
DEVELOPMENT OF COMPUTATIONAL FLUID DYNAMICS (CFD) BASED
TOPOLOGY OPTIMIZATION CODES IN OPENFOAM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NIYAZI ŞENOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ENGINEERING SCIENCES

FEBRUARY 2019

Approval of the thesis:

DEVELOPMENT OF COMPUTATIONAL FLUID DYNAMICS (CFD)
BASED TOPOLOGY OPTIMIZATION CODES IN OPENFOAM

submitted by NIYAZI ŞENOL in partial fulfillment of the requirements for the de-
gree of Master of Science in Engineering Sciences Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Dicleli
Head of Department, Engineering Sciences

Prof. Dr. Ahmet Nedim Eraslan
Supervisor, Engineering Sciences Department, METU

Prof. Dr. Hasan Umur Akay
Co-supervisor, Mechanical Eng. Dept., Atılım University

Examining Committee Members:

Prof. Dr. Tolga Akış
Civil Engineering Department, Atılım University

Prof. Dr. Ahmet Nedim Eraslan
Engineering Sciences Department, METU

Assist. Prof. Dr. Hamdullah Yücel
Institute of Applied Mathematics, METU

Date: 01.02.2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Niyazi Şenol

Signature :

iv

ABSTRACT

DEVELOPMENT OF COMPUTATIONAL FLUID DYNAMICS (CFD)
BASED TOPOLOGY OPTIMIZATION CODES IN OPENFOAM

Şenol, Niyazi

M.S., Department of Engineering Sciences

Supervisor: Prof. Dr. Ahmet Nedim Eraslan

Co-Supervisor : Prof. Dr. Hasan Umur Akay

February 2019, 64 pages

Optimization has been commonly used by engineers in industry to design and fabri-

cate products efficiently, since it has a great impact on the performance. The recent

decades have witnessed an important amount of work in design optimization in struc-

tural mechanics. However, topology optimization is less commonly used in fluid me-

chanics, heat transfer, and thermal-fluid flow problems, especially this thesis aimed to

improve its effects on those areas. This work is also dedicated to develop open source

codes for topology optimization of different cases. Investigated cases are ducted flow

case, pure heat conduction case, elbow flow case, and thermal-fluid flow case. Op-

timization is also interdisciplinary area that combines various engineering branches

and mathematics. In this work different types of topology optimization using adjoint

method problems are also investigated. Codes are developed in OpenFOAM environ-

ment and added to thesis for researchers willing to improve them. Various libraries

of OpenFOAM are used to develop solvers. Also parallel computing study of one of

the cases in the thesis is examined in OpenFOAM.

v

Keywords: Topology Optimization, Multiphysics Optimization, Continuous Adjoint

Method, OpenFOAM, Computational Fluid Dynamics (CFD)

vi

ÖZ

OPENFOAM’DA HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (HAD)
ESASLI TOPOLOJİ OPTİMİZASYON KODLARININ GELİŞTİRİLMESİ

Şenol, Niyazi

Yüksek Lisans, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Prof. Dr. Ahmet Nedim Eraslan

Ortak Tez Yöneticisi : Prof. Dr. Hasan Umur Akay

Şubat 2019 , 64 sayfa

Optimizasyon endüstride daha verimli üretim ve tasarım yapabilmek için, performan-

sında büyük etkisi olmasından dolayı mühendisler tarafından yaygın bir şekilde kul-

lanılmaktadır. Son yıllarda yapısal mekaniği topoloji optimizasyonunda önemli mik-

tarda çalışma yapıldı. Fakat akışkanlar mekaniği ve ısı transferi konularında çok sık

kullanılmıyor, bu tezde bu alanlardaki etkisini artırma amaçlanıyor. Ayrıca bu çalış-

mada farklı alanlardaki vakalar için açık kaynaklı kodlar geliştirmek planlanıyor.

Araştırılacak vakalar, kanallı akış, salt ısı iletimi, dirsek akışı ve termal akış ola-

caktır. Optimizasyon matematiği ve mühendisliğin farklı dallarını birleştiren çoklu-

disiplinli bir alan. Farklı vakaları çözerken topoloji optimizasyonu ile eklenik metodu

kullanıyor. Geliştirilen kodlar OpenFOAM’da derleniyor ve bu konuyu geliştirmek

isteyen araştırmacılara yardımcı olması için teze eklendi. Ayrıca tezdeki vakalardan

birinin OpenFOAM’da paralel hesaplama çalışması yapılmıştır.

Anahtar Kelimeler: Topoloji Optimizasyonu, Çoklu-fizik Optimizasyonu, Sürekli Ek-

vii

lenik Metodu, OpenFOAM, Hesaplamalı Akışkanlar Dinamiği (HAD)

viii

To the Advancement of Science

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis advisor, Prof. Ahmet N.

Eraslan. He has been a tremendous force in shaping my attitude toward research

over the past two years. I am incredibly lucky to have had such an insightful and

understanding mentor, and this work would not have been possible without his under-

standing attitude. I am indebted to Prof. Hasan U. Akay, my co-advisor of my thesis.

He has been continuous source of inspiration and help over the years. He gave me the

vision of Open Source and so this thesis could be come to exist. He has also uncon-

ditionally supported me the entire time. His love of teaching, studying and ability to

explain almost anything are things that I will always admire. Thank you for making

my time here truly enjoyable. I would also like to extend my thanks to my committee

members: Prof. Tolga Akış and Assist. Prof. Dr. Hamdullah Yücel for taking the

time to serve on my thesis committee. Also, I wish to express my sincere thanks to

my family and friends for their thrust and understanding throughout the years.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Design Optimization . 1

1.2 Shape Optimization . 1

1.3 Topology Optimization . 2

1.3.1 Current status of topology optimization 3

2 MATHEMATICAL FORMULATION . 7

2.1 The Adjoint Method . 9

2.2 The Derivation of Continuous Adjoint Method 9

2.3 Primal Equations of Thermal-Fluid Flow Problems with Darcy Term . 12

2.4 Derivation of Adjoint Equations of Thermal-Flow with Darcy Term . 13

xi

2.4.1 Obtained adjoint equations 17

2.4.2 Design variable dependent porosity and conductivity 17

2.4.3 Boundary conditions . 18

2.4.4 Weights for cost functions . 18

3 OPENFOAM . 21

3.1 Open Source Software . 21

3.2 C++ : Object-Oriented Programming (OOP) Language 21

3.3 C++ and OpenFOAM . 22

3.4 OpenFOAM Terminology . 24

3.4.1 Forming the equations . 24

3.4.2 Generating the mesh . 25

3.4.3 Time class . 25

3.4.4 Fields . 25

3.5 Contributions to OpenFOAM . 25

4 NUMERICAL TEST CASES . 27

4.1 Case 1: Ducted Flow . 27

4.2 Case 2: Pure Heat Conduction . 30

4.3 Case 3: Coupled Thermal-Fluid Flow 34

5 PARALLEL COMPUTING STUDY . 41

6 CONCLUSIONS AND FUTURE WORK 45

6.1 Conclusions . 45

6.2 Recommendations for Future Work 45

REFERENCES . 47

xii

APPENDICES

A OPENFOAM CODES . 51

A.1 case 1 : Ducted Flow . 51

A.2 case 2 : Pure Heat Conduction . 55

A.3 case 3 : Coupled Thermal-Fluid Flow 58

xiii

LIST OF TABLES

TABLES

Table 2.1 Boundary conditions . 19

Table 4.1 Cost function values of initial and optimized design, J [kg/(ms2)]. . 29

Table 4.2 Cost function values of initial and optimized design, J [K]. 34

Table 5.1 Cost function values at 1st and 1000st iteration, J [kg/(ms2)]. 44

Table 5.2 Speed-up and efficiency of ducted flow case 44

Table 5.3 Speed-up and efficiency of heat conduction case 44

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 An example of airfoil shape optimization [3]. 2

Figure 1.2 An example of structural optimization [2]. 2

Figure 2.1 Flow chart for gradient based optimization method. 8

Figure 2.2 Comparison of the continuous adjoint and the discrete adjoint

method. 10

Figure 3.1 Overview of OpenFOAM structure. 23

Figure 3.2 OpenFOAM notation. 24

Figure 4.1 Problem domain of ducted flow. 28

Figure 4.2 (a) Final velocity distribution of case 1, (b) Othmer [15] 30

Figure 4.3 Design variable α final distribution of (a) case 1, (b) Othmer [15]. 31

Figure 4.4 Design variable α final distribution of (a) case 1, (b) Othmer [15]. 31

Figure 4.5 Design domain and primal variable boundary conditions. 32

Figure 4.6 Design variable γ distribution of (a) Vf = 0.4 of case 2, (b) Dede

[9]. 34

Figure 4.7 (a) γ distribution (b) converge of cost function value as a func-

tion of iteration number (c) temperature distribution (d) adjoint temper-

ature distribution at optimal solution of case 2. 35

xv

Figure 4.8 Problem domain of coupled thermal-fluid flow. 36

Figure 4.9 Velocity distribution of optimized solution when w1 = 1 and

w2 = 0. 38

Figure 4.10 α(γ) distribution of optimized solution when w1 = 1 and w2 = 0. 38

Figure 4.11 Velocity distribution of optimized solution of case 3 when w1 =

1 and w2 = 10. 38

Figure 4.12 Temperature distribution of optimized solution of case 3 when

w1 = 1 and w2 = 10. 39

Figure 5.1 Front view of domain decompositions (left) and back view of

domain decompositions (right). 42

Figure 5.2 Speedup of ducted flow case 43

Figure 5.3 Speedup of pure heat conduction case 43

xvi

LIST OF ABBREVIATIONS

Symbol Explanation

γ Design Variable

α Design Variable/Darcy’s Term

k Thermal Conductivity Coefficient

v Primal Velocity

u Adjoint Velocity

p Primal Pressure

q Adjoint Pressure

T Primal Temperature

Ta Adjoint Temperature

ν Kinematic Viscosity

∇ Nabla Operator

n Normal Vector

Ω Computational Domain

Γ Computational Domain Boundary

J Cost Function

V Volume

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Design Optimization

An important aspect of being competitive in engineering design is to reduce de-

velopment time while using a minimum amount of resources and efforts. Using a

Computer-Aided Engineering (CAE) software with design optimization is a good

strategy that helps to meet these needs. Traditionally, Computer-Aided Engineer-

ing (CAE) software without design optimization has given chance to engineers for

analysing only a fixed volume within fixed boundaries in each analysis. In contrast,

design optimization is a way to develop optimized geometric designs with volume and

shape changes by minimizing or maximizing cost (or objective) functions defined by

designer subject to some constraints.

