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ABSTRACT 

 

A DENSITY FUNCTIONAL THEORY INVESTIGATION FOR SOLID 

STATE HYDROGEN STORAGE MATERIALS 

 

Gencer, Ayşenur 

Doctor of Philosophy, Physics 

Supervisor: Assoc. Prof. Dr. Hande Toffoli 

Co-Supervisor: Assoc. Prof. Dr. Gökhan Sürücü 

 

May 2019, 146 pages 

 

 The world’s energy demand is increasing with the population growth and technology 

development. In addition, the electronic devices are an essential part of the daily life that 

require portable energy sources. Therefore, energy storage is necessary in order to store 

energy from the renewable energy sources and also provide portable energy sources for 

electronic devices. Hydrogen being the most abundant element in the world, is a good 

energy carrier with high energy density. Also, hydrogen does not release greenhouse gases 

that contribute to the global warming. In addition to these properties, it can be stored in 

metals with physical or chemical bonds that allows an interest to the solid state hydrogen 

storage materials which are considered as a promising solution with effective and safe 

hydrogen storage. For these reasons, its use in fuel cells is emerging. Considering the cost 

and difficulties of experimental studies for determination of new materials to be used in 

hydrogen storage, theoretical studies have became a tool for experimental studies. The 

most important method of theoretical studies is Density Functional Theory (DFT). This 

method is popular in recent years because it can be used without depending on any 

experimental data. In this study, the first principles calculations have been performed 

to investigate the hydrogen storage properties of perovskite materials that could be a 

possible candidate material group for the solid state hydrogen storage method due to 

having stability and ceramic nature. The studied perovskite materials are divided into 



 

 

 

vi 

 

three groups as perovskite materials with BaXO3 (X = Sc or Y) and XTiO3 (X = Mg 

or Ca) compounds, anti-perovskite materials with Ca3XH (X= C or N) compounds and 

perovskite type hydrides with XNiH3 (X = Li, Na or K) compounds. The structural, 

mechanic, electronic, thermodynamic and lattice dynamic properties of these 

materials have been examined by using the Vienna Ab-initio Simulation Package 

(VASP) based on DFT. The results have been compared with the available results 

from the literature and it has been found that the results are consistent with the 

literature. Furthermore, the hydrogen doping studies to BaXO3, XTiO3 and Ca3XH 

compounds have been performed and the gravimetric hydrogen storage capacities and 

the hydrogen desorption temperatures have been obtained to reveal the properties of 

these materials for the hydrogen storage applications.  
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ÖZ 

 

KATI-HAL HİDROJEN DEPOLAMA MALZEMELERİNİN YOĞUNLUK 

FONKSİYONEL TEORİSİ İLE İNCELENMESİ 

 

Gencer, Ayşenur 

Doktora, Fizik 

Tez Danışmanı: Doç. Dr. Hande Toffoli 

Ortak Tez Danışmanı: Doç. Dr. Gökhan Sürücü 

 

Mayıs 2019, 146 sayfa 

 

Dünya’nın enerji talebi, nüfus artışı ve teknolojinin gelişmesiyle birlikte artmaktadır. 

Özellikle taşınabilir enerji kaynaklarına ihtiyaç duyan elektronik cihazlar günlük 

hayatın önemli bir parçası haline gelmiştir. Bu nedenle, yenilenebilir enerji 

kaynaklarından üretilen enerjinin depolanması ve ayrıca elektronik cihazlara 

taşınabilir enerji kaynağı sağlamasından dolayı enerji depolama önemli bir 

gerekliliktir. Hidrojen evrende en çok bulunan element olarak yüksek enerji 

yoğunluğuna sahip iyi bir enerji taşıyıcıdır. Ayrıca, hidrojen küresel ısınmaya neden 

olan sera gazlarını salmamaktadır. Bu özelliklere ek olarak, hidrojenin metallerde 

fiziksel ya da kimyasal bağlarla depolanabilmesi, hidrojen depolama konusunda etkili 

ve güvenli bir umut verici çözüm olarak görülen katı-hal hidrojen depolama 

konusunda bir ilginin olmasını sağlamıştır. Bu nedenlerle, hidrojenin yakıt pillerinde 

kullanımı ortaya çıkmaktadır. Hidrojen depolamada kullanılacak yeni malzemelerin 

belirlenebilmesi için deneysel çalışmaların maliyeti, zorlukları dikkate alındığında, 

teorik çalışmalar deneysel çalışmaların aracı durumuna gelmiştir. Teorik çalışmaların 

en önemli metodu ise yoğunluk fonksiyoneli teorisidir (DFT). Bu metodun son 

yıllarda oldukça popüler olmasının nedeni, hiçbir deneysel veriye ihtiyaç duymadan 

kullanılabilmesidir. Bu çalışmada, ilk prensipler hesaplamaları ile katı-hal hidrojen 
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depolama için aday malzeme grubu olabilecek kararlı ve seramik özellik gösteren 

perovskite malzemelerin hidrojen depolama özellikleri incelenmiştir. Çalışılan 

perovskite malzemeleri, BaXO3 (X = Sc or Y) and XTiO3 (X = Mg or Ca) bileşikleri 

ile perovskite malzemeler, Ca3XH (X= C or N) bileşikleri ile de anti-perovskite 

malzemeler ve XNiH3 (X = Li, Na or K) bileşikleri ile de perovskite tipi hidrürler 

olarak üç gruba ayrılmıştır. Bu bileşiklerin yapısal, mekanik, elektronik, 

termodinamik ve örgü dinamik özellikleri DFT tabanlı Vienna Ab-initio Simulation 

Package (VASP) ile incelenmiştir. Elde edilen sonuçlar literatürdeki mevcut 

çalışmalar ile karşılaştırılmış ve sonuçların literatür ile uyumlu olduğu bulunmuştur. 

Bunlara ek olarak BaXO3, XTiO3 ve Ca3XH bileşiklerine hidrojen katkılama 

çalışmaları yapılmış olup bu bileşiklerin hidrojen depolama uygulamalarında 

kullanımını belirlemek için hidrojen ağırlık depolama kapasitesileri ve hidrojen geri 

bırakma sıcaklıkları elde edilmiştir. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

The digital technologies and the electrical vehicles are an essential part of our daily 

life. Also, the increasingly use of cell phones and laptops requires to have long battery 

time for these devices that is the one of the most important consideration for a device 

choice. In addition to personnel electronic devices, it is important to have portable 

energy sources for military applications, leisure activities, educational purposes, etc. 

[1]. The current battery technology has some limitations such as higher energy 

densities, weight and flexibility [2]. However, the fuel cells are a promising candidate 

for providing higher energy densities. Also, the fuel cells provide clean and safe 

energy [2].  

The batteries convert the chemical energy to electrical energy with the connection of 

the electrodes. The batteries are closed systems and they have a limitation on capacity 

due to the electrode volume [2]. The fuel cells are open systems and they combust a 

stored fuel with ambient oxygen [2]. For the fuel cells, the stored energy is related to 

the amount of stored fuel. There are fuel cells that use methanol, ethanol, etc. 

Moreover, the fuel cells that use hydrogen as the fuel get attention because of the 

anode kinetics and clean product of water [2]. 

The hydrogen fuel cells generate low voltage and high current and also the generated 

electricity do not depend on the fuel level [2]. The clean product of water could be 

released as a water vapor. These fuel cells could be designed as rechargeable or 

disposable fuel systems [2]. But, the necessary high volumetric and gravimetric 

densities of hydrogen fuel are the most important considerations. The aim of this thesis 

is to study the perovskite materials for hydrogen storage that could be a powerful 
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candidate as a hydrogen fuel material due having stability with ceramic properties that 

are preferred properties for portable hydrogen power systems. 

Hydrogen is the most abundant element in the Earth and it is the lightest element on 

the periodic table. In addition, hydrogen is an odorless, colorless, tasteless and non-

poisonous gas. The energy content of hydrogen is higher on the mass basis but it has 

lower energy content on the volume basis. As an example, hydrogen has three times 

higher mass energy content while it has four times lower volume energy content than 

gasoline [3]. Moreover, hydrogen could be used to store the electricity generated from 

renewable energy sources [4]. These properties provide significant advantages to 

hydrogen as a possible future energy source and portable power equipment.  

The energy policies involve a hydrogen economy that includes production of 

hydrogen, storage of hydrogen and usage of hydrogen [4]. If hydrogen produces using 

non-fossil fuels, only the water is produced. The most commonly used methods for 

hydrogen production are conventional and renewable technologies [5]. The 

conventional methods use fossil fuels to produce hydrogen that also contribute to the 

emission of greenhouse gases. The steam reforming is the most common process of 

the conventional methods. The renewable technologies use the renewable energy 

sources to produce hydrogen that is environmentally friendly and preferable technique 

to produce hydrogen. Among these techniques, the water splitting is the most 

considered method for the renewable technologies. 

The produced hydrogen needs storage and the methods for the hydrogen storage could 

be classified into three: gas hydrogen storage, liquid hydrogen storage and solid state 

hydrogen storage [6–10]. Hydrogen is a gas at ambient conditions and so, the high 

pressure vessels are necessary for the gas hydrogen storage method [6]. However, the 

safety is an important issue for this method. The liquid hydrogen storage method 

requires extra energy to liquefy hydrogen. Moreover, the boiling of hydrogen is 

another issue that must be considered. Solid state hydrogen storage methods include 

physisorption of hydrogen and chemisorption of hydrogen [10]. The hydrogen atoms 
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physically bound on a high surface area material for the physisorption of hydrogen 

while the hydrogen atoms have bonds with the materials for the chemisorption of 

hydrogen [10]. For the physisorption of hydrogen, a low temperature is required to 

have a significant amount of hydrogen stored due to the low van der Waals force 

between hydrogen atoms and the surface [11]. However, high temperatures are 

necessary for the chemisorption of hydrogen in order to break the chemical bonds to 

release the stored hydrogen [12]. Therefore, the storage methods should satisfy some 

necessary conditions such as reversible storage for several times, hydrogen store and 

release at ambient conditions, sufficient gravimetric and volumetric storage capacities, 

etc. [13].  

The US Department of Energy (DOE) sets targets for portable hydrogen power 

equipment [14]. The followings are some of these targets for 2020 [14]: 

 The gravimetric hydrogen storage capacity should be 4.0 wt.% for single used 

portable power equipment and 3.0 wt.% for rechargeable power equipment. 

 The volumetric hydrogen storage capacity should be 0.04 kg H2/L system for 

single used portable power equipment and 0.03 kg H2/L system for 

rechargeable power equipment. 

 The operating ambient temperature should be between -40 °C and 60 °C. 

 The minimum delivery pressure and the maximum delivery pressure should be 

1.5 bar and 3.0 bar, respectively. 

 The cost should be 1 $/g H2 stored for single used portable power equipment 

and 13 $/g H2 stored for rechargeable power equipment. 

These targets should be satisfied for a portable power equipment but any method has 

not satisfied all these requirements at the same time up to date. Among the hydrogen 

storage methods, both gas and liquid ones have drawbacks of low storage capacities 

to meet these targets. However, the solid state hydrogen storage method provides to 

get significant storage capacities and to be considered a possible solution for portable 

energy sources. 
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Solid state hydrogen storage is mostly studied for metal hydrides, complex hydrides, 

carbon structures and metal organic frameworks [15–18].  For the carbon structures 

and the metal organic frameworks, it is important to have large pore size to store more 

hydrogen. For the metal hydrides, magnesium gets considerable attention due to its 

low weight and low cost [18]. However, magnesium hydrides have low hydrogen 

desorption kinetics and high reactivity to air and oxygen [18]. Another material group 

is the complex hydrides that are composed of hydrogen and group IA, group IIA and 

group IIIA elements on the periodic table [17]. The mostly studied complex hydrides 

are alanates, amides, imides and borohydrides [18]. But, the complex hydrides do not 

have reversible storage capacities that is the biggest problem for hydrogen storage 

applications.  

Another promising material group for hydrogen storage is the perovskite type 

hydrides. The perovskite type hydrides having ABH3 formula generally composed of 

group IA and group IIA elements and hydrogen on the periodic table [19] and these 

compounds have high gravimetric storage capacities. Hence, the perovskite type 

hydrides get great interest and there are several studies for these compounds both 

theoretically and experimentally in the literature [19–28].  

There is a request for a material that satisfy the US DOE targets for hydrogen storage. 

So, within this thesis, the perovskite materials have been investigated for hydrogen 

storage using theoretical calculation, Density Functional Theory (DFT). In recent 

years, the theoretical studies are a part of experimental studies. Because, these 

theoretical studies do not need any large infrastructures and also the results could lead 

to experimental studies. For this purpose, the chosen perovskite materials have been 

doped with hydrogen atoms and the main physical properties (structural, electronic, 

mechanic, vibrational and thermal properties) have been investigated. 

Chapter 2 presents the theoretical background for this thesis where DFT has been 

briefly detailed. In addition, the required formulas and definitions have been reported 

and the perovskite materials have been detailed in this section. In Chapter 3, the 
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hydrogen storage studies for perovskite materials have been presented. BaXO3 (X= 

Sc or Y) and XTiO3 (X= Mg or Ca) have been studied for this purpose. All structures 

have been studied using Vienna Ab-initio Simulation Package (VASP) [29], [30] and 

have been investigated for their structural, mechanic, electronic and vibrational 

properties. Furthermore, the hydrogen doping has been performed and the hydrogen 

doped structures have been examined to detailed the properties of them. Another 

material group, the anti-perovskite compounds Ca3XH (X= C or N) have been 

presented in Chapter 4 and the hydrogen doping studies have been performed that are 

also detailed in this chapter. Chapter 5 presents the studies for perovskite type hydrides 

XNiH3 (X= Li, Na or K). These hydrides have been optimized and their structural, 

mechanic, electronic and vibrational properties have been studied as well as their 

hydrogen storage properties. The last chapter gives a brief conclusion.  

 

 





 

 

 

7 

 

CHAPTER 2  

 

2. THEORETICAL BACKGROUND 

 

The theoretical calculations are crucial that provide to simulate the materials in 

extreme conditions. These theoretical studies could save time and resources and the 

experiments could be designed with the obtained results. Density Functional Theory 

(DFT) is an elegant theory that does not depend on any experimental results. In 

addition, DFT calculations give consistent results with the experimental results. DFT 

calculations have been applied to physics, chemistry and material science. In this 

thesis, DFT calculations have been performed using the Vienna Ab-initio Simulation 

Package (VASP) [29–30]. In this chapter, the necessary theoretically background of 

DFT has been presented. Also, the required definitions for the calculations of the main 

physical properties of materials have been detailed. Furthermore, the properties of the 

perovskite materials have been given in this chapter. DFT has been studied for several 

decades where several books and reviews could be found in the literature and in this 

chapter, the mainly used sources are References [31–39]. 

 

2.1. Density Functional Theory 

The nature of the atoms and subatomic particles have been investigated in detail with 

the foundations of the quantum mechanics. The Schrödinger equation given in 

Equation 2.1, has been calculated to find the ground state wavefunction of a system 

that could be used to obtain an observable for a system. The solution of the 

Schrödinger equation is rather easy for H atom, while it is not an easy task for many 

body systems. 
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H(𝑟𝑖⃗⃗ , 𝑅𝐼
⃗⃗⃗⃗ )Ψ (𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, ….., 𝑟𝑁⃗⃗⃗⃗ )= E Ψ (𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, ….., 𝑟𝑁⃗⃗⃗⃗ )              (2.1) 

 

In Equation 2.1, H is the Hamiltonian for the many electron system, Ψ is the ground 

state wavefunction and E is the ground state energy. The Hamiltonian is given in 

Equation 2.2 where ri and me are the positions and the mass of the electrons and RI 

and MI are the positions and the mass of the nuclei. 

 

H(𝑟𝑖⃗⃗ , 𝑅𝐼
⃗⃗⃗⃗ )= 

−ħ2

2𝑚𝑒
∑ ∇𝑖

2 + ∑
𝑍𝐼𝑒

2

|𝑟𝑖− 𝑅𝐼|
+ 

1

2𝑖,𝐼𝑖 ∑
𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 − ∑

ħ2

2𝑀𝐼
𝐼 ∇𝑖

2 + 
1

2
∑

𝑍𝐼𝑍𝐽𝑒
2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽    (2.2) 

 

In Equation 2.2, the first term corresponds to the kinetic energy of the electrons, the 

second term corresponds to the electron-nuclei interaction energy, the third term 

corresponds to the electron-electron interaction energy, the fourth term corresponds to 

the kinetic energy of the nuclei and the last term corresponds to the nuclei-nuclei 

interaction energy. However, the electron-electron interaction energy is hard to 

calculate. At this point, some approximations could be made to solve this Hamiltonian. 

The first approximation was proposed by Born and Oppenheimer called Born-

Oppenheimer approximation [40] that separate the motions of the nuclei and the 

electrons and take the nuclei as stationary compared to the electrons. The nuclei are 

more heavy than electron and the kinetic energy of the nuclei can be neglected in 

Equation 2.2. The nuclei-nuclei interaction energy could be taken as a constant that 

behaves like an external potential.  

 

With the Born-Oppenheimer approximation, the Hamiltonian describes the system 

with the effect of the nuclei to the electrons as a fixed external potential. This external 

potential could also include an external electric or magnetic field. Also, the nuclei-

nuclei interaction is a constant and could be added as a constant to external potential. 
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So, if the number of electrons and the external potential are known, the many-body 

Hamiltonian could be solved in principle.  

