
A HIGH THROUGHPUT FPGA IMPLEMENTATION OF MARKOV CHAIN
MONTE CARLO METHOD FOR MIXTURE MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CANER BOZGAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2019

Approval of the thesis:

A HIGH THROUGHPUT FPGA IMPLEMENTATION OF MARKOV CHAIN
MONTE CARLO METHOD FOR MIXTURE MODELS

submitted by CANER BOZGAN in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Prof. Dr. İlkay Ulusoy
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering, Hacettepe University

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Emre Özkan
Electrical and Electronics Engineering, METU

Date: 29/01/2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Caner Bozgan

Signature :

iv

ABSTRACT

A HIGH THROUGHPUT FPGA IMPLEMENTATION OF MARKOV CHAIN
MONTE CARLO METHOD FOR MIXTURE MODELS

Bozgan, Caner

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. İlkay Ulusoy

January 2019, 92 pages

Markov Chain Monte Carlo (MCMC) is a class of algorithms which can generate

samples from high dimensional and multimodal probability distributions. In many

statistical and control applications, MCMC algorithms are employed widely thanks

to their ability to draw sample from arbitrary distribution regardless of dimension or

complexity. However, as the complexity of the Bayesian models and the computa-

tional load of the MCMC algorithm increase, performing MCMC inference becomes

impractical or too time consuming for the real applications with large scale data

sets. Motivated by this problem, this thesis proposes a low latency, scalable and high

throughput hardware architecture for Parallel Tempering method, which is a MCMC

algorithm to sample from multimodal distributions. The work demonstrates that the

implementation of the Parallel Tempering method on Field Programmable Gate Array

(FPGA) provides significant speedups compared to respective CPU and GPU imple-

mentations when performing Bayesian inference for a mixture model. The proposed

work also adapts the architecture to the big data MCMC problems by eliminating

the external memory related performance losses that arise in the MCMC hardware

v

implementations.

Keywords: Markov Chain Monte Carlo (MCMC), Sampling, Mixture Model, Field

Programmable Gate Array (FPGA)

vi

ÖZ

KARIŞIM MODELLERİ İÇİN MARKOV ZİNCİRLİ MONTE CARLO
YÖNTEMİNİN YÜKSEK İŞLEM HACİMLİ FPGA UYGULAMASI

Bozgan, Caner

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. İlkay Ulusoy

Ocak 2019 , 92 sayfa

Markov Zincirli Monte Carlo (MZMC) çok boyutlu ve çok tepeli dağılımlardan ör-

nekleme yapabilen bir algoritma sınıfıdır. Dağılımın karmaşıklığına ve boyutuna al-

dırmaksızın örnek çekebilme yetenekleri sayesinde birçok istatiksel uygulamada yay-

gın şekilde kullanılırlar. Ancak, uygulanan MZMC metodunun numerik yükü ve he-

def alınan modelin karmaşıklığı arttıkça, büyük veri içeren problemler için MZMC

uygulamaları giderek zorlaşmakta ve algoritmanın çalışma süreleri oldukça uzamak-

tadır. Bu problemden yola çıkarak, çok tepeli problemlerden örnekleme yapabilen

Parallel Tempering metodu için düşük gecikmeli, ölçeklenebilir ve yüksek veri ha-

cimli bir donanım mimarisi önerilmektedir. Yapılan çalışma, karışım modelleri için

Bayesci çıkarımda, FPGA tabanlı Parallel Tempering mimarisinin çok çekirdekli iş-

lemci (CPU) ve grafik işlemcilere (GPU) kıyasla ciddi hız artışları sağladığını göster-

miştir. Ayrıca bu çalışma MZMC donanım gerçeklemelerinde harici hafızaya erişim

sırasında gözlenen performans kayıplarının önüne geçerek, mimariyi büyük veri içe-

ren problemlere uyugun hale getirmiştir.

vii

Anahtar Kelimeler: Markov Zincirli Monte Carlo (MZMC), Örnekleme, Karışım Mo-

delleri, Alanda Programlanabilir Kapı Dizinleri

viii

To my family

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Prof. Dr. İlkay Ulusoy, for her guidance

and continuous support of my research. The door to her office was always open

whenever I ran into a trouble spot. The most thing I admire and appreciate is that she

gave me a great freedom in my research.

I would like to thank ASELSAN A.Ş. for providing necessary hardware and software

environments to develop my studies. Also, all seniors from workplace deserve sincere

thanks for their contributions on the improvement of my engineering skills.

I also have to thank my parents Şengül Bozgan and Yaşar Bozgan and my brother

Alper Bozgan. They dedicate their life to my education and without them I would not

be what I am.

Lastly, I wish to thank my dear wife İlknur Bozgan who gave me a great support from

the beginning.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 5

2.1 Background . 5

2.2 Monte Carlo Approximation . 7

2.2.1 Rejection Sampling . 8

2.2.2 Importance Sampling . 8

2.3 Markov Chain Monte Carlo (MCMC) 10

2.3.1 MCMC Algorithms . 11

2.3.1.1 Metropolis Algorithm 11

2.3.1.2 Metropolis-Hasting Algorithm 12

xi

2.3.1.3 Gibbs Sampling . 13

2.3.1.4 Parallel Tempering . 13

2.3.1.5 Other MCMC Algorithms 21

2.3.2 The Output Analysis of MCMC 21

2.4 Sequential Monte Carlo . 22

2.4.1 Sequential Importance Sampling (SIS) 22

2.4.2 Sequential Importance Sampling Resampling (SISR) 24

2.5 The Acceleration of MCMC . 26

2.6 The Approach of this Thesis . 29

2.7 Related Works . 29

3 HARDWARE ARCHITECTURES FOR PARALLEL TEMPERING AL-
GORITHM . 35

3.1 Parallel Tempering . 36

3.2 System Architectures . 39

3.2.1 The Standard-Precision PT Architecture 39

3.2.2 The Mixed-Precision PT Architecture 48

4 PERFORMANCE EVALUATION . 51

4.1 Case Study . 51

4.2 Evaluation Platforms . 52

4.3 FPGA Implementation . 55

4.4 Performance Metrics . 56

4.5 Performance Results . 58

4.5.1 Throughput Analysis . 61

xii

4.5.2 Power Analysis . 66

4.5.3 Latency Analysis . 70

4.5.4 FPGA Resource Utilization of PT 72

4.5.5 Precision Analysis . 73

4.5.6 Memory Analysis . 76

5 CONCLUSIONS AND FUTURE WORK 81

REFERENCES . 85

xiii

LIST OF TABLES

TABLES

Table 4.1 The Parameters of Mixture Model 52

Table 4.2 Latency formula for PT blocks . 57

Table 4.3 Throughput (samples/sec) of the PT on FPGAs for different chain

numbers M when n=128. 64

Table 4.4 Throughput (samples/sec) of the PT on FPGAs for different number

of data (n) . 67

Table 4.5 Power consumption of PT estimated by EPE tool for different num-

ber of chains(M) and data size(n) combinations 68

Table 4.6 Power consumption of PT measured by LTC2978 on Altera SI De-

velopment Board for different number of chains(M) and data size(n) com-

binations . 69

Table 4.7 Power consumption of PT estimated by EPE tool for M=128 and n=16 69

Table 4.8 The latency (clock cycle) of main PT blocks for single and double

floating point precision for M=128, n=16 and p=4 72

Table 4.9 FPGA resource utilization of double precision PT stages for M=128

and n=16 . 73

Table 4.10 FPGA resource utilization for double, single and mixed precision

PT in terms of when M=128 and n=16. There exist three 3 single precision

pipelines and one double precision pipeline in Mixed-Precision-PT 75

xiv

Table 4.11 Throughput(samples/sec) for double, single and mixed precision PT

when M=128 and n=16 . 75

Table 4.12 Power consumption for double, single and mixed precision PT when

M=128 and n=16 . 76

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Rejection Sampling [54] . 8

Figure 2.2 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via Metropolis algorithm. 16

Figure 2.3 The histogram of 60000 samples generated via Metropolis algo-

rithm for µ1. 16

Figure 2.4 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via Parallel Tempering method with 4 chains. 17

Figure 2.5 The histogram of 60000 samples generated via Parallel Temper-

ing method with 4 chains for µ1. 17

Figure 2.6 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via Parallel Tempering method with 32 chains. 18

Figure 2.7 The histogram of 60000 samples generated via Parallel Temper-

ing method with 32 chains for µ1. 18

Figure 2.8 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via Parallel Tempering method with 512 chains. 19

Figure 2.9 The histogram of 60000 samples generated via Parallel Temper-

ing with 512 chains for µ1. 19

Figure 2.10 The number of samples in each mode for 60000 iteration. 20

Figure 2.11 The average number of iterations to traverse all modes in sample

space. 20

xvi

Figure 3.1 FPGA architecture of PT algorithm: In-chip FPGA memories

are used for Data, Sample(Dual port) and Probability memories. The

Accept/Reject block in the Update block is continuously fed by the

Probability Evaluation block and the Uniform Random Number genera-

tor. The Control block controls the data flow between Proposal, Update

and Exchange blocks. All system components support double floating

point arithmetic precision. 40

Figure 3.2 The histogram of CLT based GRNG for two million samples . . 42

Figure 3.3 The histogram of Box Muller based GRNG for two million sam-

ples . 43

Figure 3.4 Architecture of the Tausworthe URNG [14] 44

Figure 3.5 Pipelined subdensity evaluator block that calculates the four(4)

components of the mixture model in parallel. 45

Figure 3.6 Parallel pipelines in Probability Evaluation block: There are four

pipelines in the Probability Evaluation block and for a cycle four(4) sub

densities are evaluated. For data size n=16, the likelihood density is

generated in every four cycles for a chain. 46

Figure 3.7 An example of chain streaming for the PT architecture. There

are four pipelines in the Update block and for data size n=16, the like-

lihood density is generated in every four cycles. Since other blocks

(Proposal, Accept/Reject and Exchange) fulfill their own tasks in one

clock cycle, they are unoccupied for three clock cycles of every four

cycles (wait state). 47

Figure 3.8 Successive update and exchange stages for eight chains 48

xvii

Figure 3.9 FPGA architecture of mixed precision PT algorithm: SP and DP

stand for single precision and double precision respectively. For auxil-

iary chains, there exists a single precision-Probability Evaluation block.

All other sub-blocks support double floating point arithmetic precision

format. The precision of a data is converted to via SP-DP converter or

DP-SP before sending to the next block that runs in different precision

format. 50

Figure 4.1 The custom FPGA board includes Intel Stratix V - 5SGXA7

FPGA, two 64 bits DDR3 memories, PCIe and Ethernet Interfaces. . . 53

Figure 4.2 Altera Signal Integrity Development Board (SI) [3] includes In-

tel Stratix V - 5SGXA7 FPGA, power monitors and temperature sen-

sors. It is used to measure real time power consumption of core FPGA.

. 54

Figure 4.3 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via PT method on FPGA with 32 chains. 59

Figure 4.4 The histogram of 60000 samples generated via PT method on

FPGA with 32 chains for µ1. 59

Figure 4.5 Estimated marginal posterior density p(µ1:2|D) from 60000 sam-

ples generated via PT method on FPGA with 128 chains. 60

Figure 4.6 The histogram of 60000 samples generated via PT method on

FPGA with 128 chains for µ1. 60

Figure 4.7 Functional simulation of Probability Evaluation block for n=16

and p=4: The Probability Evaluation Block starts to produce the pos-

terior probability of chains in every four clock cycle after 146 clock

cycles delay from the start of the algorithm. 62

Figure 4.8 Functional simulation of PT architecture for M=128, n=16 and

p=4: The PT architecture starts to produce the current samples and

probabilities of the first chain in every 512 clock cycles. 63

xviii

Figure 4.9 The speedups of FPGAs, Multi-core CPU [49] [52] and GPUs

[37]cite5 [52] vs the sequential reference implementation on Intel Core

i7-2600 CPU [49] [52] for different numbers of chains M. 65

Figure 4.10 The speedups of FPGAs, Multi-core CPU [49] [52] and GPUs

[49] [52] vs the sequential reference implementation on CPU [49] [52]

for different number of data (n) when M=32. 67

Figure 4.11 Functional simulation of successive PT stages for M=128, n=16

and p=4: The values between cursors correspond to the latency of each

stage in terms of clock cycle. 71

Figure 4.12 Double precision PT architecture with external Data memories. . 78

Figure 4.13 Data flow from external data memory to the Probability Eval-

uation Block: Dark blue arrow indicates active flow in related phases.

Light blue arrow means no-flow. 80

xix

LIST OF ABBREVIATIONS

CLK Clock

CPU Central Processing Unit

DSP Digital Signal Processor

ESS Effective Sample Size

FIFO First In First Out

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GRNG Gaussian Random Number Generator

IO Input Output

IP Intellectual Property

I2C Inter-Integrated Circuit

i.i.d. Independent and Identically Distributed

LUT Look Up Table

MC Monte Carlo

MCMC Markov Chain Monte Carlo

PT Parallel Tempering

RAM Random Access Memory

RNG Random Number Generator

SIS Sequential Importance Sampling

SISR Sequential Importance Sampling Resampling

SMC Sequential Monte Carlo

URNG Uniform Random Number Generator

xx

CHAPTER 1

INTRODUCTION

In Bayesian statistics, sampling from an arbitrary probability distribution is an im-

portant task. Mainly, generated samples are used to estimate the complex integrals,

apply stochastic optimization and draw conclusions about model parameters and the

system. Including Importance Sampling and Acceptance Rejection method, many

well known methods have been proposed to generate independent random samples

from a given probability distribution. Although they can be applied for any probabil-

ity distribution, most of the methods that generate independent samples are inefficient

when they face with complex and high dimensional distributions.

On the other hand, Markov Chain Monte Carlo (MCMC) is a generic method that

generates dependent samples from any arbitrary probability distribution regardless of

its multi-modality and dimension. Main idea of MCMC methods is forming Markov

Chain whose stationary distribution matches the target distribution. The success

of MCMC methods over multi modal and high dimensional distributions has been

proved in the past years in many different scientific disciplines such as statistics,

finance, engineering, biology, chemistry, physics and control [43]. The mixture mod-

els, which are the models used in this thesis, show also multi-modality that make it a

target for MCMC methods.

Despite their all advantages, MCMC methods can be too time consuming when they

face with real-world Bayesian problems. Advanced MCMC algorithms with intensive

computational demands and the use of large scale data sets for the extremely complex

likelihood computations make the MCMC method slow for any practical use. For

example, models used in genetics or cosmology require the usage of massive data

sets [71,76] so the excessive run times can be observed. Besides, the need of external

1

memory in the MCMC computing systems arises with the usage of massive data sets,

which may limit the system’s performance. Since the data transfer rate of the external

memory may not meet the demands of MCMC processing units.

Consequently, much efforts have been devoted in recent years to accelerate MCMC

algorithms and to adapt them to Bayesian inference with massive data sets. One of

the research directions is reducing the number of individual data processed at each

MCMC iteration by proposing sampling scheme [8, 9, 45, 57]. The second research

direction focuses on the data partitioning, which is based on splitting whole data

into sub-groups then running each groups separately (generally parallel) and finally

combining the results of each groups [32, 35, 55, 74]. Another research direction

is accelerating the likelihood evaluations by parallel computations with the help of

multi-core Central Processing Units (CPUs) and Graphics Processing Units (GPUs)

[7,37,40]. Since the parallel computations in parallel hardware architectures achieved

satisfactory results for the acceleration of MCMC algorithms, Field-Programmable

Gate Arrays (FPGAs) have shown to be a promising hardware to meet increasing

speed demands of MCMC applications in the literature [45, 50–52].

Why the use of FPGAs is considered as good solution for MCMC acceleration relies

on the following facts: FPGAs are re-configurable devices that provide the chance

of implementing customizable and massively parallel architectures. With their deep

pipelining capabilities, FPGAs are also suitable for sequential architectures like most

of Markov Chain Monte Carlo methods. Another important advantage of FPGAs is

their flexibility to operate in any custom arithmetic precision format [45]. By reduc-

ing arithmetic precision in the wisely selected parts of the architecture, fewer resource

usage and thus more parallelism and higher throughput are possible [50,52]. Besides,

the power consumption is the major concern in the mobile systems like robots. When

compared to other parallel computing platforms (GPUs, CPUs), the power consump-

tions of FPGAs are very low and this makes them a good candidate for the sampling

applications in mobile systems.

Motivated by the facts given above, this thesis aims to develop and implement a

FPGA architecture for the MCMC algorithms and to bring these algorithms closer

to real time applications. To this end, the MCMC architecture proposed by G. Min-

2

gas [50–52] are taken as reference work and implemented in a completely different

FPGA brand. With this architecture which forms a deep pipeline system in FPGA

by employing parallel processing blocks, the significant performance improvements

are achieved when compared to state-of-the-art CPU and GPU implementations of

the same problem. The obtained results validates the performance improvements

achieved by FPGA accelerators proposed in the closely related works [50–52] for the

MCMC problems. In this thesis, performance metrics like sampling throughput, the

latency, the resource utilization and the power consumptions are provided and com-

pared with closely related works [37, 50–52]. The scalability of the architecture with

varying FPGA resource and data size is also investigated.

