

that, PEF coefficients can be calculated.

a2,1 = a1,1 + ρ̂2 ∗ a1,1 = ρ̂1 + ρ̂2 ∗ ρ̂1 (3.1.39)

a2,2 = ρ̂2 (3.1.40)

P2 = (1− |ρ2|2)P1 (3.1.41)

5. Evaluate forward prediction error f2(n) and backward prediction error b2(n)

using ρ̂2. (Put m=2, find 3 etc.)

6. When the prescribed order M of the PEF is reached, the computation will be

terminated.

7. Find roots of PEF coefficients. Angle of each root gives the phase change from

one sample to the next in one PRI.

8. Estimate radial velocity of mth component

v̂m =
c

4π · fop · PRI
θm (3.1.42)

9. The power of mth component is calculated from PEF output powers.

The algorithm computes estimates over each snapshot data. The final power and fre-

quency estimation of Burg is selected as median of estimated powers and frequencies
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of each snapshot, secondary range cell.

MUSIC, ESPRIT and Burg method performances are compared for 2 clutter case

with respect to number of secondary range cells, snapshots. The result shown in

Figure 3.2,

Figure 3.2: Center velocity estimation performance of algorithms (a) rain velocity es-

timate error (b) sea velocity estimate error for the case vrain = 26.178m/sec, vsea =

3.872m/sec, CNRrain = CNRsea = 50dB, σvsea = 1.512m/sec, σvrain =

3.108m/sec

Burg estimation has high accuracy on mean velocity estimation. Additionally, it gives

estimated power values. However, frequency estimation accuracy is not close to

Cramer Rao Lower Bound (CRB). Additionally, information quality about second

power of the spectrum was poor. In other words, spread values cannot be estimated

accurately. Since it depends on the intrinsic motion of the scatterers, the value of

spread is a beneficial indication of the source of clutter. Thus, it must be estimated

accurately.

3.2 Maximum Likelihood Based Technique (Stochastic Maximum Likelihood)

Maximum Likelihood (ML) estimation methods aim to find probability distribution,

making observed data most likely. In other words, parameter vector that maximizes

the likelihood function is looked for.
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Some properties of ML estimator can be listed as [47]:

1. It is asymptotically unbiased.

2. It is asymptotically efficient. In other words, lowest variance of parameter esti-

mations is achieved asymptotically.

3. It is asymptotically Gaussian with a mean and variance. The mean equals to

the true value of the parameter to be estimated and the variance is given by the

Cramer Rao Lower Bound (CRB).

Additionally, in case of adequate information in the measurements, Cramer Rao

Bound will approach to zero such that the ML estimation variance will also converge

to zero. This implies ML estimate will reach to the true value. It will be consistent

in that case. Therefore, the same ML solution can be obtained independent of the

parametrization used.

Since the aim is to determine PSD of clutter, parameter vector can be set as; µ =

[w1 σ
2
1 P1 ... wN σ2

N PN σ2
n]. N stands for the number of clutters. wi is the i’th

clutter angular Doppler frequency, related with first moment of spectrum. σi is i’th

clutter spread value, second moment of spectrum. Pi is zeroth moment of i’th clutter

PSD. Noise power σ2
n is assumed to be one. Thus, Pi’s become equal to CNR values

of corresponding clutters.

Maximizing log-likelihood is same as minimizing negative log-likelihood [22], given

in 3.2.1.

L(µ) = log(|Rx(µ)|) + Tr{R−1
x (µ)R̂x} (3.2.1)

where

R̂x =
1

K

K∑
k=1

x(k)xH(k) (3.2.2)

K is the number of snapshots, secondary range cells. R̂x is obtained from measure-

ments, whereas Rx(µ) is calculated using parameter vector µ. Using covariance data

matrix model, explained before, Rx(µ) can be found.

Rx(µ) = Ry(µ) + σ2
nI (3.2.3)
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where,

Ry(µ) =
N∑
i=1

Ryi(Pi, wi, σ
2
i ) (3.2.4)

Rx(µ) is invertible because it is the addition of σn2I to the parametrized matrix

Ry(µ). Since, only matrix inversion is applied on Rx(µ), R̂x does not have to be

full rank such that the expression in 3.2.1 works even with one snapshot. In order to

minimize the value of Trace in 3.2.1, the best interference space is searched.

Optimum parameters will be found by solving multi-dimensional non-linear opti-

mization problem such that;

µ̂ = argmin{L(µ)} (3.2.5)

Since the likelihood expression is complicated, finding minimum of negative log-

likelihood function analytically is impossible. Moreover, the search over all possible

values will be time consuming. Thus, an iterative method to obtain an approximate

solution must be found.

Iterative algorithms will converge to the exact solution to the problem, whenever it

exists. They begin with the given initial guess of the solution and try to improve it.

Selection of initial guess is generally depends on a good guess with the knowledge on

the problem. All optimization algorithms will start from initial guess and move step

by step to the optimal point. Each step vector will have a direction and length. While

designing optimum algorithm to find minimum of objective function, line search and

descent direction search must be considered.

Note that while computing Gradient (∇) and Hessian (H), analytic expressions,

given in 3.2.6 and 3.2.7, are used. Required first and second derivatives can be calcu-

lated from formulas given at A.

∇i = Tr{R−1
x

∂R−1
x

µi
(I− R−1

x R̂x)} (3.2.6)

[H](i,j) = Tr{[Rx
−1 ∂2Rx

∂µi∂µj
− Rx

−1∂Rx

∂µi
Rx
−1∂Rx

∂µj
]

(I− Rx
−1R̂x) + Rx

−1∂Rx

∂µi
Rx
−1∂Rx

∂µj
Rx
−1R̂x} (3.2.7)

Generally, the idea behind most minimization methods is to compute and evaluate a

value after moving a step along a given search direction, dk. The formula of iterations
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is given by

µk+1 = µk + αkdk k = 0, 1, 2... (3.2.8)

where the step length (size), αk, must be chosen such that

αk = arg min
α
L(µk + αdk) k = 0, 1, 2... (3.2.9)

Step size, αk, will be found by line search methods. The definition of dk depends

on optimization method. As it is explained in A, in detail, from various optimization

and line search methods, Fletcher Reeves with Three Point Line Search algorithm is

selected.

3.3 Proposed Approach

3.3.1 Stochastic Maximum Likelihood with Turbo Approach

Since the estimation of all spectral parameters will be computationally expensive.

A novel method is suggested in which frequency and spread values are estimated

recursively.

First of all, Burg is used to estimate the Doppler frequencies and Power values of clut-

ters. The estimates obtained from Burg are assumed to be true and standard deviations

σi’s are estimated. After that, estimated standard deviations are assumed to be true

values and Doppler frequencies of clutters are estimated. This loop is repeated for

number of iterations times. The total number of iterations is represented as numOfIt

in Figure 3.3.

Figure 3.3: Turbo Method Flow Diagram
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As it can be seen Turbo method consists of two SML estimator. The spread estima-

tor is SML method with parameter vector, µ̂ = [σ2
1 ... σ2

N ]. True frequencies are

assumed to be the ones estimated from Burg algorithm at first iteration. The other

iterations pretend the previously estimated frequencies as true values. The output of

spread estimator is taken as true values during frequency estimation. The frequency

estimator is basically a SML method with parameter vectors, µ̂ = [w1 ... wN ]. The

initial values of frequencies are selected as previously estimated ones after first itera-

tion. The pseudo code of suggested Turbo method is given below,

Algorithm 1 Turbo Estimation Method
Require: numOfIt > 0 ∨ σinit,winit

Ensure: Ptrue ← PBurg
for k ← 1 to numOfIt do

if k 6= 1 then

σinit ← σk−1

winit ← wk−1

end if

wtrue ← winit

σk ← SML(σinit)

σtrue ← σk

wk ← SML(winit)

end for

µ̂←
[
wnumOfIt(1) σ2

numOfIt(1) ... wnumOfIt(N) σ2
numOfIt(N)

]

Since the number of estimated parameters is decreased; Turbo approach will reduce

computational effort significantly. At the same time, accuracy of estimations will be

improved because of simplification of the optimization problem. In addition to that,

initial values are chosen wisely which ensures convergence to the optimal parameter

values.
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3.4 Test Results

Mainly, two clutter PSD scenarios are investigated as the ones having distant and

closely spaced components in spectral domain. First of all, the selection of number

of Turbo iterations is explained by comparing accuracy of estimated PSD’s after each

of Turbo iterations. After selecting the number of Turbo iterations, performances of

estimation algorithms are compared with CRB. CRB calculation is studied in A. The

comparison is performed by examining the error and CRB with respect to number of

snapshots, secondary range cells. Mainly, SML in [22] with initial frequencies picked

from Burg algorithm and selected as 0 are investigated. Similarly, Turbo approach is

implemented with different frequency initializations. Constant values during simula-

tions can be listed as;

• A Coherent Processing Interval (CPI) consists of 16 pulses.

• In a CPI, PRI does not change and it is 100 µsec.

• Operational frequency is selected as 10 GHz.

• The initial values of spreads are taken equal for each clutter as 0.5 m/sec at all

cases.

• Number of snapshots is 5.

• σvsea is 1.512 m/sec and σvrain is selected as 3.108 m/sec.

• σvinit’s are 0.5 m/sec.

• Fletcher-Reeves optimization algorithm with Three Point Line Search method

is used to find the maximum of Log-likelihood function.

• Number of iterations of optimization algorithm is selected as 50.

• Tolerance of optimization algorithm is chosen as 10−7.

• Sufficiently large number (≥ 50) of Monte Carlo samples are generated for

each scenario.
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3.4.1 Distant Clutters

As the distinction between clutter Doppler frequencies increases, the estimation per-

formance is expected to be improved. Thus, first of all, spectrum composed of two

relatively isolated clutters is estimated. Sea and rain velocities are selected as 3.872

and 26.178 (m/sec). Sea CNR value is taken as 50 dB during tests only rain CNR is

changed to 30, 40 or 50 dB.

3.4.1.1 Number of Turbo Iterations

Before comparing the suggested estimation algorithms, Turbo loop repetition count

must be selected. The number of Turbo iterations in Figure 3.3 is selected as 1,2 and

3. If 1 Turbo iteration is performed, Doppler frequencies will be estimated starting

from the estimates of Burg. By accepting estimated frequencies as true ones, spreads

will be estimated. 2 and 3 iteration works recursively. The estimated PSDs at each of

Monte Carlo trials is averaged. Results are illustrated in Figure 3.4.
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Figure 3.4: Averaged PSD estimates with different number of Turbo iterations

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

As it can be seen, 2 and 3 iterations gave nearly same results. Turbo iteration number

is selected as 3 for accuracy.

3.4.1.2 Performances of Algorithms

After selecting number of Turbo iterations, performances of suggested algorithms will

be compared. For distant clutter scenario, Mean Square Error (MSE) of estimated

parameters are compared with CRB. Algorithms under interest are SML with zero

initial Doppler frequencies, SML with initial velocities estimated by Burg, Turbo

with 3 iterations started from zero initial frequencies and 3 iterations Turbo initial

frequencies are estimated by Burg. Note that, since they are outlier estimates, spread

values, greater than 5 m/sec, and velocities, bigger than 100 m/sec, are not included
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in averaged error calculation of trials. Mainly, 50 Monte Carlo trials are performed.

MSE and CRB Comparison of Methods with Different CNR Pairs Firstly, the

parameters of distant clutters are estimated when they have same power values. In

other words, both sea and rain clutters have 50 dB CNR. The normalized MSE of

estimation are shown in Figure 3.5.

Figure 3.5: MSE vs number of snapshots curves for parameters (a)rain velocity esti-

mate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

Turbo methods outperformed SML significantly. Turbo methods achieved the CRB.

In other words, they give the best possible estimates for parameters of interest. While,

initiation of frequency estimate from Burg improved SML estimation accuracy, its

effect on Turbo was not considerable.

