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ABSTRACT 

 

POLAR CODES: PERFORMANCE OVER FADING CHANNELS AND 

CONVERGENCE TO REED-MULLER CODES 

 

Özvarış, Irmak 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

 

May 2019, 103 pages 

 

Polar codes introduced in 2008 by Erdal Arıkan have been proven to achieve Shannon 

capacity for any binary-input discrete memoryless channel. Being adopted as a part of 

the official coding scheme for the 5G standard, up-to-date research has moved from 

theory to practical applications, albeit keeping the connection with its ancestors. This 

thesis aims to address these two topics, narrowing down firstly to the performance of 

polar codes on fading binary symmetric channels and then to the relationship between 

polar codes and Reed-Muller codes. 

For fading channels, we experiment on a hierarchical scheme proposed in 2014 by Si, 

Köylüoğlu and Viswanath that uses multiple polar coding phases. We simulate the 

two-state fading case that utilizes three polar codes; two of them designed for binary 

symmetric channels and one for a binary erasure channel with an erasure rate 

representing the fading probability. We compare the bit error ratio performance of the 

proposed scheme with original polar coding. Results show that the hierarchical 

scheme outperforms the other whenever the probability of being in the degraded 

channel is not very high.  

As for the comparison between polar and Reed-Muller codes, we primarily focus on 

the generator matrices of the two codes constructed for binary erasure and additive 



 

 

 

vi 

 

white Gaussian noise channels. Motivated by the convergence proof of Mondelli; we 

present some observations asserting the convergence thresholds of polar codes to 

Reed-Muller codes, in terms of the channel parameters such as erasure probability or 

signal to noise ratio. 

 

 

Keywords: Polar Codes, Fading Binary Symmetric Channel, Reed-Muller Codes, 

Binary Erasure Channel, Binary Input Additive White Gaussian Channel  
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ÖZ 

 

KUTUPSAL KODLAR: SÖNÜMLEMELİ KANALLARDA PERFORMANS 

VE REED-MULLER KODLARINA YAKINSAMA 

 

Özvarış, Irmak 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Melek Diker Yücel 

 

 

Mayıs 2019, 103 sayfa 

 

2008 yılında Erdal Arıkan tarafından önerilen kutupsal kodların herhangi ikili-girişli 

ayrık belleksiz bir kanal için Shannon kapasitesine ulaşabildiği kanıtlanmıştır. 5G 

standardı resmi kodlama yönteminin bir parçası olarak kabul edilen kodlarla ile ilgili 

güncel araştırmalar pratik uygulamalara yoğunlaşsa da bu kodların atalarıyla kuramsal 

bağlantılarının incelenmesi de sürmektedir. Bu tez; bu iki konuya değinerek, kutupsal 

kodların sönümlemeli ikili simetrik kanallardaki başarımını ve Reed-Muller 

kodlarıyla ilişkilerini incelemeyi amaçlamaktadır.  

Sönümlemeli kanallar için Si, Köylüoğlu ve Viswanath tarafından 2014 yılında 

önerilen ve birden fazla kutupsal kodlama fazı içeren hiyerarşik yöntem üzerinde 

çalışılmıştır. İki durumlu sönümlemeli kanal için; ikisi ikili simetrik kanala, biri de 

ikili silinti kanalına göre tasarlanmış üç kutup kodu kullanan hiyerarşik kodun 

benzetimi yapılmıştır. Önerilen yöntemin ikili hata oranı özgün kutupsal kodlamayla 

karşılaştırıldığında, kötü kanalda kalma olasılığı çok yükselmediği sürece, önerilen 

yöntemin diğerinden daha iyi bir başarımı olduğu görülmektedir. 

Kutup ve Reed-Muller kodları arasındaki karşılaştırmada ise, ikili silinti kanalı ve 

toplanır beyaz Gauss gürültülü kanal için oluşturulan kutup ve Reed-Muller kodlarının 

üreten matrislerine odaklanılmıştır. Mondelli’nin yakınsama ispatından yola çıkılarak; 
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silinti olasılığı veya gürültü varyansı gibi kanal parametreleri cinsinden, kutupsal 

kodların Reed-Muller kodlarına yakınsama sınırlarını belirten bazı gözlemler 

sunulmuştur. 

 

 

Anahtar Kelimeler: Kutupsal Kodlar, Sönümlemeli İkili Simetrik Kanal, Reed-Muller 

Kodları, İkili Silinti Kanalı, İkili Girişli Eklenmiş Beyaz Gauss Gürültülü Kanal 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Coding theory dates back to 1948, when Shannon published his seminal paper 

[Shannon, 1948], posing the fundamental problem for a communication system of 

how a message of information can be transmitted efficiently and reliably across a noisy 

channel. Although he gave the answer to this problem as “coding” and proved that 

such suitable codes exist, he did not specifically address how to find these good codes. 

Since then, finding the structures for practical coding schemes that approach 

Shannon’s theoretical limits has been one of the main focuses of research in 

information theory and communications. 

As formalized by Shannon, the aforementioned problem can be divided into two 

separate problems: the source coding and the channel coding. The former’s task is to 

efficiently represent the source of information using least possible number of bits; 

while the latter adds redundancy to protect the information against the noisy channel 

and reliably transmit them to the receiver. In this thesis, our focus is on the channel 

coding, and it is assumed that the source coding problem has already been solved. 

The most important parameters for the transmission problem are rate, probability of 

(block or bit) error, delay and (encoding or decoding) complexity [Richardson & 

Urbanke, 2008]. According to Shannon’s channel coding theorem, all rates below 

capacity C are achievable. That is, for every rate 𝑅 < 𝐶, there exists a sequence of 

codes with maximal probability of error  approaching to zero as codelength goes to 

infinity. Conversely, any sequence of codes with the maximal probability of error 

approaching zero must have a rate 𝑅 ≤ 𝐶. From this theorem, it is evident that we can 

and would want to send our information at high rates with low probability of error. 

But as the codelength increases, the constraints on delay and complexity begin to rise.  
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Numerous research has been done to balance this trade-off, along with the explicit 

constructions of the codes with arbitrarily small probability of error. Hamming 

introduced the first single-error-correcting block codes in 1950, which was quite weak 

with respect to what Shannon proposed, yet was the best code discovered in that time 

[Hamming, 1950]. Hamming codes were then followed by the binary and ternary 

Golay codes introduced by Golay [Golay, 1949], multiple error correcting Reed-

Muller codes by Reed and Muller [Muller, 1954; Reed, 1954], which happen to be a 

close relative to polar codes that will be discussed later, and the BCH codes by Bose 

and Ray [Bose & Ray-Chaudhuri, 1960], and independently by Hocquenghem 

(Hocquenghem, 1959). Around the same time, Reed and Solomon proposed Reed-

Solomon codes as a special case of BCH codes [Reed & Solomon, 1960]. By 1970s, 

the algebraic approach whose objective was to maximize the minimum distance to 

maximize the error correction radius, left its seat to the probabilistic approach which 

is concerned with optimizing the performance with respect to the encoding and 

decoding complexity with the invention of convolutional codes by Elias [Elias, 1955], 

sequential decoding by Wozencraft [Wozencraft, 1957] and further development of 

Elias’ work by Forney [G. D. Forney, 1970]. The first generation of channel coding 

technology then started with introduction of the iterative decoding algorithms such as 

Viterbi algorithm by Viterbi [Viterbi, 1967] and the BCJR algorithm by Bahl, Cocke, 

Jelinek, and Raviv [Bahl, Cocke, Jelinek, & Raviv, 1974]. The Viterbi algorithm was 

adopted for the 2G GSM networks. In 1993, the second generation of channel coding 

technology began with the epoch-making turbo codes that were designed by Berrou, 

Glavieux and Thitimajshima [Berrou, Glavieux, & Thitimajshima, 1993] having a 

good error performance, rate very close to the Shannon capacity and linear decoding 

complexity, and adopted by 3GPP for the 3G UMTS systems. A couple of years later, 

MacKay rediscovered the LDPC codes [MacKay & Neal, 2002] with the comparable 

properties to the turbo codes, which was originally developed by Gallager way back 

in 1962 [Gallager, 1962]. 
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Both Turbo and LDPC codes belong to the family of codes on graphs that again goes 

back to 1981 when Tanner founded this capacity-achieving field of codes with the 

iterative decoding algorithm [Tanner, 1981]. These two codes are extensively used in 

communication standards: Turbo being used in deep space communications (CCSDS), 

and in the 3G/4G standards; LDPC being used for digital video broadcasting, satellite 

communications, IEEE 802.3an (Ethernet), 802.16e (WiMax) 802.11n/ac (WiFi), 

recent mobile generation (4G, LTE) and the next generation (5G).  

Although it may seem that the problem imposed by Shannon has been already solved, 

as Costello and Forney summarized in [Costello & Forney, 2007], “Coding is not 

dead” yet. With the introduction of a new coding scheme called as polar codes by 

Arıkan [Arıkan, 2009], the third generation of channel coding technology has started 

and both LDPC and polar codes have since been adopted for the 5G. Polar codes are 

based on theoretically proven channel polarization phenomenon where N independent 

copies of the channel are combined and split so that the overall channels polarize in 

the sense that some portion of the channel indices’ capacities tend to 1; i.e. the 

channels become purely noiseless, while some tend to 0; i.e. the channels become 

purely noisy as 𝑁 → ∞. With this effect, one can reliably send information over the 

noiseless channels, while sending known bits, or in other words frozen bits, over the 

noisy channels. In the decoder, Arıkan originally uses successive cancellation (SC) 

decoding that has a time complexity of 𝑂(𝑁 log𝑁). When compared to Turbo and 

LDPC code performances, although this decoding scheme has poor performance, with 

other decoding schemes like belief propagation (BP) or list decoding of SC (SCL), it 

is shown by Tal and Vardy that polar codes indeed outperform Turbo and LDPC code 

performances [Tal & Vardy, 2015]. In short, this coding scheme provably achieves 

the theoretical channel capacity with low complexity for arbitrary symmetric discrete 

memoryless channels, both with a binary (B-DMC) [Hussami, Korada, & Urbanke, 

2009] and non-binary input alphabet [Tal & Vardy, 2013]. 
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Countless research has been done since the invention of polar codes to make the 

performance better, including new decoding techniques, concatenation with other 

schemes, and also some hardware implementations. A brief information about the 

work is given in Chapter 2, albeit it is impossible to include all aspects of rapidly 

growing current research. An interesting area is the design of polar codes for the 

wireless communication channels, where fading aspects and time-varying nature of 

the channel presents major difficulty. Wireless communication has become one of the 

most dynamic area of research in recent years due to increasing demand in not only 

daily-used appliances such as cellular phones, tablets, laptops, or generally speaking, 

remotely controlled devices; but also larger-scale needs such as smart homes that use 

intelligent home electronics, satellite communications, commercial and military 

applications. Evidently, this demand brings proliferating research seeking for better, 

newer and more reliable technologies. Since the polar code performance has already 

been theoretically proved, this low-complexity-coding scheme is quite compelling for 

the developing systems, such as the fifth-generation (5G) cellular services. In fact, in 

2006, the third generation partnership project (3GPP), which is the international 

standards organization that develops telecommunication protocols, has adopted polar 

codes for high data rate demanding control channels of the air interface for 5G. 

However, as the main propagation in wireless communication is electromagnetic wave 

propagation in air, there are many unpredicted and random limitations, such as moving 

objects or simply weather, as well as the interference due to vastly increasing number 

of users. The prior creates variation in signal power over time and frequency and is 

called as fading. In a fading channel, there are replicas of the signal with different 

amplitudes, phases and angles of arrival. These replicas are called as multipaths which 

may add up constructively or destructively at the receiver. This multipath propagation 

environment changes in a random manner and as a result, understanding the random 

behavior and proposing solutions to overcome the adverse impacts of fading have been 

among the key aspects of wireless communication channels. 
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Furthermore, Arıkan points out the relationship between polar and other codes such 

as RM and BCH codes as early as 2009, in [Arıkan, 2009].  It is stated that the 

similarities between the code constructions of polar and RM codes became clear such 

that they belong to the same class of codes and the only difference is the rule for 

selecting the rows from a Hadamard matrix as the basis vectors of their generator 

matrices. In addition, another similarity between RM and polar codes is that they both 

can be constructed using Plotkin’s construction: The construction of RM codes starts 

with smaller codes and recursively grows, while that of polar starts from the full-order 

generator matrix and removes the unnecessary rows. Without going further, Arıkan 

also interprets polar codes in a spectral point of view [Arıkan, 2009] which is also 

mentioned for BCH codes by Blahut [Blahut, 1984]. In short, it is intriguing to see 

how a (relatively) new born code has relationship and similarities with two of the 

earliest codes. Due to simplicity and regarding the previous work of Akdoğan 

[Akdoğan, 2018], we choose to examine the relationship between RM and polar codes 

in this study.  

The thesis consists of two independent parts: In the first part, it is aimed to observe 

the performance of polar codes in a block fading channel, comparing the performance 

of the hierarchical scheme [Si, Köylüoğlu, & Vishwanath, 2014] that uses multiple 

polar coding phases to that of Arıkan’s plain polar coding scheme [Arıkan, 2009]. In 

the second part, it is aimed to calculate numerically the convergence of polar codes to 

RM codes, specifically for the BEC and AWGN channel. The organization of this 

thesis is as follows:  

In Chapter 2, preliminary information about various concepts such as communication 

channels, coding and information theoretic parameters are given. Channel polarization 

is summarized and encoding and decoding structures of both polar and its close 

relative Reed-Muller codes are explained. The wireless fading channels are reviewed 

in general terms, and the chapter is finalized with a review on up-to-date work relating 

to decoders and also polar codes on fading channels. 



 

 

 

6 

 

In Chapter 3, BER performance of the hierarchical polar coding scheme for binary 

fading channels proposed by Si, Köylüoğlu and Vishwanath [Si et al., 2014] and that 

of Arıkan’s original polar code scheme is compared. The proposed scheme is reviewed 

in detail and simulation results under various conditions are given. 

In Chapter 4, the convergence of polar codes to RM codes is discussed with numerical 

results. The proposition relating to the convergence given by Mondelli [Mondelli, 

2016] is reviewed in detail. Some numerical values of design erasure rates or design 

SNRs respectively, required by the convergence of polar codes to RM codes, for the 

BEC and the AWGN channel are calculated, and various cases showing the 

convergence are presented. 

In Chapter 5, concluding remarks and contributions of this thesis are discussed. 
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CHAPTER 2  

 

2. PRELIMINARIES 

 

In this chapter, we give some preliminaries that are used in the thesis. We start with 

the discrete communication channel models, followed by the phenomenon of channel 

polarization based on Arıkan’s work [Arıkan, 2009] with reference to Korada’s 

doctoral thesis [Korada, 2009], and Reed Muller codes. Continuing with a brief 

description of wireless fading channels, we end the chapter by giving a brief survey 

on other recent work regarding decoders and fading channels within the context of this 

thesis. 

The notation throughout the thesis is as follows: The capital letters 𝑋, 𝑌 denote the 

random variables whose sample values are the lowercase ones 𝑥, 𝑦. We write 𝑋𝑁 to 

denote the random variables (𝑋1, 𝑋2, … , 𝑋𝑁) and 𝑋𝑖
𝑗
: 1 ≤ 𝑖, 𝑗 ≤ 𝑁 to denote the sub-

vector (𝑋𝑖, 𝑋𝑖+1, … , 𝑋𝑗). The same analogy is used for 𝑥𝑁 and 𝑥𝑖
𝑗
, as well. We denote 

the channel as 𝑊:𝒳 → 𝒴 with 𝒳 and 𝒴 being the input and output alphabets, 

respectively. A bold 𝒙 is used to denote vectors and matrices such that 𝒙 =

[

𝑎11 … 𝑎1𝑛
⋮ ⋮ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

] in general. 

 

2.1. The Discrete Communication Channel 

As discussed before, the main goal of a channel code is to transmit data reliably and 

efficiently through the communication channel. Shannon declared that this was 

possible; but as he did not say how, we are interested in finding such codes. To begin 

with, we start with the basic digital communication system: 
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Figure 2.1. Block diagram of a digital communication channel (reproduced from [Blahut, 1984]) 

 

Throughout the thesis, as mentioned in previous chapter, we are only concerned with 

the channel encoder and decoder, which is known as channel coding. Our 

communication system is then depicted in Figure 2.2. The channel is a discrete 

memoryless channel (DMC) consisting of an encoding function that maps each 

message 𝑚 ∈ ℳ to codewords 𝑥𝑁 ∈ 𝒳𝑁 , forming the codebook, and a decoding 

function that tries to find the estimates �̂� of 𝑚 from the received sequence 𝑦𝑁 ∈ 𝒴𝑁. 

We assume that the message is uniformly distributed. The channel is memoryless in 

the sense that 𝑝(𝑦𝑁|𝑥𝑁 , 𝑚) =  ∏ 𝑝(𝑦𝑖|𝑥𝑖)
𝑁
𝑖=1  where 𝑝(𝑦|𝑥) denotes the conditional 

probability of receiving the output 𝑦 ∈ 𝒴 and 𝑁 denotes the number of channel uses. 

The performance of the code is measured by the probability of making an error, i.e. 

probability of the estimate �̂� not being equal to 𝑚. A rate is said to be achievable if 
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there exists a sequence of codes such that average probability of error approaches 0 

which is the consequence of Shannon’s Coding Theorem and its converse; and then, 

the capacity C of a DMC is the supremum over all achievable rates [Tse & Viswanath, 

2005]: 

 𝐶 = max
𝑝(𝑥)

𝐼(𝑋; 𝑌) (2.1) 

 

 

Figure 2.2. Block diagram of the simplified digital communication channel 

 

2.2. The Binary Discrete Memoryless Channel 

In this thesis, the input alphabet 𝒳 is binary, so we have the binary-input discrete 

memoryless channel (B-DMC). All of the computations are in modulo-2, the 

logarithms are to the base 2 (unless stated otherwise) and the channel capacities and 

code rates are in bits. If we denote the B-DMC as 𝑊, we can write 𝑊:𝒳 → 𝒴 with 

the conditional probability (denoted as 𝑝 above in Fig. 2.2) 𝑊(𝑦|𝑥), and 𝑊𝑁 

corresponds to N uses of the channel; i.e. we have 𝑊𝑁:𝒳𝑁 → 𝒴𝑁 with 

𝑊(𝑦𝑁|𝑥𝑁 , 𝑚) =  ∏ 𝑊(𝑦𝑖|𝑥𝑖)
𝑁
𝑖=1  in correspondence to aforementioned general DMC. 

For a B-DMC, two parameters of interest are the symmetric capacity: 

 
𝐼(𝑊) ≜ ∑∑

1

2
𝑊(𝑦|𝑥)

𝑥∈𝒳

log
𝑊(𝑦|𝑥)

1
2𝑊

(𝑦|0) +
1
2𝑊

(𝑦|1)𝑦∈𝒴

 
(2.2) 

and the Bhattacharyya parameter: 
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 𝑍(𝑊) ≜ ∑√𝑊(𝑦|0)𝑊(𝑦|1)

𝑦∈𝒴

 
(2.3) 

 

Although 𝐼(∙) denotes the mutual information between the input X and output Y, from 

(2.1), we can also call this as the symmetric capacity. 𝐼(𝑊) provides a measure of 

rate: It is the highest rate at which one can make a reliable communication for a 

symmetric channel. 𝑍(𝑊) is the upper bound on the probability of maximum-

likelihood (ML) decision error and provides a measure of reliability [Arıkan, 2009]. 

Both of these parameters take values in the closed interval [0, 1]. The importance of 

both parameters will show up in designing the polar codes which will be discussed 

next, thus we will not be giving further details about these two here, except the 

following relationship between them: 

 𝐼(𝑊) + 𝑍(𝑊) ≥ 1 (2.4) 

 𝐼(𝑊) ≤ √1 − 𝑍(𝑊)2 (2.5) 

We can interpret (2.4) and (2.5) as higher the capacity, lower the Bhattacharyya 

parameter. The proof is given in [Arıkan, 2012]. 

 𝐼(𝑊) is equal to the Shannon capacity when W is a symmetric channel [Arıkan, 

2009]. In this thesis, we use the following binary memoryless channels: The binary 

symmetric channel (BSC), binary erasure channel (BEC) and additive white Gaussian 

noise (AWGN) channel. BSC is symmetric in the sense that 𝑊(0|0) = 𝑊(1|1) and 

𝑊(1|0) = 𝑊(0|1) = 𝑝, i.e. the probability of making an error is 𝑝, which is called 

as the transmission or the crossover probability. For BEC, we have 𝑊(𝑦|0)𝑊(𝑦|1) =

0, and an error is made when the information bit is erased. In this case, we have 

𝑊(𝑦|0) = 𝑊(𝑦|1) = 𝜖 and the information bit is erased with probability 𝜖. We 

denote these two channels as BSC(𝑝) and BEC(𝜖), respectively, which are shown in 

Figure 2.3(a) and 2.4. BSC also represents a discrete additive noise channel, where 

the noise has Bernoulli distribution with the same parameter 𝑝 as shown in Figure 

2.3(b). We will use this property in the next chapter, thus give the proof hereinafter. 



 

 

 

11 

 

An AWGN channel is similar to as shown in Figure 2.3(b), but instead of a 

Bernoulli(𝑝) distributed noise, we have a white Gaussian noise. The noise is called 

“white” because the power is constant for all frequencies; i.e. its spectral density is 

constant, and it has a “Gaussian” distribution. The capacity of BSC(𝑝) is 1 − 𝐻(𝑝) 

with 𝐻(∙) being the binary entropy function, that of BEC(𝜖) is simply 1 −  𝜖 and that 

of an AWGN channel is 
1

2
log2(1 +SNR) where SNR is the signal-to-noise ratio. 

 

 

 

(a) (b) 
Figure 2.3.  (a) Binary symmetric channel BSC(𝑝), (b) Equivalent BSC(𝑝) 

 

 

 

Figure 2.4. Binary erasure channel BEC(𝜖) 
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Figure 2.5. Additive white Gaussian noise (AWGN) channel. The noise is 0 mean and of variance 𝜎2 

 

2.3. Channel Polarization and Polar Coding 

Channel polarization occurs as a result of (i) combining and (ii) splitting 𝑁 

independent copies of B-DMCs 𝑊, forming 𝑁 binary-input channels 𝑊𝑁
(𝑖)
: 1 ≤ 𝑖 ≤ 𝑁 

where almost each of the newly constructed channels’ capacities approach to the two 

extremes, 0 and 1 as 𝑁 goes to infinity. Formal proof of this phenomenon is given in 

[Arıkan, 2009, Theorem 1]. We will start with the first level of polarization, and then 

continue to the general case. 