In contrast to closely related works, this thesis also investigates the effects of external

memory usage on the system’s performance. Since, memory issue becomes bottle-

neck in MCMC applications with big data and thus impacts the system’s performance

significantly. While closely related works [50–52] do not consider memory related

problems and focus only likelihood acceleration, this work takes into account the per-

formance of external memory and proposes an architecture to prevent performance

losses caused by external memory access latencies. In this architecture, whole data

is partitioned into two sub-groups such that the processing unit is fed with these sub-

groups respectively without a break. The results obtained in this work show that it

is possible to achieve speedups of 24x and 4x against the respective state-of-the-art

implementations in CPUs and GPUs even if an external memory is added to system

for big data problems.

The rest of the thesis is organized as follows:

In Chapter 2, a brief background information about the theory of Bayesian inference

is given. Strategies for sampling a random variable from given probability distribu-

tions are described. Including the Parallel Tempering method, basic principles of most

common Monte Carlo and Markov Chain Monte Carlo methods are explained. More-

over, the reasons of long run times in MCMC applications and possible solutions are

discussed. In a separate section, the literature overview on MCMC acceleration and

especially closely related works on GPUs and FPGAs which accelerated the MCMC

algorithms are presented.

3

By exploiting inherent features of FPGAs, the way of acceleration of MCMC algo-

rithms are sought in Chapter 3. For this purpose, a FPGA architecture for parallel

tempering method, which is a population based MCMC method for drawing sam-

ples from multi-modal probability distributions, is designed. All functional elements

of the architecture and the details of their implementation in FPGA are described.

Moreover, a mixed precision MCMC architecture is provided. How this architecture

saves FPGA resources and thus gives chance to add more parallel blocks to obtain

more performance achievements are explained.

Chapter 4 starts with the details of the case study (Gaussian mixture model) imple-

mented to evaluate FPGA architectures. Then, evaluation platforms and simulation

tools for verification of the algorithms are introduced. Moreover, achieved through-

put, latency, power consumption results obtained from real hardware and FPGA re-

source utilization of the FPGA architecture are presented. All these performance re-

sults are compared with other studies [37, 50–52] and the way the architecture scales

with data size and chain number are also investigated. At the end of this chapter,

important studies that do not exist in closely related works are presented: the per-

formance analysis of the external memory and a FPGA design with the external data

memory for MCMC acceleration. This proposed design does not allow stalling in the

pipelines of the processing unit and thus saves the achieved throughput.

Finally, Chapter 5 gives the summary of this thesis and the possible future works for

MCMC acceleration.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

The main idea of the Bayesian modeling is to represent uncertainty or unobserved

parameter in the model. Many real life problems such as genetics [59,77,78], physics

[43, 72], chemistry [19, 43], machine learning [7, 27], economics [22], nonlinear dy-

namic systems (e.g. target tracking) [43] use modeling to make predictions about

unknown quantities, anticipate outcomes of the system, compare alternative models,

and learn model parameters from given observations [27]. When prior knowledge

about unknown parameters with observed data sets is available, inferring the poste-

rior probability of the unknown variables given the observed data is possible. The

well known rule of the probability theory, Bayes rule, expresses the probability of

uncertainty based on the prior knowledge of variable and the observed data, which

forms the basis of Bayesian inference.

p(θ|y) = p(y|θ)p(θ)
p(y)

(2.1)

Here, y and θ correspond to observation values and unobserved parameter in the

model respectively. In the above formula, there exist some important terms that form

the basis of the Bayesian Inference.

• p(θ) is the prior probability of the parameter θ that represents the information

about the model before some evidence is taken into account. It is an uncondi-

tional probability distribution that may be determined from past observations

or experiments.

5

• p(y|θ) is the likelihood function that describes the possibility of observation

based on the known model. In other words, when the model is known, it simply

gives the likely observation .

• p(θ|y) is the posterior distribution of the unknown parameter, which is formed

after the observations y and the prior are combined.

• The term in the denominator of the formula 2.1 is marginal likelihood func-

tion and it can be very hard to compute.

p(y) =
∫
p(y, θ)dθ =

∫
p(y|θ)p(θ)dθ (2.2)

Luckily, in MCMC methods, normalizing constant p(y) need not to be computed as

it will be explained in later sections. However, the computation of integral is the

heart of the many scientific problems. Instead of evaluating the integral analytically,

which is sometimes impossible, an approximation to given integral can be obtained

by drawing samples from the given function of interest [43]. As described later,

MCMC is a generic method to draw sample from any given probability distribution.

Simply, the key task that need to be performed in Bayesian inference is evaluating the

following integral by generating samples from the posterior probability p(θ|y).

Ep(θ|y)[f(θ)] =
∫
f(θ)p(θ|y)dθ (2.3)

Here, f(θ) is any desired function and the integral 2.3 is the expectation of that desired

function under the posterior probability distribution. If f(θ) is set to θ then it will

become the estimation of the mean of the parameter θ. If f(θ) is set to p(y’|θ), it will

become the prediction of future observation [45]. In the following sections, the most

popular ways of estimating integrals via generated samples will be described.

6

2.2 Monte Carlo Approximation

As it is indicated in the previous section, computing integrals is a challenging but

unavoidable task in many scientific problems.

I =

∫
R

g(x)dx (2.4)

In the integral 2.4, g(x) is the complex target function of interest and R is usually

high dimensional space. When independent identically distributed (i.i.d.) random

samples x(1), x(2),, x(m) are generated from the space R, the approximation to I

can be obtained as [43]

Im =
1

m
g(x(1)) + ...+ g(x(m)) (2.5)

According to the law of large numbers, the average of many independent random

variables approaches to their common mean; that is,

limm→∞Im = I with probability 1. (2.6)

Also, by the central limit theorem (CLT), its convergence rate is defined as normal

Gaussian distribution with zero mean.

√
m(Im − I)

d→ N(0, σ2), where finite σ2 = var(g(x)) (2.7)

The above properties show that the sample size determines the variance of the esti-

mator. In other words, as the sample size (m) goes to infinity, the estimate converges

to the true value so the accuracy of the approximation increases. Many simple algo-

rithms exist to estimate for a few dimensional integrals by using the above idea and

Rejection Sampling and Importance Sampling are the most famous ones.

7

2.2.1 Rejection Sampling

Rejection sampling is a method for drawing samples from a distribution p(x) by using

another distribution q(x) from which we can easily sample. In this method, there

exists a constant c such that cq(x) > p(x) for all x ∈ X [54].

Figure 2.1: Rejection Sampling [54]

Samples are drawn uniformly underneath a simpler curve cq(x) and points between

p(x) and cq(x) are rejected. The remaining points come uniformly from underneath

p(x) so they are valid samples. The constant c is chosen such that cq(x) is always

above p(x). A drawback of the Rejection sampling is that it is usually very hard

to apply the algorithm on high dimensional problems. There are some techniques

[30, 43, 54, 58] to find optimal copt and adjust q(x) in order to reduce the number of

rejected samples but it is not always possible. Actually, the rejection rate is decreased

by updating q(x) as points from p(x) are evaluated.

2.2.2 Importance Sampling

Throwing samples away along with all the associated computations seems waste-

ful [54]. Importance sampling avoids such rejections. Our aim is computing the

8

Algorithm 1 Rejection Sampling
Inputs: target distribution p(x) and simple distribution q(x),

Outputs: x samples from p(x)

i = 0

while i 6= N do

x(i) ∼ q(x)

u ∼ Uniform(0, 1)

if u <
p(x(i))

cq(x(i))
then

accept x(i)

else

reject x(i)

end if

i⇐ i+ 1

end while

following integral.

u =

∫
f(x)p(x)dx (2.8)

We can sample from a known and easy distribution q(x) such that x(i) ∼ q(x) and q

that has the same support as p. Importance weight will be:

w(x(i)) =
p(x(i))

q(x(i))
(2.9)

Now integral 2.8 can be approximated by using importance weight w(x(i)) and sam-

ples from q(x).

u =

∫
f(x)p(x)dx =

∫
f(x)

p(x)q(x)

q(x)
dx,

=

∫
f(x)w(x)q(x)dx,

≈ 1

N

N∑
i=1

f(x(i))w(x(i)), where x(i) ∼ q(x)

(2.10)

9

In order to reduce the variance of our estimator, q(x) is chosen as close in shape to

f(x)p(x) as possible. Analytically, the variance of the estimator is set to minimum if

q(x) =
f(x)p(x)∫
f(x)p(x)dx

by the below formula.

varq(f(x)p(x)) = Ex∼q[f
2(x)w2(x)]− Ex∼q[f(x)w(x)]2 ≥ 0 (2.11)

Of course setting such q is NP hard in general, but at least it shows a direction for

good approximation.

2.3 Markov Chain Monte Carlo (MCMC)

Both Rejection Sampling and Importance Sampling require tractable distribution q(x).

Indeed, Rejection sampling will rarely return samples and Importance Sampling will

have large variance for non-standard forms of probability distribution p(x). On the

other hand, MCMC methods can be used to sample from complex and high dimen-

sional distributions that have unknown normalization [54].

In MCMC methods, the requirement of independent samples is relaxed and depen-

dent samples associated with target density can be used. MCMC generates samples

from the posterior by constructing a Markov chain. A Markov chain generates a cor-

related sequence of states. Each step in the sequence is generated using a transition

kernel T(xi+1 ← xi), which gives the probability of moving from state xi to state

xi+1. Markov chains have property that the transition probability depends on only the

current state, xi. Running the chain for some number of times, the stationary distri-

bution of the chain will equal to the target distribution regardless of the initial sample

under some regulatory conditions. These condition are irreducibility, the ability to

reach any x where p(x) > 0 in a finite number of steps and aperiodicity, which is

about returning any state at any time [54]. These two conditions are sufficient for

detailed balance. For more detail, see [70] or [28].

When compared to Monte Carlo methods, MCMC has the ability to draw samples

from any complex distribution. Intractable integrals in real life problems can be eval-

uated by advanced MCMC methods. Also, a big advantage of MCMC is that when

10

evaluating the posterior 2.1, there is no need to compute the normalizing constant as it

will be shown later. This reduces the computational workload in Bayesian inference

problems. As a result, MCMC methods have become the most mainstream tools to

perform Bayesian inference during the last two decades [49]. Rapid and continuous

advancements in MCMC methodology have also created new application areas for

Bayesian framework. In the next section, some of the well known MCMC methods

will be described.

2.3.1 MCMC Algorithms

Starting from Metropolis method [56], which was introduced in 1953, various MCMC

methods have been proposed to get better results in evaluating distributions. [61]

and [54] give a brief history of the advancements in MCMC methodology. In the

following sections, important MCMC algorithms used in this thesis will be described.

2.3.1.1 Metropolis Algorithm

Metropolis algorithm [56] is the cornerstone of the Markov Chain Monte Carlo meth-

ods. The algorithm is simply as follows:

• By using symmetric proposal distribution q, generate a sample θ∗.

• Evaluate target probability density p(θ) with the new proposed sample and the

previous sample. Then, calculate the acceptance ratio α. In Bayesian inference

problems, target density p(θ) equals p(θ|D). Since α is a ratio of two posteriors,

there is no need to calculate the normalizing constant in posterior 2.1. This is

one of the biggest advantage of using MCMC in Bayesian inference problems.

• Compare the ratio α with uniform random number µ in the range [0, 1]. If α is

greater than µ, accept the proposed sample θ∗. Otherwise, reject it and use the

previous sample in next iteration.

11

Algorithm 2 Metropolis Algorithm
Inputs: initial setting θ0, number of samples N ,

for i = 1 to N do

propose θ∗ ∼ q(θ∗|θi−1)
evaluate α =

p(θ∗)

p(θi−1)
generate uniform random number µ ∼ Uniform[0, 1)

if α > µ then

accept θ∗

else

reject θ∗ and θi ⇐ θi−1

end if

end for

2.3.1.2 Metropolis-Hasting Algorithm

In 1970, W. K. Hastings relaxed the requirement of the symmetric proposal distri-

bution by modifying acceptance ratio [31]. M-H algorithm is valid for any proposal

distribution but generally simple distributions such as Gaussian are chosen. If a sym-

metric proposal distribution is used q(θi−1|θ∗) will be equal to q(θ∗|θi−1) and the

acceptance ratio will take the form in Metropolis algorithm.

Algorithm 3 Metropolis - Hasting Algorithm
Inputs: initial setting θ0, number of samples N ,

for i = 1 to N do

propose θ∗ ∼ q(θ∗|θi−1)
evaluate α =

p(θ∗)q(θi−1|θ∗)
p(θi−1)q(θ∗|θi−1)

generate uniform random number µ ∼ Uniform[0, 1)

if α > µ then

accept θ∗

else

reject θ∗ and θi ⇐ θi−1

end if

end for

12

2.3.1.3 Gibbs Sampling

Gibbs sampling [24] has been proposed by S. Geman and D. Geman in 1984. It is a

special case of Metropolis Hasting method where the proposal distribution is based

on the conditional distributions and the acceptance probability is always one [6]. Ba-

sically, by decomposing the random variable into d components x = (x1, x2, ..., xd),

randomly or systematically, the selected coordinate i is updated with a new sample x
′

i

drawn from the conditional distribution p(xi|xt−i) while leaving the other coordinates

as unchanged. The iteration is made one at a time [43].

• Sample x
′

i ∼ p(xi|xt−i)

• Set xt+1 = (xt1, ..., x
′

i,, x
t
d)

where xt−i refers to all coordinates in xt except xi. In Bayesian network models, Gibbs

sampling is widely used since, in these models, the posterior is naturally expressed in

terms of the full conditional distributions of each component [49].

2.3.1.4 Parallel Tempering

Metropolis and Metropolis-Hasting (M-H) are the basic MCMC methods that are

applicable to any problem. However when multi-modal distributions are targeted

they are inefficient to search posterior, resulting slow convergence and slow mix-

ing [33, 49]. Since multi-modal distributions have more than one modes in their

support and difficult distributions to sample for classical MCMC methods. How-

ever, population based MCMC methods like parallel tempering offer a solution to

this problem by constructing multiple chains that sample from slightly different prob-

ability distributions around the original target distribution.

The idea of Parallel Tempering, or Replica Exchange, was first introduced by Swend-

sen and Wang [72], then extended and formulated by Geyer [26] in 1991 [19]. Ba-

sically, Parallel Tempering is simulating the replicas of the given distribution that

are at different temperatures. Usually, replicas at high temperatures quickly search

the state space, whereas replicas at low temperature search the local region and

13

Algorithm 4 Parallel Tempering [52]

Inputs: M (Number of chains), N (run time), θ01:M (initial samples of all chains), p

(target density), q(proposal density)

Outputs: θ0:N1 (samples of chain 1)

for i = 1 to N do

for j = 1 to M do

propose θ∗ ∼ q(θ∗|θi−1j)

evaluate acceptance ratio α1 =
pj(θ

∗)

pj(θ
i−1
j)

generate uniform random number µ ∼ Uniform[0, 1)

if α1 > µ then

accept θ∗ and θij ⇐ θ∗

else

reject θ∗ and θij ⇐ θi−1j

end if

end for

select exchange pairs ((1,2),(3,4)...) or ((2,3), (4,5)...) in turn

for selected chains r and q do

evaluate exchange ratio α2 =
pq(θ

i
r)pr(θ

i
q)

pq(θiq)pr(θ
i
r)

generate uniform random number µ ∼ Uniform[0, 1)

if α2 > µ then

exchange the samples θiq and θir
else

Do not exchange the samples

end if

end for

Return the sample of chain 1, θi1
end for

14

samples from distributions closer to the original target. By exchanging samples

between replicas, a good mixing is accomplished. This is why parallel temper-

ing method is widely chosen for multi-modal systems. Psudocode of the paral-

lel tempering algorithm is given in Algorithm 4 where pj(θ) = p1/Tempj(θ) and

1 = Temp1 < Temp2 < < TempM .

At each iteration of the PT algorithm two stages are performed. Firstly, the current

samples of all chains are updated by using simple Metropolis Kernel. Secondly, the

adjacent chains interact with each other and exchange their samples according to

exchange kernel. The exchange pairs are selected in a rotating order such that pairs

are ((1, 2), (3, 4), (M − 1,M)) or ((2, 3), (4, 5), (M − 2,M − 1)). Only the samples

of first chain are stored and the samples of other chains are discarded. Some initial

samples (burn-in samples) are also discarded as will be described in the following

sections.

Parallel Tempering vs Metropolis Algorithm

In this thesis, Parallel Tempering algorithm is implemented on FPGA platform to

sample from a Gaussian mixture model. This Gaussian mixture model has 4 compo-

nents with mean (µ1, µ2, µ3, µ4) and supports 24 different modes. The observation

data (D1:32) is simulated for µ1:4 = (−3, 0, 3, 6). The only unknown parameter in

the problem is mean µ of the components. The details of the case study are given

in section 4.1. Before this case study is implemented on FPGA, it is implemented

in software (Matlab) by using Metropolis sampler and Parallel Tempering samplers

with different number of chains to compare the algorithms.

Figure 2.2 and Figure 2.3 show the estimated marginal posterior density p(µ1:2|D)

and the histogram of µ1 when Metropolis algorithm is applied to the problem. The

marginal density p(µ1:2|D) in Figure 2.2 has 5 out of 12 modes in R2. It is important

to note that the joint density p(µ1:4|D) traverses 10 out of 24 modes in R4. Indeed,

Figure 2.10 shows the number of generated samples from each modes. These results

show that the Metropolis algorithm is inefficient to search whole modes in the pos-

terior distribution since it mainly gets stuck in some of the modes and rarely draws

samples from other modes in sample space.