Secondly, the parameters of distant clutters are estimated when they have 10 dB power

difference. CNRsea is equal to 50 dB, whileCNRrain is 40 dB. The normalized MSE

of estimation are plotted with respect to number of snapshots in Figure 3.6.
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Figure 3.6: MSE vs number of snapshots curves for parameters (a)rain velocity esti-

mate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

Again, Turbo methods performed better than SML. Selecting initial frequencies from

Burg improved both Turbo and SML methods.

Finally, the parameters of distant clutters are estimated when they have 20 dB power

difference. CNRsea is equal to 50 dB, while CNRrain is 30 dB. The normalized

MSE of estimation are plotted with respect to number of snapshots in Figure 3.7.
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Figure 3.7: MSE vs number of snapshots curves for parameters (a)rain velocity esti-

mate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

As power difference between clutters become noticeable, the importance of Burg

initiation can be observed. As expected, Turbo initiated by Burg has most accuracy.

Since the power of rain decreased, its spread estimation becomes poor.

Estimated PSD Comparisons of Methods with Different CNR Pairs The PSD

estimation performance of suggested algorithms is observed, when number of snap-

shots is fixed to 5. The PSD estimates at each Monte Carlo trial are averaged such

that the results can be seen in Figure 3.8.
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Figure 3.8: Averaged PSD estimates of estimation methods (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

As stated Turbo methods are preferable than SML. When power difference is greater

than or equal to 20 dB. The initial frequency selection must be performed wisely.

Estimated PSD Comparisons of Methods with Different PRFs Low PRF values

are generally defined between 1 and 8 kHz. They are advantageous during maxi-

mum range detection, but long transmit pulse duration is necessary in order to send

enough power for detection. Range measurements are unambiguous, while velocity

measurements are ambiguous. Medium PRF values are generally in the range of 8-

30 kHz. The medium PRF will be a good selection for scanning radars. Both range

and Doppler ambiguities may occur but they are less severe. High PRF values are

between 30-250 kHz. They enable greatest detection range. Unlike low PRFs, range

measurements are ambiguous, velocity measurements are unambiguous. In order to
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justify the performance of estimation methods in all PRF regimes, several scenarios

are tested. Firstly, 4 kHz PRF is selected with 8 pulses. Secondly, 10 kHz with 20

pulses are implemented. Finally, for high PRF 40 kHz is selected with 80 pulses. All

scenarios will have same CPI. The result can be seen in Figure 3.9.

Figure 3.9: Averaged PSD estimates at different PRF values (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

3.4.2 Closely Spaced Clutters

When weather conditions is tough, the detection becomes troublesome. Sea and rain

velocities are selected as 3.872 and 12.345 (m/sec). Similar scenarios with distant

clutter case are investigated.
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3.4.2.1 Number of Turbo Iterations

One, two and three Turbo iteration are applied. The effect of iteration number can be

seen in Figure 3.3 from averaged PSDs obtained at each trial.

Figure 3.10: Averaged PSD estimates with different number of turbo iterations

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

Turbo iteration number can be selected as 2 or 3. It is chosen as 3.

3.4.2.2 Performances of Algorithms

For closely spaced clutter scenario, MSE of estimated parameters are compared with

CRB. Algorithms under interest are SML with zero initial Doppler frequencies, SML

with initial velocities estimated by Burg, Turbo with 3 iterations started from zero

initial frequencies and 3 iterations Turbo frequencies initiated by Burg. Outliers are
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excluded.

MSE and CRB Comparison of Methods with Different CNR Pairs First case is

closely spaced clutters having same powers. In other words, both sea and rain clutters

have 50 dB CNR. The normalized MSE of estimation are shown in Figure 3.11.

Figure 3.11: MSE vs number of snapshots curves for parameters (a)rain velocity

estimate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

Turbo methods outperformed SML significantly. Turbo methods nearly achieve the

CRB. Initiation of frequency estimate from Burg improves SML estimation accuracy

significantly. Unlike distant clutters, its effect on Turbo is visible.

Second case is closely spaced clutters having 10 dB power difference. CNRsea is

equal to 50 dB, while CNRrain is 40 dB. The normalized MSE of estimation are

plotted with respect to number of snapshots in Figure 3.12.
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Figure 3.12: MSE vs number of snapshots curves for parameters (a)rain velocity

estimate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

As in all scenarios, Turbo methods perform better than SML. The selection of initial

frequencies by Burg advances both Turbo and SML methods.

The last case is closely spaced clutters having 20 dB power difference. CNRsea is

equal to 50 dB, while CNRrain is 30 dB. The normalized MSE of estimation are

plotted with respect to number of snapshots in Figure 3.13.
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Figure 3.13: MSE vs number of snapshots curves for parameters (a)rain velocity

estimate (b)rain spread estimate (c)sea velocity estimate (d)sea spread estimate

The initiation of frequencies by Burg improves performance especially power differ-

ence between is greater than 10 dB.

Estimated PSD Comparisons of Methods with Different CNR Pairs The PSD

estimation performance of suggested algorithms for two closely spaced clutters is

observed. The number of snapshots is fixed to 5. The PSD estimates at each Monte

Carlo trial are averaged such that the results can be seen in Figure 3.14.
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Figure 3.14: Averaged PSD estimates of estimation algorithms (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

It is good to note that the initial frequency selection must be performed carefully.

The slight degradation of Turbo performance in Figure 3.14 (c) is resulted from Burg

frequency estimates.

All in all, the designed novel Turbo estimation method shows its prominent power

over SML, suggested in literature.

Estimated PSD Comparisons of Methods with Different PRFs Similar to the

distant clutter case, PRFs are selected as 4, 10 and 40 kHz with corresponding number

of pulses, 8, 20 and 80. The compatibility of Turbo to each PRF regimes is illustrated

for closely spaced clutters. The result can be seen in Figure 3.15.
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Figure 3.15: Averaged PSD estimates at different PRF values (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB
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CHAPTER 4

RADAR DETECTION BASED ON ESTIMATED CLUTTER POWER

PROFILE

Radar detection is defined as deducing the presence of a target by analyzing received

echo signal. In harsh weather conditions, radar detection performance may degrade

because of interference signals. Thus, robust algorithms must be designed in order to

suppress clutter echoes. The purpose of slow-time clutter suppression is to maintain

target signal having a certain Doppler frequency during suppression as possible.

Received echo components, target and interference signals, are random because of

that radar detection process can be considered as a statistical one. Thus, clutter sta-

tistical properties is crucial while synthesize detection algorithm. After correlation

features of clutter are determined as precise as possible, an appropriate detector will

be formulated.

As stated, since clutter return contains a large number of scatterers, Central Limit

Theorem can be used. Thus, clutter returns can be modelled with multivariate Gaus-

sian statistics. With a proper and robust estimation algorithm, Power Spectrum Den-

sity of clutter signals in received echo is estimated accurately in 3. Thus, a detector

can be designed during operation adaptively.

In this chapter, the performance of clutter estimation methods will be observed with a

detector implementation. A coherent radar pulse set, comprised from a target signal,

two clutters and noise, is simulated for performance measures. First of all, conven-

tional methods are compared. After that, proposed method is analyzed in detail. Fi-

nally, all mentioned methods are compared in order to observe detection performance

of proposed detector.
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4.1 Radar Detection

As stated in Chapter 2, classical detection process follows three steps. Firstly, clutter

suppression is done by filtering. After that, Doppler processing is applied to the

received echo. And finally, thresholding is implemented. Doppler processing may

include clutter suppression for some cases. In a modern radar system, all of three

steps are performed at the same time.

4.1.1 Signal Model

Radar detection of targets can be modelled by a binary hypothesis test. If target is

absent, H0 is the hypothesis. In case of target presence, hypothesis is represented by

H1.  H0 : x = c + n

H1 : x = s + c + n
(4.1.1)

x stands for the signal from the cell under test (CUT), at a specific range bin. In other

words, it is the collection P samples, collected from a specific range bin in slow time.

c is a vector having size P, standing for clutter samples. Similarly, vector n represents

the white noise in received echo. s is the contribution of target. In case of target is

presence, H0 is decided; this is defined as a miss. On the other hand, if decision is

H1, then it is detection. If target is absent, and its absence, H0, is determined, correct

rejection is accomplished. However, if decision is H1 then a false alarm occurs.

The absence and presence decisions for target are interpreted by thresholding the cur-

rent case. The most common criteria used for thresholding is Neyman-Pearson which

aims to obtain maximum probability of detection with a predetermined constant false

alarm probability. The detectors using Neyman-Pearson criterion is named as Con-

stant False Alarm Rate (CFAR) detectors.

If an integral is taken over region R1, containing all measurements, a target presence

is decided with likelihood functions. Probability of detection (Pd) and Probability of
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false alarm (Pfa) is calculated by

Pd =

∫
R1

px(x|H1)dx (4.1.2)

Pfa =

∫
R1

px(x|H0)dx (4.1.3)

Conditional probability density functions (pdfs) stand for likelihood functions.

If maximum Pfa is bounded by a constant value, a threshold can be obtained. In other

words, Neyman-Pearson criterion is applied to obtain decision rule.
px(x|H1)

px(x|H0)
≷H1
H0
γ (4.1.4)

Two conditional pdfs can only be decided upon knowledge of interference distribution

in CUT. If clutter and noise distributions are perfectly known, then ideal detection of

target can be performed.

Received echo, x; is actually a column array having dimension P , number of pulses

transmitted in one PRI.

x =
[
x(1) x(2) x(3) ... x(P )

]T
(4.1.5)

During the thesis interference, c; represents clutter signals. a(θs) stands for Doppler

steering vector of target having Doppler frequency fd,

a(θs) =
[
1 ej2πfdPRI ej2πfdPRI ... ej(P−1)2πfdPRI

]
(4.1.6)

Since noise power is accepted as 1, for Swerling-1 target model, received target signal

can be written as

s =

√
SNR

P
× α× a(θs) (4.1.7)

α is assumed to be a complex Gaussian random variable having zero mean and vari-

ance 1 , in short α ∼ N(0, 1).

It is desired to decrease the effect of clutter and noise in order to obtain accurate

information about target.

4.2 Conventional Detectors for Clutter Suppression and Doppler Processing

Pulses from a pre-specified range bin are processed such that interference will be

removed while getting useful target Doppler information. The processing is applied

to each range bin. Pulse samples are separated by a Pulse Repetition Interval (PRI).
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If number of pulses is denoted by P , the input signal in case of target to the Doppler

processing unit will be;

xj = sj + cj + nj j = 0, 1, 2, ..., P (4.2.1)

In classical approaches, received and sampled signal vector is filtered with a LTI filter

followed by a DFT operation.

4.2.1 Moving Target Indicator (MTI) and Moving Target Detection (MTD) Al-

gorithms

In order to get rid of clutter signal in received echo, Moving Target Indicator (MTI)

and Moving Target Detection (MTD) are two commonly used methods.

MTI method removes the stationary clutter components, caused by reflections from

mountains, buildings and hills. It uses the phase difference in received echo, resulted

from moving targets. Since stationary objects cannot cause different phase shift be-

tween pulses, they can be eliminated. MTI algorithms are also known as pulse can-

cellers such as Single or Double Delay Line Cancellers. The method is simple and

practical, but it has low performance in case of low-radial velocity targets. Addition-

ally, it will fail to suppress clutters having moderate velocity. If radar will operate on

a rainy day, its detection performance will be degraded. MTI algorithms are also im-

practical for rotating radars. Since stationary clutters will be perceived like a moving

one because of rotation, they will be eliminated.

If steered MTI filter coefficients are denoted with wMTI Assume that MTI filter is

H(z) = 1− z−1, such that signal after MTI can be found by formula xMTI = Mx

xMTI =



1 0 0 ... 0 0

0 −1 1 ... 0 0

. . . ... . .

. . . ... . .

. . . ... . .

