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ABSTRACT

METHODS FOR SEGMENTATION AND CLASSIFICATION OF
SWALLOWING INSTANTS FROM THE FEEDING SOUND OF NEWBORN

INFANTS

Koyuncu, Abdullah Onur

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Tolga Çiloğlu

July 2019, 97 pages

Statistics such as swallow frequency, the average time between rhythmic swallows

and the maximum number of rhythmic swallows can be related to the feeding maturity

of infants. Therefore, detecting swallow segments automatically from an acoustical

feeding signal can be considered as a decision support mechanism for neonatologists.

This thesis includes different approaches for the analysis of infant’s feeding sounds

and proposes two different pattern recognition methodologies, segmentation followed

by classification and classification followed by merging, for auto-segmentation and

classification of swallowing instants. Data from 52 infant subjects are used, in which

acoustic feeding signals are recorded with a digital stethoscope. Multiple learning al-

gorithms such as Gaussian mixture models (GMM), support vector machines (SVM)

and hidden Markov models (HMM) are used to discriminate swallowing sounds from

other sound activities. A comprehensive set of feature extraction methods in time and

frequency domain are investigated for the representation of captured acoustic signals.

Moreover, feature selection methods are examined thoroughly to improve the repre-
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sentation power of feature vectors. Experimental comparison in terms of precision,

recall and F1 scores of eight different paths to segment and classify swallow instants

is made. The results show that the first approach segments the swallow episodes

with lower performance as the error in the segmentation also affects the classification

performance negatively. On the other hand, best results are obtained in the second

approach where binary and 3 class SVM classifiers are applied with purpose-specific

finite state machine algorithms. In the time duration based performance evaluation,

the F1 scores are obtained as almost equal to 0.70 for both methods. On the other

hand, they are computed as nearly 0.81 in the event based one.

Keywords: Classification, Gaussian Mixture Model, Hidden Markov Model, Machine

Learning, Newborn infants, Pattern Recognition, Support Vector Machine, Swallow

Sound
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ÖZ

YENİDOĞAN BEBEKLERİN BESLENME SESİ ÜZERİNDEN YUTMA
ANLARINI BÖLÜTLEME VE SINIFLANDIRMA YÖNTEMLERİ

Koyuncu, Abdullah Onur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Çiloğlu

Temmuz 2019 , 97 sayfa

Yutma frekansı, ritmik yutmalar arası ortalama süre, maksimum ritmik yutma sayısı

gibi istatistikler bebeklerin beslenme olgunluğu ile ilişkilendirilebilir. Bu yüzden,

akustik beslenme sinyali üzerinden yutma anlarının otomatik olarak tespiti, neona-

tologlar için bir karar destek mekanizması olarak düşünülebilir. Bu tez, yenidoğan

bebeklerin beslenme seslerini analiz eden farklı yaklaşımları içermektedir ve bölüt-

leme sonrası sınıflandırma ile sınflandırma sonrası birleştirme olmak üzere iki adet

örüntü tanıma temelli yöntem sunmaktadır. Bu çalışmada, 52 bebekten dijital stetes-

kop aracılığıyla alınan beslenme kayıtları kullanılmıştır. Yutma seslerini diğer ses-

lerden ayırt etmek amacıyla, destek vektör makinaları, saklı Markov modelleri ve

Gaussian karışım modelleri gibi bir çok öğrenme algoritmasından faydalanılmıştır.

Akustik sinyalleri temsil etmesi amacıyla, zaman ve frekans uzayında kapsamlı bir

öznitelik araştırması yapılmıştır. Ayrıca, öznitelik vektörlerinin temsiliyetini artırmak

ve boyutunu küçültebilmek adına, öznitelik seçme prosedürleri incelenmiştir. Sekiz

farklı yutma sesi bölütleme ve sınıflandırma yöntemi, kesinlik, hatırlama eğrileri göz
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önünde bulundurularak deneysel olarak karşılaştırılmıştır. Elde edilen sonuçlara göre,

bölütlemede yapılan hatanın sınıflandırma performansını da direkt olarak olumsuz et-

kilemesi sebebiyle ilk örüntü tanıma yaklaşımının daha düşük performansla çalıştığı

gözlemlenmiştir. Öte yandan, 2 ve 3 sınıflı destek vektör makineleri, amaca uygun

tasarlanmış birleştirme algoritmaları olan sonlu durum makineleriyle birlikte en iyi

performansı sergilemişlerdir. Zamana dayalı değerlendirme yapılırken, her iki yön-

tem için de F1 skoru yaklaşık olarak 0.7 bulunurken, sayı temelli değerlendirmede bu

değer 0.81 civarında hesaplanmıştır.

Anahtar Kelimeler: Destek Vektör Makineleri, Gaussian Karışım Modeli, Makine Öğ-

renmesi, Örüntü Tanıma, Sınıflandırma, Saklı Markov Modeli, Yenidoğan bebekler,

Yutma sesi
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Prematurity is a term for newborn babies whose births take place earlier than 37 full

weeks of pregnancy. The newborns in this category are called preterm or premature

infants. According to data from the World Health Organization, approximately 15

million babies, more than 10% of infants, are born preterm each year [2]. Also, the

number of infants younger than five years of age who died as a result of prematurity

complications is reported to be nearly 1 million. Prematurity can lead to complicated

medical problems and has a negative effect on the development of infants. Swallow-

ing disorders (pneumonia, dysphagia, etc.) and respiration-related diseases (hypoxia,

respiratory standstill, etc.) can be shown as examples of short-term effects whereas

systemic diseases, developmental and cognitive problems are the examples of long-

term consequences. Also, preterm infants can experience crucial health problems if

they are discharged from the hospital early, thus creating psychological and emotional

distress for the family in addition to high medical costs. Therefore, the decision for

safe discharge from the hospital is of great importance.

Minimizing the adverse effects of prematurity problems highly depends on the correct

assessment of the oral feeding skills of the babies. Since the majority of preterm

infants suffer from oral feeding difficulties, a lot of research has been done in order

to extract the causes of nutritional problems and better assist infants accordingly.

To better understand whether or not successful and safe oral feeding skill of the baby

is achieved and to discharge babies from the hospital at the right time, the doctors

strongly need decision support mechanisms. In this case, the ultimate goal is to ana-
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lyze and evaluate the feeding process correctly. In other words, improving the relia-

bility of diagnoses on oral feeding difficulties and decisions for required interventions

to increase success in oral nutrition are the priorities of neonatal doctors. The feeding

process can be divided into three fundamental phases: suction, swallowing and res-

piration [3]. Although each stage has its own responsibility in the process of taking

milk from the oral cavity and delivering to the stomach safely, the synchronization

of them is also of great importance. Because the lack of timing may cause the acci-

dental deposit of food to the lungs and respiratory standstill. Hence, developmental,

cognitive and neurological problems may occur.

In order to estimate swallowing actions quantitatively and analyze the characteristics

of that, a lot of methods are proposed in the previous research studies for both adults

and infants. Although videofluoroscopic swallowing study (VFSS) [4] and fiberoptic

endoscopic evaluation of swallowing (FEES) are successful in capturing the swallow-

ing moments and helping doctors interpreting nutritional maturity, they are invasive

diagnostic procedures requiring an invasion of the body cavity or disruption of regular

body functions. On the other hand, the swallowing function is tried to be evaluated

through probes placed in human skin such as electromyography (EMG) electrodes,

accelerometers, contact microphones, stethoscopes and piezo-resistive pressure sen-

sors. Although these methods are non-invasive, they are not as strong as mentioned

invasive techniques in providing evidence-based support for neonatal doctors.

1.2 The purpose of this study

In this study, acoustic feeding signals are taken from [5] and they are recorded from

infant subjects by a digital stethoscope. Swallowing action is monitored, analyzed

and evaluated. Different acoustic swallow patterns together with other types of non-

swallow sounds (click, smacking, respiration, etc.) produced by infants are analyzed.

As a result of these examinations, two approaches containing digital signal processing

techniques and conventional machine learning algorithms are proposed to detect swal-

low episodes automatically from the acoustic feeding signal. The proposed method

can be considered as a solution for an acoustic semantic segmentation problem in

which only swallow moments are segmented.
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Objectives of both approaches are the same, yet they differ in the pre-processing and

post-processing stages of the whole process. Besides, these solutions contain modules

in which various techniques and parameters are utilized to optimize detection perfor-

mance. Moreover, a large-scale experimental comparison of machine learning-based

solutions for the problem of automatic swallow event detection is made to evaluate

classification performances on swallow sounds.

Swallow maturity can be considered as one of the most significant indicators of oral

feeding readiness for newborn babies. Previous research studies have shown that the

swallowing frequency is positively correlated with feeding performance. Similarly,

experimental findings pointed out that postmenstrual age (PMA) and the average time

between rhythmic swallows have a negative correlation [5]. In addition, an increase

in the maximum number of rhythmic swallows refers to the development of feeding

skills of infants. Thanks to the proposed method, statistical data obtained from de-

tected swallow segments can be related to oral feeding maturity of the infants, hence

assist neonatal physicians to decide it.

1.3 Thesis Organization

In Chapter 2, a literature review about oral feeding maturity, swallow physiology and

multiple techniques for swallowing behavior analysis and evaluation of both adults

and infants are provided in detail. The studies expressing the impact of different

parameters on oral feeding readiness of the infants are included. Both invasive and

non-invasive assessment techniques of swallowing function for all target groups are

expressed.

In Chapter 3, information about the data set is given. The preparation of training and

test data sets and labeling rules are explained. Different types of swallow patterns and

the spectral characteristics of swallow and non-swallow sound segments are shown.

Chapter 4 presents the pattern recognition methodologies for the detection of swal-

lowing events. Based on this methodology, the design procedure of the two ap-

proaches, segmentation followed by classification and classification followed by merg-

ing are described. Segmentation, feature extraction, classification and merging meth-
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ods are expressed in detail. Pseudo codes of train and test procedures are given for

each machine learning algorithm.

Chapter 5 presents the implementation details together with the results of segmenta-

tion, feature extraction and the classification modules. The experimental procedure,

including all the modules, is given. Selection criteria for appropriate features are de-

scribed. Performance calculation and parameter optimization methods are explained

for segmentation, classification and merging parts separately. Experimental compar-

ison in terms of precision, recall, and F1 scores of eight different paths to detect

swallow episodes are tabulated.

Chapter 6 summarizes the work done in this study and highlights the crucial points of

the thesis. Concluding remarks are presented and future work suggestions are given

in this chapter.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, firstly, the studies related the factors affecting the oral feeding matu-

ration and information on the physiology of swallowing function are told. Secondly,

both invasive and non-invasive assessment methods of oral feeding readiness are dis-

cussed.

2.1 Swallow Physiology & Oral Feeding Maturity

Swallowing can be considered as a procedure in which several muscles and nerves

work together and it has three major phases, namely, oral, pharyngeal and esophageal.

Receiving food from the mouth, chewing and softening the food with saliva to make

swallow easier happen in the oral phase. In addition, the prepared food material is

transferred to the behind the oral cavity with the help of the tongue. This stage ends

up with the triggering of the pharyngeal phase. In the pharyngeal phase, respiratory

functions are stopped to prevent the escape of food material into the trachea or air-

ways. The esophageal phase is initiated with the entry of bolus and is the period which

ends up when the liquid or food reaches to stomach [6]. The swallow procedure is

illustrated in Figure 2.1.

Lau et al. [8] characterized the swallowing function, as a complex behavior requiring

proper coordination of muscles from mouth, palate, pharynx, larynx, and esophagus.

One of the main highlights of this study is that the swallowing function activation is

not directly dependent on sucking and it is emphasized that coordination of swallow-

ing and sucking functions is of great importance for oral feeding readiness.
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Figure 2.1: Swallow phases [7]

.

Bu et al. [9] carried out a study to reveal the relationship between optimal oral feed-

ing readiness and the synchronized suck-swallow-breathe coordination ratio. When

sucking-swallow and swallowing-respiration pairs were examined separately, it was

observed that the coordination ratio converges to 1:1:1 sequence as GA (gestational

age) increases. Although there were no definite findings in the literature or their

research, they stated that there might be a relationship between the coordination of

tongue movements and the converging to 1:1:1 sequence.

Lau et al. [3] claimed that larger swallow frequency, increase in the bolus size, ad-

vanced swallowing and respiration coordination enhance the milk transfer ratio. Thus,

they aimed to examine the coordination of suck-swallow and swallow-breathe pairs

separately. As a result of this study, the following results were found:

• The milk transfer ratio raises over time and has correlations with both average

bolus size and swallow frequency.

• Average bolus size is correlated with suction amplitude.

• Average bolus size is not correlated with swallow rate.

• Swallow frequency is correlated with the frequency of sucking.

In addition, the swallows that occurred at different phases of the respiration cycle
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were observed. Experimental results depicted that, occurrence time of swallow is

related to the readiness of oral feeding.

Gewolb et al. [10] investigated the relation of PMA and post-natal age (PNA) with

defined oral feeding readiness parameters such as stability of sucking rhythm (defined

as a function of sucking interval mean) and swallow rhythm. The authors pointed out

that, mentioned feeding-related parameters are correlated with PMA significantly.

However, none of the measurements is correlated with PNA. In addition, they argued

that since PMA is a better indicator of feeding patterns than PNA, feeding patterns

can be considered as not learned but innate behaviors.

Amaziu et al. [11] assumed that significant difficulties in oral feeding arise from the

development of related muscles at different times in premature infants. By monitoring

the necessary parameters related to feeding ability, they deduced that sucking, swal-

lowing, respiration and coordination of them are matured at different rates and times.

Furthermore, in order to determine the maturation level of infants, their gestation was

found to be more informative than PMA.

Lau et al. [12] conducted a study to determine the effect of defined feeding parameters

on oral feeding readiness level. In this study, PRO (what percent of predetermined

milk volume is consumed in the first 5 minutes), RT (milk flow rate during entire

nutrition period), GA, SOF-IOF (duration between the start to independent oral feed-

ing) were chosen as the major components to determine oral feeding skills of infants.

And OFS is the combination of PRO and RT. Results of this study given below con-

cluded that OFS could be used as a new objective representation of infants skill and

durability.

• OFS levels are correlated with GA, PRO and SOF-IOF

• SOF-IOF is associated with GA and OFS.

• RT is only correlated with OFS.

