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ABSTRACT

MODELING OF TH E NONLINEAR BEHAVIOR OF SEMI -RIGID
CONNECTIONS IN STEEL FRAMED STRUCTURES AND ITS
INFLUENCE ON THREE DIMENSIONAL ANALYSIS OF STRUCTURAL

SYSTEMS

¥zeHal il Ferat
Doctor of PhilosophyCivil Engineering
SupervisorProf. DrAf ki n Sar ét ack

May 2019 102pages

In steel frame structures, introducing the nonlinear faefermation behavior of
frame members with flexible joints will show closer results to the actual behavior. In
this thesis, a mixed formulation frame fmielement is deveped from a nonlinear
force-based method that can include localized segnl connection response. The
formulation of the element uses the thfisdds HuWashizuBarr principle, where
displacement shape function approximation is omittétl the use of dorce-based
approach. The proposed element formulation can accurately capture the spread of
plasticity along element length and section depth with a single element for each beam
and column member. Introducing flexible connections to éranembers does not
necessitate additional nodes where the degrees of freedom do not increase. Also,
nonlinear geometric effects and a correct shear area defimiteapplied to the
elements with the use of the proposed element. Accuracy and robustriibes of
proposed elene are presented at both member level and structural level for both the
two-dimensional and thredimensional rigid and senrnigid steel frame structures.
Verifications are conducted by considering studies presented in the literatwed] as

as the resudtobtained using advanced nonlinear finite element programs.



Keywords:Steel structures, finite element modeling, seigid connections, vibration

characteristics, nonlinear analysis
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CELKKAPI LARDA YARI RKJKT BAJLANTI LARI N
OLMAYAN DAVRANI kI NI'N MODELLENMESK VE |
YAPI SAL ¢¥Z MLEMELERE OLAN ETKKSKNKN AR

¥zeHal il Ferat
DoktoraKnkaat M¢hendi sl i

[
Tez DanFBofBraAnfé&:i n Sar ét ak

Ma y 2389 102 sayfa

¢teli k -er-eve yapélaréenda, -er-eve bajlar
ol mayan kuvvet def ormasyon davranékéneén
daha yakeéen sonu-1|ar -gjitlsdjelrencte&krsé meng Buet e
dojrusal ol mayan Kkuvvet bazl e y°ntemden
sonlu el emané geliktirilmikbiaezl éEyamnanep
kull anél maseyl a depl asman wdakl idiojutunl s i yo
Hu-Washzu-B a r r prensi bini kull anél mékteéer. ¥ne
kirik ve kolon elemaneé i-in tek bir el em:
kesit derinlifJi boyunca yayét endise. hassas

el emanl aréna esnek bajlantélarén taneétel:

gerek duyul mayarak el emanén serbestl ik de
dojrusal ol mayan geometri k et kielereana n i vV e
uygulana k't ad ér . ¥nerilen elemanén dojrul uju

boyutlu hem de ¢ -ridayut-leul irki j-ietr -wesr ey ayrad
seviyesinde hem de yapésal d¢zeyde sunul
yaneg sdredbjdygzgal ol mayan sonl u el emanl ar

edilen sonu-Ilar da di kkate al énarak doj r
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CHAPTER 1

INTRODUCTION

1.1.General

Steel framed struates are constructed on site from prefabricated members. Steel
members are connected to each other either through welding or by the use of bolts.
For the purposes of structural analysis, behavior of the connection regions in steel
framedstructures is mobt idealized as either shear type (pinned) or moment type
(rigid) in practice. While this provides a simple analysis approach, assessment of the
real response of structures both in practice and research necessitates consideration of
theforce-deformation baracteristics of all parts. In realitpoment connections have
some flexibility and shear connections have some rigidity combined in their real
behavior with nonlinearity included. Therefore, this behavior exposes another
category forconnections as paally restrained or also called as senigid for the
purpose of design and as well as modeling and anallses issue to incorporate
especiallythe nonlinear behavior of semgid connectionpromptsthe need for an
accurate modelingof both the monotan and the hysteretic behavior of the
connections and accurate representation of spread of inelasticity edohgirame
element length. Although significant amount of experiments and analytical modeling
of connections have been perfoaniey researchersmiplementatiorand useof an
accurateand robust modeling of steel framed structures saimirigid connections

into structural analys is still an ongoing research issue.

Researchers have studidn effects of dynamic behavior stiel structures in tapast
andmany decided to take the effectftexible connectiorregionson describingthe

behavior of structures.aboratory tests demonstrate that the experimental results and



numerical simulations better match each other when tlearliflexible behawar of
connections are introduced in the mathematical modeisther issue according to

the researchers is the need for accuaaterobustnodelingof the nonlinear behavior;
thus,inelastic material behavior with nonlinear geomédnytroduced to thelement
formulations. For this purpose, researclsgmgply addedsprings and dashpot systems

at the ends of the frame membtrat are modeled as linear elastic memioeder

to obtain the energy dissipati@mnising due to connectiorebavior besides eteent

end plastificatiorduringseismic excitationsn steelstructuresBesides the flexibility

at connection regions, it is also realized that including a reatisgéar deformation
behaviorof steel members will allow the capture eoiftdestimations obuildings more
accurately. Thus, for an accurate modeling of steel frame members, the use of
Timoshenko beam theory is followed, where there is also a need for the use of a

realistic shear correction coefficient for the widely used s&sions in praate.

According to thditerature introducing flexibility tothe joints will affect the design

of steelframes whereconservative solutions and less reliable desagnbe converted

to economic and safer results by introducing sagid joint behavioron the structue.

The use of hybrid systems that contain both segid and fully rigid connections in

an optimized way can provide a better performing structural system during eagthquak
excitations. There are studies that focus on the development ateaple energy
dissipating beargcolumn connections in steel structures, as well. Despite these efforts,
the main design philosophy in practice is still mostly to protect the conneegamnr

from yielding in moment resistingames andkeep the plastifidson to the beams for

the purpose of performantased design. However, the connection regions of
structures built in the past do not atbnform tothe guidelines that have evolved
espeially after Northridge Earthquake in 1994. Thus, for the purposérudtsral
assessment in practice and research, it is crucial to capture all the nonlinear actions

that can take place in a steel framed structure under extreme events.



The amount of sidies on the emphasisof introducing connection behavioon
structuralanalyss of steel framestructuresreveal the importance of the issUde

pursuit for accurate and robust analysis of steel framed structures first of all starts with
an accurate framelement formulation that can capture deformation characteristics,
spread of inelasticity and implement localized connection response in an accurate and
robust manner. These motivation points led to the research study undertaken in this

thesis.

1.2. Objective and Scope

Modeling of the nonlinear foredeformation behavior oframe members with
connection regions in steel frame structures will present closer results to the actual
behavior. For this purpose, mixed formulationframe finite elementhat can
incorporate localized semigid connection responsis developed frormonlinear

force/flexibility methodin thisthesis

Theformulation of the element starts witfvariational formthatbases on the use of
threefields HuWashizuBarr principle by [1] and [2]. The proposedelement
incorporates Timognko beam theory assumptions with an accurate representation of
shear area for widely used stesections. The element can also model the linear or
nonlinear behavior of connection regions through a localized inclusion of the
connection region at any poiatong its length without further specification of nodes
and degrees of freedom at elemenswuctural level. Consideration of connection
regionsis merely additional monitoring points that are just as the same as the

monitoring sections that track theread of inelasticity along element length.

The formulation of the element uses force iptéation functions and does not need

the description of displacement field along its length and localized connection regions.



In a displacemenrbased finite elem# approach, the presence of localized
connections would introduce discontinuous deformatetna connection region on
member length and thus this necessitates the introduction of nodes and degrees of
freedom to the structural model at an expense in rmggdahd implementation effort.
Furthermore, the displacemdmsed elements would also requaditional effort in
correct description of shape functions for varying geometry, stiffness and mass
distributions even for the linear elastic case. On the oied, the proposed element

in this thesis can calculate the stiffness and mass distribuv@nshe whole element

and connection regions through the use of fdyaged interpolation functions that are
always continuous along a member even when localipeshections are present.
Furthermore, the element formulation circumvents the need for fuptheement of

nodes and degrees of freedom at both member and structural level.