15

Figure 2.2: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via Metropolis algorithm.

Figure 2.3: The histogram of 60000 samples generated via Metropolis algorithm for

µ1.

On the other hand, Parallel Tempering method can easily discover all existing modes

in sample space. Figure 2.4 and Figure 2.5 show the estimated marginal posterior den-

sity p(µ1:2|D) and the histogram of µ1 when Parallel Tempering with four(4) chains

is applied to the problem. The marginal density p(µ1:2|D) in Figure 2.4 has 12 modes

in R2. On the other side the joint density p(µ1:4|D) traverses all modes in R4. As

the number of chains increases, the better mixing and better mean approximation are

16

achieved as shown in Figure 2.6 and Figure 2.8.

Figure 2.4: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via Parallel Tempering method with 4 chains.

Figure 2.5: The histogram of 60000 samples generated via Parallel Tempering method

with 4 chains for µ1.

17

Figure 2.6: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via Parallel Tempering method with 32 chains.

Figure 2.7: The histogram of 60000 samples generated via Parallel Tempering method

with 32 chains for µ1.

18

Figure 2.8: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via Parallel Tempering method with 512 chains.

Figure 2.9: The histogram of 60000 samples generated via Parallel Tempering with

512 chains for µ1.

19

Figure 2.10 shows the number of samples in each mode generated by different algo-

rithms. While the metropolis algorithm is getting stuck in some of the modes, Parallel

Tempering method draws samples from every mode in the sample space. As the chain

number(M) increases, better sample distribution is achieved. Figure 2.11 shows the

average number of iterations to traverse all modes for the different number of chains

(M). These scores reflect the average of 20 independent runs for each case. For the

values of M between 4 and 128, the average iterations to traverse all modes are in

between 42000 and 5200. However it is worth noting that for the cases where the

chain number is larger than 128, the traversal time does not change significantly.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500
12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

The number of samples in each mode

Metropolis PT with M=4 PT with M=32 PT with M=128 PT with M=512

Figure 2.10: The number of samples in each mode for 60000 iteration.

0

10000

20000

30000

40000

50000

4 8 32 128 512

It
er

at
io

n
s

The Number of Chains

The Average Number of Iteration to Traverse All Modes

Figure 2.11: The average number of iterations to traverse all modes in sample space.

20

2.3.1.5 Other MCMC Algorithms

Apart from the methods described in previous sections, many MCMC algorithms

have been developed and used up to now. Here, a list of some important algorithms

in the literature. For more detail, the reader can look [4, 30, 41, 43] and [61].

• Hamiltonian Monte Carlo

• Adaptive MCMC

• Slice Sampling

• Multiple-try Metropolis

• Reversible-jump

• Hybrid Monte Carlo

2.3.2 The Output Analysis of MCMC

The convergence is an issue in the analysis of MCMC outputs. Since the early sam-

ples are strongly affected by the initial sample, they are not typically distributed ac-

cording to the correct posterior. The Markov chain in MCMC will gradually converge

to stationary distribution [49]. Therefore, some erroneous samples, which are gener-

ated before the convergence occurs, should be discarded. These samples are called

burn-in samples. Although there is no exact rule for determining the number of burn-

in samples, various techniques such as Gelman and Rubin’s test [11,23] and Geweke’s

Test [25] have been proposed to decide whether the convergence has occurred.

After the burn in period, the chain starts generating samples from stationary distri-

bution of the chain which matches the target distribution. When compared to Monte

Carlo methods given in the previous section, MCMC produces dependent samples

because of Markov property. This dependency causes an increase in a variance of

the outputs of MCMC. The correlation between the samples also affects the mixing

speed which can be defined as the speed of exploration [28]. When mixing speed

is high (samples are not highly correlated), sampler quickly scans the support of the

21

posterior. This efficiency can be measured by the Effective Sample Size(ESS) [45]

ratio.

ESS =
M

1 + 2
∑k

j=1 ρ(j)
(2.12)

where M is the number of post burn-in MCMC samples and
k∑
j=1

ρ(j) is the sum of

the first k monotone sample auto-correlations. ESS is a good way of measuring the

efficiency of MCMC algorithm since it gives the reduction in true number of samples

compared to i.i.d. samples [60].

2.4 Sequential Monte Carlo

In Bayesian inference problems, the posterior distribution should be updated in some

cases since the observations may arrive sequentially in time. Besides, choosing a

good proposal distribution in Monte Carlo methods and MCMC methods can be non-

trivial and thus building up proposal distribution sequentially may be useful strategy.

For these cases including dynamic models with time-varying parameters, Sequential

Monte Carlo (SMC) is a convenient alternative sampling method to MCMC. Over the

recent years, SMC has found many application areas such as target tracking, missile

guidance, terrain navigation, machine learning, robotics, computational biology, in-

dustrial process control and others [16]. Sequential Importance Sampling (SIS) forms

the basis of Sequential Monte Carlo and several closely related algorithms such as

bootstrap filters, particle filters and Monte Carlo filters have emerged from SMC.

2.4.1 Sequential Importance Sampling (SIS)

Sequential Importance Sampling is the sequential version of the Importance Sampling

method given in subsection 2.2.2. Let Xn be a sequence of random variables from

some random space χn. We are interested in approximating the following integral in

which pn is sequence of distributions known up to normalizing constant and defined

22

on χn and φn is the sequence of real valued functions.

pn(φn) = Epn(φn(X1:n)) =

∫
p1:n(x1:n)φ(x1:n)dx1:n (2.13)

Suppose proposal distribution (importance distribution) q(x) is constructed as follow

where q(x1) is some initial density which is easy to sample from:

q(x1:n) = q1(x1)q1(x2|x1)qn(xn|x1,, xn−1) (2.14)

Corresponding importance weight wn and self normalized importance weight W i
n are

constructed as follows:

w(x1:n) =
pn(x1:n)

qn(x1:n)

=
pn(x1:n)pn−1(x1:n−1)

qn−1(x1:n−1)q(xn|x1:n−1)pn−1(x1:n−1)

= wn−1(x1:n−1)
pn(x1:n)

q(xn|x1:n−1)pn−1(x1:n−1)

(2.15)

W i
n =

wn(X
i
1:n)∑N

i=1wn(X
i
1:n)

(2.16)

As an approximation to pn, the weighted empirical distribution pNn is calculated from

the normalized particles W i
n, where δ is the Dirac delta function. This leads to obtain

the approximation of the expectation given in equation 2.13 as pNn (φn) [79].

pNn (x1:n) :=
N∑
i=1

W i
nδXi

1:n
(x1:n) (2.17)

pNn (φn) =
N∑
i=1

W i
nφn(X

i
1:n) (2.18)

The general framework of SIS algorithm is described in Algorithm 5.

23

Algorithm 5 Sequential Importance Sampling [79]
for n = 1,2,... do

for i = 1 to N do

if n = 1 then

sample X i
1 ∼ q(.), (Sampling Step)

calculate w1(X
i
1) =

p1(X
i
1)

q1(X i
1)

(Weight Update)

else

sample X i
n ∼ q(.|X i

1:n−1) and set X i
1:n = (X i

1:n−1, X
i
n) (Sampling Step)

calculate win(X1:n) = win−1(X
i
1:n−1)

pn(X
i
1:n)

q(X i
n|X i

1:n−1)pn−1(X
i
1:n−1)

(Weight

Update)

end if

end for

for i = 1 to N do

calculate W i
n =

wn(X
i
1:n)∑N

i=1wn(X
i
1:n)

(Normalizing Step)

end for

end for

2.4.2 Sequential Importance Sampling Resampling (SISR)

The major disadvantage of SIS is the increase in the variance of the importance weight

in over time. In other words, if the proposal distribution is not close to the target

distribution, after a small number of iterations, only a small part of weights will have

very large weights while remaining weights are tend to be zero. This problem is

called weight degeneracy.

To solve weight degeneracy problem, an additional step called resampling or selection

is introduced in SIS algorithm. Resampling removes particles of small weights and

creates the equally weighted particles by using weighted empirical distribution. This

method is called Sequential Importance Sampling Resampling or Particle Filter and

its general framework is given in Algorithm 6.

Indeed, the resampling strategy given above is called multinomial resampling. Apart

from multinomial resampling, there exist many resampling strategies such as Strati-

fied resampling, Systematic resampling, Metropolis resampling and Rejection resam-

24

Algorithm 6 Sequential Importance Sampling Resampling [79]
for n = 1,2,... do

if n = 1 then

for i = 1 to N do

sample X i
1 ∼ q1(.), (Sampling Step)

calculate W i
1 ∝

p1(X
i
1)

q1(X i
1)

(Weight Update)

end for

else

Resample from X i
1:n−1 according to the weights W i

n−1 to obtain resampled

and equally weighted particles X̃ i
1:n−1 (Resampling Step)

for i = 1 to N do

sample X i
n ∼ q(.|X̃ i

1:n−1) and set X i
1:n = (X̃ i

1:n−1, X
i
n) (Sampling Step)

calculate W i
n ∝

pn(X
i
1:n)

q(X i
n|X̃ i

1:n−1)pn−1(X̃
i
1:n−1)

(Weight Update)

end for

end if

end for

pling in the literature [45]. It is important to note that Importance step and Sampling

step in the SIS and SISR algorithms can be implemented in parallel for each particle.

However, it is not trivial to create parallel designs for Resampling step in SISR.

One of the main application field of SMC is nonlinear filtering problems in dynamic

systems such as the state space models. A state space model has two major parts: the

state equation, which is represented by Markov process and the observation equation

that gives the observation under hidden states.

• the state equation xk = f(xk−1, uk)

• the observation equation yk = g(xk, vk)

Such a model is sometimes called as Hidden Markov Model (HMM) in some appli-

cations such as computational biology and speech recognition [43]. The main task is

the estimating hidden states and computing posterior distribution of the states of the

model given sequential observation with noises. For this purpose, SMC methods can

25

be utilized in the cases where HMM is nonlinear or non Gaussian (For the details,

see [17, 43, 79]). With simple modifications, general frameworks given in Algorithm

6 and 5 can be applied under the names of bootstrap filter to solve nonlinear filtering

problems. When the targeted state space model is linear Gaussian state space, then

exact analytical solutions via recursion is possible. This recursion is called Kalman

filter [34].

2.5 The Acceleration of MCMC

Thanks to the recent improvements on MCMC and SMC methods, these sampling

methods have found a wide variety of applications areas including computational bi-

ology, physics, financial econometrics, machine learning and image processing, target

tracking, robotics and other control fields [12,43]. However, the speed of MCMC and

SMC sampling are still not enough for real time applications in mobile systems. Run-

time of the algorithms can exceed days, weeks or even more when they are applied

to the complicated real life problems [7, 20, 29, 64, 68, 77, 78, 81]. By considering

SMC acceleration as a future work, this thesis focuses on the one of the population

based MCMC application and seeks the way of acceleration of the algorithm. To this

end, the main reasons of long run-times in MCMC applications and the acceleration

techniques of MCMC methods are summarized below:

• Computationally intense algorithms like population based MCMC and particle

MCMC cause long run-times. For example, parallel tempering method needs

to evaluate dozens or hundreds of chains for one iteration. This means likeli-

hood evaluation is repeated for all chains to produce one sample. Also, apart

from parallel tempering method, many computationally expensive MCMC al-

gorithms which are dedicated to specific problems exist in the literature.

• High dimensional big data is another reason for long run-times in MCMC ap-

plications. Common scientific areas like genetic, physics, chemistry that use

MCMC for inference have large scale of datasets. At each iteration of the al-

gorithm, whole dataset should be swept over for likelihood evaluation. In these

applications, practitioners face with not only large volume of data but also high

26

dimensional data (in the order of 107 in [59]). Both of these factors make the

evaluation of the likelihood density computationally very expensive and so too

time consuming.

• Another reason for long run-time in MCMC applications is the uncertainty of

convergence. Despite there exist no exact rule for convergence test, practition-

ers want to guarantee the convergence as possible with long MCMC runs. Also,

because of multi-modality, the mixing speed can be slow. In these cases, a long

MCMC run improves the mixing by exploring state space more.

As a result of reasons given above, much efforts have been devoted to accelerate

MCMC algorithms. These works can be categorized into four groups:

• Data sub-sampling: The aim of data sub-sampling is to reduce the size of

data to be processed in every MCMC iteration. Instead of using whole data,

a fraction of randomly selected data is used for inference. This method is used

when a large scale i.i.d data exists. Bias in the outputs is one drawback of this

method. [8, 45, 57] and [47] are some examples of works related to the data

sub-sampling in the literature.

• Data partitioning: It is mainly based on splitting whole data into sub-groups

then running each groups separately(generally parallel) and finally combining

the results of each groups. This method needs i.i.d. data and parallel architec-

ture. Like sub-sampling methods, biased results can be obtained after combin-

ing the results [13, 35]. However, [53, 73] proposed unbiased data partitioning

techniques.

• Parallel MCMC methods: In the literature, there exist MCMC methods that

have parallel nature to be used for increasing sampling speed or mixing speed.

For example, population-based MCMC algorithms [33] utilizes more than one

chain to increase mixing speed and thus reduce compilation time via fast con-

vergence. Besides, some MCMC algorithms such as Multiple-Try Metropolis

algorithm [44], Hamiltonian Monte Carlo [10] and Slice sampling [46] exhibit

parallel nature that can be exploited by parallel hardware platforms (multi-core

CPU, GPU and FPGA).

27

• Parallel computations on parallel hardware: In order to reduce run-times of

MCMC algorithms, parallel computational hardware platforms such as multi-

core CPUs, GPUs and FPGAs have been used in recent years. Multi-core

CPU can provide multiple processing units for parallel operations that results in

speed gain. However, parallel resources that is provided by CPU can be limited

for MCMC algorithms when it is compared to GPU and FPGA. On the other

side, GPUs have evolved to high performance computing machine due to the

their highly parallel structure. Many advanced and computationally intensive

algorithms can be easily suited to GPUs when compared to CPUs. Especially,

for certain class of MCMC algorithms such as population based MCMC, GPUs

offer massively parallel simulations [37]. However, an optimized programming

is required to get better performance from GPUs.

Apart from multi-core CPUs and GPUs, FPGAs are also suitable hardware plat-

forms for MCMC applications. The FPGA is a re-configurable device that

consists of massive size of programmable logic elements, memories, IOs, mul-

tipliers, DSP blocks and even CPU. These elements are combined in parallel

such that any complex computations and tasks can be implemented. Massive

parallelism property and availability of deep pipeline structure make FPGA a

promising platform for accelerated MCMC applications. By dividing the al-

gorithm into parallel tasks that can be executed at the same time and mapping

them into FPGA properly, significant performance gain can be obtained when

compared to other hardware platforms [45]. Another big advantage of FPGAs

is the flexibility of arithmetic precision. Not only double/single-precision float-

ing point arithmetic, which are only available precisions in CPUs and GPUs,

but also custom precision is possible for FPGAs. By reducing arithmetic pre-

cision, fewer resources can be consumed and this leads to a chance of adding

more parallel computation blocks. Furthermore, the memory consumption can

be decreased with reduced precision (Memory is important in big-data prob-

lems). It is important to note that a tradeoff between accuracy and arithmetic

precision exists and that means the decrease in the arithmetic precision of the

algorithm causes biased outputs. However, the arithmetic precision of wisely

selected parts of the algorithm can be reduced without sacrificing the sampling

accuracy (mixed precision) [50, 52]. Lastly, the power efficiency is another

28

advantage of FPGAs when compared to CPUs and GPUs.

2.6 The Approach of this Thesis

In this thesis, we focus on the implementation of population based MCMC algorithms

on FPGA platform in order to reduce the execution time. For this purpose, all special

characteristics of FPGAs given above are exploited. Parallel pipelined sub-blocks are

created to speed up likelihood computations. The performance is increased with the

mixed precision design technique without sacrificing sampling accuracy. Besides, this

thesis also considers the performance losses related with the external memory. Since

if the bandwidth of the external memory is not enough to feed the processing unit

of MCMC algorithm, the performance of processing unit can degrade. Therefore, to

avoid pipeline stalls caused by memory inefficiency, data partitioning based feeding

structure is created. As a summary, this thesis presents the combination of following

ideas in order to solve run time problems in MCMC applications:

• Parallel computations on parallel hardware

• Parallel MCMC method

• Mixed precision

• Modified data partitioning

2.7 Related Works

As previously declared, this thesis aims to accelerate a parallelizable MCMC method

by using parallel hardware platform while employing the mixed precision and data

partitioning techniques. When the literature is examined, a limited number of works

which are related to this thesis can be found.

Parallel computing on parallel hardware

Parallel computing on parallel hardware is very common approach in the MCMC

literature. The parallel nature of some MCMC algorithms are exploited with the use

29

of parallel hardware platforms (multi-core CPU, GPU and FPGA). It is important to

note that the forms of the parallelism and the applied techniques vary with the MCMC

method, model and utilized hardware. Here, a list of some works that implement

parallel MCMC algorithms on parallel hardware is presented.

In multi-core CPU field, the works [62] and [75] improve mixing speeds and thus

reduce convergence time by processing multiple chains in parallel. In the work [40],

Li et all. focused on the specific overhead caused by inter-processor communication

in replica exchange in PT. With decentralized scalable exchange method, running

time improvements were obtained when compared to centralized PT. In the work [18],

CPU idle time is reduced by proposing a scheme to optimize the allocation of replicas

in PT algorithm.