There are two main approaches in design optimization: shape optimization and topol-

ogy optimization. The latter will be focused on in this thesis, whereas the former is

explained briefly in order to compare them.

1.2 Shape Optimization

Shape optimization [1, 2] procedure starts with a proposed shape; points on the sur-

face are selected as a design variable. At the last the optimization cycle, the parame-

ters of the shape are determined to ensure the optimal quantity of interest. Optimality

quantities of interest/s are formulated continuously and called cost functions. For

instance, an example may be given from an aerospace application. In Fig. 1.1, com-

parison of pressure coefficient, Cp, values of based and optimized airfoil can be seen.

1

Figure 1.1: An example of airfoil shape optimization [3].

Figure 1.2: An example of structural optimization [2].

Several articles have been published on shape optimization in the area of aerodynam-

ics [1, 3, 4], structural mechanics [5, 6], and manufacturing [7].

1.3 Topology Optimization

As opposed to shape optimization, topology optimization begins without a predesigned

shape. Therefore, it is different from shape optimization in a fundamental manner.

The idea of topology optimization is to determine the template shape itself, as illus-

trated in Figure 1.2 . Here, there is no predefined shape, instead there is a design

space and the constraints of the problem.

Topology optimization is generally formulated as a material distribution problem.

2

Every cell assigns as a material value function changing between 0 and 1. The name

of this approach is ‘Solid Isotropic Microstructure with Penalization’ (SIMP) [8, 9,

10].

In the algorithm of topology optimization, the domain is changing iteratively by plac-

ing or removing solids in a given design space or domain, targeting to minimize/-

maximize cost function/s subjected to a constraint such as volume of solid, boundary

conditions and other constraints.

The power of topology optimization is on its ability to realize optimal solutions that

are not initially obvious to the engineer/designer.

1.3.1 Current status of topology optimization

In field of structural mechanics, usage of topology optimization has become a well-

established procedure, a compulsory step in some cases (e.g., large scale problems),

and has been used to obtain initial conceptual designs. Here, cost function/s to be

minimized/maximized are typically the stiffness of the structure [11]. In the last

decade, most commercial Computer-Aided Engineering (CAE) software (e.g., Op-

tiStruct, TopoSLang, Comsol, Genesis, MSC/Nastran, Matlab, Ansys, GS Engineer-

ing, Tosca, etc.) have modules for topology optimization [12], and thus the technique

is now beginning to be used in industry.

The use of topology optimization in industrial applications including flow, heat or

thermal-coupled flow is less common. In the recent years a moderate number of

articles in flow [13, 14, 15] and heat transfer applications [10, 16] has been published;

however, the industry has not yet embraced this area widely. One of the motivations of

this thesis is to make progress in this direction, especially using open-source software.

Design procedures are based on numerical analysis methods that evaluate the relative

change of value of a set of feasible design variables. The value of a design variable is

based on the value of a cost (objective) function that is evaluated using discretization

methods such as finite volume and finite element in Computational Fluid Dynamics

(CFD) as well as Computational Mechanics areas. The choice of the objective func-

tion is essential and requires a knowledge of the design problem at hand. Classical

3

processes of engineering design using numerical simulations have been carried out

by trial and error, relying on the intuition and experience of the designer/engineer to

select design parameters. However, while the number of design variables is increas-

ing, the designer’s/engineer’s ability to make the correct choices decreases. In order

to deal with a design space of large dimensionality, numerical analyses need to be

combined with optimization procedures.

Topology optimization using CFD is generally a computationally expensive task and

traditionally in optimization methods applied in this field the number of necessary

flow simulations in the process is highly dependent on the number of the design pa-

rameters. To overcome this issue there are some methods available, e.g. , determinis-

tic algorithms [1], evolutionary algorithms [17] and gradient based algorithms [5, 9].

In the present work, for topology optimization a gradient based algorithm known as

adjoint method is used. This algorithm will be investigated in Chapter 2.

In the literature, the solution methodology used for analysis part of structural opti-

mization is traditionally based on finite element methods [11, 18]. Finite volume

methods are less common in topology optimization for fluid flow, heat transfer or

thermal-fluid problems [19, 20].

Computational Fluid Dynamics, CFD, is a numerical analysis method. In this method

Numerical analysis, Partial or Ordinary differential equations are transfered into sys-

tems of algebraic equations so that they can be solved numerically using computer.

To perform this transfer process, there are various methods. The most popular ones

are Finite Difference method (FDM), Finite Volume method (FVM) and Finite El-

ement method (FEM). The ideas of these methods are different. FEM includes the

partition of the domain into small elements which have points known as nodes. The

form of an unknown function (say temperature) is obtained in terms of a basis func-

tion expansion. The purpose is to calculate the unknown coefficients of the function

expansion so that the residual is minimum. The basic idea of FDM is to change the

differential equations by approximations obtained by Taylor expansions near point of

interests. FVM involves the division of the computational domain into small volumes.

Then conservation laws are applied on these volumes. Thereafter the divergence the-

orem is employed to change volume integrals to boundary integrals. And finally, the

4

fluxes are calculated at boundaries. Fluid dynamics involves conservation laws such

as conservation of mass, energy and momentum.

OpenFOAM uses finite volume method to solve systems of partial differential equa-

tions ascribed on any 3D unstructured mesh of polyhedral cells. The fluid flow

solvers are developed within a robust, implicit, pressure-velocity, iterative solution

framework, although alternative techniques are applied to other continuum mechan-

ics solvers.

In this thesis, topology optimization of multi-disciplinary thermal fluid problems [10,

23, 24] are addressed, which are less common in literature. For this, incompressible

Navier-Stokes and heat transfer equations are solved together with adjoint method

with finite volume method. The governing equations for fluid flow and convective

heat transfer are called primal equations in optimization context. A set of corre-

sponding adjoint equations and boundary conditions are derived through variational

formulations. The obtained equations are implemented in OpenFOAM and example

problems are solved to demonstrate the applicability of developed method to different

class of problems consisting only flow, only heat transfer and coupled thermal-fluid

flow problems. Moreover, since these problems take a lot of computational time and

memory, parallel computation capabilities have been tested with the modifications

made to flow as well as heat transfer modules of OpenFOAM. The OpenFOAM sub-

package developed in this thesis is named ’multiTopOptFoam’

5

6

CHAPTER 2

MATHEMATICAL FORMULATION

Topology optimization has been a subject of fluid mechanics and heat transfer during

the last decade and generally includes three main components. The first component

consists of constraints which assign the type of flow or heat transfer being searched.

Constraint can imply the conduction heat transfer equation in the devices of MEMS

(Microelectromechanical Systems) [16], or Navier-Stokes equations in the aerospace

industry [5]. The second component is the objective functions (cost functions) to be

maximized or minimized. Typical objectives for airfoil design are minimizing drag

force or maximizing lift force [4, 5]. For internal flow objective functions could be

minimizing pressure drop through the pipe or obtaining uniform flow at the outlet

[15, 19]. The third component is controlling some design parameters. The last one is

key actor changing the domain or shape to meet the objective functions, such as the

mean temperature of a heat system [16, 20].

As mentioned in Chapter 1, one of the optimization methods is the gradient-based

optimization. This kind of algorithm generally needs a continuous objective function

that converges to a local minimum. A typical flow chart of gradient based optimiza-

tion algorithm can be seen in Fig. 2.1. The process starts by evaluating objective

function and requires one flow simulation followed by one evaluation of the objec-

tive function. Then the gradients of the objective function with respect to the design

parameters are calculated. The result of gradient evaluation represents how the objec-

tive functions respond to changes in the design variable. The geometry of the domain

is modified using values obtained from gradient evaluation. The loop starts again and

continues until a solution convergence criterion is satisfied.