The accuracy of the element is verified under static and dynamic casesecogsi
linear and nonlinear responses. First, the dynamic characteristmembers with
varying geometry and material distributismassessedith the presence afemirigid
connectionsVibration frequencies and mode shapes for both the rigid aneriggdni
connection cases astudied at member level and structural system fevelalidation

of the proposed formulation with results available in the literature as well as

simulations undertaken in available simple and advanced finite el@nogmans.

The proposed element formulation can also accurately capture spread of plasticity
along elerent length and section depth through the use of single element use per span
for each beam and column member even in the presence of nonlinear connection
regions.Accuracy and robustness of the proposed eleraempresented at both
member level and struatal level for both the planar and thrdenensional rigid and
semirigid steel frame structures. Verifications are undertaken by considering
available studies psented in the literature, as well as the results obtained through the

use of advanced nonlinefnite element programs.



In this thesis, there are five chapters. Besides the introduction chapter that is presented
up to now, the second chapter covers itegdture survey including the frame finite
element models with displacement based and foased approaches, nonlinear
analysis of frame elements with sengid connections and vibration characteristics

of frame elements again with the semgid connetions. In the third chapter, the
derivation of twe and threedimensional forced based framleraent with the semi

rigid connection is presented. After this derivation, the validation is conducted through
two- and threedimensional benchmark and generatedamples for vibration
characteristics and nonlinear analysis of the systems in the fougtkechiinally,
conclusions are made in the fifth chapter which is the last chapter.






CHAPTER 2

LITERATURE REVIEW

2.1.Finite Element Method

The term finite elementas firstused by Clougk]. In different fields of engineering,
finite element metho(FEM) became the most effective analysis method to be used
both in research and practidéEM has based on approximatewmnsthrough the

use of discrete number ofdependent elemenégygregated anchappedo represent

the wholecontinuousstructure. Theassemblage of these discrete members presents
the structure with idealized elements. Researchers give popularitg toahivith its

increasing developments.

The physical problems are induced to mathematical problems in engineering analysis
and structral design. The physical problem contains a structural system with applied
loads. The alteration of the physical problés achieved with possible assumptions
that are directing to differential equations representing the mathematical model. After
a physicaproblem is converted to a mathematical model, the finite element analysis
is used to solve the problem. The solutteshnique of finite element model is a
numerical procedure; therefore, the drawbacks of a numerical proeedumnderently
presentn FEM, as well The accuracy of the solution should be satisfied otherwise
solution has to be refined with different paeters, such assing more elements to
represent the continuum (called as mesh refinement in BEM)enough accuracy is
obtained. Theifite element solution is unique to its problem and all the assumptions
should be formed to the foreseen responsesoirtbdel. Thais why themathematical
model should correctly idealize thpropertiesand behavioof the actual physical

problemthat will be obtained by numericahalysis.



The finite element method issmerical method that &s accurate as the accuracy of
the representatiorof the utilized mathematical model, whiégd derived from a
physical situation. However, the exact match betweathematical and physical
models is impossible, tha why the possible close solution tcetheal situation is
enough to obtain sensible results. In finite element analysis, different types of
procedures exist to deal with the physical model for morerate results. There are
two methods that can be utilized. These are Displacement Based Elaihent
MethodandForce Based Finite Element Methddhese methods will be discussed in

the following sections of this chapter.

Force method and displacemergthndareused in structural analyses. Both methods

are widely used and have different outesnon the solution. Force method is used to
determine the element forces through satisfying joimiodecompatibilities. On the

other hand, the displacement nwthcalculags joint displacements to satisfy the
equilibrium equations. Both formulation metls are used in structural analysis, yet,
displacement method gained popularity in the last century due to its ease with regards
to its implementation for structalrmodel development and analysis, especially with
two-dimensionalplane stress elements, ¢brdimensional solid elements, and plate
and shell finite elementsThis led to the dominance of displacement based finite
element methods throughout all finiteeelent formulations, from static to dynamic,

as well as linear to nonlinear analysis.

Despie the popularity ofdisplacemenbasedelements, the use of fortased
formulation remained in use at least for linear elastic case for frame finite elements,
I.e. the flexibility matrix of the element is obtained and then inverted to get the linear
elastc element stiffness matrix. Extension of this approach to the nonlinear case was
thought to be the difficulty in the adaptation of this approach within a disptde
based finite element solution platform that tries to find the solution of appliedttbads

the resistance of the structure.



The breakthrough development happened in late 1990s after the formulation of
nonlinear forcebased frame finite element modbsl researchers at UC Berkeley and
University of Rome La Sapien{4] Theresearch studies in thest 2 decades further
demonstrated the extreme supaty of the forcebased approach in frame finite
element model developmergnd the current thesis provides further contribution to

this development

The finite element model is based on the assumptions on the geometry of the system,
material properties, boundary conditions, loadikgyematicsof the body. The
problem is discretized to small elements that are dividing the model into discrete finite
elements. Hence, element response is determined by the final state of the variables.
The methodn essence ia trial procedure of changing the sizes of the elements with
possible minimum calculation timahich could be called as robustness of solution,

i.e. speed wh high accuracy

In the following sectionsdifferent applicationapproachesf finite elementmethods
thatareA Di s p | aBasedfmitetElementMe t h andl ® F o BasedFinite

ElementM e t h wild be discussedAfter the explanatiorof finite elememn methods,
the flexible connection,in other words semirigid connections,in the structural
memberswill be presentedSemirigid connectiorwill bediscussedn detail sinceit

Is the main scopeissueof this thesis.Also, geometriccorrectionssuch assheararea
correctionof steelstructuralmembersandsecondaryeffectsof the memberswill be

discussedhn the proceedingsections.



2.1.1.Displacement Based Finite Element Method

Displacement based finite element analysis is a methgttwaftural analyis where

joint displacemerntare state variables determined by boundary conditions, geometry
of the structure, material model and loading. Then, joint displacements are used to
calculate internal forces and stresses. Algorithm is straigtdid and easytapply,
displacement based finite element analysis are chosen for the analysis of the structures.
The principal of virtual work is conducted through the presentation of the
displacement based finite element analysis. Virtual work priaalenotes thate

total internalvirtual work doneis equatedo the total externalvirtual work doneby
applyinga virtual small displacement to the system.

£t doo ¢ oo ¢© Qo o 3 2.)

il

where"Q denotes body force¥Qis traction forces,Ois concentrated loads, is the
virtual strains,6 are the virtual displacements apdare the stresses which are in

equilibrium with the external loads.

The nodes and element equilibrium are egdan the displacemeiased finite
element analysis whether the analysis type is linear or nonlinear, buth@o
differential equilibrium. The stresstrain relationship, straidisplacement, and
displacement limitation are fully mg]. Displacemenbased finite elemersatisfies
equilibrium of displacement conditions. However, fully satisfying the boundary
conditions is not possible and internal stresses can be far from correct. Although
granting the ontinuity of the derivatives in differentials, increasing the element mesh
or changing the shape functions may lead to better results. Yet, this leads to more

calculation time.
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2.1.2.Force Based Finite Element Method

Force based finite element method is basadderiving unknown displacements
strains and stresses in the variational fofrtotal potential energy. Force based finite
element formulation is also called as mixed formulation finite element because
formulation is presented with independent displazets and the element forces or

stresses.

In the more generalized fornhdvariationalfunctionof the solutiorhasthreefields,
namely thedisplacemerg stress and strasn and is also called adu-Washizu

functional[2]. The functional is written as follows:

hw Im Ym® fada vo Qo
(2.2)

This functionalformulationis the weakform of the compatibility andequilibrium of
the system.The force-basedapproachdependson exactequilibrium solutionwithin
the basicsystem.Equilibrium is exactin betweerelementsaandsection.Forcebased
finite elemens can be implementedto work in displacemenbasedfinite element

solutionsthroughstaticconcensatiorof elementstresseandstrains.

Forcebased finite element model is noticeable where structural problems with the
locking effect of the shear on the membdrse displacemertiased model presents
smaller displacements under the locking effect #his tends to wrong behavior under

both linear andhonlinear analysis. Tha why in this study force based finite element

11



is adapted for nonlinear structural arsdyofframed structures that also incluskmt

rigid connections.