 

Another simplification could be done taking the electrons as non-interacting particles. 

Hartree made an approximation and the Schrödinger equation could be solved for the 

single particle states [37]. The electrons interact with the average electron density in 

the Hartree approximation that results the self-interaction of the electrons. Then, 

Hartree-Fock approximation takes into account the fermionic nature of the electrons 

and the wavefunction of a many body system could be found with a single Slater 

determinant that minimizes the ground state energy [37]. Hartree-Fock approximation 

takes into account the exchange property of electrons and the self-interaction of the 

electrons has been cancelled with the exchange of the electrons. 

 

The stated approximations could not have the potential to fully describe the many 

body systems. The electrons have both the exchange and correlation properties. When 

the two electrons change their positions, the interaction energy between these 

electrons changes that is the exchange property. Also, the motion of every other 

electron in the system affects each electron that is the correlation property. The 

revolution and the discovery of DFT come with the two papers written by Hohenberg- 

Kohn [41] and Kohn-Sham [42] that take into account the total electron density to 

solve the Schrödinger equation like Khon-Sham equations.   

 

The density (n(𝑟 )) of a many-body system is an observable and could be found with 

the expectation value of the single particle density operator for the many body 

wavefunction using Equation 2.4. The density operator is the probability of finding a 

particle at a position in space such as 𝑟𝑖⃗⃗  as given in Equation 2.3. 

n(𝑟 ) = ∑ 𝛿(𝑟 𝑖=1,𝑁 − 𝑟𝑖⃗⃗ )                 (2.3) 
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n(𝑟 ) =⟨𝛹|𝑛(𝑟 )|𝛹⟩ = ∑ ∫𝛿(𝑟 − 𝑟𝑖⃗⃗ )𝑖=1,𝑁 |Ψ (𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, … . . , 𝑟𝑁⃗⃗⃗⃗ )|
2 𝑑𝑟1⃗⃗⃗  …d𝑟𝑁⃗⃗⃗⃗  

 = N ∫|Ψ (𝑟 , 𝑟2⃗⃗  ⃗, … . . , 𝑟𝑁⃗⃗⃗⃗ )|
2 𝑑𝑟2⃗⃗  ⃗…d𝑟𝑁⃗⃗⃗⃗                (2.4) 

 

If the wavefunction is normalized, the expectation value of the density operator over 

all space gives the total number of electrons N. 

 

The density is more useful that depends on 3 degrees of freedom while the 

wavefunctions of many body system depend on 3N degrees of freedom. The 

statements made by Hohenberg and Kohn [41] are: 

 The external potential that acting on a many body system could be determined 

with the  ground state density. 

 The ground state electron density gives the minimum ground state energy that 

is a functional of the ground state density. 

To prove the first statement, two external potentials 𝑉𝑒𝑥𝑡
(1)

(𝑟 ) and 𝑉𝑒𝑥𝑡
(2)

(𝑟 ) should be 

considered that give the same ground state density. These external potentials belong 

to two Hamiltonians as 𝐻(1)(𝑟 ) and 𝐻(2)(𝑟 ) that give two wavefunctions 𝛹(1)(𝑟 ) and 

𝛹(2)(𝑟 ). For  𝐻(1)(𝑟 ), the ground state energy could be obtained with 𝛹(1)(𝑟 ) : 

 

E(1) = ⟨𝛹(1)|𝐻(1)|𝛹(1)⟩ <  ⟨𝛹(2)|𝐻(1)|𝛹(2)⟩               (2.5) 

 

We assume that the ground state is non-degenerate and the last term could be written 

as follows: 

⟨𝛹(2)|𝐻(1)|𝛹(2)⟩ = ⟨𝛹(2)|𝐻(2)|𝛹(2)⟩ + ⟨𝛹(2)|𝐻(1) − 𝐻(2)|𝛹(2)⟩   



 

 

 

11 

 

      = E(2) + ∫𝑑3r [𝑉𝑒𝑥𝑡
(1)

(𝑟 )- 𝑉𝑒𝑥𝑡
(2)

(𝑟 )]n(𝑟 )             (2.6) 

 

Now, we have 

 

E(1) < E(2) + ∫𝑑3r [𝑉𝑒𝑥𝑡
(1)

(𝑟 )- 𝑉𝑒𝑥𝑡
(2)

(𝑟 )]n(𝑟 )                          (2.7) 

 

If we consider E(2) with the same approach, we will find 

 

E(2) < E(1) + ∫𝑑3r [𝑉𝑒𝑥𝑡
(2)

(𝑟 )- 𝑉𝑒𝑥𝑡
(1)

(𝑟 )]n(𝑟 )                          (2.8) 

 

If we add Equation 2.7 and Equation 2.8, we will come up with a contradictory 

inequality. So, the first statement has been proved and two different external potentials 

that differ more than a constant cannot give the same ground state density. However, 

we still need to solve the many-body problem in the effect of an external potential. 

 

The second statement could be proved considering n(𝑟 ) as the ground state density 

with an external potential Vext. If n(𝑟 ) is known, the properties such as kinetic energy 

could be determined as considering the functional of density. The total energy 

functional is given in Equation 2.9. 

E[n] = T[n] + Eint[n] + ∫𝑑3r Vext(𝑟 )n(𝑟 ) + EN 

        = F[n] +  ∫𝑑3r Vext(𝑟 )n(𝑟 ) + EN               (2.9) 
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In Equation 2.9, EN is the interaction energy of the nuclei and F[n] includes the kinetic 

and potential energies for the electrons in the system. The ground state density n(1)(𝑟 )  

determines the ground state energy. 

 

E(1) = E[n(1)] = ⟨𝛹(1)|𝐻(1)|𝛹(1)⟩              (2.10) 

 

Another density n(2)(𝑟 ) gives a higher energy than E(1). 

 

E(1) = E[n(1)] = ⟨𝛹(1)|𝐻(1)|𝛹(1)⟩ < ⟨𝛹(2)|𝐻(1)|𝛹(2)⟩ = E(2)           (2.11) 

 

So, the total energy of the system could be written as a functional of n(𝑟 ) and the 

minimization with respect to n(𝑟 ) gives the ground state energy.  

 

Kohn and Sham [42] proposed a method to solve this interacting particle systems. 

They take the system as non-interacting particles and add the interaction terms as an 

exchange-correlation functional of the density. The obtained ground state density and 

the ground state energy depend on the accuracy of the exchange-correlation 

functional.  The independent particle Hamiltonian includes the kinetic energy operator 

for the independent particle (Ts[n]) and the external potential and similar to 

Hohenberg-Kohn expression, the ground state energy functional could be written as  

 

EKS = Ts[n] + ∫𝑑3r Vext(𝑟 )n(𝑟 ) + EHartree[n] + EN + Exc [n]           (2.12) 
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EHartree[n] = 
1

2
∫𝑑3 𝑟 𝑑3𝑟′ 𝑛(𝑟 )𝑛(𝑟 ′)

|𝑟 −𝑟 ′|
                         (2.13) 

 

In Equation 2.12, Vext(𝑟 ) is the external potential due to the nuclei and any other 

electric or magnetic field, EHartree[n] is the classical Coulomb interaction for the 

electron density given in Equation 2.13 and EN is the interaction energy between 

nuclei. Also, Equation 2.12 includes the many body effect of exchange and correlation 

as the exchange-correlation energy (Exc[n]). Here, if we compare Equation 2.9 and 

Equation 2.12, the Exc is the difference of the kinetic and the internal interaction 

energies for the true interacting many body systems from the independent particle 

system with electron-electron interactions replaced with Hartree energy. If Exc is 

known explicitly, the exact ground state energy could be determined with the Kohn-

Sham equations for the independent particles. So, after these statements, DFT became 

a promising tool in physics, chemistry and materials science.  

 

2.1.1. Functionals for Exchange and Correlation  

The exchange-correlation functional is a useful consideration in the DFT. Despite Exc 

is very complex, approaches have been performed to define it. One approach for the 

exchange-correlation functional is the Local Density Approximation (LDA) [36] that 

accounts the exchange-correlation energy as simply an integral over all space with the 

same exchange-correlation energy density (𝜖𝑥𝑐
ℎ𝑜𝑚(n(𝑟 ))) as given in Equation 2.14. 

 

𝐸𝑥𝑐
𝐿𝐷𝐴 =  ∫𝑑3r n(𝑟 ) 𝜖𝑥𝑐

ℎ𝑜𝑚(n(𝑟 ))              (2.14) 

 

LDA takes the density as a constant but in some cases this approximation is not valid 

and the variation of the density should be included. So, another approach for the 

exchange-correlation functional is called Generalized Gradient Approximation 
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(GGA) [36] that depends on the gradient of the density (f(n(𝑟 ), ∇(n(𝑟 ))) as given in 

Equation 2.15.  

 

𝐸𝑥𝑐
𝐺𝐺𝐴 =  ∫𝑑3r f(n(𝑟 ), ∇(n(𝑟 ))                          (2.15) 

 

There are different GGA methods that take different f(n(𝑟 ), ∇(n(𝑟 )) such as Perdew-

Wang (PW91) [43], Perdew-Burke-Ernzerhof (PBE) [44], etc. The GGA with 

Perdew-Burke-Ernzerhof (PBE) functional has been employed for the exchange-

correlation calculations within this thesis. 

 

LDA and GGA are the mostly used approximations for the exchange-correlation 

functional. Another approach is LDA+U or GGA+U approach that based on LDA or 

GGA type functional with an additional orbital dependent interaction parameter. The 

interaction parameter is essential for highly localized orbitals as d and f orbitals. The 

U parameter gives better results than LDA or GGA. 

 

Another functional used in DFT calculations is called hybrid functional. The hybrid 

functionals are composed of a density functional and orbital dependent Hartree-Fock 

term. The hybrid functionals could predict better excitation energies than LDA or 

GGA. The one of the most used hybrid functional is B3LYP [45].  

 

2.1.2. Pseudopotentials 

DFT calculations take into account the nuclei and the full electron interactions. 

However, to reduce the complexity of the problem, the pseudopotential approach has 

been used that considers an effective potential acting on the valence electrons and 
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ignore the strong Coulomb interaction with the nuclei and the effects of the core 

electrons. The pseudopotential approach does not reduce the accuracy of the DFT 

calculations because the contributions from the core electrons to the energy of a 

material is minor and the major contribution comes from the valence electrons. The 

pseudopotential approach is based on the fact that the scattering of the electrons from 

the nuclei could be resembled with the weak potential of the valence electrons. Also, 

the nuclei exert an attractive force to the valence electrons and the wavefunction of 

the valence electrons must be orthogonal to the wavefunction of the nuclei. Figure 2.1 

shows the pseudopotential and the pseudo-wavefunction of a system that beyond a cut 

off radius (rc), the wavefunction and the potential are not affected. 

 

Figure 2.1 The Coulomb potential and the wavefunction of a system and the 

pseudopotential and corresponding pseudo-wavefunction [37] 

 

The pseudopotential methods such as norm conserving [46], ultra-soft [47] and 

projector augmented wave (PAW) [48], etc. have been employed for DFT 

calculations. The norm conserving pseudopotentials are normalized and they generate 

the same properties with all electron calculations. The wavefunction of the norm 

conserving pseudopotential has the same norm with the wavefunction of all electron 
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calculations inside a cut off radius and outside the cut off radius, the wavefunction of 

the norm conserving pseudopotential is same with the wavefunction of all electrons. 

However, the norm conserving pseudopotentials are not so smooth and another 

pseudopotential approach is the ultra-soft pseudopotentials having smooth functions. 

The ultra-soft pseudopotentials also give accurate results. Also, the ultra-soft 

pseudopotentials have lower cutoff energy. Furthermore, the PAW method has lower 

cutoff radius than ultra-soft pseudopotentials. The wavefunctions near the core region 

has an oscillating nature due to the strong Coulomb interaction. So, the PAW method 

approximate these oscillating wavefunctions to smooth wavefunctions. The PAW 

method has been used for the electron-ion interaction calculations within this thesis.   

 

The DFT calculations are self-consistent calculations. First, the prediction of the 

ground state electron density is made. Then, the effective potential that depends on 

the density is obtained. The Kohn-Sham equations is solved with this density and the 

ground state energy and the ground state density are obtained. If the initial guess and 

the obtained density are consistent, the calculations are finished. If the initial guess 

and the obtained density are not consistent, another guess is made and the previous 

steps are performed. 

 

2.2. Crystal Systems 

A crystal is formed by arranging atoms in a periodic system. So, the crystal is invariant 

under translation that provides periodic physical properties. There are seven crystal 

systems that formed according to the lattice vectors a, b, c and the angle between these 

vectors α, β, γ namely cubic, trigonal, hexagonal, tetragonal, orthorhombic, 

monoclinic, triclinic [49] and the relation between the lattice vectors and the angles 

for these systems are presented in Table 2.1. These crystal systems form 230 space 

groups according to the symmetry of the systems [49]. The crystal structure of a 

material could be found with the experimental studies in the literature and also some 
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web sites like Bilbao Crystallographic Server [50], Materials Project [51], etc. The 

studied perovskite materials within this thesis could crystallize in five possible crystal 

phases: cubic (Pm-3m), tetragonal (P4mm), hexagonal (P-3m1), rhombohedral (R-3c) 

and orthorhombic (Pbnm) [52] and the studied structures have been obtained from 

literature [52]. Also, the visualization of the crystals have been obtained by using 

VESTA software [53]. 

 

Table 2.1 Seven crystal systems and the relations between the lattice vectors and the 

lattice angles 

Crystal system Lattice vectors Lattice angles 

Triclinic a≠b≠c α≠β≠γ 

Monoclinic a≠b≠c α=γ=90º≠β 

Orthorhombic a≠b≠c α=β=γ=90º 

Tetragonal a=b≠c α=β=γ=90º 

Cubic a=b=c α=β=γ=90º 

Trigonal a=b=c α=β=γ<120º, ≠90º 

Hexagonal a=b≠c α=β=90º, γ=120º 

 

The formation energies have been calculated for the studied compounds to determine 

their energetic stability and to decide their synthesizability using Equation 2.16 where 

𝐸𝑇𝑜𝑡𝑎𝑙
𝐴𝐵𝑋3  is the total energy for ABX3 compound and 𝐸𝑆𝑜𝑙𝑖𝑑

𝐴 , 𝐸𝑆𝑜𝑙𝑖𝑑
𝐵  and 𝐸𝑆𝑜𝑙𝑖𝑑

𝑋  are the 

ground states energies for A, B and X atoms. If the calculated formation energy is 

negative, this compound is energetically stable and also synthesizable.  

 

ΔEFor (ABX3) = 𝐸𝑇𝑜𝑡𝑎𝑙
𝐴𝐵𝑋3  − 𝐸𝑆𝑜𝑙𝑖𝑑

𝐴  − 𝐸𝑆𝑜𝑙𝑖𝑑
𝐵  − 3. 𝐸𝑆𝑜𝑙𝑖𝑑

𝑋            (2.16) 
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2.3. Band Theory 

The energy of the electrons has considered to reveal the properties of the solids. For 

this purpose, the free electron model studied to determine the energy of each electron 

in the atoms. This model considers electrons as non-interacting particles and neglect 

the exchange and correlation property. This model is successful for the metals but it 

does not explain magnetism, superconductivity, optical and electronic properties of 

semiconductors.  

 

Then, a more successful model should be considered to overcome the explanation of 

these properties. The electrons could be considered in a periodic potential as given in 

Equation 2.17 that results from the nuclei and the other electrons.  

 

V(𝑟 ) = V(𝑟  + 𝑟𝑛⃗⃗  ⃗) where 𝑟𝑛⃗⃗  ⃗ = n1𝑎  + n2�⃗�  + n3𝑐                         (2.17) 

 

In Equation 2.17, 𝑟𝑛⃗⃗  ⃗ is the arbitrary translation vector with n1, n2, n3 are integers and 

𝑎 , �⃗� , 𝑐  are lattice vectors. The Schrödinger equation with the periodic potential yields 

the wavefunctions as plane waves: 

 

Ψk(𝑟 ) = uk(𝑟 )𝑒𝑖�⃗� .𝑟  with uk(𝑟 ) = uk(𝑟  + 𝑟𝑛⃗⃗  ⃗)             (2.18) 

 

This periodic potential and the plane wave solution are known as the Bloch’s theorem 

and the states are called the Bloch states of electrons. This periodicity could also be 

obtained with the consideration of the reciprocal lattice. The periodic potential results 

in the same energy eigenvalues for a Bloch state that differ by a reciprocal lattice 

vector 𝐺 : 



 

 

 

19 

 

E(�⃗� ) = E(�⃗�  + 𝐺 )                 (2.19) 

 

These energy values form energy bands called electronic band structure of a solid. For 

the electronic band structure, it is sufficient to know �⃗�  values and consider only the 

first Brillouin zone. The band structure has discrete energy levels and when the atoms 

come together to form the solid, the potentials of the other atoms also affect and the 

width of the band increases as shown in Figure 2.2. In addition, each energy level 

could occupy two electrons due to their spin degree of freedom and the occupation of 

the electrons starts from the lowest lying state.  