Lau et al. [13] stated that oral feeding maturity is better defined with the coordi-

nation of suck-swallowing process-breathing than suck-swallow-breathe as swallow-

ing process includes not only pharyngeal phase of the swallowing but also oral and
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esophageal phases. Hence, any levels of a nutritive sucking pathway may cause an in-

efficient or unsafe feeding procedure since different components and muscles within

corresponding levels mature at different times. In addition, it was argued that such

occurrences can be considered as a reason why infants with the same PMA and GA

differ in terms of readiness to oral feeding.

2.2 Assesment of Swallow Function

In this section, the background studies related to the instrumental evaluation tech-

niques of swallow function are described. In addition, both invasive and non-invasive

examination methods to guide for diagnostic procedures and therapeutic decisions are

proposed.

2.2.1 Invasive Methods

2.2.1.1 Videofluoroscopic Swallowing Study

The videofluoroscopic swallowing study (VFSS) or modified barium swallowing ex-

amination (MBS) is a method for evaluating the swallowing physiology using the

form of a real-time x-ray. To evaluate swallowing ability, a bolus form including the

range of food or liquid consistencies and barium is given to patient [14]. In Figure

2.2, a young male’s normal swallowing events are illustrated fluoroscopically.

The VFSS is a tool for management, characterization and evaluation of swallow func-

tion. Indeed, it is known as the gold standard for diagnosing the pharyngeal swallow

impairment and aspiration to the lower airways [15, 16].

Using the clinical features of the VFSS results as an input, fewer studies are con-

ducted to detect swallowing and respiratory abnormalities in infants compared to

adults. Newman et al. [17] aimed to figure out how the occurrence frequency of the

laryngeal penetration and aspiration in infants having dysphagia can relate to VFSS

findings. The study indicated the abnormalities such as laryngeal penetration and

aspiration on the infants suspected of having swallowing difficulties. However, they
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Figure 2.2: VFSS images of an adult’s swallow procedure in which the bolus is trans-

ferred from mouth to the stomach [14]

.

have stated that multiple swallows must be performed to make a radiologic assess-

ment.

Kim et al. [18] investigated the prediction performance of the VFSS study on the

infants of two groups called aspiration and pneumonia group. The first group who

had no pneumonia and having aspiration symptoms showed abnormalities only in

pharyngeal phases, whereas the VFSS findings revealed anomalies in both oral and

pharyngeal phases in the second category who had pneumonia.
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In order to evaluate the differences between full-term and preterm infants having dys-

phagia, Uhm et al. [19] utilized VFSS as a referral. Although there was no significant

difference in the VFSS findings of preterm and full-term infants, the decrease in the

sucking speed was more frequently in the preterm infants.

2.2.1.2 Fiberoptic Endoscopic Examination of Swallowing Study

The fiber-optic endoscopic examination of swallowing study (FEES) is another tool

for evaluation of the pharyngeal stage of swallowing action in patients with dysphagia

[20]. In this procedure, a fiber-optic scope extending from the patient’s nose to the

pharynx is inserted. In the next step, a physician evaluates the swallowing process by

observing the scope when the patient is fed.

In Figure 2.3, two different endoscopic views rendered from an old version cam-

era and high-resolution system are shown. Previously, although this procedure was

approached with suspicion, it later experienced a dramatic change and began to be

accepted as a primary method for suspected patients with dysphagia [21].

Figure 2.3: Fiber- optic scope views captured by an old version camera (left), high

resolution camera (right) [21]

In order to analyze and evaluate the swallowing function in the breastfeeding infants,

Willete et al. [22] used FEES as a safe and effective instrument. They also stated

that other instrumentation tools like VFSS are not able to assess the dysphagia during

breastfeeding in the target group of the study including 23 infants with the average

age of 14 weeks and two of them are premature.
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In their study, Reynolds et al. [23] provided an overview of current challenges in as-

sessing aspiration for adult, pediatric, infant and neonatal populations and presents a

multidisciplinary FEES program for feeding and breastfeeding in the Neonatal Inten-

sive Care Unit (NICU). The NICU feeding team constructed a NICU FEES program

consisting of 5 main components: equipment, education, competency, protocol and

procedure. They concluded that FEES could be considered as a safe and effective

alternative to the VFSS. However, the current research is not enough to compare the

validity and efficacy of the VFSS and FEES.

2.2.2 Non-Invasive Methods

2.2.2.1 Ultrasound Swallow Study

Ultrasound imaging is a non-invasive tool to visualize inside of the body sound waves

with high frequencies. This technology is utilized to examine many of the internal

organs such as heart, liver, kidneys, uterus, etc., as well as to observe muscles and

elements involved in swallowing action.

To explain the events, that occurred during swallowing action, Weber et al. [24]

benefited from ultrasound technology. An ultrasound scanner was used with a video

recorder to assist clinicians in evaluating the sucking and swallowing dynamics of the

newborn infants and the coordination of sucking, swallowing and respiration. By ob-

serving the muscle movements during swallowing, they depicted that milk availability

significantly affects the ratio between suck and swallow. In addition, increasing PNA

also increases the frequency of swallowing. Based on the observations, they sug-

gested that the feeding mechanism can be appropriately studied and investigated by

ultrasound technology and the scope of the study can be extended in the future.

Using similar instruments, Bulock et al. [9] found out that neuromuscular maturity

implies maturity in the nutrition mechanism. Moreover, the excess of the gestation

period affects the feeding more effectively than PNA does.

Geddes et al. [25] aimed to visualize swallowing function via ultrasound approach

and made a comparison between respiratory inductive plethysmography (RIP) and
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this approach. In this study, the results showed these methods are highly correlated.

Furthermore, the pharyngeal phase of the swallowing can be observed, independent

of which the respiration phase is. In Figure 2.4, the movement of the milk bolus

during breastfeeding can be seen.

Figure 2.4: View of the milk bolus movement during breast-feeding from an ultra-

sound scanner [25].

Sonies et al. investigated many components of the ultrasound technology in terms

of techniques and procedures for different target groups. Additively, their study also

discussed the disadvantages and limitations of the technology, although it has many

advantages such as being non-invasive, safe, portable and is very useful in swallowing

applications such as diagnosing swallow impairments, determining swallow duration,

evaluating infants during feeding, etc. The most important one is that bones involving

during the swallow cannot be visualized since the high-frequency sound waves are not

able to pass through. Therefore, the scanning region is limited due to the presence of

bones. Hence, this technique may lack to detect aspiration moments.
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2.2.2.2 Other methods

In this part, studies focusing on pressure and acoustic-based measurement techniques

for the identification of both adult and infant swallowing sounds and acoustical mod-

eling of swallow mechanism are discussed.

Takahashi et al. investigated the swallowing sound detection subject on adults from

three different aspects and figured out the following results [26].

1. Type of Acoustic Sensor: The accelerometer was selected as a proper trans-

ducer since the amplitude values of the frequency spectrum in a wide range are

large enough to work properly with a low attenuation level.

2. Type of Adhesive: Double-sided paper tape was used to attach accelerometer

to the skin.

3. Optimal Location: Swallowing sounds were acquired at 24 different regions

of the neck to select the optimum location. Performance evaluation was done

based on observing the signal-to-noise ratio. As a result, the lower region of the

cricoid cartilage and the upper side of the trachea lateral boundary were found

to be the best location.

Cichero et al. [27] found inconsistent results concerning the paper written by Taka-

hashi et al. [26] in terms of the acoustic transducer to use for detection of swallowing

by revisiting the methodology. Similarly, they used the signal-to-noise ratio as a per-

formance evaluation parameter. Based on the findings of their study, they argued that

the electret microphone should be preferred rather than the accelerometer for record-

ing swallow sounds. However, they did not object to findings of optimal location.

Reynolds et al. [28] defined the acoustic signals due to pharyngeal movements of

infants occurred at the beginning of the swallow action as initial discrete sound (IDS).

They calculated the “variance index” (VI) parameter of each infant from the captured

waveform with the help of digital signal processing technology. Using this term,

they found that regularity of swallow sounds of the preterm infant goes up as PMA

increases. Furthermore, they suggested that the methodology used in this paper could
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associate with the feeding maturity. Another important issue is the determination of

the acoustic device and the location where it should be placed. In Figure 2.5, the

picture of the accelerometer and representation of attachment were illustrated.

Figure 2.5: Illustration of accelerometer placement to the neck of an infant

Amft et al. [29] studied to detect and classify swallowing activities of adults by

processing the acoustical signal recorded via electret condenser microphones placed

inferior mid-line from the cricoid cartilage. For the same purpose, they also observed

the muscle movements quantitatively with EMG sensors attached to the throat. The

position of both sensors is depicted in Figure 2.6. Two different methods, feature

similarity and the signal intensity, were compared to extract swallow instants. The

latter method using the EMG signals showed better performance than the sound signal

obtained from the microphone. However, when the results of the two sensor data were

fused, the accuracy was increased.

Reynolds et al. [30] extended their study about evaluation of IDS stability [28] by

including adults as well. As a result, the VIs of the adults and premature babies older

than 36 weeks PMA were not found to be different. On the other hand, greater VI

values were obtained when the PMA was decreased below 36 weeks. Besides, two

sensors, accelerometer and microphone, were compared in real-time for the first time

and deduced that both can be used to analyze swallowing-related sounds and that in

some special applications, one can be preferred to the other.

14



Figure 2.6: Illustration of electret condenser microphone and EMG sensors attach-

ment on an adult’s neck

At the University of Manitoba, Zahra Moussavi and her colleagues conducted several

studies to acoustically analyze and evaluate the swallowing mechanism for children

and adults. And, the majority of them involve signal processing and machine learn-

ing techniques. Swallow sounds were acoustically captured and processed to show

the differences between normal (having no swallowing difficulties) and people with

dysphagia [31]. In the beginning, swallow sounds were extracted with the help of

distance-based features. Then, segmented swallow activities were classified, employ-

ing a discriminant algorithm. In another study, they assumed that the wavelet trans-

form coefficients should be high for each scale due to the non-stationary nature of the

swallowing sounds [32]. For that reason, the captured acoustic signal was exposed

to a wavelet-based filter. The identification of swallow action from respiratory events

was carried out in an automated way. The results were validated by visual inspec-

tion of the filtered signal and airflow measurements. In Figure 2.7, the original (from

the acoustic transducer) and filtered signal were shown. As it is seen, the breath sig-
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nal has smaller components in higher wavelet scales while swallow sound remains

alive on that scale. After that, another solution was found to automatically distin-

guish swallowing and breathing sounds with the help of an HMM-based classifier.

Thanks to HMM-based classifier together with the recurrence plot features which is

reconstructed via state space trajectories of the swallow and respiration sound sig-

nal, detection performance developed to a level better than the former studies [33].

To relate sounds of respiration events occurring right after the swallow actions with

dysphagia, a novel method was identified in another study [34]. First of all, the time

domain signal of the breathing action together with the first and second derivatives

were plotted in a 3-D space. Secondly, the scattered 3-D data fitted an ellipsoid to dis-

criminate breathing events after the disordered swallow moments. Finally, the mean

of data outside the ellipsoid was used as a feature of corresponding respiration interval

to be given as an input the SVM (Support Vector Machine) classifier. The accuracy

was found to be 86% in a target group consisting of 50 adults with dysphagia.

Youmans et al. [35] characterized the acoustic signals recorded via cervical ausculta-

tion. The study was carried out by listening to the sounds of swallowing with the help

of a stethoscope placed over the patient’s neck. Swallow sounds of healthy adults

with a wide age range were recorded during the ingestion of boluses with different

viscosity and volume. The results of this study showed that the change in the swal-

lowing characteristics is more related to the viscosity rather than volume. Also, the

increase in the duration and decrease in the intensity of the captured signal was found

to be correlated with increasing age.

In order to monitor three main elements of the feeding mechanism (sucking, respi-

ration and swallowing) to observe coordination between, Chen et al. [1] developed

a wireless system for preterm and term infants. A pressure sensor was placed on a

feeding bottle to digitize the sucking pressure. In addition, breathing signal was ob-

tained via two EMG neonatal electrodes while swallow data acquired with the help of

a mini microphone. Each probe was connected to a wireless acquisition module and

passed through simple filters after digitization. The detection algorithm of the suck-

ing, respiration and swallow activities were built in a back-end system that receives

the output of the wireless module via Bluetooth. This purpose-designed system is de-

picted in Figure 2.8. To determine corresponding activities, fractal dimension, which
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Figure 2.7: Decomposition of the tracheal sound signal including both swallowing

and respiration events [32]

is related to the complexity of the signal, was extracted for EMG and microphone

signals. After that, a simple peak detection algorithm (first-derivative based) for the

fractal dimensions and the pressure signal related to the sucking event was applied

to those signals. The performance parameters, sensitivity and the positive predic-

tive value (PPV), were calculated over 85%. Then, this study was modified [36] by

using an optical probe instead of EMG probes to monitor abdominal movements dur-

ing breathing. Together with that development, performance for the respiratory event

detection slightly increased.
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Figure 2.8: A wireless system to assess the characteristics of sucking, swallow and

respiration for infants [1]

Ince et al. [5] investigated the feeding maturation of infants by evaluating the swal-

low sound signals captured from a digital stethoscope. Variables such as total number

swallows, the maximum number of rhythmic swallows, milk volume, etc. were gen-

erated from two-minute audio recordings to observe correlation with maturation. In

this study, 52 preterm and 42 full-term infants were auscultated. During ausculta-

tion, swallow activities were labeled by a specialist in real time and synchronization

mismatches were corrected immediately after the feeding session was over. As a re-

sult, a positive correlation was found between PMA and both the maximum number

of rhythmic swallows and volume of milk ingested. Moreover, the increase in the
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PMA minimizes differences between term and preterm group in terms of maturation

as many studies related to this topic stated.

2.2.3 Comparison of methods

In the previous sections, several assessments and analysis methods of feeding mecha-

nism components given in the literature are categorized, whether they are invasive or

not. In this section, the advantages and disadvantages of the mentioned methods will

be discussed and a comparison will be made accordingly.

From the background study, it is inferred that the invasive methods, VFSS and FEES,

are accepted as the gold standard for evaluation of the swallow function, diagno-

sis of swallowing impairments and analysis for the clinicians. The comparison of

non-invasive methods with invasive ones to test and validate their performance sup-

ports this deduction. On the other hand, researchers still seek more straightforward

and practical solutions even though the aforementioned invasive methods are seen as

powerful assessment tools. Table 2.1 indicates the advantages and disadvantages of

invasive and non-invasive techniques.