2.2.SemiRigid Connections

In practice, beam to column connections is either as shear type (pinned) or moment
type (rigid) in the implementation of finite element analysis of steel structures.
However, the actual behavior can be summarized as moment connastioeeme
flexibility or shear connectionwith some rigidity, together with nonlinearitfhe
American Institute of Steel Construction (AISC) classifies two types of buildings as
fully restrained (FR) and partially restrained (PR) in the Load and Resistance Factored
Desgn Sgecification. In addition, type PR includes two cases which are depending on
whether the connection is restrained or not. The case without restraint is called a
simple connection. If the connection is restraint, strength, stiffness, and ductility are
included in the design of the connection. The European standard Eurocode 3 describes
three types of framing as simple, continuous and ®emtinuous. These definitions
decide that there are three types of connections and the and that the degree of semi

rigid adion is largely dependent on the type of structure.

The behavior of the semi rigid connection can be defined by moment rotatiaf) (M
curves.The rotation in these curves represents the rotation of the section among the
neutral axisThe typical momentotation curves for the beaoolumn can be obtained

from several databases: Lui and CF&n Kishi and Chelfi7], etc. Also, connections

can be modelled by various methods. These are direct implementation through

laboratory tests, component models and detailed finite element analysis models.

12
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Figure2.1. Semirigid Connection Behavior Repregation[7]

Initial stiffnessratio, Rki and secantstiffnessratio, Rks are stiffnessparanetersfor
semtrigid connectionsn Figure2.1 Theseratiosaredefinedin differentapproaches
andoneshouldchooseproperly.Sincethe nonlinearbehaviorof the connectioncan
occuratlow-stresdevels,theinitial stiffnessvalueof theconnections notenoughto
definethe responsef the connectionFor this case the secantstiffnessratio canbe

used.Therotationalstiffnessratio is definedwith theformula;

1%)

5 (2.3)
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Figure2.2. Moment Rotation Behavior of Se#rigid Connectior{7]

Rotationalstiffnessratio in aboveequationis determinedwith the lengthandinertia
of the member elasticitymodulusandcoefficienta- Therotationalstiffnessof semt

rigid connectionss definedto rangebetweenvaluesof a2 and20. Whena-is equal
andlessthan2, the connections consideed asa simpleconnectionsheartype) and
whena-is equalandmorethan20, the connections consideredsarigid connection
(momenttype),wherethevaluesareprovidedby AISC Specification8]. In between,
the connections consideredssemtrigid. In the Figure2.2, momentrotationcurves
of severalconnectiontypesare plotted wherethey canbe consideredas semtrigid

sincetheir behavioris in betweenthe rigid and pinnedconnectionbehaviors Other
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specificationson level of semirigidity is presentedy, Eurocode [9], Bjorhovdeet
al. [10], Nethercotetal. [11] andGotoandMiyashita[12].

There are different types of connection formulation the literature. The one
presented in Equatio(®.3) is a representation of the linear model. However, the
characteristics of the semiigid connections are nonlinear as membeé&hstis why,
researchers developed several formulations for the-sgiahiconnections. In this
study, the Power Model and Exponential Model are used. Yet besides these
formulations, tlere are Polynomial Model, Bading Line Model, Richard\bbot

Model and Hardening Models. The power model and exponential model will be
discussed in the following paragraphs.

There are several power models thatre developed for the different types of
connection. There ar®vo or thee parameters in their functions. A tparameter
model[13], [14] has the form of;

— @ (2.4)

where a and b are curfiiting parameter®btained fom experimentsColson and

Louveau[15] presented a thrggarameter power model as:

DS P
— 2.5
Y p DJO s 9

where R is the initial stiffness, Mis the ultimate moment capacity of the connection,
and n is the shape parameter. Kishi and Jhéhproposed also a thrgmramete
power model which i®btained byremoving the straimarcening stiffness of the
RichardAbott model[17]:
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(2.6)

where Ri, My, and n are the same as abd<ishi and Chen model is derived from
Richard and Abott mod@l7] with removing the strain hardening stiffne3fie shape
parameter n can be developed with the method of least squares for the variances
between the fiiecast moments and the experimental test [d&fa [19]. This power

model can implement the seceadler ronlinear structural analysis more accurately
[20].

Lui and Cherj6] utilized an exponential function in order to cuifitehe experimental
data This model is good at presenting the monotonic nonlinear joint behavior. The

exponential model is denoted by a function as in the following form;

0 0 6 p Qun Y ss (2.7)

As discussed previouslyn addition to the two ideal cases considered in practice
(simple/shear/pinnedonnection case and rigidomentconnection case), the third
cases the semtigid caseThejointsassumedsrigid or pinnedin theanalysisshould

be implementedto meet rigid joint and nominally pinned joint classifications
accordingto the designcodes respectively.The semirigid frame model shouldbe
dealt caretlly. Thus, connectionscan be implementedas springswith moment
rotationalrelationshipghat canvary from linear elasticto nontlinear type, allowing

the degreeof ductility of the connectionsThe design of a lineaslastic model of
structural analysirequires lineaelastic modeling of connection&n elasticperfectly
plasticbehavior,a bilinear joint modelis necessaryor analysis.Hence,complexity

of the modelis determinedby the connectionbehavior.Different analysisresults
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cannotbe covera in wherenonlinearjoint modelingexists.The analysisof member
and connectionforces,displacementsand frame stability are determinedwith semi
rigid connectionswhen the valid connectionresponseis included. Detailing the
problemdepend®ntheprodemitself. It isimportantto usesophisticateépproaches
where necessaryFurtherdetailing may lead to loss of time. That is why separate
analysesare madefor the designof semirigid framesfor their serviceabilitydesign

andultimatelimit designs.

Linear springs with initial stiffness are enough at a service load level for the analysis
under serviceability when the joint is far below that of the strength. However, under
factored loads for design e&gsthe response of the connection is importard, the
analysis should be consisted to ensure the characteristics of the real behavior. Since
the response would be nonlinear when the forces reach to the strength of the
connections. Therefore, material agdometry nonlinearities as well as stability

chedks should be taken into account.

2.2.1.Nonlinear Analysis with Semirigid Connections

In order to denote the actual behavior of steel structures many researchers tend to take
the effect of the semrigid conrections on the behaviors of the structufgd] and

[22] conductedaboratory studies on ¢hsemirigidly jointed steel frames convoyed

with numerical analyses. Studies showed a perfect match with the laboratory test
results and the numerical studies when introducing the-sgitijjoints. Connections

in steel structuresire described in two cagories to specify design and analysis
phases. The behavior of steel connections is deliberated as simple (shear) or moment
type (fixed). Meanwhile the expected behavior of a connection should show a relative
rotation together wittmoment transfer. This isalled semrigid connection, that is

the actual response of the connection.
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The framing of a structural system is the geometric arrangement of the beams,
columns, braces and shear walls. The joints of these members are refexseithe
connections ofthe elements. However, it is crucial to make enough strength of
members and the necessary connections for the demand. This framing system is set to
carry design loads as well as the serviceability states of the structure. Desigof

the structure aregyravitational and lateral loads. Hence, a structure could be a
combination of braced members and unbraced membarsh are determined and
designed with sophisticated approaches. At this point, a designer should decide

whether tle framing is rigid or flgible using the connections of the members.

The lateral stiffness of a rigid frame is mainly due to the rigid joints connected to the
bending of the frame elements connections. The joints should have estoargith
stiffness ad small deformation. Defmations should be small to not affect the
distribution of internal forces and moments on frames. A rigid frame may withstand
additional loads without bracing if there is additional support for stability. The frame
has to resiste design forces on itswm, including gravity and lateral forces. Hence,

it has sufficient lateral stability againsteral vibrationwhen exposed to horizontal
wind and earthquake loads. Rigid frame systems perform better in the case of cyclic

loads orearthquakes, even if riiconnections result in a less economical structure.