We start with the basic channel transform using two individual channels 𝑊. In the 

first step of the recursion, 𝑁 = 2 and 𝑊2: 𝒳
2 → 𝒴2 is obtained as shown in Figure 

2.6. The newly constructed channel’s transition probability is given as 

 

𝑊2(𝑦1
2|𝑢1

2) ≜∏𝑊(𝑦𝑖|𝑥𝑖) = 𝑊(𝑦1|𝑢1⨁𝑢2)𝑊(𝑦2|𝑢2)

2

𝑖=1

 (2.6) 

Since the linear transform between 𝑈1
2 and 𝑋1

2 is one-to-one (mod-2 sum), and 𝑈1
2 

being identically independent distributed (i.i.d.) implies 𝑋1
2 also being i.i.d., we have 

the following: 

 𝐼(𝑈1
2; 𝑌1

2) = 𝐼(𝑋1
2; 𝑌1

2) = 𝐼(𝑋1; 𝑌1) + 𝐼(𝑋2; 𝑌2) = 2𝐼(𝑊) (2.7) 
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Figure 2.6. Basic channel combining 

 

(2.7) implies that the channel capacity is conserved under the single-step transform. 

Up to now, this phase is called as channel combining [Arıkan, 2009]. We can split left 

hand side of (2.7) by using the chain rule: 

 𝐼(𝑈1
2; 𝑌1

2)         = 𝐼(𝑈1; 𝑌1
2) + 𝐼(𝑈2; 𝑌1

2|𝑈1)

= 𝐼(𝑈1; 𝑌1
2) + 𝐼(𝑈2; 𝑌1

2, 𝑈1) 
(2.8) 

(2.8) can be interpreted as follows: First term of the right hand side, 𝐼(𝑈1; 𝑌1
2), is the 

mutual information between the input 𝑈1 and the outputs 𝑌1 and 𝑌2 with 𝑈2 treated as 

random (noise) as shown in Figure 2.7. Denoting this channel as 𝑊2
(1)
: 𝒳 → 𝒴2, by 

marginalizing (2.6) over 𝑈2, the transition probability is given as: 

 
𝑊2

(1)(𝑦1
2|𝑢1)   =

1

2
∑𝑊2(𝑦1

2|𝑢1
2)

𝑢2

=
1

2
∑𝑊(𝑦1|𝑢1⨁𝑢2)

𝑢2

𝑊(𝑦2|𝑢2) 

(2.9) 
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Figure 2.7. 𝑊2
(1)
 after basic channel splitting 

 

Next, second term of the right-hand side of (2.8), 𝐼(𝑈2; 𝑌1
2, 𝑈1), is the mutual 

information between the input 𝑈2 and the outputs 𝑌1 and 𝑌2 with 𝑈1 known as shown 

in Figure 2.8. Similarly, denoting this channel as 𝑊2
(2)
: 𝒳 → 𝒴2 × 𝒳, the transition 

probability is given as: 

 
𝑊2

(2)(𝑦1
2, 𝑢1|𝑢2) =

1

2
𝑊2(𝑦1

2|𝑢1
2) =

1

2
𝑊(𝑦1|𝑢1⨁𝑢2)𝑊(𝑦2|𝑢2) (2.10) 

 

 

Figure 2.8. 𝑊2
(2)
 after basic channel splitting 
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With (2.9) and (2.10) one can see that the channel is split into two sub-channels, 𝑊2
(1)

 

and 𝑊2
(2)

. Arıkan calls this phase as channel splitting [Arıkan, 2009]. With these two 

phases, the polarization effect can be seen from the basic channel transform as follows: 

Combining (2.7), (2.8), (2.9) we have 

 𝐼(𝑊2
(1)) + 𝐼(𝑊2

(2)) = 2𝐼(𝑊) (2.11) 

and further, 

 𝐼(𝑊2
(2)
)  = 𝐼(𝑈2; 𝑌1

2, 𝑈1) 

                                             = 𝐻(𝑈2) − 𝐻(𝑈2|𝑌1
2, 𝑈1)  

                                            ≥ 𝐻(𝑈2) − 𝐻(𝑈2|𝑌2) = 𝐼(𝑊) 

(2.12) 

This concludes that  

 𝐼(𝑊2
(1)) ≤ 𝐼(𝑊) ≤ 𝐼(𝑊2

(2)) (2.13) 

Likewise, the Bhattacharyya parameter is transformed as  

 𝑍(𝑊2
(1)
) ≤ 2𝑍(𝑊) − 𝑍(𝑊)2 (2.14) 

 𝑍(𝑊2
(2)) = 𝑍(𝑊)2 (2.15) 

The proof of (2.14) and (2.15) is given in [Korada, 2009]. Combining these two, we 

have 

 𝑍(𝑊2
(1)) + 𝑍(𝑊2

(2)) ≤ 2𝑍(𝑊) (2.16) 

 𝑍(𝑊2
(1)) ≥ 𝑍(𝑊) ≥ 𝑍(𝑊2

(2)) (2.17) 

(2.11-17) imply that instead of using two independent channels, by combining and 

splitting them, we get one better and one worse channel (i.e. two channels with either 

higher capacity or lower capacity, respectively (or with lower and higher 
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Bhattacharyya parameters, respectively). Due to this, we can also denote 𝑊2
(1)

 and 

𝑊2
(2)

 as 𝑊− and 𝑊+, respectively, of the initial channel 𝑊. Once we have such 

channels; intuitively, we want to send the information from the better channel, while 

sending a known variable - Arıkan calls these known variables as frozen bits - from 

the bad channels. This is the main notion in construction of polar codes. 

With the basic transform having discussed, we can move onto the general case starting 

with the second step of recursion where 𝑁 = 4 for illustrative purposes. For 𝑁 = 4, 

similar to combining two independent copies of 𝑊 to form 𝑊2, two independent 

copies of 𝑊2 are combined to obtain 𝑊4, with the transition probability 

𝑊4(𝑦1
4|𝑢1

4) ≜ ∏ 𝑊(𝑦𝑖|𝑥𝑖)
4
𝑖=1   

            = 𝑊(𝑦1|𝑢1⨁𝑢2⨁𝑢3⨁𝑢4)𝑊(𝑦2|𝑢2⨁𝑢4)𝑊(𝑦3|𝑢3⨁𝑢4)𝑊(𝑦4|𝑢4) 

            = 𝑊2(𝑦1
2|𝑢1⨁𝑢3, 𝑢2⨁𝑢4)𝑊2(𝑦3

4|𝑢3, 𝑢4)  

(2.18) 

The combining phase of 𝑁 = 4 is illustrated in Figure 2.9. In general, we can write 

the following transition probabilities for the newly constructed channel 𝑊𝑁:𝒳
𝑁 →

𝒴𝑁 formed by the combining and splitting operations. Combining phase yields 

 𝑊𝑁(𝑦
𝑁|𝑢𝑁) ≜ 𝑊𝑁 2⁄ (𝑦1

𝑁 2⁄ |𝑢𝑜
𝑁⨁𝑢𝑒

𝑁)𝑊𝑁 2⁄ (𝑦𝑁 2⁄ +1
𝑁 |𝑢𝑒

𝑁) (2.19) 

where 𝑢𝑜
𝑁are the 𝑢𝑖’s with odd indices, i.e. 𝑢𝑜

𝑁 = {𝑢1, 𝑢3, 𝑢5, … , 𝑢𝑁−1}, and 𝑢𝑒
𝑁’s are 

the even indices, i.e. 𝑢𝑒
𝑁 = {𝑢2, 𝑢4, 𝑢6, … , 𝑢𝑁}. For 1 ≤ 𝑖 ≤ 𝑁, the splitting phase 

yields  

 
𝑊𝑁

(𝑖)(𝑦1
𝑁 , 𝑢1

𝑖−1|𝑢𝑖) ≜ ∑
1

2𝑁−1
𝑊𝑁(𝑦

𝑁|𝑢𝑁)

𝑢𝑖+1
𝑁 ∈𝒳𝑁−𝑖

 (2.20) 

with the relation between 𝑊𝑁
(𝑖)

 and the previously constructed 𝑊𝑁/2
(𝑗)

 channels where 

1 ≤ 𝑗 ≤ 𝑁 2⁄  can be written as 
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 𝑊𝑁
(2𝑗−1)

(𝑦1
𝑁 , 𝑢1

2𝑗−2
|𝑢2𝑗−1)     

    =
1

2
∑𝑊𝑁

2

(𝑗)
(𝑦1

𝑁
2 , 𝑢1,𝑜

2𝑗−2
⨁𝑢1,𝑒

2𝑗−2
|𝑢2𝑗−1⨁𝑢2𝑗)𝑊𝑁

2

(𝑗)
(𝑦𝑁 2⁄  +1

𝑁 , 𝑢1,𝑒
2𝑗−2

|𝑢2𝑗)

𝑢2𝑗

 

(2.21) 

 𝑊𝑁
(2𝑗)

(𝑦1
𝑁 , 𝑢1

2𝑗−1
|𝑢2𝑗)  

=
1

2
𝑊𝑁/2

(𝑗)
(𝑦1

𝑁/2
, 𝑢1 ,𝑜
2𝑗−2

⨁𝑢1,𝑒
2𝑗−2

|𝑢2𝑗−1⨁𝑢2𝑗)𝑊𝑁/2
(𝑗)
(𝑦𝑁 2⁄ +1

𝑁 , 𝑢1,𝑒
2𝑗−2

|𝑢2𝑗) 

(2.22) 

 

 

Figure 2.9. 𝑊4 after recursive channel combining and splitting 

 

Furthermore, rate and reliability parameters are transformed as 

 𝐼 (𝑊𝑁
(2𝑗−1)

) ≤ 𝐼 (𝑊𝑁 2⁄
(𝑗)
) ≤ 𝐼 (𝑊𝑁

(2𝑗)
) (2.23) 
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(𝐼𝑁
(2𝑗−1)

) + 𝐼 (𝑊𝑁
(2𝑗)

) = 2𝐼 (𝑊𝑁 2⁄
(𝑗)
) 

and 

 
𝑍 (𝑊𝑁

(2𝑗−1)
) ≤ 2𝑍 (𝑊𝑁 2⁄

(𝑗)
) − 𝑍 (𝑊𝑁 2⁄

(𝑗)
)
2

 

𝑍 (𝑊𝑁
(2𝑗)

) = 𝑍 (𝑊𝑁 2⁄
(𝑗)
)
2

 

𝑍 (𝑊𝑁
(2𝑗−1)

) + 𝑍 (𝑊𝑁
(2𝑗)

) ≤ 2𝑍 (𝑊𝑁 2⁄
(𝑗)
) 

𝑍 (𝑊𝑁
(2𝑗−1)

) ≥ 𝑍 (𝑊𝑁 2⁄
(𝑗)
) ≥ 𝑍 (𝑊𝑁

(2𝑗)
) 

(2.24) 

Similar to (2.7), the cumulative rate and reliability is given as  

 

∑𝐼(𝑊𝑁
(𝑖))

𝑁

𝑖=1

= 𝑁𝐼(𝑊) 

∑𝑍(𝑊𝑁
(𝑖))

𝑁

𝑖=1

≤ 𝑁𝑍(𝑊) 

(2.25) 

More detail and proof can be found in [Arıkan, 2009; Korada, 2009]. Equations 

regarding the Bhattacharyya parameter hold with equality if and only if 𝑊 is BEC.  

Starting from the initial Bhattacharyya parameter denoted as 𝑍1,1, one can calculate 

the Bhattacharyya parameters recursively as  

 
𝑍2𝑘,𝑗 = {

2𝑍𝑘,𝑗 − 𝑍𝑘,𝑗
2 , 1 ≤ 𝑗 ≤ 𝑘          

𝑍𝑘,𝑗
2 , 𝑘 + 1 ≤ 𝑗 ≤ 2𝑘

 
 

   

for 𝑘 = 1, 2, 22, … , 2𝑛−1. For the channels mentioned above in Figures 2.3 – 2.5, the 

initial Bhattacharyya parameters are summarized in Table 2.1, along with the channel 

capacities. Since the initial Bhattacharyya parameter of an AWGN channel is a 

function of the noise variance 𝜎2 [H. Li & Yuan, 2013], we will denote it as 

AWGN(𝜎2) in Table 2.1. 
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Table 2.1. Channel capacities and initial Bhattacharyya parameters of BSC, BEC and AWGN 

channels 

Channel Capacity 
Initial Bhattacharyya 

parameter 

BSC(𝑝) 1 – H(𝑝) 2√𝑝(1 − 𝑝) 

BEC(𝜖) 1 – 𝜖 𝜖 

AWGN(𝜎2) 
1

2
log

2
(1 +

𝐸𝑠
𝜎2
)  𝑒

−
𝐸𝑠
𝜎2 

 

Polar codes are the codes that utilize the polarization effect. As discussed, the main 

idea is to send information on the channels whose capacities tend to 1 while freezing 

the bad channels whose capacities tend to 0. A polar code is defined with the parameter 

(𝑁, 𝐾,𝒜, 𝑢𝒜𝑐) where 𝑁 = 2𝑛 is the codelength, 𝐾 is the number of information bits, 

𝒜 is the information set, i.e. indices of the channels that information will be sent over, 

and 𝑢𝒜𝑐 being the vector of frozen bits. One can choose the frozen bits as desired. In 

this thesis, we will use all-zero vector for the choice of frozen bits. Since probability 

of block error for a (𝑁, 𝐾,𝒜, 𝑢𝒜𝑐) polar code is upper-bounded by ∑ 𝑍(𝑊𝑁
(𝑖)
)𝑖∈𝒜  

[Arıkan, 2012], the 𝐾-element information set 𝒜 is chosen from {1, … , 𝑁} such that 

the Bhattacharyya parameters satisfy 𝑍(𝑊𝑁
(𝑖)
) ≤ 𝑍(𝑊𝑁

(𝑗)
) for all 𝑖 ∈ 𝒜 and 𝑗 ∈ 𝒜𝑐. 

In other words, we send the information bits from the channels with least 

Bhattacharyya parameters. The remaining 𝑁 − 𝐾 number of bits of the set 𝒜𝑐 are set 

to the frozen variables that the receiver knows the values and the channels that they 

are sent from. Furthermore, since 𝑍(𝑊) is channel specific as summarized in Table 

2.1, polar codes are also specific to channels.  

Recall the basic transform given in the beginning of this section, we have the encoding 

𝑥1 = 𝑢1 + 𝑢2 and 𝑥2 = 𝑢2. We can represent this as 𝑋1
2 = 𝑈1

2 ⋅ [
1 0
1 1

] in vector 
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notation. Then, for the general case, given 𝐹 ≜ [
1 0
1 1

], the encoded sequence 𝑥1
𝑁 can 

be written as 

 𝑥1
𝑁 = 𝑢1

𝑁𝐹⊗𝑛 (2.26) 

where 𝐹⊗𝑛 is the 𝑛𝑡ℎ Kronecker power of 𝐹, i.e. 𝐹⊗𝑛 = 𝐹⊗𝑛−1⊗𝐹. In (Arıkan, 

2009), Arıkan uses a permutation matrix 𝐵𝑁 such that the encoding is 𝑥1
𝑁 =

𝑢1
𝑁𝐵𝑁𝐹

⊗𝑛, however, he also adds that 𝐹⊗𝑛 can be used instead of 𝐵𝑁𝐹
⊗𝑛 to simplify 

the encoding, with the decoding done in bit-reversed index order. We will do the 

encoding as in (2.26) and change the order of decoding. The input sequence 𝑢1
𝑁 is 

constructed as described in the previous paragraph.  

To explain further, we will give a rate 0.5 (𝑁, 𝐾) = (8,4) polar code explicitly. This 

code encodes 𝐾 = 4 bits of information while freezing  𝑁 − 𝐾 = 4 bits. Which bits 

in the input sequence 𝑢1
𝑁 are set to information or frozen depends on the Bhattacharyya 

parameters of the channels: The Bhattacharyya parameters of the channels 𝑊𝑁
(𝑖), 𝑖 = 

1, …, 8 where 𝑊 = BEC(0.5) are shown in Figure 2.10. In this thesis, we assume the 

erasure probability of the channel is known beforehand, so that the polar code is 

designed (i.e. the Bhattacharyya parameters are calculated) according to the same 

erasure probability. Intuitively, since the code is specifically designed for the channel, 

the decoding performance would be better than the code performance with a constant 

design. Arıkan calls this as adaptive polar coding [Arıkan, 2008]. Choosing the 4 

channels with the least Bhattacharyya parameters, the information bits are sent from 

(𝑢4, 𝑢6, 𝑢7, 𝑢8) and the rest is set to frozen bits. As an example, if the information 

sequence is (1, 0, 1, 0), the input sequence will be 𝑢1
8 = (0,0,0,1,0,0,1,0). With the 

generator matrix 𝐹⊗3 given as  
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the encoded sequence is 𝑥1
8 = (0,1,0,1,1,0,1,0), with the overall complexity of 

𝑂(𝑁 log𝑁). 

Once the encoded sequence is sent over the individual channels 𝑊 and received as 𝑦1
8, 

the decoding is done a bit-reversed order as mentioned: Representing 𝑦1
8 as 𝑦0

7, i.e.  

letting the indices start from 0 and end at 𝑁 − 1, the corresponding binary 

representations of the indices are (000, 001, 010, 011, 100, 101, 110, 111). 

Reversing the bits, we get (000, 100, 010, 110, 001, 101, 011, 111) which 

yields (0, 4, 2, 6, 1, 5, 3, 7). So, instead of decoding in natural order  

(0, 1, 2, 3, 4, 5, 6, 7) which means decoding 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, decoding is 

done as in the aforementioned bit-reversed order resulting in decoding 

𝑦1, 𝑦5, 𝑦3, 𝑦7, 𝑦2, 𝑦6, 𝑦4, 𝑦8.  

As discussed in Chapter 1, there are many suboptimum decoding algorithms, which 

can be used instead of the optimum ML decoding. In Arıkan’s original scheme, 

successive cancellation (SC) decoding algorithm that uses the previously decoded bits 

without revising is used. For 1 ≤ 𝑖 ≤ 𝑁, the decoding algorithm is given as 

 
          �̂�𝑖 = {

0,   if 𝑖 ∈ 𝒜𝑐

1, if 𝑖 ∈ 𝒜
 

𝑑𝑖(𝑦1
𝑁 , �̂�1

𝑖−1) ≜ {
0,  𝐿𝑁

(𝑖)(𝑦1
𝑁 , �̂�𝑖

𝑖−1) ≥ 0

1, otherwise  
 

(2.27) 

where 𝐿𝑁
(𝑖)

 is the log- likelihood ratio (LLR) given by 
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𝐿𝑁
(𝑖)(𝑦1

𝑁 , �̂�𝑖
𝑖−1) ≜ log

𝑊𝑁
(𝑖)(𝑦1

𝑁 , �̂�1
𝑖−1|0)

𝑊𝑁
(𝑖)(𝑦1

𝑁 , �̂�1
𝑖−1|1)

 (2.28) 

 

 

Figure 2.10. Bhattacharyya parameters of (8, 4) polar code designed for BEC(0.5) and selection of 

the indices (shown by red) 

 

The decoding starts at the rightmost column (i.e. the channel level), 𝐿1
(1)(𝑦𝑖) =

𝑊(𝑦𝑖|0)
𝑊(𝑦𝑖|1)

 

which can be calculated directly, and continues to the left levels 𝐿2
(𝑖), 𝐿4

(𝑖)
 and finally 

reaches the decision level 𝐿𝑁
(𝑖).  For 1 ≤ 𝑗 ≤ 𝑁 2⁄ , the recursive formulas for 𝐿𝑁

(𝑖)
 are 

found from (2.21) and (2.22) as 

 𝐿𝑁
(2𝑗−1)

(𝑦1
𝑁, �̂�𝑖

2𝑗−2
)  

=
𝐿𝑁 2⁄
(𝑗)

(𝑦1
𝑁 2⁄ , �̂�1,𝑜

2𝑗−2
⨁�̂�1,𝑒

2𝑗−2
)𝐿𝑁 2⁄
(𝑗)

(𝑦𝑁 2⁄ +1
𝑁 , �̂�1,𝑒

2𝑗−2
) + 1

𝐿
𝑁 2⁄
(𝑗)

(𝑦1
𝑁 2⁄ , �̂�1,𝑜

2𝑗−2
⨁�̂�1,𝑒

2𝑗−2
)𝐿

𝑁 2⁄
(𝑗)

(𝑦𝑁 2⁄ +1
𝑁 , �̂�1,𝑒

2𝑗−2
)

 

(2.29) 
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𝐿𝑁
(2𝑗)

(𝑦1
𝑁 , �̂�𝑖

2𝑗−1
)  

          = [𝐿𝑁 2⁄
(𝑗)

(𝑦1
𝑁 2⁄ , �̂�1,𝑜

2𝑗−2
⨁�̂�1,𝑒

2𝑗−2
)]
1−2𝑢2𝑗−1

𝐿𝑁 2⁄
(𝑗)

(𝑦𝑁 2⁄ +1
𝑁 , �̂�1,𝑒

2𝑗−2
) 

(2.30) 

Similar to Fast-Fourier Transform structure, the SC decoding consists of butterfly 

structures. Equations (2.29) and (2.30) can be used to calculate upper-left and lower-

left nodes’ LLR values, respectively. Looking at the smallest butterfly as shown in 

Figure 2.11 and recalling from (2.9), the lower-left node uses upper’s decoded bit to 

decode its own bit. Thus, in all butterflies, the lower-left node waits for the upper’s 

decoding to result, which is completed using the results of the nodes on its right. Steps 

for an example decoding for (𝑁, 𝐾,𝒜, 𝑢𝒜𝑐) = (8, 5, {3, 5, 6, 7, 8}, (0, 0, 0)) polar 

code are given explicitly in [Arıkan, 2009]. The complexity of this decoding scheme 

is also 𝑂(𝑁 log𝑁). 