Steepest Descent Method: This is a commonly used method of gradient based algo-

7

Figure 2.1: Flow chart for gradient based optimization method.

rithm to update design parameters in the optimization step. Steepest Descent Method

is aimed to alternate a design parameter (say γ) by moving in the direction of negative

gradient of the objective function. This is mathematically shown as

γn+1 = γn − λ∇Jγ = γn − λ
∂J(γn)

∂γn
, (2.1)

where γ is the design variable, J is the objective function, n is the current iteration,

and λ is the step size. The last term of Eq. 2.1 can be defined by finite difference

method using forward differencing:

∂J

∂γ
≈ lim

h→0

J(γ + h)− J(γ)

h
. (2.2)

Using Eq. 2.2 to compute gradient of objective functions, it is relatively easier than

other algorithms to implement in computer. However, it is not efficient unless the

number of design parameters is very few. Adjoint method overcomes this drawback

because computational cost is independent of the number of design variables. Besides

the cost of computation of the gradients of objective functions is nearly equal to the

cost of the solution of primal flow equations.

8

2.1 The Adjoint Method

The adjoint method has been used in various engineering applications. This method

started to appear in control theory articles around 1950s. Its range varies from aerospace

applications [4, 11] to financial applications [21]. The first appearances of adjoint

method in fluid mechanics was for Stokes Flow and introduced by Pironneau [3].

Jameson [4] has made a huge contribution in optimization of airfoils and wings using

adjoint methods. At the same time automotive industry has met adjoint method. Oth-

mer [15] used this method for optimization of some components of cars for internal

flow.

The main idea behind the adjoint method is to obtain a set of adjoint equations corre-

sponding to a set of primal equations defining the conservation laws of the physical

problem, such as structural equilibrium, flow and heat transfer. There are two dif-

ferent approaches to derive adjoint equations: the discrete adjoint method and the

continuous adjoint method. In the continuous adjoint method, the primal equations

are first linearied, then the adjoint equations are derived from these linearized primal

equations; after that the primal and adjoint equations are discretized. In the case of

discrete adjoint method, the primal equations are first discretizated of then the adjoint

operation is applied to the discretized form of primal equations from which discrete

adjoint equations are obtained. A comparison of these steps is illustrated in Fig. 2.2.

2.2 The Derivation of Continuous Adjoint Method

In this section, mathematical part of derivation of the continuous adjoint equations

will be explained. Then, in the following section, adjoint equations of internal flows

will be derived.

The total variation of J , where J is an objective function, can be shown as the sum

of the variations with respect to the design variable vector, γ, and the flow variables

9

Figure 2.2: Comparison of the continuous adjoint and the discrete adjoint method.

vector, w,

δJ =
∂J

∂w
δw︸ ︷︷ ︸

primalvariable

+
∂J

∂γ
δγ︸ ︷︷ ︸

design

. (2.3)

The flow equations can be written in residual form as

R(w,γ) = 0. (2.4)

Similarly, the total variation of R can be expressed as sum of variations of design

parameters and flow variables:

δR =
∂R

∂w
δw +

∂R

∂γ
δγ = 0. (2.5)

Now we introduce a vector of Lagrange multipliers, λ, and multiply Eq. 2.5 with

Lagrange multiplier as follows:

λT δR = λT
∂R

∂w
δw + λT

∂R

∂γ
δγ = 0. (2.6)

10

By adding Eq. 2.6 to Eq. 2.3, the total variation of J , can be expressed as

δL ≡ δJ =

[
∂J

∂w
+ λT

∂R

∂w

]
δw +

[
∂J

∂γ
+ λT

∂R

∂γ

]
δγ. (2.7)

For the adjoint approach, we try to avoid solving for δw, for this reason the term on

the first parenthesis of Eq. 2.7 is equated to zero as follows:

∂J

∂w
+ λT

∂R

∂w
= 0. (2.8)

After a basic mathematical operation, the following system of equation are obtained:

λT
∂R

∂w
= − ∂J

∂w
(2.9)

Eq. 2.9 is called the adjoint equation. To determine Lagrange multipliers, λ, Eq. 2.9

has to be solved. Once the Lagrange Multipliers are found, it may now be used to

determine the total variation of cost function J in Eq. 2.7 as:

δL ≡ δJ =

[
∂J

∂γ
+ λT

∂R

∂γ

]
δγ (2.10)

∇J =
dJ

dγ
=
∂J

∂γ
+ λT

∂R

∂γ
(2.11)

Consequently we arrived to∇J update design variable γ on Eq. 2.1.

The steps of continuous adjoint algorithm can be outlined as:

i) Choose an initial design variable vector γ

ii) Solve primal equations, Eq. 2.4, for flow variables, w

iii) Solve adjoint equations, Eq. 2.9, for adjoint variables λ

iv) Calculate∇J from Eq. 2.11

v) Update each design variable γ using Eq. 2.1

11

vi) If∇J close to zero, stop the algorithm. Otherwise go to step ii and repeat.

2.3 Primal Equations of Thermal-Fluid Flow Problems with Darcy Term

In this thesis, we examine the topology optimization of internal thermal-fluid flow

problems in incompressible porous media, where the primal governing equations in-

volve continuity, momentum and heat transfer equations as follows:

−∇ · v = 0, (2.12)

(v ·∇)v = −∇p+ ∇(2νD(v))− α(γ)v, (2.13)

Cv · (∇T) = ∇ · (k(γ)∇T)−Q, (2.14)

where ∇ is the gradient vector, v the velocity vector, p pressure, T temperature, ν

kinematic viscosity, D(v) = 1
2
(∇(v) +∇(v)T) rate of strain tensor, α(γ) porosity,

k(γ) thermal conductivity, and the Q volumetric heat source. It is noted that in Eq.

2.13, pressure p and porosity α and in Eq. 2.14 the conductivity k and heat source

Q are scaled with respect to ρ for convenience, and C is the specific heat constant.

The Darcy’s porosity term in the momentum equations above allows the formation of

topology as the design parameter γ is solved to satisfy the cost function requirements.

Darcy Term: This term can be also called porosity term and brings into the momen-

tum equations as a sink term using Darcy’s law [5]. Porosity values (α) are identified

in every cell. Cell porosities act as the design variable of the optimization problem.

Porosity values allow a continuous gradation between fluid (αfluid = 0) domain and

solid (αsolid = αmax) domain. This means that if a cell has a minimum α value,

which equal to zero, on momentum equations in Eq. 2.13 Darcy term is zero and so

momentum equations consequently become standard Navier-Stokes equations, that

is the element will act as a fluid. On the contrary, if a cell has maximum α value,

Darcy term will be higher than the other terms on the momentum equations relatively

and they are neglected, that is the element will act as a solid. Selecting αmax value

12

depends on Darcy dimensionless number [5]:

Da =
v

αmaxl2
, (2.15)

where v is inlet velocity, l is a characteristic length, andDa ≤ 10−5 for nonpermeable

domain. So αmax can be approximately found with following inequality

αmax ≥ 105 v

l2
(2.16)

2.4 Derivation of Adjoint Equations of Thermal-Flow with Darcy Term

Equations to be solved for internal flows here are incompressible, steady, and mod-

ified Navier-Stokes equations. Modified part is extra Darcy term which has a basic

role on topology optimization method. Their residuals form are listed on Eq. 2.17.

First three equations represent momentum equations, and the last one is continuity

equation. The momentum equations are divided by mass density ρ for convenience.

(R1, R2, R3)T = vjvi,j + p,i − (ν(vi,j + vj,i)),j + αvi

R4 = −vi,i

R5 = viT,i +Q− kT,i,i

(2.17)

where vi = (vx, vy, vz) primal velocity components and T primal temperature vari-

able. Primal pressure divided by density is denoted p. The reason we divided the

momentum equations by density is that pressure for incompressible flows is treated

as divided by density in OpenFOAM. ν denotes kinematic viscosity, which is same

as dynamic viscosity divided by density. Throughout the derivations Einstein’s sum-

mation notation is used. αvi term is a Darcy Term, where α is porosity divided by

density.

13

We define an augmented cost function L for Navier-Stokes equations as:

L = J +

∫
Ω

λTRdΩ (2.18)

where J is cost function to be optimized, λ is vector of adjoint variables, e.g. λ =

(ux, uy, uz, q, Ta).

The total variation of L is

δL = δwL︸︷︷︸
primalvariables

+ δγL︸︷︷︸
design

, (2.19)

wherew = (v, p, T) = (vx, vy, vz, p, T). The total variations of primal equations and

cost function can be separated with contributions from primal variables and design

parameters, respectively as follows:

δR = δwR︸︷︷︸
primalvariables

+ δγR︸︷︷︸
design

(2.20)

δJ = δwJ︸︷︷︸
primalvariables

+ δγJ︸︷︷︸
design

(2.21)

By summing up the above equations we get:

δL = δwL+ δγL

= δJ +

∫
Ω

λT δRdΩ

= δwJ + δγJ +

∫
Ω

λT δwRdΩ +

∫
Ω

λT δγRdΩ

(2.22)

14

after picking up similar term we obtain:

δL = δwL+ δγL

= δwJ +

∫
Ω

λT δwRdΩ︸ ︷︷ ︸
primalvariables

+ δγJ +

∫
Ω

λT δγRdΩ︸ ︷︷ ︸
design

. (2.23)

Based on Eq. 2.8, the first term of 2.23 which is coming from flow variable has to be

equal to zero

δwL = δwJ +

∫
Ω

λT δwRdΩ = 0. (2.24)

The variation with respect to flow field can also be separated contributions from

primal velocities, v, primal pressure, p, and primal temperature T and expressing

λ = (ui, q, Ta)