0 0 0 ... −1 1


x (4.2.2)

Note that, first sample in x remains same after filtering. The reason behind that steady

state response of filter will be observed at least 2 samples. Thus, if DFT is applied
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output of DFT will be:

xMTI+DFT = (a(φ)(2 : P ))HxMTI(2 : P ) (4.2.3)

On the other hand, MTD has a capacity to solve problems encountered while working

with MTI. The difference between MTI and MTD is that MTD can recognize mov-

ing targets. A sub-optimum filter can be obtained by using MTD. MTD only uses

an approximate ground clutter covariance matrix and receiver noise to detect mov-

ing targets. MTD concepts combine Doppler filters with Constant False Alarm Rate

(CFAR) Detectors.

The classical Doppler processing is implemented with Fast-Fourier Transformation

(FFT). This method fails to detect targets having relatively close Doppler values. If

the disadvantage is tried to be removed with windowing, there will be a loss in SNR.

Thus, an optimum filter design is required other than previously mentioned methods.

As a conventional method, windowed DFT filter can also be used. DFT is similar to

a set of passband filters. The method has wide minimum detectable velocity range.

It is used to transform time domain to frequency domain. Windowing reduced signal

ripples in the frequency domain. It is important while designing filters. Proper selec-

tion of window function increases the spectral frequency resolution. If win stands for

P-point Chebyshev window with 70 dB side-lobe magnitude factor, the Windowed

DFT filter coefficients will be,

w = diag(win)a(θs) (4.2.4)

While MTI techniques just separates moving targets from clutter signals, Pulsed

Doppler techniques separate targets into different regimes additional to clutter can-

cellation.

4.2.2 Optimal Clutter Suppression Filter

A filter, which is equivalent to MMSE or Wiener filter, is suggested in Doppler pro-

cessing. It minimizes the mean squared error between its output and the target return.

It is known as the optimum clutter suppression filter. In the case of deterministic

signal, it is in the same class with the Max-SINR or Eigen-filter. The filter aims
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to maximize the signal to interference power ratio at its output when second order

statistics of clutter is known. Let’s go back to the signal model. For a phased array

radar, antenna array receives a narrowband signal at the time instant k which can be

represented mathematically as,

x(k) = s(k) + c(k) + n(k) (4.2.5)

x(k), s(k), c(k) and n(k) are all vectors having length, equals to number of pulses, P.

s(k) stands for the desired signal, c(k) is clutter, and n(k) is noise term.

The received signal is assumed to be zero-mean and nearly stationary. Moreover, it is

assumed that the desired signal is uncorrelated with the clutter and noise signals.

s(k) = s(k)a(θs) (4.2.6)

where s(k) is the signal waveform and a(θs) is the desired signal steering vector. For

convenience, s(k) is taken as constant.

If filtering is applied to received signal, such that

z(k) = wHx(k) (4.2.7)

w represents complex weight vector. It is the column vector having length, equals to

number of pulses. The interference and noise covariance matrix is defined as

Rc+n = E{(c + n)(c + n)H} (4.2.8)

In case of a point source, steering vector is known. Thus, filter output SINR can be

given as;

SINRout =
E[|wHs|2]

E[|wH(c+n)|2]
=
E[|s(k)|2]|wHa(θs)|2

wHRc+nw
(4.2.9)

For most of the radar systems, the main goal is to minimize signal-to-interference-

plus-noise ratio (SINR).

SINR =
wHssHw

wHRc+nw
(4.2.10)

where Additionally, the matrix C is defined such that the noise and clutter covariance

matrix can be written as

Rc+n = CHC (4.2.11)
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The optimum filter must maximize SINR at output. Cauchy–Schwarz inequality can

be used to find optimum filter coefficients which are shown in 4.2.12.

|< x, y >|2 5 ‖x‖2 + ‖y‖2 (4.2.12)

Thus, the following is obtained

wHssHw 5 ‖Cw‖2 + ‖(CH)−1s‖2 = (wHRc+nw)(sH(Rc+n)−1s) (4.2.13)

such that

SINR 5 (sH(Rc+n)−1s) (4.2.14)

To maximize output SINR, denominator of 4.2.9 must be minimized. In other words,

summation of clutter and noise powers at the output of adaptive filter must be mini-

mized, while keeping the numerator fixed. Corresponding optimization problem can

be written as;

min
w

wHRc+nw wHa(θs) = 1 (4.2.15)

The solution to this optimization problem can be found as

w = (Rc+n)−1a(θs) (4.2.16)

The optimal weights are found as;

w = R−1
x a(θs) (4.2.17)

R−1
x represents covariance of interference signals. Since noise and clutter signals

are uncorrelated, covariance of their summation is equal to the sum of covariance

matrices of the estimated clutter and noise.

The output of filter is obtained as;

z = wHx (4.2.18)

Overall, optimum clutter suppression filter requires adequate knowledge about clutter

covariance matrix. Thus, the covariance matrix of estimated parameters is used to

obtain optimum filter coefficients for adaptive detection.
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It will definitely be a preferable option over pulse cancellers. It eliminates the sensi-

tivity of antenna rotation. Moreover, detector design can be accomplished effortlessly.

Generally, during operation, the interference-plus-noise covariance matrix Rc+n is

unknown. Thus, data sample covariance matrix can be found such that;

R̂x =
1

K

K∑
k=1

x(k)xH(k) (4.2.19)

where K is number of snapshots, secondary range cells.

In order to compare the detection performances, Normalized Output SINR versus

target velocity is examined. In Neyman–Pearson theory aims to maximize Pd by the

likelihood ratio test; however, the test uses unknown covariance matrix, such that an

optimum detection criterion for practical scenarios cannot be found. Thus, instead of

finding Pd, estimation loss is observed with Normalized Output SINR.

NSINRout =
SINRout

SINRin

=
|wHa(θs)|2

wHRc+nw
(4.2.20)

4.3 Proposed Detector

Previously mentioned, optimum and sub-optimum detectors are obtained by assuming

the interference matrix is perfectly known. Unfortunately, it is not available in most

cases. A homogeneous environment is assumed. Thus, received clutter signals will

be independent and identically distributed.

R̂x = R̂y + σ2
nI (4.3.1)

If more than one clutter signal is received, a composite clutter case, a superposition

approach is applied. If N is the number of clutter signals and P̂i, ŵi, σ̂2
i ’s are estimated

moments;

R̂y =
N∑
i=1

R̂yi(P̂i, ŵi, σ̂
2
i ) (4.3.2)

For each clutter;

R̂yi(P̂i, ŵi, σ̂
2
i ) = P̂iA(ŵi)B(σ̂2

i )A∗(ŵi) (4.3.3)
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in which

A(ŵi) = diag(
[
1 ejŵiPRI ej2ŵiPRI ... ej(m−1)ŵiPRI

]
) (4.3.4)

and

Bk,l = e−2π2σ̂2
i (k−l)2PRI2 (4.3.5)

The transversal clutter suppression filter is calculated using optimal filter equation

such that,

w = R̂
−1

x s (4.3.6)

With estimated correlation matrix, the optimal weights are found as;

w = R̂
−1

x a(θs) (4.3.7)

Thus, mismatch case Normalized Output SINR will be

NSINRout =
|wHa(θs)|2

wHRc+nw
(4.3.8)

The clutter signals are generally far stronger than signals received from targets of

interest.

4.4 Simulations

To compare the performance of different adaptive algorithms with each other, some

standard benchmarks are required. Normalized Output SINRs are measured for vari-

ous scenarios. Common values and assumptions in all scenarios listed below;

• A Coherent Processing Interval (CPI) consists of 16 pulses.

• In a CPI, PRI does not change and it is 0.0001 sec.

• Target Doppler frequency is known and remains at the same value during a CPI.

In other words, the target Doppler frequency is constant during the dwell time.

• Number of snapshots (secondary range cells) is 5.

• σvsea is 1.512 m/sec and σvrain is selected as 3.108 m/sec.
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• σvinit’s are 0.5 m/sec.

• Fletcher-Reeves optimization algorithm with Three Point Line Search method

with 50 iterations and 10−7 tolerance is implemented to find the maximum of

Log-likelihood function.

• Sufficiently large number (≥ 50) of Monte Carlo samples are generated for

each test case.

• The pulse train is uniformly spaced in time.

Note that, except investigation of spread knowledge effect on detection performance,the

Normalized Output SINRs of detectors are obtained when Doppler mismatch exist

between filter and target steering vectors. While target can take any Doppler value,

Doppler steering vector, used during calculation of filter coefficients, is quantized at

the normalized Doppler frequencies
{
k
P

}P−1

k=0
. In other words, detectors assume tar-

get Doppler is located at the center of each Doppler bin which is a mismatch. While

target Doppler can take infinite number of values, filter is finite.

4.4.1 Distant Clutters

As the distinction between clutter Doppler frequencies increases, the estimation per-

formance is expected to be improved. Thus, first of all, spectrum composed of two

relatively isolated clutters is estimated. Sea and rain velocities are selected as 3.872

and 26.178 (m/sec). CNR’s are taken as 50-50 dB.

4.4.1.1 The Importance of Spread Knowledge on Detector Performance

In order to observe the effect of spread estimation on detection performance, filter

coefficients, calculated from several spread values and Burg estimated frequencies,

are used to filter received signal for non-contaminated target scenario. Only Burg

method is used to estimate Doppler frequencies. Spreads are selected as 0, 0.5, 1

and 1.5 (m/sec). The detector performances can be seen in Figure 4.1. Note that,

quantization of filter coefficients are not implemented for this scenario.
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Figure 4.1: Normalized Output SINR for different spread values assumptions

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

As it can be observed, the difference between optimal detector, designed with true

values of parameters, and detectors working with assigned spreads is remarkable.

Thus, the key behind optimum detection is the spread knowledge.

4.4.1.2 Number of Turbo Iterations

The adaptive detector performance is measured when target contamination does not

included in received echo. The covariance matrix is calculated from parameters es-

timated with Turbo having different number of iterations. Two and three iterations

include recursive estimation which can be seen in Figure 3.3.
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Figure 4.2: Normalized Output SINR of different number of Turbo iterations

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

When power values of clutters are relatively close, the performances of one, two

and three iterations are similar. However, when the power difference is 20 dB, the

Normalized Output SINR of three iterations Turbo is much closer to the optimal case

than the other ones. Thus, three Turbo iteration estimation method is selected as

Turbo algorithm for clutters, located separately in power spectrum.

4.4.1.3 Performances of Algorithms When Target Signal Contamination is Ab-

sent

After selecting the number of Turbo iterations, the overall suggested algorithms are

compared when target contamination is absent. Optimal case is jointly plotted with

SML and Turbo methods having initial frequencies estimated by Burg or taken as
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zero. Target Doppler is included during Normalized Output SNR calculation of adap-

tive filter. Moreover, the conventional detector performance is compared with imple-

mented adaptive methods.

Figure 4.3: Normalized Output SINR for estimation methods (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

From Figure 4.3(a) and (b), it is observed that zero initiation of Turbo frequencies

gave as compromise performance as wisely (Burg) initiated one. However, 20 dB

CNR difference illustrated that Turbo initial frequencies must be selected by Burg.

While initiation of Turbo frequencies become crucial in noticeable power difference

scenarios, SML accuracy is affected positively with wise initiation in all scenarios.

Generally, the conventional detector performance stands between SML methods. For

all cases, Turbo methods have better detector performance than SML methods. Thus,

from now on Turbo method, initiated with Burg frequency estimates, is chosen as the

estimation algorithm.
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4.4.1.4 Performance of the Designed Algorithm with Target Signal Contami-

nation Presence

Finally, the performance of the selected algorithm is observed, when target contami-

nation is included in received echo. Received radar signal also consists of two clutters

having relatively distinct Doppler values. Target SNR is varied between 0 and 20 dB.

The averaged performance is compared at each SNR value and the conventional radar

detector.

Figure 4.4: Normalized Output SINR with target contamination (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

The difference between optimal and estimated case become noticeable when target

contamination signal will have SNR, greater than 15dB. That is to say, if the range

sidelobes after fast time matched filtering (when target is present) due to non-zero

autocorrelation lags is 15 dB above the noise level, the performance of proposed
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detector starts to degrade. By using suggested filter in [48], target free snapshots can

be obtained. It is a fast time pre-processing technique, aiming the minimization of

loss due to target presence at secondary range cells. In the absence of target, detector

performances are given in previous results.