Another decoding technique is called as the belief propagation (BP) decoding. Arıkan 

introduces this technique for polar codes [Arıkan, 2010b]. The structure of BP 

decoding is explained in the next section which is about the Reed Muller codes. It is 

shown that BP decoding of polar codes have a better BER performance over SC 

decoding [Akdoğan, 2018; Chen, Niu, & Lin, 2012; Korada, 2009]. 

 

 

Figure 2.11. Successive cancellation (SC) decoder for polar code of code length 2. 
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2.4. Reed Muller Codes 

As mentioned in Chapter 1 of this thesis, Reed Muller (RM) codes are one of the 

oldest, yet simplest codes in Coding Theory. They belong to the class of linear block 

codes over Galois field (GF(2)) with flexible parameters, thus draw attention due to 

ease of their decoding algorithms. 

RM codes can be constructed in two ways: either inductively or using the Kronecker 

product. We start with the prior case, as given by Blahut [Blahut, 1984]. Denoting the 

element-wise (Hadamard) product of two vectors by ⊙, we can write 

𝑨⊙𝑩 = (𝒂0𝒃0, 𝒂1𝒃1, … , 𝒂𝑛−1𝒃𝑛−1) 

where 𝑨 = [

𝒂0
𝒂1
⋮

𝒂𝑛−1

] and 𝑩 = [

𝒃0
𝒃1
⋮

𝒃𝑛−1

], with 𝒂𝑖 and 𝒃𝑖 are single row vectors of the same 

length. When constructing the generator matrix of the RM code, one simply takes all 

possible row products defined by ⊙. Specifically, the generator matrix 𝑮𝑖𝑛𝑑 of the 

𝑟th-order RM code, constructed inductively, with codelength 𝑁 = 2𝑛 is given as 

𝑮𝑖𝑛𝑑 = [

𝑮0
𝑮1
⋮
𝑮𝑟

] 

where 𝑮0 is the all-ones vector of length 𝑁, 𝑮1 is a 𝑛-by-𝑁 matrix consisting of all 

binary 𝑛-tuples in its columns, and all other 𝑮𝑚’s (2 ≤ 𝑚 ≤ 𝑟) are constructed from 

all possible 𝑚-row products from 𝑮1 yielding 𝑮𝑚 to be an (
𝑛
𝑚
)-by-𝑛 matrix. The 

minimum distance 𝑑∗ of RM codes is 2𝑛−𝑟 (see [Blahut, 1984] for proof) and since 

there are ∑ (
𝑛
𝑖
)𝑟

𝑖=0  such rows, the number of information bits 𝐾 in the (𝑁, 𝐾) RM code 

is  

 
𝐾 =∑(

𝑛
𝑖
)

𝑟

𝑖=0

= 1 + (
𝑛
1
) +⋯+ (

𝑛
𝑟
) (2.31) 
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Note that RM codes can also be represented by { 
𝑛
𝑟
 } pair instead of (𝑁, 𝐾). However, 

due to notation used throughout the thesis, we will be using the (𝑁, 𝐾) notation for 

the RM codes, as well. 

As an example, if one wants to construct a (16, 11) RM code, then from (2.32) the 

order of this RM code is found to be 𝑟 = 2. Then, the generator matrix of the (16, 11) 

RM code is 𝑮𝑖𝑛𝑑 = [
𝑮0
𝑮1
𝑮2

] with  

 𝑮0 is the all-ones vector: 

𝑮0 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] = [𝒂0]            

 𝑮1 consists of all binary 𝑛 = 4-tuples its columns: 

𝑮1 = [

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

] = [

𝒂1
𝒂2
𝒂3
𝒂4

]     

 𝑮2 is constructed by taking all  𝑚 = 2-row products defined by ⊙: 

𝑮2 =

[
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1]

 
 
 
 
 

=

[
 
 
 
 
 
𝒂1𝒂2
𝒂1𝒂3
𝒂1𝒂4
𝒂2𝒂3
𝒂2𝒂4
𝒂3𝒂3]

 
 
 
 
 

 

 

Before mentioning the second construction method of RM codes, the rows of 𝑮𝑖𝑛𝑑 can 

be reordered by row echelon permutations, which have no effect on the code. Once 

that is performed, it can be observed that 𝑮𝑖𝑛𝑑 actually consists of 𝐹 = [
1 0
1 1

]  

mentioned for the Polar code construction, which naturally leads to the Kronecker 

power construction of RM codes. For the construction of RM codes with Kronecker 

power, the 𝑛𝑡ℎ Kronecker power of 𝐹 is taken, and 𝐾 rows with minimum weight 𝑑∗ 
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are chosen. As an example, for the above (16, 11) RM code,  𝑑∗ = 4 and the rows of 

𝐹⊗4 of weight at least 4 are chosen as the rows of the generator matrix 𝑮𝐾𝑟𝑜𝑛: 

𝑮𝐾𝑟𝑜𝑛 =

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1
1

1
1
0
1
1
0
1
0
1
0
1

1
0
1
1
0
1
1
0
0
1
1

1
0
0
1
0
0
1
0
0
0
1

0
1
1
1
0
0
0
1
1
1
1

0
1
0
1
0
0
0
0
1
0
1

0
0
1
1
0
0
0
0
0
1
1

0
0
0
1
0
0
0
0
0
0
1

0
0
0
0
1
1
1
1
1
1
1

0
0
0
0
1
0
1
0
1
0
1

0
0
0
0
0
1
1
0
0
1
1

0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
1
1
1
1

0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 
 

 

It can be seen clearly that 𝑮𝑖𝑛𝑑 = 𝑮𝐾𝑟𝑜𝑛 once the suitable row permutations are 

performed. 

Similar to decoding of polar codes, a recursive decoding algorithm for RM codes was 

proposed [Dumer, 2017]. It is pointed out by Korada [Korada, 2009] that this 

algorithm is similar to the successive cancellation algorithm proposed by Arıkan 

[Arıkan, 2009]. RM codes are proven to be capacity achieving on both erasure and 

error channels [Abbe, Shpilka, & Wigderson, 2015; Kudekar et al., 2017] and 

outperform polar codes when MAP decoding is used [Mondelli, Hassani, & Urbanke, 

2014], however they fall behind when SC decoding is used [Hashemi, Doan, Mondelli, 

& Gross, 2018]. Mondelli, Hassani and Urbanke thus use the two in a hybrid structure 

and benefit from both under certain channel conditions [Mondelli et al., 2014]. Forney 

proposes another decoding called “Belief Propagation” (BP) decoding for codes on 

graphs [Forney, 2001], among which RM codes also belong. BP decoding 

performance lies nearly halfway between that of MAP and SC decoding, and in fact, 

SC decoder is a particular instance of BP decoder [Korada, 2009]. BP decoding can 

be used for both RM and polar codes, but it is shown that performance of polar codes 

under BP decoding is better than that of RM codes [Arıkan, 2010a]. 

BP decoding is a message passing algorithm on factor graphs, and it is based on 

Gallager’s LDPC decoding [Elkelesh, Cammerer, Ebada, & Ten Brink, 2017]. It 
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consists of 𝑛 = log2𝑁 stages and 
𝑁

2
log2(𝑁) processing elements (PE) depicted with 

dashed box in Figure 2.12 and detailed in Fig.1b. Figure 2.12 is also called as “factor 

graph”. Denoting the nodes of PE with (𝑖, 𝑗) where 𝑖 is the stage (1 ≤ 𝑖 ≤ 𝑛 + 1) and 

𝑗 is the bit index (1 ≤ 𝑗 ≤ 𝑁), at each PE, messages are passed from left to right 

(denoted as 𝐿𝑖,𝑗
(𝑡)

)  and from right to left (denoted as 𝑅𝑖,𝑗
(𝑡)

) by 

 𝐿𝑖,𝑗
(𝑡+1) = 𝑓(𝐿𝑖+1,𝑗

(𝑡) , 𝐿𝑖+1,𝑗+𝑁𝑖
(𝑡) + 𝑅𝑖,𝑗+𝑁𝑖

(𝑡) ) 

𝐿𝑖,𝑗+𝑁𝑖
(𝑡+1) = 𝐿𝑖+1,𝑗+𝑁𝑖

(𝑡) + 𝑓(𝐿𝑖+1,𝑗
(𝑡) , 𝑅𝑖,𝑗

(𝑡)) 

𝑅𝑖+1,𝑗
(𝑡+1)

= 𝑓(𝑅𝑖,𝑗
(𝑡)
, 𝐿𝑖+1,𝑗+𝑁𝑖
(𝑡)

+ 𝑅𝑖+1,𝑗+𝑁𝑖
(𝑡)

) 

𝑅𝑖+1,𝑗+𝑁𝑖
(𝑡+1) = 𝑅𝑖,𝑗+𝑁𝑖

(𝑡) + 𝑓(𝑅𝑖,𝑗
(𝑡), 𝐿𝑖+1,𝑗

(𝑡) ) 

(2.32) 

where 𝑁𝑖 = 2𝑛−𝑖, 𝑡 = 0, 1, … is the time index and 𝑓(𝑎, 𝑏) = log
1+𝑒𝑎+𝑏

𝑒𝑎+𝑒𝑏
.  

 

 

Figure 2.12. Belief propagation (BP) decoder construction for RM codes of code length 8. The 

dashed line shows a processing element (PE) 
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Figure 2.13. Details of a processing element (PE) used in a BP decoder 

 

The initial leftmost 𝑅𝑛+1,𝑗
(0)

 messages, denoting the a priori information at the decoder, 

and the rightmost 𝐿𝑛+1,𝑗
(0)

  messages, denoting the channel output, are initialized as  

 
𝐿𝑛+1,𝑗
(0) = log

𝑃(𝑥𝑗 = 0|𝑦𝑗)

𝑃(𝑥𝑗 = 1|𝑦𝑗)
 

𝑅𝑛+1,𝑗
(0)

= {
0, if 𝑗 is information index
∞, if 𝑗 is frozen index

 

(2.33) 

while all other nodes at time 𝑡 = 0 are set to 0. The decoding iteratively continues 

until a predefined number of iterations 𝑁𝑖𝑡𝑒𝑟 are performed. Assuming the decoding 

is finished at 𝑡 = 𝑇, the LLRs of the estimates �̂� of the input 𝒖 and the transmitted 

codeword �̂�  are calculated as 

 
�̂�𝑗 = {

0, if 𝐿1,𝑗
(𝑇) + 𝑅1,𝑗

(𝑇) ≥ 0

1, otherwise
 

�̂�𝑗 = 𝐿𝑛+1,𝑗
(𝑇) + 𝑅𝑛+1,𝑗

(𝑇)
 

 

(2.34) 

Since 𝑁𝑖𝑡𝑒𝑟 may result in decoding latency, the iterations may also be stopped when 

early stopping conditions are met. Although suggested primarily for the polar codes, 

we prefer to mention these in this section due to the given context of BP decoding, yet 

without giving too much detail. Elkelesh, Ebada, Cammerer and Ten Brink describe 3 

stopping criteria called as the practical, perfect knowledge-based, and CRC-aided 

stopping conditions [Elkelesh, Ebada, Cammerer, & Ten Brink, 2018a]. The first one 

is simply the generator matrix-based (𝑮 – based) condition where the iterations stop 
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when �̂� = �̂�𝑮 is satisfied and thus �̂� is a valid estimate. The second one continues 

iterating until �̂� = 𝒖 is satisfied, which requires the knowledge of the information bit 

and thus may be called as “genie-aided”, and the last one requires an outer high rate 

cyclic redundancy check (CRC) code that checks upon the information bits. Yuan and 

Parhi propose a minimum LLR-based criterion that stops the iteration when all LLRs 

of �̂� exceed a given threshold value [Yuan & Parhi, 2014]. Furthermore, an adaptive 

stopping condition that is based on channel condition estimation that determines this 

threshold with respect to the channel SNR is proposed. In summary, both of the 

aforementioned proposals improve the performance of BP decoders.  

 

2.5. The Wireless Fading Channel 

As mentioned before, propagation of signals in wireless channel is by electromagnetic 

waves. Assuming no phase offset, we can denote the band pass input signal as 𝑠(𝑡) =

ℜ{𝑢(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡} where 𝑢(𝑡) is the complex envelope of 𝑠(𝑡) and 𝑓𝑐  is the carrier 

frequency. Due to reflection, diffraction and scattering, there are many paths of a 

single transmitted signal, each with different delays and Doppler phase shifts. Then, 

the resulting received signal is sum of all delayed and attenuated replicas of the 

transmitted signal: 

 

𝑟(𝑡) = ℜ{∑𝛼𝑛(𝑡)𝑢(𝑡 − 𝜏𝑛(𝑡))𝑒
𝑗2𝜋[𝑓𝑐(𝑡−𝜏𝑛(𝑡))+𝜙𝐷𝑛]

𝑁(𝑡)

𝑛=0

} (2.35) 

where 𝑛 denotes the 𝑛th path (𝑛 = 0 denotes the line-of-sight (LOS) path);  𝛼𝑛(𝑡) 

being the attenuation factor (which is a function of path loss), 𝜏𝑛(𝑡) being the time 

delay and 𝜙𝐷𝑛 being the Doppler phase shift of 𝑛th path (Note that the Doppler shift 

on 𝑛th path is 𝑓𝐷𝑛(𝑡) = −𝑓𝑐𝜏𝑛(𝑡) and 𝜙𝐷𝑛 = ∫ 2𝜋 𝑓𝐷𝑛(𝑡)𝑑𝑡𝑡
 ). Letting 𝜙𝑛(𝑡) =

2𝜋𝑓𝑐𝜏𝑛(𝑡) − 𝜙𝐷𝑛 so that it represents both delay and Doppler phase shift, the 

simplified version of received signal is 
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𝑟(𝑡) = ℜ{[∑ 𝛼𝑛(𝑡)𝑒
−𝑗𝜙𝑛(𝑡)𝑢(𝑡 − 𝜏𝑛(𝑡))

𝑁(𝑡)

𝑛=0

] 𝑒𝑗2𝜋𝑓𝑐𝑡} (2.36) 

On the other hand, if we model the channel as a linear time varying system with a 

baseband channel impulse response ℎ(𝑡, 𝜏), we can simply write  𝑟(𝑡) =

ℜ{[∫ ℎ(𝑡, 𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏
∞

−∞
]𝑒𝑗2𝜋𝑓𝑐𝑡}. Comparing this to (2.37), we have the impulse 

response for a fading channel as 

 

ℎ(𝑡, 𝜏) = ∑ 𝛼𝑛(𝑡)𝑒
−𝑗𝜙𝑛(𝑡)𝛿(𝜏 − 𝜏𝑛(𝑡))

𝑁(𝑡)

𝑛=0

 (2.37) 

where 𝛿(∙) is the dirac delta function. For the discrete case, we can naturally write 

𝑦[𝑛] = ∑ ℎ𝑙[𝑚]𝑥[𝑚 − 𝑙]𝑙  such that ℎ𝑙[𝑚] is the 𝑙th channel filter tap at time 𝑚 

[Rappaport, 1996]. We will not go into further detail as it is sufficient to keep in mind 

that the channel impulse response is a function of attenuation, delay and phase shifts 

for the scope of this thesis.  

As mentioned before, fading is variation in signal power over time and frequency, and 

can be divided into two: large-scale and small-scale propagation effects. The former 

effect is mainly due to path loss and blocking of objects, i.e. shadowing, in relatively 

large distances and time durations, while the latter effect characterizes the rapid signal 

power fluctuations that happen in much shorter distances and time. Both propagation 

effects are modeled statistically. Without loss of generality, the term fading alone is 

used for small-scale propagation effects and we will be concerned small-scale fading 

in the simulations performed in Chapter 3.   

Factors affecting small-scale fading can be stated as multipath propagation, speed of 

the mobile station with respect to base station or the surrounding objects, and the 

transmission bandwidth of the signal [Rappaport, 1996]. From (2.35), due to 

randomness and dependency on delay and Doppler shift, it is evident that there would 

some key parameters when defining a fading channel such as how fast the channel 
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changes over time or frequency. Coherence time represents how fast the channel is 

changing over time and is a function of Doppler shifts of different paths contributing 

to the same filter tap ℎ𝑙[𝑚]: If we denote Doppler spread as maximum difference of 

Doppler shifts, i.e. 𝐷𝑠 ∶= max
𝑖,𝑗

𝑓𝑐|𝜏𝑖(𝑡) − 𝜏𝑗(𝑡)|, then the coherence time is 𝑇𝑐 =

1/4𝐷𝑠. When the codeword length spans multiple channel fades, or equivalently many 

coherence periods 𝑇𝑐, we have the fast fading channel. In fast fading channel, the  

channel changes are fast that the bit errors for the individual bits are independent [Lee, 

2004]. Going further, if channel tap ℎ𝑙[𝑚] remains constant over 𝑇𝑐 symbols, we have 

the simple block fading channel that can be thought as parallel channels with filter 

taps being constant within the block, while being i.i.d. among different blocks.  We 

assume the block fading channel model throughout the simulations in Chapter 3. 

 

2.6. Further Notes and Literature Review 

In this section, we give some further notes and try to summarize the existing work 

related to our work presented in this thesis. 

2.6.1. Decoders for RM and Polar Codes 

From the point of view of Kronecker product construction of RM codes, it is obvious 

that RM and polar codes are very similar, in terms of their generator matrices. The 

difference is that RM codes use minimum distance rule while the polar codes use 

minimum Bhattacharyya parameter-rule. In other words, polar codes are channel-

specific whereas the RM codes are channel-independent. It is shown that for 𝑛 ≤ 4, 

the generator matrices of the two codes are exactly the same, but after 𝑁 = 32, the 

rows of the generator matrices start to differ [Arıkan, 2008]. Nonetheless, they can be 

decoded using the same decoders. As a result, due to the similarities in both encoding 

and decoding, they remain to be close relatives and they are often compared in terms 

of error rate performance. While doing so, further decoding techniques that can be 

used in decoding either of the two codes are used: 
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i. CRC-aided Decoding 

CRC code is an error-detecting code that is based on cyclic codes and checks the data 

by adding some redundancy. It is commonly used in various areas such as 

telecommunication standards such as 3GPP or GSM, mobile networks or computer 

architectures. They are denoted as CRC-n where n is the number of redundancy bits. 

Since all of the decoding techniques may well be improved with the help of a CRC 

code, we will not be going much further in detail here (and also in the following 

described decoding techniques), except mentioning that it was shown that a SCL 

decoding of polar codes with CRC-16 outperformed state-of-the-art LDPC codes [Tal 

& Vardy, 2015]. For other applications of CRC codes used in decoding of polar codes, 

preferred readers may read [B. Li, Shen, & Tse, 2014; Murata & Ochiai, 2017; Niu & 

Chen, 2012]. 

ii. Permuted Decoding 

Due to iterative construction of polar codes, one can easily manipulate the stages of 

the factor graph, such that the stages are permuted. It was Hussami, Korada and 

Urbanke [Hussami et al., 2009] and Korada alone [Korada, 2009] to first mention 

permutation of layers of the factor graph for decoding of the polar codes, leaving it as 

an open problem. Since there are 𝑛 = log2𝑁 layers in a factor graph, there are 𝑛! ways 

to construct it, irrespective of the type of decoder used. As a result, we will mention 

the permuted SC and BP decoding (PSCD and PBPD, respectively) here. 

Vangala, Viterbo and Hong give the proof of encoder’s permutation-invariance and 

uses the permutation over the SC decoder. They show that although the performance 

is degraded when PSCD is used for the polar codes designed for the standard SC-

decoder (which is the bit-reversed decoding order as given in the original construction 

of polar codes), the PSCD performance is exactly the same as SCD when the polar 

code construction is matched to the permutation used at the decoder (i.e., the order of 

Bhattacharyya parameters of the bit channels are in the same order as the decoding 

order) They also conclude that using the latter case, if exactly the opposite order of 

the layers (with respect to Arıkan’s original construction) is used with a matched 



 

 

 

33 

 

construction, the decoding order becomes the natural order which results in less 

complexity and latency of the decoder [Vangala, Viterbo, & Hong, 2014]. 

Permutation on the BP decoder is also used [Akdoğan, 2018; Doan, Hashemi, 

Mondelli, & Gross, 2018; Elkelesh et al., 2018a]. Elkelesh, Ebada, Cammerer and Ten 

Brink use these different permutations in series such that if one permuted factor graph 

fails to decode the received codeword, a permuted version of it is used until a 

predefined number of maximum permutations is reached. They conclude that using 

more than one representation (i.e., permutation) of the factor graph results in improved 

decoding performance, and even outperforms SCL decoder when a proper stopping 

criterion (for example, perfect knowledge-based one) is used [Elkelesh et al., 2018a]. 

Unlike the random choice of permutation used in the previously mentioned work, 

Doan, Hashemi, Mondelli and Gross propose a method to construct a predetermined 

set of permutations, which consists of only the good permutations of the original factor 

graph, and it is shown to improve FER performance. Interestingly, they also mention 

that the good permutations are those which are obtained by permuting the leftmost 

side of the factor graph [Doan et al., 2018] (Although the authors conclude it as 

“rightmost” instead of “leftmost”, the factor graph they take as reference is the 

opposite of the one used in this thesis, as shown in Figure 2.12. Thus, we give their 

result the opposite way, without loss of information). This conclusion is also verified 

by numerical calculations by Akdoğan, who also investigates the use of multiple factor 

graphs, both dependently (by letting the newly constructed factor graph’s erasures to 

be filled by that of previous factor graph) and independently (by sending the 

undecoded codewords to the next factor graph), and concludes that dependent use of 

multiple factor graphs outperform the independent use under BP decoding [Akdoğan, 

2018]. 