A simple frame attributed to a structural system where the beams and columns are
flexibly connected, and the system cannot withstsigdificant lateral load. The
stability issatisfied by attaching ¢hsimple frame to bracing systems. Brace systems
support lateral loads, and both frame and brace systems support gravity loads. The
lateral load response is small in many cases of braced systems so that thes#ond
effects ofthe frame design can beglected. Figure 2.2 shows the representative
sketches of simple and rigid connection frames.
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Figure2.3. Representation of Simple (Left) and Rigid (Right) ConnectjdB$

Pinned connectionframes are manufacturedand assembledeasierand for steel
structuresit is betterto join the memberswvithout connectinghe flanges.The bolted
jointsarenormallypreferrednsteadof weldedjointswhichrequirecarefulapplication
ard more qualified workers.If the systemis preparedwith simple connectionsthe
sizing of beamsandcolumnsis a simple processReducingthe horizontaldrift with

simple connectionsand brace systemsis more convenientthan using rigid frame

systemswith rigid connections.

2.2.2.Frame Elements of Semrigid Connections

Assessment of the seismic loads represented on structures is affected by their vibration
characteristics. Aerefore,implementing accuratéinite element models become
importantfor vibration study and dynamic analysis of steel framed structdtetis

point, the presence of connectioimssteel structures further increases the importance

of the employed nusrical models.In order to simplify the analysis, shear
deformations can be neglected in slender members, for example, beams and columns
that are the framing elements in steel structures; nevertheless, the accumulation of

error due to this simplificatiomia 10 story gel building with 6 m bays and a 40 story

19



steel building with 3 m bays yields to 10% and 30% underestimation of roof drifts,
respectively[24]. Therefae, neglecting shear deformations and rotary inertia effects

in the mass matrix may further create errors due to the usage of lumped mass matrix
and single element discretization along the member. It is also vital to deliberate the
actual béavior of the onnections that connect the structural members.

Researchers have broadly studikd influences of dynamic behavior of steel framed
structures in the last two decades. Many researchers suggested considering the effect
of the semirigid comections in thenalysis and design stad@$], [26]. According

to the studie$27], introducing semrigidity to pinned joints will affect the design,

hence pinned connection design tends to conservative solutions and less consistent
design. Razavi ath Abolmaali[28] revealed that senmigid frames showed better
results than fully rigid ones under the study of flexiyibf the conmctions in high

rise steebuildings.

Tests on flexible connections in steel framed structures are conducted by Chui and
Chan[21] and Nader and AanehAsl [22] which is conducted with numerical
analyses angdhowed the reputation of considering seigid connection in structural
models.Hence, consideratioof semirigidity at connection region is important, it is
also vital to consider possible inelastic behavior and nonlinear geometric effects on
frame members in conducting dynamic analyi@8]i[31]. The studies present
significantamount of research on the study on the dynamic behavior of steel framed
structureswhich is carried with senmigid connectios through the use of finite
element metho@B1]i [37]. Present design codes also attempt to deliver the effect of
semtrigid connection response for steel framed structures under dynamic lodds, an
studies try to assess the code suggestiSophianapoulo$38] related Eurocode
approach with closed form solutions in one of similar studies, where the outcomes
from both methods presented that responses show goot misth each other in the
fundamental modesf vibration; but, in the higher modes, the difference of the-semi

rigid connections became distinct and results varied from each other. Studies on the
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stability of structures whichreproposed by Shakourzadethag [39] and Minghini et

al. [40] presented sugbantial change on critical loading on memshestability and
strength responses because of the presence ofrig@nconnection. Both studies
taken the displacemebtsed finite element formulations. The comparisons were done
for small structures with satl amount of connections in these studidambers of
degrees of freedom were limited. However, increasing number of members and
connections in large structures would need to increase matrix sizes and solution times
with displacemenbased element analysein many cases of practice. Hence
increasiy element number in order to catch nonlinear material response would present
accuracy problems. However, forbased elements have been confirmed to perform
vigorously[41]i [43].

Galvo et al[34], da Silva et al[33], Al-Aasam and ManddB7] have established

FEM formulations to inspect the dynamic behavior of steel frames with-ragichi
connections.These studes expose ltat proper modeling of theonnections have
important part on the dynamic behavior of steel framed structures. Therefore, it is
necessary to mention that structural design codes propose the effect of structures under
dynamic responsePresent design codgsovide the influence of sictures under

dynamic response.

Finite element models should distinguish the modeling of the mass and stiffness
matrices for both beam and column members in order to get transverse shear
deformations and rotary inertia alongn@ mb er 6 s | e nThe partiahfxityur at el
is presented by the existence of connections. Partial fixity at connection areas of steel
structures significantly affects the vibration characteristics of steel framed structures.

Also, it is also importanto consider possible inelis behavior and nonlinear
geometric effects on frame membg8]i [31] in carrying outthe dynamic analysis

with using of semrigidity at the connection region. The studies cover a noteworthy
number of researches on the examination of the dynamic behavior of steel framed

structures with semiigid connections wit the use of the finite al@ent method31]i

21



[37]. Present design codes also try to deliver the effect ofsgithiresponse for steel
structures under dynamic actions. Research studies also attempt to assess the code

proposals.

Studiesof [43] showed the effects of semgid connections under cycling loading.
These studiexonductedwith experimental results for twdimensional steel semi

rigid framed structures. The dynamic behavior of steel structures depends on the
description of semiigid joints on the structure. The study [@#4] presented the
requirement of defining semnigid joints for exact modeltig of vibration
characteriscs on structures. Again in dynamic point of view for seigid
connections, thredimensional studies ¢B1] revealed the consegnce of flexible

joints on steel framed structures under cyclic loading.

The study by ¥zel  [45]Showedttleesneed of doreséndingb a hj i
connection in the structure for correct modeling of vilratcharacteristics. Base

plate connections also require similar tendency on connection behavior.
Abdollahzadeh and Ghobaf6], showed the assessment of column base or base

plate with experimental, analytical and FEM model under static loading that was
presented bj47]. The basic mathematical formulations for column kalaées were

conducted by Stamatapoulos and Ermopo{Ad@$ to exhibt the flexibility on joint

behavior of column bagelates under dynamic loading.

The strength along the members of structure controls the performance ofdiregbui

On the other handdeformationscontrol the serviceability of structuresdence,
deformaions in different directionshave consequence on each other due to the
continuum phenomenon of the bodies. Shear deformations tend to determine the
lateral flexibility of steel frames. The study by Charney et gl8] presents the
influences of the shear deformatsoon the members. The use of theateffects on

the members are presented with the definition of effective shearlargs thesis,
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the effective shear area model is adopted from the study of Charney{48]alThe
studies on the shear properties of the sections on lineaff#@ja&nd nonlinear basis

[50], [51] display the impdance of this study among the behavior of systems.

In order to achieve a precise dynamic analysis of steel framed structures, vibration
characteristics of steel beams, braces and columns witkriggentonnections should
be studied. For a better represgion of the serarigidity, the exact behavior of the

members should be conducted.

The brace frame members are another element of the steel framed structures. In order
to mention a complete system, it is importanfdous carefully on the behavior of

these members. The behavior of brace end connections for steel framed structures is
conducted if52], [53]. Most of the cases for the brace end connections are under the
axial load deformatiofb4]i [56] and only the flexibility of axial deformation should

be taken into account.

Nonlinear threedimensional frames with semigid connection studies are carried out
by researchers. Bstudy of Nguyen and Kirfb7] presents thredimensional semi
rigid steel frames accounting ftine seconérder effectswith the use of stability
functionswhich are generateflom the solution of beantolumns under axial force
and bending momen#d thesemirigid beamto-column connection igeneratedyy

a 3Dnonlineamulti-spring elementChiorean studied on large deflectiostdbuted
plasticity analysis of thredimensional semiigid frames [58]. In study [58],
Maxwell-Mohr rule and secondrder forcebased functions are used to generate
secondorder inelastic flexibilitypbased element and sengid connections are
introduced with zerdength elements. Another study is done by Thai and Jo@h.
ThaiandKim proposesidistributed plastity analysis of semiigid steel framesvith

geometric and material nonlineariti¢s9]. P-delta effects,residual stresses and
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inelasticbehaviorof materials areonsidereds s i ng a @ndtheesenmnigidl e |

connections abeamendsare generatedith a zeralength connection element.