4.4.2 Closely Spaced Clutters

The clutter velocities are selected as relatively close to each other. Sea and rain ve-

locities are taken as 3.872 and 12.345 (m/sec).

4.4.2.1 The Importance of Spread Knowledge on Detector Performance

Similar to the distant clutter case, the effect of spread estimation on detection per-

formance is observed for closely spaced clutter scenario when no target is present.

The detector performances can be seen in Figure 4.5. Note that, quantization of filter

coefficients are not implemented for this scenario.
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Figure 4.5: Normalized Output SINR for different spread values assumptions

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

The importance of spread knowledge is also observed for closely spaced clutters

from significant difference between Normalized Output SINRs. The accurate spread

knowledge requirement is verified.

4.4.2.2 Number of Turbo Iterations

Similar to distinct velocity clutter case, the effect of Turbo iteration on adaptive de-

tection is observed in the absence of target.
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Figure 4.6: Normalized Output SINR of different number of Turbo iterations

(a)CNRrain = CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB

(c)CNRrain = 30dB CNRsea = 50dB

While 1 Turbo iteration cannot give sufficient performance, 2 and 3 iteration perfor-

mances are similar. For coherency and accuracy, Turbo iteration is selected as 3.

4.4.2.3 Performances of Algorithms When Target Signal Contamination is Ab-

sent

As the second case, Turbo and SML methods are compared with the conventional

detector. The effect of initiation on detection performance is also observed with each

estimation algorithm.
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Figure 4.7: Normalized Output SINR for estimation methods (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

From Figure 4.7 (a) and (b), the superiority of Turbo method over SML can be seen

clearly. While, initiation has no effect on detection performance of Turbo methods,

SML shows important improvement with Burg initiation. All estimation methods

are more effective than the conventional approach. The best choice as an estimation

algorithm is Turbo method with 3 iterations initiated by Burg. Additionally, it is

observed that when clutters are closely spaced the degraded parameter estimation

performance in Figures 3.12 and 3.13 does not affect the Normalized Output SINR.
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4.4.2.4 Performance of the Designed Algorithm with Target Signal Contami-

nation Presence

As a final case, target contamination is included in received echo. The detector per-

formances of the selected algorithm are observed. Two clutters in received echo have

relatively close velocities. Target SNR is increased step by step from 0 to 20 dB. The

averaged performance is compared at each SNR and the conventional radar detector.

Figure 4.8: Normalized Output SINR with target contamination (a)CNRrain =

CNRsea = 50dB (b)CNRrain = 40dB CNRsea = 50dB (c)CNRrain =

30dB CNRsea = 50dB

Until SNR reaches 10 dB, the detector performances are higher than the conventional

detector. 15 and 20 dB SNRs deteriorates the adaptive detector performance. Same

fast-time processing technique with distant clutter case can be used to obtain target

free cells.
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CHAPTER 5

CLUTTER CLASSIFICATION METHODS

In recent years, the potential capabilities of the modern radars have become tremen-

dous, with rapid advances in electronic and software technologies. For instance, opti-

mization of the detection and track performance is brought to the agenda by obtaining

high signal interference ratios with high processing speeds. Following these develop-

ments, the expectations from radars have increased in parallel.

Most of the conventional radars work with predetermined beam designs and wave-

forms. However, working environment cannot be predetermined. Consequently, the

radar must make use of resources partially autonomous. Therefore, Artificial Intelli-

gence (AI) concept comes to scene in order to rule the working of radar by determin-

ing resource allocation. The use of AI in radars applications is not limited with the

resource management. For example, it can be used to develop more intuitive methods

during beam and waveform selection or to classify radar targets [35]. In the scope of

this work, Artificial Neural Networks will be investigated for clutter classification.

The identification of moving targets and clutter signals improves radar detection per-

formance and increases the control over environment. In order to classify clutters,

Neural Network structures are studied. The design procedure of the neural networks

is explained with theoretical background information. Their performance is illus-

trated with experimental results.

To summarize, chapter 5 starts with background information about Artificial Intel-

ligence and related concepts. Secondly, proposed Neural Network structure for the

classification problem is explained. The design is tested with generated data sets.

Finally, the proposed Neural Network architecture is experimented with estimated

clutter parameters.
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5.1 Artificial Intelligence Background

Artificial Intelligence (AI) is a general field that encompasses machine learning and

deep learning.

Deep Learning concepts enable to design computer systems having the ability of

learning and improving itself from experience without being explicitly programmed.

In other words, computers gain some human like intelligence. It is an application of

AI. Deep stands for the idea of successive layers of representations so that deep learn-

ing is consecutive. How many layers contribute to a data model is called the depth of

model. Depth of neural network can be increased to improve approximation quality.

Deep learning deals with the problem of learning hierarchical representations with a

single algorithm. Traditional approach is to use shallow networks which are simple,

generic and not hierarchical. Unlike traditional machine learning algorithms such

as shallow neural networks or Support Vector Machine (SVM), deep learning ap-

proaches require no human intervention during the training process. Additionally,

convenient representation of a system must be hierarchical.

Deep learning is based on Artificial Neural Networks (ANN), in short only Neural

Networks (NN). Thus, it is better to use Neural Networks. In other words, deep

learning models are based on multi-layer neural networks, and each layer usually

learns a set of features at a different scale or complexity. Deep learning methods are

remarkably successful because of their high computational power and ability to deal

with large datasets.

In short, while classical programming uses data and rules to get answers of the prob-

lems, machine learning approaches gives rules to solve problem by using data and

answers.

5.1.1 Artificial Neural Networks

Artificial Neural Networks are inspired from neuroscience. They imitate the neural

function of the human brain. As it can be understood from its name, it is a network

composed of artificial neuron units. Units have connections in between.
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Perceptron As stated, ANNs are inspired from biological neural networks such

that the perceptron is an abstract model of a single neuron. The perceptron is a linear

classifier defined by weights, wi’s and bias, b. It was suggested by Rosenblatt in 1958

[49]. A neuron’s dendrites are modelled by weights. Weights are multiplied with

input values and summed up to get output, z. The corresponding perceptron model

can be seen in Figure 5.1.

z =
n∑
i=0

xiwi + b (5.1.1)

Network uses perceptron learning rule to adjust its weights such that weight adjust-

ment is done by calculating the error between desired and actual output of the net-

work.

Figure 5.1: Perceptron with n inputs, one output and an activation function

Activation Functions and Nonlinearity After weighting, output will be fed into

the activation function A(z). Since the weighting is same as computing linear com-

bination of inputs, the model will be linear independently from number of layers. If

neural network units have no activation function or only a linear activation function,

then only linear problems can be solved [50]. Thus, non-linearity must be achieved

by activation functions. In other words, activation function must not be linear so that

NN has the capability to solve non-linear problems.

Briefly, the activation of a neuron in layer k is a linear mapping of the neuronal activa-

tions of layer k − 1, followed by a non-linear function. The most common activation

function is sigmoid.
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Sigmoid Function Sigmoid function output is restricted between 0 and 1, which

can be seen in Figure 5.2.

sigmoid(x) =
1

1 + e−x
(5.1.2)

Figure 5.2: Sigmoid Function

Sigmoid function may give zero gradient values which increases the convergence time

of weight adjustments. Thus, additional to the non-linearity requirement, activation

function must be differentiable. Exponential Linear Unit (ELU), Rectified Linear

Unit (ReLU) and Softmax are other alternatives for activation function selection. If

sigmoid will not be efficient, one of them can be implemented.

Feed-Forward Neural Network (Multilayer Perceptron) As stated, the typical

ANN has a structure with layers. Each layer of the architecture contains some amount

of neural units. A variety of networks can be listed depending on the kind of intercon-

nection. If connections at same layer or with the back ones, it is a recurrent neural

network. If the connection is on one direction to the output layer, then the network

is called feed-forward neural network. Backward loops are not used in feed-forward

networks.

Feed-forward neural networks (FF NN), or Multilayer Perceptrons (MLP); are net-

works having series connected perceptrons. It consists of layers with specific names.

• Input layer: holds the values and distribute them to the next layer

• Output layer: final state of the NN is read
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• Hidden layers: layers between input and output, connected using weighted

links to the higher levels

In Figure 5.3, a feed-forward neural network having 3 nodes in input layer, 4 nodes

at output layer and 4 nodes at one hidden layer is illustrated.

Figure 5.3: A Feed-forward Neural Network with one hidden layer

The perceptrons located at hidden and output layers are called as units. The widths

of layers are defined by number of units. A feedforward neural network involves

multiple layers of hidden neurons, with activations. Thanks to non-linearity of acti-

vation functions, the network can approximate every continuous function with high

accuracy, which is a potent property. As the network become deeper, its performance

generally increases. The numbers of input and output nodes are determined according

to the application data. Moreover, if number of feed forward neural network hidden

layers is greater than one, it is called a deep neural network.

Feature Extraction As data sizes enhance, direct feeding of data into network be-

come impractical or even impossible for some problems. Thus, some kind of prepro-

cessing must be performed. Feature extraction is preprocessing of overall data into a

smaller set. Extracted features will be the inputs of machine learning algorithm.

83



Feature is any data extractable from measurements. The selection of features is cru-

cial since classification, the assignment of input into one of the pre-defined classes,

will be based on the selected features. While selecting features, values having much

more information about input data are desired. A classifier partitions feature space

into class labelled decision regions. If class assignments are done uniquely, decision

regions must cover all feature space and be disjoint. Generally as a classification

strategy, feature vectors are assigned according to decision regions.

Training Training is the learning phase of the neural network. During training, the

weights will be adapted and learned. Different learning approaches in AI are known

as supervised, unsupervised and reinforcement.

First one is supervised learning, in which the machine learning training set is labelled.

In other words, each pair of input data mapped to a labelled output. The goal is to

find function or rule, which maps the input to the desired output label. Even data en-

countered for the first time must be correctly mapped. Classification and regression

problems are sub-field of supervised learning. In classification problems, input of an

example is divided into two or more classes such that mapping will be onto these

classes.

In unsupervised learning, training set has no label. The algorithm finds a structure in

the data. Clustering models are necessary. Clustering is grouping values with respect

to similar properties.

In reinforcement learning, the goal is pre-specified. Unlike supervised learning, an-

swer about how to accomplish the goal is not known. The system learns the way

depending on its own previous experiences and outcomes while doing a similar kind

of a job. It is all about making decisions sequentially.

Feed-forward neural networks are sensitive to training parameter selection, which

must be comprehensive. Moreover, over-training may occur if a hidden layer is larger

than necessary. Thus, Curse of Dimensionality and Dimensionality Reduction con-

cepts are studied in order to obtain optimal training data.

Curse of Dimensionality The number of training data is an exponential function

of feature array dimension [51]. Bellman gives the phenomenon a name as “curse of
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dimensionality” [52]. Partitioning the input space and labelling each partition is an in-

efficient technique. As the dimension of data increases, finding practical training data

set, fulfilling the requirement, will become critical. Most common classifiers make

estimation of unknown parameters and use them in the class-conditional densities as

if they are true parameters. If the sample size is fixed, the accuracy of parameter

estimates decreases with increasing number of features. Thus, the performance of

classifier may degrade because of the corresponding increase in the number of un-

known parameters. Enhancement of the sample size can be a solution, but it will

not be practical generally. On the other hand, data dimensionality reduction can give

optimal results.

Dimensionality Reduction Dimensionality reduction is possible by searching for

the optimal features. The optimality criterion is to decrease classification error. The

most informative subset of the data must be selected, feature selection. Alternatively,

new features can be generated with transformations or combinations of the original

data set, feature extraction. The choice of which one will be used depends on appli-

cation. For clutter classification, feature extraction is utilized.

Loss Functions The learning of neural network is actually a loss reduction. Loss

(cost) functions are used to represent the quality of estimation. Classification prob-

lem performance measure is accuracy, which describes the ratio of correct classified

examples with respect to all results. A loss function maps variables to a single output,

loss. Loss stands for the discrepancy between the function output and the expected

value. Choice of the loss function depends on the learning problem. The most com-

monly used loss function is Root Mean Square Error (RMSE) or MSE. For example,

MSE loss function is a useful for regression problems, since MSE punishes the differ-

ence in outputs. Thus, for tasks like regression which represent exact values in output

nodes, RMSE or MSE is better.