Another way of using the factor graph permutations both for the polar and RM codes, 

referred to as Successive Permutation SC List Decoding (SPSCL), is discussed by 

Hashemi, Doan, Mondelli and Gross. Using the code partitioning described by 

Hassani et al. [Hassani et al., 2018], it is pointed out that there are actually more than 
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𝑛! permutations, and thus they propose a method that constructs the best permutation 

“on the fly”, i.e. during the course of decoding, that picks the permutation with the 

most reliable LLR values. Once conducted both for the SC and SCL decoders, this 

scheme shows improved FER performance in decoding both of the codes [Hashemi et 

al., 2018].  

iii. List Decoding 

List decoding was actually mentioned for RM codes  using their recursive encoding 

structure called as the Plotkin construction [Dumer & Shabunov, 2017]. Arıkan also 

mentions this construction for Polar codes [Arıkan, 2008] and [Arıkan, 2010a]. Plotkin 

construction basically decomposes the { 
𝑛
𝑟
 } code onto subblocks { 

𝑛 − 1
𝑟

 } and 

{ 
𝑛 − 1
𝑟 − 1

 } until the repetition codes { 
𝑔
0
 } for any 𝑔 = 1,… , 𝑛 − 𝑟 and full spaces  { 

ℎ
ℎ
 } 

for any ℎ = 1,… , 𝑟 are reached. As a result, tree-like construction is formed and 

recursive encoding and decoding can be performed (for details, see [Dumer, 2004, 

2006]). 

List decoding of polar codes are considered both for the SC and BP decoders. Tal and 

Vardy propose list decoding to the SC decoder, referring to as SCL decoding with a 

parameter 𝐿 called the list size [Tal & Vardy, 2015]. The decoding is performed 

successively one-by-one as in the original SC decoder, but the SCL decoder takes 𝐿 

decoding paths into account when decoding the next information bit: When decoding 

an unfrozen bit �̂�𝑖+1, the decoder splits the previous 𝐿 decoding paths (used for the 

decoding of the previous information bits �̂�0
𝑖 ) into two such that �̂�𝑖+1 can either be 0 

or 1, and then keeps the most likely 𝐿 paths for the next decoding phase.  At the end, 

the decoder chooses the most likely path among 𝐿 paths, giving a single decoded 

codeword. When 𝐿 = 1, the SCL decoder is simply the original SC decoder where it 

decides a decoded information bit to be 0 or 1 instantly at each decoding phase 

(without keeping track of decoding paths). It is observed that error rate performance 

is improved with increasing list size, with a cost of increased complexity and latency.  

Hardware improvements regarding this issue, such as partitioning the decoding paths 
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(referred to as partitioned-SCL (PSCL) to reduce memory requirements  exist 

[Hashemi, Balatsoukas-Stimming, Giard, Thibeault, & Gross, 2016], but hardware 

implementation considerations are not within scope of this thesis. Nonetheless, the 

performance is comparable to state-of-the art LDPC and Turbo codes, and indeed SCL 

decoding of Polar codes outperforms LDPC codes used in WiMAX when CRC 

precoding is used [Tal & Vardy, 2015].  

Unlike the serial use of permuted factor graphs discussed in PBP decoders, Elkelesh, 

Ebada, Cammerer and Ten Brink use the BP decoders in parallel, resulting in the BP-

List (BPL) decoding of polar codes. The proposed method is to select 𝑛 − 1 cyclic 

shifts among different factor graph representations, decode the received codeword 

using L parallel BP decoders, and finally picking the codeword closest (in terms of 

Euclidean distance) to the received codeword. They claim that this proposed scheme 

is the best iterative decoder, in terms of soft-decoding and low latency [Elkelesh, 

Ebada, Cammerer, & Ten Brink, 2018b]. They also use RM and polar codes together, 

which is described in Chapter 4 of this thesis. 

 

2.6.2. Fading Channels and Polar Codes 

Existing work relating to polar codes and fading channels do not date far back. Our 

underlying motivation to investigate this relationship is mainly due to the work of Liu, 

Hong and Viterbo [Liu, Hong, & Viterbo, 2017]. As the probability of error in a fading 

channel is inversely proportional to the channel gain (or fading coefficient), they claim 

that the fading channels are naturally polarized, which they refer to as “fading 

polarization”. They propose a new method to calculate the Bhattacharyya parameters 

specifically for the fading channel thus match the polar code construction to the fading 

channels. This method is found to provide 1.5 dB gain over LDPC codes at block error 

rate 10-4. 

Bravos-Santos and Trifonov both narrow the fading channels to only the Rayleigh 

fading and consider the polar codes for such channels [Bravo-Santos, 2013; Trifonov, 
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2015]. Bravo-Santos constructs polar codes assuming the channel statistics such as 

either channel distribution or channel state information; i.e. CDI or CSI, is known for 

binary input- and for block Rayleigh fading channels. Compared to Turbo and LDPC 

codes, it is shown that the suggested scheme is closer to the theoretical limit when 

large codelengths are used [Bravo-Santos, 2013]. Similar to fading polarization 

mentioned by Liu et al. [S. Liu et al., 2017], Trifonov models the polarized 

subchannels as fading channels whose gains have Chi (𝜒) distribution which is a 

general case of Rayleigh distribution. It is noted that this modelling can be used to 

estimate the error probabilities in the polarized subchannels. Furthermore, it is pointed 

out that classical polar codes perform poorly in the fading channels unless the code is 

optimized for the Rayleigh channel, frozen bits are dynamically set to linear 

combinations of other symbols, and sequential or list decoding is used. For the latter 

case, it is shown that use of dynamic frozen symbols provides significant gain over 

similar LDPC code [Trifonov, 2015].  

Continuing with the block fading channels, Boutros and Biglieri state that unlike the 

natural construction of polar codes which is deterministic; in block fading channels, 

the channel polarization can be thought as multiple parallel channels having different 

mutual information. Within a block of 𝑁 symbols, they assume only two fading states 

with no specific distribution and affecting 𝑁/2 symbols irrespective of the order, 

which they refer to as “multiplexing”. As a result, they observe the polarization effect 

on 3 different such multiplexed structures by analyzing the mutual information outage 

probabilities [Boutros & Biglieri, 2013]. 

Similar to the work of Boutros and Biglieri, Si, Köylüoğlu and Vishwanath propose a 

hierarchical polar coding scheme for block fading binary symmetric and additive 

exponential noise channels without CSI at the transmitter. For the block fading BSC 

case, they start with two channel states that one block can be in, and generalize to S 

states [Si, Köylüoğlu, & Vishwanath, 2014]. Observing that this work is mainly 

theoretical, we leave the details of it to Chapter 3 where we try to investigate the bit 

error rate performance of this proposed scheme.   
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CHAPTER 3  

 

3. HIERARCHICAL POLAR CODING SCHEME  

FOR FADING BINARY SYMMETRIC CHANNELS 

 

In this chapter, we compare the hierarchical polar coding scheme for binary fading 

channels proposed by Si, Köylüoğlu and Vishwanath in 2014 [Si et al., 2014] with 

Arıkan’s original polar code scheme [Arıkan, 2009]. We first briefly explain the 

scheme and then compare the BER (bit error ratio) performance of the hierarchical 

polar coding scheme in [Si et al., 2014] with that of the plain polar coding [Arıkan, 

2009] under similar conditions. 

 

3.1. Proposed Scheme by Si, Köylüoğlu and Vishwanath 

Si, Köylüoğlu and Vishwanath propose a hierarchical coding scheme that uses 

multiple polar coding phases for block fading channels with additive binary and 

exponential noise channels. In this thesis, we call this code the “SKV-code”; and we 

focus on the fading BSC case as the model of the AWGN block fading channel with 

BPSK modulation. The authors assume that only the decoder knows the channel state 

information (in short we will denote this as CSI-D as “channel state information at the 

decoder”), while the transmitter only knows the channel state statistics. For simplicity, 

we focus on the case of two-state fading channel, where there are only two fading 

states that a block may encounter, although in [Si et al., 2014], generalization to S 

states is also given. 

Referring to Figure 2.3(b), the output 𝑌 of a fading BSC with input 𝑋 can be 

represented as  

 𝑌𝑏,𝑖 = 𝑋𝑏,𝑖⊕𝑍𝑏,𝑖, 𝑖 = 1,… ,𝑁, 𝑏 = 1,… , 𝐵,   (3.1) 
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where 𝑁 is the block length, 𝐵 is the number of blocks, and 𝑍𝑏,𝑖’s are identically 

Bernoulli distributed within a block and independent over fading blocks. As 

mentioned before, we assume only two states; that is, with probability 𝑞1, the block 𝑏 

can be in State 1 and with probability 𝑞2 = 1 − 𝑞1, it can be in State 2. For the blocks 

in State 1, the noise 𝑍𝑏,𝑖 is Bernoulli distributed with parameter 𝑝1. Likewise, for the 

blocks in State 2, the noise 𝑍𝑏,𝑖 is Bernoulli distributed with parameter 𝑝2 ≤ 𝑝1. These 

probabilities will be used to model the AWGN channel with BPSK modulation as 

discussed below. 

As mentioned in Section 2.5, when we talk about fading channels, for the discrete 

AWGN case, we have 𝑌 = ℎ𝑋 + 𝑍, where ℎ is the channel gain and 𝑍 is the Gaussian 

noise. With BPSK modulation, this channel can be considered as a binary input and 

binary output channel with transition probability relating to the AWGN channel state. 

In other words, since the channel is assumed to be constant over a block, the channel 

gain ℎ𝑏,𝑖 = ℎ𝑠, ∀𝑖 = 1,… ,𝑁, with probability 𝑞𝑠 for 𝑠 ∈ {1,2} and the equivalent 

fading BSCs have the crossover probabilities 

 𝑝𝑠 ≜ 𝑃{𝑍𝑏,𝑖 = 1} = 1 − Φ(ℎ𝑠√𝑆𝑁𝑅), 𝑠 ∈ {1,2} (3.2) 

 

where Φ(𝑥) is the cumulative normal function of the Gaussian distribution (See 

Appendix A for proof). As a result, the two fading blocks are equivalent to two BSCs: 

𝑊1 = BSC(𝑝1) and  𝑊2 = BSC(𝑝2). 

The overall capacity for the 2-state fading BSC is 

 

                       𝐶 =∑𝑞𝑠[1 − 𝐻(𝑝𝑠)]

2

𝑠=1

= 𝑞1[1 − 𝐻(𝑝1)] + (1 − 𝑞1)[1 − 𝐻(𝑝2)] 

 

(3.3) 

and the authors state that the proposed polar coding scheme achieves this capacity 

without channel state information at the transmitter [Si et al., 2014]. 
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It is assumed that 0.5 ≥ 𝑝1 ≥ 𝑝2, so we will call 𝑊1 as the bad (or degraded) channel 

and 𝑊2 as the good (or superior) channel. Since Bhattacharyya parameters for the 

construction of polar codes are required, the information bit indices of the bad channel 

are a subset of that of the good channel. This is given in Lemma 1 of [Si et al., 2014]. 

After reordering the indices, they are grouped into three sets as shown in Fig.3.1.  

1. Set 𝒢 where both channels’ capacities tend to 1 (i.e. both are good channels). 

2. Set ℳ where the degraded channel’s capacity tends to 0, while that of the 

superior tends to 1. 

3. Set ℱ where both channels’ capacities tend to 0. 

 

 

Figure 3.1. Choice of information bits in a codeword of length N according to the encoding scheme 

proposed in [Si et al., 2014] for two fading states (reproduced from [Si et al., 2014]). 

 

Then, if we denote the sets of information bits as 𝒜1 and 𝒜2 for the degraded and 

superior channels, respectively, we can write 𝒜1 = 𝒢 and 𝒜2 = 𝒢 ∪ℳ, and the 

following relations are formed considering the sizes of these sets: 

 |𝒢| = |𝒜1| = [1 − 𝐻(𝑝1) − 𝜖]𝑁 

|ℳ| = |𝒜2| − |𝒜1| = [𝐻(𝑝1) − 𝐻(𝑝2)]𝑁 

|ℱ| = 𝑁 − |𝒜2| = [𝐻(𝑝2) + 𝜖]𝑁 

(3.4) 
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where 𝐻(∙) is the binary entropy function and the offset 𝜖 in [0, 1] approaches 0 as 

𝑁 → ∞. One should notice that, the overall code rate is 𝑅 = 𝑞1𝑅1 + (1 − 𝑞1)𝑅2, 

where 𝑅1 = |𝒢|/𝑁 = [1 − 𝐻(𝑝1) − 𝜖] and 𝑅2 = [|𝒢| + |ℳ|]/𝑁 = [1 − 𝐻(𝑝2) − 𝜖]. 

So, the code rate 𝑅1 is less than the 2-state fading channel capacity 𝐶|𝑞1=1 = 1 −

𝐻(𝑝1) given by (3.3) and 𝑅2 is less than 𝐶|𝑞1=0 = 1 − 𝐻(𝑝2) only for nonzero values 

of the offset 𝜖.  

Looking at Fig.3.1, regardless of the fading state, the channel with indices in the set 𝒢 

always polarizes to a good channel (the capacity tends to 1) and in the similar manner, 

the channel with indices in the set ℱ always polarizes to a bad channel (the capacity 

tends to 0). Then, we can send the information bits at indices belonging to set 𝒢 

reliably, while we can “freeze” the indices belonging to the set ℱ. However, the 

indices over the set ℳ behave differently: With probability 𝑞1, the constructed 

channel is in the degraded state, while with probability 1 − 𝑞1, the constructed channel 

is in the superior state. In other words, the information bits are sent unreliably with 

probability 𝑞1. So, the channels in set ℳ can be modeled as a BEC with erasure 

probability of 𝑞1: �̃� ≜ 𝐵𝐸𝐶(𝑞1). As a result, the uncertainty in layer ℳ can be 

overcome by exploiting an overlaid BEC over the fading BSCs. 

With this being said, the encoder hierarchically uses two phases to construct a 

codeword of length 𝑁𝐵 as explained in the next section, followed by the block fading 

channel modelling and finally the three-phased decoder to decode the information bits. 

 

3.1.1. Hierarchical Encoding 

3.1.1.1. Phase 1 – BEC Encoding 

In this phase, |ℳ| polar codewords specified by the parameter (𝐵, |�̃�|, �̃�, 0) are 

constructed by setting the frozen variables to 0, where �̃� is the information set for 

�̃� = 𝐵𝐸𝐶(𝑞1) such that 
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 |�̃�| = (1 − 𝑞1 − 𝛿)𝐵 (3.5) 

   

where 0 ≤ 𝛿 ≪ 1 − 𝑞1 and vanishes as 𝐵 gets large enough. The encoder generates 

|ℳ| × 𝐵 bits denoted as �̃� such that  

�̃�  = [

𝑢11 𝑢12 𝑢13
𝑢21 𝑢22 𝑢23
⋮ … …

    
… … 𝑢1𝐵
… … 𝑢2𝐵
… … ⋮

     𝑢|ℳ|1 𝑢|ℳ|2 𝑢|ℳ|3    … … 𝑢|ℳ|𝐵

] = [

𝑼1
𝑼2
⋮

𝑼|ℳ|

]   

 

3.1.1.2. Phase 2 – BSC Encoding 

In this phase, 𝐵 polar codewords specified by the parameter (𝑁, |𝒢|, 𝒢 ∪ℳ, 0), where 

𝒢 is the information set for 𝑊1 = 𝐵𝑆𝐶(𝑝1), are produced. Unlike setting all of the 

frozen bits to 0, the output of the first phase is transposed and used as frozen bits, 

along with the remaining zeros. The encoder thus encodes 𝜋−1([𝑼 | �̃�𝑇  | 𝟎]) (where 

𝜋(.) is the permutation to order the Bhattacharyya parameters in ascending manner, 

for the degraded channel) and generates an overall codeword of length 𝑁𝐵. The 

overall encoding scheme is shown in Fig.3.2. 

 

Figure 3.2. Polar encoder proposed in [Si et al., 2014] for a fading binary symmetric channel with 

two states (reproduced from [Si et al., 2014]) 
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3.1.2. The Block Fading Channel 

The output of the encoder denoted as 𝑿 = [

𝑥11 𝑥12 𝑥13
𝑥21 𝑥22 𝑥23
⋮ … …

    
… … 𝑥1𝑁
… … 𝑥2𝑁
… … ⋮

𝑥𝐵1 𝑥𝐵2 𝑥𝐵3    … … 𝑥𝐵𝑁

] = [

𝑿1
𝑿2
⋮
𝑿𝐵

] 

such that 𝑿 = 𝑋𝑏,𝑖
𝑁 , 𝑏 = 1: 𝐵, 𝑖 = 1:𝑁   is transmitted from the fading BSCs as 

follows:  

 
𝑌𝑏,𝑖 = 𝑋𝑏,𝑖⊕𝑍𝑏,𝑖 such that {

𝑍𝑏,𝑖~Bern(𝑝1), channel state𝑏 = "bad"

  𝑍𝑏,𝑖~Bern(𝑝2), channel state𝑏 = "good"
 (3.6) 

In other words, if the block 𝑏 is in the degraded (“bad”) channel state (which happens 

with probability 𝑞1), the noise added to this block is distributed as Bernoulli random 

variable with probability 𝑝1, and if the block is in the superior (“good”) channel state 

(with probability 𝑞2 = 1 − 𝑞1), the noise added to this block is distributed as Bernoulli 

random variable with probability 𝑝2. After 𝑿 is transmitted from the fading channel, 

the received codeword 𝒀 such that 𝒀 = 𝑌𝑏,𝑖
𝑁 , 𝑖 = 1:𝑁, 𝑏 = 1: 𝐵 is decoded using 

three phases, with the channel state information being known at the receiver as shown 

in Figure 3.3.  

 

3.1.3. Hierarchical Decoding 

3.1.3.1. Phase 1 – BSC Decoding 1 

In the first phase of decoding, the decoder uses the classical BSC(𝑝2)-SC (successive 

cancellation) polar decoder with parameter 𝑝2: 

 
�̂�𝑖
(𝑏) ≜ {

0

𝑑2,𝑖(𝑦1:𝑁
(𝑏), �̂�1:𝑖−1

(𝑏)  ),
if 𝑖 ∈ ℱ

if 𝑖 ∈ 𝒢 ∪ℳ
, 𝑖 = 1:𝑁 

𝑑2,𝑖(𝑦1:𝑁
(𝑏), �̂�1:𝑖−1

(𝑏)  ) ≜

{
 

 
0,  if 

𝑊2,𝑁
(𝑖)(𝑦1:𝑁

(𝑏), �̂�1:𝑖−1
(𝑏) |0)

𝑊2,𝑁
(𝑖)(𝑦1:𝑁

(𝑏), �̂�1:𝑖−1
(𝑏) |1)

≥ 1

1,                 otherwise.                

 

(3.7) 
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This procedure decodes the information bits in blocks with respect to the superior 

channel states reliably; however, the ones with respect to the degraded channel states 

cannot be decoded reliably, because the frozen bits of the degraded channel states 

(ℳ∪ℬ) are unknown due to the unknown set ℳ. Thus, a 𝐵 × |ℳ| matrix �̂̃� is 

constructed by choosing the rows corresponding to the superior state directly from this 

phase’s output and the rows corresponding to the degraded state are set to erasures, 

which are then sent to the next phase. 

 

3.1.3.2. Phase 2 – BEC Decoding 

In this phase, the frozen bits with respect to the degraded channel states are decoded 

using the classical BEC(𝑞1)-SC decoder with parameter 𝑞1: 

 
𝑣𝑗
(𝑘) ≜ {

0

�̃�𝑗(�̃̂�1:|ℳ|
(𝑘)  , 𝑣1:𝑗−1

(𝑘) )  ,
if 𝑖 ∈ �̃�𝑐

if 𝑖 ∈ 𝒜
, 𝑗 = 1: 𝐵 

�̃�𝑗(�̃̂�1:|ℳ|
(𝑘)  , 𝑣1:𝑗−1

(𝑘) ) ≜

{
 

 
0,  if 

�̃�𝑁
(𝑗)
(�̃̂�1:|ℳ|

(𝑘)  , 𝑣1:𝑗−1
(𝑘) |0)

�̃�𝑁
(𝑗)
(�̃̂�1:|ℳ|

(𝑘)  , 𝑣1:𝑗−1
(𝑘) |1)

≥ 1

1,                      otherwise.                

 

(3.8) 

   

The output is the estimate of the information bits constructed in Phase 1 of encoding, 

reconstructing the erased bits in �̂̃�. Then the blocks corresponding to the degraded 

channel states, which are not decoded in the previous phase, can be decoded using the 

next phase. 

 

3.1.3.3. Phase 3 – BSC Decoding 2 

Finally, in Phase 3, the remaining blocks corresponding the degraded channel states 

can be decoded using the BSC(𝑝1)-SC decoder with parameter 𝑝1: 
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�̂�𝑖
(𝑏) ≜ {

0
�̃�𝑖

𝑑1,𝑖(𝑦1:𝑁
(𝑏), �̂�1:𝑖−1

(𝑏)  )
  ,
 if 𝑖 ∈ ℱ
   if 𝑖 ∈ ℳ
if 𝑖 ∈ 𝒢

, 𝑖 = 1:𝑁 

𝑑1,𝑖(𝑦1:𝑁
(𝑏), �̂�1:𝑖−1

(𝑏)  ) ≜

{
 

 
0,  if 

𝑊1,𝑁
(𝑖)(𝑦1:𝑁

(𝑏), �̂�1:𝑖−1
(𝑏) |0)

𝑊1,𝑁
(𝑖)(𝑦1:𝑁

(𝑏), �̂�1:𝑖−1
(𝑏) |1)

≥ 1

1,                 otherwise.                

 

(3.9) 

   

For the indices in set ℳ, the frozen bits are set to the values in �̃�, which is constructed 

from the estimate �̂̃� from the previous phase, and for the indices in set ℱ, they are set 

to 0. For the indices in set 𝒢, LLR calculations are done, just as if a classical BSC-SC 

was used. The overall decoding scheme is shown in Figure 3.3. 

In Phase 1, only the blocks in the superior state are decoded; while in Phase 3, only 

the blocks in the degraded state are decoded. In Phase 2, all blocks are decoded using 

a BEC(𝑞1)-SC decoder. 

The performance of this scheme is intuitively discussed in [Si et al., 2014], finalized 

with a theorem stating that as long as the designed rates of polar codes do not exceed 

the corresponding channel capacities, all information bits are decoded with 

𝑂(𝑁𝐵 log(𝑁𝐵)) complexity. 