δwL = δvJ + δpJ + δTJ +

∫
Ω

(ui, q, Ta)δvRdΩ+∫
Ω

(ui, q, Ta)δpRdΩ +

∫
Ω

(ui, q, Ta)δTRdΩ = 0

(2.25)

By taking the variations of Ri with respect to primal velocities and primal pressure,

we obtain

δv(R1, R2, R3)T = δvjvi,j − (ν(δvi,j + δvj,i)),j + αδvi

δvR4 = −δvi,i

δvR5 = δviT,i

(2.26)

δp(R1, R2, R3)T = δp,i

δpR4 = 0

δpR5 = 0

(2.27)

15

δp(R1, R2, R3)T = 0

δpR4 = 0

δpR5 = uiδT,i − kδT,ii

(2.28)

Inserting Eq. 2.26, Eq. 2.27 and Eq. 2.28 into Eq. 2.25 gives

δwL = 0 = δvJ + δpJ + δTJ

+

∫
Ω

(uiδvjvi,j − ui(ν(δvi,j + δvj,i)),j + uiαδvi)dΩ

−
∫

Ω

qδvi,idΩ +

∫
Ω

viδp,idΩ

+

∫
Ω

TaδviT,idΩ +

∫
Ω

TaδT,ividΩ

−
∫

Ω

TakδT,iidΩ

(2.29)

The cost function can be split up into contributions from the boundaries Γ and interior

domain Ω

J =

∫
Γ

JΓdΓ +

∫
Ω

JΩdΩ (2.30)

Collecting terms on above equations in the same integral form, the following equa-

tions are obtained.

∫
Ω

(∂JΩ

∂vi
− vjuj,i − vjui,j + q,i − (ν(ui,j + uj,i)),j + αui

)
δvidΩ

+

∫
Ω

(∂JΩ

∂p
+ ui,i

)
δpdΩ +

∫
Γ

(∂JΓ

∂p
+ uini

)
δpdΓ

+

∫
Ω

(∂JΩ

∂T
− (Ta),ivi − k(Ta),ii

)
δTdΩ

−
∫

Γ

νuiδvi,jnjdΓ

+

∫
Γ

(∂JΓ

∂vi
+ niujvj + uivjnj + νui,jnj − qni

)
δvidΓ = 0

(2.31)

Considering that variations of flow variables cannot be zero, every integrand of Eq.

2.31 must be zero. So from this condition we get adjoint equations with volume

integrals.

16

2.4.1 Obtained adjoint equations

We obtain the adjoint equations and their boundary conditions from the primal gov-

erning equations by following the procedure outlined in previous parts.

−∇ · u =
∂JΩ

∂p
(2.32)

−(u ·∇)v − (v ·∇)u−∇ ·∇νu = −∇q − α(γ)u+ CT (∇Ta)−
∂JΩ

∂v

(2.33)

Cv · (∇Ta) + C∇ · (k(γ)∇Ta) =
∂JΩ

∂T
(2.34)

where u is the adjoint velocity, q adjoint pressure divided by ρ, Ta adjoint tempera-

ture, and JΩ total cost function in design domain Ω.

2.4.2 Design variable dependent porosity and conductivity

Following the SIMP approach, the variations of porosity and conductivity as a func-

tion of the each component of the design variable vector γ can be expressed as follows

[9]:

α(γ) = αsolid − (αsolid − αfluid)(1− γ)
1 + q

1 + q − γ
, (2.35)

k(γ) = kfluid + (ksolid − kfluid)γp, (2.36)

where q (typically 0.1) and p (typically 3) are penalty constants, αfluid and αsolid

are the fluid (minimum) and solid (maximum) porosity values; kfluid and ksolid are

the fluid (minimum) and solid (maximum) thermal conductivity values. Optimum

topologies are formed with the design variable γ, which varies from 0 to 1, with

γ = 0 representing the fluid medium (flow passage), and γ = 1 representing the solid

medium.

17

2.4.3 Boundary conditions

The boundary conditions of the primal and the derived adjoint equations are sum-

marized in Table 2.1. The boundary conditions of the adjoint equations are deduced

from the variational formulation used while deriving the adjoint equations.

2.4.4 Weights for cost functions

In the design optimizations, the total cost function plays an important role affecting

the optimization procedure and the equations to be solved. There may be one or

more cost functions involved in each problem. If the total cost function has at least

two functions, the optimization is called ’multi-objective’ optimization. In this paper,

our multi-objective/total cost function is a combination of three different cost func-

tions. The first contribution is the flow cost function Jp, which aims to minimize the

pressure drop, while the second one is the heat transfer cost function Jh intended to

minimize the average temperature in the domain. The third cost function Jv provides

a fluid volume constraint as a fraction of the total volume of the design domain as

Vf = V olf/V oltotal. These three contributions constitute a multi-objective function

with varying weight factors as the following:

J = w1Jf + w2Jh + Jv, (2.37)

where w1 is the weight factor of the flow cost function and w2 is the weight factor of

the heat transfer cost function. The weight factors affect the nature of optimization,

and adjusting them changes the character of such optimization. For instance, for

w1 >> w2 values, the total cost function is dominated by the flow cost function

and the optimization is focused on minimizing the pressure drop, while by setting

the w2 >> w1 values, the heat transfer cost function becomes dominant. In the

implementation of volume constraint Jv, the Augmented Lagrange Multiplier (ALM)

[5] method is used, where the Lagrangian function L is considered as Jv and defined

as:

L = Jv = −λkck + wck
2 (2.38)

18

where λk is the k-th Lagrange multiplier, and w a scalar weight factor. In this way ck

is defined as:

ck =

[∫
(1− γ)dΩ∫

dΩ
− Vf

]2

(2.39)

where Vf is the volume fraction of the fluid part.

Table 2.1: Boundary conditions

Type Variable Inlet Outlet Wall

1 vi (vx vy vz) ∂vn/∂n = 0, vt = 0 (0 0 0)

2 p ∂p/∂n = 0 0 ∂p/∂n = 0

3 T 0 ∂T/∂n = 0 ∂T/∂n = 0

4 ui un = −∂J/∂p , ut = 0 ∂un/∂n = 0, ut = 0 (0 0 0)

5 q ∂q/∂n = 0 0 ∂q/∂n = 0

6 Ta 0 ∂Ta/∂n = 0 ∂Ta/∂n = 0

19

20

CHAPTER 3

OPENFOAM

3.1 Open Source Software

Wikipedia defines open source as "Open-source software (OSS) is a type of computer

software in which source code is released under a license in which the copyright

holder grants users the rights to study, change, and distribute the software to anyone

and for any purpose. Open-source software may be developed in a collaborative pub-

lic manner. According to scientists who have studied it, open-source software is a

prominent example of open collaboration. The term is often written without a hyphen

as open source software". New capabilities can be developed and made freely avail-

able to scientific community. There are many open source software licenses available

in the literature, to name a few:

• GNU General Public License (GPL);

• Apache License;

• BSD License;

• Creative Commons;

• European Commission License (EUPL).

3.2 C++ : Object-Oriented Programming (OOP) Language

OpenFOAM uses C++ language, which is a general purpose object-oriented program-

ming (OOP) language, developed by Bjarne Stroustrup in 1979 [22] as a part of his

21

Ph.D. project, and is an extension of the C language. Moreover it is possible to write

code in a "C style" or "object-oriented style" in C++ language. It can be coded in

either way and is thus a well-known example of a hybrid language.

C++ can be classified to be an intermediate-level language, as it involves both high

level and low level language characteristics. At the beginning, the language was

called "C with classes" as it had all the properties of the C language with an additional

concept of "classes". However, it was renamed "C++" in 1983.

One of the main features of C++ is a collection of predefined classes, in which data

types that can be used more than one. The language also enables declaration of user-

defined classes. These classes can further replace member functions to implement

specific functionality. Multiple objects of a particular class can be used to implement

the functions within the class. Objects can be defined as instances created at run time.

These classes can also be inherited by other new classes which place the public and

protected functionalities by default.

C++ programming language includes several operators such as comparison, arith-

metic, bit manipulation, and logical operators. One of the most attractive features

of C++ is that it enables the overloading of certain operators such as vector manip-

ulation or any mathematical operation. Some of the important concepts within the

C++ programming language are namespaces, polymorphism, virtual functions, friend

functions, pointers, and templates.

3.3 C++ and OpenFOAM

C++ is a complex programming language, rich in features. OpenFOAM uses all C++

features. OpenFOAM stands for Open Source Field Operation and Manipulation.

It is licensed under the GNU General Public License (GPL). That means it is freely

available and distributed with the source code. It can be used in parallel computers,

and there is no need to pay for separate licenses. It is under active development

and counts with a wide-spread community around the world (industry, academia and

research labs).

22

Figure 3.1: Overview of OpenFOAM structure.

OpenFOAM is the first and foremost combined C++ library, used primarily to create

executables, known as applications. The applications fall into two categories: solvers,

that are designed to solve partial differential equations (PDEs) or ordinary differen-

tial equations (ODEs) of a specific problem in continuum mechanics; and utilities,

that are designed to perform tasks that involve data manipulation. New solvers and

utilities can be created by its users with some prerequisite knowledge of the underly-

ing method, physics and programming techniques involved. OpenFOAM is supplied

with pre- and post-processing environments. The interface to the preprocessing and

postprocessing are themselves OpenFOAM utilities, thereby ensuring consistent data

handling across all environments. The overall structure of OpenFOAM is shown in

Figure 3.1.