L = RMSE(ŷn, yn) =

√∑
(ŷn − yn)2

N
(5.1.3)

However, for classification problems, MSE is not convenient. Cross-entropy loss is

more advantageous. First of all, calculation of N number of class probabilities is
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performed. Then, compared with expected output such that loss can be written as

L = CE(ŷn, yn) = −
N∑
i=1

yn,ilog(p(i|ŷn)) (5.1.4)

Minimizing Loss Neural network design parameters must be optimal in order to

provide better approximations. Thus, again an optimization problem must be solved

by using an algorithm minimizing the loss function. Popular choices are Stochastic

Gradient Descent (SGD), Root Mean Square (RMSProp) and Adam. SGD is used,

an iterative learning method that starts with some initial randomly selected parameter

values. It is same as method in A, Steepest Descent Method. Given θ ∈ (W
⋃
B) is

the parameter that will be optimized such that it will give lowest loss function value. If

µ is learning rate and∇θL(f(x), y) is partial derivative of loss function with respect

to parameter θ, the learning rule assigning the new value of parameter θ for a simple

example would be

θ? = θ − µ∇θL(f(x), y) (5.1.5)

By performing adequate iteration, SGD aims to find a global minimum for the loss

function, with given data and initial values of parameters. This involves computing

the gradient of the error term with respect to the parameters of each layer, a procedure

known as back propagation. It is a popular algorithm because it is basic and effective.

The aim is to find a function mapping of input data to the output data during training.

The average loss over the complete training set is computed by the loss function.

Back propagation algorithm consists of four stages,

1. Calculation of network outputs

2. Computation of error between desired outputs and the network outputs with

respect to objective function

3. Computation of update values for error minimization

4. Update of parameters with previously updated values [53]

The choice of learning rate, µ, is important. If it is too small, the algorithm will take

too much time to find optimum point and may stuck in a local minima. On the other
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hand, if it is too large, the optimal solution can be missed. Thus, it must be chosen

wisely. Additionally, starting point is crucial, since it determines the start of path.

During training, iteration is defined as learning step. Each of the iterations describes

one update with the gradient descent. Epoch is one passing of the algorithm over the

complete training set.

Regularization The ability of classifying unseen data is done by generalization of

the data. The training data set cannot include every possible instance of the inputs,

because of that limitation the learning algorithm must be able to generalize in or-

der to handle unseen data points [50]. During testing, generalization error must be

measured. If it is high, two reasons must come to mind. First one is under-fitting,

resulting from capacity deficiency. Thus, both of training and test phases will have

high errors. Second one is over-fitting, over-much capacity, in which training error

will be low, but test error will be significant. In order to use the right capacity model

for the problem, regularization is performed.

Most common regularization methods aim to prevent over-fitting of neural networks.

Over-fitting occurs when the weights converge for the training dataset. In other words,

the network performance for the training dataset is high, but its generalization cannot

be performed to work with any other data. Generally, L1 or L2 regularizations are

used for regularization. L2 regularization is implemented when necessary by adding

an extra term to the cost function.

5.2 Proposed Neural Network

In many applications, Artificial Neural Networks (ANNs) are preferred because of

their ability of modelling non-linear statistical data. According to [54], they have

shown satisfying performance in the field of classification. As stated, discrimination

and classification of radar signal will significantly improve radar detection perfor-

mance. Additionally, the clutter identification is an important knowledge for radar

operation. Thus, ANNs are implemented to classify clutter data.

Classifiers use pattern matching to determine a closest match in other words they es-

timate the owner class of the data. A neural network classifier is designed and used
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to distinguish several common types of radar clutter returns including weather, sea,

birds.

ANNs are composed of 3 entities: network topology, characteristic of each neuron

and training strategy.

An artificial neural network is simulated to observe its working principle and ensure

that it gives preferable results in the aspect of clutter examination. In the scope of

work, an optimal feed-forward neural network design is aimed because of following

advantages:

• Learning ability from input data

• Non-parametric solution

• Ability to solve non-linear problems

• Comparing to classical methods, its clutter classification success is 80% higher

[54].

The work flow for the general neural network design process consists of five primary

steps:

1. Collection of data

2. Creating the network

3. Configure the network and Initialize the weights and biases

4. Training of the network

5. Utilization of the network

Note that, final validation must be carried out with an independent data set. System

design cycle is shown in Figure 5.4.
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Figure 5.4: Classification System Design Cycle

A class is defined as a set of patterns known to originate from the same source. In our

case, sources are clutter types. Input will be features extracted from radar data. Thus,

overall problem schema can be seen in Figure 5.5.

Figure 5.5: Classifier of Radar Signals

5.2.1 Pre-Processing and Feature Extraction

First of all, training and test data sets must be generated. Since the handling of whole

radar signal will be time-consuming, a feature extraction approach must be imple-

mented. For feature selection, one of papers from S. Haykin[37] is used. Features

giving most information about received signal are selected.

As stated in Chapter 2, radar clutter may be modelled as a relatively low order AR

process [46]. One can generate AR parameters of included clutter types which are

investigated in Chapter 2, in detail. A multi-dimensional PEF will be used to esti-

mate the characteristics of data. As the dimensionality of data increases, prediction

capacity will improve. One of papers of Haykin [46] shows that; a decent feature

set for a statistical Bayesian classification can be generated with the help of reflec-

tion coefficients. Reflection coefficients are resulting from the lattice implementation

of the prediction-error filter (PEF). Moreover, radar features were extracted based
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on second-order statistics. However, useful information may be contained in higher-

order statistics. Thus, an effective feature selection is performed.

Phase Variations of Sample Sequence as Features Angles of reflection coeffi-

cients will be used as features. Yet mean Doppler shift, φ, is generally unpredictable.

Thus, it must be removed to reduce randomness of estimation. Removal is done by

Doppler frequency normalization, applied to all reflection coefficients.

ρ′m = ρm exp(−jmφ) where φ = arg(−ρ1) (5.2.1)

By using above equation, the neural classifier input is cleaned from the Doppler in-

formation. However, it can be used in the post-processing procedure. Additionally,

magnitude of first reflection coefficient is normalized and then used.

u0 = 10 log
|ρ1|

1− |ρ1|
(5.2.2)

Note that as the |ρ1| become closer to unity, the larger value of u0 will be obtained.

Magnitude Variations of Sample Sequence as Features With the help of Gaus-

sian clutter assumption, second-order spectral parameters will be sufficient to obtain

all statistical properties of the input data. If distribution differs from Gaussian, higher

order spectral characteristics become necessary to deal with the data. For instance,

aircraft (target) and ground echoes exhibit significant deviations from a Gaussian dis-

tribution. Thus, higher order statistics must be used to generate new features in order

to obtain more robust clutter classification method. For example, skewness and kur-

tosis can also be used as features.

The skewness measures the asymmetry of a distribution around its mean. If distribu-

tion skewed to the right of mean, skewness will be positive. On the other hand, if the

distribution decline towards left of mean, skewness will be negative. Skewness of a

vector x having length M ;

Skewness(x) =
1

M − 1

M∑
i=1

(xi − µ(x))3

σ3
(5.2.3)

Kurtosis measures the flatness of a distribution comparing to a Gaussian distribution.

If it is positive, distribution is peakier around its mean with respect to a Gaussian
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with same parameters. On the other hand, negative kurtosis indicates that the density

is more flat around its mean than a Gaussian distribution.

Kurtosis(x) =
1

M − 1

M∑
i=1

(xi − µ(x))4

σ4
(5.2.4)

Since calculation of higher order statistics with video signal will be waste of time, a

new time series, z(k); is generated by normalizing magnitude of radar video signal,

z(k) =
xmag(k)− E{xmag(k)}

E{xmag(k)}
(5.2.5)

Based on the new time series, z(k); skewness and kurtosis are calculated. Signal

strength related features are also used. If L is the number of disjoint spatial zones

and K is the number of samples taken from each zone, PC is the average power of the

center samples:

PC =
1

L

L∑
i=1

|xi[
K + 1

2
]|2 (5.2.6)

and the average value of the center-sample magnitudes:

XC =
1

L

L∑
i=1

|xi[
K + 1

2
]| (5.2.7)

and P0 is the estimated average signal power:

P0 =
1

LK

L∑
i=1

K∑
k=1

|xi(k)|2 (5.2.8)

Thus, first signal strength related feature can be selected as the normalized sample

magnitude variance, Pvar. Second one is the power difference between the center and

edges of a time series, Pdif . The Pvar and Pdif are defined as

Pvar = 1− X2
C

PC
Pdif =

PC
P0

− 1 (5.2.9)

Signal to Noise Ratio (SNR) is used as the last feature.

SNR = 10 log
P0

N0

(5.2.10)

To sum up, feature selection plays an important role in classifying systems. First of

all, Gaussian distribution parameters are found. After that, AR modelling of spectrum

is derived. Magnitudes and phase of the poles and reflection coefficients will be used

as inputs. They are calculated by Burg’s algorithm. Then higher order statistics are

considered in order to work with data deviating from Gaussian.
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5.2.2 Neural Network Architecture

Since search volume of radar data is vast, the selection of NN architecture is im-

portant. Neural network structure can have multiple hidden layers with a number of

nodes. Input layer is considered as layer 0. At each layer the linear combinations of

previous layer’s output is computed. The computation results are delivered as outputs

after applying activation function. Two crucial questions come to mind: how many

hidden layers and how many units of them are needed?

Numbers and distribution of neurons used at hidden layers directly affects the perfor-

mance of an NN. Several topologies can be employed to find the ideal one to solve the

problem, empirically. Since perfect design for application cannot be foreseen, only

an approximately optimum architecture can be found after repeated tests. A Python

code is implemented to simulate the proposed architecture.

If a 5 order PEF is used as the feature extractor, phase variations will be measured

with u0, Re{ρi}, Im{ρi} i = 2, 3, 4, 5. Magnitude variations are represented by

skewness, kurtosis, Pvar and Pdif . The final signal-strength-related feature is SNR.

Thus, in total 14 features, [ u0, Re{ρ2}, Im{ρ2}, Re{ρ3}, Im{ρ3}, Re{ρ4}, Im{ρ4},
Re{ρ5}, Im{ρ5}, Skewness,Kurtosis, Pvar, Pdif , SNR] , will be used. Therefore,

the input layer of the multilayer network consists of 14 nodes. As number of hidden

layers increases, topology becomes complex. Two hidden layers will be satisfactory

at the beginning of tests. Numbers of nodes in hidden layers are selected as 20 and 10.

This can also be changed if it cannot give promising results. Finally, 3 output nodes

are defined. The class label at the output is determined by recognizing the neuron at

output layer, generating the largest value among others. The overall structure can be

seen in Figure 5.6.
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Figure 5.6: Designed Feed-forward Neural Network structure

Supervised learning without feedback is used. After initialization of weights, a mod-

ified back-propagation algorithm is used to update them. Rate of convergence is

improved with the help of the modified back-propagation algorithm.

Since FF NN has slow training comparing to some others classifiers in literature, it

is favorable to use gradient descent as training algorithm. Hyper-parameters must be

selected before training. These parameters will not be learned during the training.

Some examples of hyper-parameters are learning rate, number of layers or width of

layers. To find the optimum ones, several models with different hyper-parameters can

be tested such that the model with the lowest error can be chosen.

Four main strategies are available for searching for the optimal configuration. Babysit-

ting (aka Trial and Error), Grid Search, Random Search and Bayesian Optimization.

Babysitting is the most popular one among researchers, students, and hobbyists.

If this approach implemented during training, highest capacity model will be the
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choice. Yet, it may result in over-fitting. Thus, training set will be further split in

a validation set so that the model giving lowest generalization error will be selected

one. Thus, three data sets are used, training, validation and a test set. Validation set

will not be used during training. Actually, performance of validation set depends on

NN selection will have a bias because of model dependence on validation set. Thus,

the performance must be measured with test data set.