 

3.2. Simulation Results 

In this part, we compare the multi-phase polar coding scheme proposed by Si, 

Köylüoğlu and Vishwanath [Si et al., 2014] that we call the “SKV-code” with Arıkan’s 

original polar code [Arıkan, 2009], which we simply call “Arıkan’s polar code” or the 

“polar code”. We construct a polar code at the overall code rate 𝑞1𝑅1 + (1 − 𝑞1)𝑅2 

with respect to both the degraded channel probability 𝑝1 and the superior channel 

probability 𝑝2 for performance comparison. The SKV-decoder is assumed to know 

the channel states, so that the appropriate blocks are decoded in Phase 1 and Phase 3 

[Si et al., 2014]. Such information is redundant for Arıkan’s polar code, because the 
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selection of blocks “with respect to channel cases” does not exist, and the decoder 

works on all blocks irrespective of their fading states. In the simulations, the SKV-

code and the Arıkan’s polar code are subjected to exactly the same channel states and 

channel noise.  

 

 

Figure 3.3. Polar decoder proposed in [Si et al., 2014] for a fading binary symmetric channel with 

two states (reproduced from [Si et al., 2014]) 

 

It should be noted that, from (3.4) and (3.5), one can see that the design parameters of 

the SKV-code result in code rates very close to the channel capacities which need to 

be decreased for practical code applications. Explicitly speaking, the BSC encoder’s 

code rate is 𝑅1 = |𝒢|/𝑁 = [1 − 𝐻(𝑝1) − 𝜖] whose channel capacity is 𝐶𝑊1 = 1 −

𝐻(𝑝1); and the code rate of the first BSC decoder (which is with respect to the good 

channel) is 𝑅2 = [|𝒢| + |ℳ|]/𝑁 = [1 − 𝐻(𝑝2) − 𝜖] whose channel capacity is 

𝐶𝑊2 = 1 − 𝐻(𝑝2). Similarly, the code rate of the BEC encoder is 𝑅3 = |�̃�|/𝐵 =

(1 − 𝑞1 − 𝛿) and the channel capacity of �̃� = 𝐵𝐸𝐶(𝑞1) is 𝐶�̃� = 1 − 𝑞1. As can be 
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seen, proper offsets 𝜖 and 𝛿 are needed so that the code rates are smaller than the 

channel capacities.  

We determine these offsets uniformly by fixing the code rate 𝑅 to a percentage of the 

capacity 𝐶, such that 𝑅 = 𝛼𝐶, where 0 < 𝛼 < 1. This implies 𝐶𝑊𝑖
− 𝜖 = 𝛼𝐶𝑊𝑖

; 

hence, 𝜖 = (1 − 𝛼)𝐶𝑊𝑖
 for the BSCs 𝑊1 and 𝑊2; similarly 𝛿 = (1 − 𝛼)𝐶�̃� for the 

BEC, �̃�. 

 For the SKV-code; 𝑅1 = 𝐾1/𝑁 = 𝛼𝐶𝑊1, 𝑅2 = 𝐾2/𝑁 = 𝛼𝐶𝑊2 and 𝑅�̃� =

𝐾3/𝐵 = 𝛼𝐶�̃�. As a result, the overall code rate, 𝑅 = 𝑞1𝑅1 + (1 − 𝑞1)𝑅2 is 

settled as 𝛼 times the overall capacity 𝐶 given by (3.3); i.e., 𝑅 = 𝛼𝐶.  

o For the BSCs 𝑊1 and 𝑊2, the initial sets |𝒢|, |ℳ| and |ℱ| given by (3.4) 

become |𝒢| = 𝛼[1 − 𝐻(𝑝1)]𝑁 = 𝐾1, |ℳ| = 𝛼[1 − 𝐻(𝑝2)]𝑁 − 𝐾1 =

𝐾2 − 𝐾1  and  |ℱ| = 𝑁 − 𝐾2. 

o For the BEC �̃�, |�̃�| =  𝛼(1 − 𝑞1)𝐵 = 𝐾3.  

 For the polar code denoted by (𝑁, 𝐾𝑝) the rate is also adjusted such that 𝑅𝑝 =

𝑅 = 𝛼𝐶.  

o Corresponding number of information bits of the polar code is found as 

𝐾𝑝 = 𝑞1𝐾1 + (1 − 𝑞1)𝐾2 = 𝑅𝑝𝑁.  

In the figures of this section, we plot the BER performances of the SKV-codes and 

Arıkan’s polar codes versus 𝑞1, the probability of being in the degraded channel; for 

a code length 𝑁 = 256 and number of blocks 𝐵 = 256. On each figure, we add the 

uncoded BER performance, 𝑞1𝑝1 + (1 − 𝑞1) 𝑝2, as a green reference curve.  

We fix the crossover probability of the degraded channel 𝑝1 to 0.1 and assign 

probabilities 𝑝2 = 0.1, 0.05, 0.02, 0.01 and 0.001 to the superior channel; to observe 

probability ratios of 1, 2, 5, 10, and 100, respectively. We start by choosing the 

coefficient 𝛼 = 𝑅/𝐶 as 0.6 for all values of 𝑝1 and 𝑝2.  

Firstly, the case of 𝑝1 = 𝑝2 = 0.1 is simulated but not plotted, to confirm that the SKV 

and polar codes become the same when there is only one channel state. Specifically 
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speaking, the erasure channel �̃� does not exist when 𝑝1 = 𝑝2, since the set |ℳ| shown 

in Figure 3.1 vanishes. As a result, there is no BEC encoder and decoder in the SKV-

code. Its Phase 2 encoder is equal to the polar encoder; and its Phase 1 and Phase 3 

decoders are equal to the polar decoder. Hence, the SKV and polar codes perform 

exactly the same when the crossover probabilities of the BSCs are equal, which is 

verified by the simulation results as well.  

Comparison figures of BER performance begin with a superior channel of transition 

probability 𝑝2 = 0.05; i.e., 𝑝1/𝑝2 = 2. In Table 3.1, the channel capacities 𝐶𝑊1, 𝐶𝑊2, 

𝐶�̃� and the overall channel capacity 𝐶 corresponding to 𝑝1 = 0.1, 𝑝2 = 0.05 for 

different values of 𝑞1 are tabulated, along with the adjusted values for 𝐾1, 𝐾2, 𝐾3 and 

𝐾𝑝 which yield code rates equal to 60% of the related capacity. 

 

Table 3.1. Channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃�, the overall channel capacity 𝐶 for 𝑝1 = 0.1, 𝑝2 = 0.05, 

corresponding number of information bits 𝐾1, 𝐾2, 𝐾3 and 𝐾𝑝 for 𝛼 = 0.6. 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶(𝑞1) 𝐶�̃� 𝐾1 = |𝒢| 𝐾2 = |𝒢| + |ℳ| 𝐾3 = |�̃�| 𝐾𝑝 

0.1 

0.531 0.714 

0.695 0.9 

82 110 

138 107 

0.2 0.677 0.8 123 104 

0.3 0.659 0.7 108 102 

0.4 0.641 0.6 92 99 

0.5 0.622 0.5 77 96 

0.6 0.604 0.4 61 93 

0.7 0.586 0.3 46 90 

0.8 0.568 0.2 31 88 

0.9 0.549 0.1 15 85 

 

 

Notice that the maximum value of the capacity is 𝐶𝑊2 = 1 − 𝐻(𝑝2) for 𝑞1 = 0; i.e., 

when the channel is always in the superior state, and the minimum capacity value is 

𝐶𝑊1 = 1 − 𝐻(𝑝1) for 𝑞1 = 1, when the channel always remains in the degraded state. 

Therefore, the overall channel condition deteriorates as 𝑞1 increases. 
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In Figure 3.4, we plot the BER performance of the SKV-code with 𝐾1 = 82, |ℳ| =

𝐾2 − 𝐾1 = 28 (red curve), and the polar codes designed both with respect to the 

degraded channel 𝑊1 (blue curve) and the superior channel 𝑊2 (pink curve), against 

increasing values of  𝑞1. Recall that the overall code rate is a function of  𝑞1, thus it 

does not remain constant at each step of  𝑞1. This also yields varying polar code rates 

(from 0.43 to 0.32 as 𝑞1 goes from 0 to 1), as well. However, the code rates of the 

SKV-codes for the individual channels 𝑊1 and 𝑊2 are 0.32 and 0.43 respectively. 

 

 

Figure 3.4. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.05, with code rates 𝑅𝑖 = 0.6𝐶𝑖 

 

From Figure 3.4, one observes that for  𝑞1 < 0.53, the SKV-code performs much better 

than the polar codes. For the smallest value of  𝑞1 = 0.1, the SKV-code provides 3 

times better BER performance over the polar codes, and it is about 20 times better 

than the uncoded case. However, for  𝑞1 > 0.53, the performance of the SKV-code 

starts to become worse than those of the polar codes and it approaches the uncoded 

BER performance at 𝑞1 = 0.9; where polar codes provide 10 times better BER 

performance over the uncoded case and the SKV-code. It is also observed that the 
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choice of the design parameter for the polar code (i.e., 𝑝1 = 0.1 or  𝑝2 = 0.05) does 

not make an appreciable difference. 

Next, we increase the gap between the channels and continue with 𝑝1 = 0.1 and 𝑝2 = 

0.02; i.e., 𝑝1/𝑝2 = 5, that would yield the channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃� and 𝐶 along 

with the adjusted values for the information bits given in Table 3.2.  

 

Table 3.2. Channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃�, the overall channel capacity 𝐶 for 𝑝1 = 0.1, 𝑝2 = 0.02, 

corresponding number of information bits 𝐾1, 𝐾2, 𝐾3, 𝐾𝑝 and rate 𝑅𝑝 = 0.6𝐶. 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶 𝐶�̃� 𝐾1 𝐾2 𝐾3 𝐾𝑝 𝑅𝑝 

0.1 

0.531 0.859 

0.826 0.9 

82 132 

138 127 0.496 

0.2 0.793 0.8 123 122 0.477 

0.3 0.760 0.7 108 117 0.457 

0.4 0.728 0.6 92 112 0.438 

0.5 0.695 0.5 77 107 0.418 

0.6 0.662 0.4 61 102 0.398 

0.7 0.629 0.3 46 97 0.379 

0.8 0.597 0.2 31 92 0.359 

0.9 0.564 0.1 15 87 0.340 

 

 

Since the overall capacity is increased, the polar code rate 𝑅𝑝 is also increased. We 

plot the BER performances in Figure 3.5, where one observes similar curve shapes to 

Figure 3.4: the SKV-code curve that is below the polar code curves for small 𝑞1 

crosses them at 𝑞1 = 0.71. Polar codes outperform the SKV code for 𝑞1 > 0.71, but 

their performance is worse for small values of 𝑞1, where the code rate 𝑅𝑝 is higher. 

This declining behavior of polar codes for small 𝑞1 implies that, although the channel 

is more likely to be in the superior state, yet the errors made in a few degraded blocks 

by over-rate polar decoders dominate the overall number of errors. Again, the SKV-

code approaches the uncoded BER curve as 𝑞1 increases. 
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Figure 3.5. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.02, with code rates 𝑅𝑖 = 0.6𝐶𝑖 

 

Decreasing 𝑝2 further to 0.01, we simulate a channel condition for 𝑝1/𝑝2 = 10. In 

Table 3.3, we tabulate the corresponding channel capacities and the number of 

information bits for these channels.  

 

Table 3.3. Channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃�, the overall channel capacity 𝐶 for 𝑝1 = 0.1, 𝑝2 = 0.01, 

corresponding number of information bits 𝐾1, 𝐾2, 𝐾3, 𝐾𝑝 and rate 𝑅𝑝 = 0.6𝐶. 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶 𝐶�̃� 𝐾1 𝐾2 𝐾3 𝐾𝑝 𝑅𝑝 

0.1 

0.531 0.919 

0.880 0.9 

82 141 

138 135 0.527 

0.2 0.842 0.8 123 129 0.504 

0.3 0.803 0.7 108 123 0.480 

0.4 0.764 0.6 92 117 0.457 

0.5 0.725 0.5 77 112 0.438 

0.6 0.686 0.4 61 106 0.414 

0.7 0.647 0.3 46 100 0.391 

0.8 0.609 0.2 31 94 0.367 

0.9 0.570 0.1 15 88 0.344 
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Once we plot the performance curves for these codes, as shown in Figure 3.6, we 

observe two distinct changes as compared to Figure 3.4 and Figure 3.5:  

First, for smaller values of 𝑞1, the BER performances of both polar codes are above 

the uncoded case, while the SKV-code remains more than 10 times better. The reason 

may be explained as follows: The channel is more likely to have a capacity of 𝐶𝑊2 for 

lower values of 𝑞1 and 𝐶𝑊1 for higher values of 𝑞1. Since the polar codes do not use 

CSI (so they do not know which state the block is in), the code rate 𝑅𝑝 should satisfy 

𝑅𝑝 < 𝐶𝑊1 < 𝐶𝑊2 so that it may decode correctly. Once we check this for 𝑞1 = 0.1 (see 

the last column of Table 3.3, shown by red), we notice that the code rate is 135/256 = 

0.527, which is very close to 𝐶𝑊1. As a result, it is quite possible that degraded blocks 

cannot be decoded correctly. In addition, once such an error has been made, it is 

expected to be large; because with probability 𝑞1, assuming half of the information 

bits are incorrectly decoded, polar BER has an additive component 𝑞1/2, which is 

comparable to the uncoded BER of [𝑞1𝑝1 + (1 − 𝑞1) 𝑝2]. Hence, one can reason the 

aforementioned dominance of degraded block errors over negligible amount of 

superior block errors.  

 

Figure 3.6. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.01, with code rates 𝑅𝑖 = 0.6𝐶𝑖 
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Second, for higher values of 𝑞1, we now observe that the performances of two polar 

codes diverge from each other. This is reasonable because as 𝑞1 increases, the channel 

is more likely to be in the degraded state; and since the polar code designed for the 

degraded channel 𝑊1 performs better than the one designed for the superior channel 

𝑊2, the separation of BER curves is enhanced with increasing ratio of 𝑝1/𝑝2. As a 

result, the pink curve starts to move away from the blue curve for 𝑞1 > 0.5, and the 

blue curve appears as the best performance among all codes for 𝑞1 > 0.73.  

Apart from these observations, one may also notice the intersections of the SKV-code 

and polar code performances (which are similar to Figure 3.4 and Figure 3.5) at 𝑞1 = 

0.73 for the blue curve of the polar code designed for the degraded channel, and at 

𝑞1 = 0.77 for the pink curve of the polar code designed for the superior channel. At 

the largest value of 𝑞1 = 0.9, the SKV-code again approaches the uncoded 

performance. 

Next we pick a case where 𝑝1/𝑝2 = 100 by decreasing 𝑝2 to 0.001, while keeping 

𝑝1 as 0.1. The parameters of this simulation are tabulated in Table 3.4. As the overall 

channel capacity is increased by using a better superior channel than before, the rates 

used in this simulation are the highest among the ones given in this chapter. Since the 

erasure channel �̃� is a function of 𝑞1 only, there is no change in its rate 𝑅3. 

 

Table 3.4. Channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃�, the overall channel capacity 𝐶 for 𝑝1 = 0.1, 𝑝2 = 0.001, 

corresponding number of information bits 𝐾1, 𝐾2, 𝐾3, 𝐾𝑝 and rate 𝑅𝑝 = 0.6𝐶. 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶 𝐶�̃� 𝐾1 𝐾2 𝐾3 𝐾𝑝 𝑅𝑝 

0.1 

0.531 0.989 

0.943 0.9 

82 152 

138 145 0.566 

0.2 0.897 0.8 123 138 0.539 

0.3 0.851 0.7 108 131 0.512 

0.4 0.806 0.6 92 124 0.484 

0.5 0.760 0.5 77 117 0.457 

0.6 0.714 0.4 61 110 0.430 

0.7 0.668 0.3 46 103 0.402 

0.8 0.623 0.2 31 96 0.375 

0.9 0.577 0.1 15 89 0.348 
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In Figure 3.7, we plot the BER curves of the codes mentioned in Table 3.4. We witness 

the same two observations mentioned for Figure 3.6, but this time, the divergence of 

the two polar code curves is more pronounced as a result of the larger ratio of 𝑝1/𝑝2. 

The polar code designed with respect to the good channel functions poorly, remaining 

almost always above the uncoded case except at 𝑞1 = 0.9. When the channel is more 

likely to be in the degraded state, i.e., for 𝑞1 ≤ 0.5, we observe that the SKV-code 

performs approximately 10 times better than the uncoded case. Again, the SKV-code 

performs 30-35 times better than the polar codes for 𝑞1 ≤ 0.2. 

 

 

Figure 3.7. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.001, with code rates 𝑅𝑖 = 0.6𝐶𝑖 

 

The red BER curve of the SKV-code intersects the blue curve of the polar code 

designed for the degraded channel at 𝑞1 = 0.75, after which the polar code 

outperforms the SKV-code. For 𝑞1 < 0.65, one observes that both of the polar codes 

perform worse than the uncoded case. Once the code rate of the polar code is checked 

from the last column of Table 3.4, one notices that the rate at small 𝑞1 values is not 

appropriate when the channel fades into the bad state. In other words, as 𝑞1 is small, 
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the code rate 𝑅𝑝 is more likely to remain very close, or even above the channel 

capacity 𝐶𝑊1. This is explicitly tabulated and shown in red in Table 3.5. Although this 

rate is suitable when the channel is in the good state; i.e., 𝑅𝑝/𝐶𝑊2is suitable for all 𝑞1 

values, the reason why the blue and pink curves remain above the uncoded curve is 

thus the rate being impractical for the degraded channel blocks. 

 

Table 3.5. Ratio of the polar code rate 𝑅𝑝 to capacities of the fading channels 𝐶𝑊1  and 𝐶𝑊2   

for 𝑝1 = 0.1, 𝑝2 = 0.001 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶(𝑞1) 𝐾𝑝 𝑅𝑝/𝐶𝑊1 𝑅𝑝/𝐶𝑊2 

0.1 

0.531 0.989 

0.943 145 1.066 0.572 

0.2 0.897 138 1.015 0.545 

0.3 0.851 131 0.964 0.518 

0.4 0.806 124 0.911 0.489 

0.5 0.760 117 0.861 0.462 

0.6 0.714 110 0.810 0.435 

0.7 0.668 103 0.757 0.406 

0.8 0.623 96 0.706 0.379 

0.9 0.577 89 0.655 0.352 

 

In order to compare the above four cases where 𝑝1/𝑝2 takes the values 2, 5, 10 and 

100, we combine the four figures, 3.4 to 3.7 in a single figure. Examining the BER 

performances of the SKV-code and polar codes in Figure 3.8, one observes that,  

 SKV curve (of BER performance) remains almost the same in all four cases, 

with the rightmost end at 𝑞1 = 1 touching the uncoded BER of 0.1, but the polar 

code curves get worse as 𝑝1/𝑝2 and 𝑅𝑝 = 𝛼𝐶 increase. 

 SKV-code is better than polar codes at small values of 𝑞1, but it becomes worse 

for 𝑞1 > 𝑝0, and 𝑝0 increases from 0.53 to 0.75 with increasing 𝑝1/𝑝2. 

 Polar code designed for BSC(𝑝1) is the best solution for 𝑞1 >0.75, but 𝑅𝑝 = 𝛼𝐶 

seems too high for polar codes, so 𝛼 needs to be properly decreased.  
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Figure 3.8. BER performances of the SKV-codes and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = (a) 0.001, (b) 0.02, (c) 0.01 and (d) 0.001 with code 

rates 𝑅𝑖 = 0.6𝐶𝑖 

 

In the simulations discussed thus far, where 𝑞1 is changed for fixed values of 𝑝1 and 

𝑝2, variation of 𝑅 with respect to 𝑞1 is decisive in the shape of the polar code BER 

performances. It is such that, as 𝑞1 increases from 0 to 1, 𝑅 decreases from 𝑅2 to 𝑅1. 

So, the choice of the coefficient 𝛼 = 𝑅/𝐶 seems to be crucial. While the constraint of 

𝑅𝑝 = 𝑅, where 𝑅 = 𝛼𝐶 = 𝛼[𝑞1𝐶𝑊1 + (1 − 𝑞1)𝐶𝑊2] = 𝑞1𝑅1 + (1 − 𝑞1)𝑅2, forms a 

rate-equivalence between the SKV and single polar code simulations, one also needs 

to guarantee that 𝑅𝑝 < 𝐶𝑊1, so that the polar code can decode the degraded blocks. To 

satisfy 𝑅𝑝 < 𝐶𝑊1 = 𝑅1/𝛼 is not easy at small values of 𝑞1, where 𝐶 approaches 𝐶𝑊2 >

𝐶𝑊1 and 𝑅𝑝 approaches 𝑅2 > 𝑅1. Fulfillment of 𝑅𝑝 < 𝐶𝑊1 puts a tighter restriction on 

𝛼 = 𝑅𝑝/𝐶, such that 𝛼 < (𝑅𝑝/𝐶𝑊1) < 1. This inequality can be explained by 

employing the lower and upper bounds of 𝐶 = 𝑞1𝐶𝑊1 + (1 − 𝑞1)𝐶𝑊2 (that is 𝐶𝑊1 <

𝐶 < 𝐶𝑊2 as 1 > 𝑞1 > 0) on the ratio 𝑅𝑝/𝐶. So, one obtains 
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𝑅𝑝

𝐶𝑊2
< 𝛼 =

𝑅𝑝

𝐶
<
𝑅𝑝

𝐶𝑊1
< 1 

 

In the next simulation, we lower all code rates by choosing 𝛼 = 0.4. Among the 

previous 𝑝1-𝑝2 pairs, we select the last one with  𝑝2 = 0.001. New simulation 

parameters are given in Table 3.6, which shows that with 𝛼 = 0.4, the constraint of 

𝑅𝑝 < 𝐶𝑊1 is satisfied at small values of 𝑞1 as well; and all code rates remain in 

practical limits irrespective of the code used and the channel state.  

 

Table 3.6. Channel capacities 𝐶𝑊1 , 𝐶𝑊2 , 𝐶�̃�, the overall channel capacity 𝐶 for 𝑝1 = 0.1, 𝑝2 = 0.001, 

corresponding number of information bits 𝐾1, 𝐾2, 𝐾3, 𝐾𝑝, and rate 𝑅𝑝 = 0.4𝐶. 