Table 2.1: Comparison of Feeding Maturity Evaluation Techniques

Method Procedure Mobile Painful Frequency of Usage Evaluation Training Other

VFSS Invasive No Yes Just for diagnosis Complex Moderate Level Radiation

FEES Invasive No Yes Just for diagnosis Complex Expert Level

Ultrasound Non-invasive Yes No Anytime Moderate Moderate Level

Cervical Auscultation Non-invasive Yes No Anytime Simple Expert Level

Although there are many studies regarding cervical auscultation to analyze the char-

acteristics of swallow sound of adults, the research for infant subjects remains limited.

However, due to the disadvantages of invasive methods, assessment of swallow func-

tion by acoustical means is of great importance, especially for newborn babies. The

authors of [37, 10, 5], investigated the swallow-related sounds of newborn infants and

some tried to associate to the feeding maturity of infants with different digital signal

processing techniques.
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Automatic swallow segmentation algorithms of adult subjects are available in previ-

ous studies [38, 39]. Also, in [36], swallow events of infants subjects were detected

yet the authors did not propose any method regarding the determination of boundary

limits. In this study, swallow events of infants are segmented automatically and both

the onset and end limits of swallow actions are found to extract statistical results for

evaluation of oral feeding readiness by using acoustic feeding recordings taken from

[5].
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CHAPTER 3

DATA PREPARATION & SWALLOW SOUND ANALYSIS

3.1 Formation of Training and Test Sets

Since the objective of this study is to detect swallow sound segments of infant subjects

automatically with the help of machine learning algorithms, a data driven-system is

required.

For that reason, acoustic feeding signals which are sampled at 44:1 kHz and recorded

via a digital stethoscope (ds32a, thinklabs) in [20] were partially included the data

[5] set of this study. The length of each feeding signal is two minutes. Each feeding

recording was ca ptured in a quiet environment when the stethoscope was held to

the hyoid region of infant subjects. This study aims to create a swallow episode

detection system. For that reason, acoustic swallow patterns, swallow frequencies,

resting intervals, of infants from 27 weeks 36 weeks, were visually inspected and

analyzed. As a result, it is decided that infants older than 36 weeks were appropriate

for the purpose of this study (52 recordings in total).

In addition to feeding recordings, text files including the beginnings of the swallow

events for each baby are available. These text files were generated and written during

the feeding session by a software. Each time a swallow event occurred, a specialist

doctor clicked the mouse to specify swallow time. Then, audio and text

les were analyzed subsequently to correct possible time synchronization mismatches.

Finally, labeling was done via Praat (a speech analysis tool) [40].

In addition to swallowing events labeled as ’y’, several non-swallow sound activities

were observed and they were labeled as ’n’ (non-swallow) as indicated in Figure
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Figure 3.1: Praat view of two episodes for both "y" and "n" classes

3.1. Moreover, if there exists a sound episode that cannot be perceived as any of the

classes, it has been marked as ambiguous (’a’). In the end, the number of intervals

labeled as ’y’ is 1003, whereas it is 837 for non-swallow. Then, randomly selected

17 feeding signals were included in the test data set and the remaining 35 audio files

in the train data set. In Table 3.1, the number of intervals for both swallow and non-

swallow classes for the test and train data set are depicted.

Table 3.1: Number of test and train intervals for both classes

Interval Number File Number

Whole Training Test Whole Training Test

Swallow (’y’) 1003 642 361 - - -

Non-swallow (’n’) 837 579 258 - - -

Total 1840 1221 619 52 35 17

3.2 Analysis of Swallow Sounds

3.2.1 Swallow Patterns

Even though there are similarities, it is quite difficult to say that the swallowing

sounds of this study belong to a particular pattern. Three terms related to the swal-
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lowing process were defined in the previous studies [37, 28]: initial discrete sound

(IDS), bolus transit sound (BTS) and final discrete sound (FDS). In this study, it was

observed that there are similar sequences, but the presence of FDS and IDS was not

guaranteed. Besides, inspiration and expiration sounds may appear before or after the

bolus transmission event. However, BTS was considered to be permanent that is why

only it was labeled as a swallow interval. In Figure 3.2, four different swallow sound

patterns are indicated. The meaning of labels can be seen in the following list.

• y: swallow sound label (swallow class)

• fds: final discrete sound label (non-swallow class)

• rsp: respiration sound label (non-swallow class)

• n: vowel, pleasure or crying sounds label (non-swallow class)

As it can be inferred from Figure 3.2, no unique swallowing process can be identified

for this study. Although the existence of inspiration, expiration, FDS and IDS sound

give an idea of the presence of swallow events, they were treated as non-swallow as

the numbers of intervals for given interval types are limited to apply machine learning

techniques.
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(a) Two swallow events in a compact form, no initial or final sounds

(b) Three swallow events including two stages, short silence period between stages

(c) Two swallow events, the "rsp-y-fds" pattern

(d) Two swallow events, the "y-fds" pattern

Figure 3.2: Four different swallow patterns
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3.2.2 Frequency Analysis

After all the intervals were labeled, the frequency content of swallowing episodes and

different types of non-swallowing sounds (pleasure sounds, cry for assistance) were

analyzed. First of all, the time-frequency characteristics of signals from both classes

were observed. In Figure 3.3, magnitude squared of the short time Fourier transform

(spectrogram) of a sample signal including two swallow and two non-swallow inter-

vals is depicted. As it is seen, three frequency bands seem to be dominant over the

spectrum since non-swallow sound episodes produced by an infant is tonal-like or

pitchy. On the other hand, swallow example has a more flat frequency response.

In addition, power spectral density (PSD) analysis was performed to examine the

frequency characteristic of swallowing sounds. PSD function returns variations of

power in terms of frequency and it’s periodogram estimate formula for a discrete

waveform, x, of sample length N and sampling frequency fs, is given as

P̂ (f) =
1

Nfs

∣∣∣∣∣
N−1∑
n=0

xne
−j2πfn

∣∣∣∣∣
2

. (31)

Periodogram PSD estimates of swallow and non-swallow activities are plotted in Fig-

ure 3.4. Since vowel sounds of newborns are the most common non-swallow types,

it is important to compare two classes from the frequency representations as in this

case. Previous studies state that swallow sounds are more complex and have higher

frequency contents compared to respiration sounds. The (c) part of Figure 3.2 can

also be interpreted similarly. Hence, a powerful classifier will be able to distinguish

two classes with the help of frequency domain features.
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Figure 3.3: Spectrogram of a part of the feeding signal

(a)
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Figure 3.4: (a) Periodogram PSD estimate of an acoustic swallow signal. (b) Peri-

odogram PSD estimate of a non-swallow sound (vowel sound)
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CHAPTER 4

METHOD

In this chapter, two different approaches related to the problem of detection of swal-

lowing sound episodes among all other sound activities are discussed.

1. Segmentation followed by Classification

2. Classification followed by Merging

Although they are considered as different approaches, both techniques are based on

the pattern recognition methodology and their block diagrams are given in Figure 4.1.

However, it is a generic form for different types of classification problems, implying

that not all processing stages in the block diagram need to be included. In this study,

both approaches were implemented for the same purpose even though pre-processing

and post-processing stages differ for each.

Figure 4.1: The flowchart of the pattern recognition methodology

4.1 Segmentation followed by Classification

Considering the graphs and analysis results shown in Chapter 3, a segmentation al-

gorithm is needed for eliminating the silence portions of the acoustic signal. Further-

more, framing and windowing procedures are required to decrease the non-stationary

effect of the large interval signal. Thus, features of small frames can be extracted
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to be given as an input to the specified classifier. In the end, outputs of classifiers

will be used to decide whether a swallow occurs or not with different post-processing

algorithms.

In this approach, two different segmentation algorithms will be shown. Later, the

feature extraction part will be discussed. Lastly, unsupervised and supervised learning

algorithms are explained in detail for the classification part. Generic flowcharts for

the training and test phases of this method are depicted in Figure 4.2

Figure 4.2: Training and the test procedures for the segmentation followed by classi-

fication approach

4.1.1 Segmentation

In order to find the swallowing sound activity, the first step may be identifying the

intervals of sound activity. For that reason, two segmentation algorithms are designed

to detect boundaries of sound activities regardless of swallow or non-swallow events.

One of them is based on thresholding the signal energy, whereas the other one utilizes

extra features and approaches the problem as a voice activity detection, which is

commonly used in the audio signal processing area.
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4.1.1.1 Energy Thresholding Based Segmentation

In order to automatically segment boundaries of sound activities, this method utilizes

the energy of the consecutive frames with a certain frame length and overlap ratio.

Energy of the ith frame, Ei, is computed as

Ei =
N∑
n=0

x2i [n] (41)

where xi[n] is the nth sample of ith frame signal of length N . A sample recording

and the corresponding energy pattern are given in Figure 4.3.

Figure 4.3: Sample recording at the top, corresponding energy plot at the bottom

Sound activity boundaries were detected in two steps; peak detection and boundary

detection. In the previous step, the energy signal was passed through third-order

one-dimensional median filter to remove noise-like oscillations. After this smoothing

process, the peaks of the filtered signal were found. Then, peaks were selected such

that the distance between two peaks should not be smaller than a certain threshold.

The second elimination method was based on the deletion of the peaks through the

threshold extracted from the filtered energy signal. The pipeline for peak detection is

given in Figure 4.4. In the following step, the left and the right boundaries of the
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Figure 4.4: Peak Detection Algorithm

segment were determined by navigating to the left and right from the frames of peak

points. For this purpose, the energy value of the smaller frames was calculated to

extract boundaries more precisely. On both navigating through neighbors and elim-

ination processes, thresholding was utilized. This procedure is given in Figure 4.5.
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Figure 4.5: Boundary detection algorithm

4.1.1.2 Pattern Recognition Based Segmentation

Voice activity detection (VAD) algorithms are used as pre-processing phases in the

speech processing area to determine the presence or absence of human voice. Since

the segmentation problem of this study resembles the VAD, suggested algorithms re-

garding this topic were reviewed [41]. In the end, pattern recognition based solution,

which is for classification of the voiced, unvoiced and silence part of the speech was

found to be appropriate for this study [42]. However, only two classes, non-silence

and silence, were utilized as distinct from the corresponding study since the aim of

segmentation was only to eliminate silence portions of the signal.

In this method, firstly, the acoustic feeding signal was divided into smaller frames 10

ms. Secondly, five different audio features were extracted for both training and test

parts. Thirdly, in the training part, assuming the distribution of feature observations in

the 5-D space as normal, mean vector and covariance matrix of the probability distri-

bution function were computed for both classes. In the test part, the Mahalanobis dis-

tances between the feature vectors and the distribution of both classes were calculated.

Finally, the feature vector was assigned to the class with minimum distance. The flow
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diagram of the segmentation implementation with minor additions and changes to the

algorithm used in the paper is shown in Figure 4.6.

Figure 4.6: Block diagram of the segmentation problem (both train and test parts)

After the framing procedure was applied to the signal, five different measurements

were utilized in order to classify corresponding frames as silence or non-silence.

1. Zero Crossings (Nz)

As the feature name suggests, Nz, stands for the number of zero crossings in

the frame signal.

2. Log Energy (Eli)

The log energy of the ith frame signal, Eli, calculated as

Eli = 10 log

(
1

N

N∑
n=1

x2i [n]

)
(42)

where xi[n] is the nth sample of ith frame signal of length N .

3. Autocorrelation Coefficient at Unit Sample Delay (C1)

This parameter shows how adjacent samples are correlated with each other.

Therefore, if the low-frequency contents dominate the signal, the autocorrela-

tion coefficient for the unit sample delay, C1, will give a result close to unity

implying the higher correlation. C1 is defined as

C1 =

∑N
n=2 xi[n]xi[n− 1]√

(
∑N

n=2 x
2
i [n])(

∑N−1
n=1 x

2
i [n])

. (43)
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4. The First Coefficient of the Linear Prediction Coding (α1)

Linear Predictive Coding, LPC, is a method generally used in speech process-

ing, speech coding and audio signal processing areas. It is based on the as-

sumption that any sample of the audio signal can be approximated with the

linear combination of the past samples [43]. Using the 12-pole LPC, the nth

sample of ith frame signal, xi[n], is approximated as

xi[n] =
12∑
k=1

αkxi[n− k]. (44)

As a result, 12 coefficients were estimated using the covariance method and the

first one (α1) was used as a feature.

5. Normalized Prediction Error (Ep)

This term represents the error of the signal energy in decibels after approxima-

tion with the LPC method. The error is calculated as

Ep = Eli − 10 log

(
ε+

∣∣∣∣∣
12∑
k=1

αkφ(0, k) + φ(0, 0)

∣∣∣∣∣
)

(45)

where φ(j, k) represents the value in the jth row and kth column of the covari-

ance matrix.

In this approach, feature observations were assumed to be normally distributed so

training the classifier model involves only calculating the mean vectors and covari-

ance matrices for both classes. In detail, assume that the total number of frames in

silence and non-silence intervals are N0 and N1, respectively. Therefore, two feature

sets, X0(N0 × 5) and X1(N1 × 5), were formed. The mean vector, ~µw, and the

covariance matrix, Σw for both classes were computed as

µw[k] =
1

N

Ni∑
n=1

Xw(n, k) (Mean Vector) (46)

Σw =
1

N
XT

cwXcw (Covariance Matrix) (47)

Xcw(j, k) = Xw(j, k)− µw(k) (48)

where:
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w : class ID (’0’ for silence, ’1’ for voiced)

Xcw : feature matrix subtracted by the mean feature vector for the ith class

k : feature index.

Testing whether a frame signal belongs to voiced or silence class is based on measur-

ing the Mahalanobis distance between the feature vector of the corresponding frame

subtracted from the mean and the probability distribution of the classes. Therefore,

the frame signal was assigned to the class, having the distribution with a minimum

distance. The Mahalanobis distance between the feature vector, ~xi = (xi1, xi2, .., xi5),

and the probability distribution of ith class were calculated as

Di(xi) =
√

(~xi − ~µi)TΣ−1(~xi − ~µi). (49)

The distance based classifier outputs two different distance values for each frame.

However, a post-processing stage is required since the main problem is to separate

silence and voiced portions of the related signal. For that reason, the outputs of the

classifiers (1’s and 0’s) were combined with a Finite State Machine (FSM) decision

algorithm.