OpenFOAM has extensive multi-physics capabilities, among others:

• Computational fluid dynamics (compressible and incompressible flows);

• Computational heat transfer and conjugate heat transfer;

• Combustion and chemical reactions;

• Multiphase flows and mass transfer;

• Particle methods and Lagrangian particles tracking;

• Stress analysis and fluid-structure interaction;

• Rotating frames of reference, arbitrary mesh interface, dynamic mesh handling,

and adaptive mesh refinement;

23

• 6 DOF solvers, computational aero-acoustics, computational electromagnetics,

computational solid mechanics, etc.;

• Topology optimization with adjoint method for internal flow.

3.4 OpenFOAM Terminology

3.4.1 Forming the equations

OpenFOAM enables writing differential equations of modelled problem in computer

environment by the help of C++ language. Consider following partial equation (mo-

mentum equation)

∂ρU

∂t
+∇ · φU −∇ · µ∇U = −∇p. (3.1)

Eq. 3.1 can be transformed into OpenFOAM as following

Figure 3.2: OpenFOAM notation.

The considered field U can be scalar, vector or tensor. Discretization does not have

to be specified at this stage. Above syntax may be considered to be very close to Eq.

3.1.

24

3.4.2 Generating the mesh

Mesh is an important element for numerical analysis. The problem domain is divided

to the meshes in order to solve differential equations. In OpenFOAM, meshes are

objects defined by points, faces, cells, and boundary patches. To clarify, a cell is

described as a list of faces closing its volume, a face is an ordered list of points and

points are ordered list of locations (x, y, z), patches are defined as boundary faces to

assign boundary conditions.

3.4.3 Time class

While domain is dividing into the meshes, temporal dimension is also breaking to a

finite number of time steps. In OpenFOAM, the time class is handling to track the

time step count with time increment ∆t and to output in every time step.

3.4.4 Fields

Mathematical operators are valid on fields of scalars, vectors, and tensors. Each

of them is special tensor with different order. Their class consists of a list of typed

values at predefined points of the mesh with tensorial type and associated value. For

example, vector class includes vector operations (addition, substraction, scalar mul-

tiplication, cross product, magnitude, etc.) and thus has three floating point numbers.

3.5 Contributions to OpenFOAM

We started to modify an existing solver called adjointShapeOptimizationFoam which

optimizes incompressible internal flows. In order to solve pure heat conduction

problem, a solver is developed based on adjointShapeOptimizationFoam solver. For

thermo-fluid flow problems, we combined these two solvers by considering different

features like volume constraints and weight factors and gave a name ’multiTopOpt-

Foam’.

25

26

CHAPTER 4

NUMERICAL TEST CASES

The computational procedures of topology optimization, theory behind adjoint method

and equations developed in Chapter 2 are implemented into OpenFOAM under the

name multiTopOptFoam. This chapter includes cases to demonstrate the results and

compare them with related references. These cases are Ducted Flow, Pure Heat Con-

duction Problem, and Thermal-Fluid Flow.

4.1 Case 1: Ducted Flow

This case is a topology optimization of a flow splitter manifold commonly arising

in typical climatization systems. The problem domain consists of one inlet and four

outlets as shown in Figure 4.1. The governing primal and adjoint equations from Eqs.

2.12-2.14 and Eqs. 2.32-2.34 reduce to:

Primal Equations:

−∇ · v = 0 (4.1)

(v ·∇)v = −∇p+ ∇(2νD(v))− α(γ)v (4.2)

Adjoint Equations:

−∇ · u =
∂JΩ

∂p
(4.3)

−(u ·∇)v − (v ·∇)u−∇ ·∇νu = −∇q − α(γ)u− ∂JΩ

∂v
(4.4)

The boundary condition of type 1 at the inlet is vy = 20m/s with vx = vy = 0 and a

27

Reynolds number of approximately 300,000 based on characteristic length 0.225 m,

kinematic viscosity ν = 1.5 10−4m2

s
. The zero-velocity boundary condition is used

on the walls and the zero-velocity gradient boundary condition is used for the outlets.

The boundary condition for pressure is of type 3, for which zero pressure-gradient

boundary conditions are applied at inlet and walls, and zero pressure boundary con-

ditions are imposed at the outlets. For the adjoint velocity, the boundary condition

is of type 4 in Table 2.1, where ux and uz components are zero and uy = ∂J
∂p

= −1

m
s

. The adjoint velocities are zero for rest of the boundaries. For the adjoint pres-

sure, the boundary condition is of type 5 and it states that it is zero at the outlets and

zero-gradient at the inlet and walls.

Figure 4.1: Problem domain of ducted flow.

A cost function Jf for minimizing pressure losses between inlet and outlet boundaries

in the form

JΓ = Jf = d1

(
p− poutlet

)
inlet

(4.5)

28

where d1 is 1m/s. Since the cost function is defined as a difference in pressures

between inlet and outlet Jω is zero. The Eq. 2.14 and Eq. 2.34 are omitted due to the

fact that heat transfer is not considered in this case. In Eq. 2.32, the derivative of the

cost function with respect to primal pressure appears, and hence, its derivative has to

be determined as follows:

∂Jf
∂p

=
∂

∂p

(
p− poutlet

)
inlet

= 1 (4.6)

In this case, optimization is done by considering only the flow and the related cost

functions and minimizing the pressure drop between the inlet and the outlets. For

this purpose, the SIMPLEFOAM solver in OpenFOAM is used. The SIMPLE (Semi-

Implicit Method for Pressure Linked Equations) method is intended for constructing.

Although the problem is 3D, the design space is a halved symmetry plane to avoid

redundant computations. One million hexahedral elements are used for the compu-

tations. For this case, frozen turbulence and steady-state assumptions are made. The

’Frozen turbulence’ assumption states that, during the calculation of the adjoint vari-

ables, turbulent kinetic viscosity νeff does not change. Figure 4.2a shows the primal

velocity distribution, from which we can conclude that on the left-top and the right-

bottom corners, there are recirculation regions. The volume fraction of solid region is

satisfied as 0.4. Figure 4.3a depicts the final design variable distribution that implies

the shape of the product. Comparison of the results with the results of Othmer [15]

in Figures 4.2 (b) and 4.3 (b) are reasonable. In Table 4.1, decrease on cost function

value can be seen:

Table 4.1: Cost function values of initial and optimized design, J [kg/(ms2)].

Initial Cost Value 8.3×108

Optimized Cost Value 1.2×107

29

Figure 4.2: (a) Final velocity distribution of case 1, (b) Othmer [15] .

4.2 Case 2: Pure Heat Conduction

Although topology optimization of pure heat conduction case with other optimization

methods has been studied in various studies, adjoint method has not been widely used

in this kind of cases. Pure heat conduction case is a basis problem where to find

optimal pattern to move away heat from 2D square plate into a heat sink. In other

words, the objective is to minimize mean temperature in the design domain.

For this case, γ is design variable and is assigned to each element of the domain. γ

has minimum (γmin = 0) and maximum (γmax = 1) value in this way domain may

have different pattern. If an element has γmin value, element can be considered as

void. If an element has γmax value, element can be considered as solid. γ controls

thermal conductivity, k. k is defined as a function of γ

k(γ) = kmin + (kmax − kmin)γp (4.7)

30

Figure 4.3: Design variable α final distribution of (a) case 1, (b) Othmer [15].

Figure 4.4: Design variable α final distribution of (a) case 1, (b) Othmer [15].

31

where p is a penalty constant and chosen as 3 in this case.

Constant and homogeneous heat source Q is applied on whole domain. Boundary

conditions are adiabatic(insulating) at walls and heat sink at bottom T1 = 273 K for

primal variable (T).

Figure 4.5: Design domain and primal variable boundary conditions.

Domain Size L× L = 3× 3 m2

T1 273 K

kmax 1 m2/K

kmin 0.001 m2/K

Q 0.3

Volume Fraction(Vf) 0.4

Poisson’s equation is the governing equation of this case

∇ · (k(γ)∇T) = −Q (4.8)

32

Adjoint equation of this case is derived in Chapter 2. It can be seen in Eq. 4.9:

k(γ)∇2Ta = −∂Jtotal
∂T

(4.9)

where Ta is adjoint variable and Jcost is objective (cost) function. As already dis-

cussed at the beginning, objective (cost) function is formulated mathematically

Jcost =
1

2

∫
Ω

(T − T ∗)2dΩ (4.10)

so total objective function becomes

Jtotal = Jcost + Jvolume =
1

2

∫
Ω

(T − T ∗)2dΩ + Jvolume (4.11)

where Jvolume is defined as volume constraint and explained on previous section. Thus

Adjoint equation (Eq. 4.9) becomes

k(γ)∇2Ta = −(T − T ∗) (4.12)

Adjoint boundary conditions of this case is derived on Chapter 2. They can be seen

in Eq. 4.13:

k(γ)∇Ta = 0 wall

Ta = 273 heat− sink
(4.13)

In order to update design variable values, γ, Eq. 2.1 from Chapter 2 needs∇J .

∇Jtotal =
∂Jtotal
∂γ

=
∂Jcost
∂γ

+
∂Jvolume
∂γ

(4.14)

First term on the RHS of Eq. 4.14 is obtained as following, where second term was

explained on previous section.