  

Figure 2.2 The energy levels of electrons when atoms come closer [54] 

 

The bands are filled with the electrons and some bands are empty. The energy 

difference between the highest occupied level and the lowest unoccupied level is 

known as band gap. If the band gap is large, the material is called insulator. For 

semiconductors, the band gap is lower than that of insulators and the electrons could 

move from occupied bands to unoccupied bands. For the semiconductors, the 
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occupied bands are called valence bands and the unoccupied bands are called the 

conduction bands. For metals, there is no gap between the occupied bands and 

unoccupied bands. Thus, the electrons could move from occupied bands to unoccupied 

bands that results the electrical conductivity of the metals. The Fermi level is defined 

as the level that is between the occupied bands and unoccupied bands.  

 

Another representation of the band structure is the density of states (DOS). The DOS 

is the number of electrons with a dE energy value as: 

 

dZ = 
𝑉

(2𝜋)3
∫ 𝑑�⃗� 

𝐸+𝑑𝐸

𝐸
                (2.20) 

 

The band structure of the solids could provide the information of electrical resistivity, 

optical properties, etc. The several methods have been employed for the calculation of 

the band structures of the solids such as plane wave method, linear augmented plane 

wave method, tight binding method, etc. The VASP employs the plane wave method 

for the band structure calculations and the calculated band structures presented in the 

subsequent chapters have been obtained with this method. 

 

In addition to band structure and the DOS calculations, the Bader partial charge 

analysis has been performed within this thesis. The determination of the partial 

charges of the atoms provide to obtain the charge transfer between the atoms and their 

bonding contributions. The Bader partial charge analysis based on Richard Bader’s 

Atoms in Molecules [55] definition has been employed within this thesis. The method 

is based on the surfaces that has zero flux. This zero flux surface is the separation point 

between the atoms. The charge within this surfaces is the charge of the atom. The 

analysis of the Bader charge calculation has been performed with the algorithm 
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developed by Henkelman et. al. [56]. If the calculated Bader net charge is negative, 

the charge is transferred to the atom, while if it is positive, the charge is transferred 

away from the atom. In addition to the Bader partial charge method, there are several 

other methods such as Mulliken population analysis [57], Hirshfeld charges [58] etc. 

However, VASP is compatible with the Bader partial charge calculation and this 

method has been employed within this thesis.  

 

2.4. Mechanical Properties 

The mechanical properties of solids determine their usage in technological 

applications. DFT calculations provide to obtain the single crystal properties. At this 

point, the relation between the single crystal properties and the polycrystalline 

properties should be made. The single crystal properties could be calculated using two 

methods: volume conserving method [59] and stress-strain method [60]. The stress-

strain method has been employed to the calculations in this thesis that converges faster 

than the volume conserving method. 

 

A stress (𝜎𝑖 ) is defined as the force per unit area with units of pressure and a strain 

(𝜀𝑖) is defined as the amount of change when a distortion applied with respect to the 

reference configuration and it is unitless. There is a relation between the stress and 

strain as given in Equation 2.21.  

 

𝜎𝑖 = ∑ 𝐶𝑖𝑗𝑗=1,6  𝜀𝑖                (2.21) 

 

The constants 𝐶𝑖𝑗 are called elastic constants. The elastic constants 𝐶𝑖𝑗 form a 6x6 

matrix but 𝐶𝑖𝑗 equals to 𝐶𝑗𝑖 and reduce 21 independent elastic constants. According to 

the symmetry of the crystal, these 21 constants could be reduced more. These elastic 
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constants should satisfy the well-known Born stability criteria [61–63] for a 

mechanically stable compound. Table 2.2 lists the Born stability criteria for the crystal 

phases that are the possible crystal phases of the studied perovskite materials in this 

thesis. 

 

 

Table 2.2 The Born stability criteria for the possible crystal phases of the perovskite 

materials 

Crystal phase Born stability criteria 

Orthorhombic 

 

Cii > 0 (i=1,…,6) 

C11 + C22 – 2C12 > 0 

C11 + C33 – 2C13 > 0 

C22 + C33 – 2C23 > 0 

[C11 + C22 + C33 +2(C12 + C13 + C23)]>0 

 

Tetragonal 

 

Cii > 0 (i=1, 3, 4, 6) 

C11  –  C12 > 0 

C11 – 2C13 + C33> 0 

2C11 + 2C12 + 4C13 + C33 > 0 

 

Rhombohedral 

and  

Hexagonal 

 

C11 > 0 

C11  –  C12 > 0 

C44 > 0 

(C11 + C12) C33 - 2C12
2  > 0 

 

Cubic 

 

C11 > 0 

C12 > 0 

C44 > 0 

C12 > C44 

C11 + 2C12 > 0 

C11 – C12 > 0 
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The polycrystalline properties as the bulk modulus (B) and the shear modulus (G) 

could be obtained using these elastic constants. The bulk modulus is the resistance to 

change when a hydrostatic pressure is applied to the material. The bulk modulus is 

related to the stiffness of a material. The shear modulus also called modulus of rigidity 

is the ratio of the shear stress to the shear strain.  The Voigt approach [64] gives the 

upper bound for these moduli while the Reuss approach [65] gives the lower bound. 

The V and R subscripts correspond to the calculations with the Voigt and Reuss 

approaches in the following equations.  

 

The bulk and shear modulus of the orthorhombic phase are as follows: 

𝐵𝑉= 
𝐶11+ 𝐶22+ 𝐶33+2𝐶12+ 𝐶13+ 𝐶23

9
              (2.22) 

𝐺𝑉= 
𝐶11+ 𝐶22+ 𝐶33+3𝐶44+ 𝐶55+ 𝐶66− 𝐶12+ 𝐶13+ 𝐶23

15
             (2.23) 

 

a = 𝐶11 𝐶22 + 𝐶33 - 2𝐶23 + 𝐶22 𝐶33  - 2𝐶13 - 2𝐶33 𝐶12             (2.24) 

b = 𝐶12 2𝐶23 - 𝐶12 + 𝐶13 2𝐶12 - 𝐶13 + 𝐶23 2𝐶13 - 𝐶23             (2.25) 

c = 𝐶11 𝐶22 + 𝐶33 + 𝐶23 + 𝐶22 𝐶33 + 𝐶13 + 𝐶33 𝐶12            (2.26) 

d= 𝐶12 𝐶23 + 𝐶12 - 𝐶13 𝐶12 + 𝐶13 - 𝐶23 𝐶13 + 𝐶23             (2.27) 

Δ = 𝐶13 𝐶12 𝐶23 - 𝐶13 𝐶22 + 𝐶23 𝐶12 𝐶13 - 𝐶23 𝐶11 + 𝐶33 𝐶11 𝐶22 - C12
2           (2.28) 

𝐵𝑅= 
∆

𝑎+𝑏
                            (2.29) 

𝐺𝑅 = 15 {4
𝑐−𝑑

∆
+ 3 [

1

𝐶44
+ 

1

𝐶55
+ 

1

𝐶66
]}-1              (2.30) 
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The bulk and shear moduli of the tetragonal phase are as follows: 

𝐵𝑉 = 
2𝐶11+𝐶12 + 𝐶33 +4𝐶13  

9
                          (2.31) 

𝐺𝑉 = 
4𝐶11−2𝐶12+2𝐶33−4𝐶13+12𝐶44+6𝐶66

30
              (2.32) 

 

𝐵𝑅 = 
𝐶11+𝐶12  𝐶33 −2𝐶13

2  

𝐶11+ 𝐶12+2𝐶33−4𝐶13
                          (2.33) 

𝐺𝑅 = 
15

18𝐵𝑉

𝐶11+ 𝐶12 𝐶23− 2C13
2 + 

6

C11  –  C12
+ 

6

𝐶44
+ 

3

𝐶66

             (2.34) 

 

The bulk and shear moduli of the rhombohedral and hexagonal phases are as follows: 

𝐵𝑉 = 
2𝐶11+ 𝐶12+4𝐶13+ 𝐶33

9
               (2.35) 

𝐺𝑉 = 
𝐶11+ 𝐶12+2𝐶33−4𝐶13+12𝐶44+12 𝐶66

30
              (2.36) 

 

𝐵𝑅 = 
𝐶11+ 𝐶12𝐶33−2𝐶13

2

𝐶11+ 𝐶12+2𝐶33−4𝐶13
               (2.37) 

𝐺𝑅 = 
5 [𝐶11+ 𝐶12 𝐶33−2𝐶13

2  𝐶44  𝐶66 ]

6𝐵𝑉𝐶44 𝐶66+2 𝐶11+ 𝐶12 𝐶33−2𝐶13
2  𝐶44 + 𝐶66  

             (2.38) 

 

The bulk and shear moduli of the cubic phase are as follows: 

𝐵𝑉 = 
𝐶11+2𝐶12

3
                 (2.39) 

𝐺𝑉 = 
𝐶11− 𝐶12+3𝐶44

5
                (2.40) 
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𝐵𝑅 = 𝐵𝑉                 (2.41) 

𝐺𝑅 = 
5𝐶11− 𝐶12𝐶44

4𝐶44+3𝐶11− 𝐶12
                (2.42) 

 

The Hill approach [66] gives the average of these Voigt and Reuss bounds that is close 

to the experimental results. The B and G values could be obtained with the average of 

the above Bv, BR and Gv, GR values.  

 

B = 
𝐵𝑅+ 𝐵𝑉

2
 G= 

𝐺𝑅+ 𝐺𝑉

2
               (2.43) 

 

The G/B ratio also called Pugh’s modulus and the B/G ratio could be useful to find 

out the bonding nature and the brittle or the ductile character of a material, 

respectively. If the G/B ratio has a value around 1.1, the dominant bonding type of the 

material is covalent [67]. Besides, the materials having dominantly ionic bonding have 

the G/B ratio around 0.6 [67]. For the B/G ratio, the critical value is 1.75. The ductile 

materials have the B/G ratio higher than 1.75 while the brittle materials have the B/G 

ratio lower than 1.75. The ductile materials are preferred for the portable hydrogen 

storage systems. 

 

Using obtained B and G values, the other polycrystalline properties could be 

determined. The Young’s modulus (E) is the ratio of the stress to strain when a force 

is applied that compress or extend the material. If the Young’s modulus is high, the 

stiffness of a material is also high. The Young’s modulus could be calculated using 

Equation 2.44 for all crystal structures. 
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E = 
9𝐺𝐵

𝐺+3𝐵
                 (2.44) 

 

The Poisson’s ratio (ν), another polycrystalline property, is defined as the measure of 

the expansion of perpendicular directions to the direction of compression or the 

measure of contraction of perpendicular directions to the direction of stretching. 

Equation 2.45 could be used to obtain the Poisson’s ratio with obtained B and G 

values. Moreover, the Poisson’s ratio could be applied for the determination of the 

bonding nature of a material.  If the Poisson’s ratio is around 0.1, this means that the 

material has covalent bonding and if it is 0.25, the material has ionic bonding. 

 

ν = 
1

2
 [

(𝐵− 
2

3
 𝐺)

(𝐵+ 
2

3
 𝐺)

]                 (2.45) 

 

The elastic anisotropic factors (A) also called Zener anisotropic factors affect the 

physical properties of a material for a preferred direction and could result in 

dislocation or cracks [68]. The elastic anisotropic factors are defined with A1 for (1 0 

0) plane, A2 for (0 1 0) plane and A3 for (0 0 1) plane and could be calculated using 

the following equations [68]: 

 

𝐴1 = 
4𝐶44

𝐶11+ 𝐶33−2𝐶13
                (2.46) 

 

𝐴2 = 
4𝐶55

𝐶22+ 𝐶33−2𝐶23
                (2.47) 

 

𝐴3 = 
4𝐶66

𝐶11+ 𝐶22−2𝐶12
                (2.48) 
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The cubic crystals have A1 = A2 = A3 and the tetragonal crystals have A1 = A2 due to 

the symmetry of the crystals. The isotropic materials have the anisotropic factors that 

equal to one. The deviation from one for A1, A2 and A3 results in anisotropy for that 

material. Another consideration for the anisotropic factors is the anisotropic factors in 

compression and shear (AB and AG) [68] and the universal anisotropic factor (AU) [69] 

that could be calculated with the following equations. 

 

𝐴𝐵 = 
𝐵𝑉− 𝐵𝑅

𝐵𝑉+ 𝐵𝑅
                 (2.49) 

 

𝐴𝐺  = 
𝐺𝑉− 𝐺𝑅

𝐺𝑉+ 𝐺𝑅
                 (2.50) 

 

𝐴𝑈 = 5
𝐺𝑉

𝐺𝑅
 + 

𝐵𝑉

𝐵𝑅
 – 6                (2.51) 

 

The anisotropic factors in compression and shear are the percentage factors and if they 

are equal to zero, the material is isotropic while if they are different than zero, the 

material is anisotropic. Same criterion is applied to the universal anisotropic index, so 

the universal anisotropic factors of the isotropic materials are zero. In addition to the 

determination of  the anisotropy of a material, the visualization of the some 

mechanical properties could be useful to the determination of the anisotropy of that 

material in some crystal directions. The direction dependent Young’s modulus, linear 

compressibility, shear modulus and Poisson’s ratio have been studied and will be 

presented in the next chapters. The ELATE software [70] have been used for the 

visualization of these properties. 
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Another important parameter is Debye temperature (ΘD) that is related to the heat 

capacity and melting temperature of the solids. The Debye temperature could be 

calculated using the elastic constants with the following equation [71]: 

 

𝛩𝐷 = 
ħ

𝑘𝐵
[
3𝑛

4𝜋
 (

𝑁𝐴𝜌

𝑀
)]

1/3

𝑉𝑚               (2.52) 

 

where ħ is the Planck constant, kB is the Boltzman constant, n is the number of atoms 

per formula unit, NA is the Avogadro’s number, ρ is the density, M is the mass per 

formula unit and Vm is the average wave velocity.  

 

The wave velocities could be determined using following equations [71]: 

 

𝑉𝑙 = √
3𝐵+4𝐺

3𝜌
                            (2.53) 

𝑉𝑡 = √
𝐺

𝜌
                            (2.54) 

𝑉𝑚 = [
1

3
 (

2

𝑉𝑡
3 + 

1

𝑉𝑙
3)]

−1/3

                          (2.55) 

 

The thermal conductivity of a material should be considered that is related to the 

technological applications for that material. The empirical models have been used to 

determine the thermal conductivity of solid materials. In this thesis, two empirical 

models as Clarke model [72] and Cahill model [73] have been employed for the 

determination of the thermal conductivities of the studied compounds with the 

following equations [74]: 
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Clarke’s model: 

 

𝜆𝑚𝑖𝑛 = 0.87 𝑘𝐵 𝑀𝑎
−3/2

𝐸2/3𝜌1/6 𝑀𝑎 = [
𝑀

(𝑛.𝑁𝐴)
]            (2.56) 

 

 

Cahill’s model: 

 

𝜆𝑚𝑖𝑛 =
𝑘𝐵

2.48
𝑛2/3(𝑉𝑙 + 2𝑉𝑡)               (2.57) 

 

where Ma is the average mass per atom and n is the density of number of atoms per 

volume. 

 

2.5. Vibrational Properties 

The energy of solids could be studied in two different approach: one is the study of 

electrons in the solid as explained in Section 2.3 and the other is the vibrations of the 

atoms around their equilibrium positions. The lattice vibrations arise from the small 

movements of atoms in the solids that are called phonons. Similar to photons, a 

phonon could also be both a wave or a particle. The particle phonon arises from the 

quantization of the vibrations. If the temperature of the solid increases, the number of 

the phonons increases.  

 

The best way to explain the phonons is the one dimensional problem. In this problem, 

the atomic bonds are considered as springs that bound the atoms each other. Then, the 
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problem is reduced to Hooke’s law that is the result of the Taylor expansion of the 

potential and taking the first derivative of the potential vanishing at equilibrium 

position. Any change in position of an atom could result a force that is proportional to 

a force constant. The one dimensional problem consists of N atoms with mass M at rn 

positions. If the only neighborhood interaction is considered, the force on nth atom is 

 

Fn = C(rn+1- rn) + C (rn-1-rn)                          (2.58) 

 

The equation of motion is 

 

M
𝑑2𝑟𝑛

𝑑𝑡2  = C(rn+1 + rn-1 – 2rn)                          (2.59) 

 

The solutions of Equation 2.59 has the form of e-iωt and 
𝑑2𝑟𝑛

𝑑𝑡2  equals to –ω2rn. Then the 

equation of motion becomes 

 

-M ω2rn = C(rn+1 + rn-1 – 2rn)               (2.60) 

 

Then rn has the travelling wave solutions as 

 

rn±1 = r einka e±ika                            (2.61) 

 

a is the distance between the atoms and k is the wave vector. With Equation 2.61, the 

equation of motion becomes 
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-M ω2r einka = C r [ei(n+1)ka + ei(n-1)ka -2einka]             (2.62) 

 

Cancelling reinka gives 

 

M ω2 = - C [eika + e-ika -2]               (2.63) 

Using the relation 2coska = eika + e-ika, the dispersion relation is obtained as 

  

ω2 = (2C/M)(1-coska)                (2.64) 

 

or using another trigonometric identity it could be expressed as 

 

ω2 = (4C/M)sin2(
1

2
𝑘𝑎) or ω = (4C/M)1/2 |sin(

1

2
𝑘𝑎)|            (2.65)  

 

Then one can draw ω versus k and obtain Figure 2.3. This figure is called phonon 

dispersion curve. 
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Figure 2.3 The plot of ω versus k [75] 

 

The above consideration of one dimensional problem is a simplified version of the 

vibrational properties of solids. The solids have 3 degrees of freedom and therefore 

the resulting vibrations has 3N degrees for a solid containing N atoms. The vibrations 

are classified into two categories: acoustic and optical phonon branches. The number 

of the acoustic branches are three and the remaining 3N-3 branches are the optical 

branches.  