Studies on semiigid steel framed structures for trying to reveal better predictions
shows the necessity faaurate modeling approaches. Therefameframe finite
element with seraiigid connections is generated in this study for static analysis and
vibration assessment of steel framed structures. The element formulation depends on
the threefield Hu-WashizuBarr principle with the implementation of fordesed
interpolation functions. The model lets precise determination of vibration frequencies
of members with serrigid connections by using single element without the need for
displacement field. Hence, thip@oachlimits the calculation time and error in the
analysis of steel framed structures. Also, an accurate shear correction factor for |
sections is considered to obtain closer match with exact solutions. Avdilstde
elementprograms(SAP2000, ANSYSard OpenSeesand benchmark examples are
utilized for theverificationof the proposed model.

As an important benchmarkhd proposed model with semgid connections is

compared withadvanced research oriented finite element prodf0} which also
incorporatesforce based elemenbut where seriigid connections can only be

included through the introduction of extra sy with new nodes, degrees of freedom

and constraint conditions to be specified. Thus, the approach in OpenSees requires an
increase in modeling effort and sizes of matrices to be stored and inverted in the

solution of nonlinear equationthe proposedmid and OpenSeesds model
are compared in the validation studidaother novelty in current model is the force

based mass matrix use@spod by[61], while OpenSees models use lumped mass

matrix approximation.
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CHAPTER 3

FRAME ELEMENT FORMUL ATION

3.1.Frame Element Formulation for 2D Case

In this section, the formulation of twdimensional frame ement is presented. The
cases of static and dynamic variational formulationsiadertaken through the use of
threefields variational formulation and fordeased approactspread of inelasticity

through the element is presedby fiber discretization othe section.

3.1.1.Basics of Element Formulation for 2D Case

A two-dimensional formulation is conducted through dementformulationfor a

cantilever beanwith three free degrees of freedom at its free end, which is then
transformed to the complete syst that has six degrees of freedorhekinematics

of deformation through theontinuumof beamis defined with Timoshenko beam

theory, whichallows sectionrotations to be independent from the derivative of the

beam deflectionAs a result, the differendmetween the section rotation and slope of
beamés axis allow for the inclusion of sh
which is by the way set taero inthe Euler Bernoulli beam theory. The section
displacements on a material point which deferin xyplane can be calculated by

deliberating Timoshenko beam theory as follows;

OO

@y
g (3.1)

00 U o
O
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whereux anduy are thex andy-direction displacements which are the displacement
functions in x and Jdirections atany point on the crosssection. u(x) is the
displacement of any point along thee a m6 s  &-axis. 8(X) is the teansverse
deflection along on any point at,() in y direction. Rotation of the beam around z

axis isq(x).

Deformed beam

Original beam  L-— 7"

Figure3.1. Deformed Beam Sketch

The straine contains the normal straiex along the member and shear stragyg,

where these parameters are computed as follows;

R 00 UO RO UUD (3.2a)
r @ OO (3.2b)
m®d -0 o e (3.2c)

o Qg WV 0 Wbo

AW Ag 3.2d
dg g 20 (3.2d)

whereg(x) is the section deformation vecter. @ is the axial strain in the normal

direction of the sectiori, w the shear deformatigsliding) of the seabn andll @
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the curvatureof the section aboutaxis $ ¢hi is the compatibility matrix of the

section and isalculated afollows;

Hang P 9T (3.3)
m 1T p
P2, UzT ‘ y Ps, LST
— (@ o —» > X
p1, th > s, W
Ps3, U3 Pes, Us

Figure3.2. Two-dimensional Complete System

Element formulation is conducted as a frame element with two end nodegplgrney
(Figure 3.2) Theelement incomplete systerhas 3 degrees of freedom per node and

6 degrees of freedom in total, whergstis transformed to a basic system by removing
the 3 rigid body modes of displacement through a transformation that gives the 3
deformation modes left for the basic systdimetransformecdelement is based on the
cantilever basic system that is shown igufe 33. The transformation matrixa
interacts the whole system nodal forgesnd nodal displacementsto the basic
equation elementg and element deformations along thelength L of the beam

through the following equation;

o =|= O (3.4a)

T Ha (3.4b)
p T T P TT

H = p U M p T (3.4¢)
m T p T TP
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Figure3.3. CantileverBasicSystemForces andeformations

Element section forcexx) are compo®d of axial forceN(x) along b@ m o ®xis x
shear force in perpendicular directig(x) along y directionand momeni¥(x) around
z-axis s(X) can also be defined withasic element forcesat free nodes by employing
the force interpolation matrik(x,L) andsy(X) which is the particar solution for

constantdistributed loads in the axial and transverse directions, namweiynd wy,

respectively.
vo Uwo 0 o oo (3.5a)
voo Haid a v o (3.5b)
3 p 1 T
a0 w0 @ p (3.5¢)
11 p T
0 T o
T w Tt 0 w T (3.5d)
T 0
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3.1.2.Variational Method and Finite Element Formulation with
Vibration for 2D Case

Independent element nodal displacemantelement basic forceg, and section
deformationse create the variational form of the element by using tfiedds Hu
Washizu functional and applied as partloé beam fnite elementormulation[62].
Derivation of the dynamic case is reached through applying the inertial forces
acting at nodes by taking into accobnd Al ember t 6s principl e

variational form of the element.

T (7 'm Ym® fFava ve Qo

14 F D go Qo] af (3.6)

10+ 47000 10 mm T

The above equation is also founddmonsidering the general Hashizu variational
form with dynamic case by Bdit]. Equation(3.6) ought to embrace for arbitrary,
1 Aand g Therefore, the following three equations must be fulfilled in order for the

Hu-WashizuBarr variational to be zero.

00  mk (3.7a)
T Ha (3.7b)
ok f o) goQ® (3.8a)
W (3.8b)
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va® ko a vo (3.9)

The equation of motion that Equation(3.7a and 3.7pholds for linear or nonlinear
material responses, hence this equation can be generated for each element to attain the
structurebds equation of mbemeambecoAded umer i c al
to obtain a solution as given[i83]. The effect of viscous dampingr be attained by
impIementing{k) to the lefthand side of the equation. Wheris the damping matrix.

It is also possibléo get resisting forceg not only in terms of displacements put

also as a function of velocitie®,using a material model that takes into account-time
dependent properties, such as vistastic or visceplastic material modelsut this
approach is not undertaken in the analysis of civil engineering structures. Any energy
dissipation which could notedbmodeled with hysteretic nonlinear models could be
modeled through the use of viscous damping matimxstructural analysig-or linear

section responsegction deformations can be obtainegg vto get the section

deformations from sectiorofces with the usage of section stiffness m

change of section deformatioaso Equation(3.8a) thusgives:

o Jan (3.10a)

H 4 o o fad Qo (3.1m)

In the equatios (3.10a and 3.10b¥ is the flexibility matrix of the element. The
section flexibility matrix isfs which is calculated by taking inversion of the section

stiffness matriXs Additional substitution of above equation Eets;
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i HE + (3.11b)

whereki s the 616 el ement stiffness matri x i

3.1.3.Presence of Semiigid Connections in Element Formulation for
2D Case

Incidence of semiigid connections is agied with the discretized version of

continuous integrals ale for the calculation of basic element deformations;

O OgOAT AC#7 1 (3.12a)
Og OAT A -H- W g (0] (3.12b)
TI# 71 ‘H‘ (b 9 A (312C)

wherenlP is the total number of sections used fordhptureof the nonlinear response
of the element andSCis the whole number of sefrgid connections curreni@ang
the elementwIP is the weight of integration equivaleio corresponding integration

location for a discretized sectigorand finally ¢ 1 — is the

vector of deformations of semigid connection with axial deformatidn

rotation — and shedr . Introducing asemirigid connection along member in
Figure 3.1 does not modify the force vector under small deformations, hence above
Equations 8.1) to (3.6) are not affected by this operation. Element flexjpitnatrix

is similarly generated as follows:
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B Roii B (3.13a)

RBoiiz + ofitoo® (3.13b)

Wi ol sfte (3.13¢)

Equationq3.8) and(3.9) are linked to the element state deteration which means
these equations can be conducted independent of Eq(&figrand then the solution
can be reduced into Equati¢8.7). The equations of motion are accumulated for all
elements. This proes was shown for the linear elastic cabeve Geneally, state
detemination of the element involves an iterative solution in the case of nonlinear
behavior, where Equatiorf3.7)to (3.9)are required to be solved. This solution needs
the generation oélement flexibility matrixf under nonlinear respoaswhere taking
derivative of element deformatiomsvherein Equatioii3.8)according to the element
forces g which finalizes into the same flexibility integration expression given in
Equation(3.10} however, the section stiffness will be nonlinear thmset Finally,
specifics of the solution for the dynamic case at element level is analogous to the

nonlinear static case offered[4B].