∂Jcost
∂γ

= 3(kmax − kmin)γ2∇T · ∇Ta (4.15)

33

Results: The domain is discretized using 30000 elements. The optimal design topolo-

gies corresponding the case with Vf = 0.4 is shown to compare reasonably well with

the results of Dede [17] shown in Figure 4.6b. Following results are obtained.

Figure 4.6: Design variable γ distribution of (a) Vf = 0.4 of case 2, (b) Dede [9].

Table 4.2: Cost function values of initial and optimized design, J [K].

Initial Cost Value 447

Optimized Cost Value 34

4.3 Case 3: Coupled Thermal-Fluid Flow

In this case, we solve the topology optimization of thermal-fluid flow case for which

multi-objective functions are needed for solution of coupled Navier-Stokes and en-

ergy equations are coupled. The coupled characteristic of the problem requires the

use of a multiple cost function including both heat transfer and fluid components.

Primal equations given by Eqs. 2.12-14 and adjoint equations given by Eqs. 2.32-34

apply to this problem are:

34

(a) (b)

(c) (d)

Figure 4.7: (a) γ distribution (b) converge of cost function value as a function of

iteration number (c) temperature distribution (d) adjoint temperature distribution at

optimal solution of case 2.

35

Figure 4.8: Problem domain of coupled thermal-fluid flow.

Primal Equations:

−∇ · v = 0 (4.16)

(v ·∇)v = −∇p+ ∇(2νD(v))− α(γ)v (4.17)

Cv · (∇T) = ∇ · (k(γ)∇T)−Q (4.18)

Adjoint Equations:

−∇ · u =
∂JΩ

∂p
(4.19)

−(u ·∇)v − (v ·∇)u−∇ ·∇νu = −∇q − α(γ)u+ CT (∇Ta)−
∂JΩ

∂v

(4.20)

Cv · (∇Ta) + C∇ · (k(γ)∇Ta) =
∂JΩ

∂T
(4.21)

Convective heat transfer appears in most industrial applications in which thermal

movement occurs. There is heat transfer mechanism between the fluid and the solid

region. The focus is on developing the heat transfer between these two regions. Con-

vection heat transfer mechanism is mainly divided into two groups. When move-

ment of the fluid is driven by buoyancy by the reason of density, it is called natural

convection. If the flow has gained movement by external forces, it is called forced

convection.

36

The optimization aims at finding an optimum distribution for the design variable γ,

which affects directly the porosity and thermal conductivity functions (Eqs. 2.35-

2.36). The problem has a square domain with one inlet and two outlets for fluid flow

and constant heat source Q applied over the domain.

The flow enters the domain through the left inlet with a given velocity and tempera-

ture and goes out the domain through the right two outlets. On the walls, where the

rest of the domain appears, there is a no-slip boundary condition for primal velocity

and the adiabatic boundary condition for the primal temperature. For adjoint vari-

ables, type 4-6 boundary conditions are used was listed in Table 1. The governing

equations for primal and adjoint variables are Eqs. 4.16-21. The multi-cost function

is a combination of the flow and heat cost functions explained earlier and formulated

in Eq. 2.38. After implementing the cost functions to this equation, we obtain:

J = w1Jf + w2Jh + Jv

= w1d1

(∫
inlet

pdΓ−
∫
outlet

pdΓ

)
+ w2

(
d2

2

∫
(T − T ∗)2dΩ

)
+ (−λkck + wck

2)

(4.22)

where d1 and d2 are constants for unit consistency with units m/s and 1/s, respec-

tively. Another modification to this solver was adding the volume constraint cost

function as mentioned before. The volume fraction of fluid region is set to 0.3 in this

case. Structured mesh of 20.000 elements are used for computations. The objective of

analyzing the combined flow is to optimize the domain based on the weights of cost

functions of each problem. In this way, the topology optimization problem can be

controlled by selecting the weight factors in the total cost function (Eq. 4.22). More-

over, it is vitally essential to choose right weight factors in the optimization procedure

for desired level of optimization. Several optimization studies have been done on this

selection process. The results of w1 = 1 and w2 = 10 case are shown as example in

Figures 4.10 and 4.11, where the heat transfer cost function is beginning to dominate

the solution over the flow cost function. The effect of the higher heat transfer weight

is observed with formation of branches around the inlet, which meet again close to

the outlets.

37

Figure 4.9: Velocity distribution of optimized solution when w1 = 1 and w2 = 0.

Figure 4.10: α(γ) distribution of optimized solution when w1 = 1 and w2 = 0.

Figure 4.11: Velocity distribution of optimized solution of case 3 when w1 = 1 and

w2 = 10.

38

Figure 4.12: Temperature distribution of optimized solution of case 3 when w1 = 1

and w2 = 10.

39

40

CHAPTER 5

PARALLEL COMPUTING STUDY

Parallel computing study of ducted flow case and pure heat conduction case are ex-

amined and its results are shown in this chapter. Domain decomposition parallelism is

fundamental to the design of OpenFOAM and integrated at a low level so that solvers

can generally be developed without the need for any parallel-specific coding. The

underlying aim is to break up the domain with minimal effort but in such a way to

guarantee an economic solution. The geometry and fields are broken up according

to a set of parameters specified in a dictionary named decomposeParDict that must

be located in the system directory of the case of interest. The user has a choice of

four methods of decomposition which are simple, hierarchical, scotch, and manual.

Simple decomposition method in which the domain is split into pieces by direction,

e.g. 3 pieces in the x direction, 2 in y etc. Hierarchical decomposition which is the

same as simple method except the user specifies the order in which the directional

split is done, e.g. first in the z-direction, then the x-direction and the y-direction

etc. Manual decomposition, where the user directly specifies the allocation of each

cell to a particular processor. Last method Scotch decomposition which requires no

geometric input from the user and attempts to minimise the number of processor

boundaries. The parallel computations in this study are carried out using the Mes-

sage Passing Interface (MPI) library, which ensures proper communication between

processors (cores) is used in OpenFOAM. Two different mesh sizes (1 million and

10 million) were used to investigate the speed-up and efficiency of cases 1 and 2 in

Tables 5.2 and 5.3, respectively for up to 48 cores. It is seen that the performance

of Case 2 is better than Case 1, which is somewhat expected since the mesh subdi-

visions and interface sizes of the unstructured mesh of Case 1 are almost impossible

to balance, whereas the mesh and interface sizes of the structured mesh of Case 2

41

are easy to balance. We studied effect of using large-scale mesh of topology opti-

mization of internal flow with adjoint method with various mesh decompositions in

an open-source platform. Parallel computations have been conducted in Linux en-

vironment. For large-scale computing Xean Scalable-6148 processors with 40 CPU

cores, 2.40 GHz clock speed and 2048 Gigaflops CPU speed have been used. We are

grateful to Scientific and Technological Research Council of Turkey for supporting

us by providing access to their cluster.

An example of scotch with 8 decompositions is shown in Figure 5.1:

Figure 5.1: Front view of domain decompositions (left) and back view of domain

decompositions (right).

42

Figure 5.2: Speedup of ducted flow case

Figure 5.3: Speedup of pure heat conduction case

43

Table 5.1: Cost function values at 1st and 1000st iteration, J [kg/(ms2)].

Number of Cores 1st iteration 1000st iteration

1 830895×103 11688 ×103

4 830619×103 11476×103

16 830601×103 11224×103

Table 5.2: Speed-up and efficiency of ducted flow case

Ducted Flow Case 1M Mesh 10M Mesh

Number of Cores Speed-up Efficiency (%) Speed-up Efficiency (%)

2 2 100 2 100

4 3.64 91 3.85 96

8 5.3 66 7.54 94

16 10.65 66 9.92 62

32 14.33 44 17.77 55

48 19.68 41 24.48 51

Table 5.3: Speed-up and efficiency of heat conduction case

Heat Conduct. Case 1M Mesh 10M Mesh

Number of Cores Speed-up Efficiency (%) Speed-up Efficiency (%)

2 2 100 2 100

4 3.36 84 3.99 99

8 7.28 91 8.11 101

16 13.35 83 12.01 75

32 27.9 87 24.7 77

48 37.28 77 34.27 71

44

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The objective of this study has been to develop topology optimization procedures for

thermal-fluid problems. The topology optimization employed here is based on the ad-

joint equation formulation coupled with SIMP formulation in conjunction with a gra-

dient based optimization algorithm. The developed topology optimization methodol-

ogy is demonstrated with application to ducted-flow, pure heat-transfer and thermal-

fluid flow problems, we saw that consideration of forced convection naturally intro-

duces a multi-objective cost function into the problem formulation. Topology opti-

mization for forced convection problems is more complex due to the multi-objective

nature of the cost function. Unless care is taken with the problem statement, unex-

pected (though mathematically defensible) solutions may be obtained. Furthermore,

we have taken a relatively simple approach to multi-objective optimization, using a

simple linear weighted sum of objective functions to drive the problem. This repre-

sents a rich area for future work, and is essential if industrially-relevant problems are

to be solved using topology optimization. Finally, parallel study of Ducted-Flow case

is investigated to demonstrate its performance.

6.2 Recommendations for Future Work

Choosing weight factors of cost functions is a subject that should be investigated.

Additionally, models corresponding to example cases analyzed in this thesis can be

built in laboratory. Thus, analyzed results can be validated by experimental ones.

45

Parallelization in multi-core systems is complicated and needs more investigation.