Merging Frames via FSM: In this algorithm, the outputs of the classifier were

merged according to certain rules and thresholding methods to detect sound activi-

ties. The FSM diagram is shown in Figure 4.7
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Figure 4.7: Detailed block diagram of the FSM Decision Algorithm

4.1.2 Feature Extraction

A typical audio signal can be used for different purposes by extracting temporal and

spectral features. However, features such as zero crossing rate, attributes related to

the energy of the signal, etc., are not considered as powerful features for swallow

sound classification since the information extracted from the most of the typical time

domain features can be extracted in the frequency domain as well. Furthermore, since

energy-related features were utilized in the segmentation stage for the elimination of

silence and non-silence portions of the signal, they were not considered to be used for

distinguishing between swallowing and non-swallowing regions in the vocal parts.

Therefore, the frequency domain characteristics of the swallowing sound were ana-

lyzed and examined in general.
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This section aims to find out the features to be given as inputs for the different types

of classifiers. The spectral characteristics of all kinds of sounds were analyzed and

examined in detail. Thus, firstly, several frequency domain features of frame signals

were extracted and the relation between each frame number and the corresponding

feature was observed graphically for both manually labeled swallow and non-swallow

sound intervals. Secondly, taking how different combinations of attributes affect the

performance of the EM-GMM classifier into account, redundant features were elim-

inated. In addition to performance, decreasing the time complexity of the feature

extraction and classification processes is another concern for this issue.

In this study, swallow sound was assumed to be non-stationary (statistical properties

are not constant at any time) like speech. For that reason, the entire feeding signal

was divided into small frames so that the assumption that the signal is stationary can

be made. In addition, the windowing function was applied to small frames to suppress

edge discontinuities and diminish the spectral leakage due to the framing process. A

typical hamming window of length N is defined as

w[n] = 0.54− 0.46cos

(
2πn

N

)
n ∈ N : [0, N ]. (410)

A further progress in reducing severe degradation at the edges is the overlapping of

short time frames. Thereby, the time resolution of a signal is increased since each

part is examined more than once.

Discrete Fourier Transform (DFT) is used to represent the discrete-time signal in the

Fourier domain and can be easily computed via digital computers [44]. The DFT

can be considered as a common previous step before the extraction of each spectral

feature. Including the windowing operation given in (410), L-point DFT of the ith

frame signal, Fxi , is calculated a

Fxi [k] =
N−1∑
n=0

xi[n]w[n]e−
2πkn
N k ∈ N : [0, L− 1]. (411)

4.1.2.1 Spectral Centroid

Spectral centroid is the center of mass of the magnitude Fourier transform of an acous-

tic signal [45]. For an acoustic signal interval having K frames, K × 1 dimensional
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feature matrix is constructed. In below, spectral centroid formula of the frame signal,

Cxi , is given by

Cxi =

∑L−1
k=0 k|Fxi [k]|∑L−1
k=0 |Fxi [k]|

. (412)

4.1.2.2 Spectral Spread

Spectral spread (SS) is another feature giving information about the width of the

spectrum [46]. In other words, it represents the deviation around the spectral centroid

value. Thus, it is necessary to know the value of spectral centroid for the calculation

of SS. For an acoustic signal having K frames, K × 1 dimensional feature matrix is

constructed. In below, the formula for SS of the frame signal, SSxi , is given by

SSxi =

∑L−1
k=0 (k − Cxi)2|Fxi [k]|∑L−1

k=0 |Fxi [k]|
. (413)

4.1.2.3 Spectral Flatness

Spectral flatness (SF) is a feature that indicates how tonal or noisy the signal is. More-

over, the ratio of geometric mean to the arithmetic mean of a power spectrum is the

traditional definition of it [47]. However, it is possible to see zero magnitudes for

some single frequency values in the spectrum, causing the geometric mean equal to

zero. In other words, the length of the frame signal is not large enough to have a

non-zero value in each frequency bin. Therefore, to calculate the geometric mean of

the spectrum, each frequency magnitude of a sub frequency band is summed up rather

than using the amplitude of the single frequency value. For an acoustic signal having

K frames, K × 1 dimensional feature matrix was constructed. In below, the formula

for SF of the frame signal, SFxi , is given by

Pxi [k] =
1

Nfs
|Fxi [k]|2 k ∈ N : [0, L− 1] (414)

SFxi =

L′
√∏L′−1

k=0 P ′xi [k]∑L′

k=0 P
′
xi

[k]
k ∈ N : [0, L′ − 1] (415)

where
#   �

Pxi represents the periodogram estimate of the power spectrum. On the other

hand, kth element of
#   �

P ′xi is obtained by summing the amplitudes of L
L′

consecutive
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frequency bins of
#   �

Pxi .

4.1.2.4 Mel Frequency Cepstral Coefficients

The research and applications of the field of audio and speech processing are mainly

developed by considering the human auditory system. The human ear can be con-

sidered as a filter concentrated non-uniformly on specific regions of the frequency

spectrum. Since the frequency discern skill of the human ear decreases with increas-

ing frequency, the low-frequency region contains more filters than the high one. For

the same reason, the perception of the human auditory system cannot linearly evalu-

ate pitch in terms of Hz scale. To express this perception as linear, Mel frequency was

described [48]. Mel Frequency Cepstral Coefficients (MFCC) are derived from that

logic and dominating the speech and audio processing field for a long time thanks to

their ability to represent audio signals in a compact form. The pipeline for calculation

of MFCC is depicted in Figure 4.8 Framing and windowing stages are mentioned

Figure 4.8: Procedure for extracting the MFCC Values

and periodogram estimate of the power spectrum (414) is formulated in the previ-

ous sections. Each process other than those mentioned is examined in the following

paragraphs [49].

Mel filterbanks can be considered as a cluster of triangular filters which are linearly

separated in the Mel frequency scale. Each filter can be represented as a vector of

dimension 1 × (L
2

+ 1), where L is the DFT dimension. In the Figure 4.9, triangular

filterbank including 10 filters and 10+2 boundary points are seen in Hz scale. The cor-

responding figure is to show the change in the difference between each boundary point

of the filterbanks as increasing frequency. It is necessary to declare extreme bound-

aries for the frequency in terms of Hz to form such a filterbank. After that, lower

bound (fl) and upper bound (fu) are converted to Mel frequencies, (mell,melu), with

the given formula
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Figure 4.9: Plot of Mel filterbank with 10 filters, when minimum and maximum

frequencies are 0 kHz and 8000 kHz respectively.

mell,u = 1127 log(1 +
fl,u
700

). (416)

After the extreme boundary points are calculated, filter boundary points (linear in Mel

scale) are found. Then, each Mel frequency converted back to the frequency scale

using the inverse of the equation (416). Finally, mth triangular filter of the filterbank,
#   �

Hm, is created according to the given formula

Hm[k] =



0 k < 1

2(k−f [m−1])
(f [m+1]−f [m−1])(f [m]−f [m−1]) f [m− 1] ≤ k ≤ f [m]

2(f [m+1]−k)
(f [m+1]−f [m−1])(f [m+1]−f [m])

f [m] ≤ k ≤ f [m+ 1]

0 k > f [m+ 1]

m ∈ N : [0,M−1].

(417)

The natural logarithm of energy value at the output of the mth filter,
#       �

LEm, is then

computed with the inner product of the power spectrum estimate and the mth filter
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coefficients and is given by

LEm[l] = log

L
2
+1∑
l=0

Pxi [l]Hm[l]. (418)

After the log-energy value vector of size M is obtained, discrete cosine transform

(DCT) is applied and MFCC values,
#    �

CC, are calculated as

CC[n] =
M−1∑
k=0

LEm[k] cos

[
π

M

(
k +

1

2

)
n

]
n ∈ N : [0,M − 1]. (419)

In the end, an M-dimensional MFCC vector was found and the first 13 coefficients

were used as features for this study. Therefore, for an acoustic signal having K

frames, K × 13 dimensional feature matrix was constructed.

4.1.3 Classification

In this section, different techniques are discussed to classify a segmented interval, as

swallow or non-swallow. In the previous sections, the segmentation of non-silence

portions and the extraction of several features of each frame of corresponding seg-

mented intervals are explained in detail. Here, the classification of each frame with

several learning algorithms and how outputs of multiple frames are combined are told.

4.1.3.1 K-means Clustering

The K-means clustering method is an unsupervised and simple method to solve clus-

tering problem [50]. In other words, if an observation dataset is not labeled, this

method will group the unlabeled data with an input parameter K. Let N be the num-

ber of observations andK is the number of clusters. The clustering procedure is given

in the following steps:

1. Randomly initialize center of clusters, C = [~c1, ~c2, . . . , ~cK ]

2. Calculate euclidean distance between the each sample and the center of clusters.

3. Assign data sample to the cluster whose mean is nearest to it in terms of eu-

clidean distance.
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4. Update the mean values of clusters such as

~ci =
1

Ni

Ni∑
k=1

# �

Xi[k] (420)

where i represents cluster ID and
# �

Xi[k] is the kth sample of the observation

matrix belonging to cluster i and Ni is the total number of samples currently in

cluster i.

5. Go to step 2 if convergence is not achieved, otherwise stop the algorithm.

Although K-means clustering is an unsupervised learning algorithm, a decision mech-

anism was constructed to determine the class of the segmented interval. In order to

utilize this method as if supervised learning, clustering operation has been applied

separately for each class with the same K value. However, it should be taken into

consideration that multiple feature vectors are extracted from each manually labeled

interval. Thus, regardless of which interval it comes from, each feature vector was

merged according to its class ID. Accordingly, two feature matrices, X0(N0 × d),

X1(N1 × d), were formed given that the feature dimension is d. After that, the K-

means procedure was applied to both feature matrices to obtain cluster probabilities

for each class. The probability of a feature vector given classw (0 or 1) and ith cluster,

πwi, is

πwi =
Niw

Nw

(421)

where Niw is the number of frames belonging to class w , cluster i and Nw is the total

number of frames of class w.

Extracting the cluster and class probabilities for both classes can be considered as

the training procedure. Let XI = [
#  �

xi1,
#  �

xi2, . . . ,
#      �

xiNI ], is the feature matrix of the

segmented interval with size NI × d. To test whether XI represents a swallow

interval or not, the likelihood function of both classes can be calculated as

lw =
K∑
i=1

πwiniw (422)

where niw is the number of frames assigned to cluster i for the class w. The assign-

ment rule of only one feature vector was to select the cluster giving the minimum

Euclidean distance. As a result, XI was appointed as swallow episode if l0 > l1, or

else as non-swallow.
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4.1.3.2 Gaussian Mixture Model (GMM)

In the K-means algorithm, features of each frame were assigned to exactly one cluster.

However, the possibility of overlapping clusters in the feature space was neglected in

this assumption. Also, Euclidean distance to the cluster center is utilized in K-means,

yet the clusters may have a non-circular shape. For that reason, clusters are modeled

as normally distributed, not just by their mean but also the covariance matrix in the

Gaussian mixture model (GMM).

GMMs are the linear combination of the multiple Gaussian components the corre-

sponding probability density function of the model having K mixtures is in the form

of [51]

p( #�x ) =
K∑
k=1

πkN ( #�x | # �µk,Σk). (423)

Expectation Maximization (EM) is an elegant and robust algorithm that is used for

maximum likelihood parameter estimation [52]. GMM is an example of a probabilis-

tic model including parameters such as means, variances and mixing coefficients.

Therefore, the aim of Expectation-Maximization for Gaussian Mixture Model (EM-

GMM) to maximize the likelihood function in terms of GMM parameters.

In this study, both classes were assumed to be having K Gaussian mixtures. For class

w, the algorithm steps for maximizing the log-likelihood function is given below.

1. Initialize means,
# �

µwk , covariance matrices, Σw
k , and mixing coefficients, πwk

2. Find the responsibility of each sample (
# �

xw[n]) in class w according to formula

γw[n, k] =
πwkN

(
# �

xw[n]| # �

µwk ,Σ
w
k

)
∑K

m=1 π
w
mN (

# �

xw[n]| #  �

µwm,Σ
w
m)

(424)

3. Update the means, variances and mixing coefficients with the help of calculated

responsibilities
# �

µwk,new =
1

Nw
k

N∑
n=1

γw[n, k]
# �

xw[n] (425)

Σw
k,new =

1

Nw
k

N∑
n=1

γw[n, k]
(

# �

xw[n]− # �

µwk,new

)(
# �

xw[n]− # �

µwk,new

)T
(426)
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πwk,new =
Nw
k

Nw
(427)

where Nw is the total number of feature vectors in class w and Nw
k is given as

Nw
k =

Nw∑
n=1

γw[n, k] (428)

4. Check whether log-likelihood function given below converged or not.

log(pw(
# �

xw)) =
Nw∑
n=1

log

[
K∑
k=1

πwkN
(

# �

xw[n]| # �

µwk ,Σ
w
k

)]
(429)

5. Go to step 2 if convergence is not achieved, otherwise stop the algorithm.

Decision Rules for EM-GMM: Maximizing the likelihood function by estimating

the unknown parameters of the Gaussian mixtures can be named as the training phase

of this algorithm. For both classes, K means, covariance matrices and mixing coef-

ficients were estimated. After that, two decision rules were proposed to merge the

outputs of the classifier. Here, output refers to the likelihood of only one audio frame

signal.

1. Sum of log-likelihoods: The feature vectors inside a segmented interval were

assumed to be independent. Based on this assumption, the product of likeli-

hood values of each frame, or sum of the log-likelihood values were computed

for both swallow and non-swallow cases. Finally, the input signal having Nf

frames was classified by comparing the sum of logarithms.

log
(
pwtotal(X|Σw,

# �

µw,πw)
)

=

Nf∑
n=1

log

(
K∑
k=1

πwkN
(

# �

xw[n]| # �

µwk ,Σ
w
k

))
.

(430)

If the total sum of log-likelihood of swallow (non-swallow) class was higher,

the input signal was classified as swallow (non-swallow).

2. Majority Voting: Frame by frame comparison between the two likelihood

values of a single frame of an episode and majority voting may result in a more

accurate decision. Therefore, for a segmented interval containing Nf frames,
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Nf comparisons were done. If the total number of frames favoring swallow

(non-swallow) class was higher than the non-swallow (swallow) class, the input

signal was classified as swallow (non-swallow).

Algorithm 1, 2, 3 show the pseudo codes for the units such as building classification

models and testing the extracted models using the GMMs.