𝑞1 𝐶𝑊1  𝐶𝑊2  𝐶 𝐶�̃� 𝐾1 𝐾2 𝐾3 𝐾𝑝 𝑅𝑝 

0.1 

0.531 0.989 

0.943 0.9 

54 101 

92 96 0.375 

0.2 0.897 0.8 82 92 0.359 

0.3 0.851 0.7 72 87 0.340 

0.4 0.806 0.6 61 82 0.320 

0.5 0.760 0.5 51 78 0.305 

0.6 0.714 0.4 41 73 0.285 

0.7 0.668 0.3 31 68 0.266 

0.8 0.623 0.2 20 63 0.246 

0.9 0.577 0.1 10 59 0.230 

 

 

BER performances of the SKV and polar codes for  𝑝1 = 0.1 and  𝑝2 = 0.001 at the 

overall code rate shown in the last column of Table 3.6 are plotted in Figure 3.9. The 

SKV-code achieves a BER as small as 5×10-6 at 𝑞1 = 0.1 and instead of touching the 

uncoded curve at 𝑞1 = 0.9, it performs almost 10 times better. Polar code curves also 

remain below the uncoded case, because of the careful adjustment of all code rates.  
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Figure 3.9. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.001, with code rates 𝑅𝑖 = 0.4𝐶𝑖 

 

As 𝑞1; i.e., the percentage of the degraded blocks increases, the best choice is the polar 

code designed for the degraded channel (for 𝑞1 > 0.72 in this case). Polar code also 

has the advantage of not requiring any CSI, as opposed to the SKV-code. We find that 

the worsening of the SKV performance as 𝑞1 increases is mainly because of the errors 

made by the BEC decoder, as an inspection of Table 3.7 reveals. 

 

Table 3.7. BER performance of the BEC decoder of the SKV-code for 𝑝1 = 0.1, 𝑝2 = 0.001,  

and 𝛼 = 𝑅/𝐶 = 0.4. 

𝑞1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

BER 0 0 0 0 0 0.000016 0.000087 0.000189 0.000361 

 

 

One may also wonder how the original polar code would behave, if it were allowed to 

work at the rate bounds 𝑅1 and 𝑅2 rather than the fairly chosen code rate 𝑅𝑝 that 
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increases from 𝑅1 to 𝑅2, as 𝑞1 goes from 1 to 0. As expected and also spotted in Figure 

3.10 (a), performances of the polar codes at rate 𝑅1 would produce lower bounds, and 

those at 𝑅2 would form upper bound to other BER performances. 

 

Figure 3.10. BER performances of the SKV-code and polar codes for different probabilities of the 

degraded state, 𝑁 = 𝐵 = 256,  𝑝1 = 0.1,  𝑝2  = 0.001, with code rates 𝑅𝑖 = 0.6𝐶𝑖. Additionally, (a) 

polar codes are designed with respect to the degraded channel 𝑊1, and (b) to the superior channel 𝑊2, 

at rates 𝑅𝑝, 𝑅1 and 𝑅2. 

 

Finally, we express durations of some simulations using Intel Xeon CPU E5-1620 v3 

@3.5 GHz, 32 GB RAM and 64-bit OS. For an 𝑁 × 𝐵 block where 𝑁 = 𝐵 = 256, at 

𝑞1 = 0.1, a single encoding and decoding of the SKV-code takes about 6 seconds, 

while it lasts 3 seconds for the polar code on the average. At 𝑞1 = 0.9, the SKV-code’s 

duration increases to 21 seconds while that of the polar code remains the same. For 

the simulations in Figures 3.4 to 3.7, a simulation point is obtained in approximately 

22 minutes at 𝑞1 = 0.1 and 52 minutes at 𝑞1 = 0.9, where the decoding is performed 

over 120 channel realizations to measure BERs as low as 10-3, reliably. For the 

simulation in Figure 3.9, in order to obtain a reliable BER as low as 5×10-6, the 

decoding is performed over 1000 channel realizations. which takes about roughly 48 

hours. 
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CHAPTER 4  

 

4. CHANNEL PARAMETERS AT WHICH  

POLAR CODES CONVERGE TO REED-MULLER CODES 

 

(𝑁, 𝐾) polar codes introduced by Arıkan [Arıkan, 2008] are close cousins of (𝑁, 𝐾) 

Reed-Muller (RM) codes, since they both have their generator matrix rows chosen 

from the rows of 𝐹⊗𝑛, that is formed as the nth-Kronecker product of the base 

matrix 𝐹 = [
1 0
1 1

]. Especially for small values of 𝑁, a meaningful portion of the 𝐾 ×

𝑁 generator matrices of the polar and RM codes are shared; i.e., they have many basis 

vectors in common. Arıkan and many other researchers have given insight regarding 

the relationship between RM and polar codes [Arıkan, 2008; Korada, 2009; Özgür, 

2009], but we are mostly intrigued by the idea of constructing family of codes that 

interpolate between polar and RM codes of same rate and code length mentioned in 

[Mondelli et al., 2014] and [Mondelli, 2016]. Mondelli shows that polar codes 

designed for a specific channel are known to approach RM codes as the channel 

improves [Mondelli, 2016]. So if the channel is a BEC(𝜖), the polar code converges 

to an RM code as channel’s erasure rate 𝜖 → 0, and for the AWGN channel, the 

convergence occurs as the noise variance 𝜎2 → 0, or equivalently, as the SNR 

increases. Akdoğan has also noticed that for a BEC(𝜖), as 𝜖 becomes smaller, the 

generator matrix of the adaptive polar code becomes the same as that of the RM code 

[Akdoğan, 2018]. 

In this chapter, we present some observations related to the convergence of polar codes 

to Reed-Muller codes. Motivated by improving the observation given for the (128, 64) 

codes in [Akdoğan, 2018], we try to find out the values of 𝜖 at which a polar code 

designed for a BEC(𝜖) becomes an RM code, and present our observations for 

different code lengths and rates. We then extend this search to an AWGN channel, to 
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locate the values of the noise variance 𝜎2, at which the corresponding adaptive polar 

code converges to an RM code. 

In Section 4.1, we review the convergence conditions of an adaptive polar code to an 

RM code, by replicating the related proposition and proof given by Mondelli 

[Mondelli, 2016], and attempting to clarify a few points. In the remaining part of the 

chapter, we construct (𝑁, 𝐾) adaptive polar codes at several code lengths and rates for 

BECs with various 𝜖’s and AWGN channels with various SNRs. We then compare 

their generator matrices to those of the (𝑁, 𝐾) RM codes with similar parameters. In 

Section 4.2, we detect the erasure rates 𝜖 of BECs, where the generator matrix 

𝐺𝑃(𝜖) of the adaptive polar code designed for BEC(𝜖) becomes the same as that of an 

RM code, 𝐺𝑅𝑀. Similarly, in Section 4.3, we compute the SNR values of AWGN 

channels, where the generator matrix 𝐺𝑃(SNR) of the adaptive polar code matches 

𝐺𝑅𝑀 of the corresponding RM code. 

 

4.1. Convergence Proposition by Mondelli 

In his Ph.D. dissertation, Marco Mondelli gives a proposition related to the 

convergence of a polar code designed for BEC(𝜖) to a Reed-Muller code as 𝜖 

approaches to zero [Mondelli, 2016, Proposition 6.1]: 

“Proposition 6.1: An (𝑁, 𝐾) Polar code designed for a BEC(𝜖) channel becomes an 

RM code with the same rate and code length as 𝜖 → 0.”  

He then gives the following proof: 

“Suppose that the thesis is false, i.e., that we include 𝑔𝑗∗ , but not 

𝑔𝑖∗  , with 𝑤𝐻(𝑔𝑖∗  ) > 𝑤𝐻(𝑔𝑗∗), where 𝑤𝐻(∙) denotes the Hamming 

weight. Since 𝑤𝐻(𝑔𝑖) = 2
∑ 𝑏𝑘

(𝑖)𝑛
𝑘=1 = 2𝑤𝐻(𝑏

(𝑖)) for any 𝑖 ∈  [𝑁] from 

[Arıkan, 2009, Proposition 17]), then 𝑤𝐻(𝑏
(𝑖∗)) > 𝑤𝐻(𝑏

(𝑗∗)).  
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From formula (6.1) (that is, 𝑍𝑛
(𝑖)(𝜖) = 𝑓

𝑏1
(𝑖) ∘ 𝑓

𝑏2
(𝑖) ∘ …𝑓

𝑏𝑛
(𝑖)(𝜖)), we 

deduce that 𝑍𝑛
(𝑖) (𝜖) is a polynomial in 𝜖 with minimum degree equal 

to 2𝑤𝐻(𝒃
(𝑖)). Hence, 

𝑙𝑖𝑚
𝜖→0

𝑍𝑛
(𝑖∗) (𝜖)

𝑍𝑛
(𝑗∗)
 (𝜖)

= 0, 

which means that there exists 𝛿 > 0 such that for all 𝜖 < 𝛿, 

𝑍𝑛
(𝑖∗) (𝜖) < 𝑍𝑛

(𝑗∗)
 (𝜖).   

Consider a polar code designed for the transmission over a BEC(𝜖), 

with 𝜖 < 𝛿. Then, if this code includes 𝑔𝑗∗, it must also include 𝑔𝑖∗ , 

which is a contradiction.” 

Mondelli then proves that Proposition 6.1 not only holds for a BEC; it can be applied 

to any BMS channel [Mondelli, 2016]. Since the proof of Proposition 6.1 becomes 

clearer by understanding the mentioned equation, 𝑍𝑛
(𝑖)(𝑥) = 𝑓

𝑏1
(𝑖) ∘ 𝑓

𝑏2
(𝑖) ∘ …𝑓

𝑏𝑛
(𝑖)(𝑥), 

we try to explain the parameters 𝒃(𝑖) = 𝑏𝑛
(𝑖)

, 𝑓
𝑏𝑛
(𝑖) and 𝑍𝑛

(𝑖)(𝜖) with a simple example 

which also points out some algebraic properties, such as bit representation of a polar 

code. 

Input indices 𝑖 of a length-𝑁 polar code are integers in the range 1 ≤ 𝑖 ≤ 𝑁. The 𝑖𝑡ℎ 

input index is coupled with the 𝑛-bit vector 𝒃(𝑖) = 𝑏1
(𝑖)
𝑏2
(𝑖)
…𝑏𝑛

(𝑖)
 that is the binary 

expansion of (𝑖 − 1), where 𝑛 = log2𝑁. 

Considering the simple case of 𝑁 = 2, one may recall that after the first step of 

channel polarization, two versions of the channel 𝑊, namely 𝑊− and 𝑊+are obtained, 

with respective Bhattacharyya parameters 2𝜖 − 𝜖2 and 𝜖2, if 𝑊 = BEC(𝜖). 𝑊− is the 

bad channel denoted by “–” transform and 𝑊+ is the good channel denoted by “+” 

transform. For a code of length 𝑁 = 2, 𝑛 = 1, so 𝒃(𝑖) is a one-bit vector. In other 
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words, the input of 𝑊− is mapped to  𝒃(1) = 0  and the input of 𝑊+ is mapped to 

𝒃(2) = 1 as shown in Figure 4.1.  

 

 

Figure 4.1. Polar code construction for 𝑁 = 2. 

 

From Figure 4.1, one observes the following: 

 The binary representation of the 1st input is 𝒃(1) = 0. It can be related with a 

“–” transform and Bhattacharyya parameter 𝑓𝒃(1) = 𝑓0 = 2𝜖 − 𝜖
2, 

 The binary representation of the 2nd input is 𝒃(2) = 1. It can be related with a 

“+” transform and Bhattacharyya parameter 𝑓𝒃(2) = 𝑓1 = 𝜖
2. 

In other words, every 0 at the binary representation will be related with the “–” 

transform and Bhattacharyya parameter 𝑓0, and similarly, every 1 at the binary 

representation will be related with the “+” transform and Bhattacharyya parameter 𝑓1.  

Now considering the polar code design for 𝑁 = 4, Bhattacharyya parameters shown 

in Figure 4.2 are found as follows:  

 For the worst channel 𝑊−−, which is coupled with 𝑖 = 1 and vector 𝒃(1) =

00; one takes the initial Bhattacharyya parameter 𝜖 and transforms it into 

𝑓0(𝜖) = 2𝜖 − 𝜖
2, then substitutes this value again in 2𝜖 − 𝜖2 to calculate 𝑓0 ∘
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𝑓0(𝜖) = 2(2𝜖 − 𝜖
2) − (2𝜖 − 𝜖2)2, where “∘” denotes the function 

decomposition.  

 Similarly, for the channel 𝑊−+, which is coupled with 𝑖 = 2 and vector 𝒃(2) =

01; one first computes 𝑓1(𝜖) = 𝜖
2, then substitutes this value in 2𝜖 − 𝜖2 to 

calculate 𝑓0 ∘ 𝑓1(𝜖) = 2𝜖2 − 𝜖4.  

 For the channel 𝑊+−, 𝑖 = 3 and 𝒃(3) = 10; so one first computes 𝑓0(𝜖) =

2𝜖 − 𝜖2, then substitutes it in 𝜖2 to calculate 𝑓1 ∘ 𝑓0(𝜖) = (2𝜖 − 𝜖
2)2.  

 For the channel 𝑊++, 𝑖 = 4 and 𝒃(4) = 11; so one first computes 𝑓1(𝜖) = 𝜖2, 

then substitutes this value in 𝜖2 again, to calculate 𝑓1 ∘ 𝑓1(𝜖) = 𝜖4.  

 

 

Figure 4.2. Polar code construction for 𝑁 = 4. 

 

Due to the iterative construction of polar codes, the same procedure is repeated by 

adding one more bit to 𝒃(𝑖), as 𝑁 doubles. As a result, the Bhattacharyya parameter of 

the 𝑖𝑡ℎ input is calculated as 
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 𝑍𝑛
(𝑖)(𝑥) = 𝑓

𝑏1
(𝑖) ∘ 𝑓

𝑏2
(𝑖) ∘ …𝑓

𝑏𝑛
(𝑖)(𝑥) (4.1) 

where 𝑓0(𝑥) ≜ 2𝑥 − 𝑥
2, 𝑓1(𝑥) ≜ 𝑥2 and the 𝑛-bit vector 𝒃(𝑖) = 𝑏1

(𝑖)
𝑏2
(𝑖)
…𝑏𝑛

(𝑖)
.  

Proposition (6.1) also uses the fact that 𝑍𝑛
(𝑖)(𝑥) is a polynomial with minimum degree 

of 2𝑤𝐻(𝒃
(𝑖)) (See the proof in Appendix A.2). This formula can be applied to any binary 

input-DMS channel, where 𝑥 is the initial Bhattacharyya parameter of the channel, as 

described in Chapter 2. In order to construct a (2𝑛, 𝐾) polar code, one simply selects 

𝐾 rows of the 𝑛𝑡ℎ Kronecker product matrix  𝐹⊗𝑛, which minimize (4.1). 

The proof of Proposition 6.1 given by Mondelli (and repeated at the beginning of this 

section), affirms the convergence of polar codes to RM codes as 𝜖 approaches 0. In 

the light of this result, we calculate some numerical values of design erasure rates or 

design SNRs respectively, required by the convergence of polar codes to RM codes, 

for the BEC in Section 4.2, and for the AWGN channel in Section 4.3. 

 

4.2. BEC Erasure Rates for the Convergence of Polar Codes to RM Codes 

We firstly design (𝑁,𝑁/2) = (2𝑛, 2𝑛−1) adaptive polar codes for the BEC(𝜖) at 

various erasure rates 𝜖 that differ in small steps of ∆𝜖. Since the RM codes of rate 0.5 

only exist for odd values of 𝑛 = log2𝑁, we use the odd values, 𝑛 = 5, 7, 9, 11, 13, 15 

(and codeword lengths of 𝑁 = 32, 128, 512, 2048, 8192, 32768) in our generator 

matrix computations. We compare the generator matrix of the resulting polar code to 

that of the (𝑁,𝑁/2) RM code in order to detect 𝜖0, that we define as the erasure rate, 

below which the two generator matrices become exactly the same. Similarly, we 

define 𝜖1 as the erasure rate, above which two generator matrices start to differ by one 

basis vector. Calling the step size ∆𝜖, 𝜖1 = 𝜖0 + ∆𝜖.  

In Figure 4.3, we plot the values of 𝜖0 at which generator matrices of polar and RM 

codes of rate 0.5 are the same (together with 𝜖1), with respect to different values of 

𝑛 = log2𝑁. As the code length 𝑁 increases, “the value of 𝜖 at which the polar and 
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RM codes converge to each other” decreases; therefore, the chosen value of ∆𝜖 that 

separates 𝜖0 and 𝜖1 needs to be suitably reduced. At each increase of 𝑛, we reduce the 

step size by 4, since the number of generator matrix rows 𝐾 = 2𝑛−1 quadruples. 

Notice that curves of 𝜖0 and 𝜖1 that differ by ∆𝜖 seem very close to each other. The 

blue shaded region that remains below the 𝜖0-curve is the region of erasure rates, 

where the (2𝑛, 2𝑛−1) polar codes converge to RM codes. 

 

 

Figure 4.3. Variation of design erasure probabilities 𝜖0 and 𝜖1 versus 𝑛, for which (2𝑛 , 2𝑛−1) 
adaptive polar codes designed for BEC(𝜖) converge to RM codes. 

 

In Table 4.1, we highlight some details of Figure 4.3, where one may observe that the 

generator matrix of the (32, 16) adaptive polar designed for a BEC with erasure rate 

𝜖0 = 0.183, is the same as the generator matrix of the (32, 16) RM code; whereas for 

the polar code designed for 𝜖1 = 0.184, the generator matrices differ by one basis 

vector, the remaining 15 basis vectors remaining the same. Precision of the computed 

𝜖0 and 𝜖1 values depends on the chosen step size ∆𝜖 shown in Table 4.1. For example, 

the polar code of length 𝑁 = 512 becomes an RM code roughly for 𝜖 ≤ 0.005, while 

for 𝑁 = 2048 this happens for 𝜖 ≤ 0.0011. For 𝑁 = 8192, we need to decrease the 
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step size to 4× 10−6 in order to observe the convergence for 𝜖 ≤ 0.00026. Clearly, if 

one uses smaller step sizes, 𝜖0 and 𝜖1 values can be obtained with larger precision.  

 

Table 4.1. Erasure probabilities 𝜖0 and 𝜖1, for which (𝑁, 𝑁/2) = (2𝑛, 2𝑛−1) adaptive polar codes 

designed for BEC(𝜖) converge to RM codes. 

𝑁 32 128 512 2048 8192 32768 

𝑛 = log2𝑁 5 7 9 11 13 15 

𝜖0 0.183 0.02650 0.00520 0.001145 0.000264 0.000064 

𝜖1 0.184 0.02675 0.00526 0.001160 0.000268 0.000065 

∆𝜖 0.001 0.00025 0.00006 0.000015 0.000004 0.000001 

 

 

Recall that in Figure 4.3, the region above the given curves corresponds to where the 

generator matrices of polar and RM codes differ. They start to differ by one basis 

vector at 𝜖 =  𝜖1 but as the design parameter 𝜖 of the polar code increases, the number 

of different basis vectors also increases. Defining 𝐷(𝑛, 𝑅, 𝜖) as the “number of 

different rows between the generator matrices of rate-𝑅, (2𝑛, 𝐾) RM codes and 

adaptive polar codes designed for BEC(𝜖)”; in Figure 4.4, we plot 𝐷(𝑛, 0.5, 𝜖) versus 

𝑛, on a logarithmic scale since 𝐷(𝑛, 0.5, 𝜖) grows exponentially with 𝑛, for 𝜖 = 0.01, 

0.1, 0.3 and 0.5. One observes that as 𝜖 gets smaller, 𝐷(𝑛, 0.5, 𝜖) for a fixed 𝑛 also 

gets smaller as predicted [Mondelli, 2016, Proposition 6.1]. 
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Figure 4.4. Number of different generator matrix rows 𝐷(𝑛, 0.5, 𝜖) of the (2𝑛, 2𝑛−1) RM and 

adaptive polar codes designed for BEC(𝜖) versus 𝑛, for various design erasure rates. 

 

The exponential increase of 𝐷(𝑛, 𝑅, 𝜖) with 𝑛 is expected, since the total number of 

generator matrix rows is also increasing exponentially with 𝑛 (𝐾 = 2𝑛−1). To observe 

the difference percentage between the basis vectors of polar and RM codes, we 

normalize 𝐷(𝑛, 0.5, 𝜖) by 𝐾, and plot 𝐷(𝑛, 0.5, 𝜖)/𝐾 versus 𝑛 in Figure 4.5, for polar 

codes designed over BEC(𝜖)’s with various erasure rates 𝜖 = 0.01, 0.1, 0.2, 0.3, 0.4 

and 0.5. The vertical axis of Figure 4.5 now doesn’t need to be logarithmically scaled 

as that of Figure 4.4, but it is linear. The curves of Figure 4.5 show that for 𝜖 ≤ 0.5 

and 𝑛 ≤ 15, the normalized ratio of differing rows between the generator matrices of 

rate-0.5 RM codes and polar codes designed for BEC(𝜖) remains less than 22%; i.e., 

𝐷(𝑛, 0.5, 𝜖)/𝐾 ≤ 0.22. Examining the shapes of these curves, one may also conjecture 

that as 𝑛 grows further for a fixed value of the design erasure rate, 𝜖, the normalized 

number of different rows between two generator matrices approaches an asymptote.  

 

 



 

 

 

68 

 

 

Figure 4.5. Normalized ratio of different rows, 𝐷(𝑛, 0.5, 𝜖)/𝐾, between the generator matrices of the 

(2𝑛, 2𝑛−1) RM and adaptive polar codes designed for BEC(𝜖) versus 𝑛, for various erasure rates. 