3.1.4.Section Response for 2D Case

Section response can be attained by the basic assumptiesented in Timoshenko
beam theory beforeThe planesections before deformatioremain plane after
deformation bbngthe length of the beam by the usage of section compatibility matrix

as given in Equatior(3.2). At this point, a correction term will be introduced to this
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matrix, called asheshear correddn factorksas follows;

P W T
nm nm I

" (3.14)

+ fo

Shear correction factds can be obtained as the inverse oftseiggested by Cowper

[64] for I-section:

p . .
I - PC X¢cl I p vt

3 ol
PP s P o , (3.15a)
3pp 0ol | p owdrt
o 1 1 sl Yl w
0o Al Al ® 3.15b
RN o (3:450)

Derivation of the above equation for trectangular shapes vanishes the terms with
flangeparameters Then, setting Poissonds ratio t
the rectangular section &6. In the study presented by Charney gé&ll, major axis

shear deformations were examined f@ettions in the AISC section database, and

the subsequent easy foractor was anticipated.
WO
I T8 yYyuv ﬁ%soq (3.16)

In this study, both of the form factors presented in Equati®ri$)and(3.16) have

been utilized in executing the validation studies.

33



By utilizing the section compatibility matrigs, section forces cahe retrievedby
integration of the stresses. This satisfies the material constitutive rel@tiors £ ,
and the derivative of section forcewith the section deformations results wherein the

section stiffness matriks.

v £ dQob (3.17a)
(3.17b)
i + B + Q0 (3.17¢)

where the material tangent modukis is gained by the stresdrain relation by the
use ofkn= O 0 ( LCHerlc&rerseof the section stiffness matrix hich is the section
flexibility matrix is utilized in generation of element flexibility matrix in Equation
(3.13)

Behavior of the generated local connectiesponse&an be nonlinear generally. The
comprehensive evidencs given in[43] according to the types of mathematical
models that can be utikdl in generation of the flexility influence of the connection
in Equation(3.13)
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3.1.5.Force Based Consistent Mass Matrix for 2D Case

The mass matrix used for the proposed element with-sgitiiconnections is attained

by the use of a forebased approach presented by Soydas andaSgs1]. This
approach was first applied by Molins et @5]. This method indirectly delibered

the displacement field along the element length which is calculated in a simple manner
using unit dummyoad method. The generation of the consistent mass matrix is done
by the determination of the section mass matrix. The mass is considered as a
distributed load by the length of the beam in the beaitileversystem. The section

mass matrix is generatég the following equation:

O ® + 7 oo + QO (3.18)

In calculation of the section mass matrix in above equation, shear correction factor,
shouldnot be applied in conducting section compatibility maaix Mass matrix of
the forcebased element cdme presented in the complete system which is used in

Equation(3.7a) which is in 616 form as:
O O
O — — (3.19)
The components of elemenans s mat ri x ar e -npeiceer at ed 1 n

® Hcho J.B0Q Qo (323

(3.20b)
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O O 4 o O t o o] off Qo (3.20c)

~,

O oo | frwo o f mw

B ol + ™ Qo

(3.20d)

The element flexibility matriX is takenas given in Equation(3.10) The patrtial
flexibility matrix f; is calculatedas follows:

of, wa, (3.21)

The integral terms in Equatior§8.20) and (3.21are presented to the existence of

sami-rigid connections without the necessity foore discretization of the element.

3.2.Frame Element Formulation for 3D Case

In this section, the formulation of a thrdemensional frame element is presented. The
cases of static variational formulationse aconducted with a foreeased frame
element. Spread of inelasticity through the element is pedlenfiber discretization

of the section similar to the previous ddonensional case.

36



3.2.1.Kinematic Relations for 3D Case

The threedimensional formulabn is conducted through the element fatation of a
cantilever beamagain The continuum is satisfied with reduced degrees of freedom to
a cantilever beam. Timoshenko beam theory allows the beam ratatependent of
beamds dcedfthis ereateshemndeformation of the beam which isincluded

in the Euler Bernoulli beam theory. Displacements on a material point on the section
of a beam that deforms in xygpacecan be obtained by calculating Timoshenko beam

theory as follows;

6 oo 660 O—0 G— o
6 afuha 0w O— (3.22)
6 afufn 0 W— O

where w(X,y,z), W(x,y,z) and ux,y,2) the x, y and direction displacements which
are the displacement fut@ns in X, y and z directions at any point in the creesstion.
u(x) is the displacement of any point along thaxis.v(x) andw(x) arethe transverse
deflections along on any paiat x,0) in y and zdirection. Rotation of the beam
around xaxis isg«(x), around yaxis isg/(x) and around-axis iIsg(X). The straing
contains the normal straiey along the member and shear stray, where these

parameters are computed as follows;

i oMo oNe Mo

<

EOT — o No N (3.23a)

e

—o 0N @M

o d oo a o
£ o dem (3.23b)
T e
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E o do go (3.23c)
wheree(x) is the section deformation vector.

m® - o ol o o7 o «@ (3.24)

- w isthe axial straim | o n g t h-axisb (@ ia tadisnalrate of twist along
b eaméaxsl xw and w are the shear deformat®nf the sectins alongy and
z-axis, respectivelyandll  ® andll @ are curvaturesf the sectiongbouty and z
axes Section deformations are generated from section displacements from the

comparison of the terms of Equatit$23) =|= oftr is the compatibility matrix of

the section and is given as follows;

U
+ G (3.25)
()

4 3@
470 A
© 34

w
Tt
Tt

4470

3.2.2.Basic System without Rigid Body Modes and Force

Interpolation Functions for 3D Case

Element formulation is conducted a frame element with two end nodes in xyz. Thus,

the complete structure system is reduced to a basic system which is derived to interpret
the member elements state determination of the structure. The complete isystem
Figure 3.4is reducedrom 12 displacement modes that contain 6 rigid body modes to
only 6 deformation modes through the use of a basic sy$tesrproduced element is
based on theantileverbasic systenwhere the lethand side of the system only
permits rotations in y and-direction, ard the righthand side permits the only
displacement inxdirection and rotations in x, y anetirection that is shown in Figure

3.5. The transformation matrix, a interacts the whole system nodal forces p and nodal
displacements u to the basic equatedenents g and element deformations v along

the length L of the beam through following equation;
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o %0 (3.26)
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Figure3.4. Threedimensional Complete System
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Figure3.5. BasicSystemForces andeformations

Basic element forces at free engiare given in Figure 8.and presented in Equation
(3.27) These forceareinternal section forcesy w by using the force interpolation

matrix4 ¢ for the cantilever bearms follows;

v 0o 0 o 0 o oo oo Yo $ b & (3.28a)
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‘|'|‘(‘d:|,.) 1t Tt w 0 T P Ti (328b)
I p Tt T T T
h T p m T
Ut Tt Tt p W

By using Equatior{3.28) it canget exact equilibrium between the forces at free end
of the element and forces at any section thauisits away from the fixed end. Axial

forcel w, shear force iy and zirectiors®w @, ® & and nomensaboutx, y and

z-axis"Yo,0 w,0 w are section forces.

3.2.3.Variational Base and Finite Element Formulation for 3D Case

Independent element nodal displaceraant element basic forceg, and section
deformationse create the variational form of the element by using tfiedds Hu

Washizu functional and applied as part of beam finite elemerjslbgnd[62].