5.3 Experimental Results

Tests will be performed by selecting one or two of the clutter given in 5.1. The most

distinct features among the spectral parameters are selected.

In 2, it is seen that three forms of clutter have more or less definite spectral character-

istics.

1. Ground clutter has a impulse-like spectrum centered at zero Doppler

2. Weather clutter has a wider spread, with a possible moderate shift in center

Doppler frequency

3. Clutter due to returns from birds is widely spread in frequency, with the center

frequency possibly shifted noticeably away from zero Doppler

For each clutter type; velocity, spread and CNR intervals are approximately defined

shown in 5.1.

Table 5.1: Statistical Parameters

Type Velocity (m/sec) Spread (m/sec) CNR (dB)

Ground 0 0-1 1-30

Sea 0-15 0.7-1 1-50

Rain 0-30 1.8-4 1-50

Bird 5-30 0-1 3-50

Target 0-300 0-0.2 1-50

The mean of phase difference between signals give information about radial velocity
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of target reference to radar. A multi-segment Burg algorithm for reflection coeffi-

cients is used. By taking a reference phase Doppler information is removed from

input of classifier (ρ1). As the order of spectra increases, the ability to show devi-

ations from Gaussian increases. Combined skewness and kurtosis is considered for

performance evaluation. [37] The performance of neural network architecture was

examined by following listed steps.

1. Choose training pairs, architecture, learning rate, initial values for weights, ac-

tivation function, batch size and cost functions

2. Shuffle training pairs

3. Run neural net on each pair in the first minibatch or each pair

4. Calculate cost results

5. Calculate gradient of cost with respect to weight

6. Update weights

7. Repeat steps 3-7 on next minibatch

8. Repeat steps 2-7 for as many epochs as required

5.3.1 Train the Network

Network connections are formed via training. In other words, internal structure will

be adapted such that it will have ability to classify similar patterns. The main goal is

to infer the statistical distribution of the data and its parameters. Many training meth-

ods are suggested, in literature. A back propagation algorithm is used for training,

which can be used on supervised learning problems. Classification problem outputs

are known, such that clutter labelling is a supervised learning problem.

The selection of training data set has considerable effects on the performance of

the network. As mentioned before, it is trained to distinguish the moving object

classes. Training data set contains feature parameters computed by the feature ex-

tractor. Training data set must be comprehensive. Features are used as classifier

input. The desired outputs are clutter labels. The computed class label is determined
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from neuron having the largest output value among others. Thus, 100% true clas-

sification results are obtained for widely different velocity and spread valued clutter

parameters. Thus, to obtain accuracy limits several cases are tested with approximate

clutter parameters.

The goal in training is to find weights and biases in order to minimize the quadratic

cost function such that an optimization algorithm is needed. During learning Gradient

Descent algorithm is used.

If it is trained to distinguish 2 moving objects, one can use 1 or 2 types in one range

cell. 2 types and one type in one range cell cases are selected for tests. By exploiting

the Doppler information, ground clutter can be distinguished.

A neural network with enough elements (called neurons) can fit any data with accu-

racy. If a feature is useful during training in some locations, detectors of the feature

will be available in all locations during testing. Regression, the process of fitting

models to data, is used. As a result of this, different neural networks, trained with the

same input data set, can give varied outputs on the same problem. To ensure that a

neural network of decent accuracy has been designed, it must be retrained for several

times.

5.3.2 Test Neural Network

The performances are measured in terms of classification rate of each class with Av-

erage Classification Rate (ACR) in percent.

5.3.2.1 Some Possible Problems

Vanishing Gradient Problem When more layers using certain activation functions

are added to the neural network, the gradient of loss function may become zero. This

is an instability problem of neural network models using Gradient based optimization

techniques. If it occurs, network will become challenging to train. For example, a

large change in input of sigmoid activation function will result in small change at

output. Thus, the derivative of corresponding case will be small.
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If vanishing gradient problem occur ReLU can be used as an activation function.

ReLu does not cause small derivative. If neuron is active, the gradient is positive and

not tending to zero at all. If neuron is not active, it will basically die. If neuron death

is not desired leaky ReLu can be used.

Exploiting Gradients If gradients become larger, back propagation will be unsta-

ble. If gradient become enormous at some point, even if later layers can learn prop-

erly, overall training will be ineffective because of the corrupted learning in earlier

layers. Earlier layers carry the initial abstraction which affects the behavior of fol-

lowing ones. Gradient Scaling or Gradient clipping can be used to remove exploiting

gradient problem.

5.3.2.2 Hyper-parameter Selection

Hyper-parameters are all the training variables set manually with a pre-determined

value before starting the training.

Effect of Training Data Size Neural networks can be trained with large amounts

of data. The amount of data must be chosen depending on complexity of problem and

selected algorithm. There is no one size fits all answer. The training data size is found

for two moderately distinct clutters (ground, bird) classification with a sigmoid acti-

vation function for a two hidden layered neural network. After several simulations,

training size is selected as 21000, while test and validation data sizes are 6000 data

sets.

Effect of Number of Hidden Layers and Nodes Number of layers must be chosen

wisely. If it is too high some problems such as over-fitting and vanishing and explod-

ing gradient may occur. On the other hand, lower number of layers may cause high

bias and low potential model. The value generally depends on the size of training data

set. Number of hidden units per layer must be chosen, adequate to find a sweet spot

between high bias and variance. First hidden layer must have more nodes than input

layer. By considering training data size and problem complexity, number of nodes
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in hidden layers are selected as 20 and 10. Resulting training accuracy is shown in

Figure 5.7, which satisfies expectations.

Figure 5.7: Training accuracy

Effect of Activation function The most common ones are ReLU, LeakyReLU,

Sigmoid and Tanh (only for shallow networks). Sigmoid is preferable because of

simplicity. If vanishing problem occur, ReLu can be implemented.

Effect of Learning Rate Learning rate is used for updating the weights and biases.

It is responsible for the core learning characteristic. As learning rate increases, train-

ing time will decrease. As it can be interpreted from its name, it determines how fast

a network updates its own beliefs with new ones. During training, at each of itera-

tions the derivative of loss function is calculated with respect to each weight and bias,

and subtracted from that weight and bias. If this process repeated too much, weights

become over-correct such that the loss will actually increase or diverge. Thus, selec-

tion of learning rate is substantial. Bigger learning rates can prevent convergence to

the minima; similarly algorithm cannot converge to a minimum point in case of too

small steps. Trials with powers of 10 is recommended, specifically 0.001, 0.01, 0.1,1.

Comparison of different learning rate is shown in Figure 5.8.
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Figure 5.8: Learning rate

After multiple trials, for test scenario learning rate is selected as 0.005.

Effect of Mini batch size A Mini-batch is a group of training dataset samples. Neu-

ral network updates its parameters after computing loss with a subset of the training

set. It is applied to prevent local minimum problem. If batch size is too small, learn-

ing will be slow and loss may oscillate. The gradient descent will not be smooth.

If it is too high, one training iteration time will be long with relative small returns.

It is generally taken as 8, 16, 32 or 64. It can also be chosen manually. If training

iterations take too much time, the value is increased. If it oscillates too much, it is

decreased. Once batch size is chosen, it become locked, such that no need to change

with the variation of other hyper parameters. Thus, Mini Batched Gradient Descent

is the algorithm, used to update weights of every layer at each of iterations.

Number of epochs Number of epochs represents how many times entire training

data will be examined by training algorithm. It is important during model fitting

to train data. One epoch can contain more than one mini-batch. High number of

epochs may result in over fitting such that probability of generalization problems of

the test and validation set increases. Lower number of epochs may restrict the model
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potential. A variety of values must be tried to find the optimal one.

Effect of Weight Initialization Weight Initialization is the selection of weights of

percetrons for initial iteration. Zero or constant weight initializations are not popular.

It is wise to use a Gaussian distribution to initialize weights and biases. A normal

distribution is selected, having zero mean and 1 as variance.

Effect of Regularization In regularization, an extra term is added to the cost func-

tion. Regularization parameter λ denotes the degree of regularization. If it is zero, no

regularization is performed. On the other hand, large values of λ correspond to high

regularization. Regularization only adjust the weights at each layer. Generally, biases

are untouched. It is selected as 1 when necessary.

Effect of Distinction of Classes As the distinction between classes of interest in-

creases, classification accuracy will improve. Both training and test accuracy of two

scenarios are shown below.

Table 5.2: Train and Test Accuracies for Two Scenarios

Train Accuracy (%) Test Accuracy (%)

Bird - Groud 100 100

Sea - Rain 94.1 93.8

In which, the accuracy of sea and rain classification is lower because their Power

Spectrum Densities are close to each other. In other words, while bird and ground

clutters form relatively more distinct spectrum, sea and rain will have coinciding pa-

rameter values, datasets.

5.3.2.3 Test Scenarios

Clutter types in train data have equal probability. As weather condition get harder

probability of target detection decreases and weather clutter classification rate in-

creases, as expected.
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Three Moving Object In these scenarios, three classes are defined; sea, rain and

target. The designed neural network architecture is tested such that it will classify

echoes reflected from three moving objects. Training data is generated using Table

5.1. The training accuracy is 93.6%. Data sets are generated such that each class

will have a similar amount of data. Test accuracy is measured in order to justify the

performance of designed neural network.

Calm Day In a calm day, sea and rain velocities will be moderately lower. Target

power will be dominant. 6000 data sets are produced by using 5.3.

Table 5.3: Calm Day Scenario

Type Velocity (m/sec) Spread (m/sec) CNR (dB) Test Accuracy

Sea 0-5 0.7 10-20

87.2 %Rain 0-10 1.8-2.5 10-20

Target 0-300 0.001 40-50

A confusion matrix can be used to illustrate the results of classification. Unlike accu-

racy which simply puts everything into single number. The confusion matrix is of n

x n dimension, where n is the number of classes. Confusion matrix entries are given

in percentage with respect to test data size.The calm day scenario Confusion matrix

is given as,

Table 5.4: Calm Day Test Results

Predicted

Sea Rain Target

A
ct

ua
l Sea 32.8% 2.1% 0.1%

Rain 10.6% 24.4% 0.0%

Target 0.0% 0.0% 30.0%

In the confusion matrix, it is possible to see where the miss-classifications occur.

Ideally, a confusion matrix shows a diagonal from the top-left corner to the bottom-

right corner.
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Moderate day, light wind In a regular day, sea and rain velocities will be moderate.

Target power will be similar to ones of clutters. 6000 data sets are produced by using

5.5.

Table 5.5: Moderate Day Scenario

Type Velocity (m/sec) Spread (m/sec) CNR (dB) Accuracy

Sea 5-10 0.85 20-35

93.4%Rain 10-20 2-3 20-35

Target 0-300 0.001 25-35

Confusion matrix let to distinguish between different types of success and errors made

by the classifier, which is given as,

Table 5.6: Moderate Day Test Results

Predicted

Sea Rain Target

A
ct

ua
l Sea 31.8% 3.2% 0.0%

Rain 3.4% 31.6% 0.0%

Target 0.0% 0.0% 30.0%

Rough/Stormy day In harsh weather conditions, sea and rain velocities will be

high. Target power will be lower than ones of clutters. Test data sets are produced by

using 5.7 randomly.

Table 5.7: Rough Day Scenario

Type Velocity (m/sec) Spread (m/sec) CNR (dB) Accuracy

Sea 10-15 0.95 35-50

95.2%Rain 20-30 3-4 35-50

Target 0-300 0.001 10-25

In order to better identify the classes which is not generalized well by the model, a

confusion matrix is implemented based on the results of test dataset. The detailed

Confusion matrix is given as,

102



Table 5.8: Rough Day Test Results

Predicted

Sea Rain Target

A
ct

ua
l Sea 30.3% 4.5% 0.2%

Rain 0.1% 34.9% 0.0%

Target 0.0% 0.0% 30.0%

In all scenarios, target classification was successfully performed because of its dis-

tinct velocity and spread values. As powers of clutters increases, the classification

performance improves.