 

For the determination of the phonon frequencies, the force constants should be 

determined. For this purpose, the linear response method [76] and the finite 

displacement method [77] could be employed. The linear response method perturbs 

the solid and obtain the resultant frequencies. For the finite displacement method, one 

of the atoms is displaced and the resultant phonon frequencies could be obtained. The 

linear response method has been employed for the vibrational properties calculations 

within this thesis.  
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2.6. Hydrogen Storage Properties 

Hydrogen storage properties of materials are important for the consideration in the 

hydrogen storage applications. There are several properties that could be considered 

such as gravimetric hydrogen storage capacity, hydrogen desorption temperature, 

cyclic stability, kinetics, hydrogen desorption pressure, etc. [13]. These properties 

could be determined with the experimental methods such as gas sorption 

measurements, temperature programmed methods, etc. and the theoretical modelling. 

In this thesis, the gravimetric hydrogen storage capacity and the hydrogen desorption 

temperature have been studied in detail. These properties could be determined with 

the bulk DFT studies of the solid materials.  

 

The gravimetric hydrogen storage capacity is the amount of hydrogen stored per unit 

mass of a material that could be calculated using Equation 2.66 [13]. In Equation 2.66, 

H/M is the hydrogen to material atom ratio, MH is the molar mass of hydrogen and 

MHost is the molar mass of the material. As stated in Chapter 1, the US DOE target for 

the gravimetric storage capacity is 4.0 wt.% for single used portable power equipment 

and 3.0 wt.% for rechargeable power equipment. It should be noted that these capacity 

targets are for the whole equipment not only the capacity of the material. 

 

𝐶𝑤𝑡% = (
(
𝐻

𝑀
)𝑀𝐻

𝑀𝐻𝑜𝑠𝑡+(
𝐻

𝑀
)𝑀𝐻

× 100)%                  (2.66) 

 

The hydrogen storage materials are characterized with the pressure composition 

isotherms (PCI) [78] as given in Figure 2.4. As the pressure increases the hydrogen 

atoms diffuses to material which correspond to the α phase in the figure. At a plateau 

pressure, there are two phases as the α phase and the β phase that is the hydride phase 

and with the increasing pressure, the α phase transforms to the β phase and similar to 
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the α phase region, the increasing of the pressure results in the increasing of H/M. The 

temperature is important for PCIs and different temperatures show different PCI as 

shown in the figure. 

 

Figure 2.4 The pressure composition isotherm for a metal-hydride system and the 

right plot shows the Van’t Hoff relation of this material [78] 

 

The PCIs could be described with Equation 2.67 where P is the decomposition 

pressure, P0 is equilibrium pressure, R is the universal gas constant, ΔH is the reaction 

enthalpy and ΔS is the change in entropy. 

 

ln
𝑃

𝑃0
 = 

∆𝐻

𝑅𝑇
 - 

∆𝑆

𝑅
                 (2.67) 

 

The right part of Figure 2.4 shows this relation given in Equation 2.67 also called 

Van’t Hoff equation [13] where the slope gives ΔH/R and the intercept gives ΔS/R. If 

the decomposition pressure is taken as 1 bar so the term lnP/P0 equals to zero which 
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results to the following equation: 

 

∆𝐻 = 𝑇 × ∆𝑆                 (2.68) 

For the hydrogen storage materials, the entropy change mainly comes from the 

hydrogen atoms due to changing from solid phase to the gas phase. So, ΔS could be 

taken as 130.7 J/mol.K [79] that is the entropy change of hydrogen at 1 bar pressure. 

The hydrogen desorption temperature could be calculated with Equation 2.68 that is 

the required temperature to release the stored hydrogen at 1 bar pressure. As expressed 

in Chapter 1, the required operating temperature should be between -40 °C and 60 °C 

for portable power equipment. So, the hydrogen desorption temperatures should be at 

least close to the upper limit. 

 

2.7. Perovskite Materials 

The mineral CaTiO3 discovered by German mineralogist Gustav Rose and it named 

as perovskite after Russian mineralogist Lev Perovski [80]. After then, the materials 

having the same crystal structure with CaTiO3 are called perovskite materials [81]. In 

addition, there are abundant perovskite materials such as MgSiO3, FeSiO3, etc. in the 

Earth’s crust [82]. The general chemical formula for the perovskite materials are 

ABX3 where A and B are cations and X is an anion [83]. The ideal crystal structure of 

perovskite materials is cubic as shown in Figure 2.4. The A cation could be 

monovalent, divalent or trivalent metal ions while the B cation is a transition metal. 

The A cation is surrounded by 12 equidistant X anions while the B cation is 

surrounded by 6 X anions.  
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Figure 2.5 The ideal cubic crystal structure of perovskite materials [84] 

 

The well-known cubic perovskite structures are SrTiO3, KTaO3, and BaTiO3 [82]. The 

determination of the formation of perovskite compounds could be made using the 

Goldschmidt tolerance factor (t) as given in Equation 2.69 [84] where rA, rb and rx are 

the atomic radii of A, B and X ions. The ideal cubic perovskite structure has a tolerance 

factor of one and if the tolerance factor is in the range between 0.89 ≤ t ≤ 1.00, the 

cubic crystal phase is still attainable. However, due to the difference of the atomic 

radii of the atoms distorted structures could be formed and Figure 2.6 shows the 

perovskite structures for orthorhombic and hexagonal crystal phases [85]. The 

perovskite compounds generally compose in cubic, orthorhombic, hexagonal, 

tetragonal and rhombohedral crystal phases [52]. Also, the crystal phases could be 

transform from rhombohedral to orthorhombic, orthorhombic to tetragonal and 

tetragonal to cubic phases with the temperature increment [85]. 

 

t = 
(𝑟𝐴+ 𝑟𝑥)

√2 (𝑟𝐵+ 𝑟𝑥)
                 (2.69) 
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Figure 2.6 (a) Orthorhombic and (b) hexagonal perovskite crystal structures [85] 

 

The perovskite materials are ceramic materials with proton conductivity, 

ferroelectricity, super conductivity, high dielectric constant, etc. [86] that enable to 

use them in many technological fields such as in solar cells [87], optoelectronics [88], 

proton conductors [89], etc. The perovskite compounds could be synthesized with 

solid-state reactions, gas phase preparations, precipitation, etc. [90]. The aim of this 

thesis comes from the investigation of the perovskite materials for hydrogen storage 

especially due to the ceramic nature of perovskite materials applying in portable power 

applications.  

 

2.8. VASP Software 

The Vienna Ab-initio Simulation Package (VASP) [29], [30] is based on DFT which 

calculate the main physical properties of solids such as elastic constants, band 

structures, density of states, phonon dispersion curves, optical properties, etc. VASP 

could take the pseudopotentials as LDA and GGA. Also, the hybrid potentials could 

be employed to VASP. VASP needs four input files as INCAR, POSCAR, POTCAR 

and KPOINTS. The INCAR file is the input file that has the required parameters for 
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the calculations. The POSCAR file includes the crystal information with the positions 

of each atom. The POTCAR file has the potentials of the atoms in the structure. The 

KPOINTS file defines the number of k-points in the first Brillouin zone. For the k-

points generation two methods could be used: Gamma centered k-points and 

Monkhorst-Pack scheme. These input files have been presented in Appendix B. Also, 

“VASP.5.4.4” version has been used in this thesis. 

 

The DFT calculations have been performed with ISIF=3 parameter to conserve the 

beginning crystal symmetry. Also, the force convergence criterion has been set to 

lower than 10-9 eV/Ǻ for the stresses and Hellmann-Feynman forces. The energy 

tolerance criterion has been set to 10-10 eV per unit cell for the solution of the Kohn-

Sham equations. The k-points have been sampled with a gamma centered [91] or 

Monkhorst-Pack [92] grid according to the crystal structure. The cut off energies have 

been determined according to the compound. Table 2.2 lists the employed k-points 

and the cutoff energies for the studied compounds.  

Table 2.3 The k-points (MP for Monkhorst-Pack grid and GC for Gamma centered 

grid) and the cut off energies(Ecut off in eV) for the studied compounds 

Compound Crystal Phase K-point Ecut off 

BaScO3 

Orthorhombic 6 x 8 x 8 MP 

1000 

Tetragonal 18 x 18 x 14 MP 

Rhombohedral 16 x 16 x 16 MP 

Hexagonal 12 x 12 x 3 GC 

Cubic 16 x 16 x 16 GC 

BaYO3 

Orthorhombic 6 x 8 x 8 MP 

1000 

Tetragonal 10 x 10 x 8 GC 

Rhombohedral 14 x 14 x 14 MP 

Hexagonal 12 x 12 x 3 GC 

Cubic 15 x 15 x 15 GC 

MgTiO3 Cubic 12 x 12 x 12 GC 800 

CaTiO3 Cubic 12 x 12 x 12 GC 600 

Ca3CH and Ca3NH Cubic 10 x 10 x 10 GC 550 

LiNiH3 Cubic 12 x 12 x 12 GC 600 

NaNiH3 and KNiH3 Cubic 12 x 12 x 12 GC 550 
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CHAPTER 3  

 

3. HYDROGEN STORAGE STUDIES FOR PEROVSKITE MATERIALS 

 

3.1. Introduction 

In this chapter, structural, mechanic, electronic, vibrational and hydrogen storage 

properties of perovskite materials have been investigated. For this purpose, two 

material groups have been studied which are BaXO3 where X is Sc or Y, and XTiO3 

where X is Mg or Ca. In the following sections, the studies for these perovskite 

compounds will be presented separately for BaXO3 and XTiO3. In addition, some part 

of the studies for BaXO3 have been accepted to publish in Canadian Journal of Physics 

with the title of “DFT Study of BaScO3H0.5 Compound and Its Hydrogen Storage 

Properties” and have been under review in International Journal of Hydrogen Energy 

with the title of “Properties of BaYO3 Perovskite and Hydrogen Storage Properties of 

BaYO3Hx”. Moreover, some part of the studies for XTiO3 have been published in 

International Journal of Hydrogen Energy with the title of “MgTiO3Hx and CaTiO3Hx 

Perovskite Compounds for Hydrogen Storage Applications”.  

 

3.2. Studies for BaXO3 ( X= Sc or Y) 

3.2.1. Structural Optimization for BaXO3 

BaXO3 (where X is Sc or Y) perovskite compounds have been investigated using 

VASP. Perovskite compounds generally crystallize in five possible crystal phases: 

cubic (Pm-3m), tetragonal (P4mm), hexagonal (P-3m1), rhombohedral (R-3c) and 

orthorhombic (Pbnm) [52]. Therefore, these compounds have been studied in these 

crystal structures in order to determine the most stable phases of these compounds and 

then the hydrogen bonding studies have been performed using the most stable phases 
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of these compounds. In literature, Narejo et. al. [93] studied BaScO3 perovskite 

compound in the cubic crystal structure and there is no study for the remaining crystal 

phases. Also, BaYO3 is a hypothetical compound and there is no study to compare the 

obtained results for this compound. Figure 3.1 shows the crystal structures for the five 

possible crystal phases of BaXO3 and Table 3.1 lists the optimized lattice parameters, 

the calculated formation energies using equation given in Chapter 2 and the atomic 

positions. The lattice parameter for the cubic phase of BaScO3 is consistent with the 

literature. All the structures have negative formation energies that imply these 

structures are energetically stable and synthesizable. In addition, the formation 

energies for BaScO3 phases are more negative than BaYO3 phases which shows that 

BaScO3 phases are energetically more stable except the cubic phase.  

 

Figure 3.1 The crystal structures of BaXO3 for cubic, tetragonal, hexagonal, 

rhombohedral, and orthorhombic phases 
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Table 3.1 The optimized lattice parameters (a, b, c in Å), the calculated formation 

energies (ΔEFor in eV/atom) and the atomic positions for BaXO3 

Phase Compound a b c ΔEFor Atomic Positions 

Orthorhombic 

BaScO3 5.94 8.41 5.95 -2.78 

Ba: 4c (0.482, 0.250, 0.505) 

Sc: 4b (0.500, 0.000, 0.000) 

O1: 4c ( 0.514, 0.250, 0.073) 

O2: 8d (0.776, 0.539, 0.225) 

BaYO3 6.36 9.79 6.37 -1.10 

Ba: 4c (0.499, 0.250, 0.000) 

Y: 4b (0.500, 0.000, 0.000) 

O1: 4c ( 0.999, 0.250, 0.500) 

O2: 8d (0.749, 0.499, 0.250) 

Tetragonal 

BaScO3 3.95 3.95 5.19 -2.69 

Ba: 1a (0.000, 0.000, 0.123) 

Sc: 1b (0.500, 0.500, 0.641) 

O1:2c (0.500, 0.000, 0.753) 

O2: 1b (0.500, 0.500, 0.259) 

BaYO3 3.88 3.88 6.36 -2.26 

Ba: 1b (0.500, 0.500, 0.602) 

Y: 1a (0.000, 0.000, 0.016) 

O1:2c (0.500, 0.000, 0.845) 

O2: 1b (0.500, 0.500, 0.219) 

Rhombohedral 

BaScO3 6.43 6.43 6.43 -2.64 

Ba: 6c (0.000, 0.000, 0.127) 

Sc: 6c (0.000, 0.000, 0.342) 

O: 18f (0.068, 0.318, 0.263) 

BaYO3 6.61 6.61 6.61 -1.65 

Ba: 6c (0.000, 0.000, 0.370) 

Y: 6c (0.000, 0.000, 0.153) 

O: 18f (-0.046, 0.262, 0.240) 

Hexagonal 

BaScO3 3.81 - 13.59 -2.56 

Ba: 2a (0.000, 0.000, 0.000) 

Sc: 2c (0.333, 0.666, 0.250) 

O1: 2b (0.000, 0.000, 0.250) 

O2: 4f (0.333, 0.666, 0.398) 

BaYO3 3.94 - 14.15 -1.35 

Ba: 2c (0.333, 0.666, 0.205) 

Y: 2a (0.000, 0.000, 0.000) 

O1: 2b (0.000, 0.000, 0.250) 

O2: 4f (0.333, 0.666, 0.062) 

Cubic 

BaScO3 4.59 - - -0.70 

Ba: 1a (0.000, 0.000, 0.000) 

Sc: 1b (0.500, 0.500, 0.500) 

O: 3d (0.500, 0.000, 0.000) 

BaScO3  4.14 [93] - - - - 

BaYO3 4.43 - - -2.67 

Ba: 1a (0.000, 0.000, 0.000) 

Y: 1b (0.500, 0.500, 0.500) 

O: 3d (0.500, 0.000, 0.000) 

 

In order to determine the most stable crystal phase of BaXO3, the energy as a function 

of volume and the enthalpy as a function of pressure have been studied. Figure 3.2 

shows the energy as a function of volume for BaScO3 and as can be seen from the 

figure, the most stable crystal structure is the orthorhombic crystal phase having the 

lowest volume and the lowest energy. In addition, there is no phase transition above 0 
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GPa pressure as can be seen from Figure 3.3 which shows the enthalpy as a function 

of pressure for BaScO3. Figure 3.4 shows the energy as a function of volume for 

BaYO3 and as can be seen from the figure, the most stable crystal phase of this 

structure is the cubic phase of BaYO3 among the considered phases. Furthermore, 

there is no phase transition above 0 GPa pressure for BaYO3 as can be seen from 

Figure 3.5 which shows the enthalpy as a function of pressure for BaYO3. 

 

 

Figure 3.2 The energy as a function of volume for different crystal phases of BaScO3 
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Figure 3.3 The enthalpy as a function of pressure for different crystal phases of 

BaScO3 

 

Figure 3.4 The energy as a function of volume for different crystal phases of BaYO3 



 

 

 

44 

 

 

Figure 3.5 The enthalpy as a function of pressure for different crystal phases of 

BaYO3 

 

In order to determine the crystalline nature which plays a key role for the structural 

properties of materials, X-ray diffraction patterns are studied. Figure 3.6 shows the X-

ray diffraction patterns for BaScO3 orthorhombic phase and BaYO3 cubic phase. 

These patterns have been obtained using VESTA program [53] with Cu Kα source 

that has wavelength of 1.541 Å. Both compounds show polycrystalline property as 

can be deduced from the figure. In addition, BaScO3 orthorhombic phase has 2θ value 

as 21.12° in (2 0 0) plane and BaYO3 cubic phase has 2θ value as 28.48° in (-1 1 0) 

plane. 
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Figure 3.6 X-ray diffraction patterns for BaScO3 orthorhombic phase and 

BaYO3 cubic phase 

 

3.2.2. Electronic Properties for BaXO3 

The band structures and corresponding partial density of states (PDOS) have been 

presented that were obtained along the high symmetry points in the first Brillouin 

zone. The results for the most stable phases have been presented here and the results 

for the remaining phases have been presented in Appendix A not to cover a lot of 

space in this section. Figure 3.7 shows the band structure and Figure 3.8 shows the 

PDOS for BaScO3 orthorhombic phase. BaScO3 orthorhombic phase shows 

semiconducting behavior as can be deduced from the figure and the band gap is 3.80 

eV. Also, the most significant contribution to the PDOS above the Fermi level comes 

from the d states of Sc atoms.  
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Figure 3.7 The band structure for BaScO3 orthorhombic phase 

  

Figure 3.8 The partial density of states for BaScO3 orthorhombic phase 
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Figure 3.9 shows the band structure for BaYO3 cubic phase that shows semiconducting 

behavior with 4.30 eV band gap. Moreover, the PDOS for BaYO3 cubic phase has 

been shown in Figure 3.10 and the most significant contribution to the PDOS above 

the Fermi level comes from the p states of Ba atom. 