Tibbits et al. [46] implemented parallel multivariate slice sampling on a GPU with the

aim of acceleration of the construction of the hypercube and achieved a speedup of 5-

6x compared to a CPU. Da silva [63] parallelized the likelihood computation via GPU

and achieved 60x speedup compared to CPU in fMRI data analysis. Beam et al. [10]

accelerated the Bayesian inference on multinomial logistic regression model with

Hamiltonian Monte Carlo; achieving great speedups over a CPU implementation. An

important research was conducted by Lee et. al. [37] in field of population based-

MCMC applications on GPU platform. GPU implementation of PT achieves one to

two orders of magnitude acceleration over a CPU by assigning each chain to one

separate GPU thread. With clearly given performance metrics, this work is suitable

for us to compare our FPGA implementation of parallel tempering method.

Apart from multi-core CPU and GPU, some researchers investigated FPGA based

MCMC Acceleration. Lin et. al. [42] created a high throughput computing machine

with FPGA that can be used for Bayesian inference problems. Asadi et al. [7] im-

plemented the combination of the MCMC and Bayesian network learning techniques

on multi-FPGA system. Liu [45] focused on the design of mixed precision MCMC

implementation, by allowing more parallelism and low latency and guaranteeing un-

biased estimates. Besides, [82] and [5] used large degree of available parallelism and

deep pipelined structure of FPGAs to reduce execution time in phylogenetic likeli-

hood evaluations. The achieved performance gains against CPU were encouraging

30

for practitioners to use FPGA in MCMC applications.

Data partitioning

Another way of MCMC acceleration is data partitioning which has three stages to per-

form: dividing the data set into sub-groups, running a separate and parallel MCMC

for each groups and combining the results to obtain the approximation of the target

distribution. Consensus Monte Carlo approach [35] applies this strategy to overcome

big data problems in MCMC applications. Averaging samples generated by each

separate MCMC runs causes approximate results in the outputs. [32] proposes the

utilization of Importance Sampling to combine the results coming from partitioned

groups. Nevertheless, this approach does not guarantee the convergence theoretically.

Data partitioning is exploited in [74] for MCMC implementation of Bayesian infer-

ence for latent spatial Gaussian models. Although a remarkable speedup is achieved

in this work, the error in the outputs due to the approximations is drawback of this

approach. On the other hand, [55] offers a combining procedure that yields asymp-

tomatically exact samples from whole data set posterior by assuming i.i.d. data and

small burn in period. In contrast to common data partitioning approaches, in our

work, no separate run is performed and all sub groups are processed in order in same

processing unit. Actually, the aim of data partitioning in our thesis is to avoid external

memory latencies and it has no impact on output accuracy.

Mixed Precision

Some researchers gave special attention on reducing precision to increase sampling

performance. This approach is useful when the algorithm runs on the FPGA plat-

form. Since utilizing reduced precision-arithmetic operators saves FPGA area and

thus more parallel processing units can be added to the system. However there is

a tradeoff between arithmetic block precision and sampling accuracy. Here, some

existing works that investigate the consequences of precision reduction on sampling

accuracy and system’s performance are given.

For Monte Carlo based simulations, Xiang and Bouganis [69] proposed a FPGA de-

sign with both high precision and reduced precision data paths to compute cumula-

tive distribution functions (CDFs). The precision of the reduced precision data path

31

is adapted by comparing two CDFs using Kolmogorov-Smirnoff metric in runtime so

that the distance between high precision data path’s samples and reduced precision

data path’s samples are below the threshold. Chow et. al. [15] also proposed a preci-

sion a optimization method including mixed precision run and low precision run for

Monte Carlo simulation in FPGA. The mixed precision run is used to correct the bias

in the output of low precision run. The authors in [49–52] propose population based

MCMC method on FPGA and investigate its performance in the custom precision

land. Actually, these are closely related works for this thesis.

Closely Related Works

G. Mingas proposed novel FPGA architectures for population based MCMC method

in his works [49], [51], [50] and [52]. In the work [51], a significant speed up is

achieved compared to CPU for Bayesian inference on multi-model Gaussian mixture

model. In the work [50], the author proposes the use of mixed precision arithmetic

for population-based MCMC methods such that auxiliary chains in Parallel Temper-

ing method are evaluated in reduced precision and more parallel processing units are

added to the system to increase the system’s performance without introducing bias in

the output. Furthermore, [52] proposes an optimized FPGA architecture for weighted

PT Method such that custom precision is used for all chains and importance weights

are assigned to the samples generated by the first chain to correct the first chain’s

bias. [49] combines all these works and applies also these approaches to FPGA based

Particle Filter. Even though huge speedups were achieved when compared to CPU

and GPU implementations of the same problem, his works do not consider the prop-

erties of memory hierarchies in modern computational systems. As described earlier,

modern Bayesian problems have huge data sets and thus in-chip memories of FPGAs

are not enough for this applications. Furthermore, the external memory in FPGA sys-

tems can limit the system’s performance due to the limited bandwidth of data transfer

and latency in memory accesses.

In this work, we also focus on the acceleration of population based MCMC methods

by utilizing mixed precision technique in FPGA design without sacrificing accuracy.

To this end, we apply the underlying idea in [49–52] to the mixed precision FPGA de-

sign for population based MCMC. By using completely different FPGA vendor, while

32

we were validating the performance achievements of FPGA accelerators in existing

works, we also developed existing proposed works with data partitioning method to

avoid memory limitations on the system performance. Thanks to the double buffers

that feed the processing unit continuously with the data extracted from DDR3 memo-

ries, no stall is introduced in the system, which keeps the performance gains achieved

by likelihood acceleration. To the best of our knowledge, this is the first MCMC ac-

celerator that presents the combination of the ideas on data partitioning method and

parallel computations of population based MCMC. In contrast to existing work that

estimates power consumption of FPGA, this is also the first work that provides real

power consumption measurements taken from hardware in run time.

33

34

CHAPTER 3

HARDWARE ARCHITECTURES FOR PARALLEL TEMPERING

ALGORITHM

MCMC algorithms that have parallel nature such as population based MCMC [33]

are suitable algorithms for FPGA platforms. In population based methods, instead of

running single chain, multiple chains are operated so multiple samples are produced

in every iteration. The main idea of running multiple chain is improving mixing prop-

erty of Markov Chain Monte Carlo methods. Indeed, the tempered chains move freely

among the state space and they interact with the original distribution by exchange

mechanism. These methods are more successful when compared to the basic MCMC

samplers (Metropolis Hasting) for multi modal and high dimensional problems.

Parallel Tempering, or Replica Exchange, method which is given in 2.3.1.4 is one

of the population based MCMC methods. [50–52] and [37] applied to Parallel Tem-

pering method to a Gaussian mixture model by using parallel hardware (FPGA and

GPU) and obtained remarkable accelerations when compared to CPU implementation

of the same problem. In this chapter, we also implement Parallel Tempering method

in FPGA by using the idea proposed by G. Mingas [51, 52]. Firstly, basic Paral-

lel Tempering method is implemented in Intel Stratix V FPGA platform by utilizing

double floating point arithmetic. Besides, single floating point arithmetic and mixed

precision technique [50] are also implemented and their results(throughput, latency,

ESS and resource usage) are compared with double floating point case. Then, we seek

to find the way of area savings with architectural optimizations. Sub-blocks such as

Gaussian random number generator and exchange block are optimized for extra area

savings. All MCMC architectures provided in this work are evaluated with a Gaus-

sian mixture model used in the works [37, 51, 52] and obtained results are compared

35

with these works. Also, the effects of the number of chains, the size of the dataset

and the size of the FPGA device to the performance of the algorithm are also exam-

ined in this work. In later sections, external memory related performance losses are

discussed and a FPGA architecture that adds data partitioning method to our existing

architecture is proposed to solve memory related problems.

3.1 Parallel Tempering

As described in section 2.3.1.4, parallel tempering method has two iterative stages.

In the update stage, a new sample is generated for every chain by using Metropolis

kernel. In this work, a Gaussian distribution that has centered around the previous

sample is selected as proposal distribution. The candidate sample generated from the

proposal distribution is accepted with the probability α.

α = min(1,
p(θ∗)

p(θi−1)
) (3.1)

In the exchange stage, an exchange between neighboring chains(q, r) occurs with the

probability e. A different exchange strategy such as the exchange between randomly

selected chains can be applied but it may change mixing speed and throughput of the

system. In this work, we apply the same strategy used in [51,52] in order to compare

our result with them in the same conditions. It is important to note that p(θ) refers to

posterior distribution p(θ|D) in this section.

e = min(1,
pq(θ

i
r)pr(θ

i
q)

pq(θiq)pr(θ
i
r)
)

(q, r) = (1, 2), (3, 4)...(M − 1,M) or

= (2, 3), (4, 5)...(M − 2,M − 1) alternatively

(3.2)

One of the important parameters in the Parallel Tempering algorithm is temperature

Temp. It controls how the target distribution is smoothed and affects the mixing

speed. The distribution of the chains is equal to pi(x) = p(x)1/Tempi where 1 =

36

Temp1 < Temp2 < ... < TempM and M is the number of chains. In this work,

Tempi is selected as (
M

M − 1 + i
)2 which is again offered in [37, 51, 52].

The structure of the algorithm permits the parallel computations if the hardware plat-

form possesses sufficient resources. Indeed, the parallel computations depend on the

size of the hardware platform and the type of the likelihood function. One parallelism

exists between the chains in the update stage. In order to generate a sample, a chain

requires only its previous sample and it does not communicate with any other chain

in the update stage. (The chain interactions occur in only exchange stage). Therefore,

all chains can generate their own samples in parallel. Besides, the likelihood density

can also be evaluated in parallel when i.i.d. data is used. In that case, the likeli-

hood density will be equal to the product of sub densities of all data which allows the

evaluation of sub-densities in parallel.

Apart from the parallelism in the architecture, pipelined system is another factor that

can increase the throughput (the number of generated samples in one second). Since

the same procedure(update and exchange) is applied to all chains, a long pipeline is

possible. In this design, all computation blocks constitute the pipelined system. For

example, while the probability density of third chain is being evaluated, the exchange

between first and second chain can be performed at the same clock cycle. Actually,

one drawback of the long pipeline is high latency. In this work, too much effort is

given to reduce the latency, while considering the resource usage. It is important to

note that as the latency of a computation block decreases, the resource utilization of

that block increases.

In the following sections, FPGA architectures for parallel tempering method are pre-

sented. With utilizing parallel pipelines for probability density evaluations, high

throughput is aimed. In the implementations, single precision and double precision

are employed respectively. Mixed precision technique offered by Mingas [50] is also

implemented. The performance of the each implementation is evaluated by compar-

ing the results from different hardware platforms. The results obtained in this section

demonstrate that a low latency and high throughput MCMC is possible without sac-

rificing the sampling accuracy.

37

Algorithm 7 Parallel Tempering [52]

Inputs: M (Number of chains), N (run time), θ01:M (initial samples of all chains), p

(target density), q(proposal density)

Outputs: θ0:N1 (samples of chain 1)

for i = 1 to N do

for j = 1 to M do

propose θ∗ ∼ q(θ∗|θi−1j)

evaluate acceptance ratio α1 =
pj(θ

∗)

pj(θ
i−1
j)

generate uniform random number µ ∼ Uniform[0, 1)

if α1 > µ then

accept θ∗ and θij ⇐ θ∗

else

reject θ∗ and θij ⇐ θi−1j

end if

end for

select exchange pairs ((1,2),(3,4)...) or ((2,3), (4,5)...) in turn

for selected chains r and q do

evaluate exchange ratio α2 =
pq(θ

i
r)pr(θ

i
q)

pq(θiq)pr(θ
i
r)

generate uniform random number µ ∼ Uniform[0, 1)

if α2 > µ then

exchange the samples θiq and θir
else

Do not exchange the samples

end if

end for

Return the sample of chain 1, θi1
end for

38

3.2 System Architectures

3.2.1 The Standard-Precision PT Architecture

In this subsection, a hardware architecture which utilizes standard precision (double

floating point) for Parallel Tempering method is presented. All sub-blocks in the de-

sign work in double floating point arithmetic precision. The same implementation is

also repeated for single floating point arithmetic precision and the performance met-

rics (sampling throughput, latency, ESS and resource usage) are evaluated in each

cases. The proposed hardware architecture consists of three main blocks (Proposal

block, Update block and Exchange block). All these blocks have interface with the

system memories (Sample memory, Data memory, Probability memory, Tempera-

ture memory). Sample memory stores the last generated sample for all chains. The

data used for likelihood evaluation is stored in the Data memory. Probability mem-

ory which is used in Accept/Reject stage of Update block stores the probabilities

of current samples for all chain. Lastly, since the temperature value of each chain

(Tempj = (
M

M + 1− j
)2) is constant and does not change in run time, the temper-

ature values are initially written in the Temperature memory and used where needed.

This approach reduces the computational load of the architecture.

The strict pipelining is applied to the architecture so that the chains are processed in

all computational blocks consecutively which can be thought as streaming application

as seen in Figure 3.7. In other words, the same computations on different data are re-

peated iteratively in all sub-blocks for all chains. In the example shown in Figure 3.7,

while proposal block is preparing the samples of Chain-50 and Chain-51 respectively,

the Probability Evaluation block, the Accept/reject block and the Exchange block deal

with the computations of other chains. Besides, parallel pipelines are implemented in

the Update block to calculate probability density of proposed sample. To instantiate

more parallel pipelines increases the sampling throughput of the system. However,

the number of parallel pipelines depends on only the available resources in FPGA.

Especially, the number of floating point DSP blocks in FPGA decides the number of

parallel pipelines and so the sampling throughput. The system architecture can be

seen in figure 3.1.

39

Sample
Memory

Port1 Proposal Block

Gaussian
RNG

Update Block

Probability
Evaluation

Block

theta*

Accept/Reject Block

Adder

P(theta*)

Probability
Memory

Uniform
RNG

P(thetai-1)

thetai-1

Exchange Block

Uniform
RNG

Exchanger

P(thetai)

Likelihood
Data

Control Block

Sample
Memory

Port2

PCIe Interface

URN

GRN

URN

FIFO

FIFO

FIFO

FIFO

P(thetaaccepted) thetaaccepted

theta1
i

theta1
i

Data
memory

Figure 3.1: FPGA architecture of PT algorithm: In-chip FPGA memories are used for

Data, Sample(Dual port) and Probability memories. The Accept/Reject block in the

Update block is continuously fed by the Probability Evaluation block and the Uniform

Random Number generator. The Control block controls the data flow between Pro-

posal, Update and Exchange blocks. All system components support double floating

point arithmetic precision.

40

Proposal Block

Proposal block is responsible for generating random sample for the each chain. The

last generated sample of a chain j is read from the sample memory. Then, a Gaus-

sian random number which is generated from the GRNG (Gaussian Random Number

Generator) is added to the previous sample. The obtained value is the candidate sam-

ple θ∗j for the chain j. This process is repeated for all chains. For the multi-modal

problems, multi-samples are generated with the aid of parallel GRNGs.

To generate Gaussian random numbers is an important task for our work. Many

studies have been conducted recently for random number generation in FPGA plat-

forms [14, 38, 39, 48, 65, 80].

• In Ziggurat method [80] which is based on the rejection method, to produce

one sample per cycle is not guaranteed. This inability can cause stalls in the

MCMC application when no random number is generated.

• Wallace method [38] does not require uniform numbers as an input. However,

it produces correlated outputs because of the feedback nature of the algorithm.

• In the work [14] Inversion method is applied to generate Gaussian distributed

random numbers. In order to obtain samples with high statistical quality, high

degree of polynomials and the large numbers of DSP blocks should be used in

inversion method.

• D. Lee [39], offered FPGA architecture for Box Muller method, which is a

transformation based Gaussian random number generator. Despite satisfac-

tory statistical quality is obtained for the generated samples, a large number of

DSP blocks is utilized in the implementation of Box Muller method on FPGA.

However, with Box Muller method, two samples can be generated in one cycle

which is preferable when applied to multi-dimensional problems.

• Central Limit Theorem (CLT) is applied with smart corrections to generate high

quality Gaussian random numbers in the work [48]. The proposed algorithm

tackles the problem of poor accuracy in tail regions of the probability density

function which is common in CLT applications by adding error correction func-

tion to the algorithm.

41

• Lastly, Piecewise-CLT algorithm is implemented by D. Thomas [65] who offers

very high statistical accuracy. Both [48] and [65] are resource efficient and able

to produce one sample per cycle.

The details of the strategies given above can be found in [67]. Also D.B. Thomas

made comparison of such strategies in different hardware platforms such as CPUs,

GPUs and FPGAs [66].

Figure 3.2: The histogram of CLT based GRNG for two million samples

In our work, we focus on resource efficient GRNG that can produce at least one

sample per cycle. Also the flexibility for fixed point to floating point conversion is

another important factor to choose GRNG method. To this end, CLT is applied to

generate Gaussian distributed random number because of low resource usage and its

simplicity. In order to increase the statistical accuracy, the sum of sixty-four parallel

uniform random numbers are used in our CLT based GRNG.