Two Objects Two clutter classification is aimed. The training data is generated for

most general scenario. First of all, two classes is classified by assuming 1 clutter exist

in each data set, specified at a range bin.

Table 5.9: One Clutter in Each Dataset

Type Velocity (m/sec) Spread (m/sec) CNR (dB)
Train

Accuracy

Test

Accuracy

Sea 0-15 0.7-1 1-50
94.1% 93.8%

Rain 0-30 1.8-4 1-50

The detailed Confusion matrix is also given as,

Table 5.10: One Clutter Test Results

Predicted

Sea Rain

A
ct

ua
l Sea 47.6% 2.4%

Rain 3.8% 46.2%

Secondly, three classes are classified. First and second ones are two clutters, and third

class is the case when both of clutters exist in a range cell. The probabilities of three
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classes are equal. The power spectrum parameter intervals and accuracy results are

shown in 5.11.

Table 5.11: One or Two Clutters in Each Dataset

Type Velocity (m/sec) Spread (m/sec) CNR (dB)
Train

Accuracy

Test

Accuracy

Sea 0-15 0.7-1 1-50
78.7% 76.8%

Rain 0-30 1.8-4 1-50

The detailed Confusion matrix is also given as,

Table 5.12: Classification Test Results

Predicted

Sea Rain Sea & Rain

A
ct

ua
l Sea 29.7% 1.8% 0.6%

Rain 1.1% 26.6% 5.4%

Sea & Rain 3.8% 10.5% 20.5%

As it can be seen, as closeness between classes increases, the classification perfor-

mance worsens. It is observed that increasing the powers of clutters makes slight im-

provement on the performance. Furthermore, if power difference increases between

clutters, the classification gets worse.

Classification Tests after Turbo Parameter Estimation Methods In Chapter 3,

suggested novel parameter estimation method is explained in detail. From received

radar echo, first of all three moments of clutter components in power spectrum are

estimated, µ̂NN by three loop Turbo method initialized with frequencies estimated

by Burg algorithm. Estimated CNRs are also taken from Burg algorithm. After

Turbo estimation, approximate moments are used to calculate features, inputs of neu-

ral network. Test data is generated by adding 10% error over estimated values such

that random parameter choice is performed over interval, [0.9× µ̂NN 1.1× µ̂NN ]

The test parameters will be selected randomly over an interval, having length 20%

of parameter values. Train data will be generated by parameters selected in in-
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terval, shown by 5.11. The radar parameters are same as in 3.4. Only values of

three moments of clutters in spectrum will change. µ̂NN represents values µ̂NN =

[vrain σrain CNRrain vsea σsea CNRsea ].

Distant Clutters The estimation is performed over data containing two clutters

with velocities 3.872 and 26.178 m/sec, CNR’s 50 dB and spreads 1.512 and 3.108

m/sec. After 100 Monte Carlo trials, mean estimated velocity values are 3.908 and

26.309 m/sec. Mean estimated spread values are 1.545 and 3.028 m/sec and CNR’s

are 49.2 dB. Thus, µ̂NN is equal to [26.309 3.028 49.2 3.908 1.545 49.2 ]

Table 5.13: Distant Clutters Spectrum Classification

Type Velocity (m/sec) Spread (m/sec) CNR (dB) Test Accuracy

Sea 3.517-4.3 1.391-1.7 44.28-54.12
86.7%

Rain 23.678-28.94 2.725-3.33 44.28-54.12

The detailed Confusion matrix is also given as,

Table 5.14: Distant Clutters Test Results

Predicted

Sea Rain Sea & Rain

A
ct

ua
l Sea 21.7% 9.2% 2.5%

Rain 0.1% 33.3% 0.6%

Sea & Rain 0.1% 0.8% 31.7%

Closely Spaced Clutters The estimation is performed over data containing two

clutters having same spread and CNR values with distant case. However, velocities

are closer such that 3.872 and 12.345 (m/sec). After 100 Monte Carlo trials, mean

µ̂NN is equal to [12.294 3.142 49.32 3.423 1.624 49.32 ].
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Table 5.15: Closely Spaced Clutters Spectrum Classification

Type Velocity (m/sec) Spread (m/sec) CNR (dB) Test Accuracy

Sea 3.081-3.765 1.46-1.786 44.39-54.25
70.1%

Rain 11.065-13.523 2.83-3.46 44.39-54.25

The detailed Confusion matrix is also given as,

Table 5.16: Closely Spaced Clutters Test Results

Predicted

Sea Rain Sea & Rain

A
ct

ua
l Sea 21.2% 10.3% 0.8%

Rain 0.8% 20.0% 12.9%

Sea & Rain 0.4% 3.7% 29.9%
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CHAPTER 6

CONCLUSIONS

The main goal of this thesis is the optimization of radar detection performance in dif-

ficult operating environments. Additionally, real time operation is a requirement for

radar systems. Thus, instantaneous characterization of the received echo is aimed by

adaptive estimation and detection. Unwanted signals in received echo must be elimi-

nated to optimize radar detection performance.

In order to diminish clutter components, first of all they must be identified accurately

so that clutter characteristic determination is set as primary objective. Thus, clutter

power spectrum estimation methods are put under the scope. Both non-parametric

and parametric estimation methods are searched in detail. Since high performance

is necessary, parametric methods are preferred, requiring a parametric Power Spec-

trum Density model. With Gaussian assumption, zeroth, first and second moments of

spectrum are selected as estimated parameters in order to obtain full clutter character-

ization. As a primary step first and zeroth power estimation is aimed by implement-

ing suggested methods in literature; MUSIC, ESPRIT and Burg. Burg method gives

comparatively accurate estimates. Thus, first and zeroth moment can be estimated

successfully. Yet, second moment, indicator of Doppler spread, cannot be estimated

with implemented algorithms. In order to estimate all three moments of spectrum,

Stochastic Maximum Likelihood (SML) method is implemented, which is suggested

in the paper of Boyer [22]. The method is computationally heavy and not adequately

robust to the value of initial point. Thus, an original algorithm is designed which uses

Burg method to select initial parameter values and use SML to guess all moments

with a less complex method. The computational load is lightened, and nearly optimal

accuracy is obtained. The proposed algorithm performance is also verified in differ-

ent Pulse Repetition Frequency regions.
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Conventional detection methods used in literature are not appropriate for all scenar-

ios. For example, radars may be moving or stationary, and working environment may

be varying. In order to advance detection in such scenarios, after obtaining charac-

terization of clutter components, the effect of them on detection must be diminished

with an optimal filtering. In order to obtain maximum information about target, es-

timated signal model is used to design a parametric adaptive filter. While Sample

Matrix Inversion based adaptive filters suggested in literature requires large number

of secondary data, this filter can work with small number of snapshots. Thus, de-

tection performance is improved significantly. By making use of novel estimation

method, the estimated clutter parameters are nearly accurate. Thus, the detection

filter performances reached nearly to the genie-aided detector case. Genie-aided de-

tector performance is used as a benchmark since its detection filter is found by true

parameter values. The proposed filter can eliminate clutter signals in order to obtain

target information accurately with necessitating small number of secondary cells even

in non-stationary environments.

Finally, the classification of clutter signals is performed. Since classification is a Pat-

tern Recognition problem, one of Artificial Intelligence methods must be utilized. A

feed-forward Neural Network structure is the best architecture for classification prob-

lems with its superior performance in real time operation. Thus, a problem specific

feed-forward Neural Network is designed, aiming to obtain types of clutter echoes

in received radar signal. The feature set giving the most information about received

signal is selected as in [37], in which Prediction Error Filter reflection coefficients,

second and higher order statistics of received signal are used as inputs of Neural

Network. The feature set is the most comprehensive one suggested in literature, yet

the proposed architecture was not sufficient when thinking the current improvements

on Neural Networks. Thus, a novel architecture is designed and tested. After mak-

ing sure the potency of classifier performance, it is integrated with the proposed es-

timation algorithm. The Neural Network architecture, combined with a parameter

estimator, is a novel contribution to the literature. After evaluating the classifier per-

formance, it is concluded that combination of estimator improves the accuracy of

classifier.

108



6.1 Future Works

According to the conclusions drawn from experimental results, possible improve-

ments in methods can be listed as:

• Investigating parameter estimation of other clutter types such as ground, bird

etc.,

• Proposed algorithm can be tested when clutter texture shows some fluctuations,

• Non-Gaussian clutter models in literature can be tested with proposed algo-

rithm, Turbo method,

• The feature set can be chosen such that a radar data image will be produced,

which can be classified by Convolutional Neural Networks (CNN),

• An adaptive filter can be designed, which uses estimated parameters directly,

• Some pre-defined optimal filters can be defined, in which the selection will be

done with the classification results of Neural Network.
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APPENDIX A

APPENDIX

A.1 Derivatives of Rx
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∂wi
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All other terms are zero.
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A.2 Line Search and Optimization Method Selection

A.2.1 Line Search Methods

After which direction to move determined, it remains only to decide how far will

be moved along that direction. Selection of the best step size, α?, depends on the

situation. General idea of search methods:

1. Start with the interval (“bracket”) [αL, αU ] such that α? lies inside.

2. Evaluate objective function at two points inside the bracket.

3. Reduce the bracket.

4. Repeat the process from step two.

A.2.1.1 Uniform Search

Uniform search is the most basic search technique. It is a simultaneous search tech-

nique. In other words, functional evaluation points will be chosen forehand. Initial

interval [αL, αU ] will be divided smaller ones by using grid points such that αL + kδ.

The function will be evaluated at each of the grid points and the point giving small

function value, λ̂; will determine the new interval of search. The search will continue

until interval length will reach the tolerance or number of iterations will exceed a

predefined limit.

Figure A.1: Uniform Search
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A.2.1.2 Dichotomous Search

Dichotomous line search technique is generally used for unimodal functions, func-

tions having single local maximum. During dichotomous search, two points closer to

the center of the interval of uncertainty are selected. Almost half of the interval of

uncertainty can be eliminated by comparing relative values of the objective function

at the two points. The positions of two points are where the two experiments give

significantly different results. Two points are separated by a small positive value, δ.

Figure A.2: Dichotomous Search

After comparing two function values, the new interval of uncertainty become L0

2
+ δ

2
.

All in all, the main idea of dichotomous search is to conduct a pair of experiments

at the center of the current interval of uncertainty. After interval reduction, the next

pair of experiment will be conducted with same logic. The interval of uncertainty

reduction is nearly a factor of two.

A.2.1.3 Fibonacci Search

The Fibonacci’s line search method uses Fibonacci numbers to achieve maximum

interval reduction in a given number of steps. It is the best line search method, when

the number of function evaluations is specified [55]. At each step, the size of search

interval will be reduced. Fibonacci search method chooses the function evaluation

points wisely. Each new point is selected such that they will be symmetrical with
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respect to the point already in the remaining search interval. Fibonacci search is

optimal one, since it guarantees to reduce the length of the final interval. It also uses

the fewest function evaluations, among all search methods. The interval selection is

shown in A.3

Figure A.3: Fibonacci Search

Unfortunately, before choosing the location of initial two function evaluation points,

the knowledge of final interval length is necessary. In practice, a priori determination

of interval may be inconvenient. Thus, golden section method is used as an alternative

to this method.

A.2.1.4 Golden Section Search

The golden section method is similar to the Fibonacci method except the necessity of

a priori information. In the Fibonacci method, the total number of experiments has

to be specified before beginning the search, whereas this is not a requirement for the

golden section method [55]. The idea is to narrow down the interval that contains the

local minimum until the length of the remaining interval is less than a pre-determined

tolerance level. During the Fibonacci search, the locations of first two experiments are

determined from the total number of experiments. The golden section method starts

with an assumption, suggesting a large number of experiments will be conducted. Of

course, the total number of experiments must be decided during the computation with

respect to a tolerance.