 

Figure 3.9 The band structure for BaYO3 cubic phase 

 

Figure 3.10 The partial density of states for BaYO3 cubic phase 
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Figure 3.11a and Figure 3.11b show the electron-density distributions for BaScO3 

orthorhombic phase in (1 1 0) plane and BaYO3 cubic phase in (1 0 0) plane, 

respectively. As can be seen from the figures, both compounds have ionic bonding. In 

addition, the Bader partial charge analysis were performed in order to determine the 

charge of each ion in the structure. If the Bader net charge is positive, the charge is 

transferred away from the atom. On the other hand, the charge is transferred to the 

atom when the Bader partial charge is negative. Table 3.2 lists the obtained Bader net 

partial charges for BaXO3 where the total Bader net charges are zero. Also, the charge 

is transferred away from the O atoms while it is transferred to Sc/Y and Ba atoms. 

BaYO3 cubic phase has one Ba atom, one Y atom and three O atoms in its unit cell, 

while BaScO3 orthorhombic phase has four Ba atoms, four Sc atoms and twelve O 

atoms in its unit cell. So, the net charge for the same atom in these compounds differ.  

 

Table 3.2 The Bader net charges (in units of e per unit cell) for BaXO3 

Ion BaScO3 BaYO3 

Ba 6.46 1.54 

Sc or Y 8.00 1.99 

O -14.46 -3.53 
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Figure 3.11 The electron-density distributions for (a) BaScO3 orthorhombic phase 

and (b) BaYO3 cubic phase 

 

3.2.3. Mechanical Properties for BaXO3 

The elastic constants (Cij) for BaXO3 compounds were calculated using stress-strain 

method. Table 3.3 lists the obtained elastic constants for the five possible phases of 

BaXO3. These elastic constants must satisfy the Born stability criteria and the details 

of these criteria have been presented in Chapter 2. The tetragonal and the cubic phases 
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of BaScO3 compound have not satisfied these criteria so these phases are found to be 

mechanically unstable. In addition, only the orthorhombic phase is mechanically 

unstable for BaYO3. The remaining structures for BaYO3 are found to be mechanically 

stable. The further mechanical properties for the stable compounds could be obtained 

using these constants. 

 

Table 3.3 The calculated elastic constants (Cij in GPa) for BaXO3 

BaScO3 C11 C12 C13 C22 C23 C33 C44 C55 C66 

Orthorhombic 217.30 63.90 64.20 185.20 96.80 185.70 78.20 44.20 44.20 

Tetragonal 202.60 39.50 70.50   135.60 50.00  -4.50 

Rhombohedral 114.97 81.08 73.71   110.67 26.07  0.54 

Hexagonal 113.62 65.71 59.47   178.29 30.74  23.96 

Cubic 76.90 55.90     -2.60   

BaYO3 C11 C12 C13 C22 C23 C33 C44 C55 C66 

Orthorhombic 82.90 69.80 69.20 55.60 74.70 55.30 -14.10 -1.20 -0.50 

Tetragonal 135.50 46.70 52.70   128.10 34.00  1.60 

Rhombohedral 132.19 67.70 50.27   100.94 21.15  30.21 

Hexagonal 135.97 98.56 38.09   76.91 23.07  18.71 

Cubic 182.60 37.90     33.50   

 

Table 3.4 lists the obtained bulk modulus, shear modulus, Young’s modulus, 

Poisson’s ratio, G/B ratio and B/G ratio for orthorhombic, rhombohedral and 

hexagonal phases of BaScO3 and tetragonal, rhombohedral, hexagonal and cubic 

phases of BaYO3. The highest bulk modulus, shear modulus and Young’s modulus 

belong to the orthorhombic phase of BaScO3. All these phases have ionic bonding 

according to the results of the Poisson’s ratio and G/B ratio that are consistent with 

the electron-density distributions. Also, these phases are ductile materials due to 

having B/G ratios higher than 1.75. 
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Table 3.4 Bulk modulus (B in GPa), Shear modulus (G in GPa), Young’s modulus (E 

in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for the mechanically stable 

phases of BaXO3 

Phase Compound B G E ν G/B B/G 

Orthorhombic BaScO3 115.30 55.40 143.20 0.29 0.48 2.08 

Tetragonal BaYO3 78.10 18.60 51.70 0.39 0.24 4.20 

Rhombohedral 
BaScO3 88.40 8.00 23.20 0.46 0.09 11.05 

BaYO3 76.60 26.60 71.40 0.33 0.35 2.90 

Hexagonal 
BaScO3 84.70 30.60 81.90 0.34 0.36 2.77 

BaYO3 70.80 23.40 63.20 0.35 0.33 3.03 

Cubic BaYO3 86.10 45.80 116.70 0.27 0.53 1.88 

 

The anisotropic elastic properties have been studied and here only the results for the 

most stable phases for BaXO3 will be presented. Figure 3.12 and Figure 3.13 show the 

direction dependent Young’s modulus, linear compressibility, shear modulus and 

Poisson’s ratio both in 2D and 3D for BaScO3 orthorhombic phase and BaYO3 cubic 

phase, respectively. When the material is isotropic, the direction dependent parameter 

has a shape of circle or sphere. If the material is anisotropic, then the shape is distorted 

from circle or sphere. Also, the blue curves in Figure 3.12 and Figure 3.13 show the 

maximum values, while the green ones show the minimum values of that parameter. 

For BaScO3 orthorhombic phase, the linear compressibility is found as isotropic in all 

planes. Also, Young’s modulus and Poisson’s ratio are found as isotropic in yz plane. 

The remaining parameters are found as anisotropic for BaScO3 orthorhombic phase. 

For BaYO3, the linear compressibility is found as isotropic in all planes, while the 

Young’s modulus, shear modulus and Poisson’s ratio are found as anisotropic in all 

planes. In addition, the minimum and maximum values for these parameters have been 

listed in Table 3.5. 

Table 3.5 The minimum and maximum values of Young’s modulus (E in GPa), linear 

compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for BaXO3 

Compound 
E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

BaScO3 117.60 188.44 2.87 2.87 44.15 78.22 0.09 0.47 

BaYO3 88.97 169.57 3.87 3.87 33.50 72.35 0.10 0.51 



 

 

 

52 

 

 

 

 

Figure 3.12 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio both in 2D and 3D for 

BaScO3 orthorhombic phase 
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Figure 3.13 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio both in 2D and 3D for 

BaYO3 cubic phase 
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3.2.4. Vibrational Properties for BaXO3 

The vibrational stability is an important property for these materials. The vibrational 

properties were calculated using linear response method. The 2x1x2 supercell was 

generated using PHONOPY [94] software for BaScO3 orthorhombic phase that 

employed to VASP. Figure 3.14 shows phonon dispersion curves and phonon density 

of states (PDOS) for BaScO3 orthorhombic phase that has 20 atoms in its crystal 

structure. Therefore, there is 60 phonon branches in Figure 3.14 where three of them 

are optic branches and the remaining are acoustic ones. Moreover, BaScO3 is 

dynamically stable because there is no soft mode as can be seen from Figure 3.14. 

Furthermore, Sc atoms give more contributions to the acoustic modes and Ba and Sc 

atoms give more cotributions to the low optic modes. 

  

Figure 3.14 Phonon dispersion curve and phonon density of states for BaScO3 

orthorhombic phase 

The phonon dispersion curves and corresponding PDOS were obtained using 2x2x2 

supercell for BaYO3 cubic phase as shown in Figure 3.15. BaYO3 cubic phase has five 

atoms in its crystal structure, so there are fifteen phonon branches in the figure where 
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three of them are acoustic branches and the remaining of them are optic ones. As can 

be seen from the figure BaYO3 cubic phase is found to be dynamically unstable 

compound with the soft modes.  

 

Figure 3.15  Phonon dispersion curve and phonon density of states for BaYO3 cubic 

phase 

 

3.2.5. Hydrogen Storage Studies for BaXO3 

The orthorhombic phase and the cubic phase are found to be the most stable phases 

for BaScO3 and BaYO3, respectively. Hence, the hydrogen doping studies were only 

performed for these phases with the ordered crystal structures. For this purpose, the 

possible H positions should be determined. The orthorhombic phase of BaScO3 

belongs to 62 space group (Pbnm) where Ba atoms are at 4c, Sc atoms are at 4b and 

O atoms are at 4c and 8d Wyckoff positions. Two hydrogen atoms were doped at (0, 

0, 0) and (0.5, 0.5, 0.5) positions. Addition of two hydrogen atoms provide to obtain 

BaScO3H0.5 chemical formula. Figure 3.16 shows the crystal structure for BaScO3H0.5.  
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Figure 3.16 The crystal structure of BaScO3H0.5 

 

For BaYO3, the space group of the cubic phase is 221 (Pm-3m) where Ba atom is at 

the 1b, Y atom is at the 1a and O atoms are at the 3d Wyckoff positions. The possible 

hydrogen doping position was chosen as 3c Wyckoff position and doping of three 

hydrogen atoms provide to obtain BaYO3H3 chemical formula. After obtaining 

BaYO3H3, six more hydrogen atoms were doped at 6e Wyckoff position and BaYO3H9 

has been obtained. The crystal structures for BaYO3H3 and BaYO3H9 have been shown 

in Figure 3.17a and Figure 3.17b, respectively. 

 

 

Figure 3.17 The crystal structures of (a) BaYO3H3 and (b) BaYO3H9 
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The obtained lattice parameters, the calculated formation energies and the atomic 

positions have been listed in Table 3.6 for BaScO3 and BaYO3 compounds. As can be 

seen from the table, the negative formation energies indicate that these compounds are 

energetically stable and synthesizable. On the other hand,  BaYO3H9 is found to be 

energetically unstable due having positive formation energy. Also, it is found that the 

lattice constants enlarge with the increasing number of hydrogen atoms in the structure 

when the lattice constants are compared, .  

 

Table 3.6 The optimized lattice parameters (a, b, c in Å), the calculated formation 

energies (ΔEFor in eV/atom) and atomic positons for BaScO3H0.5, BaYO3H3, and 

BaYO3H9 

Compound a b c ΔEFor  Atomic Positions 

BaScO3H0.5 5.84 8.76 5.85 -2.40 

Ba: 4c (0.500, 0.280, 0.501) 

Sc: 4b (0.500, 0.000, 0.000) 

O1: 4c (0.500, 0.250, 0.030) 

O2: 8d (0.735, 0.501, 0.264) 

H1: (0.000, 0.000, 0.000)    

H2: (0.500, 0.500, 0.500) 

BaYO3H3 4.55 - - -0.81 

Ba: 1a (0.000, 0.000, 0.000) 

Y: 1b (0.500, 0.500, 0.500) 

O: 3d (0.500, 0.000, 0.000) 

H3: 3c (0.000, 0.500, 0.500) 

BaYO3H9 5.97 - - 0.35 

Ba: 1a (0.000, 0.000, 0.000) 

Y: 1b (0.500, 0.500, 0.500) 

O: 3d (0.500, 0.000, 0.000) 

H1: 3c (0.000, 0.500, 0.500) 

H2: 6e (0.333, 0.000, 0.000) 

 

The X-ray diffraction patterns were obtained for energetically stable compounds as 

can be shown in Figure 3.18. The compounds show polycrystalline nature as deduced 

from the figure. Also, BaScO3H0.5 has 2θ value as 20.25° in (2 0 0) plane and 

BaYO3H3 has 27.69° in (-1 1 0) plane. 
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Figure 3.18 X-ray diffraction patterns for BaScO3H0.5 and BaYO3H3 

 

The electronic properties have been studied for these compounds. Figure 3.19 and 

Figure 3.20 show the band structures and corresponding density of states for 

BaScO3H0.5, respectively. BaScO3H0.5 has a narrow band gap of 0.57 eV as can be 

deduced from Figure 3.19 where, the band gap of BaScO3 decreases from 3.80 eV to 

0.57 eV after the hydrogen atoms are bonded. In addition, it can be seen that the most 

significant contribution to the PDOS below the Fermi level comes from O and Ba 

atoms for both compounds from Figure 3.20.  
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Figure 3.19 The band structure for BaScO3H0.5 

 

Figure 3.20 The partial density of states for BaScO3H0.5 
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Figure 3.21 and Figure 3.22 show the band structure and corresponding PDOS for 

BaYO3H3 that is the only stable compound for the hydrogen bonded BaYO3. These 

figures show that this compound has metallic character and the most significant 

contribution to the PDOS comes from the p states of O atoms below the Fermi level. 

After the hydrogen atoms are bonded to BaYO3, the semiconducting character of 

BaYO3 changes to the metalic character.  

 

 

Figure 3.21 The band structure for BaYO3H3 
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Figure 3.22 The partial density of states for BaYO3H3 

 

Figure 3.23a and Figure 3.23b show the electron-density distributions for BaScO3H0.5 

and BaYO3H3, respectively. The effect of the H atoms to the electron-density 

distributions can be seen in the figures. Furthermore, the Bader partial charge analysis 

were performed. The Bader net partial charges of these compounds have been listed 

in Table 3.7. As can be concluded from the table, the total Bader net charges are zero 

for both compounds. For BaScO3H0.5, the charge is transferred to O atoms while it is 

transferred to Ba, Sc and H atoms. For BaYO3H3, the charge is transferred away from 

Ba and Y atoms while it is transferred to O and H atoms.  
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Table 3.7 The Bader net charges (in units of e per unit cell) for BaScO3H0.5 and 

BaYO3H3 

Ion BaScO3H0.5 BaYO3 

Ba 6.39 1.46 

Sc or Y 8.00 2.09 

O -14.85 -3.22 

H 0.45 -0.33 

 

 

Figure 3.23 The electron-density distributions for (a) BaScO3H and (b) BaYO3H0.5 3
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The mechanical properties were investigated for the H bonded compounds. Table 3.8 

lists the calculated elastic constants for BaScO3H0.5 and BaYO3H3 compounds which 

satisfy the Born stability criteria. So, these compounds are also mechanically stable. 

Using the calculated elastic constants, the mechanical properties including bulk 

modulus, shear modulus, etc. were obtained and have been given in Table 3.9. 

BaScO3H0.5 has higher bulk modulus, shear modulus and Young’s modulus than 

BaYO3H3. These compounds have ionic bonding concluded from the results of 

Poisson’s ratio and G/B ratio that is consistent with the electron-density distributions. 

It is deduced that BaScO3H0.5 and BaYO3H3 are ductile materials. 

 

Table 3.8 The calculated elastic constants (Cij in GPa) for BaScO3H0.5 and BaYO3H3 

Compound C11 C12 C13 C22 C23 C33 C44 C55 C66 

BaScO3H0.5 174.90 65.60 66.20 220.70 86.80 221.30 38.70 48.40 48.30 

BaYO3H3 94.40 85.20     25.50   

 

Table 3.9 Bulk modulus (B in GPa), Shear modulus (G in GPa), Young’s modulus (E 

in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for BaScO3H0.5 and BaYO3H3 

Compound B G E ν G/B B/G 

BaScO3H0.5 115.80 52.40 136.50 0.30 0.45 2.21 

BaYO3H3 88.20 13.00 37.10 0.43 0.15 6.78 

 

The anisotropic elastic properties for these compounds have been determined and to 

save space in this chapter only the results in 3D have been presented. Figure 3.24 

shows the direction dependent Young’s modulus, linear compressibility, shear 

modulus, and Poisson’s ratio for BaScO3H0.5 and BaYO3H3. Only the linear 

compressibility of BaYO3H3 is isotropic and the remaining parameters are anisotropic. 

Furthermore, the minimum and maximum values for these parameters are listed in 

Table 3.10. 



 

 

 

64 

 

 

 

 

 

Figure 3.24 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio in 3D for BaScO3H0.5 

and BaYO3H3 
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Table 3.10 The minimum and maximum values of Young’s modulus (E in GPa), 

linear compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for 

BaScO3H0.5 and BaYO3H3  

Compound 
E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

BaScO3H0.5 117.80 176.66 2.40 3.90 38.70 67.10 0.17 0.54 

BaYO3H3 13.56 69.78 3.78 3.78 4.60 25.50 -0.33 1.20 

 

After the investigation of main physical properties for BaScO3H0.5 and BaYO3H3 

compounds, the gravimetric hydrogen storage capacity and the hydrogen desorption 

temperature have been studied which the details of these parameters have been 

presented in Chapter 2. The gravimetric hydrogen storage capacities were calculated 

as 0.22 wt.% and 1.09 wt.% for BaScO3H0.5 and BaYO3H3, respectively. Furthermore, 

when the hydrogen is bonded to a material, the desorption temperature is important 

for the applications of that material. The hydrogen desorption temperatures were 

determined as 1769.7 K and 599.2 K for BaScO3H0.5 and BaYO3H3, respectively.  