T (7 . 1m Ym® faba ve Qo
(3.29)
(] A ‘H’ (;Cﬁ‘)-(b,Q(‘A)(]O — Tt

Above equation can also betrieved by considering the general Hifashizu
variational form. Equatioig3.29) shouldhold for arbitrary] ¢,7 Aand| g thus the
following three equations should be satisfied in order for thé\tshizu variational

to be zero.

ok 4 b goQo (3.30a)
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T (3.30b)

va® ko a (3.31)

Section deformations can be obtaineggas vto get tle section deformations
from section forces with the usage of section stiffness m{frifor linear elastic

material respons&he change of section deformatiai® Equation 8.30a)gives:

H o Ja xEAOK 4 v o fad Qo (3.32)

In the equation abovéjs the flexibility matrix of the element. The section flexibility
matrix isfs which is calculated by taking inversion of the section stiffness miagrix

Additional substitution of above equation presents;

O == N xEAGA H + (3.33)

whereki s the 12112 el ement stiffness matri x
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3.2.4.Presence of Semiigid Connections in Element Formulation for
3D Case

At this point in the element formulation, presence of segid connections will be
adapted through thiellowing discretized version of above the calculation of basic

element deformations:

O OgoAi AC#1H (3.34a)
leoai A T OmOQA (3.34b)
O i 1 + oo (3.34c)

1 —#  —% TR 1 h . (3.34d)

The first integral can be numerically calculated by using a quadrature rule to get
inelastic behavioalong the membaenlP is the total number of sections used for the
design of the nonlinear response of the elemenwands the vector of deformations

of semirigid connection with axial deformatipn  , rotation—; ,—p and shear

1 % 1 5 andtorsior

Introducing a semiigid connection along the member in Fig@:& does not modify
the force vector under small deformations, hence the above Equ&tid?dd (3.29)
are not affected by this operation. Element flexibility matrix is similarly generated a

follows:
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B ko iR (3.35a)

Woaia + ol of o) (3.35b)

Wi ol sfto (3.35¢)

Equations 3.30 and B.31) are linked to the element statetermination Generally,
state deterioration of thedement involves an iterative solution in the case of nonlinear
behavior, where Equation8.80) to (3.31) are required to beolved. This solution
needs the generation of element flexibility mafricnder nonlinear response, where
taking derivative of @ment deformationg wherein Equation3.30 according to the
element forceg which finalizes into the same flexibility irgeation expression given

in Equation 8.32; however, the section stiffness will be nonlinear this time.

3.2.5.Section Response for 3D &se

Section response can be attained by the basic assumption. The plane sections before
deformation keep on plane afterfalenation among the length of the beam by the
usage of section compatibility matrias given in Equation(3.23) The section

compatibilitymatrix has the shear correction fadteas follows;

P W a T 1 L1
+ + ¢ m™ Mo I = a (3.36)
T T T T I o

Shear correction factdes can be obtained as the inverse of the form factor suggested

by [48] for I-section about the major bending axis:
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I pAl (3.37a)

w0
I mt8yYuv 5%80( (3.37b)

By utilizing the section compatibility matrias, section forces can babtainedby
integration of the stresses. This satisfies the material constitutive reléatioris),
and the derivative of section forcewith the section deformations results wherein the

section stiffness matriks

v £ aQd xEAOA . (3.38)
v L 19E g (3.39)
'm "m

where the material tangent modulusik gained by the stresdrain relation by the
use ofkn= (O LI Bumerical evaluation of the integrals B1§8 and 8.39 can use
Gaussguadrature, the midjnt or the trapezoidal rule. While Gatpsadrature gives
improved results for smooth straimsttibutions and stresstrain relations, and the
midpoint rule is desirable for strain distributions and stedsEn relations with
discontinuous slopes. Hemahe section stiffness matrix inverse, which is the section

flexibility matrix is utilized in generation of element flexibility matrix in Equation

(3.35.
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CHAPTER 4

NUMERICAL VERIFICATIONS

Verification studies for the proposed frame element with localizemi-sgid
connections for steel structures are conducted in thigtehdor this purpose, both

two dimensional (2D) and three dimensional (3D) examples under various loading and
boundary conditions are considered in order to assess the accuracy aintlee fr
element proposed in this thesis. Comparisons are conducteckespikct to available
examples and solutions in the literature, as well as example problems generated in this
thesis. When necessary, available finite element programs used in practice and
research are considered in order to provide comparison of the rgigsleand
differences between various solution platforms, as well. First, vibration studies are
considered in order to provide the accuracy of proposed element in capturing stiffness
andmass distributions under linear elastic response. Then, nonlirreaitieof frame
elements and structures with the presence of-sgidi connections is studied with

the use of proposed element. For both cases of validation, member level and structure

level examples are presented.

4.1.Verification of Vibration Characteristics

4.1.1.Cantilever Beam Example

The first validation is done for theroposed approachith different commercially
available programs. A cantilever | bednat is rigidly fixed at one end modeled in
ANSYS as shown in Figures 4vithere a finite element analysis can be conducted for

a detailed analysig his modeln ANSYSis chosen athe control(benchmarkmodel
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for the proposed frame element in the absence of connections, i.e. reapgsbe

rigid conrection caseThe closed form solution for a cantilever beam with solid

circular section is compared 6] and the results showeary goodmatch wiich

can be understood as the proposed frame finite element formypatisents a good
accuracy when compared withetitlosed form soludns.
geometry is selected H3E270 sectiowith varyinglength to depth (L/d) ratigqgross

section properties of this section are later shown in Fig@e Phe radius fillet of
IPE270 section is not applied tiee modelFor analgis,L/d aspectatio of the beam
is variedas 10, 5 and for the study of long to short beam cadesticity modulus,

Poi ssonds ratio and

respectively ANSYS finite elemat model is created with the use of 30lid187

element discretized witfine meshin order to get numerically convergezkact

solution with the use of that program.

150.00

densi ty

450.00

600.00 {mm)

of

Figure4.1. Representative 3D | Beame@erated in ANSYS
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FundamentaVibration frequenciebtained from ANSYS simulations apeesented
in Table 4.1.

Table 4.1 ANSYS Results for CantileveBéam with Rigid Connection

1%'Bending 2"Bending 1% Axial

L/d (Hz) (Hz) (Hz)
10 42.154 227.13 468.35
5 155.66 649.25 937.13
2 671.28 NA 2358.7

Theresults obtained from ANSYS and with the use of proposed element will also be
compared with theopularly used commercial structural analysis program SAP2000.

The modelin SAP2000 is prepared by the use of linear elfistine elemerst, as well.

In Table 4.2 results obtained with the use of proposed frame element and SAP2000
solutions are presemteTheanalysesvith the use of proposed elemamid SAP2000

arecarriedout with the use of 4 and 32 elements

The accuracy of SAP2000 elements is greatly influenced by the use of lumped mass
matrix, while the proposed element uses distributed massxneaiculated from
force-based approach. In order to captufé ®ndingmode accurately, at least 4
elements should be used with proposed approach, and 32 elements solution gives
perfect match with ANSYS. Accuracy of the proposed approach is observedte b

to the use of forebased stiffness and mass matrix calculatioasyell as due to the

use of an accurate shear correction coefficient proposgtBhy

With respect to the short beam case, the kinematics of deformation observed in
ANSYS model was not exacthgplicated with the use of Timoshenko beam theory

assumptions, the errar vibration mode calculations are increased to abe%2n

a7



1%t bending mode with the use of 32 elements with proposed approach, and this is

accepted as a reasonable error.