Algorithm 1: Creation of Feature Observation Matrix in GMM
input : Collection of audio recordsK

output: featMat, a matrix that contains audio features of frames

1 for ∀i ∈ K do

2 Ki ← extractLabelInfo(i) // Extract intervals and labels

3 for ∀frame ∈ Ki do

4 Compute MFCC values of frame

5 Compute spectral Centroid of frame

6 Concatenate features

7 Append feature vector to featMat

8 end

9 end

Algorithm 2: Building a Classification Model with EM-GMM
input : Unnormalized observation matrix featMat

output : Classifier model, gmmModel

parameter: Tolerance value related to convergence rule, tolV alue

1 (coeffs, scores)← PCA(featMat)

2 for i=1,2 (2 classes) do

3 Find means of each mixture with the help of K-means algorithm

4 Find corresponding labels for each mixture

5 for k=1,2 ... K (# of gaussian mixtures) do

6 Assign the mean values as found in K-means

7 Extract each feature vector having the same mixture label k

8 Concatenate corresponding feature vectors and form a matrix

9 Initialize the covariances and mixing coefficients

10 end

11 end

12 for i = 1,2 (for both swallowing and non swallowing frames) do

13 Convergence Rule : llt − llt−1 < |(llt)|tolV alue

14 while convergenceIsNotSatisfied() do

15 E step :Calculate responsibilities

16 M step :Re-estimate the parameters using the current responsibilities

17 Evaluate the ll

18 Check for convergence of ll

19 end

20 gmmModeli ← estimated parameters

21 end

22 Function PCA(obsMatrix)

23 meanObsMatrix←Mean of observation matrix

24 zeroMeanObsMatrix = obsMatrix−meanObsMatrix

25 coeffs← Principal component coefficients of zeroMeanObsMatrix

26 scores← Projection of zeroMeanObsMatrix onto the principal components

27 returnmeanObsMatrix, coeffs, scores
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Algorithm 3: Testing the EM-GMM Classifier
input : Collection of audio records,K, Trained GMM Models, gmmModels

output: decisionV ec, holding the interval decisions

1 for ∀i ∈ K do

2 Ki ← segmentation(i) // (

3 Group of segmented interval ) for ∀j ∈ Ki do

4 for ∀k ∈ j do

5 Compute MFCC values of kth frame of jth interval

6 Compute spectral centroid of kth frame of jth interval

7 featV ec← Concatenate features

8 llsw [k], llnsw [k]← computeLikelihood(gmmModels,featV ec)

9 end

// Majority Voting, Kij represents one interval

10 if Majority == sw then

11 Kij ← swallow interval

//

12 else

13 Kij ← non-swallow interval

14 end

// Sum of log-likelihoods

15 if (
∑
llsw >

∑
llnsw ) then

16 Kij ← swallow interval

17 else

18 Kij ← non swallow interval

19 end

20 end

21 end

4.1.3.3 Gaussian-HMM

In the previous Gaussian mixtures based classification method, sequential informa-

tion was not considered. Each small frame of a segmented interval was evaluated

independently and the decision was given without thinking any temporal dependency

between consecutive frames. However, swallowing is a sequential function satisfying

the proper coordination of muscles of mouth, palate, pharynx, larynx, esophagus [8].

Hence, it can be modeled as a Markov Process containing N different states. Since

the states cannot be observed physically, the system is described as Hidden Markov

Model [53] for this problem. An example of the lattice representation of HMM with

3 states is illustrated in Figure 4.10. ~t = [1, 2, . . . , T ] stands for the time sequence

vector, while ~O = [O1, O2, . . . , OT ] are the observations. Furthermore, S1, S2 and S3

are the three unobserved states of the HMM. The transition probability from the state

i to state j is represented as aij .

In a discrete HMM, the probability of ith observation within the state j at any time

t is depicted as bij . However, when it is not possible to describe observations dis-

cretely, HMM is used with continuous observation densities. Since there are no solid
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Figure 4.10: Lattice representation of an HMM with 3 states and T observations

observation definitions for the swallow function, observation densities are computed

by assuming the distribution of each state as Gaussian. Therefore, given state j, the

density of any feature vector, x, is calculated as

bj(
#�x ) = p( #�x |Sj) = N ( #�x ; ~µj,Σj). (431)

In an HMM, three main problems are discussed, namely, evaluation, recognition and

training. The evaluation problem is merely finding the probability of an observation

sequence O = [O1, O2, . . . , OT ] in which initial state probabilities, transition prob-

ability matrix and observation densities are known. In the recognition problem, the

goal is to find the best state sequence, ~Q = [q1, q2, . . . , qT ], of a given model and the

likelihoods of frames at any time t. The third problem is the estimation of the HMM

parameters, which are transition probability matrix, A, initial state probabilities of

states, π = [π1, π2, . . . , πN ] (N is the number of states) and unknown parameters of

Gaussian distribution.

The most significant difference between Gaussian-HMM and the GMM for this study

can be the presence of the transition probability matrix. Therefore, as in the case

of GMM, two distinct Gaussian-HMMs were constructed to interpret the problem as
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binary classification.

In the evaluation or the test part, the likelihood of observations,X = [ #�x1,
#�x2, . . . ,

# �xT ],

given the model, λ, i.e, P (X|λ) is calculated. If the state sequence, ~Q = [q1, q2, . . . , qT ],

is also given, then the likelihood of continuous observation sequence can be described

as

p(X| ~O, λ) =
T∏
t=1

p( #�xt|qt). (432)

On the other hand, the probability of the state sequence, ~Q, will be in the form

P ( ~Q|λ) = πq1

T∏
t=2

aqt−1qt (433)

Thus, the probability of Q and X at the same time for the given model will be

p(X, ~Q|λ) = p(X| ~Q, λ)P ( ~Q|λ) = πq1

T∏
t=1

p( #�xt|qt)
T∏
t=2

aqt−1qt . (434)

The above term is valid for a specific state sequence. Yet, the likelihood of continu-

ous observations should be calculated for each state sequence combination and then

summed which can be shown as

P (X|λ) =
∑
Q

p(X, ~Q|λ) =
∑
Q

πq1

T∏
t=1

p( #�xt|qt)
T∏
t=2

aqt−1qt . (435)

As it can be inferred from (435), the number of state sequence combination for N

states and T timestamps equals to NT and for each state sequence, 2T calculations

are required, thus yielding 2TNT arithmetic operations in total. This method is,

unfortunately, inapplicable due to high complexity. To lower complexity, the forward

procedure is utilized.

Forward Procedure: In this methodology, the forward variable, at(j), is defined as

the likelihood that the partial observation sequence, X = [ #�x1,
#�x2, . . . ,

# �xT ], occurs

and the state at time t equals to Sj . After setting the initial values, at(j) is solved as

follows:

at(j) =

(
N∑
i=1

at−1(i)aij

)
p( #�xt|qt = Sj) (436)

The above equation means that the likelihood of the partial observation sequence at

time t for a given state j can be derived from each forward variable of previous states
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and the given transition probabilities between states. In the Figure 4.11, updating

procedure is illustrated. At the end (t = T ), the likelihood of the entire observation

sequence can be found as

P (X|λ) =
N∑
i=1

aT (i). (437)

S1

S2

SN

Sj

⋅ p( | = )a1j xt qt Sj

+

⋅ p( | = )aNj xt qt Sj

+

⋅ p( | = )a2j xt qt Sj

+
+

t − 1 t

(j)at

S
T
A
T
E
S

X : xt−1 xt

Time :

Figure 4.11: Computation of the forward variable from time t− 1 to t

Thanks to forward procedure, the number of arithmetic operations (additions, multi-

plications) decreases toN2T . Remember that the brute-force approach (435) requires

on the order of 2TNT calculations. More clearly, for N = 3 and T = 10, the number

of operations in the forward method is 90, whereas on the order of 106 operations are

needed in the former method.

In this method, previous parts such as segmentation, dividing into smaller frames and

feature extraction are the same with those in the EM-GMM algorithm. Similarly,

two Gaussian-HMMs were created for each class. Here, the number of frames was

considered as the number of timestamps. Assuming that the Gaussian parameters for
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each state were known and the transition probability matrix was given, the likelihood

of continuous observation densities for both classes were computed applying the for-

ward procedure algorithm. Finally, segmented sound activity was assigned to class

having a larger likelihood value at the output.

Backward Procedure: This process is required to calculate the probability of being

in state Sj at time t given the entire observation densities. Remember that in equation

436, at(j) represents the likelihood of the same model, state and the time-stamp but

given partial observation densities. Thus, the backward variable, βt(j), likelihood of

being in state Si at time t given theX = [ #     �xt+1,
#     �xt+2, . . . ,

# �xT ] is defined as

βt(i) =

(
N∑
j=1

βt+1(j)aij

)
p( #     �xt+1|qt+1 = Si). (438)

After the forward and backward variables are found for the given state and time,

the probability of being in state Si at time t given the entire observation densities is

defined as

γt(i) =
at(i)βt(i)

p(X|λ)

=
at(i)βt(i)∑N
i=1 at(i)βt(i)

.
(439)

In addition, given the model and continuous observation densities, the probability of

being in state Si at time t and in state Sj at time t+ 1 can be calculated as

εt(i, j) =
at(i)βt+1(j)aijp( #     �xt+1|qt+1 = Sj)

p(X|λ)
. (440)

The Baum-Welch re-estimation aims to find the model assigning the training data

the maximum likelihood [54]. As no analytic solution exists, a special case of EM

algorithm is utilized. The above two terms will be updated in the expectation part

while the mean and covariance matrices belonging to states will re-estimated in the

maximization part. In this study, the number of states was assumed to be equal for

both classes. Therefore, the same procedure was applied for each class. The algorithm

is expressed in the following steps.

1. Initialize the initial state probabilities, πi, means, µi, covariance matrices, Σi,

transition probability matrix A.
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2. Expectation: Calculate γt(i) and εt(i, j) according to (439) and (440).

3. Maximization: Update the initial state probabilities means, covariance matri-

ces and transition probability matrix.

πi =
γ1(i)∑N
j=1 γ1(j)

aij =

∑T
t=1 εt(i, j)∑T
t=1 γt(i)

#�µi =

∑T
t=1 γt(i)

#�xt∑T
t=1 γt(i)

Σi =

∑T
t=1 γt(i)(

#�xt − #�µi)(
#�xt − #�µi)

T∑T
t=1 γt(i)

4. Check whether convergence is achieved, otherwise go to step 2.

One of the most important issues that should be taken into consideration in a re-

estimation based algorithm is initialization. Because the algorithm may be stuck in the

local maximum value of the likelihood depending on the initial parameters. To avoid

this, firstly, the centroid values of feature vectors for each state were obtained via

K-means clustering. After that, independent from the HMM, EM-GMM was applied

to estimate Gaussian mixture parameters, namely, means and covariance matrices.

Then, each training sample was assigned to a state according to their likelihoods

found by the EM-GMM algorithm. On the other hand, the probability of transition

from state Si to Sj ,i.e, aij,init was initialized as

aij,init =
Total number of transitions from state Si to Sj

Total number of being in state Si
. (441)

In summary, both manually labeled swallow and non-swallow activities divided into

small frames were given to two distinct HMMs as training data. After that, since the

space of the observation signals related to each state was modeled as Gaussian proba-

bility density function, the unknown parameters of it were estimated with the help of

the Baum-Welch Algorithm for each class. With the help of this re-estimation proce-

dure, state transition probability matrix and initial state probabilities were determined

as well. On the other hand, in the test part, segmented intervals were given as input to

trained HMMs to calculate the likelihood of the entire sequence. Finally, segmented

sound activity was assigned to class having a larger likelihood value at the output.

In Algorithm 4, 5, 6, modules, namely, creation of feature matrices, training and

testing the Gaussian-HMM model procedures are depicted.
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Algorithm 4: Creation of Cell Array of Feature Matrices for one class
input : Collection of audio recordsK

output: featMatCellt, cell array of matrices containing multiple frame features of intervals

1 Initialize featMatCell as and empty cell

2 for ∀i ∈ K do

3 Ki ← extractLabelInfo(i) // Extract intervals and labels

4 Initialize intervalFeats ofKi as an empty matrix. for ∀frame ∈ Ki do

5 Compute MFCC values of frame

6 Compute spectral Centroid of frame

7 Concatenate features and append to intervalFeats

8 end

9 Append intervalFeats to featMatCell

10 end

11 return featMatCell

Algorithm 5: Training the Gaussian HMM model for one class
input : featMatCellt, cell array of matrices containing multiple frame features of intervals,K, number of states, iterNo

output: ghmmModel, state transition matrix, initial probabilities and gaussian parameters

// Estimate gaussian parameters of corresponding class for each state

1 params← emgmm (featMatCell,K)

2 stateTransitionNo← zero matrix of dimensionK ×K

3 for ∀featMat ∈ featMatCell do

4 Initialize states as an empty vector

5 for ∀frame ∈ featMat do

6 Initial assignment of frame to a state according to params

7 Append assigned state to states

8 end

// For Initial Estimate of State Transition Matrix

9 stateTransitionNo← updateStateTransitions(states)

10 end

11 A0 ← estimateStateTransitionMatrix(stateTransitionNo) // Initial Estimate

12 for i ∈ [1, iterNo] do

// Expectation Step

13 for ∀featMat ∈ featMatCell do

14 Find likelihoods of each feature inside featMat

15 Forward and Backward Procedure

16 end

// Maximization Step

17 Update gaussian parameters // Σ, µ and π of each state

18 Update state transition matrix

19 end

20 return featMatCell
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Algorithm 6: Testing the Gaussian-HMM Classifier
input : Collection of audio records,K, Trained GMM Models, gmmModels, State Transition Matrices,A, Initial State Probabilities, π

output:

1 for ∀i ∈ K do

2 Ki ← segmentation(i) // (

3 Segmented intervals) for ∀j ∈ Ki do

4 for ∀k ∈ j do

5 Compute MFCC values of kth frame of jth interval

6 Compute spectral centroid of kth frame of jth interval

7 featV ec← Concatenate features

8 Append featV ec to feature matrix ofKij interval

9 pdfOutputsSw[k]← computeLikelihood(ghmmModelSw ,featV ec)

10 pdfOutputsSw[k]← computeLikelihood(ghmmModelNSw ,featV ec)

11 end

12 likelihoodSw ← viterbiDecode(pdfOutputsSw,φinit ,Asw)

13 likelihoodNSw ← viterbiDecode(pdfOutputsNSw,φinit ,ANSw)

// Sum of log-likelihoods

14 if ( likelihoodSw > likelihoodNSw ) then

15 Kij ← swallow interval

16 else

17 Kij ← non swallow interval

18 end

19 end

20 end
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4.1.3.4 Support Vector Machines

Whenever applicable, two-class problems can be solved by finding a decision bound-

ary (a hypersurface) in the feature space. In SVM, elements of the training data that

are nearest to the separating hyperplane are called support vectors and the main goal

is to maximize the distance between support vectors and the decision boundary. Sup-

port vectors can be considered as the training samples, which are the most challenging

samples for classification [55]. That is why they define the location of the decision

boundary. How SVM approaches a linearly separable two class problem is illustrated

in Figure 4.12.

w

y = g(x)
= 0

y = −

1

y = 1

Support
Vectors 

Figure 4.12: The 2-D scheme of the SVM classification. Black line is the decision

boundary (Optimal Separating Hyperplane), red lines are called positive and negative

hyperplanes, w is the normal vector to the decision boundary, blue circles and green

squares stand for two classes.