 

The capacity of BEC(𝜖) is 𝐶 = 1 − 𝜖, and one needs to choose 𝑅 < 𝐶 for reliable 

transmission; hence 𝑅 = 0.5 codes are not suitable for a BEC(𝜖) when 𝜖 ≥ 0.5, and 

this is the reason for their exclusion from Figure 4.5. On the other hand, the smallest 

value of 𝜖 used in Figure 4.5 corresponds to a channel capacity as large as 0.99. So, 

we also study codes at different rates, 𝑅, within the rate restrictions of the RM code 

design, where one defines the order 𝑟 and selects the rate accordingly. As described in 

Chapter 2, the order 𝑟 of an RM code of length 𝑁 = 2𝑛 can be selected as 1 ≤ 𝑟 ≤

𝑛 − 1, for any 𝑛. The information word length is then 𝐾 = ∑ (
𝑛
𝑖
)𝑟

𝑖=0  with the 

corresponding rate, 𝑅 = 𝐾/𝑁 = ∑ (
𝑛
𝑖
)𝑟

𝑖=0 /2𝑛. For example, if 𝑟 = 5 and the code 

length is chosen as 𝑁 = 214 = 16384, corresponding RM code shown in { 
𝑛
𝑟
 } notation 

as { 
14
5
 }, and in (𝑁, 𝐾) notation as (16384, 3473) has the rate 0.21. Since the polar 

codes can be constructed at any rate; we restrict their rates to those of the (𝑁, 𝐾) RM 

codes.  
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In the remaining part of this section, we explore the dependence of 𝐷(𝑛, 𝑅, 𝜖) on the 

code rate 𝑅 for various channels with different erasure probabilities 𝜖. We start by 

fixing 𝜖 to 0.1 and observing the number of different rows, 𝐷(𝑛, 𝑅, 0.1), between the 

generator matrices of RM and polar codes designed for BEC(0.1), at various rates. 

Different from the experiments performed previously at the fixed rate of 0.5, RM 

codes can now be constructed for even values of 𝑛 as well. In Figure 4.6, we plot 

𝐷(𝑛, 𝑅, 0.1) versus rate 𝑅, for 10 ≤ 𝑛 ≤ 15. Note that code rates above 0.9 are not 

practically meaningful since they exceed the channel capacity of BEC(0.1). 

 

 

Figure 4.6. Number of differing rows 𝐷(𝑛, 𝑅, 0.1) between the generator matrices of the adaptive 

polar codes designed for BEC(0.1) and RM codes at various rates. 

 

One observes from Figure 4.6 that: 

i. For 𝑛1 < 𝑛2, 𝐷(𝑛1, 𝑅, 0.1) < 𝐷(𝑛2, 𝑅, 0.1). This is quite reasonable because 

the number of basis vectors 𝐾 = 2𝑛𝑅 also increases as 𝑛 increases.  

ii. All curves are concave functions of the rate 𝑅. Denoting 𝑅0.1,𝑛 as the rate 

where 𝐷(𝑛, 𝑅, 0.1) is maximized for each 𝑛, each curve increases if 0 < 𝑅 <
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𝑅0.1,𝑛 and decreases if 𝑅0.1,𝑛 < 𝑅 < 1. Concavity of the curves can be 

understood by the following argument: Basis vectors of the (𝑁, 𝐾), rate-𝑅 

polar and RM codes are both chosen from the same set; i.e., 𝑁 rows of 𝐹⊗𝑛 

formed as the nth-Kronecker product of the base matrix 𝐹 = [
1 0
1 1

]. If 𝐷 

simply denotes the number of different rows between the generator matrices 

𝐺𝑅𝑀 and 𝐺𝑃 of these two codes (that is 𝐷(𝑛, 𝑅, 𝜖) defined on page 62), and 𝑆 

denotes the number of the same rows of 𝐺𝑅𝑀 and 𝐺𝑃, then 𝐷 + 𝑆 = 𝐾. Since 

rows of both 𝐺𝑅𝑀 and 𝐺𝑃 are chosen from 𝐹⨂𝑛, when they differ by 𝐷 rows, 

2𝐷 rows of 𝐹⨂𝑛 out of 𝑁 have been used. Also considering the additional  

𝑆 similar rows; one concludes that 2𝐷 + 𝑆 ≤ 𝑁. Combining these two 

restrictions, we obtain,  

 2𝐷 + 𝑆 ≤ 𝑁
𝐷 + 𝑆 = 𝐾

⟹ 𝐾 − 𝑆 = 𝐷 ≤ 𝑁 − 𝐾 
(4.2) 

 

   

Dividing (4.2) by 𝑁, it is seen that 𝐷/𝑁 satisfies 

 𝑅 − (𝑆 𝑁)⁄ = 𝐷 𝑁⁄ ≤ 1 − 𝑅 (4.3) 

   

So, for a fixed codeword length 𝑁, the initial growth of 𝐷 with 𝑅 for 0 < 𝑅 <

𝑅0.1,𝑛, is explained by the equality on the left side of (4.3), and its decline for 

𝑅0.1,𝑛 < 𝑅 < 1 is justified by the inequality on the right side of (4.3). 

 

We then normalize the number of different rows shown in Figure 4.6 by dividing it 

with the respective number of information bits 𝐾, and plot 𝐷(𝑛, 𝑅, 0.1)/𝐾 in Figure 

4.7. Again we note that code rates above 0.9 are not practically meaningful since they 

exceed the channel capacity of BEC(0.1). 



 

 

 

71 

 

 

Figure 4.7. Normalized number 𝐷(𝑛, 𝑅, 0.1)/𝐾 of differing rows between the generator matrices of 

the adaptive polar codes designed for BEC(0.1) and RM codes, versus the code rate 𝑅. 

 

Previously in Figure 4.6, rate values 𝑅0.1,𝑛 that maximize the curves of have been 

observed in the range (0.7, 0.85). However, once these numbers are normalized by 𝐾 

as in Figure 4.7, peaks of the curves shift to the left and maxima start to occur in the 

rate range (0.3, 0.62); because as 𝑅 increases, the normalization parameter 𝐾 also 

increases. One observes almost a symmetrical shape in the normalized values, 

𝐷(𝑛, 𝑅, 0.1)/𝐾. 

Recalling the definition of 𝐷(𝑛, 𝑅, 𝜖) as the “number of different rows between the 

generator matrices of rate-𝑅, (2𝑛, 𝐾) RM codes and adaptive polar codes designed for 

BEC(𝜖)”, Figure 4.7 also shows that normalized 𝐷(𝑛, 𝑅, 0.1)/𝐾 values increase with 

𝑛, but remain below 9.5% for all 𝑛 ≤ 15. They are also observed to decrease with 𝑅 

for 𝑅 > 0.5; so the previous curve 𝐷(𝑛, 0.5, 0.1)/𝐾 given in Figure 4.5 seems to form 

an upper bound for 𝐷(𝑛, 𝑅, 0.1)/𝐾 curves of Figure 4.7, when 𝑅 > 0.5.  

So, as a final concern of this section, we compute the normalized numbers 

𝐷(𝑛, 𝑅, 𝜖)/𝐾 (of different generator rows of the RM codes and adaptive polar codes 

designed for BEC(𝜖)’s) versus 𝑅, considering different erasure rates 𝜖 = 0.01, 0.1, 
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0.25, 0.5, 0.75 and 0.90. We plot the results in Figure 4.8, also indicating the related 

channel capacities (1 − 𝜖) on each subfigure with a vertical dashed line, where the 

proper rates for reliable communication remain on the left. For practical reasons, this 

rate should not be too far away from capacity, as well.  

Comparing the six design-𝜖 values of Figure 4.8, one may observe that for 𝑛 ≤ 15, the 

normalized ratio of differing rows between the generator matrices of RM codes and 

polar codes designed for BEC(𝜖), 𝐷(𝑛, 𝑅, 𝜖)/𝐾 satisfies: 

i. For 𝑛, 𝑅 fixed, and 𝜖1 < 𝜖2, [𝐷(𝑛, 𝑅, 𝜖1)/𝐾] < [𝐷(𝑛, 𝑅, 𝜖2)/𝐾]: This is an 

expected result [Mondelli, 2016, Proposition 6.1] since polar codes converge 

to RM codes as 𝜖 → 0. For all 𝑛 ≤15, the maximum of 𝐷(𝑛, 𝑅, 𝜖)/𝐾 is found 

to be 47% at 𝜖 = 0.9, which decreases to 43% at 𝜖 = 0.75, 28% at 𝜖 = 0.5, 

17% at 𝜖 = 0.25, 9.5% at 𝜖 = 0.1, and 2.5% at 𝜖 = 0.01. At meaningful rates 

(i.e., 𝑅 < 𝐶), the maximum of 𝐷(𝑛, 𝑅, 𝜖)/𝐾 is found to be 47% at 𝜖 = 0.9. 

ii. For small values of 𝜖, 𝐷(𝑛, 𝑅, 𝜖)/𝐾 curves seem to be piecewise concave 

functions of the rate 𝑅, where there is a point �̅�𝜖,𝑛 < 𝐶 for each 𝑛 and 𝜖 such 

that 𝐷(𝑛, 𝑅, 𝜖)/𝐾 is maximized. For higher values of 𝜖, such concave-like 

behavior is only observed at meaningful transmission rates less than capacity; 

and for 𝑅 > 𝐶, a second peak starts to develop, as becomes especially 

apparent at 𝜖 = 0.9. We still continue to denote �̅�𝜖,𝑛 < 𝐶; i.e., the first peak, 

as the rate value for which 𝐷(𝑛, 𝑅, 𝜖)/𝐾 is maximum for meaningful rates 

𝑅 < 𝐶. 

iii. As the design erasure rate 𝜖 increases, we observe that �̅�𝜖,𝑛 decreases; i.e., the 

peaks of 𝐷(𝑛, 𝑅, 𝜖)/𝐾 versus 𝑅 curves shift from right to left and start to occur 

at lower rates. Specifically, for 𝜖 = 0.01, one can see that the maximum value 

of 𝐷(𝑛, 𝑅, 𝜖)/𝐾 occurs for code rates in the (0.7, 0.9) range; while for 𝜖 = 0.1, 

�̅�𝜖,𝑛 is within the interval (0.3, 0.62); for 𝜖 = 0.25, it is in the range (0.2, 0.3); 
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Figure 4.8. Normalized number 𝐷(𝑛, 𝑅, 𝜖)/𝐾 of differing rows between the generator matrices of the 

adaptive polar codes designed for BEC(𝜖) and RM codes, versus the code rate 𝑅. 
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for 𝜖 = 0.5 and 0.75, it is around 𝑅 = 0.1 and �̅�𝜖,𝑛 becomes less than 0.1 for 

𝜖 = 0.9. 

In short, for 𝜖1 < 𝜖2, one concludes that �̅�𝜖1,𝑛 > �̅�𝜖2,𝑛, where �̅�𝜖,𝑛 is the rate 

value at which 𝐷(𝑛, 𝑅, 𝜖)/𝐾 is maximum for meaningful rates 𝑅 < 𝐶. 

 

4.3. AWGN Channel SNRs for the Convergence of Polar Codes to RM Codes 

In this section, it is aimed to observe the practical conditions for the convergence of 

polar codes to RM codes for the binary input-additive white Gaussian (BI-AWGN) 

channels. Knowing that the convergence occurs as the channel approaches to a perfect 

one, and since the Bhattacharyya parameter of AWGN channel is 𝑍AWGN(𝑊) =

𝑒−𝐸𝑠/𝜎
2
 as mentioned in Table 2.1 of Chapter 2, we search for the SNR values for 

which the convergence would occur. We compute our results in terms of the SNR =

10 log10(𝐸𝑠/𝜎
2)  values, where 𝐸𝑠 is the signal power. 

We firstly construct (𝑁, 𝑁/2) = (2𝑛, 2𝑛−1) adaptive polar codes over the AWGN 

channel with respect to different channel SNRs and compare each generator matrix 

𝐺𝑃(SNR) with the generator matrix 𝐺𝑅𝑀 of the corresponding (2𝑛, 2𝑛−1) RM code. 

We use the same code lengths as before and increase the SNR from 0 dB to 15 dB, 

with a step size of 0.25 dB. Similar to the BEC case, we look for the SNR values at 

which polar and RM codes of rate 0.5 start to differ. Calling the SNR value that they 

become the same as SNR0, we plot these values versus 𝑛 in Figure 4.9. As in Figure 

4.3 of Section 4.2, we indicate the region where the (2𝑛, 2𝑛−1) polar codes converge 

to RM codes by the blue-shaded area, which now remains above the SNR0 curve. We 

note that polar codes designed for SNR1 = SNR0 − 0.25, differ by one basis vector 

from those of the RM codes at all values of 𝑛. 

 



 

 

 

75 

 

 

Figure 4.9. Variation of the design 𝑆𝑁𝑅 values versus 𝑛, for which (2𝑛, 2𝑛−1) adaptive polar codes 

converge to RM codes. 

 

From Figure 4.9, one observes that the SNR value at which the two codes become the 

same increases with 𝑛. Similar to the definition of 𝐷(𝑛, 𝑅, 𝜖) given in Section 4.2, we 

define 𝐷′(𝑛, 𝑅, SNR) as the “number of different rows between the generator matrices 

𝐺𝑅𝑀 and 𝐺𝑃(SNR) of rate-𝑅, (2𝑛, 𝐾) RM codes and adaptive polar codes designed for 

an AWGN channel at a given SNR”. We then plot 𝐷′(𝑛, 0.5, SNR) versus 𝑛 in Figure 

4.10, for design SNRs chosen as 0, 2, 4 and 8 dB.  

As 𝑛 increases, the number 𝐷′(𝑛, 0.5, SNR) of different rows in Figure 4.10 seems to 

increase almost linearly on logarithmic scale; which is expected since the total number 

of basis vectors 𝐾 = 2𝑛−1 also grows exponentially with increasing 𝑛. 
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Figure 4.10. Number of different generator matrix rows 𝐷′(𝑛, 0.5, 𝑆𝑁𝑅) of the (2𝑛 , 2𝑛−1) RM and 

adaptive polar codes designed for an AWGN at that 𝑆𝑁𝑅, versus 𝑛, for various design 𝑆𝑁𝑅s. 

 

Due to the exponential increase observed in Figure 4.10, dividing 𝐷′(𝑛, 0.5, SNR) by 

𝐾, we obtain the normalized difference 𝐷′(𝑛, 0.5, SNR)/𝐾 and plot in Figure 4.11. 

The vertical axis of Figure 4.11 is not logarithmic but linear. One notices that for 

SNR ≥ 0 dB and 𝑛 ≤ 15, the normalized ratio of differing rows between the generator 

matrices 𝐺𝑅𝑀 and 𝐺𝑃(SNR) of rate-0.5 codes remains less than 20%; in other words, 

𝐷′(𝑛, 0.5, SNR)/𝐾 ≤ 0.20 for SNR ≥ 0 dB. Examining the shape of each curve in 

Figure 4.11, one may also conjecture that as 𝑛 grows further for a fixed value of the 

design SNR, the normalized number of different rows between two generator matrices 

approaches an asymptote. In addition to that, 𝐷′(𝑛, 0.5, SNR)/𝐾 curves (given in 

Figure 4.11) and 𝐷(𝑛, 0.5, 𝜖)/𝐾 curves (given in Figure 4.5) seem to behave quite 

similarly with respect to 𝑛. 
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Figure 4.11. Normalized number of different rows 𝐷′(𝑛, 0.5, 𝑆𝑁𝑅)/𝐾, between the generator 

matrices of the (2𝑛, 2𝑛−1) RM and adaptive polar codes versus 𝑛, for various polar code design 

𝑆𝑁𝑅s. 

 

In the remaining part of this section, our objective is to examine the variation of 

𝐷′(𝑛, 𝑅, SNR) with respect to the code rate 𝑅 = 𝐾/𝑁. So, we start by fixing the SNR 

to 0 dB and observing the number of different rows, 𝐷′(𝑛, 𝑅, 0) between the generator 

matrices of RM and polar codes designed for an AWGN channel with the SNR = 0 

dB, at different code rates. Again, while designing the two codes, we primarily change 

the order 𝑟 of the RM code and set (𝑁, 𝐾) parameters of the polar code accordingly. 

In Figure 4.12, we plot 𝐷′(𝑛, 𝑅, 0)  versus rate 𝑅, for 10 ≤ 𝑛 ≤ 15; where the vertical 

axis is scaled logarithmically. 𝐷′ versus 𝑅  curves of Figure 4.12 given for polar codes 

designed over an AWGN channel with SNR = 0 dB, look quite similar to 𝐷 versus 𝑅 

curves in Figure 4.6, computed for polar codes designed over a BEC(𝜖) with 𝜖 = 0.1. 
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Figure 4.12. Number of differing rows 𝐷′(𝑛, 𝑅, 0) between the generator matrices of the adaptive 

polar codes (designed for AWGN at 𝑆𝑁𝑅 = 0 dB) and RM codes, versus rate 𝑅. 

 

One observes some properties from Figure 4.12, very similar to those in Figure 4.6; 

i.e., 

i. For 𝑛1 < 𝑛2, 𝐷′(𝑛1, 𝑅, 0) < 𝐷′(𝑛2, 𝑅, 0). This is quite reasonable because the 

number of basis vectors 𝐾 = 2𝑛𝑅 also increases as 𝑛 increases, as discussed 

for the BEC case.  

ii. All curves are concave functions of the rate 𝑅. Denoting 𝑅0,𝑛 as the rate where 

𝐷′(𝑛, 𝑅, 0) is maximized for each 𝑛, we observe 𝑅0,𝑛 to be in the range (0.5, 

0.65). Each curve increases rapidly for 0 < 𝑅 < 0.2 and have a relatively 

slower decrease for larger values of 𝑅. One observes a rapid decrease for 𝑅 > 

0.96 and 𝑛 ≥ 12. This concavity can be reasoned similarly using (4.3) in 

Section 4.2.  

We then normalize 𝐷′(𝑛, 𝑅, 0) shown in Figure 4.12 by dividing with the respective 

number of information bits 𝐾. Normalized difference 𝐷′(𝑛, 𝑅, 0)/𝐾 is plotted in 

Figure 4.13, which is scaled linearly in the vertical axis. As in the BEC case plotted 
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for BEC(0.1), we observe a concave shape for the curves of 𝐷′(𝑛, 𝑅, 0)/𝐾, with 

𝑅0,𝑛 values at lower rates. 

Similarly to the BEC case, we finally compute the normalized numbers 

𝐷′(𝑛, 𝑅, SNR)/𝐾 versus 𝑅, considering different SNRs ranging from -5 to 7.5 dB with 

2.5 dB steps, and 10 ≤ 𝑛 ≤ 15. Results are plotted in Figure 4.14. The corresponding 

channel capacities are tabulated in Table 4.2. 

 

Table 4.2. Channel capacities with respect to given 𝑆𝑁𝑅 values for the AWGN channel 

SNR (dB) -5.0 -2.5 0.0 2.5 5.0 7.5 

Channel capacity 𝐶 = 0.5 log2(1 + SNR) 0.2 0.3 0.5 0.7 1.0 1.4 

 

 

Figure 4.13. Normalized number 𝐷′(𝑛, 𝑅, 0)/𝐾 of differing rows between the generator matrices of 

the adaptive polar codes designed for AWGN channel with 𝑆𝑁𝑅 = 0 dB and RM codes, versus the 

code rate 𝑅. 

 

One may notice from Figure 4.14 that, the normalized ratio of differing rows between 

the generator matrices of RM codes and polar codes designed for AWGN at any rate 
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remains less than 40%; i.e., 𝐷′(𝑛, 𝑅, SNR)/𝐾 ≤ 0.40 for 10 ≤ 𝑛 ≤ 15 and SNR ≥ -5 

dB; however, this ratio is more than the normalized difference ratio 𝐷(𝑛, 𝑅, 𝜖)/𝐾 ≤ 

0.28 given in Figure 4.8 for 10 ≤ 𝑛 ≤ 15 and 𝜖 ≤ 0.5.  

Comparing the six design-SNR values of Figure 4.14, additional observations are: 

i. For 𝑛, 𝑅 fixed, and SNR1 < SNR2, [𝐷(𝑛, 𝑅, SNR1)/𝐾] > 𝐷(𝑛, 𝑅, SNR2)/𝐾]: 

This is again expected result [Mondelli, 2016, Proposition 6.1] as in BEC case 

since polar codes converge to RM codes as SNR increases. For all 𝑛 ≤15, the 

maximum of 𝐷′(𝑛, 𝑅, SNR)/𝐾 is found to be 37% at SNR = -5 dB, which 

decreases to 30% at SNR = -2.5 dB, 22% at SNR = 0 dB, 13% at SNR = 2.5 

dB, 5.5% at SNR = 5 dB, and 1.5% at SNR = 7.5 dB.  

ii. For small values of SNR, 𝐷′(𝑛, 𝑅, SNR)/𝐾 curves seem to be piecewise 

concave functions of the rate 𝑅, where there is a point �̅�SNR,𝑛 < 𝐶 for each 𝑛 

and SNR such that 𝐷′(𝑛, 𝑅, SNR)/𝐾 is maximized. For smaller values of SNR, 

such concave-like behavior is only observed at meaningful transmission rates 

less than capacity; and at higher rates, a second peak starts to develop, as 

becomes especially apparent at SNR = -5 dB. We still continue to denote 

�̅�SNR,𝑛 < 𝐶; i.e., the first peak, as the rate value for which 𝐷′(𝑛, 𝑅, SNR)/𝐾 is 

maximum for meaningful rates 𝑅 < 𝐶. 

iii. As the design SNR increases, we observe that �̅�SNR,𝑛 increases; i.e., the peaks 

of 𝐷′(𝑛, 𝑅, SNR)/𝐾 versus 𝑅 curves shift from left to right and start to occur 

at higher rates. Specifically, for SNR = -5, -2.5 and 0 dB, one can see that the 

maximum values of 𝐷′(𝑛, 𝑅, SNR)/𝐾 occur for code rates in the (0.1, 0.3) 

range; while for SNR = 2.5 dB, �̅�SNR,𝑛 is within the interval (0.3, 0.5); for 

SNR = 5 dB, it is in the range (0.5, 0.6) and finally �̅�𝜖,𝑛 becomes more than 

0.8 for SNR = 7.5 dB. 

In short, for SNR1 < SNR2, one concludes that �̅�SNR1,𝑛 < �̅�SNR2,𝑛, where 

�̅�SNR,𝑛 is the rate value at which 𝐷′(𝑛, 𝑅, SNR)/𝐾 is maximum. 
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Figure 4.14. Normalized number 𝐷′(𝑛, 𝑅, 𝑆𝑁𝑅)/𝐾 of differing rows between the generator matrices 

of the adaptive polar codes designed for AWGN channel and RM codes, versus the code rate 𝑅, at 

various 𝑆𝑁𝑅s. 
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4.4. Further Notes on the Convergence with respect to Channel Conditions 

In the last part of this chapter, we present our further observations on the variation of 

𝐷(𝑛, 0.5, 𝜖)/𝐾 and 𝐷′(𝑛, 𝑅, SNR)/𝐾 (i.e., the normalized number of different vectors 

between generator matrices of the RM and polar codes) with respect to channel 

conditions. 