 

The presented studies for BaXO3 compounds show that the crystal structure affects 

the number of stored H atoms. Even Y is heavier than Sc, BaYO3H3 has more 

gravimetric hydrogen storage capacity and lower hydrogen desorption temperature 

than BaScO3H0.5 compound. 

 

3.3. Studies for XTiO3 (X = Mg or Ca) 

3.3.1. Structural Optimization for XTiO3 

The studies with BaXO3 has concluded that the cubic crystal structure provides to store 

more H atoms. Therefore, XTiO3 (where X is Mg or Ca) have been investigated in 

cubic crystal structure as shown in Figure 3.25. The obtained lattice constants have 

been listed in Table 3.11 with the available literature results. The obtained lattice 

constants are consistent with the literature. Ca atom has larger atomic radius than Mg 
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atom, so the lattice constant for CaTiO3 is larger than MgTiO3. In addition, the 

negative formation energies imply that these compounds are energetically stable and 

synthesizable. CaTiO3 has more negative formation energy than MgTiO3 indicating 

more stability. 

 

Figure 3.25 The crystal structure of XTiO3 (X= Mg or Ca) 

 

Table 3.11 The optimized lattice parameters (a in Å), the calculated formation 

energies (ΔEFor in eV/atom) and the atomic positions for XTiO3 

Compound a ΔEFor  Atomic Positions 

MgTiO3 
3.73 

3.84[95] 
-1.37 

Mg: 1a (0.00, 0.00, 0.00) 

Ti: 1b (0.50, 0.50, 0.50) 

O: 3c (0.00, 0.50, 0.50) 

CaTiO3 

3.88 

3.89[96] 

3.81[97] 

-4.53 

Ca: 1a (0.00, 0.00, 0.00) 

Ti: 1b (0.50, 0.50, 0.50) 

O: 3c (0.00, 0.50, 0.50) 

 

 

The X-ray diffraction patterns have been given in Figure 3.26 for MgTiO3 and CaTiO3 

compounds. Both compounds show polycrystalline nature. Moreover, 2θ value of 

MgTiO3 is 33.98° in (-1 1 0) plane and it is 22.92° for CaTiO3 in (-1 0 0) plane. 
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Figure 3.26 X-ray diffraction patterns for MgTiO3 and CaTiO3 

 

3.3.2. Electronic Properties for XTiO3 

The band structures and corresponding PDOS have been obtained and shown in Figure 

3.27 and Figure 3.28 for MgTiO3. MgTiO3 shows metallic behavior as can be seen 

from Figure 3.27 and the most significant contribution to the PDOS below the Fermi 

level comes from the p states of O atoms as can be deduced form Figure 3.28. Unlike 

from MgTiO3, CaTiO3 has an indirect band gap of 1.89 eV as can be seen from Figure 

3.29. Also, Figure 3.30 shows that the most significant contribution to the PDOS 

below the Fermi level comes from the p states of O atoms similar to MgTiO3. 
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Figure 3.27 The band structure for MgTiO3 

 

Figure 3.28 The partial density of states for MgTiO3 
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Figure 3.29 The band structure for CaTiO3

Figure 3.30 The partial density of states for CaTiO3
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The electron-density distributions in (1 0 0) and (1 1 1) planes were obtained for 

CaTiO3 as shown in Figure 3.31a and Figure 3.31b, respectively. Also, Table 3.12 lists 

the Bader partial charges for MgTiO3 and CaTiO3 compounds. The charge is 

transferred away from Mg/Ca atoms and Ti atoms while it is transferred to O atoms. 

The total Bader net charges are zero for both compounds. 

 

Figure 3.31 The electron-density distributions for CaTiO3 (a) in (1 0 0) plane and 

(b) in (1 1 1) plane 

 

Table 3.12 The Bader net charges (in units of e per unit cell) for XTiO3  

Ion MgTiO3 CaTiO3 

Mg or Ca 1.87 1.59 

Ti 2.12 2.08 

O -3.99 -3.67 
 

 

3.3.3. Mechanical Properties for XTiO3 

The elastic constants (Cij) were calculated and have been listed in Table 3.13 for 

MgTiO3 and CaTiO3 compounds. Both compounds are mechanically stable and the 

obtained results are consistent with the available literature results that are also listed 

in Table 3.13. 
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Table 3.13 The calculated elastic constants (Cij in GPa) for XTiO3 

Compound C11 C12 C44 

MgTiO3 
354.70 

339.00 [98] 

53.00 

102.00 [98] 

27.90 

72.00 [98] 

CaTiO3 

337.20 

342.13 [96] 

356.00 [98] 

98.60 

93.27 [96] 

103.00 [98] 

97.90 

94.47 [96] 

98.00[98] 

 

Using obtained elastic constants, bulk modulus, shear modulus, Young’s modulus, 

Poisson’s ratio, G/B ratio and B/G ratio have been determined for XTiO3 compounds 

as listed in Table 3.14. The obtained results for CaTiO3 is consistent with the literature 

while there is no study for MgTiO3 in order to compare the results. CaTiO3 has higher 

bulk modulus, shear modulus and Young’s modulus than MgTiO3. Also, both 

compounds have ionic bonding. Moreover, MgTiO3 is a ductile material while CaTiO3 

is a brittle material. 

 

Table 3.14 Bulk modulus (B in GPa), Shear modulus (G in GPa), Young’s modulus 

(E in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for XTiO3 

Compound B G E ν G/B B/G 

MgTiO3 153.50 59.10 157.10 0.33 0.39 2.60 

CaTiO3 
178.10 

176.20 [97] 

105.30 

105.50 [97] 

263.80 

263.80 [97] 

0.25 

0.25 [97] 

0.59 

0.60 [97] 

1.69 

1.67 [97] 

 

The anisotropic elastic properties have been studied and Figure 3.32 and Figure 3.33 

show the direction dependent Young’s modulus, linear compressibility, shear modulus 

and Poisson’s ratio for MgTiO3 and CaTiO3, respectively. For these compounds, the 

linear compressibility is found to be isotropic, while the remaining properties are 

found to be anisotropic. In addition, the minimum and maximum values for these 

properties have been listed in Table 3.15. 
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Figure 3.32 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio in 3D for MgTiO3 
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Figure 3.33 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio in 3D for CaTiO3 
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Table 3.15 The maximum and minimum values of Young’s modulus (E in GPa), 

linear compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for 

XTiO3 

Compound 
E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

MgTiO3 78.92 340.92 2.17 2.17 27.90 150.85 0.05 0.75 

CaTiO3 248.23 292.58 1.87 1.87 97.90 119.30 0.20 0.32 

 

3.3.4. Hydrogen Storage Studies for XTiO3 

XTiO3 belongs to space group 221 (Pm-3m) and Mg/Ca atom is at the 1a, Ti atom is 

at the 1b and O atoms are at the 3c Wyckoff positions. The hydrogen doping positions 

have been determined as 3d, 6f and 8g for MgTiO3 and 3d, 6e and 8g for CaTiO3. 

Figure 3.34 shows the crystal structures for XTiO3H3, XTiO3H6 and XTiO3H8 

compounds. Table 3.16 lists the optimized lattice parameters, the calculated formation 

energies and the atomic positions. MgTiO3H6 and MgTiO3H8 are energetically 

unstable while the remaining of them are stable. Similar to CaTiO3, the hydrogen 

bonded structures of CaTiO3Hx are found to be more stable than MgTiO3Hx. In 

addition, the lattice constant enlarges with the increasing number of H atoms in the 

structures.  

 

Figure 3.34 The crystal structures of (a) XTiO3H3, (b) XTiO3H6 and (c) XTiO3H8 
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Table 3.16 The optimized lattice parameters (a in Å), the calculated formation 

energies (ΔEFor in eV/atom) and the atomic positions for XTiO3Hx 

Compound a ΔEFor  Atomic Positions 

MgTiO3H3 3.93 -0.34 

Mg: 1a (0.000, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 3d (0.500, 0.000, 0.000) 

MgTiO3H6 4.31 0.08 

Mg: 1a (0.000, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 6f (0.088, 0.500, 0.500) 

MgTiO3H8 4.44 0.49 

Mg: 1a (0.000, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 8g (0.267, 0.267, 0.267) 

CaTiO3H3 4.07 -1.68 

Ca: 1a (0.00, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 3d (0.500, 0.000, 0.000) 

CaTiO3H6 4.35 -1.12 

Ca: 1a (0.000, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 6e (0.421, 0.000, 0.000) 

CaTiO3H8 4.56 -0.13 

Ca: 1a (0.000, 0.000, 0.000) 

Ti: 1b (0.500, 0.500, 0.500) 

O: 3c (0.000, 0.500, 0.500) 

H: 8g (0.270, 0.270, 0.270) 
 

 

The X-ray diffraction patterns for the energetically stable compounds (MgTiO3H3, 

CaTiO3H3, CaTiO3H6, and CaTiO3H8) have been studied and shown in Figure 3.35. 

As can be seen from the figure, all compounds show polycrystalline nature. The 2θ 

value of MgTiO3H3 is 32.21° in (-1 -1 0) plane. Also, the 2θ values in (-1, 0, 0) plane 

are 21.80°, 20.39° and 19.46° for CaTiO3H3, CaTiO3H6, and CaTiO3H8, respectively. 

As the number of bonded hydrogen atoms increases, the 2θ value decreases for 

CaTiO3Hx compounds. 
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Figure 3.35 X-ray diffraction patterns for MgTiO3H3, CaTiO3H3, CaTiO3H6, and 

CaTiO3H8 

 

The band structure and corresponding PDOS have been studied for the energetically 

stable compounds. Figure 3.36 and Figure 3.37 show the band structure and 

corresponding PDOS for MgTiO3H3 that shows metallic character. Also, the most 

significant contribution to the PDOS above the Fermi level comes from the d states of 

Ti as can be seen from Figure 3.37. For CaTiO3Hx compounds, the band structure for  

CaTiO3H6 has been shown in Figure 3.38 that has an indirect band gap of 1.23 eV. In 

addition, Figure 3.39 shows the partial density of states for CaTiO3Hx compounds and 

this figure clearly shows that CaTiO3H3 and CaTiO3H8 show metallic character while 

CaTiO3H6 show semiconducting character. 
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Figure 3.36 The band structure for MgTiO3H3 

  

Figure 3.37 The partial density of states for MgTiO3H3 
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Figure 3.38 The band structure for CaTiO3H6 

 

Figure 3.39 The partial density of states for CaTiO3H3, CaTiO3H6 and CaTiO3H8 

 



 

 

 

79 

 

The electron-density distributions for CaTiO3H3, CaTiO3H6 and CaTiO3H8 were 

obtained in (1 0 0) plane and in (1 1 1) plane and have been given in Figure 3.40. As 

can be seen from the figures, the H atoms affect the bonding in these compounds. In 

addition, the Bader net charges have been listed in Table 3.17. All the total Bader net 

charges are found to be zero. Similar to XTiO3 compounds, the charge is transferred 

away from Mg/Ca and Ti atoms while it is transferred to O and also H atoms. 

 

 

 

Figure 3.40 The electron-density distributions for CaTiO3H3 (a) in (1 0 0) plane and 

(b) in (1 1 1) plane, for CaTiO3H6 (c) in (1 0 0) plane and (d) in (1 1 1) plane, for 

CaTiO3H8 (e) in (1 0 0) plane and (f) in (1 1 1) plane 
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Table 3.17 The Bader net charges (in units of e per unit cell) for XTiO3Hx 

Ion MgTiO3H3 CaTiO3H3 CaTiO3H6 CaTiO3H8 

Mg or Ca 1.90 1.44 1.43 1.40 

Ti 2.12 2.16 2.06 1.69 

O -3.23 -3.17 -3.46 -2.37 

H -0.79 -0.43 -0.03 -0.72 
 

The elastic constants (Cij) were calculated to determine the mechanical stability of 

these compounds. Table 3.18 lists the obtained values and as can be deduced from the 

table, only CaTiO3H6 compound is found to be as mechanically stable. In addition, the 

mechanical properties including bulk modulus, shear modulus, etc. have been 

determined as listed in Table 3.19. CaTiO3H6 has ionic bonding and it is a ductile 

material. 

Table 3.18 The calculated elastic constants (Cij in GPa) for XTiO3Hx 

Compound C11 C12 C44 

MgTiO3H3 117.90 150.60 22.70 

CaTiO3H3 53.20 183.40 14.20 

CaTiO3H6 261.50 22.50 33.60 

CaTiO3H8 40.90 103.30 -16.20 
 

Table 3.19 Bulk modulus (B in GPa), Shear modulus (G in GPa), Young’s modulus 

(E in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for CaTiO3H6   

B G E ν G/B B/G 

102.10 57.50 145.20 0.26 0.56 1.78 
 

The anisotropic elastic properties for CaTiO3H6 were obtained and have been shown 

in Figure 3.41 for Young’s modulus, linear compressibility, shear modulus and 

Poisson’s ratio. Only linear compressibility is isotropic and the other properties are 

anisotropic for CaTiO3H6. In addition, the minimum and maximum values for these 

parameters have been listed in Table 3.20. 
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Figure 3.41 The direction dependent (a) Young’s modulus, (b) linear 

compressibility, (c) shear modulus, and (d) Poisson’s ratio in 3D for CaTiO3H6 
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Table 3.20 The minimum and maximum values of Young’s modulus (E in GPa), 

linear compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for 

CaTiO3H6 

E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

90.83 257.93 3.27 3.27 33.60 119.37 0.03 0.61 

 

The hydrogen storage studies for XTiO3 compounds have been started with six 

compounds and the energetically and mechanical stability conditions have eliminated 

five of them. The gravimetric hydrogen storage capacity has been calculated as 4.27 

wt.% and the hydrogen desorption temperature has been determined as 827.1 K for 

CaTiO3H6 compound. As a conclusion of these studies, it has been deduced that the 

cubic crystal structure provides to store more hydrogen atoms and choosing light 

weight elements increases the gravimetric hydrogen storage capacity.  
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CHAPTER 4  

 

4. HYDROGEN STORAGE STUDIES FOR ANTI-PEROVSKITE 

MATERIALS 

 

4.1. Introduction 

The anti-perovskite materials having X3AB formula, generally crystallize in the cubic 

crystal structure [99] which is the preferred structure as concluded in Chapter 3 due to 

storing more hydrogen atoms. Ca3XH where X is C or N anti-perovskite compounds 

have been studied for structural, electronic, mechanical and hydrogen storage 

properties and these studies will be presented in this chapter. In addition, more 

hydrogen atoms have been bonded to these structures to enhance their hydrogen 

storage capacities. Some part of the studies for Ca3XH have been prepared to submit 

to Journal of Physics: Condensed Matter with the title of “Investigation of Ca3CHx 

(x=1, 4, 7) Anti-Perovskite Compounds for Hydrogen Storage Applications”. 

 

4.2. Studies for Ca3XH (X= C or N) 

4.2.1. Structural Optimization for Ca3XH 

In Ca3XH compounds, Ca atoms are anions while X and H atoms are cations. Figure 

4.1 shows the crystal structure for Ca3XH and Table 4.1 lists the obtained lattice 

constants and the formation energies. Ca3XH compounds are hypothetical and there 

is no study to compare the obtained results. As the atomic radius of C is larger than 

the atomic radius of N, the lattice constant for Ca3CH is larger than Ca3NH. Moreover, 

Ca3NH has more negative formation energy, so it is more stable than Ca3CH. 
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Figure 4.1 The crystal structure of Ca3XH 

 

Table 4.1 The lattice constants (a in Å),  the calculated  formation energies (ΔEFor in 

eV/atom) and the atomic positions for Ca3XH 

Compound a ΔEFor Atomic Positions 

Ca3CH 5.02 -2.56 

Ca: 3c (0.000, 0.500, 0.500) 

C: 1b (0.500, 0.500, 0.500) 

H: 1a (0.000, 0.000, 0.000) 

Ca3NH 4.84 -4.00 

Ca: 3c (0.000, 0.500, 0.500) 

N: 1b (0.500, 0.500, 0.500) 

H: 1a (0.000, 0.000, 0.000) 

 

Before further present the physical properties of these compounds, hydrogen doping 

studies will be detailed here. Ca3XH belong to 221 (Pm-3m) space group where Ca 

atoms are at 3c, X atom is at 1b and H atom is at 1a Wyckoff positions. The possible 

hydrogen doping positions were determined as 3d, 6e, 8g and 3d+6e. Using these 

determined positions, Ca3XH4, Ca3XH7, Ca3XH9, and Ca3XH10 have been obtained 

and the crystal structures for these compounds have been shown in Figure 4.2. The 

optimized lattice parameters, the calculated formation energies and the atomic 

positions have been listed in Table 4.2. All these compounds have negative formation 

energies, so they are energetically stable compounds. Except Ca3XH10, the formation 

energy has more positive values with the increasing number of hydrogen atoms in the 
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structure. Moreover, the lattice constant enlarges with the increasing number of 

hydrogen atoms except Ca3CH10.   