The g(~x) can be considered as a discriminant function and used to form a decision

mechanism such that the positive class should be assigned to sample ~xi, if g(~xi) > 0

is satisfied or vice versa. The form of g(~x) is given by

g(~x) = ~wT~x+ w0 (442)

where w is the weight vector and w0 represents the bias term. In Figure 4.13, the

distance between a sample, ~xi, and the decision boundary line (2-D feature space),
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y = 0, is shown and calculated as

d =
g(~x)

||~w||

=
~wT~x+ w0

||~w||

(443)

Figure 4.13: View of the distance between 2-D sample ~xi and decision boundary

The discriminant function, g(~x), can be scaled by a parameter k such that distance

between the nearest point, ~xi, and the decision boundary will be 1
||~w||2 .

~wT~x+ w0 = 0 =⇒ k ~wT~x+ kw0 = ~wup
T~x+ w0,up = 0 (444)

~wup
T ~xi + w0,up

|| ~wup||2
=

1

|| ~wup||2
(445)

Optimal decision boundary will be obtained as a result of optimization by maximizing

the distance of closest samples which can be shown as

maximize
wup

(
1

|| ~wup||2

)
or minimize

wup

(
|| ~wup||2

)
subject to yi

(
~wup

T ~xi + w0,up

)
≥ 1, i = 1, . . . , N.

(446)

where yi = {1,−1} is the assigned label of the sample xi and N is the total number

of training sample. It can be inferred from (446) that, the term,
(
~wup

T ~xi + w0,up

)
,

will be negative when the label yi = −1 and positive when yi = +1 if the problem

is linearly separable. However, it is not possible to draw a hyperplane to separate

two classes in most of the classification problems as the real-world data is generally

not linearly separable. For that reason, a generalized discriminant function, g′(~x), is

defined as

g′(~x) = ~wTφ(~x) + w0 (447)
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where φ(~x) is the feature map function helping non-linearly separable data to become

separable with the help of a linear hyperplane in a higher dimension. Also, although

a standard SVM looks to find a margin split all the positive and negative training data,

this may lead to a modeling error such as overfitting. In this case, the misclassification

rate for train data can be zero, while the error rate of the test data can be found to be

quite high. Therefore, to obtain better classification performance on test data, the

margin SVM seeks to can be increased. A trade-off parameter, C, is a penalty factor

for misclassifying the training instances, the lower C, the higher the final training

error. On the other hand, the generalization power of the classifier will increase [56].

Given the trade-off parameter, C, the primal problem of optimization will be

minimize
~wup

(
|| ~wup||2 + C

N∑
i=1

εi

)
subject to yi

(
~wup

Tφ(~xi) + w0,up

)
≥ 1− εi, i = 1, . . . , N.

(448)

In order to find a solution for the optimization problem that is constrained to at least

one equality or inequalities, the Lagrange Multiplier method is used. Then, applying

the Karush-Kuhn-Tucker conditions [56, 57], the dual optimization problem will be

maximize
ai≥0

(
N∑
i=0

ai −
1

2

∑
j

∑
k

ajakyjykφ(~x)Tφ(~x)

)
subject to 0 ≤ ai ≤ C and

∑
i

aiyi = 0, i = 1, . . . , N.

(449)

The above equation implies that the mapping function, φ(~x), only occurs in pairs

(φ(~xi), φ(~xj)) in optimization problem. Therefore, a coefficients will be learned after

the dot products of pairs of the training data are calculated. Most of the ai values

will be zero, so the dual form has no disadvantage over the primal problem due to

the high number of arithmetic operations. The ones having non-zero values will be

named as support vectors. The inner product of mapping functions is defined as the

kernel function [58], K, which can be shown as

K(~xi, ~xj) = φ(~xi)
Tφ(~xj) (450)

The dimension of the mapped space does not matter since the inner products are

utilized. Thus, the kernel function should be selected such that it can be written as
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the form of the inner product of pair mapped vectors (450). Also, the classifier can

be re-written in the dual form in terms of kernel function as

g′(~x) =
N∑
i=1

aiyiK(~xi, ~xj) + b (451)

Some popular kernels are listed below:

K(~xi, ~xj) = (~xi
T ~xj) Linear Kernel (452)

K(~xi, ~xj) = (~xi
T ~xj)

2 2-D polynomial Kernel (453)

K(~xi, ~xj) = e−γ||~xi− ~xj ||
2

Radial Basis Function (RBF) Kernel (454)

Similar to previous approaches, in this study, training and classification pipelines

were constructed at the beginning. In the training part, labeled swallow/non-swallow

intervals were divided into smaller frames as in the EM-GMM and Gaussian-HMM

cases. Then, the normalization procedure was applied to the extracted features of both

classes. In the end, the model was trained with normalized features. In other words,

support vectors and corresponding ai values were found (449). In the classification or

test part, extracted features were firstly normalized and then given to classifier (451).

In general, SVM is a binary classifier that outputs the decision label. However, the

majority of the classification problems requires the posterior probabilities as well.

For that reason, Platt et al. proposed an algorithm mapping binary decisions into

probability scores with an additional sigmoid function [59].

After obtaining the posterior probabilities at the output, a decision mechanism, which

is similar to the sum of the log-likelihood estimates approach used in (430) was con-

structed. To assign the segmented sound interval as swallow or non-swallow, the

logarithms of swallow and non-swallow probabilities were summed assuming the in-

dependence between frames. If the difference between sums of two classes were

higher than a certain threshold, the class was selected to be as swallow which can be

shown

Ns∑
i=1

log (P (~xi|Sw)) >
Ns∑
i=1

log (P (~xi|NonSw)) + THR =⇒ Swallow Interval.

(455)
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4.2 Classification followed by Merging

In the first approach (Segmentation followed by Classification), the audio data se-

quence was firstly segmented with distinct segmentation algorithms as a pre-processing

stage. Secondly, extracted intervals were divided into frames and each frame was

classified as swallow or non-swallow. Finally, different decision mechanisms were

constructed to make a classification in terms of the segmented interval. However, in

this case, no pre-processing algorithm was applied to the signal. Instead, the entire

data sequence was split into frames and the features of each were extracted. Then,

extracted features were given as inputs to the classifier. In order to detect swallow

boundaries, the outputs of the classifier were combined with different merging algo-

rithms. Therefore, it can be considered as a method in which the segmentation and

decision mechanisms are made after the classifiacation process. For both training and

test phases, the generic flowchart of the proposed approach is given in Figure 4.14

Figure 4.14: Training and the test procedures for the Classification followed by Merg-

ing Approach

The framing and windowing procedures are the same as the previous approach, yet

two different SVM-based classifiers were used with similar merging algorithms. Thus,

only the implementation processes of the classifier algorithms are discussed in this

section. In both ways, the trained classification model returns scores, the posterior

probabilities, of specified classes for each frame. Then, output scores were examined
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to extract swallow episodes.

4.2.1 Binary SVM Classifier

In this case, the swallow represents one class, while the combination of non-swallow

and silent parts constitutes the other class. In addition to manually labeled swallow

and non-swallow sections, the features of silence parts were also extracted. Remem-

ber that, if an audible episode cannot be labeled as swallow or non-swallow, it is

marked as ambiguous. Thus, no extra effort is needed for labeling them as all the

unlabeled part of the signal represents the silence portions. Here, the swallow frame

features were labeled as ’0’ and concatenated silent and non-swallow frame features

as ’1’. After applying min-max normalization, the training model was built with the

help of binary SVM optimization (449).

In the test case, as it can be understood from Figure 4.14, the features were extracted

after framing and windowing operations. Then, using the normalization parameters

(minimum and maximum values of features) obtained in the training stage, each fea-

ture vector was given as input to the SVM classifier (451) so as to be assigned a class

with a posterior probability value. In the end, different merging algorithms to detect

boundaries of swallow activity were implemented.

4.2.2 3-class SVM Classifier

Inherently, SVM is a binary classifier, yet multi-class problems can be solved with

one-versus-all (OVA) or one-versus-one strategy. Let K be the number of classes,

then K binary classifiers are trained in OVA method. In other words, each class has

its own classifier in which instances belonging to that class is labeled as positive and

the rest as negative. Based on this, silence features were separated from the non-

swallow ones and treated as another class, thus, increasing the number of classes

from two to three. After the silence features were labeled as ’2’, each classifier was

trained separately with the same optimization technique (449).

The process up to the classifier and thereby the formation of the input were the same
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as in binary classification. Unlike, the normalized features were passed through three

different classifiers to obtain two score values for each, but only the scores of the

corresponding class were taken into account. In the end, classifier outputs of the

frames will be three distinct score values (one per class) helping construct different

merging algorithms.

Pseudo codes for formation of feature observation matrix, building training model

and classifying of each frame in a test signal are provided in Algorithm 7, 8, 9.

Algorithm 7: Creation of Feature Observation Matrix in SVM
input : Collection of audio recordsK

output: featMatrix, a matrix that contains audio features of frames

1 for ∀i ∈ K do

2 Ki ← ith audio record

3 for ∀f ∈ Ki do

4 Compute MFCC values of fth frame

5 Compute spectral Centroid of fth frame

6 Concatenate features

7 Add feature row to observation matrix (swallow and non-swallow)

8 end

9 Extract silent portions of theKi

10 numSilenceFrames = # of silence frames inKi

11 for k = 1,2 ... numSilenceFrames do

12 Compute MFCC values of kth frame

13 Compute spectral centroid of kth frame

14 Concatenate features

// if binary -> silence label is same as non-swallow, o.w. new label

15 Add feature row to observation matrix with its labels (silence)

16 end

17 end

18 return featMatrix

Algorithm 8: Build a classification model
input : Unnormalized observation matrix and labels, featsMatrix, # of classes,K, Classifier type,modelType

output : Classification model, svmModel

parameters:C is a penalty factor for mis-classifying the the training instances,γ controls the effect of a single support vector while drawing the decision

boundary. Large (small) gamma implies high (low) bias and low (high) variance

1 normObsMatrix←MinMaxNormalization(obsMatrix)

2 ifmodelType== ’Binary then

3 svmModel← svmtrain(normObsMatrix,labels,C, γ)

4 else ifmodelType== ’one-versus-all (OVA) then

5 for ∀i ∈ K do

6 newLabels←ThreeToTwoClassLabelConverterOVA(labels)

7 svmModel[i]← svmtrain(NormObsMatrix,newLabels,COV A ,γOV A)

8 end

9 Function MinMaxNormalization(obsMatrix)

10 minimums← Find minimum values of each feature

11 maximums← Find Maximum values of each feature

12 ranges←maximums−minimums

13 meanExtractedObsMatrix← subtract each observation ofObsMatrix from minimums

14 newObsMatrix← divide each observation ofmeanextractedObsMatrix by ranges

15 return newObsMatrix
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Algorithm 9: Extracting the class scores of each frame in a test signal
input : test audio record, testSignal, SVMModels,

output: frameDecisionMatrix, a matrix containing the classification results of each model of each frame in the test signal

1 numFrames = # number of frames in test signal

2 for k = 1,2 ... numFrames do

3 Compute MFCC values of kth frame

4 Compute spectral Centroid of kth frame

5 Concatenate features

6 Add row to test observation matrix

7 end

8 normTestObsMatrix←MinMaxNormalization(testObservationMatrix)

9 for k = 1,2 . . .# of models do

10 frameDecisionMatrix[k]←svmtest(normTestObsMatrix,SVMModels[k])

11 end

4.2.3 Merging Frame Outputs

In the previous subsections of the second classification approach, two different SVM-

based implementations are explained. In this part, the determination of swallow

boundaries by merging the outputs of the classifiers with different algorithms is ex-

plained. In the binary SVM classifier, two different scores (P (Sw|x), P (NSw|x))

with a sum equal to 1 were found. In the multi-class, three different scores were

obtained separately from the classifiers, yet they were normalized with a soft-max

function to make a total sum equal to 1.

When selecting the merge algorithms, how the frame-based classifier behaves in the

test data was observed and compared with the ground truth. In Figure 4.15, a por-

tion of a sample recording with three swallow instants and corresponding posterior

probabilities for both classifiers are shown.

Taking the results shown in Figure 4.15 into account, different types of merging algo-

rithms were implemented. The closing algorithm, dilation followed by erosion, was

used with minor modifications. Furthermore, median and moving average filters were

applied in some cases. Moreover, dedicated finite state machine algorithms which are

inspired by the previous generic algorithms were used to increase boundary detection

performance.

Closing Operation (Dilation + Erosion): This operation is usually applied to bi-

nary images to enlarge the area of the bright regions, yet it can also be performed

to one-dimensional signal. For that purpose, two inputs, the signal (binary image or

sequence) and a kernel which determines the nature of operation are required. And,
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Figure 4.15: (a) A section of feeding signal including three swallow activities. The

red colored rectangles are the ground truth of swallow boundaries. (b) Swallow class

posterior probabilities from Binary SVM Classifier. (c) Posterior probabilities of each

class obtained from three-class SVM.

dilation and erosion, are the two basic morphological operators constructing this op-

eration. Dilation of a signal, x, by a sliding kernel, k = [1, 1, . . . , 1], generates a new

signal in which the zeros are transformed to ones according to rules given [60].

1. If the center of the kernel coincides with a sample with value 0, no change;

move to next sample.