Due to aforementioned observations and Proposition 6.1 [Mondelli et al, 2014]; one 

could expect that the opposite of the proposition is also valid. In other words, as the 

channel gets worse, one may presume that the number of different rows between the 

generator matrices of the two codes would continuously increase. However, this is not 

the case, since the number of different vectors are limited by the minimum of 𝐾 and 

𝑁 − 𝐾 as explained by (4.2). Additionally, the maximum-weight vectors of 𝐺 = 𝐹⨂𝑛 

are also the ones with the smallest Bhattacharyya parameters, which have to be 

included in both generator matrices. Starting from the best channel conditions, say 

𝜖 = 0 , where 𝐺𝑃 = 𝐺𝑅𝑀, the number of different vectors 𝐷(𝑛, 𝑅, 𝜖) starts to increase 

as 𝜖 increases up to a point, at which a high-weight basis vector previously discarded 

by the polar code rule may turn back into 𝐺𝑃, resulting in a decrease of 𝐷(𝑛, 𝑅, 𝜖). 

Numerical calculations also show that as 𝜖 increases, a decrease in 𝐷(𝑛, 0.5, 𝜖)/𝐾 

starts for 𝜖 > 0.5 as observed in Figure 4.15. This creates a piecewise concavity, but 

then turns into a surprisingly steep increase for higher values of 𝜖 and 𝑛 ≥ 9. 

Concavity is lost because of this increase.  

One also finds similar concavity with respect to the design SNR of the polar code. In 

Figure 4.16, we plot the normalized difference values 𝐷′(𝑛, 0.5, SNR)/𝐾 versus SNR 

and observe that although there is no significant change at smaller codelengths; for 

𝑛 ≥ 11, the difference between polar and RM generator matrices starts to decrease as 

the SNR decreases beyond -1.5 dB. In addition, one can notice the steep increase of 

Figure 4.15 slightly in Figure 4.16 for 𝑛 = 15. 
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Figure 4.15. Normalized number of different rows 𝐷(𝑛, 0.5, 𝜖)/𝐾, between the generator matrices of 

the (2𝑛 , 2𝑛−1) RM and adaptive polar codes designed for that 𝜖, versus the design 𝜖 

 

 

 

Figure 4.16. Normalized number of different rows 𝐷′(𝑛, 0.5, 𝑆𝑁𝑅)/𝐾, between the generator 

matrices of the (2𝑛, 2𝑛−1) RM and adaptive polar codes designed for that 𝑆𝑁𝑅, versus the design 

𝑆𝑁𝑅 of the adaptive polar code. 

 



 

 

 

84 

 

Lastly, in Figure 4.17, we compare 𝐷′(𝑛, 0.5, SNR)/𝐾 of Figure 4.16 with normalized 

difference curves at rates 0.3 and 0.7; and observe that similar concavity starts for SNR 

values less than -4.25 dB and 0.75 dB, respectively. Furthermore, one can notice the 

steep increase of Figure 4.15 in part (c) of Figure 4.17, for all values of the codelength; 

i.e., 𝑛 = 11, 13 and 15. 

 

 

Figure 4.17. Normalized number of different rows 𝐷(𝑛, 𝑅, 𝑆𝑁𝑅)/𝐾, between the generator matrices 

of the RM and adaptive polar codes designed for that 𝑆𝑁𝑅, versus the design 𝑆𝑁𝑅 of the adaptive 

polar code at rates 𝑅 = 0.3, 0.5 and 0.7 
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CHAPTER 5  

 

5. DISCUSSION AND CONCLUSION 

 

In this thesis, two independent concepts related to the polar codes are investigated. 

First is the application of polar codes in block fading channels. For this purpose, we 

use the hierarchical polar coding scheme proposed in 2014 by Si, Köylüoğlu and 

Vishwanath (which we denote as the “SKV-code”) that uses multiple polar coding 

phases [Si et al., 2014]. The proposed scheme utilizes a BEC model for the fading 

blocks, in addition to some BSCs; and it has hierarchical stages in both the encoder 

and decoder. It is stated [Si et al., 2014] that since this scheme models a fading AWGN 

channel with a BPSK modulation and CSI only at the decoder, the results are relevant 

to practical cases in wireless communication.  

Motivated by this asserted practicality, we compare the BER performance of the SKV-

code to that of Arıkan’s original polar coding scheme under a fading channel model. 

We use a fixed code length of 𝑁 = 256, number of blocks 𝐵 = 256 and only two 

fading states in our simulations. The two fading states yield a “good” channel with 

lower transition probability, and a “bad” channel with higher transition probability of 

the BSCs. We use different values for these probabilities, along with varying erasure 

probability of BEC that is used to model the block fading channels. We also use proper 

offsets to adjust the code rates such that 𝑅 = 𝛼𝐶, where 0 < 𝛼 < 1 for practical 

reasons. 

The SKV encoding and decoding algorithms are more complicated in the sense that 

they require more than one phase of encoding and decoding while Arıkan’s polar 

codes require only one phase; and the SKV decoder has the extra requirement of 

“knowing the channel states” at the decoder. Due to this tradeoff of increased 

complexity, we have expected to obtain a better BER performance when the proposed 
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scheme, specifically tailored for the fading channel, is used. In the light of the results 

given in Chapter 3; at small values of the probability of being in the degraded state, 

we observe that the performance curves of SKV-codes are always better than those of 

polar codes, which are constructed at the overall code rate of the two-state fading 

binary symmetric channels. However, as the probability of being in the degraded state, 

𝑞1, increases, Arıkan’s original polar coding scheme constructed with respect to either 

the bad or good channel’s crossover probability performs much better than the SKV-

code, Moreover, as 𝑞1 increases, we observe the SKV-codes are converging to the 

uncoded BER performance due to the errors made by the BEC decoder. 

We note that we have assumed only two fading states for simplicity and we have not 

been able to simulate the SKV-code for larger code lengths such as 2048 due to 

computational latency, which is a drawback of our MATLAB programs. On the other 

hand, the authors [Si et al., 2014] claim that their scheme works better than Arıkan’s 

polar code when the code length N and block number B are large, at rates very close 

to the channel capacity. Furthermore, the performance of SKV-code may be improved 

when different decoders other than SC such as BP, SCL or BPL are used. In fact, 

Arıkan’s polar code may also benefit from such decoders, especially the list decoders, 

in fading channels as Trifonov points out [Trifonov, 2015] stating that the decoding 

error probability relies strongly on the minimum distance of  the codes used and in 

order to obtain a good performance, sequential or list decoding should be used. 

However, since the complexity is relatively high for the SKV-code, we believe that 

using a more complex decoder to improve performance would not be appropriate due 

to practical reasons.   

The second topic we have discussed in this thesis is the convergence of polar codes to 

RM codes. Noting that the two codes are close relatives, we are interested in observing 

the convergence behavior in the light of the related proposition by Mondelli [Mondelli, 

2016] and finding the convergence points of the two codes with respect to the polar 

code design parameters of the related BEC and AWGN channels. For this purpose, we 

compare the rows of the generator matrix of the adaptive polar code designed for the 
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specific channel, with that of the RM code of same code length and rate. We firstly 

compute the erasure probabilities of BECs, and SNRs of AWGN channels, where the 

adaptive polar code becomes the same as the RM code. 

We add some behavioral observations relating to this convergence: For both of the 

channels, we may conjecture that as code length 𝑁 = 2𝑛 of rate-0.5 codes grows for 

a fixed value of the design erasure probability or SNR, the normalized number of 

different rows between two generator matrices also grows and approaches an 

asymptote. For code lengths smaller than 215, the normalized ratio of differing rows 

remains less than 22% and 20% for the BEC and AWGN channels, respectively.  

We express the difference 𝐷(𝑛, 𝑅, 𝜖) for BECs or 𝐷′(𝑛, 𝑅, SNR) for AWGN channels 

as a function of the code length, rate and design parameter, which can be either the 

erasure probability 𝜖 or the SNR, depending on the channel of interest. We also 

perform the comparison over the normalized number of different rows, normalized 

with respect to the total number of generator matrix rows, to observe the difference 

percentage. Using this notation, the previous paragraph summarizes the behaviors of 

𝐷(𝑛, 0.5, 𝜖)/𝐾 and 𝐷′(𝑛, 0.5, SNR)/𝐾 versus 𝑛.   

As for the behavior versus 𝑅, we observe that for the polar codes designed over BECs, 

difference percentages 𝐷(𝑛, 𝑅, 𝜖)/𝐾 are piecewise concave functions of the rate 𝑅, 

whose first maxima occur for rates less than the channel capacity. These normalized 

difference curves remain less than 28% when the erasure probability is smaller than 

0.5 and code lengths are between 210 and 215. Similar to the BEC case, one observes 

similar concave shapes in the normalized difference values for the polar codes 

designed over AWGNs. The normalized difference curves remain less than 40%, 

which is more than that of the BEC case. In both cases, 𝐷(𝑛, 𝑅,  𝜖) and 𝐷′(𝑛,  𝑅,  SNR) 

curves with respect to rate 𝑅 start and end at 0: Denoting 𝐹⨂𝑛 of (2.26) as the mother-

generator matrix 𝐺 whose rows are chosen according to the RM-rule for 𝐺𝑅𝑀 and the 

polar rule for 𝐺𝑃; at rate 1/𝑁, all-one vector of 𝐺 is the first basis vector of both codes, 

and is chosen as the first element of 𝐺𝑅𝑀 and 𝐺𝑃. This makes 𝐷(𝑛, 𝑅,  𝜖) 



 

 

 

88 

 

and 𝐷′(𝑛,  𝑅,  SNR) both equal to zero. At rate 𝑁/𝑁 = 1, the generator matrices of the 

two codes are equal to the mother generator matrix, i.e.; 𝐺 = 𝐺𝑅𝑀 = 𝐺𝑃, which again 

makes the number of different basis vectors between the two codes for both the BEC 

and AWGN channel equal to zero; i.e., 𝐷(𝑛, 𝑅,  𝜖)  = 𝐷′(𝑛,  𝑅,  SNR) = 0. 

While investigating the conditions under which polar codes approach RM codes with 

respect to the channel parameters, we have come across a behavior that needs to be 

clarified as the channel gets worse; i.e., as the design parameter 𝜖 becomes higher or 

the SNR gets smaller. Due to aforementioned observations and Proposition 6.1 

[Mondelli et al, 2014]; as the channel gets worse, one may expect that the number of 

different rows between the generator matrices of the two codes would continuously 

increase, assuming that the opposite of the proposition is also valid. However, as 

explained by (4.2), the number of different vectors are limited by the minimum of 𝐾 

and 𝑁 − 𝐾, which implies that a continuous increase is not possible. Additionally, the 

maximum-weight vectors of the mother-generator matrix 𝐺 = 𝐹⨂𝑛 are also the ones 

with the smallest Bhattacharyya parameters, which have to be included in both 

generator matrices. Starting from the best channel conditions where the generator 

matrix 𝐺𝑃 of the polar code is equal to 𝐺𝑅𝑀, the number of different vectors starts to 

increase as 𝜖 increases (or SNR decreases) up to a point, at which a high-weight basis 

vector previously discarded by the polar code rule may turn back into 𝐺𝑃, resulting in 

a decrease in the number of different rows. We give these results in more detail in Part 

4.4.  

Regarding the code lengths used in Chapter 4, we could not increase it further from 

215 due to the lack of computational memory. Nonetheless, we do not think that similar 

computation for higher code lengths would make a significant contribution to the 

present results of this study. 

Last but not least, as Mondelli states that this convergence can be generalized to any 

BMS channel, we have also computed the numerical data for BSCs at different 

transition probabilities and rates. However, we could not observe the convergence as 
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directly as we did for BEC and AWGN channels. We believe that a more 

comprehensive investigation is needed for convergence on the BSC and will be putting 

this issue under the scope of our future work. 
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APPENDICES 

A. Proofs of Some of the Equations Used 

A.1. Fading Binary Symmetric Channel Modeling 

A fading AWGN channel with BPSK modulation is assumed and its correspondence 

to a fading binary symmetric channel as given in Equation (3.2) is proved here. A 

fading AWGN channel can be written as  

𝑌 = ℎ𝑠𝑋 + 𝑍 

𝑋 = {
   𝐴, with probability 1/2
−𝐴, with probability 1/2

  

𝑍~𝒩(0, 𝜎): zero mean Gaussian noise is assumed. 

Since the probability distribution function (pdf) of the Gaussian random variable 𝑍 is 

𝑝𝑍(𝑧) =
1

2𝜋𝜎2
𝑒−𝑧

2/2𝜎2, then the received output 𝑌 given that 𝑋 is sent has a 

distribution 𝑝𝑌(𝑦|𝑥) =
1

2𝜋𝜎2
𝑒−(𝑦−𝜇𝑥) 

2/2𝜎2 where 𝜇𝑥 ∈ {ℎ𝑠𝐴,−ℎ𝑠𝐴} when 𝑥 ∈

{𝐴,−𝐴} are sent respectively. The corresponding pdfs are shown in Figure A.1. 

 

 

Figure A.1. Probability distribution function of  𝑝𝑌(𝑦|𝑥) 
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Error occurs when either {𝑦 < 0|𝑥 = 𝐴} or {𝑦 > 0|𝑥 = −𝐴} events occur. Since the 

areas under the probability distribution functions of these events (shaded with red and 

blue lines in Figure A.1, respectively) are the same, the probability of error in both 

cases are the same. As a result, assuming that these event occur equally likely, it is 

sufficient to show the error probability of just one of the events alone: 

 
𝑃𝑒 =

1

2
𝑃{𝑦 < 0|𝑥 = 𝐴} +

1

2
𝑃{𝑦 > 0|𝑥 = −𝐴} 

     =  𝑃{𝑦 < 0|𝑥 = 𝐴} 

 

(A.1) 

Thus, we will show the probability of error of the prior case. The channel gain of this 

channel can be denoted as ℎ𝑠 = ℎ for simplicity. 

For the event {𝑦 < 0|𝑥 = 𝐴}, the probability of error is simply the area as shown in 

red dashes:  

 

𝑃𝑒 = ∫
1

√2𝜋𝜎2

0

−∞

𝑒−(𝑥−ℎ𝐴)
2/2𝜎2𝑑𝑥 (A.2) 

   

With a change of variable 𝑢 =
𝑥−ℎ𝐴

𝜎
, we have 

 

𝑃𝑒 = ∫
1

√2𝜋

ℎ𝐴/𝜎

−∞

𝑒−𝑢
2/2𝑑𝑢 (A.3) 

   

Denoting the cumulative normal function of the Gaussian distribution as Φ(𝑥) 

 

Φ(𝑥) = 𝑃{𝒩(0,1) < 𝑥} =  ∫
1

√2𝜋

𝑥

−∞

𝑒−𝑡
2/2𝑑𝑡 (A.4) 

   

Then, comparing (A.3) and (A.4), we have 𝑃𝑒 = 1 −Φ(ℎ𝐴/𝜎). Since the signal-to-

noise ratio is  𝑆𝑁𝑅 =
𝑃𝑥

𝑃𝑧
=

𝐴2

𝜎2
, then the probability of error of this scheme is simply  

𝑃𝑒 = 1 − Φ(ℎ√𝑆𝑁𝑅).  
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In the modeled fading BSC, a two-state channel (with channel gains ℎ1 and ℎ2) is 

assumed, which happen with probabilities 𝑞1 and 𝑞2, and the noise at each state is 

distributed with Bern(𝑝1) and Bern(𝑝2) respectively. In other words, error occurs with 

probabilities 𝑝𝑠 where 𝑠 𝜖 {1,2}. As a result, we can model each fading channel as 

𝑊𝑠 ≜ 𝐵𝑆𝐶(𝑝𝑠) with probability 𝑞𝑠 where 

 𝑝𝑠 ≜ 𝑃𝑒 = 1 − Φ(ℎ𝑠√𝑆𝑁𝑅). (A.5) 

  ∎ 
We would like to add the following, without changing the result of the proof: Recall 

the Q-function 𝒬(𝑥) = 𝑃{𝒩(0,1) > 𝑥}, then 𝑃𝑒 can also be written as 𝒬(ℎ√𝑆𝑁𝑅) 

and thus 𝑝𝑠 = 𝒬(ℎ𝑠√𝑆𝑁𝑅). 

 

A.2. Minimum Degree of the Polynomial 𝒁𝒏
(𝒊)(𝒙)  

We prove by induction that 𝑍𝑛
(𝑖)(𝑥) is a polynomial with minimum degree equal to 

2𝑤𝐻(𝒃
(𝑖)) where 𝑤𝐻(∙) is the Hamming weight and 𝑏(𝑖) is the binary expansion of 𝑖 −

1 over 𝑛 = log2𝑁 bits, i.e., 𝒃(𝑖) = 𝑏1
(𝑖)
𝑏2
(𝑖)
…𝑏𝑛

(𝑖)
, 𝑏1

(𝑖)
 being the most significant bit 

and 𝑏𝑛
(𝑖)

 being the least significant bit. 

 

 Proof for 𝑛 = 1: 

For 𝑛 = 1, the binary expansion over 1 bit can be either 0 or 1 (We can represent only 

2 indices with 1 bit): 

 𝒃(𝑖) = 𝑏1
(𝑖) = {

0, 𝑖 = 1
1, 𝑖 = 2

 , (A.6) 

   

Then, the corresponding Bhattacharyya parameters are 

 
𝑍1
(𝑖)(𝑥) = 𝑓

𝑏1
(𝑖) = {

 𝑓0(𝑥) = 2𝑥 − 𝑥2, 𝑖 = 1

𝑓1(𝑥) = 𝑥2,          𝑖 = 2
 , (A.7) 
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As can be seen, when binary expansion of the indices over 1 bit is performed, the 

minimum degree of 𝑍1
(1)(𝑥) is equal to 2𝑤𝐻(𝑏1

(1)
) = 20 = 1 and that of 𝑍1

(2)(𝑥) is equal 

to 2𝑤𝐻(𝑏1
(2)
) = 21 = 2. 

 

 Assume that above claim holds for 𝑛 = 𝑘: 

For 𝑛 = 𝑘, the binary expansion of any index 𝑖 is  𝒃(𝑖) = 𝑏1
(𝑖)𝑏2

(𝑖)…  𝑏𝑘
(𝑖)

 and it is 

assumed that the polynomial 𝑍𝑘
(𝑖)(𝑥) = 𝑓

𝑏1
(𝑖) ∘ 𝑓

𝑏2
(𝑖) ∘ …𝑓

𝑏𝑘
(𝑖)(𝑥) having a minimum 

degree of 2𝑤𝐻(𝒃
(𝑖)) is true. Observe that the (maximum) degree of this polynomial is 

2𝑘 since both of 𝑓0(𝑥) and 𝑓1(𝑥) have degree of 2 and they are repeated by substitution 

𝑘 − times. 

 

 Show that above claim holds for 𝑛 = 𝑘 + 1: 

For 𝑛 = 𝑘 + 1, the binary expansion of any index 𝑖 is  𝒃′(𝑖) = 𝑏1
(𝑖)𝑏2

(𝑖)…  𝑏𝑘
(𝑖) 𝑏𝑘+1

(𝑖)
 and 

the Bhattacharyya parameter is 𝑍𝑘+1
(𝑖) (𝑥) = 𝑓

𝑏1
(𝑖) ∘ 𝑓

𝑏2
(𝑖) ∘ …𝑓

𝑏𝑘
(𝑖) ∘ 𝑓

𝑏𝑘+1
(𝑖) (𝑥). Recall 

that in the binary expansion of an integer over 𝑚 bits, 𝑏1
(𝑖)

 is the most significant bit 

and 𝑏𝑚
(𝑖)

 is the least significant bit; and if one more bit is used in the expansion (𝑚 ←

𝑚 + 1 bits) the newly added bit becomes the new most significant bit (i.e., it is inserted 

from the left of the previous 𝑚 – bit expansion. As a result, we already know that the 

right of 𝑓
𝑏1
(𝑖) is a polynomial with a minimum degree of 2𝑤𝐻(𝒃

(𝑖)) from the previous 

step of the proof and we can write it as 

 
𝑍𝑘
(𝑖)(𝑥) = 𝑎𝑥2

𝑘
+ 𝑏𝑥2

𝑘−1
+⋯+ 𝑐𝑥2

𝑤𝐻(𝒃
(𝑖))

  (A.8) 

   

The new most significant bit 𝑏1
(𝑖) can either be 0 or 1, and depending on its value, 

𝑍𝑘+1
(𝑖) (𝑥) can be calculated by substituting 𝑍𝑘

(𝑖)(𝑥) in 𝑓0(𝑥) and 𝑓1(𝑥), respectively: 
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𝑍𝑘+1
(𝑖) (𝑥) = {

 𝑓0 (𝑍𝑘
(𝑖)(𝑥)) , 𝑏1

(𝑖) = 0

 𝑓1 (𝑍𝑘
(𝑖)(𝑥)) , 𝑏1

(𝑖) = 1
  (A.9) 

   

For the first case, we need to show that the minimum degree is still 2𝑤𝐻(𝒃
(𝑖)) since 

𝑏1
(𝑖) = 0 implies 𝑤𝐻(𝒃

′(𝑖)) = 𝑤𝐻(𝒃
(𝑖)). It is easy to see that due to the first term of 

𝑓0(𝑥), which is 2𝑥, this is in fact true. For the second case, we need to show that the 

minimum degree has increased by 1 since 𝑏1
(𝑖) = 1 implies 𝑤𝐻(𝒃

′(𝑖)) = 𝑤𝐻(𝒃
(𝑖)) +

1. As 𝑓1(𝑥) = 𝑥
2, the last term of (𝑍𝑘

(𝑖)(𝑥))
2

 becomes 𝑐2𝑥2∗2
𝑤𝐻(𝒃

(𝑖))

 which results in 

minimum degree of 𝑍𝑘+1
(𝑖) (𝑥) being 2𝑤𝐻(𝒃

(𝑖))+1 = 2𝑤𝐻(𝒃
′(𝑖)).  

∎ 

 