It is desired that this thesis will help multi-disciplinary community using topology

optimization for different applications in industry.

46

REFERENCES

[1] R. N. Gauger. Efficient deterministic approaches for aerodynamic shape opti-

mization. Optimization and Computational Fluid Dynamics, 111–145, 2008.

[2] J. Reuther and A. Jameson. Aerodynamic shape optimization of wing and wing-

body configurations using control theory. 33rd Aerospace Sciences Meeting and

Exhibit, 1995.

[3] L. JiaQi, X. JunTao, and L. Feng. Aerodynamic design optimization by

using a continuous adjoint method. Physics, Mechanics and Astronomy,

57(7):1363–1375, 2014.

[4] A. Jameson. Aerodynamic design via control theory. Journal of Scientific Com-

puting, 3(3):233–260, 1988.

[5] E. M. Papoutsis-Kiachagias and K. C. Giannakoglou. Continuous adjoint meth-

ods for turbulent flows, Applied to Shape and Topology Optimization: Industrial

applications. Computational Methods in Engineering, 23(2):255–299, 2016.

[6] M.P. Bendsoe and N. Kikuchi. Generating optimal topologies in structural de-

sign using a homogenization method. Computer Methods in Applied Mechanics

and Engineering, 71(2):197–224, 1988.

[7] S. Liu, Q. Li, J. Liu, W. Chen, and Y. Zhang. A realization method for trans-

forming a topology optimization design into additive manufacturing structures.

Engineering, 4(2):277-285, 2018.

[8] M.P. Bendsoe and O. Sigmund. Topology Optimization, Theory, Methods and

Applications. Springer, Berlin, 2002.

[9] E.M. Dede, J. Lee, and T. Nomura. Multiphysics Simulation: Electromechanical

System Applications and Optimization Springer, London, 2014.

47

[10] A. A. Koga, E. C. C. Lopes, H. F. V. Nova, et al. Development of heat sink

device by using topology optimization. International Journal of Heat and Mass

Transfer, 64(1):759-772, 2013.

[11] E. Oktay, H.U. Akay, and O.T. Sehitoglu. Three-dimensional structural topology

optimization of aerial vehicles under aerodynamic loads. International Journal

of Computational Fluid Dynamics, 92(1):225–232, 2014.

[12] E.M. Dede. Multiphysics topology optimization of heat transfer and fluid flow

systems. The Proceedings of the COMSOL Conference, 2009.

[13] O. Pironneau. On optimum design in fluid mechanics. Journal of Fluid Mechan-

ics, 64(1):97–110, 1974.

[14] T. Borvall and J. Petersson. Topology optimization of fluids in stokes flow. In-

ternational Journal for Numerical Methods in Fluids, 41(1):77–107, 2003.

[15] C. Othmer, E. de Villiers, and H.G. Weller. Implementation of a continuous

adjoint for topology optimization of ducted flows. 18th AIAA Computational

Fluid Dynamics Conference, 2007.

[16] E.M. Dede. Optimization and design of a multipass branching microchannel

heat sink for electronics cooling. Journal of Electronic Packaging, 134(4), 2012.

[17] N. Leon, E. Uresti, and W. Arcos. Fan-shape optimisation using CFD and ge-

netic algorithms for increasing the efficiency of electric motors. International

Journal of Computer Applications in Technology, 30(1):47–58, 2007.

[18] H.U. Akay, E. Oktay, M. Manguoglu, and A.A. Sivas. Improved parallel pre-

conditioners for multidisciplinary topology optimisations International Journal

of Computational Fluid Dynamics, 30(4):329-336, 2016.

[19] C. Othmer. Adjoint methods for car aerodynamics. Journal of Mathematics in

Industry, 4(6), 2014.

[20] T. Matsumori, T. Kondoh, A. Kawamoto, and T. Nomura. Topology optimiza-

tion for fluid-thermal interaction problems under constant input power. Struc-

tural and Multidisciplinary Optimization, 47(4):571–581, 2013.

48

[21] B. D. Craven and S. M. N. Islam. Optimization in Economics and Finance.

Springer, Netherlands, 2005.

[22] B. Stroustrup. The C++ Programming Language. Murray Hill, New Jersey,

1986.

[23] K. Yaji, T. Yamada, S. Kubo, K. Izui, and S. Nishiwaki. A topology optimiza-

tion method for a coupled thermal-fluid problem using level set boundary ex-

pressions. International Journal of Heath and Mass Transfer, 81(1):878-888,

2015.

[24] J. K. Guest and J. H. Prevost. Topology optimization of creeping fluid flows us-

ing a Darcy-Stokes finite element. International journal for numerical methods

in engineering, 66(3):461-484, 2006.

49

50

APPENDIX A

OPENFOAM CODES

In this appendix, codes made in OpenFOAM solver multiTopOptFoam are shown for

ducted flow, pure heat transfer and thermal-fluid flow cases, respectively.

A.1 case 1 : Ducted Flow

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"

#include "turbulentTransportModel.H"

#include "simpleControl.H"

#include "fvOptions.H"

template<class Type>

void zeroCells

(

GeometricField<Type, fvPatchField, volMesh>& vf,

const labelList& cells

)

{

forAll(cells, i)

{

vf[cells[i]] = 0;

}

}

51

int main(int argc, char *argv[])

{

#include "postProcess.H"

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "createControl.H"

#include "createFields.H"

#include "createFvOptions.H"

#include "initContinuityErrs.H"

#include "initAdjointContinuityErrs.H"

turbulence->validate();

Info<< "\nStarting time loop\n" << endl;

dimensionedScalar lambdaVol("lambdaVol",dimless,0.0);

dimensionedScalar weightFactor("weightFactor",dimless,1.01);

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

laminarTransport.lookup("lambda") >> lambda;

laminarTransport.lookup("Vtarget") >> Vtarget;

scalar volFraction(0.0);

scalar totalVolume(0.0);

forAll(mesh.cells(),celli)

{

volFraction += (one.value() - alpha[celli]/alphaMax.value())

* mesh.V()[celli] ;

totalVolume += mesh.V()[celli];

}

Info<< "totalVolume = " << totalVolume << " " <<endl;

52

Info<< "volFraction = " << volFraction << " " <<endl;

scalar cVol = Foam::sqr(volFraction/totalVolume

- Vtarget.value());

Info<< "cVol = " << cVol << " " <<endl;

scalar stepOne = -lambdaVol.value() + iki.value()

*weightFactor.value()*cVol;

Info<< "stepOne = " << stepOne << " " <<endl;

scalar cVolDerivative = -iki.value()/(alphaMax.value()

*totalVolume)

* (volFraction/totalVolume - Vtarget.value()) ;

Info<< "cVolDerivative = " << cVolDerivative ;

scalar stepTwo = stepOne * cVolDerivative;

Info<< "stepTwo = " << stepTwo << " " <<endl;

alpha +=

mesh.fieldRelaxationFactor("alpha")

*(min(max(alpha + lambda

(nn(Ua & U)- stepTwo), zeroAlpha), alphaMax) - alpha);

zeroCells(alpha, inletCells);

zeroCells(alpha, outletCells);

forAll(mesh.boundary()["outlet"], faceI)

//patchI: label of your target patch

{

alpha[mesh.boundary()["outlet"].faceCells()[faceI]] = 0;

}

const labelList& ids = mesh.cellZones().findIndices("outlet");

forAll(ids, i)

{

const labelList& cells = mesh.cellZones()[ids[i]];

forAll(cells, j)

53

{

label celli = cells[j];

alpha[celli] = 0.0;

}

}

label inletPatchID = mesh.boundaryMesh()

.findPatchID("outlet");

//Patch identifier of the boundary condition

fvPatchScalarField wallP = alpha

.boundaryField()[inletPatchID];

// Obtain a patchScalar field on the BC

forAll(wallP, faceI) // Loop over each face of the patch

{

alpha[faceI]=0;

}

lambdaVol += -two.value() * weightFactor.value()*cVol;

Info<< "lambdaVol = " << lambdaVol << " " <<endl;

weightFactor = min

(stepp*weightFactor.value(),weightFactorMax);

Info<< "weightFactor = " << weightFactor ;

scalar aveAlpha(0.0);

forAll(mesh.cells(),celli)

{

aveAlpha += mesh.V()[celli] * alpha[celli];

}

scalar AlphaMean=

aveAlpha / (totalVolume*alphaMax.value()) ;

Info<< "AlphaMean = " << AlphaMean << " " <<endl;

Info<< "totalVolume = " << totalVolume << " " <<endl;

54

label patchID = mesh.boundaryMesh().findPatchID("inlet");

scalar Jpressure(0.0);

forAll(p.boundaryField()[patchID],faceI)

{

Jpressure += p.boundaryField()[patchID][faceI];

}

Info<< "Jpressure = " << Jpressure << " " <<endl;

// Pressure-velocity SIMPLE corrector

{

#include "UPEqn.H"

}

// Adjoint Pressure-velocity SIMPLE corrector

{

#include "UaPaEqn.H"

}

laminarTransport.correct();

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = "

<< runTime.elapsedCpuTime()

<< " s\n\n" << endl;

}

Info<< "End\n" << endl;

return 0;

}

A.2 case 2 : Pure Heat Conduction

#include "fvCFD.H"

#include "fvOptions.H"

#include "simpleControl.H"

55

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

simpleControl simple(mesh);