2. If the center of the kernel coincides with a sample with value 1, change all

samples covered by kernel as 1.

The erosion operation is similar to dilation yet the action taken due to the second

condition is different. The rules of erosion are given below.

1. If the center of the kernel coincides with a sample with value 0, no change;

move to next sample.

2. If the center of the kernel coincides with a sample with value 1 and at least one

kernel element intersects with a zero sample, change all samples covered by

kernel as 0.
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In this study, two class probability estimates were converted into binary outputs by

thresholding method. After that, dilation and erosion operations were applied with a

kernel vector of all ones to fill holes.

Moving Average Filter: In general, the moving average (MA) filter is used to elimi-

nate noisy data or smooth out the input data [61]. Since it is practical and many times

successful, it is one of the most commonly used filters in the Digital Signal Process-

ing area. The mathematical form of the MA filter can be written in the form of the

following difference equation

y[n] =
1

L

L−1∑
k=0

x[n− k] (456)

where x[n] is the nth sample of the input signal x and y corresponds the output signal.

In this study, the frame scores were filtered with MA filter and output values were

converted to binary outputs according to a certain threshold. After that, consecutive

ones were merged to construct the boundaries of the swallow activities.

Median Filter: In the moving average filter, the average of the previous samples and

the current input forms the output samples [62]. Remember that the median is the

middle value separating the greater and lesser halves. For L is an odd integer, the nth

sample of y is calculated as

y[n] = x

[
n− L+ 1

2

]
. (457)

Thresholding was first applied to the score vector, unlike the MA filter. After that,

nonlinear-digital median filtering was applied to the binary predictions. Similar to

the MA case, consecutive ones were merged to form boundaries.

2-class Finite State Machine The closing algorithm, moving average and median

filters are mostly used for generic cases and may give a lot of false alarms due to

the existence of special scenarios during the feeding. To deal with, a finite state

machine (FSM) algorithm for two classes was constructed. The algorithm 10 shows

the pseudo-code for two class FSM.

The input is a binary vector obtained by thresholding the probability estimate values
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Algorithm 10: FSM algorithm with 2 classes to extract swallow boundaries
input : Binary Frame Prediction Vector, fdv

output : Boundary Matrix, bm

1 Initialize Counters

2 Specify Thresholds

3 for ∀i ∈ range(fdv) do

4 prediction = fdv[i]

5 switch state do

6 case 0 do

7 if prediction == 1 then

8 No1 = No1 + 1

9 Suc1 = Suc1 + 1

10 start = i

11 state = 1;

12 end

13 case 1 do

14 if prediction == 0 then

15 end = i− 1

16 no0 = no0 + 1

17 suc1 = 0

18 state = 2

19 else

20 no1 = no1 + 1

21 suc1 = suc1 + 1

22 end

23 end

24 case 2 do

25 if prediction == 0 then

26 if no0 < no0TH then

27 no0 = no0 + 1

28 state = 2

29 else

30 state = 0

31 if no1 > no1TH and suc1 > suc1TH and No1
No0

> oneZeroTH then

32 bm.append(start, finish)

33 Reset Counters

34 end

35 else

36 state = 1

37 no1 = no1 + 1

38 no0 = 0

39 suc1 = 1

40 end

41 end

42 end

43 end

of each frame. As can be understood from the pseudo-code, the number of ones and

consecutive ones, the number of zeros were taken into consideration to determine the

boundaries of swallow action.

3-class Finite State Machine: As it can be observed from the figure 4.15, a prob-

ability estimate value was extracted for each class for a frame. For that reason, a

dedicated FSM algorithm for three class was designed. The algorithm 11 shows the
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pseudo-code for three class FSM.

Algorithm 11: FSM algorithm with 3 classes to extract swallow boundaries
input : Frame Prediction Scores , fps(N × 3)

output : Boundary Matrix, bm

1 Initialize Counters

2 Specify Thresholds

3 for ∀i ∈ range(fps) do

4 scoreV ec = fps[i] // 1st− > Sw, 2nd− > Non− SW, 3rd− > Sil

// Conditions

5 c1 = scoreV ec[1] > swTH

6 c2 = scoreV ec[1] > nswTH

7 c3 = scoreV ec[1] > silTH

8 switch state do

9 case 0 do

10 if c3 and c1 then

11 state = 1

12 start = i

13 swCnt = swCnt + 1

14 end

15 case 1 do

16 if c3 and (c1 or c2) then

17 state = 1

18 end = i

19 if c1 then

20 swCnt = swCnt + 1

21 else

22 nswCnt = nswCnt + 1

23 end

24 else

25 state = 2

26 end

27 end

28 case 2 do

29 if c3 and (c1 or c2) then

30 state = 1

31 end = i

32 idleCnt = 0

33 if c1 then

34 swCnt = swCnt + 1

35 else

36 nswCnt = nswCnt + 1

37 end

38 else

39 idleCnt = idleCnt + 1

40 if idleCnt > idleTH then

41 if swCnt > nswCnt− swNswTH and swCnt + nswCnt > sumTH then

42 bm.append(start, end)

43 Reset Counters

44 end

45 end

46 end

47 end

LetN be frame number of an acoustic signal obtained from a feeding session, then the

input for the FSM algorithm will be N × 3 matrix including frame probability values
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for each class. Swallow and non-swallow frame counts and thresholds for each class

were taken into consideration to construct this algorithm.

65



66



CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, the results of the segmentation, feature extraction and classification

tasks are given. To detect swallow activities from the feeding signal, two different

approaches are described in the previous chapter. The experimental procedures for

both swallow detection mechanism are shown in Figure 5.1 in a block diagram. In

this chapter, the implementation of algorithms in each block is explained and the

results are given both statistically and visually.

MATLAB software was utilized for each module given in 5.1 except for training

the SVM models [63]. A multi-threaded function for 5-fold cross validation was

implemented in C++ platform with the help of LIBSVM tool [58]. Therefore, the

higher the number of CPU cores, the greater the speed of cross-validation algorithm.

Figure 5.1: Experimental procedures for both swallow detection mechanisms
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5.1 Segmentation

In this section, the calculation method of both precision (positive predictive value)

and the recall (true positive rate) values are explained, then the precision-recall scat-

ter plot of both segmentation subsystems mentioned in 4.1.1.1 and 4.1.1.2 are plotted

with different parameter combinations. After finding the optimum parameter combi-

nations, detected sound activities are visually depicted.

5.1.1 Evaluation metrics

As it is mentioned in the segmentation section of the methodology chapter, several

parameters are utilized for both segmentation systems. The first one has three differ-

ent threshold parameters whereas the finite state machine algorithm of the second one

requires four different parameters. For that reason, it is necessary to extract parameter

combinations in which the best performance is achieved.

Detecting the boundary of swallow events of adults is available in the existing studies

and while calculating the performance, the majority of them utilize correct or in-

correct swallow event numbers. Some also measure the performance considering the

localization error such as [38, 39] yet their evaluation metrics are method-specific. On

the other hand, as far as we know, there is no available segmentation system paying

attention to localization issues for the infants and no evaluation metrics regarding the

boundaries are found. However, since this problem is an audio segmentation problem,

the evaluation metrics of audio segmentation as in [64, 65] were applied.

Precision-Recall can be considered as a useful measure of prediction for this problem.

The popular definitions of precision, P , and recall, R are given as

P =
TP

TP + FN
R =

TP

TP + FP
(51)

where TP is the number of true positives, FN and FP are the number of false

negatives and false positives respectively.

However, in this study, these three parameters were not considered as numbers but

time duration as depicted in Figure 5.2. Furthermore, the precision and recall for
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each segment can be calculated as

P =
Detected ∩ Ground truth

Detected
R =

Detected ∩ Ground Truth
Ground truth

(52)

Figure 5.2: Illustration of TP , FP and FN on an example of non-swallow sound

activity in terms of time duration

In order to calculate recall for a specific parameter combination, the intersection of

each labeled sound activity with the sound intervals obtained as a result of the seg-

mentation algorithm was computed. In other words, for each ground truth interval,

a recall value was estimated and the average of them determined the recall value of

the corresponding parameter combination. On the other hand, precision value was

computed by focusing on the detected intervals. For each sound segment, a precision

value was estimated by looking at the intersection of ground truth sound intervals

and similarly, the mean of them specified the precision value of the corresponding

parameter combination.

5.1.2 Energy Based Segmentation Algorithm:

The frame length was selected to be 200 ms and the time duration between two suc-

cessive frames was 10 ms. In this algorithm, detection performance was affected by

four different parameters given as
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1. Min Peak Distance (mpd): Distance between two successive peaks cannot be

smaller than mpd,

2. Threshold 1 (TH1): Threshold to ignore small energy peaks,

3. Threshold 2 (TH2): Related to width of the detected boundaries,

4. Threshold 3 (TH3): For precise adjustment of the detected boundaries.

All parameters were swept together through a range of values and the Precision-

Recall scatter plot was obtained as shown in Figure 5.3 so as to find the best parameter

combination in terms of F1 Score defined by

F1 =
2PR

P +R
. (53)

Figure 5.3: P-R scatter plot of the Energy Based Segmentation System

The R and P values of satisfying the best performance were found to be 0.87 and

0.83 respectively. In Figure 5.4, two sample recordings, which were not utilized in

the parameter sweep procedure, and black colored segmented intervals are shown.

The results were obtained using the optimum parameter combination, giving the best

precision and recall values.
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Figure 5.4: An example of successful segmentation in a portion of feeding signal

including both swallow and non-swallow activities. The black colored rectangles

represents the detected boundaries of the Energy Based Segmentation System.

5.1.3 Pattern Recognition Based Segmentation Algorithm

Audio recordings of 10 infants were utilized for both train and test parts of this algo-

rithm. Both the frame length and time duration between two successive frames were

selected to be as 10 ms (no overlap) as stated in [42]. In order to merge binary outputs

of the classifier to finish the segmentation process, the finite state machine algorithm

was used. The performance of this detection subsystem was also affected by various

parameters shown in Figure 4.7.

Similarly, the parameter sweep procedure was applied and the Precision-Recall curve

of the system obtained as depicted in Figure 5.5.

TheR and P values of satisfying the best performance were found to be 0.70 and 0.93

respectively. In Figure 5.6, two different portions from two feeding recordings apart

from the train data set, were shown. As in the energy based one, black colored rect-

angles are the boundaries found by pattern recognition based segmentation algorithm

with optimum parameter combination.

Based on the Precision-Recall scatter plot of both segmentation subsystems and sev-

eral visual inspections, both algorithms may have advantages or disadvantages for

different purposes. On the other hand, it is observed that recall values of the feeding

recordings of which are not in the train data set of the latter system were lower than
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Figure 5.5: P-R Scatter Plot of the Pattern Recognition Based Segmentation System

Figure 5.6: An example of successful segmentation in a portion of feeding signal

including both swallow and non-swallow activities. The black colored rectangles

represents the detected boundaries of the Pattern Recognition Based Segmentation

System

expected. Moreover, F1 score of the former one is slightly higher. Hence, the first

segmentation algorithm was used as a pre-processing stage before feature extraction

block.
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5.2 Segmentation followed by Classification Experiments

The proposed classification techniques require training models to classify frames of

the segmented intervals. Hence, each classifier was trained from a data set consisting

of 35 recordings of the term infants. The total number of labeled intervals in train

data set is 1221, 642 of which are swallow activities and 579 of are non-swallow

ones. Furthermore, each interval was divided into overlapping frames of duration 25

ms and 10 ms stride, thus leading the total numbers of frames belonging to swallow

and non-swallow classes are 15704 and 14584 respectively.

5.2.1 Feature Selection and EM-GMM

This section explains how to select features or to eliminate redundant ones from the

observation matrix. For this purpose, a small portion of the above data set was used

for both train and test processes with the help of EM-GMM algorithm. Classifica-

tion models were trained and tested wheh K = 4 for both classes. The list of four

combinations to choose the best performance in a mini data set is given as

1. MFCC, Spectral Centroid, Spectral Spread, Spectral Flatness

2. MFCC, Spectral Centroid, Spectral Spread

3. MFCC, Spectral Centroid

4. Spectral Centroid, Spectral Spread.

In the mini train data set, there are 200 labeled intervals belonging to swallow class

and 160 for non-swallow, while in test data set these numbers are 100 and 80. After

the selection of intervals, the observation matrices for each class were constructed

and the mean vectors, covariance matrices and initial probability estimates were esti-

mated. In the end, each interval in the test data set was assigned to a class according

to decision rules, the sum of log-likelihood and majority voting. The accuracy of

each combination was calculated according to the correct classification rate for both

classes. The number of true and false classification numbers are given in the 5.1.
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Table 5.1: Classification results of mini data set on EM-GMM

Feature Combination
True False

Sum of log-liks Majority Voting Sum of log-liks Majority Voting

MFCC, Spectral Centroid, Spectral Spread, Spectral Flatness 145 124 35 56

MFCC, Spectral Centroid, Spectral Spread 161 161 19 19

MFCC, Spectral Centroid 170 166 10 14

Spectral Centroid, Spectral Spread 132 119 48 61

After the optimum feature combination was selected as 14-dimensional MFCC-Spectral

Centroid combination, both segmentation followed by classification and classification

followed by merging approaches used them as inputs.

5.2.2 Selection of the Best Classifiers

EM-GMM: For a 14-D observation matrix of swallow and non-swallow classes, dis-

tribution of clusters cannot be visualized and there is no prior information related the

number of Gaussian mixtures, K. Hence, multiple EM-GMMs were trained with dif-

ferent K values and those models were used to make predictions on data not used

in the training procedure by following the 5-fold cross-validation approach in order

to prevent overfitting. The decision rule type while testing the model was another

parameter affecting the performance as well.

Note that, cross-validation procedure was applied on labeled intervals. After the in-

tervals were separated, the frame feature vectors of all intervals belonging the same

fold were merged for train phase yet, not the frames, intervals were tested to achieve

the best performance.

Gaussian-HMM: Remember that the existence of the state transition probability ma-

trix is the essential difference between EM-GMM and Gaussian-HMM for this study.

Therefore, for N state, continuous normal density parameters were estimated. Again,

5-fold cross-validation technique was applied and the N parameter was swept to train

multiple Gaussian HMMs for both classes. On the other hand, the delta variable

added to the output likelihood of the Gaussian HMM of swallow class was tested
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with different values. Since HMMs needs temporal information, intervals were used

to both train and test sessions.