42

Figure 3.3: The histogram of Box Muller based GRNG for two million samples

Apart from CLT based GRNG, Box Muller method is also implemented as an alter-

native approach in this thesis. Despite the its disadvantage of resource usage (it uti-

lizes DSP blocks), Box Muller based GRNG has the advantage of two times higher

throughput and higher statistical accuracy when compared to CLT based GRNG. The

formula for generated samples x0 and x1 is given in 3.3. In the formula 3.3, u0 and

u1 are uniform random numbers generated by Tausworthe algorithm which is one of

the most common techniques to generate uniform random numbers [36]. The his-

togram of the obtained samples by CLT based GRNG and Box Muller based GRNG

are shown in Figure 3.2 and 3.3 respectively.

x0 =
√
−2 ln(u0) ∗ sin(2 ∗ π ∗ u1)

x1 =
√
−2 ln(u0) ∗ cos(2 ∗ π ∗ u1)

(3.3)

43

Figure 3.4: Architecture of the Tausworthe URNG [14]

Update Block

Update block is totally problem dependent. An appropriate probability evaluation

block is formed and the samples proposed by Proposal Block are evaluated by uti-

lizing Metropolis kernel. Hence, the Update block can be considered as two stages:

probability evaluation stage and accept/reject stage.

The probability evaluation stage which computes the probability of candidate sam-

ple p(θ∗) is the most computationally demanding part of the algorithm. In our work,

as a case study, a Gaussian mixture model which obeys the i.i.d. principle is evalu-

ated. Hence, the implemented probability density is the product of sub-densities (see

section 4.1). Figure 3.5 illustrates the pipelined sub-density evaluator block which

calculates each components of Gaussian mixture density in parallel. In order to re-

duce resource consumption, probabilities are evaluated in logarithmic scale and the

44

division, multiplication and power operators are replaced with subtraction, summa-

tion and multiplication operators respectively [51]. Therefore, the probability density

implemented in probability evaluation stage is actually the sum of the log-densities.

The computational load of the probability evaluation stage is directly proportional

to the number of i.i.d. data. To this end, parallel pipelines are utilized to evaluate

probability density of the candidate sample. It is important to note that the number of

parallel pipelines is dependent to FPGA-size. For the real world problems that have

the large number of data and complex likelihood, fully parallel probability evaluation

is not possible, thus one probability is generated in more than one clock cycles. Fig-

ure 3.6 illustrates an example for the process in the Probability Evaluation block. In

this example, there exist four parallel pipelines in Probability Evaluation block and

thus in every clock cycle four sub densities are evaluated. In n/4 clock cycles (n is

the total data size), the probability of a chain for the proposed sample is calculated.

- x x e-x x

Dj

µ1

c-1/2σ 2

- x x e-x x

µ2
c

-1/2σ 2

- x x e-x x

µ3

c-1/2σ 2

- x x e-x x

µ4

c-1/2σ 2

+

+

+

PIPELINE

Dj

Dj

Dj

Figure 3.5: Pipelined subdensity evaluator block that calculates the four(4) compo-

nents of the mixture model in parallel.

The second stage of Update block is Accept/Reject step. In this stage, Metropolis

ratio, which is found by using the candidate probability pj(θ∗) and previous proba-

bility pj(θi−1j) of chain j, is compared with uniform random number generated by

Tausworthe URNG to decide the acceptance of candidate sample θ∗. Accept/Reject

module can reach the current probabilities of each chain with Probability memory.

45

CLOCK

PIPELINE 3

PIPELINE 4

PIPELINE 2

PIPELINE 1

DATA MEMORY

DATA 13 DATA 9 DATA 5 DATA 1

DATA 14 DATA 10 DATA 6 DATA 2

DATA 15 DATA 11 DATA 7 DATA 3

DATA 16 DATA 12 DATA 8 DATA 4

LOG

ADDER
CONTROLLER

LOG

LOG

LOG

ADD

ADD

ADD

DATA
(13-16)

DATA
 (9-12)

DATA
(5-8)

DATA
(1-4)

SAMPLE
PROPOSAL

BLOCK

CLOCK

PROPOSED
SAMPLE

PROBABILITY
 EVALUATION

 BLOCK

Dj

Figure 3.6: Parallel pipelines in Probability Evaluation block: There are four

pipelines in the Probability Evaluation block and for a cycle four(4) sub densities

are evaluated. For data size n=16, the likelihood density is generated in every four

cycles for a chain.

Exchange Block

The samples generated from Proposal block and evaluated by Update block are now

forwarded to Exchange block for mixing operation. Due to the nature of pipelined

architecture, the Exchange block does not need to wait for the end of the update

operation of all chains. When two neighboring chains are updated and forwarded

to Exchange block successively, the exchange operation can be performed between

them. While Exchange block is performing mixing operation between the two suc-

cessive chains, Proposal block and Update block prepare the next chains for exchange

operation. This pipeline ability provides significant speedups when compared to non-

pipelined implementations in CPU and GPU platforms.

Many exchange strategy can be applied in this stage. For example, the exchange pairs

can be selected randomly or pre-selected chains can perform the exchange at every

iteration. The chosen strategy has effects on the sampling throughput, the latency and

the mixing speed. In this work, the exchange between neighboring chains is applied

to avoid stall in the system pipeline so the sampling throughput is maximized. Figure

3.8 illustrates the update and the exchange stage for eight chains.

In the Exchange stage, exchange rate e 3.4 is evaluated compared with uniform ran-

46

Figure 3.7: An example of chain streaming for the PT architecture. There are four

pipelines in the Update block and for data size n=16, the likelihood density is gener-

ated in every four cycles. Since other blocks (Proposal, Accept/Reject and Exchange)

fulfill their own tasks in one clock cycle, they are unoccupied for three clock cycles

of every four cycles (wait state).

dom number generated by Tausworthe URNG. The new samples and their probability

values are stored in Sample memory and Probability memory respectively. The new

sample of the first chain is also given as the output in order to be transmitted by serial

interface. When all stages are completed for all chains, a new iteration starts for the

algorithm.

e = min(1,
pq(θ

i
r)pr(θ

i
q)

pq(θiq)pr(θ
i
r)
)

(q, r) = (1, 2), (3, 4)...(M − 1,M) or

= (2, 3), (4, 5)...(M − 2,M − 1) alternatively

(3.4)

47

Figure 3.8: Successive update and exchange stages for eight chains

3.2.2 The Mixed-Precision PT Architecture

In the previous sub-section, only one precision(single or double) is utilized in all sub

blocks of the architecture. As it will be seen later, utilizing single floating point preci-

sion in the architecture consumes less DSP block and enables more parallel pipelines

and higher throughput when compared to double floating point case. However, re-

ducing the precision causes altered probability densities and reduces the accuracy of

the system.

To reduce the resource usage without sacrificing the sampling accuracy, G. Min-

gas [50] used the mixed precision technique in FPGA. In this approach, which is

actually based on the idea of sampling from the probabilistic approximations for

auxiliary chains [21], the probabilities of auxiliary chains are evaluated in reduced

precision (approximated distributions) while the first chain is evaluated at double pre-

cision (true distribution). This strategy is based on the fact that only the samples of

48

first chain is kept and the samples of auxiliary chains are used to improve mixing be-

fore they are dropped in PT algorithm. Since the target distribution of the first chain

is unchanged (the proof is given by G. Mingas in the work [49]), the output accuracy

is also unchanged. On the other hand, the mixing speed of the algorithm is affected

due to the fact that sample exchanges between the first and the second chains are less

likely to succeed after the reduction in precision of the second chain [50].

• The first chain samples from true distribution p1(θ) = p(θ)

• The auxiliary chains j ε (2, ...,m) samples from reduced precision approxima-

tion pj = p̃(θ)1/Tempj

The exchange rate is also modified to cover two different precision domains. For the

chains q > 1 and r > 1, exchanges are accepted with the probability:

e = min(1,
p̃q(θ

i
r)p̃r(θ

i
q)

p̃q(θiq)p̃r(θ
i
r)
) (3.5)

For the chains q = 1 and r = 2, the exchange is accepted with the probability:

e = min(1,
p1(θ

i
2)p̃2(θ

i
1)

p1(θi1)p̃2(θ
i
2)
) (3.6)

The architecture for mixed-precision is given in Figure 3.9. In Intel FPGAs, the

lowest floating point arithmetic precision that is supported is single floating point.

Therefore, our mixed precision design utilizes single floating point arithmetic blocks

for the probability evaluation of auxiliary chains and double floating point for the rest

of the design. When compared to the standard-precision(double precision) PT archi-

tecture, mixed precision architecture provides higher throughput with same sampling

accuracy since it utilizes more parallel pipelines in the Probability Evaluation block.

The mixed precision architecture also provides better sampling accuracy with same

throughput when compared to single precision PT architecture since mixed precision

architecture uses higher precision for the probability evaluation of the first chain.

49

Probability
Memory

P(thetai-1)

Exchange Block

Uniform
RNG

Exchanger

P(thetai)

Likelihood
Data

Control Block

Sample
Memory

Port2

PCIe Interface

URN

FIFO

FIFO

FIFO

FIFO

P(thetaaccepted) thetaaccepted

theta1
i

theta1
i

Data
memory

Update Block

Probability
Evaluation
Block (SP)

Accept/Reject Block(DP)

P(theta*)

Uniform
RNG (DP)

URN

Probability
Evaluation
Block(DP)

P1(theta1
*)SP-DP

Converter

Proposal Block

Gaussian RNG (DP)

theta*

Adder (SP)

thetai-1

theta1
*

Proposal Block_1

Gaussian RNG (DP)

Adder(DP)

DP-SP
Converter

theta1
i-1

GRN GRNSample
Memory

Port1

Figure 3.9: FPGA architecture of mixed precision PT algorithm: SP and DP stand for

single precision and double precision respectively. For auxiliary chains, there exists

a single precision-Probability Evaluation block. All other sub-blocks support double

floating point arithmetic precision format. The precision of a data is converted to

via SP-DP converter or DP-SP before sending to the next block that runs in different

precision format.

50

CHAPTER 4

PERFORMANCE EVALUATION

4.1 Case Study

In order to demonstrate the hardware architectures presented in the previous chapter,

Bayesian inference is performed on a Gaussian mixture model taken from [37]. Mix-

ture models are used to model heterogeneous data and multi-modality often exists in

mixture modeled problems [33].

Let D1, ..., Dn denote the observed data Dl ∈ R where l = 1, ..., n assuming that Dl

obeys the i.i.d principle with the density:

p(Dl|µ, σ, w) =
k∑
i=1

wif(Dl|µi, σi) (4.1)

In the equation 4.1, f refers to the univariate Gaussian distribution, k is the component

number and µk, σk and wk are component specific parameters such that
k∑
i=1

wi = 1.

The known and fixed parameters are given in the Table 4.1 and only unknown pa-

rameter is µ which has k-dimensional uniform prior distribution. Data set D1:n is

simulated using µ1:4 = (−3, 0, 3, 6).

To this end, we aim to infer mean µ1:4 via MCMC algorithm given in the previous

chapter. The resulting posterior density is the product of the prior density and the

likelihood density, which is also a product of sub-densities. There is no need to

51

Table 4.1: The Parameters of Mixture Model

Number of

components

(k)

Number of

Likelihood

Data (n)*

Dimension of

data (d)
Variance σi Weight wi

4 100 1 0,55 0.25

* scalable parameter.

evaluate the normalizing constant due to the nature of used MCMC method.

p(µ1:4|D1:n) = p(D1:n|µ1:4)p(µ1:4)

=
n∏
j=1

p(Dj|µi:4, µ1:4, w1:4)p(µ1:4)
(4.2)

4.2 Evaluation Platforms

The architecture proposed in previous chapter was implemented on a device of the

Intel Stratix V FPGA series which can be considered as a medium-end FPGA. As

a hardware platform, a custom FPGA board shown in Figure 4.1 is used which has

one Intel Stratix V - 5SGXA7 FPGA, two 64 bits DDR3 memories and high speed

interfaces like PCIe and Ethernet. Also, for real time power measurements, Altera

Signal Integrity Development Board (SI) [3] shown in Figure 4.2 which has the same

FPGA device as custom FPGA board (Intel Stratix V - 5SGXA7 FPGA), general I/O

pins, a flash memory, high speed serial interfaces, power monitor devices (LTC2978)

and temperature sensors. Apart from Stratix V device, the performance of one In-

tel Stratix 10 device is also evaluated. It is important to note that real runs were

performed only for the Stratix V device. The results for the Stratix 10 device are ob-

tained from performance estimates which depend on device resources and post-place

and route resource utilization.

In order to compare the performance of the FPGA system with different platforms,

the studies published by Lee et. al. [37] and G. Mingas [49,52] are used as reference.

In the work [37], the PT acceleration for the same target distribution is carried out on

52

Figure 4.1: The custom FPGA board includes Intel Stratix V - 5SGXA7 FPGA, two

64 bits DDR3 memories, PCIe and Ethernet Interfaces.

53

Figure 4.2: Altera Signal Integrity Development Board (SI) [3] includes Intel Stratix

V - 5SGXA7 FPGA, power monitors and temperature sensors. It is used to measure

real time power consumption of core FPGA.

54

Nvidia 8800GT and Nvidia GTX280 GPU platforms. Lee et al. [37] also presented

the performance results of sequential CPU implementation of PT algorithm for the

Intel Xeon E5420 device.

On the other hand, G. Mingas [49,52] uses double precision floating point arithmetic

and mixed precision in PT acceleration on three different platforms for the same tar-

get distribution. For the GPU platform, the devices of the Nvidia GeForce-285 and

Nvidia GeForce-480 series are utilized in his works. Intel Xeon E5 series devices with

varying number of cores are the representative of the multi-core CPU in his works.

He also presented the performance results of PT acceleration for Xilinx Virtex 6 and

Virtex 7 series FPGAs. All these performance data provided by G. Mingas [49,52] are

evaluated as reference to evaluate our FPGA design. For fair comparisons, the same

target distribution is evaluated and PT algorithm is identically tuned in all platforms.

4.3 FPGA Implementation

The PT architectures given in previous sections are designed via VHDL, simulated by

QuestaSim, which is an advanced simulation tool for VHDL verification and lastly

implemented on Intel Stratix V FPGA device (5SGXA7), which is a medium-end

device of Intel FPGA families. Despite, the actual runs are performed in Intel Stratix

V FPGA on the hardware platform, the results for Intel Stratix 10 GX1100 FPGA,

which is one of the highest performance FPGA family of Intel FPGAs brand, are also

presented. Indeed, the results for the Intel Stratix 10 GX1100 FPGA are estimated by

looking resource utilization of the PT architectures and Stratix 10 device resources.

The generated samples by the FPGA are transferred to the host processor via PCI

Express interface. Transfer rate of the interface is over 100 MB/sec, which is enough

for transferring all samples without any losses. The clock frequency of single pre-

cision PT architecture is set to 225 MHz. For the other PT architectures, the clock

frequency is set to 200 MHz which is obtained by internal PLL of the FPGA driven by

50 MHz reference clock. It is important to note that the clock frequency is mainly de-

pendent on the performance of floating point arithmetic IPs and timing performance

of the FPGA design. Since totally synchronous design technique is employed in the

55

FPGA architecture, only limiting factor for the clock frequency is the performance of

floating point arithmetic IPs which is related to the precision of the IPs. For single

precision floating point IPs, it is possible to obtain higher clock frequency.

The number of burn in samples (5000), the number of likelihood data(n), the number

of chains (M), the temperature of the chains (TempM), initial samples, clock speed

and other constants such as variance (σk), component number (k) and dimension of

samples (d) are fixed and set before synthesize to reduce resource usage. The system

starts to work with power on reset and outputs of the PT algorithm (burn-in samples

are discarded) are sent via PCIe to the host processor.

4.4 Performance Metrics

This section describes the outcomes of FPGA implementation of PT algorithm. The

given architectures will be evaluated in terms of sampling throughput, the latency, the

resource utilization and the power consumption.

Sampling Throughput

The throughput of the architecture can be considered as the number of generated

samples per second. In our design, the sampling throughput is totally related to the

chain number, the data size, the clock speed and the number of parallel pipeline in the

Probability Evaluation block.

SamplingThroughput =
frequency

M n
p

(4.3)

Here, M refers to the chain number, n is the size of the data for likelihood evaluation,

p is the number of parallel pipelines in the Probability Evaluation block and frequency

is the clock speed of the FPGA.

Latency

Latency can be considered as the delay between starting point of the algorithm and

the point where the first sample is generated. The latency of floating point arithmetic

blocks will decide the latency of whole system. The exact formulas for the latency of

56

the system are given in Table 4.2.

Table 4.2: Latency formula for PT blocks

Block Latency formula

Proposal Block Lat(add)

Probability Evaluation Block
4*Lat(mult) + Lat(exp) + 7*Lat(add) + Lat(log) +

Lat(control)

Accept/Reject Block Lat(mult) + Lat(add) + Lat(comp)

Exchange Block Lat(mult) + 2*Lat(add) + Lat(comp) + Lat(exchanger)

Total System
6*Lat(mult) + 11*Lat(add) + Lat(exp) + Lat(log) +

2*Lat(comp) + Lat(control) + Lat(exchanger)

Lat(add), Lat(mult), Lat(log), Lat(comp), Lat(exp) are the latencies of the floating

point add/subtract IP, the floating point multiplier IP, the floating point logarithm

IP, the floating point comparator IP and the floating point exponent IP, respectively.

Lat(control) refers to the latency caused by the data control operation inside the prob-

ability evaluation block. In mixed precision architecture, there exist also latencies

caused by SP/DP converter and DP/SP converter. It is important to note that the pre-

cision of the arithmetic blocks affects their latency.