Table 4.2 SAP2000 and Proposed Model ResultsGantilever IBeam with Rigid Connection

SAP 2000 Proposed Model

Nei=4 | Err. % | Ne=32 [ Err. % | Ne=4 [ Err. %| Ne=32| Err. %
1s*Bending (Hz)| 41.31 20 4242 0.6 4210 0.1 42.08 0.2
10 | 2" Bending (Hz)| 21386 58 23229 23 22921 0.9 226.95 01

15t Axial (Hz) 46490 0.7 46795 0.1 47091 0.5 46795 01
1s'Bending (Hz)| 154.23 0.9 15783 14 15551 0.1 15532 0.2
5 | 2"Bending (Hz)| 64350 | 0.9 | 69252 | 6.7 | 67187 | 35 | 65915 | 15

1stAxial (Hz) | 93023 | 0.7 | 93545 | 02 | 94183 | 05 | 93590 ( 0.1
1stBending (Hz)| 69252 | 32 | 70225 | 46 | 68656 | 23 | 68410 | 1.9
2 | 2¥Bending (Hz)| 213675 NA |227790| NA |[208012| NA |203062| NA
1stAxial (Hz) | 232558 1.4 |[234192| 0.7 |235457( 0.2 |233974| 0.8

L/d Mode Type

After studying the cantileveneam withIPE270 sectiondifferent steel sections as
shown in Figure £ are going to be investigated. The considered sections will provide
different vibration characteristics to the cantilever beam as a result of the variation of

their depth to width as well as flange and web thédses.
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HEB180 IPE270 IPE750x147 W14x730 W24x250 W36x135

Figure4.2. Sections used in Validation Analysis (dimensions in mm)
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The consideredoeam sectionsire divided into two groups. The first group of |

sections consists of European sections: HEB1BE270 and IPE7501 47 ( Fi gur ¢
4.2). The second group ofdections considered in this study was also considered in

the literature[37,and t hese are W361 135, W22%I1 250 a
The accuracy of the mass and stiffness matrices resulting from the proposed element
formulation are verified for theseskctions. Length to depth (L/d) ratio of the beam

is chosemagainas 10, 5 or2 in order to study both the long beam and short beam
cases. El asticity modul us, Poissonds r at

7832 kg/mi, respectively.

The proposed model is first tested with the 3D model created in ANSYS envitonme
ANSYS model is accepted as the governing or control model for this comparison
study. It is important to take into consideration some modelling approximations that
have a crucial effect on the finite element analysis, as the element type, meshing
elemers, boundry conditions. In order to eliminate the influence of vibrations due to
local flange and web distortions that could take place in some of the sections
considered in Figure 2, the web ofdbeam in ANSYS model is stiffened with plates

in Figure 43 that have negligible mass and stiffness, and as a result one to one
comparison with the proposed frame element became possible. It is important to recall
that the kinematics of Timoshenko beam theory considered in the proposed frame
element formulatiodoes notllow any flange and web distortion to take place. For
this purposethe geometry of the wide flange beam#&NSYS is stiffened witlh mm

thick stiffeners, with 110 kg/m?® density. These are supplemented along the length
of the elements to rgsint the flanges and decrease thistortionbehavior; hence,
assuming such a flange restraining method converges to a realistic behavior-of wide
flange beams in structures. Afiamploying the geometrdD solidmesh is produced

using the ®LID 187 elenentin ANSYS as shown in below figure, where this element
provides 10 nodes and quadratic displacement behavior to the elements with improved

strain formulation.
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|:] Multiple

Figure4.3. Representative 3D | Beam Garated in ANSYS with Stiffeners

The ratie of thenatural frequencies obtained frggroposed model to ANSY/®odel

arepresented in Figures#4and 45. The ANSYS FEM model isaken as a control
modelfor the steel sections presented in Figug Fherebre, ths ratio will denote

the error between theenchmark (controinodel and the proposed model. The results

of the cantilever beams are denoted for its first bending, sdeeamding and axial

modes of beams for different length depth ratios. For théwo groups of cross
50
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Figure4.4. Proposed Model over ANSYS Natural Frequencies for European Sections
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Figure4.5. Proposed Model over ANSYBatural Frequencies for American Sections

From the comparisons with ANSY S resultstiee rigid connection case, it is observed
that the proposed frame element model overall provides better match than SAP2000
to the results obtained in ANSYS. In the hebage, the case of sengid connections

will be studied through the use of propos$ene element and SAP2000 program as

a means for comparison of the differences between the two solution approaches in
capturing the vibration characteristics of fleyibtonnected members. For this
purpose, IPE270 section is considered for the analydiseotantilever beam with
flexible connection at its bas&AP2000 program is chosen for the simplicity of
defining flexible connections with acceptable accuracy wtsahentioned earlier in

cantilever beam examples with rigid connections.
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The base of t cantilever beam is introduced with a flexible connection with
flexibility provided witha«E1 / L f or mul a. E, I and L are
moment of inertia ofcross section and length of the bearaspectively The

connection stiffness ratio fdhe semirigid case isvarieda s = 211 and 20, where

& Is the ratio of connection swharebfhess t
represents a behavithat is closer to pinned connection, asd 20 represents a

behavior that is approaclgid connection.

Analyses results obtained with the use of SAP2000 solutions are presented in Table
4.3 with the use of 4 and 32 elements, and the reshtiisned with the proposed frame
element analysis are presented with the use of 1 and 4 elemérdable 4.4. It is
evident that the introduction of semgid connection in the proposed frame element
highly changes its accuracy with the use of 1 elersantion for it, and more element
discretization is now needed even to captdiieehding mode aurately. Introduction

of I ocalized connection results in a dis:¢t
element discretization for the capture of vilma modes. Theesultsof the proposed
element analysis with 4 elements is observed to be vese do theresults of
SAP2000 solution with 32 elements, which clearly demonstrates the superiority of the
proposed element.
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Table 4.3 SAP2000 Results for CantileveBeam with SerRigid Connection

L/d 10
Mode
Nel =2 | =11 | =20
Type
4 B1(Hz) 24.29 35.68 37.92
B2(Hz) 178.86 197.90 203.54
N(Hz) 444.44 459.14 464.25
32 B1(Hz) 24.75 36.52 38.86
B2(Hz) 192.75 214.04 220.46
N(Hz) 467.95 467.95 467.95
L/d 5
Mode
Nel =2 | =11 | =20
Type
4 B1(Hz) 94.66 135.3 142.94
B2(Hz) 596.66 624.61 631.71
N(Hz) 930.23 930.23 930.23
3 B1(Hz) 96.39 138.22 146.11
B2(Hz) 640.21 671.14 678.89
N(Hz) 935.45 935.45 935.45
L/d 2
Mode
Nel | =2 | =11 | =20
Type
4 B1(Hz) 508.13 644.33 664.89
B2(Hz) 2136.75 2136.75 213%6.75
N(Hz) 2325.58 2325.58 2325.58
3 B1(Hz) 515.20 653.17 673.86
B2(Hz) 2277.90 2277.90 2277.90
N(Hz) 2341.92 2341.92 2341.92

B1: 1*Bending, B2: 2¢Bending,N: 15t Axial




Table 4.4 Proposed Model Results f@antilever Beam with SeriRigid Connection

L/d 10
Nel Mode =2 =11 | =20
Type
1 B1(Hz) 41.43 42.05 42.19
B2(Hz) 352.54 373.32 378.90
N(Hz) 515.94 515.94 515.94
. B1(Hz) 25.10 36.54 38.76
B2(Hz) 199.00 215.61 220.42
N(Hz) 470.91 470.91 47091
L/d 5
Nel Mode | =2 | =11 | =20
Type
B1(Hz) 153.81 156.51 157.09
! B2(Hz) 1031.87 1031.87 1031.87
N(Hz) 1149.86 1182.72 1190.30
B1(Hz) 97.03 137.22 144.62
4 B2(Hz) 637.96 658.35 663.43
N(Hz) 941.83 941.83 941.83
L/d 2
Nel Mode | =2 I =11 | =20
Type
B1(Hz) 699.33 712.83 715.15
! B2(Hz) 2579.68 2579.68 2579.68
N(Hz) 3137.40 3123.86 3121.53
B1(Hz) 505.54 639.38 659.39
4 B2(Hz) 2062.07 2074.72 2076.94
N(Hz) 2354.57 2354.57 2354.57
B1: 1*Bending, B2: 2¢Bending,N: 15t Axial

In the following graphs, proposed model and SAP2000 model results are presented
with the increased number wiesh sizes for the rigid and serngid connection cases

with flexibility ratio varied as 2, 11 and 20. The relative error of SAP2000 results with
respect to the proposed model results are plotted for aspect ratio L/d=2 in Figure 4.
L/d=5 in Figure 47, and L/d=10 in Figure 8. The element numbers are chosen as 2,

4, 8, 16 and 32 in both analyses.
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Figure4.6. Relative Error (%) vs. Number of Elements for Rigid and Segiil Connections, L/d=2
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Figure4.7. Relative Error (%) vs. Number of Elements for Rigid and Segiil Connections, L/d=5
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