 

 

Figure 4.2 The crystal structures for Ca3XH4, Ca3XH7, Ca3XH9, and Ca3XH10 

compounds 
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Table 4.2 The lattice constants (a in Å), the calculated formation energies (ΔEFor in 

eV/atom) and the atomic positions for Ca3XH4, Ca3XH7, Ca3XH9, and Ca3XH10  

Compound a ΔEFor Atomic Positions 

Ca3CH4 4.92 -1.60 

Ca: 3c (0.000, 0.500, 0.500) 

C: 1b (0.500, 0.500, 0.500) 

H1: 1a (0.000, 0.000, 0.000) 

H2: 3d (0.500, 0.000, 0.000) 

Ca3CH7 5.04 -1.11 

Ca: 3c (0.000, 0.500, 0.500) 

C: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 6e (0.584, 0.000, 0.000) 

Ca3CH9 5.40 -0.63 

Ca: 3c (0.000, 0.500, 0.500) 

C: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 8g (0.294, 0.294, 0.294) 

Ca3CH10 5.06 -0.72 

Ca: 3c (0.000, 0.500, 0.500) 

C: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 3d (0.500, 0.000, 0.000) 

 H3: 6e (0.708, 0.000, 0.000) 

Ca3NH4 4.81 -1.94 

Ca: 3c (0.000, 0.500, 0.500) 

N: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 3d (0.500, 0.000, 0.000) 

Ca3NH7 4.83 -1.72 

Ca: 3c (0.000, 0.500, 0.500) 

N: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 6e (0.402, 0.000, 0.000) 

Ca3NH9 4.95 -1.12 

Ca: 3c (0.000, 0.500, 0.500) 

N: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 8g (0.817, 0.817, 0.817) 

Ca3NH10 4.96 -1.22 

Ca: 3c (0.000, 0.500, 0.500) 

N: 1b (0.500, 0.500, 0.500) 

H1:1a (0.000, 0.000, 0.000) 

H2: 3d (0.500, 0.000, 0.000) 

H3: 6e (0.717, 0.000, 0.000) 
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The X-ray diffraction patterns for these anti-perovskite structures were obtained and 

have been given in Figure 4.3 for Ca3CHx compounds and in Figure 4.4 for Ca3NHx 

compounds. For both C and N containing anti-perovskite structures, the bonded 

hydrogen atoms do not change the pattern significantly. 

 

Figure 4.3 X-ray diffraction patterns for Ca3CHx (X= 1, 4, 7, 9, 10) 

 

Figure 4.4 X-ray diffraction patterns for Ca3NHx (X= 1, 4, 7, 9, 10) 
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The gravimetric hydrogen storage capacities and the hydrogen desorption temperature 

for these compounds have been obtained and listed in Table 4.3. The C and N 

containing compounds have similar gravimetric hydrogen storage capacities where 

these structures have higher capacities with the increasing number of H atoms in the 

structures. Moreover, the lowest hydrogen desorption temperature has been obtained 

for Ca3CH9 compound as 468.4 K.  

 

Table 4.3 The gravimetric hydrogen capacities (Cwt%) and the hydrogen desorption 

temperatures (T in K) for Ca3XH, Ca3XH4, Ca3XH7, Ca3XH9, and Ca3XH10 

Compound Cwt% T 

Ca3CH 0.76 1890.8 

Ca3CH4 2.96 1183.7 

Ca3CH7 5.08 817.8 

Ca3CH9 6.43 468.4 

Ca3CH10 7.10 534.0 

Ca3NH 0.75 2952.2 

Ca3NH4 2.92 1432.6 

Ca3NH7 5.00 1269.7 

Ca3NH9 6.34 825.4 

Ca3NH10 7.00 899.5 

 

4.2.2. Mechanical Properties for Ca3XH 

The elastic constants (Cij) for Ca3XH and their hydrides have been calculated to 

determine the mechanical stability of these compounds as listed in Table 4.4. As can 

be deduced from the table, the mechanically stable compounds are as follows: Ca3CH, 

Ca3CH4, Ca3CH7, Ca3NH, and Ca3NH4. So, the mechanical stability conditions 

eliminate five of these structures. 
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Table 4.4 The elastic constants (Cij in GPa) for Ca3XH, Ca3XH4, Ca3XH7, Ca3XH9, 

and Ca3XH10  

Compound C11 C12 C44 

Ca3CH 89.00 11.00 17.20 

Ca3CH4 56.30 44.80 29.30 

Ca3CH7 78.40 26.10 21.00 

Ca3CH9 62.20 15.60 -3.00 

Ca3CH10 44.20 61.50 16.00 

Ca3NH 82.00 21.90 11.70 

Ca3NH4 117.20 28.40 37.80 

Ca3NH7 50.20 53.30 27.20 

Ca3NH9 71.80 56.00 -13.40 

Ca3NH10 -389.10 282.60 -32.80 

 

Using calculated elastic constants, some mechanical properties including bulk 

modulus, shear modulus, etc. were determined and have been listed in Table 4.5. 

Ca3NH4 has the highest bulk modulus, shear modulus and Young’s modulus among 

the mechanically stable compounds. In addition, these compounds have ionic bonding 

according to the results of the Poisson’s ratio and G/B ratio. Also, Ca3CH4, Ca3CH7 

and Ca3NH are ductile while Ca3NH4 and Ca3CH and are brittle materials.  

 

Table 4.5 Bulk modulus (B in GPa), Shear modulus (G in GPa), Young’s modulus (E 

in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for Ca3XH, Ca3XH4, and 

Ca3XH7  

Compound B G E ν G/B B/G 

Ca3CH 37.00 24.00 59.20 0.23 0.65 1.54 

Ca3CH4 48.60 15.40 41.70 0.36 0.32 3.16 

Ca3CH7 45.30 22.80 58.20 0.28 0.52 1.91 

Ca3NH 41.90 17.20 45.30 0.32 0.41 2.44 

Ca3CH4 58.00 40.20 97.90 0.22 0.69 1.44 
 

The anisotropic elastic properties have been studied and the direction dependent 

Young’s modulus, linear compressibility, shear modulus and Poisson’s ratio have 

been shown in Figure 4.5 and Figure 4.6 for Ca3CHx and Ca3NHx compounds, 

respectively. In order to save space in this section, only the 3D figures have been 
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presented. The linear compressibility is found to be isotropic while the remaining 

properties are anisotropic for all compounds. Moreover, Table 4.6 list the minimum 

and maximum values for these parameters. 

 

Figure 4.5 The direction dependent (a) Young’s modulus, (b) linear compressibility, 

(c) shear modulus, and (d) Poisson’s ratio in 3D for Ca3CH, Ca3CH4 and Ca3CH7 



 

 

 

91 

 

 

 

 

 

Figure 4.6 The direction dependent (a) Young’s modulus, (b) linear compressibility, 

(c) shear modulus, and (d) Poisson’s ratio in 3D for Ca3NH and Ca3NH4 
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Table 4.6 The minimum and maximum values of Young’s modulus (E in GPa), linear 

compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for Ca3XH, 

Ca3XH4, and Ca3XH7  

Compound 
E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

Ca3CH 44.68 86.58 9.01 9.01 12.70 39.00 -0.33 1.06 

Ca3CH4 16.60 73.20 6.85 6.85 5.75 29.30 0.17 0.26 

Ca3CH7 54.27 65.36 7.66 7.66 21.00 26.15 0.22 0.35 

Ca3NH 32.11 72.77 7.95 7.95 11.70 30.05 0.11 0.60 

Ca3NH4 93.16 106.12 5.74 5.74 37.80 44.40 0.18 0.27 

 

4.2.3. Thermo-elastic Properties for Ca3XH 

The thermal properties for Ca3XH, Ca3XH4 and Ca3XH7 have been studied using 

Quasi-harmonic Debye model [77]. Figure 4.7 and Figure 4.8 show the thermal 

expansion, heat capacity at constant volume, entropy and free energy at 0 GPa pressure 

for Ca3CHx and Ca3NHx, respectively. As can be seen from the figures, the thermal 

expansion, heat capacity and entropy increase while free energy decreases with the 

increasing temperature. For the heat capacity, it reaches a constant called Dulong-Petit 

limit at high temperatures. The Dulong-Petit limit equals to 3nR where n is number of 

atoms in the structure and R is the ideal gas constant, so the Dulong-Petit limits are 

different for different structures in the figures. In literature, there is no study for these 

properties. Therefore, the obtained results could not be compared.  
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Figure 4.7 The thermal expansion, heat capacity at constant volume, entropy and 

free energy as a function of temperature at 0 GPa pressure for Ca3CHx 
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Figure 4.8 The thermal expansion, heat capacity at constant volume, entropy and 

free energy as a function of temperature at 0 GPa pressure for Ca3NHx 

 

In addition to the temperature dependent thermal properties, the Debye temperature 

(ΘD), the longitudinal wave velocity (Vl), the transverse wave velocity (Vt), the 
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average wave velocity (Vm), the Zener anisotropic factor (A), the anisotropic factor in 

shear (AG) and compression (AB) and the universal anisotropic factor (AU)  have been 

determined and listed in Table 4.7. Ca3NH4 has the highest Debye temperature among 

these compounds. It is found that, Ca3NH4 has the highest Debye temperature among 

these compounds. If A is one, this situation reveals the completely isotropy. On the 

other hand, the case in which A is different than one means completely anisotropy. 

Table 4.7 indicates that all studied compounds are elastically anisotropic. 

Furthermore, having zero value of AG, AB and AU means elastic isotropy while the 

value having different than zero indicates elastic anisotropy. The AG, AB and AU values 

indicates that these compounds are elastically isotropic in compression while they are 

anisotropic in shear and universal anisotropic index.  

 

Table 4.7 The Debye temperature (ΘD in K), the longitudinal wave velocity (Vl in m/s), 

the transverse wave velocity (Vt in m/s), the average wave velocity (Vm in m/s),  the 

Zener anisotropic factor (A), the anisotropic factor in shear (AG) and compression 

(AB) and the universal anisotropic factor (AU)  for Ca3XH, Ca3XH4, and Ca3XH7  

Compound ΘD Vl Vt Vm A AG AB AU 

Ca3CH 416.00 6272 3699 4099 0.44 7.92 0.00 0.85 

Ca3CH4 387.70 6038 2849 3206 5.10 28.16 0.00 3.95 

Ca3CH7 568.60 7002 3886 4328 0.80 0.66 0.00 0.06 

Ca3NH 347.00 5725 2948 3301 0.39 10.46 0.00 1.15 

Ca3NH4 604.60 7360 4417 4886 0.85 0.37 0.00 0.03 

 

The minimum thermal conductivities have been calculated using two models: Clarke 

model [72] and Cahill model [73]. Table 4.8 lists the obtained minimum thermal 

conductivities, average mass per atom and density of number of atoms per volume for 

Ca3XH, Ca3XH4, and Ca3XH7 compounds. As the number of H atoms increases in the 

compounds, the minimum thermal conductivities and the density of number of atoms 

per volume increase while the average mass per atom decreases as can be deduced 

from Table 4.8. 
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Table 4.8 The minimum thermal conductivities (λmin in Wm-1K-1), the average mass 

per atom (Ma in 10-26 kg) for Clarke model and the density of number of atoms per 

volume (n in 1028 m-3) for Cahill model for Ca3XH, Ca3XH4, and Ca3XH7 

Compounds Clarke Model Cahill Model 

Ma λmin n  λmin 

Ca3CH 4.43 0.81 3.90 0.88 

Ca3CH4 2.83 0.93 6.70 1.08 

Ca3CH7 2.10 1.33 8.50 1.46 

Ca3NH 4.49 0.72 4.40 0.81 

Ca3NH4 2.87 1.43 7.10 1.56 

 

4.2.4. Electronic Properties for Ca3XH 

The band structure and corresponding partial density of states (PDOS) were obtained 

and it has been found that all these structures have metallic character. Figure 4.9 shows 

the band structure for Ca3CH7 to show this character and the remaining band structures 

will not be presented here. The corresponding partial density of states also have been 

presented in Figure 4.9 and as can be seen from DOS plot, the most contribution to 

the DOS above the Fermi level comes from Ca atoms. In addition, the C atoms give 

more contribution to the DOS below Fermi level. Figure 4.10 and Figure 4.11 show 

the partial density of states for Ca3CHx and Ca3NHx compounds, respectively. As can 

be deduced from these figures, the contribution from Ca atoms to the PDOS is 

decreased while the contribution from H atoms is increased with the increasing 

number of H atoms in the structures. In addition, the number of electrons at the Fermi 

level has been obtained as 0.32, 1.30 and 0.13 for  Ca3CH, Ca3CH4 and Ca3CH7, 

respectively. As the number of electrons at the Fermi level are compared, it has been 

found that Ca3CH4 has the highest number of electrons implying the electronic 

unstability of this compound. 
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Figure 4.9 The band structure for Ca3CH7 

  

Figure 4.10 The partial density of states for Ca3CH, Ca3CH4 and Ca3CH7 
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Figure 4.11 The partial density of states for Ca3NH and Ca3NH4 

 

Figure 4.12 shows the electron-density distribution for Ca3CH, Ca3CH4 and Ca3CH7 

compounds in (1 0 0) plane but Ca3NH and Ca3NH4 are not presented here due having 

similar distributions. The contribution from H atoms to the charge density distribution 

increases with the increasing number of H atoms in the structure. In addition, the 

Bader net partial charges have been calculated and listed in Table 4.9. The charge is 

transfferred away from Ca atom, while it is transferred to C/N and H atoms and the 

total Bader net charges are found to be zero for both compounds. Also, Ca and H 

atoms in Ca3CH4 have large Bader partial charges that results from the electronic 

unstability of this compound. 
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Figure 4.12 The electron-density distributions for Ca3CH, Ca3CH4 and Ca3CH7 

 

Table 4.9 The Bader net charges (in units of e per unit cell) for Ca3CH, Ca3CH4, 

Ca3CH7, Ca3NH, and Ca3NH4 

Ion Ca3CH Ca3CH4 Ca3CH7 Ca3NH Ca3NH4 

Ca 3.45 15.73 3.83 2.99 4.16 

C or N -2.55 -2.80 -2.35 -2.04 -1.86 

H -0.90 -12.93 -1.48 -0.96 -2.30 

 

Consequently, among the energetically and mechanically stable Ca3XH compounds, 

Ca3CH7 has the highest gravimetric storage capacity as 5.08 wt.% with the hydrogen 

desorption temperature of 817.8 K. 
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CHAPTER 5  

 

5. HYDROGEN STORAGE STUDIES FOR PEROVSKITE TYPE 

HYDRIDES 

 

5.1. Introduction 

In this chapter, structural, electronic, mechanic, vibrational and hydrogen storage 

properties of XNiH3 (where X is Li, Na or K) perovskite type hydrides have been 

investigated. These studies have been in press in International Journal of Hydrogen 

Energy with the title of “Investigation of structural, electronic and lattice dynamical 

properties of XNiH3 (X=Li, Na and K) Perovskite Type Hydrides and their Hydrogen 

Storage Applications” and it is under review.  

 

5.2. Structural Optimization for XNiH3 

XNiH3 where X is Li, Na or K belong to space group 221 (Pm-3m) as shown in Figure 

5.1. In the literature, LiNiH3 perovskite type hydride was synthesized and investigated 

using in situ synchrotron X-ray diffraction [100] and also studied with theoretical 

modeling  [101]. The optimized lattice parameters, the calculated formation energies 

and the atomic positions have been listed in Table 5.1 with the available literature 

results for LiNiH3. The lattice constant for LiNiH3 is found to be consistent with the 

literature. In addition, the lattice constant increases from LiNiH3 to KNiH3. The 

calculated negative formation energies imply that these compounds are energetically 

stable and synthesizable. Furthermore, the order of the stability of these compounds 

are as follows: LiNiH3 > NaNiH3 > KNiH3. Table 5.1 also lists the gravimetric 

hydrogen storage capacities and the hydrogen desorption temperatures for XNiH3 

compounds. LiNiH3 has the highest hydrogen storage capacity while KNiH3 has the 

highest hydrogen desorption temperature among the studied compounds.  



 

 

 

104 

 

 

Figure 5.1  The crystal structure for XNiH3 

 

Table 5.1 The optimized lattice constants (a in Å), the calculated formation energies 

(ΔEFor in eV/atom), the atomic positions, the gravimetric hydrogen storage 

capacities (Cwt%) and the hydrogen desorption temperatures (T in K)  for XNiH3 

Compound a ΔEFor Atomic Positions Cwt% T 

LiNiH3 

3.23 

3.21 [100] 

3.25 [101] 

-0.73 

Li: 1a (0.000, 0.000, 0.000) 

Ni: 1b (0.500, 0.500, 0.500) 

H: 3c (0.000, 0.500, 0.500) 

4.40 537.9 

NaNiH3 3.28 -0.69 

Na: 1a (0.000, 0.000, 0.000) 

Ni: 1b (0.500, 0.500, 0.500) 

H: 3c (0.000, 0.500, 0.500) 

3.57 511.9 

KNiH3 3.62 -0.61 

K: 1a (0.000, 0.000, 0.000) 

Ni: 1b (0.500, 0.500, 0.500) 

H: 3c (0.000, 0.500, 0.500) 

3.30 447.1 

 

The X-ray diffraction patterns for these hydrides have been shown in Figure 5.2. Both 

compounds show polycrystalline nature. Also, the 2θ values in (1 0 0) plane are found 

as 27.59°, 26.37° and 24.54° for LiNiH3, NaNiH3 and KNiH3, respectively. 
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Figure 5.2 X-ray diffraction patterns for XNiH3 

 

5.3. Electronic Properties for XNiH3 

The band structure and the corresponding density of states (PDOS) have been shown 

in Figure 5.3 for XNiH3 compounds. The band branches have been shown with 

different colors to show the cotributions from the s, p and d electrons to the band 

structure. All these compounds show metallic character as can be seen from Figure 

5.3. Furthermore, the partial density of states have been shown in Figure 5.3 for each 

atom and the most contribution to the PDOS comes from the d states of Ni atoms as 

can be deduced from Figure 5.3.  
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Figure 5.3 The band structures and corresponding partial density of states for (a) 

LiNiH3, (b) NaNiH3 and (c) KNiH3. 