Power Consumption

The power consumption results of the PT architecture on FPGA platform can be

obtained with two different ways. The first way is using Intel PowerPlay Early

Power Estimator(EPE) tool. EPE estimates power consumption of designs without

implementation on real hardware. When the targeted FPGA family with total re-

source utilization and clock frequency of the design are provided, EPE tool estimates

power consumption with a good accuracy [1]. The second method to measure power

consumption is using power monitor chip on Altera Signal Integrity Development

Board, named as LTC2978 [2]. LTC2978 measures the current drawn by core voltage

rail(0.85 V) of FPGA. Although, there exist more than one LTC2978, which monitor

the transceiver voltages, I/O voltages of FPGA and the voltages of other components

on the board, our primary focus is the power consumed by the core voltage rail of

FPGA. LTC2978 measures the current value over the sense resistor connected to the

57

core voltage power rail of FPGA. By multiplying this value with core voltage (0.85

V), power consumption value in Watts is obtained. The data transfer between FPGA

and LTC2978, including the configuration of LTC2978 and reading measured values

is established via I2C interface. In this thesis, both methods are employed. Real-time

results attained from LTC2978 device are compared with estimations of EPE-tool in

order to verify power consumption of the PT implementation on FPGA. Also, these

results are compared with the nominal thermal power design of other platforms (CPU

and GPU) for different conditions (data size and chain number).

4.5 Performance Results

In this section, the PT accelerators (CPU, GPU and FPGA) are compared in terms of

throughput and power efficiency. How the power consumption and throughput scale

with the number of chains and the size of likelihood data is also examined. Besides,

FPGA resource utilization and the latency of PT architecture under different preci-

sion are presented. As described earlier, the performance results of PT architecture

on CPU and GPU for the same case study are taken from the works [37] and [49,52].

Before giving the performance results of the architecture, the distribution of the sam-

ples generated by FPGA when the chain number is 32 and 128 are given in Figure 4.3

and Figure 4.5 respectively.

The marginal density p(µ1:2|D) in Figure 4.3 and 4.5 has 12 modes in R2. On the

other side, the joint density p(µ1:4|D) traverses all modes in R4 for all cases where M

is equal or greater than 8. In other words, PT sampler on FPGA has the ability to draw

samples from all modes in the sample space with small variance and almost true mean.

Figure 4.4 and Figure 4.6 show the histogram of the 60000 samples generated by PT

sampler on FPGA for µ1. Since the statistical quality of random number generators

affects the accept reject rate and exchange rate, better inference are possible with the

use of random number generators that have more statistical quality.

58

Figure 4.3: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via PT method on FPGA with 32 chains.

Figure 4.4: The histogram of 60000 samples generated via PT method on FPGA with

32 chains for µ1.

59

Figure 4.5: Estimated marginal posterior density p(µ1:2|D) from 60000 samples gen-

erated via PT method on FPGA with 128 chains.

Figure 4.6: The histogram of 60000 samples generated via PT method on FPGA with

128 chains for µ1.

60

4.5.1 Throughput Analysis

As given in equation 4.3, the throughput of the PT architecture depends on the number

of chains(M), the data size(n), the number of parallel pipelines in the probability

evaluation block(p) and the clock frequency of the system. Figure 4.7 illustrates the

functional simulation of Probability Evaluation block for n = 16 and p = 4. In

that case, Probability Evaluation block calculates the posterior probability of a chain

in every (
n

p
= 4) clock cycles. If the total number of chains is 128, the current

samples and probabilities of the first chain, which are the output of the algorithm, are

calculated in every (M
n

p
= 512) clock cycles and the sampling throughput will equal

to (
frequency

M n
p

= 390625). This example is illustrated in figure 4.8.

Here, the number of parallel pipelines is the important parameter for the sampling

throughput and its limiting factor is the number of DSP blocks in the FPGA. A single

precision pipeline in the probability evaluation block consumes 19.1% of the existing

DSP blocks in Stratix V (5SGXEA7) device. On the other hand, the double precision

pipeline consumes 44.5% of the existing DSP blocks. The total resource usage for

double precision PT architecture is given in Table 4.9.

Besides, the clock frequency is dependent to the performance of the floating point

DSP IPs. For the single precision floating point PT architecture, the floating point

adder IP supports 228 MHz clock frequency at maximum. For the double precision

floating point PT architecture, the maximum supported clock frequency is limited by

the floating point logarithm IP, which is 211 Mhz. In order to stay in the safe side,

the clock frequency of the system is selected as 200 Mhz and 225 MHz for the double

precision PT architecture and the single precision PT architecture respectively.

Despite the fact that the throughput of the system is inversely proportional to the

number of chains employed in Parallel Tempering simulations, the number of chains

should be large enough to ensure good mixing. Indeed, utilizing dozens of chains

seems acceptable for even complex problems in PT literature. However, in order to

investigate how the throughput scales with the number of chains in different plat-

forms, various different numbers of chains were used while setting the amount of

data to fixed number (128) in this work.

61

Figure 4.7: Functional simulation of Probability Evaluation block for n=16 and p=4:

The Probability Evaluation Block starts to produce the posterior probability of chains

in every four clock cycle after 146 clock cycles delay from the start of the algorithm.

62

Figure 4.8: Functional simulation of PT architecture for M=128, n=16 and p=4: The

PT architecture starts to produce the current samples and probabilities of the first

chain in every 512 clock cycles.

63

The throughput achieved by PT accelerators on FPGA for the fixed data size (128)

and various numbers of chains are given in Table 4.3. It is important to note that

only real runs are performed for Intel Stratix V-5SGXA7 device. The throughput of

Intel Stratix 10-GX1100 device are estimated by using resource utilization of the PT

architectures and the device resources. The throughput of the FPGAs given in Table

4.3 are compared with sequential reference implementation in C++ on Intel Core i7-

2600 device with one core activated [49] [52] in Figure 4.9. In Figure 4.9, there also

exist other speedups achieved by GPU and multi-core CPU implementation of the

same problem. The throughput and the speedups given in Table 4.3 and Figure 4.9

reflect the measurements taken from the double precision accelerators (CPU, GPU

and FPGA).

Table 4.3: Throughput (samples/sec) of the PT on FPGAs for different chain numbers

M when n=128.

Platform Device M = 8 M = 32 M = 128 M = 512 M = 2048

FPGA Intel Stratix V-5SGXA7 390625 97656 24414 6103 1525

FPGA Intel Stratix 10-GX1100 3515625 878906 219726 54931 13732

For multi-core CPU, G. Mingas achieves speedup at most 13.8x with respect to se-

quential reference implementation [49] [52]. The peak performance is achieved with

more than 2048 chains. In his works [49] [52], GPUs outperform multi-core CPU for

almost all numbers of chains. For a few hundred chains, the achieved speedups are

in the range of 1.5x-50x. Like multi-core CPU, GPUs reach their peak performance

for thousands of chains thanks to the fully utilization of GPU with adequate paral-

lelism. However, GPU implementation of Lee et al. [37] outperforms the multi-core

CPU [49] [52] for M > 512 due to the fact that the state-of-the-art implementation

of Lee et al. [37] needs massive number of chains to fully utilize GPU.

Our FPGA accelerators achieve constant speedup against sequential reference imple-

mentation for all cases. Intel Stratix V - 5SGXA7 device has throughput 24x higher

than the reference. This value is close to the FPGA(Xilinx Virtex-6) implementation

of G. Mingas [49] [52]. When a device of upper family(Intel Stratix 10-GX1100)

64

0.1

1

10

100

1000
8 32 128 512 2048

Sp
ee

du
ps

 v
s S

eq
ue

nt
ia

l R
ef

er
en

ce
 C

od
e

Number of Chains (M)

GPU-GTX280 [37] Multi core CPU E5-2660 v2 [49][52] GPU-GTX480 [49][52]

FPGA Xilinx Virtex-6 LX240T [49][52] FPGA Intel Stratix V-5SGXA7 FPGA Intel Stratix 10-GX1100

Figure 4.9: The speedups of FPGAs, Multi-core CPU [49] [52] and GPUs [37]cite5

[52] vs the sequential reference implementation on Intel Core i7-2600 CPU [49] [52]

for different numbers of chains M.

is used, the achieved speedup increases to 206x which is higher than the all of the

state-art-implementation of G.Mingas [49] [52] and Lee et. al. [37], regardless of

the chain number. Also, for the reasonable number of chains(up to 128), even the

implementation on Intel Stratix V - 5SGXA7 device is faster than GPU samplers and

multi-core CPU sampler. This shows that FPGA sampler provides better throughput

than the multi-core CPU and GPU for the realistic cases.

The results given in Table 4.3 and Figure 4.9 show that the number of chains linearly

down-scales the throughput of the FPGA sampler and result in a constant speedup

against the sequential reference implementation. The peak speedup for the FPGA is

reached even for M equals 8. On other side, multi-core CPU and GPUs [37, 49, 52]

reach their peak results for unrealistic scenarios (utilizing thousands of chains). This

is due to the fact that the created parallelism in FPGA is related to the pipelines

for probability evaluation. If a small number of likelihood data and big FPGA like

Stratix-10 are used, inter-chain parallelism is also possible. By processing each chain

in parallel, faster samplers can be designed with FPGAs.

Another parameter that scales the throughput of FPGA sampler is the amount of data.

In order to investigate the way the throughput scales with the data size, various num-

65

bers of data sets are used while number of chains is set to 32. Table 4.4 shows the

throughput achieved by Intel Stratix FPGA implementations for various numbers of

data sets. Figure 4.10 shows the scaling of speedups with number of data for different

platforms (CPU, GPU and FPGA) against the sequential reference implementation in

C++ on Intel Core i7-2600 device with one core activated. Multi-core CPU sampler

implemented by G. Mingas achieves speedup 16.1x at most against the sequential

reference implementation. Also, speedups for the GPUs are between 5x and 99x.

When compared to Figure 4.9, this performance drop is expected since GPUs per-

form better for large values of chain numbers and for this case the chain number is

only 32 [49] [52].

On the other side, our FPGA samplers keep their constant performance achievements

for also varying numbers of data sets. Intel Stratix V-5SGXA7 device reaches to

24x speedups against the sequential reference implementation on CPU. When Intel

Stratix 10-GX1100 device is used, this speedup reaches to 206x. This shows that our

FPGA sampler performs stable performance for different system parameters (chain

and data size), while the multi-core CPU and GPU performances reduce with small

numbers of chains. The main reason is that the FPGA takes advantage of all kinds

of parallelism (the parallelism between chains and the parallelism inside the chain) in

the system while the performance of multi-core CPUs and GPUs depend mostly on

the parallelism between chains. However, it is important to note that the parallelism

inside the chains is due to the i.i.d. data usage for the problem given in Section

4.1. In other words, FPGA exploits the parallelism between sub-densities which are

multiplied later to calculate the density and thus the way of performance scale with

data size can not be generalized for the non i.i.d. problems. Nevertheless, the FPGA

is able to take advantage of both parallelism and it is possible to obtain performance

achievements with the parallelism between chains for non i.i.d. data cases.

4.5.2 Power Analysis

With the help of the power monitor device, named LTC2978, the power consumption

of the PT architecture is analyzed on the real platform. For this purpose, Altera Signal

Integrity (SI) Development Board, which can be seen in Figure 4.2, is used. On this

66

Table 4.4: Throughput (samples/sec) of the PT on FPGAs for different number of

data (n)

Platform Device n = 32 n =128 n = 512 n = 2048 n = 8192

FPGA Intel Stratix V-5SGXA7 390625 97656 24414 6103 1525

FPGA Intel Stratix 10-GX1100 3515625 878906 219726 54931 13732

1

10

100

1000
128 512 2048 8192

Sp
pe

du
ps

 v
s S

eq
ue

nt
ia

l R
ef

er
en

ce
 C

od
e

Data Size (n)

FPGA Xilinx Virtex-6 LX240T [49][52]Multi core CPU E5-2660 v2 [49][52]

FPGA Intel Stratix 10-GX1100

GPU-GTX480 [49][52]

FPGA Intel Stratix V-5SGXA7

Figure 4.10: The speedups of FPGAs, Multi-core CPU [49] [52] and GPUs [49] [52]

vs the sequential reference implementation on CPU [49] [52] for different number of

data (n) when M=32.

development board, one Intel Stratix V - 5SGXEA7 FPGA device and two LTC2978

power monitor devices exist with memories and high speed components [3]. The data

transfer from LTC2978 device to FPGA is accomplished via I2C interface. Since the

configuration LTC2978 device is out of scope in this thesis, the details of I2C transfer

is not given. While analyzing the power consumption of PT architecture on FPGA,

the current drawn by the core voltage (0.85 V) is considered primarily.

The consumed power by core voltage rail is measured for three different (M, n) com-

binations and given in Table 4.6. Apart from actual measurements obtained from

the board, power consumption values estimated by Intel Early Power Estimator Tool

67

for PT architecture are also given in Table 4.5. It is important to note that EPE tool

estimates the power consumption by using resource utilization of targeted FPGA,

the clock frequency of the design and the percentage of read-write mode for on-chip

memories.

Real measurements taken from the platform and EPE estimations reveal that PT archi-

tecture without external memory (DDR3) on Intel Stratix V FPGA consumes power

between 5.5 Watts and 7 Watts. The power consumption of the FPGA scales with

the number of chains and the data size due to the fact that more on-chip memory and

ALUTs are utilized for more chains and more data size. However, power consump-

tion of FPGA board (custom FPGA board that has Intel Stratix-V FPGA and DDR3

interface) reaches 13.3 Watts when external memories are enabled. This increase in

power consumption is due to the usage of transceivers in FPGA and power consump-

tion of DDR3 itself. Note that this power consumption includes not only the power

consumption of the core voltage rail but also the power consumption of total FPGA

board.

On the other side, power consumption of CPU and GPU accelerators which are de-

signed by G. Mingas [49] [52] are between 95 Watts and 260 Watts. These values

are the nominal thermal power taken from each device specifications. In order to

compare platforms fairly, FPGA is considered as fully utilized despite the fact that

this is not valid for our FPGA designs. Even with this assumption, FPGA accelerator

which consumes 16 Watts achieves 6x-16x power savings when compared to other

platforms(CPU and GPU).

Table 4.5: Power consumption of PT estimated by EPE tool for different number of

chains(M) and data size(n) combinations

(M,n) =(128,16) (M,n) =(128,128) (M,n) =(2048,128) (M,n) =(128,2048)

Power (W) 5.76 5.92 6.43 6.74

68

Table 4.6: Power consumption of PT measured by LTC2978 on Altera SI Develop-

ment Board for different number of chains(M) and data size(n) combinations

(M,n) =(128,16) (M,n) =(128,128) (M,n) =(128,2048)

Power (W) 5.56 6.13 6.98

Current(A) 6.54 7.21 8.21

Table 4.7: Power consumption of PT estimated by EPE tool for M=128 and n=16

INPUT PARAMETERS

Family Stratix V

Device 5SGXEA7N

Package F40

Temperature Grade
Commercial -2L/-3/-4

(0.85V)

Power Characteristics Typical

THERMAL POWER (W)

Logic 1.291

RAM 0.703

DSP 1.819

I/O 0.002

PLL 0.014

CLOCK 0.787

XCVR 0.073

PCS and HIP 0.209

Power static 0.860

TOTAL 5.758

69

4.5.3 Latency Analysis

Another performance metric evaluated in this work is the latency. Table 4.2 includes

a formula for the latency of PT architecture. The latency of the Proposal block is

the latency of floating point adder IP (Lat(add)) which adds Gaussian random num-

ber to the previous sample. The latency of the Probability Evaluation block consists

of the latency of sub-density evaluation, the latency of floating point logarithm IP

(Lat(log)), the latency of adders that sums log sub-densities and the latency of data

arbiter (Lat(control)) which depends on the data size(n).

In Accept/Reject block, a floating point multiplier IP (Lat(mult)) to multiply log den-

sities with the temperature of the chain, a floating point adder IP (Lat(add)) to cal-

culate the acceptance ratio and lastly a floating point comparator IP (Lat(comp)) to

compare acceptance ratio with the logarithm of a uniform random number are uti-

lized. The latency of Exchange block is the sum of the latency of floating point

multiplier IP, the latency of floating point adder IP (needed to calculate terms in the

exchange ratio), the latency floating point comparator IP (Lat(comp)) and the latency

of exchanger core (Lat(exchanger)).

The latency of PT architecture is totally dependent to the latency of floating point

IPs and the data size(n). For some floating point IPs, such as adder/subtracter, the

latency is adjustable. However, there exist a tradeoff between the latency of floating

point IPs and the maximum speed of the system clock such that the latency of some

floating point IPs restrict the maximum achievable clock speed in the system, so the

throughput of the architecture. Therefore, an optimization procedure was applied to

obtain the floating point IPs that operate at maximum clock speed and provide lowest

latency which in turn costs FPGA resources. The floating point precision also changes

the latency of floating point arithmetic IPs. The latency of PT architecture in terms

of clock cycle for single and double floating point precision can be seen in Table 4.8.

Another factor that affects the latency is the data size(n). As the data size increases,

the latency of Probability Evaluation block increases since more floating point adder

IPs are instantiated to sum more sub-densities. On the other side, the number of chains

has no effect on the latency of the system. Figure 4.11 demonstrates the latency of

single precision-PT architecture for M=128, n=16 and p=4.

70

Figure 4.11: Functional simulation of successive PT stages for M=128, n=16 and

p=4: The values between cursors correspond to the latency of each stage in terms of

clock cycle.