To sum up, divide an interval [αL, αU ] in the ratio of golden section first from right

(point α1) and then from left (point α2). Then point α2 divides the interval [αL, α1]

in the ratio of golden section and point α1 does the same for [α2, αU ]. The algorithm

illustrated A.4
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Figure A.4: Golden Search

A.2.1.5 Three Point Interval

The three point equal interval method partitions a closed and bounded interval into

four closed subintervals with disjoint interiors and evaluates the function at each end-

point of the subintervals. The interval or unions of the two intervals which contain

the extreme value are retained and the process is repeated using the retained closed

and bounded interval. The process is terminated when the length of final interval is

less than or equal to a preassigned tolerance.

Figure A.5: Three Point Search

A.2.1.6 Quadratic Search

The key idea is to approximate objective function with a quadratic polynomial whose

minimizer is known. In other words, in order to approximate the minimum of cost

function on the interval [αLαU ] numerically, a "quadratic interpolative" search is em-

ployed. Proceed with the method only if the subject function is a unimodal function
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over the given interval. Three points selected as starting point, end point and middle

of interval. After that, a quadratic interpolant is fitted to the arc contained in that

interval. Then, the interpolant is minimized, and the new interval is determined based

on the relation of minimizer to the original endpoints of the interval. Below thick red

line stands for objective function and thin black one is the fitted quadratic function.

Figure A.6: Quadratic Search

A.2.1.7 Parabolic Fit

Parabolic fit search has similar idea with quadratic interpolation. Differently, La-

grange interpolation technique is used. In Lagrange Interpolation for parabolic fit,

minimum value is found by one dimensional line search. The Lagrange interpolating

is a tool enabling to construct a polynomial, going through any desired set of points.

The problem of constructing a continuous function from specific points is called data

fitting. The goal is to approximate a linear combination of known functions in order to

fit a set of data that imposes constraints. A unique solution that fits the data exactly is

tried to be guaranteed. When constructing interpolating polynomials, a trade-off oc-

curs between a better fit and a smooth well-behaved fitting function. As the more data

points included in the interpolation, degree of the resulting polynomial will become

higher. Therefore, the greater oscillation will occur between the data points. Thus,

high degree interpolation functions may predict the actual function between selected

values poorly; although the accuracy at data points will be nearly perfect [56].

For comparison of line search methods, one clutter frequency and spread estimation

is selected. As initial values of parameters; values, close to the solution, are selected.

Moreover, as an optimization algorithm steepest descent with newton algorithm, ex-
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plained at A.2.2.3, is chosen. For that scenario, iteration, snapshot, CNR sensitivity

and spent time are shown in Table. In the scope of this work, three point interval line

search method is selected as line search algorithm.

Table A.1: Line Search Methods Test Results

Number of Iterations for Convergence

100 Snapshots , 40 dB CNR

Number of Snapshots for Convergence

40 Iterations, 40 dB CNR

CNR for Convergence

40 Iterations 40 Snapshots

Time Spent (msec)

30 Iterations 30 Snapshots

30 dB CNR

Uniform Search 27 26 8 157

Fibonacci Search 26 30 7 94

Dichotomous Search 38 41 8 47

Golden Search 22 25 6 16

Three Point Interval Search 23 19 6 46

Quadratic Search 35 41 10 62

Parabolic Fit 31 38 15 94

A.2.2 Optimization Algorithms

Each algorithm has its own advantages and disadvantages. Depending on the prob-

lem, their performance may vary. Additionally, there is a trade-off between number

of iterations to satisfy stopping criterion and average effort per iteration for each al-

gorithm [57]. Thus, choice of optimization algorithm is important.

A.2.2.1 Steepest Descent

The minimization of a general nonlinear functions is a problem, tried to be solved

with many algorithms. The classical steepest descent method is the oldest and easiest

method among all implemented ones. Steepest descent method is also called as gradi-

ent descent method. It is a first-order optimization algorithm, assuming that gradient

of objective function can be computed. The nearest local minimum is found by fol-

lowing a line, starting from an initial point and goes towards the negative of gradient

direction. Geometrically, the step direction is perpendicular to the function contour.

Suppose that we would like to find the minimum of a function L(µ),µ ∈ Rn, and

f : Rn → R. We will denote the gradient of f by gk = g(xk) = ∇(µk). Then, the

direction will be dk = −∇(µk). For the steepest descent method, the formula for

iterations is given by

µk+1 = µk + αkdk k = 0, 1, 2... (A.2.1)
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where the step length, αk, is chosen so that

αk = arg min
α
L(µk + αdk) k = 0, 1, 2... (A.2.2)

The αk > 0 is a selected small number. It forces the algorithm to make small jumps

in order to maintain stability of algorithm. Its optimal value depends on the function.

In order to find αk ; line search method is the one chosen in previous section.

Figure A.7: Steepest Descent

As one can see, steepest descent algorithm has straight trajectory towards the min-

imum. Its main advantage is availability of a solution, approximate or exact. Ad-

ditionally, in theory, it is guaranteed to converge to the global minimum if the loss

function is convex. Similarly, if the loss function is not convex, it converges to a lo-

cal minimum. The only disadvantage encountered during tests is its slowness. If the

contour sets of the function are eccentric, progress towards solution is extremely slow

[57]. Thus, the Newton method is implemented to obtain a fast solution.

A.2.2.2 Newton-Raphson Method

Newton’s method uses first and second derivatives of the objective function. The main

idea of the Newton method is to linearize. It indeed performs better if good initial
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point selection is accomplished. However, calculating matrix of partial derivatives

with related Hessian and gradient requires considerable effort. In short, Newton’s

method is complex to compute but fast to converge.

µk+1 = µk + αkH(µk)
−1∇(µk) k = 0, 1, 2... (A.2.3)

It is observed that Newton’s Method can fail to converge the solution if initial point of

iteration is not chosen wisely. Thus, Newton’s method is highly related to the initial

point. Newton’s method for optimization in n-dimensions requires the inversion of

the Hessian and therefore it can be computationally expensive for large number of

variables. In addition to that, Newton’s method works well if Hessian is positive

everywhere. However, if Hessian is negative at some points, Newton’s method may

fail to converge. To eliminate the dependence on positive definiteness of Hessian

matrix Levenberg-Marquart modification can be used which is shown A.2.4 .

µk+1 = µk + αk{H(µk) + εI}−1∇(µk) k = 0, 1, 2... (A.2.4)

However, because of its negative effect on accuracy as number of parameters increase,

it did not used for solving the problem.

A.2.2.3 Newton with Steepest Descent

As it is stated, Newton method is a fast method, but it can also be unreliable because of

its dependence on initial point selection. Therefore, an algorithm combining Newton

Method with Steepest descent algorithm is suggested. This algorithm will start with

steepest descent method. After reaching tolerance or half of maximum number of

iterations, it will continue with Newton’s method.

µk+1 = µk + αkdk k = 0, 1, 2...,M (A.2.5)

µk+1 = µk + αkH(µk)
−1∇(µk) k = M,M + 1,M + 2... (A.2.6)

Convergence to the solution will be rapid, since initial guess is improved toward the

solution. Additionally, computational effort is decreased.
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A.2.2.4 Modified Newton Method (Rank 1 Correction)

Newton algorithm convergence is highly dependent on initial point selection and pos-

itive definiteness of Hessian. Additionally, calculation of Hessian during iteration has

computational cost so instead of that Hessian is found by using Hessian of previous

iteration and gradients. These methods are called as quasi-newton methods having

form.

µk+1 = µk + αkHk(µk)
−1∇(µk) k = 0, 1, 2, 3, ... (A.2.7)

Quasi Newton methods involve successive update of Hessian. A typical selection of

initial Hessian matrix is generally identity matrix. The first one of the Quasi Newton

Algorithms is called as Rank 1 Correction Algorithm such that

Hk+1 = Hk + αkzkzkT (A.2.8)

and,

rank(zkzkT ) = rank





z1k

.

.

.

znk


[
z1k . . . znk

]


= 1 k = 0, 1, 2, 3, ... (A.2.9)

Thus, the name is rank one correction method is also called as Single Rank Symmetric

(SRF) algorithm. The Hessian for k+1 iteration is calculated as shown below

Hk+1 = Hk +
(∆µk −Hk(µk)∆(∇(µk)))(∆µk −Hk(µk)∆(∇(µk))

T )

∇(µk)
T (∆µk −Hk(µk)∆(∇(µk)))

(A.2.10)

Unfortunately, the rank one correction algorithm is not the best choice for several rea-

sons. First of all, Hessian may not be positive definite. Moreover, denominator may

become close to zero. Because of these disadvantages, rank 2 correction algorithm is

developed [58]

A.2.2.5 Davidon Fletcher Powell Method

It is the second Modified Newton, employing Rank 2 Correction. This algorithm was

developed by Davidon (1959), Fletcher, and Powell (1963) [58]. It is also called as
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the variable metric algorithm. The DFP method is one of the most powerful iterative

methods, known for minimizing a general unconstrained function of n variables or

parameters. Its formula is similar to the rank 1 correction method.

Hk+1 = Hk +
∆µk∆µk

T

∆µk
T∆∇(µk)

+
(Hk(µk)∆∇(µk))(Hk(µk)∆∇(µk))

T

∇(µk)
THk(µk)∆∇(µk)

(A.2.11)

Hessian is definitely positive definite for nonzero gradient. It is superior to rank 1

correction method. However, in the case of larger non-quadratic problems, since

Hessian is nearly singular, the algorithm may not converge. Thus, as a last alternative

Fletcher Reeves is implemented.

A.2.2.6 Fletcher-Reeves Method

The Fletcher-Reeves (FR) method aims to solve unconstrained optimization prob-

lems. Given a function f : Rn → R the Fletcher-Reeves method tries to locate

local minimum of function. It belongs to a group of methods called conjugate gra-

dient methods. The FR method is the first non-linear conjugate gradient method. It

has some nice properties such as the finite quadratic termination and the global con-

vergence properties. It is a kind of line search method. Hessian is not used in the

algorithm. In quadratic function case it is identical to the original conjugate direction

algorithm. The algorithm steps shown below;

µ1 = µ0 − α0∇(µ0) (A.2.12)

µk+1 = µk + αkdk (A.2.13)

in which

dk+1 = −∇(µk+1) +
(∇(µk+1))T∇(µk+1)

(∇(µk))
T∇(µk)

dk (A.2.14)

Algorithm comparison is done with the same scenario in line search comparison. In

other words, one clutter frequency and spread are estimated with initial values close

to the solution. Three point interval line search method is used. For the case, iteration,

snapshot, CNR sensitivity and spent time are shown in A.2 Fletcher Reeves method

is selected as optimization algorithm while searching for optimum estimate.
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Table A.2: Optimization Algorithms Test Results

Number of Iterations for Convergence

100 Snapshots , 40 dB CNR

Number of Snapshots for Convergence

40 Iterations, 40 dB CNR

CNR for Convergence

40 Iterations 40 Snapshots

Time Spent

30 Iterations 30 Snapshots

30 dB CNR

Steepest Descent 13 25 8 84

Newton Raphson 32 30 16 122

Newton with Steepest Descent 20 38 7 143

Rank 1 Correction 40 27 10 104

Davidon- Fletcher- Powell 20 25 15 137

Fletcher Reeves 12 20 5 38

A.3 Cramer Rao Lower Bound Calculation

The difference between covariance matrix of any unbiased estimator µ̂ and CRLB

must be positive definite. In other words, under certain conditions, no other unbiased

estimator of the parameter µ can have a variance smaller than CRLB. CRLB is found

as the inverse of FIM (Fisher Information Matrix). FIM measure the existing total

information about the parameters in observations.

The FIM is calculated as given in A.3.1. Since, SML estimator variance will reach the

CRLB asymptotically; the expression for CRLB also gives theoretical SML variance.

[FIM](i,j) = Tr{R−1
x

∂Rx

µi
R−1
x

∂Rx

µj
} (A.3.1)

Overall, CRB equation can be written as follows;

FIM−1

K
= CRB(µ) ≤ E{(µ̂− µ)(µ̂− µ)T} (A.3.2)

The performance of algorithm is investigated with respect to the CRB.
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