 

The electron-density distribution for LiNiH3 has been obtained and shown in Figure 

5.4 that is generated for (1 0 0) direction for a 2x2x2 supercell. As can be seen from 

the figure, LiNiH3 has ionic bonding. Also, NaNiH3 and KNiH3 have similar electron-

density distributions that are not given to save space in this chapter and they have ionic 

bonding. In addition, the Bader net partial charges for these compounds have been 

obtained and listed in Table 5.2. As can be deduced from the table, the charge is 

transferred away from X and Ni atoms, while it is transferred to H atoms. Also, the 

total Bader net charges are zero. Li, Na and K atoms have similar Bader net charges.  
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Figure 5.4 The electron-density distribution for LiNiH3 along (1 0 0) direction for a 

2x2x2 supercell 

 

Table 5.2 The Bader net charges (in units of e per unit cell) for XNiH3 

Ion LiNiH3 NaNiH3 KNiH3 

Li, Na or K 0.88 0.80 0.70 

Ni 0.21 0.30 0.39 

H -1.09 -1.10 -1.09 

 

5.4. Mechanical Properties for XNiH3 

The elastic constants (Cij) for XNiH3 compounds were calculated and listed in Table 

5.3. All these compounds satisfy the Born stability criteria and as a result, they are 

mechanically stable compounds. Using these constants, the further mechanical 

properties could be obtained. 

Table 5.3 The calculated elastic constants (Cij in GPa) for XNiH3 

Compound C11 C12 C44 

LiNiH3 226.00 36.70 48.50 

NaNiH3 180.50 40.70 59.90 

KNiH3 113.20 46.90 59.40 
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The obtained mechanical properties such as bulk modulus, shear modulus, etc. have 

been listed in Table 5.4 for XNiH3 compounds. LiNiH3 has the highest bulk modulus 

and Young’s modulus while NaNiH3 has the highest shear modulus among these 

compounds. Also, these compounds have ionic bonding as concluded from Poisson’s 

ratio and G/B ratio that is consistent with the electron-density distributions. 

Furthermore, these compounds have B/G ratios lower than 1.75 which indicates the 

brittleness of these compounds. 

Table 5.4 Bulk modulus (B in GPa), shear modulus (G in GPa), Young’s modulus (E 

in GPa), Poisson’s ratio (ν), G/B ratio and B/G ratio for XNiH3 

Compound B G E ν G/B B/G 

LiNiH3 99.80 63.50 157.10 0.24 0.64 1.57 

NaNiH3 87.30 63.70 153.70 0.21 0.73 1.37 

KNiH3 69.00 47.00 114.90 0.22 0.68 1.47 

 

The anisotropic elastic properties of XNiH3 compounds have been visualized in 3D as 

shown in Figure 5.5. Only the linear compressibility is found to be isotropic for all 

compounds and the remaining parameters are anisotropic. In addition, the minimum 

and maximum values for these parameters have been listed in Table 5.5. 

 

Table 5.5 The minimum and maximum values of Young’s modulus (E in GPa), linear 

compressibility (β), shear modulus (G in GPa), and Poisson’s ratio(ν) for XNiH3 

Compound 
E β G ν 

Emin Emax βmin βmax Gmin Gmax νmin νmax 

LiNiH3 125.22 215.75 3.34 3.34 48.50 94.65 0.09 0.44 

NaNiH3 146.25 165.52 3.82 3.82 59.90 69.90 0.17 0.26 

KNiH3 85.72 138.47 4.83 4.83 33.15 59.40 0.01 0.41 
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Figure 5.5 The direction dependent (a) Young’s modulus, (b) linear compressibility 

(c) shear modulus and (d) Poisson’s ratio in 3D for XNiH3  
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Moreover, the longitudinal wave velocity (Vl), the transverse wave velocity (Vt), the 

average wave velocity (Vm), the Debye temperature (ΘD), the Zener anisotropic index 

(A), anisotropic index in shear (AG) and compression (AB) and the universal 

anisotropic index (AU) have been determined and listed in Table 5.6. As can be 

deduced from Table 5.6, LiNiH3 has the highest Debye temperature. Also, these 

compounds are mechanically anisotropic according to the anisotropic indexes except 

the anisotropic index in shear.  

 

Table 5.6 The Debye temperature (ΘD in K), longitudinal wave velocity (Vl in m/s), 

the transverse wave velocity (Vt in m/s), the average wave velocity (Vm in m/s), the 

Zener anisotropic factor A, the anisotropic factor in shear (AG) and compression 

(AB)and the universal anisotropic for (AU)  for XNiH3 

Compound ΘD Vl Vt Vm A AG AB AU 

LiNiH3 756.50 7383 4331 4801 0.51 5.27 0.00 0.56 

NaNiH3 695.60 6871 4178 4616 0.86 0.31 0.00 0.03 

KNiH3 568.30 6122 3657 4047 1.79 4.04 0.00 0.42 

 

5.5. Vibrational and Thermal Properties for XNiH3 

The vibrational properties of XNiH3 compounds have been studied using a 2 x 2 x 2 

supercell. Figure 5.6 shows the obtained phonon dispersion curves and corresponding 

phonon density of states (PDOS) for LiNiH3, NaNiH3 and KNiH3, respectively. 

XNiH3 compound has five atoms in its unit cell, so there are 15 phonon branches in 

the figures where three of them are acoustic branches and the remaining of them are 

optic branches. H is the lightest atom in the compounds, so it gives contributions to 

the higher frequencies as can be seen from the PDOS plots. 
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According to the phonon dispersion curves, the acoustic and optic branches are more 

close to each other when the compound changes from LiNiH3 to KNiH3 that is related 

to the lower thermal conductivities. Table 5.7 lists the calculated minimum thermal 

conductivities obtained using the calculated elastic constants for two models that 

shows the consistency with the phonon dispersion curves. Ma is the average mass per 

atom and n is the density of number of atoms per volume. LiNiH3 has the highest 

minimum thermal conductivities and KNiH3 has the lowest thermal conductivities 

among these compounds. Also, n decreases while Ma increases from LiNiH3 to 

KNiH3. 

 

 

 

Figure 5.6 The phonon dispersion curves and corresponding phonon density of 
states for (a) LiNiH3, (b) NaNiH3 and (c) KNiH3
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Table 5.7 The minimum thermal conductivities (λmin in Wm-1K-1), the average mass 

per atom (Ma in 10-26 kg) for Clarke model and the density of number of atoms per 

volume (n in 1028 m-3) for Cahill model for XNiH3 

Compound Clarke’s Model Cahill’s Model 

Ma  λmin n λmin 

LiNiH3 2.28 2.29 14.80 2.50 

NaNiH3 2.81 2.00 12.90 2.17 

KNiH3 3.35 1.53 10.40 1.67 

 

The obtained phonon frequencies were employed to obtained thermal properties for 

XNiH3. Figure 5.7 shows the free energy, enthalpy, entropy and heat capacity as a 

function of temperature for LiNiH3, NaNiH3 and KNiH3. As the temperature increases, 

enthalpy, entropy and heat capacity increase while free energy decreases. In addition, 

the heat capacity reaches a constant called Dulong-Petit limit at high temperatures. 
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 Figure 5.7 The free energy, enthalpy, entropy and heat capacity as a function of 

temperature for (a)LiNiH3, (b) NaNiH3 and (c)KNiH3 
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The studies for XNiH3 reveals that these compounds are energetically, mechanically 

and dynamically stable. In addition, LiNiH3 has the highest gravimetric storage 

capacity as 4.40 wt.% and KNiH3 has the lowest desorption temperature as 447.1 K. 
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CHAPTER 6  

 

6. CONCLUSION 

 

The perovskite materials have been investigated for their hydrogen storage properties 

in this thesis that could be a potential candidate for solid state hydrogen storage 

method. The perovskite materials have been grouped into three as perovskite 

materials, anti-perovskite materials and perovskite type hydrides and their structural, 

mechanic, electronic and vibrational properties have been studied. The hydrogen 

doping studies have been performed and the gravimetric hydrogen storage capacities 

and the hydrogen desorption temperatures have been obtained for these materials. 

 

The perovskite materials including BaXO3 (X=Sc or Y) and XTiO3 (X=Mg or Ca) 

compounds have been studied. BaXO3 compounds have been investigated for the five 

possible crystal structures and it has been found that the most stable phases are 

orthorhombic and cubic phases for BaScO3 and BaYO3, respectively. The hydrogen 

doping studies have been performed to the most stable phases of these compounds and 

0.22wt% and 1.09 wt. % gravimetric hydrogen storage capacities and 1769.7 K and 

599.2 K hydrogen desorption temperatures have been obtained for BaScO3H0.5 and 

BaYO3H3, respectively. The hydrogen doping studies for BaXO3 compounds reveal 

that the number of doped hydrogen atoms are related with the crystal structure where 

the cubic crystal structure provides to store more hydrogen atoms. Therefore, XTiO3 

compounds have been studied in the cubic crystal structure and it has been found that 

XTiO3 compounds are energetically and mechanically stable. Several hydrogen 

doping studies to XTiO3 compounds have been performed but both energetically and 

mechanically stable compound is only CaTiO3H6 compound with 4.27 wt. % 

gravimetric hydrogen storage capacity and 827.1 K hydrogen desorption temperature. 
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As a result of these studies, the cubic crystal structure provide to store more hydrogen 

atoms and the gravimetric hydrogen storage capacity increases with the light weight 

atoms in the structure. 

 

The anti-perovskite materials with Ca3XH (X=C or N) compounds have been 

investigated. Ca3XH compounds are energetically and mechanically stable and several 

hydrogen doping studies have been performed and the energetic and mechanic 

stability conditions eliminate some of them but there are still five compounds (Ca3CH, 

Ca3CH4, Ca3CH7, Ca3NH, and Ca3NH4) that satisfy these stability conditions. The 

thermo-elastic properties for these compounds have been obtained. In addition, their 

electronic properties have been studied and it has been found that they are metallic 

compounds. Among these stable compounds, Ca3CH7 has the highest gravimetric 

storage capacity as 5.08 wt.% with the hydrogen desorption temperature of 817.8 K.  

 

Furthermore, the perovskite type hydrides with XNiH3 (X=Li, Na or K) have been 

investigated. LiNiH3 compound have been studied both experimentally and 

theoretically and the obtained lattice constant is consistent with these results. In 

addition, XNiH3 compounds are found to be mechanically and dynamically stable 

compounds. The electronic properties of these compounds have showed that they are 

metallic compounds. In addition, the hydrogen storage properties have been studied 

and it has been found that LiNiH3 has the highest gravimetric storage capacity as 4.40 

wt.% and KNiH3 has the lowest desorption temperature as 447.1 K.  
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7. APPENDICES 

 

A. BAND STRUCTURE AND PARTIAL DENSITY OF STATES FOR 

BAXO3 PEROVSKITE COMPOUNDS 

The band structure and corresponding partial density of states for BaScO3 tetragonal, 

rhombohedral, hexagonal and cubic phases have been presented here. All these phases 

except the cubic phase have semiconducting behavior similar to the orthorhombic 

phase. The cubic phase shows metallic character. Table A.1 lists their band gaps and 

the following figures show their band structures and corresponding PDOS.  

Table A.1 The band gaps for BaScO3 tetragonal, rhombohedral and hexagonal 

phases 

Phases Band gap (eV) 

Tetragonal 4.2 

Rhombohedral 4.5 

Hexagonal 3.0 

 

 

Figure A.1 The band structure for BaScO3 tetragonal phase 
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Figure A.2 The partial density of states for BaScO3 tetragonal phase 

 

Figure A.3 The band structure for BaScO3 rhombohedral phase 
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Figure A.4 The partial density of states for BaScO3 rhombohedral phase 

 

Figure A.5 The band structure for BaScO3 hexagonal phase 
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Figure A.6 The partial density of states for BaScO3 hexagonal phase 

 

Figure A.7 The band structure for BaScO3 cubic phase 
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Figure A.8 The partial density of states for BaScO3 cubic phase 

Table A.2 lists the Bader net partial charges for BaScO3 phases. Since the number of 

atoms differ from phase to phase, the Bader net charges differ for the same atom in 

different phases. General trend is the following: the charge is transferred away from 

Ba and Sc atoms while it is transferred to O atoms. 

Table A.2 The Bader net charges (in units of e) for BaScO3 phases 

Ion Tetragonal Rhombohedral Hexagonal Cubic 

Ba 1.55 3.53 3.45 1.66 

Sc 1.92 3.90 3.71 1.79 

O -3.47 -7.43 -7.16 -3.45 

 

The band structure and corresponding PDOS for BaYO3 orthorhombic, tetragonal, 

rhombohedral, and hexagonal phases have been presented here. All these compounds 

except the orthorhombic phase have semiconducting behavior similar to the cubic 

phase.    The orthorhombic phase shows metallic character.  Table A.3 lists the band 

gaps and the following figures show the band structures and corresponding PDOS for 

these phases. 
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Figure A.9 The band structure for BaYO3 orthorhombic phase 

 

Figure A.10 The partial density of states for BaYO3 orthorhombic phase 
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Figure A.11 The band structure for BaYO3 tetragonal phase 

 

Figure A.12 The partial density of states for BaYO3 tetragonal phase 
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Figure A.13 The band structure for BaYO3 rhombohedral phase 

 

Figure A.14 The band partial density of states for BaYO3 rhombohedral phase 
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Figure A.15 The band structure for BaYO3 hexagonal phase 

 

Figure A.16 The partial density of states for BaYO3 hexagonal phase 
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Table A.3 The band gaps for BaYO3 tetragonal, rhombohedral and hexagonal 

phases 

Phases Band gap (eV) 

Tetragonal 1.7 

Rhombohedral 4.3 

Hexagonal 2.6 

 

Table A.4 lists the Bader net partial charges for BaYO3 crystal phases. For both 

phases, Ba and Y atoms give charge away, while O atoms take charge. 

Table A.4 The Bader net charges (in units of e) for BaYO3 phases 

Ion Orthorhombic  Tetragonal Rhombohedral Hexagonal 

Ba 6.53 1.48 3.65 3.52 

Sc 8.35 2.12 4.33 4.28 

O -14.88 -3.59 -7.98 -7.80 
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B. INPUT FILES FOR VASP 

 

INCAR FILE: 

SYSTEM = BaScO3 

IBRION = 1 

ISIF = 3 

ICHARG = 1 

PREC = H 

EDIFF = 1.E-10 

EDIFFG = -1.E-9 

LREAL = F 

LWAVE = F 

LCHARG = F 

ENCUT = 1000 

NSW = 100 

ADDGRID = T 

ISMEAR =  1 

SIGMA  =  0.05 
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POSCAR FILE: 

 

BaScO3 

           1 

     4.592141    0.000000    0.000000 

     0.000000    4.592141    0.000000 

     0.000000    0.000000    4.592141 

   O    Sc   Ba 

   3   1   1 

Direct 

   0.50000000  0.00000000 -0.00000000 

   0.00000000  0.50000000  0.00000000 

  -0.00000000  0.00000000  0.50000000 

   0.50000000  0.50000000  0.50000000 

   0.00000000  0.00000000 -0.00000000 
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POTCAR FILE: 

PAW_PBE O_GW 19Mar2012 

   6.00000000000000 

 parameters from PSCTR are: 

   VRHFIN =O: s2p4 

   LEXCH  = PE 

   EATOM  =   432.3788 eV,   31.7789 Ry 

 

   TITEL  = PAW_PBE O_GW 19Mar2012 

   LULTRA =        F    use ultrasoft PP ? 

   IUNSCR =        1    unscreen: 0-lin 1-nonlin 2-no 

   RPACOR =    0.800    partial core radius 

   POMASS =   16.000; ZVAL   =    6.000    mass and valenz 

   RCORE  =    1.600    outmost cutoff radius 

   RWIGS  =    1.600; RWIGS  =    0.847    wigner-seitz radius (au A) 

   ENMAX  =  434.431; ENMIN  =  325.824 eV 

   ICORE  =        3    local potential 

   LCOR   =        T    correct aug charges 

   LPAW   =        T    paw PP 

   EAUG   = 1139.609 

   DEXC   =    0.000 

   RMAX   =    1.629    core radius for proj-oper 

   RAUG   =    1.300    factor for augmentation sphere 

   RDEP   =    1.652    radius for radial grids 

   RDEPT  =    1.200    core radius for aug-charge 

…… 
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KPOINTS FILE: 

K-Mesh Generated with KP-Resolved Value (Low=0.08~0.05, Medium=0.04~0.03, 

Fine=0.02~0.01): 0.015 

0 

Gamma 

16  16  16 

0.0  0.0  0.0 
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