71

Table 4.8: The latency (clock cycle) of main PT blocks for single and double floating

point precision for M=128, n=16 and p=4

Block Latency formula
Single-precison

PT

Double-precison

PT

Proposal Block Lat(add) 6 6

Probability Evaluation

Block

4Lat(mult) + Lat(exp) + 7Lat(add) + Lat(log) +

Lat(control)
140 162

Accept/Reject Block Lat(mult) + Lat(add) + Lat(comp) 22 22

Exchange Block
Lat(mult) + 2*Lat(add) + Lat(comp) +

Lat(exchanger)
36 36

Total System
6Lat(mult) + 11Lat(add) + Lat(exp) + Lat(log)

+ 2Lat(comp) + Lat(control) + Lat(exchanger)
204 226

4.5.4 FPGA Resource Utilization of PT

The PT architecture is implemented on Intel Stratix V FPGA. Basically, Intel FGPAs

consist of Adaptive Logic Modules(ALMs) that contains Adaptive Look-up Tables

(ALUTs), adders and registers to implement logic functions, Digital Signal Processor

(DSP) blocks and embedded memory blocks(M20K, MLAB). Table 4.9 shows the

resource utilization of double precision PT architecture and its internal blocks in terms

of ALMs, ALUTs , registers, DSPs and block memory bits.

Since the resource utilization of blocks is dependent to the floating point precision,

using lower precision reduces the resource utilization of FPGA. Table 4.10 gives the

comparison of double precision PT and single precision PT architecture in terms of

the resource utilization. Moreover, the number of chains (M) and the data size (n)

scale the resource utilization in a way that total block memory bits and registers are

increased due to the increase in probability memory size and sample memory size.

Table 4.9 and Table 4.10 indicate that PT architecture consumes low ALMs and block

memory bits. However, Digital Signal Processor (DSP) blocks are the limiting re-

72

source that limit the number of parallel pipelines(p) in the Probability Evaluation

block. It is again important to note that higher number of pipeline(p) leads to higher

throughput as described before. Therefore, in the next section, we seek and present

the ways of reducing DSP usage and the ways of adding more parallel pipelines to

the system in order to obtain higher throughput.

Table 4.9: FPGA resource utilization of double precision PT stages for M=128 and

n=16

Block ALM ALUTs Registers Block Memory Bits DSP

Proposal Block 4744 (2%) 8150 8807 32768 (0.06%) 0

Probability Evaluation Block 60352 (25.7%) 103215 91051 56896 (0.1%) 228 (89%)

Accept/Reject Block 5214 (2.2%) 9685 12831 132144 (0.25%) 12 (4.7%)

Exchange Block 10753 (4.6%) 17886 18959 25468 (0.05%) 16 (6.3%)

PT Resource Utilization 81063 (34.5%) 138936 131648 247456 (0,5%) 256 (100%)

4.5.5 Precision Analysis

Single and double floating point arithmetic precisions are commonly used precisions

in MCMC applications. Also, the highest precision supported by hardware plat-

forms(CPU, GPU and FPGA) is double precision which can be considered as infinite

precision. For this reason, all performance comparisons were made between double

precision - PT architecture on CPU, GPU and FPGA in previous sections. However,

FPGA resource utilization and consequently the system performance are strictly de-

pendent to the precision of the architecture. Hence, PT architectures with different

precision are implemented and investigated in this section.

Single Precision-PT

Single precision PT is implemented with the architecture given in section 3.2.1. In-

73

stead of double precision, all operands in the system are configured to single precision

floating point arithmetic. Lowering precision from double to single saves significant

amount of FPGA resources, especially DPS blocks. Table 4.10 shows the area savings

of single precision PT when compared to double precision PT.

Thanks to the area savings of single precision PT, 2x more parallel pipeline can be

instantiated in the Probability Evaluation block and thus 2.25x higher throughput is

achieved when compared to double precision PT for all (M,n) cases (see Table 4.11).

Furthermore, the power consumption of PT architecture is reduced with the usage of

single precision due to FPGA area savings (see Table 4.12).

Despite all these performance gains, utilizing lower precision in whole system leads to

errors in the output since it samples from approximate distribution with approximate

MCMC kernel. Actually, the perturbations caused by reduced precision may be lower

than the output variance which are due to randomness of Monte Carlo estimates.

Depending on the application needs, MCMC practitioners may also tolerate output

errors due to reduced precision in some cases. However, it is possible to produce

samples from true distribution by using reduced precision in wisely selected parts of

the algorithm (Mixed-precision).

Mixed Precision-PT

As mentioned above, reducing precision saves FPGA resources which in turn perfor-

mance boost with lost in output accuracy unfortunately. Mixed precision-PT archi-

tecture introduced by G. Mingas [52] [50] solves this problem by utilizing reduced

precision blocks in the wisely selected parts of the algorithm such that probability

evaluations for auxiliary chains are performed with reduced precision while the Prob-

ability Evaluation block for first chain and other generic blocks employ double pre-

cision format. Due to the fact that the target distribution of the first chain remains

unchanged, mixed precision-PT produces outputs from true distribution as desired.

The details of this design and how it preserves the output accuracy are described in

3.2.2 and the works [52] [50].

For this purpose, the architecture given in Figure 3.9 was implemented. As men-

tioned earlier, probability evaluation of the auxiliary chains are handled in reduced

74

precision(single precision) that gives chance to add more parallel pipelines to the sys-

tem. The resource utilization of mixed precision PT architecture when M=128 and

n=16 is shown in Table 4.10. It is clear from Table 4.10 that the same amount of

DSP blocks are utilized in mixed precision-PT when compared to double precision

PT even though two more parallel probability evaluation pipelines are added to sys-

tem. This extra parallel pipelines leads to throughput improvements as given in Table

4.11.

Table 4.10: FPGA resource utilization for double, single and mixed precision PT in

terms of when M=128 and n=16. There exist three 3 single precision pipelines and

one double precision pipeline in Mixed-Precision-PT

Single Precision PT Double Precision PT Mixed Precision PT

ALM 43014 (18.3%) 81063 (34.5%) 87189 (37%)

ALUTs 58386 138936 144006

Registers 79584 131648 137251

Memory Bits 129994 (0,25%) 247456 (0.5%) 283101 (0.6%)

DSP 219 (85.5%) 256 (100%) 256 (100%)

Pipeline Number 4 2 3+1

Table 4.11: Throughput(samples/sec) for double, single and mixed precision PT when

M=128 and n=16

Single Precision PT Double Precision PT Mixed Precision PT

Throughput 439453 195312 293225

It is important to note that Table 4.11 includes raw throughput values, which cor-

responds to produced MCMC samples per second. However, the exploration speed

75

of mixed precision - PT is lower than the double-precision PT due to the usage of

reduced precision in the update stage of auxiliary chains. In other words, the less ef-

fective samples (samples that explore the distribution slowly) are generated in mixed

precision design when it is compared to double precision design. Indeed, sample ex-

changes between first and second chains occur 13% less frequently in mixed precision

design than double precision design. This value was obtained from the average of 10

free runs of both strategies.

Apart from the throughput, the power consumption are also altered with mixed pre-

cision architecture. Due to the minor increase in total resource utilization, power

consumption of mixed precision PT is higher than the double precision-PT (see Table

4.12). It is important to note that although resource utilization of reduced precision

probability evaluation pipeline is less than double precision probability evaluation

pipeline, total resource utilization of mixed design is higher due to the extra pipelines

in mixed precision design.

Table 4.12: Power consumption for double, single and mixed precision PT when

M=128 and n=16

Single Precision PT Double Precision PT Mixed Precision PT

Power (W) 5.38 5.76 5.97

Since the lowest floating point arithmetic precision that can be used in Intel FPGAs is

single precision, auxiliary chain calculations are performed with single precision in

this work. On the other side, Xilinx FPGAs have DSP blocks which can be configured

to precision formats which are lower than single precision. Hence, it is possible to

design more optimized mixed precision PT architectures that offer greater speedups

in Xilinx FPGAs as G. Mingas [52] [50] achieved.

4.5.6 Memory Analysis

When large scales of data sets or many chains MCMC problems are targeted, memory

can become the bottleneck of the FPGA system. Due to the fact that on-chip memo-

ries of FPGAs can be accessed at every clock cycle, memory bandwidth is not an issue

76

for PT architectures that use on-chip FPGA memories. On the other hand, the size

of memory inside the FPGA is limited (6.5 MB on-chip memory for Intel Stratix V -

5SGXEA7 device). Although there exist sufficient on-chip memory inside the Stratix

V FPGA family for all (M,n) cases investigated in this thesis, it is not possible to im-

plement all of the memories used in PT architecture (Data Memory, Sample Memory

and Probability Memory) into the FPGA for large values of chain numbers and big

data sets. In that case, some of these memories should be implemented externally.

When using external memories in PT architecture, the latency of data transfers be-

tween processing blocks and external memory and limited bandwidth can degrade the

system performance. Actually, these are not issue for external Probability Memory or

external Sample Memory. Since PT architecture accesses to Probability Memory and

Sample Memory 2 ∗M times for each PT iteration (M times for reading and M times

for updating). Numerically, as a worst case, PT architecture withM = 32768, n = 32

accomplishes 380 iterations in one second, which needs 760 MB/sec total through-

put with external Sample Memory and 190 MB/sec total throughput with external

Probability Memory. For more realistic scenario, PT architecture with M = 128,

n = 32768 requires 0.76 MB/sec and 0.19 MB/sec total throughput with external

Sample Memory and external Probability Memory respectively. When compared to

throughput of the DDR3 memory (6.4 GB/sec) in custom FPGA board given in Figure

4.1, these are easily achievable requirements for external memory throughput.

On the other hand, memory bandwidth and memory efficiency issues can be faced

with depending on the size of the data sets if the Data Memory is moved off FPGA.

Indeed, the number of accesses to Data Memory in one PT iteration equals to M ∗ n
for the mixture model implemented in this thesis. For example, PT architecture with

M = 128, n = 327684 accomplishes 95 iterations in one second, which requires

3.13 GB/sec external memory bandwidth. Despite the fact that this is achievable

throughput value for DDR3 memory interface used in custom FPGA board, the need

for continuous feeding of Probability Evaluation block imposes a big challenge on

our MCMC application. In other words, the mandatory latency of memory accesses

leads to pipeline stall in probability evaluation and so performance degrades.

In order to avoid pipeline stalls, the architecture shown in Figure 4.12 is implemented.

77

Sample
Memory

Port1 Proposal Block

Gaussian
RNG

Update Block

Probability
Evaluation

Block

theta*

Accept/Reject Block

Adder

P(theta*)

Probability
Memory

Uniform
RNG

P(thetai-1)

thetai-1

Exchange Block

Uniform
RNG

Exchanger

P(thetai)

Data
Memory-1

(DDR3)

Likelihood
Data

Control Block

Sample
Memory

Port2

PCIe Interface

URN

GRN

URN

FIFO

FIFO

FIFO

FIFO

P(thetaaccepted) thetaaccepted

theta1
i

theta1
i

Data
Buffer-1

Data
Memory-2

(DDR3)

Data
Buffer-2

M
U

X

Figure 4.12: Double precision PT architecture with external Data memories.

In this architecture, the whole data is split into two equal groups such that a half of

data is stored in first DDR3 memory and the other half of data is stored in second

DDR3 memory. The common approach of data partitioning methods in MCMC liter-

ature is splitting data into subgroups and combining the results after processing each

group separately (in separate core, processor or hardware). However, PT architecture

with two DDR3 data memories splits data into two groups and processes these two

groups in the same processing unit (Probability Evaluation block) respectively.

The flow of data from external memories to Probability Evaluation block is illustrated

in Figure 4.13. While the second DDR3 memory is accumulating the second buffer

78

with some part of its content (it depends on whole data size and burst read length),

the Probability Evaluation block is fed by the first buffer which was filled before with

some part of data by first DDR3 memory. This duration is called Phase-1 in which

first DDR3 memory gets ready for next access (no operation) and read operation is

performed for the second DDR3 memory. The Second phase (Phase-2) starts imme-

diately after the end of Phase-1. In this phase, the first DDR3 memory accumulates

the first buffer with some part of its data and the Probability Evaluation block is fed by

the second buffer which was filled in Phase-1 by the second DDR3 memory. Phase-1

and Phase-2 continue in order till all data is transferred to the Probability Evaluation

block. All these successive phases are repeated without a break for all chains until

the end of MCMC run. It is important to note that Probability Evaluation block can

be fed continuously at each clock cycle since there always exist a filled data buffer in

the system.

The Probability Evaluation block demands 128 bits wide data at every clock (200

MHz) so that 3.13 GB/sec throughput is needed for M = 128, n = 327684 case. On

the other side, since each 64-bit DDR3 memory is operated with 400 MHz clock rate,

provided throughput by external memories is almost four times of required through-

put. Besides, with double buffer mechanism, the negative effect of latency imposed

by data transfer is removed so parallel pipelines run without stall.

79

P
h

as
e

-1

P
h

as
e

-2

D
D

R
3

-2
D

A
TA

 B
U

FF
ER

-2

D
A

TA
34

D
A

TA

(3
7

-4
0

)
D

A
TA

(6

1
-6

4
)

D
A

TA
 B

U
FF

ER
-1

D
A

TA
33

D
A

TA
36

D
A

TA
35

D
A

T
A

2

D
A

TA
1

D
A

TA
4

D
A

TA
3

D
A

TA
8

D
A

TA
7

D
A

TA
10

D
A

TA
9

D
A

TA
3

2

D
A

TA
3

1
D

D
R

3
-1

B
U

FF
ER

M
U

X

P
R

O
B

A
B

IL
IT

Y
EV

A
LU

A
TI

O
N

B
LO

C
K

D
A

TA
6

D
A

TA
5

D
D

R
3

-2

D
A

TA
 B

U
FF

ER
-1

D
A

TA
6

6

D
A

TA

(6
9

-7
2

)
D

A
TA

(1

25
-1

28
)

D
A

TA
 B

U
FF

ER
-2

D
A

TA
6

5

D
A

TA
68

D
A

TA
67

D
A

TA
34

D
A

TA
33

D
A

TA
36

D
A

TA
35

D
A

TA
40

D
A

TA
39

D
A

TA
42

D
A

TA
41

D
A

TA
64

D
A

TA
63

D
D

R
3

-1

B
U

FF
ER

M
U

X

P
R

O
B

A
B

IL
IT

Y
EV

A
LU

A
TI

O
N

B
LO

C
K

D
A

T
A

38

D
A

TA
37

Figure 4.13: Data flow from external data memory to the Probability Evaluation

Block: Dark blue arrow indicates active flow in related phases. Light blue arrow

means no-flow.

80

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In recent years, Markov Chain Monte Carlo has become the mainstream tool to inves-

tigate the massive data sets when Bayesian models are employed. Despite its ability

to analyze multi modal and high dimensional distributions, long execution times of

MCMC algorithms can restrict the usage of MCMC in the fields of applied statistics.

The reasons for excessive run times in MCMC applications are mainly large data sets

and computationally intensive MCMC algorithms. Hence, the interest in accelerating

MCMC methods has gained momentum recently. The use of multi-core CPUs, GPUs

and FPGAs to increase sampling throughput, data partitioning methods and subsam-

pling methods to deal with massive data sets are the trend topics in the literature for

MCMC acceleration. In this thesis, we also focused on these approaches and com-

bined them to design a MCMC accelerator for Bayesian inference on multi-modal

posteriors.

To this end, a FPGA based hardware architecture for the population based MCMC

is implemented by taking G. Mingas’ works [50–52] as reference. This architecture

exploits all the capabilities of FPGAs such as deep pipelining, mixed arithmetic pre-

cision, massive parallelism and fast inter-circuit communication. Speedups of 24x

to 4x over the respective sequential CPU and GPU implementations were achieved

using the proposed double precision design on FPGAs on a Gaussian mixture model

case study. From this aspect, these results verify the achievements of G. Mingas’

studies [50–52]. Also, thanks to the mixed precision method which uses reduced pre-

cision in the calculations of auxiliary chains, further improvements on the system’s

performance are achieved without sacrificing the sampling accuracy. The main lim-

itation of mixed precision architecture is related to FPGA brand used in thesis. The

81

lowest floating point precision supported by Intel FPGAs is single precision. Prob-

ably, with the use of lower precisions than single precision for the calculations of

auxiliary chains, further performance improvements or optimizations (mixing speed

is altered) are possible.

In contrast to closely related works, this thesis also investigates the memory related

performance losses in FPGA-based MCMC applications. All the performance results

presented above are in the situation where all data sets fit into on-chip FPGA-memory.

However, when the problems with massive data sets are targeted, the need for the

usage of external memory arises. In this case, due to the limited memory bandwidth

or the latencies between external memory accesses, the processing unit cannot be

fed with data in every clock cycle, which leads to break in the pipeline and thus

loss of performance. To solve this problem, a FPGA architecture with novel external

memory access strategy is presented. This architecture employs data partitioning

method in order to reduce memory accesses for an external memory. While one

external memory feeds its data buffer, the other external memory gets ready for the

next access. This process is repeated recursively until all data is extracted from the

external memories. The proposed design keeps all speedups achieved with FPGA

based PT architecture with on-chip memory.

Overall, the main contribution of this thesis is that we deal with both the memory and

computation bound problems for MCMC in the big data regime using FPGAs. This is

accomplished by exploiting the unique capabilities of FPGAs such as highly-parallel

and pipelined architecture and custom precision support. Besides, with the proposed

MCMC accelerator improved via novel memory access strategy, the intractable or

computationally intensive tasks in Bayesian inference can be solved.