#include "createFields.H"

// #include "createFvOptions.H"

Info<< "\nCalculating temperature distribution\n";

dimensionedScalar lambdaVol

("lambdaVol",dimless,0.0);

dimensionedScalar weightFactor

("weightFactor",dimless,1.01);

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl;

transportProperties.lookup("lambda") >> lambda;

transportProperties.lookup("Vtarget") >> Vtarget;

while (simple.correctNonOrthogonal())

{

volVectorField gradT(fvc::grad(T));

volVectorField gradTa(fvc::grad(Ta));

volScalarField gradTgradTa(gradTa & gradT);

volVectorField gradTgama(fvc::grad(gama));

volScalarField gradTgradgama(gradT & gradTgama);

volScalarField DthT(Dth*(0.001+0.999*gama*gama*gama)) ;

volScalarField DthTa(DthT*Tatt) ;

scalar costFunctionCell(0.0);

56

scalar volFraction(0.0);

scalar totalVolume(0.0);

forAll(mesh.cells(),celli)

{

volFraction +=

(bir.value() - DthT[celli]) * mesh.V()[celli] ;

totalVolume += mesh.V()[celli];

costFunctionCell += (T[celli]-273)* (T[celli]-273);

}

Info<< "totalVolume = " << totalVolume;

Info<< "volFraction = " << volFraction;

scalar costFunctionTotal = costFunctionCell

*totalVolume / 2;

Info<< "Totalvolume" << totalVolume;

scalar cVol = Foam::sqr(volFraction/totalVolume -

Vtarget.value());

Info<< "cVol=" << cVol<<endl;

scalar stepOne = -lambdaVol.value()

+ iki.value()*weightFactor.value()*cVol;

Info<< "stepOne=" << stepOne<<endl;

scalar cVolDerivative = -iki.value()/(totalVolume)

* (volFraction/totalVolume - Vtarget.value()) ;

Info<< "cVolDerivative=" << cVolDerivative<<endl;

scalar stepTwo = stepOne * cVolDerivative;

Info<< "stepTwo=" << stepTwo<<endl;

gama +=

mesh.fieldRelaxationFactor("gama")

(min(max(gama+lambda(Untless * Dth * gama * gama

* gradTgradTa*Tcnstt-stepTwo) , zeroGama)

57

, gamaMax) - gama);

lambdaVol += -iki.value() * weightFactor.value()*cVol;

Info<< "lambdaVol = " << lambdaVol;

weightFactor = min(stepp*weightFactor.value(),weightFactorMax);

Info<< "weightFactor = " << weightFactor;

solve

(

fvm::laplacian(DthT , T) + Q

);

solve

(

fvm::laplacian(DthTa , Ta) + T-Ttt

);

Info<< "End\n" << endl;

Info<< "costFunctionTotal = " << costFunctionTotal<<endl;

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime()

<< " ClockTime = " << runTime.elapsedClockTime();

}

return 0;

}

A.3 case 3 : Coupled Thermal-Fluid Flow

#include "fvCFD.H"

58

#include "singlePhaseTransportModel.H"

#include "turbulentTransportModel.H"

#include "simpleControl.H"

#include "fvOptions.H"

template<class Type>

void oneCells

(

GeometricField<Type, fvPatchField, volMesh>& vf,

const labelList& cells

)

{

forAll(cells, i)

{

vf[cells[i]] = 0;

}

}

template<class Type>

void zeroCells

(

GeometricField<Type, fvPatchField, volMesh>& vf,

const labelList& cells

)

{

forAll(cells, i)

{

vf[cells[i]] = Zero;

}

}

int main(int argc, char *argv[])

{

#include "postProcess.H"

#include "setRootCase.H"

59

#include "createTime.H"

#include "createMesh.H"

#include "createControl.H"

#include "createFields.H"

#include "createFvOptions.H"

#include "initContinuityErrs.H"

#include "initAdjointContinuityErrs.H"

turbulence->validate();

Info<< "\nStarting time loop\n" << endl;

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

laminarTransport.lookup("lambda") >> lambda;

eta +=

mesh.fieldRelaxationFactor("eta")

*(min(max(eta - lambda * (ll*q * (1+q)

* (alMin-alMax)/(eta+q)/(eta+q)

* (Ua & U) +therm*(ks-kf)

*Ta*fvc::laplacian(T)), zeroEta), etaMax)- eta);

zeroCells(eta, inletCells);

alpha = (alMax+(alMin-alMax) * eta * (1+q)/(eta+q)) ;

thermalK = (eta*kf+(1-eta)*ks) ;

// Pressure-velocity SIMPLE corrector

{

// Momentum predictor

tmp<fvVectorMatrix> tUEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

+ fvm::Sp(alpha*hh, U)

60

==

fvOptions(U)

);

fvVectorMatrix& UEqn = tUEqn.ref();

UEqn.relax();

fvOptions.constrain(UEqn);

solve(UEqn == -fvc::grad(p));

fvOptions.correct(U);

volScalarField rAU(1.0/UEqn.A());

volVectorField HbyA(constrainHbyA

(rAU*UEqn.H(), U, p));

tUEqn.clear();

surfaceScalarField phiHbyA

("phiHbyA", fvc::flux(HbyA));

adjustPhi(phiHbyA, U, p);

// Update the pressure BCs to ensure flux consistency

constrainPressure(p, U, phiHbyA, rAU);

// Non-orthogonal pressure corrector loop

while (simple.correctNonOrthogonal())

{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phiHbyA)

);

pEqn.setReference(pRefCell, pRefValue);

pEqn.solve();

if (simple.finalNonOrthogonalIter())

{

phi = phiHbyA - pEqn.flux();

}

}

#include "continuityErrs.H"

// Explicitly relax

61

//pressure for momentum corrector

p.relax();

// Momentum corrector

U = HbyA - rAU*fvc::grad(p);

U.correctBoundaryConditions();

fvOptions.correct(U);

}

//Info<<"phi"<<" "<<phi<<endl;

solve

(

fvm::div(phi, T)

- fvm::laplacian(thermalK*qqqq, T)

);

solve

(

fvm::div(phi, Ta)

- fvm::laplacian(thermalK*qqqq, Ta)

);

Info<<"Temperature"<<" "<<T<<endl;

// Adjoint Pressure-velocity SIMPLE corrector

{

// Adjoint Momentum predictor

volVectorField adjointTransposeConvection((

fvc::grad(Ua) & U));

zeroCells(adjointTransposeConvection, inletCells);

tmp<fvVectorMatrix> tUaEqn

(

fvm::div(-phi, Ua)

62

- adjointTransposeConvection

+ turbulence->divDevReff(Ua)

+ fvm::Sp(alpha*hh, Ua)

==

fvOptions(Ua)

);

fvVectorMatrix& UaEqn = tUaEqn.ref();

UaEqn.relax();

fvOptions.constrain(UaEqn);

solve(UaEqn == fvc::grad(pa) - Ta

* fvc::grad(T)*ttt);

fvOptions.correct(Ua);

volScalarField rAUa(1.0/UaEqn.A());

volVectorField HbyAa("HbyAa", Ua);

HbyAa = rAUa*UaEqn.H();

tUaEqn.clear();

surfaceScalarField phiHbyAa

("phiHbyAa", fvc::flux(HbyAa));

adjustPhi(phiHbyAa, Ua, pa);

// Non-orthogonal pressure corrector loop

while (simple.correctNonOrthogonal())

{

fvScalarMatrix paEqn

(

fvm::laplacian(rAUa, pa) == fvc::div(phiHbyAa)

);

paEqn.setReference(paRefCell, paRefValue);

paEqn.solve();

if (simple.finalNonOrthogonalIter())

{

phia = phiHbyAa - paEqn.flux();

63

}

}

#include "adjointContinuityErrs.H"

// Explicitly relax

// pressure for adjoint momentum corrector

pa.relax();

// Adjoint momentum corrector

Ua = HbyAa - rAUa*fvc::grad(pa);

Ua.correctBoundaryConditions();

fvOptions.correct(Ua);

}

laminarTransport.correct();

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = "

<< runTime.elapsedCpuTime()

<< " s\n\n" << endl;

}

Info<< "End\n" << endl;

return 0;

}

64

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Design Optimization
	Shape Optimization
	Topology Optimization
	Current status of topology optimization

	Mathematical Formulation
	The Adjoint Method
	The Derivation of Continuous Adjoint Method
	Primal Equations of Thermal-Fluid Flow Problems with Darcy Term
	Derivation of Adjoint Equations of Thermal-Flow with Darcy Term
	Obtained adjoint equations
	Design variable dependent porosity and conductivity
	Boundary conditions
	Weights for cost functions

	OpenFOAM
	 Open Source Software
	 C++ : Object-Oriented Programming (OOP) Language
	 C++ and OpenFOAM
	 OpenFOAM Terminology
	 Forming the equations
	 Generating the mesh
	 Time class
	 Fields

	Contributions to OpenFOAM

	Numerical Test Cases
	Case 1: Ducted Flow
	Case 2: Pure Heat Conduction
	Case 3: Coupled Thermal-Fluid Flow

	Parallel Computing Study
	Conclusions and Future Work
	Conclusions
	Recommendations for Future Work

	REFERENCES
	openfoam codes
	case 1 : Ducted Flow
	case 2 : Pure Heat Conduction
	case 3 : Coupled Thermal-Fluid Flow