SVM: To map the original data set into a higher dimensional space, Radial Basis

Function (RBF) kernel, which is popular for kernelized learning algorithms, was used.

The γ parameter of RBF kernel can be considered as a similarity measure between

two different points. Small γ increases variance of Gaussian function yielding high

similarity between two points, although they are far from each other. Varying the γ

parameter together with the penalty factor, C, of SVM, 5-fold cross-validation proce-

dure was applied and for each pair, an SVM model was trained.

As in the case of GMM, the approach was "frames for the train" and "intervals for

test".

To compare performances of training models for each classifier, precision and recall

values were found according to 51. And, the calculation method of inside parameters

is given below.

1. TP : Number of swallow intervals classified as swallow

2. FP : Number of non-swallow intervals classified as swallow

3. FN : Number of swallow intervals classified as non-swallow

Cross validation procedure was applied to data set such that frames belonging to

the same interval stayed in the same fold. The Precision-Recall scatter plots of all

classifiers with 5-fold cross-validation on labeled intervals are depicted in Figure 5.7.

Maximum F1 scores and corresponding recall, precision values are shown in Table

5.2. Also, the parameter combinations for the best classifiers having the maximum

F1 score can be seen in the following list.

1. GMM: K = 4, decision type = sum of log-likelihoods

2. Gaussian-HMM: K = 4, δ = 0.5

3. SVM: C = 27, γ = 22
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(a) (b)

(c)

Figure 5.7: Precision-Recall scatter plot of all classifiers from 5-fold cross validation.

(a) EM-GMM, (b) Gaussian-HMM, (c) SVM

Table 5.2: The best performance metric values of three classifiers after parameter

optimization

GMM Gaussian-HMM SVM

Recall 0.888 0.917 0.817

Precision 0.755 0.784 0.884

F1 Score 0.816 0.846 0.849
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5.2.3 Assessment of the Best Classifiers with Segmentation

The cross-validation method only deals with manually labeled intervals and selects

the best models for each learning algorithm. On the other hand, remember that the

primary purpose is to detect swallow intervals. Thus, segmentation and classification

blocks were put together to detect only swallow activities.

The parameters giving the maximum F1 score were used to segment sound activity

intervals at first. In other words, the pre-processing stage for each classifier was iden-

tical. Furthermore, for each classifier, the class of the segmented interval predictions

was made using the corresponding optimum parameters.

Performance assessment of three classifiers together with the segmentation algorithm

is similar to the approach given in Figure 5.2. After the class of the segment is de-

termined, the non-swallow ones are eliminated and swallow ones remains. Then,

the precision and recall values are calculated for each classifier with their optimum

parameters and shown in Table 5.3.

Table 5.3: Performance values classification followed by segmentation approaches

Seg+GMM Seg+Gaussian-HMM Seg+SVM

Recall 0.588 0.603 0.643

Precision 0.616 0.691 0.667

F1 Score 0.601 0.644 0.655

5.3 Classification followed by Merging Algorithms

Remember that the proposed techniques in this approach do not have any pre-processing

mechanism like segmentation. Firstly, the entire feeding signal was split into over-

lapping frames of 25 ms with a stride of 10 ms. Then, the features (MFCC, Spectral

Centroid) of each frame were extracted. After the classifiers (Binary SVM and 3-

class SVM Classifier) assigned each instance to a class, the merging algorithms given
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below were applied to detect swallow boundaries.

1. For Binary SVM Classifier

• Closing Operation (Dilation and Erosion)

• Moving Average Filter

• Median Filter

• Finite State Machine algorithm for 2 classes

2. For 3-class SVM Classifier

• Finite State Machine algorithm for 3 classes

5.3.1 Selection of the Best Classifiers

Binary SVM: To select the best classifier, RBF kernel was utilized and 5-fold cross-

validation technique was applied with different C-γ pairs as described in the previous

section. However, silence intervals were also labeled as non-swallow instants. Com-

bining all the frames of intervals allocated for training and test intervals for each fold,

the Precision-Recall scatter plot was extracted.

3-class SVM: Unlike the binary SVM approach, silence intervals were considered

to be another class. Since the approach for multi-classes is "one-versus-all" (OVA),

three different models (one per class) were trained for each C-γ pair. In the test case,

two different δ values (δ1,δ2) were swept to be used when comparing the logarithm

sum of probability estimates. Since three models are required to make a prediction,

optimum C-γ pairs were extracted separately for each class.

Recall and precision values were computed and Precision-Recall scatter plots of both

classifiers with 5-fold cross-validation on labeled intervals are depicted in Figure 5.8.

Also, 5.3 shows the precision and recall values giving the best performance (maxi-

mum F1 score) after parameter optimization.
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(a) (b)

Figure 5.8: Precision-Recall scatter plot of both classifiers from 5-fold cross valida-

tion. (a) Binary-SVM, (b) 3-class SVM

Table 5.4: The best metric values of two classifiers after parameter optimization

Binary-SVM 3-class SVM

Recall 0.702 0.857

Precision 0.874 0.8

F1 Score 0.7786 0.826

5.3.2 Assessment of the Best Classifiers with Merging Algorithms

The main goal of the previous section is to select the best training models by tuning

the parameters affecting classification performance. However, it is assumed that the

intervals of each class were already segmented. In Figure 4.15, three swallow instants

are shown in a portion of sample recording. Furthermore, frame probability estimates

for swallow class in binary SVM for three classes in 3-class SVM are depicted in that

figure.

To achieve the main goal, probability estimate values were merged with given algo-

rithms. Evaluation of the performance is the same with the segmentation followed by
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classification approach and the Precision-Recall scatter plots together with the merg-

ing algorithms are displayed in Figure 5.9.

(a) (b)

Figure 5.9: (a) P-R scatter plot of the binary SVM classifier + merging algorithms,

(b) 3 class SVM + Merging algorithm (FSM3cls)

It is evident that moving average and the median filters fail to combine frame prob-

ability estimate values of binary SVM classifier compared to closing and FSM al-

gorithms. Also, FSM algorithm appears to be slightly more successful than closing

(dilation+erosion).

In summary, to find the swallowing instants from the feeding signal of an infant, a

total of 8 different paths were followed, three from segmentation followed by the

classification, five from classification followed by merging. The comparison of the

time duration based performance results of all paths is given in Table 5.5. In ad-

dition, event based evaluation metrics were also computed for the pipelines of both

approaches as given 5.6. In this case, it does not matter how precise a swallow event

is detected.

Outputs of the swallow boundary detection for two approaches were also observed. In

Figure 5.10 and 5.13, cases where the detection systems performed successfully can

be seen and the segments determined by the algorithms are shown in pink rectangles

while the ground truth is green. In Figure 5.11 and 5.14, false positive examples

are displayed. Another scenario is that the detected segment contains two swallow

moments, as indicated in Figure 5.12. On the other hand, three swallow events are

80



Table 5.5: Time duration based swallow boundary detection performance of eight

different paths

Segmentation followed by Classification Classification followed by Merging

Seg+GMM Seg+Gaussian-HMM Seg+SVM B-SVM+Closing B-SVM+MA B-SVM+Med B-SVM+FSM2Cls 3-SVM+FSM3cls

Recall 0.588 0.603 0.643 0.713 0.446 0.748 0.6703 0.653

Precision 0.616 0.691 0.667 0.586 0.535 0.425 0.733 0.752

F1 Score 0.601 0.644 0.655 0.643 0.487 0.542 0.700 0.6981

Table 5.6: Swallow event detection performance of eight different paths

Segmentation followed by Classification Classification followed by Merging

Seg+GMM Seg+Gaussian-HMM Seg+SVM B-SVM+Closing B-SVM+MA B-SVM+Med B-SVM+FSM2Cls 3-SVM+FSM3cls

Recall 0.682 0.714 0.74 0.808 0.615 0.642 0.862 0.87

Precision 0.783 0.738 0.827 0.793 0.652 0.598 0.763 0.77

F1 Score 0.729 0.726 0.781 0.80 0.633 0.614 0.81 0.817

missed by the detection system for the case given in Figure 5.15.
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Figure 5.10: Sample feeding signal including 6 swallow events. Green rectangles

represent manually labeled ground truth intervals, pink rectangles are for segmented

swallow events

Figure 5.11: Segmentation + Classification, a false positive at the middle of three

swallow events.
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Figure 5.12: Segmentation + Classification, classification failure due to wrong sound

activity segmentation

Figure 5.13: Classification + Merging, 12 swallow events which are classified cor-

rectly

83



Figure 5.14: Classification + Merging, a false positive at the beginning

Figure 5.15: Classification + Merging, 3 swallow events that are missed
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5.3.3 Discussion

For the first approach, remember that the segmentation part before classification is

identical for each method. Hence, it can be inferred that the evaluation metric values,

which are given Table 5.5, reflect the classification power of given learning algo-

rithms. On the other hand, the precision-recall values of GMM and Gaussian-HMM

support the assumption that the frames of the swallow audio segment are not inde-

pendent of each other. In other words, the presence of the state transition matrix

(Gaussian-HMM) increased the classification performance. However, the discrimina-

tion power of the SVM method appears to be slightly better than Gaussian-HMM.

When the sound activities are too close to each other or the feeding signal contains

noisy data, the segmentation algorithm may not work properly and the segmentation

error can also influence the classifier performance as indicated in Figure 5.12. This

may be the reason why the classification followed by merging approach gives more

accurate results compared to the former one. On the other hand, ignoring the short-

time swallows can be considered as the handicap of the second approach as shown in

Figure 5.15

As shown in Figure 3.2b, swallow activities may contain two stages and a short si-

lence period in between. In those cases, corresponding silence frames are not assigned

to swallow class, thus decreasing the ability to merge frames by moving average and

median filters. Because these filters are expected to work properly when the swal-

low sounds are in a compact form. Otherwise, it is inevitable to observe more than

one detected swallow episode in a swallow episode. Due to the significant increase

in the performance, the closing algorithm can be seen as a solution which is prone

to such problems. Nevertheless, purpose-specific finite state machine algorithms are

described to merge frame outputs and performed more robust compared to all.

Interpreting the silence frames as another third class is thought to perform better

compared to two classes case in which silence ones are treated as a non-swallow

class. However, as indicated in Table 5.5, their performances are almost equal.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Correct assessment of infants’ oral feeding skills to prevent developmental, cognitive

problems in the future and minimize the adverse effects of prematurity is of great im-

portance. Swallowing is one of the fundamental phases of the entire feeding process

and has an essential role in the evaluation of oral feeding readiness.

Since the maximum number of rhythmic swallows, swallow frequency and the av-

erage time between swallows are found to be positively/negatively correlated with

feeding maturity, detecting swallow segments automatically from an acoustical feed-

ing signal creates an infrastructure for obtaining the corresponding swallow-related

statistics. Hence, this may help neonatal doctors to associate oral feeding readiness

of the infants. In this study, two pattern recognition pipelines, segmentation followed

by classification and classification followed by merging, are proposed to segment and

classify swallow activities automatically.

To differentiate swallow and non-swallow sounds, spectral characteristics are exam-

ined. Among the four different features, MFCC and spectral centroid (14-D feature

vector) are selected by comparing the performances on GMM classifier for different

feature combinations with a mini data set.

In the previous method, sound activities are segmented before classification. For

this purpose, two different methods, energy and pattern recognition based, are used.

Sound activity detection performances of both are optimized by parameter tuning.

The energy-based boundary detection is selected to be optimum in terms of F1 mea-

sure. Performance evaluation metrics are calculated by taking the methods used in

literature for audio segment problems into consideration. ll
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Three classifiers which are GMM, Gaussian-HMM and SVM are applied to seg-

mented intervals to assign them to swallow or non-swallow class. To prevent memo-

rization and overfitting problems for each classifier, 5-fold cross-validation procedure

together with parameter sweeping is applied to build train models and test manually

labeled intervals.

In the latter method, overlapping small frames are classified before merging according

to a rule. For the classification part, two classifiers, binary SVM and 3-class are used

to assign each frame to a class. The criteria for selection of best classifiers are the

same as ones in the first approach. Then various merging algorithms are utilized to

combine the outputs of frames to segment swallow boundaries. After the parameters

of merging algorithms are optimized, pipelines are implemented.

The detailed experimental comparison for eight different pipelines is given in Sec-

tion 5.3.3. It is deduced that the error in the segmentation of the sound activities due

to environmental noises or the very short period between activities affects the clas-

sification performance adversely. Hence, using the time duration based evaluation

metrics, the best cases are obtained in the "binary SVM + FSM" and "3 class SVM +

FSM" where F1 measures are almost equal to 0.70. Similarly, same segmentation and

classification pipelines provides the best F1 scores (nearly 0.81) in the event based

performance evaluation.

Another significant issue is the time complexity of the pipelines. The first approach

with the energy-based segmentation can be favored since it only applies classification

algorithms on the segmented intervals. However, when the boundaries are detected

with the pattern recognition based algorithm, the complexity is slightly higher. On

the other hand, when the low time complexity is desired, classification followed by

merging algorithms should not be preferred due to the multiplication of relatively

high numbers of support vectors with all frame feature vectors.

Although it depends on the implementation platform, all the pipelines other than ones

using the energy-based segmentation as a pre-processing stage can be implemented,

so that swallow sounds are segmented in real time.

While this thesis presents a comprehensive set of machine-learning based solutions to

88



detect swallow segments from the acoustic feeding signal and forms a decision sup-

port skeleton for neonatal doctors, the study is highly open to further improvements

which are listed as follows.

• Representation of swallow sound signal is of great importance to reduce noise

effect and enhance the segmentation and classification performances.

• More clinical trials are required to achieve higher performance, thus construct-

ing a more robust infrastructure to obtain swallow-related statistical data.

• Working together with neonatal physicians, a feeding maturity rating system

can be implemented thanks to statistical information obtained from the swallow

instants.

• Multi-layer perceptron algorithm can be applied as a supervised learning tech-

nique in all classification modules. Also, remember that swallowing is a se-

quential process and recurrent neural networks (RNN) or long-short-term mem-

ory (LSTM) are considered to be effective since they are preferred in cases

where temporal behavior of data is significant. However, since they are deep

learning methods, an increase in the data set may be required.

• As stated in most of the previous research, correct assessment of oral feed-

ing skills is highly correlated with the synchronization of sucking, swallowing

and respiration. Instrumental evaluation of all in a system will considerably

improve the decision support mechanism.
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