This work can be improved by targeting several approaches that exist in the MCMC

literature. Employing sub-sampling algorithms and heterogeneous computing devices

in MCMC applications or targeting other sampling methods are the possible future re-

searches for this work. Despite the enormous efforts, in some cases, it is not possible

to deal with whole data sets due to the memory or execution time restrictions. For

these cases, the algorithms based on data sub-sampling can be employed so that in-

stead of the full data set, a random sub-set of the data are processed in every MCMC

82

iterations. Firefly Monte Carlo method [47] is a successful example of these ap-

proaches, which has been already mapped to FPGA platform with custom precision

techniques [45].

Since utilizing single device may not be enough to deal with the big data problems,

the use of multiple FPGAs or heterogeneous computing devices such as GPUs and

FPGAs may become more common in the future. Via this approach, the memory

bottlenecks can also be eliminated by partitioning data into sub groups. In contrast

to our data partitioning strategy, the partitioned sub-groups are processed in differ-

ent computing devices in parallel which leads to further improvements on sampling

throughput. In order to avoid the sampling bias or to reduce the sampling bias, a good

strategy for combining the results of sub groups can be searched as future work.

In this thesis, a population based Markov Chain Monte Carlo method, Parallel Tem-

pering, is accelerated via hardware accelerator. However, in the literature, there exist

many MCMC methods such as Hamiltonian Monte Carlo, Gibbs Sampling, Multiple

Try Metropolis, Slice Sampling and Adaptive MCMC, which are suitable candidates

for FPGA acceleration. Apart form MCMC methods, alternative sampling methods

like Sequential Monte Carlo (SMC) for dynamic models can also be mapped into

FPGAs to extend the use of FPGAs in Bayesian inference. The inherent parallelism

in the steps of SMC method can be exploited by FPGA to speedup the algorithm.

Also, different resampling algorithms can be mapped into parallel FPGA architecture

to extend SMC usage in mobile systems via reconfigurable hardware.

83

84

REFERENCES

[1] Altera early power estimator tool. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/

ug/ug_epe.pdf.

[2] Ltc2978 - octal digital power supply manager with eeprom. http://www.

linear.com/product/LTC2978.

[3] Stratix si development kit. https://www.altera.com/

products/boards_and_kits/dev-kits/altera/

kit-transceiver-si-stratix-v.html.

[4] Handbook of Monte Carlo Methods. Chapman and Hall/CRC, 2011.

[5] N. Alachiotis, E. Sotiriades, A. Dollas, and A. Stamatakis. Exploring fpgas for

accelerating the phylogenetic likelihood function. In 2009 IEEE International

Symposium on Parallel Distributed Processing, pages 1–8, May 2009.

[6] E. Angelino, M. J. Johnson, and R. P. Adams. Patterns of scalable bayesian

inference. Foundations and Trends in Machine Learning, 9:119–247, 2016.

[7] N. B. Asadi, T. H. Y. Meng, and W. H. Wong. Reconfigurable computing for

learning bayesian networks. In FPGA, 2008.

[8] R. Bardenet, A. Doucet, and C. C. Holmes. Towards scaling up markov chain

monte carlo: an adaptive subsampling approach. In ICML, 2014.

[9] R. Bardenet, A. Doucet, and C. C. Holmes. On markov chain monte carlo

methods for tall data. Journal of Machine Learning Research, 18:47:1–47:43,

2017.

[10] A. Beam, S. Ghosh, and J. Doyle. Fast hamiltonian monte carlo using gpu

computing. Journal of Computational and Graphical Statistics, 1402, 02 2014.

85

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
http://www.linear.com/product/LTC2978
http://www.linear.com/product/LTC2978
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html

[11] S. P. Brooks and A. Gelman. General methods for monitoring convergence

of iterative simulations. Journal of Computational and Graphical Statistics,

7(4):434–455, 1998.

[12] J. M. R. Byrd, S. A. Jarvis, and A. H. Bhalerao. Reducing the run-time of mcmc

programs by multithreading on smp architectures. In 2008 IEEE International

Symposium on Parallel and Distributed Processing, pages 1–8, April 2008.

[13] T. A. Castoe, T. Doan, and C. L. Parkinson. Data partitions and complex models

in bayesian analysis: the phylogeny of gymnophthalmid lizards. Systematic

biology, 53 3:448–69, 2004.

[14] R. C. C. Cheung, D. U. Lee, W. Luk, and J. D. Villasenor. Hardware genera-

tion of arbitrary random number distributions from uniform distributions via the

inversion method. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 15(8):952–962, Aug 2007.

[15] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. W. Leong, and D. B. Thomas.

A mixed precision monte carlo methodology for reconfigurable accelerator sys-

tems. In FPGA, 2012.

[16] A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo methods in

practice. Springer New York ; London, 2001.

[17] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling

methods for bayesian filtering. Statistics and Computing, 10, 04 2003.

[18] D. J. Earl and M. W. Deem. Optimal allocation of replicas to processors in paral-

lel tempering simulations. The Journal of Physical Chemistry B, 108(21):6844–

6849, 2004.

[19] D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new

perspectives. Physical Chemistry Chemical Physics (Incorporating Faraday

Transactions), 7:3910, 2005.

[20] D. C. K. Fan. Bayesian Inference of Vascular Structure from Retinal Images.

PhD thesis, University of Warwick, 2006.

86

[21] M. Fielding, D. J. Nott, and S.-Y. Liong. Efficient mcmc schemes for computa-

tionally expensive posterior distributions. 53:16–28, 02 2011.

[22] T. Flury and N. Shephard. Bayesian inference based only on simulated likeli-

hood: Particle filter analysis of dynamic economic models. Econometric The-

ory, 1:1–24, 01 2011.

[23] A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple

sequences. Statistical Science, 7(4):457–472, 1992.

[24] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-6(6):721–741, Nov 1984.

[25] J. Geweke. Evaluating the accuracy of sampling-based approaches to calculat-

ing posterior moments. In J. M. Bernardo, J. Berger, A. P. Dawid, and J. F. M.

Smith, editors, Bayesian Statistics 4, pages 169–193. Oxford University Press,

Oxford, 1992.

[26] C. J. Geyer. Markov chain monte carlo maximum likelihood. In Computing

Science and Statistics, Proceedings of the 23rd Symposium on the Interface,

pages 156–163, 1991.

[27] Z. Ghahramani. Bayesian non-parametrics and the probabilistic approach to

modelling. Philosophical transactions. Series A, Mathematical, physical, and

engineering sciences, 371(1984):20110553, February 2013.

[28] W. Gilks and D. Spiegelhalter. Markov Chain Monte Carlo in Practice. Chap-

man and Hall/CRC, 1996.

[29] J. Gross, W. Janke, and M. Bachmann. Massively parallelized replica-

exchange simulations of polymers on GPUs. Computer Physics Communica-

tions, 182:1638–1644, Aug. 2011.

[30] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Chapman and

Hall, 1964.

[31] W. K. Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

87

[32] Z. Huang and A. Gelman. Sampling for bayesian computation with large

datasets. 2003.

[33] A. Jasra, D. A. Stephens, and C. C. Holmes. On population-based simulation

for static inference. Statistics and Computing, 17:263–279, 2007.

[34] R. Kalman. A new approach to linear filtering and prediction problems. Trans-

actions of the ASME - Journal of basic Engineering, 82:35–45, 01 1960.

[35] S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. George, and R. Mc-

Culloch. Bayes and big data: The consensus monte carlo algorithm. 11:1–11,

02 2016.

[36] P. L’Ecuyer. Maximally equidistributed combined tausworthe generators. Math.

Comput., 65(213):203–213, Jan. 1996.

[37] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. On the utility

of graphics cards to perform massively parallel simulation of advanced Monte

Carlo methods. ArXiv e-prints, May 2009.

[38] D.-U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. W. Leong. A hardware

gaussian noise generator using the wallace method. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 13(8):911–920, Aug 2005.

[39] D. U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong. A hardware gaus-

sian noise generator using the box-muller method and its error analysis. IEEE

Transactions on Computers, 55(6):659–671, June 2006.

[40] Y. Li, M. Mascagni, and A. Gorin. A decentralized parallel implementation for

parallel tempering algorithm. Parallel Computing, 35(5):269 – 283, 2009.

[41] F. Liang, C. Liu, and R. J. Caroll. Advanced Markov Chain Monte Carlo Meth-

ods. Wiley, 2010.

[42] M. Lin, I. Lebedev, and J. Wawrzynek. High-throughput bayesian comput-

ing machine with reconfigurable hardware. In Proceedings of the 18th Annual

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

FPGA ’10, pages 73–82, New York, NY, USA, 2010. ACM.

88

[43] J. S. Liu. Monte Carlo strategies in scientific computing. Springer, 2001.

[44] J. S. Liu, F. Liang, and W. H. Wong. The multiple-try method and local opti-

mization in metropolis sampling. Journal of the American Statistical Associa-

tion, 95(449):121–134, 2000.

[45] S. Liu. Acceleration of MCMC-based Algorithms Using Reconfigurable Logic.

PhD thesis, Imperial College London, 2017.

[46] M. M. Tibbits, M. Haran, and J. C. Liechty. Parallel multivariate slice sampling.

Statistics and Computing, 21:415–430, 07 2011.

[47] D. Maclaurin and R. P. Adams. Firefly Monte Carlo: Exact MCMC with Sub-

sets of Data. ArXiv e-prints, Mar. 2014.

[48] J. S. Malik, J. N. Malik, A. Hemani, and N. D. Gohar. Generating high tail

accuracy gaussian random numbers in hardware using central limit theorem. In

2011 IEEE/IFIP 19th International Conference on VLSI and System-on-Chip,

pages 60–65, Oct 2011.

[49] G. Mingas. Algorithms and architectures for MCMC acceleration in FPGAs.

PhD thesis, Imperial College London, 2015.

[50] G. Mingas and C. S. Bouganis. A custom precision based architecture for accel-

erating parallel tempering mcmc on fpgas without introducing sampling error.

In 2012 IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines, pages 153–156, April 2012.

[51] G. Mingas and C.-S. Bouganis. Parallel tempering mcmc acceleration using

reconfigurable hardware. In Proceedings of the 8th International Conference

on Reconfigurable Computing: Architectures, Tools and Applications, ARC’12,

pages 227–238, Berlin, Heidelberg, 2012. Springer-Verlag.

[52] G. Mingas and C. S. Bouganis. Population-based mcmc on multi-core cpus,

gpus and fpgas. IEEE Transactions on Computers, 65(4):1283–1296, April

2016.

[53] S. Minsker, S. Srivastava, L. Lin, and D. Dunson. Scalable and robust bayesian

inference via the median posterior, 06 2014.

89

[54] I. Murray. Advances in Markov chain Monte Carlo methods. PhD thesis, Uni-

versity of London, 2007.

[55] W. Neiswanger, C. Wang, and E. Xing. Asymptotically exact, embarrassingly

parallel mcmc. Uncertainty in Artificial Intelligence - Proceedings of the 30th

Conference, UAI 2014, 11 2013.

[56] M. NS, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. J. Teller. Equation of

state calculations by fast computing machines. Journal of Chemical Physics,

21:1087–1092, 01 1953.

[57] M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran. Speeding Up MCMC by

Efficient Data Subsampling. ArXiv e-prints, Apr. 2014.

[58] W. R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Ap-

plied Statistics, 41:337–348, 01 1992.

[59] O. J. L. Rackham, P. Dellaportas, E. Petretto, and L. Bottolo. Wgbssuite: simu-

lating whole-genome bisulphite sequencing data and benchmarking differential

dna methylation analysis tools. In Bioinformatics, 2015.

[60] G. Reinert. Markov chain monte carlo and applied bayesian statistics.

http://www.stats.ox.ac.uk/ reinert/mcmc/mcmc07.pdf. Accessed on 2007.

[61] C. Robert and G. Casella. A Short History of Markov Chain Monte Carlo:

Subjective Recollections from Incomplete Data. ArXiv e-prints, Aug. 2008.

[62] J. S. Rosenthal. Parallel computing and monte carlo algorithms. Far East Jour-

nal of Theoretical Statistics, 4:207–236, 1999.

[63] A. Silva. cudabayesreg: Bayesian computation in cuda. The R Journal, 2, 12

2010.

[64] M. A. Suchard, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West. Un-

derstanding gpu programming for statistical computation: Studies in massively

parallel massive mixtures. Journal of computational and graphical statistics : a

joint publication of American Statistical Association, Institute of Mathematical

Statistics, Interface Foundation of North America, 19 2:419–438, 2010.

90

[65] D. B. Thomas. Fpga gaussian random number generators with guaranteed sta-

tistical accuracy. In 2014 IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 149–156, May 2014.

[66] D. B. Thomas, L. Howes, and W. Luk. A comparison of cpus, gpus, fpgas, and

massively parallel processor arrays for random number generation. In Proceed-

ings of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays, FPGA ’09, pages 63–72, New York, NY, USA, 2009. ACM.

[67] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor. Gaussian random

number generators. ACM Comput. Surv., 39(4), Nov. 2007.

[68] E. Thonnes, A. Bhalerao, W. Kendall, and R. Wilson. A bayesian approach to

inferring vascular tree structure from 2d imagery. In Proceedings. International

Conference on Image Processing, volume 2, pages II–937–II–940 vol.2, 2002.

[69] X. Tian and C. Bouganis. A run-time adaptive fpga architecture for monte carlo

simulations. In 2011 21st International Conference on Field Programmable

Logic and Applications, pages 116–122, Sep. 2011.

[70] L. Tierney and A. Mira. Some adaptive monte carlo methods for bayesian in-

ference. Statistics in medicine, 18:2507–15, 09 1999.

[71] R. Trotta. Bayes in the sky: Bayesian inference and model selection in cosmol-

ogy. Contemp. Phys., 49:71–104, 2008.

[72] J. Wang and R. H. Swendsen. Replica Monte Carlo Simulation (Revisited).

Progress of Theoretical Physics Supplement, 157:317–323, 2005.

[73] X. Wang and D. B. Dunson. Parallelizing MCMC via Weierstrass Sampler.

ArXiv e-prints, Dec. 2013.

[74] S. P. Whiley, Mattand Wilson. Parallel algorithms for markov chain monte carlo

methods in latent spatial gaussian models. Statistics and Computing, 14(3):171–

179, Aug 2004.

[75] D. Wilkinson. Parallel bayesian computation, 12 2005.

91

[76] K. Wreczycka, A. Gosdschan, D. Yusuf, B. A. Grüning, Y. Assenov, and

A. Akalin. Strategies for analyzing bisulfite sequencing data. Journal of

biotechnology, 261:105–115, 2017.

[77] X.-L. Wu, T. Beissinger, S. Bauck, B. Woodward, G. Rosa, K. A Weigel,

N. de Leon Gatti, and D. Gianola. A primer on high-throughput computing

for genomic selection. 2:4, 02 2011.

[78] X.-L. Wu, C. Sun, T. Beissinger, G. Rosa, K. A Weigel, N. de Leon Gatti,

and D. Gianola. Parallel markov chain monte carlo - bridging the gap to high-

performance bayesian computation in animal breeding and genetics. 44:29, 09

2012.

[79] S. Yıldırım. Monte carlo: Simulation methods for statistical in-

ference. http://people.sabanciuniv.edu/sinanyildirim/

Lecture_notes.pdf.

[80] G. Zhang, P. H. W. Leong, D.-U. Lee, J. D. Villasenor, R. C. C. Cheung, and

W. Luk. Ziggurat-based hardware gaussian random number generator. In In-

ternational Conference on Field Programmable Logic and Applications, 2005.,

pages 275–280, Aug 2005.

[81] Y. Zhao, J. Kang, and Q. Long. Bayesian multiresolution variable selection for

ultra-high dimensional neuroimaging data. IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics, 15(2):537–550, March 2018.

[82] S. Zierke and J. Bakos. Fpga acceleration of the phylogenetic likelihood func-

tion for bayesian mcmc inference methods. BMC bioinformatics, 11:184, 04

2010.

92

http://people.sabanciuniv.edu/sinanyildirim/Lecture_notes.pdf
http://people.sabanciuniv.edu/sinanyildirim/Lecture_notes.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background and Related Work
	Background
	Monte Carlo Approximation
	Rejection Sampling
	Importance Sampling

	Markov Chain Monte Carlo (MCMC)
	MCMC Algorithms
	Metropolis Algorithm
	Metropolis-Hasting Algorithm
	Gibbs Sampling
	Parallel Tempering
	Other MCMC Algorithms

	 The Output Analysis of MCMC

	Sequential Monte Carlo
	Sequential Importance Sampling (SIS)
	Sequential Importance Sampling Resampling (SISR)

	The Acceleration of MCMC
	The Approach of this Thesis
	Related Works

	Hardware Architectures for Parallel Tempering Algorithm
	Parallel Tempering
	System Architectures
	The Standard-Precision PT Architecture
	The Mixed-Precision PT Architecture

	Performance Evaluation
	Case Study
	Evaluation Platforms
	FPGA Implementation
	Performance Metrics
	Performance Results
	Throughput Analysis
	Power Analysis
	Latency Analysis
	FPGA Resource Utilization of PT
	Precision Analysis
	Memory Analysis

	Conclusions and Future Work
	REFERENCES

